WorldWideScience

Sample records for gel-free phosphoproteomics approach

  1. Quantitative phosphoproteomic analysis of postmortem muscle development

    DEFF Research Database (Denmark)

    Huang, Honggang

    Meat quality development is highly dependent on postmortem (PM) metabolism and rigor mortis development in PM muscle. PM glycometabolism and rigor mortis fundamentally determine most of the important qualities of raw meat, such as ultimate pH, tenderness, color and water-holding capacity. Protein...... phosphorylation is known to play essential roles on regulating metabolism, contraction and other important activities in muscle systems. However, protein phosphorylation has rarely been systematically explored in PM muscle in relation to meat quality. In this PhD project, both gel-based and mass spectrometry (MS......)-based quantitative phosphoproteomic strategies were employed to analyze PM muscle with the aim to intensively characterize the protein phosphorylation involved in meat quality development. Firstly, gel-based phosphoproteomic studies were performed to analyze the protein phosphorylation in both sarcoplasmic proteins...

  2. Construction of large signaling pathways using an adaptive perturbation approach with phosphoproteomic data.

    Science.gov (United States)

    Melas, Ioannis N; Mitsos, Alexander; Messinis, Dimitris E; Weiss, Thomas S; Rodriguez, Julio-Saez; Alexopoulos, Leonidas G

    2012-04-01

    Construction of large and cell-specific signaling pathways is essential to understand information processing under normal and pathological conditions. On this front, gene-based approaches offer the advantage of large pathway exploration whereas phosphoproteomic approaches offer a more reliable view of pathway activities but are applicable to small pathway sizes. In this paper, we demonstrate an experimentally adaptive approach to construct large signaling pathways from phosphoproteomic data within a 3-day time frame. Our approach--taking advantage of the fast turnaround time of the xMAP technology--is carried out in four steps: (i) screen optimal pathway inducers, (ii) select the responsive ones, (iii) combine them in a combinatorial fashion to construct a phosphoproteomic dataset, and (iv) optimize a reduced generic pathway via an Integer Linear Programming formulation. As a case study, we uncover novel players and their corresponding pathways in primary human hepatocytes by interrogating the signal transduction downstream of 81 receptors of interest and constructing a detailed model for the responsive part of the network comprising 177 species (of which 14 are measured) and 365 interactions.

  3. Phosphoproteomics by mass spectrometry: insights, implications, applications and limitations.

    Science.gov (United States)

    Mayya, Viveka; Han, David K

    2009-12-01

    Phosphorylation of proteins is a predominant, reversible post-translational modification. It is central to a wide variety of physiological responses and signaling mechanisms. Recent advances have allowed the global scope of phosphorylation to be addressed by mass spectrometry using phosphoproteomic approaches. In this perspective, we discuss four aspects of phosphoproteomics: the insights and implications from recently published phosphoproteomic studies and the applications and limitations of current phosphoproteomic strategies. Since approximately 50,000 known phosphorylation sites do not yet have any ascribed function, we present our perspectives on a major function of protein phosphorylation that may be of predictive value in hypothesis-based investigations. Finally, we discuss strategies to measure the stoichiometry of phosphorylation in a proteome-wide manner that is not provided by current phosphoproteomic approaches.

  4. Analytical strategies in mass spectrometry-based phosphoproteomics

    DEFF Research Database (Denmark)

    Rosenqvist, Heidi; Ye, Juanying; Jensen, Ole N

    2011-01-01

    then discuss various tandem mass spectrometry approaches for phosphopeptide sequencing and quantification, and we consider aspects of phosphoproteome data analysis and interpretation. Efficient integration of these stages of phosphoproteome analysis is highly important to ensure a successful outcome of large...

  5. Phosphoproteome of the cyanobacterium Synechocystis sp. PCC 6803 and its dynamics during nitrogen starvation.

    Directory of Open Access Journals (Sweden)

    Philipp eSpät

    2015-03-01

    Full Text Available Cyanobacteria have shaped the earth’s biosphere as the first oxygenic photoautotrophs and still play an important role in many ecosystems. The ability to adapt to changing environmental conditions is an essential characteristic in order to ensure survival. To this end, numerous studies have shown that bacteria use protein post-translational modifications such as Ser/Thr/Tyr phosphorylation in cell signalling, adaptation and regulation. Nevertheless, our knowledge of cyanobacterial phosphoproteomes and their dynamic response to environmental stimuli is relatively limited. In this study, we applied gel-free methods and high accuracy mass spectrometry towards the unbiased detection of Ser/Thr/Tyr phosphorylation events in the model cyanobacterium Synechocystis sp. PCC 6803. We could identify over 300 phosphorylation events in cultures grown on nitrate as exclusive nitrogen source. Chemical dimethylation labelling was applied to investigate proteome and phosphoproteome dynamics during nitrogen starvation. Our dataset describes the most comprehensive (phosphoproteome of Synechocystis to date, identifying 2,382 proteins and 183 phosphorylation events and quantifying 2,111 proteins and 148 phosphorylation events during nitrogen starvation. Global protein phosphorylation levels were increased in response to nitrogen depletion after 24 hours. Among the proteins with increased phosphorylation, the PII signalling protein showed the highest fold-change, serving as positive control. Other proteins with increased phosphorylation levels comprised functions in photosynthesis and in carbon and nitrogen metabolism. This study reveals dynamics of Synechocystis phosphoproteome in response to environmental stimuli and suggests an important role of protein Ser/Thr/Tyr phosphorylation in fundamental mechanisms of homeostatic control in cyanobacteria.

  6. Benchmarking common quantification strategies for large-scale phosphoproteomics

    DEFF Research Database (Denmark)

    Hogrebe, Alexander; von Stechow, Louise; Bekker-Jensen, Dorte B

    2018-01-01

    Comprehensive mass spectrometry (MS)-based proteomics is now feasible, but reproducible quantification remains challenging, especially for post-translational modifications such as phosphorylation. Here, we compare the most popular quantification techniques for global phosphoproteomics: label-free...

  7. Comparative gel-based phosphoproteomics in response to signaling molecules

    KAUST Repository

    Marondedze, Claudius; Lilley, Kathryn S.; Thomas, Ludivine

    2013-01-01

    The gel-based proteomics approach is a valuable technique for studying the characteristics of proteins. This technique has diverse applications ranging from analysis of a single protein to the study of the total cellular proteins. Further, protein quality and to some extent distribution can be first assessed by means of one-dimensional gel electrophoresis and then more informatively, for comparative analysis, using the two-dimensional gel electrophoresis technique. Here, we describe how to take advantage of the availability of fluorescent dyes to stain for a selective class of proteins on the same gel for the detection of both phospho- and total proteomes. This enables the co-detection of phosphoproteins as well as total proteins from the same gel and is accomplished by utilizing two different fluorescent stains, the ProQ-Diamond, which stains only phosphorylated proteins, and Sypro Ruby, which stains the entire subset of proteins. This workflow can be applied to gain insights into the regulatory mechanisms induced by signaling molecules such as cyclic nucleotides through the quantification and subsequent identification of responsive phospho- and total proteins. © Springer Science+Business Media New York 2013.

  8. Comparative gel-based phosphoproteomics in response to signaling molecules

    KAUST Repository

    Marondedze, Claudius

    2013-09-03

    The gel-based proteomics approach is a valuable technique for studying the characteristics of proteins. This technique has diverse applications ranging from analysis of a single protein to the study of the total cellular proteins. Further, protein quality and to some extent distribution can be first assessed by means of one-dimensional gel electrophoresis and then more informatively, for comparative analysis, using the two-dimensional gel electrophoresis technique. Here, we describe how to take advantage of the availability of fluorescent dyes to stain for a selective class of proteins on the same gel for the detection of both phospho- and total proteomes. This enables the co-detection of phosphoproteins as well as total proteins from the same gel and is accomplished by utilizing two different fluorescent stains, the ProQ-Diamond, which stains only phosphorylated proteins, and Sypro Ruby, which stains the entire subset of proteins. This workflow can be applied to gain insights into the regulatory mechanisms induced by signaling molecules such as cyclic nucleotides through the quantification and subsequent identification of responsive phospho- and total proteins. © Springer Science+Business Media New York 2013.

  9. Gel-based phosphoproteomics analysis of sarcoplasmic proteins in postmortem porcine muscle with pH decline rate and time differences

    DEFF Research Database (Denmark)

    Huang, Honggang; Larsen, Martin Røssel; Karlsson, Anders H

    2011-01-01

    phosphorylation in sarcoplasmic proteins from three groups of pigs with different pH decline rates from PM 1 to 24¿h. Globally, the fast pH decline group had the highest phosphorylation level at PM 1¿h, but lowest at 24¿h, whereas the slow pH decline group showed the reverse case. The same pattern was also...... observed in most individual bands in 1-DE. The protein phosphorylation levels of 12 bands were significantly affected by the synergy effects of pH and time (p......Meat quality development is highly influenced by the pH decline caused by the postmortem (PM) glycolysis. Protein phosphorylation is an important mechanism in regulating the activity of glycometabolic enzymes. Here, a gel-based phosphoproteomic study was performed to analyze the protein...

  10. Electrophoresis of DNA in agarose gels, polyacrylamide gels and in free solution

    Science.gov (United States)

    Stellwagen, Nancy C.

    2009-01-01

    This review describes the electrophoresis of curved and normal DNA molecules in agarose gels, polyacrylamide gels and in free solution. These studies were undertaken to clarify why curved DNA molecules migrate anomalously slowly in polyacrylamide gels but not in agarose gels. Two milestone papers are cited, in which Ferguson plots were used to estimate the effective pore size of agarose and polyacrylamide gels. Subsequent studies on the effect of the electric field on agarose and polyacrylamide gel matrices, DNA interactions with the two gel matrices, and the effect of curvature on the free solution mobility of DNA are also described. The combined results suggest that the anomalously slow mobilities observed for curved DNA molecules in polyacrylamide gels are due primarily to preferential interactions of curved DNAs with the polyacrylamide gel matrix; the restrictive pore size of the matrix is of lesser importance. In free solution, DNA mobilities increase with increasing molecular mass until leveling off at a plateau value of (3.17 ± 0.01) × 10-4 cm2/Vs in 40 mM Tris-acetate-EDTA buffer at 20°C. Curved DNA molecules migrate anomalously slowly in free solution as well as in polyacrylamide gels, explaining why the Ferguson plots of curved and normal DNAs containing the same number of base pairs extrapolate to different mobilities at zero gel concentration. PMID:19517510

  11. Integrating phosphoproteomics in systems biology

    Directory of Open Access Journals (Sweden)

    Yu Liu

    2014-07-01

    Full Text Available Phosphorylation of serine, threonine and tyrosine plays significant roles in cellular signal transduction and in modifying multiple protein functions. Phosphoproteins are coordinated and regulated by a network of kinases, phosphatases and phospho-binding proteins, which modify the phosphorylation states, recognize unique phosphopeptides, or target proteins for degradation. Detailed and complete information on the structure and dynamics of these networks is required to better understand fundamental mechanisms of cellular processes and diseases. High-throughput technologies have been developed to investigate phosphoproteomes in model organisms and human diseases. Among them, mass spectrometry (MS-based technologies are the major platforms and have been widely applied, which has led to explosive growth of phosphoproteomic data in recent years. New bioinformatics tools are needed to analyze and make sense of these data. Moreover, most research has focused on individual phosphoproteins and kinases. To gain a more complete knowledge of cellular processes, systems biology approaches, including pathways and networks modeling, have to be applied to integrate all components of the phosphorylation machinery, including kinases, phosphatases, their substrates, and phospho-binding proteins. This review presents the latest developments of bioinformatics methods and attempts to apply systems biology to analyze phosphoproteomics data generated by MS-based technologies. Challenges and future directions in this field will be also discussed.

  12. Identification and quantitation of signal molecule-dependent protein phosphorylation

    KAUST Repository

    Groen, Arnoud J.

    2013-09-03

    Phosphoproteomics is a fast-growing field that aims at characterizing phosphorylated proteins in a cell or a tissue at a given time. Phosphorylation of proteins is an important regulatory mechanism in many cellular processes. Gel-free phosphoproteome technique involving enrichment of phosphopeptide coupled with mass spectrometry has proven to be invaluable to detect and characterize phosphorylated proteins. In this chapter, a gel-free quantitative approach involving 15N metabolic labelling in combination with phosphopeptide enrichment by titanium dioxide (TiO2) and their identification by MS is described. This workflow can be used to gain insights into the role of signalling molecules such as cyclic nucleotides on regulatory networks through the identification and quantification of responsive phospho(proteins). © Springer Science+Business Media New York 2013.

  13. Impact of Phosphoproteomics in the Era of Precision Medicine for Prostate Cancer

    Directory of Open Access Journals (Sweden)

    Johnny R. Ramroop

    2018-02-01

    Full Text Available Prostate cancer is the most common malignancy in men in the United States. While androgen deprivation therapy results in tumor responses initially, there is relapse and progression to metastatic castration-resistant prostate cancer. Currently, all prostate cancer patients receive essentially the same treatment, and there is a need for clinically applicable technologies to provide predictive biomarkers toward personalized therapies. Genomic analyses of tumors are used for clinical applications, but with a paucity of obvious driver mutations in metastatic castration-resistant prostate cancer, other applications, such as phosphoproteomics, may complement this approach. Immunohistochemistry and reverse phase protein arrays are limited by the availability of reliable antibodies and evaluates a preselected number of targets. Mass spectrometry-based phosphoproteomics has been used to profile tumors consisting of thousands of phosphopeptides from individual patients after surgical resection or at autopsy. However, this approach is time consuming, and while a large number of candidate phosphopeptides are obtained for evaluation, limitations are reduced reproducibility, sensitivity, and precision. Targeted mass spectrometry can help eliminate these limitations and is more cost effective and less time consuming making it a practical platform for future clinical testing. In this review, we discuss the use of phosphoproteomics in prostate cancer and other clinical cancer tissues for target identification, hypothesis testing, and possible patient stratification. We highlight the majority of studies that have used phosphoproteomics in prostate cancer tissues and cell lines and propose ways forward to apply this approach in basic and clinical research. Overall, the implementation of phosphoproteomics via targeted mass spectrometry has tremendous potential to aid in the development of more rational, personalized therapies that will result in increased survival

  14. Sample preparation for phosphoproteomic analysis of circadian time series in Arabidopsis thaliana.

    Science.gov (United States)

    Krahmer, Johanna; Hindle, Matthew M; Martin, Sarah F; Le Bihan, Thierry; Millar, Andrew J

    2015-01-01

    Systems biological approaches to study the Arabidopsis thaliana circadian clock have mainly focused on transcriptomics while little is known about the proteome, and even less about posttranslational modifications. Evidence has emerged that posttranslational protein modifications, in particular phosphorylation, play an important role for the clock and its output. Phosphoproteomics is the method of choice for a large-scale approach to gain more knowledge about rhythmic protein phosphorylation. Recent plant phosphoproteomics publications have identified several thousand phosphopeptides. However, the methods used in these studies are very labor-intensive and therefore not suitable to apply to a well-replicated circadian time series. To address this issue, we present and compare different strategies for sample preparation for phosphoproteomics that are compatible with large numbers of samples. Methods are compared regarding number of identifications, variability of quantitation, and functional categorization. We focus on the type of detergent used for protein extraction as well as methods for its removal. We also test a simple two-fraction separation of the protein extract. © 2015 Elsevier Inc. All rights reserved.

  15. Quantitative phosphoproteomics to characterize signaling networks

    DEFF Research Database (Denmark)

    Rigbolt, Kristoffer T G; Blagoev, Blagoy

    2012-01-01

    for analyzing protein phosphorylation at a system-wide scale and has become the intuitive strategy for comprehensive characterization of signaling networks. Contemporary phosphoproteomics use highly optimized procedures for sample preparation, mass spectrometry and data analysis algorithms to identify......Reversible protein phosphorylation is involved in the regulation of most, if not all, major cellular processes via dynamic signal transduction pathways. During the last decade quantitative phosphoproteomics have evolved from a highly specialized area to a powerful and versatile platform...... and quantify thousands of phosphorylations, thus providing extensive overviews of the cellular signaling networks. As a result of these developments quantitative phosphoproteomics have been applied to study processes as diverse as immunology, stem cell biology and DNA damage. Here we review the developments...

  16. Integration of gel-based and gel-free proteomic data for functional analysis of proteins through Soybean Proteome Database

    KAUST Repository

    Komatsu, Setsuko

    2017-05-10

    The Soybean Proteome Database (SPD) stores data on soybean proteins obtained with gel-based and gel-free proteomic techniques. The database was constructed to provide information on proteins for functional analyses. The majority of the data is focused on soybean (Glycine max ‘Enrei’). The growth and yield of soybean are strongly affected by environmental stresses such as flooding. The database was originally constructed using data on soybean proteins separated by two-dimensional polyacrylamide gel electrophoresis, which is a gel-based proteomic technique. Since 2015, the database has been expanded to incorporate data obtained by label-free mass spectrometry-based quantitative proteomics, which is a gel-free proteomic technique. Here, the portions of the database consisting of gel-free proteomic data are described. The gel-free proteomic database contains 39,212 proteins identified in 63 sample sets, such as temporal and organ-specific samples of soybean plants grown under flooding stress or non-stressed conditions. In addition, data on organellar proteins identified in mitochondria, nuclei, and endoplasmic reticulum are stored. Furthermore, the database integrates multiple omics data such as genomics, transcriptomics, metabolomics, and proteomics. The SPD database is accessible at http://proteome.dc.affrc.go.jp/Soybean/. Biological significanceThe Soybean Proteome Database stores data obtained from both gel-based and gel-free proteomic techniques. The gel-free proteomic database comprises 39,212 proteins identified in 63 sample sets, such as different organs of soybean plants grown under flooding stress or non-stressed conditions in a time-dependent manner. In addition, organellar proteins identified in mitochondria, nuclei, and endoplasmic reticulum are stored in the gel-free proteomics database. A total of 44,704 proteins, including 5490 proteins identified using a gel-based proteomic technique, are stored in the SPD. It accounts for approximately 80% of all

  17. Integration of gel-based and gel-free proteomic data for functional analysis of proteins through Soybean Proteome Database.

    Science.gov (United States)

    Komatsu, Setsuko; Wang, Xin; Yin, Xiaojian; Nanjo, Yohei; Ohyanagi, Hajime; Sakata, Katsumi

    2017-06-23

    The Soybean Proteome Database (SPD) stores data on soybean proteins obtained with gel-based and gel-free proteomic techniques. The database was constructed to provide information on proteins for functional analyses. The majority of the data is focused on soybean (Glycine max 'Enrei'). The growth and yield of soybean are strongly affected by environmental stresses such as flooding. The database was originally constructed using data on soybean proteins separated by two-dimensional polyacrylamide gel electrophoresis, which is a gel-based proteomic technique. Since 2015, the database has been expanded to incorporate data obtained by label-free mass spectrometry-based quantitative proteomics, which is a gel-free proteomic technique. Here, the portions of the database consisting of gel-free proteomic data are described. The gel-free proteomic database contains 39,212 proteins identified in 63 sample sets, such as temporal and organ-specific samples of soybean plants grown under flooding stress or non-stressed conditions. In addition, data on organellar proteins identified in mitochondria, nuclei, and endoplasmic reticulum are stored. Furthermore, the database integrates multiple omics data such as genomics, transcriptomics, metabolomics, and proteomics. The SPD database is accessible at http://proteome.dc.affrc.go.jp/Soybean/. The Soybean Proteome Database stores data obtained from both gel-based and gel-free proteomic techniques. The gel-free proteomic database comprises 39,212 proteins identified in 63 sample sets, such as different organs of soybean plants grown under flooding stress or non-stressed conditions in a time-dependent manner. In addition, organellar proteins identified in mitochondria, nuclei, and endoplasmic reticulum are stored in the gel-free proteomics database. A total of 44,704 proteins, including 5490 proteins identified using a gel-based proteomic technique, are stored in the SPD. It accounts for approximately 80% of all predicted proteins from

  18. Integration of gel-based and gel-free proteomic data for functional analysis of proteins through Soybean Proteome Database

    KAUST Repository

    Komatsu, Setsuko; Wang, Xin; Yin, Xiaojian; Nanjo, Yohei; Ohyanagi, Hajime; Sakata, Katsumi

    2017-01-01

    The Soybean Proteome Database (SPD) stores data on soybean proteins obtained with gel-based and gel-free proteomic techniques. The database was constructed to provide information on proteins for functional analyses. The majority of the data is focused on soybean (Glycine max ‘Enrei’). The growth and yield of soybean are strongly affected by environmental stresses such as flooding. The database was originally constructed using data on soybean proteins separated by two-dimensional polyacrylamide gel electrophoresis, which is a gel-based proteomic technique. Since 2015, the database has been expanded to incorporate data obtained by label-free mass spectrometry-based quantitative proteomics, which is a gel-free proteomic technique. Here, the portions of the database consisting of gel-free proteomic data are described. The gel-free proteomic database contains 39,212 proteins identified in 63 sample sets, such as temporal and organ-specific samples of soybean plants grown under flooding stress or non-stressed conditions. In addition, data on organellar proteins identified in mitochondria, nuclei, and endoplasmic reticulum are stored. Furthermore, the database integrates multiple omics data such as genomics, transcriptomics, metabolomics, and proteomics. The SPD database is accessible at http://proteome.dc.affrc.go.jp/Soybean/. Biological significanceThe Soybean Proteome Database stores data obtained from both gel-based and gel-free proteomic techniques. The gel-free proteomic database comprises 39,212 proteins identified in 63 sample sets, such as different organs of soybean plants grown under flooding stress or non-stressed conditions in a time-dependent manner. In addition, organellar proteins identified in mitochondria, nuclei, and endoplasmic reticulum are stored in the gel-free proteomics database. A total of 44,704 proteins, including 5490 proteins identified using a gel-based proteomic technique, are stored in the SPD. It accounts for approximately 80% of all

  19. Phosphoproteome profiling for cold temperature perception.

    Science.gov (United States)

    Park, Seyeon; Jang, Mi

    2011-02-01

    Temperature sensation initiates from the activation of cellular receptors when the cell is exposed to a decrease in temperature. Here, we applied a phosphoproteome profiling approach to the human lung epithelial cell line BEAS-2B to elucidate cellular cold-responsive processes. The primary aim of this study was to determine which intracellular changes of phosphorylation are accompanied by cold sensation. Eighteen protein spots that exhibited differentially phosphorylated changes in cells were identified. Most of the proteins that were phosphorylated after 5 or 10 min were returned to control levels after 30 or 60 min. Identified proteins were mainly RNA-related (i.e., they were involved in RNA binding and splicing). Temperature (18 and 10°C) stimuli showed homologies that were detected for time course changes in phosphoproteome. The data indicated a time-shift between two temperatures. The phosphorylation of putative cold responsive markers, such as ribosomal protein large P0 and heterochromatin-associated proteins 1, were verified by Western blotting in cells transfected with TRPM8 or TRPA1. Copyright © 2010 Wiley-Liss, Inc.

  20. Phosphoproteomic profiling of human myocardial tissues distinguishes ischemic from non-ischemic end stage heart failure.

    Directory of Open Access Journals (Sweden)

    Matthew A Schechter

    Full Text Available The molecular differences between ischemic (IF and non-ischemic (NIF heart failure are poorly defined. A better understanding of the molecular differences between these two heart failure etiologies may lead to the development of more effective heart failure therapeutics. In this study extensive proteomic and phosphoproteomic profiles of myocardial tissue from patients diagnosed with IF or NIF were assembled and compared. Proteins extracted from left ventricular sections were proteolyzed and phosphopeptides were enriched using titanium dioxide resin. Gel- and label-free nanoscale capillary liquid chromatography coupled to high resolution accuracy mass tandem mass spectrometry allowed for the quantification of 4,436 peptides (corresponding to 450 proteins and 823 phosphopeptides (corresponding to 400 proteins from the unenriched and phospho-enriched fractions, respectively. Protein abundance did not distinguish NIF from IF. In contrast, 37 peptides (corresponding to 26 proteins exhibited a ≥ 2-fold alteration in phosphorylation state (p<0.05 when comparing IF and NIF. The degree of protein phosphorylation at these 37 sites was specifically dependent upon the heart failure etiology examined. Proteins exhibiting phosphorylation alterations were grouped into functional categories: transcriptional activation/RNA processing; cytoskeleton structure/function; molecular chaperones; cell adhesion/signaling; apoptosis; and energetic/metabolism. Phosphoproteomic analysis demonstrated profound post-translational differences in proteins that are involved in multiple cellular processes between different heart failure phenotypes. Understanding the roles these phosphorylation alterations play in the development of NIF and IF has the potential to generate etiology-specific heart failure therapeutics, which could be more effective than current therapeutics in addressing the growing concern of heart failure.

  1. Photopatterned free-standing polyacrylamide gels for microfluidic protein electrophoresis.

    Science.gov (United States)

    Duncombe, Todd A; Herr, Amy E

    2013-06-07

    Designed for compatibility with slab-gel polyacrylamide gel electrophoresis (PAGE) reagents and instruments, we detail development of free-standing polyacrylamide gel (fsPAG) microstructures supporting electrophoretic performance rivalling that of microfluidic platforms. For the protein electrophoresis study described here, fsPAGE lanes are comprised of a sample reservoir and contiguous separation gel. No enclosed microfluidic channels are employed. The fsPAG devices (120 μm tall) are directly photopatterned atop of and covalently attached to planar polymer or glass surfaces. Leveraging the fast prototype-test cycle - significantly faster than mold based fabrication techniques - we optimize the fsPAG architecture to minimize injection dispersion for rapid (prototyping of the fsPAGE provides researchers a powerful tool for developing custom analytical assays. We highlight the utility of assay customization by fabricating a polyacrylamide gel with a spatial pore-size distribution and demonstrate the resulting enhancement in separation performance over a uniform gel. Further, we up-scale from a unit separation to an array of 96 concurrent fsPAGE assays in 10 min run time driven by one electrode pair. The fsPAG array layout matches that of a 96-well plate to facilitate integration of the planar free standing gel array with multi-channel pipettes while remaining compatible with conventional slab-gel PAGE reagents, such as staining for label-free protein detection. Notably, the entire fsPAGE workflow from fabrication, to operation, and readout uses readily available materials and instruments - making this technique highly accessible.

  2. Phosphoproteomics of Primary Cells Reveals Druggable Kinase Signatures in Ovarian Cancer

    Directory of Open Access Journals (Sweden)

    Chiara Francavilla

    2017-03-01

    Full Text Available Our understanding of the molecular determinants of cancer is still inadequate because of cancer heterogeneity. Here, using epithelial ovarian cancer (EOC as a model system, we analyzed a minute amount of patient-derived epithelial cells from either healthy or cancerous tissues by single-shot mass-spectrometry-based phosphoproteomics. Using a multi-disciplinary approach, we demonstrated that primary cells recapitulate tissue complexity and represent a valuable source of differentially expressed proteins and phosphorylation sites that discriminate cancer from healthy cells. Furthermore, we uncovered kinase signatures associated with EOC. In particular, CDK7 targets were characterized in both EOC primary cells and ovarian cancer cell lines. We showed that CDK7 controls cell proliferation and that pharmacological inhibition of CDK7 selectively represses EOC cell proliferation. Our approach defines the molecular landscape of EOC, paving the way for efficient therapeutic approaches for patients. Finally, we highlight the potential of phosphoproteomics to identify clinically relevant and druggable pathways in cancer.

  3. Phosphoproteomic fingerprinting of epidermal growth factor signaling and anticancer drug action in human tumor cells.

    Science.gov (United States)

    Lim, Yoon-Pin; Diong, Lang-Shi; Qi, Robert; Druker, Brian J; Epstein, Richard J

    2003-12-01

    Many proteins regulating cancer cell growth are tyrosine phosphorylated. Using antiphosphotyrosine affinity chromatography, thiourea protein solubilization, two-dimensional PAGE, and mass spectrometry, we report here the characterization of the epidermal growth factor (EGF)-induced phosphoproteome in A431 human epidermoid carcinoma cells. Using this approach, more than 50 distinct tyrosine phosphoproteins are identifiable within five main clusters-cytoskeletal proteins, signaling enzymes, SH2-containing adaptors, chaperones, and focal adhesion proteins. Comparison of the phosphoproteomes induced in vitro by transforming growth factor-alpha and platelet-derived growth factor demonstrates the pathway- and cell-specific nature of the phosphoproteomes induced. Elimination of both basal and ligand-dependent phosphoproteins by cell exposure to the EGF receptor catalytic inhibitor gefitinib (Iressa, ZD1839) suggests either an autocrine growth loop or the presence of a second inhibited kinase in A431 cells. By identifying distinct patterns of phosphorylation involving novel signaling substrates, and by clarifying the mechanism of action of anticancer drugs, these findings illustrate the potential of immunoaffinity-based phosphoproteomics for guiding the discovery of new drug targets and the rational utilization of pathway-specific chemotherapies.

  4. Highly dispersed spherical Bi3.25La0.75Ti3O12 nanocrystals via topotactic crystallization of aggregation-free gel particles from an effective inverse miniemulsion sol–gel approach

    International Nuclear Information System (INIS)

    Wang, Aijun; Zeng, Yanwei; Han, Longxiang; Ding, Chuan; Cao, Liangliang; Li, Rongjie

    2015-01-01

    Aggregation-free spherical lanthanum-doped bismuth titanate (Bi 3.25 La 0.75 Ti 3 O 12 , BLT) gel particles with an average size of about 150 nm were successfully obtained from an inverse miniemulsion sol–gel process, with Span-80 acting as surfactant, n-butanol as co-surfactant, cyclohexane as continuous phase, and submicro-droplets of aqueous solution containing Bi 3+ , La 3+ and Ti 4+ ions as dispersed phase, and then topotactically transformed into highly dispersed spherical BLT nanocrystals after an in situ crystallization at 600 °C for 8 h. It has been found that the BLT gel particles can be obtained via a moderate sol–gel reaction inside the miniemulsion droplets at 65 °C, but their morphology and aggregation degree are strongly affected by the relative amounts of Span-80 and n-butanol. The perfect spherical BLT gel particles with no aggregation can be achieved only under the condition of 3 wt% n-butanol relative to the mass of cyclohexane, with excessive amount of n-butanol leading to the formation of ill-gelled particles with irregular shapes, while insufficient addition of n-butanol resulting in terrible aggregation of gel particles. To understand the formation of aggregation-free spherical BLT gel particles, a tentative mechanism is proposed and discussed, which reveals that a well-coordinated oil–water interfacial film made up of Span-80 and n-butanol molecules and the appropriately enhanced evaporation of water from such interfaces should be responsible for the formation of aggregation-free spherical BLT gel particles. Graphical Abstract: Aggregation-free spherical BLT (Bi 3.25 La 0.75 Ti 3 O 12 ) gel particles can be prepared from an effective inverse miniemulsion sol–gel process, and subsequently topotactically transformed into spherical BLT nanocrystals through an in situ crystallization

  5. Phosphoproteomics analysis of postmortem porcine muscle with pH decline rate and time difference

    DEFF Research Database (Denmark)

    Huang, Honggang; Larsen, Martin R; Karlsson, Anders H

    2012-01-01

    The aim of this study was to characterize the protein phosphorylation in postmortem (PM) muscle and reveal the change during meat quality development. The gel-based phosphoproteomic analysis of PM porcine muscle was performed in three pig groups with different pH decline rates from PM 1h to 24 h....... The sarcoplasmic and myofibrillar fractions were analyzed using gel electrophoresis in combination with a phosphoprotein specific staining. Globally, the group with fast pH decline rate had the highest phosphorylation level at PM 1 h, but lowest at PM 24 h, whereas the group with slow pH decline rate showed...... the reverse case. The phosphorylation level of 12 bands in sarcoplasmic fraction and 3 bands in myofibrillar fraction were significantly affected by the synergy effects of pH and time (p

  6. Analytical strategies for phosphoproteomics

    DEFF Research Database (Denmark)

    Thingholm, Tine E; Jensen, Ole N; Larsen, Martin R

    2009-01-01

    sensitive and specific strategies. Today, most phosphoproteomic studies are conducted by mass spectrometric strategies in combination with phospho-specific enrichment methods. This review presents an overview of different analytical strategies for the characterization of phosphoproteins. Emphasis...

  7. Phosphoproteomics of Primary Cells Reveals Druggable Kinase Signatures in Ovarian Cancer.

    Science.gov (United States)

    Francavilla, Chiara; Lupia, Michela; Tsafou, Kalliopi; Villa, Alessandra; Kowalczyk, Katarzyna; Rakownikow Jersie-Christensen, Rosa; Bertalot, Giovanni; Confalonieri, Stefano; Brunak, Søren; Jensen, Lars J; Cavallaro, Ugo; Olsen, Jesper V

    2017-03-28

    Our understanding of the molecular determinants of cancer is still inadequate because of cancer heterogeneity. Here, using epithelial ovarian cancer (EOC) as a model system, we analyzed a minute amount of patient-derived epithelial cells from either healthy or cancerous tissues by single-shot mass-spectrometry-based phosphoproteomics. Using a multi-disciplinary approach, we demonstrated that primary cells recapitulate tissue complexity and represent a valuable source of differentially expressed proteins and phosphorylation sites that discriminate cancer from healthy cells. Furthermore, we uncovered kinase signatures associated with EOC. In particular, CDK7 targets were characterized in both EOC primary cells and ovarian cancer cell lines. We showed that CDK7 controls cell proliferation and that pharmacological inhibition of CDK7 selectively represses EOC cell proliferation. Our approach defines the molecular landscape of EOC, paving the way for efficient therapeutic approaches for patients. Finally, we highlight the potential of phosphoproteomics to identify clinically relevant and druggable pathways in cancer. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  8. Gel-free proteomics reveal potential biomarkers of priming-induced salt tolerance in durum wheat.

    Science.gov (United States)

    Fercha, Azzedine; Capriotti, Anna Laura; Caruso, Giuseppe; Cavaliere, Chiara; Gherroucha, Hocine; Samperi, Roberto; Stampachiacchiere, Serena; Lagana, Aldo

    2013-10-08

    Seed priming has been successfully demonstrated to be an efficient method to improve crop productivity under stressful conditions. As a first step toward better understanding of the mechanisms underlying the priming-induced salt stress tolerance in durum wheat, and to overcome the limitations of the gel-based approach, a comparative gel-free proteomic analysis was conducted with durum wheat seed samples of varying vigor as generated by hydro- and ascorbate-priming treatments. Results indicate that hydro-priming was accompanied by significant changes of 72 proteins, most of which are involved in proteolysis, protein synthesis, metabolism and disease/defense response. Ascorbate-priming was, however, accompanied by significant changes of 83 proteins, which are mainly involved in protein metabolism, antioxidant protection, repair processes and, interestingly, in methionine-related metabolism. The present study provides new information for understanding how 'priming-memory' invokes seed stress tolerance. The current work describes the first study in which gel-free shotgun proteomics were used to investigate the metabolic seed protein fraction in durum wheat. A combined approach of protein fractionation, hydrogel nanoparticle enrichment technique, and gel-free shotgun proteomic analysis allowed us to identify over 380 proteins exhibiting greater molecular weight diversity (ranging from 7 to 258kDa). Accordingly, we propose that this approach could be useful to acquire a wider perspective and a better understanding of the seed proteome. In the present work, we employed this method to investigate the potential biomarkers of priming-induced salt tolerance in durum wheat. In this way, we identified several previously unrecognized proteins which were never been reported before, particularly for the ascorbate-priming treatment. These findings could provide new avenues for improving crop productivity, particularly under unfavorable environmental conditions. © 2013.

  9. Phosphoproteomic analysis of cell-based resistance to BRAF inhibitor therapy in melanoma

    Directory of Open Access Journals (Sweden)

    Robert eParker

    2015-05-01

    Full Text Available The treatment of melanoma by targeted inhibition of the mutated kinase BRAF with small molecules only temporarily suppresses metastatic disease. In the face of chemical inhibition tumor plasticity, both innate and adaptive, promotes survival through the biochemical and genetic reconfiguration of cellular pathways that can engage proliferative and migratory systems. To investigate this process high-resolution mass spectrometry was used to characterize the phosphoproteome of this transition in vitro. A simple and accurate, label-free quantitative method was used to localize and quantitate thousands of phosphorylation events. We also correlated changes in the phosphoproteome with the proteome to more accurately determine changes in the activity of regulatory kinases determined by kinase landscape profiling. The abundance of phosphopeptides with sites that function in cytoskeletal regulation, GTP/GDP exchange, Protein Kinase C, IGF signaling and melanosome maturation were highly divergent after transition to a drug resistant phenotype.

  10. Activation of Human Peripheral Blood Eosinophils by Cytokines in a Comparative Time-Course Proteomic/Phosphoproteomic Study.

    Science.gov (United States)

    Soman, Kizhake V; Stafford, Susan J; Pazdrak, Konrad; Wu, Zheng; Luo, Xuemei; White, Wendy I; Wiktorowicz, John E; Calhoun, William J; Kurosky, Alexander

    2017-08-04

    Activated eosinophils contribute to airway dysfunction and tissue remodeling in asthma and thus are considered to be important factors in asthma pathology. We report here comparative proteomic and phosphoproteomic changes upon activation of eosinophils using eight cytokines individually and in selected cytokine combinations in time-course reactions. Differential protein and phosphoprotein expressions were determined by mass spectrometry after 2-dimensional gel electrophoresis (2DGE) and by LC-MS/MS. We found that each cytokine-stimulation produced significantly different changes in the eosinophil proteome and phosphoproteome, with phosphoproteomic changes being more pronounced and having an earlier onset. Furthermore, we observed that IL-5, GM-CSF, and IL-3 showed the greatest change in protein expression and phosphorylation, and this expression differed markedly from those of the other five cytokines evaluated. Comprehensive univariate and multivariate statistical analyses were employed to evaluate the comparative results. We also monitored eosinophil activation using flow cytometry (FC) analysis of CD69. In agreement with our proteomic studies, FC indicated that IL-5, GM-CSF, and IL-3 were more effective than the other five cytokines studied in stimulating a cell surface CD69 increase indicative of eosinophil activation. Moreover, selected combinations of cytokines revealed proteomic patterns with many proteins in common with single cytokine expression patterns but also showed a greater effect of the two cytokines employed, indicating a more complex signaling pathway that was reflective of a more typical inflammatory pathology.

  11. Highly dispersed spherical Bi3.25La0.75Ti3O12 nanocrystals via topotactic crystallization of aggregation-free gel particles from an effective inverse miniemulsion sol-gel approach

    Science.gov (United States)

    Wang, Aijun; Zeng, Yanwei; Han, Longxiang; Ding, Chuan; Cao, Liangliang; Li, Rongjie

    2015-09-01

    Aggregation-free spherical lanthanum-doped bismuth titanate (Bi3.25La0.75Ti3O12, BLT) gel particles with an average size of about 150 nm were successfully obtained from an inverse miniemulsion sol-gel process, with Span-80 acting as surfactant, n-butanol as co-surfactant, cyclohexane as continuous phase, and submicro-droplets of aqueous solution containing Bi3+, La3+ and Ti4+ ions as dispersed phase, and then topotactically transformed into highly dispersed spherical BLT nanocrystals after an in situ crystallization at 600 °C for 8 h. It has been found that the BLT gel particles can be obtained via a moderate sol-gel reaction inside the miniemulsion droplets at 65 °C, but their morphology and aggregation degree are strongly affected by the relative amounts of Span-80 and n-butanol. The perfect spherical BLT gel particles with no aggregation can be achieved only under the condition of 3 wt% n-butanol relative to the mass of cyclohexane, with excessive amount of n-butanol leading to the formation of ill-gelled particles with irregular shapes, while insufficient addition of n-butanol resulting in terrible aggregation of gel particles. To understand the formation of aggregation-free spherical BLT gel particles, a tentative mechanism is proposed and discussed, which reveals that a well-coordinated oil-water interfacial film made up of Span-80 and n-butanol molecules and the appropriately enhanced evaporation of water from such interfaces should be responsible for the formation of aggregation-free spherical BLT gel particles.

  12. Time-resolved quantitative phosphoproteomics

    DEFF Research Database (Denmark)

    Verano-Braga, Thiago; Schwämmle, Veit; Sylvester, Marc

    2012-01-01

    proteins involved in the Ang-(1-7) signaling, we performed a mass spectrometry-based time-resolved quantitative phosphoproteome study of human aortic endothelial cells (HAEC) treated with Ang-(1-7). We identified 1288 unique phosphosites on 699 different proteins with 99% certainty of correct peptide...

  13. Phosphoproteome profiles of the phytopathogenic fungi Alternaria brassicicola and Botrytis cinerea during exponential growth in axenic cultures.

    Science.gov (United States)

    Davanture, Marlène; Dumur, Jérôme; Bataillé-Simoneau, Nelly; Campion, Claire; Valot, Benoît; Zivy, Michel; Simoneau, Philippe; Fillinger, Sabine

    2014-07-01

    This study describes the gel-free phosphoproteomic analysis of the phytopathogenic fungi Alternaria brassicicola and Botrytis cinerea grown in vitro under nonlimiting conditions. Using a combination of strong cation exchange and IMAC prior to LC-MS, we identified over 1350 phosphopeptides per fungus representing over 800 phosphoproteins. The preferred phosphorylation sites were found on serine (>80%) and threonine (>15%), whereas phosphorylated tyrosine residues were found at less than 1% in A. brassicicola and at a slightly higher ratio in B. cinerea (1.5%). Biological processes represented principally among the phoshoproteins were those involved in response and transduction of stimuli as well as in regulation of cellular and metabolic processes. Most known elements of signal transduction were found in the datasets of both fungi. This study also revealed unexpected phosphorylation sites in histidine kinases, a category overrepresented in filamentous ascomycetes compared to yeast. The data have been deposited to the ProteomeXchange database with identifier PXD000817 (http://proteomecentral.proteomexchange.org/dataset/PXD000817). © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Feasibility of large-scale phosphoproteomics with higher energy collisional dissociation fragmentation

    DEFF Research Database (Denmark)

    Nagaraj, Nagarjuna; D'Souza, Rochelle C J; Cox, Juergen

    2010-01-01

    Mass spectrometry (MS)-based proteomics now enables the analysis of thousands of phosphorylation sites in single projects. Among a wide range of analytical approaches, the combination of high resolution MS scans in an Orbitrap analyzer with low resolution MS/MS scans in a linear ion trap has proven......-scale phosphoproteome analysis alongside collisional induced dissociation, (CID) and electron capture/transfer dissociation (ECD/ETD)....

  15. Highly dispersed spherical Bi{sub 3.25}La{sub 0.75}Ti{sub 3}O{sub 12} nanocrystals via topotactic crystallization of aggregation-free gel particles from an effective inverse miniemulsion sol–gel approach

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Aijun; Zeng, Yanwei, E-mail: zengyw-njut@126.com, E-mail: stephen-zeng@njtech.edu.cn, E-mail: stephen-zeng@163.com; Han, Longxiang; Ding, Chuan; Cao, Liangliang; Li, Rongjie [Nanjing Tech University, State Key Laboratory of Materials-Oriented Chemical Engineering, College of Materials Science and Engineering (China)

    2015-09-15

    Aggregation-free spherical lanthanum-doped bismuth titanate (Bi{sub 3.25}La{sub 0.75}Ti{sub 3}O{sub 12}, BLT) gel particles with an average size of about 150 nm were successfully obtained from an inverse miniemulsion sol–gel process, with Span-80 acting as surfactant, n-butanol as co-surfactant, cyclohexane as continuous phase, and submicro-droplets of aqueous solution containing Bi{sup 3+}, La{sup 3+} and Ti{sup 4+} ions as dispersed phase, and then topotactically transformed into highly dispersed spherical BLT nanocrystals after an in situ crystallization at 600 °C for 8 h. It has been found that the BLT gel particles can be obtained via a moderate sol–gel reaction inside the miniemulsion droplets at 65 °C, but their morphology and aggregation degree are strongly affected by the relative amounts of Span-80 and n-butanol. The perfect spherical BLT gel particles with no aggregation can be achieved only under the condition of 3 wt% n-butanol relative to the mass of cyclohexane, with excessive amount of n-butanol leading to the formation of ill-gelled particles with irregular shapes, while insufficient addition of n-butanol resulting in terrible aggregation of gel particles. To understand the formation of aggregation-free spherical BLT gel particles, a tentative mechanism is proposed and discussed, which reveals that a well-coordinated oil–water interfacial film made up of Span-80 and n-butanol molecules and the appropriately enhanced evaporation of water from such interfaces should be responsible for the formation of aggregation-free spherical BLT gel particles. Graphical Abstract: Aggregation-free spherical BLT (Bi{sub 3.25}La{sub 0.75}Ti{sub 3}O{sub 12}) gel particles can be prepared from an effective inverse miniemulsion sol–gel process, and subsequently topotactically transformed into spherical BLT nanocrystals through an in situ crystallization.

  16. Phosphoproteomics reveals the effect of ethylene in soybean root under flooding stress.

    Science.gov (United States)

    Yin, Xiaojian; Sakata, Katsumi; Komatsu, Setsuko

    2014-12-05

    Flooding has severe negative effects on soybean growth. To explore the flooding-responsive mechanisms in early-stage soybean, a phosphoproteomic approach was used. Two-day-old soybean plants were treated without or with flooding for 3, 6, 12, and 24 h, and root tip proteins were then extracted and analyzed at each time point. After 3 h of flooding exposure, the fresh weight of soybeans increased, whereas the ATP content of soybean root tips decreased. Using a gel-free proteomic technique, a total of 114 phosphoproteins were identified in the root tip samples, and 34 of the phosphoproteins were significantly changed with respect to phosphorylation status after 3 h of flooding stress. Among these phosphoproteins, eukaryotic translation initiation factors were dephosphorylated, whereas several protein synthesis-related proteins were phosphorylated. The mRNA expression levels of sucrose phosphate synthase 1F and eukaryotic translation initiation factor 4 G were down-regulated, whereas UDP-glucose 6-dehydrogenase mRNA expression was up-regulated during growth but down-regulated under flooding stress. Furthermore, bioinformatic protein interaction analysis of flooding-responsive proteins based on temporal phosphorylation patterns indicated that eukaryotic translation initiation factor 4 G was located in the center of the network during flooding. Soybean eukaryotic translation initiation factor 4 G has homology to programmed cell death 4 protein and is implicated in ethylene signaling. The weight of soybeans was increased with treatment by an ethylene-releasing agent under flooding condition, but it was decreased when plants were exposed to an ethylene receptor antagonist. These results suggest that the ethylene signaling pathway plays an important role, via the protein phosphorylation, in mechanisms of plant tolerance to the initial stages of flooding stress in soybean root tips.

  17. Strategies for quantitation of phosphoproteomic data

    DEFF Research Database (Denmark)

    Palmisano, Giuseppe; Thingholm, Tine Engberg

    2010-01-01

    Recent developments in phosphoproteomic sample-preparation techniques and sensitive mass spectrometry instrumentation have led to large-scale identifications of phosphoproteins and phosphorylation sites from highly complex samples. This has facilitated the implementation of different quantitation...

  18. Enhanced Phosphoproteomic Profiling Workflow For Growth Factor Signaling Analysis

    DEFF Research Database (Denmark)

    Sylvester, Marc; Burbridge, Mike; Leclerc, Gregory

    2010-01-01

    Background Our understanding of complex signaling networks is still fragmentary. Isolated processes have been studied extensively but cross-talk is omnipresent and precludes intuitive predictions of signaling outcomes. The need for quantitative data on dynamic systems is apparent especially for our...... understanding of pathological processes. In our study we create and integrate data on phosphorylations that are initiated by several growth factor receptors. We present an approach for quantitative, time-resolved phosphoproteomic profiling that integrates the important contributions by phosphotyrosines. Methods...

  19. Phosphotyrosine-based-phosphoproteomics scaled-down to biopsy level for analysis of individual tumor biology and treatment selection.

    Science.gov (United States)

    Labots, Mariette; van der Mijn, Johannes C; Beekhof, Robin; Piersma, Sander R; de Goeij-de Haas, Richard R; Pham, Thang V; Knol, Jaco C; Dekker, Henk; van Grieken, Nicole C T; Verheul, Henk M W; Jiménez, Connie R

    2017-06-06

    Mass spectrometry-based phosphoproteomics of cancer cell and tissue lysates provides insight in aberrantly activated signaling pathways and potential drug targets. For improved understanding of individual patient's tumor biology and to allow selection of tyrosine kinase inhibitors in individual patients, phosphoproteomics of small clinical samples should be feasible and reproducible. We aimed to scale down a pTyr-phosphopeptide enrichment protocol to biopsy-level protein input and assess reproducibility and applicability to tumor needle biopsies. To this end, phosphopeptide immunoprecipitation using anti-phosphotyrosine beads was performed using 10, 5 and 1mg protein input from lysates of colorectal cancer (CRC) cell line HCT116. Multiple needle biopsies from 7 human CRC resection specimens were analyzed at the 1mg-level. The total number of phosphopeptides captured and detected by LC-MS/MS ranged from 681 at 10mg input to 471 at 1mg HCT116 protein. ID-reproducibility ranged from 60.5% at 10mg to 43.9% at 1mg. Per 1mg-level biopsy sample, >200 phosphopeptides were identified with 57% ID-reproducibility between paired tumor biopsies. Unsupervised analysis clustered biopsies from individual patients together and revealed known and potential therapeutic targets. This study demonstrates the feasibility of label-free pTyr-phosphoproteomics at the tumor biopsy level based on reproducible analyses using 1mg of protein input. The considerable number of identified phosphopeptides at this level is attributed to an effective down-scaled immuno-affinity protocol as well as to the application of ID propagation in the data processing and analysis steps. Unsupervised cluster analysis reveals patient-specific profiles. Together, these findings pave the way for clinical trials in which pTyr-phosphoproteomics will be performed on pre- and on-treatment biopsies. Such studies will improve our understanding of individual tumor biology and may enable future pTyr-phosphoproteomics

  20. Enhancing cognate target elution efficiency in gel-free chemical proteomics

    Directory of Open Access Journals (Sweden)

    Branka Radic-Sarikas

    2015-12-01

    Full Text Available Gel-free liquid chromatography mass spectrometry coupled to chemical proteomics is a powerful approach for characterizing cellular target profiles of small molecules. We have previously described a fast and efficient elution protocol; however, altered target profiles were observed. We hypothesised that elution conditions critically impact the effectiveness of disrupting drug-protein interactions. Thus, a number of elution conditions were systematically assessed with the aim of improving the recovery of all classes of proteins whilst maintaining compatibility with immunoblotting procedures. A double elution with formic acid combined with urea emerged as the most efficient and generically applicable elution method for chemical proteomics

  1. Enrichment techniques employed in phosphoproteomics

    Czech Academy of Sciences Publication Activity Database

    Fíla, Jan; Honys, David

    2012-01-01

    Roč. 43, č. 3 (2012), s. 1025-1047 ISSN 0939-4451 R&D Projects: GA ČR(CZ) GAP501/11/1462; GA ČR GA522/09/0858; GA ČR GA525/09/0994; GA MŠk OC08011 Institutional research plan: CEZ:AV0Z50380511 Keywords : Phosphoproteomics * Enrichment * IMAC Subject RIV: ED - Physiology Impact factor: 3.914, year: 2012

  2. Hippocampal phosphoproteomics of F344 rats exposed to 1-bromopropane

    International Nuclear Information System (INIS)

    Huang, Zhenlie; Ichihara, Sahoko; Oikawa, Shinji; Chang, Jie; Zhang, Lingyi; Hu, Shijie; Huang, Hanlin; Ichihara, Gaku

    2015-01-01

    1-Bromopropane (1-BP) is neurotoxic in both experimental animals and human. To identify phosphorylated modification on the unrecognized post-translational modifications of proteins and investigate their role in 1-BP-induced neurotoxicity, changes in hippocampal phosphoprotein expression levels were analyzed quantitatively in male F344 rats exposed to 1-BP inhalation at 0, 400, or 1000 ppm for 8 h/day for 1 or 4 weeks. Hippocampal protein extracts were analyzed qualitatively and quantitatively by Pro-Q Diamond gel staining and SYPRO Ruby staining coupled with two-dimensional difference in gel electrophoresis (2D-DIGE), respectively, as well as by matrix-assisted laser-desorption ionization time-of-flight (MALDI-TOF) mass spectrometry (MS) to identify phosphoproteins. Changes in selected proteins were further confirmed by Manganese II (Mn 2+ )-Phos-tag SDS-polyacrylamide gel electrophoresis (SDS-PAGE). Bax and cytochrome c protein levels were determined by western blotting. Pro-Q Diamond gel staining combined with 2D-DIGE identified 26 phosphoprotein spots (p < 0.05), and MALDI-TOF/MS identified 18 up-regulated proteins and 8 down-regulated proteins. These proteins are involved in the biological process of response to stimuli, metabolic processes, and apoptosis signaling. Changes in the expression of phosphorylated 14-3-3 θ were further confirmed by Mn 2+ -Phos-tag SDS-PAGE. Western blotting showed overexpression of Bax protein in the mitochondria with down-regulation in the cytoplasm, whereas cytochrome c expression was high in the cytoplasm but low in the mitochondria after 1-BP exposure. Our results suggest that the pathogenesis of 1-BP-induced hippocampal damage involves inhibition of antiapoptosis process. Phosphoproteins identified in this study can potentially serve as biomarkers for 1-BP-induced neurotoxicity. - Highlights: • 1-BP modified hippocampal phosphoproteome in rat and 23 altered proteins were identified. • 1-BP changed phosphorylation of GRP78

  3. Hippocampal phosphoproteomics of F344 rats exposed to 1-bromopropane

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Zhenlie [Guangdong Provincial Key Laboratory of Occupational Disease Prevention and Treatment, Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou 510-300 (China); Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, Nagoya 466-8550 (Japan); Ichihara, Sahoko [Graduate School of Regional Innovation Studies, Mie University, Tsu 514-8507 (Japan); Oikawa, Shinji [Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Mie 514-8507 (Japan); Chang, Jie [Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, Nagoya 466-8550 (Japan); Graduate School of Regional Innovation Studies, Mie University, Tsu 514-8507 (Japan); Zhang, Lingyi [Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, Nagoya 466-8550 (Japan); Department of Occupational and Environmental Health, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda 278-8510 (Japan); Hu, Shijie [Guangdong Provincial Key Laboratory of Occupational Disease Prevention and Treatment, Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou 510-300 (China); Huang, Hanlin, E-mail: huanghl@gdoh.org [Guangdong Provincial Key Laboratory of Occupational Disease Prevention and Treatment, Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou 510-300 (China); Ichihara, Gaku, E-mail: gak@rs.tus.ac.jp [Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, Nagoya 466-8550 (Japan); Department of Occupational and Environmental Health, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda 278-8510 (Japan)

    2015-01-15

    1-Bromopropane (1-BP) is neurotoxic in both experimental animals and human. To identify phosphorylated modification on the unrecognized post-translational modifications of proteins and investigate their role in 1-BP-induced neurotoxicity, changes in hippocampal phosphoprotein expression levels were analyzed quantitatively in male F344 rats exposed to 1-BP inhalation at 0, 400, or 1000 ppm for 8 h/day for 1 or 4 weeks. Hippocampal protein extracts were analyzed qualitatively and quantitatively by Pro-Q Diamond gel staining and SYPRO Ruby staining coupled with two-dimensional difference in gel electrophoresis (2D-DIGE), respectively, as well as by matrix-assisted laser-desorption ionization time-of-flight (MALDI-TOF) mass spectrometry (MS) to identify phosphoproteins. Changes in selected proteins were further confirmed by Manganese II (Mn{sup 2+})-Phos-tag SDS-polyacrylamide gel electrophoresis (SDS-PAGE). Bax and cytochrome c protein levels were determined by western blotting. Pro-Q Diamond gel staining combined with 2D-DIGE identified 26 phosphoprotein spots (p < 0.05), and MALDI-TOF/MS identified 18 up-regulated proteins and 8 down-regulated proteins. These proteins are involved in the biological process of response to stimuli, metabolic processes, and apoptosis signaling. Changes in the expression of phosphorylated 14-3-3 θ were further confirmed by Mn{sup 2+}-Phos-tag SDS-PAGE. Western blotting showed overexpression of Bax protein in the mitochondria with down-regulation in the cytoplasm, whereas cytochrome c expression was high in the cytoplasm but low in the mitochondria after 1-BP exposure. Our results suggest that the pathogenesis of 1-BP-induced hippocampal damage involves inhibition of antiapoptosis process. Phosphoproteins identified in this study can potentially serve as biomarkers for 1-BP-induced neurotoxicity. - Highlights: • 1-BP modified hippocampal phosphoproteome in rat and 23 altered proteins were identified. • 1-BP changed phosphorylation

  4. The Arabidopsis thaliana Cyclic-Nucleotide-Dependent Response – a Quantitative Proteomic and Phosphoproteomic Analysis

    KAUST Repository

    Alqurashi, May M.

    2013-11-01

    Protein phosphorylation governs many regulatory pathways and an increasing number of kinases, proteins that transfer phosphate groups, are in turn activated by cyclic nucleotides. One of the cyclic nucleotides, cyclic adenosine monophosphate (cAMP), has been shown to be a second messenger in abiotic and biotic stress responses. However, little is known about the precise role of cAMP in plants and in the down-stream activation of kinases, and hence cAMP-dependent phosphorylation. To increase our understanding of the role of cAMP, proteomic and phosphoproteomic profiles of Arabidopsis thaliana suspension culture cells were analyzed before and after treatment of cells with two different concentrations of 8-Bromo-cAMP (1 µM and 100 nM) and over a time-course of one hour. A comparative quantitative analysis was undertaken using two- dimensional gel electrophoresis and the Delta 2D software (DECODON) followed by protein spot identification by tandem mass spectrometry combined with Mascot and Scaffold. Differentially expressed proteins and regulated phosphoproteins were categorized according to their biological function using bioinformatics tools. The results revealed that the treatment with 1 µM and 100 nM 8-Bromo-cAMP was sufficient to induce specific concentration- and time-dependent changes at the proteome and phosphoproteome levels. In particular, different phosphorylation patterns were observed overtime preferentially affecting proteins in a number of functional categories, notably phosphatases, proteins that remove phosphate groups. This suggests that cAMP both transiently activates and deactivates proteins through specific phosphorylation events and provides new insight into biological mechanisms and functions at the systems level.

  5. Systems Analysis for Interpretation of Phosphoproteomics Data

    DEFF Research Database (Denmark)

    Munk, Stephanie; Refsgaard, Jan C; Olsen, Jesper V

    2016-01-01

    Global phosphoproteomics investigations yield overwhelming datasets with up to tens of thousands of quantified phosphosites. The main challenge after acquiring such large-scale data is to extract the biological meaning and relate this to the experimental question at hand. Systems level analysis...... provides the best means for extracting functional insights from such types of datasets, and this has primed a rapid development of bioinformatics tools and resources over the last decade. Many of these tools are specialized databases that can be mined for annotation and pathway enrichment, whereas others...... provide a platform to generate functional protein networks and explore the relations between proteins of interest. The use of these tools requires careful consideration with regard to the input data, and the interpretation demands a critical approach. This chapter provides a summary of the most...

  6. Off-Line High-pH Reversed-Phase Fractionation for In-Depth Phosphoproteomics

    DEFF Research Database (Denmark)

    Batth, Tanveer S; Francavilla, Chiara; Olsen, Jesper V

    2014-01-01

    thousands of phosphorylation sites. However, in-depth phosphoproteomics often require off-line enrichment and fractionation techniques. In this study, we provide a detailed analysis of the physicochemical characteristics of phosphopeptides, which have been fractionated by off-line high-pH chromatography (Hp...... phosphorylated peptides over that with SCX. Further optimizations in the pooling and concatenation strategy increased the total number of multiphosphorylated peptides detected after HpH fractionation. In conclusion, we provide a basic framework and resource for performing in-depth phosphoproteome studies...

  7. The phosphoproteome of toll-like receptor-activated macrophages

    DEFF Research Database (Denmark)

    Weintz, Gabriele; Olsen, Jesper Velgaard; Frühauf, Katja

    2010-01-01

    other signalling modules (e.g. mTOR, ATM/ATR kinases) and the cytoskeleton as hotspots of LPS-regulated phosphorylation. Finally, weaving together phosphoproteome and nascent transcriptome data by in silico promoter analysis, we implicated several phosphorylated TFs in primary LPS-controlled gene...

  8. Characterization of early autophagy signaling by quantitative phosphoproteomics

    DEFF Research Database (Denmark)

    Rigbolt, Kristoffer Tg; Zarei, Mostafa; Sprenger, Adrian

    2014-01-01

    . To elucidate the regulation of early signaling events upon autophagy induction, we applied quantitative phosphoproteomics characterizing the temporal phosphorylation dynamics after starvation and rapamycin treatment. We obtained a comprehensive atlas of phosphorylation kinetics within the first 30 min upon...... revealing regulated phosphorylation sites on proteins involved in a wide range of cellular processes and an impact of the treatments on the kinome. To approach the potential function of the identified phosphorylation sites we performed a screen for MAP1LC3-interacting proteins and identified a group...... induction of autophagy with both treatments affecting widely different cellular processes. The identification of dynamic phosphorylation already after 2 min demonstrates that the earliest events in autophagy signaling occur rapidly after induction. The data was subjected to extensive bioinformatics analysis...

  9. Global dynamics of the Escherichia coli proteome and phosphoproteome during growth in minimal medium.

    Science.gov (United States)

    Soares, Nelson C; Spät, Philipp; Krug, Karsten; Macek, Boris

    2013-06-07

    Recent phosphoproteomics studies have generated relatively large data sets of bacterial proteins phosphorylated on serine, threonine, and tyrosine, implicating this type of phosphorylation in the regulation of vital processes of a bacterial cell; however, most phosphoproteomics studies in bacteria were so far qualitative. Here we applied stable isotope labeling by amino acids in cell culture (SILAC) to perform a quantitative analysis of proteome and phosphoproteome dynamics of Escherichia coli during five distinct phases of growth in the minimal medium. Combining two triple-SILAC experiments, we detected a total of 2118 proteins and quantified relative dynamics of 1984 proteins in all measured phases of growth, including 570 proteins associated with cell wall and membrane. In the phosphoproteomic experiment, we detected 150 Ser/Thr/Tyr phosphorylation events, of which 108 were localized to a specific amino acid residue and 76 were quantified in all phases of growth. Clustering analysis of SILAC ratios revealed distinct sets of coregulated proteins for each analyzed phase of growth and overrepresentation of membrane proteins in transition between exponential and stationary phases. The proteomics data indicated that proteins related to stress response typically associated with the stationary phase, including RpoS-dependent proteins, had increasing levels already during earlier phases of growth. Application of SILAC enabled us to measure median occupancies of phosphorylation sites, which were generally low (<12%). Interestingly, the phosphoproteome analysis showed a global increase of protein phosphorylation levels in the late stationary phase, pointing to a likely role of this modification in later phases of growth.

  10. Technologies and challenges in large-scale phosphoproteomics

    DEFF Research Database (Denmark)

    Engholm-Keller, Kasper; Larsen, Martin Røssel

    2013-01-01

    become the main technique for discovery and characterization of phosphoproteins in a nonhypothesis driven fashion. In this review, we describe methods for state-of-the-art MS-based analysis of protein phosphorylation as well as the strategies employed in large-scale phosphoproteomic experiments...... with focus on the various challenges and limitations this field currently faces....

  11. Quantitative phosphoproteomics using acetone-based peptide labeling: Method evaluation and application to a cardiac ischemia/reperfusion model

    Science.gov (United States)

    Wijeratne, Aruna B.; Manning, Janet R.; Schultz, Jo El J.; Greis, Kenneth D.

    2013-01-01

    Mass spectrometry (MS) techniques to globally profile protein phosphorylation in cellular systems that are relevant to physiological or pathological changes have been of significant interest in biological research. In this report, an MS-based strategy utilizing an inexpensive acetone-based peptide labeling technique known as reductive alkylation by acetone (RABA) for quantitative phosphoproteomics was explored to evaluate its capacity. Since the chemistry for RABA-labeling for phosphorylation profiling had not been previously reported, it was first validated using a standard phosphoprotein and identical phosphoproteomes from cardiac tissue extracts. A workflow was then utilized to compare cardiac tissue phosphoproteomes from mouse hearts not expressing FGF2 vs. hearts expressing low molecular weight fibroblast growth factor-2 (LMW FGF2) to relate low molecular weight fibroblast growth factor-2 (LMW FGF2) mediated cardioprotective phenomena induced by ischemia/reperfusion (I/R) injury of hearts, with downstream phosphorylation changes in LMW FGF2 signaling cascades. Statistically significant phosphorylation changes were identified at 14 different sites on 10 distinct proteins including some with mechanisms already established for LMW FGF2-mediated cardioprotective signaling (e.g. connexin-43), some with new details linking LMW FGF2 to the cardioprotective mechanisms (e.g. cardiac myosin binding protein C or cMyBPC), and also several new downstream effectors not previously recognized for cardio-protective signaling by LMW FGF2. Additionally, one of the phosphopeptides, cMyBPC/pSer-282, identified was further verified with site-specific quantification using an SRM (selected reaction monitoring)-based approach that also relies on isotope labeling of a synthetic phosphopeptide with deuterated acetone as an internal standard. Overall, this study confirms that the inexpensive acetone-based peptide labeling can be used in both exploratory and targeted quantification

  12. Phosphoproteomics-based systems analysis of signal transduction networks

    Directory of Open Access Journals (Sweden)

    Hiroko eKozuka-Hata

    2012-01-01

    Full Text Available Signal transduction systems coordinate complex cellular information to regulate biological events such as cell proliferation and differentiation. Although the accumulating evidence on widespread association of signaling molecules has revealed essential contribution of phosphorylation-dependent interaction networks to cellular regulation, their dynamic behavior is mostly yet to be analyzed. Recent technological advances regarding mass spectrometry-based quantitative proteomics have enabled us to describe the comprehensive status of phosphorylated molecules in a time-resolved manner. Computational analyses based on the phosphoproteome dynamics accelerate generation of novel methodologies for mathematical analysis of cellular signaling. Phosphoproteomics-based numerical modeling can be used to evaluate regulatory network elements from a statistical point of view. Integration with transcriptome dynamics also uncovers regulatory hubs at the transcriptional level. These omics-based computational methodologies, which have firstly been applied to representative signaling systems such as the epidermal growth factor receptor pathway, have now opened up a gate for systems analysis of signaling networks involved in immune response and cancer.

  13. Large-Scale Phosphoproteomics Reveals Shp-2 Phosphatase-Dependent Regulators of Pdgf Receptor Signaling

    DEFF Research Database (Denmark)

    Batth, Tanveer S; Papetti, Moreno; Pfeiffer, Anamarija

    2018-01-01

    Despite its low cellular abundance, phosphotyrosine (pTyr) regulates numerous cell signaling pathways in health and disease. We applied comprehensive phosphoproteomics to unravel differential regulators of receptor tyrosine kinase (RTK)-initiated signaling networks upon activation by Pdgf-ββ, Fgf-2...... of Pdgfr pTyr signaling. Application of a recently introduced allosteric Shp-2 inhibitor revealed global regulation of the Pdgf-dependent tyrosine phosphoproteome, which significantly impaired cell migration. In addition, we present a list of hundreds of Shp-2-dependent targets and putative substrates...

  14. Quantitative phosphoproteomic analysis of early seed development in rice (Oryza sativa L.).

    Science.gov (United States)

    Qiu, Jiehua; Hou, Yuxuan; Tong, Xiaohong; Wang, Yifeng; Lin, Haiyan; Liu, Qing; Zhang, Wen; Li, Zhiyong; Nallamilli, Babi R; Zhang, Jian

    2016-02-01

    Rice (Oryza sativa L.) seed serves as a major food source for over half of the global population. Though it has been long recognized that phosphorylation plays an essential role in rice seed development, the phosphorylation events and dynamics in this process remain largely unknown so far. Here, we report the first large scale identification of rice seed phosphoproteins and phosphosites by using a quantitative phosphoproteomic approach. Thorough proteomic studies in pistils and seeds at 3, 7 days after pollination resulted in the successful identification of 3885, 4313 and 4135 phosphopeptides respectively. A total of 2487 proteins were differentially phosphorylated among the three stages, including Kip related protein 1, Rice basic leucine zipper factor 1, Rice prolamin box binding factor and numerous other master regulators of rice seed development. Moreover, differentially phosphorylated proteins may be extensively involved in the biosynthesis and signaling pathways of phytohormones such as auxin, gibberellin, abscisic acid and brassinosteroid. Our results strongly indicated that protein phosphorylation is a key mechanism regulating cell proliferation and enlargement, phytohormone biosynthesis and signaling, grain filling and grain quality during rice seed development. Overall, the current study enhanced our understanding of the rice phosphoproteome and shed novel insight into the regulatory mechanism of rice seed development.

  15. Phosphoproteomics Analysis of Endometrium in Women with or without Endometriosis

    Directory of Open Access Journals (Sweden)

    Hong-Mei Xu

    2015-01-01

    Conclusions: That large-scale phosphoproteome quantification has been successfully identified in endometrium tissues of women with or without endometriosis will provide new insights to understand the molecular mechanisms of the development of endometriosis.

  16. Quantitative phosphoproteomic analysis of porcine muscle within 24 h postmortem

    DEFF Research Database (Denmark)

    Huang, Honggang; Larsen, Martin Røssel; Palmisano, Giuseppe

    2014-01-01

    in meat quality development, a quantitative mass spectrometry-based phosphoproteomic study was performed to analyze the porcine muscle within 24h PM using dimethyl labeling combined with the TiSH phosphopeptide enrichment strategy. In total 305 unique proteins were identified, including 160...... phosphorylation levels in muscle within 24 h PM. The high phosphorylation level of heat shock proteins (HSPs) in early PM may be an adaptive response to slaughter stress and protect muscle cell from apoptosis, as observed in the serine 84 of HSP27. This work indicated that PM muscle proteins underwent significant...... and rigor mortis development in PM muscle. BIOLOGICAL SIGNIFICANCE: The manuscript describes the characterization of postmortem (PM) porcine muscle within 24 h postmortem from the perspective of protein phosphorylation using advanced phosphoproteomic techniques. In the study, the authors employed...

  17. Quantitative phosphoproteomic analysis reveals shared and specific targets of Arabidopsis MPK3, MPK4 and MPK6

    KAUST Repository

    Rayapuram, Naganand; Bigeard, Jean; Alhoraibi, Hanna Mohsen Abdulrab; Bonhomme, Ludovic; Hesse, Anne-Marie; Vinh, Joelle; Hirt, Heribert; Pflieger, Delphine

    2017-01-01

    In Arabidopsis, mitogen-activated protein kinases MPK3, MPK4 and MPK6 constitute essential relays for a variety of functions including cell division, development and innate immunity. While some substrates of MPK3, MPK4 and MPK6 have been identified, the picture is still far from complete. To identify substrates of these MAPKs likely involved in cell division, growth and development we compared the phosphoproteomes of wild-type and mpk3, mpk4 and mpk6. To study the function of these MAPKs in innate immunity, we analyzed their phosphoproteomes following microbe-associated molecular pattern (MAMP) treatment. Partially overlapping substrates were retrieved for all three MAPKs, showing target specificity to one, two or all three MAPKs in different biological processes. More precisely, our results illustrate the fact that the entity to be defined as a specific or a shared substrate for MAPKs is not a phosphoprotein but a particular (S/T)P phosphorylation site in a given protein. As a whole, 152 peptides were identified to be differentially phosphorylated in response to MAMP treatment and/or when compared between genotypes and 70 of them could be classified as putative MAPK targets. Biochemical analysis of a number of putative MAPK substrates by phosphorylation and interaction assays confirmed the global phosphoproteome approach. Our study also expands the set of MAPK substrates to involve other protein kinases, including calcium-dependent (CDPK) and sugar non-fermenting (SnRK) protein kinases.

  18. Quantitative phosphoproteomic analysis reveals shared and specific targets of Arabidopsis MPK3, MPK4 and MPK6

    KAUST Repository

    Rayapuram, Naganand

    2017-11-23

    In Arabidopsis, mitogen-activated protein kinases MPK3, MPK4 and MPK6 constitute essential relays for a variety of functions including cell division, development and innate immunity. While some substrates of MPK3, MPK4 and MPK6 have been identified, the picture is still far from complete. To identify substrates of these MAPKs likely involved in cell division, growth and development we compared the phosphoproteomes of wild-type and mpk3, mpk4 and mpk6. To study the function of these MAPKs in innate immunity, we analyzed their phosphoproteomes following microbe-associated molecular pattern (MAMP) treatment. Partially overlapping substrates were retrieved for all three MAPKs, showing target specificity to one, two or all three MAPKs in different biological processes. More precisely, our results illustrate the fact that the entity to be defined as a specific or a shared substrate for MAPKs is not a phosphoprotein but a particular (S/T)P phosphorylation site in a given protein. As a whole, 152 peptides were identified to be differentially phosphorylated in response to MAMP treatment and/or when compared between genotypes and 70 of them could be classified as putative MAPK targets. Biochemical analysis of a number of putative MAPK substrates by phosphorylation and interaction assays confirmed the global phosphoproteome approach. Our study also expands the set of MAPK substrates to involve other protein kinases, including calcium-dependent (CDPK) and sugar non-fermenting (SnRK) protein kinases.

  19. In vivo phosphoproteome characterization reveals key starch granule-binding phosphoproteins involved in wheat water-deficit response.

    Science.gov (United States)

    Chen, Guan-Xing; Zhen, Shou-Min; Liu, Yan-Lin; Yan, Xing; Zhang, Ming; Yan, Yue-Ming

    2017-10-23

    Drought stress during grain development causes significant yield loss in cereal production. The phosphorylated modification of starch granule-binding proteins (SGBPs) is an important mechanism regulating wheat starch biosynthesis. In this study, we performed the first proteomics and phosphoproteomics analyses of SGBPs in elite Chinese bread wheat (Triticum aestivum L.) cultivar Jingdong 17 under well-watered and water-stress conditions. Water stress treatment caused significant reductions in spike grain numbers and weight, total starch and amylopectin content, and grain yield. Two-dimensional gel electrophoresis revealed that the quantity of SGBPs was reduced significantly by water-deficit treatment. Phosphoproteome characterization of SGBPs under water-deficit treatment demonstrated a reduced level of phosphorylation of main starch synthesis enzymes, particularly for granule-bound starch synthase (GBSS I), starch synthase II-a (SS II-a), and starch synthase III (SS III). Specifically, the Ser34 site of the GBSSI protein, the Tyr358 site of SS II-a, and the Ser837 site of SS III-a exhibited significant less phosphorylation under water-deficit treatment than well-watered treatment. Furthermore, the expression levels of several key genes related with starch biosynthesis detected by qRT-PCR were decreased significantly at 15 days post-anthesis under water-deficit treatment. Immunolocalization showed a clear movement of GBSS I from the periphery to the interior of starch granules during grain development, under both water-deficit and well-watered conditions. Our results demonstrated that the reduction in gene expression or transcription level, protein expression and phosphorylation levels of starch biosynthesis related enzymes under water-deficit conditions is responsible for the significant decrease in total starch content and grain yield.

  20. Phosphoproteomic analysis of chromoplasts from sweet orange during fruit ripening.

    Science.gov (United States)

    Zeng, Yunliu; Pan, Zhiyong; Wang, Lun; Ding, Yuduan; Xu, Qiang; Xiao, Shunyuan; Deng, Xiuxin

    2014-02-01

    Like other types of plastids, chromoplasts have essential biosynthetic and metabolic activities which may be regulated via post-translational modifications, such as phosphorylation, of their resident proteins. We here report a proteome-wide mapping of in vivo phosphorylation sites in chromoplast-enriched samples prepared from sweet orange [Citrus sinensis (L.) Osbeck] at different ripening stages by titanium dioxide-based affinity chromatography for phosphoprotein enrichment with LC-MS/MS. A total of 109 plastid-localized phosphoprotein candidates were identified that correspond to 179 unique phosphorylation sites in 135 phosphopeptides. On the basis of Motif-X analysis, two distinct types of phosphorylation sites, one as proline-directed phosphorylation motif and the other as casein kinase II motif, can be generalized from these identified phosphopeptides. While most identified phosphoproteins show high homology to those already identified in plastids, approximately 22% of them are novel based on BLAST search using the public databases PhosPhAt and P(3) DB. A close comparative analysis showed that approximately 50% of the phosphoproteins identified in citrus chromoplasts find obvious counterparts in the chloroplast phosphoproteome, suggesting a rather high-level of conservation in basic metabolic activities in these two types of plastids. Not surprisingly, the phosphoproteome of citrus chromoplasts is also characterized by the lack of phosphoproteins involved in photosynthesis and by the presence of more phosphoproteins implicated in stress/redox responses. This study presents the first comprehensive phosphoproteomic analysis of chromoplasts and may help to understand how phosphorylation regulates differentiation of citrus chromoplasts during fruit ripening. © 2013 Scandinavian Plant Physiology Society.

