WorldWideScience

Sample records for gel particle beds

  1. Particle fuel bed tests

    International Nuclear Information System (INIS)

    Horn, F.L.; Powell, J.R.; Savino, J.M.

    1985-01-01

    Gas-cooled reactors, using packed beds of small diameter coated fuel particles have been proposed for compact, high-power systems. The particulate fuel used in the tests was 800 microns in diameter, consisting of a thoria kernel coated with 200 microns of pyrocarbon. Typically, the bed of fuel particles was contained in a ceramic cylinder with porous metallic frits at each end. A dc voltage was applied to the metallic frits and the resulting electric current heated the bed. Heat was removed by passing coolant (helium or hydrogen) through the bed. Candidate frit materials, rhenium, nickel, zirconium carbide, and zirconium oxide were unaffected, while tungsten and tungsten-rhenium lost weight and strength. Zirconium-carbide particles were tested at 2000 K in H 2 for 12 hours with no visible reaction or weight loss

  2. Particle bed reactor modeling

    Science.gov (United States)

    Sapyta, Joe; Reid, Hank; Walton, Lew

    The topics are presented in viewgraph form and include the following: particle bed reactor (PBR) core cross section; PBR bleed cycle; fuel and moderator flow paths; PBR modeling requirements; characteristics of PBR and nuclear thermal propulsion (NTP) modeling; challenges for PBR and NTP modeling; thermal hydraulic computer codes; capabilities for PBR/reactor application; thermal/hydralic codes; limitations; physical correlations; comparison of predicted friction factor and experimental data; frit pressure drop testing; cold frit mask factor; decay heat flow rate; startup transient simulation; and philosophy of systems modeling.

  3. Particle motion in fluidised beds

    International Nuclear Information System (INIS)

    Stein, M.G.

    1999-07-01

    Gas fluidised beds are important components in many process industries, e.g. coal combustors and granulators, but not much is known about the movement of the solids. Positron Emission Particle Tracking (PEPT) enables the movement of a single, radioactive tracer particle to be followed rapidly and faithfully. Experiments were carried out in columns sized between 70 and 240mm. diameter, operating in the bubbling regime at ambient process conditions using particles of group B and D (Geldart Classification). Particle motion was tracked and the data applied to models for particle movement at the gas distributor as well as close to other surfaces and to models for particle circulation in beds of cohesive particles. In the light of these data, models for particle and bubble interaction, particle circulation, segregation, attrition, erosion, heat transfer and fluidised bed scale-up rules were reassessed. Particle motion is directly caused by bubble motion, and their velocities were found to be equal for particles travelling in a bubble. PEPT enables particle circulation to be measured, giving a more accurate correlation for future predictions. Particle motion follows the scale-up rules based on similarities of the bubble motion in the bed. A new group of parameters was identified controlling the amount of attrition in fluidised beds and a new model to predict attrition is proposed. (author)

  4. Particle Bed Reactor scaling relationships

    International Nuclear Information System (INIS)

    Slovik, G.; Araj, K.; Horn, F.L.; Ludewig, H.; Benenati, R.

    1987-01-01

    Scaling relationships for Particle Bed Reactors (PBRs) are discussed. The particular applications are short duration systems, i.e., for propulsion or burst power. Particle Bed Reactors can use a wide selection of different moderators and reflectors and be designed for such a wide range of power and bed power densities. Additional design considerations include the effect of varying the number of fuel elements, outlet Mach number in hot gas channel, etc. All of these variables and options result in a wide range of reactor weights and performance. Extremely light weight reactors (approximately 1 kg/MW) are possible with the appropriate choice of moderator/reflector and power density. Such systems are very attractive for propulsion systems where parasitic weight has to be minimized

  5. Particle bed reactor scaling relationships

    Science.gov (United States)

    Slovik, G.; Araj, K.; Horn, F. L.; Ludewig, H.; Benenati, R.

    The Particle Bed Reactor (PBR) concept can be used in several applications both as part of a power generating system or as a direct propulsion unit. In order to carry out optimization studies of systems involving a PBR, it is necessary to know the variation of the critical mass with pertinent system parameters such as weight, size, power level and thrust level. A parametric study is presented for all the practical combinations of fuel and moderating material. The PBR is described, the practical combinations of materials and dimensions are discussed, and an example is presented.

  6. Particle Bed Reactor engine technology

    International Nuclear Information System (INIS)

    Sandler, S.; Feddersen, R.

    1992-01-01

    This paper discusses the Particle Bed Reactor (PBR) based propulsion system being developed under the Space Nuclear Thermal Propulsion (SNTP) program. A PBR engine is a light weight, compact propulsion system which offers significant improvement over current technology systems. Current performance goals are a system thrust of 75,000 pounds at an Isp of 1000 sec. A target thrust to weight ratio (T/W) of 30 has been established for an unshielded engine. The functionality of the PBR, its pertinent technology issues and the systems required to make up a propulsion system are described herein. Accomplishments to date which include hardware development and tests for the PBR engine are also discussed. This paper is intended to provide information on and describe the current state-of-the-art of PBR technology. 4 refs

  7. Particle Bed Reactor engine technology

    Science.gov (United States)

    Sandler, S.; Feddersen, R.

    1992-03-01

    This paper discusses the Particle Bed Reactor (PBR) based propulsion system being developed under the Space Nuclear Thermal Propulsion (SNTP) program. A PBR engine is a light weight, compact propulsion system which offers significant improvement over current technology systems. Current performance goals are a system thrust of 75,000 pounds at an Isp of 1000 sec. A target thrust to weight ratio (T/W) of 30 has been established for an unshielded engine. The functionality of the PBR, its pertinent technology issues and the systems required to make up a propulsion system are described herein. Accomplishments to date which include hardware development and tests for the PBR engine are also discussed. This paper is intended to provide information on and describe the current state-of-the-art of PBR technology.

  8. Coolability of volumetrically heated particle beds

    Energy Technology Data Exchange (ETDEWEB)

    Rashid, Muhammad

    2017-03-22

    In case of a severe nuclear reactor accident, with loss of coolant, a particle bed may be formed from the fragmentation of the molten core in the residual water at different stages of the accident. To avoid further propagation of the accident and maintain the integrity of the reactor pressure vessel, the decay heat of the particle bed must be removed. To better understand the various thermo-hydraulic processes within such heat-generating particle beds, the existing DEBRIS test facility at IKE has been modified to be able to perform novel boiling, dryout and quenching experiments. The essential experimental data includes the pressure gradients measured by 8 differential pressure transducers along the bed height as a function of liquid and vapour superficial velocities, the determination of local dryout heat fluxes for different system pressures as well as the local temperature distribution measured by a set of 51 thermocouples installed inside the particle bed. The experiments were carried out for two different particle beds: a polydispersed particle bed which consisted of stainless steel balls (2 mm, 3 mm and 6 mm diameters) and an irregular particle bed which consisted of a mixture of steel balls (3 mm and 6 mm) and irregularly shaped Al{sub 2}O{sub 3} particles. Additionally, all experiments were carried out for different flow conditions, such as the reference case of passive 1D top-flooding, 1D bottom flooding (driven by external pumps and different downcomer configurations) and 2D top-/bottom-/lateral flooding with a perforated downcomer. In this work, it has been observed that for both particle beds with downcomer configurations an open downcomer leads to the best coolability (dryout heat flux = 1560 kW/m{sup 2}, polydispersed particle bed, psys = 1 bar) of the particle bed, mainly due to bottom-flow with enhanced natural convection. It has also been shown that a potential lateral flow via a perforation of the downcomer does not bring any further improvements

  9. 2D numerical model of particle-bed collision in fluid-particle flows over bed

    Czech Academy of Sciences Publication Activity Database

    Lukerchenko, Nikolay; Chára, Zdeněk; Vlasák, Pavel

    2006-01-01

    Roč. 44, č. 1 (2006), s. 70-78 ISSN 0022-1686 R&D Projects: GA AV ČR IAA2060201 Institutional research plan: CEZ:AV0Z20600510 Keywords : saltation * particle-bed collision * collision angle * bed roughness Subject RIV: BK - Fluid Dynamics Impact factor: 0.527, year: 2006

  10. Exploring the Early Structure of a Rapidly Decompressed Particle Bed

    Science.gov (United States)

    Zunino, Heather; Adrian, R. J.; Clarke, Amanda; Johnson, Blair; Arizona State University Collaboration

    2017-11-01

    Rapid expansion of dense, pressurized beds of fine particles subjected to rapid reduction of the external pressure is studied in a vertical shock tube. A near-sonic expansion wave impinges on the particle bed-gas interface and rapidly unloads the particle bed. A high-speed video camera captures events occurring during bed expansion. The particle bed does not expand homogeneously, but breaks down into horizontal slabs and then transforms into a cellular-type structure. There are several key parameters that affect the particle bed evolution, including particle size and initial bed height. Analyses of this bed structure evolution from experiments with varying particle sizes and initial bed heights is presented. This work is supported by the U.S. Department of Energy, National Nuclear Security Administration, Advanced Simulation and Computing Program, as a Cooperative Agreement under the Predictive Science and Academic Alliance Program, under Contract No. DE-NA0002378.

  11. Evolution of Particle Bed Reactor Fuel

    Science.gov (United States)

    Jensen, Russell R.; Evans, Robert S.; Husser, Dewayne L.; Kerr, John M.

    1994-07-01

    To realize the potential performance advantages inherent in a particle bed reactor (PBR) for nuclear thermal propulsion (NTP) applications, high performance particle fuel is required. This fuel must operate safely and without failure at high temperature in high pressure, flowing hydrogen propellant. The mixed mean outlet temperature of the propellant is an important characteristic of PBR performance. This temperature is also a critical parameter for fuel particle design because it dictates the required maximum fuel operating temperature. In this paper, the evolution in PBR fuel form to achieve higher operating temperatures is discussed and the potential thermal performance of the different fuel types is evaluated. It is shown that the optimum fuel type for operation under the demanding conditions in a PBR is a coated, solid carbide particle.

  12. The effect of bed non-uniformities and porosity of particles on dryout in boiling particle beds

    International Nuclear Information System (INIS)

    Macbeth, R.V.; Mogford, D.J.; Willshire, S.J.

    1988-03-01

    This report relates to an on-going experimental programme concerned with the coolability of beds of reactor core debris or rubble immersed in a liquid coolant, as might occur in an accident situation. The objectives are to develop experimental techniques, improve the understanding of bed cooling mechanisms, determine dry-out limitations of various bed configurations and particle shapes and sizes and devise ways of improving bed coolability. The report concentrates on a recently discovered effect on bed coolability of particle porosity, such as exists in fragmented UO 2 fuel pellets. It is shown that porosity can lower bed dry-out powers by a factor of 4 or 5. A mechanism which explains the effect is presented. The report also gives results of bed non-uniformities obtained by mixing glass particles with the dielectrically heated 'ferrite' particles used in the experiments. (author)

  13. Shielding requirements for particle bed propulsion systems

    Science.gov (United States)

    Gruneisen, S. J.

    1991-06-01

    Nuclear Thermal Propulsion systems present unique challenges in reliability and safety. Due to the radiation incident upon all components of the propulsion system, shielding must be used to keep nuclear heating in the materials within limits; in addition, electronic control systems must be protected. This report analyzes the nuclear heating due to the radiation and the shielding required to meet the established criteria while also minimizing the shield mass. Heating rates were determined in a 2000 MWt Particle Bed Reactor (PBR) system for all materials in the interstage region, between the reactor vessel and the propellant tank, with special emphasis on meeting the silicon dose criteria. Using a Lithium Hydride/Tungsten shield, the optimum shield design was found to be: 50 cm LiH/2 cm W on the axial reflector in the reactor vessel and 50 cm LiH/2 cm W in a collar extension of the inside shield outside of the pressure vessel. Within these parameters, the radiation doses in all of the components in the interstage and lower tank regions would be within acceptable limits for mission requirements.

  14. The effect of vibration on bed voidage behaviors in fluidized beds with large particles

    Directory of Open Access Journals (Sweden)

    H. Jin

    2007-09-01

    Full Text Available The effects of vibration parameters, operating conditions and material properties on bed voidage were investigated using an optical fiber probe approach in a vibrating fluidized bed with a diameter of 148 mm. Variables studied included frequency (0-282 s-1, amplitude (0 mm-1 mm, bed height (0.1 m-0.4 m as well as four kinds of particles (belonging to Geldart's B and D groups. The axial and radial voidage distribution with vibration is compared with that without vibration, which shows vibration can aid in the fluidization behaviors of particles. For a larger vibration amplitude, the vibration seriously affects bed voidage. The vibration energy can damp out for particle layers with increasing the bed height. According to analysis of experimental data, an empirical correlation for predicting bed voidage, giving good agreement with the experimental data and a deviation within ±15%, was proposed.

  15. Particle motions in oscillatory flow over a smooth bed

    DEFF Research Database (Denmark)

    Jensen, Karsten Lindegård; Sumer, B. Mutlu; Fredsøe, Jørgen

    2014-01-01

    This study investigates particle motions near the bed in an oscillating tunnel with a smooth bed. Trajectories of a heavy particle were recorded in two dimensions (horizontal and vertical) and in time. The wave boundary layer Reynolds number is Re = 520000. Kinematical quantities...... such as the probability distribution of particle position in the vertical, and the horizontal and vertical particle velocities, among others, are determined. The particle is observed to reach heights of 2.5-3d, similar to that characterizing a typical bedload particle in sediment transport....

  16. Effect of bed particles to combustion of gases in fluidized bed

    Energy Technology Data Exchange (ETDEWEB)

    Raiko, R.; Wallen, V.; Etelaeaho, R.; Correia, S. [Tampere Univ. of Technology (Finland). Energy and Process Engineering

    1997-10-01

    The objective of this project was to obtain experimental data on effects of sand particles to the combustion of gases. The effect of the surface area of the particles was tested using different sized particles. The fluidized bed reactor used in these experiments was a stainless-steel tube with an internal diameter of 42 mm surrounded by an electric heater. The test rig was built in the Laboratory of Energy and Process Engineering at Tampere University of Technology. In order to elucidate the possible changes of particle surface, microscopic and porosimetric studies were conducted with both fresh bed particles and used bed particles. These measurements indicate that carbon monoxide significantly reacts with oxygen in the particulate or emulsion phase of a fluidized bed, if the residence time is long enough. The reaction rate depends mainly on temperature, air coefficient, residence time and particle size of the solids. It seems that the combustion enhances if the average particle size increases. Whether this is caused by increased free path length or reduced specific surface area of the bed is yet unknown. The first might be more probable cause because the majority of reactions often took place in the freeboard right above the bed. It was clear that the bed hindered proper combustion in several cases. (orig.)

  17. Internal structure analysis of particle-double network gels used in a gel organ replica

    Science.gov (United States)

    Abe, Mei; Arai, Masanori; Saito, Azusa; Sakai, Kazuyuki; Kawakami, Masaru; Furukawa, Hidemitsu

    2016-04-01

    In recent years, the fabrication of patient organ replicas using 3D printers has been attracting a great deal of attention in medical fields. However, the cost of these organ replicas is very high as it is necessary to employ very expensive 3D printers and printing materials. Here we present a new gel organ replica, of human kidney, fabricated with a conventional molding technique, using a particle-double network hydrogel (P-DN gel). The replica is transparent and has the feel of a real kidney. It is expected that gel organ replicas produced this way will be a useful tool for the education of trainee surgeons and clinical ultrasonography technologists. In addition to developing a gel organ replica, the internal structure of the P-DN gel used is also discussed. Because the P-DN gel has a complex structure comprised of two different types of network, it has not been possible to investigate them internally in detail. Gels have an inhomogeneous network structure. If it is able to get a more uniform structure, it is considered that this would lead to higher strength in the gel. In the present study we investigate the structure of P-DN gel, using the gel organ replica. We investigated the internal structure of P-DN gel using Scanning Microscopic Light Scattering (SMILS), a non-contacting and non-destructive.

  18. Gas-particle interactions in dense gas-fluidised beds

    NARCIS (Netherlands)

    Li, J.; Kuipers, J.A.M.

    2003-01-01

    The occurrence of heterogeneous flow structures in gas-particle flows seriously affects gas¿solid contacting and transport processes in dense gas-fluidized beds. A computational study, using a discrete particle method based on Molecular Dynamics techniques, has been carried out to explore the

  19. Particle Distribution in a Fixed Bed Down Draft Wood Gasifier

    DEFF Research Database (Denmark)

    Hindsgaul, Claus

    2005-01-01

    Char particle samples were collected from six distances above the grate in a fixed bed of a down draft biomass gasifier. Each sample was separated into twelve size fractions by screening through standard sieves in order to determine the local particle size distribution. The ash contents of each...

  20. Fluidized bed reactor for working up carbon coated particles

    International Nuclear Information System (INIS)

    Marschollek, M.; Simon, W.; Walter, C.

    1981-01-01

    A fluidized bed reactor is described for working up carbon coated particles, particularly nuclear fuel particles or fertile material particles consisting essentially of a cylindrical portion connected to a conical portion. Gas supply pipes, gas distribution space and gas distribution heads are provided within the conical reactor lower portion, the gas distribution members being arranged in at least two superimposed planes and distributed symmetrically over the cross-section of the reactor

  1. Air/water simulation of dryout in boiling particle beds

    International Nuclear Information System (INIS)

    Jones, K.

    1984-10-01

    Experimental studies of boiling in particle beds, representing reactor core debris, tend to be restricted to very small beds compared with what may be found in a real reactor accident situation. Experimental difficulties and costs are the restricting factors. There exists the possibility of getting around the problem by using air and water to simulate some of the many features of boiling in a particle bed. The idea has been examined experimentally. The results are inconclusive however, because they raise doubts about the interpretation of existing dry-out data. There is a possibility that flow maldistribution, which has not so far been allowed for, may be a key factor in the operation of a boiling bed. The subject requires further study. (author)

  2. Pickering stabilized peptide gel particles as tunable microenvironments for biocatalysis.

    Science.gov (United States)

    Scott, Gary; Roy, Sangita; Abul-Haija, Yousef M; Fleming, Scott; Bai, Shuo; Ulijn, Rein V

    2013-11-19

    We demonstrate the preparation of peptide gel microparticles that are emulsified and stabilized by SiO2 nanoparticles. The gels are composed of aromatic peptide amphiphiles 9-fluorenylmethoxycarbonyldiphenylalanine (Fmoc-FF) coassembled with Fmoc-amino acids with different functional groups (S: serine; D: aspartic acid; K: lysine; and Y: tyrosine). The gel phase provides a highly hydrated matrix, and peptide self-assembly endows the matrix with tunable chemical environments which may be exploited to support and stabilize proteins. The use of Pickering emulsion to stabilize these gel particles is advantageous through avoidance of surfactants that may denature proteins. The performance of enzyme lipase B immobilized in pickering/gel microparticles with different chemical functionalities is investigated by studying transesterification in heptane. We show that the use of Pickering particles enhances the performance of the enzyme, which is further improved in gel-phase systems, with hydrophilic environment provided by Fmoc-FF/S giving rise to the best catalytic performance. The combination of a tunable chemical environment in gel phase and Pickering stabilization described here is expected to prove useful for areas where proteins are to be exploited in technological contexts such as biocatalysis and also in other areas where protein performance and activity are important, such as biosensors and bioinspired solar fuel devices.

  3. Deleterious Thermal Effects Due To Randomized Flow Paths in Pebble Bed, and Particle Bed Style Reactors

    Science.gov (United States)

    Moran, Robert P.

    2013-01-01

    A review of literature associated with Pebble Bed and Particle Bed reactor core research has revealed a systemic problem inherent to reactor core concepts which utilize randomized rather than structured coolant channel flow paths. For both the Pebble Bed and Particle Bed Reactor designs; case studies reveal that for indeterminate reasons, regions within the core would suffer from excessive heating leading to thermal runaway and localized fuel melting. A thermal Computational Fluid Dynamics model was utilized to verify that In both the Pebble Bed and Particle Bed Reactor concepts randomized coolant channel pathways combined with localized high temperature regions would work together to resist the flow of coolant diverting it away from where it is needed the most to cooler less resistive pathways where it is needed the least. In other words given the choice via randomized coolant pathways the reactor coolant will take the path of least resistance, and hot zones offer the highest resistance. Having identified the relationship between randomized coolant channel pathways and localized fuel melting it is now safe to assume that other reactor concepts that utilize randomized coolant pathways such as the foam core reactor are also susceptible to this phenomenon.

  4. Thermal-hydraulic considerations for particle bed reactors

    Science.gov (United States)

    Benenati, R.; Araj, K. J.; Horn, F.

    In the design of particle bed reactor (PBR) cores, consideration must be given to the gas coolant channels and their configuration. Neutronics analysis provides the relative volume fractions of the component materials, but these must be arranged in such a manner as to allow proper cooling of all components by the gas flow at relatively low pressure drops. The thermal hydraulic aspects of this problem are addressed. A description of the computer model used in the analysis of the steady state condition is also included. Blowdown tests on hot particle bed fuel elements were carried out and are described.

  5. Dynamics and mechanics of bed-load tracer particles

    Directory of Open Access Journals (Sweden)

    C. B. Phillips

    2014-12-01

    Full Text Available Understanding the mechanics of bed load at the flood scale is necessary to link hydrology to landscape evolution. Here we report on observations of the transport of coarse sediment tracer particles in a cobble-bedded alluvial river and a step-pool bedrock tributary, at the individual flood and multi-annual timescales. Tracer particle data for each survey are composed of measured displacement lengths for individual particles, and the number of tagged particles mobilized. For single floods we find that measured tracer particle displacement lengths are exponentially distributed; the number of mobile particles increases linearly with peak flood Shields stress, indicating partial bed load transport for all observed floods; and modal displacement distances scale linearly with excess shear velocity. These findings provide quantitative field support for a recently proposed modeling framework based on momentum conservation at the grain scale. Tracer displacement is weakly negatively correlated with particle size at the individual flood scale; however cumulative travel distance begins to show a stronger inverse relation to grain size when measured over many transport events. The observed spatial sorting of tracers approaches that of the river bed, and is consistent with size-selective deposition models and laboratory experiments. Tracer displacement data for the bedrock and alluvial channels collapse onto a single curve – despite more than an order of magnitude difference in channel slope – when variations of critical Shields stress and flow resistance between the two are accounted for. Results show how bed load dynamics may be predicted from a record of river stage, providing a direct link between climate and sediment transport.

  6. Conformational changes of a single magnetic particle string within gels.

    Science.gov (United States)

    An, Hai-Ning; Groenewold, Jan; Picken, S J; Mendes, Eduardo

    2014-02-21

    Magnetorheological (MR) gels consist of micron sized magnetic particles inside a gel matrix. Before physical cross-linking, the suspension is subjected to a small magnetic field which creates a particle string structure. After cross-linking, the string is kept within the gel at room temperature. Under an external homogeneous magnetic field and mechanical deformation, the soft swollen gel matrix allows the string to largely rearrange at microscopic scales. With the help of two homemade magneto cells mounted on an optical microscope, we were able to follow the conformational change and instabilities of a single magnetic particle string under the combined influence of shear (or stretch) and the magnetic field. In the absence of mechanical deformation, an external magnetic field, applied in the perpendicular direction to the string, breaks it into small pieces generating periodic structures like sawteeth. When an external magnetic field is applied parallel to the pre-aligned string, it exhibits a length contraction. However, under shear strain perpendicular to the original pre-structured string (and magnetic field), the string breaks and short string segments tilt, making an angle with the original direction that is smaller than that of the applied shear (non-affine). The difference in tilt angle scales with the inverse length of the small segments L-1 and the magnetic flux density B, reflecting the ability of the gel matrix to expel solvents under local stress.

  7. Wind erosion model of a multiple sized particles bed

    Energy Technology Data Exchange (ETDEWEB)

    Descamps, I.; Pons, A.; Harion, J.-L. [IMP-CNRS UPR 8521, Perpignan (France)

    2006-07-01

    A model has been developed in order to predict more accurately fugitive dust emissions by aeolian erosion on industrial sites. This model takes into account the time evolution of the bed surface features during erosion by a turbulent flow. It consists of four parts corresponding to aerodynamic entrainment and is based on the interaction between particle take-off and wall turbulence. A take-off criterion compares the lift force exerted by the flow on the particle with the sum of the weight and adhesive force. Bed pavement and saltation are also taken into account. Bed pavement is induced by the non-erodible particles. On steel plants stockpiles, ores and coals have granulometric spectra going a few microns to a few centimetres in diameter. In fact, the non-erodible particles, that cannot take-off because of their inertia, form obstacles in the finer particle take-off and lead to a time decrease in emitted mass flux. The new model has been tested for the case of a bimodal size distribution by comparison with relevant experimental data. The results demonstrate that the mode allows predicting the mass flux time decrease due to non-erodible particles. 17 refs., 6 figs.

  8. On the entrainment of solid particles from a fluidized bed

    Energy Technology Data Exchange (ETDEWEB)

    Sciazko, M. (Institute of Chemical Processing of Coal, Zabrze (Poland)); Bandrowski, J.; Raczek, J. (Politechnika Slaska, Gliwice (Poland). Inst. of Chemical Engineering and Apparatus Construction)

    1991-04-01

    This paper presents a generalized approach to the phenomenon of entrainment of solids from a fluidized bed. Starting with the discussion of the transport disengaging height (TDH) and of the elutriation of particles above the TDH, one arrives finally at the relationship between the elutriation rate constant, saturation carrying capacity and choking parameters of pneumatic transport. (orig.).

  9. Retention of airborne particles in granular bed filters

    International Nuclear Information System (INIS)

    Stroem, L.

    1981-01-01

    A literature survey was made on theoretical models for the prediction of particle retention in sand beds. Also data on observed retention was collected from the literature. Based on this information, a semi-empirical model was compiled. Comparison of the model with published retention data shows a general agreement. (Auth.)

  10. Small particle bed reactors: Sensitivity to Brayton cycle parameters

    Science.gov (United States)

    Coiner, John R.; Short, Barry J.

    Relatively simple particle bed reactor (PBR) algorithms were developed for optimizing low power closed Brayton cycle (CBC) systems. These algorithms allow the system designer to understand the relationship among key system parameters as well as the sensitivity of the PBR size and mass (a major system component) to variations in these parameters. Thus, system optimization can be achieved.

  11. Tests of candidate materials for particle bed reactors

    International Nuclear Information System (INIS)

    Horn, F.L.; Powell, J.R.; Wales, D.

    1987-01-01

    Rhenium metal hot frits and zirconium carbide-coated fuel particles appear suitable for use in flowing hydrogen to at least 2000 K, based on previous tests. Recent tests on alternate candidate cooled particle and frit materials are described. Silicon carbide-coated particles began to react with rhenium frit material at 1600 K, forming a molten silicide at 2000 K. Silicon carbide was extensively attacked by hydrogen at 2066 K for 30 minutes, losing 3.25% of its weight. Vitrous carbon was also rapidly attacked by hydrogen at 2123 K, losing 10% of its weight in two minutes. Long term material tests on candidate materials for closed cycle helium cooled particle bed fuel elements are also described. Surface imperfections were found on the surface of pyrocarbon-coated fuel particles after ninety days exposure to flowing (∼500 ppM) impure helium at 1143 K. The imperfections were superficial and did not affect particle strength

  12. A turbulent bed contactor: energetic efficiency for particle collection

    Directory of Open Access Journals (Sweden)

    M. L. Gimenes

    2007-03-01

    Full Text Available Particle collection experiments were conducted in a fluidizing irrigated bed to evaluate the performance of mobile packings: 38 x 50 mm plain oblate spheroids 38 mm ID plain spheres and alternative perforated spheres with a 38 mm ID and 10% and 25% free areas were used as fluidizing media in a 0.264 m diameter and 1.20 m high turbulent bed contactor (TBC. Particle collection experiments were carried out above the minimum fluidization velocity, using as particulate test powder polysized alumina (size 1.5 to 5.5 mm. Experimental results demonstrated that the perforated spheres performed better in collecting particles than the other packings tested. The efficiency of particle collection was analysed based on energy consumption in the TBC, using the energetic efficiency concept. It was verified that not much more energy was consumed per unit of gas flow in fluidized beds of perforated packings than in those of conventional plain sphere packings, since the perforated spheres were more energetically efficient for particle collection than plain spheres and oblate spheroid packings.

  13. High power density reactors based on direct cooled particle beds

    International Nuclear Information System (INIS)

    Powell, J.R.; Horn, F.L.

    1985-01-01

    Reactors based on direct cooled HTGR type particle fuel are described. The small diameter particle fuel is packed between concentric porous cylinders to make annular fuel elements, with the inlet coolant gas flowing inwards. Hot exit gas flows out long the central channel of each element. Because of the very large heat transfer area in the packed beds, power densities in particle bed reactors (PBR's) are extremely high resulting in compact, lightweight systems. Coolant exit temperatures are high, because of the ceramic fuel temperature capabilities, and the reactors can be ramped to full power and temperature very rapidly. PBR systems can generate very high burst power levels using open cycle hydrogen coolant, or high continuous powers using closed cycle helium coolant. PBR technology is described and development requirements assessed. 12 figs

  14. High power density reactors based on direct cooled particle beds

    Science.gov (United States)

    Powell, J. R.; Horn, F. L.

    Reactors based on direct cooled High Temperature Gas Cooled Reactor (HTGR) type particle fuel are described. The small diameter particle fuel is packed between concentric porous cylinders to make annular fuel elements, with the inlet coolant gas flowing inwards. Hot exit gas flows out along the central channel of each element. Because of the very large heat transfer area in the packed beds, power densities in particle bed reactors (PBRs) are extremely high resulting in compact, lightweight systems. Coolant exit temperatures are high, because of the ceramic fuel temperature capabilities, and the reactors can be ramped to full power and temperature very rapidly. PBR systems can generate very high burst power levels using open cycle hydrogen coolant, or high continuous powers using closed cycle helium coolant. PBR technology is described and development requirements assessed.

  15. Heat-transfer characteristics of flowing and stationary particle-bed-type fusion-reactor blankets

    Energy Technology Data Exchange (ETDEWEB)

    Nietert, R.E.

    1983-02-01

    The following five appendices are included: (1) physical properties of materials, (2) thermal entrance length Nusselt number variations, (3) stationary particle bed temperature variations, (4) falling bed experimental data and calculations, and (5) stationary bed experimental data and calculations. (MOW)

  16. Heat-transfer characteristics of flowing and stationary particle-bed-type fusion-reactor blankets

    International Nuclear Information System (INIS)

    Nietert, R.E.

    1983-02-01

    The following five appendices are included: (1) physical properties of materials, (2) thermal entrance length Nusselt number variations, (3) stationary particle bed temperature variations, (4) falling bed experimental data and calculations, and (5) stationary bed experimental data and calculations

  17. Critical Issues for Particle-Bed Reactor Fuels

    Science.gov (United States)

    Evans, Robert S.; Husser, Dewayne L.; Jensen, Russell R.; Kerr, John M.

    1994-07-01

    Particle-Bed Reactors (PBRs) potentially offer performance advantages for nuclear thermal propulsion, including very high power densities, thrust-to-weight ratios, and specific impulses. A key factor in achieving all of these is the development of a very-high-temperature fuel. The critical issues for all such PBR fuels are uranium loading, thermomechanical and thermochemical stability, compatibility with contacting materials, fission product retention, manufacturability, and operational tolerance for particle failures. Each issue is discussed with respect to its importance to PBR operation, its status among current fuels, and additional development needs. Mixed-carbide-based fuels are recommended for further development to support high-performance PBRs.

  18. Single particle behaviour in circulating fluidized bed combustors

    DEFF Research Database (Denmark)

    Erik Weinell, Claus

    1994-01-01

    of fuel particles in a boiler. A cold pilot scale model of a circulating fluidized bed combustor was used. Here sand was recirculated by means of air. Pressure measurements along the riser determined suspension density. A radioactive tracking facility to determined the dynamic picture of the particle...... trajectories in the simulated boiler. In the splash zone, closest to the secondary air inlet an exponential decay in the solids suspension density with the riser height was observed. A transport zone was characterized by an exponential decay in the solids suspension but with a smaller decay constant...

  19. Investigation of preparation and mechanisms of a dispersed particle gel formed from a polymer gel at room temperature.

    Directory of Open Access Journals (Sweden)

    Guang Zhao

    Full Text Available A dispersed particle gel (DPG was successfully prepared from a polymer gel at room temperature. The polymer gel system, morphology, viscosity changes, size distribution, and zeta potential of DPG particles were investigated. The results showed that zirconium gel systems with different strengths can be cross-linked within 2.5 h at low temperature. Scanning electron microscopy (SEM, transmission electron microscopy (TEM, and atomic force microscopy (AFM results showed that the particles were polygonal particles with nano-size distribution. According to the viscosity changes, the whole preparation process can be divided into two major stages: the bulk gel cross-linking reaction period and the DPG particle preparation period. A polymer gel with a 3-dimensional network was formed in the bulk gel cross-linking reaction period whereas shearing force and frictional force were the main driving forces for the preparation of DPG particles, and thus affected the morphology of DPG particles. High shearing force and frictional force reduced the particle size distribution, and then decreased the zeta potential (absolute value. The whole preparation process could be completed within 3 h at room temperature. It could be an efficient and energy-saving technology for preparation of DPG particles.

  20. SPOUTED BED DESIGN CONSIDERATIONS FOR COATED NUCLEAR FUEL PARTICLES

    Energy Technology Data Exchange (ETDEWEB)

    Marshall, Douglas W.

    2017-07-01

    High Temperature Gas Cooled Reactors (HTGRs) are fueled with tristructural isotropic (TRISO) coated nuclear fuel particles embedded in a carbon-graphite fuel body. TRISO coatings consist of four layers of pyrolytic carbon and silicon carbide that are deposited on uranium ceramic fuel kernels (350µm – 500µm diameters) in a concatenated series of batch depositions. Each layer has dedicated functions such that the finished fuel particle has its own integral containment to minimize and control the release of fission products into the fuel body and reactor core. The TRISO coatings are the primary containment structure in the HTGR reactor and must have very high uniformity and integrity. To ensure high quality TRISO coatings, the four layers are deposited by chemical vapor deposition (CVD) using high purity precursors and are applied in a concatenated succession of batch operations before the finished product is unloaded from the coating furnace. These depositions take place at temperatures ranging from 1230°C to 1550°C and use three different gas compositions, while the fuel particle diameters double, their density drops from 11.1 g/cm3 to 3.0 g/cm3, and the bed volume increases more than 8-fold. All this is accomplished without the aid of sight ports or internal instrumentation that could cause chemical contamination within the layers or mechanical damage to thin layers in the early stages of each layer deposition. The converging section of the furnace retort was specifically designed to prevent bed stagnation that would lead to unacceptably high defect fractions and facilitate bed circulation to avoid large variability in coating layer dimensions and properties. The gas injection nozzle was designed to protect precursor gases from becoming overheated prior to injection, to induce bed spouting and preclude bed stagnation in the bottom of the retort. Furthermore, the retort and injection nozzle designs minimize buildup of pyrocarbon and silicon carbide on the

  1. Coating of particles with finer particles using a draft-tube spouted-bed

    Energy Technology Data Exchange (ETDEWEB)

    Ijichi, K.; Uemura, Y.; Hatate, Y. [Kagoshima University, Kagoshima (Japan). Faculty of Engineering

    2000-06-01

    Fluidized bed coaters or granulators with spray nozzles are used to produce coating particles, granules and agglomerates in various industrial fields. When the binder liquid containing fine particles is sprayed into a hot fluidized bed, the fluidising particles grow in size by agglomeration due to the particles colliding with the spray droplets that first form liquid and then solid bridges between particles. This phenomenon causes unstable coating or granulating and ill-balanced products. The question then arises about mono-core coating with finer particles. We investigated the characteristics of the mono-core coating using a draft-tube spouted-bed coater, applying the separation force due to the high-speed gas from the inlet nozzle. As a result, it is found that mono-core coating could be achieved due to the shear force and the external solid circulating system. It is shown that the coating ratio can be controlled by selecting the coating operation time and the concentration of binder liquid. Also, it is found that choking of the draft-tube can be delayed by increasing the inlet gas velocity and the bed temperature. (author)

  2. Modeling the supercritical desorption of orange essential oil from a silica-gel bed

    Directory of Open Access Journals (Sweden)

    Silva E.A.

    2000-01-01

    Full Text Available One of the most important byproducts of the orange juice industry is the oil phase. This is a mixture of terpenes, alcohols, and aldehydes, dissolved in approximately 96% limonene. To satisfactorily use oil phase as an ingredient in the food and cosmetics industries separation of the limonene is required. One possibility is to use a fixed bed of silica gel to remove the light or aroma compounds from the limonene. The aroma substances are then extracted from the bed of silica gel using supercritical carbon dioxide. This work deals with the modeling of the desorption step of the process using mass balance equations coupled with the Langmuir equilibrium isotherm. Data taken from the literature for the overall extraction curves were used together with empirical correlations to calculate the concentration profile of solute in the supercritical phase at the bed outlet. The system of equations was solved by the finite volume technique. The overall extraction curves calculated were in good agreement with the experimental ones.

  3. Hydrodynamics of multi-sized particles in stable regime of a swirling bed

    Energy Technology Data Exchange (ETDEWEB)

    Miin, Chin Swee; Sulaiman, Shaharin Anwar; Raghavan, Vijay Raj; Heikal, Morgan Raymond; Naz, Muhammad Yasin [Universiti Teknologi PETRONAS, Perak (Malaysia)

    2015-11-15

    Using particle imaging velocimetry (PIV), we observed particle motion within the stable operating regime of a swirling fluidized bed with an annular blade distributor. This paper presents velocity profiles of particle flow in an effort to determine effects from blade angle, particle size and shape and bed weight on characteristics of a swirling fluidized bed. Generally, particle velocity increased with airflow rate and shallow bed height, but decreased with bed weight. A 3 .deg. increase in blade angle reduced particle velocity by approximately 18%. In addition, particle shape, size and bed weight affected various characteristics of the swirling regime. Swirling began soon after incipience in the form of a supra-linear curve, which is the characteristic of a swirling regime. The relationship between particle and gas velocities enabled us to predict heat and mass transfer rates between gas and particles.

  4. Fully resolved simulations of expansion waves propagating into particle beds

    Science.gov (United States)

    Marjanovic, Goran; Hackl, Jason; Annamalai, Subramanian; Jackson, Thomas; Balachandar, S.

    2017-11-01

    There is a tremendous amount of research that has been done on compression waves and shock waves moving over particles but very little concerning expansion waves. Using 3-D direct numerical simulations, this study will explore expansion waves propagating into fully resolved particle beds of varying volume fractions and geometric arrangements. The objectives of these simulations are as follows: 1) To fully resolve all (1-way coupled) forces on the particles in a time varying flow and 2) to verify state-of-the-art drag models for such complex flows. We will explore a range of volume fractions, from very low ones that are similar to single particle flows, to higher ones where nozzling effects are observed between neighboring particles. Further, we will explore two geometric arrangements: body centered cubic and face centered cubic. We will quantify the effects that volume fraction and geometric arrangement plays on the drag forces and flow fields experienced by the particles. These results will then be compared to theoretical predictions from a model based on the generalized Faxen's theorem. This work was supported in part by the U.S. Department of Energy under the Predictive Science Academic Alliance Program, under Contract No. DE-NA0002378.

  5. Hydraulically refueled battery employing a packed bed metal particle electrode

    Science.gov (United States)

    Siu, Stanley C.; Evans, James W.

    1998-01-01

    A secondary zinc air cell, or another selected metal air cell, employing a spouted/packed metal particle bed and an air electrode. More specifically, two embodiments of a cell, one that is capable of being hydraulically recharged, and a second that is capable of being either hydraulically or electrically recharged. Additionally, each cell includes a sloped bottom portion to cause stirring of the electrolyte/metal particulate slurry when the cell is being hydraulically emptied and refilled during hydraulically recharging of the cell.

  6. Safety aspects of Particle Bed Reactor plutonium burner system

    International Nuclear Information System (INIS)

    Powell, J.R.; Ludewig, H.; Todosow, M.

    1993-01-01

    An assessment is made of the safety aspects peculiar to using the Particle Bed Reactor (PBR) as the burner in a plutonium disposal system. It is found that a combination of the graphitic fuel, high power density possible with the PBR and engineered design features results in an attractive concept. The high power density potentially makes it possible to complete the plutonium burning without requiring reprocessing and remanufacturing fuel. This possibility removes two hazardous steps from a plutonium burning complex. Finally, two backup cooling systems depending on thermo-electric converters and heat pipes act as ultimate heat removal sinks in the event of accident scenarios which result in loss of fuel cooling

  7. Strong Shock Propagating Over A Random Bed of Spherical Particles

    Science.gov (United States)

    Mehta, Yash; Salari, Kambiz; Jackson, Thomas L.; Balachandar, S.; Thakur, Siddharth

    2017-11-01

    The study of shock interaction with particles has been largely motivated because of its wide-ranging applications. The complex interaction between the compressible flow features, such as shock wave and expansion fan, and the dispersed phase makes this multi-phase flow very difficult to predict and control. In this talk we will be presenting results on fully resolved inviscid simulations of shock interaction with random bed of particles. One of the fascinating observations from these simulations are the flow field fluctuations due to the presence of randomly distributed particles. Rigorous averaging (Favre averaging) of the governing equations results in Reynolds stress like term, which can be classified as pseudo turbulence in this case. We have computed this ``Reynolds stress'' term along with individual fluctuations and the turbulent kinetic energy. Average pressure was also computed to characterize the strength of the transmitted and the reflected waves. This work was supported by the U.S. Department of Energy, National Nuclear Security Administration, Advanced Simulation and Computing Program, as a Cooperative Agreement under the Predictive Science Academic Alliance Program.

  8. Small propulsion reactor design based on particle bed reactor concept

    International Nuclear Information System (INIS)

    Ludewig, H.; Lazareth, O.; Mughabghab, S.; Perkins, K.; Powell, J.R.

    1989-01-01

    In this paper Particle Bed Reactor (PBR) designs are discussed which use 233 U and /sup 242m/Am as fissile materials. A constant total power of 100MW is assumed for all reactors in this study. Three broad aspects of these reactors is discussed. First, possible reactor designs are developed, second physics calculations are outlined and discussed and third mass estimates of the various candidates reactors are made. It is concluded that reactors with a specific mass of 1 kg/MW can be envisioned of 233 U is used and approximately a quarter of this value can be achieved if /sup 242m/Am is used. If this power level is increased by increasing the power density lower specific mass values are achievable. The limit will be determined by uncertainties in the thermal-hydraulic analysis. 5 refs., 5 figs., 6 tabs

  9. Investigation of the particle flowpattern and segregation in tapered fluidized bed granulators

    NARCIS (Netherlands)

    Schaafsma, S. H.; Marx, T.; Hoffmann, A. C.

    The particle flowpattern and granule segregation in tapered fluidized beds have been studied using two techniques. The first technique is to fluidize beds of varying total mass and granule fractions, then defluidize them suddenly to "freeze" the composition, section the bed in layers, and determine

  10. The influence of transport phenomena on the fluidized bed combustion of a single carbon particle

    NARCIS (Netherlands)

    Prins, W.; van Swaaij, Willibrordus Petrus Maria

    1990-01-01

    The burning rate and temperature of the carbon particles are known to affect the efficiency of a fluidized bed combustor, and also the emission levels of undesired noxious components. The main results of an extensive study on the fluidized bed combustion behaviour of a single carbon particle [1] are

  11. Pebble bed reactor fuel cycle optimization using particle swarm algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Tavron, Barak, E-mail: btavron@bgu.ac.il [Planning, Development and Technology Division, Israel Electric Corporation Ltd., P.O. Box 10, Haifa 31000 (Israel); Shwageraus, Eugene, E-mail: es607@cam.ac.uk [Department of Engineering, University of Cambridge, Trumpington Street, Cambridge CB2 1PZ (United Kingdom)

    2016-10-15

    Highlights: • Particle swarm method has been developed for fuel cycle optimization of PBR reactor. • Results show uranium utilization low sensitivity to fuel and core design parameters. • Multi-zone fuel loading pattern leads to a small improvement in uranium utilization. • Thorium mixes with highly enriched uranium yields the best uranium utilization. - Abstract: Pebble bed reactors (PBR) features, such as robust thermo-mechanical fuel design and on-line continuous fueling, facilitate wide range of fuel cycle alternatives. A range off fuel pebble types, containing different amounts of fertile or fissile fuel material, may be loaded into the reactor core. Several fuel loading zones may be used since radial mixing of the pebbles was shown to be limited. This radial separation suggests the possibility to implement the “seed-blanket” concept for the utilization of fertile fuels such as thorium, and for enhancing reactor fuel utilization. In this study, the particle-swarm meta-heuristic evolutionary optimization method (PSO) has been used to find optimal fuel cycle design which yields the highest natural uranium utilization. The PSO method is known for solving efficiently complex problems with non-linear objective function, continuous or discrete parameters and complex constrains. The VSOP system of codes has been used for PBR fuel utilization calculations and MATLAB script has been used to implement the PSO algorithm. Optimization of PBR natural uranium utilization (NUU) has been carried out for 3000 MWth High Temperature Reactor design (HTR) operating on the Once Trough Then Out (OTTO) fuel management scheme, and for 400 MWth Pebble Bed Modular Reactor (PBMR) operating on the multi-pass (MEDUL) fuel management scheme. Results showed only a modest improvement in the NUU (<5%) over reference designs. Investigation of thorium fuel cases showed that the use of HEU in combination with thorium results in the most favorable reactor performance in terms of

  12. Study on effective particle diameters and coolability of particulate beds packed with irregular multi-size particles

    International Nuclear Information System (INIS)

    Thakre, S.; Ma, W.; Kudinov, P.; Bechta, S.

    2013-08-01

    One of the key questions in severe accident research is the coolability of the debris bed, i.e., whether decay heat can be completely removed by the coolant flow into the debris bed. Extensive experimental and analytical work has been done to substantiate the coolability research. Most of the available experimental data is related to the beds packed with single size (mostly spherical) particles, and less data is available for multi-size/irregular-shape particles. There are several analytical models available, which rely on the mean particle diameter and porosity of the bed in their predictions. Two different types of particles were used to investigate coolability of particulate beds at VTT, Finland. The first type is irregular-shape Aluminum Oxide gravel particles whose sizes vary from 0.25 mm to 10 mm, which were employed in the STYX experiment programme (2001-2008). The second type is spherical beads of Zirconium silicate whose sizes vary between 0.8 mm to 1 mm, which were used in the COOLOCE tests (Takasuo et al., 2012) to study the effect of multi-dimensional flooding on coolability. In the present work, the two types of particles are used in the POMECO-FL and POMECO-HT test facility to obtain their effective particle diameters and dryout heat flux of the beds, respectively. The main idea is to check how the heaters' orientations (vertical in COOLOCE vs. horizontal in POMECO-HT) and diameters (6 mm in COOLOCE vs. 3 mm in POMECO-HT) affect the coolability (dryout heat flux) of the test beds. The tests carried out on the POMECO-FL facility using a bed packed with aluminum oxide gravel particles show the effective particle diameter of the gravel particles is 0.65 mm, by which the frictional pressure gradient can be predicted by the Ergun equation. After the water superficial velocity is higher than 0.0025 m/s, the pressure gradient is underestimated. The effective particle diameter of the zirconium particles is found as 0.8 mm. The dryout heat flux is measured on

  13. Stress analysis of an agitated particle bed with different particle aspect ratios by the discrete element method

    Directory of Open Access Journals (Sweden)

    Goh Wei Pin

    2017-01-01

    Full Text Available The size distribution, shape and aspect ratio of particles are the common factors that affect their packing in a particle bed. Agitated powder beds are commonly used in the process industry for various applications. The stresses arising as a result of shearing the bed could result in undesirable particle breakage with adverse impact on manufacturability. We report on our work on analysing the stress distribution within an agitated particle bed with several particle aspect ratios by the Discrete Element Method (DEM. Rounded cylinders with different aspect ratios are generated and incorporated into the DEM simulation. The void fraction of the packing of the static and agitated beds with different particle aspect ratios is analysed. Principal and deviatoric stresses are quantified in the regions of interest along the agitating impeller blade for different cases of particle aspect ratios. The relationship between the particle aspect ratio and the stress distribution of the bed over the regions of interest is then established and will be presented.

  14. Propagation of a Strong Shock Over a Random Bed of Spherical Particles

    Energy Technology Data Exchange (ETDEWEB)

    Mehta, Y. [Univ. of Florida, Gainesville, FL (United States); Neal, C. [Univ. of Florida, Gainesville, FL (United States); Salari, K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Jackson, T. L. [Univ. of Florida, Gainesville, FL (United States); Balachandar, S. [Univ. of Florida, Gainesville, FL (United States); Thakur, S. [Univ. of Florida, Gainesville, FL (United States)

    2017-04-11

    Propagation of a strong shock through a bed of particles results in complex wave dynamics such as a reflected shock, a transmitted shock, and highly unsteady flow inside the particle bed. In this paper we present three-dimensional numerical simulations of shock propagation in air over a random bed of particles. We assume the flow is inviscid and governed by the Euler equations of gas dynamics. Simulations are carried out by varying the volume fraction of the particle bed at a fixed shock Mach number. We compute the unsteady inviscid streamwise and transverse drag coefficients as a function of time for each particle in the random bed as a function of volume fraction. We show that (i) there are significant variations in the peak drag for the particles in the bed, (ii) the mean peak drag as a function of streamwise distance through the bed decreases with a slope that increases as the volume fraction increases, and (iii) the deviation from the mean peak drag does not correlate with local volume fraction. We also present the local Mach number and pressure contours for the different volume fractions to explain the various observed complex physical mechanisms occurring during the shock-particle interactions. Since the shock interaction with the random bed of particles leads to transmitted and reflected waves, we compute the average flow properties to characterize the strength of the transmitted and reflected shock waves and quantify the energy dissipation inside the particle bed. Finally, to better understand the complex wave dynamics in a random bed, we consider a simpler approximation of a planar shock propagating in a duct with a sudden area change. We obtain Riemann solutions to this problem, which are used to compare with fully resolved numerical simulations.