  1. Analysis of initial changes in the proteins of soybean root tip under flooding stress using gel-free and gel-based proteomic techniques.

    Science.gov (United States)

    Yin, Xiaojian; Sakata, Katsumi; Nanjo, Yohei; Komatsu, Setsuko

    2014-06-25

    Flooding has a severe negative effect on soybean cultivation in the early stages of growth. To obtain a better understanding of the response mechanisms of soybean to flooding stress, initial changes in root tip proteins under flooding were analyzed using two proteomic techniques. Two-day-old soybeans were treated with flooding for 3, 6, 12, and 24h. The weight of soybeans increased during the first 3h of flooding, but root elongation was not observed. Using gel-based and gel-free proteomic techniques, 115 proteins were identified in root tips, of which 9 proteins were commonly detected by both methods. The 71 proteins identified by the gel-free proteomics were analyzed by a hierarchical clustering method based on induction levels during the flooding, and the proteins were divided into 5 clusters. Additional interaction analysis of the proteins revealed that ten proteins belonging to cluster I formed the center of a protein interaction network. mRNA expression analysis of these ten proteins showed that citrate lyase and heat shock protein 70 were down-regulated, whereas calreticulin was up-regulated in initial phase of flooding. These results suggest that flooding stress to soybean induces calcium-related signal transduction, which might play important roles in the early responses to flooding. Flooding has a severe negative effect on soybean cultivation, particularly in the early stages of growth. To better understand the response mechanisms of soybean to the early stages of flooding stress, two proteomic techniques were used. Two-day-old soybeans were treated without or with flooding for 3, 6, 12, and 24h. The fresh weight of soybeans increased during the first 3h of flooding stress, but the growth then slowed and no root elongation was observed. Using gel-based and gel-free proteomic techniques, 115 proteins were identified in root tips, of which 9 proteins were commonly detected by both methods. The 71 proteins identified by the gel-free proteomics were analyzed

  2. Simple and Reproducible Sample Preparation for Single-Shot Phosphoproteomics with High Sensitivity

    DEFF Research Database (Denmark)

    Jersie-Christensen, Rosa R.; Sultan, Abida; Olsen, Jesper V

    2016-01-01

    The traditional sample preparation workflow for mass spectrometry (MS)-based phosphoproteomics is time consuming and usually requires multiple steps, e.g., lysis, protein precipitation, reduction, alkylation, digestion, fractionation, and phosphopeptide enrichment. Each step can introduce chemical...... artifacts, in vitro protein and peptide modifications, and contaminations. Those often result in sample loss and affect the sensitivity, dynamic range and accuracy of the mass spectrometric analysis. Here we describe a simple and reproducible phosphoproteomics protocol, where lysis, denaturation, reduction......, and alkylation are performed in a single step, thus reducing sample loss and increasing reproducibility. Moreover, unlike standard cell lysis procedures the cell harvesting is performed at high temperatures (99 °C) and without detergents and subsequent need for protein precipitation. Phosphopeptides are enriched...

  3. IKAP: A heuristic framework for inference of kinase activities from Phosphoproteomics data.

    Science.gov (United States)

    Mischnik, Marcel; Sacco, Francesca; Cox, Jürgen; Schneider, Hans-Christoph; Schäfer, Matthias; Hendlich, Manfred; Crowther, Daniel; Mann, Matthias; Klabunde, Thomas

    2016-02-01

    Phosphoproteomics measurements are widely applied in cellular biology to detect changes in signalling dynamics. However, due to the inherent complexity of phosphorylation patterns and the lack of knowledge on how phosphorylations are related to functions, it is often not possible to directly deduce protein activities from those measurements. Here, we present a heuristic machine learning algorithm that infers the activities of kinases from Phosphoproteomics data using kinase-target information from the PhosphoSitePlus database. By comparing the estimated kinase activity profiles to the measured phosphosite profiles, it is furthermore possible to derive the kinases that are most likely to phosphorylate the respective phosphosite. We apply our approach to published datasets of the human cell cycle generated from HeLaS3 cells, and insulin signalling dynamics in mouse hepatocytes. In the first case, we estimate the activities of 118 at six cell cycle stages and derive 94 new kinase-phosphosite links that can be validated through either database or motif information. In the second case, the activities of 143 kinases at eight time points are estimated and 49 new kinase-target links are derived. The algorithm is implemented in Matlab and be downloaded from github. It makes use of the Optimization and Statistics toolboxes. https://github.com/marcel-mischnik/IKAP.git. marcel.mischnik@gmail.com Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  4. Phosphoproteomic biomarkers predicting histologic nonalcoholic steatohepatitis and fibrosis.

    Science.gov (United States)

    Younossi, Zobair M; Baranova, Ancha; Stepanova, Maria; Page, Sandra; Calvert, Valerie S; Afendy, Arian; Goodman, Zachary; Chandhoke, Vikas; Liotta, Lance; Petricoin, Emanuel

    2010-06-04

    The progression of nonalcoholic fatty liver disease (NAFLD) has been linked to deregulated exchange of the endocrine signaling between adipose and liver tissue. Proteomic assays for the phosphorylation events that characterize the activated or deactivated state of the kinase-driven signaling cascades in visceral adipose tissue (VAT) could shed light on the pathogenesis of nonalcoholic steatohepatitis (NASH) and related fibrosis. Reverse-phase protein microarrays (RPMA) were used to develop biomarkers for NASH and fibrosis using VAT collected from 167 NAFLD patients (training cohort, N = 117; testing cohort, N = 50). Three types of models were developed for NASH and advanced fibrosis: clinical models, proteomics models, and combination models. NASH was predicted by a model that included measurements of two components of the insulin signaling pathway: AKT kinase and insulin receptor substrate 1 (IRS1). The models for fibrosis were less reliable when predictions were based on phosphoproteomic, clinical, or the combination data. The best performing model relied on levels of the phosphorylation of GSK3 as well as on two subunits of cyclic AMP regulated protein kinase A (PKA). Phosphoproteomics technology could potentially be used to provide pathogenic information about NASH and NASH-related fibrosis. This information can lead to a clinically relevant diagnostic/prognostic biomarker for NASH.

  5. The proteome and phosphoproteome of maize pollen uncovers fertility candidate proteins.

    Science.gov (United States)

    Chao, Qing; Gao, Zhi-Fang; Wang, Yue-Feng; Li, Zhe; Huang, Xia-He; Wang, Ying-Chun; Mei, Ying-Chang; Zhao, Biligen-Gaowa; Li, Liang; Jiang, Yu-Bo; Wang, Bai-Chen

    2016-06-01

    Maize is unique since it is both monoecious and diclinous (separate male and female flowers on the same plant). We investigated the proteome and phosphoproteome of maize pollen containing modified proteins and here we provide a comprehensive pollen proteome and phosphoproteome which contain 100,990 peptides from 6750 proteins and 5292 phosphorylated sites corresponding to 2257 maize phosphoproteins, respectively. Interestingly, among the total 27 overrepresented phosphosite motifs we identified here, 11 were novel motifs, which suggested different modification mechanisms in plants compared to those of animals. Enrichment analysis of pollen phosphoproteins showed that pathways including DNA synthesis/chromatin structure, regulation of RNA transcription, protein modification, cell organization, signal transduction, cell cycle, vesicle transport, transport of ions and metabolisms, which were involved in pollen development, the following germination and pollen tube growth, were regulated by phosphorylation. In this study, we also found 430 kinases and 105 phosphatases in the maize pollen phosphoproteome, among which calcium dependent protein kinases (CDPKs), leucine rich repeat kinase, SNF1 related protein kinases and MAPK family proteins were heavily enriched and further analyzed. From our research, we also uncovered hundreds of male sterility-associated proteins and phosphoproteins that might influence maize productivity and serve as targets for hybrid maize seed production. At last, a putative complex signaling pathway involving CDPKs, MAPKs, ubiquitin ligases and multiple fertility proteins was constructed. Overall, our data provides new insight for further investigation of protein phosphorylation status in mature maize pollen and construction of maize male sterile mutants in the future.

  6. In Vivo SILAC-Based Proteomics Reveals Phosphoproteome Changes during Mouse Skin Carcinogenesis

    NARCIS (Netherlands)

    Zanivan, S.; Meves, A.; Behrendt, K.; Schoof, E.M.; Neilson, L.J.; Cox, J.; Tang, H.R.; Kalna, G.; Ree, J.H. van; Deursen, J.M.A. van; Trempus, C.S.; Machesky, L.M.; Linding, R.; Wickstrom, S.A.; Fassler, R.; Mann, M.

    2013-01-01

    Cancer progresses through distinct stages, and mouse models recapitulating traits of this progression are frequently used to explore genetic, morphological, and pharmacological aspects of tumor development. To complement genomic investigations of this process, we here quantify phosphoproteomic

  7. Spongy Gels by a Top-Down Approach from Polymer Fibrous Sponges.

    Science.gov (United States)

    Jiang, Shaohua; Duan, Gaigai; Kuhn, Ute; Mörl, Michaela; Altstädt, Volker; Yarin, Alexander L; Greiner, Andreas

    2017-03-13

    Ultralight cellular sponges offer a unique set of properties. We show here that solvent uptake by these sponges results in new gel-like materials, which we term spongy gels. The appearance of the spongy gels is very similar to classic organogels. Usually, organogels are formed by a bottom-up process. In contrast, the spongy gels are formed by a top-down approach that offers numerous advantages for the design of their properties, reproducibility, and stability. The sponges themselves represent the scaffold of a gel that could be filled with a solvent, and thereby form a mechanically stable gel-like material. The spongy gels are independent of a time-consuming or otherwise demanding in situ scaffold formation. As solvent evaporation from gels is a concern for various applications, we also studied solvent evaporation of wetting and non-wetting liquids dispersed in the sponge. © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  8. Dataset of the Botrytis cinerea phosphoproteome induced by different plant-based elicitors.

    Science.gov (United States)

    Liñeiro, Eva; Chiva, Cristina; Cantoral, Jesús M; Sabido, Eduard; Fernández-Acero, Francisco Javier

    2016-06-01

    Phosphorylation is one of the main post-translational modification (PTM) involved in signaling network in the ascomycete Botrytis cinerea , one of the most relevant phytopathogenic fungus. The data presented in this article provided a differential mass spectrometry-based analysis of the phosphoproteome of B. cinerea under two different phenotypical conditions induced by the use of two different elicitors: glucose and deproteinized Tomate Cell Walls (TCW). A total 1138 and 733 phosphoproteins were identified for glucose and TCW culture conditions respectively. Raw data are deposited at the ProteomeXchange Consortium via the PRIDE partner repository with the data set identifier (PRIDE: http://www.ebi.ac.uk/pride/archive/projects/PXD003099). Further interpretation and discussion of these data are provided in our research article entitled "Phosphoproteome analysis of B.cinerea in response to different plant-based elicitors" (Liñeiro et al., 2016) [1].

  9. Identification of Putative Mek1 Substrates during Meiosis in Saccharomyces cerevisiae Using Quantitative Phosphoproteomics.

    Directory of Open Access Journals (Sweden)

    Raymond T Suhandynata

    Full Text Available Meiotic recombination plays a key role in sexual reproduction as it generates crossovers that, in combination with sister chromatid cohesion, physically connect homologous chromosomes, thereby promoting their proper segregation at the first meiotic division. Meiotic recombination is initiated by programmed double strand breaks (DSBs catalyzed by the evolutionarily conserved, topoisomerase-like protein Spo11. Repair of these DSBs is highly regulated to create crossovers between homologs that are distributed throughout the genome. This repair requires the presence of the mitotic recombinase, Rad51, as well as the strand exchange activity of the meiosis-specific recombinase, Dmc1. A key regulator of meiotic DSB repair in Saccharomyces cerevisiae is the meiosis-specific kinase Mek1, which promotes interhomolog strand invasion and is required for the meiotic recombination checkpoint and the crossover/noncrossover decision. Understanding how Mek1 regulates meiotic recombination requires the identification of its substrates. Towards that end, an unbiased phosphoproteomic approach utilizing Stable Isotope Labeling by Amino Acids in Cells (SILAC was utilized to generate a list of potential Mek1 substrates, as well as proteins containing consensus phosphorylation sites for cyclin-dependent kinase, the checkpoint kinases, Mec1/Tel1, and the polo-like kinase, Cdc5. These experiments represent the first global phosphoproteomic dataset for proteins in meiotic budding yeast.

  10. Quantitative phosphoproteomic analysis of porcine muscle within 24 h postmortem.

    Science.gov (United States)

    Huang, Honggang; Larsen, Martin R; Palmisano, Giuseppe; Dai, Jie; Lametsch, René

    2014-06-25

    Protein phosphorylation can regulate most of the important processes in muscle, such as metabolism and contraction. The postmortem (PM) metabolism and rigor mortis have essential effects on meat quality. In order to identify and characterize the protein phosphorylation events involved in meat quality development, a quantitative mass spectrometry-based phosphoproteomic study was performed to analyze the porcine muscle within 24h PM using dimethyl labeling combined with the TiSH phosphopeptide enrichment strategy. In total 305 unique proteins were identified, including 160 phosphoproteins with 784 phosphorylation sites. Among these, 184 phosphorylation sites on 93 proteins had their phosphorylation levels significantly changed. The proteins involved in glucose metabolism and muscle contraction were the two largest clusters of phosphoproteins with significantly changed phosphorylation levels in muscle within 24 h PM. The high phosphorylation level of heat shock proteins (HSPs) in early PM may be an adaptive response to slaughter stress and protect muscle cell from apoptosis, as observed in the serine 84 of HSP27. This work indicated that PM muscle proteins underwent significant changes at the phosphorylation level but were relatively stable at the total protein level, suggesting that protein phosphorylation may have important roles in meat quality development through the regulation of proteins involved in glucose metabolism and muscle contraction, thereby affecting glycolysis and rigor mortis development in PM muscle. The manuscript describes the characterization of postmortem (PM) porcine muscle within 24 h postmortem from the perspective of protein phosphorylation using advanced phosphoproteomic techniques. In the study, the authors employed the dimethyl labeling combined with the TiSH phosphopeptide enrichment and LC-MS/MS strategy. This was the first high-throughput quantitative phosphoproteomic study in PM muscle of farm animals. In the work, both the proteome

  11. Dataset of the Botrytis cinerea phosphoproteome induced by different plant-based elicitors

    Directory of Open Access Journals (Sweden)

    Eva Liñeiro

    2016-06-01

    Full Text Available Phosphorylation is one of the main post-translational modification (PTM involved in signaling network in the ascomycete Botrytis cinerea, one of the most relevant phytopathogenic fungus. The data presented in this article provided a differential mass spectrometry-based analysis of the phosphoproteome of B. cinerea under two different phenotypical conditions induced by the use of two different elicitors: glucose and deproteinized Tomate Cell Walls (TCW. A total 1138 and 733 phosphoproteins were identified for glucose and TCW culture conditions respectively. Raw data are deposited at the ProteomeXchange Consortium via the PRIDE partner repository with the data set identifier (PRIDE: http://www.ebi.ac.uk/pride/archive/projects/PXD003099. Further interpretation and discussion of these data are provided in our research article entitled “Phosphoproteome analysis of B.cinerea in response to different plant-based elicitors” (Liñeiro et al., 2016 [1].

  12. Interleukin-2 signaling pathway analysis by quantitative phosphoproteomics

    DEFF Research Database (Denmark)

    Osinalde, Nerea; Moss, Helle; Arrizabalaga, Onetsine

    2011-01-01

    among which 79 were found with increased abundance in the tyrosine-phosphorylated complexes, including several previously not reported IL-2 downstream effectors. Combinatorial site-specific phosphoproteomic analysis resulted in identification of 99 phosphorylated sites mapping to the identified proteins...... with increased abundance in the tyrosine-phosphorylated complexes, of which 34 were not previously described. In addition, chemical inhibition of the identified IL-2-mediated JAK, PI3K and MAPK signaling pathways, resulted in distinct alteration on the IL-2 dependent proliferation....

  13. Silica Gel-Mediated Organic Reactions under Organic Solvent-Free Conditions

    Directory of Open Access Journals (Sweden)

    Satoaki Onitsuka

    2012-09-01

    Full Text Available Silica gel was found to be an excellent medium for some useful organic transformations under organic solvent-free conditions, such as (1 the Friedel-Crafts-type nitration of arenes using commercial aqueous 69% nitric acid alone at room temperature, (2 one-pot Wittig-type olefination of aldehydes with activated organic halides in the presence of tributyl- or triphenylphosphine and Hunig’s base, and (3 the Morita-Baylis-Hillman reaction of aldehydes with methyl acrylate. After the reactions, the desired products were easily obtained in good to excellent yields through simple manipulation.

  14. Proteomic and phosphoproteomic analyses of chromatin-associated proteins from Arabidopsis thaliana

    KAUST Repository

    Bigeard, Jean

    2014-07-10

    The nucleus is the organelle where basically all DNA-related processes take place in eukaryotes, such as replication, transcription, and splicing as well as epigenetic regulation. The identification and description of the nuclear proteins is one of the requisites toward a comprehensive understanding of the biological functions accomplished in the nucleus. Many of the regulatory mechanisms of protein functions rely on their PTMs among which phosphorylation is probably one of the most important properties affecting enzymatic activity, interaction with other molecules, localization, or stability. So far, the nuclear and subnuclear proteome and phosphoproteome of the model plant Arabidopsis thaliana have been the subject of very few studies. In this work, we developed a purification protocol of Arabidopsis chromatin-associated proteins and performed proteomic and phosphoproteomic analyses identifying a total of 879 proteins of which 198 were phosphoproteins that were mainly involved in chromatin remodeling, transcriptional regulation, and RNA processing. From 230 precisely localized phosphorylation sites (phosphosites), 52 correspond to hitherto unidentified sites. This protocol and data thereby obtained should be a valuable resource for many domains of plant research.

  15. Proteomic and phosphoproteomic analyses of chromatin-associated proteins from Arabidopsis thaliana

    KAUST Repository

    Bigeard, Jean; Rayapuram, Naganand; Bonhomme, Ludovic; Hirt, Heribert; Pflieger, Delphine

    2014-01-01

    The nucleus is the organelle where basically all DNA-related processes take place in eukaryotes, such as replication, transcription, and splicing as well as epigenetic regulation. The identification and description of the nuclear proteins is one of the requisites toward a comprehensive understanding of the biological functions accomplished in the nucleus. Many of the regulatory mechanisms of protein functions rely on their PTMs among which phosphorylation is probably one of the most important properties affecting enzymatic activity, interaction with other molecules, localization, or stability. So far, the nuclear and subnuclear proteome and phosphoproteome of the model plant Arabidopsis thaliana have been the subject of very few studies. In this work, we developed a purification protocol of Arabidopsis chromatin-associated proteins and performed proteomic and phosphoproteomic analyses identifying a total of 879 proteins of which 198 were phosphoproteins that were mainly involved in chromatin remodeling, transcriptional regulation, and RNA processing. From 230 precisely localized phosphorylation sites (phosphosites), 52 correspond to hitherto unidentified sites. This protocol and data thereby obtained should be a valuable resource for many domains of plant research.

  16. Global investigation of interleukin-1β signaling in primary β-cells using quantitative phosphoproteomics

    DEFF Research Database (Denmark)

    Engholm-Keller, Kasper; Størling, Joachim; Pociot, Flemming

    in β-cells by which this cytokine can modulate cell-matrix interactions during inflammation, a regulation shown in other cell types. Further data analysis is currently ongoing, and the collective results of the experiments will hopefully facilitate additional insights into the effect of IL-1β......Novel Aspect: Global phosphoproteomic analysis of cytokine signaling in primary β-cells Introduction The insulin-producing β-cells of the pancreatic islets of Langerhans are targeted by aberrant immune system responses in diabetes mellitus involving cytokines, especially interleukin-1β (IL-1 β......), which initiate apoptosis of the β-cells. As only limited amounts of primary β-cells can be isolated from model organisms like mouse and rat, global phosphoproteomic analysis of these signaling events by mass spectrometry has generally been unfeasible. We have therefore developed a strategy...

  17. Positron annihilation lifetime studies of sol-gel transition of carrageenan gels

    International Nuclear Information System (INIS)

    Wakabayashi, Y.; Ito, K.; Li, H.L.; Ujihara, Y.

    1996-01-01

    Positron annihilation lifetime measurement was applied to study the sol-gel transition of anionic polysaccharide aqueous solutions in terms of free-volume parameters the size, intensity, and size distribution of free volumes of the gelation of K-form κ-carrageenan solutions as a function of temperature. Slight variations of free volume size and intensity against temperature were observed near 295 K. The correlation of free-volume data with other physical properties vibrational spectra (IR and Raman), conductivity, SAXS, elastic measurement, differential scanning calorimetry were investigated to understand the mechanism of sol-gel transition of carrageenan. (author)

  18. Improving the Phosphoproteome Coverage for Limited Sample Amounts Using TiOsub>2sub>-SIMAC-HILIC (TiSH) Phosphopeptide Enrichment and Fractionation

    DEFF Research Database (Denmark)

    Engholm-Keller, Kasper; Larsen, Martin R

    2016-01-01

    spectrometry (LC-MS/MS) analysis. Due to the sample loss resulting from fractionation, this procedure is mainly performed when large quantities of sample are available. To make large-scale phosphoproteomics applicable to smaller amounts of protein we have recently combined highly specific TiO2-based...... protocol we describe the procedure step by step to allow for comprehensive coverage of the phosphoproteome utilizing only a few hundred micrograms of protein....

  19. A novel CuI-based iodine-free gel electrolyte for dye-sensitized solar cells

    International Nuclear Information System (INIS)

    Chen Junnian; Xia Jiangbin; Fan Ke; Peng Tianyou

    2011-01-01

    Highlights: → A novel CuI-based iodine-free gel electrolyte for DSSC is firstly prepared. → Such CuI-based electrolyte has relative high conductivity and stability. → Addition amount of LiClO 4 and PEO in the electrolyte is optimized. → Cell performance is improved by 116.2% compared with the cell without LiClO 4 . - Abstract: A novel CuI-based iodine-free gel electrolyte using polyethylene oxide (PEO, MW = 100,000) as plasticizer and lithium perchlorate (LiClO 4 ) as salt additive was developed for dye-sensitized solar cells (DSSCs). Such CuI-based gel electrolyte can avoid the problems caused by liquid iodine electrolyte and has relative high conductivity and stability. The effects of PEO and LiClO 4 concentrations on the viscosity and ionic conductivity of the mentioned iodine-free electrolyte, as well as the performance of the corresponding quasi solid-state DSSCs were investigated comparatively. Experimental results indicate that the performance of DSSCs can be dramatically improved by adding LiClO 4 and PEO, and there are interactions (Li + -O coordination) between LiClO 4 and PEO, these Li + -O coordination interactions have important influence on the structure, morphology and ionic conductivity of the present CuI-based electrolyte. Addition of PEO into the electrolyte can inhibit the rapid crystal growth of CuI, and enhance the ion and hole transportation property owing to its long helix chain structure. The optimal efficiency (2.81%) was obtained for the quasi solid-state DSSC fabricated with CuI-based electrolyte containing 3 wt% LiClO 4 and 20 wt% PEO under AM 1.5 G (1 sun) light illumination, with a 116.2% improvement in the efficiency compared with the cell without addition of LiClO 4 , indicating the promising application in solar cells of the present CuI-based iodine-free electrolyte.

  20. Data set from a comprehensive phosphoproteomic analysis of rice variety IRBB5 in response to bacterial blight

    Directory of Open Access Journals (Sweden)

    Yuxuan Hou

    2016-03-01

    Full Text Available Bacterial blight (BB caused by Xanthomonas oryzae pv. oryzae (Xoo has become one of the most devastating diseases for rice, a major food source for over half of the world populations. To investigate the roles of protein phosphorylation in rice bacterial blight resistance, a quantitative phosphoproteomic study was conducted in rice variety IRBB5 at 0 h and 24 h after Xoo infection. 2367 and 2223 phosphosites on 1334 and 1297 representative proteins were identified in 0 h and 24 h after Xoo infection, respectively, out of which 762 proteins were found to be differentially phosphorylated. In associated with the published article “A comprehensive quantitative phosphoproteome analysis of rice in response to bacterial blight” in BMC Plant Biology (Hou et al., 2015 [1], this dataset article provided the detailed information of experimental designing, methods, features as well as the raw data of mass spectrometry (MS identification. The MS proteomics data could be fully accessed from the ProteomeXchange Consortium with the dataset identifier http://www.ebi.ac.uk/pride/archive/projects/PXD002222. Keywords: Rice (Oryza sativa L., Bacterial blight, Phosphoproteome

  1. Dissection of the insulin signaling pathway via quantitative phosphoproteomics

    DEFF Research Database (Denmark)

    Krüger, Marcus; Kratchmarova, Irina; Blagoev, Blagoy

    2008-01-01

    spectrum of the tyrosine phosphorylation cascade, we have defined the tyrosine-phosphoproteome of the insulin signaling pathway, using high resolution mass spectrometry in combination with phosphotyrosine immunoprecipitation and stable isotope labeling by amino acids in cell culture (SILAC......The insulin signaling pathway is of pivotal importance in metabolic diseases, such as diabetes, and in cellular processes, such as aging. Insulin activates a tyrosine phosphorylation cascade that branches to create a complex network affecting multiple biological processes. To understand the full...

  2. Multidimensional electrostatic repulsion-hydrophilic interaction chromatography (ERLIC) for quantitative analysis of the proteome and phosphoproteome in clinical and biomedical research.

    Science.gov (United States)

    Loroch, Stefan; Schommartz, Tim; Brune, Wolfram; Zahedi, René Peiman; Sickmann, Albert

    2015-05-01

    Quantitative proteomics and phosphoproteomics have become key disciplines in understanding cellular processes. Fundamental research can be done using cell culture providing researchers with virtually infinite sample amounts. In contrast, clinical, pre-clinical and biomedical research is often restricted to minute sample amounts and requires an efficient analysis with only micrograms of protein. To address this issue, we generated a highly sensitive workflow for combined LC-MS-based quantitative proteomics and phosphoproteomics by refining an ERLIC-based 2D phosphoproteomics workflow into an ERLIC-based 3D workflow covering the global proteome as well. The resulting 3D strategy was successfully used for an in-depth quantitative analysis of both, the proteome and the phosphoproteome of murine cytomegalovirus-infected mouse fibroblasts, a model system for host cell manipulation by a virus. In a 2-plex SILAC experiment with 150 μg of a tryptic digest per condition, the 3D strategy enabled the quantification of ~75% more proteins and even ~134% more peptides compared to the 2D strategy. Additionally, we could quantify ~50% more phosphoproteins by non-phosphorylated peptides, concurrently yielding insights into changes on the levels of protein expression and phosphorylation. Beside its sensitivity, our novel three-dimensional ERLIC-strategy has the potential for semi-automated sample processing rendering it a suitable future perspective for clinical, pre-clinical and biomedical research. Copyright © 2015. Published by Elsevier B.V.

  3. Comparative Phosphoproteomics Reveals an Important Role of MKK2 in Banana (Musa spp.) Cold Signal Network

    Science.gov (United States)

    Gao, Jie; Zhang, Sheng; He, Wei-Di; Shao, Xiu-Hong; Li, Chun-Yu; Wei, Yue-Rong; Deng, Gui-Ming; Kuang, Rui-Bin; Hu, Chun-Hua; Yi, Gan-Jun; Yang, Qiao-Song

    2017-01-01

    Low temperature is one of the key environmental stresses, which greatly affects global banana production. However, little is known about the global phosphoproteomes in Musa spp. and their regulatory roles in response to cold stress. In this study, we conducted a comparative phosphoproteomic profiling of cold-sensitive Cavendish Banana and relatively cold tolerant Dajiao under cold stress. Phosphopeptide abundances of five phosphoproteins involved in MKK2 interaction network, including MKK2, HY5, CaSR, STN7 and kinesin-like protein, show a remarkable difference between Cavendish Banana and Dajiao in response to cold stress. Western blotting of MKK2 protein and its T31 phosphorylated peptide verified the phosphoproteomic results of increased T31 phosphopeptide abundance with decreased MKK2 abundance in Daojiao for a time course of cold stress. Meanwhile increased expression of MKK2 with no detectable T31 phosphorylation was found in Cavendish Banana. These results suggest that the MKK2 pathway in Dajiao, along with other cold-specific phosphoproteins, appears to be associated with the molecular mechanisms of high tolerance to cold stress in Dajiao. The results also provide new evidence that the signaling pathway of cellular MKK2 phosphorylation plays an important role in abiotic stress tolerance that likely serves as a universal plant cold tolerance mechanism. PMID:28106078

  4. Differences in Beef Quality between Angus (Bos taurus taurus) and Nellore (Bos taurus indicus) Cattle through a Proteomic and Phosphoproteomic Approach.

    Science.gov (United States)

    Rodrigues, Rafael Torres de Souza; Chizzotti, Mario Luiz; Vital, Camilo Elber; Baracat-Pereira, Maria Cristina; Barros, Edvaldo; Busato, Karina Costa; Gomes, Rafael Aparecido; Ladeira, Márcio Machado; Martins, Taiane da Silva

    2017-01-01

    Proteins are the major constituents of muscle and are key molecules regulating the metabolic changes during conversion of muscle to meat. Brazil is one of the largest exporters of beef and most Brazilian cattle are composed by zebu (Nellore) genotype. Bos indicus beef is generally leaner and tougher than Bos taurus such as Angus. The aim of this study was to compare the muscle proteomic and phosphoproteomic profile of Angus and Nellore. Seven animals of each breed previously subjected the same growth management were confined for 84 days. Proteins were extracted from Longissimus lumborum samples collected immediately after slaughter and separated by two-dimensional electrophoresis. Pro-Q Diamond stain was used in phosphoproteomics. Proteins identification was performed using matrix assisted laser desorption/ionization time-of-flight mass spectrometry. Tropomyosin alpha-1 chain, troponin-T, myosin light chain-1 fragment, cytoplasmic malate dehydrogenase, alpha-enolase and 78 kDa glucose-regulated protein were more abundant in Nellore, while myosin light chain 3, prohibitin, mitochondrial stress-70 protein and heat shock 70 kDa protein 6 were more abundant in Angus (PAngus had greater phosphorylation of phosphoglucomutase-1 and troponin-T (PAngus and Nellore. Furthermore, prohibitin appears to be a potential biomarker of intramuscular fat in cattle. Additionally, differences in phosphorylation of myofilaments and glycolytic enzymes could be involved with differences in muscle contraction force, susceptibility to calpain, apoptosis and postmortem glycolysis, which might also be related to differences in beef quality among Angus and Nellore.

  5. Free acid gel form of β-hydroxy-β-methylbutyrate (HMB) improves HMB clearance from plasma in human subjects compared with the calcium HMB salt.

    Science.gov (United States)

    Fuller, John C; Sharp, Rick L; Angus, Hector F; Baier, Shawn M; Rathmacher, John A

    2011-02-01

    The leucine metabolite, β-hydroxy-β-methylbutyrate (HMB), is a nutritional supplement that increases lean muscle and strength with exercise and in disease states. HMB is presently available as the Ca salt (CaHMB). The present study was designed to examine whether HMB in free acid gel form will improve HMB availability to tissues. Two studies were conducted and in each study four males and four females were given three treatments in a randomised, cross-over design. Treatments were CaHMB (gelatin capsule, 1 g), equivalent HMB free acid gel swallowed (FASW) and free acid gel held sublingual for 15 s then swallowed (FASL). Plasma HMB was measured for 3 h following treatment in study 1 and 24 h with urine collection in study 2. In both the studies, the times to peak plasma HMB were 128 (sem 11), 38 (sem 4) and 38 (sem 1) min (P HMB excretion was not significantly increased resulting in more HMB retained (P HMB from plasma. In conclusion, HMB free acid gel could improve HMB availability and efficacy to tissues in health and disease.

  6. Gel-free/label-free proteomic, photosynthetic, and biochemical analysis of cowpea (Vigna unguiculata [L.] Walp.) resistance against Cowpea severe mosaic virus (CPSMV).

    Science.gov (United States)

    Varela, Anna Lidia N; Komatsu, Setsuko; Wang, Xin; Silva, Rodolpho G G; Souza, Pedro Filho N; Lobo, Ana Karla M; Vasconcelos, Ilka M; Silveira, Joaquim A G; Oliveira, Jose T A

    2017-06-23

    Cowpea severe mosaic virus (CPSMV) causes significant losses in cowpea (Vigna unguiculata) production. In this present study biochemical, physiological, and proteomic analysis were done to identify pathways and defense proteins that are altered during the incompatible interaction between the cowpea genotype BRS-Marataoã and CPSMV. The leaf protein extracts from mock- (MI) and CPSMV-inoculated plantlets (V) were evaluated at 2 and 6days post-inoculation (DPI). Data support the assumptions that increases in biochemical (high hydrogen peroxide, antioxidant enzymes, and secondary compounds) and physiological responses (high photosynthesis index and chlorophyll content), confirmed by label-free comparative proteomic approach, in which quantitative changes in proteasome proteins, proteins related to photosynthesis, redox homeostasis, regulation factors/RNA processing proteins were observed may be implicated in the resistance of BRS-Marataoã to CPSMV. This pioneering study provides information for the selection of specific pathways and proteins, altered in this incompatible relationship, which could be chosen as targets for detailed studies to advance our understanding of the molecular, physiological, and biochemistry basis of the resistance mechanism of cowpea and design approachs to engineer plants that are more productive. This is a pioneering study in which an incompatible relationship between a resistant cowpea and Cowpea severe mosaic virus (CPSMV) was conducted to comparatively evaluate proteomic profiles by Gel-free/label-free methodology and some physiological and biochemical parameters to shed light on how a resistant cowpea cultivar deals with the virus attack. Specific proteins and associated pathways were altered in the cowpea plants challenged with CPSMV and will contribute to our knowledge on the biological process tailored by cowpea in response to CPSMV. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Cosolvent-free polymer gel dosimeters with improved dose sensitivity and resolution for x-ray CT dose response

    Energy Technology Data Exchange (ETDEWEB)

    Chain, J N M; McAuley, K B [Department of Chemical Engineering, Queen' s University, Kingston, K7L 3N6 (Canada); Jirasek, A [Department of Physics and Astronomy, University of Victoria, Victoria, V8W 3P6 (Canada); Schreiner, L J, E-mail: kim.mcauley@chee.queensu.ca [Cancer Centre of Southeastern Ontario, Kingston, K7L 5P9 (Canada)

    2011-04-07

    This study reports new N-isopropylacrylamide (NIPAM) polymer gel recipes with increased dose sensitivity and improved dose resolution for x-ray CT readout. NIPAM can be used to increase the solubility of N, N'-methylenebisacrylamide (Bis) in aqueous solutions from approximately 3% to 5.5% by weight, enabling the manufacture of dosimeters containing up to 19.5%T, which is the total concentration of NIPAM and Bis by weight. Gelatin is shown to have a mild influence on dose sensitivity when gels are imaged using x-ray CT, and a stronger influence when gels are imaged optically. Phantoms that contain only 3% gelatin and 5 mM tetrakis hydroxymethyl phosphonium chloride are sufficiently stiff for dosimetry applications. The best cosolvent-free gel formulation has a dose sensitivity in the linear range ({approx}0.88 H Gy{sup -1}) that is a small improvement compared to the best NIPAM-based gels that incorporate isopropanol as a cosolvent ({approx}0.80 H Gy{sup -1}). This new gel formulation results in enhanced dose resolution ({approx}0.052 Gy) for x-ray CT readout, making clinical applications of this imaging modality more feasible.

  8. Cosolvent-free polymer gel dosimeters with improved dose sensitivity and resolution for x-ray CT dose response

    International Nuclear Information System (INIS)

    Chain, J N M; McAuley, K B; Jirasek, A; Schreiner, L J

    2011-01-01

    This study reports new N-isopropylacrylamide (NIPAM) polymer gel recipes with increased dose sensitivity and improved dose resolution for x-ray CT readout. NIPAM can be used to increase the solubility of N, N'-methylenebisacrylamide (Bis) in aqueous solutions from approximately 3% to 5.5% by weight, enabling the manufacture of dosimeters containing up to 19.5%T, which is the total concentration of NIPAM and Bis by weight. Gelatin is shown to have a mild influence on dose sensitivity when gels are imaged using x-ray CT, and a stronger influence when gels are imaged optically. Phantoms that contain only 3% gelatin and 5 mM tetrakis hydroxymethyl phosphonium chloride are sufficiently stiff for dosimetry applications. The best cosolvent-free gel formulation has a dose sensitivity in the linear range (∼0.88 H Gy -1 ) that is a small improvement compared to the best NIPAM-based gels that incorporate isopropanol as a cosolvent (∼0.80 H Gy -1 ). This new gel formulation results in enhanced dose resolution (∼0.052 Gy) for x-ray CT readout, making clinical applications of this imaging modality more feasible.

  9. TiO2-Based Phosphoproteomic Analysis of the Plasma Membrane and the Effects of Phosphatase Inhibitor Treatment

    DEFF Research Database (Denmark)

    Thingholm, Tine; Larsen, Martin Røssel; Ingrell, Christian

    2008-01-01

    Phosphorylation of plasma membrane proteins frequently initiates signal transduction pathways or attenuate plasma membrane transport processes. Because of the low abundance and hydrophobic features of many plasma membrane proteins and the low stoichiometry of protein phosphorylation, studies...... of the plasma membrane phosphoproteome are challenging. We present an optimized analytical strategy for plasma membrane phosphoproteomics that combines efficient plasma membrane protein preparation with TiO 2-based phosphopeptide enrichment and high-performance mass spectrometry for phosphopeptide sequencing....... We used sucrose centrifugation in combination with sodium carbonate extraction to achieve efficient and reproducible purification of low microgram levels of plasma membrane proteins from human mesenchymal stem cells (hMSCs, 10 (7) cells), achieving more than 70% yield of membrane proteins...

  10. Kinetics of swelling of polyelectrolyte gels: Fixed degree of ionization

    Science.gov (United States)

    Sen, Swati; Kundagrami, Arindam

    2015-12-01

    The swelling kinetics of uncharged and charged polymer (polyelectrolyte) gels in salt-free conditions is studied in one dimension by solving the constitutive equation of motion (Newton's law for the elementary gel volume) of the displacement variable by two theoretical methods: one in which the classical definition of stress is used with the bulk modulus taken as a parameter, and the other in which a phenomenological expression of the osmotic stress as a function of polymer density and degree of ionization is taken as an input to the dynamics. The time-evolution profiles for spatially varying polymer density and stress, along with the location of the gel-solvent interface, are obtained from the two methods. We show that both the polymer density (volume fraction) and stress inside the gel follow expected behaviours of being maximum for the uniformly shrunken gel, and relaxing slowly to the lowest values as the gel approaches equilibrium. We further show that, by comparing the temporal profiles of the gel-solvent interface and other variables between the two methods, one may attempt to assign an effective bulk modulus to the polyelectrolyte gel as a function of the degree of ionization and other parameters of the gel such as hydrophobicity, cross-link density, and the temperature. The major result we get is that the effective bulk modulus of a polyelectrolyte gel increases monotonically with its degree of ionization. In the process of identifying the parameters for a monotonic swelling, we calculated using a well-known expression of the free energy the equilibrium results of two-phase co-existence and the critical point of a polyelectrolyte gel with a fixed degree of ionization.

  11. Functional coatings: the sol-gel approach

    International Nuclear Information System (INIS)

    Belleville, Ph.

    2010-01-01

    CEA's sol-gel laboratory is specialized in the development of innovative sol-gel optical coatings and has extended its application field to membrane materials and coatings for energy conversion, to electric coatings for microelectronics devices and to thin films for gas sensing. This article describes, by way of examples, the laboratory's research on sol-gel functional coatings, including nano-material synthesis, organic-inorganic hybrid-based solution preparation as well as deposition process development and prototyping. (author)

  12. Nuclear phosphoproteome analysis of 3T3-L1 preadipocyte differentiation reveals system-wide phosphorylation of transcriptional regulators

    DEFF Research Database (Denmark)

    Rabiee, Atefeh; Schwämmle, Veit; Sidoli, Simone

    2017-01-01

    HIGHLIGHTS: Mass spectrometry (MS) based quantitative proteomics and phosphoproteomics applied to monitor the alteration of nuclear proteins during the early stages (4 hours) of preadipocyte differentiation. A total of 4072 proteins including 2434 phosphorylated proteins identified, a majority....... New insights into phosphorylation-dependent signaling networks that impact on nuclear proteins and controls adipocyte differentiation and cell fate. Adipocytes (fat cells) are important endocrine and metabolic cells critical for systemic insulin sensitivity. Both adipose excess and insufficiency......), in particular phosphorylation, play a major role in activating and propagating signals within TR networks upon induction of adipogenesis by extracellular stimulus. We applied mass spectrometry (MS) based quantitative proteomics and phosphoproteomics to monitor the alteration of nuclear proteins during the early...

  13. Recent findings and technological advances in phosphoproteomics for cells and tissues

    DEFF Research Database (Denmark)

    von Stechow, Louise; Francavilla, Chiara; Olsen, Jesper V

    2015-01-01

    in different diseases, including cancer. Large-scale studies of phosphoproteins - termed phosphoproteomics - strongly rely on the use of high-performance mass spectrometric instrumentation. This powerful technology has been applied to study a great number of phosphorylation-based phenotypes. Nevertheless, many...... technical and biological challenges have to be overcome to identify biologically relevant phosphorylation sites in cells and tissues. This review describes different technological strategies to identify and quantify phosphorylation sites with high accuracy, without significant loss of analysis speed...

  14. The influence of protein free calf blood extract eye gel on dry eye after pterygium surgery

    Directory of Open Access Journals (Sweden)

    Cai-Ni Ji

    2013-07-01

    Full Text Available AIM: To investigate the influence of protein free calf blood extract eye gel on dry eye after pterygium surgery. METHODS: Thirty six patients(40 eyeswith primary nasal pterygium were enrolled in this study, which were divided into study group and control group randomly, with 20 eyes in each group. All patients received pterygium excision and limbal stem cell autograft surgery and tobramicin dexamethasone eye drops after surgery. Patients of the study group received protein free calf blood extract eye gel while those of the control group received 0.1% sodium hyaluronate eye drops furthermore. Ocular surface disease index(OSDIquestionnaire, tear film break-up time(BUTand Schirmer's Ⅰ test Ⅰ(SⅠtwere carried before and 3 months after surgery to evaluate the dry eye degree of the patients. RESULTS: There was no statistical difference between the age, gender and size of the pterygium of the study and control groups preoperatively. There was no statistical difference between the OSDI(2.33±1.02 vs 2.32±0.93, BUT(8.80±2.48 vs 8.35±2.28seconds and SⅠt(4.30±2.30 vs 4.40±2.44of the two groups preoperatively. There was statistical difference between the OSDI(1.45±0.47 vs 1.81±0.60, BUT(11.20±2.07 vs 9.50±2.40seconds and SⅠt(8.35±3.13 vs 6.35±2.18of the two groups 3 months postoperatively, which was also different from that of the preoperative data correspondingly. CONCLUSION: Protein free calf blood extract eye gel could reduce the dry eye after pterygium surgery.

  15. Phosphoproteomics Reveals Regulatory T Cell-Mediated DEF6 Dephosphorylation That Affects Cytokine Expression in Human Conventional T Cells

    KAUST Repository

    Joshi, Rubin N.; Binai, Nadine A.; Marabita, Francesco; Sui, Zhenhua; Altman, Amnon; Heck, Albert J. R.; Tegner, Jesper; Schmidt, Angelika

    2017-01-01

    (Tcons) independently of IP levels, consequently inhibiting NFAT signaling and effector cytokine expression. Here, we study Treg suppression mechanisms through unbiased phosphoproteomics of primary human Tcons upon TCR stimulation and Treg

  16. A template-free sol-gel technique for controlled growth of ZnO nanorod arrays

    International Nuclear Information System (INIS)

    Huang, N.; Zhu, M.W.; Gao, L.J.; Gong, J.; Sun, C.; Jiang, X.

    2011-01-01

    The growth of ZnO nanorod arrays via a template-free sol-gel process was investigated. The nanorod is single-crystalline wurtzite structure with [0 0 0 1] growth direction determined by the transmission electron microscope. The aligned ZnO arrays were obtained directly on the glass substrates by adjusting the temperatures and the withdrawal speeds, without seed-layer or template assistant. A thicker oriented ZnO nanorod arrays was obtained at proper experimental conditions by adding dip-coating layers. Room temperature photoluminescence spectrum exhibits an intensive UV emission with a weak broad green emission as well as a blue double-peak emission located at 451 and 468 nm, respectively. Further investigation results show that the difference in the alignment of nanorods ascribes to the different orientations of the nanoparticles-packed film formed prior to nanorods on the substrate. Well ordered ZnO nanorods are formed from this film with good c-axis orientation. Our study is expected to pave a way for direct growth of oriented nanorods by low-cost solution approaches.

  17. Phosphoproteome analysis of functional mitochondria isolated from resting human muscle reveals extensive phosphorylation of inner membrane protein complexes and enzymes

    DEFF Research Database (Denmark)

    Zhao, Xiaolu; Leon, Ileana R; Bak, Steffen

    2011-01-01

    . In skeletal muscle, mitochondrial dysfunction is linked to insulin resistance in humans with obesity and type 2 diabetes. We performed a phosphoproteomic study of functional mitochondria isolated from human muscle biopsies with the aim to obtain a comprehensive overview of mitochondrial phosphoproteins...... in insulin resistance. We also assigned phosphorylation sites in mitochondrial proteins involved in amino acid degradation, importers and transporters, calcium homeostasis, and apoptosis. Bioinformatics analysis of kinase motifs revealed that many of these mitochondrial phosphoproteins are substrates....... Future comparative phosphoproteome analysis of mitochondria from healthy and diseased individuals will provide insights into the role of abnormal phosphorylation in pathologies, such as type 2 diabetes....

  18. In vivo confocal microscopy of conjunctiva in preservative-free timolol 0.1% gel formulation therapy for glaucoma.

    Science.gov (United States)

    Frezzotti, Paolo; Fogagnolo, Paolo; Haka, Gentiana; Motolese, Ilaria; Iester, Michele; Bagaglia, Simone A; Mittica, Pietro; Menicacci, Cristina; Rossetti, Luca; Motolese, Eduardo

    2014-03-01

    To evaluate the effects at 1 year of preservative-free timolol gel and preserved timolol eye drops on conjunctiva and tear parameters. Forty patients with primary open-angle glaucoma or ocular hypertension were randomized to the two treatment groups and compared with 20 healthy age-matched controls. Clinical tests (IOP, Schirmer I test, and lacrimal film break-up time BUT) and in vivo conjunctival confocal microscopy (IVCM) were performed in all patients at baseline and after 12 months. IVCM (HRT II Rostock Cornea Module; Heidelberg Engineering GmbH, Heidelberg, Germany) was performed after topical anaesthesia in the four cardinal locations and at the corresponding limbus to analyse conjunctiva cells. The main IVCM outcomes were goblet cell density and epithelial regularity. IVCM and clinical parameters were similar in the three groups at baseline. After 12 months, intra-epithelial goblet cell density was significantly lower in the preserved (48.25 ± 7.70) than in the preservative-free beta-blocker group (86.83 ± 22.17, p preserved beta-blocker medication group than in the preservative-free beta-blocker group (p preserved timolol (respectively, 11.3 ± 2.97 and 8.12 ± 0.99) compared with preservative-free timolol (16.8 ± 1.83 and 11.27 ± 1.27, p preservative-free beta-blocker gel induces less changes at ocular surface than preserved beta-blockers, a fact that should be considered to obtain less adverse effects and maximal adherence to treatment in a chronic condition such as glaucoma. © 2013 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.

  19. Transition metal-free oxidation of benzylic alcohols to carbonyl compounds by hydrogen peroxide in the presence of acidic silica gel

    Directory of Open Access Journals (Sweden)

    Hossein Ghafuri

    2015-01-01

    Full Text Available Oxidation of alcohols to carbonyl compounds has become an important issue in the process industry as well as many other applications. In this method, various benzylic alcohols were successfully converted to corresponding aldehydes and ketones under transition metal-free condition using hydrogen peroxide in the presence of some amount of catalytic acidic silica gel. Silica gel is inexpensive and available. One of the most important features of this method is its short reaction time.

  20. Benchmarking sample preparation/digestion protocols reveals tube-gel being a fast and repeatable method for quantitative proteomics.

    Science.gov (United States)

    Muller, Leslie; Fornecker, Luc; Van Dorsselaer, Alain; Cianférani, Sarah; Carapito, Christine

    2016-12-01

    Sample preparation, typically by in-solution or in-gel approaches, has a strong influence on the accuracy and robustness of quantitative proteomics workflows. The major benefit of in-gel procedures is their compatibility with detergents (such as SDS) for protein solubilization. However, SDS-PAGE is a time-consuming approach. Tube-gel (TG) preparation circumvents this drawback as it involves directly trapping the sample in a polyacrylamide gel matrix without electrophoresis. We report here the first global label-free quantitative comparison between TG, stacking gel (SG), and basic liquid digestion (LD). A series of UPS1 standard mixtures (at 0.5, 1, 2.5, 5, 10, and 25 fmol) were spiked in a complex yeast lysate background. TG preparation allowed more yeast proteins to be identified than did the SG and LD approaches, with mean numbers of 1979, 1788, and 1323 proteins identified, respectively. Furthermore, the TG method proved equivalent to SG and superior to LD in terms of the repeatability of the subsequent experiments, with mean CV for yeast protein label-free quantifications of 7, 9, and 10%. Finally, known variant UPS1 proteins were successfully detected in the TG-prepared sample within a complex background with high sensitivity. All the data from this study are accessible on ProteomeXchange (PXD003841). © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Selecting Sample Preparation Workflows for Mass Spectrometry-Based Proteomic and Phosphoproteomic Analysis of Patient Samples with Acute Myeloid Leukemia.

    Science.gov (United States)

    Hernandez-Valladares, Maria; Aasebø, Elise; Selheim, Frode; Berven, Frode S; Bruserud, Øystein

    2016-08-22

    Global mass spectrometry (MS)-based proteomic and phosphoproteomic studies of acute myeloid leukemia (AML) biomarkers represent a powerful strategy to identify and confirm proteins and their phosphorylated modifications that could be applied in diagnosis and prognosis, as a support for individual treatment regimens and selection of patients for bone marrow transplant. MS-based studies require optimal and reproducible workflows that allow a satisfactory coverage of the proteome and its modifications. Preparation of samples for global MS analysis is a crucial step and it usually requires method testing, tuning and optimization. Different proteomic workflows that have been used to prepare AML patient samples for global MS analysis usually include a standard protein in-solution digestion procedure with a urea-based lysis buffer. The enrichment of phosphopeptides from AML patient samples has previously been carried out either with immobilized metal affinity chromatography (IMAC) or metal oxide affinity chromatography (MOAC). We have recently tested several methods of sample preparation for MS analysis of the AML proteome and phosphoproteome and introduced filter-aided sample preparation (FASP) as a superior methodology for the sensitive and reproducible generation of peptides from patient samples. FASP-prepared peptides can be further fractionated or IMAC-enriched for proteome or phosphoproteome analyses. Herein, we will review both in-solution and FASP-based sample preparation workflows and encourage the use of the latter for the highest protein and phosphorylation coverage and reproducibility.

  2. Fabrication of highly conductive graphene/ITO transparent bi-film through CVD and organic additives-free sol-gel techniques.

    Science.gov (United States)

    Hemasiri, Bastian Waduge Naveen Harindu; Kim, Jae-Kwan; Lee, Ji-Myon

    2017-12-19

    Indium tin oxide (ITO) still remains as the main candidate for high-performance optoelectronic devices, but there is a vital requirement in the development of sol-gel based synthesizing techniques with regards to green environment and higher conductivity. Graphene/ITO transparent bi-film was synthesized by a two-step process: 10 wt. % tin-doped ITO thin films were produced by an environmentally friendly aqueous sol-gel spin coating technique with economical salts of In(NO 3 ) 3 .H 2 O and SnCl 4 , without using organic additives, on surface free energy enhanced (from 53.826 to 97.698 mJm -2 ) glass substrate by oxygen plasma treatment, which facilitated void-free continuous ITO film due to high surface wetting. The chemical vapor deposited monolayer graphene was transferred onto the synthesized ITO to enhance its electrical properties and it was capable of reducing sheet resistance over 12% while preserving the bi-film surface smoother. The ITO films contain the In 2 O 3 phase only and exhibit the polycrystalline nature of cubic structure with 14.35 ± 0.5 nm crystallite size. The graphene/ITO bi-film exhibits reproducible optical transparency with 88.66% transmittance at 550 nm wavelength, and electrical conductivity with sheet resistance of 117 Ω/sq which is much lower than that of individual sol-gel derived ITO film.

  3. Offline High pH Reversed-Phase Peptide Fractionation for Deep Phosphoproteome Coverage

    DEFF Research Database (Denmark)

    Batth, Tanveer S; Olsen, Jesper V

    2016-01-01

    Protein phosphorylation, a process in which kinases modify serines, threonines, and tyrosines with phosphoryl groups is of major importance in eukaryotic biology. Protein phosphorylation events are key initiators of signaling responses which determine cellular outcomes after environmental...... and metabolic stimuli, and are thus highly regulated. Therefore, studying the mechanism of regulation by phosphorylation, and pinpointing the exact site of phosphorylation on proteins is of high importance. This protocol describes in detail a phosphoproteomics workflow for ultra-deep coverage by fractionating...

  4. An accurate determination of human grawth hormone content in different pituitary extracts, using a radioimmunoassay with polyacrylamide gel electrophoresis as a bound-free separation system

    International Nuclear Information System (INIS)

    Bartoline, P.; Assis, L.M. de; Scwarz, I.; Pieroni, R.R.

    1977-01-01

    Human growth hormone was extracted and purified according to the method of Roos et al. A first control of its purification and integrity was performed through molecular weight determination by gel filtration on Sephadex G-100 and on plyacrylamide gel electrophoresis (PAGE). Its biological activity was confirmed by the growth promoted in non-hypophysectomized rats at plateau. The main object, however, was the setting up of an accurate, reproducible method that could furnish the more absolute and comparable value of rafioimmunoassayable HGH content in perfect agreement with the results obtained by other laboratories. This was accomplished through a radioimmunoassay system that uses HGH labelled with 125 I, where the separation of the bound from the free antigen is achieved on polyacrylamide gel electrophoresis, by a modification introduced in the original method of Davis. The resulting values, extremely close to that stated by the KABI-Laboratories (Stockolm), through obtained in quite different conditions of incubation, antibody concentration and with no use of second antibody, represent a confident approach to a comparable measure of this hormone in extract, which can also be applied to plasma determinations [pt

  5. Selecting Sample Preparation Workflows for Mass Spectrometry-Based Proteomic and Phosphoproteomic Analysis of Patient Samples with Acute Myeloid Leukemia

    Directory of Open Access Journals (Sweden)

    Maria Hernandez-Valladares

    2016-08-01

    Full Text Available Global mass spectrometry (MS-based proteomic and phosphoproteomic studies of acute myeloid leukemia (AML biomarkers represent a powerful strategy to identify and confirm proteins and their phosphorylated modifications that could be applied in diagnosis and prognosis, as a support for individual treatment regimens and selection of patients for bone marrow transplant. MS-based studies require optimal and reproducible workflows that allow a satisfactory coverage of the proteome and its modifications. Preparation of samples for global MS analysis is a crucial step and it usually requires method testing, tuning and optimization. Different proteomic workflows that have been used to prepare AML patient samples for global MS analysis usually include a standard protein in-solution digestion procedure with a urea-based lysis buffer. The enrichment of phosphopeptides from AML patient samples has previously been carried out either with immobilized metal affinity chromatography (IMAC or metal oxide affinity chromatography (MOAC. We have recently tested several methods of sample preparation for MS analysis of the AML proteome and phosphoproteome and introduced filter-aided sample preparation (FASP as a superior methodology for the sensitive and reproducible generation of peptides from patient samples. FASP-prepared peptides can be further fractionated or IMAC-enriched for proteome or phosphoproteome analyses. Herein, we will review both in-solution and FASP-based sample preparation workflows and encourage the use of the latter for the highest protein and phosphorylation coverage and reproducibility.

  6. Light scattering from a binary-liquid entanglement gel

    Science.gov (United States)

    Xia, K.-Q.; Maher, J. V.

    1987-09-01

    Light-scattering experiments have been carried out on an entanglement gel with a binary-liquid mixture as solvent. The onset temperature for critical opalescence has a composition dependence which is similar to the coexistence curve of the free-liquid mixture. This system resembles previously reported work on the cross-linked gel polyacrylamide in two ways: (1) As temperature is lowered toward the critical temperature of the free-liquid mixture, the binary-fluid gel exhibits a strong and increasing light scattering over a broad temperature region of several kelvins, and (2) no appreciable temporal fluctuations are observed throughout this temperature region. Two added features are observed in the present, entanglement-gel measurements: (a) Gel samples with solvent composition both near and off the critical composition of the free-liquid mixture exhibit similar light-scattering behavior, and (b) a Lorentzian-squared fit to the light-scattering angular distributions yields a characteristic wave number which does not change with temperature and an amplitude which shows a very strong dependence on the temperature.

  7. Battle through signaling between wheat and the fungal pathogen Septoria tritici revealed by proteomics and phosphoproteomics.

    Science.gov (United States)

    Yang, Fen; Melo-Braga, Marcella N; Larsen, Martin R; Jørgensen, Hans J L; Palmisano, Giuseppe

    2013-09-01

    The fungus Septoria tritici causes the disease septoria tritici blotch in wheat, one of the most economically devastating foliar diseases in this crop. To investigate signaling events and defense responses in the wheat-S. tritici interaction, we performed a time-course study of S. tritici infection in resistant and susceptible wheat using quantitative proteomics and phosphoproteomics, with special emphasis on the initial biotrophic phase of interactions. Our study revealed an accumulation of defense and stress-related proteins, suppression of photosynthesis, and changes in sugar metabolism during compatible and incompatible interactions. However, differential regulation of the phosphorylation status of signaling proteins, transcription and translation regulators, and membrane-associated proteins was observed between two interactions. The proteomic data were correlated with a more rapid or stronger accumulation of signal molecules, including calcium, H2O2, NO, and sugars, in the resistant than in the susceptible cultivar in response to the infection. Additionally, 31 proteins and 5 phosphoproteins from the pathogen were identified, including metabolic proteins and signaling proteins such as GTP-binding proteins, 14-3-3 proteins, and calcium-binding proteins. Quantitative PCR analysis showed the expression of fungal signaling genes and genes encoding a superoxide dismutase and cell-wall degrading enzymes. These results indicate roles of signaling, antioxidative stress mechanisms, and nutrient acquisition in facilitating the initial symptomless growth. Taken in its entirety, our dataset suggests interplay between the plant and S. tritici through complex signaling networks and downstream molecular events. Resistance is likely related to several rapidly and intensively triggered signal transduction cascades resulting in a multiple-level activation of transcription and translation processes of defense responses. Our sensitive approaches and model provide a comprehensive

  8. New Approach for Segmentation and Quantification of Two-Dimensional Gel Electrophoresis Images

    DEFF Research Database (Denmark)

    Anjo, Antonio dos; Laurell Blom Møller, Anders; Ersbøll, Bjarne Kjær

    2011-01-01

    Motivation: Detection of protein spots in two-dimensional gel electrophoresis images (2-DE) is a very complex task and current approaches addressing this problem still suffer from significant shortcomings. When quantifying a spot, most of the current software applications include a lot of backgro...

  9. Antioxidant effect of green tea on polymer gel dosimeter

    International Nuclear Information System (INIS)

    Samuel, E J J; Sathiyaraj, P; Deena, T; Kumar, D S

    2015-01-01

    Extract from Green Tea (GTE) acts as an antioxidant in acrylamide based polymer gel dosimeter. In this work, PAGAT gel was used for investigation of antioxidant effect of GTE.PAGAT was called PAGTEG (Polyacrylamide green tea extract gel dosimeter) after adding GTE. Free radicals in water cause pre polymerization of polymer gel before irradiation. Polyphenols from GTE are highly effective to absorb the free radicals in water. THPC is used as an antioxidant in polymer gel dosimeter but here we were replaced it by GTE and investigated its effect by spectrophotometer. GTE added PAGAT samples response was lower compared to THPC added sample. To increase the sensitivity of the PAGTEG, sugar was added. This study confirmed that THPC was a good antioxidant for polymer gel dosimeter. However, GTE also can be used as an antioxidant in polymer gel if use less quantity (GTE) and add sugar as sensitivity enhancer

  10. The phosphorylation pattern of bovine heart complex I subunits

    DEFF Research Database (Denmark)

    Palmisano, Giuseppe; Sardanelli, Anna Maria; Signorile, Anna

    2007-01-01

    The phosphoproteome of bovine heart complex I of the respiratory chain has been analysed with a procedure based on nondenaturing gel electrophoretic separation of complex I from small quantities of mitochondria samples, in-gel digestion, in combination with phosphopeptide enrichment by titanium d...

  11. Phosphoproteomics Reveals Regulatory T Cell-Mediated DEF6 Dephosphorylation That Affects Cytokine Expression in Human Conventional T Cells

    KAUST Repository

    Joshi, Rubin N.

    2017-09-25

    Regulatory T cells (Tregs) control key events of immune tolerance, primarily by suppression of effector T cells. We previously revealed that Tregs rapidly suppress T cell receptor (TCR)-induced calcium store depletion in conventional CD4CD25 T cells (Tcons) independently of IP levels, consequently inhibiting NFAT signaling and effector cytokine expression. Here, we study Treg suppression mechanisms through unbiased phosphoproteomics of primary human Tcons upon TCR stimulation and Treg-mediated suppression, respectively. Tregs induced a state of overall decreased phosphorylation as opposed to TCR stimulation. We discovered novel phosphosites (T595_S597) in the DEF6 (SLAT) protein that were phosphorylated upon TCR stimulation and conversely dephosphorylated upon coculture with Tregs. Mutation of these DEF6 phosphosites abrogated interaction of DEF6 with the IP receptor and affected NFAT activation and cytokine transcription in primary Tcons. This novel mechanism and phosphoproteomics data resource may aid in modifying sensitivity of Tcons to Treg-mediated suppression in autoimmune disease or cancer.

  12. Gel-free/label-free proteomic analysis of root tip of soybean over time under flooding and drought stresses.

    Science.gov (United States)

    Wang, Xin; Oh, MyeongWon; Sakata, Katsumi; Komatsu, Setsuko

    2016-01-01

    Growth in the early stage of soybean is markedly inhibited under flooding and drought stresses. To explore the responsive mechanisms of soybean, temporal protein profiles of root tip under flooding and drought stresses were analyzed using gel-free/label-free proteomic technique. Root tip was analyzed because it was the most sensitive organ against flooding, and it was beneficial to root penetration under drought. UDP glucose: glycoprotein glucosyltransferase was decreased and increased in soybean root under flooding and drought, respectively. Temporal protein profiles indicated that fermentation and protein synthesis/degradation were essential in root tip under flooding and drought, respectively. In silico protein-protein interaction analysis revealed that the inductive and suppressive interactions between S-adenosylmethionine synthetase family protein and B-S glucosidase 44 under flooding and drought, respectively, which are related to carbohydrate metabolism. Furthermore, biotin/lipoyl attachment domain containing protein and Class II aminoacyl tRNA/biotin synthetases superfamily protein were repressed in the root tip during time-course stresses. These results suggest that biotin and biotinylation might be involved in energy management to cope with flooding and drought in early stage of soybean-root tip. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Topical simvastatin gel as a novel therapeutic modality for palatal donor site wound healing following free gingival graft procedure.

    Science.gov (United States)

    Madi, Marwa; Kassem, Abeer

    2018-04-01

    Autogenous soft-tissue grafting is a commonly used procedure nowadays in dentistry. However, the prolonged healing time needed for the donor site leads to increase the patient's pain and discomfort. Statin has been observed to be beneficial in reducing bacterial burden, improving epithelization and wound healing. The aim of this study was to evaluate intra-oral topical application of simvastatin/chitosan gel (10 mg/mL) over the palatal donor site following free gingival graft (FGG) procedure. Subjects indicated for FGG procedure were divided into four groups. Group I: Simvastatin suspension (S), group II: simvastatin/chitosan gel (SC), group III: chitosan gel (C), group IV: petroleum gel (P). Treatment was applied three times/day for the following 7 days. Wound healing was evaluated at day 3, 7 and 14 post-surgery. A visual analogue scale (VAS) was used to measure the experienced discomfort at 1, 3, 5, 7 and 14 days. Statistical significant reduction in wound-healing scores was observed after 3 and 7 days for group II compared to other groups (p  = .015). A significant reduction was also observed in VAS score for group II compared to other groups at day 1, 3, 5 and 7. Topical application of S/C gel could be used as a novel therapeutic modality that improved healing and reduced pain in the palatal donor site following FGG procedure.

  14. Phosphoproteomic insights into processes influenced by the kinase-like protein DIA1/C3orf58

    Directory of Open Access Journals (Sweden)

    Agnieszka Hareza

    2018-04-01

    Full Text Available Many kinases are still ‘orphans,’ which means knowledge about their substrates, and often also about the processes they regulate, is lacking. Here, DIA1/C3orf58, a member of a novel predicted kinase-like family, is shown to be present in the endoplasmic reticulum and to influence trafficking via the secretory pathway. Subsequently, DIA1 is subjected to phosphoproteomics analysis to cast light on its signalling pathways. A liquid chromatography–tandem mass spectrometry proteomic approach with phosphopeptide enrichment is applied to membrane fractions of DIA1-overexpressing and control HEK293T cells, and phosphosites dependent on the presence of DIA1 are elucidated. Most of these phosphosites belonged to CK2- and proline-directed kinase types. In parallel, the proteomics of proteins immunoprecipitated with DIA1 reported its probable interactors. This pilot study provides the basis for deeper studies of DIA1 signalling.

  15. Phosphoproteomic insights into processes influenced by the kinase-like protein DIA1/C3orf58.

    Science.gov (United States)

    Hareza, Agnieszka; Bakun, Magda; Świderska, Bianka; Dudkiewicz, Małgorzata; Koscielny, Alicja; Bajur, Anna; Jaworski, Jacek; Dadlez, Michał; Pawłowski, Krzysztof

    2018-01-01

    Many kinases are still 'orphans,' which means knowledge about their substrates, and often also about the processes they regulate, is lacking. Here, DIA1/C3orf58, a member of a novel predicted kinase-like family, is shown to be present in the endoplasmic reticulum and to influence trafficking via the secretory pathway. Subsequently, DIA1 is subjected to phosphoproteomics analysis to cast light on its signalling pathways. A liquid chromatography-tandem mass spectrometry proteomic approach with phosphopeptide enrichment is applied to membrane fractions of DIA1-overexpressing and control HEK293T cells, and phosphosites dependent on the presence of DIA1 are elucidated. Most of these phosphosites belonged to CK2- and proline-directed kinase types. In parallel, the proteomics of proteins immunoprecipitated with DIA1 reported its probable interactors. This pilot study provides the basis for deeper studies of DIA1 signalling.

  16. Natural gels in the Yucca Mountain Area, Nevada, USA

    International Nuclear Information System (INIS)

    Levy, S.S.

    1991-01-01

    Relict gels at Yucca Mountain include pore- and fracture-fillings of silica and zeolite related to diagenetic and hydrothermal alternation of vitric tuffs. Water-rich free gels in fractures at Rainier Mesa consist of smectite with or without silica-rich gel fragments. Gels are being studied for their potential role in transport of radionuclides from a nuclear-waste repository

  17. Phosphoproteomic profiling of in vivo signaling in liver by the mammalian target of rapamycin complex 1 (mTORC1.

    Directory of Open Access Journals (Sweden)

    Gokhan Demirkan

    Full Text Available Our understanding of signal transduction networks in the physiological context of an organism remains limited, partly due to the technical challenge of identifying serine/threonine phosphorylated peptides from complex tissue samples. In the present study, we focused on signaling through the mammalian target of rapamycin (mTOR complex 1 (mTORC1, which is at the center of a nutrient- and growth factor-responsive cell signaling network. Though studied extensively, the mechanisms involved in many mTORC1 biological functions remain poorly understood.We developed a phosphoproteomic strategy to purify, enrich and identify phosphopeptides from rat liver homogenates. Using the anticancer drug rapamycin, the only known target of which is mTORC1, we characterized signaling in liver from rats in which the complex was maximally activated by refeeding following 48 hr of starvation. Using protein and peptide fractionation methods, TiO(2 affinity purification of phosphopeptides and mass spectrometry, we reproducibly identified and quantified over four thousand phosphopeptides. Along with 5 known rapamycin-sensitive phosphorylation events, we identified 62 new rapamycin-responsive candidate phosphorylation sites. Among these were PRAS40, gephyrin, and AMP kinase 2. We observed similar proportions of increased and reduced phosphorylation in response to rapamycin. Gene ontology analysis revealed over-representation of mTOR pathway components among rapamycin-sensitive phosphopeptide candidates.In addition to identifying potential new mTORC1-mediated phosphorylation events, and providing information relevant to the biology of this signaling network, our experimental and analytical approaches indicate the feasibility of large-scale phosphoproteomic profiling of tissue samples to study physiological signaling events in vivo.

  18. ROS-activated ATM-dependent phosphorylation of cytoplasmic substrates identified by large scale phosphoproteomics screen

    DEFF Research Database (Denmark)

    Kozlov, Sergei V; Waardenberg, Ashley J; Engholm-Keller, Kasper

    2016-01-01

    ATM (ataxia-telangiectasia, mutated) protein plays a central role in phosphorylating a network of proteins in response to DNA damage. These proteins function in signalling pathways designed to maintain the stability of the genome and minimize the risk of disease by controlling cell cycle checkpoi......ATM (ataxia-telangiectasia, mutated) protein plays a central role in phosphorylating a network of proteins in response to DNA damage. These proteins function in signalling pathways designed to maintain the stability of the genome and minimize the risk of disease by controlling cell cycle...... checkpoints, initiating DNA repair and regulating gene expression. ATM kinase can be activated by a variety of stimuli, including oxidative stress. Here we confirmed activation of cytoplasmic ATM by autophosphorylation at multiple sites. Then we employed a global quantitative phosphoproteomics approach...... to identify cytoplasmic proteins altered in their phosphorylation state in control and A-T (ataxia-telangiectasia) cells in response to oxidative damage. We demonstrated that ATM was activated by oxidative damage in the cytoplasm as well as in the nucleus and identified a total of 9,833 phosphorylation sites...

  19. Quantitative phosphoproteomics reveals new roles for the protein phosphatase PP6 in mitotic cells.

    Science.gov (United States)

    Rusin, Scott F; Schlosser, Kate A; Adamo, Mark E; Kettenbach, Arminja N

    2015-10-13

    Protein phosphorylation is an important regulatory mechanism controlling mitotic progression. Protein phosphatase 6 (PP6) is an essential enzyme with conserved roles in chromosome segregation and spindle assembly from yeast to humans. We applied a baculovirus-mediated gene silencing approach to deplete HeLa cells of the catalytic subunit of PP6 (PP6c) and analyzed changes in the phosphoproteome and proteome in mitotic cells by quantitative mass spectrometry-based proteomics. We identified 408 phosphopeptides on 272 proteins that increased and 298 phosphopeptides on 220 proteins that decreased in phosphorylation upon PP6c depletion in mitotic cells. Motif analysis of the phosphorylated sites combined with bioinformatics pathway analysis revealed previously unknown PP6c-dependent regulatory pathways. Biochemical assays demonstrated that PP6c opposed casein kinase 2-dependent phosphorylation of the condensin I subunit NCAP-G, and cellular analysis showed that depletion of PP6c resulted in defects in chromosome condensation and segregation in anaphase, consistent with dysregulation of condensin I function in the absence of PP6 activity. Copyright © 2015, American Association for the Advancement of Science.

  20. Quantitative phosphoproteomics reveals the role of protein arginine phosphorylation in the bacterial stress response.

    Science.gov (United States)

    Schmidt, Andreas; Trentini, Débora Broch; Spiess, Silvia; Fuhrmann, Jakob; Ammerer, Gustav; Mechtler, Karl; Clausen, Tim

    2014-02-01

    Arginine phosphorylation is an emerging protein modification implicated in the general stress response of Gram-positive bacteria. The modification is mediated by the arginine kinase McsB, which phosphorylates and inactivates the heat shock repressor CtsR. In this study, we developed a mass spectrometric approach accounting for the peculiar chemical properties of phosphoarginine. The improved methodology was used to analyze the dynamic changes in the Bacillus subtilis arginine phosphoproteome in response to different stress situations. Quantitative analysis showed that a B. subtilis mutant lacking the YwlE arginine phosphatase accumulated a strikingly large number of arginine phosphorylations (217 sites in 134 proteins), however only a minor fraction of these sites was increasingly modified during heat shock or oxidative stress. The main targets of McsB-mediated arginine phosphorylation comprise central factors of the stress response system including the CtsR and HrcA heat shock repressors, as well as major components of the protein quality control system such as the ClpCP protease and the GroEL chaperonine. These findings highlight the impact of arginine phosphorylation in orchestrating the bacterial stress response.

  1. Parallel reaction monitoring on a Q Exactive mass spectrometer increases reproducibility of phosphopeptide detection in bacterial phosphoproteomics measurements.

    Science.gov (United States)

    Taumer, Christoph; Griesbaum, Lena; Kovacevic, Alen; Soufi, Boumediene; Nalpas, Nicolas C; Macek, Boris

    2018-03-29

    Increasing number of studies report the relevance of protein Ser/Thr/Tyr phosphorylation in bacterial physiology, yet the analysis of this type of modification in bacteria still presents a considerable challenge. Unlike in eukaryotes, where tens of thousands of phosphorylation events likely occupy more than two thirds of the proteome, the abundance of protein phosphorylation is much lower in bacteria. Even the state-of-the-art phosphopeptide enrichment protocols fail to remove the high background of abundant unmodified peptides, leading to low signal intensity and undersampling of phosphopeptide precursor ions in consecutive data-dependent MS runs. Consequently, large-scale bacterial phosphoproteomic datasets often suffer from poor reproducibility and a high number of missing values. Here we explore the application of parallel reaction monitoring (PRM) on a Q Exactive mass spectrometer in bacterial phosphoproteome analysis, focusing especially on run-to-run sampling reproducibility. In multiple measurements of identical phosphopeptide-enriched samples, we show that PRM outperforms data-dependent acquisition (DDA) in terms of detection frequency, reaching almost complete sampling efficiency, compared to 20% in DDA. We observe a similar trend over multiple heterogeneous phosphopeptide-enriched samples and conclude that PRM shows a great promise in bacterial phosphoproteomics analyses where reproducible detection and quantification of a relatively small set of phosphopeptides is desired. Bacterial phosphorylated peptides occur in low abundance compared to their unmodified counterparts, and are therefore rarely reproducibly detected in shotgun (DDA) proteomics measurements. Here we show that parallel reaction monitoring complements DDA analyses and makes detection of known, targeted phosphopeptides more reproducible. This will be of significance in replicated MS measurements that have a goal to reproducibly detect and quantify phosphopeptides of interest. Copyright

  2. Comparison of antimicrobial peptide purification via free-flow electrophoresis and gel filtration chromatography.

    Science.gov (United States)

    Xia, Zhi-Jun; Liu, Zhen; Kong, Fan-Zhi; Fan, Liu-Yin; Xiao, Hua; Cao, Cheng-Xi

    2017-12-01

    Antimicrobial peptides (AMPs) are usually small and cationic biomolecules with broad-spectrum antimicrobial activities against pathogens. Purifying them from complex samples is essential to study their physiochemical properties. In this work, free-flow zone electrophoresis (FFZE) was utilized to purify AMPs from yeast fermentation broth. Meanwhile, gel filtration chromatography (GFC) was conducted for comparison. The separation efficiency was evaluated by SDS-PAGE analysis of the fractions from both methods. Our results demonstrated as follows: (i) FFZE had more than 30-fold higher processing capacity as compared with GFC; (ii) FFZE could achieve 87% purity and 89% recovery rate while in GFC these parameters were about 93 and 82%, respectively; (iii) the former had ∼2-fold dilution but the latter had ∼13-fold dilution. Furthermore, Tricine-SDS-PAGE, Native-PAGE, and gel IEF were carried out to characterize the purified AMPs. We found that two peptides existed as a pair with the molecular mass of ∼5.5 and 7.0 kDa, while the same pI 7.8. These two peptides were proved to have the antimicrobial activity through the standardized agar diffusion method. Therefore, FFZE could be used to continuously purify AMPs with high bioactivity, which will lead to its wide application in the clinical and pharmaceutical fields. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Study of nuclear glasses alteration gel and synthesis of some model gels; Etude du gel d`alteration des verres nucleaires et synthese de gels modeles

    Energy Technology Data Exchange (ETDEWEB)

    Ricol, S

    1995-10-05

    This work deals with the general problem of alteration of the reference nuclear glass R7T7. Attention is paid particularly to the altered layer formed at the glass surface during alteration process. In opposition to previous works, related essentially to glass dissolution kinetics based on chemical analyses of lixiviated elements, this thesis deals with alteration problems through structural studies of the reference glass and derived gel. This approach allows the determination of mechanisms for the gel formation and a better understanding of the behaviour of glasses towards lixiviation. Both approaches appeared complementary. Based on several spectroscopic techniques, this work showed the particular role of cations such as calcium, zirconium and iron. Studies of silica-based synthetic gels showed the synergic effect of formers cation and of one highly coordinated cation. The variation of the wavenumber related to Si-O-Si asymmetric stretching vibration can be correlated to O/Si ratio for ternary systems Si/Na/Zr. On the contrary, the Si losses of the materials depend on the number of non-bridging oxygen atoms. In the perspective of long-term behaviour, the alteration gel presents better characteristics than initial glass. It is therefore a highly stable material in static conditions. In the same way, synthetic gels are materials with very low solubilities (much lower than the alteration gel) and could be used as confining matrices. (authors). refs., 71 figs., 37 tabs.

  4. SIMAC - A phosphoproteomic strategy for the rapid separation of mono-phosphorylated from multiply phosphorylated peptides

    DEFF Research Database (Denmark)

    Thingholm, Tine E; Jensen, Ole N; Robinson, Phillip J

    2008-01-01

    spectrometric analysis, such as immobilized metal affinity chromatography or titanium dioxide the coverage of the phosphoproteome of a given sample is limited. Here we report a simple and rapid strategy - SIMAC - for sequential separation of mono-phosphorylated peptides and multiply phosphorylated peptides from...... and an optimized titanium dioxide chromatographic method. More than double the total number of identified phosphorylation sites was obtained with SIMAC, primarily from a three-fold increase in recovery of multiply phosphorylated peptides....

  5. Water equivalence of NIPAM based polymer gel dosimeters with enhanced sensitivity for x-ray CT

    Science.gov (United States)

    Gorjiara, Tina; Hill, Robin; Bosi, Stephen; Kuncic, Zdenka; Baldock, Clive

    2013-10-01

    Two new formulations of N-isopropylacrylamide (NIPAM) based three dimensional (3D) gel dosimeters have recently been developed with improved sensitivity to x-ray CT readout, one without any co-solvent and the other one with isopropanol co-solvent. The water equivalence of the NIPAM gel dosimeters was investigated using different methods to calculate their radiological properties including: density, electron density, number of electrons per grams, effective atomic number, photon interaction probabilities, mass attenuation and energy absorption coefficients, electron collisional, radiative and total mass stopping powers and electron mass scattering power. Monte Carlo modelling was also used to compare the dose response of these gel dosimeters with water for kilovoltage and megavoltage x-ray beams and for megavoltage electron beams. We found that the density and electron density of the co-solvent free gel dosimeter are more water equivalent with less than a 2.6% difference compared to a 5.7% difference for the isopropanol gel dosimeter. Both the co-solvent free and isopropanol solvent gel dosimeters have lower effective atomic numbers than water, differing by 2.2% and 6.5%, respectively. As a result, their photoelectric absorption interaction probabilities are up to 6% and 19% different from water, respectively. Compton scattering and pair production interaction probabilities of NIPAM gel with isopropanol differ by up to 10% from water while for the co-solvent free gel, the differences are 3%. Mass attenuation and energy absorption coefficients of the co-solvent free gel dosimeter and the isopropanol gel dosimeter are up to 7% and 19% lower than water, respectively. Collisional and total mass stopping powers of both gel dosimeters differ by less than 2% from those of water. The dose response of the co-solvent free gel dosimeter is water equivalent (with x-ray beams over the energy range 180 keV-18 MV, both gel dosimeters have less than 2% discrepancy with water. For

  6. Preparation of silica by sol-gel method using formamide

    Directory of Open Access Journals (Sweden)

    R.F.S. Lenza

    2001-07-01

    Full Text Available In this work we obtained microporous and mesoporous silica gels by sol-gel processing. Tetraethylortosilicate (TEOS was used as precursor. Nitric acid and hydrofluoric acid were used as catalysts. In order to study the affect of formamide as drying additive, we used a molar ratio alkoxide/formamide of 1/1. The performance of formamide in obtaining crack-free gels was evaluated through monolithicity measurements. The structural evolution occurring in the interconnected network of the gels during thermal treatment was monitored by Fourier transform infrared spectroscopy (FTIR, shrinkage and density measurements and nitrogen gas sorption. We noted that in the presence of formamide, the Si-O-Si bonds are stronger and belong to a more cross-linked structure. The samples obtained in the presence of formamide have larger pore volume and its pore structure is in the range of mesoporosity. The samples obtained without additive are microporous. Formamide allowed the preparation of crack-free silica gels stabilized at high temperatures.

  7. XEN Gel Implant: a new surgical approach in glaucoma.

    Science.gov (United States)

    Chaudhary, Ankita; Salinas, Lauriane; Guidotti, Jacopo; Mermoud, André; Mansouri, Kaweh

    2018-01-01

    Glaucoma is a leading cause of blindness worldwide. Intraocular pressure (IOP) lowering is the only effective treatment strategy. Traditional glaucoma surgeries are generally considered to be unpredictable and associated with a high rate of complications. This has led to the development of a novel XEN Gel Implant, a type of minimally invasive glaucoma surgery (MIGS), lowering the IOP without extensive surgical dissection. Areas covered: A literature search was undertaken on PubMed using the terms XEN glaucoma, gelatin microstent, and MIGS. All the articles and case reports on XEN Gel Implant and selected articles on MIGS were studied and reviewed. We have discussed the results of most studies on XEN Gel Implant related to its efficacy, safety and success. Expert commentary: The XEN Gel Implant effectively lowers IOP and medication use, with a favorable safety profile. Long-term data on its success and cost-effectiveness are lacking. The studies have shown it to be without any serious adverse events and to have good safety profile encouraging future research on this novel implant. There is a need to correctly identify selection criteria for patients, who would benefit the most from the XEN Gel Implant.

  8. Water equivalence of NIPAM based polymer gel dosimeters with enhanced sensitivity for x-ray CT

    International Nuclear Information System (INIS)

    Gorjiara, Tina; Hill, Robin; Bosi, Stephen; Kuncic, Zdenka; Baldock, Clive

    2013-01-01

    Two new formulations of N-isopropylacrylamide (NIPAM) based three dimensional (3D) gel dosimeters have recently been developed with improved sensitivity to x-ray CT readout, one without any co-solvent and the other one with isopropanol co-solvent. The water equivalence of the NIPAM gel dosimeters was investigated using different methods to calculate their radiological properties including: density, electron density, number of electrons per grams, effective atomic number, photon interaction probabilities, mass attenuation and energy absorption coefficients, electron collisional, radiative and total mass stopping powers and electron mass scattering power. Monte Carlo modelling was also used to compare the dose response of these gel dosimeters with water for kilovoltage and megavoltage x-ray beams and for megavoltage electron beams. We found that the density and electron density of the co-solvent free gel dosimeter are more water equivalent with less than a 2.6% difference compared to a 5.7% difference for the isopropanol gel dosimeter. Both the co-solvent free and isopropanol solvent gel dosimeters have lower effective atomic numbers than water, differing by 2.2% and 6.5%, respectively. As a result, their photoelectric absorption interaction probabilities are up to 6% and 19% different from water, respectively. Compton scattering and pair production interaction probabilities of NIPAM gel with isopropanol differ by up to 10% from water while for the co-solvent free gel, the differences are 3%. Mass attenuation and energy absorption coefficients of the co-solvent free gel dosimeter and the isopropanol gel dosimeter are up to 7% and 19% lower than water, respectively. Collisional and total mass stopping powers of both gel dosimeters differ by less than 2% from those of water. The dose response of the co-solvent free gel dosimeter is water equivalent (with 100 keV, correction factor is required for the gels. • For MV electron, correction factor needed for the gels to

  9. Label-free quantitative analysis of the casein kinase 2-responsive phosphoproteome of the marine minimal model species Ostreococcus tauri.

    Science.gov (United States)

    Le Bihan, Thierry; Hindle, Matthew; Martin, Sarah F; Barrios-Llerena, Martin E; Krahmer, Johanna; Kis, Katalin; Millar, Andrew J; van Ooijen, Gerben

    2015-12-01

    Casein kinase 2 (CK2) is a protein kinase that phosphorylates a plethora of cellular target proteins involved in processes including DNA repair, cell cycle control, and circadian timekeeping. CK2 is functionally conserved across eukaryotes, although the substrate proteins identified in a range of complex tissues are often different. The marine alga Ostreococcus tauri is a unicellular eukaryotic model organism ideally suited to efficiently study generic roles of CK2 in the cellular circadian clock. Overexpression of CK2 leads to a slow circadian rhythm, verifying functional conservation of CK2 in timekeeping. The proteome was analysed in wild-type and CK2-overexpressing algae at dawn and dusk, revealing that differential abundance of the global proteome across the day is largely unaffected by overexpression. However, CK2 activity contributed more strongly to timekeeping at dusk than at dawn. The phosphoproteome of a CK2 overexpression line and cells treated with CK2 inhibitor was therefore analysed and compared to control cells at dusk. We report an extensive catalogue of 447 unique CK2-responsive differential phosphopeptide motifs to inform future studies into CK2 activity in the circadian clock of more complex tissues. All MS data have been deposited in the ProteomeXchange with identifier PXD000975 (http://proteomecentral.proteomexchange.org/dataset/PXD000975). © 2015 The Authors. PROTEOMICS Published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Reactive Oxygen Species (ROS)-Activated ATM-Dependent Phosphorylation of Cytoplasmic Substrates Identified by Large-Scale Phosphoproteomics Screen*

    Science.gov (United States)

    Kozlov, Sergei V.; Waardenberg, Ashley J.; Engholm-Keller, Kasper; Arthur, Jonathan W.; Graham, Mark E.; Lavin, Martin

    2016-01-01

    Ataxia-telangiectasia, mutated (ATM) protein plays a central role in phosphorylating a network of proteins in response to DNA damage. These proteins function in signaling pathways designed to maintain the stability of the genome and minimize the risk of disease by controlling cell cycle checkpoints, initiating DNA repair, and regulating gene expression. ATM kinase can be activated by a variety of stimuli, including oxidative stress. Here, we confirmed activation of cytoplasmic ATM by autophosphorylation at multiple sites. Then we employed a global quantitative phosphoproteomics approach to identify cytoplasmic proteins altered in their phosphorylation state in control and ataxia-telangiectasia (A-T) cells in response to oxidative damage. We demonstrated that ATM was activated by oxidative damage in the cytoplasm as well as in the nucleus and identified a total of 9,833 phosphorylation sites, including 6,686 high-confidence sites mapping to 2,536 unique proteins. A total of 62 differentially phosphorylated peptides were identified; of these, 43 were phosphorylated in control but not in A-T cells, and 19 varied in their level of phosphorylation. Motif enrichment analysis of phosphopeptides revealed that consensus ATM serine glutamine sites were overrepresented. When considering phosphorylation events, only observed in control cells (not observed in A-T cells), with predicted ATM sites phosphoSerine/phosphoThreonine glutamine, we narrowed this list to 11 candidate ATM-dependent cytoplasmic proteins. Two of these 11 were previously described as ATM substrates (HMGA1 and UIMCI/RAP80), another five were identified in a whole cell extract phosphoproteomic screens, and the remaining four proteins had not been identified previously in DNA damage response screens. We validated the phosphorylation of three of these proteins (oxidative stress responsive 1 (OSR1), HDGF, and ccdc82) as ATM dependent after H2O2 exposure, and another protein (S100A11) demonstrated ATM

  11. Phosphoproteomic investigation of a solvent producing bacterium Clostridium acetobutylicum.

    Science.gov (United States)

    Bai, Xue; Ji, Zhihong

    2012-07-01

    In this study, we employed TiO₂ enrichment and high accuracy liquid chromatography-mass spectrometry-mass spectrometry to identify the phosphoproteome of Clostridium acetobutyicum ATCC824 in acidogenesis and solventogenesis. As many as 82 phosphopeptides in 61 proteins, with 107 phosphorylated sites on serine, threonine, or tyrosine, were identified with high confidence. We detected 52 phosphopeptides from 44 proteins in acidogenesis and 70 phosphopeptides from 51 proteins in solventogenesis, respectively. Bioinformatic analysis revealed most of the phosphoproteins located in cytoplasm and participated in carbon metabolism. Based on comparison between the two stages, we found 27 stage-specific phosphorylated proteins (10 in acidogenesis and 17 in solventogenesis), some of which were solvent production-related enzymes and metabolic regulators, showed significantly different phosphorylated status. Further analysis indicated that protein phosphorylation could be involved in the shift of stages or in solvent production pathway directly. Comparison against several other organisms revealed the evolutionary diversity among them on phosphorylation level in spite of their high homology on protein sequence level.

  12. Comparative Proteome and Phosphoproteome Analyses during Cyprid Development of the Barnacle Balanus ( =Amphibalanus ) amphitrite

    KAUST Repository

    Zhang, Yu

    2010-06-04

    The barnacle Balanus amphitrite (=Amphibalanus amphitrite) is a major marine biofouling invertebrate worldwide. It has a complex life cycle during which the larva (called a nauplius) molts six times before transforming into the cyprid stage. The cyprid stage in B. amphitrite is the critical stage for the larval decision to attach and metamorphose. In this study, proteome and phosphoproteome alterations during cyprid development/aging and upon treatment with the antifouling agent butenolide were examined with a two-dimensional electrophoresis (2-DE) multiplexed fluorescent staining approach. Optimized protein separation strategies, including solution-phase isoelectric fractionation and narrow-pH-range 2-DE, were used in a proteomic analysis. Our results show that the differential regulation of the target proteins is highly dynamic on the levels of both protein expression and posttranslational modification. Two groups of proteins, stress-associated and energy metabolism-related proteins, are differentially expressed during cyprid development. Comparison of the control and treatment groups suggests that butenolide exerts its effects by sustaining the expression levels of these proteins. Altogether, our data suggest that proteins involved in stress regulation and energy metabolism play crucial roles in regulating larval attachment and metamorphosis of B. amphitrite. © 2010 American Chemical Society.

  13. Study of nuclear glasses alteration gel and synthesis of some model gels

    International Nuclear Information System (INIS)

    Ricol, S.

    1995-01-01

    This work deals with the general problem of alteration of the reference nuclear glass R7T7. Attention is paid particularly to the altered layer formed at the glass surface during alteration process. In opposition to previous works, related essentially to glass dissolution kinetics based on chemical analyses of lixiviated elements, this thesis deals with alteration problems through structural studies of the reference glass and derived gel. This approach allows the determination of mechanisms for the gel formation and a better understanding of the behaviour of glasses towards lixiviation. Both approaches appeared complementary. Based on several spectroscopic techniques, this work showed the particular role of cations such as calcium, zirconium and iron. Studies of silica-based synthetic gels showed the synergic effect of formers cation and of one highly coordinated cation. The variation of the wavenumber related to Si-O-Si asymmetric stretching vibration can be correlated to O/Si ratio for ternary systems Si/Na/Zr. On the contrary, the Si losses of the materials depend on the number of non-bridging oxygen atoms. In the perspective of long-term behaviour, the alteration gel presents better characteristics than initial glass. It is therefore a highly stable material in static conditions. In the same way, synthetic gels are materials with very low solubilities (much lower than the alteration gel) and could be used as confining matrices. (authors). refs., 71 figs., 37 tabs

  14. Synthesis of hierarchical porous materials with ZSM-5 structures via template-free sol–gel method

    Directory of Open Access Journals (Sweden)

    Wei Han et al

    2007-01-01

    Full Text Available Interests are focused on preparation of hierarchical porous materials with zeolite structures by using soft or rigid templates in order to solve diffusion and mass transfer limitations resulting from the small pore sizes of zeolites. Here we develop a convenient template-free sol–gel method to synthesize hierarchical porous materials with ZSM-5 structures. This method involves hydrothermal recrystallization of the xerogel converted from uniform ZSM-5 sol by a vacuum drying process. By utilizing this method we can manipulate the size of zeolite nanocrystals as building units of porous structures based on controlling temperature of recrystallization, consequently obtain hierarchical porous materials with different intercrystalline pore sizes and ZSM-5 structures.

  15. Investigating temporal changes in the yeast phosphoproteome upon fatty acid starvation

    DEFF Research Database (Denmark)

    Pultz, Dennis; Bennetzen, Martin; Andersen, Jens S.

    2011-01-01

    under nutrition but not malnutrition extends the life span of multiple species, ranging from single-celled organisms like yeast to mammals. This increase in longevity by dietary restriction (DR) is coupled to profound beneficial effects on age-related pathology. Despite the number of studies on DR......Investigating stemporal changes in the yeast phosphoproteome upon fatty acid starvation Dennis Pultz*, Martin Bennetzen*, Jens S. Andersen and Nils J.Færgeman. Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark, 5230 Reducing food intake to induce...... and the physiological changes DR induces, only little is known about the genetics and signalling networks which regulate the DR response. We have recently shown that inhibition of fatty acid synthesis in Saccharomyces cerevisiae results in a dependency on autophagy in maintaining normal life span. We further believe...

  16. Gel-based and gel-free search for plasma membrane proteins in chickpea (Cicer arietinum L.) augments the comprehensive data sets of membrane protein repertoire.

    Science.gov (United States)

    Barua, Pragya; Subba, Pratigya; Lande, Nilesh Vikram; Mangalaparthi, Kiran K; Prasad, T S Keshava; Chakraborty, Subhra; Chakraborty, Niranjan

    2016-06-30

    Plasma membrane (PM) encompasses total cellular contents, serving as semi-porous barrier to cell exterior. This living barrier regulates all cellular exchanges in a spatio-temporal fashion. Most of the essential tasks of PMs including molecular transport, cell-cell interaction and signal transduction are carried out by their proteinaceous components, which make the PM protein repertoire to be diverse and dynamic. Here, we report the systematic analysis of PM proteome of a food legume, chickpea and develop a PM proteome reference map. Proteins were extracted from highly enriched PM fraction of four-week-old seedlings using aqueous two-phase partitioning. To address a population of PM proteins that is as comprehensive as possible, both gel-based and gel-free approaches were employed, which led to the identification of a set of 2732 non-redundant proteins. These included both integral proteins having bilayer spanning domains as well as peripheral proteins associated with PMs through posttranslational modifications or protein-protein interactions. Further, the proteins were subjected to various in-silico analyses and functionally classified based on their gene ontology. Finally an inventory of the complete set of PM proteins, identified in several monocot and dicot species, was created for comparative study with the generated PM protein dataset of chickpea. Chickpea, a rich source of dietary proteins, is the second most cultivated legume, which is grown over 10 million hectares of land worldwide. The annual global production of chickpea hovers around 8.5 million metric tons. Recent chickpea genome sequencing effort has provided a broad genetic basis for highlighting the important traits that may fortify other crop legumes. Improvement in chickpea varieties can further strengthen the world food security, which includes food availability, access and utilization. It is known that the phenotypic trait of a cultivar is the manifestation of the orchestrated functions of its

  17. Silica Sol-Gel Entrapment of the Enzyme Chloro peroxidase

    International Nuclear Information System (INIS)

    Le, T.; Chan, S.; Ebaid, B.; Sommerhalter, M.

    2015-01-01

    The enzyme chloro peroxidase (CPO) was immobilized in silica sol-gel beads prepared from tetramethoxysilane. The average pore diameter of the silica host structure (∼3 nm) was smaller than the globular CPO diameter (∼6 nm) and the enzyme remained entrapped after sol-gel maturation. The catalytic performance of the entrapped enzyme was assessed via the pyrogallol peroxidation reaction. Sol-gel beads loaded with 4 μg CPO per mL sol solution reached 9-12% relative activity compared to free CPO in solution. Enzyme kinetic analysis revealed a decrease in K_cat but no changes in K_M or K_I . Product release or enzyme damage might thus limit catalytic performance. Yet circular dichroism and visible absorption spectra of transparent CPO sol-gel sheets did not indicate enzyme damage. Activity decline due to methanol exposure was shown to be reversible in solution. To improve catalytic performance the sol-gel protocol was modified. The incorporation of 5, 20, or 40% methyltrimethoxysilane resulted in more brittle sol-gel beads but the catalytic performance increased to 14% relative to free CPO in solution. The use of more acidic casting buffers (ph 4.5 or 5.5 instead of 6.5) resulted in a more porous silica host reaching up to 18% relative activity

  18. Kinomic and phospho-proteomic analysis of breast cancer stem-like cells

    DEFF Research Database (Denmark)

    Leth-Larsen, Rikke; Christensen, Anne Geske Lindhard; Ehmsen, Sidse

    Kinomic and phospho-proteomic analysis of breast cancer stem-like cells Rikke Leth-Larsen1, Anne G Christensen1, Sidse Ehmsen1, Mark Møller1, Giuseppe Palmisano2, Martin R Larsen2, Henrik J Ditzel1,3 1Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark 2Institute...... of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark 3Dept. of Oncology, Odense University Hospital, Odense, Denmark Cancer stem cells are thought to be responsible for tumorigenic potential and to possess resistance mechanisms against chemotherapy- and radiation-induced cancer...... cell death, while the bulk of a tumor lacks these capacities. The resistance mechanisms may cause these cells to survive and become the source of later tumor recurrence, highlighting the need for therapeutic strategies that specifically target pathways central to these cancer stem cells. The CD44hi...

  19. Recent findings and technological advances in phosphoproteomics for cells and tissues.

    Science.gov (United States)

    von Stechow, Louise; Francavilla, Chiara; Olsen, Jesper V

    2015-01-01

    Site-specific phosphorylation is a fast and reversible covalent post-translational modification that is tightly regulated in cells. The cellular machinery of enzymes that write, erase and read these modifications (kinases, phosphatases and phospho-binding proteins) is frequently deregulated in different diseases, including cancer. Large-scale studies of phosphoproteins - termed phosphoproteomics - strongly rely on the use of high-performance mass spectrometric instrumentation. This powerful technology has been applied to study a great number of phosphorylation-based phenotypes. Nevertheless, many technical and biological challenges have to be overcome to identify biologically relevant phosphorylation sites in cells and tissues. This review describes different technological strategies to identify and quantify phosphorylation sites with high accuracy, without significant loss of analysis speed and reproducibility in tissues and cells. Moreover, computational tools for analysis, integration and biological interpretation of phosphorylation events are discussed.

  20. Charge-regularized swelling kinetics of polyelectrolyte gels: Elasticity and diffusion

    Science.gov (United States)

    Sen, Swati; Kundagrami, Arindam

    2017-11-01

    We apply a recently developed method [S. Sen and A. Kundagrami, J. Chem. Phys. 143, 224904 (2015)], using a phenomenological expression of osmotic stress, as a function of polymer and charge densities, hydrophobicity, and network elasticity for the swelling of spherical polyelectrolyte (PE) gels with fixed and variable charges in a salt-free solvent. This expression of stress is used in the equation of motion of swelling kinetics of spherical PE gels to numerically calculate the spatial profiles for the polymer and free ion densities at different time steps and the time evolution of the size of the gel. We compare the profiles of the same variables obtained from the classical linear theory of elasticity and quantitatively estimate the bulk modulus of the PE gel. Further, we obtain an analytical expression of the elastic modulus from the linearized expression of stress (in the small deformation limit). We find that the estimated bulk modulus of the PE gel decreases with the increase of its effective charge for a fixed degree of deformation during swelling. Finally, we match the gel-front locations with the experimental data, taken from the measurements of charged reversible addition-fragmentation chain transfer gels to show an increase in gel-size with charge and also match the same for PNIPAM (uncharged) and imidazolium-based (charged) minigels, which specifically confirms the decrease of the gel modulus value with the increase of the charge. The agreement between experimental and theoretical results confirms general diffusive behaviour for swelling of PE gels with a decreasing bulk modulus with increasing degree of ionization (charge). The new formalism captures large deformations as well with a significant variation of charge content of the gel. It is found that PE gels with large deformation but same initial size swell faster with a higher charge.

  1. Identification of novel protein functions and signaling mechanisms by genetics and quantitative phosphoproteomics in Caenorhabditis elegans

    DEFF Research Database (Denmark)

    Fredens, Julius; Engholm-Keller, Kasper; Møller-Jensen, Jakob

    2014-01-01

    knockdown by feeding the nematode on pre-labeled lysine auxotroph Escherichia coli. In this chapter, we describe in details the generation of the E. coli strain, incorporation of heavy isotope-labeled lysine in C. elegans, and the procedure for a comprehensive global phosphoproteomic experiment.......Stable isotope labeling by amino acids combined with mass spectrometry is a widely used methodology for measuring relative changes in protein and phosphorylation levels at a global level. We have applied this method to the model organism Caenorhabditis elegans in combination with RNAi-mediated gene...

  2. Gels and gel-derived glasses in the system Na2O-B2O3-SiO2

    Science.gov (United States)

    Mukherjee, S. P.

    1983-01-01

    The containerless melting of high-purity multicomponent homogeneous gels and gel monoliths offers a unique approach to making ultrapure multicomponent optical glasses in the reduced gravity environment of space. Procedures for preparing and characterizing gels and gel-derived glasses in the system Na2O-B2O3-SiO2 are described. Preparation is based on the polymerization reactions of alkoxysilane with trimethyl borate or boric acid and a suitable sodium compound. The chemistry of the gelling process is discussed in terms of process parameters and the gel compositions. The physicochemical nature of gels prepared by three different procedures was found to be significantly different. Infrared absorption spectra indicate finite differences in the molecular structures of the different gels. The melting of the gel powders and the transformation of porous gel monoliths to transparent 'glass' without melting are described.

  3. Surface grafted chitosan gels. Part II. Gel formation and characterization

    DEFF Research Database (Denmark)

    Liu, Chao; Thormann, Esben; Claesson, Per M.

    2014-01-01

    Responsive biomaterial hydrogels attract significant attention due to their biocompatibility and degradability. In order to make chitosan based gels, we first graft one layer of chitosan to silica, and then build a chitosan/poly(acrylic acid) multilayer using the layer-by-layer approach. After...... cross-linking the chitosan present in the polyelectrolyte multilayer, poly(acrylic acid) is partly removed by exposing the multilayer structure to a concentrated carbonate buffer solution at a high pH, leaving a surface-grafted cross-linked gel. Chemical cross-linking enhances the gel stability against...... detachment and decomposition. The chemical reaction between gluteraldehyde, the cross-linking agent, and chitosan was followed in situ using total internal reflection Raman (TIRR) spectroscopy, which provided a molecular insight into the complex reaction mechanism, as well as the means to quantify the cross...

  4. Pecan drying with silica gel

    Energy Technology Data Exchange (ETDEWEB)

    Ghate, S.R.; Chhinnan, M.S.

    1983-07-01

    High moisture in-shell pecans were dried by keeping them in direct and indirect contact with silica gel to investigate their drying characteristics. In-shell pecans were also dried with ambient air from a controlled environment chamber and with air dehumidified by silica gel. Direct contact and dehumidified air drying seemed feasible approaches.

  5. Explorative data analysis of two-dimensional electrophoresis gels

    DEFF Research Database (Denmark)

    Schultz, J.; Gottlieb, D.M.; Petersen, Marianne Kjerstine

    2004-01-01

    of gels is presented. First, an approach is demonstrated in which no prior knowledge of the separated proteins is used. Alignment of the gels followed by a simple transformation of data makes it possible to analyze the gels in an automated explorative manner by principal component analysis, to determine......Methods for classification of two-dimensional (2-DE) electrophoresis gels based on multivariate data analysis are demonstrated. Two-dimensional gels of ten wheat varieties are analyzed and it is demonstrated how to classify the wheat varieties in two qualities and a method for initial screening...... if the gels should be further analyzed. A more detailed approach is done by analyzing spot volume lists by principal components analysis and partial least square regression. The use of spot volume data offers a mean to investigate the spot pattern and link the classified protein patterns to distinct spots...

  6. The phosphoproteome of Aspergillus nidulans reveals functional association with cellular processes involved in morphology and secretion.

    Science.gov (United States)

    Ramsubramaniam, Nikhil; Harris, Steven D; Marten, Mark R

    2014-11-01

    We describe the first phosphoproteome of the model filamentous fungus Aspergillus nidulans. Phosphopeptides were enriched using titanium dioxide, separated using a convenient ultra-long reverse phase gradient, and identified using a "high-high" strategy (high mass accuracy on the parent and fragment ions) with higher-energy collisional dissociation. Using this approach 1801 phosphosites, from 1637 unique phosphopeptides, were identified. Functional classification revealed phosphoproteins were overrepresented under GO categories related to fungal morphogenesis: "sites of polar growth," "vesicle mediated transport," and "cytoskeleton organization." In these same GO categories, kinase-substrate analysis of phosphoproteins revealed the majority were target substrates of CDK and CK2 kinase families, indicating these kinase families play a prominent role in fungal morphogenesis. Kinase-substrate analysis also identified 57 substrates for kinases known to regulate secretion of hydrolytic enzymes (e.g. PkaA, SchA, and An-Snf1). Altogether this data will serve as a benchmark that can be used to elucidate regulatory networks functionally associated with fungal morphogenesis and secretion. All MS data have been deposited in the ProteomeXchange with identifier PXD000715 (http://proteomecentral.proteomexchange.org/dataset/PXD000715). © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Colloid molecular weight estimation by gel chromatography/acrylamide gel electrophoresis

    International Nuclear Information System (INIS)

    Liberatore, F.A.; Dearborn, C.; Nigam, S.; Poon, C.; Camin, L.; Liteplo, M.

    1984-01-01

    Size or molecular weight (MW) estimation of radiolabeled collides in aqueous solutions has long been a problem. The authors have prepared several minimicroaggregated albumin colloids (mμAA) by heat denaturation of stannous-containing HSA solutions at pH 7.0, 7.5, and 8.5). The resulting colloids were labeled with Tc-99m and compared with Au-198 colloid and Tc-99m-antimony sulfide colloid (Tc-99m-Sb/sub 2/S3) by gel chromatography and gel electrophoresis. Tc-99mm-mμAA aggregated at pH 7.0 and the Au-198 colloid appeared in the external void volume of a BioRad A5.0 agarose column indicating an apparent MW of > 5 x 10/sup 6/ daltons. The pH7.5 Tc-99m-mμAA, migrated within the filtration range of the column as did a small fraction of Tc-99m-Sb/sub 2/S/sub 3/, suggesting that the MW is between 6 x 10/sup 4/ - 5 x 10/sup 6/ daltons. The Tc-99m-mμAA, aggregated at pH 8.5, had an apparent MW on gel filtration similar to that of untreated albumin, MW 6.6 x 10-/sup 4/ daltons. The mobilities of the colloids, on acrylamide disc gel electrophoresis, were consistent with the results on gel chromatography. The largest colloids, Au-198 colloid and pH 7.0 Tc-99m-mμAA, barely entered the separating gel; intermediate sized colloids, a small fraction of Tc-99m-Sb/sub 2/S/sub 3/ and pH 7.5 Tc-99m-mμAA migrated farther into the separating gel; while pH 8.5 Tc-99m-mμAA had mobility approaching that of untreated albumin. Lymphoscintigraphy studies using these colloids in animals showed the predicted, particle size-related differences in migration and clearance. The authors conclude that gel chromatography and gel electrophoresis are useful methods for estimating the apparent size of the colloidal particles

  8. Volume phase transitions of cholesteric liquid crystalline gels.

    Science.gov (United States)

    Matsuyama, Akihiko

    2015-05-07

    We present a mean field theory to describe anisotropic deformations of a cholesteric elastomer without solvent molecules and a cholesteric liquid crystalline gel immersed in isotropic solvents at a thermal equilibrium state. Based on the neoclassical rubber theory of nematic elastomers, we derive an elastic energy and a twist distortion energy, which are important to determine the shape of a cholesteric elastomer (or gel). We demonstrate that when the elastic energy dominates in the free energy, the cholesteric elastomer causes a spontaneous compression in the pitch axis and elongates along the director on the plane perpendicular to the pitch axis. Our theory can qualitatively describe the experimental results of a cholesteric elastomer. We also predict the first-order volume phase transitions and anisotropic deformations of a gel at the cholesteric-isotropic phase transition temperature. Depending on a chirality of a gel, we find a prolate or oblate shape of cholesteric gels.

  9. Volume phase transitions of cholesteric liquid crystalline gels

    Energy Technology Data Exchange (ETDEWEB)

    Matsuyama, Akihiko, E-mail: matuyama@bio.kyutech.ac.jp [Department of Bioscience and Bioinformatics, Faculty of Computer Science and Systems Engineering, Kyushu Institute of Technology, Kawazu 680-4, Iizuka, Fukuoka 820-8502 (Japan)

    2015-05-07

    We present a mean field theory to describe anisotropic deformations of a cholesteric elastomer without solvent molecules and a cholesteric liquid crystalline gel immersed in isotropic solvents at a thermal equilibrium state. Based on the neoclassical rubber theory of nematic elastomers, we derive an elastic energy and a twist distortion energy, which are important to determine the shape of a cholesteric elastomer (or gel). We demonstrate that when the elastic energy dominates in the free energy, the cholesteric elastomer causes a spontaneous compression in the pitch axis and elongates along the director on the plane perpendicular to the pitch axis. Our theory can qualitatively describe the experimental results of a cholesteric elastomer. We also predict the first-order volume phase transitions and anisotropic deformations of a gel at the cholesteric-isotropic phase transition temperature. Depending on a chirality of a gel, we find a prolate or oblate shape of cholesteric gels.

  10. Research on pre-staining gel electrophoresis

    International Nuclear Information System (INIS)

    Zhong Ruibo; Liu Yushuang; Zhang Ping; Liu Jingran; Zhao Guofen; Zhang Feng

    2014-01-01

    Background: Gel electrophoresis is a powerful biochemical separation technique. Most biological molecules are completely transparent in the visible region of light, so it is necessary to use staining to show the results after gel electrophoresis, and the general steps of conventional staining methods are time-consuming. Purpose: We try to develop a novel approach to simplify the gel electrophoresis: Pre-Staining Gel Electrophoresis (PSGE), which can make the gel electrophoresis results monitored in real time. Methods: Pre-stain the protein samples with Coomassie Brilliant Blue (CBB) for 30 min before loading the sample into the gel well. Results and Conclusion: PSGE can be successfully used to analyze the binding efficiency of Bovine Serum Albumin (BSA) and amphiphilic polymer via chemical coupling and physical absorption, and the double PSGE also shows a great potential in bio-analytical chemistry. (authors)

  11. Formation and prevention of fractures in sol-gel-derived thin films

    NARCIS (Netherlands)

    Kappert, Emiel; Pavlenko, Denys; Malzbender, J.; Nijmeijer, Arian; Benes, Nieck Edwin; Tsai, Peichun Amy

    2015-01-01

    Sol–gel-derived thin films play an important role as the functional coatings for various applications that require crack-free films to fully function. However, the fast drying process of a standard sol–gel coating often induces mechanical stresses, which may fracture the thin films. An experimental

  12. Isoelectric point-based fractionation by HiRIEF coupled to LC-MS allows for in-depth quantitative analysis of the phosphoproteome.

    Science.gov (United States)

    Panizza, Elena; Branca, Rui M M; Oliviusson, Peter; Orre, Lukas M; Lehtiö, Janne

    2017-07-03

    Protein phosphorylation is involved in the regulation of most eukaryotic cells functions and mass spectrometry-based analysis has made major contributions to our understanding of this regulation. However, low abundance of phosphorylated species presents a major challenge in achieving comprehensive phosphoproteome coverage and robust quantification. In this study, we developed a workflow employing titanium dioxide phospho-enrichment coupled with isobaric labeling by Tandem Mass Tags (TMT) and high-resolution isoelectric focusing (HiRIEF) fractionation to perform in-depth quantitative phosphoproteomics starting with a low sample quantity. To benchmark the workflow, we analyzed HeLa cells upon pervanadate treatment or cell cycle arrest in mitosis. Analyzing 300 µg of peptides per sample, we identified 22,712 phosphorylation sites, of which 19,075 were localized with high confidence and 1,203 are phosphorylated tyrosine residues, representing 6.3% of all detected phospho-sites. HiRIEF fractions with the most acidic isoelectric points are enriched in multiply phosphorylated peptides, which represent 18% of all the phospho-peptides detected in the pH range 2.5-3.7. Cross-referencing with the PhosphoSitePlus database reveals 1,264 phosphorylation sites that have not been previously reported and kinase association analysis suggests that a subset of these may be functional during the mitotic phase.

  13. The beginnings of crop phosphoproteomics: exploring early warning systems of stress.

    Directory of Open Access Journals (Sweden)

    Christof eRampitsch

    2012-07-01

    Full Text Available This review examines why a knowledge of plant protein phosphorylation events is important in devising strategies to protect crops from both biotic and abiotic stresses, and why proteomics should be included when studying stress pathways. Most of the achievements in elucidating phospho-signalling pathways in biotic and abiotic stress are reported from model systems: while these are discussed, this review attempts mainly to focus on work done with crops, with examples of achievements reported from rice, maize, wheat, grape, Brassica, tomato and soy bean after cold acclimation, hormonal and oxidative H2O2 treatment, salt stress, mechanical wounding or pathogen challenge. The challenges that remain to transfer this information into a format that can be used to protect crops against biotic and abiotic stresses are enormous. The tremendous increase in the speed and ease of DNA sequencing is poised to reveal the whole genomes of many crop species in the near future, which will facilitate phosphoproteomics and phosphogenomics research.

  14. Rapid DNA sequencing by horizontal ultrathin gel electrophoresis.

    OpenAIRE

    Brumley, R L; Smith, L M

    1991-01-01

    A horizontal polyacrylamide gel electrophoresis apparatus has been developed that decreases the time required to separate the DNA fragments produced in enzymatic sequencing reactions. The configuration of this apparatus and the use of circulating coolant directly under the glass plates result in heat exchange that is approximately nine times more efficient than passive thermal transfer methods commonly used. Bubble-free gels as thin as 25 microns can be routinely cast on this device. The appl...

  15. Sol-gel synthesis of hydroxyapatite; Sintese de hidroxiapatita via sol-gel

    Energy Technology Data Exchange (ETDEWEB)

    Zupanski, M.D.; Lucena, M.P.P.; Bergmann, C.P., E-mail: michelledunin@yahoo.com.b [Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS (Brazil)

    2010-07-01

    Hydroxyapatite (HAp) has been established as the calcium phosphate based compound with most applications in the biological field. Among the numerous techniques for synthesis of HAp, the sol-gel processing route affords great control over purity and formed phases using low processing temperatures. In addition, the sol-gel approach offers an option for homogeneous HAp coating on metal substrates, as well as the ability to generate nanocrystalline powders. In this work, the sol-gel synthesis of HAp was investigated employing triethyl phosphate and calcium nitrate tetrahydrate as phosphorous and calcium precursors, respectively. The aging effect on phase composition and powder morphology of the final product was studied in terms of temperature and aging time. The powders were studied by using X-ray diffraction, Fourier transform infrared spectroscopy, particle size distribution by laser diffraction and scanning electron microscopy. (author)

  16. Peri-tumor administration of 5-fluorouracil sol-gel using a hollow microneedle for treatment of gastric cancer.

    Science.gov (United States)

    Jung, Yoon Suk; Koo, Dong-Hoe; Yang, Jeong-Yoon; Lee, Hee-Young; Park, Jung-Hwan; Park, Jung Ho

    2018-11-01

    The aim of this study was to investigate the effectiveness of treating gastric cancer by injecting a pluronic F-127 sol-gel formulation of 5-fluorouracil (5-FU) into normal tissue surrounding the tumor using a hollow microneedle. The MTS tetrazolium assay was performed to assess the cytotoxicity of 5-FU after application to gastric cancer cells at different concentrations for 1, 5 and 10 h. Gastric cancer cells were inoculated subcutaneously into 30 male nude mice (CrjBALB/c-nu/nu mice, male); the inoculated mouse were divided into three groups. One group received no treatment, whereas the two other groups received free 5-FU gel (40 mg/kg) and 5-FU gel (40 mg/kg) for 4 days, respectively. Mean tumor volume, apoptotic index (TUNEL) and proliferative index (Ki 67) were evaluated in all groups. Cell viability was 77.3% when 1.22 g of free 5-FU was administered, whereas cell viability was 37.4% and 43.5% when 0.122 g of free 5-FU was administered per hour for 10 h and 0.244 g of free 5-FU was administered for 5 h (p sol-gel induced apoptosis and significantly inhibited cell proliferation compared to the free 5-FU (p sol-gel formulation to inoculated mice (p sol-gel formulation into normal tissue surrounding the tumor mass using a hollow microneedle is an effective method for treating gastric cancer.

  17. Celiac anti-type 2 transglutaminase antibodies induce phosphoproteome modification in intestinal epithelial Caco-2 cells.

    Directory of Open Access Journals (Sweden)

    Gaetana Paolella

    Full Text Available BACKGROUND: Celiac disease is an inflammatory condition of the small intestine that affects genetically predisposed individuals after dietary wheat gliadin ingestion. Type 2-transglutaminase (TG2 activity seems to be responsible for a strong autoimmune response in celiac disease, TG2 being the main autoantigen. Several studies support the concept that celiac anti-TG2 antibodies may contribute to disease pathogenesis. Our recent findings on the ability of anti-TG2 antibodies to induce a rapid intracellular mobilization of calcium ions, as well as extracellular signal-regulated kinase phosphorylation, suggest that they potentially act as signaling molecules. In line with this concept, we have investigated whether anti-TG2 antibodies can induce phosphoproteome modification in an intestinal epithelial cell line. METHODS AND PRINCIPAL FINDINGS: We studied phosphoproteome modification in Caco-2 cells treated with recombinant celiac anti-TG2 antibodies. We performed a two-dimensional electrophoresis followed by specific staining of phosphoproteins and mass spectrometry analysis of differentially phosphorylated proteins. Of 14 identified proteins (excluding two uncharacterized proteins, three were hypophosphorylated and nine were hyperphosphorylated. Bioinformatics analyses confirmed the presence of phosphorylation sites in all the identified proteins and highlighted their involvement in several fundamental biological processes, such as cell cycle progression, cell stress response, cytoskeletal organization and apoptosis. CONCLUSIONS: Identification of differentially phosphorylated proteins downstream of TG2-antibody stimulation suggests that in Caco-2 cells these antibodies perturb cell homeostasis by behaving as signaling molecules. We hypothesize that anti-TG2 autoantibodies may destabilize the integrity of the intestinal mucosa in celiac individuals, thus contributing to celiac disease establishment and progression. Since several proteins here

  18. Local mobility and topology in gels

    International Nuclear Information System (INIS)

    Higgins, J.S.; Ma, K.; Hall, R.H.; Warner, M.

    1981-04-01

    In the first section of this two part report entitled 'Separation of the motion around cross-link points from main chain motion in network samples' by Higgins, Ma and Hall, experimental evidence for topologically dependent diffusion in gels and rubbers is presented from high resolution neutron scattering experiments on deuterium labelled model trifunctional networks which show that the junction points move more slowly than the free chain centres by a factor of about two. In the second part by Warner entitled 'The dynamics of particular points on a polymer chain', the diffusional dynamics of particular points of a polymer chain is calculated in the Rouse approximation. The points considered correspond, in the case of incoherent neutron scattering, to the proton-labelled free ends of chains, crosslinks between chains in rubbers or gels, or the central monomers in branched or star polymers. Results derived are also relevant to NMR, ESR and computer simulation experiments. (U.K.)

  19. Analysis of T4SS-induced signaling by H. pylori using quantitative phosphoproteomics

    Directory of Open Access Journals (Sweden)

    Frithjof eGlowinski

    2014-07-01

    Full Text Available Helicobacter pylori is a Gram-negative bacterial pathogen colonizing the human stomach. Infection with H. pylori causes chronic inflammation of the gastric mucosa and may lead to peptic ulceration and/or gastric cancer. A major virulence determinant of H. pylori is the type IV secretion system (T4SS, which is used to inject the virulence factor CagA into the host cell, triggering a wide range of cellular signaling events. Here, we used a phosphoproteomic approach to investigate tyrosine signaling in response to host-pathogen interaction, using stable isotope labeling in cell culture (SILAC of AGS cells to obtain a differential picture between multiple infection conditions. Cells were infected with wild type H. pylori P12, a P12ΔCagA deletion mutant, and a P12ΔT4SS deletion mutant to compare signaling changes over time and in the absence of CagA or the T4SS. Tryptic peptides were enriched for tyrosine (Tyr phosphopeptides and analysed by nano-LC-Orbitrap MS. In total, 58 different phosphosites were found to be regulated following infection. The majority of phosphosites identified were kinases of the MAPK familiy. CagA and the T4SS were found to be key regulators of Tyr phosphosites. Our findings indicate that CagA primarily induces activation of ERK1 and integrin linked factors, whereas the T4SS primarily modulates JNK and p38 activation.

  20. Two-dimensional gel human protein databases offer a systematic approach to the study of cell proliferation and differentiation

    DEFF Research Database (Denmark)

    Celis, julio E.; Gesser, Borbala; Dejgaard, Kurt

    1989-01-01

    Human cellular protein databases have been established using computer-analyzed 2D gel electrophoresis. These databases, which include information on various properties of proteins, offer a global approach to the study of regulation of cell proliferation and differentiation. Furthermore, thanks...

  1. Two dimensional gel human protein databases offer a systematic approach to the study of cell proliferation and differentiation

    DEFF Research Database (Denmark)

    Celis, J E; Gesser, B; Dejgaard, K

    1989-01-01

    Human cellular protein databases have been established using computer-analyzed 2D gel electrophoresis. These databases, which include information on various properties of proteins, offer a global approach to the study of regulation of cell proliferation and differentiation. Furthermore, thanks to...

  2. Physical and chemical properties of gels. Application to protein nucleation control in the gel acupuncture technique

    Science.gov (United States)

    Moreno, Abel; Juárez-Martínez, Gabriela; Hernández-Pérez, Tomás; Batina, Nikola; Mundo, Manuel; McPherson, Alexander

    1999-09-01

    In this work, we present a new approach using analytical and optical techniques in order to determine the physical and chemical properties of silica gel, as well as the measurement of the pore size in the network of the gel by scanning electron microscopy. The gel acupuncture technique developed by García-Ruiz et al. (Mater. Res. Bull 28 (1993) 541) García-Ruiz and Moreno (Acta Crystallogr. D 50 (1994) 484) was used throughout the history of crystal growth. Several experiments were done in order to evaluate the nucleation control of model proteins (thaumatin I from Thaumatococcus daniellii, lysozyme from hen egg white and catalase from bovine liver) by the porous network of the gel. Finally, it is shown how the number and the size of the crystals obtained inside X-ray capillaries is controlled by the size of the porous structure of the gel.

  3. Electrochemical behavior of ionically crosslinked polyampholytic gel electrolytes

    International Nuclear Information System (INIS)

    Chen Wanyu; Tang Haitao; Ou Ziwei; Wang Hong; Yang Yajiang

    2007-01-01

    An ionic complex of anionic and cationic monomers was obtained by protonation of (N,N-diethylamino)ethylmethacrylate (DEA) with acrylic acid (AAc). Free radical copolymerization of the ionic complex and acrylamide (AAm), yielded the ionically crosslinked polyampholytic gel electrolytes [poly(AAc-DEA-AAm), designated as PADA] using two types of organic solvents containing a lithium salt. The PADA gel electrolyte exhibited good thermal stability shown by the DSC thermogram. The impedance analysis at temperatures ranging from -30 to 75 deg. C indicated that the ionic conductivities of the PADA gel electrolytes were rather close to those of liquid electrolytes. The temperature dependence of the ionic conductivities was found to be in accord with the Arrhenius equation. Moreover, the ionic conductivities of PADA gel electrolytes increased with an increase of the molar ratios of cationic/anionic monomers. The ionic conductivities of PADA gels prepared in solvent mixtures of propylene carbonate, ethyl methyl ether and dioxolane (3:1:1, v/v) were higher than those of PADA gels prepared in propylene carbonate only. Significantly, the ionic conductivities of two kinds of PADA gel electrolytes were in the range of 10 -3 and 10 -4 S cm -1 even at -30 deg. C. The electrochemical windows of PADA gel electrolytes measured by cyclic voltammetry were in the range from -1 V to 4.5 V

  4. Salinity-Induced Palmella Formation Mechanism in Halotolerant Algae Dunaliella salina Revealed by Quantitative Proteomics and Phosphoproteomics

    Directory of Open Access Journals (Sweden)

    Sijia Wei

    2017-05-01

    Full Text Available Palmella stage is critical for some unicellular algae to survive in extreme environments. The halotolerant algae Dunaliella salina is a good single-cell model for studying plant adaptation to high salinity. To investigate the molecular adaptation mechanism in salinity shock-induced palmella formation, we performed a comprehensive physiological, proteomics and phosphoproteomics study upon palmella formation of D. salina using dimethyl labeling and Ti4+-immobilized metal ion affinity chromatography (IMAC proteomic approaches. We found that 151 salinity-responsive proteins and 35 salinity-responsive phosphoproteins were involved in multiple signaling and metabolic pathways upon palmella formation. Taken together with photosynthetic parameters and enzyme activity analyses, the patterns of protein accumulation and phosphorylation level exhibited the mechanisms upon palmella formation, including dynamics of cytoskeleton and cell membrane curvature, accumulation and transport of exopolysaccharides, photosynthesis and energy supplying (i.e., photosystem II stability and activity, cyclic electron transport, and C4 pathway, nuclear/chloroplastic gene expression regulation and protein processing, reactive oxygen species homeostasis, and salt signaling transduction. The salinity-responsive protein–protein interaction (PPI networks implied that signaling and protein synthesis and fate are crucial for modulation of these processes. Importantly, the 3D structure of phosphoprotein clearly indicated that the phosphorylation sites of eight proteins were localized in the region of function domain.

  5. Improved Characterization of Groundwater Flow in Heterogeneous Aquifers Using Granular Polyacrylamide (PAM) Gel as Temporary Grout

    Science.gov (United States)

    Klepikova, Maria V.; Roques, Clement; Loew, Simon; Selker, John

    2018-02-01

    The range of options for investigation of hydraulic behavior of aquifers from boreholes has been limited to rigid, cumbersome packers, and inflatable sleeves. Here we show how a new temporary borehole sealing technique using soft grains of polyacrylamide (PAM) gel as a sealing material can be used to investigate natural groundwater flow dynamics and discuss other possible applications of the technology. If no compressive stress is applied, the gel packing, with a permeability similar to open gravel, suppresses free convection, allowing for local temperature measurements and chemical sampling through free-flowing gel packing. Active heating laboratory and field experiments combined with temperature measurements along fiber optic cables were conducted in water-filled boreholes and boreholes filled with soft grains of polyacrylamide gel. The gel packing is shown to minimize the effect of free convection within the well column and enable detection of thin zones of relatively high or low velocity in a highly transmissive alluvial aquifer, thus providing a significant improvement compared to temperature measurements in open boreholes. Laboratory experiments demonstrate that under modest compressive stress to the gel media the permeability transitions from highly permeable to nearly impermeable grouting. Under this configuration the gel packing could potentially allow for monitoring local response pressure from the formation with all other locations in the borehole hydraulically isolated.

  6. Sol-gel process for thermal reactor fuel fabrication

    International Nuclear Information System (INIS)

    Mukerjee, S.K.

    2008-01-01

    Full text: Sol-gel processes have revolutionized conventional ceramic technology by providing extremely fine and uniform powders for the fabrication of ceramics. The use of this technology for nuclear fuel fabrication has also been explored in many countries. Unlike the conventional sol-gel process, sol-gel process for nuclear fuels tries to eliminate the preparation of powders in view of the toxic nature of the powders particularly those of plutonium and 233 U. The elimination of powder handling thus makes this process more readily amenable for use in glove boxes or for remote handling. In this process, the first step is the preparation of microspheres of the fuel material from a solution which is then followed by vibro-compaction of these microspheres of different sizes to obtain the required smear density of fuel inside a pin. The maximum achievable packing density of 92 % makes it suitable for fast reactors only. With a view to extend the applicability of sol-gel process for thermal reactor fuel fabrication the concept of converting the gel microspheres derived from sol-gel process, to the pellets, has been under investigation for several years. The unique feature of this process is that it combines the advantages of sol-gel process for the preparation of fuel oxide gel microspheres of reproducible quality with proven irradiation behavior of the pellet fuel. One of the important pre-requisite for the success of this process is the preparation of soft oxide gel microspheres suitable for conversion to dense pellets free from berry structure. Studies on the internal gelation process, one of the many variants of sol-gel process, for obtaining soft oxide gel microspheres suitable for gel pelletisation is now under investigation at BARC. Some of the recent findings related to Sol-Gel Microsphere Pelletisation (SGMP) in urania-plutonia and thoria-urania systems will be presented

  7. Gels and gel-derived glasses in the Na2O-B2O3-SiO2 system. [containerless melting in space

    Science.gov (United States)

    Mukherjee, S. P.

    1982-01-01

    The containerless melting of high-purity multicomponent homogeneous gels and gel-monoliths offers a unique approach to making ultrapure multicomponent optical glasses in the reduced gravity environment of space. Procedures for preparing and characterizing gels and gel-derived glasses in the Na2O-B2O3-SiO2 system are described. Preparation is based on the polymerization reactions of alkoxysilane with trimethyl borate or boric acid and a suitable sodium compound. The chemistry of the gelling process is discussed in terms of process parameters and the gel compositions. The physicochemical nature of gels prepared by three different procedures were found to be significantly different. IR absorption spectra indicate finite differences in the molecular structures of the different gels. The melting of the gel powders and the transformation of porous gel-monoliths to transparent 'glass' without melting are described.

  8. Titanium Dioxide Photocatalytic Polymerization of Acrylamide for Gel Electrophoresis (TIPPAGE) of Proteins and Structural Identification by Mass Spectrometry

    Science.gov (United States)

    Zhang, Wenyang; Yuan, Zhiwei; Huang, Lulu; Kang, Jie; Jiang, Ruowei; Zhong, Hongying

    2016-01-01

    Polyacrylamide gel electrophoresis (PAGE) coupled with mass spectrometry has been well established for separating, identifying and quantifying protein mixtures from cell lines, tissues or other biological samples. The copolymerization process of acrylamide and bis-acrylamide is the key to mastering this powerful technique. In general, this is a vinyl addition reaction initiated by free radical-generating reagents such as ammonium persulfate (APS) and tetramethylethylenediamine (TEMED) under basic pH and degassing experimental condition. We report herein a photocatalytic polymerization approach that is based on photo-generated hydroxyl radicals with nanoparticles of titanium dioxide. It was shown that the polymerization process is greatly accelerated in acidic condition when ultraviolet light shots on the gel solution containing TiO2 nanoparticles without degassing. This feature makes it very useful in preparing Triton X-100 acid urea (TAU) gel that has been developed for separating basic proteins such as histones and variants in acidic experimental condition. Additionally, the presence of titanium dioxide in the gel not only improves mechanistic property of gels but also changes the migration pattern of different proteins that have different affinities to titanium dioxide. PMID:26865351

  9. Salt-induced changes in cardiac phosphoproteome in a rat model of chronic renal failure.

    Directory of Open Access Journals (Sweden)

    Zhengxiu Su

    Full Text Available Heart damage is widely present in patients with chronic kidney disease. Salt diet is the most important environmental factor affecting development of chronic renal failure and cardiovascular diseases. The proteins involved in chronic kidney disease -induced heart damage, especially their posttranslational modifications, remain largely unknown to date. Sprague-Dawley rats underwent 5/6 nephrectomy (chronic renal failure model or sham operation were treated for 2 weeks with a normal-(0.4% NaCl, or high-salt (4% NaCl diet. We employed TiO2 enrichment, iTRAQ labeling and liquid-chromatography tandem mass spectrometry strategy for phosphoproteomic profiling of left ventricular free walls in these animals. A total of 1724 unique phosphopeptides representing 2551 non-redundant phosphorylation sites corresponding to 763 phosphoproteins were identified. During normal salt feeding, 89 (54% phosphopeptides upregulated and 76 (46% phosphopeptides downregulated in chronic renal failure rats relative to sham rats. In chronic renal failure rats, high salt intake induced upregulation of 84 (49% phosphopeptides and downregulation of 88 (51% phosphopeptides. Database searches revealed that most of the identified phospholproteins were important signaling molecules such as protein kinases, receptors and phosphatases. These phospholproteins were involved in energy metabolism, cell communication, cell differentiation, cell death and other biological processes. The Search Tool for the Retrieval of Interacting Genes analysis revealed functional links among 15 significantly regulated phosphoproteins in chronic renal failure rats compared to sham group, and 23 altered phosphoproteins induced by high salt intake. The altered phosphorylation levels of two proteins involved in heart damage, lamin A and phospholamban were validated. Expression of the downstream genes of these two proteins, desmin and SERCA2a, were also analyzed.

  10. White-light-emitting supramolecular gels.

    Science.gov (United States)

    Praveen, Vakayil K; Ranjith, Choorikkat; Armaroli, Nicola

    2014-01-07

    Let there be light, let it be white: Recent developments in the use of chromophore-based gels as scaffolds for the assembly of white-light-emitting soft materials have been significant. The main advantage of this approach lies in the facile accommodation of selected luminescent components within the gel. Excitation-energy-transfer processes between these components ultimately generate the desired light output. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Matching Two-dimensional Gel Electrophoresis' Spots

    DEFF Research Database (Denmark)

    Dos Anjos, António; AL-Tam, Faroq; Shahbazkia, Hamid Reza

    2012-01-01

    This paper describes an approach for matching Two-Dimensional Electrophoresis (2-DE) gels' spots, involving the use of image registration. The number of false positive matches produced by the proposed approach is small, when compared to academic and commercial state-of-the-art approaches. This ar...

  12. Thixotropic gel-like composition and sterile blood-collecting and separating device

    International Nuclear Information System (INIS)

    Semersky, F.E.

    1980-01-01

    A thixotropic gel-like composition comprising liquid polybutadiene and an inorganic inert filler dispersed therein is adapted for use as a sealing barrier between separated phases of differing densities of a fluid in which said composition has at rest a density intermediate said differing densities, said gel-like composition being substantially resistant to sterilizing radiation. There is also disclosed a pre-packaged blood collecting and separating device which contains a mixture of liquid polybutadiene and an inorganic, inert filler, such as silica, as a thixotropic gel adapted at rest to form a sealing barrier between separated blood phases. The device and gel are subjected to sterilizing radiation to form a substantially sterile device, substantially free of backflow contamination without degradation of the physical properties of the gel. (author)

  13. Phosphoproteomics and new onco-bio technologies in the study of the pathogenesis and therapy of malignant gliomas

    International Nuclear Information System (INIS)

    De Maria, R.

    2009-01-01

    Characterization and crio-conservation and of glioblastoma stem cells. Phosphoproteomic analysis of tumor stem cells and their progeny. The possibility to use in research stem cells isolated from glioblastoma (GSCs) is an indispensable tool for the development of new and more effective therapeutic strategies for this type of cancer, whose prognosis is still poor. The research conducted for the attainment of the first objective has led to isolation of 18 stem cells lines from cancer patients with glioblastoma who have undergone surgery at the Institute of Neurosurgery of the Catholic University of Rome. The resulting cell lines were phenotypically characterized for the expression of stem cell markers and differentiation capabilities

  14. Phosphoproteomic Analysis Identifies Signaling Pathways Regulated by Curcumin in Human Colon Cancer Cells.

    Science.gov (United States)

    Sato, Tatsuhiro; Higuchi, Yutaka; Shibagaki, Yoshio; Hattori, Seisuke

    2017-09-01

    Curcumin, a major polyphenol of the spice turmeric, acts as a potent chemopreventive and chemotherapeutic agent in several cancer types, including colon cancer. Although various proteins have been shown to be affected by curcumin, how curcumin exerts its anticancer activity is not fully understood. Phosphoproteomic analyses were performed using SW480 and SW620 human colon cancer cells to identify curcumin-affected signaling pathways. Curcumin inhibited the growth of the two cell lines in a dose-dependent manner. Thirty-nine curcumin-regulated phosphoproteins were identified, five of which are involved in cancer signaling pathways. Detailed analyses revealed that the mTORC1 and p53 signaling pathways are main targets of curcumin. Our results provide insight into the molecular mechanisms of the anticancer activities of curcumin and future molecular targets for its clinical application. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  15. A systematic approach to determine optimal composition of gel used in radiation therapy

    International Nuclear Information System (INIS)

    Chang, Yuan-Jen; Hsieh, Bor-Tsung; Liang, Ji-An

    2011-01-01

    The design of experiment was used to find the optimal composition of N-isopropyl acrylamide (NIPAM) gel. Optical computed tomography was used to scan the polymer gel dosimeter, which was irradiated from 0 to 20 Gy. The study was conducted following a statistical method using a two-level fractional factorial plan involving four variables (gelatin-5% and 6%, NIPAM-3% and 5%, Bis-2.5% and 3%, and THPC-5 and 10 mM). We produced three batches of gels of the same composition to replicate the experiments. Based on the statistical analysis, a regression model was built. The optimal gel composition for the dose range 0-15 Gy with linearity up to 1.000 is as follows: gelatin (5.67%), NIPAM (5%), Bis (2.56%), and THPC (10 mM). The dose response of the NIPAM polymer gel attains stability about 24 h after irradiation and remains stable up to 3 months.

  16. A combined approach of enamel matrix derivative gel and autogenous bone grafts in treatment of intrabony periodontal defects. A case report.

    Science.gov (United States)

    Leung, George; Jin, Lijian

    2003-04-01

    Enamel matrix derivative (EMD) has recently been introduced as a new modality in regenerative periodontal therapy. This case report demonstrates a combined approach in topical application of EMD gel (Emdogain) and autogenous bone grafts for treatment of intrabony defects and furcation involvement defects in a patient with chronic periodontitis. The seven-month post-surgery clinical and radiographic results were presented. The combined application of EMD gel with autogenous bone grafts in intrabony osseous defects resulted in clinically significant gain of attachment on diseased root surfaces and bone fill on radiographs. Further controlled clinical studies are required to confirm the long-term effectiveness of the combination of EMD gel and autogenous bone grafts in treatment of various osseous defects in subjects with chronic periodontitis.

  17. Temporal dynamics of the Saccharopolyspora erythraea phosphoproteome.

    Science.gov (United States)

    Licona-Cassani, Cuauhtemoc; Lim, Sooa; Marcellin, Esteban; Nielsen, Lars K

    2014-05-01

    Actinomycetes undergo a dramatic reorganization of metabolic and cellular machinery during a brief period of growth arrest ("metabolic switch") preceding mycelia differentiation and the onset of secondary metabolite biosynthesis. This study explores the role of phosphorylation in coordinating the metabolic switch in the industrial actinomycete Saccharopolyspora erythraea. A total of 109 phosphopeptides from 88 proteins were detected across a 150-h fermentation using open-profile two-dimensional LC-MS proteomics and TiO(2) enrichment. Quantitative analysis of the phosphopeptides and their unphosphorylated cognates was possible for 20 pairs that also displayed constant total protein expression. Enzymes from central carbon metabolism such as putative acetyl-coenzyme A carboxylase, isocitrate lyase, and 2-oxoglutarate dehydrogenase changed dramatically in the degree of phosphorylation during the stationary phase, suggesting metabolic rearrangement for the reutilization of substrates and the production of polyketide precursors. In addition, an enzyme involved in cellular response to environmental stress, trypsin-like serine protease (SACE_6340/NC_009142_6216), decreased in phosphorylation during the growth arrest stage. More important, enzymes related to the regulation of protein synthesis underwent rapid phosphorylation changes during this stage. Whereas the degree of phosphorylation of ribonuclease Rne/Rng (SACE_1406/NC_009142_1388) increased during the metabolic switch, that of two ribosomal proteins, S6 (SACE_7351/NC_009142_7233) and S32 (SACE_6101/NC_009142_5981), dramatically decreased during this stage of the fermentation, supporting the hypothesis that ribosome subpopulations differentially regulate translation before and after the metabolic switch. Overall, we show the great potential of phosphoproteomic studies to explain microbial physiology and specifically provide evidence of dynamic protein phosphorylation events across the developmental cycle of

  18. Temporal Dynamics of the Saccharopolyspora erythraea Phosphoproteome*

    Science.gov (United States)

    Licona-Cassani, Cuauhtemoc; Lim, SooA; Marcellin, Esteban; Nielsen, Lars K.

    2014-01-01

    Actinomycetes undergo a dramatic reorganization of metabolic and cellular machinery during a brief period of growth arrest (“metabolic switch”) preceding mycelia differentiation and the onset of secondary metabolite biosynthesis. This study explores the role of phosphorylation in coordinating the metabolic switch in the industrial actinomycete Saccharopolyspora erythraea. A total of 109 phosphopeptides from 88 proteins were detected across a 150-h fermentation using open-profile two-dimensional LC-MS proteomics and TiO2 enrichment. Quantitative analysis of the phosphopeptides and their unphosphorylated cognates was possible for 20 pairs that also displayed constant total protein expression. Enzymes from central carbon metabolism such as putative acetyl-coenzyme A carboxylase, isocitrate lyase, and 2-oxoglutarate dehydrogenase changed dramatically in the degree of phosphorylation during the stationary phase, suggesting metabolic rearrangement for the reutilization of substrates and the production of polyketide precursors. In addition, an enzyme involved in cellular response to environmental stress, trypsin-like serine protease (SACE_6340/NC_009142_6216), decreased in phosphorylation during the growth arrest stage. More important, enzymes related to the regulation of protein synthesis underwent rapid phosphorylation changes during this stage. Whereas the degree of phosphorylation of ribonuclease Rne/Rng (SACE_1406/NC_009142_1388) increased during the metabolic switch, that of two ribosomal proteins, S6 (SACE_7351/NC_009142_7233) and S32 (SACE_6101/NC_009142_5981), dramatically decreased during this stage of the fermentation, supporting the hypothesis that ribosome subpopulations differentially regulate translation before and after the metabolic switch. Overall, we show the great potential of phosphoproteomic studies to explain microbial physiology and specifically provide evidence of dynamic protein phosphorylation events across the developmental cycle of

  19. A Study of Dip-Coatable, High-Capacitance Ion Gel Dielectrics for 3D EWOD Device Fabrication

    Directory of Open Access Journals (Sweden)

    Carlos E. Clement

    2017-01-01

    Full Text Available We present a dip-coatable, high-capacitance ion gel dielectric for scalable fabrication of three-dimensional (3D electrowetting-on-dielectric (EWOD devices such as an n × n liquid prism array. Due to the formation of a nanometer-thick electric double layer (EDL capacitor, an ion gel dielectric offers two to three orders higher specific capacitance (c ≈ 10 μF/cm2 than that of conventional dielectrics such as SiO2. However, the previous spin-coating method used for gel layer deposition poses several issues for 3D EWOD device fabrication, particularly when assembling multiple modules. Not only does the spin-coating process require multiple repetitions per module, but the ion gel layer also comes in risks of damage or contamination due to handling errors caused during assembly. In addition, it was observed that the chemical formulation previously used for the spin-coating method causes the surface defects on the dip-coated gel layers and thus leads to poor EWOD performance. In this paper, we alternatively propose a dip-coating method with modified gel solutions to obtain defect-free, functional ion gel layers without the issues arising from the spin-coating method for 3D device fabrication. A dip-coating approach offers a single-step coating solution with the benefits of simplicity, scalability, and high throughput for deposition of high-capacitance gel layers on non-planar EWOD devices. An ion gel solution was prepared by combining the [EMIM][TFSI] ionic liquid and the [P(VDF-HFP] copolymer at various wt % ratios in acetone solvent. Experimental studies were conducted to fully understand the effects of chemical composition ratios in the gel solution and how varying thicknesses of ion gel and Teflon layers affects EWOD performance. The effectiveness and potentiality of dip-coatable gel layers for 3D EWOD devices have been demonstrated through fabricating 5 × 1 arrayed liquid prisms using a single-step dip-coating method. Each prism module has

  20. Research-Based Development of a Lesson Plan on Shower Gels and Musk Fragrances Following a Socio-Critical and Problem-Oriented Approach to Chemistry Teaching

    Science.gov (United States)

    Marks, Ralf; Eilks, Ingo

    2010-01-01

    A case is described of the development of a lesson plan for 10th grade (age range 15-16) chemistry classes on the chemistry of shower gels. The lesson plan follows a socio-critical and problem-oriented approach to chemistry teaching. This means that, aside from learning about the basic chemistry of the components making up modern shower gels in…

  1. Lipase from Aspergillus niger obtained from mangaba residue fermentation: biochemical characterization of free and immobilized enzymes on a sol-gel matrix

    Directory of Open Access Journals (Sweden)

    Elis Augusta Leite dos Santos

    2017-02-01

    Full Text Available In this study, mangaba residue (seeds was used as a substrate for Aspergillus niger lipase production by solid-state fermentation. The partially purified enzyme was efficiently immobilized in a sol-gel matrix by covalent bonding with an immobilization yield of 91.2%. The immobilized biocatalyst and free lipase had an optimum pH of 2.0 and 5.0, respectively. However, greater stability was obtained at pH 4.0 and 7.0, respectively. The biocatalysts showed stability at the optimum temperature of 55°C, where the residual activity was above 87% after 240 min., of incubation. The lower deactivation constant (kd and higher half-life of the immobilized biocatalyst indicated greater thermal stability than those obtained with the free enzyme. The Michaelis Constant (Km (77 and 115 mM for free and immobilized lipase, respectively and maximum reaction rate (Vmax (1250 and 714 U mg-1 for free and immobilized lipase, respectively indicated that the immobilization process reduced enzyme-substrate affinity. Regarding the operational stability, the biocatalyst showed relative activity above 50% until seven cycles of reuse in olive oil hydrolysis. This novel biocatalyst obtained from a tropical fruit residue showed biochemical characteristics that support its application in future biocatalysis studies.

  2. Superconductive ceramics obtained with sol gel method

    International Nuclear Information System (INIS)

    Arcangeli, A.; Mosci, A.; Nardi, A.; Vatteroni, R.; Zondini, C.

    1988-01-01

    Several sol gel routes have been considered, studied and developed to produce large quantities of granulates which can be processed to obtain ceramics having good superconducting characteristics. In the considered process a mixture of commercial nitrates is atomized, at room temperature, in a solution 1:1 of Primene JMT and Benzene and a pale blue gel of the starting elements is suddently formed. The granulates obtained are free flowing, very reactive and well suited for pressing. For their intrinsic characteristics they could be very good precursors for the production of large quantities of superconductive ceramics in different forms. The precipitated gel is dried, calcinated, pressed in the form of cylindrical pellets which are sintered up to 960 degrees C. No griding or different thermal treatments are needed. The sintered material has low electric resistence, shows a clear Meissner effect and has a transition temperature of between 91 and 95 K

  3. Rationalization of reduced penetration of drugs through ceramide gel phase membrane.

    Science.gov (United States)

    Paloncýová, Markéta; DeVane, Russell H; Murch, Bruce P; Berka, Karel; Otyepka, Michal

    2014-11-25

    Since computing resources have advanced enough to allow routine molecular simulation studies of drug molecules interacting with biologically relevant membranes, a considerable amount of work has been carried out with fluid phospholipid systems. However, there is very little work in the literature on drug interactions with gel phase lipids. This poses a significant limitation for understanding permeation through the stratum corneum where the primary pathway is expected to be through a highly ordered lipid matrix. To address this point, we analyzed the interactions of p-aminobenzoic acid (PABA) and its ethyl (benzocaine) and butyl (butamben) esters with two membrane bilayers, which differ in their fluidity at ambient conditions. We considered a dioleoylphosphatidylcholine (DOPC) bilayer in a fluid state and a ceramide 2 (CER2, ceramide NS) bilayer in a gel phase. We carried out unbiased (100 ns long) and biased z-constraint molecular dynamics simulations and calculated the free energy profiles of all molecules along the bilayer normal. The free energy profiles converged significantly slower for the gel phase. While the compounds have comparable affinities for both membranes, they exhibit penetration barriers almost 3 times higher in the gel phase CER2 bilayer. This elevated barrier and slower diffusion in the CER2 bilayer, which are caused by the high ordering of CER2 lipid chains, explain the low permeability of the gel phase membranes. We also compared the free energy profiles from MD simulations with those obtained from COSMOmic. This method provided the same trends in behavior for the guest molecules in both bilayers; however, the penetration barriers calculated by COSMOmic did not differ between membranes. In conclusion, we show how membrane fluid properties affect the interaction of drug-like molecules with membranes.

  4. Open microfluidic gel electrophoresis: Rapid and low cost separation and analysis of DNA at the nanoliter scale.

    Science.gov (United States)

    Gutzweiler, Ludwig; Gleichmann, Tobias; Tanguy, Laurent; Koltay, Peter; Zengerle, Roland; Riegger, Lutz

    2017-07-01

    Gel electrophoresis is one of the most applied and standardized tools for separation and analysis of macromolecules and their fragments in academic research and in industry. In this work we present a novel approach for conducting on-demand electrophoretic separations of DNA molecules in open microfluidic (OM) systems on planar polymer substrates. The approach combines advantages of slab gel, capillary- and chip-based methods offering low consumable costs (<0.1$) circumventing cost-intensive microfluidic chip fabrication, short process times (5 min per analysis) and high sensitivity (4 ng/μL dsDNA) combined with reasonable resolution (17 bases). The open microfluidic separation system comprises two opposing reservoirs of 2-4 μL in volume, a semi-contact written gel line acting as separation channel interconnecting the reservoirs and sample injected into the line via non-contact droplet dispensing and thus enabling the precise control of the injection plug and sample concentration. Evaporation is prevented by covering aqueous structures with PCR-grade mineral oil while maintaining surface temperature at 15°C. The liquid gel line exhibits a semi-circular cross section of adaptable width (∼200-600 μm) and height (∼30-80 μm) as well as a typical length of 15-55 mm. Layout of such liquid structures is adaptable on-demand not requiring time consuming and repetitive fabrication steps. The approach was successfully demonstrated by the separation of a standard label-free DNA ladder (100-1000 bp) at 100 V/cm via in-line staining and laser induced fluorescent end-point detection using an automated prototype. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. High-performance dye-sensitized solar cells with gel-coated binder-free carbon nanotube films as counter electrode

    Science.gov (United States)

    Mei, Xiaoguang; Cho, Swee Jen; Fan, Benhu; Ouyang, Jianyong

    2010-10-01

    High-performance dye-sensitized solar cells (DSCs) with binder-free films of carbon nanotubes (CNTs), including single-walled CNTs (SWCNTs) and multi-walled CNTs (MWCNTs), as the counter electrode are reported. The CNT films were fabricated by coating gels, which were prepared by dispersing CNTs in low-molecular-weight poly(ethylene glycol) (PEG) through mechanical grinding and subsequent ultrasonication, on fluorine tin oxide (FTO) glass. PEG was removed from the CNT films through heating. These binder-free CNT films were rough and exhibited good adhesion to substrates. They were used as the counter electrode of DSCs. The DSCs with SWCNT or MWCNT counter electrodes exhibited a light-to-electricity conversion efficiency comparable with that with the conventional platinum (Pt) counter electrode, when the devices were tested immediately after device fabrication. The DSCs with an SWCNT counter electrode exhibited good stability in photovoltaic performance. The efficiency did not decrease after four weeks. On the other hand, DSCs with the MWCNT or Pt counter electrode exhibited a remarkable decrease in the photovoltaic efficiency after four weeks. The high photovoltaic performance of these DSCs is related to the excellent electrochemical catalysis of CNTs on the redox of the iodide/triiodide pair, as revealed by the cyclic voltammetry and ac impedance spectroscopy.