  15. Coupling Solute and Fine Particle Transport with Sand Bed Morphodynamics within a Field Experiment

    Science.gov (United States)

    Phillips, C. B.; Ortiz, C. P.; Schumer, R.; Jerolmack, D. J.; Packman, A. I.

    2017-12-01

    Fine suspended particles are typically considered to pass through streams and rivers as wash load without interacting with the bed, however experiments have demonstrated that hyporheic flow causes advective exchange of fine particles with the stream bed, yielding accumulation of fine particle deposits within the bed. Ultimately, understanding river morphodynamics and ecosystem dynamics requires coupling both fine particle and solute transport with bed morphodynamics. To better understand the coupling between these processes we analyze a novel dataset from a controlled field experiment conducted on Clear Run, a 2nd order sand bed stream located within the North Carolina coastal plain. Data include concentrations of continuously injected conservative solutes and fine particulate tracers measured at various depths within the stream bed, overhead time lapse images of bed forms, stream discharge, and geomorphological surveys of the stream. We use image analysis of bed morphodynamics to assess exchange, retention, and remobilization of solutes and fine particles during constant discharge and a short duration experimental flood. From the images, we extract a time series of bedform elevations and scour depths for the duration of the experiment. The high-resolution timeseries of bed elevation enables us to assess coupling of bed morphodynamics with both the solute and fine particle flux during steady state mobile bedforms prior to the flood and to changing bedforms during the flood. These data allow the application of a stochastic modeling framework relating bed elevation fluctuations to fine particle residence times. This combined experimental and modeling approach ultimately informs our ability to predict not only the fate of fine particulate matter but also associated nutrient and carbon dynamics within streams and rivers.

  16. Three-dimensional culture for monoclonal antibody production by hybridoma cells immobilized in macroporous gel particles.

    Science.gov (United States)

    Nilsang, Suthasinee; Nehru, Vishal; Plieva, Fatima M; Nandakumar, Kutty Selva; Rakshit, Sudip Kumar; Holmdahl, Rikard; Mattiasson, Bo; Kumar, Ashok

    2008-01-01

    Cell proliferation and long-term production of monoclonal antibody IgG(2b) by M2139 hybridoma cells immobilized in macroporous gel particles (MGPs) in packed-bed reactor were studied for a period of 60 days. The MGPs were made of supermacroporous gels produced in frozen conditions from crosslinked polyacrylamide and modified with gelatin which were housed in special plastic carriers (7 x 9 mm(2)). Cells were trapped in the interior part of MGPs by attaching to the void space of the gel matrix as three-dimensional (3D) cultivation using gelatin as a substrate layer. Optimizing productivity by hybridoma cell relies on understanding regulation of antibody production. In this study, the behavior of M2139 cells in two-dimensional cultures on multiwell plate surfaces was also investigated. The effect of three different medium such as basal medium Dulbecco's modified Eagle's medium (D-MEM) containing L-glutamine or L-glutamine + 2 mM alpha-ketoglutarate or L-alanyl-glutamine (GlutaMAXtrade mark) was studied prior to its use in 3D cultivation. The kinetics of cell growth in basal medium containing L-glutamine + alpha-ketoglutarate was similar to cells grown on GlutaMAX containing medium, whereas D-MEM containing L-glutamine showed lower productivity. With the maximal viable cell density (6.85 x 10(6) cells mL(-1)) and highest specific mAb production rate (3.9 mug mL(-1) 10(-4) viable cell day(-1)), D-MEM-GlutaMAX was further selected for 3D cultivation. Cells in MGPs were able to grow and secrete antibody for 30 days in packed-bed batch reactor, before a fresh medium reservoir was replaced. After being supplied with fresh medium, cells again showed continuous growth for another 30 days with mAb production efficiency of 50%. These results demonstrate that MGPs can be used efficiently as supporting carrier for long-term monoclonal antibody production.

  17. Friction factor for water flow through packed beds of spherical and non-spherical particles

    Directory of Open Access Journals (Sweden)

    Kaluđerović-Radoičić Tatjana

    2017-01-01

    Full Text Available The aim of this work was the experimental evaluation of different friction factor correlations for water flow through packed beds of spherical and non-spherical particles at ambient temperature. The experiments were performed by measuring the pressure drop across the bed. Packed beds made of monosized glass spherical particles of seven different diameters were used, as well as beds made of 16 fractions of quartz filtration sand obtained by sieving (polydisperse non-spherical particles. The range of bed voidages was 0.359–0.486, while the range of bed particle Reynolds numbers was from 0.3 to 286 for spherical particles and from 0.1 to 50 for non-spherical particles. The obtained results were compared using a number of available literature correlations. In order to improve the correlation results for spherical particles, a new simple equation was proposed in the form of Ergun’s equation, with modified coefficients. The new correlation had a mean absolute deviation between experimental and calculated values of pressure drop of 9.04%. For non-spherical quartz filtration sand particles the best fit was obtained using Ergun’s equation, with a mean absolute deviation of 10.36%. Surface-volume diameter (dSV necessary for correlating the data for filtration sand particles was calculated based on correlations for dV = f(dm and Ψ = f(dm. [Project of the Serbian Ministry of Education, Science and Technological Development, Grant no. ON172022

  18. Particle stability in dilute fermented dairy drinks: formation of fluid gel and impact on rheological properties.

    Science.gov (United States)

    Kiani, H; Mousavi, M E; Mousavi, Z E

    2010-12-01

    Fluid gels are known to be very shear-thinning materials with yield stress. In this study, the rheological properties of gellan and gellan-pectin fluid gels in fermented dairy drinks were evaluated using viscometric measurements. Both gellan- and gellan-pectin-containing solutions showed the rheological properties of fluid gels resulting in stabilization of particles; but no evidence of a fluid gel was observed for those with pectin alone and those with no hydrocolloid content. Unlike pectin, gellan gum was capable of creating significant values of yield stress and accordingly stabilized colloidal particles and extrinsic added solid particles in the fermented dairy drink. However, pectin improved the stability in combination with gellan. The origin of fluid gel formation was assumed to be both permanent interactions occurring between gellan and proteins, forming hairy particle gels and transient interactions between the particle gels. The significance of yield stress values for particle stability was demonstrated and two methods, including a noteworthy infinite apparent viscosity method and a conventional Bingham approach, were employed to calculate the values of yield stress. Both the methods showed a good application potential due to their simplicity, reasonable results and also wide availability of the instrument applied.

  19. A RELATION FOR THE VOID FRACTION OF RANDOMLY PACKED PARTICLE BEDS

    NARCIS (Netherlands)

    HOFFMANN, AC; FINKERS, HJ

    The void fractions of loosely packed and tapped beds of particles of continuous size distributions are correlated by means of a proposed new semi-empirical relation. In this relation four parameters describing the following particle properties are included: (i) mean particle size, (ii) spread of the

  20. Investigation of Gas Solid Fluidized Bed Dynamics with Non-Spherical Particles

    Energy Technology Data Exchange (ETDEWEB)

    Choudhuri, Ahsan [Univ. of Texas, El Paso, TX (United States). Dept. of Mechanical Engineering

    2013-06-30

    One of the largest challenges for 21st century is to fulfill global energy demand while also reducing detrimental impacts of energy generation and use on the environment. Gasification is a promising technology to meet the requirement of reduced emissions without compromising performance. Coal gasification is not an incinerating process; rather than burning coal completely a partial combustion takes place in the presence of steam and limited amounts of oxygen. In this controlled environment, a chemical reaction takes place to produce a mixture of clean synthetic gas. Gas-solid fluidized bed is one such type of gasification technology. During gasification, the mixing behavior of solid (coal) and gas and their flow patterns can be very complicated to understand. Many attempts have taken place in laboratory scale to understand bed hydrodynamics with spherical particles though in actual applications with coal, the particles are non-spherical. This issue drove the documented attempt presented here to investigate fluidized bed behavior using different ranges of non-spherical particles, as well as spherical. For this investigation, various parameters are controlled that included particle size, bed height, bed diameter and particle shape. Particles ranged from 355 µm to 1180 µm, bed diameter varied from 2 cm to 7 cm, two fluidized beds with diameters of 3.4 cm and 12.4 cm, for the spherical and non-spherical shaped particles that were taken into consideration. Pressure drop was measured with increasing superficial gas velocity. The velocity required in order to start to fluidize the particle is called the minimum fluidization velocity, which is one of the most important parameters to design and optimize within a gas-solid fluidized bed. This minimum fluidization velocity was monitored during investigation while observing variables factors and their effect on this velocity. From our investigation, it has been found that minimum fluidization velocity is independent of bed

  1. CFD-DEM Analysis of Particle Attrition in a Jet in a Fluidised Bed

    Directory of Open Access Journals (Sweden)

    Fulchini F.

    2017-01-01

    Full Text Available In fluidised bed processes, the solids are in vigorous motion and thus inevitably subjected to mechanical stresses due to inter-particle and particle-wall impacts. These stresses lead to a gradual degradation of the particles by surface wear, abrasion and body fragmentation commonly termed attrition. One significant contribution of attrition comes from the air jets of the fluidised bed distributor. Particles are entrained into the air jet, where they get accelerated and impacted onto the fluidised bed particles. The jet induced attrition only affects the part of the bed which is limited by the jet length, where the mode of attrition is largely collisional. The overall jet attrition rate is therefore the result of the combination of the single particle damage and the flux of particles entering into that region. The attrition behaviour of particles in the jet region is analysed by evaluating their propensity of breakage experimentally and by simulating an air-jet in a bed of particles by CFD-DEM. The frequency of collisions and impact velocities are estimated from which the attrition due to a single air-jet is predicted.

  2. CFD-DEM Analysis of Particle Attrition in a Jet in a Fluidised Bed

    Science.gov (United States)

    Fulchini, F.; Nan, W.; Ghadiri, M.; Yazdan Panah, M.; Bertholin, S.; Amblard, B.; Cloupet, A.; Gauthier, T.

    2017-06-01

    In fluidised bed processes, the solids are in vigorous motion and thus inevitably subjected to mechanical stresses due to inter-particle and particle-wall impacts. These stresses lead to a gradual degradation of the particles by surface wear, abrasion and body fragmentation commonly termed attrition. One significant contribution of attrition comes from the air jets of the fluidised bed distributor. Particles are entrained into the air jet, where they get accelerated and impacted onto the fluidised bed particles. The jet induced attrition only affects the part of the bed which is limited by the jet length, where the mode of attrition is largely collisional. The overall jet attrition rate is therefore the result of the combination of the single particle damage and the flux of particles entering into that region. The attrition behaviour of particles in the jet region is analysed by evaluating their propensity of breakage experimentally and by simulating an air-jet in a bed of particles by CFD-DEM. The frequency of collisions and impact velocities are estimated from which the attrition due to a single air-jet is predicted.

  3. Fluidized Bed Sputtering for Particle and Powder Metallization

    Science.gov (United States)

    2013-04-01

    Sathiyamoorthy provides a review of plasma technology used with fluidized bed techniques (13). Borer and von Rohr integrated a microwave plasma source...Plasma Spouted/Fluidized Bed for Materials Processing. Journal of Physics: Conference Series 2010, 208 (1), 012120. 14. Borer, B.; von Rohr , R...Technology 2005, 200, 377–381. 15. Morstein, M.; Karches, M.; Bayer, C.; Casanova, D.; von Rohr , P. R. Plasma CVD of Ultrathin TiO2 Films on Powders in a

  4. Dynamics of fractal cluster colloidal gels with embedded active Janus particles

    Science.gov (United States)

    Solomon, Michael; Szakasits, Megan; Zhang, Wenxuan

    We find that fractal cluster gels of colloids in which platinum-coated Janus particles have been embedded exhibit enhanced mobility when the Janus particles are made active by the addition of hydrogen peroxide. Gelation is induced through addition of a divalent salt, magnesium chloride, to an initially stable suspension of Janus and polystyrene colloids, each of size about 1 micron. After the gels have been created, the embedded Janus colloids are activated by hydrogen peroxide, which is delivered to the system through a porous hydrogel membrane. We vary the ratio of active to passive colloids in the gels from about 1:20 to 1:8. Changes in structure and dynamics are visualized by two channel confocal laser scanning microscopy. By image analysis, we determine the particle positions and compute the mean squared displacement (MSD) of all particles in the gel. We measure the mobility enhancement in the fractal gels as a function of hydrogen peroxide concentration and Janus particle concentration and discuss the results in terms of the force provided by each active particle to the fractal gel network.

  5. A discrete element study of wet particle-particle interaction during granulation in a spout fluidized bed

    NARCIS (Netherlands)

    van Buijtenen, M.S.; Deen, N.G.; Heinrich, Stefan; Antonyuk, Sergiy; Kuipers, J.A.M.

    2009-01-01

    In this article we study the effect of the inter-particle interaction on the bed dynamics, by considering a variable restitution coefficient. The restitution coefficient is varied in time and space depending on the moisture content due to the particle-droplet interaction and evaporation. This study

  6. 3D ejection behavior of different sized particles in the grain-bed collision process

    Science.gov (United States)

    Xing, Mao; He, Caiyun

    2013-04-01

    The impact-ejection process on a mixed-grain-size bed with granular packing was simulated with the discrete element method in order to understand the interaction between different sized grains in natural aeolian sand transport. In this model, the granular bed was formed by settling the randomly generated two-sized particles under gravity, and then a foreign particle was shot onto the granular bed at different speeds and angles. The recorded speed, direction and number of the ejected particles were then analyzed. It was found that the probability distributions of the ejection speed and angle for different sized particles are all identical to those for the single size grain-bed collision process, the mean ejection speeds of different sized particles are nearly equal, and the mean ejection angles of different sized particles are all equal to a constant of 60°. The average number of each size of ejected particles grows linearly with the increasing impact speed but remains invariant for various impact angles. Moreover, the smaller particles are preferentially ejected and the ratio between the mean numbers of different sized particles is independent of both the impact speed and angle. Additionally, the ejected particles were found to move in a 3D space, they become distributed symmetrically around the incident plane and jump not only forward but also backward. These results are critical to understanding the grain size-induced inhomogeneity in aeolian sand transport.

  7. Fluidized bed spray granulation: analysis of heat and mass transfers and dynamic particle populations

    Directory of Open Access Journals (Sweden)

    S. Heinrich

    2005-06-01

    Full Text Available A model was developed taking into consideration the heat and mass transfer processes in liquid-sprayed fluidized beds. Such fluidized beds (FB are used for granulation, coating and agglomeration. Conclusions are drawn on the relevance of particle dispersion, spraying and drying to temperature and concentrations distributions. In extension, the model was coupled with a population balance model to describe the particle size distribution and the seeds formation for continuous external FBSG (fluidized bed spray granulation with non-classifying product discharge and a screening and milling unit in the seeds recycle. The effects of seeds formation on the stability of the process is discussed.

  8. 3D numerical model of the spherical particle saltation in a channel with a rough fixed bed

    OpenAIRE

    Lukerchenko, Nikolay; Piatsevich, Ssiarhei; Chara, Zdenek; Vlasak, Pavel

    2009-01-01

    The paper describes a 3D numerical model of the spherical particle saltation. Two stages of particle saltation were distinguished – the particle free motion in water and the particle-bed collision. The particle motion consists of the translational and rotational particle motion. A stochastic method of calculation of the particle-bed collision was developed. The collision height and the contact point were defined as random variables. Impulse equations were used and the translational and angula...

  9. The effect of bed particle size and deposit morphology on the filtration of magnetite through granular graphite beds

    International Nuclear Information System (INIS)

    Barbieri, R.R.; Bercovich, E.J.; Liberman, S.J.

    1980-01-01

    Graphite filters are of great interest for water purification in nuclear power reactors' primary systems due to their possible operation at high temperature. The influence of the bed particle size on the retention of magnetite from aqueous suspensions at room temperature was studied. The filtration coefficient changes from 0.0 to 0.18 as the mean graphite particle diameter decreases from 1.2 to 0. mm. As the retention increases, there is also an increase in the differential pressure across the bed, so both effects must be considered in order to optimize filter's operation. The specific effective volume of the deposit was calculated with the Blake-Kozeny equation and the experimental specific volumes. These are much larger than the specific volume of solid magnetite. From the results, information regarding the morphology of the deposit in the filter is obtained. (M.E.L) [es

  10. Fluidized combustion of beds of large, dense particles in reprocessing HTGR fuel

    International Nuclear Information System (INIS)

    Young, D.T.

    1977-03-01

    Fluidized bed combustion of graphite fuel elements and carbon external to fuel particles is required in reprocessing high-temperature gas-cooled reactor (HTGR) cores for recovery of uranium. This burning process requires combustion of beds containing both large particles and very dense particles as well as combustion of fine graphite particles which elutriate from the bed. Equipment must be designed for optimum simplicity and reliability as ultimate operation will occur in a limited access ''hot cell'' environment. Results reported in this paper indicate that successful long-term operation of fuel element burning with complete combustion of all graphite fines leading to a fuel particle product containing <1% external carbon can be performed on equipment developed in this program

  11. Single-particle behaviour in circulating fluidized beds

    DEFF Research Database (Denmark)

    Erik Weinell, Claus; Dam-Johansen, Kim; Johnsson, Jan Erik

    1997-01-01

    . A radioactive tracking facility, which detects single radioactive particles, is developed and applied to determine the dynamic picture of the particle trajectories in the simulated boiler. The tracer particles are observed to move between the zone above and below the secondary air inlet with a mean frequency...

  12. Bioactive Molecules Release and Cellular Responses of Alginate-Tricalcium Phosphate Particles Hybrid Gel

    Directory of Open Access Journals (Sweden)

    Dipankar Das

    2017-11-01

    Full Text Available In this article, a hybrid gel has been developed using sodium alginate (Alg and α-tricalcium phosphate (α-TCP particles through ionic crosslinking process for the application in bone tissue engineering. The effects of pH and composition of the gel on osteoblast cells (MC3T3 response and bioactive molecules release have been evaluated. At first, a slurry of Alg and α-TCP has been prepared using an ultrasonicator for the homogeneous distribution of α-TCP particles in the Alg network and to achieve adequate interfacial interaction between them. After that, CaCl2 solution has been added to the slurry so that ionic crosslinked gel (Alg-α-TCP is formed. The developed hybrid gel has been physico-chemically characterized using Fourier transform infrared (FTIR spectroscopy, scanning electron microscopy (SEM and a swelling study. The SEM analysis depicted the presence of α-TCP micro-particles on the surface of the hybrid gel, while cross-section images signified that the α-TCP particles are fully embedded in the porous gel network. Different % swelling ratio at pH 4, 7 and 7.4 confirmed the pH responsiveness of the Alg-α-TCP gel. The hybrid gel having lower % α-TCP particles showed higher % swelling at pH 7.4. The hybrid gel demonstrated a faster release rate of bovine serum albumin (BSA, tetracycline (TCN and dimethyloxalylglycine (DMOG at pH 7.4 and for the grade having lower % α-TCP particles. The MC3T3 cells are viable inside the hybrid gel, while the rate of cell proliferation is higher at pH 7.4 compared to pH 7. The in vitro cytotoxicity analysis using thiazolyl blue tetrazolium bromide (MTT, bromodeoxyuridine (BrdU and neutral red assays ascertained that the hybrid gel is non-toxic for MC3T3 cells. The experimental results implied that the non-toxic and biocompatible Alg-α-TCP hybrid gel could be used as scaffold in bone tissue engineering.

  13. Experimental Investigation of the Effect of Particle Shape on Frictional Pressure drop in Particulate Debris Bed

    International Nuclear Information System (INIS)

    Park, Jin Ho; Kim, Eun Ho; Park, Hyun Sun

    2014-01-01

    To ensure the long-term cooling of corium in the reactor cavity, it is important to ensure the coolant ingression into the internally heat generated corium debris bed which is governed by pressure drop in porous media. For this reason, it is necessary to understand pressure drop mechanisms in porous bed to verify the feasibility of water penetration into particulate debris bed. According to the previous investigations on molten fuel-coolant interaction (FCI) experiments, it was found that quenched particulate debris bed was composed of irregular shape particles. Therefore, empirical or semiempirical models based on the Ergun equation (Ergun, 1952) for single-phase flow in porous media composed of single sized spherical particle were developed to consider the effect of particle shape on frictional pressure drop by means of adding a shape factor or modifying the Ergun constants etc. (Leva, 1959, Handley and Heggs, 1968, Macdonald, 1979, Foumeny et al., 1996). An experimental investigate on single-phase frictional pressure drop of water in packed bed was conducted in the transparent cylindrical test section with the inner diameter of 100 mm and the height of 700 mm to study the effect of particle shape on frictional pressure drop in porous media. This paper reports the experimental data for spherical particles with the diameter of 2 mm and 5 mm and cylindrical particles with ED of 2 mm and 5 mm. And also, the experimental data compared with the models to predict frictional pressure drop in particulate bed. The conclusions are summarized as follows. As a result of the experiment to measure frictional pressure drop in particulate bed composed of cylindrical particles the models predict the experimental data well within 22.11 % except the Handley and Heggs model when ED is applied to the models

  14. Hydrodynamic studies of the flow of fine particles through a fluidized dense bed of coarse solids

    Energy Technology Data Exchange (ETDEWEB)

    Talukdar, J.

    1993-12-31

    This study explains the hydrodynamics of a circulating fluidized bed (CFB) system, the Battelle Multi-Solids Fluidized Bed System (MSFB). It consists of a circulating fluidized bed of fine particles superimposed on a bubbling bed of coarse solids. One way to characterize such a system is to describe the mechanism of gas-solid flow through the bed. The gas flow in systems like these is through bubbles or slugs (regions of voids containing little or no solids). Bubbles are typically characterized by their size (length or diameter), their rise velocity, and their frequency. Another task of the initial phase of this study is to characterize an L-valve, a solids-recirculating device commonly used in an MSFB. Next, the mechanism of fine particle movement through a bubbling region of coarse fluidized solids is studied in considerable detail. Bubble characteristics are studied in a variety of systems of coarse particles with fines passing through at high velocity. Amongst numerous optical, electrical and other techniques available for the study of the passage of bubbles, the pressure fluctuation technique is the most robust. In this investigation, pressure probes are connected to pressure transducers which are in turn linked to an on-line data acquisition system supported on a microcomputer. A commercially available software package (Notebook) is used to sample pressure at specified points in the fluidized bed at extremely fast rates, of up to 200 Hz. This resulted in pressure-time traces which are analysed to give bubble length, bubble rise velocity, and bubble frequency. Another important objective of this study is to estimate the fine particle residence time in the dense bed section. A defluidization technique is utilized in experimentally measuring the solids holdup in the dense bed. A mathematical model is developed from first principles, based on a momentum balance on the fine particles.

  15. Surface Coating of Polyester Fabrics by Sol Gel Synthesized ZnO Particles

    OpenAIRE

    Merve Küçük; M. Lütfi Öveçoğlu

    2016-01-01

    Zinc oxide particles were synthesized using the sol-gel method and dip coated on polyester fabric. X-ray diffraction (XRD) analysis revealed a single crystal phase of ZnO particles. Chemical characteristics of the polyester fabric surface were investigated using attenuated total reflection-Fourier transform infrared (ATR-FTIR) measurements. Morphology of ZnO coated fabric was analyzed using field emission scanning electron microscopy (FESEM). After particle analysis, the aqueous ZnO solution ...

  16. The Dynamic Behavior of Water Flowing Through Packed Bed of Different Particle Shapes and Sizes

    Directory of Open Access Journals (Sweden)

    Haneen Ahmed Jasim

    2017-12-01

    Full Text Available An experimental study was conducted on pressure drop of water flow through vertical cylindrical packed beds in turbulent region and the influence of the operating parameters on its behavior. The bed packing was made of spherical and non-spherical particles (spheres, Rasching rings and intalox saddle with aspect ratio range 3.46 D/dp 8.486 obtaining bed porosities 0.396 0.84 and Reynolds number 1217 21758. The system is consisted of 5 cm inside diameter Perspex column, 50 cm long; distilled water was pumped through the bed with flow rate 875, 1000, 1125, 1250,1375 and 1500 l/h and inlet water temperature 20, 30, 40 and 50 ˚C. The packed bed system was monitored by using LabVIEW program, were the results have been obtained from Data Acquisition Adaptor (DAQ.

  17. Comparison of PIV measurements and a discrete particle model in a rectangular 3D spout-fluid bed

    NARCIS (Netherlands)

    Link, J.M.; Deen, N.G.; Kuipers, J.A.M.

    2004-01-01

    Particle image velocimetry and a 3D hard sphere discrete particle model were applied to determine particle velocity profiles in the plane around a spout in a spoutfluid bed for various initial bed heights, spout and background fluidization velocities. Comparison between experimental and numerical

  18. A review of dryout heat fluxes and coolability of particle beds. APRI 4, Stage 2 Report

    International Nuclear Information System (INIS)

    Lindholm, Ilona

    2002-04-01

    Dryout heat flux experiments on particle beds have been reviewed. The observed dryout heat flux varies from some tens of kW/m 2 to well over 1 MW/m 2 . The variation can be qualitatively and to some extent also quantitatively explained. The effect of particle diameter has been clearly demonstrated. For particles having diameter less than about 1 mm, the dryout heat flux on the order of 100-200 kW/m 2 , and increases on square of the particle diameter. For larger than 1 mm particles the dryout heat flux increases on square root of the particle diameter. Typical values for ∼ 5 mm particles is 500 kW/m 2 to 1 MW/m 2 . An effect of bed thickness can be seen for small particles and medium range (50-500 mm) beds. For thick beds, > 500 mm, the dryout heat flux does not any more change as the bed height increases. The dryout heat flux increases with increasing coolant pressure. This can be explained by the increasing vapour density, which can remove more latent heat from the bed. Debris bed stratification, with small particles on top, clearly decreases the dryout heat flux. The dryout heat flux in a stratified bed can even be smaller than a heat flux of an equivalent debris bed consisting of the smaller particles alone. This is due to the capillary force, which draws liquid towards the smaller particles and causes the dryout to occur at the interface of the particle layers. A model has been developed by Lipinski to estimate dryout heat fluxes in a particle bed. The model has been derived based on solution of momentum, energy and mass conservation equations for two phases. The 1-D model can take into account variable particle sizes (stratification) along the bed and different coolant entry positions. It has been shown that the model can quite well predict the observed dryout characteristics in most experiments. The simpler 0-D model can give reasonable estimates for non-stratified beds. Results and observations of several tests on melt jet fragmentation in a water pool

  19. Universal characteristics of particle shape evolution by bed-load chipping

    Science.gov (United States)

    Sipos, András Árpád; Shaw, Sam; Sarti, Giovanni; Domokos, Gábor

    2018-01-01

    River currents, wind, and waves drive bed-load transport, in which sediment particles collide with each other and Earth’s surface. A generic consequence is impact attrition and rounding of particles as a result of chipping, often referred to in geological literature as abrasion. Recent studies have shown that the rounding of river pebbles can be modeled as diffusion of surface curvature, indicating that geometric aspects of impact attrition are insensitive to details of collisions and material properties. We present data from fluvial, aeolian, and coastal environments and laboratory experiments that suggest a common relation between circularity and mass attrition for particles transported as bed load. Theory and simulations demonstrate that universal characteristics of shape evolution arise because of three constraints: (i) Initial particles are mildly elongated fragments, (ii) particles collide with similarly-sized particles or the bed, and (iii) collision energy is small enough that chipping dominates over fragmentation but large enough that sliding friction is negligible. We show that bed-load transport selects these constraints, providing the foundation to estimate a particle’s attrition rate from its shape alone in most sedimentary environments. These findings may be used to determine the contribution of attrition to downstream fining in rivers and deserts and to infer transport conditions using only images of sediment grains. PMID:29670937

  20. Dynamic behavior of a solid particle bed in a liquid pool

    International Nuclear Information System (INIS)

    Liu Ping; Yasunaka, Satoshi; Matsumoto, Tatsuya; Morita, Koji; Fukuda, Kenji; Yamano, Hidemasa; Tobita, Yoshiharu

    2007-01-01

    Dynamic behavior of solid particle beds in a liquid pool against pressure transients was investigated to model the mobility of core materials in a postulated disrupted core of a liquid metal fast reactor. A series of experiments was performed with a particle bed of different bed heights, comprising different monotype solid particles, where variable initial pressures of the originally pressurized nitrogen gas were adopted as the pressure sources. Computational simulations of the experiments were performed using SIMMER-III, a fast reactor safety analysis code. Comparisons between simulated and experimental results show that the physical model for multiphase flows used in the SIMMER-III code can reasonably represent the transient behaviors of pool multiphase flows with rich solid phases, as observed in the current experiments. This demonstrates the basic validity of the SIMMER-III code on simulating the dynamic behaviors induced by pressure transients in a low-energy disrupted core of a liquid metal fast reactor with rich solid phases

  1. Fermentative hydrogen production with a draft tube fluidized bed reactor containing silicone-gel-immobilized anaerobic sludge

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Chi-Neng; Wu, Shu-Yii [Department of Chemical Engineering, Feng Chia University, Taichung (China); Chang, Jo-Shu [Department of Chemical Engineering, National Cheng Kung University, Tainan (China)

    2006-12-15

    A draft tube fluidized bed reactor (DTFBR) containing immobilized cell particles was designed to produce H{sub 2} continuously. A synthetic polymer (silicone gel; SC) was used as the primary material to immobilize acclimated anaerobic sludge for H{sub 2} production in DTFBR with a working volume of 8L. The DTFBR system was operated at a hydraulic retention time (HRT) of 2.2-8.9h and an influent sucrose concentration (C{sub s}) of 5-40g COD/l. The results show that in general decreasing HRT or increasing sucrose concentration led to a marked increase in the volumetric H{sub 2} production rate (v{sub H{sub 2}}), but a gradual decrease in the H{sub 2} yield (Y{sub H{sub 2}}). The best v{sub H{sub 2}} (2.27+/-0.13l/h/l) occurred at C{sub s}=40g COD/l and HRT=2.2h, whereas the highest Y{sub H{sub 2}} (4.98+/-0.18mol H{sub 2}/mol sucrose) was obtained at C{sub s}=40g COD/l and HRT=8.9h. The correlation between the production rate and the organic loading rate (OLR) can be satisfactorily described by Monod-type models. There was no universal trend of the dependence between the H{sub 2} yield and OLR. The H{sub 2} content in the biogas was stably maintained at over 40%. The major soluble products were butyric acid and acetic acid, as they accounted for 62-73% and 16-22% of total soluble microbial products (SMPs), respectively. The H{sub 2}-producing performance in the DTFBR system can be stably maintained and reproducible in long-term operations, while unstable operations can be quickly recovered via proper thermal treatment at 70-80{sup o}C. (author)

  2. A discrete element study of moisture dependent particle-particle interaction during granulation in a spout fluidized bed

    NARCIS (Netherlands)

    van Buijtenen, M.S.; Deen, N.G.; Heinrich, Stefan; Antonyuk, Sergiy; Kuipers, J.A.M.

    2008-01-01

    Spout fluidized beds find widespread application in the process industry in granulation processes, in which efficient contacting between large particles, droplets and gas is of paramount importance. However, detailed understanding of the complex behavior of these systems is lacking. In this paper we

  3. Analysis of the start-up and control of a particle bed reactor

    International Nuclear Information System (INIS)

    Lazareth, O.W.; Araj, K.J.; Horn, F.L.; Ludewig, H.; Powell, J.R.

    1987-01-01

    This study describes the modeling of start-up transients in Particle Bed Reactors (PBR) for burst electric power. Two computer programs have been developed to analyze the start-up process. The first program (named KINETIC) analyzes the entire fuel element, calculating time dependent solutions for power and the temperature distribution in the packed bed. The second program (named SPHEAT, for Spherical Heating) calculates time-dependent temperatures inside individual, cladded fuel particles. The two programs provide powerful analytical tools for evaluation of material and geometrical options, power and time constraints, and conditions that could lead to element failures

  4. Preparation of core particles for aqueous film coating using agitation fluidized bed.

    Science.gov (United States)

    Watano, S; Ando, K; Miyanami, K; Ii, Y; Sasatani, S

    1997-12-01

    Core particles used for aqueous film coating were prepared by agitation fluidized bed granulation, and effect of the damping speed on the granule properties of mass median diameter, geometric standard deviation, apparent density, yield, friability and specific surface area were investigated. Film coating by an aqueous acrylic copolymer (Eudragit NE-30D) was carried out using the core particles granulated under three levels of damping speeds, and the drug release properties of each coated product were identified. Relationship between properties of core particles and the drug release properties were clarified and the optimal granulation conditions to make optimal core particles for film coating were determined.

  5. Preparation of UO2 dense spherical particles by sol-gel technique

    International Nuclear Information System (INIS)

    Urbanek, V.; Dolezal, J.

    1977-01-01

    The results of the basic research and development of processes of preparation of dense UO 2 spherical particles by sol-gel technique are presented. Attention was paid to the study of chemistry of internal gelation step in the uranylnitrate-urea-hexamethylentetramine system. The existence regions of several stable gels with different properties were established in connection with variable ratio of basic gel's components and the appropriate ''Phase diagrams'' were drawn. From these diagrams, two of the most interesting types of uranyl gels were chosen for the subsequent thermal processing which included drying, reduction and sintering. The detailed studies of each step of the whole process enabled preparation of UO 2 dense spheres with well defined microstructure

  6. Exploratory experiments on the feasibility of Th and Pu sol-gel particles

    International Nuclear Information System (INIS)

    Vanhellemont, G.; Beullens, J.; Bairiot, H.

    1965-05-01

    The sol-gel process as developed by the O.E.C.D. Dragon Project has been applied by the Plutonium Project at Mol to determine the feasibility of producing spherical particles containing Th02, Pu02 and C, in the proportions necessary to fabricate thorium-plutonium carbide kernels for irradiation specimens and for fuel cartridges for the Dragon Reactor Experiment. The process has been extended successfully to the preparation of thorium and plutonium gels, having a significant excess of carbon, with the object of evaluating the feasibility of the sol-gel process for the production of Th, C-10 type kernels. Other experiments have been performed to test the feasibility of incorporating U02 powder into the gel spheres. By using this technique, U to Th ratios of up to 9:1 have been obtained. (author)

  7. Bubbling bed catalytic hydropyrolysis process utilizing larger catalyst particles and smaller biomass particles featuring an anti-slugging reactor

    Science.gov (United States)

    Marker, Terry L; Felix, Larry G; Linck, Martin B; Roberts, Michael J

    2014-09-23

    This invention relates to a process for thermochemically transforming biomass or other oxygenated feedstocks into high quality liquid hydrocarbon fuels. In particular, a catalytic hydropyrolysis reactor, containing a deep bed of fluidized catalyst particles is utilized to accept particles of biomass or other oxygenated feedstocks that are significantly smaller than the particles of catalyst in the fluidized bed. The reactor features an insert or other structure disposed within the reactor vessel that inhibits slugging of the bed and thereby minimizes attrition of the catalyst. Within the bed, the biomass feedstock is converted into a vapor-phase product, containing hydrocarbon molecules and other process vapors, and an entrained solid char product, which is separated from the vapor stream after the vapor stream has been exhausted from the top of the reactor. When the product vapor stream is cooled to ambient temperatures, a significant proportion of the hydrocarbons in the product vapor stream can be recovered as a liquid stream of hydrophobic hydrocarbons, with properties consistent with those of gasoline, kerosene, and diesel fuel. Separate streams of gasoline, kerosene, and diesel fuel may also be obtained, either via selective condensation of each type of fuel, or via later distillation of the combined hydrocarbon liquid.

  8. Bubbling bed catalytic hydropyrolysis process utilizinig larger catalyst particles and small biomass particles featuring an anti-slugging reactor

    Science.gov (United States)

    Marker, Terry L.; Felix, Larry G.; Linck, Martin B.; Roberts, Michael J.

    2016-12-06

    This invention relates to a process for thermochemically transforming biomass or other oxygenated feedstocks into high quality liquid hydrocarbon fuels. In particular, a catalytic hydropyrolysis reactor, containing a deep bed of fluidized catalyst particles is utilized to accept particles of biomass or other oxygenated feedstocks that are significantly smaller than the particles of catalyst in the fluidized bed. The reactor features an insert or other structure disposed within the reactor vessel that inhibits slugging of the bed and thereby minimizes attrition of the catalyst. Within the bed, the biomass feedstock is converted into a vapor-phase product, containing hydrocarbon molecules and other process vapors, and an entrained solid char product, which is separated from the vapor stream after the vapor stream has been exhausted from the top of the reactor. When the product vapor stream is cooled to ambient temperatures, a significant proportion of the hydrocarbons in the product vapor stream can be recovered as a liquid stream of hydrophobic hydrocarbons, with properties consistent with those of gasoline, kerosene, and diesel fuel. Separate streams of gasoline, kerosene, and diesel fuel may also be obtained, either via selective condensation of each type of fuel, or via later distillation of the combined hydrocarbon liquid.

  9. The origin of granular convection in vertically vibrated particle beds: The differential shear flow field.

    Science.gov (United States)

    Xue, Kun; Zheng, Yixin; Fan, Baolong; Li, Fangfang; Bai, Chunhua

    2013-01-01

    This paper investigates the particle scale dynamics of granular convection in vertically vibrated granular beds. The onset of the convection is found to coincide with the noticeable particle transverse migrations from the side walls towards the centre of the bed, which only take place in the wake of the gravity wave front dividing the upward moving particles and the falling ones. The mechanism driving the particle inward flows and thus sustaining the complete convection rolls can be understood in light of a convection model based on void penetration. This stochastic convection model reveals that the underlying driving force is a distinctive differential shear flow field arising from the combined effect of frictional holdback by the walls and the downward pull of gravity. The changes of the convection pattern with inceasing acceleration amplitude, in terms of the convection strength and the thickness of the bottom of the convection rolls, can be accounted for by this model.

  10. Formulation of solid nano-sized particles in a gel-forming system

    DEFF Research Database (Denmark)

    2013-01-01

    The present invention relates to novel formulations comprising a plurality of nano-sized solid particles and a gel-forming system, useful e.g. for imaging of the body of a mammal. Also described are kits comprising such formulations and imaging methods utilizing such formulations or kits....

  11. Preparation and Characterization of Titania-silica Composite Particles by Pechini Sol-gel Method

    Directory of Open Access Journals (Sweden)

    Wu Yuanting

    2016-01-01

    Full Text Available Two Pechini sol-gel processes were used to prepare titania-silica composite particles. The dynamic oxidation behavior of the TiO2-SiO2 powders has been characterized by thermogravimetry-differential scanning calorimetry (TG-DTG-DSC. The crystal phase and microstructure of the composite particles were investigated by X-ray diffraction (XRD and field emission scanning electron microscope (FE-SEM. The effects of Si:Ti molar ratio and sol-gel process on the TiO2-SiO2 powders were studied. The preparation of the polymeric precursors can influence the morphology of obtained TiO2-SiO2 composite particles. The spherical TiO2-SiO2 composite particles which are 20 nm~400 nm in diameter appear in gel-1 system. However, the TiO2-SiO2 powders obtained by gel-2 system are irregular in shape and 2~15 μm in diameter which show a loose porous structure consisted of very fine granules.

  12. Measurements and theoretical modeling of effective thermal conductivity of particle beds under compression in air and vacuum

    Directory of Open Access Journals (Sweden)

    Jingwen Mo

    2017-09-01

    Full Text Available Effective thermal conductivity experiments were carried out with spherical particle beds under low and high compressive pressure loading in vacuum and air. A theoretical model was proposed for the effective thermal conductivity of particle beds based on the experimental results. The model incorporates heat conduction by particles including contact thermal resistance between particles, conduction through the gas in between particles, and radiation between particles, and includes two fitting parameters, namely the coefficient of heat conducted through the fluid, and the macro-contact thermal resistance. The predictions from the theoretical model satisfactorily match the experimental data for the bed effective thermal conductivity over the range of applied loading pressures on particles with different Young's modulus and the gas environment. The model can be used generally to describe the effect of compression stress or pressure on effective thermal conductivity of particle beds.

  13. Investigation of flow mechanisms in conical models of fluidized beds and transfer of the results to high-temperature-coating beds. A study on the coating of nuclear fuel particles in fluidized beds

    International Nuclear Information System (INIS)

    Kalthoff, B.; Gyarmati, E.; Nickel, H.

    The different states of movement of the fluid-solid particle system as occurring in coating of nuclear particle fuel in conical fluidized beds determine the transfer of momentum, heat and mass in the fluidized bed. To know the flow characteristics, therefore, is essential for the understanding of the complex processes which take place during coating. As experimental studies in actual coaters initially were impossible due to the high temperature levels of up to 2000 0 C, information on characteristic behavior of the fluidized bed was obtained from geometrically similar model beds. Based on principles in the mechanics of similarity the fluid-solid particle system was selected. Hence, results obtained in model tests could be correlated to hot fluidized beds by means of a dimensionless characteristic number describing the fluid-solid system. A second combination of characteristic numbers allows the characterization of the three states of a fluidizing regime, i.e., spouting, bubbling, and slugging. For examining the model test results in hot beds, a measuring device was developed applicable to both cold model beds and actual fluidized bed coaters; pressure oscillations originating in the beds could be made visible by means of electronics and their frequency measured. Coating experiments with different batches and at different temperature levels rendered this frequency to decrease with increase in bed height. Thus the frequency is an important index for the momentary state of fluidization of the fluid-solid particle system. (U.S.)

  14. Influence of tube and particle diameter on heat transport in packed beds

    NARCIS (Netherlands)

    Borkink, J.G.H.; Borkink, J.G.H.; Westerterp, K.R.

    1992-01-01

    Influence of the tube and particle diameter and shape, as well as their ratio, on the radial heat transport in packed beds has been studied. Heat transport experiments were performed with four different packings in three wall-cooled tubes, which differed in inner diameter only. Experimental values

  15. A discrete particle simulation study on the influence of restitution coefficient on spout fluidized bed dynamics

    NARCIS (Netherlands)

    van Buijtenen, M.S.; Deen, N.G.; Heinrich, Stefan; Antonyuk, Sergiy; Kuipers, J.A.M.

    2009-01-01

    Spout fluidized beds find widespread application in the process industry in granulation processes, in which efficient contacting between large particles, droplets and gas is of paramount importance. However, detailed understanding of the complex behavior of these systems is lacking. In this paper,

  16. Development and Analysis of Startup Strategies for Particle Bed Nuclear Rocket Engine

    Science.gov (United States)

    1993-06-01

    M. D. Hoover, eds. American Institute of Physics, New York, 1993. [L-3] Ludewig , Hans. "Particle Bed Reactor Nuclear Rocket Concept." Nuclear Thermal...July 1988. [S-I] Stafford, Thomas (Chairman). America’s Space Exploration Initiative: America at the Threshold. Report of the Stafford Committee to

  17. The colloid hematite particle migration through the unsaturated porous bed at the presence of biosurfactants.

    Science.gov (United States)

    Pawlowska, Agnieszka; Sznajder, Izabela; Sadowski, Zygmunt

    2017-07-01

    Colloidal particles have an ability to sorb heavy metals, metalloids, and organic compounds (e.g. biosurfactants) present in soil and groundwater. The pH and ionic strength changes may promote release of such particles causing potential contaminant transport. Therefore, it is very important to know how a colloid particle-mineral particle and colloid-mineral-biosurfactant system behaves in the natural environment. They can have negative impact on the environment and human health. This study highlighted the influence of biosurfactants produced by Pseudomonas aeruginosa on the transport of colloidal hematite (α-Fe 2 O 3 ) through porous bed (materials collected from the Szklary and Zloty Stok solid waste heaps from Lower Silesia, Poland). Experiments were conducted using column set in two variants: colloid solution with porous bed and porous bed with adsorbed biosurfactants, in the ionic strengths of 5 × 10 -4 and 5 × 10 -3  M KCl. The zeta potential of mineral materials and colloidal hematite, before and after adsorption of biosurfactant, was determined. Obtained results showed that reduction in ionic strength facilitates colloidal hematite transport through the porous bed. The mobility of colloidal hematite was higher when the rhamnolipid adsorbed on the surface of mineral grain.

  18. Improving flow properties of ibuprofen by fluidized bed particle thin-coating.

    Science.gov (United States)

    Ehlers, Henrik; Räikkönen, Heikki; Antikainen, Osmo; Heinämäki, Jyrki; Yliruusi, Jouko

    2009-02-23

    The surfaces of ibuprofen particles (d(50) 42 microm) were modified by coating the particles with diluted aqueous hydroxypropyl methylcellulose (HPMC) solution in an instrumentated top-spray fluid bed granulator. The objective was to evaluate whether an extremely thin polymer coating could be an alternative to granulation in enhancing powder flow and processing properties. The studied variables were inlet air temperature and spray rate. The treated powders showed a clear improvement in flow rate as measured with a flow meter designed for powders with poor flow properties. The particle size was determined using optical microscopy and image analysis. The particle size, size distribution and circularity of the treated and untreated ibuprofen batches showed no difference from each other. Consequently, the improvement in flow properties can be attributed to the trace amounts of hydroxypropyl methylcellulose applied onto the particle surfaces. In conclusion, fluidized bed particle thin-coating (PTC) alters the surface of ibuprofen powder particles and improves the flow properties of ibuprofen powder with changes in neither particle size, size distribution nor morphology.

  19. Characteristic Studies of Micron Zinc Particle Hydrolysis in a Fixed Bed Reactor

    Directory of Open Access Journals (Sweden)

    Lv Ming

    2015-09-01

    Full Text Available Zinc fuel is considered as a kind of promising energy sources for marine propeller. As one of the key steps for zinc marine energy power system, zinc hydrolysis process had been studied experimentally in a fixed bed reactor. In this study, we focus on the characteristics of micron zinc particle hydrolysis. The experimental results suggested that the steam inner diffusion is the controlling step of accumulative zinc particles hydrolysis reaction at a relative lower temperature and a relative higher water partial pressure. In other conditions, the chemical reaction kinetics was the controlling step. And two kinds of chemical reaction kinetics appeared in experiments: the surface reaction and the gas-gas reaction. The latter one occurs usually for larger zinc particles and high reaction temperature. Temperature seems to be one of the most important parameters for the dividing of different reaction mechanisms. Several parameters of the hydrolysis process including heating rate, water partial pressure, the particle size and temperature were also studied in this paper. Results show that the initial reaction temperature of zinc hydrolysis in fixed bed is about 410°C. And the initial reaction temperature increases as the heating rate increases and as the water partial pressure decreases. The total hydrogen yield increases as the heating rate decreases, as the water partial pressure increases, as the zinc particle size decreases, and as the reaction temperature increases. A hydrogen yield of more than 81.5% was obtained in the fixed bed experiments.

  20. Heat-transfer characteristics of flowing and stationary particle-bed-type fusion-reactor blankets

    Energy Technology Data Exchange (ETDEWEB)

    Nietert, R.E.

    1983-02-01

    The heat-transfer characteristics of flowing and stationary packed-particle beds have recently become of interest in connection with conceptual designs of fusion reactor blankets. A detailed literature survey has shown that the processes taking place in such beds are not fully understood despite their widespread use in the chemical industry and other engineering disciplines for more than five decades. In this study, two experimental investigations were pursued. In the first, a heat-transfer loop was constructed through which glass microspheres were allowed to flow by rgravity at controlled rates through an electrically heated stainless steel tubular test section. In the second, an annular packed bed was constructed in which heat was applied through the outer wall by electric heating of a stainless steel tube. Cooling occurred at the inner wall of the annular bed by flowing air through the central tube. A second air stream was allowed to flow through the voids of the packed bed. An error-minimization technique was utilized in order to obtain the two-dimensional one-parameter effective conductivity for the bed by comparing the experimental and theoretically predicted temperature profiles. Experiments were conducted for various modified Reynolds numbers less than ten.

  1. Pressure drop in packed beds of spherical particles at ambient and elevated air temperatures

    Directory of Open Access Journals (Sweden)

    Pešić Radojica

    2015-01-01

    Full Text Available The aim of this work was the experimental investigation of the particle friction factor for air flow through packed bed of particles at ambient and elevated temperatures. The experiments were performed by measuring the pressure drop across the packed bed, heated to the desired temperature by hot air. Glass spherical particles of seven different diameters were used. The temperature range of the air flowing through the packed bed was from 20ºC to 350ºC and the bed voidages were from 0.3574 to 0.4303. The obtained results were correlated using a number of available literature correlations. The overall best fit of all of the experimental data was obtained using Ergun [1] equation, with mean absolute deviation of 10.90%. Ergun`s equation gave somewhat better results in correlating the data at ambient temperature with mean absolute deviation of 9.77%, while correlation of the data at elevated temperatures gave mean absolute deviation of 12.38%. The vast majority of the correlations used gave better results when applied to ambient temperature data than to the data at elevated temperatures. Based on the results obtained, Ergun [1] equation is proposed for friction factor calculation both at ambient and at elevated temperatures. [Projekat Ministarstva nauke Republike Srbije, br. ON172022

  2. Microneedle assisted micro-particle delivery from gene guns: experiments using skin-mimicking agarose gel.

    Science.gov (United States)

    Zhang, Dongwei; Das, Diganta B; Rielly, Chris D

    2014-02-01

    A set of laboratory experiments has been carried out to determine if micro-needles (MNs) can enhance penetration depths of high-speed micro-particles delivered by a type of gene gun. The micro-particles were fired into a model target material, agarose gel, which was prepared to mimic the viscoelastic properties of porcine skin. The agarose gel was chosen as a model target as it can be prepared as a homogeneous and transparent medium with controllable and reproducible properties allowing accurate determination of penetration depths. Insertions of various MNs into gels have been analysed to show that the length of the holes increases with an increase in the agarose concentration. The penetration depths of micro-particle were analysed in relation to a number of variables, namely the operating pressure, the particle size, the size of a mesh used for particle separation and the MN dimensions. The results suggest that the penetration depths increase with an increase of the mesh pore size, because of the passage of large agglomerates. As these particles seem to damage the target surface, then smaller mesh sizes are recommended; here, a mesh with a pore size of 178 μm was used for the majority of the experiments. The operating pressure provides a positive effect on the penetration depth, that is it increases as pressure is increased. Further, as expected, an application of MNs maximises the micro-particle penetration depth. The maximum penetration depth is found to increase as the lengths of the MNs increase, for example it is found to be 1272 ± 42, 1009 ± 49 and 656 ± 85 μm at 4.5 bar pressure for spherical micro-particles of 18 ± 7 μm diameter when we used MNs of 1500, 1200 and 750 μm length, respectively. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.

  3. Experimental validation of granular dynamics simulations of gas-fluidised beds with homogeneous inflow conditions using Positron Emission Particle Tracking

    NARCIS (Netherlands)

    Hoomans, B.P.B.; Kuipers, J.A.M.; Mohd Salleh, M.; Seville, J.P.

    2001-01-01

    A hard-sphere granular dynamics model of a two-dimensional gas-fluidised bed was experimentally validated using Positron Emission Particle Tracking (PEPT). In the model the Newtonian equations of motion are solved for each solid particle while taking into account the particle¿particle and

  4. Serodiagnosis of Trypanosoma cruzi Infection Using the New Particle Gel Immunoassay - ID-PaGIA Chagas

    Directory of Open Access Journals (Sweden)

    Ana Rabello

    1999-01-01

    Full Text Available The ID-Chagas test is a particle gel immunoassay (PaGIA. Red coloured particles are sensitised with three different synthetic peptides representing antigen sequences of Trypanosoma cruzi: Ag2, TcD and TcE. When these particles are mixed with serum containing specific antibodies, they agglutinate. The reaction mixture is centrifuged through a gel filtration matrix allowing free agglutinated particles to remain trapped on the top or distributed within the gel. The result can be read visually. In order to investigate the ability of the ID-PaGIA to discriminate negative and positive sera, 111 negative and 119 positive, collected in four different Brazilian institutions, were tested by each of the participants. All sera were previously classified as positive or negative according to results obtained with three conventional tests (indirect immunofluorescence, indirect hemaglutination, and enzime linked immunosorbent assay. Sensitivity rates of ID-PaGIA varied from 95.7% to 97.4% with mean sensitivity of 96.8% and specificity rates varied from 93.8 to 98.8% with mean specificity of 94.6%. The overall Kappa test was 0.94. The assay presents as advantages the simplicity of operation and the reaction time of 20 min. In this study, ID-PaGIA showed to be highly sensitive and specific.

  5. Effect of fuel particles' size variations on multiplication factor in pebble-bed nuclear reactor

    International Nuclear Information System (INIS)

    Snoj, L.; Ravnik, M.

    2005-01-01

    The pebble-bed reactor (Pbr) spherical fuel element consists of two radial zones: the inner zone, in which the fissile material in form of the so-called TRISO particles is uniformly dispersed in graphite matrix and the outer zone, a shell of pure graphite. A TRISO particle is composed of a fissile kernel (UO 2 ) and several layers of carbon composites. The effect of TRISO particles' size variations and distance between them on PBR multiplication factor is studied using MCNP code. Fuel element is modelled in approximation of a cubical unit cell with periodic boundary condition. The multiplication factor of the fuel element depends on the size of the TRISO particles due to resonance self-shielding effect and on the inter-particle distance due to inter-kernel shadowing. (author)

  6. Direct Observation of Heavy-Tailed Storage Times of Bed Load Tracer Particles Causing Anomalous Superdiffusion

    Science.gov (United States)

    Bradley, D. Nathan

    2017-12-01

    A consensus has formed that the step length distribution of fluvial bed load is thin tailed and that the observed anomalous superdiffusion of bed load tracer particles must arise from heavy-tailed resting times. However, heavy-tailed resting times have never been directly observed in the field over multiple floods. Using 9 years of data from a large bed load tracer experiment, I show that the spatial variance of the tracer plume scales faster than linearly with integrated excess stream power, indicating anomalous superdiffusion. The superdiffusion is caused by a heavy-tailed distribution of observed storage times that is fit with a truncated Pareto distribution with a tail parameter that is predicted by anomalous diffusion theory. The heavy-tailed distribution of storage times causes the tracer virtual velocity to slow over time, indicated by a sublinear increase in the mean displacement that is predicted by the storage time distribution tail parameter.

  7. Fuel Design for Particle-Bed Reactors for Thermal Propulsion Applications

    Science.gov (United States)

    Husser, Dewayne L.; Evans, Robert S.; Jensen, Russell R.; Kerr, John M.

    1994-07-01

    The design of particle bed reactor (PBR) fuels is an iterative process involving close coordination of design and manufacturing operations. The process starts with the generation of an initial particle design, based on a knowledge of the system requirements and interfaces (such as, fissile loading requirements, coolant type, exit gas temperatures, operation time, number of cycles, contacting materials, etc.). The designer must consider materials property data, heat-transfer and thermal-hydraulic characteristics of the particle and particle bed, and available (or anticipated) manufacturing technology. The design process also uses parametric studies to identify the influences of composition, size, and coating thickness on fuel performance. This resulting design is then used to provide a target manufacturing specification against which initial manufacturing development can be assessed and which provides the framework for manufacturing and testing derived feedback that can be incorporated into the subsequent particle design modifications. In this paper, an example of this design process for a hypothetical particle using a (U,Zr)C kernel and a NbC outer coating designed for a thermal propulsion application is given.

  8. Deterministic and stochastic dynamics of bed load tracer particles in a coarse grained river

    Science.gov (United States)

    Phillips, C. B.; Martin, R. L.; Jerolmack, D. J.

    2012-12-01

    Understanding the mechanics of a single coarse sediment particle, and the mechanics of sediment transport at the flood scale, is critical to linking event scale bed load transport rates to annual bed load fluxes. We present research on the dynamics of coarse sediment tracer particles tagged with passive radio transponder tags, observing motion resulting from individual floods and the cumulative transport over many floods spanning two years, in the Mameyes River in the Luquillo Mountains of Puerto Rico. This region presents an ideal study area due to the high frequency of coarse sediment mobilizing events, which allows us to field test the applicability of recently-proposed deterministic and stochastic theories for particle motion. Data for each flood are composed of (1) measured 'flight' lengths for each transported particle, (2) the fraction of tagged particles mobilized, and (3) high-resolution river stage measurements. At the single flood scale, measured tracer particle flight lengths are exponentially distributed, and modal flight lengths scale linearly with excess shear velocity. This is in quantitative agreement with recent theory and laboratory experiments, suggesting that moving particles' velocity is determined by momentum balance with the fluid. The fraction of mobile particles per event increases rapidly with flood stage, creating a logistic-like curve whose inflection point is used to empirically define the threshold of motion. This finding is in contrast to the linear relation observed in small-scale experiments and predicted from momentum balance between sediment and fluid; we use a particle Stokes number argument to suggest that a collision cascade from grain-grain interactions is responsible for the nonlinear relation between mobile fraction and fluid stress, in dynamical equivalence with aeolian sand transport. To examine particle dispersion and relate it to transport mechanics, it is necessary to remove the time over which the fluid stress is

  9. DNA-induced inter-particle cross-linking during expanded bed adsorption chromatography - Impact on future support design

    DEFF Research Database (Denmark)

    Theodossiou, Irini; Thomas, Owen R. T.

    2002-01-01

    We have investigated the effects of adsorbent size, ionic capacity and surface immobilised polymers on dynamic capacity and changes occurring to beds of anion-exchangers during the binding of DNA. During application of low concentrations of "3-20 kilobase" calf thymus DNA feeds to expanded beds...... of anion-exchangers, the bed heights dropped progressively as DNA molecules physically cross-linked neighbouring adsorbent particles together, to form severely aggregated fluidised beds. In plots of dynamic binding capacities and absolute changes in bed porosity at maximum contraction, against the inverse...

  10. Particle size distribution of main-channel-bed sediments along the upper Mississippi River, USA

    Science.gov (United States)

    Remo, Jonathan; Heine, Ruben A.; Ickes, Brian

    2016-01-01

    In this study, we compared pre-lock-and-dam (ca. 1925) with a modern longitudinal survey of main-channel-bed sediments along a 740-km segment of the upper Mississippi River (UMR) between Davenport, IA, and Cairo, IL. This comparison was undertaken to gain a better understanding of how bed sediments are distributed longitudinally and to assess change since the completion of the UMR lock and dam navigation system and Missouri River dams (i.e., mid-twentieth century). The comparison of the historic and modern longitudinal bed sediment surveys showed similar bed sediment sizes and distributions along the study segment with the majority (> 90%) of bed sediment samples having a median diameter (D50) of fine to coarse sand. The fine tail (≤ D10) of the sediment size distributions was very fine to medium sand, and the coarse tail (≥ D90) of sediment-size distribution was coarse sand to gravel. Coarsest sediments in both surveys were found within or immediately downstream of bedrock-floored reaches. Statistical analysis revealed that the particle-size distributions between the survey samples were statistically identical, suggesting no overall difference in main-channel-bed sediment-size distribution between 1925 and present. This was a surprising result given the magnitude of river engineering undertaken along the study segment over the past ~ 90 years. The absence of substantial differences in main-channel-bed-sediment size suggests that flow competencies within the highly engineered navigation channel today are similar to conditions within the less-engineered historic channel.

  11. Latent heat storage in a fixed-bed packed with cross-linked polymer particles

    Science.gov (United States)

    Morita, Hiroki; Miyatake, Osamu

    Experimental and numerical analyses were carried out to investigate the discharge characteristics of a fixed-bed, using form-stable cross-linked cylindrical polymer particles as a phase change type of heat storage material and ethylene glycol as heat transfer fluid. Firstly, particle-to-fluid heat transfer coefficient in a fixed-bed, essential for analyzing the discharge characteristics of the latent heat storage column, were evaluated experimentally using Schumann's extended theory, and an empirical formula for estimating the heat transfer coefficient was presented. Secondly, by using the empirical formula, the transient temperature distribution in the column and the transient response of the outlet temperature of the heat transfer fluid were calculated numerically, and the latter was compared with measurements of the outlet temperature of the fluid. The numerical results were found to be in good agreement with the experimental results.

  12. Analysis of startup strategies for a particle bed reactor nuclear rocket engine

    Science.gov (United States)

    Suzuki, D. E.

    1993-06-01

    This paper develops and analyzes engine system startup strategies for a particle bed reactor (PBR) nuclear rocket engine. The strategies are designed to maintain stable flow through the PBR fuel element while reaching the design conditions as quickly as possible. The analyses are conducted using a computer model of a representative particle bed reactor and engine system. Elements of the startup strategy considered include: the coordinated control of reactor power and coolant flow; turbine inlet temperature and flow control; and use of an external starter system. The simulation results indicate that the use of an external starter system enables the engine to reach design conditions very quickly while maintaining the flow well away from the unstable regime. If a bootstrap start is used instead, the transient does not progress as fast and approaches closer to the unstable flow regime, but allows for greater engine reusability. These results can provide important information for engine designers and mission planners.

  13. Influence of thermophoresis on particle removal in a moving granular bed filter and heat exchanger

    International Nuclear Information System (INIS)

    Rudnick, S.N.; First, M.W.; Price, J.M.

    1981-01-01

    Bench-scale investigations were made to determine the influence of thermophoresis on particle removal in a moving granular bed filter. A continuous flow of 2-mm diameter ceramic granules at ambient temperature entered the top of the filter and moved slowly downward under the influence of gravity countercurrent to the gas stream. At an inlet gas temperature of 240 0 C, gas mass velocity of 0.12 kg/(s.m 2 ), and granule velocities up to 0.015 cm/s, clean bed collection efficiency for a submicrometer sodium chloride aerosol was found to increase the more the gas was cooled, indicating that thermophoretic forces were playing a measurable role in particle collection

  14. A particle bed reactor based NTP in the 112,500 N thrust class

    Science.gov (United States)

    Ludewig, Hans; Powell, James R.; Lazareth, Otto W.; Todosow, Michael

    1993-01-01

    This paper discusses the application of a Particle Bed Reactor (PBR) to a 112,500 N thrust Nuclear Thermal Propulsion (NTP) Engine. The method of analysis is described, followed by a presentation of the results. It is concluded that the PBR would result in a very competitive NTP engine. In addition, due to the high power densities possible with a PBR, high thrust/weight ratios are possible. This conclusion can be used to satisfy a variety of mission goals.

  15. Nuclear thermal propulsion engine based on particle bed reactor using light water steam as a propellant

    Science.gov (United States)

    Powell, James R.; Ludewig, Hans; Maise, George

    1993-01-01

    In this paper the possibility of configuring a water cooled Nuclear Thermal Propulsion (NTP) rocket, based on a Particle Bed Reactor (PBR) is investigated. This rocket will be used to operate on water obtained from near earth objects. The conclusions reached in this paper indicate that it is possible to configure a PBR based NTP rocket to operate on water and meet the mission requirements envisioned for it. No insurmountable technology issues have been identified.

  16. A particle bed reactor based NTP in the 112,500 N thrust class

    International Nuclear Information System (INIS)

    Ludewig, H.; Powell, J.R.; Lazareth, O.W. Jr.; Todosow, M.

    1993-01-01

    This paper discusses the application of a Particle Bed Reactor (PBR) to a 112,500 N thrust Nuclear Thermal Propulsion (NTP) Engine. The method of analysis is described, followed by a presentation of the results. It is concluded that the PBR would result in a very competitive NTP engine. In addition, due to the high power densities possible with a PBR, high thrust/weight ratios are possible. This conclusion can be used to satisfy a variety of mission goals

  17. Reinforcement of poly(dimethylsiloxane by sol-gel in situ generated silica and titania particles

    Directory of Open Access Journals (Sweden)

    2010-06-01

    Full Text Available The usual sol-gel process was applied to precipitate silica or titania particles in a preformed poly(dimethylsiloxane (PDMS network under the presence of dibutyltin diacetate used as a catalyst. The resulting structures of the reinforcing fillers were studied by transmission electron microscopy and small-angle neutron scattering. Stress-strain measurements in elongation and equilibrium swelling experiments revealed distinct behaviors mainly attributed to the nature and the size of the generated particles and to the formation, in the case of titania, of a filler network even at low filler loadings.

  18. Effects of varied nitrate and phosphate supply on polysaccharidic and proteinaceous gel particle production during tropical phytoplankton bloom experiments

    Science.gov (United States)

    Engel, A.; Borchard, C.; Loginova, A.; Meyer, J.; Hauss, H.; Kiko, R.

    2015-10-01

    Gel particles such as the polysaccharidic transparent exopolymer particles (TEP) and the proteinaceous Coomassie stainable particles (CSP) play an important role in marine biogeochemical and ecological processes like particle aggregation and export, or microbial nutrition and growth. So far, effects of nutrient availability or of changes in nutrient ratios on gel particle production and fate are not well understood. The tropical ocean includes large oxygen minimum zones, where nitrogen losses due to anaerobic microbial activity result in a lower supply of nitrate relative to phosphate to the euphotic zone. Here, we report of two series of mesocosm experiments that were conducted with natural plankton communities collected from the eastern tropical North Atlantic (ETNA) close to Cape Verde in October 2012. The experiments were performed to investigate how different phosphate (experiment 1, Varied P: 0.15-1.58 μmol L-1) or nitrate (experiment 2, Varied N: 1.9-21.9 μmol L-1) concentrations affect the abundance and size distribution of TEP and CSP. In the days until the bloom peak was reached, a positive correlation between gel particle abundance and Chl a concentration was determined, linking the release of dissolved gel precursors and the subsequent formation of gel particles to autotrophic production. After the bloom peak, gel particle abundance remained stable or even increased, implying a continued partitioning of dissolved into particulate organic matter after biomass production itself ceased. During both experiments, differences between TEP and CSP dynamics were observed; TEP were generally more abundant than CSP. Changes in size distribution indicated aggregation of TEP after the bloom, while newly formed CSP decomposed. Abundance of gel particles clearly increased with nitrate concentration during the second experiment, suggesting that changes in [DIN] : [DIP] ratios can affect gel particle formation with potential consequences for carbon and nitrogen

  19. Development of vapor deposited silica sol-gel particles for use as a bioactive materials system.

    Science.gov (United States)

    Snyder, Katherine L; Holmes, Hallie R; VanWagner, Michael J; Hartman, Natalie J; Rajachar, Rupak M

    2013-06-01

    Silica-based sol-gel and bioglass materials are used in a variety of biomedical applications including the surface modification of orthopedic implants and tissue engineering scaffolds. In this work, a simple system for vapor depositing silica sol-gel nano- and micro-particles onto substrates using nebulizer technology has been developed and characterized. Particle morphology, size distribution, and degradation can easily be controlled through key formulation and manufacturing parameters including water:alkoxide molar ratio, pH, deposition time, and substrate character. These particles can be used as a means to rapidly modify substrate surface properties, including surface hydrophobicity (contact angle changes >15°) and roughness (RMS roughness changes of up to 300 nm), creating unique surface topography. Ions (calcium and phosphate) were successfully incorporated into particles, and induced apatitie-like mineral formation upon exposure to simulated body fluid Preosteoblasts (MC3T3) cultured with these particles showed up to twice the adhesivity within 48 h when compared to controls, potentially indicating an increase in cell proliferation, with the effect likely due to both the modified substrate properties as well as the release of silica ions. This novel method has the potential to be used with implants and tissue engineering materials to influence cell behavior including attachment, proliferation, and differentiation via cell-material interactions to promote osteogenesis. Copyright © 2012 Wiley Periodicals, Inc.

  20. Development of methanogenic consortia in fluidized-bed batches using sepiolite of different particle size.

    Science.gov (United States)

    Sánchez, J M; Rodríguez, F; Valle, L; Muñoz, M A; Moriñigo, M A; Borrego, J J

    1996-09-01

    The addition of support materials, such as sepiolite, to fluidized-bed anaerobic digesters enhances the methane production by increasing the colonization by syntrophic microbiota. However, the efficiency in the methanogenesis depends on the particle size of the support material, the highest level of methane production being obtained by the smaller particle size sepiolite. Because of the porosity and physico-chemical characteristics of these support materials, the anaerobic microbial consortia formed quickly (after one week of incubation). The predominant methanogenic bacteria present in the active granules, detected both by immunofluorescence using specific antibodies and by scanning electron microscopy, were acetoclastic methanogens, mainly Methanosarcina and Methanosaeta.

  1. Laser Doppler anemometry measurements in a circulating fluidized bed of metal particles

    DEFF Research Database (Denmark)

    Ibsen, Claus Hübbe; Solberg, Tron; Hjertager, Bjørn Helge

    2002-01-01

    of the solid phase from which the particle kinetic stresses were determined. The measured velocity profiles are in agreement with previous data from the full-scale boiler, i.e. showing a flat profile over the core region of the riser with a pronounced wall layer. The particle kinetic stresses are found......Laser Doppler Anemometry (LDA) measurements were performed in a 1/9 scale model of a 12 MW circulating fluidized bed (CFB) boiler. The model was operated according to scaling laws. The 2D-LDA system used was positioned in two different ways to obtain the three velocity components u, v and w...

  2. Development and analysis of startup strategies for particle bed nuclear rocket engine

    Science.gov (United States)

    Suzuki, David E.

    1993-06-01

    The particle bed reactor (PBR) nuclear thermal propulsion rocket engine concept is the focus of the Air Force's Space Nuclear Thermal Propulsion program. While much progress has been made in developing the concept, several technical issues remain. Perhaps foremost among these concerns is the issue of flow stability through the porous, heated bed of fuel particles. There are two complementary technical issues associated with this concern: the identification of the flow stability boundary and the design of the engine controller to maintain stable operation. This thesis examines a portion of the latter issue which has yet to be addressed in detail. Specifically, it develops and analyzes general engine system startup strategies which maintain stable flow through the PBR fuel elements while reaching the design conditions as quickly as possible. The PBR engine studies are conducted using a computer model of a representative particle bed reactor and engine system. The computer program utilized is an augmented version of SAFSIM, an existing nuclear thermal propulsion modeling code; the augmentation, dubbed SAFSIM+, was developed by the author and provides a more complete engine system modeling tool.

  3. Modeling the mean interaction forces between powder particles. Application to silica gel-magnesium stearate mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, G., E-mail: gthomas@emse.fr [Ecole Nationale Superieure des Mines de Saint Etienne, Centre SPIN-LPMG, UMR CNRS 5148, 158 Cours Fauriel, 42023 Saint-Etienne Cedex 02 (France); Ouabbas, Y. [Ecole Nationale Superieure des Mines de Saint Etienne, Centre SPIN-LPMG, UMR CNRS 5148, 158 Cours Fauriel, 42023 Saint-Etienne Cedex 02 (France); Ecole Nationale Superieure des Techniques Industrielles et des Mines d' Albi-Carmaux, Centre RAPSODEE, UMR CNRS 2392, Campus Jarlard-81013 Albi (France); Grosseau, P. [Ecole Nationale Superieure des Mines de Saint Etienne, Centre SPIN-LPMG, UMR CNRS 5148, 158 Cours Fauriel, 42023 Saint-Etienne Cedex 02 (France); Baron, M.; Chamayou, A.; Galet, L. [Ecole Nationale Superieure des Techniques Industrielles et des Mines d' Albi-Carmaux, Centre RAPSODEE, UMR CNRS 2392, Campus Jarlard-81013 Albi (France)

    2009-06-15

    Dry coating experiments were performed by using the Hybridizer (Nara). Large host silica gel (SG) particles (d{sub 50} = 55 {mu}m) were coated with fine invited particles of magnesium stearate (MS, d{sub 50} = 4.6 {mu}m) for different contents of MS in the mixture. The real MS mass fraction w{sub I} obtained after mechanical treatment has been determined thanks to calibration from TGA measurements. The surface structure and morphology of MS coatings were observed using environmental scanning electron microscopy (ESEM) and atomic force microscopy (AFM) [Y. Ouabbas, A. Chamayou, L. Galet, M. Baron, J. Dodds, A.M. Danna, G. Thomas, B. Guilhot, P. Grosseau, Modification of powders properties by dry coating: some examples of process and products characteristics, Proceedings of CHISA2008, Prague, August 2008, submitted for publication; L. Galet, Y. Ouabbas, A.M. Danna, G. Thomas, P. Grosseau, M. Baron, A. Chamayou, Surface morphology analysis and AFM study of silica gel particles after mechanical dry coating with magnesium stearate, Proceedings of PSA2008, UK, September 2008, submitted for publication]. AFM has been also used to measure the adhesion forces between particles. Interaction forces between the material attached to the cantilever (magnesium stearate MS) and the surface of the composite material (silica gel SG or magnesium stearate MS) have been determined at different surface locations. For different compositions w{sub I} of the mixture MS-SG, the numeric distribution and the mean value f of the forces f{sub H} obtained for MS-SG interactions or f{sub I} for MS-MS interactions have been established and the experimental curve showing the evolution of f versus w{sub I} has been derived. Models of ordered structures have been developed, implying morphological hypotheses concerning large spherical or cylindrical host particles H and small invited spherical I. Different types of distribution of I materials onto the surface of H have been considered: for examples a

  4. Modeling the mean interaction forces between powder particles. Application to silica gel-magnesium stearate mixtures

    Science.gov (United States)

    Thomas, G.; Ouabbas, Y.; Grosseau, P.; Baron, M.; Chamayou, A.; Galet, L.

    2009-06-01

    Dry coating experiments were performed by using the Hybridizer (Nara). Large host silica gel (SG) particles ( d50 = 55 μm) were coated with fine invited particles of magnesium stearate (MS, d50 = 4.6 μm) for different contents of MS in the mixture. The real MS mass fraction w obtained after mechanical treatment has been determined thanks to calibration from TGA measurements. The surface structure and morphology of MS coatings were observed using environmental scanning electron microscopy (ESEM) and atomic force microscopy (AFM) [Y. Ouabbas, A. Chamayou, L. Galet, M. Baron, J. Dodds, A.M. Danna, G. Thomas, B. Guilhot, P. Grosseau, Modification of powders properties by dry coating: some examples of process and products characteristics, Proceedings of CHISA2008, Prague, August 2008, submitted for publication; L. Galet, Y. Ouabbas, A.M. Danna, G. Thomas, P. Grosseau, M. Baron, A. Chamayou, Surface morphology analysis and AFM study of silica gel particles after mechanical dry coating with magnesium stearate, Proceedings of PSA2008, UK, September 2008, submitted for publication]. AFM has been also used to measure the adhesion forces between particles. Interaction forces between the material attached to the cantilever (magnesium stearate MS) and the surface of the composite material (silica gel SG or magnesium stearate MS) have been determined at different surface locations. For different compositions w of the mixture MS-SG, the numeric distribution and the mean value f of the forces fH obtained for MS-SG interactions or fI for MS-MS interactions have been established and the experimental curve showing the evolution of f versus w has been derived. Models of ordered structures have been developed, implying morphological hypotheses concerning large spherical or cylindrical host particles H and small invited spherical I. Different types of distribution of I materials onto the surface of H have been considered: for examples a discrete monolayer - or multilayers - of

  5. Three dimensional model for particle saltation close to stream beds, including a detailed description of the particle interaction with turbulence and inter-particle collisions

    KAUST Repository

    Moreno, Pablo M.

    2011-05-19

    We present in this paper a new three-dimensional (3-D) model for bed-load sediment transport, based on a Lagrangian description. We analyze generalized sub-models for the velocities after collision and the representation of the bed-roughness. The free-flight sub-model includes the effect of several forces, such as buoyancy, drag, virtual mass, lift, Basset and Magnus, and also addresses the particle rotation. A recent methodology for saving computational time in the Basset force is also employed. The sub-models for the post-collision velocity and rotation are based on the conservation of linear and angular momentum during the collision with the bed. We develop a new 3-D representation for the bed roughness by using geometric considerations. In order to address the interaction of particles with the turbulent flow, we tracked the particles through a computed turbulent velocity field for a smooth flat plate. This velocity field was used as a surrogate of the 3-D turbulent conditions close to the bed in streams. We first checked that the basic turbulence statistics for this velocity field could be used to approximate those in an open-channel flow. We then analyzed the interaction of the sediment and the turbulence for a single and multiple particles. We compared numerical results with experimental data obtained by Niño and García (1998b). We show that model predictions are in good agreement with existing data, in the sand size range. © 2011 ASCE.

  6. Evaluation of particle release from montmorillonite gel by flowing groundwater based on the DLVO theory

    International Nuclear Information System (INIS)

    Kurosawa, Susumu; Nagasaki, Shinya; Tanaka, Satoru

    2007-01-01

    Theoretical study has been performed to clarify the ability of colloid release form the montmorillonite gel by the flowing groundwater. Evaluation of montmorillonite colloidal particles release from the bentonite buffer material is important for the performance assessment of radioactive waste disposal because the colloids may influence the radionuclide transport. In this study, the minimum groundwater flow rate required to tear off montmorillonite particles from surface of bentonite buffer was estimated from the shear stress on the gel front, which was calculated by the DLVO theory. The estimated shear force was converted to corresponding groundwater velocity by using Stoke's equation. The results indicated that groundwater velocity in a range of about 10 -5 to 10 -4 m/s would be necessary to release montmorillonite particles. This range is higher than the groundwater flow velocity found generally in deep geological media in Japan. This study suggests that the effect of montmorillonite particles release from the bentonite buffer on radionuclide transport is likely to be negligible in the performance assessment of high-level radioactive waste geological disposal. (author)

  7. Investigation of flow regime in debris bed formation behavior with nonspherical particles

    Directory of Open Access Journals (Sweden)

    Songbai Cheng

    2018-02-01

    Full Text Available It is important to clarify the characteristics of flow regimes underlying the debris bed formation behavior that might be encountered in core disruptive accidents of sodium-cooled fast reactors. Although in our previous publications, by applying dimensional analysis technique, an empirical model, with its reasonability confirmed over a variety of parametric conditions, has been successfully developed to predict the regime transition and final bed geometry formed, so far this model is restricted to predictions of debris mixtures composed of spherical particles. Focusing on this aspect, in this study a new series of experiments using nonspherical particles have been conducted. Based on the knowledge and data obtained, an extension scheme is suggested with the purpose of extending the base model to cover the particle-shape influence. Through detailed analyses and given our current range of experimental conditions, it is found that, by coupling the base model with this scheme, respectable agreement between experiments and model predictions for the regime transition can be achieved for both spherical and nonspherical particles. Knowledge and evidence from our work might be utilized for the future improvement of design of an in-vessel core catcher as well as the development and verification of sodium-cooled fast reactor severe accident analysis codes in China.

  8. Summary of particle bed reactor designs for the Space Nuclear Thermal Propulsion Program

    Science.gov (United States)

    Powell, J. R.; Ludewig, H.; Todosow, M.

    1993-09-01

    A summary report of the Particle Bed Reactor (PBR) designs considered for the space nuclear thermal propulsion program has been prepared. The first chapters outline the methods of analysis, and their validation. Monte Carlo methods are used for the physics analysis, several new algorithms are used for the fluid dynamics heat transfer and engine system analysis, and commercially available codes are used for the stress analysis. A critical experiment, prototypic of the PBR was used for the physics validation, and blowdown experiments using fuel beds of prototypic dimensions were used to validate the power extraction capabilities from particle beds. In all four different PBR rocket reactor designs were studied to varying degrees of detail. They varied in power from 400 MW to 2000 MW. These designs were all characterized by a negative prompt coefficient, due to Doppler feedback, and the feedback due to moderator heat up varied from slightly negative to slightly positive. In all practical cases, the coolant worth was positive, although core configurations with negative coolant worth could be designed. In all practical cases the thrust/weight ratio was greater than 20.

  9. Experimental study of single-phase pressure drops in coarse particle beds

    Energy Technology Data Exchange (ETDEWEB)

    Clavier, R., E-mail: remi.clavier@irsn.fr [IRSN Cadarache, Saint Paul-lez-Durance (France); Chikhi, N., E-mail: nourdine.chikhi@irsn.fr [IRSN Cadarache, Saint Paul-lez-Durance (France); Fichot, F., E-mail: florian.fichot@irsn.fr [IRSN Cadarache, Saint Paul-lez-Durance (France); Quintard, M., E-mail: Michel.Quintard@imft.fr [Université de Toulouse, Allée Camille Soula, F-31400 Toulouse (France); INPT, UPS, Allée Camille Soula, F-31400 Toulouse (France); IMFT (Institut de Mécanique des Fluides de Toulouse), Allée Camille Soula, F-31400 Toulouse (France); CNRS, F-31400 Toulouse (France)

    2017-02-15

    Motivated by uncertainty reduction in nuclear debris beds coolability, experiments have been conducted on the CALIDE facility in order to investigate single-phase pressure losses in representative debris beds, i.e., high sphericity (>80%) particle beds with small size dispersion (from 1 mm to 10 mm), for which no validated model exists. In this paper, experimental results are presented and analyzed in order to identify a simple correlation for single-phase flow pressure losses generated in this kind of porous media in reflooding flowing conditions, which cover Darcy to weakly turbulent regimes. In the literature, it has been observed that their behavior can be accurately described by a Darcy–Forchheimer law, involving the sum of a linear term and a quadratic non-linear deviation, with respect to the filtration velocity. Expressions for the coefficients of the linear and quadratic terms are determined by assessing the possibility to evaluate equivalent diameters, i.e., characteristic lengths allowing correct predictions of the linear and quadratic terms by the Ergun equation. It has been observed that the Sauter diameter of particles allows a very precise prediction of the linear term, while the quadratic term can be predicted using the product of the Sauter diameter and a sphericity coefficient as an equivalent diameter.

  10. Saltation and incipient suspension above a flat particle bed below a turbulent boundary layer

    Science.gov (United States)

    Nishimura, K.; Hunt, J. C. R.

    2000-08-01

    Experiments were conducted in a wind tunnel in which a turbulent boundary layer was naturally grown over flat beds of three types of nearly mono-disperse spherical particles with different diameters, densities and coefficient of restitution (r) (snow, 0.48 mm, 910 kg m[minus sign]3; mustard seeds, 1.82 mm, 1670 kg m[minus sign]3, r = 0.7; ice particles, 2.80 mm, 910 kg m[minus sign]3, r = 0.8 0.9). The surface wind speeds (defined by the friction velocity u[low asterisk]) were varied between 1.0 and 1.9 times the threshold surface wind speed (defined by u[low asterisk]t). The trajectories, and ejection and impact velocities of the particles were recorded and analysed, even those that were raised only about one diameter into the flow.

  11. Modelling the fast pyrolysis of cellulosic particles in fluid-bed reactors

    Energy Technology Data Exchange (ETDEWEB)

    Di Colomba Di Blasi, C. [Universita degli Studi di Napoli ' ' Federico II' ' (Italy). Dip. di Ingegneria Chimica

    2000-07-01

    A mathematical model for intra-particle transport phenomena and chemical reactions is coupled with an external heat transfer model taking into account fluid-bed hydrodynamics, to predict the fast pyrolysis characteristics of cellulose fuels. Good agreement is obtained between predicted and measured product yields as functions of the reactor temperature. For practical applications aimed at liquid fuel production, particle size and external temperatures greatly affect the average particle heating rate (values roughly comprised between 300 and 1 K/s), whereas the actual degradation temperature vary in a narrow range (600-725 K). Consequently, variations in the conversion time are significantly larger than in product distribution and yields. Finally, comparisons are made with the Ranz-Marshall correlation and the limit case of infinitely fast external heat transfer rates. (Author).

  12. Impact on burnup performance of coated particle fuel design in pebble bed reactor with ROX fuel

    International Nuclear Information System (INIS)

    Ho, Hai Quan; Obara, Toru

    2015-01-01

    The pebble bed reactor (PBR), a kind of high-temperature gas-cooled reactor (HTGR), is expected to be among the next generation of nuclear reactors as it has excellent passive safety features, as well as online refueling and high thermal efficiency. Rock-like oxide (ROX) fuel has been studied at the Japan Atomic Energy Agency (JAEA) as a new once-through type fuel concept. Rock-like oxide used as fuel in a PBR can be expected to achieve high burnup and improve chemical stabilities. In the once-through fuel concept, the main challenge is to achieve as high a burnup as possible without failure of the spent fuel. The purpose of this study was to investigate the impact on burnup performance of different coated fuel particle (CFP) designs in a PBR with ROX fuel. In the study, the AGR-1 Coated Particle design and Deep-Burn Coated Particle design were used to make the burnup performance comparison. Criticality and core burnup calculations were performed by MCPBR code using the JENDL-4.0 library. Results at equilibrium showed that the two reactors utilizing AGR-1 Coated Particle and Deep-Burn Coated Particle designs could be critical with almost the same multiplication factor k eff . However, the power peaking factor and maximum power per fuel ball in the AGR-1 coated particle design was lower than that of Deep-Burn coated particle design. The AGR-1 design also showed an advantage in fissions per initial fissile atoms (FIFA); the AGR-1 coated particle design produced a higher FIFA than the Deep-Burn coated particle design. These results suggest that the difference in coated particle fuel design can have an effect on the burnup performance in ROX fuel. (author)

  13. Heat transfer from a horizontal finned tube bundle in bubbling fluidized beds of small and large particles

    Energy Technology Data Exchange (ETDEWEB)

    Devaru, C.B. [Jayachamaraja College of Engineering, Mysore (India). Dept. of Mechanical Engineering; Kolar, A.K. [Indian Inst. of Technology, Madras (India). Dept. of Mechanical Engineering

    1995-12-31

    Steady state average heat transfer coefficient measurements were made by the local thermal simulation technique in a cold, square, bubbling air-fluidized bed (0.305 m x 0.305 m) with immersed horizontal finned tube bundles (in-line and staggered) with integral 60{degree} V-thread. Studies were conducted using beds of small (average particle diameter less than 1 mm) sand particles and of large (average particle diameter greater thin 1 mm) particles (raagi, mustard, millet and coriander). The fin pitch varied from 0.8 to 5.0 mm and the fin height varied from 0.69 to 4.4 mm. The tube pitch ratios used were 1.75 and 3.5. The influence of bed particle diameter, fluidizing velocity, fin pitch, and tube pitch ratio on average heat transfer coefficient was studied. Fin pitch and bed particle diameter are the most significant parameters affecting heat transfer coefficient within the range of experimental conditions. Bed pressure drop depends only on static bed height. New direct correlations, incorporating easily measurable quantities, for average heat transfer coefficient for finned tube bundles (in-line and staggered) are proposed.

  14. Enhancing the in vitro Fe(2+) bio-accessibility using ascorbate and cold-set whey protein gel particles.

    Science.gov (United States)

    Martin, A H; de Jong, G A H

    2012-03-01

    This paper investigates the possibility for iron fortification of food using a new preparation method for protein gel particles in which iron is entrapped in the presence of ascorbate using cold-set gelation. The effect of ascorbate on the iron-induced cold-set gelation process of whey protein was studied in order to optimize the ratio of iron/ascorbate. Subsequently, the effect of ascorbate on iron bio-accessibility was assessed in vitro. Rheology was used to study the protein gel formation, and the stability of the gel particles was determined by measuring the iron and protein content at different pH. In vitro studies were performed with the TNO Intestinal Model (TIM). Ascorbate appeared to affect the gel formation process and increased the gel strength of the iron-induced cold-set gels at specific iron/ascorbate ratio. With the Fe-protein gel particles being stable at a broad pH range, the release of iron from the particles was studied as a function of time. The low release of iron indicated a good encapsulation efficiency and the capability of whey protein to keep iron bound at different conditions (pH and presence of calcium). Results obtained with the TIM showed that ascorbate, when added to the protein gel particles, was very successful in enhancing the recovery and absorption of iron. The in vitro Fe(2+) bio-accessibility in the presence of ascorbate in iron-protein particles increased from 10% to almost 80%. This suggests that the concept of using protein particles with iron and ascorbate can effectively be used to fortify food products with iron for human consumption.

  15. Surface Modification of Zirconia Substrate by Calcium Phosphate Particles Using Sol-Gel Method.

    Science.gov (United States)

    Jin, So Dam; Um, Sang Cheol; Lee, Jong Kook

    2015-08-01

    Surface modification with a biphasic composition of hydroxyapatite (HA) and tricalcium phosphate (TCP) was performed on a zirconia substrate using a sol-gel method. An initial calcium phosphate sol was prepared by mixing a solution of Ca(NO3)2 · 4H20 and (C2H5O)3P(O), while both porous and dense zirconia were used as substrates. The sol-gel coating was performed using a spin coater. The coated porous zirconia substrate was re-sintered at 1350 °C 2 h, while coated dense zirconia substrate was heat-treated at 750 °C 1 h. The microstructure of the resultant HA/TCP coatings was found to be dependent on the type of zirconia substrate used. With porous zirconia as a starting substrate, numerous isolated calcium phosphate particles (TCP and HA) were uniformly dispersed on the surface, and the particle size and covered area were dependent on the viscosity of the calcium phosphate sol. Conversely, when dense zirconia was used as a starting substrate, a thick film of nano-sized HA particles was obtained after heat treatment, however, substantial agglomeration and cracking was also observed.

  16. Bed load transport for a mixture of particle sizes: Downstream sorting rather than anomalous diffusion

    Science.gov (United States)

    Fan, Niannian; Xie, Yushu; Nie, Ruihua

    2017-10-01

    The stochastic nature of bed load transport induces diffusion of sediment tracers, which is governed by the dynamics of their bulk behavior over time. By deploying both numerical simulations and flume experiments, the emergent particle diffusion regimes for both uniform and mixed tracer particles were studied and compared. For uniform particles, power-law-distributed resting times Tr produced super-, sub- or normal diffusion regimes for certain values of the tail exponent ν . Based on the assumption that heterogeneity in particle size leads to a power-law distribution of Tr , a completely different diffusion regime emerges in mixtures compared with those obtained from uniform particles with the same value of the tail exponent ν . Mixtures exhibited the same ballistic regime (the variance of travel distance grows as time squared) for different values of ν , and ballistic regimes for mixtures also emerged from several other tested models. Furthermore, our experimental results confirmed the ballistic regime; however, the decreasing number of tracked particles may result in apparent but deceptive sub-diffusion. We conclude that ballistic regimes for mixtures result from violations of the independent and identically distributed (i.i.d.) assumptions, attributing to downstream sorting processes.

  17. Universal stability curve for pattern formation in pulsed gas-solid fluidized beds of sandlike particles

    Science.gov (United States)

    de Martín, Lilian; Ottevanger, Coen; van Ommen, J. Ruud; Coppens, Marc-Olivier

    2018-03-01

    A granular layer can form regular patterns, such as squares, stripes, and hexagons, when it is fluidized with a pulsating gas flow. These structures are reminiscent of the well-known patterns found in granular layers excited through vibration, but, contrarily to them, they have been hardly explored since they were first discovered. In this work, we investigate experimentally the conditions leading to pattern formation in pulsed fluidized beds and the dimensionless numbers governing the phenomenon. We show that the onset to the instability is universal for Geldart B (sandlike) particles and governed by the hydrodynamical parameters Γ =ua/(utϕ ¯) and f /fn , where ua and f are the amplitude and frequency of the gas velocity, respectively, ut is the terminal velocity of the particles, ϕ ¯ is the average solids fraction, and fn is the natural frequency of the bed. These findings suggest that patterns emerge as a result of a parametric resonance between the kinematic waves originating from the oscillating gas flow and the bulk dynamics. Particle friction plays virtually no role in the onset to pattern formation, but it is fundamental for pattern selection and stabilization.

  18. An experimental study of heat transfer to a horizontal tube in a large particle fluidized bed at elevated temperature

    Science.gov (United States)

    George, A. H.

    Experimental data for the time-average local heat transfer coefficient to a single horizontal tube in a large particle fluidized bed at elevated temperature, are presented. Refractory particles with surface mean diameter 2.14 mm and 3.23 mm were fluidized by combustion products of propane at bed temperatures of 810 K and 1053 K. The particle sizes are near the largest presently used in pilot plant fluidized bed coal combustors. The superficial gas velocity ranged from that required for minimum fluidization, or slightly packed, to the velocity where slugging first occurred, or the highest velocity air blower capacity would allow. Heat transfer results indicate that a stack of defluidized particles remain on top of the tube at low superficial gas velocities. A very low local heat transfer coefficient was obtained under these conditions. There was less than 10 percent difference in the maximum spatial average heat transfer coefficients for the two particle sizes considered.

  19. Validation of new empirical model for self-leveling behavior of cylindrical particle beds based on experimental database

    International Nuclear Information System (INIS)

    Morita, Koji; Matsumoto, Tatsuya; Taketa, Shohei; Nishi, Shinpei; Cheng, Songbai; Suzuki, Tohru; Tobita, Yoshiharu

    2014-01-01

    During a material relocation phase of core disruptive accidents (CDAs) in sodium cooled fast reactors (SFRs), debris beds can be formed in the lower plenum region due to rapid quenching and fragmentation of molten core materials. Heat removal from debris beds is crucial to achieve so called in-vessel retention (IVR) of degraded core materials. Coolant boiling in the beds may lead to leveling of their mound shape, and then changes coolability of the beds with decay heat as well as neutronic characteristics. To clarify the mechanisms underlying this self-leveling behavior, several series of experiments using simulant materials has been performed in collaboration between Japan Atomic Energy Agency (JAEA) and Kyushu University in Japan. In the present study, experiments in a cylindrical system were employed to develop experimental data on self-leveling process of particle beds. In the experiments, to simulate the coolant boiling due to the decay heat in fuel, nitrogen gas was percolated uniformly through the bottom of the particle bed with a conical shape mound using a gas injection method. Time variations in bed height during the self-leveling process were measured for key experimental parameters on particle size, density and sphericity, and gas flow rate. Using a dimensional analysis approach, a new model was proposed to correlate the experimental data on transient bed height with an empirical equation using a characteristic time of self-leveling development and a terminal equilibrium height of the bed. It was demonstrated that the proposed model predicts self-leveling development of particle beds with reasonable accuracy in the present ranges of experimental conditions. (author)

  20. Molecular dynamics study on mechanism of preformed particle gel transporting through nanopores: Surface chemistry and heterogeneity

    Science.gov (United States)

    Cui, Peng; Zhang, Heng; Ma, Ying; Hao, Qingquan; Liu, Gang; Sun, Jichao; Yuan, Shiling

    2017-10-01

    The translocation behavior of preformed particle gel (PPG) in porous media is crucial for its application in enhanced oil recovery. By means of non-equilibrium molecular dynamics simulation, the translocation mechanism of PPG confined in different silica nanopores were investigated. The influence of surface chemistry and chemical heterogeneity of silica nanopore on the translocation process was revealed. As the degree of surface hydroxylation increases and the heterogeneity decreases, the pulling force needed to drive PPG decreases. We infer that the nanopore's surface (i.e. surface chemistry and heterogeneity) affects the translocation of PPG indirectly by forming different hydration layers.

  1. Kinetics of pyrolysis and combustion of spherical wood particles in a fluidized bed

    International Nuclear Information System (INIS)

    Mazziotti di Celso, Giuseppe; Rapagnà, Sergio; Prisciandaro, Marina; Zanoelo, Everton Fernando

    2014-01-01

    Highlights: • H 2 , CO 2 , CO and CH 4 released during wood pyrolysis were experimentally monitored. • CO 2 formed by burning the residual tar/char mixture was experimentally determined. • The kinetics of species production was reproduced with two simplified models. • The increase of the bed reactor temperature statistically enhanced the gas yield. • The pyrolysis time is statistically reduced by decreasing the particle size. - Abstract: The kinetics of wood pyrolysis and combustion of residual fuel at different particle diameters and temperatures was investigated. A known mass of wooden spheres was fed at the top of a fluidized bed reactor filled with olivine particles and fluidized with nitrogen. The concentration of H 2 , CO 2 , CO and CH 4 was on-line monitored with gas analyzers. An irreversible first order reaction was applied to describe the biomass pyrolysis. The rate constant was dependent on the average temperature of wood particle, obtained by solving the transient one-dimensional problem of heat conduction in a sphere. The rate for an irreversible second order reaction between the residual fuel and oxygen at the fluid–solid interface, which takes a finite resistance to mass transfer into account, was adopted to describe the combustion. The semi-empirical kinetic models for pyrolysis and combustion were able to describe, with certain limitations inherent to model simplifications, the experimental transient results of molar flow rates of major released species. A statistical model based on the results of the factorial design of experiments (3 2 ) confirmed a statistical significant effect of temperature and wood particle diameter on the gas yield and time of pyrolysis, respectively

  2. Nuclear propulsion systems for orbit transfer based on the particle bed reactor

    International Nuclear Information System (INIS)

    Powell, J.R.; Ludewig, H.; Horn, F.L.

    1987-01-01

    The technology of nuclear direct propulsion orbit transfer systems based on the Particle Bed Reactor (PBR) is described. A 200 megawatt illustrative design is presented for LEO to GEO and other high ΔV missions. The PBR-NOTV can be used in a one-way mode with the shuttle or an expendable launch vehicle, e.g., the Titan 34D7, or as a two-way reusable space tug. In the one-way mode, payload capacity is almost three times greater than that of chemical OTV's. PBR technology status is described and development needs outlined

  3. Dynamic yielding, shear thinning, and stress rheology of polymer-particle suspensions and gels.

    Science.gov (United States)

    Kobelev, Vladimir; Schweizer, Kenneth S

    2005-10-22

    The nonlinear rheological version of our barrier hopping theory for particle-polymer suspensions and gels has been employed to study the effect of steady shear and constant stress on the alpha relaxation time, yielding process, viscosity, and non-Newtonian flow curves. The role of particle volume fraction, polymer-particle size asymmetry ratio, and polymer concentration have been systematically explored. The dynamic yield stress decreases in a polymer-concentration- and volume-fraction-dependent manner that can be described as apparent power laws with effective exponents that monotonically increase with observation time. Stress- or shear-induced thinning of the viscosity becomes more abrupt with increasing magnitude of the quiescent viscosity. Flow curves show an intermediate shear rate dependence of an effective power-law form, becoming more solidlike with increasing depletion attraction. The influence of polymer concentration, particle volume fraction, and polymer-particle size asymmetry ratio on all properties is controlled to a first approximation by how far the system is from the gelation boundary of ideal mode-coupling theory (MCT). This emphasizes the importance of the MCT nonergodicity transition despite its ultimate destruction by activated barrier hopping processes. Comparison of the theoretical results with limited experimental studies is encouraging.

  4. C-ADU Gel Particle Preparation by Modified-External Gelation Method

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Kyung Cha; Eom, Sung Ho; Cho, Cho Moon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    Carbon black powder as a carbon source in the final UCO kernel is added during the broth solution preparation, in the processing of UCO kernel fabrication. The preparation of a good quality UCO kernel is very difficult owing to the homogeneous distribution of carbon in a UCO kernel. The key technology used to obtain a good quality sphere (sphericity, density, C/U, O/U ratios) is a uniform distribution of carbon particles into the C-ADU gel sphere, i.e., during the gelation step of liquid droplets formation before the thermal treatment. We carried out carbon source selection experiments on the various kinds of carbon black powder and a dispersion test in a simulated broth solution. The CB10 sample shows that the relative cumulative velocity and the velocity distribution density have the highest value. This is a Cabot Emperor 1800 CB particle.

  5. Investigation of internal elements impaction on particles circulation in a fluidized bed reactor

    Science.gov (United States)

    Solovev, S. A.; Soloveva, O. V.; Antipin, A. V.; Shamsutdinov, E. V.

    2018-01-01

    A numerical study of the fluidized bed apparatus in the presence of various internal elements is carried out. A chemical reaction for temperature-dependent processes with heat absorption is considered. The task of incoming heated catalyst granules to the reactor is investigated. The main emphasis is focused on the circulation flows of the catalyst particles, heating of the reactor, and the efficiency of the chemical reaction. The analysis of the impact of various design elements on the efficiency of the reactor is carried out. The influence of feeding heated catalyst device design on the effectiveness of whole reactor heating is educed. The influence of the presence of fine particles on the efficiency of the reaction for different reactor design features is also educed.