  6. High-performance dye-sensitized solar cells with gel-coated binder-free carbon nanotube films as counter electrode

    International Nuclear Information System (INIS)

    Mei Xiaoguang; Cho, Swee Jen; Fan Benhu; Ouyang Jianyong

    2010-01-01

    High-performance dye-sensitized solar cells (DSCs) with binder-free films of carbon nanotubes (CNTs), including single-walled CNTs (SWCNTs) and multi-walled CNTs (MWCNTs), as the counter electrode are reported. The CNT films were fabricated by coating gels, which were prepared by dispersing CNTs in low-molecular-weight poly(ethylene glycol) (PEG) through mechanical grinding and subsequent ultrasonication, on fluorine tin oxide (FTO) glass. PEG was removed from the CNT films through heating. These binder-free CNT films were rough and exhibited good adhesion to substrates. They were used as the counter electrode of DSCs. The DSCs with SWCNT or MWCNT counter electrodes exhibited a light-to-electricity conversion efficiency comparable with that with the conventional platinum (Pt) counter electrode, when the devices were tested immediately after device fabrication. The DSCs with an SWCNT counter electrode exhibited good stability in photovoltaic performance. The efficiency did not decrease after four weeks. On the other hand, DSCs with the MWCNT or Pt counter electrode exhibited a remarkable decrease in the photovoltaic efficiency after four weeks. The high photovoltaic performance of these DSCs is related to the excellent electrochemical catalysis of CNTs on the redox of the iodide/triiodide pair, as revealed by the cyclic voltammetry and ac impedance spectroscopy.

  7. Quasi-homogenous approximation for description of the properties of dispersed systems. The basic approaches to model hardening processes in nanodispersed silica systems. Part 4. The Main Approaches to Modeling the Kinetics of the Sol-Gel Transition

    Directory of Open Access Journals (Sweden)

    KUDRYAVTSEV Pavel Gennadievich

    2015-08-01

    Full Text Available The paper deals with possibilities to use quasi-homogenous approximation for description of properties of dispersed systems. The authors applied statistical polymer method based on consideration of average structures of all possible macromolecules of the same weight. The equations which allow evaluating many additive parameters of macromolecules and the systems with them were deduced. Statistical polymer method makes it possible to model branched, cross-linked macromolecules and the systems with them which are in equilibrium or non-equilibrium state. Fractal analysis of statistical polymer allows modeling different types of random fractal and other objects examined with the methods of fractal theory. The method of fractal polymer can be applied not only to polymers but also to composites, gels, associates in polar liquids and other packaged systems. There is also a description of the states of colloid solutions of silica oxide from the point of view of statistical physics. This approach is based on the idea that colloid solution of silica dioxide – sol of silica dioxide – consists of enormous number of interacting particles which are always in move. The paper is devoted to the research of ideal system of colliding but not interacting particles of sol. The analysis of behavior of silica sol was performed according to distribution Maxwell-Boltzmann and free path length was calculated. Using this data the number of the particles which can overcome the potential barrier in collision was calculated. To model kinetics of sol-gel transition different approaches were studied.

  8. System-wide temporal characterization of the proteome and phosphoproteome of human embryonic stem cell differentiation

    DEFF Research Database (Denmark)

    Rigbolt, Kristoffer T.G.; Prokhorova, Tatyana; Akimov, Vyacheslav

    2011-01-01

    by feeder cells. We profiled 6521 proteins and 23,522 phosphorylation sites, of which almost 50% displayed dynamic changes in phosphorylation status during 24 hours of differentiation. These data are a resource for studies of the events associated with the maintenance of hESC pluripotency and those...... of the matching sequence motif. In addition to identifying previously unknown phosphorylation sites on factors associated with differentiation, such as kinases and transcription factors, we observed dynamic phosphorylation of DNA methyltransferases (DNMTs). We found a specific interaction of DNMTs during early......To elucidate cellular events underlying the pluripotency of human embryonic stem cells (hESCs), we performed parallel quantitative proteomic and phosphoproteomic analyses of hESCs during differentiation initiated by a diacylglycerol analog or transfer to media that had not been conditioned...

  9. Aging and nonlinear rheology of thermoreversible colloidal gels

    Science.gov (United States)

    Wagner, Norman; Gordon, Melissa; Kloxin, Christopher

    Colloidal dispersions are found in a wide variety of consumer products such as paint, food and pharmaceuticals. We investigate gel formation and aging in a thermoreverible gel consisting of octadecyl-coated silica nanoparticles suspended in n-tetradecane. In this system, the octadecyl brush can undergo a phase change allowing the attractions between particles to be tuned by temperature (1,2). By probing the system with steady shear and large amplitude oscillatory shear, we have studied the effect of thermal history and shear history on gel formation and gel mechanical properties during aging. Gels were formed by approaching a common temperature from above and below to determine a reference state from which creep tests were conducted. Creep ringing was observed as expected for the viscoelastic gel. The rheological aging is interpreted in terms of the gel microstructure formed with differing thermal and shear histories to determine how processing affects structure. Recently proposed scaling laws for the rheology and structure under flow are explored within the context of gel aging (3). Through rheological and microstructural measurements, we will further the understanding of gel formation and aging in this model system which may be applied to processing conditions in an industrial setting.

  10. A theory for fracture of polymeric gels

    Science.gov (United States)

    Mao, Yunwei; Anand, Lallit

    2018-06-01

    A polymeric gel is a cross-linked polymer network swollen with a solvent. If the concentration of the solvent or the deformation is increased to substantial levels, especially in the presence of flaws, then the gel may rupture. Although various theoretical aspects of coupling of fluid permeation with large deformation of polymeric gels are reasonably well-understood and modeled in the literature, the understanding and modeling of the effects of fluid diffusion on the damage and fracture of polymeric gels is still in its infancy. In this paper we formulate a thermodynamically-consistent theory for fracture of polymeric gels - a theory which accounts for the coupled effects of fluid diffusion, large deformations, damage, and also the gradient effects of damage. The particular constitutive equations for fracture of a gel proposed in our paper, contain two essential new ingredients: (i) Our constitutive equation for the change in free energy of a polymer network accounts for not only changes in the entropy, but also changes in the internal energy due the stretching of the Kuhn segments of the polymer chains in the network. (ii) The damage and failure of the polymer network is taken to occur by chain-scission, a process which is driven by the changes in the internal energy of the stretched polymer chains in the network, and not directly by changes in the configurational entropy of the polymer chains. The theory developed in this paper is numerically implemented in an open-source finite element code MOOSE, by writing our own application. Using this simulation capability we report on our study of the fracture of a polymeric gel, and some interesting phenomena which show the importance of the diffusion of the fluid on fracture response of the gel are highlighted.

  11. Phosphoproteomics reveals that glycogen synthase kinase-3 phosphorylates multiple splicing factors and is associated with alternative splicing

    Science.gov (United States)

    Shinde, Mansi Y.; Sidoli, Simone; Kulej, Katarzyna; Mallory, Michael J.; Radens, Caleb M.; Reicherter, Amanda L.; Myers, Rebecca L.; Barash, Yoseph; Lynch, Kristen W.; Garcia, Benjamin A.; Klein, Peter S.

    2017-01-01

    Glycogen synthase kinase-3 (GSK-3) is a constitutively active, ubiquitously expressed protein kinase that regulates multiple signaling pathways. In vitro kinase assays and genetic and pharmacological manipulations of GSK-3 have identified more than 100 putative GSK-3 substrates in diverse cell types. Many more have been predicted on the basis of a recurrent GSK-3 consensus motif ((pS/pT)XXX(S/T)), but this prediction has not been tested by analyzing the GSK-3 phosphoproteome. Using stable isotope labeling of amino acids in culture (SILAC) and MS techniques to analyze the repertoire of GSK-3–dependent phosphorylation in mouse embryonic stem cells (ESCs), we found that ∼2.4% of (pS/pT)XXX(S/T) sites are phosphorylated in a GSK-3–dependent manner. A comparison of WT and Gsk3a;Gsk3b knock-out (Gsk3 DKO) ESCs revealed prominent GSK-3–dependent phosphorylation of multiple splicing factors and regulators of RNA biosynthesis as well as proteins that regulate transcription, translation, and cell division. Gsk3 DKO reduced phosphorylation of the splicing factors RBM8A, SRSF9, and PSF as well as the nucleolar proteins NPM1 and PHF6, and recombinant GSK-3β phosphorylated these proteins in vitro. RNA-Seq of WT and Gsk3 DKO ESCs identified ∼190 genes that are alternatively spliced in a GSK-3–dependent manner, supporting a broad role for GSK-3 in regulating alternative splicing. The MS data also identified posttranscriptional regulation of protein abundance by GSK-3, with ∼47 proteins (1.4%) whose levels increased and ∼78 (2.4%) whose levels decreased in the absence of GSK-3. This study provides the first unbiased analysis of the GSK-3 phosphoproteome and strong evidence that GSK-3 broadly regulates alternative splicing. PMID:28916722

  12. Battle through signaling between wheat and the fungal pathogen Septoria tritici revealed by proteomics and phosphoproteomics

    DEFF Research Database (Denmark)

    Yang, Fen; Braga, Marcella Nunes de Melo; Larsen, Martin Røssel

    2013-01-01

    The fungus Septoria tritici causes the disease septoria tritici blotch in wheat, one of the most economically devastating foliar diseases in this crop. To investigate signaling events and defense responses in the wheat-S. tritici interaction, we performed a time-course study of S. tritici infection...... in resistant and susceptible wheat using quantitative proteomics and phosphoproteomics, with special emphasis on the initial biotrophic phase of interactions. Our study revealed an accumulation of defense and stress-related proteins, suppression of photosynthesis, and changes in sugar metabolism during...... compatible and incompatible interactions. However, differential regulation of the phosphorylation status of signaling proteins, transcription and translation regulators, and membrane-associated proteins was observed between two interactions. The proteomic data were correlated with a more rapid or stronger...

  13. Characterization of the human plasma phosphoproteome using linear ion trap mass spectrometry and multiple search engines.

    Science.gov (United States)

    Carrascal, Montserrat; Gay, Marina; Ovelleiro, David; Casas, Vanessa; Gelpí, Emilio; Abian, Joaquin

    2010-02-05

    Major plasma protein families play different roles in blood physiology and hemostasis and in immunodefense. Other proteins in plasma can be involved in signaling as chemical messengers or constitute biological markers of the status of distant tissues. In this respect, the plasma phosphoproteome holds potentially relevant information on the mechanisms modulating these processes through the regulation of protein activity. In this work we describe for the first time a collection of phosphopeptides identified in human plasma using immunoaffinity separation of the seven major serum protein families from other plasma proteins, SCX fractionation, and TiO(2) purification prior to LC-MS/MS analysis. One-hundred and twenty-seven phosphosites in 138 phosphopeptides mapping 70 phosphoproteins were identified with FDR search engines.

  14. Applications versus properties of Mg–Al layered double hydroxides provided by their syntheses methods: Alkoxide and alkoxide-free sol–gel syntheses and hydrothermal precipitation

    KAUST Repository

    Chubar, Natalia

    2013-12-01

    A tremendous number of studies have examined layered double hydroxides (LDH) for their technological applications in the ion exchange removal of toxic ions, recovery of valuable substances, catalysis, CO2 capture, as a layered host for storage/delivery of biologically active molecules, additives to plastics and building materials, and other functions. Numerous publications always conclude that the materials (prepared, as a rule, using the oldest synthesis method) are very promising for each investigated application; however, the main chemical industries producing these materials advertise them mainly (or only) as plastic additives. The authors performed extensive research using many of the appropriate methods to compare the structure, surface and adsorptive properties of three Mg-Al LHDs produced by advanced synthesis methods. One industrial sample (by Sasol, Germany) prepared by the alkoxide sol-gel method and two novel Mg-Al LDHs synthesised in-house by alkoxide-free sol-gel and hydrothermal precipitation approaches were investigated. Reasons for the very different adsorptive selectivity of the three LDHs towards arsenate, selenate, phosphate, arsenite and selenite have been provided, highlighting the role of speciation of the interlayer carbonate, aluminium, magnesium, interlayer hydration and moisture content in the adsorptive selectivity towards each toxic anion. This work is the first report presenting the regularities of the LDHs structure, surface and anion exchange properties as a function of their syntheses method. It establishes the links to potential technological applications of each investigated LDH and explains the necessary properties required to make the technological application cost-effective and efficient. The paper might accelerate industrial applications of these advanced materials. © 2013 Elsevier B.V.

  15. 3D MR gel dosimetry with lung equivalent gel

    International Nuclear Information System (INIS)

    Scherer, J.; Solleder, M.; Schiessl, I.; Bogner, L.; Herbst, M.

    1998-01-01

    The MR gel dosimetry is used to verify complex 3D treatment plans. Till now this method served only for dose evaluation in homogeneous phantoms. On the way to build a heterogeneous anthropomorphic gel phantom, a lung equivalent gel with the density 0.4 g/cm 3 was developed. First experiments show a 1.55 times higher dose reponse in the low density gel (LD gel). The comparison of a dose distribution in a gel/LD gel/gel slab phantom with Monte Carlo calculations shows good agreement within 5%. More over the accuray of the measuring device magnetic resonance imager was studied in respect to the now exclusive digital image processing with the software MRD (MR dosimetry). Because of the dimensions of the Fricke gel phantom an artefact correction, based on the data from the unirradiated phantom proved to be essential. (orig.) [de

  16. Nuclear phosphoproteome of developing chickpea seedlings (Cicer arietinum L.) and protein-kinase interaction network.

    Science.gov (United States)

    Kumar, Rajiv; Kumar, Amit; Subba, Pratigya; Gayali, Saurabh; Barua, Pragya; Chakraborty, Subhra; Chakraborty, Niranjan

    2014-06-13

    Nucleus, the control centre of eukaryotic cell, houses most of the genetic machineries required for gene expression and their regulation. Post translational modifications of proteins, particularly phosphorylation control a wide variety of cellular processes but its functional connectivity, in plants, is still elusive. This study profiled the nuclear phosphoproteome of a grain legume, chickpea, to gain better understanding of such event. Intact nuclei were isolated from 3-week-old seedlings using two independent methods, and nuclear proteins were resolved by 2-DE. In a separate set of experiments, phosphoproteins were enriched using IMAC method and resolved by 1-DE. The separated proteins were stained with phosphospecific Pro-Q Diamond stain. Proteomic analyses led to the identification of 107 putative phosphoproteins, of which 86 were non-redundant. Multiple sites of phosphorylation were predicted on several key elements, which included both regulatory and functional proteins. The analysis revealed an array of phosphoproteins, presumably involved in a variety of cellular functions, viz., protein folding (24%), signalling and gene regulation (22%), DNA replication, repair and modification (16%), and metabolism (13%), among others. These results represent the first nucleus-specific phosphoproteome map of a non-model legume, which would provide insights into the possible function of protein phosphorylation in plants. Chickpea is grown over 10 million hectares of land worldwide, and global production hovers around 8.5 million metric tons annually. Despite its nutritional merits, it is often referred to as 'orphan' legume and has remained outside the realm of large-scale functional genomics studies. While current chickpea genome initiative has primarily focused on sequence information and functional annotation, proteomics analyses are limited. It is thus important to study the proteome of the cell organelle particularly the nucleus, which harbors most of the genetic

  17. A COMPARATIVE STUDY OF LATERAL SPHINCTEROTOMY AND LOCAL APPLICATION OF 2% DILTIAZEM GEL IN TREATMENT OF CHRONIC ANAL FISSURE

    Directory of Open Access Journals (Sweden)

    Rajashekar

    2015-11-01

    Full Text Available BACKGROUND AND OBJECTIVES Anal fissures are commonly encountered in routine colorectal practice. Chronic fissures have traditionally been treated surgically. Developments in the pharmacological understanding of the internal anal sphincter have resulted in more conservative approaches towards treatment. In this study, we compare topical 2% Diltiazem gel and lateral internal sphincterotomy with respect to symptomatic relief, healing and side effects in the treatment of chronic fissure in ano. METHODS 60 patients with chronic fissure in ano were randomly divided into Diltiazem gel and internal sphincterotomy groups. Patients were followed up at weekly intervals for minimum of eight weeks. Data was recorded accordingly. RESULTS Fissure completely healed in 28(93.33% out of 30 patients treated with 2% Diltiazem gel between 4-8 weeks. Healing was 100% with internal sphincterotomy. The mean duration required for healing of fissure was 4.86 weeks in Diltiazem gel group and 3.66 weeks in internal sphincterotomy group. 61.5% patients were free from pain after treatment with Diltiazem gel whereas in internal sphicterotomy group 66.66% patients had pain relief at the end of 4 weeks. INTERPRETATION AND CONCLUSION Comparison between Diltiazem gel application and internal sphincterotomy did not show any significant difference in fissure healing and pain relief. No side effects were seen in Diltiazem gel therapy. Topical Diltiazem should be the initial treatment in chronic fissure in ano. It is better to reserve internal sphincterotomy for patients with relapse or therapeutic failure to prior pharmacological treatment.

  18. Quantitative Analysis of Human Pluripotency and Neural Specification by In-Depth (PhosphoProteomic Profiling

    Directory of Open Access Journals (Sweden)

    Ilyas Singec

    2016-09-01

    Full Text Available Controlled differentiation of human embryonic stem cells (hESCs can be utilized for precise analysis of cell type identities during early development. We established a highly efficient neural induction strategy and an improved analytical platform, and determined proteomic and phosphoproteomic profiles of hESCs and their specified multipotent neural stem cell derivatives (hNSCs. This quantitative dataset (nearly 13,000 proteins and 60,000 phosphorylation sites provides unique molecular insights into pluripotency and neural lineage entry. Systems-level comparative analysis of proteins (e.g., transcription factors, epigenetic regulators, kinase families, phosphorylation sites, and numerous biological pathways allowed the identification of distinct signatures in pluripotent and multipotent cells. Furthermore, as predicted by the dataset, we functionally validated an autocrine/paracrine mechanism by demonstrating that the secreted protein midkine is a regulator of neural specification. This resource is freely available to the scientific community, including a searchable website, PluriProt.

  19. Ionic liquid based multifunctional double network gel

    Science.gov (United States)

    Ahmed, Kumkum; Higashihara, Tomoya; Arafune, Hiroyuki; Kamijo, Toshio; Morinaga, Takashi; Sato, Takaya; Furukawa, Hidemitsu

    2015-04-01

    Gels are a promising class of soft and wet materials with diverse application in tissue engineering and bio-medical purpose. In order to accelerate the development of gels, it is required to synthesize multi-functional gels of high mechanical strength, ultra low surface friction and suitable elastic modulus with a variety of methods and new materials. Among many types of gel ionic gel made from ionic liquids (ILs) could be used for diverse applications in electrochemical devices and in the field of tribology. IL, a promising materials for lubrication, is a salt with a melting point lower than 100 °C. As a lubricant, ILs are characterized by an extremely low vapor pressure, high thermal stability and high ion conductivity. In this work a novel approach of making double network DN ionic gel using IL has been made utilizing photo polymerization process. A hydrophobic monomer Methyl methacrylate (MMA) has been used as a first network and a hydrophobic IL monomer, N,N-diethyl-N-(2-mthacryloylethyl)-N-methylammonium bistrifluoromethylsulfonyl)imide (DEMM-TFSI) has been used as a second network using photo initiator benzophenon and crosslinker triethylene glycol dimethacrylate (TEGDMA). The resulting DN ionic gel shows transparency, flexibility, high thermal stability, good mechanical toughness and low friction coefficient value which can be a potential candidate as a gel slider in different mechanical devices and can open a new area in the field of gel tribology.

  20. Sol-gel synthesis of hydroxyapatite

    International Nuclear Information System (INIS)

    Zupanski, M.D.; Lucena, M.P.P.; Bergmann, C.P.

    2010-01-01

    Hydroxyapatite (HAp) has been established as the calcium phosphate based compound with most applications in the biological field. Among the numerous techniques for synthesis of HAp, the sol-gel processing route affords great control over purity and formed phases using low processing temperatures. In addition, the sol-gel approach offers an option for homogeneous HAp coating on metal substrates, as well as the ability to generate nanocrystalline powders. In this work, the sol-gel synthesis of HAp was investigated employing triethyl phosphate and calcium nitrate tetrahydrate as phosphorous and calcium precursors, respectively. The aging effect on phase composition and powder morphology of the final product was studied in terms of temperature and aging time. The powders were studied by using X-ray diffraction, Fourier transform infrared spectroscopy, particle size distribution by laser diffraction and scanning electron microscopy. (author)

  1. Direct evaluation of free energy for large system through structure integration approach.

    Science.gov (United States)

    Takeuchi, Kazuhito; Tanaka, Ryohei; Yuge, Koretaka

    2015-09-30

    We propose a new approach, 'structure integration', enabling direct evaluation of configurational free energy for large systems. The present approach is based on the statistical information of lattice. Through first-principles-based simulation, we find that the present method evaluates configurational free energy accurately in disorder states above critical temperature.

  2. Spot quantification in two dimensional gel electrophoresis image analysis: comparison of different approaches and presentation of a novel compound fitting algorithm

    Science.gov (United States)

    2014-01-01

    Background Various computer-based methods exist for the detection and quantification of protein spots in two dimensional gel electrophoresis images. Area-based methods are commonly used for spot quantification: an area is assigned to each spot and the sum of the pixel intensities in that area, the so-called volume, is used a measure for spot signal. Other methods use the optical density, i.e. the intensity of the most intense pixel of a spot, or calculate the volume from the parameters of a fitted function. Results In this study we compare the performance of different spot quantification methods using synthetic and real data. We propose a ready-to-use algorithm for spot detection and quantification that uses fitting of two dimensional Gaussian function curves for the extraction of data from two dimensional gel electrophoresis (2-DE) images. The algorithm implements fitting using logical compounds and is computationally efficient. The applicability of the compound fitting algorithm was evaluated for various simulated data and compared with other quantification approaches. We provide evidence that even if an incorrect bell-shaped function is used, the fitting method is superior to other approaches, especially when spots overlap. Finally, we validated the method with experimental data of urea-based 2-DE of Aβ peptides andre-analyzed published data sets. Our methods showed higher precision and accuracy than other approaches when applied to exposure time series and standard gels. Conclusion Compound fitting as a quantification method for 2-DE spots shows several advantages over other approaches and could be combined with various spot detection methods. The algorithm was scripted in MATLAB (Mathworks) and is available as a supplemental file. PMID:24915860

  3. Transdermal delivery of paeonol using cubic gel and microemulsion gel

    Science.gov (United States)

    Luo, Maofu; Shen, Qi; Chen, Jinjin

    2011-01-01

    Background The aim of this study was to develop new systems for transdermal delivery of paeonol, in particular microemulsion gel and cubic gel formulations. Methods Various microemulsion vehicles were prepared using isopropyl myristate as an oil phase, polyoxyethylated castor oil (Cremophor® EL) as a surfactant, and polyethylene glycol 400 as a cosurfactant. In the optimum microemulsion gel formulation, carbomer 940 was selected as the gel matrix, and consisted of 1% paeonol, 4% isopropyl myristate, 28% Cremophor EL/polyethylene glycol 400 (1:1), and 67% water. The cubic gel was prepared containing 3% paeonol, 30% water, and 67% glyceryl monooleate. Results A skin permeability test using excised rat skins indicated that both the cubic gel and microemulsion gel formulations had higher permeability than did the paeonol solution. An in vivo pharmacokinetic study done in rats showed that the relative bioavailability of the cubic gel and microemulsion gel was enhanced by about 1.51-fold and 1.28-fold, respectively, compared with orally administered paeonol suspension. Conclusion Both the cubic gel and microemulsion gel formulations are promising delivery systems to enhance the skin permeability of paeonol, in particular the cubic gel. PMID:21904450

  4. Reversible sol-gel-sol medium for enzymatic optical biosensors

    NARCIS (Netherlands)

    Safaryan, S.; Yakovlev, A.; Pidko, E.A.; Vinogradov, A.; Vinogradov, V.

    2017-01-01

    In this paper we for the first time report a reversible sol-gel-sol approach to obtain optical enzymatic biosensors with improved enzyme stability and good sensitivity by using desktop inkjet printing. The developed technique is based on the bio-inorganic inks allowing for a sol-gel-sol transition

  5. Energy-Efficient Bioalcohol Recovery by Gel Stripping

    Science.gov (United States)

    Godbole, Rutvik; Ma, Lan; Hedden, Ronald

    2014-03-01

    Design of energy-efficient processes for recovering butanol and ethanol from dilute fermentations is a key challenge facing the biofuels industry due to the high energy consumption of traditional multi-stage distillation processes. Gel stripping is an alternative purification process by which a dilute alcohol is stripped from the fermentation product by passing it through a packed bed containing particles of a selectively absorbent polymeric gel material. The gel must be selective for the alcohol, while swelling to a reasonable degree in dilute alcohol-water mixtures. To accelerate materials optimization, a combinatorial approach is taken to screen a matrix of copolymer gels having orthogonal gradients in crosslinker concentration and hydrophilicity. Using a combination of swelling in pure solvents, the selectivity and distribution coefficients of alcohols in the gels can be predicted based upon multi-component extensions of Flory-Rehner theory. Predictions can be validated by measuring swelling in water/alcohol mixtures and conducting h HPLC analysis of the external liquid. 95% + removal of butanol from dilute aqueous solutions has been demonstrated, and a mathematical model of the unsteady-state gel stripping process has been developed. NSF CMMI Award 1335082.

  6. A geometrical approach to free-field quantization

    International Nuclear Information System (INIS)

    Tabensky, R.; Valle, J.W.F.

    1977-01-01

    A geometrical approach to the quantization of free relativistic fields is given. Complex probability amplitudes are assigned to the solutions of the classical evolution equation. It is assumed that the evolution is stricly classical, according to the scalar unitary representation of the Poincare group in a functional space. The theory is equivalent to canonical quantization [pt

  7. Conductivity behaviour of polymer gel electrolytes: Role of polymer

    Indian Academy of Sciences (India)

    Unknown

    of a container that can hold a large amount of solvent and as a result possesses the ... having high value of conductivity results in polymer gel electrolytes. They are ..... the availability of free ions provided by the acid. It gene- rally reaches a ...

  8. Quantitative proteome and phosphoproteome analyses of Streptomyces coelicolor reveal proteins and phosphoproteins modulating differentiation and secondary metabolism

    DEFF Research Database (Denmark)

    Rioseras, Beatriz; Sliaha, Pavel V; Gorshkov, Vladimir

    2018-01-01

    identified and quantified 3461 proteins corresponding to 44.3% of the S. coelicolor proteome across three developmental stages: vegetative hypha (MI); secondary metabolite producing hyphae (MII); and sporulating hyphae. A total of 1350 proteins exhibited more than 2-fold expression changes during....../Thr/Tyr kinases, making this genus an outstanding model for the study of bacterial protein phosphorylation events. We used mass spectrometry based quantitative proteomics and phosphoproteomics to characterize bacterial differentiation and activation of secondary metabolism of Streptomyces coelicolor. We...... the bacterial differentiation process. These proteins include 136 regulators (transcriptional regulators, transducers, Ser/Thr/Tyr kinases, signalling proteins), as well as 542 putative proteins with no clear homology to known proteins which are likely to play a role in differentiation and secondary metabolism...

  9. Effectiveness of Gel Repellents on Feral Pigeons

    Directory of Open Access Journals (Sweden)

    Birte Stock

    2013-12-01

    Full Text Available Millions of feral pigeons (Columba livia live in close association with the human population in our cities. They pose serious health risks to humans and lead to high economic loss due to damage caused to buildings. Consequently, house owners and city authorities are not willing to allow pigeons on their buildings. While various avian repellents are regularly introduced onto the market, scientific proof of efficacy is lacking. This study aimed at testing the effectiveness of two avian gel repellents and additionally examined their application from animal welfare standpoint. The gels used an alleged tactile or visual aversion of the birds, reinforced by additional sensory cues. We mounted experimental shelves with the installed repellents in a pigeon loft and observed the behavior of free-living feral pigeons towards the systems. Both gels showed a restricted, transient repellent effect, but failed to prove the claimed complete effectiveness. Additionally, the gels’ adhesive effect remains doubtful in view of animal welfare because gluing of plumage presents a risk to feral pigeons and also to other non-target birds. This study infers that both gels lack the promised complete efficacy, conflict with animal welfare concerns and are therefore not suitable for feral pigeon management in urban areas.

  10. Quantitative Phosphoproteomics Reveals Wee1 Kinase as a Therapeutic Target in a Model of Proneural Glioblastoma.

    Science.gov (United States)

    Lescarbeau, Rebecca S; Lei, Liang; Bakken, Katrina K; Sims, Peter A; Sarkaria, Jann N; Canoll, Peter; White, Forest M

    2016-06-01

    Glioblastoma (GBM) is the most common malignant primary brain cancer. With a median survival of about a year, new approaches to treating this disease are necessary. To identify signaling molecules regulating GBM progression in a genetically engineered murine model of proneural GBM, we quantified phosphotyrosine-mediated signaling using mass spectrometry. Oncogenic signals, including phosphorylated ERK MAPK, PI3K, and PDGFR, were found to be increased in the murine tumors relative to brain. Phosphorylation of CDK1 pY15, associated with the G2 arrest checkpoint, was identified as the most differentially phosphorylated site, with a 14-fold increase in phosphorylation in the tumors. To assess the role of this checkpoint as a potential therapeutic target, syngeneic primary cell lines derived from these tumors were treated with MK-1775, an inhibitor of Wee1, the kinase responsible for CDK1 Y15 phosphorylation. MK-1775 treatment led to mitotic catastrophe, as defined by increased DNA damage and cell death by apoptosis. To assess the extensibility of targeting Wee1/CDK1 in GBM, patient-derived xenograft (PDX) cell lines were also treated with MK-1775. Although the response was more heterogeneous, on-target Wee1 inhibition led to decreased CDK1 Y15 phosphorylation and increased DNA damage and apoptosis in each line. These results were also validated in vivo, where single-agent MK-1775 demonstrated an antitumor effect on a flank PDX tumor model, increasing mouse survival by 1.74-fold. This study highlights the ability of unbiased quantitative phosphoproteomics to reveal therapeutic targets in tumor models, and the potential for Wee1 inhibition as a treatment approach in preclinical models of GBM. Mol Cancer Ther; 15(6); 1332-43. ©2016 AACR. ©2016 American Association for Cancer Research.

  11. Fabrication of Meso-Porous Gamma-Alumina Films by Sol-Gel and Gel Casting Processes for Making Moisture Sensors

    Directory of Open Access Journals (Sweden)

    Kalyan Kumar Mistry

    2007-04-01

    Full Text Available Meso-porous g-Al2O3 film may be used as a highly sensitive trace moisture sensor. The crack-free alumina film was developed using a combination of sol-gel and tape casting processes, which produce high porosity, high surface area and small pore dimensions in the range of few nano-meter at uniform distribution. Sol-gel processes are well known in nano-technology and nano-material preparation, but it is difficult to make crack-free thick or thin films using this method. Tape cast methods are used for the fabrication of flexible crack-free thick ceramic sheets. Our objective was to develop nano-structured, crack-free, transparent Al2O3 film a few microns thick, has a highly porous and stable crystallographic nature. A metallic paste was printed by screen printing on both side of the film surface for electrodes to form a sensitive element. A silver wire (dia j=0.1mm lead was connected to a grid structure electrode using a silver paste spot for fine joining. Alumina is absorbs moisture molecules into its meso-porous layer and changes its electrical characteristics according to the moisture content, its dielectric constant increase as moisture increase. Moisture molecules can be conceived of as dipoles in random state before the application of an electric field. When the dipole orientation was changed from random to an equilibrium state under the application of external field, a large change in dielectric constant was observed. The number of water molecules absorbed determines the electrical impedance of the capacitor, which in turn is proportional to water vapor pressure.

  12. Comparison of two label-free global quantitation methods, APEX and 2D gel electrophoresis, applied to the Shigella dysenteriae proteome

    Directory of Open Access Journals (Sweden)

    Fleischmann Robert D

    2009-06-01

    Full Text Available Abstract The in vitro stationary phase proteome of the human pathogen Shigella dysenteriae serotype 1 (SD1 was quantitatively analyzed in Coomassie Blue G250 (CBB-stained 2D gels. More than four hundred and fifty proteins, of which 271 were associated with distinct gel spots, were identified. In parallel, we employed 2D-LC-MS/MS followed by the label-free computationally modified spectral counting method APEX for absolute protein expression measurements. Of the 4502 genome-predicted SD1 proteins, 1148 proteins were identified with a false positive discovery rate of 5% and quantitated using 2D-LC-MS/MS and APEX. The dynamic range of the APEX method was approximately one order of magnitude higher than that of CBB-stained spot intensity quantitation. A squared Pearson correlation analysis revealed a reasonably good correlation (R2 = 0.67 for protein quantities surveyed by both methods. The correlation was decreased for protein subsets with specific physicochemical properties, such as low Mr values and high hydropathy scores. Stoichiometric ratios of subunits of protein complexes characterized in E. coli were compared with APEX quantitative ratios of orthologous SD1 protein complexes. A high correlation was observed for subunits of soluble cellular protein complexes in several cases, demonstrating versatile applications of the APEX method in quantitative proteomics.

  13. Bioactive materials for biomedical applications using sol-gel technology

    International Nuclear Information System (INIS)

    Gupta, Radha; Kumar, Ashok

    2008-01-01

    This review paper focuses on the sol-gel technology that has been applied in many of the potential research areas and highlights the importance of sol-gel technology for preparing bioactive materials for biomedical applications. The versatility of sol-gel chemistry enables us to manipulate the characteristics of material required for particular applications. Sol-gel derived materials have proved to be good biomaterials for coating films and for the construction of super-paramagnetic nanoparticles, bioactive glasses and fiberoptic applicators for various biomedical applications. The introduction of the sol-gel route in a conventional method of preparing implants improves the mechanical strength, biocompatibility and bioactivity of scaffolds and prevents corrosion of metallic implants. The use of organically modified silanes (ORMOSILS) yields flexible and bioactive materials for soft and hard tissue replacement. A novel approach of nitric-oxide-releasing sol-gels as antibacterial coatings for reducing the infection around orthopedic implants has also been discussed

  14. Modelling of erosion of bentonite gel by gel/sol flow

    Energy Technology Data Exchange (ETDEWEB)

    Moreno, Luis; Neretnieks, Ivars; Longcheng Liu (Chemical Engineering and Technology, School of Chemical Science and Engineering, Royal Institute of Technology, Stockholm (Sweden))

    2010-11-15

    Bentonite intrusion into a fracture intersecting the canister deposition hole is modelled. The model describes the expansion of the bentonite within the fracture. It accounts for the repulsive electrostatic double-layer forces, the attractive van der Waals forces and friction forces between the particles and the water. The model also takes into account the diffusion of the colloid particles in the smectite sol. Diffusion of a counterion, sodium, is accounted for as this strongly influences the double layer force and the viscosity of the gel/sol. The gel/sol is considered to be a fluid with a varying viscosity that is strongly dependent on the bentonite volume fraction in the gel and the sodium concentration in the water. Two different geometries were modelled; a rectangular and a cylindrical. The rectangular geometry was used to gain experience with the processes and mechanisms and how they interact since the cylindrical geometry was somewhat less stable numerically and more time consuming. In the rectangular geometry a fracture 1 metre long in the flow direction was modelled. In both geometries the fracture size was selected sufficiently large to ensure that the water velocity, near the distant border was nearly the same as the approaching water velocity and that the smectite concentration there was vanishingly small. It was found that the velocity of the fluid drops considerably where the bentonite volume fraction is larger than 1-2%. This is due to the strong increase in viscosity with increasing bentonite volume fraction. The loss of smectite by the slowly flowing fluid was found to be proportional to the square root of the seeping water velocity for the rectangular geometry. For the cylindrical geometry, the dependence is somewhat lower (exponent about 0.4) since the length of the gel/water interface decreases with increasing water flow rate. The penetration depth of the gel/water interface decreases with increasing water flow rate. For water velocity of the

  15. Modelling of erosion of bentonite gel by gel/sol flow

    International Nuclear Information System (INIS)

    Moreno, Luis; Neretnieks, Ivars; Longcheng Liu

    2010-11-01

    Bentonite intrusion into a fracture intersecting the canister deposition hole is modelled. The model describes the expansion of the bentonite within the fracture. It accounts for the repulsive electrostatic double-layer forces, the attractive van der Waals forces and friction forces between the particles and the water. The model also takes into account the diffusion of the colloid particles in the smectite sol. Diffusion of a counterion, sodium, is accounted for as this strongly influences the double layer force and the viscosity of the gel/sol. The gel/sol is considered to be a fluid with a varying viscosity that is strongly dependent on the bentonite volume fraction in the gel and the sodium concentration in the water. Two different geometries were modelled; a rectangular and a cylindrical. The rectangular geometry was used to gain experience with the processes and mechanisms and how they interact since the cylindrical geometry was somewhat less stable numerically and more time consuming. In the rectangular geometry a fracture 1 metre long in the flow direction was modelled. In both geometries the fracture size was selected sufficiently large to ensure that the water velocity, near the distant border was nearly the same as the approaching water velocity and that the smectite concentration there was vanishingly small. It was found that the velocity of the fluid drops considerably where the bentonite volume fraction is larger than 1-2%. This is due to the strong increase in viscosity with increasing bentonite volume fraction. The loss of smectite by the slowly flowing fluid was found to be proportional to the square root of the seeping water velocity for the rectangular geometry. For the cylindrical geometry, the dependence is somewhat lower (exponent about 0.4) since the length of the gel/water interface decreases with increasing water flow rate. The penetration depth of the gel/water interface decreases with increasing water flow rate. For water velocity of the

  16. Free Energy Calculations using a Swarm-Enhanced Sampling Molecular Dynamics Approach.

    Science.gov (United States)

    Burusco, Kepa K; Bruce, Neil J; Alibay, Irfan; Bryce, Richard A

    2015-10-26

    Free energy simulations are an established computational tool in modelling chemical change in the condensed phase. However, sampling of kinetically distinct substates remains a challenge to these approaches. As a route to addressing this, we link the methods of thermodynamic integration (TI) and swarm-enhanced sampling molecular dynamics (sesMD), where simulation replicas interact cooperatively to aid transitions over energy barriers. We illustrate the approach by using alchemical alkane transformations in solution, comparing them with the multiple independent trajectory TI (IT-TI) method. Free energy changes for transitions computed by using IT-TI grew increasingly inaccurate as the intramolecular barrier was heightened. By contrast, swarm-enhanced sampling TI (sesTI) calculations showed clear improvements in sampling efficiency, leading to more accurate computed free energy differences, even in the case of the highest barrier height. The sesTI approach, therefore, has potential in addressing chemical change in systems where conformations exist in slow exchange. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Sol-Gel Glasses

    Science.gov (United States)

    Mukherjee, S. P.

    1985-01-01

    Multicomponent homogeneous, ultrapure noncrystalline gels/gel derived glasses are promising batch materials for the containerless glass melting experiments in microgravity. Hence, ultrapure, homogeneous gel precursors could be used to: (1) investigate the effect of the container induced nucleation on the glass forming ability of marginally glass forming compositions; and (2) investigate the influence of gravity on the phase separation and coarsening behavior of gel derived glasses in the liquid-liquid immiscibility zone of the nonsilicate systems having a high density phase. The structure and crystallization behavior of gels in the SiO2-GeO2 as a function of gel chemistry and thermal treatment were investigated. As are the chemical principles involved in the distribution of a second network former in silica gel matrix being investigated. The procedures for synthesizing noncrystalline gels/gel-monoliths in the SiO2-GeO2, GeO2-PbO systems were developed. Preliminary investigations on the levitation and thermal treatment of germania silicate gel-monoliths in the Pressure Facility Acoustic Levitator were done.

  18. A simple gel electrophoresis method for separating polyhedral gold nanoparticles

    Science.gov (United States)

    Kim, Suhee; Lee, Hye Jin

    2015-07-01

    In this paper, a simple approach to separate differently shaped and sized polyhedral gold nanoparticles (NPs) within colloidal solutions via gel electrophoresis is described. Gel running parameters for separating efficiently gold NPs including gel composition, added surfactant types and applied voltage were investigated. The plasmonic properties and physical structure of the separated NPs extracted from the gel matrix were then investigated using transmission electron microscopy (TEM) and UV-vis spectrophotometry respectively. Data analysis revealed that gel electrophoresis conditions of a 1.5 % agarose gel with 0.1 % sodium dodecyl sulfate (SDS) surfactant under an applied voltage of 100 V resulted in the selective isolation of ~ 50 nm polyhedral shaped gold nanoparticles. Further efforts are underway to apply the method to purify biomolecule-conjugated polyhedral Au NPs that can be readily used for NP-enhanced biosensing platforms.

  19. Ionic liquids in a poly ethylene oxide cross-linked gel polymer as an electrolyte for electrical double layer capacitor

    Science.gov (United States)

    Chaudoy, V.; Tran Van, F.; Deschamps, M.; Ghamouss, F.

    2017-02-01

    In the present work, we developed a gel polymer electrolyte via the incorporation of a room temperature ionic liquid into a cross-linked polymer matrix. The cross-linked gel electrolyte was prepared using a free radical polymerization of methacrylate and dimethacrylate oligomers dissolved in 1-propyl-1-methylpyrrolidinium bis(fluorosulfonyl)imide. Combining the advantages of the ionic liquids and of conventional polymers, the cross-linked gel polymer electrolyte was used both as a separator and as an electrolyte for a leakage-free and non-flammable EDLC supercapacitor. The quasi-all solid-state supercapacitors showed rather good capacitance, power and energy densities by comparison to a liquid electrolyte-based EDLC.

  20. Structural development and kinetic analysis of PbTiO3 powders processed at low-temperature via new sol-gel approach

    Science.gov (United States)

    Bel-Hadj-Tahar, Radhouane; Abboud, Mohamed

    2018-04-01

    The synthesis of crystalline lead titanate powder by a generic low-temperature sol-gel approach is developed. Acetoin was added as ligand, instead of the commonly used alkanolamines, to ensure total dissolution of the precursor compounds. The feasibility of the acetoin-Ti isopropoxide complex as a new precursor of PbTiO3 perovskite particles via sol-gel method has been demonstrated. No excess lead has been introduced. Nanometric PbTiO3 crystallites have been formed at 400 °C under atmospheric pressure from titanium isopropoxide and lead acetate in alcoholic solution by remarkably low activation energy of crystallization process of 90 kJ mol-1. The powders show tetragonal lattice and dendritic morphology. In addition to the effect of heat-treatment temperature, time, and atmosphere, the sol chemistry particularly influenced the phase composition, particle size, and particle morphology. The use of different ligands significantly modified powder morphology. The extent of the crystallization was quantitatively evaluated by differential thermal analysis and analyzed by Johnson-Mehl-Avrami approach. The crystallization followed two rate regimes depending on the interval of the crystallized fraction.

  1. Blotting from PhastGel to Membranes by Ultrasound.

    Science.gov (United States)

    Kost, Joseph; Azagury, Aharon

    2015-01-01

    Ultrasound based approach for enhanced protein blotting is proposed. Three minutes of ultrasound exposure (1 MHz, 2.5 W/cm(2)) was sufficient for a clear transfer of proteins from a polyacrylamide gel (PhastGel) to nitrocellulose or Nylon 66 Biotrans membrane. The proteins evaluated were prestained sodium dodecyl sulfate-polyacrylamide standards (18,500-106,000 Da) and 14C-labeled Rainbow protein molecular weight markers (14,300-200,000 Da).

  2. Characterization of the Rheological and Swelling Properties of Synthetic Alkali Silicate Gels in Order to Predict Their Behavior in ASR Damaged Concrete

    Science.gov (United States)

    Vayghan, Asghar Gholizadeh

    stress of the gels, causing a significant drop in this parameter followed by some increase as they approached their upper values. Na/Si and K/Si were both found contribute to the osmotic potential of the ASR gels, while increase in Ca/Si generally led to a drop in this parameter. The presence of all components (Ca, Na, and K) were found to contribute to the pH of the gels' pore solution, and Ca/Si and Na/Si showed a synergistic effect on this parameter. Lithium, on the other hand, was found to be able to drop the OH- concentration of the pore solution by a factor of five in the case of high-sodium gels, which could partially explain its ASR mitigating effect. Phase II: Investigation of the free and restrained swelling behavior, hydrophilic potential and viscoelastic properties of ASR gels produced through the "paste method". 20 gel compositions were selected (using the central composite design method) with Ca/Si, Na/Si and K/Si molar ratios varying in the ranges (0.05-0.5), (0.1-1.0) and (0.0-0.3), respectively. The gels were produced by batching appropriate amounts of certain precursors containing different chemical components. After curing, the gels were tested for the abovementioned parameters using some innovative test methods as explained in the relevant chapters. The results suggest that increasing the alkali content (Na/Si and K/Si) in ASR gels resulted in an increase in the gels' free swelling and water absorption, and a reduction in the equilibrium relative humidity (ERH). However, no significant effect was found for Ca/Si with respect to the ERH. Ca/Si was found to have a multi-episode effect on the swelling and water absorption properties of the gels. An increase in Ca/Si up to 0.18 led to a considerable reduction in the swelling strain, followed by a slight increasing effect as it approached 0.4. Further increase in Ca/Si resulted in complete elimination of swelling strain. While Na/Si and K/Si could constantly increase the free swelling strain, their

  3. Ocular Proteomics with Emphasis on Two-Dimensional Gel Electrophoresis and Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    Honoré Bent

    2010-01-01

    Full Text Available Abstract The intention of this review is to provide an overview of current methodologies employed in the rapidly developing field of ocular proteomics with emphasis on sample preparation, two-dimensional polyacrylamide gel electrophoresis (2D-PAGE and mass spectrometry (MS. Appropriate sample preparation for the diverse range of cells and tissues of the eye is essential to ensure reliable results. Current methods of protein staining for 2D-PAGE, protein labelling for two-dimensional difference gel electrophoresis, gel-based expression analysis and protein identification by MS are summarised. The uses of gel-free MS-based strategies (MuDPIT, iTRAQ, ICAT and SILAC are also discussed. Proteomic technologies promise to shed new light onto ocular disease processes that could lead to the discovery of strong novel biomarkers and therapeutic targets useful in many ophthalmic conditions.

  4. Rosemary Essential Oil-Loaded Lipid Nanoparticles: In Vivo Topical Activity from Gel Vehicles

    Directory of Open Access Journals (Sweden)

    Lucia Montenegro

    2017-10-01

    Full Text Available Although rosemary essential oil (EO shows many biological activities, its topical benefits have not been clearly demonstrated. In this work, we assessed the effects on skin hydration and elasticity of rosemary EO after topical application via gel vehicles in human volunteers. To improve its topical efficacy, rosemary EO was loaded into lipid nanoparticles (NLCs consisting of cetyl palmitate as a solid lipid, and non-ionic surfactants. Such NLCs were prepared using different ratios of EO/solid lipid and those containing EO 3% w/w and cetyl pamitate 7% w/w were selected for in vivo studies, showing the best technological properties (small particle size, low polydispersity index and good stability. Gels containing free EO or EO-loaded NLCs were applied on the hand skin surface of ten healthy volunteers twice a day for one week. Skin hydration and elasticity changes were recorded using the instrument Soft Plus. Gels containing EO-loaded NLCs showed a significant increase in skin hydration in comparison with gels containing free EO. Skin elasticity increased, as well, although to a lesser extent. The results of this study point out the usefulness of rosemary EO-loaded NLCs for the treatment of cutaneous alterations involving loss of skin hydration and elasticity.

  5. Preliminary study of diffusion effects in Fricke gel dosimeters

    International Nuclear Information System (INIS)

    Quiroga, A.; Vedelago, J.; Valente, M.

    2014-08-01

    Diffusion of ferric ions in ferrous sulfate (Fricke) gels represents one of the main drawbacks of some radiation detectors, like Fricke gel dosimeters. In practice, this disadvantage can be overcome by prompt dosimeter analysis, constraining strongly the time between irradiation and analysis. Due to required integral accuracy levels, special dedicated protocols are implemented with the aim of minimizing signal blurring due to diffusion effects. This work presents dedicated analytic modelling and numerical calculations of diffusion coefficients in Fricke gel radiation sensitive material. Samples are optically analysed by means of visible light transmission measurements capturing images with a Ccd camera provided with a monochromatic 585 nm filter corresponding to the X O-infused Fricke solution absorbance peak. Dose distributions in Fricke gels are suitably delivered in order to assess specific initial conditions further studied by periodical sample image acquisitions. In a first analytic approach, experimental data are fit with linear models in order to achieve a value for the diffusion coefficient. The second approach to the problem consists on a group of computational algorithms based on inverse problem formulation, along with suitable 2D diffusion model capable of estimating diffusion coefficients by fitting the obtained algorithm numerical solutions with the corresponding experimental data. Comparisons are performed by introducing an appropriate functional in order to analyse both experimental and numerical values. Solutions to second order diffusion equation are calculated in the framework of a dedicated method that incorporates Finite Element Method. Moreover, optimised solutions can be attained by gradient type minimisation algorithms. Knowledge about diffusion coefficient for Fricke gel radiation detector might be helpful in accounting for effects regarding elapsed time between dosimeter irradiation and further analysis. Hence, corrections might be included

  6. Strength of interactions between immobilized dye molecules and sol-gel matrices.

    Science.gov (United States)

    Ismail, Fanya; Schoenleber, Monika; Mansour, Rolan; Bastani, Behnam; Fielden, Peter; Goddard, Nicholas J

    2011-02-21

    In this paper we present a new theory to re-examine the immobilization technique of dye doped sol-gel films, define the strength and types of possible bonds between the immobilized molecule and sol-gel glass, and show that the immobilized molecule is not free inside the pores as was previously thought. Immobilizing three different pH sensitive dyes with different size and functional groups inside the same sol-gel films revealed important information about the nature of the interaction between the doped molecule and the sol-gel matrix. The samples were characterized by means of ultraviolet-visible spectrophotometer (UV-VIS), thermal gravimetric analysis (TGA), mercury porosimetry (MP), nuclear magnetic resonance spectroscopy ((29)Si NMR) and field-emission environmental scanning electron microscopy (ESEM-FEG). It was found that the doped molecule itself has a great effect on the strength and types of the bonds. A number of factors were identified, such as number and types of the functional groups, overall charge, size, pK(a) and number of the silanol groups which surround the immobilized molecule. These results were confirmed by the successful immobilization of bromocresol green (BCG) after a completely polymerized sol-gel was made. The sol-gel consisted of 50% tetraethoxysilane (TEOS) and 50% methyltriethoxysilane (MTEOS) (w/w). Moreover, the effect of the immobilized molecule on the structure of the sol-gel was studied by means of a leaky waveguide (LW) mode for doped films made before and after polymerization of the sol-gel.

  7. Thermostable gel polymer electrolyte based on succinonitrile and ionic liquid for high-performance solid-state supercapacitors

    Science.gov (United States)

    Pandey, Gaind P.; Liu, Tao; Hancock, Cody; Li, Yonghui; Sun, Xiuzhi Susan; Li, Jun

    2016-10-01

    A flexible, free-standing, thermostable gel polymer electrolyte based on plastic crystalline succinonitrile (SN) and ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate (BMImBF4) entrapped in copolymer poly(vinylidene fluoride-co-hexafluoropropylene) (PVdF-HFP) is prepared and optimized for application in solvent-free solid-state supercapacitors. The synthesized gel polymer electrolyte exhibits a high ionic conductivity over a wide temperature range (from ∼5 × 10-4 S cm-1 at -30 °C up to ∼1.5 × 10-2 S cm-1 at 80 °C) with good electrochemical stability window (-2.9 to 2.5 V). Thermal studies confirm that the SN containing gel polymer electrolyte remains stable in the same gel phase over a wide temperature range from -30 to 90 °C. The electric double layer capacitors (EDLCs) have been fabricated using activated carbon as active materials and new gel polymer electrolytes. Electrochemical performance of the EDLCs is assessed through cyclic voltammetry, galvanostatic charge-discharge cycling and impedance spectroscopy. The EDLC cells with the proper SN-containing gel polymer electrolyte has been found to give high specific capacitance 176 F g-1 at 0.18 A g-1 and 138 F g-1 at 8 A g-1. These solid-state EDLC cells show good cycling stability and the capability to retain ∼80% of the initial capacitance after 10,000 cycles.

  8. Recent developments in polymer gel dosimetry

    International Nuclear Information System (INIS)

    John Schreiner, L.; Olding, Tim; Holmes, Oliver; McAuley, Kim

    2008-01-01

    Modern radiation therapy particularly with intensity modulation techniques (IMRT) offers the potential to improve patient outcomes by better limiting high doses to the tumour alone. In this presentation we report our progress in developing gel dosimetry with new less toxic dosimeters using a fast commercial optical computed tomography (OCT) scanner. We will demonstrate that these adjustments in the approach to gel dosimetry help facilitate its introduction into clinical use. We will review practical advances in system quality assurance and scatter correction to improve optical CT quantification, and show an example of a clinical implementation of an IGRT treatment validation

  9. The evaluation of collagen gel with various connection states by using MRI

    International Nuclear Information System (INIS)

    Kudo, Hiroki; Mukai, Naoki; Gouping, Chen; Numanno, Tomokazu; Honma, Kazuhiro; Tateishi, Tetsuya; Miyanaga, Yutaka; Miyakawa, Syumpei

    2008-01-01

    To noninvasively evaluate the connection states of collagen fiber, a characterizing factor of the physical property, is considered to be helpful in the evaluation of cartilage functions. The purpose of this study was to examine how the connection states of collagen influence the MRI parameters by evaluating the collagen gel with various connection states using MRI. MRI was performed to six type I collagen gel samples with various connection status and a water sample. The evaluation parameters included T1 relaxation time, T2 relaxation time, and diffusion coefficient. With regard to gel samples with cross-links, the T2 relaxation time was shortened in proportion to the dose of glutaraldehyde. It is considered that as the glutaraldehyde concentration increases, the distance between protons in water molecules decreases; this is followed by a stronger bipole-bipole interaction, resulting in a shorter T2 relaxation time. The diffusion coefficient for gel samples with cross-links also decreased with increasing glutaraldehyde concentrations. However, gel samples without glutaraldehyde were almost the same as that of the water. This result suggested that the degree of entrapment of water inside the gel samples without cross-links, even when it converted into gel, was found to be nearly equal to that of the free water

  10. Optical Sensors for Biomolecules Using Nanoporous Sol-Gel Materials

    Science.gov (United States)

    Fang, Jonathan; Zhou, Jing C.; Lan, Esther H.; Dunn, Bruce; Gillman, Patricia L.; Smith, Scott M.

    2004-01-01

    An important consideration for space missions to Mars is the ability to detect biosignatures. Solid-state sensing elements for optical detection of biological entities are possible using sol-gel based biologically active materials. We have used these materials as optical sensing elements in a variety of bioassays, including immunoassays and enzyme assays. By immobilizing an appropriate biomolecule in the sol-gel sensing element, we have successfully detected analytes such as amino acids and hormones. In the case of the amino acid glutamate, the enzyme glutamate dehydrogenase was the immobilized molecule, whereas in the case of the hormone cortisol, an anti-cortisol antibody was immobilized in the sensing element. In this previous work with immobilized enzymes and antibodies, excellent sensitivity and specificity were demonstrated in a variety of formats including bulk materials, thin films and fibers. We believe that the sol-gel approach is an attractive platform for bioastronautics sensing applications because of the ability to detect a wide range of entities such as amino acids, fatty acids, hopanes, porphyrins, etc. The sol-gel approach produces an optically transparent 3D silica matrix that forms around the biomolecule of interest, thus stabilizing its structure and functionality while allowing for optical detection. This encapsulation process protects the biomolecule and leads to a more "rugged" sensor. The nanoporous structure of the sol-gel matrix allows diffusion of small target molecules but keeps larger, biomolecules immobilized in the pores. We are currently developing these biologically active sol-gel materials into small portable devices for on-orbit cortisol detection

  11. Preparation and characterization of Mn-doped Li{sub 0.06}(Na{sub 0.5}K{sub 0.5}){sub 0.94}NbO{sub 3} lead-free piezoelectric ceramics with surface sol-gel coatings

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Ae Ri; Lee, Seong Eui; Lee, Hee Chul [Korea Polytechnic University, Shiheung (Korea, Republic of)

    2014-08-15

    This study investigated the effects of Mn doping and sol-gel surface coating on the structural and the electrical properties of lead-free Li{sub 0.06}(K{sub 0.5}Na{sub 0.5}){sub 0.94}NbO{sub 3}(LNKN) ceramics in disc form for use as eco-friendly piezoelectric devices. The 1-mol% Mn-doped LNKN ceramic showed a relatively high piezoelectric constant owing to its high density in the case of its being annealed at a temperature of 1010 .deg. C. A Mn-doped LNKN sol-gel solution with the same composition as that of the ceramics was spin-coated and sintered on both sides of the ceramic surfaces to acquire improved electrical properties. The sol-gel surface coating could play a decisive role in filling the pores, resulting in flat and stable interfaces between the electrodes and the piezoelectric elements. As a result, the highest piezoelectric constant, d{sub 33}, of 173 pC/N could be obtained for the Mn-doped LNKN ceramics with 420-nm-thick sol-gel surface coatings.

  12. An ab initio approach to free-energy reconstruction using logarithmic mean force dynamics

    International Nuclear Information System (INIS)

    Nakamura, Makoto; Obata, Masao; Morishita, Tetsuya; Oda, Tatsuki

    2014-01-01

    We present an ab initio approach for evaluating a free energy profile along a reaction coordinate by combining logarithmic mean force dynamics (LogMFD) and first-principles molecular dynamics. The mean force, which is the derivative of the free energy with respect to the reaction coordinate, is estimated using density functional theory (DFT) in the present approach, which is expected to provide an accurate free energy profile along the reaction coordinate. We apply this new method, first-principles LogMFD (FP-LogMFD), to a glycine dipeptide molecule and reconstruct one- and two-dimensional free energy profiles in the framework of DFT. The resultant free energy profile is compared with that obtained by the thermodynamic integration method and by the previous LogMFD calculation using an empirical force-field, showing that FP-LogMFD is a promising method to calculate free energy without empirical force-fields

  13. GelTouch

    DEFF Research Database (Denmark)

    Miruchna, Viktor; Walter, Robert; Lindlbauer, David

    2015-01-01

    We present GelTouch, a gel-based layer that can selectively transition between soft and stiff to provide tactile multi-touch feedback. It is flexible, transparent when not activated, and contains no mechanical, electromagnetic, or hydraulic components, resulting in a compact form factor (a 2mm thin...... touchscreen layer for our prototype). The activated areas can be morphed freely and continuously, without being limited to fixed, predefined shapes. GelTouch consists of a poly(N-isopropylacrylamide) gel layer which alters its viscoelasticity when activated by applying heat (>32 C). We present three different...

  14. In-gel and OFFGEL-based proteomic approach for authentication of meat species from minced meat and meat products.

    Science.gov (United States)

    Naveena, Basappa M; Jagadeesh, Deepak S; Kamuni, Veeranna; Muthukumar, Muthupalani; Kulkarni, Vinayak V; Kiran, Mohan; Rapole, Srikanth

    2018-02-01

    Fraudulent mislabelling of processed meat products on a global scale that cannot be detected using conventional techniques necessitates sensitive, robust and accurate methods of meat authentication to ensure food safety and public health. In the present study, we developed an in-gel (two-dimensional gel electrophoresis, 2DE) and OFFGEL-based proteomic method for authenticating raw and cooked water buffalo (Bubalus bubalis), sheep (Ovis aries) and goat (Caprus hircus) meat and their mixes. The matrix-assisted liquid desorption/ionization time-of-flight mass spectrometric analysis of proteins separated using 2DE or OFFGEL electrophoresis delineated species-specific peptide biomarkers derived from myosin light chain 1 and 2 (MLC1 and MLC2) of buffalo-sheep-goat meat mix in definite proportions at 98:1:1, 99:0.5:0.5 and 99.8:0.1:0.1 that were found stable to resist thermal processing. In-gel and OFFGEL-based proteomic approaches are efficient in authenticating meat mixes spiked at minimum 1.0% and 0.1% levels, respectively, in triple meat mix for both raw and cooked samples. The study demonstrated that authentication of meat from a complex mix of three closely related species requires identification of more than one species-specific peptide due to close similarity between their amino acid sequences. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  15. The gel electrophoresis markup language (GelML) from the Proteomics Standards Initiative.

    Science.gov (United States)

    Gibson, Frank; Hoogland, Christine; Martinez-Bartolomé, Salvador; Medina-Aunon, J Alberto; Albar, Juan Pablo; Babnigg, Gyorgy; Wipat, Anil; Hermjakob, Henning; Almeida, Jonas S; Stanislaus, Romesh; Paton, Norman W; Jones, Andrew R

    2010-09-01

    The Human Proteome Organisation's Proteomics Standards Initiative has developed the GelML (gel electrophoresis markup language) data exchange format for representing gel electrophoresis experiments performed in proteomics investigations. The format closely follows the reporting guidelines for gel electrophoresis, which are part of the Minimum Information About a Proteomics Experiment (MIAPE) set of modules. GelML supports the capture of metadata (such as experimental protocols) and data (such as gel images) resulting from gel electrophoresis so that laboratories can be compliant with the MIAPE Gel Electrophoresis guidelines, while allowing such data sets to be exchanged or downloaded from public repositories. The format is sufficiently flexible to capture data from a broad range of experimental processes, and complements other PSI formats for MS data and the results of protein and peptide identifications to capture entire gel-based proteome workflows. GelML has resulted from the open standardisation process of PSI consisting of both public consultation and anonymous review of the specifications.

  16. Comparative Phosphoproteomics Reveals the Role of AmpC β-lactamase Phosphorylation in the Clinical Imipenem-resistant Strain Acinetobacter baumannii SK17*

    Science.gov (United States)

    Lai, Juo-Hsin; Yang, Jhih-Tian; Chern, Jeffy; Chen, Te-Li; Wu, Wan-Ling; Liao, Jiahn-Haur; Tsai, Shih-Feng; Liang, Suh-Yuen; Chou, Chi-Chi

    2016-01-01

    Nosocomial infectious outbreaks caused by multidrug-resistant Acinetobacter baumannii have emerged as a serious threat to human health. Phosphoproteomics of pathogenic bacteria has been used to identify the mechanisms of bacterial virulence and antimicrobial resistance. In this study, we used a shotgun strategy combined with high-accuracy mass spectrometry to analyze the phosphoproteomics of the imipenem-susceptible strain SK17-S and -resistant strain SK17-R. We identified 410 phosphosites on 248 unique phosphoproteins in SK17-S and 285 phosphosites on 211 unique phosphoproteins in SK17-R. The distributions of the Ser/Thr/Tyr/Asp/His phosphosites in SK17-S and SK17-R were 47.0%/27.6%/12.4%/8.0%/4.9% versus 41.4%/29.5%/17.5%/6.7%/4.9%, respectively. The Ser-90 phosphosite, located on the catalytic motif S88VS90K of the AmpC β-lactamase, was first identified in SK17-S. Based on site-directed mutagenesis, the nonphosphorylatable mutant S90A was found to be more resistant to imipenem, whereas the phosphorylation-simulated mutant S90D was sensitive to imipenem. Additionally, the S90A mutant protein exhibited higher β-lactamase activity and conferred greater bacterial protection against imipenem in SK17-S compared with the wild-type. In sum, our results revealed that in A. baumannii, Ser-90 phosphorylation of AmpC negatively regulates both β-lactamase activity and the ability to counteract the antibiotic effects of imipenem. These findings highlight the impact of phosphorylation-mediated regulation in antibiotic-resistant bacteria on future drug design and new therapies. PMID:26499836

  17. Stacking gels: A method for maximising output for pulsed-field gel electrophoresis

    Directory of Open Access Journals (Sweden)

    Heng See

    2009-01-01

    Full Text Available Pulsed field gel electrophoresis (PFGE, the gold standard of molecular typing methods, has a major disadvantage of an unusually long electrophoretic time. From the original protocol of 6 days, it was modified to 3 days and subsequently to a single day. We describe the procedure of stacking five to six gels one on top of another in order to increase and maximize the output in a shorter time without compromising the resolution and reproducibility. All the variables that affect pulsed field gels during electrophoresis were taken into consideration. We firstly optimized the parameters to be used and secondly determined whether stacking of five to six gels had any effect on the molecular separation during electrophoresis in comparison with a single gel run. DNA preparation, restriction, electrophoresis, staining and gel documentation was carried out based on previously published methods. Gels were analysed using BioNumerics and dice coefficient and unweighted pair group methods were used to generate dendrograms based on 1.5% tolerance values. Identical band profiles and band resolution-separation were seen in the PFGE patterns with single gel and multiple stacking gels. Cluster analysis further strengthened the fact that results from stacking gels were reproducible and comparable with a single gel run. This method of stacking gels saves time and maximizes the output at the same time. The run time for a single gel was about 28 hours, but with six stacked gels the run time was 54 hours compared with 28 x 6 = 168 hours if they were run separately as single gels thus saving time of 67.86%. Beside the big factor of saving time, stacking gels save resources (electricity, reagents, water, chemicals and working time by increasing the sample throughput in a shorter time without compromising on quality of data. But optimization of working parameters is vital depending on the PFGE system used.

  18. Dorsal free graft urethroplasty for urethral stricture by ventral sagittal urethrotomy approach.

    Science.gov (United States)

    Asopa, H S; Garg, M; Singhal, G G; Singh, L; Asopa, J; Nischal, A

    2001-11-01

    To explore the feasibility of applying a dorsal free graft to treat urethral stricture by the ventral sagittal urethrotomy approach without mobilizing the urethra. Twelve patients with long or multiple strictures of the anterior urethra were treated by a dorsal free full-thickness preputial or buccal mucosa graft. The urethra was not separated from the corporal bodies and was opened in the midline over the stricture. The floor of the urethra was incised, and an elliptical raw area was created over the tunica on which a free full-thickness graft of preputial or buccal mucosa was secured. The urethra was retubularized in one stage. After a follow-up of 8 to 40 months, one recurrence developed and required dilation. The ventral sagittal urethrotomy approach for dorsal free graft urethroplasty is not only feasible and successful, but is easy to perform.

  19. Starch and chitosan oligosaccharides as interpenetrating phases in poly(N-isopropylacrylamide) injectable gels

    Energy Technology Data Exchange (ETDEWEB)

    Vieira, Jacquelin N.; Posada, James J. [Chemistry Department, B" 5IDA Research Group, Universidad Simón Bolívar, Caracas (Venezuela, Bolivarian Republic of); Rezende, Rodrigo A. [Divisão de Tecnologias Tridimensionais–Centro de Tecnologia da Informação Renato Archer, Campinas, SP (Brazil); Sabino, Marcos A., E-mail: msabino@usb.ve [Chemistry Department, B" 5IDA Research Group, Universidad Simón Bolívar, Caracas (Venezuela, Bolivarian Republic of); Divisão de Tecnologias Tridimensionais–Centro de Tecnologia da Informação Renato Archer, Campinas, SP (Brazil)

    2014-04-01

    Thermosensitive interpenetrating gels were prepared by physically blending poly(N-isopropylacrylamide) (PNIPA) as the matrix and the following polysaccharides as interpenetrating phases: chitosan oligosaccharides (identified as QNAD and QNED) and soluble starch (STARCH). The molecular weight of the dispersed phase, the free water/bound water ratio and the thermosensitivity (transition temperature: LCST) of the gels were determined. It was found that these gels are pseudoplastic and that their viscosity depends on the molecular weight of the dispersed phase. LCST transition occurred around 35–37 °C. The morphology of the porosity of the freeze-dried samples was studied by Scanning Electron Microscopy (SEM). An in vitro test of cell hemolysis on blood agar showed that these gels are noncytotoxic. According to the results obtained, these interpenetrating gels show characteristics of an injectable material, and have a transition LCST at body temperature, which reinforces their potential to be used in the surgical field and as scaffolds for tissue engineering. - Highlights: • Physical blends were prepared to obtain thermosensitive gels PNIPA/polysaccharides. • Rheological test allowed verifying the injectability of the gels. • Gels showed a LCST ∼ 37 °C, which makes them interesting for biomedical applications. • Porosity is a function of hydrophobicity/hydrophilicity/molecular weight of phases. • The PNIPA/starch gel showed better morphology as scaffold for tissue engineering.

  20. Extracting information from two-dimensional electrophoresis gels by partial least squares regression

    DEFF Research Database (Denmark)

    Jessen, Flemming; Lametsch, R.; Bendixen, E.

    2002-01-01

    of all proteins/spots in the gels. In the present study it is demonstrated how information can be extracted by multivariate data analysis. The strategy is based on partial least squares regression followed by variable selection to find proteins that individually or in combination with other proteins vary......Two-dimensional gel electrophoresis (2-DE) produces large amounts of data and extraction of relevant information from these data demands a cautious and time consuming process of spot pattern matching between gels. The classical approach of data analysis is to detect protein markers that appear...... or disappear depending on the experimental conditions. Such biomarkers are found by comparing the relative volumes of individual spots in the individual gels. Multivariate statistical analysis and modelling of 2-DE data for comparison and classification is an alternative approach utilising the combination...

  1. Structural analysis of gluten-free doughs by fractional rheological model

    Science.gov (United States)

    Orczykowska, Magdalena; Dziubiński, Marek; Owczarz, Piotr

    2015-02-01

    This study examines the effects of various components of tested gluten-free doughs, such as corn starch, amaranth flour, pea protein isolate, and cellulose in the form of plantain fibers on rheological properties of such doughs. The rheological properties of gluten-free doughs were assessed by using the rheological fractional standard linear solid model (FSLSM). Parameter analysis of the Maxwell-Wiechert fractional derivative rheological model allows to state that gluten-free doughs present a typical behavior of viscoelastic quasi-solid bodies. We obtained the contribution dependence of each component used in preparations of gluten-free doughs (either hard-gel or soft-gel structure). The complicate analysis of the mechanical structure of gluten-free dough was done by applying the FSLSM to explain quite precisely the effects of individual ingredients of the dough on its rheological properties.

  2. A Library of Phosphoproteomic and Chromatin Signatures for Characterizing Cellular Responses to Drug Perturbations.

    Science.gov (United States)

    Litichevskiy, Lev; Peckner, Ryan; Abelin, Jennifer G; Asiedu, Jacob K; Creech, Amanda L; Davis, John F; Davison, Desiree; Dunning, Caitlin M; Egertson, Jarrett D; Egri, Shawn; Gould, Joshua; Ko, Tak; Johnson, Sarah A; Lahr, David L; Lam, Daniel; Liu, Zihan; Lyons, Nicholas J; Lu, Xiaodong; MacLean, Brendan X; Mungenast, Alison E; Officer, Adam; Natoli, Ted E; Papanastasiou, Malvina; Patel, Jinal; Sharma, Vagisha; Toder, Courtney; Tubelli, Andrew A; Young, Jennie Z; Carr, Steven A; Golub, Todd R; Subramanian, Aravind; MacCoss, Michael J; Tsai, Li-Huei; Jaffe, Jacob D

    2018-04-25

    Although the value of proteomics has been demonstrated, cost and scale are typically prohibitive, and gene expression profiling remains dominant for characterizing cellular responses to perturbations. However, high-throughput sentinel assays provide an opportunity for proteomics to contribute at a meaningful scale. We present a systematic library resource (90 drugs × 6 cell lines) of proteomic signatures that measure changes in the reduced-representation phosphoproteome (P100) and changes in epigenetic marks on histones (GCP). A majority of these drugs elicited reproducible signatures, but notable cell line- and assay-specific differences were observed. Using the "connectivity" framework, we compared signatures across cell types and integrated data across assays, including a transcriptional assay (L1000). Consistent connectivity among cell types revealed cellular responses that transcended lineage, and consistent connectivity among assays revealed unexpected associations between drugs. We further leveraged the resource against public data to formulate hypotheses for treatment of multiple myeloma and acute lymphocytic leukemia. This resource is publicly available at https://clue.io/proteomics. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  3. Quantitative phosphoproteome on the silkworm (Bombyx mori) cells infected with baculovirus.

    Science.gov (United States)

    Shobahah, Jauharotus; Xue, Shengjie; Hu, Dongbing; Zhao, Cui; Wei, Ming; Quan, Yanping; Yu, Wei

    2017-06-19

    Bombyx mori has become an important model organism for many fundamental studies. Bombyx mori nucleopolyhedrovirus (BmNPV) is a significant pathogen to Bombyx mori, yet also an efficient vector for recombinant protein production. A previous study indicated that acetylation plays many vital roles in several cellular processes of Bombyx mori while global phosphorylation pattern upon BmNPV infection remains elusive. Employing tandem mass tag (TMT) labeling and phosphorylation affinity enrichment followed by high-resolution LC-MS/MS analysis and intensive bioinformatics analysis, the quantitative phosphoproteome in Bombyx mori cells infected by BmNPV at 24 hpi with an MOI of 10 was extensively examined. Totally, 6480 phosphorylation sites in 2112 protein groups were identified, among which 4764 sites in 1717 proteins were quantified. Among the quantified proteins, 81 up-regulated and 25 down-regulated sites were identified with significant criteria (the quantitative ratio above 1.3 was considered as up-regulation and below 0.77 was considered as down-regulation) and with significant p-value (p < 0.05). Some proteins of BmNPV were also hyperphosphorylated during infection, such as P6.9, 39 K, LEF-6, Ac58-like protein, Ac82-like protein and BRO-D. The phosphorylated proteins were primary involved in several specific functions, out of which, we focused on the binding activity, protein synthesis, viral replication and apoptosis through kinase activity.

  4. Influence of the gel thickness on in vivo hyaline cartilage regeneration induced by double-network gel implanted at the bottom of a large osteochondral defect: short-term results.

    Science.gov (United States)

    Matsuda, Hidetoshi; Kitamura, Nobuto; Kurokawa, Takayuki; Arakaki, Kazunobu; Gong, Jian Ping; Kanaya, Fuminori; Yasuda, Kazunori

    2013-01-31

    A double-network (DN) gel, which is composed of poly(2-acrylamido-2-methylpropanesulfonic acid) and poly(N,N'-dimethyl acrylamide), can induce hyaline cartilage regeneration in vivo in a large osteochondral defect. The purpose of this study was to clarify the influence of the thickness of the implanted DN gel on the induction ability of hyaline cartilage regeneration. Thirty-eight mature rabbits were used in this study. We created an osteochondral defect having a diameter of 4.3-mm in the patellofemoral joint. The knees were randomly divided into 4 groups (Group I: 0.5-mm thick gel, Group II: 1.0-mm thick gel, Group III: 5.0-mm thick gel, and Group IV: untreated control). Animals in each group were further divided into 3 sub-groups depending on the gel implant position (2.0-, 3.0-, or 4.0-mm depth from the articular surface) in the defect. The regenerated tissues were evaluated with the Wayne's gross and histological grading scales and real time PCR analysis of the cartilage marker genes at 4 weeks. According to the total Wayne's score, when the depth of the final vacant space was set at 2.0 mm, the scores in Groups I, II, and III were significantly greater than that Group IV (phyaline cartilage regeneration as the 5.0-mm thick DN gel plug. However, the induction ability of the 0.5-mm thick sheet was significantly lower when compared with the 1.0-mm thick gel sheet. The 1.0-mm DN gel sheet is a promising device to establish a cell-free cartilage regeneration strategy that minimizes bone loss from the gel implantation.