  6. Transient Effects in Fischer-Tropsch Reactor with a Fixed Bed of Catalyst Particles

    Directory of Open Access Journals (Sweden)

    I. V. Derevich

    2015-01-01

    Full Text Available Based on analysis of small temperature disturbances in the Fischer-Tropsch reactor with a fixed bed of catalyst particles various scenarios of thermal instability were investigated. There are two possible scenarios of thermal instability of the reactor. First, thermal explosion may occur due to growth of temperature disturbances inside a catalytic granule. Second scenario connected with loss of thermal stability as a result of an initial increase in temperature in the reactor volume. The boundaries of thermal stability of the reactor were estimated by solving the eigenvalue problems for spherical catalyst particles and cylindrical reactor. Processes of diffusional resistance inside the catalytic granule and heat transfer from wall of the reactor tube are taken into account. Estimation of thermal stability area is compared with the results of numerical simulation of behavior of temperature and concentration of synthesis gas.

  7. Effects of varied nitrate and phosphate supply on polysaccharidic and proteinaceous gel particles production during tropical phytoplankton bloom experiments

    Science.gov (United States)

    Engel, A.; Borchard, C.; Loginova, A.; Meyer, J.; Hauss, H.; Kiko, R.

    2015-04-01

    It has been suggested that oxygen minimum zones (OMZ) will expand in the tropical oceans as a result of global change with potential consequences for marine element cycling, such as an increase in anaerobic nitrogen loss, resulting in a lower supply of nitrate relative to phosphate to the euphotic zone. So far, the effects of changes in nutrient ratios on organic matter recycling and export fluxes are not well understood. Here, were investigated how different phosphate (Varied P: 0.15-1.58 μmol L-1) or nitrate (Varied N: 1.9-21.9 μmol L-1) concentrations affect the abundance and size distribution of polysaccharidic transparent exopolymer particles (TEP), which are suggested to enhance particle aggregation and export fluxes, and on proteinaceous coomassie stainable particles (CSP), a supposedly good substrate for heterotrophic bacteria. Two series of mesocosm bloom experiments were conducted with natural plankton communities collected from the Eastern Tropical North Atlantic (ETNA) close to Cape Verde in October 2012. Until bloom peak, a positive correlation between gel particle abundance and Chl a concentration was determined, linking the release of dissolved gel precursors and the subsequent formation of gel particles to autotrophic production. After bloom peak, gel particle abundance remained stable or even increased, implying a continued partitioning of dissolved into particulate organic matter after biomass production itself ceased. During both experiments, differences between TEP and CSP dynamics were observed; TEP were generally more abundant than CSP. Changes in size distribution indicated aggregation of TEP during the bloom, while newly formed CSP decomposed. Abundance of gel particles clearly increased with nitrate concentration during the second experiment, suggesting that changes in [DIN]:[DIP] ratios can affect gel particle formation with potential consequences for carbon and nitrogen cycling as well as food web dynamics in tropical ecosystems.

  8. Hydrodynamic characteristics of a two-phase gas-liquid flow upward through a fixed bed of spherical particles

    Directory of Open Access Journals (Sweden)

    VELIZAR D. STANKOVIC

    2001-01-01

    Full Text Available The influence of an electrochemically generated gas phase on the hydrodynamic characteristics of a three-phase system has been examined. The two-phase fluid, (gas-liquid, in which the liquid phase is the continuous one, flows through a packed bed with glass spheres. The influence of the liquid velocity was examined, as well as the gas velocity and particle diameter on the pressure drop through the fixed bed. It was found that with increasing liquid velocity (wl = 0.0162–0.03 m/s, the relative pressure drop decreases through the fixed bed. With increasing current density, the pressure drop increases, since greater gas quantities stay behind in the fixed bed. Besides, it was found that with decreasing diameter of the glass particles, the relative pressure drop also decreases. The relationship betweeen the experimentally obtained friction factor and the Reynolds number was established.

  9. Evaluation of a particle gel immunoassay as a screening test for syphilis.

    Science.gov (United States)

    Borelli, S; Monn, A; Meyer, J; Berger, U; Honegger, H P; Lautenschlager, St

    2009-02-01

    Recent trends in Western Europe show an increase in sexually transmitted infections. Surveillance data in Switzerland confirm this rising trend. Notifications of syphilis cases nearly doubled in the year 2002 and almost tripled in 2003. This trend necessitates an early correct diagnosis making reliable screening tests mandatory. In the presented study a particle gel immunoassay (ID-PaGIA syphilis antibody test, Diamed) using recombinant treponemal antigens TpN15, TpN17 and TpN47 was evaluated as a screening test in comparison to the currently used Treponema pallidum particle agglutination test (Serodia-TPPA, Fujirebio). Serum samples were obtained from a cross-sectional sero-epidemiological study among men who have sex with men. Samples were tested with the PaGia and the TPPA. In the case of equivocal results a titrated TPPA of an external laboratory was used as a confirmation test. In total 650 serum samples (48 seropositive patients, 602 negative) were evaluated. The PaGIA showed a sensitivity of 0.89 (43/48) and the TPPA of 0.83 (40/48). This difference was not statistically relevant (p = 0.4). The particle gel assay showed a significantly higher specificity (1.0) compared to the TPPA (0.98) (p = 0.004). The PaGIA showed a sensitivity comparable to that of other treponemal tests with an even better specificity. Advantages of the PaGIA are the fast reaction time of only 20 min and the simplicity of the procedure with minimal technical equipment.

  10. Sampling surface and subsurface particle-size distributions in wadable gravel-and cobble-bed streams for analyses in sediment transport, hydraulics, and streambed monitoring

    Science.gov (United States)

    Kristin Bunte; Steven R. Abt

    2001-01-01

    This document provides guidance for sampling surface and subsurface sediment from wadable gravel-and cobble-bed streams. After a short introduction to streams types and classifications in gravel-bed rivers, the document explains the field and laboratory measurement of particle sizes and the statistical analysis of particle-size distributions. Analysis of particle...

  11. Granulation of core particles suitable for film coating by agitation fluidized bed I. Optimum formulation for core particles and development of a novel friability test method.

    Science.gov (United States)

    Hamashita, Tomohiro; Nakagawa, Yasuo; Aketo, Takao; Watano, Satoru

    2007-08-01

    To prepare powdered medicines without bitter taste, film coating is required to cover the surface of core particles. In this study, effect of formulation and operating conditions of agitation fluidized bed on the core particle properties was investigated. In order to prevent breakage of the core particles during coating process, which sometimes causes variation of drug dissolution rate, addition of maltose syrup powder during the formulation process of the core particles was investigated. Also, a method for friability test in which the core particles were subjected to strong impact was proposed to evaluate strength of the core particles. The friability of the core particles determined by this test method correlated well with the actual friability of the particles during the coating process. Based on this result, we confirmed this novel friability test method could predict the core particle endurance during the coating process.

  12. Impact of temperature on zinc oxide particle size by using sol-gel process

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Keanchuan, E-mail: lee.kc@petronas.com.my; Ching, Dennis Ling Chuan, E-mail: dennis.ling@petronas.com.my [Fundamental and Applied Sciences Department, Universiti Teknologi PETRONAS, 31750 Tronoh, Perak (Malaysia); Saipolbahri, Zulhilmi Akmal bin, E-mail: zulhilmiakmal@gmail.com [Geoscience and Petroleum Engineering Department, Universiti Teknologi PETRONAS, 31750 Tronoh, Perak (Malaysia); Guan, Beh Hoe, E-mail: beh.hoeguan@petronas.com.my, E-mail: hassan.soleimani@petronas.com.my; Soleimani, Hassan, E-mail: beh.hoeguan@petronas.com.my, E-mail: hassan.soleimani@petronas.com.my

    2014-10-24

    Zinc oxide (ZnO) nanoparticles were prepared and synthesized via sol-gel method, by using citric acid as a precursor. The impact of annealing on the particle size was investigated. Based on the results from the Thermogravimetric Analysis (TGA), three different annealing temperature which is 500, 600 and 700 °C were chosen followed by the characterization of the ZnO nanoparticle by using Powder X-Ray Diffraction (PXRD), Transmission Electron Microscopy (TEM) and Field Emission Scanning Electron Microscopy (FESEM). Results showed that the crystallite size estimated from PXRD increased with the annealing temperature which was hexagonal structure for ZnO. TEM further revealed the same tendency which the Zn NPs size also increased with the annealing temperature.

  13. Effect of particle size and humidity on sugarcane bagasse combustion in a fixed bed furnace

    Directory of Open Access Journals (Sweden)

    Zamir Sánchez Castro

    2013-12-01

    Full Text Available The panela industry is one of the most important Agro Industries in Colombia, making it the largest per- capita consumer and the second largest producer worldwide. The fuel used in this process is traditionally the sugarcane bagasse (SB which is a byproduct of milling. However, due to the low efficiency of panela furnaces additional fuel is required such as wood, used rubber tires and coal. The fixed-bed furnaces inefficiency is mainly due to incomplete combustion of SB caused by the influence of process variables. Therefore, the aim of this work was to study the influence of particle size (PS and moisture content (MC over the combustion stages of SB in fixed-bed furnaces. A three-level factorial design was proposed for PS and MC of SB where the temperature and gas concentration were considered as response variables to evaluate the furnace performance. The results obtained in this work show that if the MC increases then the SB yield in the combustion is decreased. On the other hand, the increasing PS can counteract the effect of the MC of SB.

  14. A unique nuclear thermal rocket engine using a particle bed reactor

    Science.gov (United States)

    Culver, Donald W.; Dahl, Wayne B.; McIlwain, Melvin C.

    1992-01-01

    Aerojet Propulsion Division (APD) studied 75-klb thrust Nuclear Thermal Rocket Engines (NTRE) with particle bed reactors (PBR) for application to NASA's manned Mars mission and prepared a conceptual design description of a unique engine that best satisfied mission-defined propulsion requirements and customer criteria. This paper describes the selection of a sprint-type Mars transfer mission and its impact on propulsion system design and operation. It shows how our NTRE concept was developed from this information. The resulting, unusual engine design is short, lightweight, and capable of high specific impulse operation, all factors that decrease Earth to orbit launch costs. Many unusual features of the NTRE are discussed, including nozzle area ratio variation and nozzle closure for closed loop after cooling. Mission performance calculations reveal that other well known engine options do not support this mission.

  15. Gelation of Soy Milk with Hagfish Exudate Creates a Flocculated and Fibrous Emulsion- and Particle Gel.

    Directory of Open Access Journals (Sweden)

    Lukas Böni

    Full Text Available Hagfish slime is an ultra dilute, elastic and cohesive hydrogel that deploys within milliseconds in cold seawater from a glandularly secreted exudate. The slime is made of long keratin-like fibers and mucin-like glycoproteins that span a network which entraps water and acts as a defense mechanism against predators. Unlike other hydrogels, the slime only confines water physically and is very susceptible to mechanical stress, which makes it unsuitable for many processing operations and potential applications. Despite its huge potential, little work has been done to improve and functionalize the properties of this hydrogel. To address this shortcoming, hagfish exudate was mixed with a soy protein isolate suspension (4% w/v and with a soy emulsion (commercial soy milk to form a more stable structure and combine the functionalities of a suspension and emulsion with those of the hydrogel. Hagfish exudate interacted strongly with the soy systems, showing a markedly increased viscoelasticity and water retention. Hagfish mucin was found to induce a depletion and bridging mechanism, which caused the emulsion and suspension to flocculate, making "soy slime", a cohesive and cold-set emulsion- and particle gel. The flocculation network increases viscoelasticity and substantially contributes to liquid retention by entrapping liquid in the additional confinements between aggregated particles and protein fibers. Because the mucin-induced flocculation resembles the salt- or acid-induced flocculation in tofu curd production, the soy slime was cooked for comparison. The cooked soy slime was similar to conventional cooked tofu, but possessed a long-range cohesiveness from the fibers. The fibrous, cold-set, and curd-like structure of the soy slime represents a novel way for a cold coagulation and fiber incorporation into a suspension or emulsion. This mechanism could be used to efficiently gel functionalized emulsions or produce novel tofu-like structured food

  16. Gelation of Soy Milk with Hagfish Exudate Creates a Flocculated and Fibrous Emulsion- and Particle Gel

    Science.gov (United States)

    Böni, Lukas; Rühs, Patrick A.; Windhab, Erich J.; Fischer, Peter; Kuster, Simon

    2016-01-01

    Hagfish slime is an ultra dilute, elastic and cohesive hydrogel that deploys within milliseconds in cold seawater from a glandularly secreted exudate. The slime is made of long keratin-like fibers and mucin-like glycoproteins that span a network which entraps water and acts as a defense mechanism against predators. Unlike other hydrogels, the slime only confines water physically and is very susceptible to mechanical stress, which makes it unsuitable for many processing operations and potential applications. Despite its huge potential, little work has been done to improve and functionalize the properties of this hydrogel. To address this shortcoming, hagfish exudate was mixed with a soy protein isolate suspension (4% w/v) and with a soy emulsion (commercial soy milk) to form a more stable structure and combine the functionalities of a suspension and emulsion with those of the hydrogel. Hagfish exudate interacted strongly with the soy systems, showing a markedly increased viscoelasticity and water retention. Hagfish mucin was found to induce a depletion and bridging mechanism, which caused the emulsion and suspension to flocculate, making “soy slime”, a cohesive and cold-set emulsion- and particle gel. The flocculation network increases viscoelasticity and substantially contributes to liquid retention by entrapping liquid in the additional confinements between aggregated particles and protein fibers. Because the mucin-induced flocculation resembles the salt- or acid-induced flocculation in tofu curd production, the soy slime was cooked for comparison. The cooked soy slime was similar to conventional cooked tofu, but possessed a long-range cohesiveness from the fibers. The fibrous, cold-set, and curd-like structure of the soy slime represents a novel way for a cold coagulation and fiber incorporation into a suspension or emulsion. This mechanism could be used to efficiently gel functionalized emulsions or produce novel tofu-like structured food products. PMID

  17. Apoptosis of Rattus novergicus gingival fibroblasts caused by silver nano-particles gel exposure

    Directory of Open Access Journals (Sweden)

    Kharinna Widowati

    2015-09-01

    Full Text Available Background: The use of silver nanoparticle are growing, especially in medical science. It’s used in many concentration. In dentistry, it’s used to decrease halitosis, periodontal diseases, and wound healing. It can affect the viability of the cells, give bad effects to the human’s health and environment if used in a long duration and in certain concentration. Purpose: The purpose of this study was to learn the apoptosis of gingival fibroblasts in Rattus novergicus which is exposed with 15 µg/ml silver nano-particle gel by the expression of caspase-3. Method: This study used 9 male wistar rats and were divided into 3 groups. Sample in group A were cut (hurt in the oral gingiva and exposed to Ag-Np gel 15 µg/ml for 3 days. After 3 days, they were sacrificed and cut the gingival fibroblasts off 3x4 cm size with scalpel. Samples in group B were cut in the oral gingiva and exposed to Ag-Np Gel 15 µg/ml for 5 days. After 5 days they were sacrificed and the gingival fibroblasts off 3 x 4 cm with a scalpel. Samples in group C were cut in the oral gingiva and exposed to none for 3 days then cut the gingival fibroblasts off 3 x 4 cm size with scalpel. The expressions of caspase-3 in the apoptotic and wound healing process were analyzed by Immunohistochemical test. This data was analyzed by using the t-test method. Result: Mean expression numbers of caspase-3 in the group A=5.67; group B=11.33; and group C (control=18.67. T-test sign.number of group A and C=0.009; group B & C=0.000. Conclusion: The exposure of 15 µg/ml silver gel nanoparticle to gingival fibroblasts of Rattus novergicus reduces the expressions of caspase-3 in the day-3 and day-5 post exposure. The amounts of cell death through the apoptotic pathway which were analyzed by the expressions of caspase-3 will decrease too.

  18. Application of Hectorite-Coated Silica Gel Particles as a Packing Material for Chromatographic Resolution.

    Science.gov (United States)

    Okada, Tomohiko; Kumasaki, Aisaku; Shimizu, Kei; Yamagishi, Akihiko; Sato, Hisako

    2016-08-01

    A new type of clay column particles was prepared, in which a hectorite layer (∼0.1 µm thickness) covered uniformly the surface of amorphous silica particles with an average radius of 5 µm (ref. Okada et al., The Journal of Physical Chemistry C, 116, 21864-21869 (2012)). The hectorite layer was fully ion-exchanged with Δ-[Ru(phen)3](2+) (phen = 1,10-phenanthroline) ions by being immersed in a methanol solution of Δ-[Ru(phen)3](ClO4)2 (1 mM). The modified silica gel particles thus prepared were packed into a stainless steel tube (4 mm (i.d.) × 25 cm) as a high-performance liquid chromatography column. Optical resolution was achieved when the racemic mixtures of several metal complexes or organic molecules were eluted with methanol. In the case of tris(acetylacetonato)ruthenium(III) ([Ru(acac)3]), for example, the Λ- and Δ-enantiomers gave an elution volume of 2.6 and 3.0 mL, respectively, with the separation factor of 1.2. The total elution volume (5 mL) was nearly one-tenth for the previously reported column of the same size (RU-1 (Shiseido Co., Ltd.)) packed with the spray-dried particles of synthetic hectorite (average radius 5 µm) ion-exchanged by the same Ru(II) complexes. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  19. Experimental and analytical studies on chromatography of hydrogen-deuterium mixtures with vanadium particle fixed-bed

    International Nuclear Information System (INIS)

    Fukada, Satoshi; Yamasaki, Tadashi; Matsuo, Hiroshi; Mitsuishi, Nobuo

    1990-01-01

    The exchange chromatography of hydrogen and deuterium in a vanadium particle bed was experimentally and analytically studied for the isotope separation with small scale facilities. In the analysis, diffusion across a fluid film and in a solid phase, an apparent exchange reaction on surfaces including effects of impurities, and axial dispersion in a fixed-bed are taken into consideration. A simplified calculation method using a numerical technique of the inverse Laplace transform was also applied for the analysis of the chromatography with a pulse or step change of a deuterium concentration at the inlet of the bed. From the experiment, it was found that the apparent exchange reaction rate on surfaces controls the overall mass transfer and the tortuosity factor in the bed is about 2. The numerical effluent curves calculated by using the mass transfer coefficient and the tortuosity factor obtained from the first and second moments could be well fitted to the experimental results. (author)

  20. Highly dispersed spherical Bi3.25La0.75Ti3O12 nanocrystals via topotactic crystallization of aggregation-free gel particles from an effective inverse miniemulsion sol–gel approach

    International Nuclear Information System (INIS)

    Wang, Aijun; Zeng, Yanwei; Han, Longxiang; Ding, Chuan; Cao, Liangliang; Li, Rongjie

    2015-01-01

    Aggregation-free spherical lanthanum-doped bismuth titanate (Bi 3.25 La 0.75 Ti 3 O 12 , BLT) gel particles with an average size of about 150 nm were successfully obtained from an inverse miniemulsion sol–gel process, with Span-80 acting as surfactant, n-butanol as co-surfactant, cyclohexane as continuous phase, and submicro-droplets of aqueous solution containing Bi 3+ , La 3+ and Ti 4+ ions as dispersed phase, and then topotactically transformed into highly dispersed spherical BLT nanocrystals after an in situ crystallization at 600 °C for 8 h. It has been found that the BLT gel particles can be obtained via a moderate sol–gel reaction inside the miniemulsion droplets at 65 °C, but their morphology and aggregation degree are strongly affected by the relative amounts of Span-80 and n-butanol. The perfect spherical BLT gel particles with no aggregation can be achieved only under the condition of 3 wt% n-butanol relative to the mass of cyclohexane, with excessive amount of n-butanol leading to the formation of ill-gelled particles with irregular shapes, while insufficient addition of n-butanol resulting in terrible aggregation of gel particles. To understand the formation of aggregation-free spherical BLT gel particles, a tentative mechanism is proposed and discussed, which reveals that a well-coordinated oil–water interfacial film made up of Span-80 and n-butanol molecules and the appropriately enhanced evaporation of water from such interfaces should be responsible for the formation of aggregation-free spherical BLT gel particles. Graphical Abstract: Aggregation-free spherical BLT (Bi 3.25 La 0.75 Ti 3 O 12 ) gel particles can be prepared from an effective inverse miniemulsion sol–gel process, and subsequently topotactically transformed into spherical BLT nanocrystals through an in situ crystallization

  1. Impact of protein pre-treatment conditions on the iron encapsulation efficiency of whey protein cold-set gel particles

    NARCIS (Netherlands)

    Martin, A.H.; Jong, G.A.H. de

    2012-01-01

    This paper investigates the possibility for iron fortification of food using protein gel particles in which iron is entrapped using cold-set gelation. The aim is to optimize the iron encapsulation efficiency of whey protein by giving the whey protein different heat treatment prior to gelation with

  2. Particles fluidized bed receiver/reactor tests with quartz sand particles using a 100-kWth beam-down solar concentrating system at Miyazaki

    Science.gov (United States)

    Kodama, Tatsuya; Gokon, Nobuyuki; Cho, Hyun Seok; Matsubara, Koji; Kaneko, Hiroshi; Senuma, Kazuya; Itoh, Sumie; Yokota, Shin-nosuke

    2017-06-01

    A window-type, solar fluidized bed receiver with quartz sand particles was tested by a 100-kWth novel beam-down solar concentrating system at Miyazaki, Japan. A compound parabolic concentrator (CPC) was placed above the quartz window of the receiver to increase the concentration of the solar fluxes from the beam-down solar concentrating system. The solar tests were performed in the middle of December, 2015. The central bed temperature of the receiver was reached around 960-1100° C. It was found that only 20 Ndm3/min of air flow rate was enough to create the uniform fluidization of the particles at the given temperature range. It was predicted that if the central bed temperature could have been higher than 1100°C if solar receiver test had conducted in other seasons than winter. The next solar campaign of the receiver test will be carried out in October, 2016.

  3. The Effect of Particle Diameter Silica and the Kind of Reagent at the Adsorption of Zirconium with Silica Gel Column

    International Nuclear Information System (INIS)

    Sunardjo; Budi Sulistyo; Pristi Hartati

    2007-01-01

    The purpose of this investigation was to know the optimum condition of the particle diameter silica and the kind of reagent at the adsorption of zirconium with silica gel. In this investigation with the absorption process by silica gel column and the equipment provided by column of absorption and silica filling material. The investigation parameters in this experiment were the particle diameter silica and the kind of reagent at the adsorption of zirconium with silica gel. The experiment was performed firstly setting apparatus and weighed the silica gel and put in the absorber column. Weighed the ZrO 2 and HfCl 4 and put in the Erlenmeyer. The solution of the ZrO 2 and HfCl 4 put in the column absorption. If the exact time the rate of solution was stopped and the yield of absorption will be analyzed with X Ray Diffraction and EDTA titration. The experiment varied by parameters the particle diameter silica and the kind of reagent at the adsorption of zirconium with silica gel. Particle diameter silica varied with: 0.150 mm; 0.300 mm; 0.425 mm and 3.000 mm. The parameter of kind reagent: H 2 O and C 2 H 5 OH. The result of this investigation could be concluded that the optimum of the particle diameter silica was 0.150 mms or the absorption efficiency 32.88 %. And the parameter of kind reagent optimum was C 2 H 5 OH or the absorption efficiency 84.28 %. (author)

  4. Preparation of Raspberry-like Superhydrophobic SiO2 Particles by Sol-gel Method and Its Potential Applications

    Directory of Open Access Journals (Sweden)

    Xu Gui-Long

    2011-12-01

    Full Text Available Raspberry‐like SiO2 particles with a nano‐micro‐binary structure were prepared by a simple sol‐gel method using tetraethoxysilane (TEOS and methyltriethoxysilane (MTES as precursors. The chemical components and morphology of the SiO2 particles were characterized by Fourier transform infrared spectroscopy (FT‐IR and a Transmission electron microscope (TEM. The surface topography and wetting behaviour of the raspberry‐like SiO2 surface were observed with a Scanning electron microscope (SEM and studied by the water/oil contact angle (CA, respectively. The thermal stability of the prepared SiO2 particles was characterized by TGA analysis. The results show that the highly dispersed SiO2 particles initially prepared by the sol‐gel method turn into raspberry‐like particles with during the aging process. The raspberry‐like SiO2 particles show superhydrophobicity and superoleophilicity across a wide range of pH values. The SiO2 particles were thermally stable up to 475°C, while above this temperature the hydrophobicity decreases and finally becomes superhydrophobic when the temperature reaches 600°C. The raspberry‐like SiO2 particles which were prepared have potential applications in the fields of superhydrophobic surfaces, water‐oil separation, anti‐corrosion and fluid transportation.

  5. Preparation of Fine Particles with Improved Solubility Using a Complex Fluidized-Bed Granulator Equipped with a Particle-Sizing Mechanism.

    Science.gov (United States)

    Hosaka, Shouichi; Okamura, Yasufumi; Tokunaga, Yuji

    2016-01-01

    A new type of fluidized-bed granulator equipped with a particle-sizing mechanism was used for the preparation of fine particles that improved the solubility of a poorly water-soluble drug substance. Cefteram pivoxyl (CEF) was selected as a model drug substance, and its solution with a hydrophilic polymer, hydroxypropyl cellulose (HPC-L), was sprayed on granulation grade lactose monohydrate (Lac). Three types of treated particles were prepared under different conditions focused on the spraying air pressure and the amount of HPC-L. When the amount of HPC-L was changed, the size of the obtained particles was similar. However, particle size distribution was dependent on the amount of HPC-L. Its distribution became more homogenous with greater amounts of HPC-L, but the particle size distribution obtained by decreasing the spraying air pressure was not acceptable. By processing CEF with HPC-L using a complex fluidized-bed granulator equipped with a particle-sizing mechanism, the dissolution ratio was elevated by approximately 40% compared to that of unprocessed CEF. Moreover, in the dissolution profile of treated CEF, the initial burst was suppressed, and nearly zero order release was observed up to approximately 60% in the dissolution profile. This technique may represent a method with which to design fine particles of approximately 100 µm in size with a narrow distribution, which can improve the solubility of a drug substance with low solubility.

  6. Bed particle entrainment and motion in turbulent open-channel flows: a high-resolution experimental study

    Science.gov (United States)

    Nikora, Vladimir; Cameron, Stuart; Amir, Mohammad; Stewart, Mark; Witz, Matthew

    2015-04-01

    In spite of significant efforts of geoscientists and engineers, the exact mechanics of sediment entrainment and transport by turbulent flows remains unclear and continues to be the focus of many research groups worldwide. The talk outlines current developments in this direction at the University of Aberdeen, where an extensive experimental programme has recently been completed. The experiments were conducted in the Aberdeen Open Channel Facility (AOCF, 20 m long, 1.18 m wide) over wide ranges of flow submergence (1.9-8.0), bulk Reynolds number (4400-83000), and channel aspect ratio (9-39). The flume bed was covered by hexagonally-packed glass beads 16 mm in diameter. For entrainment experiments, selected glass particles were replaced with lighter particles (nylon and delrin). Instantaneous velocity fields before, during, and after entrainment were measured with an advanced multi-mode Particle Image Velocimetry (PIV) system developed by S. Cameron. This system was also used for 3D particle tracking in the entrainment experiments. The main types of experiments included: (1) multi-mode turbulence measurements with fixed-bed conditions to assess the background flow structure (10 min to 120 min duration of velocity records); (2) simultaneous measurements of fluctuating differential pressure acting on 23 fixed particles with in-built pressure sensors, synchronously with PIV; (3) measurements of waiting times for particle entrainment, employing a specially designed system (SMC-1) for automatic placement of the particles on the bed and subsequent measurement of the time before entrainment; (4) long-term direct measurements of the instantaneous drag force acting on a single particle (attached to the bed) at different protrusions, synchronously with PIV; and (5) synchronous measurements of the flow field around a particle before, at, and during entrainment, supplemented with 3D particle tracking. The key results include: (1) the refined turbulence structure of a rough-bed

  7. Analysis of the surface quality of sulphur-coated urea particles in a two-dimensional spouted bed

    Directory of Open Access Journals (Sweden)

    G.S.E. Ayub

    2001-03-01

    Full Text Available In this work the quality of sulphur-coated urea was determined by the urea dissolution rate and analysed by electron microscopy. Particles of urea were coated in a two-dimensional spouted bed, having a 60° slanted base angle and an atomization nozzle installed at the base. Elementary sulphur was liquefied and atomized on the particles. The experiments were planned with the objective of verifying the influences of flowrates of sulphur and atomized air and the temperature of the air used in the spouted bed on the quality of the coated particle surface. The temperature of the spout air and the flowrate of the atomized air showed a significant influence on the quality of the coating.

  8. Flow instability tests for a particle bed reactor nuclear thermal rocket fuel element

    Science.gov (United States)

    Lawrence, Timothy J.

    1993-05-01

    Recent analyses have focused on the flow stability characteristics of a particle bed reactor (PBR). These laminar flow instabilities may exist in reactors with parallel paths and are caused by the heating of the gas at low Reynolds numbers. This phenomena can be described as follows: several parallel channels are connected at the plenum regions and are stabilized by some inlet temperature and pressure; a perturbation in one channel causes the temperature to rise and increases the gas viscosity and reduces the gas density; the pressure drop is fixed by the plenum regions, therefore, the mass flow rate in the channel would decrease; the decrease in flow reduces the ability to remove the energy added and the temperature increases; and finally, this process could continue until the fuel element fails. Several analyses based on different methods have derived similar curves to show that these instabilities may exist at low Reynolds numbers and high phi's ((Tfinal Tinitial)/Tinitial). These analyses need to be experimentally verified.

  9. Particle flow of ceramic breeder pebble beds in bi-axial compression experiments

    International Nuclear Information System (INIS)

    Hermsmeyer, S.; Reimann, J.

    2002-01-01

    Pebble beds of Tritium breeding ceramic material are investigated within the framework of developing solid breeder blankets for future nuclear fusion power plants. For the thermo-mechanical characterisation of such pebble beds, bed compression experiments are the standard tools. New bi-axial compression experiments on 20 and 30 mm high pebble beds show pebble flow effects much more pronounced than in previous 10 mm beds. Owing to the greater bed height, conditions are reached where the bed fails in cross direction and unhindered flow of the pebbles occurs. The paper presents measurements for the orthosilicate and metatitanate breeder materials that are envisaged to be used in a solid breeder blanket. The data are compared with calculations made with a Drucker-Prager soil model within the finite-element code ABAQUS, calibrated with data from other experiments. It is investigated empirically whether internal bed friction angles can be determined from pebble beds of the considered heights, which would simplify, and broaden the data base for, the calibration of the Drucker-Prager pebble bed models

  10. DEM Study of Wet Cohesive Particles in the Presence of Liquid Bridges in a Gas Fluidized Bed

    Directory of Open Access Journals (Sweden)

    Yurong He

    2014-01-01

    Full Text Available A modified discrete element method (DEM was constructed by compositing an additional liquid-bridge module into the traditional soft-sphere interaction model. Simulations of particles with and without liquid bridges are conducted in a bubbling fluidized bed. The geometry of the simulated bed is the same as the one in Müller’s experiment (Müller et al., 2008. A comparison between the dry and the wet particular systems is carried out on the bubble behavior, the bed fluctuation, and the mixing process. The bubble in the dry system possesses a regular round shape and falling of scattered particles exists while the bubble boundary of the wet particles becomes rough with branches of agglomerates stretching into it. The mixing of the dry system is quicker than that of the wet system. Several interparticle liquid contents are applied in this work to find their influence on the kinetic characteristic of the wet particle flow. With an increase of liquid content, the mixing process costs more time to be completed. Symmetrical profiles of the velocity and granular temperature are found for two low liquid contents (0.001% and 0.01%, while it is antisymmetrical for the highest liquid content (0.1%.

  11. Highly dispersed spherical Bi3.25La0.75Ti3O12 nanocrystals via topotactic crystallization of aggregation-free gel particles from an effective inverse miniemulsion sol-gel approach

    Science.gov (United States)

    Wang, Aijun; Zeng, Yanwei; Han, Longxiang; Ding, Chuan; Cao, Liangliang; Li, Rongjie

    2015-09-01

    Aggregation-free spherical lanthanum-doped bismuth titanate (Bi3.25La0.75Ti3O12, BLT) gel particles with an average size of about 150 nm were successfully obtained from an inverse miniemulsion sol-gel process, with Span-80 acting as surfactant, n-butanol as co-surfactant, cyclohexane as continuous phase, and submicro-droplets of aqueous solution containing Bi3+, La3+ and Ti4+ ions as dispersed phase, and then topotactically transformed into highly dispersed spherical BLT nanocrystals after an in situ crystallization at 600 °C for 8 h. It has been found that the BLT gel particles can be obtained via a moderate sol-gel reaction inside the miniemulsion droplets at 65 °C, but their morphology and aggregation degree are strongly affected by the relative amounts of Span-80 and n-butanol. The perfect spherical BLT gel particles with no aggregation can be achieved only under the condition of 3 wt% n-butanol relative to the mass of cyclohexane, with excessive amount of n-butanol leading to the formation of ill-gelled particles with irregular shapes, while insufficient addition of n-butanol resulting in terrible aggregation of gel particles. To understand the formation of aggregation-free spherical BLT gel particles, a tentative mechanism is proposed and discussed, which reveals that a well-coordinated oil-water interfacial film made up of Span-80 and n-butanol molecules and the appropriately enhanced evaporation of water from such interfaces should be responsible for the formation of aggregation-free spherical BLT gel particles.

  12. Development of a fluidized bed agglomeration modeling methodology to include particle-level heterogeneities in ash chemistry and granular physics

    Science.gov (United States)

    Khadilkar, Aditi B.

    The utility of fluidized bed reactors for combustion and gasification can be enhanced if operational issues such as agglomeration are mitigated. The monetary and efficiency losses could be avoided through a mechanistic understanding of the agglomeration process and prediction of operational conditions that promote agglomeration. Pilot-scale experimentation prior to operation for each specific condition can be cumbersome and expensive. So the development of a mathematical model would aid predictions. With this motivation, the study comprised of the following model development stages- 1) development of an agglomeration modeling methodology based on binary particle collisions, 2) study of heterogeneities in ash chemical composition and gaseous atmosphere, 3) computation of a distribution of particle collision frequencies based on granular physics for a poly-disperse particle size distribution, 4) combining the ash chemistry and granular physics inputs to obtain agglomerate growth probabilities and 5) validation of the modeling methodology. The modeling methodology comprised of testing every binary particle collision in the system for sticking, based on the extent of dissipation of the particles' kinetic energy through viscous dissipation by slag-liquid (molten ash) covering the particles. In the modeling methodology developed in this study, thermodynamic equilibrium calculations are used to estimate the amount of slag-liquid in the system, and the changes in particle collision frequencies are accounted for by continuously tracking the number density of the various particle sizes. In this study, the heterogeneities in chemical composition of fuel ash were studied by separating the bulk fuel into particle classes that are rich in specific minerals. FactSage simulations were performed on two bituminous coals and an anthracite to understand the effect of particle-level heterogeneities on agglomeration. The mineral matter behavior of these constituent classes was studied

  13. Effects and control of humidity and particle mixing in fluid-bed granulation

    NARCIS (Netherlands)

    Schaafsma, SH; Kossen, NWF; Mos, MT; Blauw, L; Hoffmann, AC

    The novel technique of spraying binder liquid in pulses of short duration on a bubbling fluidized bed was used to study the effect liquid distribution, mixing, and relative humidity has on granule growth. Two important mixing zones in the fluid-bed granulation process are identified. First, the

  14. Strategies for the startup of methanogenic inverse fluidized-bed reactors using colonized particles.

    Science.gov (United States)

    Alvarado-Lassman, A; Sandoval-Ramos, A; Flores-Altamirano, M G; Vallejo-Cantú, N A; Méndez-Contreras, J M

    2010-05-01

    One of the inconveniences in the startup of methanogenic inverse fluidized-bed reactors (IFBRs) is the long period required for biofilm formation and stabilization of the system. Previous researchers have preferred to start up in batch mode to shorten stabilization times. Much less work has been done with continuous-mode startup for the IFBR configuration of reactors. In this study, we prepared two IFBRs with similar characteristics to compare startup times for batch- and continuous-operation modes. The reactors were inoculated with a small quantity of colonized particles and run for a period of 3 months, to establish the optimal startup strategy using synthetic media as a substrate (glucose as a source of carbon). After the startup stage, the continuous- and batch-mode reactors removed more than 80% of the chemical oxygen demand (COD) in 51 and 60 days of operation, respectively; however, at the end of the experiments, the continuous-mode reactor had more biomass attached to the support media than the batch-mode reactor. Both reactors developed fully covered support media, but only the continuous-mode reactor had methane yields close to the theoretical value that is typical of stable reactors. Then, a combined startup strategy was proposed, with industrial wastewater as the substrate, using a sequence of batch cycles followed by continuous operation, which allows stable operation at an organic loading rate of 20 g COD/L x d in 15 days. Using a fraction of colonized support as an inoculum presents advantages, with respect to previously reported strategies.

  15. Experimental investigations on the coolability of prototypical particle beds with respect to reactor safety; Experimentelle Untersuchungen der Kuehlbarkeit prototypischer Schuettungskonfigurationen unter dem Aspekt der Reaktorsicherheit

    Energy Technology Data Exchange (ETDEWEB)

    Leininger, Simon

    2017-02-22

    In case of a severe accident in a light water reactor, continuous unavailability of cooling water to the reactor core may result in overheating of the fuel elements and finally the loss of core integrity. Under such conditions, a structure of heat-releasing particles of different size and shape may be formed by fragmentation of molten core material in several stages of the accident. The long-term coolability of such beds is of prime im-portance to avoid any damage to the reactor pressure vessel or even a release of fission products to the environment. In the frame of this work, specific experiments were con-ducted under prototypical conditions employing the existing DEBRIS test facility in order to gain further knowledge about the thermohydraulic behavior of such beds. In steady state boiling experiments, the pressure gradients in particle beds were meas-ured both for one- and multi-dimensional cooling water flow conditions and compared with one another in order to assess the flow behavior inside the bed. For these different flow conditions as well as for stratified bed configurations, the maximum removable heat flux densities were determined in the dryout experiments. E. g., it was found that an axial stratification of the permeability can significantly reduce the bed's coolability. For the first time, the quenching behavior of dry, superheated beds was investigated at elevated system pressure up to 0.5 MPa. In these experiments, the effect of system pressure on the coolability was quantified by means of the quenching time (time period to cool down the bed to saturation temperature). The investigated particle beds mainly consisted of non-spherical particles with well-defined geometry (cylinders and screws). It was shown that the effect of the particles geometry on the flow in a particle bed can be best estimated by using an equivalent particle diameter calculated for monodisperse particle beds from the product of the Sauter diameter and a shape factor and for

  16. Surface folding-induced attraction and motion of particles in a soft elastic gel: cooperative effects of surface tension, elasticity, and gravity.

    Science.gov (United States)

    Chakrabarti, Aditi; Chaudhury, Manoj K

    2013-12-17

    We report some experimental observations regarding a new type of long-range interaction between rigid particles that prevails when they are suspended in an ultrasoft elastic gel. A denser particle submerges itself to a considerable depth inside the gel and becomes elasto-buoyant by balancing its weight against the elastic force exerted by the surrounding medium. By virtue of a large elasto-capillary length, the surface of the gel wraps around the particle and closes to create a line singularity connecting the particle to the free surface of the gel. A substantial amount of tensile strain is thus developed in the gel network parallel to the free surface that penetrates to a significant depth inside the gel. The field of this tensile strain is rather long-range because of a large gravito-elastic correlation length and sufficiently strong to pull two submerged particles into contact. The particles move toward each other with an effective force following an inverse linear distance law. When more monomers or dimers of the particles are released inside the gel, they orient rather freely inside the capsules where they are located and attract each other to form closely packed clusters. Eventually, these clusters themselves interact and coalesce. This is an emergent phenomenon in which gravity, capillarity, and elasticity work in tandem to create a long-range interaction. We also present the results of a related experiment, in which a particle suspended inside a thickness-graded gel moves accompanied by the continuous folding and the relaxation of the gel's surface.

  17. SU-E-T-753: Three-Dimensional Dose Distributions of Incident Proton Particle in the Polymer Gel Dosimeter and the Radiochromic Gel Dosimeter: A Simulation Study with MCNP Code

    International Nuclear Information System (INIS)

    Park, M; Kim, G; Ji, Y; Kim, K; Park, S; Jung, H

    2015-01-01

    Purpose: The purpose of this study is to estimate the three-dimensional dose distributions in the polymer and the radiochromic gel dosimeter, and to identify the detectability of both gel dosimeters by comparing with the water phantom in case of irradiating the proton particles. Methods: The normoxic polymer gel and the LCV micelle radiochromic gel were used in this study. The densities of polymer and the radiochromic gel dosimeter were 1.024 and 1.005 g/cm 3 , respectively. The dose distributions of protons in the polymer and radiochromic gel were simulated using Monte Carlo radiation transport code (MCNPX, Los Alamos National Laboratory). The shape of phantom irradiated by proton particles was a hexahedron with the dimension of 12.4 × 12.4 × 15.0 cm 3 . The energies of proton beam were 50, 80, and 140 MeV energies were directed to top of the surface of phantom. The cross-sectional view of proton dose distribution in both gel dosimeters was estimated with the water phantom and evaluated by the gamma evaluation method. In addition, the absorbed dose(Gy) was also calculated for evaluating the proton detectability. Results: The evaluation results show that dose distributions in both gel dosimeters at intermediated section and Bragg-peak region are similar with that of the water phantom. At entrance section, however, inconsistencies of dose distribution are represented, compared with water. The relative absorbed doses in radiochromic and polymer gel dosimeter were represented to be 0.47 % and 2.26 % difference, respectively. These results show that the radiochromic gel dosimeter was better matched than the water phantom in the absorbed dose evaluation. Conclusion: The polymer and the radiochromic gel dosimeter show similar characteristics in dose distributions for the proton beams at intermediate section and Bragg-peak region. Moreover the calculated absorbed dose in both gel dosimeters represents similar tendency by comparing with that in water phantom

  18. Probability distributions of bed load particle velocities, accelerations, hop distances, and travel times informed by Jaynes's principle of maximum entropy

    Science.gov (United States)

    Furbish, David; Schmeeckle, Mark; Schumer, Rina; Fathel, Siobhan

    2016-01-01

    We describe the most likely forms of the probability distributions of bed load particle velocities, accelerations, hop distances, and travel times, in a manner that formally appeals to inferential statistics while honoring mechanical and kinematic constraints imposed by equilibrium transport conditions. The analysis is based on E. Jaynes's elaboration of the implications of the similarity between the Gibbs entropy in statistical mechanics and the Shannon entropy in information theory. By maximizing the information entropy of a distribution subject to known constraints on its moments, our choice of the form of the distribution is unbiased. The analysis suggests that particle velocities and travel times are exponentially distributed and that particle accelerations follow a Laplace distribution with zero mean. Particle hop distances, viewed alone, ought to be distributed exponentially. However, the covariance between hop distances and travel times precludes this result. Instead, the covariance structure suggests that hop distances follow a Weibull distribution. These distributions are consistent with high-resolution measurements obtained from high-speed imaging of bed load particle motions. The analysis brings us closer to choosing distributions based on our mechanical insight.

  19. Characterization of fluidization regime in circulating fluidized bed reactor with high solid particle concentration using computational fluid dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Chalermsinsuwan, Benjapon; Thummakul, Theeranan; Piumsomboon, Pornpote [Chulalongkorn University, Bangkok (Thailand); Gidaspow, Dimitri [Armour College of Engineering, Chicago (United States)

    2014-02-15

    The hydrodynamics inside a high solid particle concentration circulating fluidized bed reactor was investigated using computational fluid dynamics simulation. Compared to a low solid particle reactor, all the conventional fluidization regimes were observed. In addition, two unconventional fluidization regimes, circulating-turbulent and dense suspension bypassing regimes, were found with only primary gas injection. The circulating-turbulent fluidization regime showed uniformly dense solid particle distribution in all the system directions, while the dense suspension bypassing fluidization regime exhibited the flow of solid particles at only one side system wall. Then, comprehensive fluidization regime clarification and mapping were evaluated using in-depth system parameters. In the circulating-turbulent fluidization regime, the total granular temperature was low compared to the adjacent fluidization regimes. In the dense suspension bypassing fluidization regime, the highest total granular temperature was obtained. The circulating-turbulent and dense suspension bypassing fluidization regimes are suitable for sorption and transportation applications, respectively.

  20. Composition and magnetic studies of ultrafine Al-substituted Sr hexaferrite particles prepared by citrate sol-gel method

    Energy Technology Data Exchange (ETDEWEB)

    Nga, Tran Thi Viet [International Training Institute for Materials Science (ITIMS), Hanoi University of Technology, 1 Dai Co Viet Road, Hanoi (Viet Nam); Duong, Nguyen Phuc, E-mail: duong@itims.edu.vn [International Training Institute for Materials Science (ITIMS), Hanoi University of Technology, 1 Dai Co Viet Road, Hanoi (Viet Nam); Hien, Than Duc [International Training Institute for Materials Science (ITIMS), Hanoi University of Technology, 1 Dai Co Viet Road, Hanoi (Viet Nam)

    2012-03-15

    Ultrafine aluminum-substituted strontium hexaferrite particles have been prepared via citrate sol-gel route. Gels were synthesized with molar ratios [Al{sup 3+}]:[Fe{sup 3+}] of 0.4:11.6, 1:11, 1.5:10.5 and 2:10 and the ferrite particles were obtained by annealing the gels at 950 Degree-Sign C for 2 and 24 h. Electron energy dispersive X-ray spectroscopy (EDX) verified the presence of Al in the substituted samples. X-ray diffraction (XRD) confirmed the formation of the M-type hexaferrite phase in the samples with some indication of {alpha}-Fe{sub 2}O{sub 3}. Scanning electron microscope showed that the hexaferrite powder consists hexagonal crystals with average diameter D{sub av} (80-186 nm) that decreases with increasing Al content and increases with increasing annealing time. Magnetic properties were determined using a pulsed-field magnetometer and a vibrating sample magnetometer (VSM). The saturation magnetization at room temperature and the Curie temperature were found to decrease while the coercivity increases with increasing the Al content. The highest coercivity of 10.1 kOe was achieved for the sample with the molar ratio [Al{sup 3+}]:[Fe{sup 3+}]=2:10 annealed for 24 h. The influences of the particle size, composition and impurity on the magnetic properties were discussed. - Highlights: Black-Right-Pointing-Pointer Ultrafine SrFe{sub 12-x}Al{sub x}O{sub 19} particles were prepared by sol-gel method. Black-Right-Pointing-Pointer The gels were annealed at 950 Degree-Sign C for 2 and 24 h. Black-Right-Pointing-Pointer Particle size and magnetic properties depend on Al substitution and annealing time. Black-Right-Pointing-Pointer H{sub c} and M{sub s} are, respectively, 73-96% and 83-91% of the bulk values. Black-Right-Pointing-Pointer The highest H{sub c} value of 10.1 kOe was achieved for this sample series.

  1. Discrete particle simulation of bubble and slug formation in a two-dimensional gas-fluidised bed: A hard-sphere approach.

    NARCIS (Netherlands)

    Hoomans, B.P.B.; Kuipers, J.A.M.; Briels, Willem J.; van Swaaij, Willibrordus Petrus Maria

    1996-01-01

    A discrete particle model of a gas-fluidised bed has been developed and in this the two-dimensional motion of the individual, spherical particles was directly calculated from the forces acting on them, accounting for the interaction between the particles and the interstitial gas phase. Our collision

  2. Influence of Rolling Friction Coefficient on Inter-Particle Percolation in a Packed Bed by Discrete Element Method

    Directory of Open Access Journals (Sweden)

    Zhou Heng

    2016-12-01

    Full Text Available Rolling friction representing the energy dissipation mechanism with the elastic deformation at the contact point could act directly on particle percolation. The present investigation intends to elucidate the influence of rolling friction coefficient on inter-particle percolation in a packed bed by discrete element method (DEM. The results show that the vertical velocity of percolating particles decreases with increasing the rolling friction coefficient. With the increase of rolling friction coefficient, the transverse dispersion coefficient decreases, but the longitudinal dispersion coefficient increases. Packing height has a limited effect on the transverse and longitudinal dispersion coefficient. In addition, with the increase of size ratio of bed particles to percolation ones, the percolation velocity increases. The transverse dispersion coefficient increases with the size ratio before D/d<14. And it would keep constant when the size ratio is greater than 14. The longitudinal dispersion coefficient decreases when the size ratio increases up to D/d=14, then increases with the increase of the size ratio. External forces affect the percolation behaviours. Increasing the magnitude of the upward force (e.g. from a gas stream reduces the percolation velocity, and decreases the dispersion coefficient.

  3. Performance comparison of a silica gel-water and activated carbon-methanol two beds adsorption chillers

    Directory of Open Access Journals (Sweden)

    Szelągowski Adam

    2017-01-01

    Full Text Available The aim of the study is to compare the efficiency of adsorption refrigerating equipment working with different working pairs. Adsorption cooling devices can operate with a relatively low temperature of heat sources while consuming only a small amount of electricity for the operation of auxiliary equipment. Refrigerants used in adsorption devices are substances that do not have a negative impact on the environment. All that makes that adsorption refrigeration seems to be a good solution for utilizing renewable and waste heat sources for cold production. To carry out the experiment the adsorption cooling device has been developed and researched in Institute of Heat Engineering at Warsaw University of Technology. The test bench consisted of two cylindrical adsorbers, condenser, evaporator, oil heater and two oil coolers. In order to perform the correct action it has been developed and implemented special control algorithm device, allowed to keep the temperature in the evaporator at a preset level. The unit tested for two sorption pairs: activated carbon – methanol, and silica gel – water. For activated carbon - methanol working pair it was obtained energy efficiency rating (EER equals to 0.14 and specific cooling power (SPC of 16 W/kg. For silica gel - water EER of refrigeration unit was 0.25 and SPC was equal to 208 W/kg.