  5. Thermodynamic analysis of sol-gel transition of gelatin in terms of water activity in various solutions.

    Science.gov (United States)

    Miyawaki, Osato; Omote, Chiaki; Matsuhira, Keiko

    2015-12-01

    Sol-gel transition of gelatin was analyzed as a multisite stoichiometric reaction of a gelatin molecule with water and solute molecules. The equilibrium sol-gel transition temperature, Tt , was estimated from the average of gelation and melting temperature measured by differential scanning calorimetry. From Tt and the melting enthalpy, ΔHsol , the equilibrium sol-to-gel ratio was estimated by the van't Hoff equation. The reciprocal form of the Wyman-Tanford equation, which describes the sol-to-gel ratio as a function of water activity, was successfully applied to obtain a good linear relationship. From this analysis, the role of water activity on the sol-gel transition of gelatin was clearly explained and the contributions of hydration and solute binding to gelatin molecules were separately discussed in sol-gel transition. The general solution for the free energy for gel-stabilization in various solutions was obtained as a simple function of solute concentration. © 2015 Wiley Periodicals, Inc.

  6. Recent developments in gluten-free bread baking approaches: a review

    Directory of Open Access Journals (Sweden)

    Kun WANG

    Full Text Available Abstract Celiac disease (CD is one of the most common human intestinal malabsorption diseases. The only effective treatment for patients with CD is to follow a gluten-free (GF diet strictly. Nowadays, the increasing incidence of CD promotes worldwide interests for various desirable GF products. However, baking without gluten, the key ingredient for bread structure and quality, is a big challenge for all bakers and cereal researchers. Several approaches have been applied to understand and improve gluten-free bread (GFB elaboration and further studies are still required. The main focus of this review is to discuss the approaches for GFB improvements in recent 5 years, including the use of novel alternative flours, functional ingredients, processing aids, additives, innovative techniques, and their combinations.

  7. Influence of the gel thickness on in vivo hyaline cartilage regeneration induced by double-network gel implanted at the bottom of a large osteochondral defect: Short-term results

    Directory of Open Access Journals (Sweden)

    Matsuda Hidetoshi

    2013-01-01

    Full Text Available Abstract Background A double-network (DN gel, which is composed of poly(2-acrylamido-2-methylpropanesulfonic acid and poly(N,N’-dimethyl acrylamide, can induce hyaline cartilage regeneration in vivo in a large osteochondral defect. The purpose of this study was to clarify the influence of the thickness of the implanted DN gel on the induction ability of hyaline cartilage regeneration. Methods Thirty-eight mature rabbits were used in this study. We created an osteochondral defect having a diameter of 4.3-mm in the patellofemoral joint. The knees were randomly divided into 4 groups (Group I: 0.5-mm thick gel, Group II: 1.0-mm thick gel, Group III: 5.0-mm thick gel, and Group IV: untreated control. Animals in each group were further divided into 3 sub-groups depending on the gel implant position (2.0-, 3.0-, or 4.0-mm depth from the articular surface in the defect. The regenerated tissues were evaluated with the Wayne’s gross and histological grading scales and real time PCR analysis of the cartilage marker genes at 4 weeks. Results According to the total Wayne’s score, when the depth of the final vacant space was set at 2.0 mm, the scores in Groups I, II, and III were significantly greater than that Group IV (p  Conclusions The 1.0-mm thick DN gel sheet had the same ability to induce hyaline cartilage regeneration as the 5.0-mm thick DN gel plug. However, the induction ability of the 0.5-mm thick sheet was significantly lower when compared with the 1.0-mm thick gel sheet. The 1.0-mm DN gel sheet is a promising device to establish a cell-free cartilage regeneration strategy that minimizes bone loss from the gel implantation.

  8. Identifications of Putative PKA Substrates with Quantitative Phosphoproteomics and Primary-Sequence-Based Scoring.

    Science.gov (United States)

    Imamura, Haruna; Wagih, Omar; Niinae, Tomoya; Sugiyama, Naoyuki; Beltrao, Pedro; Ishihama, Yasushi

    2017-04-07

    Protein kinase A (PKA or cAMP-dependent protein kinase) is a serine/threonine kinase that plays essential roles in the regulation of proliferation, differentiation, and apoptosis. To better understand the functions of PKA, it is necessary to elucidate the direct interplay between PKA and their substrates in living human cells. To identify kinase target substrates in a high-throughput manner, we first quantified the change of phosphoproteome in the cells of which PKA activity was perturbed by drug stimulations. LC-MS/MS analyses identified 2755 and 3191 phosphopeptides from experiments with activator or inhibitor of PKA. To exclude potential indirect targets of PKA, we built a computational model to characterize the kinase sequence specificity toward the substrate target site based on known kinase-substrate relationships. Finally, by combining the sequence recognition model with the quantitative changes in phosphorylation measured in the two drug perturbation experiments, we identified 29 reliable candidates of PKA targeting residues in living cells including 8 previously known substrates. Moreover, 18 of these sites were confirmed to be site-specifically phosphorylated in vitro. Altogether this study proposed a confident list of PKA substrate candidates, expanding our knowledge of PKA signaling network.

  9. Reconsidering Cluster Bias in Multilevel Data: A Monte Carlo Comparison of Free and Constrained Baseline Approaches.

    Science.gov (United States)

    Guenole, Nigel

    2018-01-01

    The test for item level cluster bias examines the improvement in model fit that results from freeing an item's between level residual variance from a baseline model with equal within and between level factor loadings and between level residual variances fixed at zero. A potential problem is that this approach may include a misspecified unrestricted model if any non-invariance is present, but the log-likelihood difference test requires that the unrestricted model is correctly specified. A free baseline approach where the unrestricted model includes only the restrictions needed for model identification should lead to better decision accuracy, but no studies have examined this yet. We ran a Monte Carlo study to investigate this issue. When the referent item is unbiased, compared to the free baseline approach, the constrained baseline approach led to similar true positive (power) rates but much higher false positive (Type I error) rates. The free baseline approach should be preferred when the referent indicator is unbiased. When the referent assumption is violated, the false positive rate was unacceptably high for both free and constrained baseline approaches, and the true positive rate was poor regardless of whether the free or constrained baseline approach was used. Neither the free or constrained baseline approach can be recommended when the referent indicator is biased. We recommend paying close attention to ensuring the referent indicator is unbiased in tests of cluster bias. All Mplus input and output files, R, and short Python scripts used to execute this simulation study are uploaded to an open access repository.

  10. Accurate calculation of conformational free energy differences in explicit water: the confinement-solvation free energy approach.

    Science.gov (United States)

    Esque, Jeremy; Cecchini, Marco

    2015-04-23

    The calculation of the free energy of conformation is key to understanding the function of biomolecules and has attracted significant interest in recent years. Here, we present an improvement of the confinement method that was designed for use in the context of explicit solvent MD simulations. The development involves an additional step in which the solvation free energy of the harmonically restrained conformers is accurately determined by multistage free energy perturbation simulations. As a test-case application, the newly introduced confinement/solvation free energy (CSF) approach was used to compute differences in free energy between conformers of the alanine dipeptide in explicit water. The results are in excellent agreement with reference calculations based on both converged molecular dynamics and umbrella sampling. To illustrate the general applicability of the method, conformational equilibria of met-enkephalin (5 aa) and deca-alanine (10 aa) in solution were also analyzed. In both cases, smoothly converged free-energy results were obtained in agreement with equilibrium sampling or literature calculations. These results demonstrate that the CSF method may provide conformational free-energy differences of biomolecules with small statistical errors (below 0.5 kcal/mol) and at a moderate computational cost even with a full representation of the solvent.

  11. Quantitative cardiac phosphoproteomics profiling during ischemia-reperfusion in an immature swine model

    Energy Technology Data Exchange (ETDEWEB)

    Ledee, Dolena R.; Kang, Min A.; Kajimoto, Masaki; Purvine, Samuel O.; Brewer, Heather M.; Pasa Tolic, Ljiljana; Portman, Michael A.

    2017-07-01

    Ischemia-reperfusion (I/R) results in altered metabolic and molecular responses, and phosphorylation is one of the most noted regulatory mechanisms mediating signaling mechanisms during physiological stresses. To expand our knowledge of the potential phosphoproteomic changes in the myocardium during I/R, we used Isobaric Tags for Relative and Absolute Quantitation-based analyses in left ventricular samples obtained from porcine hearts under control or I/R conditions. The data are available via ProteomeXchange with identifier PXD006066. We identified 1,896 phosphopeptides within left ventricular control and I/R porcine samples. Significant differential phosphorylation between control and I/R groups was discovered in 111 phosphopeptides from 86 proteins. Analysis of the phosphopeptides using Motif-x identified five motifs: (..R..S..), (..SP..), (..S.S..), (..S…S..), and (..S.T..). Semiquantitative immunoblots confirmed site location and directional changes in phosphorylation for phospholamban and pyruvate dehydrogenase E1, two proteins known to be altered by I/R and identified by this study. Novel phosphorylation sites associated with I/R were also identified. Functional characterization of the phosphopeptides identified by our methodology could expand our understanding of the signaling mechanisms involved during I/R damage in the heart as well as identify new areas to target therapeutic strategies.

  12. Quantitative phosphoproteomic analysis of caprine muscle with high and low meat quality.

    Science.gov (United States)

    Liu, Manshun; Wei, Yanchao; Li, Xin; Quek, Siew Young; Zhao, Jing; Zhong, Huazhen; Zhang, Dequan; Liu, Yongfeng

    2018-07-01

    During the conversion of muscle to meat, protein phosphorylation can regulate various biological processes that have important effects on meat quality. To investigate the phosphorylation pattern of protein on rigor mortis, goat longissimus thoracis and external intercostals were classified into two groups (high quality and low quality), and meat quality was evaluated according to meat quality attributes (Warner-Bratzler shear force, Color, pH and drip loss). A quantitative mass spectrometry-based phosphoproteomic study was conducted to analyze the caprine muscle at 12h postmortem applying the TiO 2 -SIMAC-HILIC (TiSH) phosphopeptide enrichment strategy. A total of 2125 phosphopeptides were identified from 750 phosphoproteins. Among them, 96 proteins had differed in phosphorylation levels. The majority of these proteins are involved in glucose metabolism and muscle contraction. The differential phosphorylation level of proteins (PFK, MYL2 and HSP27) in two groups may be the crucial factors of regulating muscle rigor mortis. This study provides a comprehensive view for the phosphorylation status of caprine muscle at rigor mortis, it also gives a better understanding of the regulation of protein phosphorylation on various biological processes that affect the final meat quality attributes. Copyright © 2018. Published by Elsevier Ltd.

  13. DNA DAMAGE QUANTITATION BY ALKALINE GEL ELECTROPHORESIS.

    Energy Technology Data Exchange (ETDEWEB)

    SUTHERLAND,B.M.; BENNETT,P.V.; SUTHERLAND, J.C.

    2004-03-24

    Physical and chemical agents in the environment, those used in clinical applications, or encountered during recreational exposures to sunlight, induce damages in DNA. Understanding the biological impact of these agents requires quantitation of the levels of such damages in laboratory test systems as well as in field or clinical samples. Alkaline gel electrophoresis provides a sensitive (down to {approx} a few lesions/5Mb), rapid method of direct quantitation of a wide variety of DNA damages in nanogram quantities of non-radioactive DNAs from laboratory, field, or clinical specimens, including higher plants and animals. This method stems from velocity sedimentation studies of DNA populations, and from the simple methods of agarose gel electrophoresis. Our laboratories have developed quantitative agarose gel methods, analytical descriptions of DNA migration during electrophoresis on agarose gels (1-6), and electronic imaging for accurate determinations of DNA mass (7-9). Although all these components improve sensitivity and throughput of large numbers of samples (7,8,10), a simple version using only standard molecular biology equipment allows routine analysis of DNA damages at moderate frequencies. We present here a description of the methods, as well as a brief description of the underlying principles, required for a simplified approach to quantitation of DNA damages by alkaline gel electrophoresis.

  14. Preliminary study of diffusion effects in Fricke gel dosimeters

    Energy Technology Data Exchange (ETDEWEB)

    Quiroga, A. [Centro de Investigacion y Estudios de Matematica de Cordoba, Oficina 318 FaMAF - UNC, Ciudad Universitaria, 5000 Cordoba (Argentina); Vedelago, J. [Laboratorio de Investigaciones e Instrumentacion en Fisica Aplicada a la Medicina e Imagenes por Rayos X, Laboratorio 448 FaMAF - UNC, Ciudad Universitaria, 5000 Cordoba (Argentina); Valente, M., E-mail: aiquiroga@famaf.unc.edu [Instituto de Fisica Enrique Gaviola, Oficina 102 FaMAF - UNC, Av. Luis Medina Allende, Ciudad Universitaria, 5000 Cordoba (Argentina)

    2014-08-15

    Diffusion of ferric ions in ferrous sulfate (Fricke) gels represents one of the main drawbacks of some radiation detectors, like Fricke gel dosimeters. In practice, this disadvantage can be overcome by prompt dosimeter analysis, constraining strongly the time between irradiation and analysis. Due to required integral accuracy levels, special dedicated protocols are implemented with the aim of minimizing signal blurring due to diffusion effects. This work presents dedicated analytic modelling and numerical calculations of diffusion coefficients in Fricke gel radiation sensitive material. Samples are optically analysed by means of visible light transmission measurements capturing images with a Ccd camera provided with a monochromatic 585 nm filter corresponding to the X O-infused Fricke solution absorbance peak. Dose distributions in Fricke gels are suitably delivered in order to assess specific initial conditions further studied by periodical sample image acquisitions. In a first analytic approach, experimental data are fit with linear models in order to achieve a value for the diffusion coefficient. The second approach to the problem consists on a group of computational algorithms based on inverse problem formulation, along with suitable 2D diffusion model capable of estimating diffusion coefficients by fitting the obtained algorithm numerical solutions with the corresponding experimental data. Comparisons are performed by introducing an appropriate functional in order to analyse both experimental and numerical values. Solutions to second order diffusion equation are calculated in the framework of a dedicated method that incorporates Finite Element Method. Moreover, optimised solutions can be attained by gradient type minimisation algorithms. Knowledge about diffusion coefficient for Fricke gel radiation detector might be helpful in accounting for effects regarding elapsed time between dosimeter irradiation and further analysis. Hence, corrections might be included

  15. Effects of copper ions on the characteristics of egg white gel induced by strong alkali.

    Science.gov (United States)

    Shao, Yaoyao; Zhao, Yan; Xu, Mingsheng; Chen, Zhangyi; Wang, Shuzhen; Tu, Yonggang

    2017-09-01

    This study investigated the effects of copper ions on egg white (EW) gel induced by strong alkali. Changes in gel characteristics were examined through texture profile analysis, scanning electron microscopy (SEM), and chemical methods. The value of gel strength reached its maximum when 0.1% copper ions was added. However, the lowest cohesiveness values were observed at 0.1%. The springiness of gel without copper ions was significantly greater than the gel with copper ions added. SEM results illustrated that the low concentration of copper ions contributes to a dense and uniform gel network, and an open matrix was formed at 0.4%. The free and total sulphhydryl group content in the egg white protein gel significantly decreased with the increased copper. The increase of copper ions left the contents of ionic and hydrogen bonds basically unchanged, hydrophobic interaction presented an increasing trend, and the disulfide bond exhibited a completely opposite change. The change of surface hydrophobicity proved that the main binding force of copper induced gel was hydrophobic interaction. However, copper ions had no effect on the protein component of the gels. Generally, a low level of copper ions facilitates protein-protein association, which is involved in the characteristics of gels. Instead, high ionic strength had a negative effect on gels induced by strong alkali. © 2017 Poultry Science Association Inc.

  16. Retina tissue engineering by conjunctiva mesenchymal stem cells encapsulated in fibrin gel: Hypotheses on novel approach to retinal diseases treatment.

    Science.gov (United States)

    Soleimannejad, Mostafa; Ebrahimi-Barough, Somayeh; Nadri, Samad; Riazi-Esfahani, Mohammad; Soleimani, Masoud; Tavangar, Seyed Mohammad; Ai, Jafar

    2017-04-01

    Retinitis pigmentosa (RP) and age related macular degeneration (AMD) are two retinal diseases that progress by photoreceptor cells death. In retinal transplantation studies, stem and progenitor cells inject into the sub retinal space or vitreous and then these cells can be migrate to the site of retinal degeneration and locate in the host retina and restitute vision. Our hypothesis suggests that using human conjunctiva stem cells (as the source for increasing the number of human stem cells progenitor cells in retina dysfunction diseases) with fibrin gel and also assessing its relating in vitro (cellular and molecular processes) and in vivo (vision tests and pathology) could be a promising strategy for treatment of AMD and RP disorders. In this idea, we describe a novel approach for retina tissue engineering with differentiation of conjunctiva mesenchymal stem cells (CJMSCs) into photoreceptor-like cells in fibrin gel with induction medium contain taurine. For assessment of differentiation, immunocytochemistry and real time PCR are used for the expression of Rhodopsin, RPE65, Nestin as differentiated photoreceptor cell markers in 2D and 3D culture. The results show that fibrin gel will offer a proper 3D scaffold for CJMSCs derived photoreceptor cell-like cells. Application of immune-privileged, readily available sources of adult stem cells like human conjunctiva stem cells with fibrin gel would be a promising strategy to increase the number of photoreceptor progenitor cells and promote involuntary angiogenesis needed in retina layer repair and regeneration. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Phosphoproteome and transcription factor activity profiling identify actions of the anti-inflammatory agent UTL-5g in LPS stimulated RAW 264.7 cells including disrupting actin remodeling and STAT-3 activation.

    Science.gov (United States)

    Carruthers, Nicholas J; Stemmer, Paul M; Chen, Ben; Valeriote, Frederick; Gao, Xiaohua; Guatam, Subhash C; Shaw, Jiajiu

    2017-09-15

    UTL-5g is a novel small-molecule TNF-alpha modulator. It reduces cisplatin-induced side effects by protecting kidney, liver, and platelets, thereby increasing tolerance for cisplatin. UTL-5g also reduces radiation-induced acute liver toxicity. The mechanism of action for UTL-5g is not clear at the present time. A phosphoproteomic analysis to a depth of 4943 phosphopeptides and a luminescence-based transcription factor activity assay were used to provide complementary analyses of signaling events that were disrupted by UTL-5g in RAW 264.7 cells. Transcriptional activity downstream of the interferon gamma, IL-6, type 1 Interferon, TGF-β, PKC/Ca 2+ and the glucocorticoid receptor pathways were disrupted by UTL-5g. Phosphoproteomic analysis indicated that hyperphosphorylation of proteins involved in actin remodeling was suppressed by UTL-5g (gene set analysis, FDR 5g. This global characterization of UTL-5g activity in a macrophage cell line discovered that it disrupts selected aspects of LPS signaling including Stat3 activation and actin remodeling providing new insight on how UTL-5g acts to reduce cisplatin-induced side effects. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Sol-gel method for encapsulating molecules

    Science.gov (United States)

    Brinker, C. Jeffrey; Ashley, Carol S.; Bhatia, Rimple; Singh, Anup K.

    2002-01-01

    A method for encapsulating organic molecules, and in particular, biomolecules using sol-gel chemistry. A silica sol is prepared from an aqueous alkali metal silicate solution, such as a mixture of silicon dioxide and sodium or potassium oxide in water. The pH is adjusted to a suitably low value to stabilize the sol by minimizing the rate of siloxane condensation, thereby allowing storage stability of the sol prior to gelation. The organic molecules, generally in solution, is then added with the organic molecules being encapsulated in the sol matrix. After aging, either a thin film can be prepared or a gel can be formed with the encapsulated molecules. Depending upon the acid used, pH, and other processing conditions, the gelation time can be from one minute up to several days. In the method of the present invention, no alcohols are generated as by-products during the sol-gel and encapsulation steps. The organic molecules can be added at any desired pH value, where the pH value is generally chosen to achieve the desired reactivity of the organic molecules. The method of the present invention thereby presents a sufficiently mild encapsulation method to retain a significant portion of the activity of the biomolecules, compared with the activity of the biomolecules in free solution.

  19. Transport Phenomena in Gel

    Directory of Open Access Journals (Sweden)

    Masayuki Tokita

    2016-05-01

    Full Text Available Gel becomes an important class of soft materials since it can be seen in a wide variety of the chemical and the biological systems. The unique properties of gel arise from the structure, namely, the three-dimensional polymer network that is swollen by a huge amount of solvent. Despite the small volume fraction of the polymer network, which is usually only a few percent or less, gel shows the typical properties that belong to solids such as the elasticity. Gel is, therefore, regarded as a dilute solid because its elasticity is much smaller than that of typical solids. Because of the diluted structure, small molecules can pass along the open space of the polymer network. In addition to the viscous resistance of gel fluid, however, the substance experiences resistance due to the polymer network of gel during the transport process. It is, therefore, of importance to study the diffusion of the small molecules in gel as well as the flow of gel fluid itself through the polymer network of gel. It may be natural to assume that the effects of the resistance due to the polymer network of gel depends strongly on the network structure. Therefore, detailed study on the transport processes in and through gel may open a new insight into the relationship between the structure and the transport properties of gel. The two typical transport processes in and through gel, that is, the diffusion of small molecules due to the thermal fluctuations and the flow of gel fluid that is caused by the mechanical pressure gradient will be reviewed.

  20. Comparative Phosphoproteomics Reveals the Role of AmpC β-lactamase Phosphorylation in the Clinical Imipenem-resistant Strain Acinetobacter baumannii SK17.

    Science.gov (United States)

    Lai, Juo-Hsin; Yang, Jhih-Tian; Chern, Jeffy; Chen, Te-Li; Wu, Wan-Ling; Liao, Jiahn-Haur; Tsai, Shih-Feng; Liang, Suh-Yuen; Chou, Chi-Chi; Wu, Shih-Hsiung

    2016-01-01

    Nosocomial infectious outbreaks caused by multidrug-resistant Acinetobacter baumannii have emerged as a serious threat to human health. Phosphoproteomics of pathogenic bacteria has been used to identify the mechanisms of bacterial virulence and antimicrobial resistance. In this study, we used a shotgun strategy combined with high-accuracy mass spectrometry to analyze the phosphoproteomics of the imipenem-susceptible strain SK17-S and -resistant strain SK17-R. We identified 410 phosphosites on 248 unique phosphoproteins in SK17-S and 285 phosphosites on 211 unique phosphoproteins in SK17-R. The distributions of the Ser/Thr/Tyr/Asp/His phosphosites in SK17-S and SK17-R were 47.0%/27.6%/12.4%/8.0%/4.9% versus 41.4%/29.5%/17.5%/6.7%/4.9%, respectively. The Ser-90 phosphosite, located on the catalytic motif S(88)VS(90)K of the AmpC β-lactamase, was first identified in SK17-S. Based on site-directed mutagenesis, the nonphosphorylatable mutant S90A was found to be more resistant to imipenem, whereas the phosphorylation-simulated mutant S90D was sensitive to imipenem. Additionally, the S90A mutant protein exhibited higher β-lactamase activity and conferred greater bacterial protection against imipenem in SK17-S compared with the wild-type. In sum, our results revealed that in A. baumannii, Ser-90 phosphorylation of AmpC negatively regulates both β-lactamase activity and the ability to counteract the antibiotic effects of imipenem. These findings highlight the impact of phosphorylation-mediated regulation in antibiotic-resistant bacteria on future drug design and new therapies. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  1. Dye incorporation in polyphosphate gels: synthesis and theoretical calculations

    Directory of Open Access Journals (Sweden)

    Jordan Del Nero

    2003-06-01

    Full Text Available In this work we described theoretical calculations on the electronic structure and optical properties of the dyes crystal violet and malachite green based in semiempirical methods (Parametric Method 3 and Intermediate Neglect of Differential Overlap / Spectroscopic - Configuration Interaction and the synthesis of a new hybrid material based upon the incorporation of these dyes in an aluminum polyphosphate gel network. The samples are nearly transparent, free-standing thick films. The optical properties of the entrapped dyes are sensitive to chemical changes within the matrix caused either by gel aging or external stimulli such as exposition to acidic and basic vapors that can percolate within the matrix. Our theoretical modeling is in good agreement with the experimental results for the dyes.

  2. New approaches and solutions of the nonlinear force-free field

    International Nuclear Information System (INIS)

    Xie Baisong; Yin Xintao; Luo Xia

    2006-01-01

    New approaches to nonlinear force-free field equations are presented and new exact solutions are found analytically. Examples are given and some implications of the results to astrophysical solar plasmas as well as tokamak plasmas are discussed

  3. Silk-fibrin/hyaluronic acid composite gels for nucleus pulposus tissue regeneration.

    Science.gov (United States)

    Park, Sang-Hyug; Cho, Hongsik; Gil, Eun Seok; Mandal, Biman B; Min, Byoung-Hyun; Kaplan, David L

    2011-12-01

    Scaffold designs are critical for in vitro culture of tissue-engineered cartilage in three-dimensional environments to enhance cellular differentiation for tissue engineering and regenerative medicine. In the present study we demonstrated silk and fibrin/hyaluronic acid (HA) composite gels as scaffolds for nucleus pulposus (NP) cartilage formation, providing both biochemical support for NP outcomes as well as fostering the retention of size of the scaffold during culture due to the combined features of the two proteins. Passage two (P2) human chondrocytes cultured in 10% serum were encapsulated within silk-fibrin/HA gels. Five study groups with fibrin/HA gel culture (F/H) along with varying silk concentrations (2% silk gel only, fibrin/HA gel culture with 1% silk [F/H+1S], 1.5% silk [F/H+1.5S], and 2% silk [F/H+2S]) were cultured in serum-free chondrogenic defined media (CDM) for 4 weeks. Histological examination with alcian blue showed a defined chondrogenic area at 1 week in all groups that widened homogenously until 4 weeks. In particular, chondrogenic differentiation observed in the F/H+1.5S had no reduction in size throughout the culture period. The results of biochemical and molecular biological evaluations supported observations made during histological examination. Mechanical strength measurements showed that the silk mixed gels provided stronger mechanical properties for NP tissue than fibrin/HA composite gels in CDM. This effect could potentially be useful in the study of in vitro NP tissue engineering as well as for clinical implications for NP tissue regeneration.

  4. Highly efficient solid-state neutron scintillators based on hybrid sol-gel nanocomposite materials

    International Nuclear Information System (INIS)

    Kesanli, Banu; Hong, Kunlun; Meyer, Kent; Im, Hee-Jung; Dai, Sheng

    2006-01-01

    This research highlights opportunities in the formulation of neutron scintillators that not only have high scintillation efficiencies but also can be readily cast into two-dimensional detectors. Series of transparent, crack-free monoliths were prepared from hybrid polystyrene-silica nanocomposites in the presence of arene-containing alkoxide precursor through room temperature sol-gel processing. The monoliths also contain lithium-6 salicylate as a target material for neutron-capture reactions and amphiphilic scintillator solution as a fluorescent sensitizer. Polystyrene was functionalized by trimethoxysilyl group in order to enable the covalent incorporation of aromatic functional groups into the inorganic sol-gel matrices for minimizing macroscopic phase segregation and facilitating lithium-6 doping in the sol-gel samples. Neutron and alpha responses of these hybrid polystyrene-silica monoliths were explored

  5. Thorium inorganic gels

    International Nuclear Information System (INIS)

    Genet, M.; Brandel, V.

    1988-01-01

    The optimum pH and concentration values of thorium salts and oxoacids or oxoacid salts which lead to transparent and stable inorganic gels have been determined. The isotherm drying process of the gel at 50 0 C leads successively to a partly dehydrated gel, then, to the formation of an unusual liquid phase and, finally to a dry amorphous solid phase which is still transparent. This kind of transparent inorganic gels and amorphous phase can be used as matrices for spectroscopic studies [fr

  6. Strippable gel for decontamination of contaminated metallic surfaces

    International Nuclear Information System (INIS)

    Banerjee, D.; Sandhya, U.; Khot, S.A.; Srinivas, C.; Wattal, P.K.

    2013-01-01

    Periodic decontamination of radioactive laboratories including fume hoods, glove boxes and all surfaces used for handling, processing and transporting radioactive materials is mandatory in all nuclear installations as this reduces spread of contamination and decreases total man rem exposure. Conventionally, chemical decontaminating agents or surfactant solutions are used for this purpose. However, this approach leads to generation of large volume of secondary radioactive waste. The use of strippable gel is an attractive alternative with low secondary waste generation particularly where removal of loose or weakly fixed contamination is necessary and also when the decontaminated material are to be reused, for e.g. decontamination of fume hoods, glove boxes, transport casks, spent fuel storage racks, control rod drive transport containers etc. Literature on gel formulations is scarce and mostly in the patent form. The sustained effort on gel formulation development has resulted in a basic gel formulation. The gel is a highly viscous water-based organic polymer, particularly suitable for application on vertical surfaces including difficult to reach metallic surfaces of complex geometry and not just limited to horizontal surfaces. The gel can be easily applied on contaminated surfaces by brushing or spraying. Curing of the gel is complete within 16-24 hours under ambient conditions and can then be removed by peeling as a dry sheet. While curing, the contaminants are trapped in gel either physically or chemically depending upon the nature of the contaminant. Salient features of cured gel include that it is water soluble and can be disposed off after immobilization in cement. Decontamination performance of the gel was initially evaluated by applying it on SS planchettes contaminated with known amount of radionuclides such as Cs(I), Co(II) and Ce(III). The measured decontamination factor was found to be in the range of 50-500, lowest for Ce(III) and highest for Co

  7. Study of the confined solutions properties: case of gel formed during nuclear glass alteration

    International Nuclear Information System (INIS)

    Matar-Briman, I.

    2012-01-01

    In this study, we have investigated the thermodynamic properties, the structure and the dynamics of confined solutions in model gels and in a gel coming from glass alteration. The first step was to determine the structure and the dynamics of pure confined water in porous materials by using nuclear magnetic resonance and neutron scattering. Meso-porous silica was elaborated and grafted by sol-gel route to decrease the pore sizes from 2.7 to 2 nm and to modify pore surfaces to have Si-OH, Zr-OH and Al-OH. The second step involved determining the dynamics of water in leachate confined in the model gels and in the gel of altered glass by using neutron scattering. In the model gels and at a 10 -12 -10 -9 second timescale, two kinds of waters were highlighted: first, an interfacial water linked to the pore surfaces and second, a free water in the pore core. Their ratio depends on the pore size and pore surface composition. Whatever the pore surface, when the pore size decreases the free water ratio in the pore center also decreases. For pores smaller than 2.3 nm and pore surfaces with Zr-OH or Al-OH surfaces, water is strongly linked to the surface and few water molecules are mobile. This is due to the ability of alumina and zirconia to immobilize water molecules through chemical coordination bonds stronger than the physical bonds established between silica and water. The result also highlight that pore surface composition could be the predominant parameter affecting the fixed proton content. Moreover, the mobility of water confined in a leachate is not modified. The study of the water dynamics in a gel formed during alteration of glass constituted of SiO 2 , Al 2 O 3 and CaO, and having a porosity between 2 and 7 nm showed the same behavior as water confined in pores presenting an Al-OH surface. (author) [fr

  8. Radiotherapy gel dosimetry

    International Nuclear Information System (INIS)

    Baldock, C.

    2002-01-01

    be either through direct absorption of ionising radiation or via intermediate water free radicals. Fe 2+ ions are converted to Fe 3+ ions with a corresponding change in paramagnetic properties that may be quantified using NMR relaxation measurements or optical techniques. Due to predominantly diffusion-related limitations (and references therein), alternative polymer gel dosimeters were subsequently suggested. In polymer gels, monomers such as acrylamide and N,N'-methylene-bis-acrylamide are usually dispersed in a gelatin or agarose matrix. Monomers undergo a polymerisation reaction as a function of absorbed dose resulting in a 3D polymer gel matrix. The radiation-induced formation of polymer influences NMR relaxation properties and results in other physical changes that may be used to quantify absorbed radiation dose. As well as MRI, other quantitative techniques for measuring dose distributions include X-ray computer tomography, vibrational spectroscopy and ultrasound. Clinical applications of these radiologically tissue equivalent gel dosimeters have been reported in the literature. For further information of gel dosimetry and specifically clinical applications the proceedings of the 2nd International Conference on Radiotherapy Gel Dosimetry and references therein should be consulted

  9. Fabrication of mesoporous polymer monolith: a template-free approach.

    Science.gov (United States)

    Okada, Keisuke; Nandi, Mahasweta; Maruyama, Jun; Oka, Tatsuya; Tsujimoto, Takashi; Kondoh, Katsuyoshi; Uyama, Hiroshi

    2011-07-14

    Mesoporous polyacrylonitrile (PAN) monolith has been fabricated by a template-free approach using the unique affinity of PAN towards a water/dimethyl sulfoxide (DMSO) mixture. A newly developed Thermally Induced Phase Separation Technique (TIPS) has been used to obtain the polymer monoliths and their microstructures have been controlled by optimizing the concentration and cooling temperature.

  10. А new factor effecting gel strength of pectin polysaccharides

    Directory of Open Access Journals (Sweden)

    S. E. Kholov

    2016-01-01

    Full Text Available Pectin polysaccharides obtained from various raw materials have a different component composition and form gels with water, sugar and acid or calcium. In this study, an experimental approach the gelation properties of different pectin samples, varied from different sources, using new methods of hydrolysis and purification. Samples were obtained by hydrolysis of accelerated extraction of pectin and purified by diaultrfiltration, have a high gel strength. The highest gel strength have been found in series of high methoxyl (HM- pectin samples of apple, peach, orange and low methoxyl (LM- pectin samples of commercial citrus pectin and apple pectin obtained by new method. It is shown that in addition to the basic parameters (the content of galacturonic acid, degree of esterification, molecular weight and hidrodinamic radius macromolecule to affect gel strength pectins aggregation of macromolecules, which is determined by the z-average molecular weight. There were observed a clear pattern of the influence of the molecular weight on hydrodynamic parameters for both HM- and LM- pectin samples on the gel strength. It were shown that a high values of molecular weight, intrinsic viscosity, and radius of gyration of pectin samples can significantly increase gel strength, while the value of Mz oppositely influenced the gel strength. As a result, a systematic analysis of this parameter and its relationship to the average molecular weight found that indeed the ratio Mz/Mw for pectin’s is an crucial to assess the quality of pectin at the study of gel strength for pectin polysaccharides.

  11. Gel and gel-free approaches for the quantitative characterisation of complex protein mixtures

    CSIR Research Space (South Africa)

    Buthelezi, S

    2012-10-01

    Full Text Available reliable set of methods for profiling proteins in a complex mixture in order to allow for the mining of low abundant species. To achieve this, several fractionation techniques were applied to samples of bovine hepatic tissue. These included two... further separated via low pH reverse phase (RP) chromatography before being introduced for mass spectrometric analysis. MATERIALS AND METHODS Figure 1: Study design to analyse a complex mixture of proteins extracted from hepatic tissue. To determine...

  12. Phosphoproteome and Transcriptome of RA-Responsive and RA-Resistant Breast Cancer Cell Lines.

    Directory of Open Access Journals (Sweden)

    Marilyn Carrier

    Full Text Available Retinoic acid (RA, the main active vitamin A metabolite, controls multiple biological processes such as cell proliferation and differentiation through genomic programs and kinase cascades activation. Due to these properties, RA has proven anti-cancer capacity. Several breast cancer cells respond to the antiproliferative effects of RA, while others are RA-resistant. However, the overall signaling and transcriptional pathways that are altered in such cells have not been elucidated. Here, in a large-scale analysis of the phosphoproteins and in a genome-wide analysis of the RA-regulated genes, we compared two human breast cancer cell lines, a RA-responsive one, the MCF7 cell line, and a RA-resistant one, the BT474 cell line, which depicts several alterations of the "kinome". Using high-resolution nano-LC-LTQ-Orbitrap mass spectrometry associated to phosphopeptide enrichment, we found that several proteins involved in signaling and in transcription, are differentially phosphorylated before and after RA addition. The paradigm of these proteins is the RA receptor α (RARα, which was phosphorylated in MCF7 cells but not in BT474 cells after RA addition. The panel of the RA-regulated genes was also different. Overall our results indicate that RA resistance might correlate with the deregulation of the phosphoproteome with consequences on gene expression.

  13. Improvement in the accuracy of polymer gel dosimeters using scintillating fibers

    International Nuclear Information System (INIS)

    Tremblay, Nicolas M; Hubert-Tremblay, Vincent; Bujold, Rachel; Beaulieu, Luc; Lepage, Martin

    2010-01-01

    We propose a novel method for the absolute calibration of polyacrylamide gel (PAG) dosimeters with one or more reference scintillating fiber dosimeters inserted inside the gel. Four calibrated scintillating fibers were inserted into a cylindrical glass container filled with a PAG dosimeter irradiated with a wedge filtered 6 MV photon beam. Calibration curves using small glass vials containing the same gel as the cylindrical containers were used to obtain a first calibration curve. This calibration curve was then adjusted with the dose measured with one of the scintillating fibers in a low gradient part of the field using different approaches. Among these, it was found that a translation of the gel calibration curve yielded the highest accuracy with PAG dosimeters.

  14. Variational Approach to Enhanced Sampling and Free Energy Calculations

    Science.gov (United States)

    Valsson, Omar; Parrinello, Michele

    2014-08-01

    The ability of widely used sampling methods, such as molecular dynamics or Monte Carlo simulations, to explore complex free energy landscapes is severely hampered by the presence of kinetic bottlenecks. A large number of solutions have been proposed to alleviate this problem. Many are based on the introduction of a bias potential which is a function of a small number of collective variables. However constructing such a bias is not simple. Here we introduce a functional of the bias potential and an associated variational principle. The bias that minimizes the functional relates in a simple way to the free energy surface. This variational principle can be turned into a practical, efficient, and flexible sampling method. A number of numerical examples are presented which include the determination of a three-dimensional free energy surface. We argue that, beside being numerically advantageous, our variational approach provides a convenient and novel standpoint for looking at the sampling problem.

  15. Graphical analysis for gel morphology II. New mathematical approach for stretched exponential function with β>1

    Science.gov (United States)

    Hashimoto, Chihiro; Panizza, Pascal; Rouch, Jacques; Ushiki, Hideharu

    2005-10-01

    A new analytical concept is applied to the kinetics of the shrinking process of poly(N-isopropylacrylamide) (PNIPA) gels. When PNIPA gels are put into hot water above the critical temperature, two-step shrinking is observed and the secondary shrinking of gels is fitted well by a stretched exponential function. The exponent β characterizing the stretched exponential is always higher than one, although there are few analytical concepts for the stretched exponential function with β>1. As a new interpretation for this function, we propose a superposition of step (Heaviside) function and a new distribution function of characteristic time is deduced.

  16. Graphical analysis for gel morphology II. New mathematical approach for stretched exponential function with β>1

    International Nuclear Information System (INIS)

    Hashimoto, Chihiro; Panizza, Pascal; Rouch, Jacques; Ushiki, Hideharu

    2005-01-01

    A new analytical concept is applied to the kinetics of the shrinking process of poly(N-isopropylacrylamide) (PNIPA) gels. When PNIPA gels are put into hot water above the critical temperature, two-step shrinking is observed and the secondary shrinking of gels is fitted well by a stretched exponential function. The exponent β characterizing the stretched exponential is always higher than one, although there are few analytical concepts for the stretched exponential function with β>1. As a new interpretation for this function, we propose a superposition of step (Heaviside) function and a new distribution function of characteristic time is deduced

  17. Graphical analysis for gel morphology II. New mathematical approach for stretched exponential function with {beta}>1

    Energy Technology Data Exchange (ETDEWEB)

    Hashimoto, Chihiro [Graduate School of Bio-Application and System Engineering (BASE), Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi Tokyo 185-0054 (Japan); Panizza, Pascal [Centre de Physique Moleculaire Optique et Hertzienne (CPMOH), Bordeaux I University, 351 Cours de la Liberation 33405 Talance (France); Rouch, Jacques [Centre de Physique Moleculaire Optique et Hertzienne (CPMOH), Bordeaux I University, 351 Cours de la Liberation 33405 Talance (France); Ushiki, Hideharu [Graduate School of Bio-Application and System Engineering (BASE), Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi Tokyo 185-0054 (Japan)

    2005-10-19

    A new analytical concept is applied to the kinetics of the shrinking process of poly(N-isopropylacrylamide) (PNIPA) gels. When PNIPA gels are put into hot water above the critical temperature, two-step shrinking is observed and the secondary shrinking of gels is fitted well by a stretched exponential function. The exponent {beta} characterizing the stretched exponential is always higher than one, although there are few analytical concepts for the stretched exponential function with {beta}>1. As a new interpretation for this function, we propose a superposition of step (Heaviside) function and a new distribution function of characteristic time is deduced.

  18. Improved gel electrophoresis matrix for hydrophobic protein separation and identification.

    Science.gov (United States)

    Tokarski, Caroline; Fillet, Marianne; Rolando, Christian

    2011-03-01

    We propose an improved acrylamide gel for the separation of hydrophobic proteins. The separation strategy is based on the incorporation of N-alkylated and N,N'-dialkylated acrylamide monomers in the gel composition in order to increase hydrophobic interactions between the gel matrix and the membrane proteins. Focusing on the most efficient monomer, N,N'-dimethylacrylamide, the potentiality of the new matrix was evaluated on membrane proteins of the human colon HCT-116 cell line. Protein analysis was performed using an adapted analytical strategy based on FT-ICR tandem mass spectrometry. As a result of this comparative study, including advanced reproducibility experiments, more hydrophobic proteins were identified in the new gel (average GRAVY: -0.085) than in the classical gel (average GRAVY: -0.411). Highly hydrophobic peptides were identified reaching a GRAVY value up to 1.450, therefore indicating their probable locations in the membrane. Focusing on predicted transmembrane domains, it can be pointed out that 27 proteins were identified in the hydrophobic gel containing up to 11 transmembrane domains; in the classical gel, only 5 proteins containing 1 transmembrane domain were successfully identified. For example, multiple ionic channels and receptors were characterized in the hydrophobic gel such as the sodium/potassium channel and the glutamate or the transferrin receptors whereas they are traditionally detected using specific enrichment techniques such as immunoprecipitation. In total, membrane proteins identified in the classical gel are well documented in the literature, while most of the membrane proteins only identified on the hydrophobic gel have rarely or never been described using a proteomic-based approach. 2010 Elsevier Inc. All rights reserved.

  19. Altering the level of calcium changes the physical properties and digestibility of casein-based emulsion gels.

    Science.gov (United States)

    McIntyre, Irene; O Sullivan, Michael; O Riordan, Dolores

    2017-04-19

    Casein-based emulsion gels prepared with different types of lipid (i.e. milk fat or rapeseed oil) were formulated with high (774 mg Ca per 100 g) or low (357 mg Ca per 100 g) calcium levels by blending acid and rennet casein. Their physicochemical characteristics (i.e. composition, texture, microstructure & water mobility) and in vitro digestibility were compared to conventionally formulated high-calcium (723 mg Ca per 100 g) emulsion gels made from rennet casein with calcium chelating salts (CCS). CCS-free, high-calcium emulsion gels were significantly (p ≤ 0.05) softer than those with low calcium levels (possibly due to their shorter manufacture time and higher pH) and showed the highest rates of disintegration during simulated gastric digestion. Despite having a higher moisture to protein ratio, the high-calcium emulsion gels containing CCS had broadly similar hardness values to those of high-calcium concentration prepared without CCS, but had higher cohesiveness. The high-calcium matrices containing CCS had quite a different microstructure and increased water mobility compared to those made without CCS and showed the slowest rate (p ≤ 0.05) of disintegration in the gastric environment. Gastric resistance was not affected by the type of lipid phase. Conversely, fatty acid release was similar for all emulsion gels prepared from milk fat, however, high-calcium emulsion gels (CCS-free) prepared from rapeseed oil showed higher lipolysis. Results suggest that food matrix physical properties can be modified to alter resistance to gastric degradation which may have consequences for the kinetics of nutrient release and delivery of bioactives sensitive to the gastric environment.

  20. Preparation and characterization of sol-gel derived TiO2 films

    International Nuclear Information System (INIS)

    Hong, Y.J.; Brungs, M.P.; Chaplin, R.P.; Sizgek, E.

    2001-01-01

    Crack-free transparent titania films have been prepared through a new sol-gel process combined with hydrogen peroxide treatment. Hydrogen peroxide and HCl were used to dissolve amorphous titania powder which is obtained by drying common sol-gel titania sol. The peroxo-titania sol produced a thicker film than the common sol-gel titania sol due to a higher degree of condensation. Film thickness could be further increased by controlled drying conditions of the amorphous titania powder or 'aging' the sol. Polyethylene glycol (PEG) and chemical additives were effective in controlling condensation rate by preventing rapid condensation during curing of the film. When these two components were incorporated, it was possible to create a 0.5μm transparent film and PEG could also control the porosity of the film. The cured film was analysed by XRD and Raman spectroscopy. In order to measure the reflective index and thickness of the titania film, an ellipsometer was used. Copyright (2001) The Australian Ceramic Society

  1. The spatial resolution in dosimetry with normoxic polymer-gels investigated with the dose modulation transfer approach

    International Nuclear Information System (INIS)

    Bayreder, Christian; Schoen, Robert; Wieland, M.; Georg, Dietmar; Moser, Ewald; Berg, Andreas

    2008-01-01

    The verification of dose distributions with high dose gradients as appearing in brachytherapy or stereotactic radiotherapy for example, calls for dosimetric methods with sufficiently high spatial resolution. Polymer gels in combination with a MR or optical scanner as a readout device have the potential of performing the verification of a three-dimensional dose distribution within a single measurement. The purpose of this work is to investigate the spatial resolution achievable in MR-based polymer gel dosimetry. The authors show that dosimetry on a very small spatial scale (voxel size: 94x94x1000 μm 3 ) can be performed with normoxic polymer gels using parameter selective T2 imaging. In order to prove the spatial resolution obtained we are relying on the dose-modulation transfer function (DMTF) concept based on very fine dose modulations at half periods of 200 μm. Very fine periodic dose modulations of a 60 Co photon field were achieved by means of an absorption grid made of tungsten-carbide, specifically designed for quality control. The dose modulation in the polymer gel is compared with that of film dosimetry in one plane via the DMTF concept for general access to the spatial resolution of a dose imaging system. Additionally Monte Carlo simulations were performed and used for the calculation of the DMTF of both, the polymer gel and film dosimetry. The results obtained by film dosimetry agree well with those of Monte Carlo simulations, whereas polymer gel dosimetry overestimates the amplitude value of the fine dose modulations. The authors discuss possible reasons. The in-plane resolution achieved in this work competes with the spatial resolution of standard clinical film-scanner systems

  2. A Comprehensive Quality Evaluation System for Complex Herbal Medicine Using PacBio Sequencing, PCR-Denaturing Gradient Gel Electrophoresis, and Several Chemical Approaches

    Directory of Open Access Journals (Sweden)

    Xiasheng Zheng

    2017-09-01

    Full Text Available Herbal medicine is a major component of complementary and alternative medicine, contributing significantly to the health of many people and communities. Quality control of herbal medicine is crucial to ensure that it is safe and sound for use. Here, we investigated a comprehensive quality evaluation system for a classic herbal medicine, Danggui Buxue Formula, by applying genetic-based and analytical chemistry approaches to authenticate and evaluate the quality of its samples. For authenticity, we successfully applied two novel technologies, third-generation sequencing and PCR-DGGE (denaturing gradient gel electrophoresis, to analyze the ingredient composition of the tested samples. For quality evaluation, we used high performance liquid chromatography assays to determine the content of chemical markers to help estimate the dosage relationship between its two raw materials, plant roots of Huangqi and Danggui. A series of surveys were then conducted against several exogenous contaminations, aiming to further access the efficacy and safety of the samples. In conclusion, the quality evaluation system demonstrated here can potentially address the authenticity, quality, and safety of herbal medicines, thus providing novel insight for enhancing their overall quality control.Highlight: We established a comprehensive quality evaluation system for herbal medicine, by combining two genetic-based approaches third-generation sequencing and DGGE (denaturing gradient gel electrophoresis with analytical chemistry approaches to achieve the authentication and quality connotation of the samples.

  3. A Comprehensive Quality Evaluation System for Complex Herbal Medicine Using PacBio Sequencing, PCR-Denaturing Gradient Gel Electrophoresis, and Several Chemical Approaches.

    Science.gov (United States)

    Zheng, Xiasheng; Zhang, Peng; Liao, Baosheng; Li, Jing; Liu, Xingyun; Shi, Yuhua; Cheng, Jinle; Lai, Zhitian; Xu, Jiang; Chen, Shilin

    2017-01-01

    Herbal medicine is a major component of complementary and alternative medicine, contributing significantly to the health of many people and communities. Quality control of herbal medicine is crucial to ensure that it is safe and sound for use. Here, we investigated a comprehensive quality evaluation system for a classic herbal medicine, Danggui Buxue Formula, by applying genetic-based and analytical chemistry approaches to authenticate and evaluate the quality of its samples. For authenticity, we successfully applied two novel technologies, third-generation sequencing and PCR-DGGE (denaturing gradient gel electrophoresis), to analyze the ingredient composition of the tested samples. For quality evaluation, we used high performance liquid chromatography assays to determine the content of chemical markers to help estimate the dosage relationship between its two raw materials, plant roots of Huangqi and Danggui. A series of surveys were then conducted against several exogenous contaminations, aiming to further access the efficacy and safety of the samples. In conclusion, the quality evaluation system demonstrated here can potentially address the authenticity, quality, and safety of herbal medicines, thus providing novel insight for enhancing their overall quality control. Highlight : We established a comprehensive quality evaluation system for herbal medicine, by combining two genetic-based approaches third-generation sequencing and DGGE (denaturing gradient gel electrophoresis) with analytical chemistry approaches to achieve the authentication and quality connotation of the samples.

  4. A Comprehensive Quality Evaluation System for Complex Herbal Medicine Using PacBio Sequencing, PCR-Denaturing Gradient Gel Electrophoresis, and Several Chemical Approaches

    Science.gov (United States)

    Zheng, Xiasheng; Zhang, Peng; Liao, Baosheng; Li, Jing; Liu, Xingyun; Shi, Yuhua; Cheng, Jinle; Lai, Zhitian; Xu, Jiang; Chen, Shilin

    2017-01-01

    Herbal medicine is a major component of complementary and alternative medicine, contributing significantly to the health of many people and communities. Quality control of herbal medicine is crucial to ensure that it is safe and sound for use. Here, we investigated a comprehensive quality evaluation system for a classic herbal medicine, Danggui Buxue Formula, by applying genetic-based and analytical chemistry approaches to authenticate and evaluate the quality of its samples. For authenticity, we successfully applied two novel technologies, third-generation sequencing and PCR-DGGE (denaturing gradient gel electrophoresis), to analyze the ingredient composition of the tested samples. For quality evaluation, we used high performance liquid chromatography assays to determine the content of chemical markers to help estimate the dosage relationship between its two raw materials, plant roots of Huangqi and Danggui. A series of surveys were then conducted against several exogenous contaminations, aiming to further access the efficacy and safety of the samples. In conclusion, the quality evaluation system demonstrated here can potentially address the authenticity, quality, and safety of herbal medicines, thus providing novel insight for enhancing their overall quality control. Highlight: We established a comprehensive quality evaluation system for herbal medicine, by combining two genetic-based approaches third-generation sequencing and DGGE (denaturing gradient gel electrophoresis) with analytical chemistry approaches to achieve the authentication and quality connotation of the samples. PMID:28955365

  5. Internal structure analysis of particle-double network gels used in a gel organ replica

    Science.gov (United States)

    Abe, Mei; Arai, Masanori; Saito, Azusa; Sakai, Kazuyuki; Kawakami, Masaru; Furukawa, Hidemitsu

    2016-04-01

    In recent years, the fabrication of patient organ replicas using 3D printers has been attracting a great deal of attention in medical fields. However, the cost of these organ replicas is very high as it is necessary to employ very expensive 3D printers and printing materials. Here we present a new gel organ replica, of human kidney, fabricated with a conventional molding technique, using a particle-double network hydrogel (P-DN gel). The replica is transparent and has the feel of a real kidney. It is expected that gel organ replicas produced this way will be a useful tool for the education of trainee surgeons and clinical ultrasonography technologists. In addition to developing a gel organ replica, the internal structure of the P-DN gel used is also discussed. Because the P-DN gel has a complex structure comprised of two different types of network, it has not been possible to investigate them internally in detail. Gels have an inhomogeneous network structure. If it is able to get a more uniform structure, it is considered that this would lead to higher strength in the gel. In the present study we investigate the structure of P-DN gel, using the gel organ replica. We investigated the internal structure of P-DN gel using Scanning Microscopic Light Scattering (SMILS), a non-contacting and non-destructive.

  6. Polymer gel dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Baldock, C [Institute of Medical Physics, School of Physics, University of Sydney (Australia); De Deene, Y [Radiotherapy and Nuclear Medicine, Ghent University Hospital (Belgium); Doran, S [CRUK Clinical Magnetic Resonance Research Group, Institute of Cancer Research, Surrey (United Kingdom); Ibbott, G [Radiation Physics, UT M D Anderson Cancer Center, Houston, TX (United States); Jirasek, A [Department of Physics and Astronomy, University of Victoria, Victoria, BC (Canada); Lepage, M [Centre d' imagerie moleculaire de Sherbrooke, Departement de medecine nucleaire et de radiobiologie, Universite de Sherbrooke, Sherbrooke, QC (Canada); McAuley, K B [Department of Chemical Engineering, Queen' s University, Kingston, ON (Canada); Oldham, M [Department of Radiation Oncology, Duke University Medical Center, Durham, NC (United States); Schreiner, L J [Cancer Centre of South Eastern Ontario, Kingston, ON (Canada)], E-mail: c.baldock@physics.usyd.edu.au, E-mail: yves.dedeene@ugent.be

    2010-03-07

    Polymer gel dosimeters are fabricated from radiation sensitive chemicals which, upon irradiation, polymerize as a function of the absorbed radiation dose. These gel dosimeters, with the capacity to uniquely record the radiation dose distribution in three-dimensions (3D), have specific advantages when compared to one-dimensional dosimeters, such as ion chambers, and two-dimensional dosimeters, such as film. These advantages are particularly significant in dosimetry situations where steep dose gradients exist such as in intensity-modulated radiation therapy (IMRT) and stereotactic radiosurgery. Polymer gel dosimeters also have specific advantages for brachytherapy dosimetry. Potential dosimetry applications include those for low-energy x-rays, high-linear energy transfer (LET) and proton therapy, radionuclide and boron capture neutron therapy dosimetries. These 3D dosimeters are radiologically soft-tissue equivalent with properties that may be modified depending on the application. The 3D radiation dose distribution in polymer gel dosimeters may be imaged using magnetic resonance imaging (MRI), optical-computerized tomography (optical-CT), x-ray CT or ultrasound. The fundamental science underpinning polymer gel dosimetry is reviewed along with the various evaluation techniques. Clinical dosimetry applications of polymer gel dosimetry are also presented. (topical review)

  7. Applications of gel dosimetry

    International Nuclear Information System (INIS)

    Ibbott, Geoffrey S

    2004-01-01

    Gel dosimetry has been examined as a clinical dosimeter since the 1950s. During the last two decades, however, a rapid increase in the number of investigators has been seen, and the body of knowledge regarding gel dosimetry has expanded considerably. Gel dosimetry is still considered a research project, and the introduction of this tool into clinical use is proceeding slowly. This paper will review the characteristics of gel dosimetry that make it desirable for clinical use, the postulated and demonstrated applications of gel dosimetry, and some complications, set-backs, and failures that have contributed to the slow introduction into routine clinical use

  8. Removing water from gels

    International Nuclear Information System (INIS)

    Lane, E.S.; Winter, J.A.

    1982-01-01

    Water is removed from a gel material by contacting the gel material with an organic liquid and contacting the organic liquid with a gas such that water is taken up by the gas. The invention, in one embodiment, may be used to dry gel materials whilst maintaining an open porous network therein. In one example, the invention is applied to gel precipitated spheres containing uranium and plutonium. (author)

  9. Categorization of rheological scaling models for particle gels applied to casein gels

    NARCIS (Netherlands)

    Mellema, M.; Opheusden, van J.H.J.; Vliet, van T.

    2002-01-01

    Rennet-induced casein gels made from skim milk were studied rheologically. A scaling model or framework for describing the rheological behavior of gels is discussed and used for classification of the structure of casein gels. There are two main parameters in the model that describe the number of

  10. Free-market approach to energy proposed in new study

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    This paper reports that a free-market approach to energy use, intensified R and D and an emphasis on conservation and clean fuels such as natural gas can result in significant reductions in emissions of greenhouse gases, without any major new federal policy initiatives, according to a new study, An Alternative Energy Future, sponsored by Alliance to Save Energy, AGA and Solar Energy Industries Assn

  11. PyElph - a software tool for gel images analysis and phylogenetics

    Directory of Open Access Journals (Sweden)

    Pavel Ana Brânduşa

    2012-01-01

    Full Text Available Abstract Background This paper presents PyElph, a software tool which automatically extracts data from gel images, computes the molecular weights of the analyzed molecules or fragments, compares DNA patterns which result from experiments with molecular genetic markers and, also, generates phylogenetic trees computed by five clustering methods, using the information extracted from the analyzed gel image. The software can be successfully used for population genetics, phylogenetics, taxonomic studies and other applications which require gel image analysis. Researchers and students working in molecular biology and genetics would benefit greatly from the proposed software because it is free, open source, easy to use, has a friendly Graphical User Interface and does not depend on specific image acquisition devices like other commercial programs with similar functionalities do. Results PyElph software tool is entirely implemented in Python which is a very popular programming language among the bioinformatics community. It provides a very friendly Graphical User Interface which was designed in six steps that gradually lead to the results. The user is guided through the following steps: image loading and preparation, lane detection, band detection, molecular weights computation based on a molecular weight marker, band matching and finally, the computation and visualization of phylogenetic trees. A strong point of the software is the visualization component for the processed data. The Graphical User Interface provides operations for image manipulation and highlights lanes, bands and band matching in the analyzed gel image. All the data and images generated in each step can be saved. The software has been tested on several DNA patterns obtained from experiments with different genetic markers. Examples of genetic markers which can be analyzed using PyElph are RFLP (Restriction Fragment Length Polymorphism, AFLP (Amplified Fragment Length Polymorphism, RAPD

  12. Sol-gel-derived mesoporous silica films with low dielectric constants

    Energy Technology Data Exchange (ETDEWEB)

    Seraji, S.; Wu, Yun; Forbess, M.; Limmer, S.J.; Chou, T.; Cao, Guozhong [Washington Univ., Seattle, WA (United States). Dept. of Materials Science and Engineering

    2000-11-16

    Mesoporous silica films with low dielectric constants and possibly closed pores have been achieved with a multiple step sol-gel processing technique. Crack-free films with approximately 50% porosity and 0.9 {mu}m thicknesses were obtained, a tape-test revealing good adhesion between films and substrates or metal electrodes. Dielectric constants remained virtually unchanged after aging at room temperature at 56% humidity over 6 days. (orig.)

  13. Effects of poly-ether B on proteome and phosphoproteome expression in biofouling Balanus amphitrite cyprids

    KAUST Repository

    Dash, Swagatika

    2012-04-01

    Biofouling is ubiquitous in marine environments, and the barnacle Balanus amphitrite is one of the most recalcitrant and aggressive biofoulers in tropical waters. Several natural antifoulants that were claimed to be non-toxic have been isolated in recent years, although the mechanism by which they inhibit fouling is yet to be investigated. Poly-ether B has shown promise in the non-toxic inhibition of larval barnacle attachment. Hence, in this study, multiplex two-dimensional electrophoresis (2-DE) was applied in conjunction with mass spectrometry to investigate the effects of poly-ether B on barnacle larvae at the molecular level. The cyprid proteome response to poly-ether B treatment was analyzed at the total proteome and phosphoproteome levels, with 65 protein and 19 phosphoprotein spots found to be up- or down-regulated. The proteins were found to be related to energy-metabolism, oxidative stress, and molecular chaperones, thus indicating that poly-ether B may interfere with the redox-regulatory mechanisms governing the settlement of barnacle larvae. The results of this study demonstrate the usefulness of the proteomic technique in revealing the working mechanisms of antifouling compounds. © 2012 Copyright Taylor and Francis Group, LLC.

  14. Low temperature synthesis of CaO-SiO2 glasses having stable liquid-liquid immiscibility by sol-gel process

    Science.gov (United States)

    Bansal, Narottam P.

    1990-01-01

    Calcium silicate glass compositions lying within the liquid-liquid immiscibility dome of the phase diagram, which could not have been prepared by the conventional melting method, were synthesized by the sol-gel process. Hydrolysis and polycondensation of tetraethyl orthosilicate (TEOS) solutions containing up to 20 mol percent calcium nitrate resulted in the formation of clear and transparent gels. The gel formation time decreased with increase in water:TEOS mole ratio, calcium content, and the reaction temperature. Smaller values of gel times in the presence of calcium nitrate are probably caused by lowering of the ionic charge on the sol particles by the salt present. The gelation activation energy, E(sub gel), was evaluated from temperature dependence of the gel time. Presence of Ca(2+) ions or the water:TEOS mole ratio did not have an appreciable effect on the value of E(sub gel). Presence of glycerol in the solution helped in the formation of crack-free monolithic gel specimens. Chemical and structural changes occurring in the gels, as a function of the heat treatments, have been monitored using DTA, TGA, IR-spectroscopy, x ray diffraction, surface area and pore size distribution measurements.

  15. Diffusion in multicomponent systems: a free energy approach

    International Nuclear Information System (INIS)

    Emmanuel, Simon; Cortis, Andrea; Berkowitz, Brian

    2004-01-01

    This work examines diffusion in ternary non-ideal systems and derives coupled non-linear equations based on a non-equilibrium thermodynamic approach in which an explicit expression for the free energy is substituted into standard diffusion equations. For ideal solutions, the equations employ four mobility parameters (M aa , M ab , M ba , and M bb ), and uphill diffusion is predicted for certain initial conditions and combinations of mobilities. For the more complex case of ternary Simple Mixtures, two non-ideality parameters (χ ac and χ bc ) that are directly related to the excess free energy of mixing are introduced. The solution of the equations is carried out by means of two different numerical schemes: (1) spectral collocation and (2) finite element. An error minimization technique is coupled with the spectral collocation method and applied to diffusional profiles to extract the M and χ parameters. The model satisfactorily reproduces diffusional profiles from published data for silicate melts. Further improvements in numerical and experimental techniques are then suggested

  16. Ultra-small dye-doped silica nanoparticles via modified sol-gel technique

    Science.gov (United States)

    Riccò, R.; Nizzero, S.; Penna, E.; Meneghello, A.; Cretaio, E.; Enrichi, F.

    2018-05-01

    In modern biosensing and imaging, fluorescence-based methods constitute the most diffused approach to achieve optimal detection of analytes, both in solution and on the single-particle level. Despite the huge progresses made in recent decades in the development of plasmonic biosensors and label-free sensing techniques, fluorescent molecules remain the most commonly used contrast agents to date for commercial imaging and detection methods. However, they exhibit low stability, can be difficult to functionalise, and often result in a low signal-to-noise ratio. Thus, embedding fluorescent probes into robust and bio-compatible materials, such as silica nanoparticles, can substantially enhance the detection limit and dramatically increase the sensitivity. In this work, ultra-small fluorescent silica nanoparticles (NPs) for optical biosensing applications were doped with a fluorescent dye, using simple water-based sol-gel approaches based on the classical Stöber procedure. By systematically modulating reaction parameters, controllable size tuning of particle diameters as low as 10 nm was achieved. Particles morphology and optical response were evaluated showing a possible single-molecule behaviour, without employing microemulsion methods to achieve similar results. [Figure not available: see fulltext.

  17. Integrated Microanalytical System for Simultaneous Voltammetric Measurements of Free Metal Ion Concentrations in Natural Waters

    OpenAIRE

    Noël, Stéphane; Tercier-Waeber, Mary-Lou; Lin, Lin; Buffle, Jacques; Guenat, Olivier; Koudelka-Hep, Milena

    2007-01-01

    A complexing gel integrated microelectrode (CGIME) for direct measurements of free metal ion concentrations in natural waters has been developed. It is prepared by the successive deposition of microlayers of a chelating resin, an antifouling agarose gel and Hg on a 100-interconnected Ir-based microelectrode array. The trace metals of interest are in a first step accumulated on the chelating resin in proportion to their free ion concentration in solution, then released in acidic solution and d...

  18. Clay-free drilling mud

    Energy Technology Data Exchange (ETDEWEB)

    Akhmadeyev, R G; Panov, V B; Simonenkov, O I

    1982-01-01

    A clay-free drilling mud is proposed which contains humate-containing substance, alkali electrolyte, gel-former, inhibitor and water. In order to reduce viscosity of the static shear stress and water output under conditions of polyvalent aggression, it additionally contains organic stabilizer with the following ratio of components, % by mass: humate-containing substance 4.0-8.0; alkali electrolyte 0.2-1.5; gel-former 1.0-3.0; organic stabilizer 0.1-1.0; inhibitor 1.0-40.0; water--the rest. The solution is also distinguished by the fact that the gel-former used is magnesium chloride or magnesium sulfate, or calcium chloride or aluminum sulfate, or iron chloride (III) or iron sulfate (II) or waste of chlorides of titanium production with average chemical composition, % by mass: Ti 1.5-7.0; Fe 5.0-15.0; Al 1.5-10.0; Na 5.0-16.0; Mg 0.5-3.0; Cl 30.0-60.0; Ca 0.2-2.0; Cr 0.2-2.0; Cu 0.2-1.5.

  19. Metal-silica sol-gel materials

    Science.gov (United States)

    Stiegman, Albert E. (Inventor)

    2002-01-01

    The present invention relates to a single phase metal-silica sol-gel glass formed by the co-condensation of a transition metal with silicon atoms where the metal atoms are uniformly distributed within the sol-gel glass as individual metal centers. Any transition metal may be used in the sol-gel glasses. The present invention also relates to sensor materials where the sensor material is formed using the single phase metal-silica sol-gel glasses. The sensor materials may be in the form of a thin film or may be attached to an optical fiber. The present invention also relates to a method of sensing chemicals using the chemical sensors by monitoring the chromatic change of the metal-silica sol-gel glass when the chemical binds to the sensor. The present invention also relates to oxidation catalysts where a metal-silica sol-gel glass catalyzes the reaction. The present invention also relates to a method of performing oxidation reactions using the metal-silica sol-gel glasses. The present invention also relates to organopolymer metal-silica sol-gel composites where the pores of the metal-silica sol-gel glasses are filled with an organic polymer polymerized by the sol-gel glass.

  20. Thoria sol-gel processes

    International Nuclear Information System (INIS)

    Matthews, R.B.

    1978-10-01

    Alternate fuel fabrication techniques are being developed at WNRE as part of the thorium fuel cycle program. The sol-gel techniques are attractive and this report assembles and summarizes information relating to thoria sol-gel fuels. Some background information on the behaviour and advantages of sol-gel fuel forms is presented, followed by a review of relevant colloid chemistry and an explanation of the fundamental steps of sol-gel processes. Finally, several variants to the basic process are reviewed and evaluated. (author)

  1. Modified thermoresponsive Poloxamer 407 and chitosan sol-gels as potential sustained-release vaccine delivery systems.

    Science.gov (United States)

    Kojarunchitt, Thunjiradasiree; Baldursdottir, Stefania; Dong, Yao-Da; Boyd, Ben J; Rades, Thomas; Hook, Sarah

    2015-01-01

    Thermoresponsive, particle-loaded, Poloxamer 407 (P407)-Pluronic-R® (25R4) or chitosan-methyl cellulose (MC) formulations were developed as single-dose, sustained release vaccines. The sol-gels, loaded either with a particulate vaccine (cubosomes) or soluble antigen (ovalbumin) and adjuvants (Quil A and monophosphoryl lipid A), were free-flowing liquids at room temperature and formed stable gels at physiological temperatures. Rheological results showed that both systems meet the criteria of being thermoresponsive gels. The P407-25R4 sol-gels did not significantly sustain the release of antigen in vivo while the chitosan-MC sol-gels sustained the release of antigen up to at least 14 days after administration. The chitosan-MC sol-gels stimulated both cellular and humoral responses. The inclusion of cubosomes in the sol-gels did not provide a definitive beneficial effect. Further analysis of the formulations with small-angle X-ray scattering (SAXS) revealed that while cubosomes were stable in chitosan-MC gels they were not stable in P407-25R4 formulations. The reason for the mixed response to cubosome-loaded vehicles requires more investigation, however it appears that the cubosomes did not facilitate synchronous vaccine release and may in fact retard release, reducing efficacy in some cases. From these results, chitosan-MC sol-gels show potential as sustained release vaccine delivery systems, as compared to the P407-25R4 system that had a limited ability to sustain antigen release. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Review of Fricke gel dosimeters

    International Nuclear Information System (INIS)

    Schreiner, L J

    2004-01-01

    The innovation of adding a gel matrix to the traditional Fricke dosimeter to stabilize geometric information established the field of gel dosimetry for radiation therapy. A discussion of Fricke gels provides an overview of the issues that determine the dose response of all gel dosimeters in general. In this paper we review some of the features of Fricke systems to illustrate these issues and, in addition, to motivate renewed clinical interest in Fricke gels

  3. Gel nano-particulates against radioactivity; Des nanoparticules en gel contre la radioactivite

    Energy Technology Data Exchange (ETDEWEB)

    Deroin, Ph

    2004-11-01

    The Argonne research center (USA) has developed a 'super-gel' compound, a polymer close to those used in baby's diapers, which can reach a 90% efficiency in the radioactive decontamination of porous materials, like bricks or concrete. The contaminated materials are sprayed with a mixture of polymer gel and wetting agent with nano-particulates in suspension. Under the action of the wetting agent, radioactivity migrates from the pores to the gel and is trapped by the nano-particulates. The drying and recycling of the gel allows to reduce the volume of radioactive wastes. Short paper. (J.S.)

  4. Sol-gel processing of bioactive glass nanoparticles: A review.

    Science.gov (United States)

    Zheng, Kai; Boccaccini, Aldo R

    2017-11-01

    Silicate-based bioactive glass nanoparticles (BGN) are gaining increasing attention in various biomedical applications due to their unique properties. Controlled synthesis of BGN is critical to their effective use in biomedical applications since BGN characteristics, such as morphology and composition, determining the properties of BGN, are highly related to the synthesis process. In the last decade, numerous investigations focusing on BGN synthesis have been reported. BGN can mainly be produced through the conventional melt-quench approach or by sol-gel methods. The latter approaches are drawing widespread attention, considering the convenience and versatility they offer to tune the properties of BGN. In this paper, we review the strategies of sol-gel processing of BGN, including those adopting different catalysts for initiating the hydrolysis and condensation of silicate precursors as well as those combining sol-gel chemistry with other techniques. The processes and mechanism of different synthesis approaches are introduced and discussed in detail. Considering the importance of the BGN morphology and composition to their biomedical applications, strategies put forward to control the size, shape, pore structure and composition of BGN are discussed. BGN are particularly interesting biomaterials for bone-related applications, however, they also have potential for other biomedical applications, e.g. in soft tissue regeneration/repair. Therefore, in the last part of this review, recently reported applications of BGN in soft tissue repair and wound healing are presented. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Polymer gel dosimeters with enhanced sensitivity for use in x-ray CT polymer gel dosimetry

    International Nuclear Information System (INIS)

    Jirasek, A; Hilts, M; McAuley, K B

    2010-01-01

    A primary limitation of current x-ray CT polymer gel dosimetry is the low contrast, and hence poor dose resolution, of dose images produced by the system. The low contrast is largely due to the low-dose sensitivity of current formulations of polymer gel for x-ray CT imaging. This study reports on the investigation of new dosimeter formulations with improved dose sensitivity for x-ray CT polymer gel dosimetry. We incorporate an isopropanol co-solvent into an N-isopropylacrylamide-based gel formulation in order to increase the total monomer/crosslinker concentration (%T) within the formulation. It is shown that gels of high %T exhibit enhanced dose sensitivity and dose resolutions over traditional formulations. The gels are shown to be temporally stable and reproducible. A single formulation (16%T) is used to demonstrate the capabilities of the x-ray CT polymer gel dosimetry system in measuring known dose distributions. A 1 L gel volume is exposed to three separate irradiations: a single-field percent depth dose, a two-field 'cross' and a three-field 'test case'. The first two irradiations are used to generate a dose calibration curve by which images are calibrated. The calibrated images are compared with treatment planning predictions and it is shown that the x-ray CT polymer gel dosimetry system is capable of capturing spatial and dose information accurately. The proposed new gel formulation is shown to be sensitive, stable and to improve the dose resolution over current formulations so as to provide a feasible gel for clinical applications of x-ray CT polymer gel dosimetry.

  6. Gel compression considerations for chromatography scale-up for protein C purification.

    Science.gov (United States)

    He, W; Bruley, D F; Drohan, W N

    1998-01-01

    This work is to establish theoretical and experimental relationships for the scale-up of Immobilized Metal Affinity Chromatography (IMAC) and Immuno Affinity Chromatography for the low cost production of large quantities of Protein C. The external customer requirements for this project have been established for Protein C deficient people with the goal of providing prophylactic patient treatment. Deep vein thrombosis is the major symptom for protein C deficiency creating the potential problem of embolism transport to important organs, such as, lung and brain. Gel matrices for protein C separation are being analyzed to determine the relationship between the material properties of the gel and the column collapse characteristics. The fluid flow rate and pressure drop is being examined to see how they influence column stability. Gel packing analysis includes two considerations; one is bulk compression due to flow rate, and the second is gel particle deformation due to fluid flow and pressure drop. Based on the assumption of creeping flow, Darcy's law is being applied to characterize the flow through the gel particles. Biot's mathematical description of three-dimensional consolidation in porous media is being used to develop a set of system equations. Finite difference methods are being utilized to obtain the equation solutions. In addition, special programs such as finite element approaches, ABAQUS, will be studied to determine their application to this particular problem. Experimental studies are being performed to determine flow rate and pressure drop correlation for the chromatographic columns with appropriate gels. Void fraction is being measured using pulse testing to allow Reynolds number calculations. Experimental yield stress is being measured to compare with the theoretical calculations. Total Quality Management (TQM) tools have been utilized to optimize this work. For instance, the "Scatter Diagram" has been used to evaluate and select the appropriate gels and

  7. Design of Autonomous Gel Actuators

    Directory of Open Access Journals (Sweden)

    Shuji Hashimoto

    2011-01-01

    Full Text Available In this paper, we introduce autonomous gel actuators driven by chemical energy. The polymer gels prepared here have cyclic chemical reaction networks. With a cyclic reaction, the polymer gels generate periodical motion. The periodic motion of the gel is produced by the chemical energy of the oscillatory Belouzov-Zhabotinsky (BZ reaction. We have succeeded in making synthetic polymer gel move autonomously like a living organism. This experimental fact represents the great possibility of the chemical robot.