  4. Aggregation in particle rich environments: a textural study of examples from volcanic eruptions, meteorite impacts, and fluidized bed processing.

    Science.gov (United States)

    Mueller, Sebastian B; Kueppers, Ulrich; Huber, Matthew S; Hess, Kai-Uwe; Poesges, Gisela; Ruthensteiner, Bernhard; Dingwell, Donald B

    2018-01-01

    Aggregation is a common process occurring in many diverse particulate gas mixtures (e.g. those derived from explosive volcanic eruptions, meteorite impact events, and fluid bed processing). It results from the collision and sticking of particles suspended in turbulent gas/air. To date, there is no generalized model of the underlying physical processes. Here, we investigate aggregates from 18 natural deposits (16 volcanic deposits and two meteorite impact deposits) as well as aggregates produced experimentally via fluidized bed techniques. All aggregates were analyzed for their size, internal structuring, and constituent particle size distribution. Commonalities and differences between the aggregate types are then used to infer salient features of the aggregation process. Average core to rim ratios of internally structured aggregates (accretionary lapilli) is found to be similar for artificial and volcanic aggregates but up to an order of magnitude different than impact-related aggregates. Rim structures of artificial and volcanic aggregates appear to be physically similar (single, sub-spherical, regularly-shaped rims) whereas impact-related aggregates more often show multiple or irregularly shaped rims. The particle size distributions (PSDs) of all three aggregate types are similar (< 200 μm). This proves that in all three environments, aggregation occurs under broadly similar conditions despite the significant differences in source conditions (particle volume fraction, particle size distribution, particle composition, temperature), residence times, plume conditions (e.g., humidity and temperature), and dynamics of fallout and deposition. Impact-generated and volcanic aggregates share many similarities, and in some cases may be indistinguishable without their stratigraphic context.

  5. Aggregation in particle rich environments: a textural study of examples from volcanic eruptions, meteorite impacts, and fluidized bed processing

    Science.gov (United States)

    Mueller, Sebastian B.; Kueppers, Ulrich; Huber, Matthew S.; Hess, Kai-Uwe; Poesges, Gisela; Ruthensteiner, Bernhard; Dingwell, Donald B.

    2018-04-01

    Aggregation is a common process occurring in many diverse particulate gas mixtures (e.g. those derived from explosive volcanic eruptions, meteorite impact events, and fluid bed processing). It results from the collision and sticking of particles suspended in turbulent gas/air. To date, there is no generalized model of the underlying physical processes. Here, we investigate aggregates from 18 natural deposits (16 volcanic deposits and two meteorite impact deposits) as well as aggregates produced experimentally via fluidized bed techniques. All aggregates were analyzed for their size, internal structuring, and constituent particle size distribution. Commonalities and differences between the aggregate types are then used to infer salient features of the aggregation process. Average core to rim ratios of internally structured aggregates (accretionary lapilli) is found to be similar for artificial and volcanic aggregates but up to an order of magnitude different than impact-related aggregates. Rim structures of artificial and volcanic aggregates appear to be physically similar (single, sub-spherical, regularly-shaped rims) whereas impact-related aggregates more often show multiple or irregularly shaped rims. The particle size distributions (PSDs) of all three aggregate types are similar (< 200 μm). This proves that in all three environments, aggregation occurs under broadly similar conditions despite the significant differences in source conditions (particle volume fraction, particle size distribution, particle composition, temperature), residence times, plume conditions (e.g., humidity and temperature), and dynamics of fallout and deposition. Impact-generated and volcanic aggregates share many similarities, and in some cases may be indistinguishable without their stratigraphic context.

  6. Study of Gel Growth Cobalt (II Oxalate Crystals as Precursor of Co3O4 Nano Particles

    Directory of Open Access Journals (Sweden)

    Yuniar Ponco Prananto

    2013-03-01

    Full Text Available Crystal growth of cobalt (II oxalate in silica gel at room temperature as precursor of Co3O4 nano particles has been studied. Specifically, this project is focusing on the use of two different reaction tube types toward crystallization of cobalt (II oxalate in gel. The gel was prepared at pH 5 by reacting sodium metasilicate solution with dilute nitric acid (for U-tube and oxalic acid (for straight tube, with gelling time of 4 days and crystal growth time of 8 (for straight tube and 12 (for U-tube weeks. Result shows that pink crystalline powder was directly formed using straight tube method. The use of different solvents in straight tube method affects crystallization and could delay direct precipitation of the product. In contrast, bigger and better shape of red block crystal was yielded from U-tube method; however, longer growth time was needed. FTIR studies suggest that both growth method produces identical compound of hydrated cobalt (II oxalate. © 2013 BCREC UNDIP. All rights reservedReceived: 25th October 2012; Revised: 30th November 2012; Accepted: 5th December 2012[How to Cite: Y.P. Prananto, M.M. Khunur, D.T. Wahyuni, R.A. Shobirin, Y.R. Nata, E. Riskah, (2013. Study of Gel Growth Cobalt (II Oxalate Crystals as Precursor of Co3O4 Nano Particles. Bulletin of Chemical Reaction Engineering & Catalysis, 7 (3: 198-204. (doi:10.9767/bcrec.7.3.4066.198-204][Permalink/DOI: http://dx.doi.org/10.9767/bcrec.7.3.4066.198-204 ] View in  |

  7. Fluidized-Bed Heat Transfer Modeling for the Development of Particle/Supercritical-CO2 Heat Exchanger

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Zhiwen [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Martinek, Janna G [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-06-03

    Concentrating solar power (CSP) technology is moving toward high-temperature and high-performance design. One technology approach is to explore high-temperature heat-transfer fluids and storage, integrated with a high-efficiency power cycle such as the supercritical carbon dioxide (s-CO2) Brayton power cycle. The s-CO2 Brayton power system has great potential to enable the future CSP system to achieve high solar-to-electricity conversion efficiency and to reduce the cost of power generation. Solid particles have been proposed as a possible high-temperature heat-transfer medium that is inexpensive and stable at high temperatures above 1,000 degrees C. The particle/heat exchanger provides a connection between the particles and s-CO2 fluid in the emerging s-CO2 power cycles in order to meet CSP power-cycle performance targets of 50% thermal-to-electric efficiency, and dry cooling at an ambient temperature of 40 degrees C. The development goals for a particle/s-CO2 heat exchanger are to heat s-CO2 to =720 degrees C and to use direct thermal storage with low-cost, stable solid particles. This paper presents heat-transfer modeling to inform the particle/s-CO2 heat-exchanger design and assess design tradeoffs. The heat-transfer process was modeled based on a particle/s-CO2 counterflow configuration. Empirical heat-transfer correlations for the fluidized bed and s-CO2 were used in calculating the heat-transfer area and optimizing the tube layout. A 2-D computational fluid-dynamics simulation was applied for particle distribution and fluidization characterization. The operating conditions were studied from the heat-transfer analysis, and cost was estimated from the sizing of the heat exchanger. The paper shows the path in achieving the cost and performance objectives for a heat-exchanger design.

  8. An improved design of TRISO particle with porous SiC inner layer by fluidized bed-chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Rongzheng; Liu, Malin, E-mail: liumalin@tsinghua.edu.cn; Chang, Jiaxing; Shao, Youlin; Liu, Bing

    2015-12-15

    Tristructural-isotropic (TRISO) particle has been successful in high temperature gas cooled reactor (HTGR), but an improved design is required for future development. In this paper, the coating layers are reconsidered, and an improved design of TRISO particle with porous SiC inner layer is proposed. Three methods of preparing the porous SiC layer, called high methyltrichlorosilane (MTS) concentration method, high Ar concentration method and hexamethyldisilane (HMDS) method, are experimentally studied. It is indicated that porous SiC layer can be successfully prepared and the density of SiC layer can be adjusted by tuning the preparation parameters. Microstructure and characterization of the improved TRISO coated particle are given based on scanning electron microscope (SEM), X-ray diffraction (XRD), Raman scattering and energy dispersive X-ray (EDX) analysis. It can be found that the improved TRISO coated particle with porous SiC layer can be mass produced successfully. The formation mechanisms of porous SiC layer are also discussed based on the fluidized bed-chemical vapor deposition principle. - Graphical abstract: An improved design of TRISO particle with porous SiC inner layer to replace the inner porous pyrolytic carbon layer was proposed and prepared by FB-CVD method. This new design is aimed to reduce the total internal pressure of the particles by reducing the formation of CO and to reduce the risks of amoeba effect. - Highlights: • An improved design of TRISO particle with porous SiC inner layer was proposed. • Three methods of preparing porous SiC layer are proposed and experimentally studied. • The density of porous SiC layer can be controlled by adjusting experimental parameters. • Formation mechanisms of porous SiC layer were given based on the FB-CVD principle. • TRISO particles with porous SiC inner layer were mass produced successfully.

  9. Poly(NIPAM) micro gel particle de-swelling: a light scattering and small-angle neutron scattering study

    International Nuclear Information System (INIS)

    Daly, E.; Saunders, B.

    1999-01-01

    Full text: Small-angle neutron scattering (SANS) has been used to investigate structural changes during the de-swelling of poly(N-isopropylacrylamide) [poly(NIPAM)] micro gel particles induced by temperature variation and the addition of free polymer [poly(ethylene oxide)]. The extent of particle de-swelling was characterized by photon correlation spectroscopy (PCS). Thermally-induced de-swelling of poly(NIPAM) / deuterated water dispersions occurred on increasing the temperature in the region of the lower critical solution temperature (LCST). The latter was found to be 34 deg C, which is 2 deg C higher than the value reported for poly(NIPAM) particles dispersed in water. The SANS data exhibit a Porod form (Q -4 ) of scattering in regard to the size of the colloidal particles. However, in the swollen state, the scattering measured at temperatures less than the LCST, also has a contribution from poly(NIPAM) chains in a solution-like environment (Ornstein-Zernicke scattering). The SANS data confirm earlier PCS measurements showing that addition of free polymer induces particle de-swelling. The SANS data obtained using added free polymer are the first examples of their type to be reported

  10. Comparison between Gradient Gel Electrophoresis and Nuclear Magnetic Resonance Spectroscopy in Estimating Coronary Heart Disease Risk Associated with LDL and HDL Particle Size

    NARCIS (Netherlands)

    Arsenault, Benoit J.; Lemieux, Isabelle; Després, Jean-Pierre; Wareham, Nicholas J.; Stroes, Erik S. G.; Kastelein, John J. P.; Khaw, Kay-Tee; Boekholdt, S. Matthijs

    2010-01-01

    BACKGROUND: Gradient gel electrophoresis (GGE) and nuclear magnetic resonance (NMR) spectroscopy are both widely accepted methods for measuring LDL and HDL particle size. However, whether or not GGE- or NMR-measured LDL or HDL particle size predicts coronary heart disease (CHD) risk to a similar

  11. Plate-like SrFe{sub 12}O{sub 19} particles prepared by modified sol–gel method

    Energy Technology Data Exchange (ETDEWEB)

    Sapoletova, Nina A., E-mail: n.sapoletova@samsung.com; Kushnir, Sergey E.; Li, Yong Hui; An, Sung Yong; Seo, Jung-wook; Hur, Kang Heon

    2015-09-01

    M-type strontium hexaferrite powders were synthesized by the modified sol–gel method with calcination in NaCl matrix in a temperature range 790–850 °C for 1 h. X-ray diffraction analysis shows the formation of pure M-type strontium hexaferrite phase. The SrFe{sub 12}O{sub 19} particles have a plate-like shape with a mean diameter 130–185 nm and a thickness 45–55 nm. The prepared powders show a saturation magnetization 70–72 emu/g and a coercive force 6.0–6.4 kOe. The suggested synthesis method combines simplicity, using of low calcination temperatures and allows to synthesize pure strontium hexaferrite powders with excellent hard magnetic properties. - Highlights: • Fine SrFe{sub 12}O{sub 19} plate-like particles were synthesized by the modified sol–gel method. • Powders prepared at T =790–850 °C (1 h) are pure M-type strontium hexaferrite. • High values of H{sub C}=6.2–6.4 kOe and M{sub S}=71–72 emu/g have been obtained.

  12. Fluorescent gel particles in the nanometer range for detection of metabolites in living cells

    DEFF Research Database (Denmark)

    Almdal, K.; Sun, H.; Poulsen, A.K.

    2006-01-01

    In this present work a research program that aims at the development of sensor particles based on ratiometric detection of fluorescence from two dyes was embarked on. Such particles can in principle be used to achieve spatially and time resolved measurements of metabolite concentrations in living...... micelles in oil microemulsions. Typical sizes of the particles are tens of nanometers. Characterization methods for such particles based on size exclusion chromatography, photon correlation spectroscopy, scanning electron microscopy, and atomic force microscopy have been developed. The stability...

  13. Application of direct numerical analysis by Fast Fourier Transform to isotopic exchange process in a metal hydride particle bed

    International Nuclear Information System (INIS)

    Fukada, Satoshi; Matsuo, Hiroshi; Mitsuishi, Nobuo

    1993-01-01

    Hydrogen isotope separation based on isotopic exchange on metal hydride surfaces has been proposed. In this paper, the material balance equation of deuterium in a particle bed of a metal hydride and the diffusion equation are solved in a Laplace domain, and Fast Fourier Transform (FFT) is adopted to invert Laplace transforms numerically. The system considered includes steps of fluid-film diffusion, isotopic exchange reaction on surfaces and diffusion in solid particles. The effects of each mass-transfer resistance and axial dispersion on the shape of effluent curves are revealed under two different boundary conditions. Experimental effluent curves were obtained using the pulse-change of an influent deuterium concentration in a LaNi 3 Al 2 hydride bed. The exchange capacity and the overall mass-transfer capacity coefficient were determined from fitting in the time domain and were compared with those by Fourier and moment analyses in terms of the time and accuracy of the calculations. The Fourier analysis gave almost the same values of the mass-transfer quantities in shorter time compared with the analysis by FFT and gave the values of up to the third moment more accurately than those by the moment definition. (author)

  14. Fabrication of mullite-bonded porous SiC ceramics from multilayer-coated SiC particles through sol-gel and in-situ polymerization techniques

    Science.gov (United States)

    Ebrahimpour, Omid

    In this work, mullite-bonded porous silicon carbide (SiC) ceramics were prepared via a reaction bonding technique with the assistance of a sol-gel technique or in-situ polymerization as well as a combination of these techniques. In a typical procedure, SiC particles were first coated by alumina using calcined powder and alumina sol via a sol-gel technique followed by drying and passing through a screen. Subsequently, they were coated with the desired amount of polyethylene via an in-situ polymerization technique in a slurry phase reactor using a Ziegler-Natta catalyst. Afterward, the coated powders were dried again and passed through a screen before being pressed into a rectangular mold to make a green body. During the heating process, the polyethylene was burnt out to form pores at a temperature of about 500°C. Increasing the temperature above 800°C led to the partial oxidation of SiC particles to silica. At higher temperatures (above 1400°C) derived silica reacted with alumina to form mullite, which bonds SiC particles together. The porous SiC specimens were characterized with various techniques. The first part of the project was devoted to investigating the oxidation of SiC particles using a Thermogravimetric analysis (TGA) apparatus. The effects of particle size (micro and nano) and oxidation temperature (910°C--1010°C) as well as the initial mass of SiC particles in TGA on the oxidation behaviour of SiC powders were evaluated. To illustrate the oxidation rate of SiC in the packed bed state, a new kinetic model, which takes into account all of the diffusion steps (bulk, inter and intra particle diffusion) and surface oxidation rate, was proposed. Furthermore, the oxidation of SiC particles was analyzed by the X-ray Diffraction (XRD) technique. The effect of different alumina sources (calcined Al2O 3, alumina sol or a combination of the two) on the mechanical, physical, and crystalline structure of mullite-bonded porous SiC ceramics was studied in the

  15. Effect of Chelating Agents on the Stability of Nano-TiO2 Sol Particles for Sol-Gel Coating.

    Science.gov (United States)

    Maeng, Wan Young; Yoo, Mi

    2015-11-01

    Agglomeration of sol particles in a titanium alkoxide (tetrabutyl orthotitanate (TBOT), > 97%) solution during the hydrolysis and condensation steps makes the sol solution difficult to use for synthesizing homogeneous sol-gel coating. Here, we have investigated the effect of stabilizing agents (acetic acid and ethyl acetoacetate (EAcAc)) on the agglomeration of Ti alkoxide particles during hydrolysis and condensation in order to determine the optimized conditions for controlling the precipitation of TiO2 particles. The study was conducted at R(AC) ([acetic acid]/[TBOT]) = 0.1-5 and R(EAcAc)([EAcAc]/[TBOT]) = 0.05-0.65. We also studied the effects of a basic catalyst ethanolamine (ETA), water, and HCl on sol stability. The chelating ligands in the precursor sol were analyzed with FT-IR. The coating properties were examined by focused ion beam. The stabilizing agents (acetic acid and EAcAc) significantly influenced the agglomeration and precipitation of TBOT precursor particles during hydrolysis. As R(AC) and R(EAcAc) increased, the agglomeration remarkably decreased. The stability of the sol with acetic acid and EAcAc arises from the coordination of the chelating ligand to TBOT that hinders hydrolysis and condensation. A uniform fine coating (thickness: 30 nm) on stainless steel was obtained by using an optimized sol with R(AC) = 0.5 and R(EAcAc) = 0.65.

  16. Evaluation of in-line spatial filter velocimetry as PAT monitoring tool for particle growth during fluid bed granulation.

    Science.gov (United States)

    Burggraeve, A; Van Den Kerkhof, T; Hellings, M; Remon, J P; Vervaet, C; De Beer, T

    2010-09-01

    In this study, the feasibility of spatial filter velocimetry (SFV) as process analytical technology tool for the in-line monitoring of the particle size distribution during top spray fluidized bed granulation was examined. The influence of several process (inlet air temperature during spraying and drying) and formulation variables (HPMC and Tween 20 concentration) upon the particle size distribution during processing, and the end product particle size distribution, tapped density and Hausner ratio was examined using a design of experiments (DOE) (2-level full factorial design, 19 experiments). The trend in end granule particle size distributions of all DOE batches measured with in-line SFV was similar to the off-line laser diffraction (LD) data. Analysis of the DOE results showed that mainly the HPMC concentration and slightly the inlet air temperature during drying had a positive effect on the average end granule size. The in-line SFV particle size data, obtained every 10s during processing, further allowed to explain and better understand the (in)significance of the studied DOE variables, which was not possible based on the LD data as this technique only supplied end granule size information. The variation in tapped density and Hausner ratio among the end granules of the different DOE batches could be explained by their difference in average end granule size. Univariate, multivariate PLS and multiway N-PLS models were built to relate these end granule properties to the in-line-measured particle size distribution. The multivariate PLS tapped density model and the multiway N-PLS Hausner ratio model showed the highest R(2) values in combination with the lowest RMSEE values (R(2) of 82% with an RMSEE of 0.0279 for tapped density and an R(2) of 52% with an RMSEE of 0.0268 for Hausner ratio, respectively). 2010 Elsevier B.V. All rights reserved.

  17. Particle resolved simulations of liquid/solid and gas/solid fluidized beds

    Science.gov (United States)

    Esteghamatian, Amir; Hammouti, Abdelkader; Lance, Michel; Wachs, Anthony

    2017-03-01

    The present work studies particle resolved simulations of liquid/solid and gas/solid fluidization in a cuboid domain with periodic lateral boundary conditions. The focus is on investigating particles' dynamics, while a particular care is devoted to the spatial grid resolution and statistical time convergence of the results. A statistical analysis of particles' motion and fluid fluctuations asserts the intrinsic differences in the flow characteristics and mixing properties of these two configurations. Results reveal anisotropic mechanisms driving particles' motion and highlight the dominance of diffusive and convective mechanisms in liquid/solid and gas/solid regimes, respectively. Following a framework similar to that of Nicolai et al. ["Particle velocity fluctuations and hydrodynamic self-diffusion of sedimenting non-Brownian spheres," Phys. Fluids 7(1), 12-23 (1995)], we estimate the correlation time and the fluctuation length of particles' motion. A force budget analysis is discussed to gain more insight into the role of collision in isotropization of the system. Owing to the wide range of employed grid resolutions and accurate error analysis, the present dataset is also deemed to be useful in calibrating the grid resolution for a desired accuracy of the solution in a fluidization configuration.

  18. Preparation and magnetic properties of different morphology nano-SrFe{sub 12}O{sub 19} particles prepared by sol-gel method

    Energy Technology Data Exchange (ETDEWEB)

    Wang Yongfei [Department of Chemistry, North University of China, Taiyuan 030051 (China); Li Qiaoling [Department of Chemistry, North University of China, Taiyuan 030051 (China)], E-mail: QiaolingL@163.com; Zhang Cunrui; Jing Hongxia [Department of Chemistry, North University of China, Taiyuan 030051 (China)

    2009-01-07

    First a precursor gel was prepared using the sol-gel method, KCl, KBr or KI was respectively mixed into dry-gel according to the mass ratio of dry-gel to salt of 1:3. The mixture of KCl and dry-gel was calcined at 850 deg. C for 2 h to obtain the needle-like nano-SrFe{sub 12}O{sub 19}. The rod-like and bubble nano-SrFe{sub 12}O{sub 19} was respectively prepared by calcining the mixture of KBr and dry-gel or KI and dry-gel, and spherical nano-SrFe{sub 12}O{sub 19} was prepared only by calcined dry-gel. The morphology and grain size of nano-SrFe{sub 12}O{sub 19} were determined by transmission electron microscopy (TEM). The result of X-ray diffraction (XRD) and infrared spectrum (IR) showed that the sample prepared by adding or not adding salt is pure strontium ferrite particles. The maximum coercivity and the saturation magnetization of the strontium ferrite powder were determined by vibrating sample magnetometer (VSM). The relation between morphology and magnetic properties and mechanism of influence of the template agent on the morphology of nano-SrFe{sub 12}O{sub 19} was studied in this work.

  19. In vitro genotoxic effects of hard metal particles assessed by alkaline single cell gel and elution assays.

    Science.gov (United States)

    Anard, D; Kirsch-Volders, M; Elhajouji, A; Belpaeme, K; Lison, D

    1997-01-01

    Hard metals (WC-Co) are made of a mixture of cobalt metal (Co, 5-10%) and tungsten carbide particles (WC, >80%). Excessive inhalation of WC-Co is associated with the occurrence of different lung diseases including an excess of lung cancers. The elective toxicity of hard metal is based on a physico-chemical interaction between cobalt metal and tungsten carbide particles to produce activated oxygen species. The aim of the present study was to assess the genotoxic activity of hard metal particles as compared with Co and WC alone. In human peripheral lymphocytes incubated with Co or WC-Co, a dose- and time-dependent increased production of DNA single strand breaks (ssb) was evidenced by alkaline single cell gel electrophoresis (SCGE) and modified alkaline elution (AE) assays. Addition of 1 M formate, a hydroxyl radical scavenger, had a protective effect against the production of ssb by both WC-Co or Co alone. On the basis of an equivalent cobalt-content, WC-Co produced significantly more ssb than Co. WC alone did not produce DNA ssb detectable by the AE assay, but results obtained with the SCGE assay may suggest that it either allows some uncoiling of the chromatin loops or induces the formation of slowly migrating fragments. Overall, this in vitro study is the first demonstration of the clastogenic property of cobalt metal-containing dusts. The results are consistent with the implication of an increased production of hydroxyl radicals when Co is mixed with WC particles. The SCGE results also suggest that WC may modify the structure of the chromatin, leading to an increased DNA sensitivity to clastogenic effects. Both mechanisms are not mutually exclusive and may concurrently contribute to the greater clastogenic activity of WC-Co dust. This property of WC-Co particles may account for the excess of lung cancers observed in hard metal workers.

  20. Effect of the Amount and Particle Size of Wheat Fiber on the Physicochemical Properties and Gel Morphology of Starches.

    Directory of Open Access Journals (Sweden)

    Qingjie Sun

    Full Text Available Effects of added wheat fiber, with different levels and particle sizes, on the physicochemical properties and gel morphology of wheat starch and mung bean starch were investigated, using rapid visco analyzer (RVA, texture analyzer (TPA and scanning electron microscopy (SEM. Each starch was added with wheat fiber at 10, 20, 30 and 40% (weight basis, g/100g, and different sizes of 60, 100 and 180 mesh, respectively. The peak viscosity (PV of starches with wheat fiber were higher than the control. Starches had the highest PV with 40%, 60 mesh wheat fiber. The starches with wheat fiber showed higher hardness when compared to the control. Wheat starch and mung bean starch, with 40%, 60 mesh wheat fiber, had the highest hardnesses of 147.78 and 1032.11 g, respectively. SEM showed that the dense honeycomb structure of starch gel was diminished with increasing wheat fiber. Additionally, the number of internal pores was reduced, and a large lamellar structure was formed.

  1. Kinetic model for whey protein hydrolysis by alcalase multipoint-immobilized on agarose gel particles

    Directory of Open Access Journals (Sweden)

    R. Sousa Jr

    2004-06-01

    Full Text Available Partial hydrolysis of whey proteins by enzymes immobilized on an inert support can either change or evidence functional properties of the produced peptides, thereby increasing their applications. The hydrolysis of sweet cheese whey proteins by alcalase, which is multipoint-immobilized on agarose gel, is studied here. A Michaelis-Menten model that takes into account competitive inhibition by the product was fitted to experimental data. The influence of pH on the kinetic parameters in the range 6.0 to 11.0 was assessed, at 50ºC. Initial reaction-rate assays in a pHstat at different concentrations of substrate were used to estimate kinetic and Michaelis-Menten parameters, k and K M. Experimental data from long-term batch assays were used to quantify the inhibition parameter, K I. The fitting of the model to the experimental data was accurate in the entire pH range.

  2. Study on process development of solvent extraction of montan wax from lignite particles in a continuous fluidised bed

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Tiejun; Zhao Lianzhong; Di Weiquan; Huang Zhe; Chen Dabao; Zhang Ruiying; Yuan Huiru; Yang Guilin

    1985-12-01

    A new process of continuous solvent extraction for production of montan wax based on particulate fluidization technology was developed. Experimental results obtained in the pilot plant show that the fluidised bed extraction process is successful. The extraction rate is about 65-70% and benzene consumption is 0.46 t per ton of wax. Xun Dian lignite with particle size of 0.2-3 mm was used, which gave the following analysis data: wax content 7.15%, water content about 23%, ash content 12%. The quality of the montan wax product is specified as follows: water content 1.12%., insolubles (in benzene) 0.61%, ash content 0.3%, melting point 84 C, resin 21.16%, asphalts content 11.54%, acid value 35-50, saponification value 102.25.

  3. Influence of fixed and moving bed biofilters on micro particle dynamics in a recirculating aquaculture system

    DEFF Research Database (Denmark)

    Fernandes, Paulo; Pedersen, Lars-Flemming; Pedersen, Per Bovbjerg

    2017-01-01

    Accumulation of fine particulate organic matter in recirculating aquaculture systems (RAS) is a balancebetween system input (from feed to waste), internal transformation, removal and dilution. The mecha-nisms leading to fine particle accumulation in RAS are not fully understood, and neither...

  4. A Review of Eulerian Simulation of Geldart A Particles in Gas-Fluidized Beds

    NARCIS (Netherlands)

    Wang, J.

    2009-01-01

    Although great progress has been made in modeling the gas fluidization of Geldart B and D particles and dilute gas−solid flow by standard Eulerian approach, researchers have shown that, because of the limitation of computational resources and the formation of subgrid-scale (SGS) heterogeneous

  5. Tailoring MCM-41 mesoporous silica particles through modified sol-gel process for gas separation

    Science.gov (United States)

    Sang, Wong Yean; Ching, Oh Pei

    2017-10-01

    Mobil Composition of Matter-41 (MCM-41) is recognized as a potential filler to enhance permeability of mixed matrix membrane (MMM). However, the required loading for available micron-sized MCM-41 was considerably high in order to achieve desired separation performance. In this work, reduced-size MCM-41 was synthesized to minimize filler loading, improve surface modification and enhance polymer-filler compatibility during membrane fabrication. The effect of reaction condition, stirring rate and type of post-synthesis washing solution used on particle diameter of resultant MCM-41 were investigated. It was found that MCM-41 produced at room temperature condition yield particles with smaller diameter, higher specific surface area and enhanced mesopore structure. Increase of stirring rate up to 500 rpm during synthesis also reduced the particle diameter. In addition, replacing water with methanol as the post-synthesis washing solution to remove bromide ions from the precipitate was able to further reduce the particle size by inhibiting polycondensation reaction.

  6. Radial heat transfer in fixed-bed packing with small tube/particle diameter ratios

    Science.gov (United States)

    Grah, A.; Nowak, U.; Schreier, M.; Adler, R.

    2009-02-01

    This paper presents an integrating approach to the description of radial heat transfer in catalyst packing with a flow without chemical reactions. The derived model combines the conventional αW model with the more recent λr( r) model. Particular attention is paid to small tube/particle diameter ratios. Experimental data including different tube diameters and particle shapes are used for adjustment. Spheres were used to represent a type of ordered single-size packing, and hollow cylinders to represent a type of chaotic random packing. A gradual quasi-steady experimental concept allows measurement of temperature gradients even at low flow velocities. Adjusted radial temperature profiles are compared with known approaches from literature, and correlation equations for heat transfer parameters are specified.

  7. Influence of fixed and moving bed biofilters on micro particle dynamics in a recirculating aquaculture system

    DEFF Research Database (Denmark)

    Fernandes, Paulo; Pedersen, Lars-Flemming; Pedersen, Per Bovbjerg

    2017-01-01

    Accumulation of fine particulate organic matter in recirculating aquaculture systems (RAS) is a balancebetween system input (from feed to waste), internal transformation, removal and dilution. The mecha-nisms leading to fine particle accumulation in RAS are not fully understood, and neither...... (Oncorhynchus mykiss), and operatedunder constant feed loading conditions (1 kg feed/m3of make-up water) for more than three months.Production or removal of micro particles according to biofilter mode of operation (FBB vs. MBB) wasassessed by operating all biofilters simultaneously as well as separately....... Nitrate levels ranged between 40and 44 mg N/L, reflecting stable operating conditions and constant feed loading.The trends observed when FBB or MBB were operated separately were also observed when all filterswere operated simultaneously. Differences in biofilm formation, development and maintenance...

  8. Hierarchical self-assembly of telechelic star polymers: from soft patchy particles to gels and diamond crystals

    International Nuclear Information System (INIS)

    Capone, Barbara; Coluzza, Ivan; Blaak, Ronald; Likos, Christos N; Verso, Federica Lo

    2013-01-01

    The design of self-assembling materials in the nanometer scale focuses on the fabrication of a class of organic and inorganic subcomponents that can be reliably produced on a large scale and tailored according to their vast applications for, e.g. electronics, therapeutic vectors and diagnostic imaging agent carriers, or photonics. In a recent publication (Capone et al 2012 Phys. Rev. Lett. 109 238301), diblock copolymer stars have been shown to be a novel system, which is able to hierarchically self-assemble first into soft patchy particles and thereafter into more complex structures, such as the diamond and cubic crystal. The self-aggregating single star patchy behavior is preserved from extremely low up to high densities. Its main control parameters are related to the architecture of the building blocks, which are the number of arms (functionality) and the fraction of attractive end-monomers. By employing a variety of computational and theoretical tools, ranging from the microscopic to the mesoscopic, coarse-grained level in a systematic fashion, we investigate the crossover between the formation of microstructure versus macroscopic phase separation, as well as the formation of gels and networks in these systems. We finally show that telechelic star polymers can be used as building blocks for the fabrication of open crystal structures, such as the diamond or the simple-cubic lattice, taking advantage of the strong correlation between single-particle patchiness and lattice coordination at finite densities. (paper)

  9. Hierarchical self-assembly of telechelic star polymers: from soft patchy particles to gels and diamond crystals

    Science.gov (United States)

    Capone, Barbara; Coluzza, Ivan; Blaak, Ronald; Lo Verso, Federica; Likos, Christos N.

    2013-09-01

    The design of self-assembling materials in the nanometer scale focuses on the fabrication of a class of organic and inorganic subcomponents that can be reliably produced on a large scale and tailored according to their vast applications for, e.g. electronics, therapeutic vectors and diagnostic imaging agent carriers, or photonics. In a recent publication (Capone et al 2012 Phys. Rev. Lett. 109 238301), diblock copolymer stars have been shown to be a novel system, which is able to hierarchically self-assemble first into soft patchy particles and thereafter into more complex structures, such as the diamond and cubic crystal. The self-aggregating single star patchy behavior is preserved from extremely low up to high densities. Its main control parameters are related to the architecture of the building blocks, which are the number of arms (functionality) and the fraction of attractive end-monomers. By employing a variety of computational and theoretical tools, ranging from the microscopic to the mesoscopic, coarse-grained level in a systematic fashion, we investigate the crossover between the formation of microstructure versus macroscopic phase separation, as well as the formation of gels and networks in these systems. We finally show that telechelic star polymers can be used as building blocks for the fabrication of open crystal structures, such as the diamond or the simple-cubic lattice, taking advantage of the strong correlation between single-particle patchiness and lattice coordination at finite densities.

  10. Structural, mechanical, and tribological characterization of sol-gel layers with inbedded anorganic fullerene-like tungsten-disulphide particles

    International Nuclear Information System (INIS)

    Hattermann, Hilke

    2010-01-01

    The preparation of composite coatings consisting of different materials with improved properties has been an intensively studied area of thin film technology in recent years. One method to prepare such composite coatings is the incorporation of nano or micro particles into a matrix of a different material. In this thesis, such composite coatings are investigated which have been prepared via a sol-gel route und contain up to about 30 wt.-% tungsten disulfide particles. These inorganic fullerenes have typical particle sizes of about 100 nm to 200 nm. Two different types of composite coatings with a thickness of up to a few micrometers and with embedded tungsten disulfide particles are prepared: First, coatings with a relatively stiff alumina matrix, and second, coatings with a matrix made of organically modified silica. Different analytical methods are used for the structural characterization of the coatings. The crystal structure and the chemical composition of the coatings are determined via X-ray diffraction and X-ray fluorescence measurements and via energy-dispersive X-ray spectroscopy. Through scanning and transmission electron microscopy the incorporation and the distribution of the tungsten disulfide particles in the respective matrix are analysed. Furthermore, the roughness and the adhesion of the coatings on the substrate are investigated. The influence of the embedded particles and of the temperature of the final heat treatment during the sample preparation on the mechanical properties, like elastic modulus and hardness, of the composite coatings are measured through nanoindentation testing. These experimental results are compared with theoretical values determined via different analytical models for effective materials. Finally, the tribological behavior of the composite coatings is investigated in comparison to pure coatings made of alumina or organically modified silica. With ball-on-disc tests the coefficient of friction of the coatings is measured

  11. Simultaneous measurement of local particle movement, solids concentrations and bubble properties in fluidized bed reactors using a novel fiber optical technique

    Energy Technology Data Exchange (ETDEWEB)

    Tayebi, Davoud

    1998-12-31

    This thesis develops a new method for simultaneous measurements of local flow properties in highly concentrated multiphase flow systems such as gas-solid fluidized bed reactors. The method is based on fiber optical technique and tracer particles. A particle present in the measuring volume in front of the probe is marked with a fluorescent dye. A light source illuminates the particles and the detecting fibres receive reflected light from uncoated particles and fluorescent light from the tracer particle. Using optical filters, the fluorescent light can be distinguished and together with a small fraction of background light from uncoated particles can be used for determination of local flow properties. Using this method, one can simultaneously measure the local movement of a single tracer particle, local bubble properties and the local solids volume fractions in different positions in the bed. The method is independent of the physical properties of the tracer particles. It is also independent of the local solids concentrations in the range of 0 to 60 vol.-%, but is mainly designed for highly concentrated flow systems. A computer programme that uses good signals from at least three sensors simultaneously to calculate the tracer particle velocity in two dimensions have been developed. It also calculates the bubble properties and local solids volume fractions from the same time series. 251 refs., 150 figs., 5 tabs.

  12. Experimental analysis of minimum shear stress to drag particles in a horizontal bed; Analise experimental da tensao de cisalhamento minima para arraste de particulas em um leito horizontal

    Energy Technology Data Exchange (ETDEWEB)

    Dornelas, Breno Almeida; Soares, Edson Jose [Universidade Federal do Espirito Santo. Departamento de Engenharia Mecanica (Brazil)], e-mails: bad@ucl.br, edson@ct.ufes.br; Quirino Filho, Joao Pedro; Loureiro, Bruno Venturini [Faculdade do Centro Leste (UCL). Laboratorio de Fluidos e Fenomenos de Transporte (Brazil)], e-mails: joaoquirino@ucl.br, brunovl@ucl.br

    2009-12-15

    Efficient hole cleaning is still a challenge in well bore drilling to produce oil and gas. The critical point is the horizontal drilling that inherently tends to form a bed of sediment particles at the well bottom during drilling. The cuttings bed erosion depends mainly on the shear stress promoted by the drilling fluid flow. The shear stress required to cause drag in the cuttings bed is investigated according to the fluid and particles properties, using an experimental assembly, composed of: a system for fluid circulation, a particle box, a pump system and measuring equipment. The observation area is a box below the flow line in an acrylic duct used to calibrate sand particles. The test starts with the pumps in a low frequency which is increased in steps. At each frequency level, images are captured of carried particles and the established flow rate is recorded. The images are analyzed when the dragged particle is no longer random and sporadic, but becomes permanent. The shear stress is identified by the PKN correlation (by Prandtl, von Karman, and Nikuradse) for the minimum flow rate necessary to cause drag. Results were obtained for just water and water-glycerin solution flows. (author)

  13. On the Effective Thermal Conductivity of Porous Packed Beds with Uniform Spherical Particles

    Science.gov (United States)

    Kandula, Max

    2010-01-01

    Point contact models for the effective thermal conductivity of porous media with uniform spherical inclusions have been briefly reviewed. The model of Zehner and Schlunder (1970) has been further validated with recent experimental data over a broad range of conductivity ratio from 8 to 1200 and over a range of solids fraction up to about 0.8. The comparisons further confirm the validity of Zehner-Schlunder model, known to be applicable for conductivity ratios less than about 2000, above which area contact between the particles becomes significant. This validation of the Zehner-Schlunder model has implications for its use in the prediction of the effective thermal conductivity of water frost (with conductivity ratio around 100) which arises in many important areas of technology.

  14. Computational study of fluid flow and heat transfer in composite packed beds of spheres with low tube to particle diameter ratio

    International Nuclear Information System (INIS)

    Yang, Jian; Wu, Jiangquan; Zhou, Lang; Wang, Qiuwang

    2016-01-01

    Highlights: • Flow and heat transfer in composite packed beds with low d t /d pe are investigated. • The wall effect would be restrained with radially layered composite packing (RLM). • Heat flux and overall heat transfer efficiency can be improved with RLM packing. - Abstract: The effect of the tube wall on the fluid flow and heat transfer would be important in the packed bed with low tube to particle diameter ratio, which may lead to flow and temperature maldistributions inside, and the heat transfer performance may be lowered. In the present paper, the flow and heat transfer performances in both the composite and uniform packed beds of spheres with low tube to particle diameter were numerically investigated, where the composite packing means randomly packing with non-uniform spheres and the uniform packing means randomly packing with uniform spheres, including radially layered composite packing (RLM), axially layered composite packing (ALM), randomly composite packing (RCM) and randomly uniform packing (RPM). Both the composite and uniform packings were generated with discrete element method (DEM), and the influence of the wall effect on the flow and heat transfer in the packed beds were carefully studied and compared with each other. Firstly, it is found that, the wall effect on the velocity and temperature distributions in the randomly packed bed of uniform spheres (RPM) with low tube to particle diameter ratio were obvious. The average velocity of the near-tube-wall region is higher than that of the inner-tube region in the bed. When the tube wall is adiabatic, the average temperature of the near-tube-wall region is lower. With radially layered composite packing method (RLM), smaller pores would be formed close to the tube wall and big flow channels would be formed in the inner-tube region of the bed, which would be benefit to restrain the wall effect and improve heat transfer in the bed with low tube to particle diameter ratio. Furthermore, it is also

  15. Evaluation of coat uniformity and taste-masking efficiency of irregular-shaped drug particles coated in a modified tangential spray fluidized bed processor.

    Science.gov (United States)

    Xu, Min; Heng, Paul Wan Sia; Liew, Celine Valeria

    2015-01-01

    To explore the feasibility of coating irregular-shaped drug particles in a modified tangential spray fluidized bed processor (FS processor) and evaluate the coated particles for their coat uniformity and taste-masking efficiency. Paracetamol particles were coated to 20%, w/w weight gain using a taste-masking polymer insoluble in neutral and basic pH but soluble in acidic pH. In-process samples (5, 10 and 15%, w/w coat) and the resultant coated particles (20%, w/w coat) were collected to monitor the changes in their physicochemical attributes. After coating to 20%, w/w coat weight gain, the usable yield was 81% with minimal agglomeration (processor shows promise for direct coating of irregular-shaped drug particles with wide size distribution. The coated particles with 15% coat were sufficiently taste masked and could be useful for further application in orally disintegrating tablet platforms.

  16. Bioreactors with Light-Beads Fluidized Bed: The Voidage Function and its Expression

    Directory of Open Access Journals (Sweden)

    Iliev Vasil

    2014-12-01

    Full Text Available Light-beads fluidized bed bioreactors with gel particles are an attractive alternative for the implementation of a system with immobilized cells. They have a number of advantages: soft operating conditions, ability to work in an ideal mixing regime, intensification of heat- and mass transfer processes in the fermentation system. The expansion characteristics of the fluidized bed were investigated in the present work. The fluidized bed expansion was described using the voidage function. It was found that the voidage can be described by nonlinear regression relationships and the regression coefficients were a function of the particles parameters.

  17. Estimation of particle velocity in moving beds based on a flow model for bulk solids. Ryudo model ni motozuita idoso no ryushi sokudo no suisan

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, H. (Muroran Inst. of Tech., Hokkaido (Japan)); Honda, Y. (Snow Brand Milk Products Co. Ltd., Sapporo (Japan))

    1992-11-10

    Based on a particle flow model (stress-shear strain velocity relational expression) which takes account of the bulk volume expansion effect during shearing deformation of particles, a new estimation method for particle velocity distribution and stress distribution is proposed. The method is applied to a crossflow moving bed and to a moving bed for comparison with the experimental values to examine its validity. The method is further extended to predict the velocity profile and stress profile of moving beds in a vertical tube (countercurrent and concurrent) accompanying gas flow. It is indicated that the bulk volume expansion effect differs according to dimensions. The velocity distribution and the stress distribution of flows in a vertical tube are greatly influenced by the nature of the flow, i.e. whether it is a counterflow or a concurrent flow, and the frictional force of solids on a wall surface increases markedly in a concurrent flow, which induces considerable lag of particle velocity. The parameter which is contained in the model and indicates the bulk volume expansion effect is a function of the particle velocity, and it is almost unaffected by the flow rate of gas moving. 7 refs., 10 figs.

  18. Near-bed gradients in particles and nutrients above a mussel bed in the Limfjorden: influence of physical mixing and mussel filtration

    NARCIS (Netherlands)

    Petersen, J.K.; Maar, M.; Ysebaert, T.; Herman, P.M.J.

    2013-01-01

    The aim of this field study was to investigate the role of mussels on near-bed layer characteristics at different hydrodynamic regimes in a micro-tidal system. At Løgstør Broad, the Limfjorden, Denmark, we deployed ‘siphon mimics’ to sample chlorophyll a (chl a), particulate organic carbon (POC) and

  19. Synthesis and magnetic properties of barium-calcium hexaferrite particles prepared by sol-gel and microemulsion techniques

    Energy Technology Data Exchange (ETDEWEB)

    Jotania, R.B. [Department of Physics, Gujarat University, Ahmedabad 380 009, Gujarat (India)], E-mail: rbjotania@gmail.com; Khomane, R.B. [Chemical Engineering Division, National Chemical Laboratory, Pune 411008, Maharastra (India); Chauhan, C.C. [Department of Physics, Gujarat University, Ahmedabad 380 009, Gujarat (India); Menon, S.K. [Department of Chemistry, Gujarat University, Ahmedabad 380 009, Gujarat (India); Kulkarni, B.D. [Chemical Engineering Division, National Chemical Laboratory, Pune 411008, Maharastra (India)

    2008-03-15

    The preparation of W-type hexaferrite particles with the composition BaCa{sub 2}Fe{sub 16}O{sub 27} by microemulsion and a stearic acid sol-gel method with and without surfactant has been investigated at various sintering temperatures. The structural and magnetic characteristics have been studied by X-ray diffraction (XRD), a vibrating sample magnetometer (VSM), scanning electron microscopy (SEM), thermogravimetric analysis (TGA), differential scanning calorimetric (DSC) and Fourier transform infrared (FTIR) techniques. The effect of sintering temperature on the properties of BaCa{sub 2}Fe{sub 16}O{sub 27} hexaferrites has been studied. The value of saturation magnetization (M{sub s}) depends on types of surfactant used. The sample prepared in the presence of polyoxyethylene (20) sorbitan monooleat (Tween 80) shows low saturation magnetization (M{sub s}=15.10 emu/g), whereas the other sample prepared in the presence of a surfactant cetyltrimethylammonium bromide (CTAB) exhibits high saturation magnetization (M{sub s}=24.60 emu/g) compared to the normal sample.

  20. Design, Synthesis, and Structure-Property Relationships of Er3+-Doped TiO₂ Luminescent Particles Synthesized by Sol-Gel.

    Science.gov (United States)

    Lopez-Iscoa, Pablo; Pugliese, Diego; Boetti, Nadia G; Janner, Davide; Baldi, Giovanni; Petit, Laeticia; Milanese, Daniel

    2018-01-02

    Titania particles doped with various concentrations of Erbium were synthesized by the sol-gel method followed by different heat treatments. The shape and the grain growth of the particles were noticeably affected by the concentration of Erbium and the heat treatment conditions. An infrared emission at 1530 nm, as well as green and red up-conversion emissions at 550 and 670 nm, were observed under excitation at 976 nm from all of the synthesized particles. The emission spectra and lifetime values appeared to be strongly influenced by the presence of the different crystalline phases. This work presents important guidelines for the synthesis of functional Er 3+ -doped titania particles with controlled and tailored spectroscopic properties for photonic applications.

  1. Study of the influence of gold particles on the absorbed dose in soft tissue using polymer gel dosimetry

    International Nuclear Information System (INIS)

    Afonso, Luciana Caminha

    2011-01-01

    The presence of high-Z material adjacent to soft tissue, when submitted to irradiation, enhances locally the absorbed dose in these soft tissues. Such effect occurs due to the outscattering of photoelectrons from the high-Z material. Polymer gel dosimeters have been used to investigate this effect. Analytic calculations to estimate the dose enhancement and Monte Carlo simulations have been performed. Samples containing polymer gel (PG) with 0.005 gAu/gPG and pure polymer gel have been irradiated using an X-rays beam produced by 150 kV, filtered with 4 mm Al and 5 mm Cu, which resulted in an approximately 20% higher absorbed dose in the samples with gold in comparison to those with pure polymer gel. The analytic calculations and the Monte Carlo simulation resulted in a dose enhancement factor of approximately 30%. (author)

  2. Sedgeunkedunk stream bed sediment particle diameter from 2007-08-15 to 2016-03-30 (NCEI Accession 0152487)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — We are collecting stream channel geometry and bed sediment grain size distribution data at Sedgeunkedunk stream to evaluate physical habitat changes associated with...

  3. Larkin Mill Dam bed sediment particle diameter from 2008-06-09 to 2016-03-30 (NCEI Accession 0152462)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — We are collecting stream channel geometry and bed sediment grain size distribution data at the Parker River to evaluate physical habitat changes associated with the...

  4. Experimental investigation of pebble flow dynamics using radioactive particle tracking technique in a scaled-down Pebble Bed Modular Reactor (PBMR)

    Energy Technology Data Exchange (ETDEWEB)

    Khane, Vaibhav; Said, I.A.; Al-Dahhan, Muthanna H., E-mail: aldahhanm@mst.edu

    2016-06-15

    Highlights: • Pebble Flow fields at Pebble Bed Modular Reactor was investigated. • Radioactive Particle Tracking (RPT) technique has been used. • Plug flow type velocity profile is suggested at upper cylindrical region. - Abstract: The Pebble Bed Modular Reactor (PBMR) is a type of very-high-temperature reactor (VHTR) that is conceptually very similar to moving bed reactors used in the chemical and petrochemical industries. In a PBMR core, nuclear fuel is in the form of pebbles and moves slowly under the influence of gravity. In this work, an integrated experimental and computational study of granular flow in a scaled-down cold flow PBMR was performed. A continuous pebble re-circulation experimental set-up, mimicking the flow of pebbles in a PBMR was designed and developed. An experimental investigation of pebble flow dynamics in a scaled down test reactor was carried out using a non-invasive radioactive particle tracking (RPT) technique that used a cobalt-60 based tracer to mimic pebbles in terms of shape, size and density. A cross-correlation based position reconstruction algorithm and RPT calibration data were used to obtain results about Lagrangian trajectories, the velocity field, and residence time distributions. The RPT technique results a serve as a benchmark data for assessing contact force models used in the discrete element method (DEM) simulations.

  5. Escoabilidade de leitos de partículas inertes com polpa de frutas tropicais: efeitos na secagem em leito de jorro Flowability of inert particle beds with fruit pulp: effects on the drying in spouted bed

    Directory of Open Access Journals (Sweden)

    Maria de F. D. de Medeiros

    2001-12-01

    Full Text Available Neste trabalho, foram caracterizados seis tipos de material inerte, utilizados na secagem de polpa de frutas em leito de jorro. Determinou-se o ângulo de repouso das partículas, com e sem adição de água e de polpa de diversas frutas tropicais. Correlacionou-se a escoabilidade com as propriedades das partículas e com a composição química das polpas. Analisou-se a influência do ângulo de repouso sobre o desempenho do secador, no que se refere à produção. Os resultados mostraram que, em geral, as polpas com elevadas concentrações de gordura e sólidos insolúveis e baixos teores de açúcares redutores, facilitam a escoabilidade. Uma análise dos resultados obtidos na secagem de polpa de frutas tropicais, utilizando-se partículas de poliestireno de baixa densidade, como material inerte, mostrou que, embora a escoabilidade permita a obtenção de menores vazões de jorro mínimo, em relação ao desempenho do secador, pode não favorecer uma produção maior de pó.In this work six types of inert particles were characterized and analyzed for drying tropical fruit pulps. The repose angle was determined with and without the addition of water and pulp of various tropical fruits. The bed flowability was related to the particle properties and chemical composition of pulps. The influence of the repose angle on the drying performance was analyzed. It was also verified that the composition of pulps influenced the bed flowability. The global analysis showed that the pulps with high lipids and insoluble solids content and low reducing sugar content improved the bed flowability. The results obtained with the drying of the fruit pulps using low-density polystyrene granules as inert particles showed that high flowabilities lead to lower minimum spout flow rates, but do not necessarily lead to the highest powder production.

  6. Highly Conducting Nanosized Monodispersed Antimony-Doped Tin Oxide Particles Synthesized via Nonaqueous Sol−Gel Procedure

    Czech Academy of Sciences Publication Activity Database

    Müller, V.; Rasp, M.; Štefanić, G.; Ba, J.; Günther, S.; Rathouský, Jiří; Niederberger, M.; Fattakhova Rohlfing, D.

    2009-01-01

    Roč. 21, č. 21 (2009), s. 5229-5236 ISSN 0897-4756 Institutional research plan: CEZ:AV0Z40400503 Keywords : nanoparticles * nonaqueous Ssl-gel procedure * oxide materials Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 5.368, year: 2009

  7. Modelling of Effects of Operating Conditions and Coal Reactivity on Temperature of Burning Particles in Fluidized Bed Combustion

    Czech Academy of Sciences Publication Activity Database

    Svoboda, Karel; Hartman, Miloslav; Pohořelý, Michael; Trnka, Otakar

    2004-01-01

    Roč. 1, č. 2 (2004), s. 261-274 ISSN 1211-1910 R&D Projects: GA AV ČR IAA4072201; GA AV ČR IAA4072001 Institutional research plan: CEZ:AV0Z4072921 Keywords : fluidized bed combustion * char temperature * modelling Subject RIV: DI - Air Pollution ; Quality

  8. Fabrication and characterization of novel iodine doped hollow and mesoporous hematite (Fe2O3) particles derived from sol-gel method and their photocatalytic performances.

    Science.gov (United States)

    Demirci, Selim; Yurddaskal, Metin; Dikici, Tuncay; Sarıoğlu, Cevat

    2018-03-05

    In this work, iodine (I) doped hollow and mesoporous Fe 2 O 3 photocatalyst particles were fabricated for the first time through sol-gel method. Phase structure, surface morphology, particle size, specific surface area and optical band gap of the synthesized Fe 2 O 3 photocatalysts were analyzed by X-ray diffraction (XRD), field emission scanning electron microscope (FESEM), X-ray photoelectron spectroscopy (XPS), BET surface analysis, particle size analyzer and UV-vis diffuse reflectance spectrum (UV-vis DRS), respectively. Also, electrochemical properties and photoluminescence spectra of Fe 2 O 3 particles were measured. The results illustrated that high crystalline, hollow and mesoporous Fe 2 O 3 particles were formed. The optical band gap values of the Fe 2 O 3 photocatalysts changed between 2.104 and 1.93eV. Photocatalytic efficiency of Fe 2 O 3 photocatalysts were assessed via MB solution. The photocatalytic activity results exhibited that I doping enhanced the photocatalytic efficiency. 1% mole iodine doped (I-2) Fe 2 O 3 photocatalyst had 97.723% photodegradation rate and 8.638×10 -2 min -1 kinetic constant which showed the highest photocatalytic activity within 45min. Moreover, stability and reusability experiments of Fe 2 O 3 photocatalysts were carried out. The Fe 2 O 3 photocatalysts showed outstanding stability after four sequence tests. As a result, I doped Fe 2 O 3 is a good candidate for photocatalysts. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Granulation of core particles suitable for film coating by agitation fluidized bed II. A proposal of a rapid dissolution test for evaluation of bitter taste of ibuprofen.

    Science.gov (United States)

    Hamashita, Tomohiro; Matsuzaki, Miwako; Ono, Tetsuo; Ono, Masaki; Tsunenari, Yoshinobu; Aketo, Takao; Watano, Satoru

    2008-07-01

    To prepare powdered drugs that do not have a bitter taste, a film coating covering the surfaces of the core particles is required. The dissolution rate of ibuprofen from the coated particles changes according to the physical properties of the core particles. In this study, the effects of the physical properties of granules prepared by using several scales of agitation fluidized beds on the drug dissolution rate were investigated. The dissolution rate of ibuprofen decreased when the apparent density and shape factor of the granules increased. In contrast, the dissolution rate of the drug increased with the friablility of the granules increased. Thus, the structures of the granules appear to affect the dissolution rate of the drug to a large degree. A rapid dissolution test that can be used to investigate the early dissolution rate of ibuprofen in vitro was proposed to evaluate the taste-masking level of the coated particles. The bitter taste-masking level of the coated particles was successfully confirmed by using this novel test method.

  10. Periodic mesoporous silica gels

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, M.T.; Martin, J.E.; Odinek, J.G. [and others

    1996-06-01

    We have synthesized monolithic particulate gels of periodic mesoporous silica by adding tetramethoxysilane to a homogeneous alkaline micellar precursor solution. The gels exhibit 5 characteristic length scales over 4 orders of magnitude: fractal domains larger than the particle size (>500 nm), particles that are {approximately}150 to 500 nm in diameter, interparticle pores that are on the order of the particle size, a feature in the gas adsorption measurements that indicates pores {approximately}10-50 nm, and periodic hexagonal arrays of {approximately}3 nm channels within each particle. The wet gel monoliths exhibit calculated densities as low as {approximately}0.02 g/cc; the dried and calcined gels have bulk densities that range from {approximately}0.3-0.5 g/cc. The materials possess large interparticle ({approximately}1.0-2.3 cc/g) and intraparticle ({approximately}0.6 cc/g) porosities.

  11. Sol-gel synthesis of TiO2nanoparticles: effect of Pluronic P123 on particle's morphology and photocatalytic degradation of paraquat.

    Science.gov (United States)

    Marien, Cédric B D; Marchal, Clément; Koch, Alain; Robert, Didier; Drogui, Patrick

    2017-05-01

    We report a facile method to tune TiO 2 nanoparticles' morphology by modifying and an acid-catalyzed sol-gel synthesis with Pluronic P123. Synthesized particles were characterized by transmission electron microscopy, BET analysis, and X-ray diffraction spectroscopy. XRD analysis revealed a high anatase content while BET measurements showed that porous volume strongly depends on the amount of P123. We demonstrate that high amounts of P123 increase particle's aspect-ratio from spherical to rod-shape morphology. We evaluated the photocatalytic performances for the removal of methyl viologen (paraquat) and found that best performances are obtained for the following weight ratio P123/TiO 2  = 7.5. Furthermore, P25 is less active than synthesized nanoparticles.

  12. In-situ laser spectroscopy of CO, Ch4, and H2O in a particle laden laboratory-scale fluidized bed combustor

    Directory of Open Access Journals (Sweden)

    Lackner Maximilian

    2002-01-01

    Full Text Available The pyrolysis, devolatilization and char combustion of bituminous coal and biomass (beechwood, firwood were investigated in a laboratory-scale fluidized bed combustor by tunable diode laser spectroscopy. Individual fuel particles were suspended in the freeboard of the unit. The bed temperature was 800 °C, the oxygen partial pressure 0 to 20 kPa (0-10 vol.%. Two Fabry Perot type tunable near infrared diode lasers were deployed for quantitative in-situ species concentration measurements. CH4 and CO were measured simultaneously during devolatilization and char combustion in-situ 10 mm above the surface of the fuel particles as well as H2O using laser spectroscopy. Sand particles were passing the probing laser beam path. Besides the resonant absorption of the laser light by CO, CH4 and H2O severe and strongly transient non-resonant attenuation by partial blocking of the beam and beam steering effects occurred. By wavelength tuning the two laser sources, species concentrations could be determined. The measured absorbances had to be corrected for the real temperature measured at the position of the probing laser beam. In addition, CO, CO2 and O2 were determined ex-situ by con ventional methods. A spatial profile inside the FBC of major species (CH4, CO, CO2, O, H, OH was calculated using a chemical kinetics program for a single fuel particle in a plug flow reactor geometry. The results were compared to the experimental findings. Good agreement was found. Tunable diode laser spectroscopy was found to be an apt method of determining quantitative species concentrations of multiple gases in a high temperature multi phase environment.

  13. Highly dispersed spherical Bi{sub 3.25}La{sub 0.75}Ti{sub 3}O{sub 12} nanocrystals via topotactic crystallization of aggregation-free gel particles from an effective inverse miniemulsion sol–gel approach

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Aijun; Zeng, Yanwei, E-mail: zengyw-njut@126.com, E-mail: stephen-zeng@njtech.edu.cn, E-mail: stephen-zeng@163.com; Han, Longxiang; Ding, Chuan; Cao, Liangliang; Li, Rongjie [Nanjing Tech University, State Key Laboratory of Materials-Oriented Chemical Engineering, College of Materials Science and Engineering (China)

    2015-09-15

    Aggregation-free spherical lanthanum-doped bismuth titanate (Bi{sub 3.25}La{sub 0.75}Ti{sub 3}O{sub 12}, BLT) gel particles with an average size of about 150 nm were successfully obtained from an inverse miniemulsion sol–gel process, with Span-80 acting as surfactant, n-butanol as co-surfactant, cyclohexane as continuous phase, and submicro-droplets of aqueous solution containing Bi{sup 3+}, La{sup 3+} and Ti{sup 4+} ions as dispersed phase, and then topotactically transformed into highly dispersed spherical BLT nanocrystals after an in situ crystallization at 600 °C for 8 h. It has been found that the BLT gel particles can be obtained via a moderate sol–gel reaction inside the miniemulsion droplets at 65 °C, but their morphology and aggregation degree are strongly affected by the relative amounts of Span-80 and n-butanol. The perfect spherical BLT gel particles with no aggregation can be achieved only under the condition of 3 wt% n-butanol relative to the mass of cyclohexane, with excessive amount of n-butanol leading to the formation of ill-gelled particles with irregular shapes, while insufficient addition of n-butanol resulting in terrible aggregation of gel particles. To understand the formation of aggregation-free spherical BLT gel particles, a tentative mechanism is proposed and discussed, which reveals that a well-coordinated oil–water interfacial film made up of Span-80 and n-butanol molecules and the appropriately enhanced evaporation of water from such interfaces should be responsible for the formation of aggregation-free spherical BLT gel particles. Graphical Abstract: Aggregation-free spherical BLT (Bi{sub 3.25}La{sub 0.75}Ti{sub 3}O{sub 12}) gel particles can be prepared from an effective inverse miniemulsion sol–gel process, and subsequently topotactically transformed into spherical BLT nanocrystals through an in situ crystallization.

  14. Dye-sensitized solar cells assembled with composite gel polymer electrolytes containing nanosized Al2O3 particles.

    Science.gov (United States)

    Jeon, Nawon; Kim, Dong-Won

    2013-12-01

    Polymeric ionic liquid, poly(1-methyl 3-(2-acryloyloxy propyl) imidazolium iodide) (PMAPII) containing iodide ions is synthesized and used as a matrix polymer for preparing the composite polymer electrolytes. The composite gel polymer electrolytes are prepared by utilizing PMAPII, organic solvent containing redox couple and aluminum oxide nanoparticle for application in dye-sensitized solar cells (DSSCs). PMAPII is highly compatible with organic solvents and thus there is no phase separation between the PMAPII and organic solvents. This makes it be possible to directly solidify the liquid electrolyte in the cell and maintain good interfacial contacts between the electrolyte and electrodes. The addition of 10 wt.% Al2O3 nanoparticle to gel polymer electrolyte provides the most desirable environment for ionic transport, resulting in the improvement of the photovoltaic performance of DSSC. The quasi-solid-state DSSC assembled with optimized composite gel polymer electrolyte containing 10 wt.% Al2O3 nanoparticle exhibits a relatively high conversion efficiency of 6.51% under AM 1.5 illumination at 100 mA cm(-2) and better stability than DSSC with liquid electrolyte.

  15. Particle size of sediments collected from the bed of the Amazon River and its tributaries in June and July 1976

    Science.gov (United States)

    Nordin, Carl F.; Meade, R.H.; Mahoney, H.A.; Delany, B.M.

    1977-01-01

    Sixty-five samples of bed material were collected from the Amazon River and its major tributaries between Belem, Brazil, and Iquitos, Peru. Samples were taken with a standard BM-54 sampler, a pipe dredge, or a Helley-Smith bedload sampler. Most of the samples have median diameters in the size range of fine to medium sand and contain small percentages of fine gravel. Complete size distributions are tabulated.

  16. Particle size of sediments collected from the bed of the Amazon River and its tributaries in May and June 1977

    Science.gov (United States)

    Nordin, Carl F.; Meade, R.H.; Curtis, W.F.; Bosio, N.J.; Delaney, B.M.

    1979-01-01

    One-hundred-eight samples of bed material were collected from the Amazon River and its major tributaries between Belem, Brazil , and Iquitos, Peru. Samples were taken with a standard BM-54 sampler or with pipe dredges from May 18 to June 5, 1977. Most of the samples have median diameters in the size range of fine to medium sand and contain small percentages of fine gravel. Complete size distributions are tabulated. (Woodard-USGS)

  17. Cost-effective nanoporous Agar-Agar polymer/Nickel powder composite particle for effective bio-products adsorption by expanded bed chromatography.

    Science.gov (United States)

    Asgari, Setareh; Jahanshahi, Mohsen; Rahimpour, Ahmad

    2014-09-26

    In the present work a novel kind of dense nanoporous composite matrix for expanded bed application has been successfully first prepared with Nickel powder as a densifier and was covered with Agar-Agar layer as a skeleton, through the method of water-in-oil emulsification. Agar-Agar is a porous and inexpensive polymer. In order to fabricate cost-effective adsorbent with favorable qualities Agar-Agar polymer was used. Thereafter, the customized composite particle was modified by pseudo-affinity dye-ligand, Reactive Blue 4 (RB4), aimed at preparing a pseudo-affinity adsorbent (RB4-Agar-Ni) for bioprodut adsorption from aqueous solution. Bovine Serum Albumin (BSA) was selected as a model protein to investigate the adsorption behavior in batchwise and expanded bed chromatography, and the obtained results were evaluated with that of Streamline™ (Amersham-Pharmacia Biotech, Sweden). Spherical appearance and porous structure of composite particles were observed by the optical microscope (OM) and scanning electronic microscope (SEM). The results suggested that the matrices followed the logarithmic normal size distribution with the range of 65-300 μm and average diameter of 126.81-151.47 μm, proper wet density of 1.64-2.78 g/ml, water content of 62.74-34%, porosity of 98-90% and pore size of about 38-130 nm. For better comprehension of the impact of solid phase properties on the performance of the expanded bed, the expansion and hydrodynamic properties of a composite matrix with a series of densities was evaluated and estimated by the retention time distribution method (RTD) in an expanded bed and was compared with that of other matrices. According to obtained results the expansion factors under the same fluid velocity decreased by increasing the matrix density. Moreover, the axial dispersion coefficient (Dax) is the most appropriate parameter for evaluating the stability of expanded bed, on various operating conditions, such as different flow velocity, bed expansion

  18. Cytotoxicity and immunomodulatory effects of sol-gel combustion based titanium dioxide (TiO2) particles of large surface area on RAW 264.7 macrophages.

    Science.gov (United States)

    Dinesh, Palani; Suresh Yadav, C; Kannadasan, Sathanandhan; Rasool, Mahaboobkhan

    2017-09-01

    The current study was designed to investigate the cytotoxicity and immunomodulatory effects of sol-gel combustion based TiO 2 particles (glycine and l-alanine as reducing agents) of large surface area on RAW 264.7 macrophages. RAW 264.7 macrophages exposed to varying concentrations of TiO 2 particles (0.001 to 1000μg/ml) were assessed after 24h and showed a reduced cell viability at 100 and 1000μg/ml and increased LDH release at 10μg/ml. Furthermore, TiO 2 particles (0.1, 1 and 10μg/ml) were utilized to assess the immune responses and intracellular ROS levels on RAW 264.7 macrophages. TiO 2 particles at 10μg/ml showed increased mRNA expression of inflammatory cytokines (TNFα, IL-1β and IL-6), inflammatory mediators (iNOS and COX-2) and transcription factor (NFκB) similar to that of LPS stimulated macrophages. However, the mRNA expression levels were found near normal levels at lower concentrations (0.1 and 1μg/ml). In addition, TiO 2 particles at 10μg/ml also increased the production of inflammatory cytokines (TNFα, IL-1β and IL-6) and intracellular ROS levels in RAW 264.7 macrophages similar to that of LPS stimulated macrophages. Conclusively, TiO 2 particles prepared through this method at a concentration≤0.1μg/ml can be used for various biological applications with minimal immunomodulatory effects. Copyright © 2017. Published by Elsevier Ltd.

  19. Structural evolution of the SiO2-Ag system prepared by the Sol-gel process with incorporation of Ag particles

    Directory of Open Access Journals (Sweden)

    Garcia-Gonzalez, L.

    2011-02-01

    Full Text Available Structural evolution of Sol-Gel glasses in powder form and coatings with incorporation of Ag particles at the starting solution showed an evolution from SiO2 amorphous matrix to the cristobalite phase with the annealing treatment at around 800 ºC for one hour. This structural evolution was obtained at lower Ag concentration up 0.7 %vol. Two series of samples were studied, A series using HNO3 and B series using HCl as catalytic agent; in both series grenetine was used as a dispersing agent to avoid the precipitation of Ag particles. We found the incorporation of silver in the xerogeles matrix promotes the devitrification process at relatively low temperatures with the presence of partial crystallization in form of cistobalite. This structure was produced by controlling the catalytic agent quoted in the preparation process. The EPR and UV-Vis absorption spectra show the presence of Fe3+ ions as a contaminant in the source of the Ag particles, due to the process to obtain these particles. By means the IR spectra a high (OH- concentration at higher temperatures was observed in this system, until 600 ºC at difference of the sol-gel glasses made with incorporation of Ag particles by nitrates. The color evolution of the coating samples with the annealing temperature varies from a light brown at 100 ºC to yellow at 500 ºC.La evolución estructural de vidrios de Sol-Gel en forma de polvos y recubrimientos preparados con la incorporación de partículas de Ag a partir de la solución precursora muestra la evolución de la matriz amorfa de SiO2 a la fase cristobalita utilizando tratamientos térmicos alrededor de 800 °C por un tiempo de una hora. Dicha evolución estructural fue obtenida en concentraciones bajas a partir de 0.7% de Ag. Dos series de muestras fueron estudiadas, la serie A usando HNO3 y la serie B usando HCl como agente catalítico; en ambas series se uso grenetina como agente dispersante para evitar la precipitación de las part

  20. Does Moss Grow on a Rolling Stone? The Influence of Precipitation Phase on Streamflow Characteristics, Bed Particle Transport and Periphyton Development in 18 Mountain Channels, Central Idaho

    Science.gov (United States)

    Tennant, C.; Crosby, B. T.; Baxter, C.

    2012-12-01

    It has been suggested that linked ecological and geomorphological systems exhibit complex and non-linear response to disturbance. However, quantifying the response of these systems is complicated by identifying the relevant linkages between system components and by variability in time scale adjustments. To help elucidate some of these complexities we characterized the influence of streamflow and bed-substrate mobility on periphyton assemblage development. Study catchments are subdivided into 3 categories based on the fraction of precipitation that fell as rain vs. snow. The categories are rain-dominated (RD), mixed rain-snow (MRS) and snow-dominated (SD). Three water years of streamflow data demonstrate that RD catchments experienced the largest inter-regime and inter-annual variability in streamflow conditions. RD sites were characterized by flashy responses to frequent precipitation events during wet winter and spring months and experienced channel drying during the summer. Runoff in MRS and SD catchments was characterized by much higher magnitude, longer duration flow events in early and mid-summer. Hydrologic results suggest that RD watersheds limit periphyton mass because of drought conditions and that MRS and SD channels control the temporal scale of periphyton development via long duration, high magnitude flood events that transport bed sediments and disrupt primary production. Results from our rock-tracing experiment indicate that assessments of biological disturbance based on hydrologic metrics alone miss important details of the characteristics of physical disturbance within channels. Channels within RD catchments appear to be in disequilibrium because of variability in the frequency and consistency of hydrologic events capable of mobilizing bed particles. Wet winters resulted in frequent and flashy streamflow events that likely caused bedload transport, whereas drier winters caused few streamflow events and subsequently little to no bedload transport

  1. Synthesis of sol–gel silica particles in reverse micelles with mixed-solvent polar cores: tailoring nanoreactor structure and properties

    Energy Technology Data Exchange (ETDEWEB)

    Bürglová, Kristýna; Hlaváč, Jan [Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry (Czech Republic); Bartlett, John R., E-mail: jbartlett@usc.edu.au [University of the Sunshine Coast, Faculty of Science, Health, Education and Engineering (Australia)

    2015-07-15

    In this paper, we describe a new approach for producing metal oxide nano- and microparticles via sol–gel processing in confined media (sodium bis(2-ethylhexyl)sulfosuccinate reverse micelles), in which the chemical and physical properties of the polar aqueous core of the reverse micelles are modulated by the inclusion of a second polar co-solvent. The co-solvents were selected for their capacity to solubilise compounds with low water solubility and included dimethylsulfoxide, dimethylformamide, ethylene glycol, n-propanol, dimethylacetamide and N-methylpyrrolidone. A broad range of processing conditions across the sodium bis(2-ethylhexyl)sulfosuccinate/cyclohexane/water phase diagram were identified that are suitable for preparing particles with dimensions <50 to >500 nm. In contrast, only a relatively narrow range of processing conditions were suitable for preparing such particles in the absence of the co-solvents, highlighting the role of the co-solvent in modulating the properties of the polar core of the reverse micelles. A mechanism is proposed that links the interactions between the various reactive sites on the polar head group of the surfactant and the co-solvent to the nucleation and growth of the particles.

  2. Fluidized-bed gasification of biomass: Conversion of fine carabon particles in the freeboard; Biomassevergasung in der Wirbelschicht: Umsatz von feinen Kohlenstoffpartikeln im Freeboard

    Energy Technology Data Exchange (ETDEWEB)

    Miccio, F. [Ist. Ricerche sulla Combustione-CNR, Napoli (Italy); Moersch, O.; Spliethoff, H.; Hein, K.R.G. [Stuttgart Univ. (Germany). Inst. fuer Verfahrenstechnik und Dampfkesselwesen

    1998-09-01

    The conversion of carbon particles in gasification processes was investigated in a fluidized-bed reactor of the Institute of Chemical Engineering and Steam Boiler Technology of Stuttgart University. This reactor is heated electrically to process temperature, and freeboard coal particles can be sampled using an isokinetic probe. The fuel used in the experiments consisted of beech wood chips. The temperature and air rating, i.e. the main parameters of the process, were varied in order to investigate their influence on product gas quality and carbon conversion. The conversion rate is influenced to a significant extent by grain disintegration and discharge of carbon particles. In gasification conditions, a further conversion process takes place in the freeboard. (orig.) [Deutsch] In dieser Arbeit wird die Umsetzung von Kohlenstoffpartikeln unter Vergasungsbedingungen untersucht. Die Versuche wurden an einem Wirbelschichtreaktor des Instituts fuer Verfahrenstechnik und Dampfkesselwesen der Universitaet Stuttgart durchgefuehrt. Dieser Reaktor wird elektrisch auf Prozesstemperatur beheizt. Mit Hilfe einer isokinetischen Sonde koennen Proben von Kohlenstoffpartikeln im Freeboard genommen werden. Als Brennstoff wurden zerkleinerte Buchenholz-Hackschnitzel eingesetzt. Variiert wurden als Hauptparameter des Prozesses Temperatur und Luftzahl. Untersucht wurde der Einfluss dieser Parameter auf die Qualitaet des Produktgases und die Umsetzung des Kohlenstoffes. Kornzersetzungs- und Austragsvorgaenge von Kohlenstoffpartikeln spielen eine wichtige Rolle fuer den Kohlenstoffumsatz. Unter Vergasungsbedingungen findet im Freeboard eine weitere Umsetzung der Partikel statt. (orig.)

  3. A Three-Dimensional Numerical Study of Gas-Particle Flow and Chemical Reactions in Circulating Fluidised Bed Reactors

    DEFF Research Database (Denmark)

    Hansen, Kim Granly

    axial velocity, and pressure drop provided as a blind test in connection with the 10th International Workshop on Two-Phase Flow Prediction held in Merseburg, Germany, 2002. The simulated profiles are in good qualitative agreement with the experiments, but the extend of the radial solid segregation...... to a blind-test in connection to the 10th international workshop on two-phase flow prediction held in Merseburg, Germany, 2002. The results are validated against experimental findings of particle mass flux across the riser and pressure profile along the riser. The calculations show good agreement...... of the particulate phase is modeled using the kinetic theory for granular flow, and the gas phase turbulence is modeled using a Sub-Grid-Scale model. A computational study of a cold flowing CFB riser has been performed. The results have been compared to experimental findings of particle volume fraction, particle...

  4. Investigation of flow behaviour of coat/ash particles in an advanced pressurised fluidized bed gasifier (APFBG) using radiotracer technique

    International Nuclear Information System (INIS)

    Pant, H.J.; Sharma, V.K.; Gursharan Singh; Vidhya Kamadu, M.; Prakash, S.G.; Krishanamoorthy, S.; Ramani, N.V.S.; Sonde, R.R.

    2004-01-01

    Knowledge of Residence Time Distribution (RTD), Mean Residence Time (MRT) and degree of backmixing of solid phase is important for efficient operation of the coal gasifier. Radiotracer technique was used for measure RTD of coal/ash particles in a pilot-scale gasifier and obtain the values of MRT and backmixing. Lanthanum 140 labeled coal (100 g) was used as a tracer. The tracer was instantaneously injected into the coal feed line and monitored at ash and gas outlets of the gasifier using collimated scintillation detectors. The measured RTD data were treated and MRTs of coal/ash particles were determined. The treated data were simulated using tank-in-series model. The simulation RTD data indicated good degree of mixing with minor bypassing/short-circulating of coal particles. The results of the investigation were found useful for scale-up of the gasification process. (author)

  5. New apparatus for direct counting of β particles from two-dimensional gels and an application to changes in protein synthesis due to cell density

    International Nuclear Information System (INIS)

    Anderson, H.L.; Puck, T.T.; Shera, E.B.

    1987-07-01

    A new method is described for scanning two-dimensional gels by the direct counting of β particles instead of autoradiography. The methodology is described; results are compared with autoradiographic results; and data are presented demonstrating changed patterns of protein synthesis accompanying changes in cell density. The method is rapid and permits identification of differences in protein abundance of approximately 10% for a substantial fraction of the more prominent proteins. A modulation effect of more than 5 standard deviations, accompanying contact inhibition of cell growth, is shown to occur for an appreciable number of these proteins. The method promises to be applicable to a variety of biochemical and genetic experiments designed to delineate changes in protein synthesis accompanying changes in genome, molecular environment, history, and state of differentiation of the cell populations studied. 13 refs., 8 figs., 4 tabs

  6. Nano particle fluidisation in model 2-D and 3-D beds using high speed X-ray imaging and microtomography

    International Nuclear Information System (INIS)

    Gundogdu, O.; Jenneson, P. M.; Tuzun, U.

    2007-01-01

    Nanoparticles and nanocomposites have become a major focus of interest in science and technology due to exceptional properties they provide. However, handling and processing of ultra-fine powders is very challenging because they are extremely cohesive. Fluidization is one of techniques available to process powders. It has become increasingly important to understand how these nanoparticles can be handled and processed to benefit from their favourable properties. A high spatial (down to 400 nm) and temporal resolution (down to 1 ms) X-ray imaging apparatus has been designed to study nanoparticles in fluidized beds under different gas flow velocities. The mean volume distribution of the nanoparticle agglomerates was determined with X-ray microtomography. The X-ray microtomography technique provides valuable in situ, non-destructive structural information on the morphological changes that take place during fluidisation of powder samples

  7. Data-Driven Model-Free Adaptive Control of Particle Quality in Drug Development Phase of Spray Fluidized-Bed Granulation Process

    Directory of Open Access Journals (Sweden)

    Zhengsong Wang

    2017-01-01

    Full Text Available A novel data-driven model-free adaptive control (DDMFAC approach is first proposed by combining the advantages of model-free adaptive control (MFAC and data-driven optimal iterative learning control (DDOILC, and then its stability and convergence analysis is given to prove algorithm stability and asymptotical convergence of tracking error. Besides, the parameters of presented approach are adaptively adjusted with fuzzy logic to determine the occupied proportions of MFAC and DDOILC according to their different control performances in different control stages. Lastly, the proposed fuzzy DDMFAC (FDDMFAC approach is applied to the control of particle quality in drug development phase of spray fluidized-bed granulation process (SFBGP, and its control effect is compared with MFAC and DDOILC and their fuzzy forms, in which the parameters of MFAC and DDOILC are adaptively adjusted with fuzzy logic. The effectiveness of the presented FDDMFAC approach is verified by a series of simulations.

  8. Spherical coated particle fuel for fuel elements of HTGR

    International Nuclear Information System (INIS)

    Chernikov, A.S.; Permyakov, L.N.; Mikhailichenko, L.I.; Nezhevenko, L.B.; Gudovich, A.P.; Landin, N.A.; Ljutikov, R.A.; Solovjev, G.I.

    1985-01-01

    The main results of the investigations on the development of spherical particles fuel for fuel elements of HTGR are described. Typical characteristics of UO 2 spherical particles (size, shape, density, microstructure etc.) and PyC and SiC protective layers (thickness, density, fission product release etc.) are presented. Sol-gel technique and slip casting are used for spheroidization; deposition of protective layers is carried out in the fluidized bed apparatus

  9. Using ground and intact coal Samples to evaluate hydrocarbon fate during supercritical CO2 injection into coal beds: effects of particle size and coal moisture

    Science.gov (United States)

    Kolak, Jon; Hackley, Paul C.; Ruppert, Leslie F.; Warwick, Peter D.; Burruss, Robert

    2015-01-01

    To investigate the potential for mobilizing organic compounds from coal beds during geologic carbon dioxide (CO2) storage (sequestration), a series of solvent extractions using dichloromethane (DCM) and using supercritical CO2 (40 °C and 10 MPa) were conducted on a set of coal samples collected from Louisiana and Ohio. The coal samples studied range in rank from lignite A to high volatile A bituminous, and were characterized using proximate, ultimate, organic petrography, and sorption isotherm analyses. Sorption isotherm analyses of gaseous CO2 and methane show a general increase in gas storage capacity with coal rank, consistent with findings from previous studies. In the solvent extractions, both dry, ground coal samples and moist, intact core plug samples were used to evaluate effects of variations in particle size and moisture content. Samples were spiked with perdeuterated surrogate compounds prior to extraction, and extracts were analyzed via gas chromatography–mass spectrometry. The DCM extracts generally contained the highest concentrations of organic compounds, indicating the existence of additional hydrocarbons within the coal matrix that were not mobilized during supercritical CO2 extractions. Concentrations of aliphatic and aromatic compounds measured in supercritical CO2 extracts of core plug samples generally are lower than concentrations in corresponding extracts of dry, ground coal samples, due to differences in particle size and moisture content. Changes in the amount of extracted compounds and in surrogate recovery measured during consecutive supercritical CO2extractions of core plug samples appear to reflect the transition from a water-wet to a CO2-wet system. Changes in coal core plug mass during supercritical CO2 extraction range from 3.4% to 14%, indicating that a substantial portion of coal moisture is retained in the low-rank coal samples. Moisture retention within core plug samples, especially in low-rank coals, appears to inhibit

  10. Documentation of particle-size analyzer time series, and discrete suspended-sediment and bed-sediment sample data collection, Niobrara River near Spencer, Nebraska, October 2014

    Science.gov (United States)

    Schaepe, Nathaniel J.; Coleman, Anthony M.; Zelt, Ronald B.

    2018-04-06

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Army Corps of Engineers, monitored a sediment release by Nebraska Public Power District from Spencer Dam located on the Niobrara River near Spencer, Nebraska, during the fall of 2014. The accumulated sediment behind Spencer Dam ordinarily is released semiannually; however, the spring 2014 release was postponed until the fall. Because of the postponement, the scheduled fall sediment release would consist of a larger volume of sediment. The larger than normal sediment release expected in fall 2014 provided an opportunity for the USGS and U.S. Army Corps of Engineers to improve the understanding of sediment transport during reservoir sediment releases. A primary objective was to collect continuous suspended-sediment data during the first days of the sediment release to document rapid changes in sediment concentrations. For this purpose, the USGS installed a laser-diffraction particle-size analyzer at a site near the outflow of the dam to collect continuous suspended-sediment data. The laser-diffraction particle-size analyzer measured volumetric particle concentration and particle-size distribution from October 1 to 2 (pre-sediment release) and October 5 to 9 (during sediment release). Additionally, the USGS manually collected discrete suspended-sediment and bed-sediment samples before, during, and after the sediment release. Samples were collected at two sites upstream from Spencer Dam and at three bridges downstream from Spencer Dam. The resulting datasets and basic metadata associated with the datasets were published as a data release; this report provides additional documentation about the data collection methods and the quality of the data.

  11. Numerical Analysis Study of Sarawak Barrage River Bed Erosion and Scouring by Using Smooth Particle Hydrodynamic (SPH)

    Science.gov (United States)

    Zainol, M. R. R. M. A.; Kamaruddin, M. A.; Zawawi, M. H.; Wahab, K. A.

    2017-11-01

    Smooth Particle Hydrodynamic is the three-dimensional (3D) model. In this research work, three cases and one validation have been simulate using DualSPHysics. Study area of this research work was at Sarawak Barrage. The cases have different water level at the downstream. This study actually to simulate riverbed erosion and scouring properties by using multi-phases cases which use sand as sediment and water. The velocity and the scouring profile have been recorded as the result and shown in the result chapter. The result of the validation is acceptable where the scouring profile and the velocity were slightly different between laboratory experiment and simulation. Hence, it can be concluded that the simulation by using SPH can be used as the alternative to simulate the real cases.

  12. The characteristics of bed agglomeration during fluidized bed combustion of eucalyptus bark

    International Nuclear Information System (INIS)

    Chaivatamaset, Pawin; Tia, Suvit

    2015-01-01

    The bed agglomeration behaviors were investigated experimentally when eucalyptus bark was burning tested in a laboratory scale fluidized bed reactor. The focuses of this work were the influences of operating conditions and bed materials on the bed agglomeration tendency and the elucidation in the behaviors of fuel inorganic elements and the governing mode of the agglomeration. It was found that the defluidization caused by the bed agglomeration was clearly detectable from the decrease in measured bed pressure. The growth of bed particle and accumulation of agglomerates during combustion provided the partial to complete defluidization. The defluidization was promoted by the increase of bed temperature and bed particle size, and the decrease of fluidizing air velocity. The SEM-EDS analyses revealed that the bed agglomeration was mainly attributed to the formation of potassium silicate compounds as liquid phase during the combustion. This was initiated by the chemical reaction between the bed particle and the released ash constituents. In this study, the inorganic migration from fuel particle to bed particle was likely dominated by the condensation/reaction. The thermodynamic examination by ternary phase diagram analysis corroborated that the liquid phase formation of the ash derived materials controlled the agglomeration. The alumina sand prevented the bed agglomeration since it was inactive in the formation of viscous molten substances during combustion at the observed temperatures. - Highlights: • The behaviors of bed agglomeration were studied during the fluidized bed combustion of eucalyptus bark. • The increase in bed temperature and sand size, and the decrease of air velocity promoted bed defluidization. • The formation of molten potassium silicate compounds conduced to the bed agglomeration. • Condensation/reaction was the dominant inorganic migration mechanism from fuel particle to bed particle. • The alumina sand prevented effectively the bed

  13. Effects of salinity and particle concentration on sediment hydrodynamics and critical bed-shear-stress for erosion of fine grained sediments used in wetland restoration projects

    Directory of Open Access Journals (Sweden)

    M. Ghose-Hajra

    2015-03-01

    Full Text Available Sea-level rise, the increasing number and intensity of storms, oil and groundwater extraction, and coastal land subsidence are putting people and property at risk along Louisiana’s coast, with major implications for human safety and economic health of coastal areas. A major goal towards re-establishing a healthy and sustainable coastal ecosystem has been to rebuild Louisiana’s disappearing wetlands with fine grained sediments that are dredged or diverted from nearby rivers, channels and lakes to build land in open water areas. A thorough geo-hydrodynamic characterization of the deposited sediments is important in the correct design and a more realistic outcome assessment of the long-term performance measures for ongoing coastal restoration projects. This paper evaluates the effects of salinity and solid particle concentration on the re-suspension characteristics of fine-grained dredged sediments obtained from multiple geographic locations along the Gulf coast. The critical bed-shear-stress for erosion has been evaluated as a function of sedimentation time. The sediment hydrodynamic properties obtained from the laboratory testing were used in a numerical coastal sediment distribution model to aid in evaluating sediment diversions from the Mississippi River into Breton Sound and Barataria Bay.

  14. Modelling of erosion of bentonite gel by gel/sol flow

    Energy Technology Data Exchange (ETDEWEB)

    Moreno, Luis; Neretnieks, Ivars; Longcheng Liu (Chemical Engineering and Technology, School of Chemical Science and Engineering, Royal Institute of Technology, Stockholm (Sweden))

    2010-11-15

    order of a metre per year the gel may penetrate several metres into the fracture when steady state is reached. The simulations were made with only sodium as counterion. Most simulations had sodium concentrations below the critical coagulation concentration, CCC. In the compacted bentonite at the fracture mouth it was 10 mM and 0.1 mM in the approaching water. At these concentrations the gel is expansive and can turn into a sol releasing colloidal particles. The low ion concentration has a strong impact on the fluid viscosity, which increases with decreasing ionic strength. At the same time, however the repulsion forces between the smectite particles increase causing a quicker expansion. Simulations with higher sodium concentrations had a marginal influence on the erosion rate. For the highest water flow rates the smectite loss could be up to 0.3 kg per year for one canister. This is more than one order of magnitude larger than what could be reached by smectite particle diffusion alone if fluid flow was neglected. In experiments in downward facing slits (fractures) it has been found that bentonite releases gel agglomerates much faster than expected. These are released and sediment also under conditions where it is expected that the smectite particles should have separated into individual smectite sheets, which would not noticeably be influenced by gravity. The reasons for this behaviour are not understood. In the modelling it is assumed that there are no other larger non-smectite particles that would be left behind to gradually build up a bed of particles that could act as filter, slowing down or even straining further smectite penetration into the fracture. The modelling results could therefore be highly pessimistic because bentonites contain tens of percent of accessory minerals that do not form colloids and the presence of which may cause the expansion to be slowed down by friction against the fracture walls

  15. Prediction of bed level variations in nonuniform sediment bed channel

    Indian Academy of Sciences (India)

    B R Andharia

    2018-04-12

    Apr 12, 2018 ... have been undertaken for measurements of bed and water levels in an aggrading channel due to overloading of nonuniform sediments ..... 2.4 Thickness of active bed layer. The mixing zone of sediment remaining in contact with the flow is referred as active layer (ABL). The thickness and particle size ...

  16. Bed agglomeration characteristics of palm shell and corncob combustion in fluidized bed

    International Nuclear Information System (INIS)

    Chaivatamaset, Pawin; Sricharoon, Panchan; Tia, Suvit

    2011-01-01

    Bed particle agglomeration was studied experimentally in an atmospheric laboratory scale fluidized bed combustor using quartz sand as bed material. Palm shell and corncob were tested. The objectives of the study were (i) to describe the contributions of the biomass ash properties and the operating conditions on the bed agglomeration tendency in term of the bed defluidization time (t def ) and the extent of potassium accumulation in the bed (K/Bed) and (ii) to further elucidate the ash inorganic behaviors and the governing bed agglomeration mechanisms. Defluidization caused by the bed agglomeration was experienced in all experiments during combustion of these biomasses, as a consequence of the presence of potassium in biomass. The experimental results indicated that biomass ash characteristics were the significant influence on the bed agglomeration. The increasing bed temperature, bed particle size and static bed height and the decreasing fluidizing air velocity enhanced the bed agglomeration tendency. The SEM/EDS analyses on the agglomerates confirmed that the agglomeration was attributed to the formation of potassium silicate liquid enriched on the surface of quartz sand particles in conjunction with the high surface temperature of the burning biomass char particles. Thermodynamic examination based on the phase diagram analysis confirmed that the molten phase formation was responsible for the agglomeration. In this study, the high molten ash fraction resulting from the high potassium content in biomass promoted the agglomeration and thus defluidization. - Highlights: → Palm shell and corncob of Thailand are tested their bed agglomeration behaviors during fluidized bed combustion. → The increase of bed temperature, bed particle size and static bed height and the decrease of air velocity enhance bed agglomeration. → The formation of ash derived potassium silicate melts enriched on sand surface is the key process. → The collision between char and sand

  17. Incipient motion of gravel and coal beds

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    turbulent regime, identified based on physical reasoning and dimensional analysis, are the Shields parameter, particle Froude number, non-dimensional particle diameter and non-dimensional flow depth. Equations of critical bed shear stress ...

  18. Identification of TiO2 clusters present during synthesis of sol-gel derived TiO2 nano-particles

    DEFF Research Database (Denmark)

    Simonsen, Morten Enggrob; Søgaard, Erik Gydesen

    Synthesis of titanium dioxide nanoparticles with controlled size distribution and morphology are of great interest for many applications i.e. photocatalysis and dye sensitized solar cells (DSSC). The sol-gel method has some advantages over other preparation techniques in the many parameters, which...

  19. Adsorption of shape-anisotropic and porous particles at the air-water and the decane-water interface studied by the gel trapping technique

    NARCIS (Netherlands)

    Sharp, E.L.; Al-Shehri, H.; Horozov, T.S.; Stoyanov, S.D.; Paunov, V.N.

    2014-01-01

    We have studied the attachment and orientation of anisotropic and porous microparticles at liquid surfaces by using the gel trapping technique (GTT). This technique involves spreading of the microparticles of interest at the liquid interface, subsequent setting of the aqueous phase to a hydrogel

  20. Biopolymer gels containing fructooligosaccharides.

    Science.gov (United States)

    Silva, Karen Cristina Guedes; Sato, Ana Carla Kawazoe

    2017-11-01

    The influence of the addition of fructooligosaccharide (FOS) in an external gelated alginate/gelatin biopolymer matrix, was evaluated in order to produce biopolymeric structures with functional effects. Solutions were characterized regarding their rheological properties, macrogels regarding their microstructure and mechanical properties and microgels were characterized in relation to their particle size distribution and morphology. Close relationship was found between the microstructure, rheological and mechanical properties of the biopolymeric systems. An increased viscosity and accentuated elastic and pseudoplastic behavior were associated to denser microstructures. The FOS addition caused changes in the evaluated properties, resulting in more cohesive structures, with smaller pores and higher viscosity, compared to alginate-gelatin gels. The addition of 3% FOS to biopolymeric system provided an optimal condition, allowing the formation of stronger gels, with smaller pores and beads with smaller sizes, indicating the potential use of these functional systems as texture modifiers or encapsulation systems. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Thermoresponsive Gels

    OpenAIRE

    Taylor, M. Joan; Tomlins, P.; Sahota, T. S.

    2016-01-01

    An invited review and relates to the responsive gel used in the "artificial pancreas" work og INsmart, DMU. This article is an Open Access journal. Thermoresponsive gelling materials constructed from natural and synthetic polymers can be used to provide triggered action and therefore customised products such as drug delivery and regenerative medicine types as well as for other industries. Some materials give Arrhenius-type viscosity changes based on coil to globule transitions. Others ...

  2. The use of silica gel prepared by sol-gel method and polyurethane foam as microbial carriers in the continuous degradation of phenol.

    Science.gov (United States)

    Brányik, T; Kuncová, G; Páca, J

    2000-08-01

    A mixed microbial culture was immobilized by entrapment into silica gel (SG) and entrapment/ adsorption on polyurethane foam (PU) and ceramic foam. The phenol degradation performance of the SG biocatalyst was studied in a packed-bed reactor (PBR), packed-bed reactor with ceramic foam (PBRC) and fluidized-bed reactor (FBR). In continuous experiments the maximum degradation rate of phenol (q(s)max) decreased in the order: PBRC (598 mg l(-1) h(-1)) > PBR (PU, 471 mg l(-1)h(-1)) > PBR(SG, 394 mg l(-1) h(-1)) > FBR (PU, 161 mg l(-1) h(-1)) > FBR (SG, 91 mg l(-1) h(-1)). The long-term use of the SG biocatalyst in continuous phenol degradation resulted in the formation of a 100-200 microm thick layer with a high cell density on the surface of the gel particles. The abrasion of the surface layer in the FBR contributed to the poor degradation performance of this reactor configuration. Coating the ceramic foam with a layer of cells immobilized in colloidal SiO2 enhanced the phenol degradation efficiency during the first 3 days of the PBRC operation, in comparison with untreated ceramic packing.

  3. Polymer architecture of magnetic gels: a review

    Science.gov (United States)

    Weeber, Rudolf; Hermes, Melissa; Schmidt, Annette M.; Holm, Christian

    2018-02-01

    In this review article, we provide an introduction to ferrogels, i.e. polymeric gels with embedded magnetic particles. Due to the interplay between magnetic and elastic properties of these materials, they are promising candidates for engineering and biomedical applications such as actuation and controlled drug release. Particular emphasis will be put on the polymer architecture of magnetic gels since it controls the degrees of freedom of the magnetic particles in the gel, and it is important for the particle-polymer coupling determining the mechanisms available for the gel deformation in magnetic fields. We report on the different polymer architectures that have been realized so far, and provide an overview of synthesis strategies and experimental techniques for the characterization of these materials. We further focus on theoretical and simulational studies carried out on magnetic gels, and highlight their contributions towards understanding the influence of the gels’ polymer architecture.

  4. Geochemistry and jasper beds from the Ordovician Løkken ophiolite, Norway: origin of proximal and distal siliceous exhalites

    Science.gov (United States)

    Grenne, Tor; Slack, John F.

    2005-01-01

    Stratiform beds of jasper (hematitic chert), composed essentially of SiO2 (69-95 wt %) and Fe2O3 (3-25 wt %), can be traced several kilometers along strike in the Ordovician L??kken ophiolite, Norway. These siliceous beds are closely associated with volcanogenic massive sulfide (VMS) deposits and are interpreted as sea-floor gels that were deposited by fallout from hydrothermal plumes in silica-rich seawater, in which plume-derived Fe oxyhydroxide particles promoted flocculation and rapid settling of large (???200 ??m) colloidal particles of silica-iron oxyhydroxide. Concentrations of chalcophile elements in the jasper beds are at the parts per million level implying that sulfide particle fallout was insignificant and that the Si-Fe gel-forming plumes were mainly derived from intermediate- (100??-250??C) to high-temperature (>250??) white smoker-type vents with high Fe/S ratios. The interpreted setting is similar to that of the Lau basin, where high-temperature (280??-334??C) white smoker venting alternates or overlaps with sulfide mound-forming black smoker venting. Ratios of Al, Sc, Th, Hf, and REE to iron are very low and show that the detrital input was <0.1 percent of the bulk jasper. Most jasper beds are enriched in U, V, P, and Mo relative to the North American Shale Composite, reflecting a predominantly seawater source, whereas REE distribution patterns (positive Eu and negative Ce anomalies) reflect variable mixing of hydrothermal solutions with oxic seawater at dilution ratios of ???102 to 104. Trace element variations in the gel precursor to the jasper are thought to have been controlled by coprecipitation and/or adsorption by Fe oxyhydroxide particles that formed by the oxidation of hydrothermal Fe2+ within the variably seawater-diluted hydrothermal plume(s). Thick jasper layers near the H??ydal VMS orebody show distinct positive As/Fe and Sb/Fe anomalies that are attributed to near-vent rapid settling of Si-Fe particles derived from As- and Sb

  5. Sol-gel derived sorbents

    Science.gov (United States)

    Sigman, Michael E.; Dindal, Amy B.

    2003-11-11

    Described is a method for producing copolymerized sol-gel derived sorbent particles for the production of copolymerized sol-gel derived sorbent material. The method for producing copolymerized sol-gel derived sorbent particles comprises adding a basic solution to an aqueous metal alkoxide mixture for a pH.ltoreq.8 to hydrolyze the metal alkoxides. Then, allowing the mixture to react at room temperature for a precalculated period of time for the mixture to undergo an increased in viscosity to obtain a desired pore size and surface area. The copolymerized mixture is then added to an immiscible, nonpolar solvent that has been heated to a sufficient temperature wherein the copolymerized mixture forms a solid upon the addition. The solid is recovered from the mixture, and is ready for use in an active sampling trap or activated for use in a passive sampling trap.

  6. Gas distributor for fluidized bed coal gasifier

    Science.gov (United States)

    Worley, Arthur C.; Zboray, James A.

    1980-01-01

    A gas distributor for distributing high temperature reaction gases to a fluidized bed of coal particles in a coal gasification process. The distributor includes a pipe with a refractory reinforced lining and a plurality of openings in the lining through which gas is fed into the bed. These feed openings have an expanding tapered shape in the downstream or exhaust direction which aids in reducing the velocity of the gas jets as they enter the bed.