  8. Optimal processing for gel electrophoresis images: Applying Monte Carlo Tree Search in GelApp.

    Science.gov (United States)

    Nguyen, Phi-Vu; Ghezal, Ali; Hsueh, Ya-Chih; Boudier, Thomas; Gan, Samuel Ken-En; Lee, Hwee Kuan

    2016-08-01

    In biomedical research, gel band size estimation in electrophoresis analysis is a routine process. To facilitate and automate this process, numerous software have been released, notably the GelApp mobile app. However, the band detection accuracy is limited due to a band detection algorithm that cannot adapt to the variations in input images. To address this, we used the Monte Carlo Tree Search with Upper Confidence Bound (MCTS-UCB) method to efficiently search for optimal image processing pipelines for the band detection task, thereby improving the segmentation algorithm. Incorporating this into GelApp, we report a significant enhancement of gel band detection accuracy by 55.9 ± 2.0% for protein polyacrylamide gels, and 35.9 ± 2.5% for DNA SYBR green agarose gels. This implementation is a proof-of-concept in demonstrating MCTS-UCB as a strategy to optimize general image segmentation. The improved version of GelApp-GelApp 2.0-is freely available on both Google Play Store (for Android platform), and Apple App Store (for iOS platform). © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Tough ceramic coatings: Carbon nanotube reinforced silica sol-gel

    Science.gov (United States)

    López, A. J.; Rico, A.; Rodríguez, J.; Rams, J.

    2010-08-01

    Silica coatings reinforced with carbon nanotubes were produced via sol-gel route using two mixing techniques of the sol-gel precursors, mechanical and ultrasonic mixing, and dip-coating as deposition process on magnesium alloy substrates. Effective incorporation and distribution of 0.1 wt.% of carbon nanotubes in the amorphous silica matrix of the coatings were achieved using both techniques. Fabrication procedure determines the morphological aspects of the coating. Only mechanical mixing process produced coatings dense and free of defects. Nanoindentation technique was used to examine the influence of the fabrication process in the mechanical features of the final coatings, i.e. indentation fracture toughness, Young's modulus and hardness. A maximum toughening effect of about 24% was achieved in silica coatings reinforced with carbon nanotubes produced by the mechanical mixing route. Scanning electron microscopy investigation revealed that the toughening of these reinforced coatings was mainly due to bridging effect of the reinforcement.

  10. Anisotropically Swelling Gels Attained through Axis-Dependent Crosslinking of MOF Crystals.

    Science.gov (United States)

    Ishiwata, Takumi; Kokado, Kenta; Sada, Kazuki

    2017-03-01

    Anisotropically deforming objects have attracted considerable interest for use in molecular machines and artificial muscles. Herein, we focus on a new approach based on the crystal crosslinking of organic ligands in a pillared-layer metal-organic framework (PLMOF). The approach involves the transformation from crosslinked PLMOF to polymer gels through hydrolysis of the coordination bonds between the organic ligands and metal ions, giving a network polymer that exhibits anisotropic swelling. The anisotropic monomer arrangement in the PLMOF underwent axis-dependent crosslinking to yield anisotropically swelling gels. Therefore, the crystal crosslinking of MOFs should be a useful method for creating actuators with designable deformation properties. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. A Variational Approach to Enhanced Sampling and Free Energy Calculations

    Science.gov (United States)

    Parrinello, Michele

    2015-03-01

    The presence of kinetic bottlenecks severely hampers the ability of widely used sampling methods like molecular dynamics or Monte Carlo to explore complex free energy landscapes. One of the most popular methods for addressing this problem is umbrella sampling which is based on the addition of an external bias which helps overcoming the kinetic barriers. The bias potential is usually taken to be a function of a restricted number of collective variables. However constructing the bias is not simple, especially when the number of collective variables increases. Here we introduce a functional of the bias which, when minimized, allows us to recover the free energy. We demonstrate the usefulness and the flexibility of this approach on a number of examples which include the determination of a six dimensional free energy surface. Besides the practical advantages, the existence of such a variational principle allows us to look at the enhanced sampling problem from a rather convenient vantage point.

  12. Polymer gel dosimeters with enhanced sensitivity for use in x-ray CT polymer gel dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Jirasek, A [Department of Physics and Astronomy, University of Victoria, Victoria BC V8W 3P6 (Canada); Hilts, M [Medical Physics, BC Cancer Agency-Vancouver Island Centre, Victoria BC V6R 2B6 (Canada); McAuley, K B, E-mail: jirasek@uvic.c [Department of Chemical Engineering, Queens University, Kingston, ON K7 L 3N6 (Canada)

    2010-09-21

    A primary limitation of current x-ray CT polymer gel dosimetry is the low contrast, and hence poor dose resolution, of dose images produced by the system. The low contrast is largely due to the low-dose sensitivity of current formulations of polymer gel for x-ray CT imaging. This study reports on the investigation of new dosimeter formulations with improved dose sensitivity for x-ray CT polymer gel dosimetry. We incorporate an isopropanol co-solvent into an N-isopropylacrylamide-based gel formulation in order to increase the total monomer/crosslinker concentration (%T) within the formulation. It is shown that gels of high %T exhibit enhanced dose sensitivity and dose resolutions over traditional formulations. The gels are shown to be temporally stable and reproducible. A single formulation (16%T) is used to demonstrate the capabilities of the x-ray CT polymer gel dosimetry system in measuring known dose distributions. A 1 L gel volume is exposed to three separate irradiations: a single-field percent depth dose, a two-field 'cross' and a three-field 'test case'. The first two irradiations are used to generate a dose calibration curve by which images are calibrated. The calibrated images are compared with treatment planning predictions and it is shown that the x-ray CT polymer gel dosimetry system is capable of capturing spatial and dose information accurately. The proposed new gel formulation is shown to be sensitive, stable and to improve the dose resolution over current formulations so as to provide a feasible gel for clinical applications of x-ray CT polymer gel dosimetry.

  13. Low temperature synthesis of CaO-SiO2 glasses having stable liquid-liquid immiscibility by the sol-gel process

    Science.gov (United States)

    Bansal, N. P.

    1992-01-01

    Calcium silicate glass compositions lying within the liquid-liquid immiscibility dome of the phase diagram, which could not have been prepared by the conventional melting method, were synthesized by the sol-gel process. Hydrolysis and polycondensation of tetraethyl orthosilicate (TEOS) solutions containing up to 20 mol percent calcium nitrate resulted in the formation of clear and transparent gels. The gel formation time decreased with increase in water: TEOS mole ratio, calcium content, and the reaction temperature. Smaller values of gel times in the presence of calcium nitrate are probably caused by lowering of the ionic charge on the sol particles by the salt present. The gelation activation energy, E(sub gel), was evaluated from temperature dependence of the gel time. Presence of Ca(2+) ions or the water:TEOS mole ratio did not have an appreciable effect on the value of E(sub gel). Presence of glycerol in the solution helped in the formation of crack-free monolithic gel specimens. Chemical and structural changes occurring in the gels, as a function of the heat treatments, have been monitored using DTA, TGA, IR-spectroscopy, X-ray diffraction, surface area and pore size distribution measurements.

  14. On the healing mechanism of sol-gel derived hybrid materials containing dynamic di-sulfide bonds

    NARCIS (Netherlands)

    AbdolahZadeh, M.; Esteves, A.C.C.; Van der Zwaag, S.; Garcia Espallargas, S.J.

    2013-01-01

    Sol-gel technology is increasingly being used in coatings for corrosion protection and adhesion improvement. So far, the self-healing concept in sol-gel coatings has only been approached from extrinsic healing perspective (i.e. use of nano and micro carriers of corrosion inhibitors) [1]. Despite the

  15. Clinical proteomics: Current status, challenges, and future perspectives

    Directory of Open Access Journals (Sweden)

    Shyh-Horng Chiou

    2011-01-01

    Full Text Available This account will give an overview and evaluation of the current advances in mass spectrometry (MS-based proteomics platforms and technology. A general review of some background information concerning the application of these methods in the characterization of molecular sizes and related protein expression profiles associated with different types of cells under varied experimental conditions will be presented. It is intended to provide a concise and succinct overview to those clinical researchers first exposed to this foremost powerful methodology in modern life sciences of postgenomic era. Proteomic characterization using highly sophisticated and expensive instrumentation of MS has been used to characterize biological samples of complex protein mixtures with vastly different protein structure and composition. These systems are then used to highlight the versatility and potential of the MS-based proteomic strategies for facilitating protein expression analysis of various disease-related organisms or tissues of interest. Major MS-based strategies reviewed herein include (1 matrix-assisted laser desorption ionization-MS and electron-spray ionization proteomics; (2 one-dimensional or two-dimensional gel-based proteomics; (3 gel-free shotgun proteomics in conjunction with liquid chromatography/tandem MS; (4 Multiple reaction monitoring coupled tandem MS quantitative proteomics and; (5 Phosphoproteomics based on immobilized metal affinity chromatography and liquid chromatography-MS/MS.

  16. Detection of human DNA polymorphisms with a simplified denaturing gradient gel electrophoresis technique

    International Nuclear Information System (INIS)

    Noll, W.W.; Collins, M.

    1987-01-01

    Single base pair differences between otherwise identical DNA molecules can result in altered melting behavior detectable by denaturing gradient gel electrophoresis. The authors have developed a simplified procedure for using denaturing gradient gel electrophoresis to detect base pair changes in genomic DNA. Genomic DNA is digested with restriction enzymes and hybridized in solution to labeled single-stranded probe DNA. The excess probe is then hybridized to complementary phage M13 template DNA, and the reaction mixture is electrophoresed on a denaturing gradient gel. Only the genomic DNA probe hybrids migrate into the gel. Differences in hybrid mobility on the gel indicate base pair changes in the genomic DNA. They have used this technique to identify two polymorphic sites within a 1.2-kilobase region of human chromosome 20. This approach should greatly facilitate the identification of DNA polymorphisms useful for gene linkage studies and the diagnosis of genetic diseases

  17. Analysis of charge transport in gels containing polyoxometallates using methods of different sensitivity to migration.

    Science.gov (United States)

    Caban, Karolina; Lewera, Adam; Zukowska, Grazyna Z; Kulesza, Pawel J; Stojek, Zbigniew; Jeffrey, Kenneth R

    2006-08-04

    Two methods have been used for examination of transport of charge in gels soaked with DMF and containing dissolved polyoxometallates. The first method is based on the analysis of both Cottrellian and steady-state currents and therefore is capable of giving the concentration of the electroactive redox centres and their transport (diffusion-type) coefficient. The second method provides the real diffusion coefficients, i.e. transport coefficients free of migrational influence, for both the substrate and the product of the electrode reaction. Several gels based on poly(methyl methacrylate), with charged (addition of 1-acrylamido-2-methyl-2-propanesulphonic acid to the polymerization mixture) and uncharged chains, have been used in the investigation. The ratio obtained for the diffusion coefficient (second method) and transport coefficient (first method) was smaller for the gels containing charged polymer chains than for the gels with uncharged chains. In part these changes could be explained by the contribution of migration to the transport of polyoxomatallates in the gels. However, the impact of the changes in the polymer-channel capacity at the electrode surface while the electrode process proceeds was also considered. These structural changes should affect differently the methods based on different time domains.

  18. Polymer gels and networks

    National Research Council Canada - National Science Library

    Osada, Yoshihito; Khokhlov, A. R

    2002-01-01

    ... or magnetic field, etc.). It was realized that not only can polymer gels absorb and hold a considerable volume of liquids, but they can also be forced to expel the absorbed liquid in a controlled manner. Of particular interest are hydrogels, i.e., polymer gels, which swell extensively in water. The most common hydrogels are polyelectrolyte gels: ...

  19. Preparation of continuous alumina gel fibres by aqueous sol–gel ...

    Indian Academy of Sciences (India)

    Abstract. Continuous alumina gel fibres were prepared by sol–gel method. The spinning sol was prepared by mixing aluminum nitrate, lactic acid and polyvinylpyrrolidone with a mass ratio of 10:3:1·5. Thermogravimetry– differential scanning calorimetry (TG–DSC), Fourier transform infrared (FTIR) spectra, X-ray diffraction ...

  20. Effect of residual water content on the physico-chemical properties of sucralfate dried gel obtained by microwave drying.

    Science.gov (United States)

    Gainotti, Alessandro; Losi, Elena; Bettini, Ruggero; Colombo, Paolo; Sonvico, Fabio; Baroni, Daniela; Santi, Patrizia; Colombo, Gaia

    2005-08-01

    The purpose of this study was to investigate the physico-chemical characteristics of sucralfate humid gel dried by microwaves, in relation to the residual water content. Differential scanning calorimetry (DSC) allowed for the determination of the water state in sucralfate samples. Fourier-transform infrared (FT-IR) spectroscopy was used to monitor the changes in sucralfate gel structure induced by the microwave drying. A boundary value of total water content for sucralfate gel samples was found at 42% (w/w). Below this value only bound water was present, whereas above this value, the increase in total water was due to free water. In the physical form of gel, the strength of the coordination between sulfate anions and the positively charged aluminum hydroxide was dependent on the residual water content. The study of the sedimentation behavior of water suspensions prepared with dried sucralfate allowed for the evaluation of the retention of gel properties. We found that the microwave drying process affected the sedimentation of sucralfate dried gel suspensions independent of the residual water content: when suspensions were prepared from sucralfate dried gel powders containing more than 42% (w/w) of residual water, the sedimentation ratio was higher than 0.9. The non-gel powder suspension showed a sedimentation ratio of 0.68 +/- 0.02, whereas the sucralfate humid gel suspension did not sediment.

  1. Evolution of the local structure of ferric gels and polymers during the crystallisation of iron oxides. Application to uranium trapping

    International Nuclear Information System (INIS)

    Combes, Jean-Marie

    1988-01-01

    A first part of this research thesis reports the study of the structure of the main iron oxides and oxy-hydroxides, and of the protocols for the synthesis of ferric gels. The second part reports a topological approach by EXAFS (Extended X-Ray Absorption Fine Structure) of the structure of Mn and Fe oxides and oxy-hydroxides. The third part reports the study of the formation of ferric oxides from aqueous solutions by using a polyhedral approach by X-ray absorption spectroscopy in the case of hydrolysis and formation of ferric gels, and in the case of haematite formation from ferric gels. The next parts respectively report the study of the local structure of gels synthesised from iron(II), and the study of the local structure of natural ferric gels. Then, the author reports the study of sites of uranium bonding on ferric gels [fr

  2. Sealing wells with gel

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, E C

    1967-10-01

    A new system is being used in Mexico to temporarily plug producing wells. The temporary seal is a gel with a catalyst. The use of this temporary plug allows gas-lift wells to be taken off production in order to carry out emergency repairs. The gel solidifies by the action of the catalyst to a high temperature (70 - 150/sup 0/C). By locating the bottom of the tubing at the top of the production interval, the gel material will go into the permeable formation, and immediately set. When the gel has solidified, it seals off the horizon that must not be stimulated, and leaves the others exposed to the acid action. When the treatment is finished, the gel, by action of the catalyst, is liquefied and removed from the formation, being produced with the oil.

  3. Resistive switching mechanism of ZnO/ZrO2-stacked resistive random access memory device annealed at 300 °C by sol-gel method with forming-free operation

    Science.gov (United States)

    Jian, Wen-Yi; You, Hsin-Chiang; Wu, Cheng-Yen

    2018-01-01

    In this work, we used a sol-gel process to fabricate a ZnO-ZrO2-stacked resistive switching random access memory (ReRAM) device and investigated its switching mechanism. The Gibbs free energy in ZnO, which is higher than that in ZrO2, facilitates the oxidation and reduction reactions of filaments in the ZnO layer. The current-voltage (I-V) characteristics of the device revealed a forming-free operation because of nonlattice oxygen in the oxide layer. In addition, the device can operate under bipolar or unipolar conditions with a reset voltage of 0 to ±2 V, indicating that in this device, Joule heating dominates at reset and the electric field dominates in the set process. Furthermore, the characteristics reveal why the fabricated device exhibits a greater discrete distribution phenomenon for the set voltage than for the reset voltage. These results will enable the fabrication of future ReRAM devices with double-layer oxide structures with improved characteristics.

  4. Assembly of polymer micelles through the sol-gel transition for effective cancer therapy.

    Science.gov (United States)

    Khaliq, Nisar Ul; Oh, Keun Sang; Sandra, Febrina Carolina; Joo, Yeonhee; Lee, Juhyung; Byun, Youngro; Kim, In-San; Kwon, Ick Chan; Seo, Jae Hong; Kim, Sang Yoon; Yuk, Soon Hong

    2017-06-10

    Photo-induced apoptosis-targeted chemotherapy (PIATC) was designed and characterized to propose a new protocol for improved chemotherapy. Intratumoral injection was selected as the mode of administration of the anticancer drug, doxorubicin (DOX). To extend the retention time of DOX at the tumor parenchyma, in-situ gel formation was induced through the sol-gel transition of the Pluronic NPs containing a prodrug of DOX or a photosensitizer. The prodrug (DEVD-S-DOX) was designed to be inactive with a peptide moiety (Aspartic acid-Glutamic acid-Valine-Aspartic acid: DEVD) linked to DOX and to be cleaved into free DOX by caspase-3 expressed with apoptosis. For reactive oxygen species (ROS)-mediated apoptosis, photo-irradiation with methylene blue (MB, photosensitizer) was utilized. The sol-gel transition of the Pluronic NPs containing reactive species, DEVD-S-DOX or MB, was examined by measuring the cloud point and the gel strength in response to temperature change. ROS-mediated apoptosis was observed by measuring the ROS and membrane integrity with induced apoptosis. The in vivo antitumor efficacy of PIATC was measured with a cardiotoxicity assay in tumor-bearing mice. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Gel-eletroforese no diagnóstico da varíola Gel-electrophoresis in the smallpox diagnosis

    Directory of Open Access Journals (Sweden)

    Julio A. Mesquita

    1972-01-01

    Full Text Available O emprego de gel-eletroforese no diagnóstico da varíola, demonstrou ser ao menos trinta vezes (30X mais sensível que o teste de agar-gel, nas condições descritas (tabela I. Doze (12 espécimes, cujos testes convencionais de inoculação em ovos embrionados e de agar-gel resultaram positivos, foram testados em suas diluições originais congeladas por mais de um ano, sendo seis deles revelados por gel-eletroforese enquanto nenhum o foi por agar-gel (tabela II. Trinta e três (33 amostras isoladas no laboratório, foram testadas com material colhido de membrana cório-alantóica da primeira inoculação para o diagnóstico, conservado em glicerina 50%, resultando 15 positivas em gel-eletroforese e apenas 3 em agar-gel (tabela II. Os últimos 60 espécimes recebidos para diagnóstico, através a Campanha de Erradicação da Varíola, também resultaram negativos em gel-eletroforese, que não mostrou falsos-positivos nas condições descritas.The test of gel-electrophoresis applied to the pox virus group showed to be at least thirth times (30X more sensitive than agar-gel test on the described conditions (Table I. Twelve specimens, which were positives form Smallpox in the conventional tests of egg inoculation and agar-gel difusion test, have been screened in their original dilutions frozen for more than 1 year and six of them were still detectable by gel-eletrophoresis, while by agar-gel test any of them was positive (Table II. Thirty three Smallpox isolates have been tested with material from first egg inoculation (chorioallantoic membranes which have been stored in glycerin 50%, at - 15ºC. Fifteen of them were still positive by gel-electrophoresis and only 3 by agar-gel (Table II. The last 60 specimens received for diagnosis from Smallpox Erradication Campaign (CEV, were negatives by both tests. The gel-electrophoresis, did not show false-positives on described conditions.

  6. Viscoelastic and poroelastic effects in the wetting dynamics of soft gels by liquids

    Science.gov (United States)

    Limat, Laurent; Dervaux, Julien; Roche, Matthieu; Zhao, Menghua; Narita, Tetsuharu; Lequeux, Francois

    2017-11-01

    We have developed experiments and modeling of elastowetting dynamics on soft gels. First, wetting is very sensitive to the thickness of the gel, when deposited on a rigid basis. We reconsidered Long et al. approach, and extended it to finite depth. This yields a new scaling law, at low thickness, for dynamic contact angle, in very good agreement with experiment but not consistent with recent approachs assuming Neuman triangle to hold even in the dynamics. In a second step, we examined solvent migration in the bulk of the gel, and showed that poroelasticity is an essential ingredient to understand old unsolved issues (hysteresis on elastomers by Extrand and Kumagai), as well as recent puzzling measurements (long life footprints left by drops). Our calculations lead to ridges at the contact lines evolving logarithmically with time, with a very strong infuence on wetting properties of soft materials, and with possible applications to biophysics.

  7. Instrumental texture profile analysis of gelatin gel extracted from grouper skin and commercial (bovine and porcine) gelatin gels.

    Science.gov (United States)

    Rahman, Mohammad Shafiur; Al-Mahrouqi, Abdullah Issa

    2009-01-01

    Mechanical compression was used to study the gelling characteristics of gelatin gels. Texture profile analysis (TPA) showed that the hardness of fish and mammalian gelatin increased significantly as the concentrations of gels increased. TPA attributes of 10% fish skin gel showed significant differences from those obtained from 20% and 30% gels. In bovine and porcine cases, such generic trends were not observed. Mechanical characteristics of 10% gels of gelatin from fish skin, determined from one cycle compression, were significantly lower than other sources of gelatin gels, while bovine and porcine gels did not show any significant differences. In the case of TPA, hardness of bovine gelatin gel was highest at 41 N for 10% gel, followed by porcine (30 N) then fish skin (5 N) gelatin gels. The gels prepared from different sources did not show any generic trends when all other mechanical attributes were considered.

  8. Supramolecular polypseudorotaxane gels for controlled delivery of rAAV vectors in human mesenchymal stem cells for regenerative medicine.

    Science.gov (United States)

    Rey-Rico, Ana; Babicz, Heiko; Madry, Henning; Concheiro, Angel; Alvarez-Lorenzo, Carmen; Cucchiarini, Magali

    2017-10-15

    The aim of this work was to investigate, for the first time, the possibility of using supramolecular polypseudorotaxane gels as scaffolds that can durably deliver rAAV vectors for applications in cartilage regeneration. Dispersions of Pluronic ® F68 (PF68) or Tetronic ® 908 (T908) containing either hyaluronic acid (HA) or chondroitin sulfate (CS) were prepared in PBS. Then, alpha-cyclodextrin (αCD) was added to some dispersions to form polypseudorotaxane gels. Polysaccharides and αCD reinforced the viscoelasticity of the gels, which could withstand autoclaving without changes. In vitro release of rAAV vectors and subsequent transduction of human mesenchymal stem cells (hMSCs) by rAAV vectors from the release medium and from gels in direct contact with the cells were investigated. Compared with free vectors, the gels provided higher levels of transgene expression. CS (or HA)/PF68/αCD gels rapidly released rAAV vectors while CS (or HA)/T908/αCD gels provided sustained release probably due to different interactions with the viral vectors. Incorporation of αCD into CS (or HA)/PF68 gels resulted on higher rAAV concentrations and sustained levels of transgene expression over time. HA increased the bioactivity and cytocompatibility of the gels, especially those based on T908. Overall, combining rAAV gene transfer with polypseudorotaxane gels may provide new, promising tools for human tissue engineering and regenerative medicine strategies. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Compatibility between weak gel and microorganisms in weak gel-assisted microbial enhanced oil recovery.

    Science.gov (United States)

    Qi, Yi-Bin; Zheng, Cheng-Gang; Lv, Cheng-Yuan; Lun, Zeng-Min; Ma, Tao

    2018-03-20

    To investigate weak gel-assisted microbial flooding in Block Wang Long Zhuang in the Jiangsu Oilfield, the compatibility of weak gel and microbe was evaluated using laboratory experiments. Bacillus sp. W5 was isolated from the formation water in Block Wang Long Zhuang. The rate of oil degradation reached 178 mg/day, and the rate of viscosity reduction reached 75.3%. Strain W5 could produce lipopeptide with a yield of 1254 mg/L. Emulsified crude oil was dispersed in the microbial degradation system, and the average diameter of the emulsified oil particles was 18.54 μm. Bacillus sp. W5 did not affect the rheological properties of the weak gel, and the presence of the weak gel did not significantly affect bacterial reproduction (as indicated by an unchanged microbial biomass), emulsification (surface tension is 35.56 mN/m and average oil particles size is 21.38 μm), oil degradation (162 mg/day) and oil viscosity reduction (72.7%). Core-flooding experiments indicated oil recovery of 23.6% when both weak gel and Bacillus sp. W5 were injected into the system, 14.76% when only the weak gel was injected, and 9.78% with strain W5 was injected without the weak gel. The results demonstrate good compatibility between strains W5 and the weak gel and highlight the application potential of weak gel-assisted microbial flooding. Copyright © 2018 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  10. Comparative Phosphoproteomic Analysis of the Developing Seeds in Two Indica Rice ( Oryza sativa L.) Cultivars with Different Starch Quality.

    Science.gov (United States)

    Pang, Yuehan; Zhou, Xin; Chen, Yaling; Bao, Jinsong

    2018-03-21

    Protein phosphorylation plays important roles in regulation of various molecular events such as plant growth and seed development. However, its involvement in starch biosynthesis is less understood. Here, a comparative phosphoproteomic analysis of two indica rice cultivars during grain development was performed. A total of 2079 and 2434 phosphopeptides from 1273 and 1442 phosphoproteins were identified, covering 2441 and 2808 phosphosites in indica rice 9311 and Guangluai4 (GLA4), respectively. Comparative analysis identified 303 differentially phosphorylated peptides, and 120 and 258 specifically phosphorylated peptides in 9311 and GLA4, respectively. Phosphopeptides in starch biosynthesis related enzymes such as AGPase, SSIIa, SSIIIa, BEI, BEIIb, PUL, and Pho1were identified. GLA4 and 9311 had different amylose content, pasting viscosities, and gelatinization temperature, suggesting subtle difference in starch biosynthesis and regulation between GLA4 and 9311. Our study will give added impetus to further understanding the regulatory mechanism of starch biosynthesis at the phosphorylation level.

  11. Silica-Based Sol-Gel Coating on Magnesium Alloy with Green Inhibitors

    Directory of Open Access Journals (Sweden)

    Vinod Upadhyay

    2017-06-01

    Full Text Available In this work, the performances of several natural organic inhibitors were investigated in a sol-gel system (applied on the magnesium alloy Mg AZ31B substrate. The inhibitors were quinaldic acid (QDA, betaine (BET, dopamine hydrochloride (DOP, and diazolidinyl urea (DZU. Thin, uniform, and defect-free sol-gel coatings were prepared with and without organic inhibitors, and applied on the Mg AZ31B substrate. SEM and EDX were performed to analyze the coating surface properties, the adhesion to the substrate, and the thickness. Electrochemical measurements, including electrochemical impedance spectroscopy (EIS and anodic potentiodynamic polarization scan (PDS, were performed on the coated samples to characterize the coatings’ protective properties. Also, hydrogen evolution measurement—an easy method to measure magnesium corrosion—was performed in order to characterize the efficiency of coating protection on the magnesium substrate. Moreover, scanning vibrating electrode technique (SVET measurements were performed to examine the efficiency of the coatings loaded with inhibitors in preventing and containing corrosion events in defect areas. From the testing results it was observed that the formulated sol-gel coatings provided a good barrier to the substrate, affording some protection even without the presence of inhibitors. Finally, when the inhibitors’ performances were compared, the QDA-doped sol-gel was able to contain the corrosion event at the defect.

  12. High transparent shape memory gel

    Science.gov (United States)

    Gong, Jin; Arai, Masanori; Kabir, M. H.; Makino, Masato; Furukawa, Hidemitsu

    2014-03-01

    Gels are a new material having three-dimensional network structures of macromolecules. They possess excellent properties as swellability, high permeability and biocompatibility, and have been applied in various fields of daily life, food, medicine, architecture, and chemistry. In this study, we tried to prepare new multi-functional and high-strength gels by using Meso-Decoration (Meso-Deco), one new method of structure design at intermediate mesoscale. High-performance rigid-rod aromatic polymorphic crystals, and the functional groups of thermoreversible Diels-Alder reaction were introduced into soft gels as crosslinkable pendent chains. The functionalization and strengthening of gels can be realized by meso-decorating the gels' structure using high-performance polymorphic crystals and thermoreversible pendent chains. New gels with good mechanical properties, novel optical properties and thermal properties are expected to be developed.

  13. Comparative N-glycoproteomic and phosphoproteomic profiling of human placental plasma membrane between normal and preeclampsia pregnancies with high-resolution mass spectrometry.

    Directory of Open Access Journals (Sweden)

    Fuqiang Wang

    Full Text Available Preeclampsia is a serious complication of pregnancy, which affects 2-8% of all pregnancies and is one of the leading causes of maternal and perinatal mortality and morbidity worldwide. To better understand the molecular mechanisms involved in pathological development of placenta in preeclampsia, we used high-resolution LC-MS/MS technologies to construct a comparative N-glycoproteomic and phosphoproteomic profiling of human placental plasma membrane in normal and preeclamptic pregnancies. A total of 1027 N-glyco- and 2094 phospho- sites were detected in human placental plasma membrane, and 5 N-glyco- and 38 phospho- proteins, respectively, with differentially expression were definitively identified between control and preeclamptic placental plasma membrane. Further bioinformatics analysis indicated that these differentially expressed proteins correlate with several specific cellular processes occurring during pathological changes of preeclamptic placental plasma membrane.

  14. Influence of pre-cooking protein paste gelation conditions and post-cooking gel storage conditions on gel texture.

    Science.gov (United States)

    Paker, Ilgin; Matak, Kristen E

    2016-01-15

    Gelation conditions affect the setting of myofibrillar fish protein gels. Therefore the impact of widely applied pre-cooking gelation time/temperature strategies and post-cooking period on the texture and color of final protein gels was determined. Four pre-cooking gelation strategies (no setting time, 30 min at 25 °C, 1 h at 40 °C or 24 h at 4 °C) were applied to protein pastes (fish protein concentrate and standard functional additives). After cooking, texture and color were analyzed either directly or after 24 h at 4 °C on gels adjusted to 25 °C. No-set gels were harder, gummier and chewier (P cooking. Gel-setting conditions had a greater (P cooking stored gels in texture and color, depending on the pre-cooking gelation strategy. Pre-cooking gelation conditions will affect final protein gel texture and color, with gel stability benefiting from a gel-setting period. However, post-cooking storage may have a greater impact on final gels, with textural attributes becoming more consistent between all samples. © 2015 Society of Chemical Industry.

  15. Control size of silver nanoparticles in sol-gel glasses

    Science.gov (United States)

    Renteria, Victor M.; Celis, Antonio C.; Garcia-Macedo, Jorge A.

    2000-10-01

    By the sol-gel processing, silver ions in presence of stabilizing function (3-thiocyanatopropyl)triethoxysilane are reduced by heating gels at 180 C for several times in air atmosphere. The spectroscopic Uv-Vis observations, confirm silver nanoparticles presence with peak maximum around 350 nm. The optical properties of the metallic particles are observed at room temperature as function of time, and the absorption spectra practically do not change, which indicated they are trapped and stabilized within the fine porous silica cage. Mie theory calculations, considering the mean free path effect of the conduction electrons, are compatible with experimental spectra, indicating homogeneity in size and form of the metallic nanoparticles. Smithard correlation curve, between half width height (W1/2) of the optical absorption and the particle diameter 2r, predict silver particles size between 4 and 10 nm, during composite heating. Activation energy was measured and compared with previous data on similar systems and the probable reduction process are discussed.

  16. Novel polymeric systems for lithium ion batteries gel electrolytes

    International Nuclear Information System (INIS)

    Appetecchi, G.B.; Alessandrini, F.; Passerini, S.; Caporiccio, G.; Boutevin, B.; Guida-PietraSanta, F.

    2005-01-01

    Cross-linked, self-supporting, membranes for lithium ion battery gel electrolytes were obtained by cross-linking a mixture of polyfluorosilicone (PFSi) and polysilicone containing ethylene oxide (EO) units [P(Si-EO)]. The membranes were also reinforced with nanosized silica. The two polymer precursors were synthesized with functional groups capable to form inter-molecular cross-linking, thus obtaining three-dimensional, polymer matrices. The precursors were dissolved in a common solvent and cross-linked to obtain free-standing PFSi/P(Si-EO):SiO 2 composite films. The latter were undergone to swelling processes in (non-aqueous, aprotic, lithium salt containing) electrolytic solutions to obtain gel-type polymer electrolytes. The properties of the swelled PFSi/P(Si-EO):SiO 2 samples were evaluated as a function of the electrolytic solutions and the dipping time. The PFSi/P(Si-EO):SiO 2 membranes exhibited large swelling properties, high ionic conductivity and good electrochemical stability

  17. Agar/gelatin bilayer gel matrix fabricated by simple thermo-responsive sol-gel transition method.

    Science.gov (United States)

    Wang, Yifeng; Dong, Meng; Guo, Mengmeng; Wang, Xia; Zhou, Jing; Lei, Jian; Guo, Chuanhang; Qin, Chaoran

    2017-08-01

    We present a simple and environmentally-friendly method to generate an agar/gelatin bilayer gel matrix for further biomedical applications. In this method, the thermally responsive sol-gel transitions of agar and gelatin combined with the different transition temperatures are exquisitely employed to fabricate the agar/gelatin bilayer gel matrix and achieve separate loading for various materials (e.g., drugs, fluorescent materials, and nanoparticles). Importantly, the resulting bilayer gel matrix provides two different biopolymer environments (a polysaccharide environment vs a protein environment) with a well-defined border, which allows the loaded materials in different layers to retain their original properties (e.g., magnetism and fluorescence) and reduce mutual interference. In addition, the loaded materials in the bilayer gel matrix exhibit an interesting release behavior under the control of thermal stimuli. Consequently, the resulting agar/gelatin bilayer gel matrix is a promising candidate for biomedical applications in drug delivery, controlled release, fluorescence labeling, and bio-imaging. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Phosphoproteomic dynamics of chickpea (Cicer arietinum L.) reveals shared and distinct components of dehydration response.

    Science.gov (United States)

    Subba, Pratigya; Barua, Pragya; Kumar, Rajiv; Datta, Asis; Soni, Kamlesh Kumar; Chakraborty, Subhra; Chakraborty, Niranjan

    2013-11-01

    Reversible protein phosphorylation is a ubiquitous regulatory mechanism that plays critical roles in transducing stress signals to bring about coordinated intracellular responses. To gain better understanding of dehydration response in plants, we have developed a differential phosphoproteome in a food legume, chickpea (Cicer arietinum L.). Three-week-old chickpea seedlings were subjected to progressive dehydration by withdrawing water, and the changes in the phosphorylation status of a large repertoire of proteins were monitored. The proteins were resolved by 2-DE and stained with phosphospecific fluorescent Pro-Q Diamond dye. Mass spectrometric analysis led to the identification of 91 putative phosphoproteins, presumably involved in a variety of functions including cell defense and rescue, photosynthesis and photorespiration, molecular chaperones, and ion transport, among others. Multiple sites of phosphorylation were predicted on several key elements, which include both the regulatory as well as the functional proteins. A critical survey of the phosphorylome revealed a DREPP (developmentally regulated plasma membrane protein) plasma membrane polypeptide family protein, henceforth designated CaDREPP1. The transcripts of CaDREPP1 were found to be differentially regulated under dehydration stress, further corroborating the proteomic results. This work provides new insights into the possible phosphorylation events triggered by the conditions of progressive water-deficit in plants.

  19. Drying process in the formation of sol-gel derived TiO2 ceramic membrane

    NARCIS (Netherlands)

    Kumar, K.N.P.; Kumar, K.N.P.; Zaspalis, V.T.; Zaspalis, V.T.; Keizer, Klaas; Burggraaf, Anthonie; Burggraaf, A.J.

    1993-01-01

    Accurate drying data for thin titania gel layers dried at 40°C and 20% relative humidity (RH) are given. The drying rate versus free moisture content diagram should show three regions as predicted by the classical drying theory. They are the constant rate period, the first falling rate period and

  20. Chemical Gel for Surface Decontamination

    International Nuclear Information System (INIS)

    Jung, Chong Hun; Moon, J. K.; Won, H. J.; Lee, K. W.; Kim, C. K.

    2010-01-01

    Many chemical decontamination processes operate by immersing components in aggressive chemical solutions. In these applications chemical decontamination technique produce large amounts of radioactive liquid waste. Therefore it is necessary to develop processes using chemical gels instead of chemical solutions, to avoid the well-known disadvantages of chemical decontamination techniques while retaining their high efficiency. Chemical gels decontamination process consists of applying the gel by spraying it onto the surface of large area components (floors, walls, etc) to be decontaminated. The gel adheres to any vertical or complex surface due to their thixotropic properties and operates by dissolving the radioactive deposit, along with a thin layer of the gel support, so that the radioactivity trapped at the surface can be removed. Important aspects of the gels are that small quantities can be used and they show thixitropic properties : liquid during spraying, and solid when stationary, allowing for strong adherence to surfaces. This work investigates the decontamination behaviors of organic-based chemical gel for SS 304 metallic surfaces contaminated with radioactive materials

  1. Sol-Gel Manufactured Energetic Materials

    Science.gov (United States)

    Simpson, Randall L.; Lee, Ronald S.; Tillotson, Thomas M.; Hrubesh, Lawrence W.; Swansiger, Rosalind W.; Fox, Glenn A.

    2005-05-17

    Sol-gel chemistry is used for the preparation of energetic materials (explosives, propellants and pyrotechnics) with improved homogeneity, and/or which can be cast to near-net shape, and/or made into precision molding powders. The sol-gel method is a synthetic chemical process where reactive monomers are mixed into a solution, polymerization occurs leading to a highly cross-linked three dimensional solid network resulting in a gel. The energetic materials can be incorporated during the formation of the solution or during the gel stage of the process. The composition, pore, and primary particle sizes, gel time, surface areas, and density may be tailored and controlled by the solution chemistry. The gel is then dried using supercritical extraction to produce a highly porous low density aerogel or by controlled slow evaporation to produce a xerogel. Applying stress during the extraction phase can result in high density materials. Thus, the sol-gel method can be used for precision detonator explosive manufacturing as well as producing precision explosives, propellants, and pyrotechnics, along with high power composite energetic materials.

  2. Feasibility of quantitative PET/CT dosimetry for proton therapy using polymer gels

    Energy Technology Data Exchange (ETDEWEB)

    Zeidan, O A; Hsi, W C; Lopatiuk-Tirpak, O; Sriprisan, S I; Meeks, S L; Kupelian, P A; Li, Z; Palta, J R, E-mail: lenatirpak@gmail.co

    2010-11-01

    A feasibility study of proton beam PET/CT off-line quantitative dosimetry using polymer gels is presented. A newly developed proton-sensitive polymer gel dosimeter (BANG( (registered)) 3-Pro2) is used as a dosimeter and a tissue-equivalent phantom medium for this study. We explore a new approach to correlating measured proton 3-dimensional (3D) dose distributions directly to measured positron emission from in the gel medium using PET/CT imaging. A large cylindrical volume (2.2 Litres) of the gel was irradiated with a clinical modulated proton beam using irregular-shaped aperture geometry. The gel was imaged in a nearby PET/CT unit immediately (<3 min) after irradiation. Dose distribution in the gel was generated using an optical tomography scanning system. Direct 3D spatial comparison of dose and positron emission distributions was then performed. Profiles along the beam path show that the distal fall-off of the dose is nearly 2 cm deeper than the activity profile which is comparable to previous studies with plastic phantoms and Monte Carlo simulations of activity distributions. Planar PET and dose distributions at depth and perpendicular to beam axis show a strong one-to-one spatial correlation. This phantom study demonstrates that the gel medium could be potentially useful for quantifying various physical factors that can influence the PET activity range verification method in patients.

  3. Thixotropic gel for vadose zone remediation

    Science.gov (United States)

    Rhia, Brian D [Augusta, GA

    2011-03-01

    A thixotropic gel suitable for use in subsurface bioremediation is provided along with a process of using the gel. The thixotropic gel provides a non-migrating injectable substrate that can provide below ground barrier properties. In addition, the gel components provide for a favorable environment in which certain contaminants are preferentially sequestered in the gel and subsequently remediated by either indigenous or introduced microorganisms.

  4. Meso-Decorated Switching-Knot Gels

    Science.gov (United States)

    Gong, Jin; Sawamura, Kensuke; Makino, Masato; Kabir, M. H.; Furukawa, Hidemitsu

    Gels are a new material having three-dimensional network structures of macromolecules. They possess excellent properties as swellability, high permeability and biocompatibility, and have been applied in various fields of daily life, food, medicine, architecture, and chemistry .In this study, we tried to prepare new multi-functional and high-strength gels by using Meso-Decoration (Meso-Deco), one new method of structure design at intermediate mesoscale. High-performance rigid-rod aromatic polymorphic crystals. The strengthening of gels can be realized by meso-decorating the gels' structure using high-performance polymorphic crystals. New gels with good mechanical properties, novel optical properties and thermal properties are expected to be developed.

  5. Microfluidics of soft granular gels

    Science.gov (United States)

    Nixon, Ryan; Bhattacharjee, Tapomoy; Sawyer, W. Gregory; Angelini, Thomas E.

    Microfluidic methods for encapsulating cells and particles typically involve drop making with two immiscible fluids. The main materials constraint in this approach is surface tension, creating inherent instability between the two fluids. We can eliminate this instability by using miscible inner and outer phases. This is achieved by using granular micro gels which are chemically miscible but physically do not mix. These microgels are yield stress materials, so they flow as solid plugs far from shear gradients, and fluidize where gradients are generated - near an injection nozzle for example. We have found that tuning the yield stress of the material by varying polymer concentration, device performance can be controlled. The solid like behavior of the gel allows us to produces infinitely stable jets that maintain their integrity and configuration over long distances and times. These properties can be combined and manipulated to produce discrete particulate bunches of an inner phase, flowing inside of an outer phase, well enough even to print a Morse code message suspended within flow chambers about a millimeter in diameter moving at millimeters a second.

  6. Structure of mineral gels

    International Nuclear Information System (INIS)

    Miranda Salvado, I.M.; Margaca, F.M.A.; Teixeira, J.

    1999-01-01

    Small Angle Neutron Scattering (SANS) measurements have been performed to investigate the nanoscale structure of materials of the systems xTiO 2 -(1-x)SiO 2 and xZrO 2 -(1-x)SiO 2 with x ≤ 10 mol % at different processing stages. The materials were prepared by sol-gel using the alkoxides method, in strong acidic conditions. Samples were studied as xerogels heat-treated at 120 and 850 deg. C and as wet gels at gel point and after aging. All samples showed identical microstructure at gel point, extended linear chains ∼10 nm long. The aged gel has a mass fractal structure with fractal dimension of 1.7 - 1.9. The 120 deg. C heat-treated xerogels show homogeneous oxide regions with mass fractal structure. For the 850 deg. C heat-treated xerogel the oxide regions average size has reduced and it has densified as compared to 120 deg. C heat-treated sample. (author)

  7. Adsorption and Desorption of Na+ and NO3− Ions on Thermosensitive NIPAM-co-DMAAPS Gel in Aqueous Solution

    Directory of Open Access Journals (Sweden)

    Eva Oktavia Ningrum

    2017-11-01

    Full Text Available Adsorbent gel with the ability to absorb and to desorb Na+ and NO3− ions simultaneously with temperature swing was synthesized by free radical copolymerization reaction of N-isopropylacrylamide (NIPAM and N,N-dimethyl-(acrylamidopropylammonium propane sulfonate (DMAAPS. In this study, NIPAM acts as a thermosensitive agent and DMAAPS as an adsorbent agent. The purpose of this research is to investigate the effect of temperature and solution concentration on the swelling, adsorption, and desorption behaviors of NIPAM-co-DMAAPS gel. The relationship between adsorption and desorption behaviors of the gel was also elucidated. NaNO3 solution was selected as the target solution in swelling, adsorption, and desorption test. It was observed that the swelling degree of the gel increased as temperature and solution concentration raised. The adsorption amount of ions decreased with the increase of temperature. In contrast, the amount of ions desorbed from the gel increased linearly with temperature.

  8. SOL-Gel microspheres and nanospheres for controlled release applications

    International Nuclear Information System (INIS)

    Barbe, C.; Beyer, R.; Kong, L.; Blackford, M.; Trautman, R.; Bartlett, J.

    2002-01-01

    We present a novel approach to the synthesis of inorganic sol-gel microspheres for encapsulating organic and bioactive molecules, and controlling their subsequent release kinetics. The bioactive species are incorporated, at ambient temperature, into the inorganic particles using an emulsion gelation process. Independent control of the release rate (by adapting the nanostructure of the internal pore network to the physico-chemical properties of the bioactive molecules) and particle size (by tailoring the emulsion chemistry) is demonstrated. Sol-gel chemistry has been shown to be a flexible technique for producing inorganic silica matrices with tailored microstructures, which can be used for the encapsulation and controlled release of organic and bioactive molecules. The present paper extends this concept by combining sol-gel chemistry with an emulsion approach for producing inorganic particles with controlled dimensions, and demonstrates how the particle size and microstructure can be independently controlled. Sol-Gel Chemistry and Encapsulation of Model Compounds. A stock solution of 4-(2-hydroxy-l-naphthylazo) benzene sulfonic acid (Orange II) was produced by dissolving Orange II in water (0.1 wt%), and adjusting the pH to the required value. Sol-gel solutions were subsequently prepared by mixing the aqueous solution with tetramethylorthosilicate (TMOS) and methanol (MeOH), to achieve H 2 O:TMOS (W] and MeOH:TMOS mole ratios (D) of four. The resulting solution was stirred and left to age at ambient temperature for one day. A transparent emulsion was prepared by mixing selected surfactants and organic solvents. The surfactants used included sorbitan monooleate, sorbitan monolaurate and bis-2-ethylhexylsulfo-succinate (AOT), while the organic phase was typically chosen from the group consisting of kerosene, hexane, heptane, octane, decane, dodecane and cyclohexane. The sol-gel solution was added to the emulsion, and the resulting mixture was stirred at 500 rpm for

  9. Electrochemical impedimetric sensor based on molecularly imprinted polymers/sol-gel chemistry for methidathion organophosphorous insecticide recognition.

    Science.gov (United States)

    Bakas, Idriss; Hayat, Akhtar; Piletsky, Sergey; Piletska, Elena; Chehimi, Mohamed M; Noguer, Thierry; Rouillon, Régis

    2014-12-01

    We report here a novel method to detect methidathion organophosphorous insecticides. The sensing platform was architected by the combination of molecularly imprinted polymers and sol-gel technique on inexpensive, portable and disposable screen printed carbon electrodes. Electrochemical impedimetric detection technique was employed to perform the label free detection of the target analyte on the designed MIP/sol-gel integrated platform. The selection of the target specific monomer by electrochemical impedimetric methods was consistent with the results obtained by the computational modelling method. The prepared electrochemical MIP/sol-gel based sensor exhibited a high recognition capability toward methidathion, as well as a broad linear range and a low detection limit under the optimized conditions. Satisfactory results were also obtained for the methidathion determination in waste water samples. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Investigation of the dose rate dependency of the PAGAT gel dosimeter at low dose rates

    International Nuclear Information System (INIS)

    Zehtabian, M.; Faghihi, R.; Zahmatkesh, M.H.; Meigooni, A.S.; Mosleh-Shirazi, M.A.; Mehdizadeh, S.; Sina, S.; Bagheri, S.

    2012-01-01

    Medical physicists need dosimeters such as gel dosimeters capable of determining three-dimensional dose distributions with high spatial resolution. To date, in combination with magnetic resonance imaging (MRI), polyacrylamide gel (PAG) polymers are the most promising gel dosimetry systems. The purpose of this work was to investigate the dose rate dependency of the PAGAT gel dosimeter at low dose rates. The gel dosimeter was used for measurement of the dose distribution around a Cs-137 source from a brachytherapy LDR source to have a range of dose rates from 0.97 Gy h −1 to 0.06 Gy h −1 . After irradiation of the PAGAT gel, it was observed that the dose measured by gel dosimetry was almost the same at different distances (different dose rates) from the source, although the points nearer the source had been expected to receive greater doses. Therefore, it was suspected that the PAGAT gel is dose rate dependent at low dose rates. To test this further, three other sets of measurements were performed by placing vials containing gel at different distances from a Cs-137 source. In the first two measurements, several plastic vials were exposed to equal doses at different dose rates. An ionization chamber was used to measure the dose rate at each distance. In addition, three TLD chips were simultaneously irradiated in order to verify the dose to each vial. In the third measurement, to test the oxygen diffusion through plastic vials, the experiment was repeated again using plastic vials in a nitrogen box and glass vials. The study indicates that oxygen diffusion through plastic vials for dose rates lower than 2 Gy h −1 would affect the gel dosimeter response and it is suggested that the plastic vials or (phantoms) in an oxygen free environment or glass vials should be used for the dosimetry of low dose rate sources using PAGAT gel to avoid oxygen diffusion through the vials.

  11. Merging Belief Propagation and the Mean Field Approximation: A Free Energy Approach

    DEFF Research Database (Denmark)

    Riegler, Erwin; Kirkelund, Gunvor Elisabeth; Manchón, Carles Navarro

    2013-01-01

    We present a joint message passing approach that combines belief propagation and the mean field approximation. Our analysis is based on the region-based free energy approximation method proposed by Yedidia et al. We show that the message passing fixed-point equations obtained with this combination...... correspond to stationary points of a constrained region-based free energy approximation. Moreover, we present a convergent implementation of these message passing fixed-point equations provided that the underlying factor graph fulfills certain technical conditions. In addition, we show how to include hard...

  12. Luminescent hybrid porphyrinosilica obtained by sol gel chemistry

    Directory of Open Access Journals (Sweden)

    Neri Cláudio Roberto

    2003-01-01

    Full Text Available The sol-gel process is a methodology used to obtain organic-inorganic hybrid solids, which open new possibilities in the field of material science. The sol-gel technique offers a low temperature attractive approach for introducing organic molecules into amorphous materials. In order to introduce tetrakis (2-hydroxy-5-nitrophenylporphyrin covalently bounded to a silicate matrix, the inorganic precursor 3-isocyanatopropyltriethoxysilane was added (molar ratio 2:1 to the porphyrin solution in anhydrous dimethylformamide and triethylamine. The isolated porphyrin and the hybrid porphyrinosilica have excitation maximum centred at 400 nm and 424 nm, respectively and the emission spectra for both materials has bands centred at 650 nm and 713 nm. The formation of hybrid matrix was investigated by FTIR.

  13. Cyanocobalamin Nasal Gel

    Science.gov (United States)

    ... to supply extra vitamin B12 to people who need unusually large amounts of this vitamin because they are pregnant or have certain diseases. ... Cyanocobalamin nasal gel will supply you with enough vitamin B12 only as ... it regularly. You may need to use cyanocobalamin nasal gel every week for ...

  14. Sol-gel precursors and products thereof

    Science.gov (United States)

    Warren, Scott C.; DiSalvo, Jr., Francis J.; Weisner, Ulrich B.

    2017-02-14

    The present invention provides a generalizable single-source sol-gel precursor capable of introducing a wide range of functionalities to metal oxides such as silica. The sol-gel precursor facilitates a one-molecule, one-step approach to the synthesis of metal-silica hybrids with combinations of biological, catalytic, magnetic, and optical functionalities. The single-source precursor also provides a flexible route for simultaneously incorporating functional species of many different types. The ligands employed for functionalizing the metal oxides are derived from a library of amino acids, hydroxy acids, or peptides and a silicon alkoxide, allowing many biological functionalities to be built into silica hybrids. The ligands can coordinate with a wide range of metals via a carboxylic acid, thereby allowing direct incorporation of inorganic functionalities from across the periodic table. Using the single-source precursor a wide range of functionalized nanostructures such as monolith structures, mesostructures, multiple metal gradient mesostructures and Stober-type nanoparticles can be synthesized. ##STR00001##

  15. Development of gel-filter method for high enrichment of low-molecular weight proteins from serum.

    Directory of Open Access Journals (Sweden)

    Lingsheng Chen

    Full Text Available The human serum proteome has been extensively screened for biomarkers. However, the large dynamic range of protein concentrations in serum and the presence of highly abundant and large molecular weight proteins, make identification and detection changes in the amount of low-molecular weight proteins (LMW, molecular weight ≤ 30kDa difficult. Here, we developed a gel-filter method including four layers of different concentration of tricine SDS-PAGE-based gels to block high-molecular weight proteins and enrich LMW proteins. By utilizing this method, we identified 1,576 proteins (n = 2 from 10 μL serum. Among them, 559 (n = 2 proteins belonged to LMW proteins. Furthermore, this gel-filter method could identify 67.4% and 39.8% more LMW proteins than that in representative methods of glycine SDS-PAGE and optimized-DS, respectively. By utilizing SILAC-AQUA approach with labeled recombinant protein as internal standard, the recovery rate for GST spiked in serum during the treatment of gel-filter, optimized-DS, and ProteoMiner was 33.1 ± 0.01%, 18.7 ± 0.01% and 9.6 ± 0.03%, respectively. These results demonstrate that the gel-filter method offers a rapid, highly reproducible and efficient approach for screening biomarkers from serum through proteomic analyses.

  16. Immobilization of Beauveria bassiana Lipase on Silica Gel by Physical Adsorption

    Directory of Open Access Journals (Sweden)

    Vanessa Hitomi Sugahara

    2014-12-01

    Full Text Available Extracellular lipase from Beauveria bassianastrain CG481 was immobilized by using thirteen different immobilization protocols. Silica gel was chosen as the most suitable adsorbent with 94.8% of activity yield. The adsorption on silica gel did not change the optimum pH (8.5 and temperature (45ºC values of the free lipase (FL for lipolytic activity, and it showed higher activities in extreme conditions (pH 9.0 to 10.5, 60ºC. The lipase immobilized on silica gel (ILS showed enhanced stability at pH 7.0 after 120 h incubation (69.0% when compared to FL (33.3%. The thermal stability was also enhanced by immobilization at 60ºC in aqueous (64.6% and organic medium (95.1%, while FL showed only 40.6% of residual activity in aqueous medium and exhibited no activity for esterification reaction in n-heptane. The treatment of ILS with 0.8 M NaCl prevented lipase desorption while Triton X-100 (0.1% resulted the enzyme leakage. The ILS was reused for four times for esterification reaction with 80.8% of initial activity.

  17. Al2O3 - TiO2-A simple sol-gel strategy to the synthesis of low temperature sintered alumina-aluminium titanate composites through a core-shell approach

    International Nuclear Information System (INIS)

    Jayasankar, M.; Ananthakumar, S.; Mukundan, P.; Wunderlich, W.; Warrier, K.G.K.

    2008-01-01

    A simple sol-gel based core-shell approach for the synthesis of alumina-aluminium titanate composite is reported. Alumina is the core and titania is the shell. The coating of titania has been performed in aqueous medium on alumina particle by means of heterocoagulation of titanyl chloride. Further heat treatment results in low temperature formation of aluminium titanate as well as low temperature sintering of alumina-aluminium titanate composites. The lowering of the reaction temperature can be attributed to the maximisation of the contact surface between the reactants due to the core-shell approach involving nanoparticles. The mechanism of formation of aluminium titanate and the observations on densification features in the present process are compared with that of mixture of oxides under identical conditions. The sintered alumina-aluminium titanate composite has an average grain size of 2 μm. - Graphical abstract: The article presents a simple sol-gel process through core-shell approach to the synthesis of low temperature sintered alumina-aluminium titanate. The lowering of the reaction temperature can be attributed to the maximisation of the contact surface between the reactant due to the core-shell approach. This material showed the better microstructure control compared to the standard solid-state mixing route

  18. Gel properties and interactions of Mesona blumes polysaccharide-soy protein isolates mixed gel: The effect of salt addition.

    Science.gov (United States)

    Wang, Wenjie; Shen, Mingyue; Liu, Suchen; Jiang, Lian; Song, Qianqian; Xie, Jianhua

    2018-07-15

    Effect of different salt ions on the gel properties and microstructure of Mesona blumes polysaccharide (MBP)-soy protein isolates (SPI) mixed gels were investigated. Sodium and calcium ions were chosen to explore their effects on the rheological behavior and gel properties of MBP-SPI mixed gels were evaluated by using rheological, X-ray diffraction, protein solubility determination, and microstructure analysis. Results showed that the addition of salt ions change the crystalline state of gels system, the crystal of gel was enhanced at low ion concentrations (0.005-0.01 M). The two peaks of gel characteristic at 8.9° and 19.9° almost disappeared at high salt ions concentrations (0.015-0.02 M), and new crystallization peaks appeared at around 30° and 45°. The elasticity, viscosity, gel strength, water holding capacity, and thermal stability of gel were increased at low ion concentration. Results showed that the main interactions which promoted gel formation and maintain the three-dimensional structure of the gel were electrostatic interactions, hydrophobic interactions, and disulfide interactions. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Agarose gel shift assay reveals that calreticulin favors substrates with a quaternary structure in solution

    DEFF Research Database (Denmark)

    Boelt, Sanne Grundvad; Houen, Gunnar; Højrup, Peter

    2015-01-01

    Here we present an agarose gel shift assay that, in contrast to other electrophoresis approaches, is loaded in the center of the gel. This allows proteins to migrate in either direction according to their isoelectric points. Therefore, the presented assay enables a direct visualization, separation...... structure. It is also demonstrated that the agarose gel shift assay is useful in the study of other protein interactions and can be used as an alternative method to native polyacrylamide gel electrophoresis....... measure of interactions. Therefore, no interaction studies between calreticulin and substrates in solution have been investigated previously. The results presented here indicate that calreticulin has a preference for substrates with a quaternary structure and primarily β-sheets in their secondary...

  20. Phosphoproteomic Analysis Reveals a Novel Mechanism of CaMKIIα Regulation Inversely Induced by Cocaine Memory Extinction versus Reconsolidation

    Science.gov (United States)

    Rich, Matthew T.; Abbott, Thomas B.; Chung, Lisa; Gulcicek, Erol E.; Stone, Kathryn L.; Colangelo, Christopher M.; Lam, TuKiet T.; Nairn, Angus C.; Taylor, Jane R.

    2016-01-01

    Successful addiction treatment depends on maintaining long-term abstinence, making relapse prevention an essential therapeutic goal. However, exposure to environmental cues associated with drug use often thwarts abstinence efforts by triggering drug using memories that drive craving and relapse. We sought to develop a dual approach for weakening cocaine memories through phosphoproteomic identification of targets regulated in opposite directions by memory extinction compared with reconsolidation in male Sprague-Dawley rats that had been trained to self-administer cocaine paired with an audiovisual cue. We discovered a novel, inversely regulated, memory-dependent phosphorylation event on calcium-calmodulin-dependent kinase II α (CaMKIIα) at serine (S)331. Correspondingly, extinction-associated S331 phosphorylation inhibited CaMKIIα activity. Intra-basolateral amygdala inhibition of CaMKII promoted memory extinction and disrupted reconsolidation, leading to a reduction in subsequent cue-induced reinstatement. CaMKII inhibition had no effect if the memory was neither retrieved nor extinguished. Therefore, inhibition of CaMKII represents a novel mechanism for memory-based addiction treatment that leverages both extinction enhancement and reconsolidation disruption to reduce relapse-like behavior. SIGNIFICANCE STATEMENT Preventing relapse to drug use is an important goal for the successful treatment of addictive disorders. Relapse-prevention therapies attempt to interfere with drug-associated memories, but are often hindered by unintentional memory strengthening. In this study, we identify phosphorylation events that are bidirectionally regulated by the reconsolidation versus extinction of a cocaine-associated memory, including a novel site on CaMKIIα. Additionally, using a rodent model of addiction, we show that CaMKII inhibition in the amygdala can reduce relapse-like behavior. Together, our data supports the existence of mechanisms that can be used to enhance

  1. In-gel detection of esterase-like albumin activity: Characterization of esterase-free sera albumin and its putative role as non-invasive biomarker of hepatic fibrosis

    Directory of Open Access Journals (Sweden)

    Areeba Ahmad

    2017-07-01

    Full Text Available Albumin is a globular and un-glycosylated multifunctional plasma protein and thus correlated with several human diseases. Owing to esterase contamination, albumin levels are usually misleading. In this study, we propose methodical accuracy for albumin estimation taking healthy and fibrotic rats. Liver fibrosis in rats was generated by N′-Nitrosodimethylamine (NDMA (10 mg/kg body weight within three weeks followed by its confirmation through H&E and immunohistochemical staining for α-SMA expression. Animal sera were screened by native polyacrylamide gel electrophoresis (native-PAGE (7.5%. In-gel esterase-like albumin activity was detected using α- and β-naphthyl acetate (5.58 × 10−3 mM; pH 7.5 as substrate. Sera albumin was purified from unstained PA gel-slices through electroelution. Subsequent to conformation of albumin purity by its molecular weight determination using SDS–PAGE (10% and peptide mass fingerprinting by MALDI-TOF-MS, samples were treated with different concentrations of urea. Urea-treated albumins were screened for esterase activity, conformational change and, albumin levels by immunoblotting. Our results demonstrate that esterase-like albumin activity in rat sera albumin is located in domain-III. The esterase-like activity remains detectable up to 4 M urea, which diminishes with increasing urea concentrations. Further, immunoblotting of urea-treated albumin samples displays a significant decline in purified protein bands, indicating hypoalbuminemia during hepatic fibrosis in rats. In conclusion, the present approach of albumin separation and estimation is of potential interest and may be recommended for diagnostic purposes.

  2. Dapsone gel 5% in combination with adapalene gel 0.1%, benzoyl peroxide gel 4% or moisturizer for the treatment of acne vulgaris: a 12-week, randomized, double-blind study.

    Science.gov (United States)

    Fleischer, Alan B; Shalita, Alan; Eichenfield, Lawrence F; Abramovits, William; Lucky, Anne; Garrett, Steven

    2010-01-01

    To evaluate the safety and efficacy of dapsone gel 5% in the treatment of acne when used in combination with adapalene gel 0.1%, benzoyl peroxide gel 4% or moisturizer. This was a twelve-week, randomized, double-blind study. Patients aged 12 years and older (n=301) applied dapsone gel twice daily and were randomly assigned (1:1:1) to one of three additional treatments, applied once daily. By week 12, dapsone gel combined with any of the three additional treatments reduced the mean number of inflammatory lesions. However, the authors did not detect a significant difference in the reduction of inflammatory lesions when dapsone was used in combination with adapalene gel or with benzoyl peroxide gel compared to the dapsone plus moisturizer combination group (P=0.052 for both versus moisturizer combination). Patients treated with dapsone gel combined with adapalene showed a significantly better response in reduction in non-inflammatory and total acne lesion count than those who received the moisturizer combination. Local adverse reactions in all three treatment groups were minimal and generally mild in severity. Dapsone gel in combination with adapalene gel or benzoyl peroxide gel is safe and well tolerated for the treatment of acne vulgaris.

  3. Silver nitrate based gel dosimeter

    International Nuclear Information System (INIS)

    Titus, D; Samuel, E J J; Srinivasan, K; Roopan, S M; Madhu, C S

    2017-01-01

    A new radiochromic gel dosimeter based on silver nitrate and a normoxic gel dosimeter was investigated using UV-Visible spectrophotometry in the clinical dose range. Gamma radiation induced the synthesis of silver nanoparticles in the gel and is confirmed from the UV-Visible spectrum which shows an absorbance peak at around 450 nm. The dose response function of the dosimeter is found to be linear upto12Gy. In addition, the gel samples were found to be stable which were kept under refrigeration. (paper)

  4. a bare Nanocapillary for DNA Separation and Genotyping analysis in Gel-Free solutions without application of external electric field

    Science.gov (United States)

    Wang, Xiayan; Wang, Shili; Veerappan, Vijaykumar; Byun, Chang Kyu; Nguyen, Han; Gendhar, Brina; Allen, Randy D.; Liu, Shaorong

    2009-01-01

    In this work, we demonstrate DNA separation and genotyping analysis in gel-free solutions using a nanocapillary under pressure-driven conditions without application of an external electric field. The nanocapillary is a ~50-cm-long and 500-nm-radius bare fused silica capillary. After a DNA sample is injected, the analytes are eluted out in a chromatographic separation format. The elution order of DNA molecules follows strictly with their sizes, with the longer DNA being eluted out faster than the shorter ones. High resolutions are obtained for both short (a few bases) and long (tens of thousands of base pairs) DNA fragments. Effects of key experimental parameters, such as eluent composition and elution pressure, on separation efficiency and resolution are investigated. We also apply this technique for DNA separations of real-world genotyping samples to demonstrate its feasibility in biological applications. PCR products (without any purification) amplified from Arabidopsis plant genomic DNA crude preparations are directly injected into the nanocapillary, and PCR-amplified DNA fragments are well resolved, allowing for unambiguous identification of samples from heterozygous and homozygous individuals. Since the capillaries used to conduct the separations are uncoated, column lifetime is virtually unlimited. The only material that is consumed in these assays is the eluent, and hence the operation cost is low. PMID:18500828

  5. Electrochemical production and use of free chlorine for pollutant removal: an experimental design approach.

    Science.gov (United States)

    Antonelli, Raissa; de Araújo, Karla Santos; Pires, Ricardo Francisco; Fornazari, Ana Luiza de Toledo; Granato, Ana Claudia; Malpass, Geoffroy Roger Pointer

    2017-10-28

    The present paper presents the study of (1) the optimization of electrochemical-free chlorine production using an experimental design approach, and (2) the application of the optimum conditions obtained for the application in photo-assisted electrochemical degradation of simulated textile effluent. In the experimental design the influence of inter-electrode gap, pH, NaCl concentration and current was considered. It was observed that the four variables studied are significant for the process, with NaCl concentration and current being the most significant variables for free chlorine production. The maximum free chlorine production was obtained at a current of 2.33 A and NaCl concentrations in 0.96 mol dm -3 . The application of the optimized conditions with simultaneous UV irradiation resulted in up to 83.1% Total Organic Carbon removal and 100% of colour removal over 180 min of electrolysis. The results indicate that a systematic (statistical) approach to the electrochemical treatment of pollutants can save time and reagents.

  6. Effect of calcium chloride concentration on output force in electrical actuator made of sodium alginate gel

    Science.gov (United States)

    Wu, Yuda; Zhao, Gang; Wei, Chengye; Liu, Shuang; Fu, Yu; Liu, Xvxiong

    2018-01-01

    As a kind of artificial muscle intelligent material, the biological gel electric driver has the advantages of low driving voltage, large strain, good biological compatibility, good flexibility, low price, etc. The application prospect is broad and it has high academic value. Alginate, as a common substance in sea, has characteristics of low cost, green and pollution-free. Therefore,this paper obtains biological gel electric actuator by sodium alginate and calcium chloride. Effects on output force of the electric actuator is researched by changing the crosslinking of calcium chloride concentration and the output force enhancement mechanism is analyzed in this paper.

  7. Rheology and structure of milk protein gels

    NARCIS (Netherlands)

    Vliet, van T.; Lakemond, C.M.M.; Visschers, R.W.

    2004-01-01

    Recent studies on gel formation and rheology of milk gels are reviewed. A distinction is made between gels formed by aggregated casein, gels of `pure` whey proteins and gels in which both casein and whey proteins contribute to their properties. For casein' whey protein mixtures, it has been shown

  8. Characterization of Silver Nanoparticle In Situ Synthesis on Porous Sericin Gel for Antibacterial Application

    Directory of Open Access Journals (Sweden)

    Gang Tao

    2016-01-01

    Full Text Available Sericin from Bombyx mori cocoon has good hydrophilicity, reaction activity, biocompatibility, and biodegradability, which has shown great potentials for biomedical materials. Here, an ultraviolet light-assisted in situ synthesis approach is developed to immobilize silver nanoparticles on the surface of sericin gel. The amount of silver nanoparticles immobilized on the surface of sericin gel could be regulated by the irradiation time. The porous structure and property of sericin gel were not affected by the modification of AgNPs, as evidenced by the observation of scanning electron microscopy, X-ray diffractometry, and Fourier transform infrared spectroscopy. Differential scanning calorimetry analysis showed that the modification of AgNPs increased the thermal stability of sericin gel. The growth curve of bacteria and inhibition zone assays suggested that the sericin gel modified with AgNPs had good antimicrobial activities against both Gram-negative and Gram-positive bacteria. This novel sericin has shown a great potential for biomedical purpose.

  9. Antimicrobial efficacy of alcohol-based hand gels.

    Science.gov (United States)

    Guilhermetti, M; Marques Wiirzler, L A; Castanheira Facio, B; da Silva Furlan, M; Campo Meschial, W; Bronharo Tognim, M C; Botelho Garcia, L; Luiz Cardoso, C

    2010-03-01

    In recent years, several commercial alcohol-based hand gels have appeared on the market to improve the hand-cleansing compliance of healthcare workers. Although the antimicrobial efficacy of these products has been reported in different countries, few studies have investigated this subject in Brazil. In this study, we assessed the antimicrobial efficacy of 12 alcohol-based hand gels produced in Brazil, containing 70% w/w or v/v ethyl alcohol as the active ingredient, according to the European Standard EN 1500 (EN 1500). The following alcohol gels were tested: Hand Gel, Voga Gel, Solumax Solugel, Doctor Clean, Rio Gel, Clear Gel, Sevengel, Hand CHC, Gel Bac, WBL-50 Gel, Sanigel and Soft Care Gel. In addition, 70% w/w ethyl alcohol and three alcohol-based hand rubs (Sterillium, Sterillium Gel, and Spitaderm), commonly used in Europe and effective according to EN 1500, were also tested. All the products tested, except for two, were approved by the EN 1500 test protocol with a 60s application. The results confirmed the antimicrobial efficacy of the majority of the alcohol gels produced in Brazil for hand hygiene of healthcare workers. Copyright 2009 The Hospital Infection Society. Published by Elsevier Ltd. All rights reserved.

  10. Agarose gel electrophoresis and polyacrylamide gel electrophoresis for visualization of simple sequence repeats.

    Science.gov (United States)

    Anderson, James; Wright, Drew; Meksem, Khalid

    2013-01-01

    In the modern age of genetic research there is a constant search for ways to improve the efficiency of plant selection. The most recent technology that can result in a highly efficient means of selection and still be done at a low cost is through plant selection directed by simple sequence repeats (SSRs or microsatellites). The molecular markers are used to select for certain desirable plant traits without relying on ambiguous phenotypic data. The best way to detect these is the use of gel electrophoresis. Gel electrophoresis is a common technique in laboratory settings which is used to separate deoxyribonucleic acid (DNA) and ribonucleic acid (RNA) by size. Loading DNA and RNA onto gels allows for visualization of the size of fragments through the separation of DNA and RNA fragments. This is achieved through the use of the charge in the particles. As the fragments separate, they form into distinct bands at set sizes. We describe the ability to visualize SSRs on slab gels of agarose and polyacrylamide gel electrophoresis.

  11. Molecular interactions and redox effects of carvacrol and thymol on myofibrillar proteins using a non-destructive and solvent-free methodological approach.

    Science.gov (United States)

    Lahmar, Aida; Akcan, Tolga; Chekir-Ghedira, Leila; Estévez, Mario

    2018-04-01

    The present study provides molecular insight into the effect of thymol and carvacrol on the oxidative damage caused to myofibrillar proteins by a hydroxyl-radical generating system (HRGS). An innovative model system was designed, in which gels, prepared with increasing levels of myofibrillar proteins, were oxidized by a HRGS (Fe 3+ /H 2 O 2 , 60 °C and 7 days) in the presence of lipids. The molecular affinity between myofibrillar proteins and both terpenes, as well as their effect on the oxidative stability of the gel systems, were studied using a non-destructive and solvent-free procedure based on fluorescence spectroscopy. Carvacrol displayed more affinity than thymol for establishing chemical interactions with protein residues. Both terpenes exhibited a significant antioxidant potential against the generation of lipid-derived volatile carbonyls and against the formation of protein crosslinking. This procedure may be applied to meat products to assess the effectiveness of a given antioxidant additive without size reduction or sample processing. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Preparation of zirconium molybdate gel for 99mTc gel generator

    International Nuclear Information System (INIS)

    Aliludin, Z.; Ohkubo, Masatake; Kushita, Kouhei

    1988-09-01

    Zirconium molybdate gel has excellent characteristics for use as column matrix material of 99m Tc generators. In this work, zirconium molybdate gels were prepared under different conditions; pH's of molybdate solutions from 2.5 to 7.0, Mo:Zr molar ratios from 0.7:1.0 to 1.3:1.0, drying temperatures from an ambient temperature to 200 deg C, and drying times from 1 h to 25 h. Contents of water, nitrate, molybdenum and zirconium were measured to examine the fundamental conditions in gel preparation. The Mo:Zr molar ratio was 1.0:1.0 for the most of gels obtained. A 99m Tc generator was prepared with an amorphous zirconium molybdate containing a tracer level of 99 Mo as column matrix material. Elution of 99m Tc was rapid and the average elution efficiency was 90 % for 6 ml elutions. Contents of radionuclidic impurities, Zr and Mo in the eluates, were low enough to meet the pharmacopoeia requirements for human use. (author)

  13. SAMNet: a network-based approach to integrate multi-dimensional high throughput datasets.

    Science.gov (United States)

    Gosline, Sara J C; Spencer, Sarah J; Ursu, Oana; Fraenkel, Ernest

    2012-11-01

    The rapid development of high throughput biotechnologies has led to an onslaught of data describing genetic perturbations and changes in mRNA and protein levels in the cell. Because each assay provides a one-dimensional snapshot of active signaling pathways, it has become desirable to perform multiple assays (e.g. mRNA expression and phospho-proteomics) to measure a single condition. However, as experiments expand to accommodate various cellular conditions, proper analysis and interpretation of these data have become more challenging. Here we introduce a novel approach called SAMNet, for Simultaneous Analysis of Multiple Networks, that is able to interpret diverse assays over multiple perturbations. The algorithm uses a constrained optimization approach to integrate mRNA expression data with upstream genes, selecting edges in the protein-protein interaction network that best explain the changes across all perturbations. The result is a putative set of protein interactions that succinctly summarizes the results from all experiments, highlighting the network elements unique to each perturbation. We evaluated SAMNet in both yeast and human datasets. The yeast dataset measured the cellular response to seven different transition metals, and the human dataset measured cellular changes in four different lung cancer models of Epithelial-Mesenchymal Transition (EMT), a crucial process in tumor metastasis. SAMNet was able to identify canonical yeast metal-processing genes unique to each commodity in the yeast dataset, as well as human genes such as β-catenin and TCF7L2/TCF4 that are required for EMT signaling but escaped detection in the mRNA and phospho-proteomic data. Moreover, SAMNet also highlighted drugs likely to modulate EMT, identifying a series of less canonical genes known to be affected by the BCR-ABL inhibitor imatinib (Gleevec), suggesting a possible influence of this drug on EMT.

  14. Ophthalmic gels: Past, present and future.

    Science.gov (United States)

    Al-Kinani, Ali A; Zidan, Ghada; Elsaid, Naba; Seyfoddin, Ali; Alani, Adam W G; Alany, Raid G

    2018-02-15

    Aqueous gels formulated using hydrophilic polymers (hydrogels) along with those based on stimuli responsive polymers (in situ gelling or gel forming systems) continue to attract increasing interest for various eye health-related applications. They allow the incorporation of a variety of ophthalmic pharmaceuticals to achieve therapeutic levels of drugs and bioactives at target ocular sites. The integration of sophisticated drug delivery technologies such as nanotechnology-based ones with intelligent and environment responsive systems can extend current treatment duration to provide more clinically relevant time courses (weeks and months instead of hours and days) which will inevitably reduce dose frequency, increase patient compliance and improve clinical outcomes. Novel applications and design of contact lenses and intracanalicular delivery devices along with the move towards integrating gels into various drug delivery devices like intraocular pumps, injections and implants has the potential to reduce comorbidities caused by glaucoma, corneal keratopathy, cataract, diabetic retinopathies and age-related macular degeneration. This review describes ophthalmic gelling systems with emphasis on mechanism of gel formation and application in ophthalmology. It provides a critical appraisal of the techniques and methods used in the characterization of ophthalmic preformed gels and in situ gelling systems along with a thorough insight into the safety and biocompatibility of these systems. Newly developed ophthalmic gels, hydrogels, preformed gels and in situ gelling systems including the latest in the area of stimuli responsive gels, molecularly imprinted gels, nanogels, 3D printed hydrogels; 3D printed devices comprising ophthalmic gels are covered. Finally, new applications of gels in the production of artificial corneas, corneal wound healing and hydrogel contact lenses are described. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Gel electrophoresis of inorganic cations

    International Nuclear Information System (INIS)

    Schoenhofer, F.; Grass, F.