  7. Silica-gel Particles Loaded with an Ionic Liquid for Separation of Zr(IV Prior to Its Determination by ICP-OES

    Directory of Open Access Journals (Sweden)

    Hadi M. Marwani

    2016-06-01

    Full Text Available A new ionic liquid loaded silica gel amine (SG-APTMS-N,N-EPANTf2 was developed, as an adsorptive material, for selective adsorption and determination of zirconium, Zr(IV, without the need for a chelating intermediate. Based on a selectivity study, the SG-APTMS-N,N-EPANTf2 phase showed a perfect selectivity towards Zr(IV at pH 4 as compared to other metallic ions, including gold [Au(III], copper [Cu(II], cobalt [Co(II], chromium [Cr(III], lead [Pb(II], selenium [Se(IV] and mercury [Hg(II] ions. The influence of pH, Zr(IV concentration, contact time and interfering ions on SG-APTMS-N,N-EPANTf2 uptake for Zr(IV was evaluated. The presence of incorporated donor atoms in newly synthesized SG-APTMS-N,N-EPANTf2 phase played a significant role in enhancing its uptake capacity of Zr(IV by 78.64% in contrast to silica gel (activated. The equilibrium and kinetic information of Zr(IV adsorption onto SG-APTMS-N,N-EPANTf2 were best expressed by Langmuir and pseudo second-order kinetic models, respectively. General co-existing cations did not interfere with the extraction and detection of Zr(IV. Finally, the analytical efficiency of the newly developed method was also confirmed by implementing it for the determination of Zr(IV in several water samples.

  8. Silica-gel Particles Loaded with an Ionic Liquid for Separation of Zr(IV) Prior to Its Determination by ICP-OES.

    Science.gov (United States)

    Marwani, Hadi M; Alsafrani, Amjad E; Asiri, Abdullah M; Rahman, Mohammed M

    2016-06-29

    A new ionic liquid loaded silica gel amine (SG-APTMS-N,N-EPANTf₂) was developed, as an adsorptive material, for selective adsorption and determination of zirconium, Zr(IV), without the need for a chelating intermediate. Based on a selectivity study, the SG-APTMS-N,N-EPANTf₂ phase showed a perfect selectivity towards Zr(IV) at pH 4 as compared to other metallic ions, including gold [Au(III)], copper [Cu(II)], cobalt [Co(II)], chromium [Cr(III)], lead [Pb(II)], selenium [Se(IV)] and mercury [Hg(II)] ions. The influence of pH, Zr(IV) concentration, contact time and interfering ions on SG-APTMS-N,N-EPANTf₂ uptake for Zr(IV) was evaluated. The presence of incorporated donor atoms in newly synthesized SG-APTMS-N,N-EPANTf₂ phase played a significant role in enhancing its uptake capacity of Zr(IV) by 78.64% in contrast to silica gel (activated). The equilibrium and kinetic information of Zr(IV) adsorption onto SG-APTMS-N,N-EPANTf₂ were best expressed by Langmuir and pseudo second-order kinetic models, respectively. General co-existing cations did not interfere with the extraction and detection of Zr(IV). Finally, the analytical efficiency of the newly developed method was also confirmed by implementing it for the determination of Zr(IV) in several water samples.

  9. Development of Coated Particle Fuel Technology

    International Nuclear Information System (INIS)

    Cho, Moon Sung; Kim, B. G.; Kim, Y. K.

    2009-04-01

    UO 2 kernel fabrication technology was developed at the lab sacle(20∼30g-UO 2 /batch). The GSP technique, modified method of sol-gel process, was used in the preparation of spherical ADU gel particle and these particles were converted to UO 3 and UO 2 phases in calcination furnace and sintering furnace respectively. Based on the process variables optimized using simulant kernels in 1-2 inch beds, SiC TRISO-coated particles were fabricated using UO 2 kernel. Power densities of TRISO coated particle fuels and gamma heat of the tubes are calculated as functions of vertical location of the fuel specimen in the irradiation holes by using core physics codes, MCNP and Helios. A finite model was developed for the calculations of temperatures and stresses of the specimen and the irradiation tubes. Dimensions of the test tubes are determined based on the temperatures and stresses as well as the gamma heat generated at the given condition. 9 modules of the COPA code (MECH, FAIL, TEMTR, TEMBL, TEMPEB, FPREL, MPRO, BURN, ABAQ), the MECH, FAIL, TEMTR, TEMBL, TEMPEB, and FPREL were developed. The COPA-FPREL was verified through IAEA CRP-6 accident benchmarking problems. KAERI participated in the round robin test of IAEA CRP-6 program to characterize the diameter, sphericity, coating thickness, density and anisotropy of coated particles provided by Korea, USA and South Africa. The inspection and test plan describing specifications and inspection method of coated particles was developed to confirm the quality standard of coated particles. The quality inspection instructions were developed for the inspection of coated particles by particle size analyzer, density inspection of coating layers by density gradient column, coating thickness inspection by X-ray, and inspection of optical anistropy factor of PyC layer. The quality control system for the TRISO-coated particle fuel was derived based on the status of quality control systems of other countries

  10. Hydrodynamics of multi-phase packed bed micro-reactors

    NARCIS (Netherlands)

    Márquez Luzardo, N.M.

    2010-01-01

    Why to use packed bed micro-reactors for catalyst testing? Miniaturized packed bed reactors have a large surface-to-volume ratio at the reactor and particle level that favors the heat- and mass-transfer processes at all scales (intra-particle, inter-phase and inter-particle or reactor level). If the

  11. Silica reinforced triblock copolymer gels

    DEFF Research Database (Denmark)

    Theunissen, E.; Overbergh, N.; Reynaers, H.

    2004-01-01

    The effect of silica and polymer coated silica particles as reinforcing agents on the structural and mechanical properties of polystyrene-poly(ethylene/butylene)-polystyrene (PS-PEB-PS) triblock gel has been investigated. Different types of chemically modified silica have been compared in order...

  12. Thermoresponsive Gels

    Directory of Open Access Journals (Sweden)

    M. Joan Taylor

    2017-01-01

    Full Text Available Thermoresponsive gelling materials constructed from natural and synthetic polymers can be used to provide triggered action and therefore customised products such as drug delivery and regenerative medicine types as well as for other industries. Some materials give Arrhenius-type viscosity changes based on coil to globule transitions. Others produce more counterintuitive responses to temperature change because of agglomeration induced by enthalpic or entropic drivers. Extensive covalent crosslinking superimposes complexity of response and the upper and lower critical solution temperatures can translate to critical volume temperatures for these swellable but insoluble gels. Their structure and volume response confer advantages for actuation though they lack robustness. Dynamic covalent bonding has created an intermediate category where shape moulding and self-healing variants are useful for several platforms. Developing synthesis methodology—for example, Reversible Addition Fragmentation chain Transfer (RAFT and Atomic Transfer Radical Polymerisation (ATRP—provides an almost infinite range of materials that can be used for many of these gelling systems. For those that self-assemble into micelle systems that can gel, the upper and lower critical solution temperatures (UCST and LCST are analogous to those for simpler dispersible polymers. However, the tuned hydrophobic-hydrophilic balance plus the introduction of additional pH-sensitivity and, for instance, thermochromic response, open the potential for coupled mechanisms to create complex drug targeting effects at the cellular level.

  13. Development of an enzyme fluidized bed reactor equipped with static mixers: application to lactose hydrolysis in whey

    Energy Technology Data Exchange (ETDEWEB)

    Fauquex, P.F.; Flaschel, E.; Renken, A.

    1984-01-01

    Reactor operation with immobilized enzymes in fixed bed arrangement is often impaired due to the presence of finely divided solid matter, adsorbing substances or gas. The fluidized bed reactor would be applied in such cases owing to a limited pressure drop, a controlled voidage, and the avoidance of perforated plates for catalyst retention. Since enzymic reactions are often slow processes, catalysts of high external surface area should be provided together with sufficient time. However, classical fluidized beds suffer from hydrodynamic instability under these conditions. Therefore, a new reactor design was developed which used motionless mixers as internals. Fluidized bed reactors equipped with internals exhibit an outstanding hydrodynamic stability accompanied by an increase of the operating range in terms of flow rate by a factor of 4 compared to the classical fluidized bed. Results are presented, with emphasis on the backmixing and expansion characteristics. Various motionless mixers were investigated in columns of 39 and 150 mm in diameter. The fluidized bed equipped with internals was used for lactose hydrolysis in partially deproteinized whey. The lactase from Aspergillus niger immobilized on silica gel particles of 125-160 molm had a half-life of approximately 1 mo.

  14. Granulation of core particles suitable for film coating by agitation fluidized bed III. Effect of scale, agitator rotational speed and blade shape on granule properties and development of a high accuracy scale-up theory.

    Science.gov (United States)

    Hamashita, Tomohiro; Ono, Tetsuo; Ono, Masaki; Tsunenari, Yoshinobu; Aketo, Takao; Watano, Satoru

    2009-04-01

    The preparation of core particles suitable for subsequent film coating was examined using different scales of agitation fluidized beds. Specifically, the effects of agitator rotational speed and agitator blade shape in different scales of granulators on granule properties such as mass median diameter, apparent density, friability and shape factor were studied. As the agitator rotational speed was increased or when the agitator blade height and angle were large, the mass median diameter and friability of the granules decreased, while the apparent density and shape factor increased, in a manner independent of the vessel size because the granules were subjected to greater compression, shearing and rolling effects. The same core particles could not be prepared using granulators with different vessel sizes by simply adopting a conventional scale-up theory(1,2)) based on kinetic energy similarity. Here, a novel scale-up theory that takes into account agitator blade shape factors is proposed.(3)) When the two scale-up theories were compared, our new theory was capable of predicting the granule properties more accurately than the conventional theory. By adopting this novel theory, the same core particles could be prepared under different operating conditions in any scale of granulator.

  15. Channel bed particle size distribution procedure used to evaluate watershed cumulative effects for range permit re-issuance on the Santa Fe National Forest

    Science.gov (United States)

    Bruce Sims; Jim Piatt; Lee Johnson; Carol Purchase; John Phillips

    1996-01-01

    Personnel on the Santa Fe National Forest used methodologies adapted from Bevenger and King (1995) to collect base line particle size data on streams within grazing allotments currently scheduled for permit reissuance. This information was used to determine the relative current health of the watersheds as well as being used in the development of potential alternatives...

  16. A three-dimensional simulation of gas/particle flow and ozone decomposition in the riser of a circulating fluidized bed

    DEFF Research Database (Denmark)

    Hansen, Kim Granly; Solberg, Tron; Hjertager, Bjørn Helge

    2004-01-01

    The isothermal decomposition of ozone has been implemented in the CFD code FLOTRACS-MP-3D. The code is a 3D multiphase computational fluid dynamics code with an Eulerian description of both gas and particle phase. The turbulent motion of the particulate phase is modeled using the kinetic theory f...

  17. Fluidization of spherocylindrical particles

    Directory of Open Access Journals (Sweden)

    Mahajan Vinay V.

    2017-01-01

    Full Text Available Multiphase (gas-solid flows are encountered in numerous industrial applications such as pharmaceutical, food, agricultural processing and energy generation. A coupled computational fluid dynamics (CFD and discrete element method (DEM approach is a popular way to study such flows at a particle scale. However, most of these studies deal with spherical particles while in reality, the particles are rarely spherical. The particle shape can have significant effect on hydrodynamics in a fluidized bed. Moreover, most studies in literature use inaccurate drag laws because accurate laws are not readily available. The drag force acting on a non-spherical particle can vary considerably with particle shape, orientation with the flow, Reynolds number and packing fraction. In this work, the CFD-DEM approach is extended to model a laboratory scale fluidized bed of spherocylinder (rod-like particles. These rod-like particles can be classified as Geldart D particles and have an aspect ratio of 4. Experiments are performed to study the particle flow behavior in a quasi-2D fluidized bed. Numerically obtained results for pressure drop and bed height are compared with experiments. The capability of CFD-DEM approach to efficiently describe the global bed dynamics for fluidized bed of rod-like particles is demonstrated.

  18. Fluidization of spherocylindrical particles

    Science.gov (United States)

    Mahajan, Vinay V.; Nijssen, Tim M. J.; Fitzgerald, Barry W.; Hofman, Jeroen; Kuipers, Hans; Padding, Johan T.

    2017-06-01

    Multiphase (gas-solid) flows are encountered in numerous industrial applications such as pharmaceutical, food, agricultural processing and energy generation. A coupled computational fluid dynamics (CFD) and discrete element method (DEM) approach is a popular way to study such flows at a particle scale. However, most of these studies deal with spherical particles while in reality, the particles are rarely spherical. The particle shape can have significant effect on hydrodynamics in a fluidized bed. Moreover, most studies in literature use inaccurate drag laws because accurate laws are not readily available. The drag force acting on a non-spherical particle can vary considerably with particle shape, orientation with the flow, Reynolds number and packing fraction. In this work, the CFD-DEM approach is extended to model a laboratory scale fluidized bed of spherocylinder (rod-like) particles. These rod-like particles can be classified as Geldart D particles and have an aspect ratio of 4. Experiments are performed to study the particle flow behavior in a quasi-2D fluidized bed. Numerically obtained results for pressure drop and bed height are compared with experiments. The capability of CFD-DEM approach to efficiently describe the global bed dynamics for fluidized bed of rod-like particles is demonstrated.

  19. Gas filtration in binary fluidized beds

    Energy Technology Data Exchange (ETDEWEB)

    Rincon, J. (Univ. de Castilla-La Mancha, Ciudad Real (Spain)); Guardiola, J.; Romero, A. (Univ. de Alcala de Henares, Madrid (Spain))

    1992-12-01

    A systematic experimental study of aerosol filtration in a binary fluidized bed of dielectric material is carried out. Measurements of the collection efficiency when such parameters as gas velocity, bed height, collecting mixture, and column diameter are varied over a wide range have been made. Experimental evidence is given to show that charges generated naturally by triboelectrification of the bed dielectric particles can considerably increase the efficiency of such beds. Furthermore, it is demonstrated that a proper choice of the fluidized mixture can significantly improve the performance of such filters.

  20. Electrostatic collection efficiency in binary fluidized beds

    Energy Technology Data Exchange (ETDEWEB)

    Romero, A.; Guardiola, J.; Rincon, J. (Univ. of Alcala de Henares, Madrid (Spain))

    1992-01-01

    Fluidized beds of binary mixtures have been used to clean air streams containing dust particles in the size range 4.4 to 14 {mu}m. All beds were composed of glass beads and plastic granules mixed at different proportions. The effect on the electrostatic collection efficiency of a number of variables, including type of collecting mixture, bed height, and gas velocity, was examined. To calculate the single collection efficiency from experimental results, an early model proposed by Clift et al. was used. The electrostatic collection efficiency was determined by subtracting the other individual mechanism efficiencies from the single particle collection efficiency.

  1. Engineering new bone via a minimally invasive route using human bone marrow-derived stromal cell aggregates, microceramic particles, and human platelet-rich plasma gel.

    Science.gov (United States)

    Chatterjea, Anindita; Yuan, Huipin; Fennema, Eelco; Burer, Ruben; Chatterjea, Supriyo; Garritsen, Henk; Renard, Auke; van Blitterswijk, Clemens A; de Boer, Jan

    2013-02-01

    There is a rise in the popularity of arthroscopic procedures in orthopedics. However, the majority of cell-based bone tissue-engineered constructs (TECs) rely on solid preformed scaffolding materials, which require large incisions and extensive dissections for placement at the defect site. Thus, they are not suitable for minimally invasive techniques. The aim of this study was to develop a clinically relevant, easily moldable, bone TEC, amenable to minimally invasive techniques, using human mesenchymal stromal cells (hMSCs) and calcium phosphate microparticles in combination with an in situ forming platelet-rich plasma gel obtained from human platelets. Most conventional TECs rely on seeding and culturing single-cell suspensions of hMSCs on scaffolds. However, for generating TECs amenable to the minimally invasive approach, it was essential to aggregate the hMSCs in vitro before seeding them on the scaffolds as unaggregated MSCs did not generate any bone. Twenty four hours of in vitro aggregation was determined to be optimal for maintaining cell viability in vitro and bone formation in vivo. Moreover, no statistically significant difference was observed in the amount of bone formed when the TECs were implanted via an open approach or a minimally invasive route. TECs generated using MSCs from three different human donors generated new bone through the minimally invasive route in a reproducible manner, suggesting that these TECs could be a viable alternative to preformed scaffolds employed through an open surgery for treating bone defects.

  2. Enhancement of thermal transport in Gel Polymer Electrolytes with embedded BN/Al2O3 nano- and micro-particles

    Science.gov (United States)

    Vishwakarma, Vivek; Jain, Ankur

    2017-09-01

    While Gel Polymer Electrolytes (GPEs) have been widely investigated for use in next-generation Li-ion cells due to the potential for improved thermal safety, thermal transport within a GPE is still poorly understood. Among all materials in a Li-ion cell, the GPE has the lowest thermal conductivity, and hence determines the overall rate of heat flow in a Li-ion cell. This makes it critical to measure and understand thermal transport in a GPE and investigate trade-offs between thermal and ionic transport. This paper presents measurements of thermal and ionic conductivities in a PVdF-based GPE. The effect of incorporating BN/Al2O3 ceramic nano/microparticles in the GPE on thermal and ionic transport is characterized. Measurements indicate up to 2.5X improvement in thermal conductivity of activated GPE membranes, with relatively minor effect on electrochemical performance of GPE-based single-layer cells. The measured enhancement in thermal conductivity is in very good agreement with theoretical calculations based on the effective medium theory that accounts for thermal transport in a dispersed, two-phase medium such as a GPE. The fundamental insights gained in this work on thermal transport in a GPE and the role of nano/microparticle inclusions may facilitate thermal-electrochemical optimization and design of GPEs for safe, high-performance Li-ion cells.

  3. A novel continuous process for synthesis of carbon nanotubes using iron floating catalyst and MgO particles for CVD of methane in a fluidized bed reactor

    Energy Technology Data Exchange (ETDEWEB)

    Maghsoodi, Sarah; Khodadadi, Abasali [Catalysis and Nanostructured Materials Research Laboratory, School of Chemical Engineering, University of Tehran, Tehran (Iran, Islamic Republic of); Mortazavi, Yadollah, E-mail: mortazav@ut.ac.ir [Nanoelectronics Centre of Excellence, University of Tehran, POB 11365-4563, Tehran (Iran, Islamic Republic of)

    2010-02-15

    A novel continuous process is used for production of carbon nanotubes (CNTs) by catalytic chemical vapor deposition (CVD) of methane on iron floating catalyst in situ deposited on MgO in a fluidized bed reactor. In the hot zone of the reactor, sublimed ferrocene vapors were contacted with MgO powder fluidized by methane feed to produce Fe/MgO catalyst in situ. An annular tube was used to enhance the ferrocene and MgO contacting efficiency. Multi-wall as well as single-wall CNTs was grown on the Fe/MgO catalyst while falling down the reactor. The CNTs were continuously collected at the bottom of the reactor, only when MgO powder was used. The annular tube enhanced the contacting efficiency and improved both the quality and quantity of CNTs. The SEM and TEM micrographs of the products reveal that the CNTs are mostly entangled bundles with diameters of about 10-20 nm. Raman spectra show that the CNTs have low amount of amorphous/defected carbon with I{sub G}/I{sub D} ratios as high as 10.2 for synthesis at 900 deg. C. The RBM Raman peaks indicate formation of single-walled carbon nanotubes (SWNTs) of 1.0-1.2 nm diameter.

  4. Experimental investigation on the changes in bed properties of a ...

    African Journals Online (AJOL)

    Biomass gasifiers of fixed bed, downdraft type are generally used for driving internal combustion engines. As part of research work, a versatile, throat type, biomass gasifier was developed. The gasifier had facilities for bed temperature measurements, pressure measurements, physical observation, sampling of bed particles, ...

  5. The mechanism and properties of acid-coagulated milk gels

    Directory of Open Access Journals (Sweden)

    Chanokphat Phadungath

    2005-03-01

    Full Text Available Acid-coagulated milk products such as fresh acid-coagulated cheese varieties and yogurt areimportant dairy food products. However, little is known regarding the mechanisms involved in gel formation, physical properties of acid gels, and the effects of processing variables such as heat treatment and gelation temperature on the important physical properties of acid milk gels. This paper reviews the modern concepts of possible mechanisms involved in the formation of particle milk gel aggregation, along with recent developments including the use of techniques such as dynamic low amplitude oscillatory rheology to observe the gel formation process, and confocal laser scanning microscopy to monitor gel microstructure.

  6. Variability of bed mobility in natural, gravel-bed channels and adjustments to sediment load at local and reach scales

    Science.gov (United States)

    Thomas E. Lisle; Jonathan M. Nelson; John Pitlick; Mary Ann Madej; Brent L. Barkett

    2000-01-01

    Abstract - Local variations in boundary shear stress acting on bed-surface particles control patterns of bed load transport and channel evolution during varying stream discharges. At the reach scale a channel adjusts to imposed water and sediment supply through mutual interactions among channel form, local grain size, and local flow dynamics that govern bed mobility...

  7. Fungi solubilisation of low rank coal: performances of stirred tank, fluidised bed and packed bed reactors

    CSIR Research Space (South Africa)

    Oboirien, BO

    2013-02-01

    Full Text Available bioreactor represent slurry reactor systems enabling a comparative study. Direct comparison between these and the fixed bed bioreactor could not be carried as the corresponding particle sizes will result to a pressure drop in the fixed bed reactor. Coal...

  8. Fluidized-bed nuclear reactor

    International Nuclear Information System (INIS)

    Grimmett, E.S.; Kunze, J.F.

    1975-01-01

    A reactor vessel containing a fluidized-bed region of particulate material including both a neutron-moderating and a fertile substance is described. A gas flow including fissile material passes through the vessel at a sufficient rate to fluidize the particulate material and at a sufficient density to support a thermal fission reaction within the fluidized-bed region. The high-temperature portion of a heat transfer system is located within the fluidized-bed region of the reactor vessel in direct contact with the fluidized particles. Heat released by fission is thereby transferred at an enhanced rate to a coolant circulating within the heat transfer system. Fission products are continuously removed from the gas flow and supplemental fissile material added during the reactor operation. (U.S.)

  9. A three-dimensional simulation of gas/particle flow and ozone decomposition in the riser of a circulating fluidized bed

    DEFF Research Database (Denmark)

    Hansen, Kim Granly; Solberg, Tron; Hjertager, Bjørn Helge

    2004-01-01

    concentration in the 10.85 m high riser by the use of a UV detector system. Furthermore a pressure drop profile was reported. Comparison between measured and simulated time averaged ozone concentration at different elevations in the riser shows good agreement. The 3D representation of the reactor geometry gives......The isothermal decomposition of ozone has been implemented in the CFD code FLOTRACS-MP-3D. The code is a 3D multiphase computational fluid dynamics code with an Eulerian description of both gas and particle phase. The turbulent motion of the particulate phase is modeled using the kinetic theory...... for granular flow, and the gas phase turbulence is modeled using a Sub-Grid-Scale model, cf. Ibsen et al. (2001). The decomposition reaction is studied in a 3D representation of a 0.254 m i.d. riser, which has been studied experimentally by Ouyang et al. (1993). The authors obtained profiles of ozone...

  10. Fluorescence metrology of silica sol-gels

    Indian Academy of Sciences (India)

    We have developed a new method for measuring in-situ the growth of the nanometre-size silica particles which lead to the formation of sol-gel glasses. This technique is based on the decay of fluorescence polarisation anisotropy due to Brownian rotation of dye molecules bound to the particles. Results to date give near ...

  11. Model investigations 3D of gas-powder two phase flow in descending packed bed in metallurgical shaft furnaces

    OpenAIRE

    B. Panic; K. Janiszewski

    2014-01-01

    This paper presents the second phase of model investigations of static pressure radial distribution conducted on 4 levels of bed height. During the phase the diameter of glass bed particles was increased, blast-furnace pellets were introduced as bed and iron powder was used as powder. Experiments were carried out with regard to gas velocity, bed and powder type and size of bed particles. The radial distribution of 3 fractions of powder accumulated in the bed – static powder, dynamic powder an...

  12. Modelling of Devolatilization in Fluidized Bed Combustion

    DEFF Research Database (Denmark)

    Stenseng, Mette; Lin, Weigang; Johnsson, Jan Erik

    1997-01-01

    A mathematical model is developed to describe the devolatilization process in a circulating fluidized bed combustor. The model is a combination of two submodels: single particle devolatilization and fluid dynamics. The single particle model includes the influence of both chemical kinetics and hea...

  13. Fluidized bed electrowinning of copper. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-07-01

    The objectives of the study were to: design and construct a 10,000- amp fluidized bed electrowinning cell for the recovery of copper from acidic sulfate solutions; demonstrate the technical feasibility of continuous particle recirculation from the electrowinning cell with the ultimate goal of continuous particle removal; and measure cell efficiency as a function of operating conditions.

  14. Fluid flow with heat transfer in a fix-bed

    International Nuclear Information System (INIS)

    Gasparetto, C.A.

    1982-01-01

    Tests with two different fluids, water and air, flowing in a bed with irregular particles of silica were done. The bed was confined inside a tube, which was heated by an external jacket. The bed is characterized by permeability and porosity. The tests showed a wall effect face to the relation between the tube diameter and the medium dimension of the particles. The results are presented as a relation between Nusselt number / Peclet number. (E.G.) [pt

  15. Fluidized-bed calciner with combustion nozzle and shroud

    International Nuclear Information System (INIS)

    Wielang, J.A.; Palmer, W.B.; Kerr, W.B.

    1977-01-01

    A nozzle employed as a burner within a fluidized bed is coaxially enclosed within a tubular shroud that extends beyond the nozzle length into the fluidized bed. The open-ended shroud portion beyond the nozzle end provides an antechamber for mixture and combustion of atomized fuel with an oxygen-containing gas. The arrangement provides improved combustion efficiency and excludes bed particles from the high-velocity, high-temperature portions of the flame to reduce particle attrition. 4 claims, 2 figures

  16. A Spouted Bed Reactor Monitoring System for Particulate Nuclear Fuel

    Energy Technology Data Exchange (ETDEWEB)

    D. S. Wendt; R. L. Bewley; W. E. Windes

    2007-06-01

    Conversion and coating of particle nuclear fuel is performed in spouted (fluidized) bed reactors. The reactor must be capable of operating at temperatures up to 2000°C in inert, flammable, and coating gas environments. The spouted bed reactor geometry is defined by a graphite retort with a 2.5 inch inside diameter, conical section with a 60° included angle, and a 4 mm gas inlet orifice diameter through which particles are removed from the reactor at the completion of each run. The particles may range from 200 µm to 2 mm in diameter. Maintaining optimal gas flow rates slightly above the minimum spouting velocity throughout the duration of each run is complicated by the variation of particle size and density as conversion and/or coating reactions proceed in addition to gas composition and temperature variations. In order to achieve uniform particle coating, prevent agglomeration of the particle bed, and monitor the reaction progress, a spouted bed monitoring system was developed. The monitoring system includes a high-sensitivity, low-response time differential pressure transducer paired with a signal processing, data acquisition, and process control unit which allows for real-time monitoring and control of the spouted bed reactor. The pressure transducer is mounted upstream of the spouted bed reactor gas inlet. The gas flow into the reactor induces motion of the particles in the bed and prevents the particles from draining from the reactor due to gravitational forces. Pressure fluctuations in the gas inlet stream are generated as the particles in the bed interact with the entering gas stream. The pressure fluctuations are produced by bulk movement of the bed, generation and movement of gas bubbles through the bed, and the individual motion of particles and particle subsets in the bed. The pressure fluctuations propagate upstream to the pressure transducer where they can be monitored. Pressure fluctuation, mean differential pressure, gas flow rate, reactor

  17. Experimental study of flow field characteristics on bed configurations in the pebble bed reactor

    International Nuclear Information System (INIS)

    Jia, Xinlong; Gui, Nan; Yang, Xingtuan; Tu, Jiyuan; Jia, Haijun; Jiang, Shengyao

    2017-01-01

    Highlights: • PTV study of flow fields of pebble bed reactor with different configurations are carried out. • Some criteria are proposed to quantify vertical velocity field and flow uniformity. • The effect of different pebble bed configurations is also compared by the proposed criteria. • The displacement thickness is used analogically to analyze flow field characteristics. • The effect of mass flow variation in the stagnated region of the funnel flow is measured. - Abstract: The flow field characteristics are of fundamental importance in the design work of the pebble bed high temperature gas cooled reactor (HTGR). The different effects of bed configurations on the flow characteristics of pebble bed are studied through the PTV (Particle Tracking Velocimetry) experiment. Some criteria, e.g. flow uniformity (σ) and mass flow level (α), are proposed to estimate vertical velocity field and compare the bed configurations. The distribution of the Δθ (angle difference between the individual particle velocity and the velocity vector sum of all particles) is also used to estimate the resultant motion consistency level. Moreover, for each bed configuration, the thickness of displacement is analyzed to measure the effect of the funnel flow zone based on the boundary layer theory. Detailed information shows the quantified characteristics of bed configuration effects on flow uniformity and other characteristics; and the sequence of levels of each estimation criterion is obtained for all bed configurations. In addition, a good design of the pebble bed configuration is suggested and these estimation criteria can be also applied and adopted in testing other geometry designs of pebble bed.

  18. Experimental and numerical study of spouted bed fluif dynamics

    Directory of Open Access Journals (Sweden)

    C. R. Duarte

    2008-03-01

    Full Text Available Spouted beds, originally invented in Canada by Mathur and Gishler (1955 as an alternative to fluidized beds for handling coarse particles, are now widely studied in a variety of physical operations, such as drying, coating and granulation. In this work the particle velocity, minimum spouting flow rate and characteristic fluid-dynamic curves of the spouted bed were obtained using a Eulerian granular multiphase model. The computational work was significantly reduced for axisymmetric gas-solid flows. The experimental data obtained in two spouted bed configurations, conical-cylindrical and two-dimensional, were compared with the simulated results, showing good agreement

  19. Fluidized bed silicon deposition from silane

    Science.gov (United States)

    Hsu, George (Inventor); Levin, Harry (Inventor); Hogle, Richard A. (Inventor); Praturi, Ananda (Inventor); Lutwack, Ralph (Inventor)

    1984-01-01

    A process and apparatus for thermally decomposing silicon containing gas for deposition on fluidized nucleating silicon seed particles is disclosed. Silicon seed particles are produced in a secondary fluidized reactor by thermal decomposition of a silicon containing gas. The thermally produced silicon seed particles are then introduced into a primary fluidized bed reactor to form a fludized bed. Silicon containing gas is introduced into the primary reactor where it is thermally decomposed and deposited on the fluidized silicon seed particles. Silicon seed particles having the desired amount of thermally decomposed silicon product thereon are removed from the primary fluidized reactor as ultra pure silicon product. An apparatus for carrying out this process is also disclosed.

  20. Microphase separation in nanocomposite gels

    Science.gov (United States)

    Osaka, Noboru; Endo, Hitoshi; Nishida, Toshihiko; Suzuki, Takuya; Li, Huan-Jun; Haraguchi, Kazutoshi; Shibayama, Mitsuhiro

    2009-06-01

    Microphase separation in poly( N -isopropylacrylamide)(PNIPA)-clay nanocomposite hydrogels (NC gels) is investigated by means of contrast-variation small-angle neutron scattering (CV-SANS) and dynamic light scattering (DLS). By using CV-SANS, it is revealed that microphase separation occurs in NC gels above the lower-critical solution temperature (LCST) of PNIPA aqueous solutions. The observed partial scattering functions show that only the spatial distribution of PNIPA chains is highly distorted by microphase separation and PNIPA chains are preferentially adsorbed on the clay surfaces, where the PNIPA-rich phase forms nanoscaled bicontinuous structure mediated by the clay particles. Additional DLS measurements for dilute solutions with PNIPA and/or the clay nanoparticles confirm that aggregation of PNIPA above the LCST is dramatically suppressed by addition of clay particles. Based on these observations, we conclude that strong affinity between the polymer and clay has a significant effect on the phase separation in NC gels and allows one to tune the length scale of the phase separation phenomenon by clay concentration.

  1. Removing water from gels

    International Nuclear Information System (INIS)

    Lane, E.S.; Winter, J.A.

    1982-01-01

    Water is removed from a gel material by contacting the gel material with an organic liquid and contacting the organic liquid with a gas such that water is taken up by the gas. The invention, in one embodiment, may be used to dry gel materials whilst maintaining an open porous network therein. In one example, the invention is applied to gel precipitated spheres containing uranium and plutonium. (author)

  2. Polymer gels and networks

    National Research Council Canada - National Science Library

    Osada, Yoshihito; Khokhlov, A. R

    2002-01-01

    ... or magnetic field, etc.). It was realized that not only can polymer gels absorb and hold a considerable volume of liquids, but they can also be forced to expel the absorbed liquid in a controlled manner. Of particular interest are hydrogels, i.e., polymer gels, which swell extensively in water. The most common hydrogels are polyelectrolyte gels: ...

  3. Modelling of the inhomogeneous interior of polymer gels

    International Nuclear Information System (INIS)

    Shew, C-Y; Iwaki, Takafumi

    2006-01-01

    A simple model has been investigated to elucidate the mean squared displacement (MSD) of probe molecules in cross-linked polymer gels. In the model, we assume that numerous cavities distribute in the inhomogeneous interior of a gel, and probe molecules are confined within these cavities. The individual probe molecules trapped in a gel are treated as Brownian particles confined to a spherical harmonic potential. The harmonic potential is chosen to model the effective potential experienced by the probe particle in the cavity of a gel. Each field strength is corresponding to the characteristic of one type of effective cavity. Since the statistical distribution of different effective cavity sizes is unknown, several distribution functions are examined. Meanwhile, the calculated averaged MSDs are compared to the experimental data by Nisato et al (2000 Phys. Rev. E 61 2879). We find that the theoretical results of the MSD are sensitive to the shape of the distribution function. For low cross-linked gels, the best fit is obtained when the interior cavities of a gel follow a bimodal distribution. Such a result may be attributed to the presence of at least two distinct classes of cavity in gels. For high cross-linked gels, the cavities in the gel can be depicted by a single-modal uniform distribution function, suggesting that the range of cavity sizes becomes smaller. These results manifest the voids inside a gel, and the shape of distribution functions may provide the insight into the inhomogeneous interior of a gel

  4. Flow characteristics of counter-current flow in debris bed

    International Nuclear Information System (INIS)

    Abe, Yutaka; Adachi, Hiromichi

    2004-01-01

    In the course of a severe accident, a damaged core would form a debris bed consisting of once-molten and fragmented fuel elements. It is necessary to evaluate the dryout heat flux for the judgment of the coolability of the debris bed during the severe accident. The dryout phenomena in the debris bed is dominated by the counter-current flow limitation (CCFL) in the debris bed. In this study, air-water counter-current flow behavior in the debris bed is experimentally investigated with glass particles simulating the debris beds. In this experiment, falling water flow rate and axial pressure distributions were experimentally measured. As the results, it is clarified that falling water flow rate becomes larger with the debris bed height and the pressure gradient in the upper region of the debris bed is different from that in the lower region of the debris bed. These results indicate that the dominant region for CCFL in the debris bed is identified near the top of the debris bed. Analytical results with annular flow model indicates that interfacial shear stress in the upper region of the debris bed is larger than that in the lower region of the debris bed. (author)

  5. Spots in a Particle-Bed GCFR

    Directory of Open Access Journals (Sweden)

    G. Lomonaco

    2009-01-01

    Full Text Available In the recent past the so-called GCFR has been again a subject of study by the international scientific community. This type of reactors, although still in a preliminary stage of development, is a very interesting perspective because combines the positive characteristics common to all the fast reactors with those of the reactors cooled by helium. Up to now, almost all the analyses on the GCFR thermodynamic aspects have been performed starting from a “global” point of view: generally the core has been modelled as a porous medium and only the global parameters have been taken into account. The local effects have been included in adhoc corrective peak factors. The analyses carried out in the present research will be devoted to the characterization of the local effects, on a microscopic scale. In order to have reliable “global” nuclear and thermal-fluid-dynamic data, the performed analyses will be based on simulations previously performed using the RELAP5-3D code, assuming as input parameters the ETDR core ones. For each considered case, the variation ranges of the evaluated parameters have been estimated on the basis of the “best” and the “worst” cases. To summarize the obtained results, even in transient conditions, the variations of the considered input parameters are less significant for the local output values if compared to those due to the assumed packing factor. As a consequence, in a more general core calculation, the obtained local temperature (and velocity values will have to be corrected by a proper factor that would have to take into account the results of this research.

  6. Patterns of granular convection and separation in narrow vibration bed

    Science.gov (United States)

    Liu, Chuanping; Wu, Ping; Wang, Li; Tong, Lige; Yin, Shaowu

    2017-06-01

    Granular convection/separation of single and binary component particles are studied in a narrow vibration bed, respectively. With filling the single light particles (molecular sieve beads), the bed exhibits five different states successively by increasing the vibration frequency f from 15Hz to 70 Hz (vibration strength Γ>3), as the global convection, symmetrical heap, unsymmetrical heap, local convection and pseudo solid. Comparatively, the granular bed of the single heavy particles (steel beads) is only in pseudo solid state at the above vibration condition. By filling binary component particles (molecular sieve and same size steel beads) instead of the single component, the bed shows similar convection state with that of the single molecular sieve beads, and the heavy steel beads are aggregated in the centre of convention roll as a core. Varying the initial distribution of binary component particles, the final convection and separation are not influenced, although the aggregation process of steel beads changes.

  7. Transport Phenomena in Gel

    Directory of Open Access Journals (Sweden)

    Masayuki Tokita

    2016-05-01

    Full Text Available Gel becomes an important class of soft materials since it can be seen in a wide variety of the chemical and the biological systems. The unique properties of gel arise from the structure, namely, the three-dimensional polymer network that is swollen by a huge amount of solvent. Despite the small volume fraction of the polymer network, which is usually only a few percent or less, gel shows the typical properties that belong to solids such as the elasticity. Gel is, therefore, regarded as a dilute solid because its elasticity is much smaller than that of typical solids. Because of the diluted structure, small molecules can pass along the open space of the polymer network. In addition to the viscous resistance of gel fluid, however, the substance experiences resistance due to the polymer network of gel during the transport process. It is, therefore, of importance to study the diffusion of the small molecules in gel as well as the flow of gel fluid itself through the polymer network of gel. It may be natural to assume that the effects of the resistance due to the polymer network of gel depends strongly on the network structure. Therefore, detailed study on the transport processes in and through gel may open a new insight into the relationship between the structure and the transport properties of gel. The two typical transport processes in and through gel, that is, the diffusion of small molecules due to the thermal fluctuations and the flow of gel fluid that is caused by the mechanical pressure gradient will be reviewed.

  8. Buckling of paramagnetic chains in soft gels.

    Science.gov (United States)

    Huang, Shilin; Pessot, Giorgio; Cremer, Peet; Weeber, Rudolf; Holm, Christian; Nowak, Johannes; Odenbach, Stefan; Menzel, Andreas M; Auernhammer, Günter K

    2016-01-07

    We study the magneto-elastic coupling behavior of paramagnetic chains in soft polymer gels exposed to external magnetic fields. To this end, a laser scanning confocal microscope is used to observe the morphology of the paramagnetic chains together with the deformation field of the surrounding gel network. The paramagnetic chains in soft polymer gels show rich morphological shape changes under oblique magnetic fields, in particular a pronounced buckling deformation. The details of the resulting morphological shapes depend on the length of the chain, the strength of the external magnetic field, and the modulus of the gel. Based on the observation that the magnetic chains are strongly coupled to the surrounding polymer network, a simplified model is developed to describe their buckling behavior. A coarse-grained molecular dynamics simulation model featuring an increased matrix stiffness on the surfaces of the particles leads to morphologies in agreement with the experimentally observed buckling effects.

  9. Sol-Gel Glasses

    Science.gov (United States)

    Mukherjee, S. P.

    1985-01-01

    Multicomponent homogeneous, ultrapure noncrystalline gels/gel derived glasses are promising batch materials for the containerless glass melting experiments in microgravity. Hence, ultrapure, homogeneous gel precursors could be used to: (1) investigate the effect of the container induced nucleation on the glass forming ability of marginally glass forming compositions; and (2) investigate the influence of gravity on the phase separation and coarsening behavior of gel derived glasses in the liquid-liquid immiscibility zone of the nonsilicate systems having a high density phase. The structure and crystallization behavior of gels in the SiO2-GeO2 as a function of gel chemistry and thermal treatment were investigated. As are the chemical principles involved in the distribution of a second network former in silica gel matrix being investigated. The procedures for synthesizing noncrystalline gels/gel-monoliths in the SiO2-GeO2, GeO2-PbO systems were developed. Preliminary investigations on the levitation and thermal treatment of germania silicate gel-monoliths in the Pressure Facility Acoustic Levitator were done.

  10. DEVELOPMENT OF A FABRICATION PROCESS FOR SOL-GEL/METAL HYDRIDE COMPOSITE GRANULES

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, E; Eric Frickey, E; Leung Heung, L

    2004-02-23

    An external gelation process was developed to produce spherical granules that contain metal hydride particles in a sol-gel matrix. Dimensionally stable granules containing metal hydrides are needed for applications such as hydrogen separation and hydrogen purification that require columns containing metal hydrides. Gases must readily flow through the metal hydride beds in the columns. Metal hydrides reversibly absorb and desorb hydrogen and hydrogen isotopes. This is accompanied by significant volume changes that cause the metal hydride to break apart or decrepitate. Repeated cycling results in very fine metal hydride particles that are difficult to handle and contain. Fine particles tend to settle and pack making it more difficult to flow gases through a metal hydride bed. Furthermore, the metal hydrides can exert a significant force on the containment vessel as they expand. These problems associated with metal hydrides can be eliminated with the granulation process described in this report. Small agglomerates of metal hydride particles and abietic acid (a pore former) were produced and dispersed in a colloidal silica/water suspension to form the feed slurry. Fumed silica was added to increase the viscosity of the feed slurry which helped to keep the agglomerates in suspension. Drops of the feed slurry were injected into a 27-foot tall column of hot ({approx}70 C), medium viscosity ({approx}3000 centistokes) silicone oil. Water was slowly evaporated from the drops as they settled. The drops gelled and eventually solidified to form spherical granules. This process is referred to as external gelation. Testing was completed to optimize the design of the column, the feed system, the feed slurry composition, and the operating parameters of the column. The critical process parameters can be controlled resulting in a reproducible fabrication technique. The residual silicone oil on the surface of the granules was removed by washing in mineral spirits. The granules were

  11. Extracting Silicon Product From Fluidized-Bed Reactors

    Science.gov (United States)

    Hsu, G. C.; Rohatgi, N. K.; Morrison, A. D.

    1986-01-01

    Silicon particles continuously removed from bottom of fluidizedbed reactor when grown to large size. In reactor, silane (SiH4) flows through bed of small silicon seed particles at temperature of 650 degrees to 700 degrees C. Silane decomposes into silicon vapor and hydrogen gas, and vapor deposits as solid on seed particles. With withdrawal system, reactor operates continuously.

  12. Sol-Gel Derived Hafnia Coatings

    Science.gov (United States)

    Feldman, Jay D.; Stackpoole, Mairead; Blum, Yigal; Sacks, Michael; Ellerby, Don; Johnson, Sylvia M.; Venkatapathy, Ethiras (Technical Monitor)

    2002-01-01

    Sol-gel derived hafnia coatings are being developed to provide an oxidation protection layer on ultra-high temperature ceramics for potential use in turbine engines (ultra-efficient engine technology being developed by NASA). Coatings using hafnia sol hafnia filler particles will be discussed along with sol synthesis and characterization.

  13. Application of a high density adsorbent in expanded bed adsorption ...

    African Journals Online (AJOL)

    PRECIOUS

    2010-01-11

    Jan 11, 2010 ... allowed the passage of cells or cell particle with concomitant adsorption of target protein (Jahic et al.,. 2006). Stable expanded bed is critical to the overall pro- cess performance (Jahic et al., 2006), a well performing adsorbent will prevent bed instability and give high breakthrough capacity (Anspach et al., ...

  14. Fluidized-Bed Silane-Decomposition Reactor

    Science.gov (United States)

    Iya, Sridhar K.

    1991-01-01

    Fluidized-bed pyrolysis reactor produces high-purity polycrystalline silicon from silane or halosilane via efficient heterogeneous deposition of silicon on silicon seed particles. Formation of silicon dust via homogeneous decomposition of silane minimized, and deposition of silicon on wall of reactor effectively eliminated. Silicon used to construct solar cells and other semiconductor products.

  15. GelTouch

    DEFF Research Database (Denmark)

    Miruchna, Viktor; Walter, Robert; Lindlbauer, David

    2015-01-01

    We present GelTouch, a gel-based layer that can selectively transition between soft and stiff to provide tactile multi-touch feedback. It is flexible, transparent when not activated, and contains no mechanical, electromagnetic, or hydraulic components, resulting in a compact form factor (a 2mm thin...... touchscreen layer for our prototype). The activated areas can be morphed freely and continuously, without being limited to fixed, predefined shapes. GelTouch consists of a poly(N-isopropylacrylamide) gel layer which alters its viscoelasticity when activated by applying heat (>32 C). We present three different...

  16. Transport Phenomena in Gel

    OpenAIRE

    Masayuki Tokita

    2016-01-01

    Gel becomes an important class of soft materials since it can be seen in a wide variety of the chemical and the biological systems. The unique properties of gel arise from the structure, namely, the three-dimensional polymer network that is swollen by a huge amount of solvent. Despite the small volume fraction of the polymer network, which is usually only a few percent or less, gel shows the typical properties that belong to solids such as the elasticity. Gel is, therefore, regarded as a dilu...

  17. Fluid-bed combustion

    Energy Technology Data Exchange (ETDEWEB)

    Hunt, G.; Schoebotham, N.

    1981-02-01

    In Energy Equipment Company's two-stage fluidized bed system, partial combustion in a fluidized bed is followed by burn-off of the generated gases above the bed. The system can be retrofitted to existing boilers, and can burn small, high ash coal efficiently. It has advantages when used as a hot gas generator for process drying. Tests on a boiler at a Cadbury Schweppes plant are reported.

  18. Cyanocobalamin Nasal Gel

    Science.gov (United States)

    ... to supply extra vitamin B12 to people who need unusually large amounts of this vitamin because they are pregnant or have certain diseases. ... Cyanocobalamin nasal gel will supply you with enough vitamin B12 only as ... it regularly. You may need to use cyanocobalamin nasal gel every week for ...

  19. Powder bed charging during electron-beam additive manufacturing

    International Nuclear Information System (INIS)

    Cordero, Zachary C.; Meyer, Harry M.; Nandwana, Peeyush; Dehoff, Ryan R.

    2017-01-01

    Electrons injected into the build envelope during powder bed electron-beam additive manufacturing can accumulate on the irradiated particles and cause them to repel each other. Under certain conditions, these electrostatic forces can grow so large that they drive the particles out of the build envelope in a process known as “smoking”. In the present work, we investigate the causes of powder bed charging and smoking during electron-beam additive manufacturing. In the first part of the paper, we characterize the surface chemistry of a common feedstock material—gas-atomized Ti-6Al-4V powder—and find that a thick, electrically insulating oxide overlayer encapsulates the particles. Based on these experimental results, we then formulate an analytical model of powder bed charging in which each particle is approximated as a capacitor, where the particle and its substrate are the electrodes and the oxide overlayer is the dielectric. Using this model, we estimate the charge distribution in the powder bed, the electrostatic forces acting on the particles, and the conditions under which the powder bed will smoke. It is found that the electrical resistivity of the oxide overlayer strongly influences the charging behavior of the powder bed and that a high resistivity promotes charge accumulation and consequent smoking. This analysis suggests new quality control and process design measures that can help suppress smoking.

  20. Modeling chemoresponsive polymer gels.

    Science.gov (United States)

    Kuksenok, Olga; Deb, Debabrata; Dayal, Pratyush; Balazs, Anna C

    2014-01-01

    Stimuli-responsive gels are vital components in the next generation of smart devices, which can sense and dynamically respond to changes in the local environment and thereby exhibit more autonomous functionality. We describe recently developed computational methods for simulating the properties of such stimuli-responsive gels in the presence of optical, chemical, and thermal gradients. Using these models, we determine how to harness light to drive shape changes and directed motion in spirobenzopyran-containing gels. Focusing on oscillating gels undergoing the Belousov-Zhabotinksy reaction, we demonstrate that these materials can spontaneously form self-rotating assemblies, or pinwheels. Finally, we model temperature-sensitive gels that encompass chemically reactive filaments to optimize the performance of this system as a homeostatic device for regulating temperature. These studies could facilitate the development of soft robots that autonomously interconvert chemical and mechanical energy and thus perform vital functions without the continuous need of external power sources.

  1. Fluidized bed incinerator development

    International Nuclear Information System (INIS)

    Ziegler, D.L.; Johnson, A.J.

    1976-01-01

    A fluidized bed incinerator is being developed for burning rad contaminated solid and liquid waste materials. In situ neutralization of acid gases by the bed material, catalytic afterburning, and gas filtration are used to produce a clean flue gas without the use of aqueous scrubbing

  2. CFD analysis of the fluidised bed hydrodynamic behaviour inside an isothermal gasifier with different perforated plate distributors

    OpenAIRE

    Al-Akaishi, Ahmed; Valera Medina, Agustin; Chong, C. T.; Marsh, Richard

    2017-01-01

    The hydrodynamic behaviour of gas-solid mixtures inside Bed Fluidised Beds (BFB) gasifiers has a major impact on the gasification process due to particles - gas and particle - particle contact mechanisms. The Discrete Phase Model DPM with Multiphase Particle-in-Cell method MPPIC was used as a CFD approach to study the hydrodynamic behaviour of an 800 height x 83 mm φ prototype fluidised bed gasifier with 4 different perforated plate distributors. In terms of bubble forming, pressure drop and ...