    1978-01-01

    In order to be able to separate the largest possible amounts of substance, polyacryl amide gel (PAA) and silica gel are used as carrier for the electrophoresis. Milligramme quantities can easily be separated on PAA gel plates. Electrophoretic ion focussing considerably improves it. Separations of Sr/Y and lanthanoids were carried out. The behaviour of the readily soluble complexing agent acids on silica gel thin layers was minutely investigated and an interpretation of the focussing effect was derived. The conditions for separating radionuclides were optimized. A further improved separation can be achieved by a time sequence combination of normal electrophoresis and ion focussing. Selective isolation methods are advantageous to determine radionuclide traces in environmental samples. The selective adsorption on preformed deposits was transferred to electrophoresis. After pre-investigations on silica gel layers, strontium and barium could also be retained on PAA gel and radium on strontium sulphate in PAA, whereas the disturbing calcium can easily pass through. Cesium can also be retained by prussian blue in the electrophoresis. (orig.) [de

  16. Composites characterization by sol-gel process using positron lifetime spectroscopy

    International Nuclear Information System (INIS)

    Sousa, Edesia M.B. de; Minas Gerais Univ., Belo Horizonte, MG; Magalhaes, Wellington F. de; Mohallem, Nelci D.S.

    1997-01-01

    Si O 2 matrix were prepared by sol-gel method using TEOS, ethanol and H 2 O in a 1/3/10 mole ratio, with H Cl and HF as catalysts. These silica gels were doped with copper and titanium adding Cu Cl and titanium tetra-iso-propoxide in the starting solution during agitation. The samples were prepared in monolithic shape, dried at 110 0 C for 24 hours and thermally treated for 2 hours at 500, 900 and 110 0 C for 24 hours The structural evolution was studied by X-Ray diffraction, mercury porosimetry and picnometry. In this work it was also used the Positron Annihilation Lifetime Spectroscopy which have been used , now a days, as a microscopic probe in order to investigate the free volume in zeolites, polymers and metallic alloy. All the samples have shown a stable pore structure until 900 0 C and a strong densification process at 1100 0 C. (author). 10 refs., 4 figs., 2 tabs

  17. Initial investigation of a novel light-scattering gel phantom for evaluation of optical CT scanners for radiotherapy gel dosimetry

    International Nuclear Information System (INIS)

    Bosi, Stephen; Naseri, Pourandokht; Puran, Alicia; Davies, Justin; Baldock, Clive

    2007-01-01

    There is a need for stable gel materials for phantoms used to validate optical computerized tomography (CT) scanners used in conjunction with radiation-induced polymerizing gel dosimeters. Phantoms based on addition of light-absorbing dyes to gelatine to simulate gel dosimeters have been employed. However, to more accurately simulate polymerizing gels one requires phantoms that employ light-scattering colloidal suspensions added to the gel. In this paper, we present the initial results of using an optical CT scanner to evaluate a novel phantom in which radiation-exposed polymer gels are simulated by the addition of colloidal suspensions of varying turbidity. The phantom may be useful as a calibration transfer standard for polymer gel dosimeters. The tests reveal some phenomena peculiar to light-scattering gels that need to be taken into account when calibrating polymer gel dosimeters

  18. A facial approach combining photosensitive sol–gel with self-assembly method to fabricate superhydrophobic TiO{sub 2} films with patterned surface structure

    Energy Technology Data Exchange (ETDEWEB)

    Duan, Zongfan, E-mail: duanzf@xaut.edu.cn [School of Materials Science and Engineering, Xi’an University of Technology, Xi’an 710048 (China); Shaanxi Key Laboratory of Electrical Materials and Infiltration Technology, Xi’an 710048 (China); Zhao, Zhen; Luo, Dan; Zhao, Maiqun [School of Materials Science and Engineering, Xi’an University of Technology, Xi’an 710048 (China); Zhao, Gaoyang, E-mail: Zhaogy@xaut.edu.cn [School of Materials Science and Engineering, Xi’an University of Technology, Xi’an 710048 (China); Shaanxi Key Laboratory of Electrical Materials and Infiltration Technology, Xi’an 710048 (China)

    2016-01-01

    Graphical abstract: - Highlights: • Patterned TiO{sub 2} films were prepared by photosensitive sol–gel method. • Surface had quasi micro-lens array structure, leading to superhydrophobicity. • The surface with the lowest period exhibited the highest contact angel of 163°. • UV irradiation induced the conversion to superhydrophilicity. - Abstract: Superhydrophobic TiO{sub 2} films with micro-patterned surface structure was prepared through a facial approach combining photosensitive sol–gel method with following surface modification by 1H,1H,2H,2H-perfluorooctyltrichlorosilane (PFOTCS). The patterned surface possessed quasi micro-lens array structure resembling processus mastoideus of lotus, leading to excellent hydrophobicity. The relationship between hydrophobic performance and the period of the micro-patterned TiO{sub 2} surface was investigated. The water contact angles (CAs) of micro-patterned TiO{sub 2} surface increased with the decrease of the periods, and the patterned surface with the lowest period of 0.83 μm showed the highest CA of 163°. It suggests that this approach would offer an advantage to control the wettability properties of superhydrophobic surfaces by adjusting the fine pattern structure. Furthermore, the superhydrophobic state could be converted to the state of superhydrophilicity under ultraviolet (UV) illumination as a result of the photocatalytic decomposition of the PFOTCS monolayer on the micro-patterned TiO{sub 2} Surface.

  19. Irreversible fouling of membrane bioreactors due to formation of a non-biofilm gel layer

    DEFF Research Database (Denmark)

    Poorasgari, Eskandar; Larsen, Poul; Zheng, Xing

    2014-01-01

    Extra-cellular polymeric substances (EPS), known to contribute to fouling in membrane bio-reactors (MBRs), are generally divided into bound and free EPS. The free EPS are able to form a gel layer on the membrane active surface. The mechanisms involved in formation of such layer and its effects...... on performance of the MBR membranes were studied. The free EPS, extracted by centrifugation and microfiltration, contained a significant amount of humic-like substances. Under static contact to the membrane, adsorption of humic-like substances to the membrane occurred and could be explained by conventional...... adsorption kinetics. Due to static adsorption, surface roughness of the membrane declined significantly, indicating that adsorbed matters to the membranefilled the cavities of the membrane surface. Filtration of the free EPS caused 50% waterflux decline. The fouling resistance linearly increased...

  20. The use of DNase I, buffer gradient gel, and 35S label for DNA sequencing

    International Nuclear Information System (INIS)

    Hong, G.F.

    1987-01-01

    The use of microcentrifuge tubes and mixing of sequencing reactions and brief centrifugation in racks rather than the original capillary tube method has made sequencing reactions relatively simple. Buffer gradient gels and 15 S label are simple means of increasing the rate of sequence analysis; they add little time to that required for determining the sequences of a given number of clones, need no elaborate equipment, and increase the amount of useful data per gel. The standard approach of running 2- and 4-hr gels generates about 300 bases of sequence. The above improvements allow the same number of bases to be read with more confidence from a single 50-cm gel for each clone sequenced due to the changed spacing between sharpened bands

  1. Sol-gel technology for biomedical engineering

    International Nuclear Information System (INIS)

    Podbielska, H.; Ulatowska-Jarza, A.

    2005-01-01

    Sol-gel derived silica possess many promising features, including low-temperature preparation procedure, porosity, chemical and physical stability. Applications exploiting porous materials to encapsulate sensor molecules, enzymes and many other compounds, are developing rapidly. In this paper some potential applications, with emphasis on biomedical and environmental ones, are reviewed. The material preparation procedure is described and practical remarks on silica-based sol-gels are included. It is reported that sol-gels with entrapped various molecules may be used in construction of implants and coatings with bioactive properties. It is shown how to exploit the sol-gel production route for construction of sol-gel coated fiberoptic applicators for laser therapy. The applications of bioactive materials are discussed, as well. It is demonstrated that it is possible to immobilize photosensitive compounds in sol-gel matrix without loosing their photoactivity. Some examples of sol-gel based biosensors are demonstrated, as well, showing their potential for detecting various gases, toxic substances, acidity, humidity, enzymes and biologically active agents. (authors)

  2. Water equivalence of polymer gel dosimeters

    International Nuclear Information System (INIS)

    Sellakumar, P.; James Jebaseelan Samuel, E.; Supe, Sanjay S.

    2007-01-01

    To evaluate the water equivalence and radiation transport properties of polymer gel dosimeters over the wide range of photon and electron energies 14 different types of polymer gels were considered. Their water equivalence was evaluated in terms of effective atomic number (Z eff ), electron density (ρ e ), photon mass attenuation coefficient (μ/ρ), photon mass energy absorption coefficient (μ en /ρ) and total stopping power (S/ρ) tot of electrons using the XCOM and the ESTAR database. The study showed that the effective atomic number of polymer gels were very close ( en /ρ for all polymer gels were in close agreement ( tot of electrons in polymer gel dosimeters were within 1% agreement with that of water. From the study we conclude that at lower energy (<80keV) the polymer gel dosimeters cannot be considered water equivalent and study has to be carried out before using the polymer gel for clinical application

  3. Gel nano-particulates against radioactivity

    International Nuclear Information System (INIS)

    Deroin, Ph.

    2004-01-01

    The Argonne research center (USA) has developed a 'super-gel' compound, a polymer close to those used in baby's diapers, which can reach a 90% efficiency in the radioactive decontamination of porous materials, like bricks or concrete. The contaminated materials are sprayed with a mixture of polymer gel and wetting agent with nano-particulates in suspension. Under the action of the wetting agent, radioactivity migrates from the pores to the gel and is trapped by the nano-particulates. The drying and recycling of the gel allows to reduce the volume of radioactive wastes. Short paper. (J.S.)

  4. Antibiotic-containing hyaluronic acid gel as an antibacterial carrier: Usefulness of sponge and film-formed HA gel in deep infection.

    Science.gov (United States)

    Matsuno, Hiroaki; Yudoh, Kazuo; Hashimoto, Masamichi; Himeda, Yasukazu; Miyoshi, Teruzo; Yoshida, Kaoru; Kano, Syogo

    2006-03-01

    We have developed a novel bioabsorbable antibacterial carrier using hyaluronic acid (HA) gel for prevention and treatment of orthopedic infections. In this study, we investigated the in vivo antibacterial effects of two forms of this new material, an HA gel sponge and an HA gel film. A titanium cylinder was inserted into the intramedullary cavity of each rabbit femur, along with an HA gel sponge or HA gel film containing antibiotics. The HA gel sponge contained gentamycin, vancomycin, tobramycin, or minomycin. The HA gel film contained gentamycin or vancomycin. After 0, 7, and 14 days, the rabbit bone marrow was collected, and the antibacterial activity of the HA gel was determined by agar diffusion test. As a control, we used Septocoll, a commercially available antibacterial carrier. Both the HA gel sponge and HA gel film exhibited antibacterial activity. The present results indicate that HA gel containing antibiotics is a clinically useful bioabsorbable antibacterial carrier. Copyright 2006 Orthopaedic Research Society.

  5. Therapeutic potential of gel-based injectables for vocal fold regeneration

    Science.gov (United States)

    Bartlett, Rebecca S.; Thibeault, Susan L.; Prestwich, Glenn D.

    2012-01-01

    Vocal folds are anatomically and biomechanically unique, thus complicating the design and implementation of tissue engineering strategies for repair and regeneration. Integration of an enhanced understanding of tissue biomechanics, wound healing dynamics and innovative gel-based therapeutics has generated enthusiasm for the notion that an efficacious treatment for vocal fold scarring could be clinically attainable within several years. Fibroblast phenotype and gene expression are mediated by the three-dimensional mechanical and chemical microenvironment at an injury site. Thus, therapeutic approaches need to coordinate spatial and temporal aspects of the wound healing response in an injured vocal tissue to achieve an optimal clinical outcome. Successful gel-based injectables for vocal fold scarring will require a keen understanding of how the native inflammatory response sets into motion the later extracellular matrix remodeling, which in turn will determine the ultimate biomechanical properties of the tissue. We present an overview of the challenges associated with this translation as well as the proposed gel-based injectable solutions. PMID:22456756

  6. Mechanical behaviour of bending bucky-gel actuators and its representation

    International Nuclear Information System (INIS)

    Kruusamäe, Karl; Mukai, Ken; Sugino, Takushi; Asaka, Kinji

    2014-01-01

    Bucky-gel actuators are ionic electromechanically active materials that bend in response to a low-voltage excitation. While bending actuators may offer new approaches in engineering solutions, the characterization of bending poses many challenges in comparison to conventional rotary motion. It is often desired to reduce the bending behaviour to a single parameter, which may lead to the loss of accuracy in modelling. A high-speed laser profilometer is utilized to characterize the bending response of different bucky-gel actuators at their full length and to critically compare the applicability of existing representation tools for bending. The best analytical representation of the bending of a bucky-gel actuator is found to be in the form of a power function. It is also observed that, along the length of the actuator, sections closer to the electrical input clamp exhibit back-relaxation (a common drawback for bending ionic actuators) already when the far end of the bending strip is still in forward motion. (paper)

  7. Therapeutic potential of gel-based injectables for vocal fold regeneration

    International Nuclear Information System (INIS)

    Bartlett, Rebecca S; Thibeault, Susan L; Prestwich, Glenn D

    2012-01-01

    Vocal folds are anatomically and biomechanically unique, thus complicating the design and implementation of tissue engineering strategies for repair and regeneration. Integration of an enhanced understanding of tissue biomechanics, wound healing dynamics and innovative gel-based therapeutics has generated enthusiasm for the notion that an efficacious treatment for vocal fold scarring could be clinically attainable within several years. Fibroblast phenotype and gene expression are mediated by the three-dimensional mechanical and chemical microenvironment at an injury site. Thus, therapeutic approaches need to coordinate spatial and temporal aspects of the wound healing response in an injured vocal tissue to achieve an optimal clinical outcome. Successful gel-based injectables for vocal fold scarring will require a keen understanding of how the native inflammatory response sets into motion the later extracellular matrix remodeling, which in turn will determine the ultimate biomechanical properties of the tissue. We present an overview of the challenges associated with this translation as well as the proposed gel-based injectable solutions. (paper)

  8. Effects of a wax organogel and alginate gel complex on holy basil (Ocimum sanctum) in vitro ruminal dry matter disappearance and gas production.

    Science.gov (United States)

    Templeman, James R; Rogers, Michael A; Cant, John P; McBride, Brian W; Osborne, Vern R

    2018-02-20

    The objectives of this study were to: (a) select an ideal organogel for the oil phase of a novel gel encapsulation technology, (b) optimize the formulation of an organogel and sodium alginate-based gel complex, and (c) examine the rumen protective ability of the gel by measuring 48-h in vitro ruminal dry matter disappearance and gas production from encapsulated dried and ground holy basil leaves. A rice-bran wax and canola oil organogel was selected for the oil phase of the gel complex as this combination had a 48-h dry matter disappearance of 6%, the lowest of all organogels analyzed. The gel complex was formulated by homogenizing the organogel with a sodium alginate solution to create a low-viscosity oil-in-water emulsion. Average dry matter disappearance of gel-encapsulated holy basil was 19%, compared to 42% for the free, unprotected holy basil. However, gel encapsulation of holy basil stimulated gas production. Specifically, gas production of encapsulated holy basil was four times higher than the treatment with holy basil added on top of the gel prior to incubation rather than encapsulated within the gel. Although the gel itself was highly degradable, it is speculated encapsulation thwarted holy basil's antimicrobial activity. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.

  9. Improving precision in gel electrophoresis by stepwisely decreasing variance components.

    Science.gov (United States)

    Schröder, Simone; Brandmüller, Asita; Deng, Xi; Ahmed, Aftab; Wätzig, Hermann

    2009-10-15

    Many methods have been developed in order to increase selectivity and sensitivity in proteome research. However, gel electrophoresis (GE) which is one of the major techniques in this area, is still known for its often unsatisfactory precision. Percental relative standard deviations (RSD%) up to 60% have been reported. In this case the improvement of precision and sensitivity is absolutely essential, particularly for the quality control of biopharmaceuticals. Our work reflects the remarkable and completely irregular changes of the background signal from gel to gel. This irregularity was identified as one of the governing error sources. These background changes can be strongly reduced by using a signal detection in the near-infrared (NIR) range. This particular detection method provides the most sensitive approach for conventional CCB (Colloidal Coomassie Blue) stained gels, which is reflected in a total error of just 5% (RSD%). In order to further investigate variance components in GE, an experimental Plackett-Burman screening design was performed. The influence of seven potential factors on the precision was investigated using 10 proteins with different properties analyzed by NIR detection. The results emphasized the individuality of the proteins. Completely different factors were identified to be significant for each protein. However, out of seven investigated parameters, just four showed a significant effect on some proteins, namely the parameters of: destaining time, staining temperature, changes of detergent additives (SDS and LDS) in the sample buffer, and the age of the gels. As a result, precision can only be improved individually for each protein or protein classes. Further understanding of the unique properties of proteins should enable us to improve the precision in gel electrophoresis.

  10. Thermosetting gels with modulated gelation temperature for ophthalmic use: the rheological and gamma scintigraphic studies.

    Science.gov (United States)

    Wei, Gang; Xu, Hui; Ding, Ping Tian; Li, San Ming; Zheng, Jun Min

    2002-09-18

    For ophthalmic drug delivery, Pluronic F127 solutions have a phase transition temperature too low for them to be instilled into the eye at room temperature. Refrigerator storage is usually required to make administration easier, whereas the potential irritation of cold to the sensitive ocular tissues may result in poor topical bioavailability. The purpose of this study is to develop a thermosetting gel with a suitable phase transition temperature by combining Pluronic analogs and to examine the influence of incorporating mucoadhesive polysaccharide, sodium hyaluronate (HA-Na), on the ocular retention of the gel. Dynamic rheological method and single photon emission computing tomography (SPECT) technique were used to ex/in vivo evaluate the thermosetting gels, respectively. An optimized formulation containing 21% F127 and 10% F68 increased the phase transition temperature by 9 degrees C as evaluated by elasticity modulus compared to that of individual 21% F127 solution. Rheological behaviors of the Pluronic solutions showed that the combined Pluronic formulation was free flowing liquid below 25 degrees C and converted to a firm gel under the physiological condition. Furthermore, this formulation possessed the highest viscosity both before and after tear dilution at 35 degrees C. Gamma scintigraphic data demonstrated that the clearance of the thermosetting gel labeled with 99mTc-DTPA was significantly delayed with respect to the phosphate buffered solution, and at least a threefold increase of the corneal residence time was achieved. However, no further improvement in the ocular retention was observed when adding HA-Na into the thermosetting gel due to the substantially decreased gel strength. Copyright 2002 Elsevier Science B.V.

  11. Novel hybrid sol-gel coatings for corrosion protection of AZ31B magnesium alloy

    International Nuclear Information System (INIS)

    Lamaka, S.V.; Montemor, M.F.; Galio, A.F.; Zheludkevich, M.L.; Trindade, C.; Dick, L.F.; Ferreira, M.G.S.

    2008-01-01

    This work aims to develop and study new anticorrosion films for AZ31B magnesium alloy based on the sol-gel coating approach. Hybrid organic-inorganic sols were synthesized by copolymerization of epoxy-siloxane and titanium or zirconium alkoxides. Tris(trimethylsilyl) phosphate was also used as additive to confer additional corrosion protection to magnesium-based alloy. A sol-gel coating, about 5-μm thick, shows good adhesion to the metal substrate and prevents corrosion attack in 0.005 M NaCl solution for 2 weeks. The sol-gel coating system doped with tris(trimethylsilyl)-phosphate revealed improved corrosion protection of the magnesium alloy due to formation of hydrolytically stable Mg-O-P chemical bonds. The structure and the thickness of the sol-gel film were characterized by transmission electron microscopy (TEM) and scanning electron microscopy (SEM). The corrosion behaviour of AZ31B substrates pre-treated with the sol-gel derived hybrid coatings was tested by electrochemical impedance spectroscopy (EIS). The chemical composition of the silylphosphate-containing sol-gel film at different depths was investigated by X-ray photoelectron spectroscopy (XPS) with depth profiling

  12. Physical Properties of Silicone Gel Breast Implants.

    Science.gov (United States)

    Jewell, Mark L; Bengtson, Bradley P; Smither, Kate; Nuti, Gina; Perry, TracyAnn

    2018-04-28

    Surgical applications using breast implants are individualized operations to fill and shape the breast. Physical properties beyond shape, size, and surface texture are important considerations during implant selection. Compare form stability, gel material properties, and shell thickness of textured shaped, textured round, and smooth round breast implants from 4 manufacturers: Allergan, Mentor, Sientra, and Establishment Labs through bench testing. Using a mandrel height gauge, form stability was measured by retention of dimensions on device movement from a horizontal to vertical supported orientation. Dynamic response of gel material (gel cohesivity, resistance to gel deformation, energy absorption) was measured using a synchronized target laser following application of graded negative pressure. Shell thickness was measured using digital thickness gauge calipers. Form stability, gel material properties, and shell thickness differed across breast implants. Of textured shaped devices, Allergan Natrelle 410 exhibited greater form stability than Mentor MemoryShape and Sientra Shaped implants. Allergan Inspira round implants containing TruForm 3 gel had greater form stability, higher gel cohesivity, greater resistance to gel deformation, and lower energy absorption than those containing TruForm 2 gel and in turn, implants containing TruForm 1 gel. Shell thickness was greater for textured versus smooth devices, and differed across styles. Gel cohesivity, resistance to gel deformation, and energy absorption are directly related to form stability, which in turn determines shape retention. These characteristics provide information to aid surgeons choosing an implant based on surgical application, patient tissue characteristics, and desired outcome.

  13. Effectiveness of silica based sol-gel microencapsulation method for odorants and flavors leading to sustainable environment.

    Science.gov (United States)

    Ashraf, Muhammad Aqeel; Khan, Aysha Masood; Ahmad, Mushtaq; Sarfraz, Maliha

    2015-01-01

    Microencapsulation has become a hot topic in chemical research. Technology mainly used for control release and protection purposes. The sol-gel micro encapsulation approach for fragrance and aroma in porous silica-based materials leads to sustainable odorant and flavored materials with novel and unique beneficial properties. Sol-gel encapsulation of silica based micro particles considered economically cheap as capital investment in manufacturing is very low and environmentally friendly. Amorphous sol-gel SiO2 is non-toxic and safe, whereas the sol-gel entrapment of delicate chemicals in its inner pores results in pronounced chemical and physical stabilization of the entrapped active agents, thereby broadening the practical utilization of chemically unstable essential oils (EOs). Reviewing progress in the fabrication of diverse odorant and flavored sol-gels, shows us how different synthetic strategies are appropriate for practical application with important health and environmental benefits.

  14. Free amino acids as phagostimulants in cricket nuptial gifts: support for the 'Candymaker' hypothesis.

    Science.gov (United States)

    Warwick, Stuart; Vahed, Karim; Raubenheimer, David; Simpson, Stephen J

    2009-04-23

    Nuptial gifts that are manufactured by the male are found in numerous insect species and some spiders, but there have been very few studies of the composition of such gifts. If, as has been proposed recently, nuptial gifts represent sensory traps, males will be selected to produce gifts that are attractive to females but such gifts will not necessarily provide the female with nutritional benefits (the 'Candymaker' hypothesis). We examined the free amino acid content of the spermatophylax of the cricket Gryllodes sigillatus (Orthoptera: Gryllidae) using high performance liquid chromatography (HPLC). The spermatophylax (dry weight) consisted of approximately 7 per cent free amino acids. The free amino acid composition was highly imbalanced, with a low proportion of essential amino acids (18.7%) and a high proportion of proline and glycine. The main free amino acids found in the spermatophylax appeared to act as phagostimulants: the duration of feeding on artificial gels by females was positively related to the free amino acid content of the gels. The results therefore suggest that males use free amino acids to 'sweeten' a relatively low-value food item. A possible function of glycine in inhibiting female movement is also proposed.

  15. The Effect of Gel Microstructure on Simulated Gastric Digestion of Protein Gels

    NARCIS (Netherlands)

    Opazo-Navarrete, Mauricio; Altenburg, Marte D.; Boom, Remko M.; Janssen, Anja E.M.

    2018-01-01

    The objective of this study was to analyse the impact of the gel structure obtained by different heat-induced temperatures on the in vitro gastric digestibility at pH 2. To achieve this, gels were prepared from soy protein, pea protein, albumin from chicken egg white and whey protein isolate at

  16. Gel polymer electrolytes for batteries

    Science.gov (United States)

    Balsara, Nitash Pervez; Eitouni, Hany Basam; Gur, Ilan; Singh, Mohit; Hudson, William

    2014-11-18

    Nanostructured gel polymer electrolytes that have both high ionic conductivity and high mechanical strength are disclosed. The electrolytes have at least two domains--one domain contains an ionically-conductive gel polymer and the other domain contains a rigid polymer that provides structure for the electrolyte. The domains are formed by block copolymers. The first block provides a polymer matrix that may or may not be conductive on by itself, but that can soak up a liquid electrolyte, thereby making a gel. An exemplary nanostructured gel polymer electrolyte has an ionic conductivity of at least 1.times.10.sup.-4 S cm.sup.-1 at 25.degree. C.

  17. Comparative study on the effects of negatively-charged biopolymers on chitosan-based gels for the development of instantaneous gels

    International Nuclear Information System (INIS)

    Jimeno, Austin Ed B.; Chakraborty, Soma

    2015-01-01

    Polymeric electrolytic complexes are solutions of charged/ionized chains. These solutions of positive and negative charge can be combined to make instantaneous networks bonded by electrostatic interactions, a gel network. These electrostatic interaction allows for easy application in injectable gels as the network can be temporarily distributed with the application of force and reformed on the relief of it. Possible applications for these injectable gels include drug delivery and wound-healing. κ-Carrageenan, dextran sulfate, alginate, and chitosan are polyelectrolytic biocompatible polymers which are widely studied and used for a variety of biomedical applications. Gel networks are made by combining a negatively-charged (κ-Carrageenan, dextran sulfate, or alginate) and positively charged (chitosan) solutions. The strong electrostatic interaction between the opposite charges from the gel network and the inherent biocompatibility of the polymers allow future biomedical applications. Quat 188-modified chitosan has additional sites for electrostatic bonding, can be dissolved in neutral, basic, and acidic pH, and has shown inherent antibacterial activity. The objectives of this study are the following: to formulate chitosan-based gels mixing solutions of chitosan with solutions of either κ-Carrageenan, dextran sulfate, or alginate, study the gelation of the gels as function of time and pH (4, 7, and 9) using UV-Vis, characterize the chitosan-based gels through DSC and DMA, characterize the physiological degradation of the chitosan-based gels, and compare results with those from Quat 188-modified chitosan-based gels. Polyelectrolytic solutions of chitosan and negatively-charged biopolymer of similar viscosities were mixed. It was determined from the UV-Vis spectroscopy of the chitosan-carrageenan gels under pH7 buffer that the increase of concentration by a factor of 5 for 0.006M-0.0095M and 1.25 for 0.0095M-0.0150M Chitosan-Carrageenan gels improved gelation by the

  18. Purification of Peptide Components including Melittin from Bee Venom using gel filtration chromatography and propionic acid/urea polyacrylamide gel electrophoresis

    Directory of Open Access Journals (Sweden)

    Young Chon Choi

    2006-06-01

    Full Text Available Objectives : This study was conducted to carry out Purification of Melittin and other peptide components from Bee Venom using gel filtration chromatography and propionic acid/urea polyacrylamide gel electrophoresis Methods : Melittin and other peptide components were separated from bee venom by using gel filtration chromatography on Sephadex G-50 column in 0.05M ammonium acetate buffer. Results : Melittin and other peptide components were separated from bee venom by using gel filtration chromatography on Sephadex G-50 column in 0.05M ammonium acetate buffer. The fractions obtained from gel filtration chromatography was analyzed by using SDS-PAGE and propionic acid/urea polyacrylamide gel electrophoresis. The melittin obtained from the gel filtration contained residual amount of phospholipase A2 and a protein with molecular weight of 6,000. The contaminating proteins were removed by the second gel filtration chromatography. Conclusion : Gel filtration chromatography and propionic acid/urea polyacrylamide gel electrophoresis are useful to separate peptide components including melittin from bee venom.

  19. Encapsulation of nanoclusters in dried gel materials via an inverse micelle/sol gel synthesis

    Science.gov (United States)

    Martino, Anthony; Yamanaka, Stacey A.; Kawola, Jeffrey S.; Showalter, Steven K.; Loy, Douglas A.

    1998-01-01

    A dried gel material sterically entrapping nanoclusters of a catalytically active material and a process to make the material via an inverse micelle/sol-gel synthesis. A surfactant is mixed with an apolar solvent to form an inverse micelle solution. A salt of a catalytically active material, such as gold chloride, is added along with a silica gel precursor to the solution to form a mixture. To the mixture are then added a reducing agent for the purpose of reducing the gold in the gold chloride to atomic gold to form the nanoclusters and a condensing agent to form the gel which sterically entraps the nanoclusters. The nanoclusters are normally in the average size range of from 5-10 nm in diameter with a monodisperse size distribution.

  20. Highly Efficient Single-Step Enrichment of Low Abundance Phosphopeptides from Plant Membrane Preparations

    Directory of Open Access Journals (Sweden)

    Xu Na Wu

    2017-09-01

    Full Text Available Mass spectrometry (MS-based large scale phosphoproteomics has facilitated the investigation of plant phosphorylation dynamics on a system-wide scale. However, generating large scale data sets for membrane phosphoproteins usually requires fractionation of samples and extended hands-on laboratory time. To overcome these limitations, we developed “ShortPhos,” an efficient and simple phosphoproteomics protocol optimized for research on plant membrane proteins. The optimized workflow allows fast and efficient identification and quantification of phosphopeptides, even from small amounts of starting plant materials. “ShortPhos” can produce label-free datasets with a high quantitative reproducibility. In addition, the “ShortPhos” protocol recovered more phosphorylation sites from membrane proteins, especially plasma membrane and vacuolar proteins, when compared to our previous workflow and other membrane-based data in the PhosPhAt 4.0 database. We applied “ShortPhos” to study kinase-substrate relationships within a nitrate-induction experiment on Arabidopsis roots. The “ShortPhos” identified significantly more known kinase-substrate relationships compared to previous phosphoproteomics workflows, producing new insights into nitrate-induced signaling pathways.

  1. Site selective generation of sol-gel deposits in layered bimetallic macroporous electrode architectures.

    Science.gov (United States)

    Lalo, Hélène; Bon-Saint-Côme, Yémima; Plano, Bernard; Etienne, Mathieu; Walcarius, Alain; Kuhn, Alexander

    2012-02-07

    The elaboration of an original composite bimetallic macroporous electrode containing a site-selective sol-gel deposit is reported. Regular colloidal crystals, obtained by a modified Langmuir-Blodgett approach, are used as templates for the electrogeneration of the desired metals in the form of a well-defined layered bimetallic porous electrode. This porous matrix shows a spatially modulated electroactivity which is subsequently used as a strategy for targeted electrogeneration of a sol-gel deposit, exclusively in one predefined part of the porous electrode.

  2. 3D dosimetry study of 188Re liquid balloon for intravascular brachytherapy using BANG polymer gel dosemeters

    International Nuclear Information System (INIS)

    Wuu, S.; Schiff, P.B.; Maryanski, M.; Liu, T.; Borzillary, S.; Weinberger, J.

    2002-01-01

    It has been suggested that the combination of intravascular brachytherapy and coronary stent implantation may result in further reduction of restenosis after percutaneous balloon angioplasty. The use of an angioplasty balloon filled with a P 188 Re liquid beta source for intravascular brachytherapy provides the advantage of accurate source positioning and uniform dose distribution to the coronary vessel wall. The effect of source edge and stent on the dose distribution of the target tissue may be clinically important. In BANG gels, the absorbed radiation produces free-radical chain polymerisation of acrylic monomers that are initially dissolved in the gel. The number of polymer particles is proportional to the absorbed dose. In this study, 3D dose distributions are presented for 188 Re balloons, with and without stents, using a prototype He-Ne laser CT scanner and the proprietary BANG polymer gel dosemeters. (author)

  3. Polymer gel dosimeter with AQUAJOINT® as hydrogel matrix

    Science.gov (United States)

    Maeyama, Takuya; Ishida, Yasuhiro; Kudo, Yoshihiro; Fukasaku, Kazuaki; Ishikawa, Kenichi L.; Fukunishi, Nobuhisa

    2018-05-01

    We report a polymer gel dosimeter based on a new gel matrix (AQUAJOINT®) that is a thermo-irreversible hydrogel formed by mixing two types of water-based liquids at room temperature. Normoxic N-vinylpyrrolidone-based polymer gels were prepared with AQUAJOINT® instead of gelatin. This AQUAJOINT®-based gel dosimeter exhibits a 2.5-fold increase in sensitivity over a gelatin-based gel dosimeter and a linear dose-response in the dose range of 0-8 Gy. This gel has heat resistance in a jar and controlled gel properties such as viscoelastic and mechanical characters, which may be useful for deformable polymer gel dosimetry.

  4. Synthesis of phthalocyanine doped sol-gel materials

    Science.gov (United States)

    Dunn, Bruce

    1993-01-01

    section ratio, 4, however, the tetrasulfonate groups make the dye soluble in water which greatly facilitates its incorporation into the sol-gel matrix. The nonlinear transmission of CuPc4S in a pH 2 buffer solution and in a silica xerogel were compared. It is evident that the CuPc4S preserves its optical limiting behavior in the sol-gel matrix, indicating that the fundamental excited state absorption process is essentially the same for a molecule in solution or in the solid state. Although the spectroscopic details of energy level lifetimes are unknown, the significance is that passive optical limiting has been achieved in the solid state via incorporation of a dye into an inorganic host. The only compromise occurs at the extremely high energy regime where photobleaching is observed. This is a result of the limited mobility of the dye molecules in the solid silica host relative to a liquid host. The effects of photodegradation in the xerogel are additive, whereas the solution provides a supply of fresh molecules that are free to enter the active volume between pulses.

  5. Nanocrystal/sol-gel nanocomposites

    Science.gov (United States)

    Petruska, Melissa A [Los Alamos, NM; Klimov, Victor L [Los Alamos, NM

    2007-06-05

    The present invention is directed to solid composites including colloidal nanocrystals within a sol-gel host or matrix and to processes of forming such solid composites. The present invention is further directed to alcohol soluble colloidal nanocrystals useful in formation of sol-gel based solid composites.

  6. Background-free, high sensitivity staining of proteins in one- and two-dimensional sodium dodecyl sulfate-polyacrylamide gels using a luminescent ruthenium complex.

    Science.gov (United States)

    Berggren, K; Chernokalskaya, E; Steinberg, T H; Kemper, C; Lopez, M F; Diwu, Z; Haugland, R P; Patton, W F

    2000-07-01

    SYPRO Ruby dye is a permanent stain comprised of ruthenium as part of an organic complex that interacts noncovalently with proteins. SYPRO Ruby Protein Gel Stain provides a sensitive, gentle, fluorescence-based method for detecting proteins in one-dimensional and two-dimensional sodium dodecyl sulfate-polyacrylamide gels. Proteins are fixed, stained from 3h to overnight and then rinsed in deionized water or dilute methanol/acetic acid solution for 30 min. The stain can be visualized using a wide range of excitation sources commonly used in image analysis systems including a 302 nm UV-B transilluminator, 473 nm second harmonic generation (SHG) laser, 488 nm argon-ion laser, 532 nm yttrium-aluminum-garnet (YAG) laser, xenon arc lamp, blue fluorescent light bulb or blue light-emitting diode (LED). The sensitivity of SYPRO Ruby Protein Gel Stain is superior to colloidal Coomassie Brilliant Blue (CBB) stain or monobromobimane labeling and comparable with the highest sensitivity silver or zinc-imidazole staining procedures available. The linear dynamic range of SYPRO Ruby Protein Gel stain extends over three orders of magnitude, which is vastly superior to silver, zinc-imidazole, monobromobimane and CBB stain. The fluorescent stain does not contain superfluous chemicals (formaldehyde, glutaraldehyde, Tween-20) that frequently interfere with peptide identification in mass spectrometry. While peptide mass profiles are severely altered in protein samples prelabeled with monobromobimane, successful identification of proteins by peptide mass profiling using matrix-assisted laser desorption/ionization mass spectrometry was easily performed after protein detection with SYPRO Ruby Protein Gel stain.

  7. Effectiveness of silica based sol-gel microencapsulation method for odorants and flavors leading to sustainable environment

    Science.gov (United States)

    Ashraf, Muhammad Aqeel; Khan, Aysha Masood; Ahmad, Mushtaq; Sarfraz, Maliha

    2015-01-01

    Microencapsulation has become a hot topic in chemical research. Technology mainly used for control release and protection purposes. The sol-gel micro encapsulation approach for fragrance and aroma in porous silica-based materials leads to sustainable odorant and flavored materials with novel and unique beneficial properties. Sol-gel encapsulation of silica based micro particles considered economically cheap as capital investment in manufacturing is very low and environmentally friendly. Amorphous sol-gel SiO2 is non-toxic and safe, whereas the sol-gel entrapment of delicate chemicals in its inner pores results in pronounced chemical and physical stabilization of the entrapped active agents, thereby broadening the practical utilization of chemically unstable essential oils (EOs). Reviewing progress in the fabrication of diverse odorant and flavored sol-gels, shows us how different synthetic strategies are appropriate for practical application with important health and environmental benefits. PMID:26322304

  8. Effectiveness of silica based Sol-gel microencapsulation Method for odorants and flavours leading to sustainable Environment

    Directory of Open Access Journals (Sweden)

    Muhammad Aqeel eAshraf

    2015-08-01

    Full Text Available Microencapsulation has become a hot topic in chemical research. Technology mainly used for control release and protection purposes. The sol–gel micro encapsulation approach for fragrance and aroma in porous silica-based materials leads to sustainable odorant and flavored materials with novel and unique beneficial properties. Sol-gel encapsulation of silica based micro particles considered economically cheap as capital investment in manufacturing is very low and environmentally friendly. Amorphous sol–gel SiO2 is non-toxic and safe, whereas the sol–gel entrapment of delicate chemicals in its inner pores results in pronounced chemical and physical stabilization of the entrapped actives, thereby broadening the practical utilization of chemically unstable essential oils. Reviewing progress in the fabrication of diverse odorant and flavoured sol-gels, shows us how different synthetic strategies are appropriate for practical application with important health and environmental benefits.

  9. Comparison effect of azithromycin gel 2% with clindamycin gel 1% in patients with acne

    Directory of Open Access Journals (Sweden)

    Fatemeh Mokhtari

    2016-01-01

    Conclusion: Azithromycin gel has medical impact at least similar to Clindamycin Gel in treatment of mild to moderate acne vulgaris, and it may be consider as suitable drug for resistant acne to conventional topical therapy.

  10. The role of crosslinkers in epoxy-amine crosslinked silicon sol-gel barrier protection coatings

    International Nuclear Information System (INIS)

    Vreugdenhil, A.J.; Gelling, V.J.; Woods, M.E.; Schmelz, J.R.; Enderson, B.P.

    2008-01-01

    The search for chromate replacements in corrosion prevention materials has identified the use of hybrid sol-gel coatings as one, very promising approach. Appropriately functionalized hybrid sol-gel materials can be crosslinked to enhance their chemical durability and mechanical strength. In this work, we evaluate three crosslinkers used in a tetramethoxysilane-glycidoxypropyltrimethoxysilane binary sol-gel system in order to identify the role of the crosslinkers in corrosion protection. The crosslinkers examined were ethylenediamine, N-aminethylepiperazine, and diethylenetriamine. The sol-gel coatings were examined by contact angle, atomic force microscopy, and electrochemical impedance spectroscopy (EIS). Circuit modeling of the EIS results yielded valuable insights into the significant differences between the durabilities of the variously crosslinked coatings. Crosslinker hydrophobicity was identified as not playing a significant role whereas the number of reactive sites per crosslinker and the resulting morphology of the material may be an important parameter

  11. How a gel polymer electrolyte affects performance of lithium/sulfur batteries

    International Nuclear Information System (INIS)

    Zhang, Sheng S.; Tran, Dat T.

    2013-01-01

    Highlights: •Conventional separator is coated with a 50PEO-50SiO 2 (wt.%) composite layer. •Composite coating increases tensile strength and electrolyte wettability. •Coated separator offers an alternative approach for making gel polymer Li/S battery. •Li/S battery takes benefits of gel polymer electrolyte at the expense of capacity. -- Abstract: Gel polymer electrolyte (GPE) and composite gel polymer electrolyte (CGPE) have been widely employed to improve the safety and cycling performance of rechargeable lithium and lithium-ion batteries. In order to determine whether this approach is applicable to lithium/sulfur (Li/S) battery, we examine the effect of CGPE on the cycling and storage performances of Li/S cells by comparing a 50PEO-50SiO 2 (wt.%) composite coated separator (C-separator) with a pristine separator (P-separator). Results show that the composite coating significantly enhances the wettability of liquid electrolyte on the separator and that resulting CGPE can tightly glue the separator and electrode together. In comparison with the P-separator, the C-separator offers Li/S cells similar capacity retention and rate capability; however it greatly affects the specific capacity of sulfur. The analysis on the impedance spectrum of a lithium polysulfide (PS) solution reveal that the reduction of sulfur specific capacity is due to the high viscosity of the CGPE and the strong adsorption of SiO 2 filler to the PS species, which trap PS species in the separator and hence reduce the utilization of sulfur active material. Therefore, the benefits of the GPE and CGPE to the Li/S batteries can be taken only at the expense of sulfur specific capacity

  12. Sensitivity calibration procedures in optical-CT scanning of BANG 3 polymer gel dosimeters

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Y.; Wuu, Cheng-Shie; Maryanski, Marek J. [Department of Radiation Oncology, Columbia University, New York, New York 10032 (United States); Department of Radiation Oncology, Columbia University, New York, New York 10032 and MGS Research Inc., Madison, Connecticut 06443 (United States)

    2010-02-15

    The dose response of the BANG 3 polymer gel dosimeter (MGS Research Inc., Madison, CT) was studied using the OCTOPUS laser CT scanner (MGS Research Inc., Madison, CT). Six 17 cm diameter and 12 cm high Barex cylinders, and 18 small glass vials were used to house the gel. The gel phantoms were irradiated with 6 and 10 MV photons, as well as 12 and 16 MeV electrons using a Varian Clinac 2100EX. Three calibration methods were used to obtain the dose response curves: (a) Optical density measurements on the 18 glass vials irradiated with graded doses from 0 to 4 Gy using 6 or 10 MV large field irradiations; (b) optical-CT scanning of Barex cylinders irradiated with graded doses (0.5, 1, 1.5, and 2 Gy) from four adjacent 4x4 cm{sup 2} photon fields or 6x6 cm{sup 2} electron fields; and (c) percent depth dose (PDD) comparison of optical-CT scans with ion chamber measurements for 6x6 cm{sup 2}, 12 and 16 MeV electron fields. The dose response of the BANG 3 gel was found to be linear and energy independent within the uncertainties of the experimental methods (about 3%). The slopes of the linearly fitted dose response curves (dose sensitivities) from the four field irradiations (0.0752{+-}3%, 0.0756{+-}3%, 0.0767{+-}3%, and 0.0759{+-}3% cm{sup -1} Gy{sup -1}) and the PDD matching methods (0.0768{+-}3% and 0.0761{+-}3% cm{sup -1} Gy{sup -1}) agree within 2.2%, indicating a good reproducibility of the gel dose response within phantoms of the same geometry. The dose sensitivities from the glass vial approach are different from those of the cylindrical Barex phantoms by more than 30%, owing probably to the difference in temperature inside the two types of phantoms during gel formation and irradiation, and possible oxygen contamination of the glass vial walls. The dose response curve obtained from the PDD matching approach with 16 MeV electron field was used to calibrate the gel phantom irradiated with the 12 MeV, 6x6 cm{sup 2} electron field. Three-dimensional dose distributions

  13. Influence of initial pH on the microstructure of YBa2Cu3O7−x superconducting thin films derived from DEA-aqueous sol–gel method

    DEFF Research Database (Denmark)

    Xiao, Tang; Yue, Zhao; Grivel, Jean-Claude

    2013-01-01

    A fluorine-free aqueous sol–gel technique was used to fabricate YBCO superconducting thin films. Acetic acid was added in order to modify the complexation process taking place between the metal cations and the organic chelating agents. The electrical resistance and the pH value were used as indic......A fluorine-free aqueous sol–gel technique was used to fabricate YBCO superconducting thin films. Acetic acid was added in order to modify the complexation process taking place between the metal cations and the organic chelating agents. The electrical resistance and the pH value were used...

  14. Feasibility of simultaneous correction of ametropia by varying gel refractive index with phaco-ersatz

    Science.gov (United States)

    Ho, Arthur; Erickson, Paul; Manns, Fabrice; Pham, Therese; Parel, Jean-Marie A.

    2001-06-01

    Recent developments in surgical procedures for restoring accommodation saw the availability of Phaco-ersatz as a feasible procedure returning near vision to the presbyopies. In Phaco-ersatz, the presbyopic crystalline lens is extracted and replaced by a flexible polymer gel in the intact lens capsule. The ability to simultaneously correct ametropia while restoring accommodation with this procedure is seen to be extremely attractive. One strategy by which this may be achieved within the Phaco-ersatz procedure is by making use of polymer gel of different refractive indices. We assessed the feasibility of simultaneously correcting ametropia while restoring accommodation using phaco-ersatz using this approach. Two model eyes (Gullstrand and Navarro) were used to evaluate this approach. Computation results using paraxial equations and ray tracing indicated that while this approach might be feasible for the hypermetrope, its usefulness for correcting myopia is limited due to significant reductions in the resultant amplitude of accommodation. A number of practical considerations may also influence the applicability of this approach.

  15. Evaluation of Three Approaches for Assessing Adherence to Vaginal Gel Application in Clinical Trials

    Science.gov (United States)

    van der Straten, Ariane; Cheng, Helen; Mensch, Barbara; Friedland, Barbara; Katzen, Lauren; Littlefield, Sarah; Buckley, Niall; Espinoza, Lilia; Keller, Marla J.; Herold, Betsy C.; Einstein, Mark H.

    2014-01-01

    Background: Accurate measurement of adherence to product use is an ongoing challenge in microbicide trials. Methods: We compared adherence estimates using two applicator tests (a dye stain assay [DSA] and an ultraviolet light assay [UVA]), the Wisebag (an applicator container that electronically tracks container openings), and self-reported adherence (ability, frequency, and percent missed doses). Healthy, HIV-negative, non-pregnant US women aged 23 to 45 received a Wisebag and 32 applicators filled with placebo gel, were instructed to insert one applicator daily for 30 days, returned the Wisebag and all applicators, and completed an exit interview. Emptied applicators were tested by UVA and then DSA, and scored by two blinded readers. Positive and negative controls were randomly included in applicator batches. Results: Among 42 women enrolled, 39 completed the study. DSA and UVA yielded similar sensitivity (97% and 95%) and specificity (79% and 79%). Two participants had fully inoperable Wisebags and nine had partially inoperable Wisebags. The proportion of participants considered to have high adherence (≥80%) varied: 43% (Wisebag), 46% (UVA), 49% (DSA), and 62% to 82% (self-reports). For estimating high adherence, Wisebag had a sensitivity of 76% (95% CI, 50% to 93%) and a specificity of 85% (95% CI, 62% to 97%) compared with DSA. Although 28% of participants reported forgetting to open the Wisebag daily, 59% said it helped them remember gel use. Conclusions: DSA and UVA performed similarly. Compared with these tests, self-reports overestimated and Wisebag underestimated adherence. Although Wisebag may encourage gel use, the applicator tests currently appear more useful for measuring use in clinical trials. PMID:24220357

  16. Free amino acids as phagostimulants in cricket nuptial gifts: support for the ‘Candymaker’ hypothesis

    Science.gov (United States)

    Warwick, Stuart; Vahed, Karim; Raubenheimer, David; Simpson, Stephen J.

    2009-01-01

    Nuptial gifts that are manufactured by the male are found in numerous insect species and some spiders, but there have been very few studies of the composition of such gifts. If, as has been proposed recently, nuptial gifts represent sensory traps, males will be selected to produce gifts that are attractive to females but such gifts will not necessarily provide the female with nutritional benefits (the ‘Candymaker’ hypothesis). We examined the free amino acid content of the spermatophylax of the cricket Gryllodes sigillatus (Orthoptera: Gryllidae) using high performance liquid chromatography (HPLC). The spermatophylax (dry weight) consisted of approximately 7 per cent free amino acids. The free amino acid composition was highly imbalanced, with a low proportion of essential amino acids (18.7%) and a high proportion of proline and glycine. The main free amino acids found in the spermatophylax appeared to act as phagostimulants: the duration of feeding on artificial gels by females was positively related to the free amino acid content of the gels. The results therefore suggest that males use free amino acids to ‘sweeten’ a relatively low-value food item. A possible function of glycine in inhibiting female movement is also proposed. PMID:19158029

  17. Efficient approach to obtain free energy gradient using QM/MM MD simulation

    International Nuclear Information System (INIS)

    Asada, Toshio; Koseki, Shiro; Ando, Kanta

    2015-01-01

    The efficient computational approach denoted as charge and atom dipole response kernel (CDRK) model to consider polarization effects of the quantum mechanical (QM) region is described using the charge response and the atom dipole response kernels for free energy gradient (FEG) calculations in the quantum mechanical/molecular mechanical (QM/MM) method. CDRK model can reasonably reproduce energies and also energy gradients of QM and MM atoms obtained by expensive QM/MM calculations in a drastically reduced computational time. This model is applied on the acylation reaction in hydrated trypsin-BPTI complex to optimize the reaction path on the free energy surface by means of FEG and the nudged elastic band (NEB) method

  18. iTRAQ-Based and Label-Free Proteomics Approaches for Studies of Human Adenovirus Infections

    OpenAIRE

    Trinh, Hung V.; Grossmann, Jonas; Gehrig, Peter; Roschitzki, Bernd; Schlapbach, Ralph; Greber, Urs F.; Hemmi, Silvio

    2013-01-01

    Both isobaric tags for relative and absolute quantitation (iTRAQ) and label-free methods are widely used for quantitative proteomics. Here, we provide a detailed evaluation of these proteomics approaches based on large datasets from biological samples. iTRAQ-label-based and label-free quantitations were compared using protein lysate samples from noninfected human lung epithelial A549 cells and from cells infected for 24 h with human adenovirus type 3 or type 5. Either iTRAQ-label-based or lab...

  19. A Metal-Free Regioselective Multicomponent Approach for the Synthesis of Free Radical Scavenging Pyrimido-Fused Indazoles and Their Fluorescence Studies

    Directory of Open Access Journals (Sweden)

    Jeyakannu Palaniraja

    2016-11-01

    Full Text Available This study deals with a new and efficient metal-free regioselective synthesis of pyrimido-fused indazoles with nitrogen ring junction motifs. We have developed a metal-free domino type reaction between 3-aminoindazole, aryl aldehydes and aceotophenones in the presence of KOH/DMF that leads to pyrimido[1,2-b]indazole analogues. Response Surface Methodology (RSM coupled with a Box-Behnken design (BBD were utilized for exploring the effect of base used (A, temperature of reaction (B and (C, reaction time. This approach can allow access to a variety of pyrimidoindazole fluorophores and related compounds. The compound N,N-dimethyl-4-(2-phenylpyrimido[1,2-b]indazol-4-ylaniline (4e displays the maximum fluorescence intensity at 518 nm and shows a fluorescence quantum yield of 0.068. The synthesized pyramido-fused indazoles have been evaluated for their free radical scavenging activity and compound 4f showed good antioxidant activity.

  20. K-Basin gel formation studies

    International Nuclear Information System (INIS)

    Beck, M.A.

    1998-01-01

    A key part of the proposed waste treatment for K Basin sludge is the elimination of reactive uranium metal by dissolution in nitric acid (Fkirnent, 1998). It has been found (Delegard, 1998a) that upon nitric acid dissolution of the sludge, a gel sometimes forms. Gels are known to sometimes impair solid/liquid separation and/or material transfer. The purpose of the work reported here is to determine the cause(s) of the gel formation and to determine operating parameters for the sludge dissolution that avoid formation of gel. This work and related work were planned in (Fkunent, 1998), (Jewett, 1998) and (Beck, 1998a). This report describes the results of the tests in (Beck, 1998a) with non-radioactive surrogates

  1. Scapular tip and latissimus dorsi osteomyogenous free flap for the reconstruction of a maxillectomy defect: A minimally invasive transaxillary approach.

    Science.gov (United States)

    Park, Sung Joon; Jeong, Woo-Jin; Ahn, Soon-Hyun

    2017-11-01

    The purpose of this study was to propose a novel, minimally invasive transaxillary approach for harvesting the scapular tip and latissimus dorsi osteomyogenous free flap for the reconstruction of a maxillectomy defect. A retrospective case series study of 4 patients who underwent reconstruction using a scapular tip composite free flap through the transaxillary approach was conducted. The data (age, sex, pathology, previous treatment and adjuvant treatment) were collected and analysed. Total operation time, number of hospital days and the cosmetic and functional outcome of reconstruction were analysed. Two male and two female patients were enrolled in this study. The patients' ages ranged from 52 to 59 years. All the patients had maxillectomy defects, with at least a classification of Okay type II, which were successfully reconstructed using a scapular tip and latissimus dorsi free flap through a minimally invasive transaxillary approach. The entire operation time for the primary tumour surgery and reconstruction ranged from 6.2 to 12.1 h (mean, 11.1 h). The average length of the hospital stay was 13 days (range, 10-16 days). No major donor site morbidity was observed, and there was no graft failure that required revision or exploration surgery. The minimally invasive transaxillary approach for harvesting the scapular tip and latissimus dorsi osteomyogenous free flap for the reconstruction of maxillectomy defect is a promising approach for more favourable functional and aesthetic outcomes when compared to the use of other bone containing free flaps and the classic approach for harvesting scapular tip and latissimus dorsi free flap. Copyright © 2017 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.

  2. Preparation of SDC electrolyte thin films on dense and porous substrates by modified sol-gel route

    International Nuclear Information System (INIS)

    Lin Hongfei; Ding, Changsheng; Sato, Kazuhisa; Tsutai, Yoshifumi; Ohtaki, Hiromichi; Iguchi, Mabito; Wada, Chiharu; Hashida, Toshiyuki

    2008-01-01

    Nanocrystalline fluorite type samarium doped ceria (SDC) electrolyte thin film for intermediate temperature-solid oxide fuel cells (IT-SOFCs) application were prepared on the dense and porous substrates at low temperatures of 573-1373 K using a novel citrate sol-gel route combined with a sol suspension spray coating technique. Thermogravimetric analysis showed that the decomposition of the citrate gel film and the initial crystallization of the SDC occurred at a low temperature of about 590 K. XRD examination revealed that the annealing of the green film at temperatures of 573-1373 K provided cubic nanocrystalline SDC phase. The crystallite sizes were in the range of 9-19 nm. Microscopic observations indicated that the derived film was homogeneous, dense and crack-free without pinholes. The desired thickness for preparation of thin electrolyte films from hundreds of nm to several μm should be controllable and feasible by repeating the simple and inexpensive citrate sol-gel spray coating process

  3. Rubber-like poly(vinyl alcohol) gel

    Energy Technology Data Exchange (ETDEWEB)

    Nambu, Masao (Nippon Oil Co. Ltd., Yokohama (Japan). Central Technical Research Lab.)

    1990-09-01

    Anomalous poly (vinyl alcohol) gel has been found in our laboratory since 1980. The gel is prepared by repeated freezing (or freeze-dehydration) of aqueous poly (vinyl alcohol). Experiments establish the fact that anomalous gel is never produced in the course of freezing, but during sustained thawing the gelation does occur. Moreover, it was found that the softening point of the gel increases at 37degC. It is assumed that crystal nuclei are generated on freezing, then on thawing, some of them grow to very fine crystals which act as polymer network-knots (cross-linking). Additional freezing provide other seeds, which grow similarly, and these are accumulated until rubber-like gel is produced. The gel was always water-resistant at 37degC, and the potassium permanganate consumption of the extracted water layer remained far below the official restricted value for medical materials. The gel can be sterilized with gamma-rays or chlorhexidine. Moreover, it satisfies the official standards of acute toxicity, pyrogen, intracutaneous reaction, hemolyzation, and intracorporeal implantation, respectively. Applications to adhesion-preventing membrane (for joint or pericardium), tamponade (for jaw defects), electrode (for electroretinogram or artificial inner ear), artificial denture base and phantoms for magnetic resonance imaging were examined. (author) 54 refs.

  4. Chemico-therapeutic approach to prevention of dental caries. [using stannous fluoride gel

    Science.gov (United States)

    Shannon, I. L.

    1975-01-01

    The program of chemical preventive dentistry is based primarily upon the development of a procedure for stabilizing stannous fluoride in solution by forcing it into glycerin. New topical fluoride treatment concentrates, fluoride containing gels and prophylaxis pastes, as well as a completely stable stannous fluoride dentifrice are made possible by the development of a rather complicated heat application method to force stannous fluoride into solution in glycerin. That the stannous fluoride is clinically effective in such a preparation is demonstrated briefly on orthodontic patients.

  5. Sol-gel encapsulation of pullulanase in the presence of hybrid magnetic (Fe3O4-chitosan) nanoparticles improves thermal and operational stability.

    Science.gov (United States)

    Long, Jie; Li, Xingfei; Zhan, Xiaobei; Xu, Xueming; Tian, Yaoqi; Xie, Zhengjun; Jin, Zhengyu

    2017-06-01

    Pullulanase was sol-gel encapsulated in the presence of magnetic chitosan/Fe 3 O 4 nanoparticles. The resulting immobilized pullulanase was characterized by scanning electron microscopy, vibrating sample magnetometry, Fourier transform infrared spectroscopy and thermogravimetric analysis. The results showed that the addition of pullulanase created a more regular surface on the sol-gel matrix and an enhanced magnetic response to an applied magnetic field. The maximal activity retention (83.9%) and specific activity (291.7 U/mg) of the immobilized pullulanase were observed under optimized conditions including an octyltriethoxysilane:tetraethoxysilane (OTES:TEOS) ratio of 1:2 and enzyme concentration of 0.484 mg/mL sol. The immobilized enzyme exhibited good thermal stability. When the temperature was above 60 °C, the immobilized pullulanase showed significantly higher activity than the free enzyme (p sol-gel encapsulation and co-immobilized by crosslinking-encapsulation retained 52 and 69% of their initial activity after 5 h at 62 °C, respectively, compared to 11% for the free enzyme. Moreover, the stability of the pullulanase was improved by crosslinking-encapsulation, as the enzyme retained more than 85 and 81% of its original activity after 5 and 6 consecutive reuses, respectively, compared to 80 and 72% of its original activity for simple sol-gel encapsulated enzymes. This indicated the leakage of enzyme molecules through the pores of the gel was substantially abated by cross-linking. Such immobilized pullulanase provides high stability and ease of enzyme recovery, characteristics that are advantageous for applications in the food industry that involve continuous starch processing.

  6. Polyetherimide/bucky gels nanocomposites with superior conductivity and thermal stability

    KAUST Repository

    Chen, Ye

    2013-08-14

    Polyetherimide (PEI) nanocomposites comprising bucky gels of industrial-grade multiwalled carbon nanotubes (MWCNTs) and ionic liquid (IL, 1-butyl-3-methyl imidazolium hexafluorophosphate ([BMIM][PF6])) were prepared. The processing framework for this nanocomposite is simple, reproducible, and easily scalable. The strong interaction between IL and MWCNTs caused the latter to uniformly disperse in the PEI matrix while IL flowed into the gaps between the nanotubes\\' walls. The nanocomposite exhibited an enhanced conductivity of 2.01 × 104 Ω·cm volume resistivity at room temperature; the value decreased dramatically by 12 orders of magnitude, compared to pristine PEI. The IL free ions and MWCNTs networks provided excellent channels for electron transfer. PEI/bucky gels nanocomposites also showed improved thermal stability and high tensile strength. Other than having antiwear properties, this material can have numerous applications in the aerospace and electronics industries. Moreover, our work presents a "green" method toward modified nanocomposites industrial production as IL is environmentally safe and is easily recyclable. © 2013 American Chemical Society.

  7. Polyetherimide/bucky gels nanocomposites with superior conductivity and thermal stability

    KAUST Repository

    Chen, Ye; Tao, Jing; Deng, Lin; LI, LIANG; Li., Jun; Yang, Yang; Khashab, Niveen M.

    2013-01-01

    Polyetherimide (PEI) nanocomposites comprising bucky gels of industrial-grade multiwalled carbon nanotubes (MWCNTs) and ionic liquid (IL, 1-butyl-3-methyl imidazolium hexafluorophosphate ([BMIM][PF6])) were prepared. The processing framework for this nanocomposite is simple, reproducible, and easily scalable. The strong interaction between IL and MWCNTs caused the latter to uniformly disperse in the PEI matrix while IL flowed into the gaps between the nanotubes' walls. The nanocomposite exhibited an enhanced conductivity of 2.01 × 104 Ω·cm volume resistivity at room temperature; the value decreased dramatically by 12 orders of magnitude, compared to pristine PEI. The IL free ions and MWCNTs networks provided excellent channels for electron transfer. PEI/bucky gels nanocomposites also showed improved thermal stability and high tensile strength. Other than having antiwear properties, this material can have numerous applications in the aerospace and electronics industries. Moreover, our work presents a "green" method toward modified nanocomposites industrial production as IL is environmentally safe and is easily recyclable. © 2013 American Chemical Society.

  8. Preparation of chitosan-graft-(β-cyclodextrin) based sol-gel stationary phase for open-tubular capillary electrochromatography.

    Science.gov (United States)

    Lü, Haixia; Li, Qingyin; Yu, Xiaowei; Yi, Jiaojiao; Xie, Zenghong

    2013-07-01

    A novel open-tubular CEC column coated with chitosan-graft-(β-CD) (CDCS) was prepared using sol-gel technique. In the sol-gel approach, owing to the 3D network of sol-gel and the strong chemical bond between the stationary phase and the surface of capillary columns, good chromatographic characteristics and unique selectivity in separating isomers were shown. The column efficiencies of 55,000∼163,000 plates/m for the isomeric xanthopterin and phenoxy acid herbicides using the sol-gel-derived CDCS columns were achieved. Good stabilities were demonstrated that the RSD values for the retention time of thiourea and isoxanthopterin were 1.3 and 1.4% (run to run, n = 5), 1.6 and 2.0% (day to day, n = 3), 2.9 and 3.1% (column to column, n = 3), respectively. The sol-gel-coated CDCS columns have shown improved separations of isomeric xanthopterin in comparison with CDCS-bonded capillary column. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Basic investigations on LCV micelle gel

    International Nuclear Information System (INIS)

    Ebenezer, S B; Rafic, M K; Ravindran, P B

    2013-01-01

    The aim of this study was to investigate the feasibility of using Leuco Crystal Violet (LCV) based micelle gel dosimeter as a quality assurance tool in radiotherapy applications. Basic properties such as absorption coefficient and diffusion of LCV gel phantom over time were evaluated. The gel formulation consisted of 25 mM Trichloroacetic acid, 1mM LCV, 4 mM Triton X-100, 4% gelatin by mass and distilled water. The advantages of using this gel are its tissue equivalence, easy and less preparation time, lower diffusion rate and it can be read with an optical scanner. We were able to reproduce some of the results of Babic et al. The peak absorption was found to be at 600 nm and hence a matrix of yellow LEDs was used as light source. The profiles obtained from projection images confirmed the diffusion of LCV gel after 6 hours of irradiation. Hence the LCV gel phantom should be read before 6 hours post irradiation to get accurate dose information as suggested previously.

  10. Environmentally benign sol-gel antifouling and foul-releasing coatings.

    Science.gov (United States)

    Detty, Michael R; Ciriminna, Rosaria; Bright, Frank V; Pagliaro, Mario

    2014-02-18

    Biofouling on ships and boats, characterized by aquatic bacteria and small organisms attaching to the hull, is an important global issue, since over 80000 tons of antifouling paint is used annually. This biofilm, which can form in as little as 48 hours depending on water temperature, increases drag on watercraft, which greatly reduces their fuel efficiency. In addition, biofouling can lead to microbially induced corrosion (MIC) due to H2S formed by the bacteria, especially sulfate-reducing bacteria. When the International Maritime Organization (IMO) international convention banned the use of effective but environmentally damaging coatings containing tributyl tin in 2008, the development of clean and effective antifouling systems became more important than ever. New nonbiocidal coatings are now in high demand. Scientists have developed new polymers, materials, and biocides, including new elastomeric coatings that they have obtained by improving the original silicone (polydimethylsiloxane) formulation patented in 1975. However, the high cost of silicones, especially of fluoropolymer-modified silicones, has generally prevented their large-scale diffusion. In 2009, traditional antifouling coatings using cuprous oxide formulated in copolymer paints still represented 95% of the global market volume of anti-fouling paints. The sol-gel nanochemistry approach to functional materials has emerged as an attractive candidate for creating low fouling surfaces due to the unique structure and properties of silica-based coatings and of hybrid inorganic-organic silicas in particular. Sol-gel formulations easily bind to all types of surfaces, such as steel, fiberglass, aluminum, and wood. In addition, they can cure at room temperature and form thin glassy coatings that are markedly different from thick silicone elastomeric foul-releasing coatings. Good to excellent performance against biofouling, low cure temperatures, enhanced and prolonged chemical and physical stability, ease of

  11. Cells on Gels: Cell Behavior at the Air-Gel Interface

    Science.gov (United States)

    O'Bryan, Christopher; Hormel, Tristan; Bhattacharjee, Tapomoy; Sawyer, W.; Angelini, Thomas

    Numerous different types of cells are often grown at air-liquid interfaces. For example, a common way to create cell spheroids is to disperse cells in a droplet of liquid media that hangs from the lid of a culture dish - the ``hanging drop'' method. Some types of epithelial cells form monolayers at the bottom of hanging drops, instead of spheroids. Corneal epithelial cells stratify and exhibit a tissue-like phenotype when attached to liquid permeable culture surfaces positioned at the air-liquid media interface (air-lifted culture). These widely used culture methods make experimentation challenging - imaging through hanging drops and air-lifted culture dishes is prohibitive. However, similar results may be achieved by culturing cells on hydrogel surfaces at the air-gel interface. In this talk we will describe a method for culturing cells at air-gel interfaces. We seed human corneal epithelial cells (hTCEpi) onto the surfaces of hydrogel networks and jammed microgels, exposed to air. Preliminary observations of cell behavior at the air-gel interface will be presented.

  12. Irreversible fouling of membrane bioreactors due to formation of a non-biofilm gel-like layer

    DEFF Research Database (Denmark)

    Poorasgari, Eskandar; Larsen, Poul; Zheng, Xing

    2013-01-01

    Extra-cellular polymeric substances (EPS), known to contribute to fouling in membrane bio-reactors (MBR)s, are generally divided into bound and free EPS. The free EPS are able to form a gel-like layer on the membrane active surface. The mechanisms involved in formation of such layer and its effects...... on performance of the MBR membranes were studied. The free EPS, extracted by centrifugation and microfiltration, contained a significant amount of humic-like substances. Under static contact to the membrane, adsorption of humic-like substances to the membrane occurred and could be explained by conventional...... adsorption kinetics. Due to static adsorption, surface roughness of the membrane declined significantly indicating that adsorbed matters to the membrane filled the cavities of the membrane surface. Filtration of the free EPS caused 50% water flux decline. The fouling resistance linearly increased...

  13. Synthesis and application of silica gel modified with alkoxyalcohols. Alkoxyalcohol shushoku silica gel no gosei to riyo

    Energy Technology Data Exchange (ETDEWEB)

    Moriguchi, T.; Ishiguro, H.; Matsubara, Y.; Yoshihara, M.; Maeshima, T.; Ito, S. (Kinki University, Osaka (Japan). Faculty of Science and Engineering)

    1991-08-20

    Several kinds of silica gel modified by alkoxyalcohols were synthesized by refluxing and dehyration and the organic reactions were studied when these silica gels were used as the catalyst. It could be confirmed by FT-IR spectra, DTA and elementary analysis that alkoxylalcohols adhere to the surface of silica gels without any decomposition. The acetate was produced by using alkyl halides. It was found that the modified silica gels had clearly the catalytic action for the reaction with n-hexyl bromide and dibromoethane although unmodified silica gels did not show the catalytic action. The reducing reaction of carbonyl compounds was carried out. The reaction proceeded at 25 centigrade for acetophenone, cyclohexanone, 1-indanone and 2-octanone to produce the corresponding reduction products. 11 refs., 5 figs., 4 tabs.

  14. Formulating gelatin free products

    NARCIS (Netherlands)

    Buwalda, P.L.

    2014-01-01

    Gels are applied in many systems in particular in foods. Gelatin is the most common of all gelling agents. In the food industry there is a long quest for replacing gelatin. This chapter focuses on a more application by application approach where a dominant property of gelatin is matched with a

  15. Decreasing the amount of trypsin in in-gel digestion leads to diminished chemical noise and improved protein identifications.

    Science.gov (United States)

    Hu, Mo; Liu, Yanhua; Yu, Kaiwen; Liu, Xiaoyun

    2014-09-23

    Pre-fractionation by gel electrophoresis is often combined with liquid chromatography-mass spectrometry (LC-MS) for large-scale profiling of complex protein samples. An essential component of this widely applied proteomic platform is in-gel protein digestion. In nearly two decades of practicing this approach, an extremely high level of trypsin has been utilized due to the consideration of slow enzyme diffusion into the gel matrix. Here we report that trypsin autolysis products contribute to the bulk of chemical noise in in-gel digestion and remarkably we found evidence that the amount of trypsin can be slashed by an order of magnitude with comparable digestion performance. By revising perhaps the most critical element of this decade-old digestion protocol, the proteomics community relying on gel separation prior to LC-MS analysis will benefit instantly from much lowered cost due to enzyme expenditure. More importantly, substantially reduced chemical noise (i.e., trypsin self-cleavage products) as a result of less enzyme usage translates into more protein identifications when limited amounts of samples are the interest of interrogation. In-gel digestion is one of the most widely used methods in proteomics. An exceedingly high level of trypsin has been utilized due to the consideration of slow enzyme diffusion into the gel matrix. This requirement has been faithfully kept in nearly two decades of practicing this approach. Here we report that trypsin concentration can be slashed by at least an order of magnitude while still providing comparable digestion performance. Thus the proteomics community relying on gel separation prior to LC-MS analysis will benefit instantly from much lowered enzyme cost. More importantly, substantially reduced chemical noise (i.e., trypsin autolysis products) due to less enzyme usage translates into ~30% more protein identifications when limited amounts of protein samples are analyzed. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. The Complex Sol–Gel Process for producing small ThO{sub 2} microspheres

    Energy Technology Data Exchange (ETDEWEB)

    Brykala, Marcin, E-mail: m.brykala@ichtj.waw.pl; Rogowski, Marcin

    2016-05-15

    Thorium based fuels offer several benefits compared to uranium based fuels thus they might be an attractive alternative to conventional fuel types. This study is devoted to the synthesis and the characterization of small thorium dioxide microspheres (Ø <50 μm). Their application involves using powder-free process, called the Complex Sol–Gel Process. The source sols used for the processes were prepared by the method where in the starting ascorbic acid solution the solid thorium nitrate was dissolved and partially neutralized by aqueous ammonia under pH control. The microspheres of thorium-ascorbate gel were obtained using the ICHTJ Process (INCT in English). Studies allowed to determine an optimal heat treatment with calcination temperature of 700 °C and temperature rate not higher than 2 °C/min which enabled us to obtain a crack-free surface of microspheres. The main parameters which have a strong influence on the synthesis method and features of the spherical particles of thorium dioxide are described in this article. - Highlights: • ThO{sub 2} were prepared for the first time using combination of ICHTJ methods. • The homogeneous thorium-ascorbate sol was used as starting solutions in CSGP method. • The gelation by IChTJ Process to microspheres (Ø <50 μm) with 100% efficiency was used. • ThO{sub 2} microspheres exhibit a high sphericity, crack-free surface and microstructure. • The cubic crystalline structure of ThO{sub 2} was produced at 700 °C.

  17. Sol-gel processing to form doped sol-gel monoliths inside hollow core optical fiber and sol-gel core fiber devices made thereby

    Science.gov (United States)

    Shaw, Harry C. (Inventor); Ott, Melanie N. (Inventor); Manuel, Michele V. (Inventor)

    2002-01-01

    A process of fabricating a fiber device includes providing a hollow core fiber, and forming a sol-gel material inside the hollow core fiber. The hollow core fiber is preferably an optical fiber, and the sol-gel material is doped with a dopant. Devices made in this manner includes a wide variety of sensors.

  18. Decolourisation of dyes under electro-Fenton process using Fe alginate gel beads

    International Nuclear Information System (INIS)

    Rosales, E.; Iglesias, O.; Pazos, M.; Sanromán, M.A.

    2012-01-01

    Highlights: ► Catalytic activity of Fe alginate gel beads for the remediation of wastewater was tested. ► New electro-Fenton process for the remediation of polluted wastewater. ► Continuous dye treatment without operational problem with high removal. - Abstract: This study focuses on the application of electro-Fenton technique by use of catalytic activity of Fe alginate gel beads for the remediation of wastewater contaminated with synthetic dyes. The Fe alginate gel beads were evaluated for decolourisation of two typical dyes, Lissamine Green B and Azure B under electro-Fenton process. After characterization of Fe alginate gel beads, the pH effect on the process with Fe alginate beads and a comparative study of the electro-Fenton process with free Fe and Fe alginate bead was done. The results showed that the use of Fe alginate beads increases the efficiency of the process; moreover the developed particles show a physical integrity in a wide range of pH (2–8). Around 98–100% of dye decolourisation was obtained for both dyes by electro-Fenton process in successive batches. Therefore, the process was performed with Fe alginate beads in a bubble continuous reactor. High color removal (87–98%) was attained for both dyes operating at a residence time of 30 min, without operational problems and maintaining particle shapes throughout the oxidation process. Consequently, the stable performance of Fe alginate beads opens promising perspectives for fast and economical treatment of wastewater polluted by dyes or similar organic contaminants.

  19. Decolourisation of dyes under electro-Fenton process using Fe alginate gel beads

    Energy Technology Data Exchange (ETDEWEB)

    Rosales, E.; Iglesias, O.; Pazos, M. [Department of Chemical Engineering, University of Vigo, Isaac Newton Building, Campus As Lagoas, Marcosende 36310, Vigo (Spain); Sanroman, M.A., E-mail: sanroman@uvigo.es [Department of Chemical Engineering, University of Vigo, Isaac Newton Building, Campus As Lagoas, Marcosende 36310, Vigo (Spain)

    2012-04-30

    Highlights: Black-Right-Pointing-Pointer Catalytic activity of Fe alginate gel beads for the remediation of wastewater was tested. Black-Right-Pointing-Pointer New electro-Fenton process for the remediation of polluted wastewater. Black-Right-Pointing-Pointer Continuous dye treatment without operational problem with high removal. - Abstract: This study focuses on the application of electro-Fenton technique by use of catalytic activity of Fe alginate gel beads for the remediation of wastewater contaminated with synthetic dyes. The Fe alginate gel beads were evaluated for decolourisation of two typical dyes, Lissamine Green B and Azure B under electro-Fenton process. After characterization of Fe alginate gel beads, the pH effect on the process with Fe alginate beads and a comparative study of the electro-Fenton process with free Fe and Fe alginate bead was done. The results showed that the use of Fe alginate beads increases the efficiency of the process; moreover the developed particles show a physical integrity in a wide range of pH (2-8). Around 98-100% of dye decolourisation was obtained for both dyes by electro-Fenton process in successive batches. Therefore, the process was performed with Fe alginate beads in a bubble continuous reactor. High color removal (87-98%) was attained for both dyes operating at a residence time of 30 min, without operational problems and maintaining particle shapes throughout the oxidation process. Consequently, the stable performance of Fe alginate beads opens promising perspectives for fast and economical treatment of wastewater polluted by dyes or similar organic contaminants.

  20. A charge transfer complex nematic liquid crystalline gel with high electrical conductivity

    International Nuclear Information System (INIS)

    Bhargavi, R.; Nair, Geetha G.; Krishna Prasad, S.; Majumdar, R.; Bag, Braja G.

    2014-01-01

    We describe the rheological, dielectric and elastic properties of a nematic liquid crystal gel created using an anthrylidene derivative of arjunolic acid, a chiral triterpenoid, obtained from the extracts of the wood of Terminalia arjuna. In this novel gel, having the electron-donor and acceptor components as minority constituents, the gelation and strengthening of charge-transfer complex (CTC) formation are seen to be occurring concomitantly. In addition to being mechanically strong with a large storage modulus, the gel with the maximized CTC exhibits Frank bend elastic constant values that approach nanonewton levels. The highlight of the study is the observation of 4–5 orders of magnitude increase in electrical conductivity for this gel, a value that is higher than even in the CT complexes of 2-d ordered columnar structures. A further important advantage of the present system over the columnar complex is that the high conductivity is seen for ac probing also, and owing to the nematic nature can be switched between its anisotropic limits. Some of these features are ascribed to a specific molecular packing architecture, which reduces the trapping of the charge carriers.

  1. A charge transfer complex nematic liquid crystalline gel with high electrical conductivity

    Science.gov (United States)

    Bhargavi, R.; Nair, Geetha G.; Krishna Prasad, S.; Majumdar, R.; Bag, Braja G.

    2014-10-01

    We describe the rheological, dielectric and elastic properties of a nematic liquid crystal gel created using an anthrylidene derivative of arjunolic acid, a chiral triterpenoid, obtained from the extracts of the wood of Terminalia arjuna. In this novel gel, having the electron-donor and acceptor components as minority constituents, the gelation and strengthening of charge-transfer complex (CTC) formation are seen to be occurring concomitantly. In addition to being mechanically strong with a large storage modulus, the gel with the maximized CTC exhibits Frank bend elastic constant values that approach nanonewton levels. The highlight of the study is the observation of 4-5 orders of magnitude increase in electrical conductivity for this gel, a value that is higher than even in the CT complexes of 2-d ordered columnar structures. A further important advantage of the present system over the columnar complex is that the high conductivity is seen for ac probing also, and owing to the nematic nature can be switched between its anisotropic limits. Some of these features are ascribed to a specific molecular packing architecture, which reduces the trapping of the charge carriers.

  2. Speciation of protein-bound trace elements by gel electrophoresis and atomic spectrometry.

    Science.gov (United States)

    Ma, Renli; McLeod, Cameron W; Tomlinson, Kerry; Poole, Robert K

    2004-08-01

    The metabolism of trace elements, in particular their binding to proteins in biological systems is of great importance in biochemical, toxicological, and pharmacological studies. As a result there has been a sustained interest over the last two decades in the speciation of protein-bound metals. Various analytical approaches have been employed, combining efficient separation of metalloproteins by liquid chromatography or electrophoresis with high-sensitivity elemental detection. Slab-gel electrophoresis (GE) is a key platform for high-resolution protein separation, and has been combined with autoradiography and various atomic spectrometric techniques for in-gel determination of protein-bound metals. Recently, the combination of GE with state-of-the-art inductively coupled plasma-mass spectrometry (ICP-MS), particularly when linked to laser ablation (LA) for direct gel interrogation, has opened up new opportunities for rapid characterization of metalloproteins. The use of GE and atomic spectrometry for the speciation of protein-bound trace elements is reviewed in this paper. Technical requirements for gel electrophoresis/atomic spectrometric measurement are considered in terms of method compatibilities, detection capability and potential usefulness. The literature is also surveyed to illustrate current status and future trends. Copyright 2004 Wiley-VCH Verlag GmbH and Co.

  3. Sol-gel additive for systems with inorganic binders

    International Nuclear Information System (INIS)

    Akstinat, M.; Antenen, D.; Suter, W.

    1996-01-01

    A sol-gel additive for inorganic binder systems and sol-gel process for producing air-placed concrete and mortar by using such sol-gel additives are disclosed. Sol-gel additives for gel-derived inorganic binder systems (for example plaster, cement, lime, special slags, etc.) marked improve the consistency of such binder systems during processing or allow their consistency to be regulated. In addition, these sol-gel additives regulate setting times and substantially improve durability (chemical resistance, reduced permeability) and the mechanical properties of the set binder system. (author)

  4. Sol-gel bonding of silicon wafers

    International Nuclear Information System (INIS)

    Barbe, C.J.; Cassidy, D.J.; Triani, G.; Latella, B.A.; Mitchell, D.R.G.; Finnie, K.S.; Short, K.; Bartlett, J.R.; Woolfrey, J.L.; Collins, G.A.

    2005-01-01

    Sol-gel bonds have been produced between smooth, clean silicon substrates by spin-coating solutions containing partially hydrolysed silicon alkoxides. The two coated substrates were assembled and the resulting sandwich fired at temperatures ranging from 60 to 600 deg. C. The sol-gel coatings were characterised using attenuated total reflectance Fourier transform infrared spectroscopy, ellipsometry, and atomic force microscopy, while the corresponding bonded specimens were investigated using scanning electron microscopy and cross-sectional transmission electron microscopy. Mechanical properties were characterised using both microindentation and tensile testing. Bonding of silicon wafers has been successfully achieved at temperatures as low as 60 deg. C. At 300 deg. C, the interfacial fracture energy was 1.55 J/m 2 . At 600 deg. C, sol-gel bonding provided superior interfacial fracture energy over classical hydrophilic bonding (3.4 J/m 2 vs. 1.5 J/m 2 ). The increase in the interfacial fracture energy is related to the increase in film density due to the sintering of the sol-gel interface with increasing temperature. The superior interfacial fracture energy obtained by sol-gel bonding at low temperature is due to the formation of an interfacial layer, which chemically bonds the two sol-gel coatings on each wafer. Application of a tensile stress on the resulting bond leads to fracture of the samples at the silicon/sol-gel interface

  5. Influence of Uranium and Polivinyl Alcohol Concentration in the Feed of Sol Gel Process on the Gel Spherical Product

    International Nuclear Information System (INIS)

    Indra Suryawan; Endang Susiantini

    2007-01-01

    The gel particles have been made at various uranium and polyvinyl alcohol concentration in the sol gel process. The variables of uranium concentration were 0.3; 0.5; 0.7; 0.9; 1.1; 1.3; 1.5; 1.7; 1.9 and 2.1 M The variables of polyvinyl alcohol concentration were 0.3; 0.6; 0.9; 1.2; 1.5; 1.8; 2.1 and 2.4 M After drying the sol gel process products were heated at 300, 500 and 750°C during 4 hours. The gel particles were characterized using an optic microscope to know the shape and condition morphology of gel. From experimental result using uranium concentration of 0.3 until 2.1 M and polyvinyl alcohol of 1.8 until 2.4 M spherical and gel was formed elastic, after heating at 750°C it was unbreakable. At the concentration of polyvinyl alcohol from 0.3 to 0.5 M, the gel product was soft and broken after being dried. At the concentration of polyvinyl alcohol from 0.6 to 0.8 M, the dried gel product was not perfect. At the concentration of polyvinyl alcohol from 0.9 to 1.7 M, the gel product of gelation process was spherical and it was broken after being heated up to 300°C. (author)

  6. Isolation of intracellular parasites (Plasmodium falciparum) from culture using free-flow electrophoresis: separation of the free parasites according to stages.

    Science.gov (United States)

    Heidrich, H G; Mrema, J E; Vander Jagt, D L; Reyes, P; Rieckmann, K H

    1982-06-01

    Parasitized human erythrocytes were concentrated from continuous cultures of Plasmodium falciparum from 5-7% up to 80-95% using Plasmagel. After aggregation of the cells with phythemagglutinin, the aggregated erythrocytes were fragmented by passing them, with minimal force, through successive nylon filters of decreasing pore size (100 microns-3 microns). The mixture of liberated, free parasites, intact erythrocytes and erythrocyte membrane vesicles was separated using free-flow electrophoresis. Most of the fractions containing free parasites did not show contamination with erythrocyte constituents as determined by light and electron microscopy, polyacrylamide gel electrophoresis, and enzymatic analysis. In addition, the various stages of free parasites of Plasmodium falciparum exhibited different electrical surface charges. Rings and trophozoites were highly negatively charged whereas schizonts and, in particular, merozoites showed low negative charges. Thus, the various stages could be isolated separate from each other.

  7. Quantum analogue of the Gel'fand-Dikii bracket (via quantum Miura transformation)

    International Nuclear Information System (INIS)

    Pugay, Ya.P.

    1992-01-01

    An evident form of the quantum generalization of the Gel'fand-Dikii formula has been found as a development of the Lukyanov-Fateev approach to W-algebras. The necessity of ordering the quantum fields leads to the deformation of pseudodifferential symbols. (orig.)

  8. Effects of the NO/soluble guanylate cyclase/cGMP system on the functions of human platelets.

    Science.gov (United States)

    Makhoul, Stephanie; Walter, Elena; Pagel, Oliver; Walter, Ulrich; Sickmann, Albert; Gambaryan, Stepan; Smolenski, Albert; Zahedi, René P; Jurk, Kerstin

    2018-06-01

    Platelets are circulating sentinels of vascular integrity and are activated, inhibited, or modulated by multiple hormones, vasoactive substances or drugs. Endothelium- or drug-derived NO strongly inhibits platelet activation via activation of the soluble guanylate cyclase (sGC) and cGMP elevation, often in synergy with cAMP-elevation by prostacyclin. However, the molecular mechanisms and diversity of cGMP effects in platelets are poorly understood and sometimes controversial. Recently, we established the quantitative human platelet proteome, the iloprost/prostacyclin/cAMP/protein kinase A (PKA)-regulated phosphoproteome, and the interactions of the ADP- and iloprost/prostacyclin-affected phosphoproteome. We also showed that the sGC stimulator riociguat is in vitro a highly specific inhibitor, via cGMP, of various functions of human platelets. Here, we review the regulatory role of the cGMP/protein kinase G (PKG) system in human platelet function, and our current approaches to establish and analyze the phosphoproteome after selective stimulation of the sGC/cGMP pathway by NO donors and riociguat. Present data indicate an extensive and diverse NO/riociguat/cGMP phosphoproteome, which has to be compared with the cAMP phosphoproteome. In particular, sGC/cGMP-regulated phosphorylation of many membrane proteins, G-proteins and their regulators, signaling molecules, protein kinases, and proteins involved in Ca 2+ regulation, suggests that the sGC/cGMP system targets multiple signaling networks rather than a limited number of PKG substrate proteins. Copyright © 2018 Elsevier Inc. All rights reserved.

  9. Yield stress determination of a physical gel

    DEFF Research Database (Denmark)

    Hvidt, Søren

    2013-01-01

    Pluronic F127 solutions form gels in water with high elastic moduli. Pluronic gels can, however, only withstand small deformations and stresses. Different steady shear and oscillatory methods traditionally used to determine yield stress values are compared. The results show that the yield stresses...... values of these gels depend on test type and measurement time, and no absolute yield stress value can be determined for these physical gels....

  10. Modification of gel architecture and TBE/TAE buffer composition to minimize heating during agarose gel electrophoresis.

    Science.gov (United States)

    Sanderson, Brian A; Araki, Naoko; Lilley, Jennifer L; Guerrero, Gilberto; Lewis, L Kevin

    2014-06-01

    Agarose gel electrophoresis of DNA and RNA is routinely performed using buffers containing either Tris, acetate, and EDTA (TAE) or Tris, borate, and EDTA (TBE). Gels are run at a low, constant voltage (∼10 V/cm) to minimize current and asymmetric heating effects, which can induce band artifacts and poor resolution. In this study, alterations of gel structure and conductive media composition were analyzed to identify factors causing higher electrical currents during horizontal slab gel electrophoresis. Current was reduced when thinner gels and smaller chamber buffer volumes were used, but was not influenced by agarose concentration or the presence of ethidium bromide. Current was strongly dependent on the amount and type of EDTA used and on the concentrations of the major acid-base components of each buffer. Interestingly, resolution and the mobilities of circular versus linear plasmid DNAs were also affected by the chemical form and amount of EDTA. With appropriate modifications to gel structure and buffer constituents, electrophoresis could be performed at high voltages (20-25 V/cm), reducing run times by up to 3-fold. The most striking improvements were observed with small DNAs and RNAs (10-100 bp): high voltages and short run times produced sharper bands and higher resolution. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Harvesting the free fibular graft: A modified approach

    Directory of Open Access Journals (Sweden)

    Amitava Narayan Mukherjee

    2011-01-01

    Full Text Available Background: The conventional technique of free non-vascularized fibular grafting is attended with some amount of morbidity and a long scar. We report a technique with little interference to the surrounding soft tissues to harvest more than one-third of whole length fibula. Patients and Methods: Thirty four patients of average age 23.5 years (range 8 to 51 years having various pathologies like simple bone cysts (n=9, fibrous dysplasias (n=6, giant cell tumors (n=7, fracture non-union (n=10 and aneurysmal bone cysts (n=2 were taken up for the study. The fibula were harvested by two separate incisions, 1 cm each at proximal and distal extent of proposed donor site for taking out of graft after elevating the periosteum circumferentially using a periosteum stripper. Compression bandage and above knee plaster immobilization was applied to reduce the dead space collection . Results: The mean followup is 34 months. The patients were evaluated clinicoradiology. Thirty three patients showed good results. One patient had fair result due to delayed wound healing from hematoma which was treated surgically. Conclusion: The approach of harvesting fibula suggested by author reduces donor site morbidity and is safer than conventional approach.

  12. Indium oxide octahedrons based on sol–gel process enhance room temperature gas sensing performance

    Energy Technology Data Exchange (ETDEWEB)

    Mu, Xiaohui [Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, Shandong (China); Chen, Changlong, E-mail: chem.chencl@hotmail.com [Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, Shandong (China); Han, Liuyuan [Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, Shandong (China); Shao, Baiqi [State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China); Graduate School of the Chinese Academy of Sciences, Beijing 100049 (China); Wei, Yuling [Instrumental Analysis Center, Qilu University of Technology, Jinan 250353, Shandong (China); Liu, Qinglong; Zhu, Peihua [Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, Shandong (China)

    2015-07-15

    Highlights: • In{sub 2}O{sub 3} octahedron films are prepared based on sol–gel technique for the first time. • The preparation possesses merits of low temperature, catalyst-free and large production. • It was found that the spin-coating process in film fabrication was key to achieve the octahedrons. • The In{sub 2}O{sub 3} octahedrons could significantly enhance room temperature NO{sub 2} gas sensing performance. - Abstract: Indium oxide octahedrons were prepared on glass substrates through a mild route based on sol–gel technique. The preparation possesses characteristics including low temperature, catalyst-free and large production, which is much distinguished from the chemical-vapor-deposition based methods that usually applied to prepare indium oxide octahedrons. Detailed characterization revealed that the indium oxide octahedrons were single crystalline, with {1 1 1} crystal facets exposed. It was found that the spin-coating technique was key for achieving the indium oxide crystals with octahedron morphology. The probable formation mechanism of the indium oxide octahedrons was proposed based on the experiment results. Room temperature NO{sub 2} gas sensing measurements exhibited that the indium oxide octahedrons could significantly enhance the sensing performance in comparison with the plate-like indium oxide particles that prepared from the dip-coated gel films, which was attributed to the abundant sharp edges and tips as well as the special {1 1 1} crystal facets exposed that the former possessed. Such a simple wet-chemical based method to prepare indium oxide octahedrons with large-scale production is promising to provide the advanced materials that can be applied in wide fields like gas sensing, solar energy conversion, field emission, and so on.

  13. Indium oxide octahedrons based on sol–gel process enhance room temperature gas sensing performance

    International Nuclear Information System (INIS)

    Mu, Xiaohui; Chen, Changlong; Han, Liuyuan; Shao, Baiqi; Wei, Yuling; Liu, Qinglong; Zhu, Peihua

    2015-01-01

    Highlights: • In 2 O 3 octahedron films are prepared based on sol–gel technique for the first time. • The preparation possesses merits of low temperature, catalyst-free and large production. • It was found that the spin-coating process in film fabrication was key to achieve the octahedrons. • The In 2 O 3 octahedrons could significantly enhance room temperature NO 2 gas sensing performance. - Abstract: Indium oxide octahedrons were prepared on glass substrates through a mild route based on sol–gel technique. The preparation possesses characteristics including low temperature, catalyst-free and large production, which is much distinguished from the chemical-vapor-deposition based methods that usually applied to prepare indium oxide octahedrons. Detailed characterization revealed that the indium oxide octahedrons were single crystalline, with {1 1 1} crystal facets exposed. It was found that the spin-coating technique was key for achieving the indium oxide crystals with octahedron morphology. The probable formation mechanism of the indium oxide octahedrons was proposed based on the experiment results. Room temperature NO 2 gas sensing measurements exhibited that the indium oxide octahedrons could significantly enhance the sensing performance in comparison with the plate-like indium oxide particles that prepared from the dip-coated gel films, which was attributed to the abundant sharp edges and tips as well as the special {1 1 1} crystal facets exposed that the former possessed. Such a simple wet-chemical based method to prepare indium oxide octahedrons with large-scale production is promising to provide the advanced materials that can be applied in wide fields like gas sensing, solar energy conversion, field emission, and so on

  14. Sol-gel approach to the novel organic-inorganic hybrid composite films with ternary europium complex covalently bonded with silica matrix

    International Nuclear Information System (INIS)

    Dong Dewen; Yang Yongsheng; Jiang Bingzheng

    2006-01-01

    Novel organic-inorganic hybrid composite films with ternary lanthanide complex covalently bonded with silica matrix were prepared in situ via co-ordination of N-(3-propyltriethoxysilane)-4-carboxyphthalimide (TAT) and 1,10-phenanthroline (Phen) with europium ion (Eu 3+ ) during a sol-gel approach and characterized by the means of spectrofluorimeter, phosphorimeter and infrared spectrophotometer (FTIR). The resulting transparent films showed improved photophysical properties, i.e. increased luminescence intensity and longer luminescence lifetime, compared with the corresponding binary composite films without Phen. All the results revealed that the intense luminescence of the composite film was attributed to the efficient energy transfer from ligands, especially Phen, to chelated Eu 3+ and the reduced non-radiation through the rigid silica matrix and 'site isolation'

  15. Water-equivalence of gel dosimeters for radiology medical imaging

    Energy Technology Data Exchange (ETDEWEB)

    Valente, M; Vedelago, J.; Perez, P. [Instituto de Fisica Enrique Gaviola - CONICET, Av. Medina Allende s/n, Ciudad Universitaria, X5000HUA, Cordoba (Argentina); Chacon, D.; Mattea, F. [Universidad Nacional de Cordoba, FAMAF, Laboratorio de Investigacion e Instrumentacion en Fisica Aplicada a la Medicina e Imagenes por Rayos X, Av. Medina Allende s/n, Ciudad Universitaria, X5000HUA Cordoba (Argentina); Velasquez, J., E-mail: valente@famaf.unc.edu.ar [ICOS Inmunomedica, Lago Puyehue 01745, Temuco (Chile)

    2017-10-15

    International dosimetry protocols are based on determinations of absorbed dose to water. Ideally, the phantom material should be water equivalent; that is, it should have the same absorption and scatter properties as water. This study presents theoretical, experimental and Monte Carlo modeling of water-equivalence of Fricke and polymer (NIPAM, PAGAT and itaconic acid ITABIS) gel dosimeters. Mass and electronic densities along with effective atomic number were calculated by means of theoretical approaches. Samples were scanned by standard computed tomography and high-resolution micro computed tomography. Photon mass attenuation coefficients and electron stopping powers were examined by Monte Carlo simulations. Theoretical, Monte Carlo and experimental results confirmed good water-equivalence for all gel dosimeters. Overall variations with respect to water in the low energy radiology range (up to 130 k Vp) were found to be less than 3% in average. (Author)

  16. Water-equivalence of gel dosimeters for radiology medical imaging

    International Nuclear Information System (INIS)

    Valente, M; Vedelago, J.; Perez, P.; Chacon, D.; Mattea, F.; Velasquez, J.

    2017-10-01

    International dosimetry protocols are based on determinations of absorbed dose to water. Ideally, the phantom material should be water equivalent; that is, it should have the same absorption and scatter properties as water. This study presents theoretical, experimental and Monte Carlo modeling of water-equivalence of Fricke and polymer (NIPAM, PAGAT and itaconic acid ITABIS) gel dosimeters. Mass and electronic densities along with effective atomic number were calculated by means of theoretical approaches. Samples were scanned by standard computed tomography and high-resolution micro computed tomography. Photon mass attenuation coefficients and electron stopping powers were examined by Monte Carlo simulations. Theoretical, Monte Carlo and experimental results confirmed good water-equivalence for all gel dosimeters. Overall variations with respect to water in the low energy radiology range (up to 130 k Vp) were found to be less than 3% in average. (Author)

  17. Vinyl Acetate/butyl acrylate/acrylate Research of Ternary Soap-free Emulsion Polymerization

    Directory of Open Access Journals (Sweden)

    Xiao Li-guang

    2016-01-01

    Full Text Available Through the vinyl acetate/butyl acrylate/acrylic acrylic emulsion preparation without soap vinegar, with solid content, gel, emulsion stability and film forming properties and tensile strength as the main index to study the effect of raw materials on the properties of emulsion. Through the infrared spectrometer soap-free emulsion for microscopic analysis research. Study of the ternary soap-free vinegar acrylic emulsion with good performance.

  18. Improving calibration accuracy in gel dosimetry

    International Nuclear Information System (INIS)

    Oldham, M.; McJury, M.; Webb, S.; Baustert, I.B.; Leach, M.O.

    1998-01-01

    A new method of calibrating gel dosimeters (applicable to both Fricke and polyacrylamide gels) is presented which has intrinsically higher accuracy than current methods, and requires less gel. Two test-tubes of gel (inner diameter 2.5 cm, length 20 cm) are irradiated separately with a 10x10cm 2 field end-on in a water bath, such that the characteristic depth-dose curve is recorded in the gel. The calibration is then determined by fitting the depth-dose measured in water, against the measured change in relaxivity with depth in the gel. Increased accuracy is achieved in this simple depth-dose geometry by averaging the relaxivity at each depth. A large number of calibration data points, each with relatively high accuracy, are obtained. Calibration data over the full range of dose (1.6-10 Gy) is obtained by irradiating one test-tube to 10 Gy at dose maximum (D max ), and the other to 4.5 Gy at D max . The new calibration method is compared with a 'standard method' where five identical test-tubes of gel were irradiated to different known doses between 2 and 10 Gy. The percentage uncertainties in the slope and intercept of the calibration fit are found to be lower with the new method by a factor of about 4 and 10 respectively, when compared with the standard method and with published values. The gel was found to respond linearly within the error bars up to doses of 7 Gy, with a slope of 0.233±0.001 s -1 Gy -1 and an intercept of 1.106±0.005 Gy. For higher doses, nonlinear behaviour was observed. (author)

  19. Pharmacokinetics of 2 dapivirine vaginal microbicide gels and their safety vs. Hydroxyethyl cellulose-based universal placebo gel.

    Science.gov (United States)

    Nel, Annalene M; Smythe, Shanique C; Habibi, Sepideh; Kaptur, Paulina E; Romano, Joseph W

    2010-10-01

    Dapivirine, a nonnucleoside reverse transcriptase inhibitor, is in development as a microbicide for the protection of women against HIV infection. A randomized, double-blind, phase 1 trial was conducted in 36 healthy HIV-negative women to compare the pharmacokinetics of 2 dapivirine vaginal gel formulations (0.05% each) and their safety with the hydroxyethyl cellulose-based universal placebo gel. Gel was self-administered once daily for a total of 11 days. Blood and vaginal fluid samples were collected sequentially over 24 days for pharmacokinetic analysis. Safety was evaluated by pelvic examination, colposcopy, adverse events, and clinical laboratory assessments. Adverse event profiles were similar for the 3 gels. Most events were mild and not related to study gel. Headache and vaginal hemorrhage (any vaginal bleeding) were most common. Plasma concentrations of dapivirine did not exceed 1.1 ng/mL. Steady-state conditions were reached within approximately 10 days. Dapivirine concentrations in vaginal fluids were slightly higher for Gel 4789, but Cmax values on days 1 and 14 were not significantly different. Terminal half-life was 72-73 hours in plasma and 15-17 hours in vaginal fluids. Both formulations of dapivirine gel were safe and well tolerated. Dapivirine was delivered to the lower genital tract at concentrations at least 5 logs greater than in vitro inhibitory concentrations.

  20. Use of CdSe/ZnS luminescent quantum dots incorporated within sol-gel matrix for urea detection

    International Nuclear Information System (INIS)

    Duong, Hong Dinh; Rhee, Jong Il

    2008-01-01

    In this work, urea detection techniques based on the pH sensitivity of CdSe/ZnS QDs were developed using three types of sol-gel membranes: a QD-entrapped membrane, urease-immobilized membrane and double layer consisting of a QD-entrapped membrane and urease-immobilized membrane. The surface morphology of the sol-gel membranes deposited on the wells in a 24-well microtiter plate was investigated. The linear detection range of urea was in the range of 0-10 mM with the three types of sol-gel membranes. The urea detection technique based on the double layer consisting of the QD-entrapped membrane and urease-immobilized membrane resulted in the highest sensitivity to urea due to the Michaelis-Menten kinetic parameters. That is, the Michaelis-Menten constant (K m =2.0745 mM) of the free urease in the QD-entrapped membrane was about 4-fold higher than that (K m =0.549 mM) of the immobilized urease in the urease-immobilized membrane and about 12-fold higher than that (K m =0.1698 mM) of the immobilized urease in the double layer. The good stability of the three sol-gel membranes for urea sensing over 2 months showed that the use of sol-gel membranes immobilized with QDs or an enzyme is suitable for biomedical and environmental applications

  1. Use of CdSe/ZnS luminescent quantum dots incorporated within sol-gel matrix for urea detection.

    Science.gov (United States)

    Duong, Hong Dinh; Rhee, Jong Il

    2008-09-19

    In this work, urea detection techniques based on the pH sensitivity of CdSe/ZnS QDs were developed using three types of sol-gel membranes: a QD-entrapped membrane, urease-immobilized membrane and double layer consisting of a QD-entrapped membrane and urease-immobilized membrane. The surface morphology of the sol-gel membranes deposited on the wells in a 24-well microtiter plate was investigated. The linear detection range of urea was in the range of 0-10mM with the three types of sol-gel membranes. The urea detection technique based on the double layer consisting of the QD-entrapped membrane and urease-immobilized membrane resulted in the highest sensitivity to urea due to the Michaelis-Menten kinetic parameters. That is, the Michaelis-Menten constant (K(m)=2.0745mM) of the free urease in the QD-entrapped membrane was about 4-fold higher than that (K(m)=0.549mM) of the immobilized urease in the urease-immobilized membrane and about 12-fold higher than that (K(m)=0.1698mM) of the immobilized urease in the double layer. The good stability of the three sol-gel membranes for urea sensing over 2 months showed that the use of sol-gel membranes immobilized with QDs or an enzyme is suitable for biomedical and environmental applications.

  2. Structural studies of gels and gel-glasses in the SiO2-GeO2 system using vibrational spectroscopy

    Science.gov (United States)

    Mukherjee, Shyama P.; Sharma, Shiv K.

    1986-01-01

    GeO2 gel and gels in the SiO2-GeO2 system synthesized by the hydrolytic polycondensation of metal alkoxides have been studied by infrared and Raman spectroscopic techniques. The molecular structures, hydroxyl contents, and crystallinity of gels and gel-glasses in relation to the thermal history and GeO2 concentration were investigated. The binary compositions having up to 70 mol percent GeO2 were examined.

  3. Optimizing human synovial fluid preparation for two-dimensional gel electrophoresis.

    Science.gov (United States)

    Chen, Carl Pc; Hsu, Chih-Chin; Yeh, Wen-Lin; Lin, Hsiu-Chu; Hsieh, Sen-Yung; Lin, Shih-Cherng; Chen, Tai-Tzung; Chen, Max Jl; Tang, Simon Ft

    2011-10-11

    Proteome analysis is frequently applied in identifying the proteins or biomarkers in knee synovial fluids (SF) that are associated with osteoarthritis and other arthritic disorders. The 2-dimensional gel electrophoresis (2-DE) is the technique of choice in these studies. Disease biomarkers usually appear in low concentrations and may be masked by high abundant proteins. Therefore, the main aim of this study was to find the most suitable sample preparation method that can optimize the expression of proteins on 2-DE gels that can be used to develop a reference proteome picture for non-osteoarthritic knee synovial fluid samples. Proteome pictures obtained from osteoarthritic knee synovial fluids can then be compared with the reference proteome pictures obtained in this study to assist us in identifying the disease biomarkers more correctly. The proteomic tool of 2-DE with immobilized pH gradients was applied in this study. A total of 12 2-DE gel images were constructed from SF samples that were free of osteoarthritis. In these samples, 3 were not treated with any sample preparation methods, 3 were treated with acetone, 3 were treated with 2-DE Clean-Up Kit, and 3 were treated with the combination of acetone and 2-D Clean-Up Kit prior to 2-DE analysis. Gel images were analyzed using the PDQuest Basic 8.0.1 Analytical software. Protein spots that were of interest were excised from the gels and sent for identification by mass spectrometry. Total SF total protein concentration was calculated to be 21.98 ± 0.86 mg/mL. The untreated SF samples were detected to have 456 ± 33 protein spots on 2-DE gel images. Acetone treated SF samples were detected to have 320 ± 28 protein spots, 2-D Clean-Up Kit treated SF samples were detected to have 413 ± 31 protein spots, and the combined treatment method of acetone and 2-D Clean-Up Kit was detected to have 278 ± 26 protein spots 2-DE gel images. SF samples treated with 2-D Clean-Up Kit revealed clearer presentation of the isoforms

  4. Optimizing Human Synovial Fluid Preparation for Two-Dimensional Gel Electrophoresis

    Directory of Open Access Journals (Sweden)

    Chen Max JL

    2011-10-01

    Full Text Available Abstract Background Proteome analysis is frequently applied in identifying the proteins or biomarkers in knee synovial fluids (SF that are associated with osteoarthritis and other arthritic disorders. The 2-dimensional gel electrophoresis (2-DE is the technique of choice in these studies. Disease biomarkers usually appear in low concentrations and may be masked by high abundant proteins. Therefore, the main aim of this study was to find the most suitable sample preparation method that can optimize the expression of proteins on 2-DE gels that can be used to develop a reference proteome picture for non-osteoarthritic knee synovial fluid samples. Proteome pictures obtained from osteoarthritic knee synovial fluids can then be compared with the reference proteome pictures obtained in this study to assist us in identifying the disease biomarkers more correctly. Results The proteomic tool of 2-DE with immobilized pH gradients was applied in this study. A total of 12 2-DE gel images were constructed from SF samples that were free of osteoarthritis. In these samples, 3 were not treated with any sample preparation methods, 3 were treated with acetone, 3 were treated with 2-DE Clean-Up Kit, and 3 were treated with the combination of acetone and 2-D Clean-Up Kit prior to 2-DE analysis. Gel images were analyzed using the PDQuest Basic 8.0.1 Analytical software. Protein spots that were of interest were excised from the gels and sent for identification by mass spectrometry. Total SF total protein concentration was calculated to be 21.98 ± 0.86 mg/mL. The untreated SF samples were detected to have 456 ± 33 protein spots on 2-DE gel images. Acetone treated SF samples were detected to have 320 ± 28 protein spots, 2-D Clean-Up Kit treated SF samples were detected to have 413 ± 31 protein spots, and the combined treatment method of acetone and 2-D Clean-Up Kit was detected to have 278 ± 26 protein spots 2-DE gel images. SF samples treated with 2-D Clean-Up Kit

  5. NMR mechanisms in gel dosimetry

    International Nuclear Information System (INIS)

    Schreiner, L J

    2009-01-01

    Nuclear magnetic resonance was critical to the development of gel dosimetry, as it established the potential for three dimensional dosimetry with chemical dosimeter systems through magnetic resonance imaging [1]. In the last two decades MRI has served as the gold standard for imaging, while NMR relaxometry has played an important role in the development and understanding of the behaviour of new gel dosimetry systems. Therefore, an appreciation of the relaxation mechanisms determining the NMR behaviour of irradiated gel dosimeters is important for a full comprehension of a considerable component of the literature on gel dosimetry. A number of excellent papers have presented this important theory, this brief review will highlight some of the salient points made previously [1-5]. The spin relaxation of gel dosimeters (which determines the dose dependence in most conventional MR imaging) is determined principally by the protons on water molecules in the system. These water protons exist in different environments, or groups (see Figure 1): on bulk water, on water hydrating the chemical species that are being modified under irradiation, and on water hydrating the gel matrix used to spatially stabilize the dosimeter (e.g., gelatin, agarose, etc). The spin relaxation depends on the inherent relaxation rate of each spin group, that is, on the relaxation rate which would be observed for the specific group if it were isolated. Also, the different water environments are not isolated from each other, and the observed relaxation rate also depends on the rate of exchange of magnetization between the groups, and on the fraction of protons in each group. In fact, the water exchanges quickly between the environments, so that relaxation is in what is usually termed the fast exchange regime. In the limit of fast exchange, the relaxation of the water protons is well characterized by a single exponential and hence by a single apparent relaxation rate. In irradiated gel dosimeters this

  6. Grafting the sol-gel based sorbents by diazonium salts: a novel approach toward unbreakable capillary microextraction.

    Science.gov (United States)

    Bagheri, Habib; Bayat, Parisa; Piri-Moghadam, Hamed

    2013-11-29

    The present work deals with a novel approach for grafting a sol-gel based sorbent, using diazonium salts for preparation of an unbreakable capillary microextraction (CME) device in on-line combination with high performance liquid chromatography (HPLC). The use of diazonium salts modifier allowed all types of metallic and non-metallic substrates to be used without any limitation. Substrates including copper, brass, stainless steel and polytetrafluoroethylene (PTFE) were chosen to be functionalized by chemical or electrochemical reduction of 4-amino phenyl acetic acid. Then, 3-(trimethoxysilyl)propylamine (3TMSPA) was selected as the precursor and the only reagent for preparation of the desired surface chemical bonded sorbent. The presence of chemical bond between substrate, diazonium salts and 3TMSPA is more probably responsible for thermal and solvent stability and long lifetime of the prepared sorbent. Characterization of the aryl group formation on the various substrates along with the prepared sorbents was thoroughly investigated by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR) and thermogravimetry analysis (TGA). Typically, one of the prepared sorbents, deposited on the inner surface of the copper tube, was selected for assessing the developed method. The CME device was used for on-line extraction of atrazine, ametryn and terbutryn, as model compounds, from the aquatic media. After extraction, the HPLC mobile phase was used for on-line desorption and elution of the extracted analytes from the CME loop, containing the grafted sol-gel based sorbent, through the HPLC column. Figures of merit of the developed method were also obtained in which the linearity for the analytes was in the range of 30-1000μgL(-1). The value of LOD (S/N=3) for all analytes was 10μgL(-1) and the RSD% values (n=5) were all below 9.4% at the 500μgL(-1) level. Applicability of the developed method was examined by analyzing some real water samples in

  7. Conducting polymer electrodes for gel electrophoresis.

    Directory of Open Access Journals (Sweden)

    Katarina Bengtsson

    Full Text Available In nearly all cases, electrophoresis in gels is driven via the electrolysis of water at the electrodes, where the process consumes water and produces electrochemical by-products. We have previously demonstrated that π-conjugated polymers such as poly(3,4-ethylenedioxythiophene (PEDOT can be placed between traditional metal electrodes and an electrolyte to mitigate electrolysis in liquid (capillary electroosmosis/electrophoresis systems. In this report, we extend our previous result to gel electrophoresis, and show that electrodes containing PEDOT can be used with a commercial polyacrylamide gel electrophoresis system with minimal impact to the resulting gel image or the ionic transport measured during a separation.

  8. Conducting polymer electrodes for gel electrophoresis.

    Science.gov (United States)

    Bengtsson, Katarina; Nilsson, Sara; Robinson, Nathaniel D

    2014-01-01

    In nearly all cases, electrophoresis in gels is driven via the electrolysis of water at the electrodes, where the process consumes water and produces electrochemical by-products. We have previously demonstrated that π-conjugated polymers such as poly(3,4-ethylenedioxythiophene) (PEDOT) can be placed between traditional metal electrodes and an electrolyte to mitigate electrolysis in liquid (capillary electroosmosis/electrophoresis) systems. In this report, we extend our previous result to gel electrophoresis, and show that electrodes containing PEDOT can be used with a commercial polyacrylamide gel electrophoresis system with minimal impact to the resulting gel image or the ionic transport measured during a separation.

  9. Cation-induced folding of alginate-bearing bilayer gels: an unusual example of spontaneous folding along the long axis.

    Science.gov (United States)

    Athas, Jasmin C; Nguyen, Catherine P; Kummar, Shailaa; Raghavan, Srinivasa R

    2018-04-04

    The spontaneous folding of flat gel films into tubes is an interesting example of self-assembly. Typically, a rectangular film folds along its short axis when forming a tube; folding along the long axis has been seen only in rare instances when the film is constrained. Here, we report a case where the same free-swelling gel film folds along either its long or short axis depending on the concentration of a solute. Our gels are sandwiches (bilayers) of two layers: a passive layer of cross-linked N,N'-dimethylyacrylamide (DMAA) and an active layer of cross-linked DMAA that also contains chains of the biopolymer alginate. Multivalent cations like Ca2+ and Cu2+ induce these bilayer gels to fold into tubes. The folding occurs instantly when a flat film of the gel is introduced into a solution of these cations. The likely cause for folding is that the active layer stiffens and shrinks (because the alginate chains in it get cross-linked by the cations) whereas the passive layer is unaffected. The resulting mismatch in swelling degree between the two layers creates internal stresses that drive folding. Cations that are incapable of cross-linking alginate, such as Na+ and Mg2+, do not induce gel folding. Moreover, the striking aspect is the direction of folding. When the Ca2+ concentration is high (100 mM or higher), the gels fold along their long axis, whereas when the Ca2+ concentration is low (40 to 80 mM), the gels fold along their short axis. We hypothesize that the folding axis is dictated by the inhomogeneous nature of alginate-cation cross-linking, i.e., that the edges get cross-linked before the faces of the gel. At high Ca2+ concentration, the stiffer edges constrain the folding; in turn, the gel folds such that the longer edges are deformed less, which explains the folding along the long axis. At low Ca2+ concentration, the edges and the faces of the gel are more similar in their degree of cross-linking; therefore, the gel folds along its short axis. An analogy

  10. Characterization of composites prepared by sol-gel process through positrons lifetime spectroscopy

    International Nuclear Information System (INIS)

    Sousa, Edesia M.B. de; Magalhaes, Welligton F. de; Mohallem, Nelcy D.S.

    1996-01-01

    Si O 2 matrix were prepared by sol-gel method using TEOS, ethanol and H 2 O in a 1/3/10 mol ratio, with HCl and HF as catalysts. This silica gels were doped with copper and titanium adding Cu Cl and titanium tetra-iso-prop oxide in the starting solution, during agitation. The samples were prepared in monolithic shape, were dried at 110 deg C for 24 hours and thermally treated for 2 hours at 500, 900 and 1100 deg C. The structural evolution was studied y x-ray diffraction, mercury porosimetry and pycnometry. In this work, it was also used the Position Annihilation Lifetime Spectroscopy which have been used, nowadays, as a microscopic probe in order to investigate the free volume in zeolites, polymers and metallic alloy. All the samples have shown a stable pore structure until 900 deg C and a strong densification process at 1100 deg C. (author)

  11. Stabilized aqueous gels and uses thereof

    Energy Technology Data Exchange (ETDEWEB)

    Swanson, B.L.

    1978-08-29

    New improved aqueous gels, and methods of using same in contacting subterranean formations, are provided. The gels are prepared by gelling an aqueous brine having incorporated therein a water-soluble cellulose ether such as a carboxymethylcellulose (CMC), and are rendered more stable to decomposition by incorporating a sulfoalkylated tannin stabilizing agent, such as a sulfomethylated quebracho (SMQ), in the gel during the preparation thereof.

  12. Radioimmunoassay for free and bound forms of abscisic acid

    International Nuclear Information System (INIS)

    Cutting, J.G.; Hofman, P.J.; Wolstenholme, B.N.; Lishman, A.W.

    1984-01-01

    A radioimmunoassay (RIA) for the quanitation of abscisic acid (ABA) has been developed. The assay is extremely sensitive and measuring ranges extend from 10 pg to 10 ng. Although the assay was free of contaminant interference when applied to avocado material, crude extract analysis yielded a composite of free and bound forms of ABA. Equivalents of 20 mg of plant material were spotted onto silica gel plates (GF 245 solvent:toluene:ethyl acetate : acetic acid 25:15:3), developed and the relative Rf zones removed and subjected to RIA. The technique was tested on avocados

  13. Influence of colloidal calcium phosphate level on the microstructure and rheological properties of rennet-induced skim milk gels

    DEFF Research Database (Denmark)

    Koutina, Glykeria; Knudsen, Jes Christian; Andersen, Ulf

    2015-01-01

    lactose, to obtain varying levels of micellar calcium and phosphorus but constant value of pH, serum and free calcium, and serum phosphorus. Bovine chymosin was added to the skim milk samples after dialysis and microstructural and rheological properties during gel formation were recorded at 30°C. Samples......Colloidal calcium phosphate is an essential part of casein micelles and being responsible for their stability. Different mineralization of casein micelles was obtained by acidification of skim milk to pH 6.5, 6.0 or 5.5, followed by a dialysis method, using simulated milk ultrafiltrate without...... after dialysis needed approximately 30min after the addition of chymosin to form rennet gels. In addition, low micellar calcium and phosphorus values were both found to correlate with slightly less time for the gels to be formed. This information highlights the importance of CCP in the primary phase...

  14. Influence of colloidal silicon dioxide on gel strength, robustness, and adhesive properties of diclofenac gel formulation for topical application.

    Science.gov (United States)

    Lu, Zheng; Fassihi, Reza

    2015-06-01

    The objective of this study is to identify the extent of stiffness, adhesiveness, and thixotropic character of a three-dimensional gel network of a 1% diclofenac sodium topical gel formulation in the presence and absence of colloidal silicon dioxide (CSD) and assess its ease of application and adhesiveness using both objective and subjective analysis. The 1% diclofenac gel was mixed with different amounts of CSD (e.g., 0.5, 1, 2, 3, and 5% w/w) and allowed to equilibrate prior to testing. The texture analyzer in combination with a cone-cap assembly was used to objectively investigate the changes in spreadability and adhesiveness of the gel system before and after addition of CSD. Results indicate that an increase in pliability and adhesiveness at levels ≥2 to ≤5% w/w of CSD dispersed in the gel ensues. For subjective analysis, gels with (2% w/w) CSD and in the absence of CSD were uniformly applied to a 20-cm(2) (5 cm × 4 cm) surface area on the forearms of healthy volunteers and vehicle preferences by the volunteers regarding ease of application, durability on the skin, compliance, and feelings concerning its textural properties were assessed. It appears that changes in the gel formulation with the addition of CSD enhance gel viscosity and bonding to the skin. Results further show that changes in physical and rheological characteristics of gel containing 2% w/w CSD did not significantly change subject preferences for the gel preparations. These findings may help formulators to have additional options to develop more robust and cost-effective formulations.

  15. SAXS study of silica sols, gels and glasses obtained by the sol gel process

    International Nuclear Information System (INIS)

    Santos, D.I. dos; Aegerter, M.A.

    1988-01-01

    Systematic SAXS studies have been performed at the LURE Synchrotron, Orsay, using an intense beam of point like cross-section to obtain information about the sol -> humid gel -> dried gel -> silica glass transformation. The intensity curves have been analysed in term of power law in log-log plots, whose exponent is related to mass and surface fractal dimensions of the structure. It was found that almost all phases present fractal structures and for the case of basic gels, is of hierarchical nature. The aerogels are formed by a dense matrix, with a smooth surface and exhibit a very narrow auto-similarity range that gives a mass fractal dimension. (author) [pt

  16. Effects of gel composition on the radiation induced density change in PAG polymer gel dosimeters: a model and experimental investigations

    International Nuclear Information System (INIS)

    Hilts, M; Jirasek, A; Duzenli, C

    2004-01-01

    Due to a density change that occurs in irradiated polyacrylamide gel (PAG), x-ray computed tomography (CT) has emerged as a feasible method of performing polymer gel dosimetry. However, applicability of the technique is currently limited by low sensitivity of the density change to dose. This work investigates the effect of PAG composition on the radiation induced density change and provides direction for future work in improving the sensitivity of CT polymer gel dosimetry. A model is developed that describes the PAG density change (Δρ gel ) as a function of both polymer yield (%P) and an intrinsic density change, per unit polymer yield, that occurs on conversion of monomer to polymer (Δρ polymer ). %P is a function of the fraction of monomer consumed and the weight fraction of monomer in the unirradiated gel (%T). Applying the model to experimental CT and Raman spectroscopic data, two important fundamental properties of the response of PAG density to dose (Δρ gel dose response) are discovered. The first property is that Δρ polymer depends on PAG %C (cross-linking fraction of total monomer) such that low and high %C PAGs exhibit a higher Δρ polymer than do more intermediate %C PAGs. This relationship is opposite to the relationship of polymer yield to %C and is explained by the effect of %C on the type of polymer formed. The second property is that the Δρ gel dose response is linearly dependent on %T. From the model, the inference is that, at least for %T≤12%, monomer consumption and Δρ polymer depend solely on %C. In terms of optimizing CT polymer gel dosimetry for high sensitivity, these results indicate that Δρ polymer can be expected to vary with each polymer gel system and thus should be considered when choosing a polymer gel for CT gel dosimetry. However, Δρ polymer and %P cannot be maximized simultaneously and maximizing %P, by choosing gels with intermediate %C and high %T, is found to have the greatest impact on increasing the

  17. Multi-gel casting apparatus for vertical polyacrylamide gels with in-built solution flow system and liquid level detectors.

    Science.gov (United States)

    Maurye, Praveen; Basu, Arpita; Bandyopadhyay, Tapas Kumar; Biswas, Jayanta Kumar; Mohanty, Bimal Prasana

    2017-08-01

    PAGE is the most widely used technique for the separation and biochemical analysis of biomolecules. The ever growing field of proteomics and genomics necessitates the analysis of many proteins and nucleic acid samples to understand further about the structure and function of cells. Simultaneous analysis of multiple protein samples often requires casting of many PAGE gels. Several variants of multi-gel casting/electrophoresis apparatuses are frequently used in research laboratories. Requirement of supplementary gels to match the growing demand for analyzing additional protein samples sometimes become a cause of concern. Available apparatuses are not amenable to and therefore, not recommended for any modification to accommodate additional gel casting units other than what is prescribed by the manufacturer. A novel apparatus is described here for casting multiple PAGE gels comprising four detachable components that provide enhanced practicability and performance of the apparatus. This newly modified apparatus promises to be a reliable source for making multiple gels in less time without hassle. Synchronized functioning of unique components broaden the possibilities of developing inexpensive, safe, and time-saving multi-gel casting apparatus. This apparatus can be easily fabricated and modified to accommodate desired number of gel casting units. The estimated cost (∼$300) for fabrication of the main apparatus is very competitive and effortless assembly procedure can be completed within ∼30 min. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Fluoride Rinses, Gels and Foams

    DEFF Research Database (Denmark)

    Twetman, Svante; Keller, Mette K

    2016-01-01

    AIM: The aim of this conference paper was to systematically review the quality of evidence and summarize the findings of clinical trials published after 2002 using fluoride mouth rinses, fluoride gels or foams for the prevention of dental caries. METHODS: Relevant papers were selected after...... (6 on fluoride mouth rinse, 10 on fluoride gel and 3 on fluoride foam); 6 had a low risk of bias while 2 had a moderate risk. All fluoride measures appeared to be beneficial in preventing crown caries and reversing root caries, but the quality of evidence was graded as low for fluoride mouth rinse......, moderate for fluoride gel and very low for acidulated fluoride foam. No conclusions could be drawn on the cost-effectiveness. CONCLUSIONS: This review, covering the recent decade, has further substantiated the evidence for a caries-preventive effect of fluoride mouth rinse, fluoride gel and foam...

  19. LABORATORY-SCALE PRODUCTION OF ADU GELS BY EXTERNAL GELATION FOR AN INTERMEDIATE HTGR NUCLEAR

    Directory of Open Access Journals (Sweden)

    S Simbolon

    2015-03-01

    Full Text Available LABORATORY-SCALE PRODUCTION OF ADU GELS BY EXTERNAL GELATION FOR AN INTERMEDIATE HTGR NUCLEAR. The The aim of this research is to produce thousands of microsphere ADU (Ammonium Diuranate gels by using external gelation for an intermediate HTGR (High Temperature Gas-cooled Reactor nuclear fuel in laboratory-scale. Microsphere ADU gels were based on sol-solution which was made from a homogeneous mixture of ADUN (Acid Deficient Uranyl Nitrate which was containing uranyl ion in high concentration, a water soluble organic compound PVA (Polyvinyl Alcohol and THFA (Tetrahydrofurfuryl Alcohol. The simple unified home made laboratory experimental machine was developed to replace test tube experiment method which was once used due to a tiny amount of microsphere ADU gels produced. It consists of four main parts: tank filled sol-solution connecting to peristaltic pump and vibrating nozzle, preliminary gelation and gelation column. The machine has successfully converted 150 mL sol-solution into thousands of drops which produced 120 - 130 drops in each minute in steady state in ammonia gas free sector. Preliminary gelation reaction was carried out in ammonia gas sector where drops react with ammonia gas in a bat an eye followed by gelation reaction in column containing ammonia solution 7 M. In ageing process, ADU gels were collected and submerged into a vessel containing ammonia solution which was shaken for 1 hour in a shaker device. Isopropyl alcohol (90% solution was used to wash ADU gels and a digital camera was used to measured spherical form of ADU gels. Diameters in spherical spheroid form were found between 1.8 mm until 2.2 mm. The spherical purity of ADU gels were 10% - 20% others were oblate, prolate spheroid and microsphere which have hugetiny of dimples on the surface.   PRODUKSI GEL ADU SKALA LABORATORIUM DENGAN MENGGUNAKAN GELASI EKSTERNAL UNTUK BAHAN BAKAR ANTARA HTGR. Penelitian ini bertujuan untuk membuat ribuan gel bulat ADU (Ammonium

  20. Mucosal effects of tenofovir 1% gel.

    Science.gov (United States)

    Hladik, Florian; Burgener, Adam; Ballweber, Lamar; Gottardo, Raphael; Vojtech, Lucia; Fourati, Slim; Dai, James Y; Cameron, Mark J; Strobl, Johanna; Hughes, Sean M; Hoesley, Craig; Andrew, Philip; Johnson, Sherri; Piper, Jeanna; Friend, David R; Ball, T Blake; Cranston, Ross D; Mayer, Kenneth H; McElrath, M Juliana; McGowan, Ian

    2015-02-03

    Tenofovir gel is being evaluated for vaginal and rectal pre-exposure prophylaxis against HIV transmission. Because this is a new prevention strategy, we broadly assessed its effects on the mucosa. In MTN-007, a phase-1, randomized, double-blinded rectal microbicide trial, we used systems genomics/proteomics to determine the effect of tenofovir 1% gel, nonoxynol-9 2% gel, placebo gel or no treatment on rectal biopsies (15 subjects/arm). We also treated primary vaginal epithelial cells from four healthy women with tenofovir in vitro. After seven days of administration, tenofovir 1% gel had broad-ranging effects on the rectal mucosa, which were more pronounced than, but different from, those of the detergent nonoxynol-9. Tenofovir suppressed anti-inflammatory mediators, increased T cell densities, caused mitochondrial dysfunction, altered regulatory pathways of cell differentiation and survival, and stimulated epithelial cell proliferation. The breadth of mucosal changes induced by tenofovir indicates that its safety over longer-term topical use should be carefully monitored.

  1. On shear rheology of gel propellants

    Energy Technology Data Exchange (ETDEWEB)

    Rahimi, Shai; Peretz, Arie [RAFAEL, MANOR Propulsion and Explosive Systems Division, Haifa (Israel); Natan, Benveniste [Faculty of Aerospace Engineering, Technion - Israel Institute of Technology, Haifa (Israel)

    2007-04-15

    Selected fuel, oxidizer and simulant gels were prepared and rheologically characterized using a rotational rheometer. For fuel gelation both organic and inorganic gellants were utilized, whereas oxidizers and simulants were gelled with addition of silica and polysaccharides, respectively. The generalized Herschel-Bulkley constitutive model was found to most adequately represent the gels studied. Hydrazine-based fuels, gelled with polysaccharides, were characterized as shear-thinning pseudoplastic fluids with low shear yield stress, whereas inhibited red-fuming nitric acid (IRFNA) and hydrogen peroxide oxidizers, gelled with silica, were characterized as yield thixotropic fluids with significant shear yield stress. Creep tests were conducted on two rheological types of gels with different gellant content and the results were fitted by Burgers-Kelvin viscoelastic constitutive model. The effect of temperature on the rheological properties of gel propellant simulants was also investigated. A general rheological classification of gel propellants and simulants is proposed. (Abstract Copyright [2007], Wiley Periodicals, Inc.)

  2. Thixotropic corrosive gels for nuclear decontamination

    International Nuclear Information System (INIS)

    Bargues, St.

    1998-01-01

    The aim of this thesis was the development of corrosive gels for metallic surface decontamination. These gels formulation, based on a powerful oxidant (the cerium IV), the nitric acid, a mineral charge (silica) and a non ionic surface-active, has been developed according to the specific constraints of the nuclear industry. The objective was to prepare thixotropic gels becoming liquid after shacking to allow an easy pulverization and coming again solid to permit a perfect adhesion on the metallic surface. This rheological study of the gels has been completed by an evaluation of their corrosive properties. The last part of the work presents an industrial utilization during two years. (A.L.B.)

  3. Structure of gels layers with cells

    Science.gov (United States)

    Pokusaev, B. G.; Karlov, S. P.; Vyazmin, A. V.; Nekrasov, D. A.; Zakharov, N. S.; Khramtsov, D. P.; Skladnev, D. A.; Tyupa, D. V.

    2017-11-01

    The structure of two-layer agarose gels containing yeast cells is investigated experimentally by spectrometry, to shed a light on the theoretical foundations for the development of bioreactors by the method of 3D bioprinting. Due to division, cells overcome the layer of the dispersion phase separating successively applied layers of the agarose gel. However a gel layer of 100 μm thick with a high concentration of silver nanoparticles completely excludes the infiltration of yeast cells through it. A special sort of agarose is suggested where the concentration of silver nanoparticles formed by cells from salt of silver can serve as an indicator of the state of the yeast cells in the volume of the gel.

  4. RF cavity design exploiting a new derivative-free trust region optimization approach

    Directory of Open Access Journals (Sweden)

    Abdel-Karim S.O. Hassan

    2015-11-01

    Full Text Available In this article, a novel derivative-free (DF surrogate-based trust region optimization approach is proposed. In the proposed approach, quadratic surrogate models are constructed and successively updated. The generated surrogate model is then optimized instead of the underlined objective function over trust regions. Truncated conjugate gradients are employed to find the optimal point within each trust region. The approach constructs the initial quadratic surrogate model using few data points of order O(n, where n is the number of design variables. The proposed approach adopts weighted least squares fitting for updating the surrogate model instead of interpolation which is commonly used in DF optimization. This makes the approach more suitable for stochastic optimization and for functions subject to numerical error. The weights are assigned to give more emphasis to points close to the current center point. The accuracy and efficiency of the proposed approach are demonstrated by applying it to a set of classical bench-mark test problems. It is also employed to find the optimal design of RF cavity linear accelerator with a comparison analysis with a recent optimization technique.

  5. Modelling of the inhomogeneous interior of polymer gels

    International Nuclear Information System (INIS)

    Shew, C-Y; Iwaki, Takafumi

    2006-01-01

    A simple model has been investigated to elucidate the mean squared displacement (MSD) of probe molecules in cross-linked polymer gels. In the model, we assume that numerous cavities distribute in the inhomogeneous interior of a gel, and probe molecules are confined within these cavities. The individual probe molecules trapped in a gel are treated as Brownian particles confined to a spherical harmonic potential. The harmonic potential is chosen to model the effective potential experienced by the probe particle in the cavity of a gel. Each field strength is corresponding to the characteristic of one type of effective cavity. Since the statistical distribution of different effective cavity sizes is unknown, several distribution functions are examined. Meanwhile, the calculated averaged MSDs are compared to the experimental data by Nisato et al (2000 Phys. Rev. E 61 2879). We find that the theoretical results of the MSD are sensitive to the shape of the distribution function. For low cross-linked gels, the best fit is obtained when the interior cavities of a gel follow a bimodal distribution. Such a result may be attributed to the presence of at least two distinct classes of cavity in gels. For high cross-linked gels, the cavities in the gel can be depicted by a single-modal uniform distribution function, suggesting that the range of cavity sizes becomes smaller. These results manifest the voids inside a gel, and the shape of distribution functions may provide the insight into the inhomogeneous interior of a gel

  6. Actuator device utilizing a conductive polymer gel

    Science.gov (United States)

    Chinn, Douglas A.; Irvin, David J.

    2004-02-03

    A valve actuator based on a conductive polymer gel is disclosed. A nonconductive housing is provided having two separate chambers separated by a porous frit. The conductive polymer is held in one chamber and an electrolyte solution, used as a source of charged ions, is held in the second chamber. The ends of the housing a sealed with a flexible elastomer. The polymer gel is further provide with electrodes with which to apply an electrical potential across the gel in order to initiate an oxidation reaction which in turn drives anions across the porous frit and into the polymer gel, swelling the volume of the gel and simultaneously contracting the volume of the electrolyte solution. Because the two end chambers are sealed the flexible elastomer expands or contracts with the chamber volume change. By manipulating the potential across the gel the motion of the elastomer can be controlled to act as a "gate" to open or close a fluid channel and thereby control flow through that channel.

  7. Model-free prediction and regression a transformation-based approach to inference

    CERN Document Server

    Politis, Dimitris N

    2015-01-01

    The Model-Free Prediction Principle expounded upon in this monograph is based on the simple notion of transforming a complex dataset to one that is easier to work with, e.g., i.i.d. or Gaussian. As such, it restores the emphasis on observable quantities, i.e., current and future data, as opposed to unobservable model parameters and estimates thereof, and yields optimal predictors in diverse settings such as regression and time series. Furthermore, the Model-Free Bootstrap takes us beyond point prediction in order to construct frequentist prediction intervals without resort to unrealistic assumptions such as normality. Prediction has been traditionally approached via a model-based paradigm, i.e., (a) fit a model to the data at hand, and (b) use the fitted model to extrapolate/predict future data. Due to both mathematical and computational constraints, 20th century statistical practice focused mostly on parametric models. Fortunately, with the advent of widely accessible powerful computing in the late 1970s, co...

  8. Dosimetry Evolution in Teletherapy: Polimer Gel

    Science.gov (United States)

    Hamann, J. H.; Peixoto, J. G. P.

    2018-03-01

    Polymer gels evolution and chemical composition used in dosimetry. Type Composition First gels Folin’s Phenol or Gallic Acid Polymer Gel Agarose and N,N’-methylene-bis-acrylamide BANANA Bis, acrylamide, nitrous oxide and agarose BANG-1TM Bis, acrylamide, nitrogen and gelatin BANG-2TM Bis, acrylic acid, sodium hydroxide, nitrogen and gelatin BANG-3TM Bis, methacrylate acid, sodium hydroxide, nitrogen and gelatin MAGIC Methacrylate acid, ascorbic acid, gelatin and copper sulphate

  9. Optimized Benzalkonium Chloride Gel: A Potential Vaginal Microbicides

    Institute of Scientific and Technical Information of China (English)

    Xun-cheng DING; Wei-hua LI; Jie-fei LI; Qiang-yi WANG

    2007-01-01

    Objective To develop an optimized BZK gel with good pharmaceutical effect and less toxicity to vaginal mucosa.Methods Four methods as below were used to research the spermicidal activity of BZK gel: 1)in vitro spermicidal test; 2) in vivo spermicidal test in rabbits; 3) anti-fertility test in rabbits; 4)contraceptive test in rabbits. Mucosal irritation test was used in rats to evaluate the safety of optimized BZK gel. Microbiological assessments were used to research anti-STI pathogens (including treponema pallidum, neisseria gonorrhoeae, trichomona vaginalis, candida albicans,ureaplama urealyticum, herpes simplex virus type-2, chlamydiae trachomatis) effect of optimized BZK gel.Results In vitro spermicidal test, EC50 of BZK gel was 0.029 mg/ml, a little higher than that of N-9 (0.019 mg/ml). The MIC of BZK gel was 0.25 mg/ml, similar to that of N-9 (0.20 mg/ml).The vaginal mucosal irritation test in rats showed that 0.429% BZK gel showed only minimal vaginal irritation, and did not damage the vaginal epithelium or cause local inflammation in rats. Microbiological assessments showed that optimized BZK gel could inhibit or inactivate common STI pathogens even after 3-fold or 5-fold dilution.Conclusion Optimized BZK gel was an effective microbicides.

  10. Tooth sensitivity with a desensitizing-containing at-home bleaching gel-a randomized triple-blind clinical trial.

    Science.gov (United States)

    Maran, Bianca Medeiros; Vochikovski, Laína; de Andrade Hortkoff, Diego Rafael; Stanislawczuk, Rodrigo; Loguercio, Alessandro D; Reis, Alessandra

    2018-05-01

    Desensitizing agents are usually included in the composition of bleaching agents to reduce bleaching-induced tooth sensitivity (TS). This randomized clinical trial (RCT) evaluated the risk and intensity of TS and color change after at-home bleaching with a desensitizing-containing (3% potassium nitrate and 0.2% sodium fluoride) and desensitizing-free 10% carbamide peroxide (CP) gel (Whiteness Perfect, FGM). A triple-blind, within-person RCT was conducted on 60 caries-free adult patients. Each participant used the gel in a bleaching tray for 3 h daily for 21 days in both the upper and lower dental arches. The absolute risk and intensity of TS were assessed daily through the 0-10 VAS and NRS scale for 21 days. Color change was recorded using shade guides (Vita Classical and Vita Bleachedguide) and the Easyshade spectrophotometer at baseline, weekly and 30 days after the end of the bleaching. The risk and intensity of TS were evaluated by the McNemar and Wilcoxon Signed Rank tests, respectively. Color change (ΔSGU and ΔE) were evaluated by the Mann-Whitney test and a paired t-test, respectively (α = 0.05). No difference in the TS and color change was observed (p > 0.05). The incorporation of potassium nitrate and sodium fluoride in 10% carbamide peroxide at-home bleaching gel tested in this study did not reduce the TS and did not affect color change (RBR-4M6YR2). Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Thermodynamic behavior of erythritol in aqueous solutions and in gelatine gels and its quantification

    International Nuclear Information System (INIS)

    Tyapkova, Oxana; Bader-Mittermaier, Stephanie; Schweiggert-Weisz, Ute

    2013-01-01

    Highlights: • Differential scanning calorimetry as a method to determine erythritol crystallization. • Determination of crystallization using solution enthalpy. • Erythritol crystallization influenced by area of air–water-interfaces. • DSC method is applicable for both aqueous solutions and gels. • Adaption of DSC method to other, more complex food matrices is possible. - Abstract: As crystallization of erythritol can cause a sandy mouth-feel in sugar-free products, strategies to avoid crystallization or adaption of food formulation should be elucidated. However, until now erythritol crystallization was only quantified in aqueous solutions, but not in model food systems. Differential scanning calorimetry (DSC) is a simple method for the quantification of phase transition in various systems. However, no methods for the quantification of crystallization from aqueous systems based on DSC have been published until now. In the present study DSC was found to be suitable for the quantification of crystallization using supersaturated aqueous solutions of erythritol and erythritol containing gelatine gels for the first time. The developed method was validated by comparing the crystallization values determined by gravimetric measurement of erythritol crystals and the values obtained by DSC. No significant differences (p < 0.05) have been obtained between the results of the two methods if an appropriate design of measurements was applied. Additionally, the method was adapted to gelatine gels to elucidate the transferability to model food systems. Hence, the method is suitable for quantification of the amount of erythritol crystals present in aqueous solutions and gels, respectively

  12. Insights into cell-free therapeutic approach: Role of stem cell "soup-ernatant".

    Science.gov (United States)

    Raik, Shalini; Kumar, Ajay; Bhattacharyya, Shalmoli

    2018-03-01

    Current advances in medicine have revolutionized the field of regenerative medicine dramatically with newly evolved therapies for repair or replacement of degenerating or injured tissues. Stem cells (SCs) can be harvested from different sources for clinical therapeutics, which include fetal tissues, umbilical cord blood, embryos, and adult tissues. SCs can be isolated and differentiated into desired lineages for tissue regeneration and cell replacement therapy. However, several loopholes need to be addressed properly before this can be extended for large-scale therapeutic application. These include a careful approach for patient safety during SC treatments and tolerance of recipients. SC treatments are associated with a number of risk factors and require successful integration and survival of transplanted cells in the desired microenvironment with concurrent tissue regeneration. Recent studies have focused on developing alternatives that can replace the cell-based therapy using paracrine factors. The development of stem "cell free" therapies can be devoted mainly to the use of soluble factors (secretome), extracellular vesicles, and mitochondrial transfer. The present review emphasizes on the paradigms related to the use of SC-based therapeutics and the potential applications of a cell-free approach as an alternative to cell-based therapy in the area of regenerative medicine. © 2017 International Union of Biochemistry and Molecular Biology, Inc.

  13. Sol-gel derived sorbents

    Science.gov (United States)

    Sigman, Michael E.; Dindal, Amy B.

    2003-11-11

    Described is a method for producing copolymerized sol-gel derived sorbent particles for the production of copolymerized sol-gel derived sorbent material. The method for producing copolymerized sol-gel derived sorbent particles comprises adding a basic solution to an aqueous metal alkoxide mixture for a pH.ltoreq.8 to hydrolyze the metal alkoxides. Then, allowing the mixture to react at room temperature for a precalculated period of time for the mixture to undergo an increased in viscosity to obtain a desired pore size and surface area. The copolymerized mixture is then added to an immiscible, nonpolar solvent that has been heated to a sufficient temperature wherein the copolymerized mixture forms a solid upon the addition. The solid is recovered from the mixture, and is ready for use in an active sampling trap or activated for use in a passive sampling trap.

  14. A multiple stage approach to mitigate the risks of telecommunication equipment under free air cooling conditions

    International Nuclear Information System (INIS)

    Dai Jun; Das, Diganta; Pecht, Michael

    2012-01-01

    Highlights: ► Analyze the challenges posed by free air cooling (FAC). ► Present a multi-stage process to mitigate the risks of FAC. ► Propose a prognostics-based method to mitigate risks in data centers in operation. ► Present a case study to show the prognostics-based method implementation. - Abstract: The telecommunication industry is concerned about the energy costs of its operating infrastructure and the associated greenhouse gas emissions. At present, more than half of the total energy consumption of data centers is devoted to the power and cooling infrastructure that supports electronic equipment. One method of reducing energy consumption is an approach called “free air cooling,” where ambient air is used to cool the equipment directly, thereby reducing the energy consumed in cooling and conditioning the air. For example, Intel demonstrated free air cooling in a 10-megawatt (MW) data center, showing a reduction in energy use and savings of US$2.87 million annually. However, the impacts of this approach on the performance and reliability of telecommunication equipment need to be identified. The implementation of free air cooling changes the operating environment, including temperature and humidity, which may have a significant impact on the performance and reliability of telecom equipment. This paper discusses the challenges posed by free air cooling and presents a multi-stage process for evaluating and mitigating the potential risks arising from this new operating environment.

  15. Preparation of zirconium molybdate gel generator

    International Nuclear Information System (INIS)

    Charoen, S.; Aungurarat, G.; Laohawilai, S.; Sukontpradit, W.; Jingjit, S.

    1994-01-01

    A procedure for preparation of 99mTc generator based on conversion to zirconium molybdate gel of 99Mo produced by neutron activation was reported. The gel was prepared from zirconium oxychloride solution pH 1.6, ammonium molybdate solution pH 3-5 and mole ratio of Zr:Mo 1:1 which had water content about 7-8%. Small generators containing 1-1.5 g of gel were eluted with average efficiencies of 77% and the activity peak in the first 3 ml of 10 ml of saline solution. The amount of Mo and Zr in eluates were below the acceptance limit. The gel generators of activity about 100 mCi were prepared and had the good performance in elutability and stability

  16. Production optimization of {sup 99}Mo/{sup 99m}Tc zirconium molybate gel generators at semi-automatic device: DISIGEG

    Energy Technology Data Exchange (ETDEWEB)

    Monroy-Guzman, F., E-mail: fabiola.monroy@inin.gob.mx [Instituto Nacional de Investigaciones Nucleares, Carretera Mexico-Toluca S/N, La Marquesa, Ocoyoacac, 52750, Estado de Mexico (Mexico); Rivero Gutierrez, T., E-mail: tonatiuh.rivero@inin.gob.mx [Instituto Nacional de Investigaciones Nucleares, Carretera Mexico-Toluca S/N, La Marquesa, Ocoyoacac, 52750, Estado de Mexico (Mexico); Lopez Malpica, I.Z.; Hernandez Cortes, S.; Rojas Nava, P.; Vazquez Maldonado, J.C. [Instituto Nacional de Investigaciones Nucleares, Carretera Mexico-Toluca S/N, La Marquesa, Ocoyoacac, 52750, Estado de Mexico (Mexico); Vazquez, A. [Instituto Mexicano del Petroleo, Eje Central Norte Lazaro Cardenas 152, Col. San Bartolo Atepehuacan, 07730, Mexico D.F. (Mexico)

    2012-01-15

    DISIGEG is a synthesis installation of zirconium {sup 99}Mo-molybdate gels for {sup 99}Mo/{sup 99m}Tc generator production, which has been designed, built and installed at the ININ. The device consists of a synthesis reactor and five systems controlled via keyboard: (1) raw material access, (2) chemical air stirring, (3) gel dried by air and infrared heating, (4) moisture removal and (5) gel extraction. DISIGEG operation is described and dried condition effects of zirconium {sup 99}Mo- molybdate gels on {sup 99}Mo/{sup 99m}Tc generator performance were evaluated as well as some physical-chemical properties of these gels. The results reveal that temperature, time and air flow applied during the drying process directly affects zirconium {sup 99}Mo-molybdate gel generator performance. All gels prepared have a similar chemical structure probably constituted by three-dimensional network, based on zirconium pentagonal bipyramids and molybdenum octahedral. Basic structural variations cause a change in gel porosity and permeability, favouring or inhibiting {sup 99m}TcO{sub 4}{sup -} diffusion into the matrix. The {sup 99m}TcO{sub 4}{sup -} eluates produced by {sup 99}Mo/{sup 99m}Tc zirconium {sup 99}Mo-molybdate gel generators prepared in DISIGEG, air dried at 80 Degree-Sign C for 5 h and using an air flow of 90 mm, satisfied all the Pharmacopoeias regulations: {sup 99m}Tc yield between 70-75%, {sup 99}Mo breakthrough less than 3 Multiplication-Sign 10{sup -3}%, radiochemical purities about 97% sterile and pyrogen-free eluates with a pH of 6. - Highlights: Black-Right-Pointing-Pointer {sup 99}Mo/{sup 99m}Tc generators based on {sup 99}Mo-molybdate gels were synthesized at a semi-automatic device. Black-Right-Pointing-Pointer Generator performances depend on synthesis conditions of the zirconium {sup 99}Mo-molybdate gel. Black-Right-Pointing-Pointer {sup 99m}TcO{sub 4}{sup -} diffusion and yield into generator depends on gel porosity and permeability. Black

  17. The effect of the H2O/TEOS ratio on the structure of gels derived by the acid catalysed hydrolysis of tetraethoxysilane

    International Nuclear Information System (INIS)

    Strawbridge, I.; James, P.F.; Craievich, A.F.

    1985-01-01

    Silica gels were produced by the acid catalysed hydrolysis of tetraethoxysilane (TEOS) using H 2 O/TEOS ratios from 2 to 50. After heat treatment the structure of the gels was studied using nitrogen adsorption, small angle X-ray scattering (SAXS), transmission electron microscopy (TEM) and bulk density measurements. All the gels possessed microporosity in the region of 30 A or less. For H 2 O/TEOS = 25 and 50 the matrix density was found to be uniform, but for gels from solutions with H 2 O/TEOS = 2, 4 and 10, density fluctuations in the matrix were detected from a Porod analysis of the SAXS data. These results indicate that in high water content solutions, rearrangement of the polymeric chains leads to small densified particles, but for lower water content solutions, gelation results from the entanglement of linear chains leaving free volume on a molecular scale between the chains. (Author) [pt

  18. Sol-gel preparation of uranium oxide spheres

    International Nuclear Information System (INIS)

    Dolezal, J.; Urbanek, V.

    1978-01-01

    Information is presented on problems of preparing nuclear fuel by the sol-gel method. Basic data on different process types are given. A more detailed description of the method of preparation of spherical particles of uranium oxide gel developed and used at the Nuclear Research Institute at Rez is given. Advantages and disadvantages of sol-gel materials are discussed in comparison with fuel materials prepared by classical precipitation methods. The feasibility of the sol-gel methods for preparing other materials is shortly mentioned and their application outlined. (author)

  19. Sol-gel growth of vanadium dioxide

    International Nuclear Information System (INIS)

    Speck, K.R.

    1990-01-01

    This thesis examines the chemical reactivity of vanadium (IV) tetrakis(t-butoxide) as a precursor for the sol-gel synthesis of vanadium dioxide. Hydrolysis and condensation of the alkoxide was studied by FTIR spectroscopy. Chemical modification of the vanadium tetraalkoxide by alcohol interchange was studied using 51 V NMR and FTIR. Vanadium dioxide thin films and powders were made from vanadium tetrakis(t-butoxide) by standard sol-gel techniques. Post-deposition heating under nitrogen was necessary to transform amorphous gels into vanadium dioxide. Crystallization of films and powders was studied by FTIR, DSC, TGA, and XRD. Gel-derived vanadium dioxide films undergo a reversible semiconductor-to-metal phase transition near 68C, exhibiting characteristic resistive and spectral changes. The electrical resistance decreased by two to three orders of magnitude and the infrared transmission sharply dropped as the material was cycled through this thermally induced phase transition. The sol-gel method was also used to make doped vanadium dioxide films. Films were doped with tungsten and molybdenum ions to effectively lower the temperature at which the transition occurs

  20. Detection of bacteriophage phi 6 minus-strand RNA and novel mRNA isoconformers synthesized in vivo and in vitro, by strand-separating agarose gels

    International Nuclear Information System (INIS)

    Pagratis, N.; Revel, H.R.

    1990-01-01

    Two urea-free agarose gel protocols that resolve the six individual strands of bacteriophage phi 6 dsRNA were developed and used to analyze phage RNA synthesis in vivo and in vitro. Citrate gels separate strands of the large and medium chromosomes while Tris-borate-EDTA (TBE) gels resolve the medium and small dsRNA segments. Minus strands migrate faster than plus strands on citrate gels but are retarded on TBE gels. A study of electrophoretic conditions showed that pH affects strand resolution on citrate gels, and that voltage gradient, agarose concentration, and ethidium bromide significantly alter strand migration on TBE gels. Analysis of native phi 6 RNA synthesized in vivo and in vitro showed that the large and medium message RNAs comigrate with the corresponding plus strands of denatured virion dsRNA. The small messenger RNA is exceptional. Native small mRNA was detected as three isoconformers in vivo and in vitro. The isoconformers were converted by heat denaturation to a single RNA species that comigrates with the virion s+ strand. Minus strands labeled in vivo were detected only after heat denaturation. Minus strand synthesis was detected also in heat-denatured samples from in vitro phi 6 nucleocapsid RNA polymerase reactions at pH values suboptimal for transcription