  3. Expanded-bed chromatography in primary protein purification.

    Science.gov (United States)

    Anspach, F B; Curbelo, D; Hartmann, R; Garke, G; Deckwer, W D

    1999-12-31

    Chromatography in stable expanded beds enables proteins to be recovered directly from cultivations of microorganisms or cells and preparations of disrupted cells, without the need for prior removal of suspended solids. The general performance of an expanded bed is comparable to a packed bed owing to reduced mixing of the adsorbent particles in the column. However, optimal operating conditions are more restricted than in a packed bed due to the dependence of bed expansion on the size and density of the adsorbent particles as well as the viscosity and density of the feedstock. The feedstock composition may become the most limiting restriction owing to interactions of adsorbent particles with cell surfaces, DNA and other substances, leading to their aggregation and consequently to bed instabilities and channeling. Despite these difficulties, expanded-bed chromatography has found widespread applications in the large scale purification of proteins from mammalian cell and microbial feedstocks in industrial bioprocessing. The basics and implementation of expanded-bed chromatography, its advantages as well as problems encountered in the use of this technique for the direct extraction of proteins from unclarified feedstocks are addressed.

  4. Normal modes of weak colloidal gels

    Science.gov (United States)

    Varga, Zsigmond; Swan, James W.

    2018-01-01

    The normal modes and relaxation rates of weak colloidal gels are investigated in calculations using different models of the hydrodynamic interactions between suspended particles. The relaxation spectrum is computed for freely draining, Rotne-Prager-Yamakawa, and accelerated Stokesian dynamics approximations of the hydrodynamic mobility in a normal mode analysis of a harmonic network representing several colloidal gels. We find that the density of states and spatial structure of the normal modes are fundamentally altered by long-ranged hydrodynamic coupling among the particles. Short-ranged coupling due to hydrodynamic lubrication affects only the relaxation rates of short-wavelength modes. Hydrodynamic models accounting for long-ranged coupling exhibit a microscopic relaxation rate for each normal mode, λ that scales as l-2, where l is the spatial correlation length of the normal mode. For the freely draining approximation, which neglects long-ranged coupling, the microscopic relaxation rate scales as l-γ, where γ varies between three and two with increasing particle volume fraction. A simple phenomenological model of the internal elastic response to normal mode fluctuations is developed, which shows that long-ranged hydrodynamic interactions play a central role in the viscoelasticity of the gel network. Dynamic simulations of hard spheres that gel in response to short-ranged depletion attractions are used to test the applicability of the density of states predictions. For particle concentrations up to 30% by volume, the power law decay of the relaxation modulus in simulations accounting for long-ranged hydrodynamic interactions agrees with predictions generated by the density of states of the corresponding harmonic networks as well as experimental measurements. For higher volume fractions, excluded volume interactions dominate the stress response, and the prediction from the harmonic network density of states fails. Analogous to the Zimm model in polymer

  5. Influence of Uranium and Polivinyl Alcohol Concentration in the Feed of Sol Gel Process on the Gel Spherical Product

    International Nuclear Information System (INIS)

    Indra Suryawan; Endang Susiantini

    2007-01-01

    The gel particles have been made at various uranium and polyvinyl alcohol concentration in the sol gel process. The variables of uranium concentration were 0.3; 0.5; 0.7; 0.9; 1.1; 1.3; 1.5; 1.7; 1.9 and 2.1 M The variables of polyvinyl alcohol concentration were 0.3; 0.6; 0.9; 1.2; 1.5; 1.8; 2.1 and 2.4 M After drying the sol gel process products were heated at 300, 500 and 750°C during 4 hours. The gel particles were characterized using an optic microscope to know the shape and condition morphology of gel. From experimental result using uranium concentration of 0.3 until 2.1 M and polyvinyl alcohol of 1.8 until 2.4 M spherical and gel was formed elastic, after heating at 750°C it was unbreakable. At the concentration of polyvinyl alcohol from 0.3 to 0.5 M, the gel product was soft and broken after being dried. At the concentration of polyvinyl alcohol from 0.6 to 0.8 M, the dried gel product was not perfect. At the concentration of polyvinyl alcohol from 0.9 to 1.7 M, the gel product of gelation process was spherical and it was broken after being heated up to 300°C. (author)

  6. Synthesis of organic/inorganic hybrid gel with acid activated clay after γ-ray radiation.

    Science.gov (United States)

    Kim, Donghyun; Lee, Hoik; Sohn, Daewon

    2014-08-01

    A hybrid gel was prepared from acid activated clay (AA clay) and acrylic acid by gamma ray irradiation. Irradiated inorganic particles which have peroxide groups act as initiator because it generates oxide radicals by increasing temperature. Inorganic nanoparticles which are rigid part in hybrid gel also contribute to increase the mechanical property as a crosslinker. We prepared two hybrid gels to compare the effect of acid activated treatment of clay; one is synthesized with raw clay particles and another is synthesized with AA clay particles. The composition and structure of AA clay particles and raw clay particles were confirmed by X-ray diffraction (XRD), X-ray fluorescence instrument and surface area analyzer. And chemical and physical property of hybrid gel with different ratios of acrylic acid and clay particle was tested by Raman spectroscope and universal testing machine (UTM). The synthesized hydrogel with 76% gel contents can elongated approximately 1000% of its original size.

  7. An experimental study of the effect of collision properties on spout fluidized bed dynamics

    NARCIS (Netherlands)

    van Buijtenen, M.S.; Börner, Matthias; Deen, N.G.; Heinrich, Stefan; Antonyuk, Sergiy; Kuipers, J.A.M.

    2009-01-01

    In this paper we experimentally study the effect of collision properties of different particle systems on the bed dynamics of a spout fluidized bed. This is done in different flow regimes: the spout-fluidization regime (case A), the jet-in-fluidized-bed regime (case B) and the spouting-with-aeration

  8. Particles matter: Transformation of suspended particles in constructed wetlands

    NARCIS (Netherlands)

    Mulling, B.T.M.

    2013-01-01

    This thesis shows that constructed wetlands transform suspended particles in (treated) municipal wastewater through selective precipitation in ponds, biological filtering by plankton communities and physical and biological retention in reed beds. These processes effectively remove faecal indicator

  9. Molecular characterization of mesophilic and thermophilic sulfate reducing microbial communities in expanded granular sludge bed (EGSB) reactors

    NARCIS (Netherlands)

    Freeman, S.A.; Sierra-Alvarez, R.; Altinbas, M.; Hollingsworth, J.; Stams, A.J.M.; Smidt, H.

    2008-01-01

    The microbial communities established in mesophilic and thermophilic expanded granular sludge bed reactors operated with sulfate as the electron acceptor were analyzed using 16S rRNA targeted molecular methods, including denaturing gradient gel electrophoresis, cloning, and phylogenetic analysis.

  10. Heat Transfer in a Fixed Bed of Straw Char

    DEFF Research Database (Denmark)

    Fjellerup, Jan Søren; Henriksen, Ulrik Birk; Jensen, Anker

    2003-01-01

    A model for the thermal conductivity of a straw char bed has been developed. The model extends the work of Yagi and Kunii to describe heat transfer in a bed of cylinders, using a relationship between the interparticle distance and the external porosity. To verify the model, thermal conductivity...... the experimental uncertainty over the range of conditions investigated. The heat transfer model was used in a parametric study to evaluate the effect of gas flow rate, particle diameter, porosity, and temperature on the thermal conductivity in a straw char bed....... experiments were performed on shredded and un-shredded straw char samples, varying particle size, bed packing (loose or dense), and temperature. Predictions with the model, using the measured external porosity and particle diameter as input parameters, are in agreement with measurements within...

  11. Transient quenching of superheated debris beds during bottom reflood

    Energy Technology Data Exchange (ETDEWEB)

    Tutu, N.K.; Ginsberg, T.; Klein, J.; Schwarz, C.E.; Klages, J.

    1984-01-01

    The experimental data suggest that for small liquid supply rate and low initial particle temperature, the bed quench process is a one-dimensional frontal phenomenon. The bed heat flux is constant during most of the duration of the quench period. The range of conditions which display one-dimensional frontal cooling characteristics is identified as the deep bed regime of bed quenching, and a limiting mathematical model was developed to describe the observed behavior. For large liquid supply rate and high initial bed temperature, the bed quench process is a complex phenomenon. Under these conditions, the bed heat flux displays a nonuniform time dependence. In order to characterize this shallow bed regime, it was necessary to develop a detailed transient model of the coolant-debris interaction. This model, while developed for the shallow bed regime, also applies to the deep bed regime. Numerical computations clearly demonstrate the importance of developing a general reliable model for the solid-fluid heat transfer coefficients.

  12. Transient quenching of superheated debris beds during bottom reflood

    International Nuclear Information System (INIS)

    Tutu, N.K.; Ginsberg, T.; Klein, J.; Schwarz, C.E.; Klages, J.

    1984-01-01

    The experimental data suggest that for small liquid supply rate and low initial particle temperature, the bed quench process is a one-dimensional frontal phenomenon. The bed heat flux is constant during most of the duration of the quench period. The range of conditions which display one-dimensional frontal cooling characteristics is identified as the deep bed regime of bed quenching, and a limiting mathematical model was developed to describe the observed behavior. For large liquid supply rate and high initial bed temperature, the bed quench process is a complex phenomenon. Under these conditions, the bed heat flux displays a nonuniform time dependence. In order to characterize this shallow bed regime, it was necessary to develop a detailed transient model of the coolant-debris interaction. This model, while developed for the shallow bed regime, also applies to the deep bed regime. Numerical computations clearly demonstrate the importance of developing a general reliable model for the solid-fluid heat transfer coefficients

  13. Bed agglomeration in fluidized combustor fueled by wood and rice straw blends

    DEFF Research Database (Denmark)

    Thy, Peter; Jenkins, Brian; Williams, R.B.

    2010-01-01

    Abstract Petrographic techniques have been used to examine bed materials from fluidized bed combustion experiments that utilized wood and rice straw fuel blends. The experiments were conducted using a laboratory-scale combustor with mullite sand beds, firing temperatures of 840 to 1030 °C, and run...... areas between bed particles, ultimately led to bed agglomeration. The interfaces and the presence of gas bubbles in the cement suggest a bonding material with a high surface tension and a liquid state. The cement films originate by filling of irregularities on individual and partially agglomerated bed...

  14. Gel purification of RNA.

    Science.gov (United States)

    Nilsen, Timothy W

    2013-02-01

    For many applications, including size selection of RNAs and purification of in vitro transcription products, it is necessary to purify RNAs on a denaturing gel. This procedure describes how to purify transcripts that have been synthesized in vitro. It is useful for labeled or unlabeled RNAs when sufficient mass is present. It can also be used to isolate small RNAs. In general, RNA purification by denaturing gel electrophoresis is practical only when the size of the desired RNA is 600 nucleotides or less.

  15. Conformance Improvement Using Gels

    Energy Technology Data Exchange (ETDEWEB)

    Seright, Randall S.; Schrader, Richard; II Hagstrom, John; Wang, Ying; Al-Dahfeeri, Abdullah; Gary, Raven; Marin; Amaury; Lindquist, Brent

    2002-09-26

    This research project had two objectives. The first objective was to identify gel compositions and conditions that substantially reduce flow through fractures that allow direct channeling between wells, while leaving secondary fractures open so that high fluid injection and production rates can be maintained. The second objective was to optimize treatments in fractured production wells, where the gel must reduce permeability to water much more than that to oil.

  16. SYNROC production using a fluid bed calciner

    International Nuclear Information System (INIS)

    Ackerman, F.J.; Grens, J.Z.; Ryerson, F.J.; Hoenig, C.L.; Bazan, F.; Campbell, J.H.

    1982-01-01

    SYNROC is a titanate-based ceramic developed for immobilization of high-level nuclear reactor wastes in solid form. Fluid-bed SYNROC production permits slurry drying, calcining and redox to be carried out in a single unit. We present results of studies from two fluid beds; the Idaho Exxon internally-heated unit and the externally-heated unit constructed at Lawrence Livermore National laboratory. Bed operation over a range of temperature, feed rate, fluidizing rate and redox conditions indicate that high density, uniform particle-size SYNROC powders are produced which facilitate the densification step and give HUP parts with dense, well-developed phases and good leaching characteristics. 3 figures, 3 tables

  17. Bed rest during pregnancy

    Science.gov (United States)

    ... Belizán JM, Bergel E. Bed rest in singleton pregnancies for preventing preterm birth. Cochrane Database ... and Gynecology, Loma Linda University School of Medicine, Loma Linda Center for Fertility, ...

  18. Enuresis (Bed-Wetting)

    Science.gov (United States)

    ... Symptoms of enuresis Enuresis is when an older child (age 7 or older) wets the bed at night ... feel guilt and embarrassment. It’s true that your child should take responsibility for bedwetting. He or she could do this ...

  19. Innovative rock bed construction

    Energy Technology Data Exchange (ETDEWEB)

    Cook, J.

    1983-06-01

    A general discussion of the use of rock beds for heating and cooling thermal storage is particularized for design and construction in Phoenix, Arizona. The rock bed parameters for three two-story condominium apartments constructed in 1982 are discussed, including sizing criteria and original construction details. A revised construction method using gabions that are self-supporting chain link cylinders provided a much more economical construction method as well as other advantages of speed and structural flexibility.

  20. Engineering aspects of fluidized bed reactor operation applied to lactase treatment of whole whey

    Energy Technology Data Exchange (ETDEWEB)

    Metzdorf, C.; Fauquex, P.F.; Flaschel, E.; Renken, A.

    1985-01-01

    An interesting possibility for the use of lactoserum in human nutrition is the hydrolysis of lactose to glucose and galactose, sugars which exhibit a better digestibility, a higher solubility, and which have a greater sweetening power than lactose. The hydrolysis is catalyzed by an enzyme, the ..beta..-galactosidase which, due to its high price, must be used continuously, preferentially in immobilized form. The enzyme used for these studies has been immobilized on silica gel precoated with chitosan. When whole whey or partially deproteinized whey is treated, a fluidized bed reactor seems to be the most appropriate to circumvent problems with protein adsorption and reactor plugging. However the fluidization of fine particles with a small density difference between the solid and the liquid may give rise to stability problems. In order to prevent unstable operation of the fluidized bed, the reactor has been equipped with special internals. They impose a radial distribution of the liquid and the solid phase and increase the linear velocity required to achieve a given expansion by a factor of five. Besides the resulting high solids content, the back-mixing of the liquid decreases significantly when static mixer-packings are used.

  1. Thermal Decomposition Characteristics of ADU Gel Spheres

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Kyung Chai; Eom, Sung Ho; Kim, Yeon Ku; Kim, Young Min; Kim, Woong Ki; Kim, Bong Ku; Lee, Young Woo; Cho, Moon Seoung [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-10-15

    HTGR nuclear fuel uses a modified sol.gel GSP (Gel Supported Precipitation) method, which is a wet method used in most countries. ADU(Ammonium DiUranate) gel particles fabricated in this way pass through thermal treatments and become final UO{sub 2} microspheres. The washing characteristics such as washing volume, duration, and times during AWD(ageing, washing and drying) process after the spherical ADU gel particles preparation by the GSP method was studied. The VHTR (Very High Temperature Gas Reactor) is one of the reactor concepts in the Gen IV International Collaboration. Unlike light water reactor currently in use in Korea, a HTGR actually functions as a gas cooled reactor where the high temperature heat generated from nuclear fission in a reactor is cooled by He gas, with uranium dioxide (UO{sub 2} is globally used) used as fuel for the nuclear fission. Generally, nuclear fuel used in a HTGR is fabricated into a TRISO (TRi.ISOtropic) structure that can prevent the leakage of nuclear fission products at high temperatures.

  2. Densification and crystallization behaviour of colloidal cordierite-type gels

    Directory of Open Access Journals (Sweden)

    LJILJANA KOSTIC-GVOZDENOVIC

    2001-05-01

    Full Text Available Three cordierite-type gels were prepared from an aqueous solution of Mg(NO32, a boehmite sol and silica sols of very small particle sizes. The effect of varying the silica particle size on the crystallization and densification behaviour was studied. Phase development was examined by thermal analysis and X-ray diffraction, while the densification behaviour was characterized by measuring the linear shrinkage of pellets. The activation energy of densification by viscous flow was determined using the Franckel model for non-isothermal conditions and a constant heating rate. The results show that spinel crystallizes from the colloidal gels prior to cristobalite, and their reaction gives a-cordierite, which is specific for three-phase gels. Decreasing the silica particles size lowers the cristobalite crystallization temperature and the a-cordierite formation temperature. The activation energy of densification by viscous flow is lower and the densification more efficient, the smaller the silica particles are.

  3. Study of the NOx emissions during 'fluidised bed' combustion of Bulgarian lignite

    International Nuclear Information System (INIS)

    Bonev, B.; Totev, T.; Stanoev, Vl.; Velkova, A.; Barzilova, S.

    2003-01-01

    Based on the conducted experiment for lignite from 'Maritsa Iztok' fluidized bed combustion, an analysis is done of the impact of different fuel parameters (diameter of coal particles; bed temperature; ash content of the coal particles, oxygen content of the fluidized agent ) on NOx emissions

  4. Time and speed of fruit drying on batch fluid-beds

    Indian Academy of Sciences (India)

    Drying of particles (pieces) in a fluidized bed affords better quality of end products, especially for better product structure and its shorter reconstitution time. Fluid-bed drying of different fruit particles has been investigated. Starting water content varies from grape berries 81·5% and peach 87·7% to apricot 86·9%.

  5. Microfluidics of soft granular gels

    Science.gov (United States)

    Nixon, Ryan; Bhattacharjee, Tapomoy; Sawyer, W. Gregory; Angelini, Thomas E.

    Microfluidic methods for encapsulating cells and particles typically involve drop making with two immiscible fluids. The main materials constraint in this approach is surface tension, creating inherent instability between the two fluids. We can eliminate this instability by using miscible inner and outer phases. This is achieved by using granular micro gels which are chemically miscible but physically do not mix. These microgels are yield stress materials, so they flow as solid plugs far from shear gradients, and fluidize where gradients are generated - near an injection nozzle for example. We have found that tuning the yield stress of the material by varying polymer concentration, device performance can be controlled. The solid like behavior of the gel allows us to produces infinitely stable jets that maintain their integrity and configuration over long distances and times. These properties can be combined and manipulated to produce discrete particulate bunches of an inner phase, flowing inside of an outer phase, well enough even to print a Morse code message suspended within flow chambers about a millimeter in diameter moving at millimeters a second.

  6. Gel adsorption processing for waste solidification in NZP ceramics

    International Nuclear Information System (INIS)

    Yang, L.J.; Komareni, S.; Roy, R.

    1984-01-01

    Simulated PW-4b waste solution along with Na additive was mixed with Zr-P-O gel, dried and then fired to form the desired sodium zirconium phosphate, NaZr 2 (PO 4 ) 3 [NZP] ceramic. NZP and monazite were the only phases produced upon firing at 900 0 C with 10 to 40% of PW-4b mixed with the gel. CsZr 2 (PO 4 ) 3 which is isostructural with NZP was also identified when fired under reducing conditions. The -200 mesh powders of these waste forms prepared under reducing conditions showed excellent leach resistance under hydro-thermal conditions. Alternatively, PW-4b and Three Mile Island (TMI) wastes were adsorbed on Zr-P-O gel in a column. The gel was dried, pelletized and fired to form the desired [NZP] ceramic. Cesium was found to be selective on the Zr-P-O gel because no breakthrough of Cs was detected up to 38 column volumes of TMI waste. Thus, it is possible to use a tailored gel to sorb Cs and/or Sr from accident waste water and then fire the bed to form the [NZP] ceramic below 1000 0 C. The main advantages of the gel adsorption process are its simplicity and its enormous compositional flexibility. 12 references, 2 figures, 4 tables

  7. Gels composed of sodium-aluminum silicate, Lake Magadi, Kenya

    Science.gov (United States)

    Eugster, H.P.; Jones, B.F.

    1968-01-01

    Sodium-aluminum silicate gels are found in surftcial deposits as thick as 5 centimeters in the Magadi area of Kenya. Chemical data indicate they are formed by the interaction of hot alkaline springwaters (67?? to 82??C; pH, about 9) with alkali trachyte flows and their detritus, rather than by direct precipitation. In the process, Na2O is added from and silica is released to the saline waters of the springs. Algal mats protect the gels from erosion and act as thermal insulators. The gels are probably yearly accumulates that are washed into the lakes during floods. Crystallization of these gels in the laboratory yields analcite; this fact suggests that some analcite beds in lacustrine deposits may have formed from gels. Textural evidence indicates that cherts of rocks of the Pleistocene chert series in the Magadi area may have formed from soft sodium silicate gels. Similar gels may have acted as substrates for the accumulation and preservation of prebiological organic matter during the Precambrian.

  8. Aging and nonlinear rheology of thermoreversible colloidal gels

    Science.gov (United States)

    Wagner, Norman; Gordon, Melissa; Kloxin, Christopher

    Colloidal dispersions are found in a wide variety of consumer products such as paint, food and pharmaceuticals. We investigate gel formation and aging in a thermoreverible gel consisting of octadecyl-coated silica nanoparticles suspended in n-tetradecane. In this system, the octadecyl brush can undergo a phase change allowing the attractions between particles to be tuned by temperature (1,2). By probing the system with steady shear and large amplitude oscillatory shear, we have studied the effect of thermal history and shear history on gel formation and gel mechanical properties during aging. Gels were formed by approaching a common temperature from above and below to determine a reference state from which creep tests were conducted. Creep ringing was observed as expected for the viscoelastic gel. The rheological aging is interpreted in terms of the gel microstructure formed with differing thermal and shear histories to determine how processing affects structure. Recently proposed scaling laws for the rheology and structure under flow are explored within the context of gel aging (3). Through rheological and microstructural measurements, we will further the understanding of gel formation and aging in this model system which may be applied to processing conditions in an industrial setting.

  9. Magneto-dependent stress relaxation of magnetorheological gels

    KAUST Repository

    Xu, Yangguang

    2017-09-01

    The stress relaxation behaviors of magnetorheological (MR) gels under stepwise shear loading are systematically investigated. The particle-enhanced effect, the magneto-induced effect, and the temperature-enhanced effect on the stress relaxation of MR gels are discussed. For further analysis of the magneto-induced stress relaxation mechanism in MR gels, a phenomenological model is established to describe the stress relaxation behavior of the matrix and the magnetic particle chains. All characteristic parameters introduced in the model, i.e. relaxation time, instantaneous modulus, and stable modulus, have well-defined physical meanings and are fitted based on the experimental results. The influence of each parameter on the macroscopic response is discussed and it is found that the relaxation stress induced by the magneto-mechanical coupling effect plays an important role in the stress relaxation process of MR gels.

  10. Active Polymer Gel Actuators

    Directory of Open Access Journals (Sweden)

    Shuji Hashimoto

    2010-01-01

    Full Text Available Many kinds of stimuli-responsive polymer and gels have been developed and applied to biomimetic actuators or artificial muscles. Electroactive polymers that change shape when stimulated electrically seem to be particularly promising. In all cases, however, the mechanical motion is driven by external stimuli, for example, reversing the direction of electric field. On the other hand, many living organisms can generate an autonomous motion without external driving stimuli like self-beating of heart muscles. Here we show a novel biomimetic gel actuator that can walk spontaneously with a wormlike motion without switching of external stimuli. The self-oscillating motion is produced by dissipating chemical energy of oscillating reaction. Although the gel is completely composed of synthetic polymer, it shows autonomous motion as if it were alive.

  11. Mathematical modelling of MSW incineration on a travelling bed.

    Science.gov (United States)

    Yang, Y B; Goh, Y R; Zakaria, R; Nasserzadeh, V; Swithenbank, J

    2002-01-01

    The rising popularity of incineration of municipal solid waste (MSW) calls for detailed mathematical modelling and understanding of the incineration process. In this paper, governing equations for mass, momentum and heat transfer for both solid and gaseous phases in a moving bed in a solid-waste incineration furnace are described and relevant sub-models are presented. The burning rates of volatile hydrocarbons in the moving bed of solids are limited not only by the reaction kinetics but also the mixing of the volatile fuels with the under-fire air. The mixing rate is averaged across a computation cell and correlated to a number of parameters including local void fraction of the bed, gas velocity and a length scale comparable to the particle size in the bed. A correlation equation is also included to calculate the mixing in the freeboard area immediately next to the bed surface. A small-scale fixed bed waste incinerator was built and test runs were made in which total mass loss from the bed, temperature and gas composition at different locations along the bed height were measured. A 2-D bed-modelling program (FLIC) was developed which incorporates the various sub-process models and solves the governing equations for both gases and solids. Thermal and chemical processes are mainly confined within a layer about 5-9 times in thickness of the averaged particle size in the burning bed. For a large part of the burning process, the total mass loss rate was constant until the solid waste was totally dried out and a period of highly rising CO emission followed. The maximum bed temperature was around 1200 K. The whole burning process ended within 60 min. Big fluctuations in species concentration were observed due to channelling and subsequent 'catastrophic' changes in the local bed conditions. Reasonably good agreement between modelling and measurements has been achieved. Yet the modelling work is complicated by the channelling phenomenon in the bed. Numerical simulations

  12. The heat transfer mechanisms in fluidized beds; Laemmoensiirtomekanismit leijukerroksessa

    Energy Technology Data Exchange (ETDEWEB)

    Fogelholm, C.J.; Blomster, A.M.; Kojola, H. [Helsinki Univ. of Technology, Otaniemi (Finland). Lab. of Energy Technology and Environmental Protection

    1997-10-01

    The goal of the research project is to improve the accuracy of the heat transfer correlation in circulating fluidized beds and to define how the heat transfer is distributed in radiation and convection in the different parts of the fluidized bed. This will be carried out by studying the behaviour and the heat transfer of the fluidized bed in the boundary layer near the wall. During the project the concentration and the velocity of the sand particles are measured. The particle concentration and the particle velocity are measured by an image analysis system. A video camera and a Super VHS recorder are used to capture live images from the bed. The images are digitized and stored on a PC. The measured particle concentration was at highest slightly over 20 % on the straight wall. As expected, the velocity of the fluidizing gas had the most important role on the particle concentration. The experimental studies of the particle velocity were started last autumn 1996. The velocities of the particles were measured by using a multiple exposure technique. Afterwards the images captured were analyzed by performing a Fourier transform analysis. So far the results have been encouraging and the analyzing work will be ended this spring. (orig.)

  13. Biofilm detachment mechanisms in a liquid-fluidized bed.

    Science.gov (United States)

    Chang, H T; Rittmann, B E; Amar, D; Heim, R; Ehlinger, O; Lesty, Y

    1991-08-20

    Bed fluidization offers the possibility of gaining the advantages of fixed-film biological processes without the disadvantage of pore clogging. However, the biofilm detachment rate, due to hydrodynamics and particle-to-particle attrition, is very poorly understood for fluidized-bed biofilm processes. In this work, a two-phase fluidized-bed biofilm was operated under a constant surface loading (0.09 mg total organic carbon/cm(2) day) and with a range of bed height (H), fluid velocities (U), and support-particle concentrations (C(p)). Direct measurements were made for the specific biofilm loss rate coefficient (b(s))and the total biofilm accumulation (X(f)L(f)). A hydrodynamic model allowed independent determination of the biofilm density (X(f)), biofilm thickness (L(f)), liquid shear stress (tau), and Reynolds number (Re). Multiple regression analysis of the results showed that increased particle-to-particle attrition, proportional to C(p) and increased turbulence, described by Re, caused the biofilms to be denser and thinner. The specific detachment rate coefficient (b(s)) increased as C(p) and Re increased. Almost all of the 6, values were larger than predicted by a previous model derived for smooth biofilms on a nonfluidized surface. Therefore, the turbulence and attrition of bed fluidization appear to be dominant detachment mechanisms.

  14. Probabilistic estimation of entrainment rate in coarse sediment beds

    Science.gov (United States)

    Bottacin-Busolin, Andrea; Tregnaghi, Matteo; Cecchetto, Martina; Marion, Andrea; Tait, Simon

    2017-04-01

    Many problems in river and coastal engineering depend on sediment transport dynamics induced by turbulent flows over sediment beds. Given the chaotic nature of turbulence and the complex mechanics of granular beds, grain-scale interactions between fluid and sediment are better described using stochastic approaches. A probabilistic model is presented linking entrainment rate to the stochastic properties of the near-bed fluid velocity and the probability distribution of particle elevation. By using a simplified description of the mechanics of grain dislodgement, the distribution of particle waiting time is derived, which is linked to the entrainment rate. The predictive capability of the model and the associated uncertainty are analysed using near-bed flow field and grain motion data obtained from flume experiments at low transport stages. The model predictions are found to be in good agreement with the data. Experimental evidence of distinct entrainment mechanisms is discussed, and flow patterns are identified that cause significant fluctuations in the entrainment rate.

  15. Experimental study of fluidized bed agglomeration of acerola powder

    Directory of Open Access Journals (Sweden)

    G. C. Dacanal

    2008-03-01

    Full Text Available The aim of this work was to study the main effects of acerola powder on fluidized bed agglomeration. A 2(4-1 fractional factoring design was used to evaluate the main operating conditions (fluidizing air temperature, fluidizing air velocity, atomizing air flow and height of nozzle in the bed. The mechanical and physicochemical product changes were determined by analysis of particle diameter, moisture content, wetting time and bed porosity. The particle enlargement by agglomeration occurred when the relative humidity in the bed increased and, thus, the moisture of the product increased. However, the excessive increase in relative humidity resulted in a decrease in yield, caused by caking and product incrustation. The consolidation of small granules resulted in an increase in the instant properties, decreasing the wetting time and increasing the solubility in a short period of agitation.

  16. Bed bug deterrence

    Directory of Open Access Journals (Sweden)

    Haynes Kenneth F

    2010-09-01

    Full Text Available Abstract A recent study in BMC Biology has determined that the immature stage of the bed bug (the nymph signals its reproductive status to adult males using pheromones and thus avoids the trauma associated with copulation in this species. The success of this nymphal strategy of deterrence is instructive. Against the background of increasing problems with bed bugs, this research raises the question whether pheromones might be used to control them. See research article http://www.biomedcentral.com/1741-7007/8/121

  17. The Effect of Bedding Structure on Mechanical Property of Coal

    Directory of Open Access Journals (Sweden)

    Zetian Zhang

    2014-01-01

    Full Text Available The mechanical property of coal, influencing mining activity considerably, is significantly determined by the natural fracture distributed within coal mass. In order to study the effecting mechanism of bedding structure on mechanical property of coal, a series of uniaxial compression tests and mesoscopic tests have been conducted. The experimental results show that the distribution characteristic of calcite particles, which significantly influences the growth of cracks and the macroscopic mechanical properties of coal, is obviously affected by the bedding structure. Specifically, the uniaxial compression strength of coal sample is mainly controlled by bedding structure, and the average peak stress of specimens with axes perpendicular to the bedding planes is 20.00 MPa, which is 2.88 times the average amount of parallel ones. The test results also show a close relationship between the bedding structure and the whole deformation process under uniaxial loading.

  18. Fluidized bed incineration of a slurry waste from caprolactam production

    Energy Technology Data Exchange (ETDEWEB)

    Cammarota, A.; D' Amore, M.; Donsi, G.; Massimilla, L.

    1980-08-01

    Caprolactam tails are a slurry waste produced in the SNIA process for the synthesis of caprolactam. They contain about 65% water, 25% ash and 10% combustible matter. The ashes are low melting, due to the presence of sodium compounds. The incineration of this waste is carried out at temperatures below 600/sup 0/C in beds of silica sand, using a laboratory scale apparatus with a 40 mm ID fluidization column. Variables investigated include sand particle size, slurry flow rate, bed temperature, bed height. The concentrations of CO/sub 2/ and CO are determined continuously in the flue gases. Bed solids are sampled periodically to determine the carbon content. Results of experiments show that the low temperature incineration on a bed of inert solids is a useful technique for the disposal of caprolactam tails. 8 refs.

  19. 3D MR gel dosimetry with lung equivalent gel; 3D MR-Gel-Dosimetrie mit lungenaequivalentem Gel

    Energy Technology Data Exchange (ETDEWEB)

    Scherer, J.; Solleder, M.; Schiessl, I.; Bogner, L.; Herbst, M. [Klinik und Poliklinik fuer Strahlentherapie und Radioonkologie, Regensburg Univ. (Germany)

    1998-12-31

    The MR gel dosimetry is used to verify complex 3D treatment plans. Till now this method served only for dose evaluation in homogeneous phantoms. On the way to build a heterogeneous anthropomorphic gel phantom, a lung equivalent gel with the density 0.4 g/cm{sup 3} was developed. First experiments show a 1.55 times higher dose reponse in the low density gel (LD gel). The comparison of a dose distribution in a gel/LD gel/gel slab phantom with Monte Carlo calculations shows good agreement within 5%. More over the accuray of the measuring device magnetic resonance imager was studied in respect to the now exclusive digital image processing with the software MRD (MR dosimetry). Because of the dimensions of the Fricke gel phantom an artefact correction, based on the data from the unirradiated phantom proved to be essential. (orig.) [Deutsch] Die MR-Gel-Dosimetrie zur Verifikation komplexer 3D-Bestrahlungsplaene wurde bislang ausschliesslich in homogenen Phantomen durchgefuehrt. Auf dem Wege zum Bau eines inhomogenen Humanoid-Gel-Phantoms wurde ein lungenaequivalentes Gel mit der Dichte 0,4 g/cm{sup 3} entwickelt. Erste Messungen zeigen ein um den Faktor 1,55 hoeheres Ansprechvermoegen in dem low-density-Gel (LD-Gel). Der Vergleich einer gemessen Dosisverteilung in einem Gel/LD-Gel/Gel Schichtphantom als einfaches Thoraxmodell mit Monte-Carlo-Rechnungen zeigt eine gute Uebereinstimmung innerhalb 5%. Ausserdem wurden Untersuchungen zur Messgenauigkeit des Kernspintomographen im Rahmen der nun ausschliesslich digitalen Auswertung mit Hilfe des Programms MRD (MR-Dosimetrie) durchgefuehrt. Es zeigt sich, dass eine Artefaktkorrektur auf der Basis einer Messung des unbestrahlten Phantoms bei grossen Fricke-Gel-Phantomen notwendig ist. (orig.)

  20. Etodolac Containing Topical Niosomal Gel: Formulation Development and Evaluation

    Directory of Open Access Journals (Sweden)

    Gyati Shilakari Asthana

    2016-01-01

    Full Text Available The present study aimed to investigate the delivery potential of Etodolac (ETD containing topical niosomal gel. Niosomal formulations were prepared by thin film hydration method at various ratios of cholesterol and Span 60 and were evaluated with respect to particle size, shape, entrapment efficiency, and in vitro characteristics. Dicetyl phosphate (DCP was also added in the niosomal formulation. Mean particle size of niosomal formulation was found to be in the range of 2 μm to 4 μm. Niosomal formulation N2 (1 : 1 ratio of cholesterol and surfactant displayed good entrapment efficiency (96.72%. TEM analyses showed that niosomal formulation was spherical in shape. Niosomal formulation (N2 displayed high percentage of drug release after 24 h (94.91 at (1 : 1 ratio of cholesterol : surfactant. Further selected niosomal formulation was used to formulate topical gel and was characterized with respect to its various parameters such as pH, viscosity, spreadability, ex vivo study, and in vivo potential permeation. Ex vivo study showed that niosomal gel possessed better skin permeation study than the plain topical gel. Further in vivo study revealed good inhibition of inflammation in case of topical niosomal gel than plain gel and niosomal formulation. The present study suggested that topical niosomal gel formulations provide sustained and prolonged delivery of drug.

  1. Etodolac Containing Topical Niosomal Gel: Formulation Development and Evaluation.

    Science.gov (United States)

    Shilakari Asthana, Gyati; Asthana, Abhay; Singh, Davinder; Sharma, Parveen Kumar

    2016-01-01

    The present study aimed to investigate the delivery potential of Etodolac (ETD) containing topical niosomal gel. Niosomal formulations were prepared by thin film hydration method at various ratios of cholesterol and Span 60 and were evaluated with respect to particle size, shape, entrapment efficiency, and in vitro characteristics. Dicetyl phosphate (DCP) was also added in the niosomal formulation. Mean particle size of niosomal formulation was found to be in the range of 2 μm to 4 μm. Niosomal formulation N2 (1 : 1) ratio of cholesterol and surfactant displayed good entrapment efficiency (96.72%). TEM analyses showed that niosomal formulation was spherical in shape. Niosomal formulation (N2) displayed high percentage of drug release after 24 h (94.91) at (1 : 1) ratio of cholesterol : surfactant. Further selected niosomal formulation was used to formulate topical gel and was characterized with respect to its various parameters such as pH, viscosity, spreadability, ex vivo study, and in vivo potential permeation. Ex vivo study showed that niosomal gel possessed better skin permeation study than the plain topical gel. Further in vivo study revealed good inhibition of inflammation in case of topical niosomal gel than plain gel and niosomal formulation. The present study suggested that topical niosomal gel formulations provide sustained and prolonged delivery of drug.

  2. The Safety of Hospital Beds

    Science.gov (United States)

    Gervais, Pierre; Pooler, Charlotte; Merryweather, Andrew; Doig, Alexa K.; Bloswick, Donald

    2015-01-01

    To explore the safety of the standard and the low hospital bed, we report on a microanalysis of 15 patients’ ability to ingress, move about the bed, and egress. The 15 participants were purposefully selected with various disabilities. Bed conditions were randomized with side rails up or down and one low bed with side rails down. We explored the patients’ use of the side rails, bed height, ability to lift their legs onto the mattress, and ability to turn, egress, and walk back to the chair. The standard bed was too high for some participants, both for ingress and egress. Side rails were used by most participants when entering, turning in bed, and exiting. We recommend that side rails be reconsidered as a means to facilitate in-bed movement, ingress, and egress. Furthermore, single deck height settings for all patients are not optimal. Low beds as a safety measure must be re-evaluated. PMID:28462302

  3. Quantification of the contribution of surface outgrowth to biocatalysis in sol-gels: oxytetracycline production by Streptomyces rimosus.

    Science.gov (United States)

    Taylor, Anthony P; Finnie, Kim S; Bartlett, John R; Holden, Peter J

    2004-11-01

    A technique was developed for differentiating the activity of microbes solely within sol gels by using the contribution of biomass outgrowth. Streptomyces rimosus was immobilised in colloidal silica gels and biomass growth, oxytetracycline synthesis, pH and carbohydrate consumption were compared for UV surface-sterilised gels, untreated gels, and liquid cultures. Absolute and biomass specific oxytetracycline yields were higher for non-sterile gels than for liquid culture. Biomass solely within colloidal silica gels (1.7 mg ml(-1)), and gels obtained from colloidal silica modified by addition of larger silica particles (1.2 mg ml(-1)) yielded 27 and 21 microg ml(-1) oxytetracycline compared with 97 and 104 microg ml(-1) for unsterilised gels (3.6 and 5.2 mg ml(-1) biomass) displaying outgrowth. It was therefore apparent that biomass and antibiotic production within the gels was limited and that optimisation requires gel modification.

  4. Chebyshev super spectral viscosity method for a fluidized bed model

    International Nuclear Information System (INIS)

    Sarra, Scott A.

    2003-01-01

    A Chebyshev super spectral viscosity method and operator splitting are used to solve a hyperbolic system of conservation laws with a source term modeling a fluidized bed. The fluidized bed displays a slugging behavior which corresponds to shocks in the solution. A modified Gegenbauer postprocessing procedure is used to obtain a solution which is free of oscillations caused by the Gibbs-Wilbraham phenomenon in the spectral viscosity solution. Conservation is maintained by working with unphysical negative particle concentrations

  5. Chebyshev super spectral viscosity method for a fluidized bed model

    CERN Document Server

    Sarra, S A

    2003-01-01

    A Chebyshev super spectral viscosity method and operator splitting are used to solve a hyperbolic system of conservation laws with a source term modeling a fluidized bed. The fluidized bed displays a slugging behavior which corresponds to shocks in the solution. A modified Gegenbauer postprocessing procedure is used to obtain a solution which is free of oscillations caused by the Gibbs-Wilbraham phenomenon in the spectral viscosity solution. Conservation is maintained by working with unphysical negative particle concentrations.

  6. based gel polymer electrolytes

    Indian Academy of Sciences (India)

    Bull. Mater. Sci., Vol. 29, No. 7, December 2006, pp. 673–678. © Indian Academy of Sciences. 673. Investigation on poly (vinylidene fluoride) based gel polymer electrolytes ... (Alamgir and Abraham 1993; Sukeshini et al 1996; Ra- jendran and Uma ... Yang et al 1996; Ramesh and Arof 2001) and such elec- trolytes exhibit ...

  7. gel template method

    Indian Academy of Sciences (India)

    TiO2 nanotubes have been synthesized by sol–gel template method using alumina membrane. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), Raman spectroscopy, UV absorption spectrum and X-ray diffraction techniques have been used to investigate the structure, morphology and optical ...

  8. Bed failure induced by internal solitary waves

    Science.gov (United States)

    Rivera-Rosario, Gustavo A.; Diamessis, Peter J.; Jenkins, James T.

    2017-07-01

    The pressure field inside a porous bed induced by the passage of an Internal Solitary Wave (ISW) of depression is examined using high-accuracy numerical simulations. The velocity and density fields are obtained by solving the Dubreil-Jacotin-Long Equation, for a two-layer, continuously stratified water column. The total wave-induced pressure across the surface of the bed is computed by vertically integrating for the hydrostatic and nonhydrostatic contributions. The bed is assumed to be a continuum composed of either sand or silt, with a small amount of trapped gas. Results show variations in pore-water pressure penetrating deeper into more conductive materials and remaining for a prolonged period after the wave has passed. In order to quantify the potential for failure, the vertical pressure gradient is compared against the buoyant weight of the bed. The pressure gradient exceeds this weight for weakly conductive materials. Failure is further enhanced by a decrease in bed saturation, consistent with studies in surface-wave induced failure. In deeper water, the ISW-induced pressure is stronger, causing failure only for weakly conductive materials. The pressure associated with the free-surface displacement that accompanies ISWs is significant, when the water depth is less than 100 m, but has little influence when it is greater than 100 m, where the hydrostatic pressure due to the pycnocline displacement is much larger. Since the pore-pressure gradient reduces the specific weight of the bed, results show that particles are easier for the flow to suspend, suggesting that pressure contributes to the powerful resuspension events observed in the field.

  9. Sol-gel synthesis of hydroxyapatite; Sintese de hidroxiapatita via sol-gel

    Energy Technology Data Exchange (ETDEWEB)

    Zupanski, M.D.; Lucena, M.P.P.; Bergmann, C.P., E-mail: michelledunin@yahoo.com.b [Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS (Brazil)

    2010-07-01

    Hydroxyapatite (HAp) has been established as the calcium phosphate based compound with most applications in the biological field. Among the numerous techniques for synthesis of HAp, the sol-gel processing route affords great control over purity and formed phases using low processing temperatures. In addition, the sol-gel approach offers an option for homogeneous HAp coating on metal substrates, as well as the ability to generate nanocrystalline powders. In this work, the sol-gel synthesis of HAp was investigated employing triethyl phosphate and calcium nitrate tetrahydrate as phosphorous and calcium precursors, respectively. The aging effect on phase composition and powder morphology of the final product was studied in terms of temperature and aging time. The powders were studied by using X-ray diffraction, Fourier transform infrared spectroscopy, particle size distribution by laser diffraction and scanning electron microscopy. (author)

  10. Bed Prism Spectacles

    Science.gov (United States)

    Ribeiro, Jair Lúcio Prados

    2018-01-01

    We only became aware of the existence of bed prism spectacles when a student brought them to the classroom and asked us about how they work. The device proved to be a fertile source of curiosity among the students, and, to be properly understood, it required us to develop a comparison between reflection in a typical mirror and total internal…

  11. Practice Hospital Bed Safety

    Science.gov (United States)

    ... the mattress end Subscribe: FDA Consumer Health Information "Hospital beds are found in nearly all patient care settings or environments," says Joan Ferlo Todd, RN, a senior nurse-consultant at the Food and Drug Administration’s (FDA) Center for Devices and Radiological Health (CDRH). " ...

  12. Self-Supporting Nanodiamond Gels: Elucidating Colloidal Interactions Through Rheology_

    Science.gov (United States)

    Adhikari, Prajesh; Tripathi, Anurodh; Vogel, Nancy A.; Rojas, Orlando J.; Raghavan, Sriunivasa R.; Khan, Saad A.

    This work investigates the colloidal interactions and rheological behavior of nanodiamond (ND) dispersions. While ND represents a promising class of nanofiller due to its high surface area, superior mechanical strength, tailorable surface functionality and biocompatibility, much remains unknown about the behavior of ND dispersions. We hypothesize that controlling interactions in ND dispersions will lead to highly functional systems with tunable modulus and shear response. Steady and dynamic rheology techniques are thus employed to systematically investigate nanodiamonds dispersed in model polar and non-polar media. We find that low concentrations of ND form gels almost instantaneously in a non-polar media. In contrast, ND's in polar media show a time-dependent behavior with the modulus increasing with time. We attribute the difference in behavior to variations in inter-particle interactions as well as the interaction of the ND with the media. Large steady and oscillatory strains are applied to ND colloidal gels to investigate the role of shear in gel microstructure breakdown and recovery. For colloidal gels in non-polar medium, the incomplete recovery of elastic modulus at high strain amplitudes indicates dominance of particle-particle interactions; however, in polar media the complete recovery of elastic modulus even at high strain amplitudes indicates dominance of particle-solvent interactions. These results taken together provide a platform to develop self-supporting gels with tunable properties in terms of ND concentration, and solvent type.

  13. An experimental study on coolability of a particulate bed with radial stratification or triangular shape

    International Nuclear Information System (INIS)

    Thakre, Sachin; Li, Liangxing; Ma, Weimin

    2014-01-01

    Highlights: • Dryout heat flux of a particulate bed with radial stratification is obtained. • It was found to be dominated by hydrodynamics in the bigger size of particle layer. • Coolability of a particulate bed with triangular shape is investigated. • The coolability is improved in the triangular bed due to lateral ingression of coolant. • Coolability of both beds is enhanced by a downcomer. - Abstract: This paper deals with the results of an experimental study on the coolability of particulate beds with radial stratification and triangular shape, respectively. The study is intended to get an idea on how the coolability is affected by the different features of a debris bed formed in a severe accident of light water reactors. The experiments were performed on the POMECO-HT facility which was constructed to investigate two-phase flow and heat transfer in particulate beds under either top-flooding or bottom-fed condition. A downcomer is designed to enable investigation of the effectiveness of natural circulation driven coolability. Two homogenous beds were also employed in the present study to compare their dryout power densities with those of the radially stratified bed and the triangular bed. The results show that the dryout heat fluxes of the homogeneous beds at top-flooding condition can be predicted by the Reed model. For the radially stratified bed, the dryout heat flux is dominated by two-phase flow in the columns packed with larger particles, and the dryout occurred initially near the boundary between the middle column and a side column. Given the same volume of particles under top-flooding condition, the dryout power density of the triangular bed is about 69% higher than that of the homogenous bed. The coolability of all the beds is enhanced by bottom-fed coolant driven by either forced injection or downcomer-induced natural circulation

  14. Colloid molecular weight estimation by gel chromatography/acrylamide gel electrophoresis

    International Nuclear Information System (INIS)

    Liberatore, F.A.; Dearborn, C.; Nigam, S.; Poon, C.; Camin, L.; Liteplo, M.

    1984-01-01

    Size or molecular weight (MW) estimation of radiolabeled collides in aqueous solutions has long been a problem. The authors have prepared several minimicroaggregated albumin colloids (mμAA) by heat denaturation of stannous-containing HSA solutions at pH 7.0, 7.5, and 8.5). The resulting colloids were labeled with Tc-99m and compared with Au-198 colloid and Tc-99m-antimony sulfide colloid (Tc-99m-Sb/sub 2/S3) by gel chromatography and gel electrophoresis. Tc-99mm-mμAA aggregated at pH 7.0 and the Au-198 colloid appeared in the external void volume of a BioRad A5.0 agarose column indicating an apparent MW of > 5 x 10/sup 6/ daltons. The pH7.5 Tc-99m-mμAA, migrated within the filtration range of the column as did a small fraction of Tc-99m-Sb/sub 2/S/sub 3/, suggesting that the MW is between 6 x 10/sup 4/ - 5 x 10/sup 6/ daltons. The Tc-99m-mμAA, aggregated at pH 8.5, had an apparent MW on gel filtration similar to that of untreated albumin, MW 6.6 x 10-/sup 4/ daltons. The mobilities of the colloids, on acrylamide disc gel electrophoresis, were consistent with the results on gel chromatography. The largest colloids, Au-198 colloid and pH 7.0 Tc-99m-mμAA, barely entered the separating gel; intermediate sized colloids, a small fraction of Tc-99m-Sb/sub 2/S/sub 3/ and pH 7.5 Tc-99m-mμAA migrated farther into the separating gel; while pH 8.5 Tc-99m-mμAA had mobility approaching that of untreated albumin. Lymphoscintigraphy studies using these colloids in animals showed the predicted, particle size-related differences in migration and clearance. The authors conclude that gel chromatography and gel electrophoresis are useful methods for estimating the apparent size of the colloidal particles

  15. Application of sedimentation model to uniform and segregated fluidized beds

    Energy Technology Data Exchange (ETDEWEB)

    Shippy, J.L. III; Watson, J.S.

    1990-10-24

    This paper incorporates concepts of unimodal and bimodal sedimentation to develop a model that accurately predicts bed expansion during particulate fluidization. During bed expansion a particle is considered to be fluidized not by the pure fluid, but by a slurry consisting of the pure fluid and other surrounding particles. The contributions of the other surrounding particles to the additional buoyant and drag forces are accounted for with the use of effective fluid or slurry properties, density and viscosity. As bed expansion proceeds, influences of the surrounding particles decrease; therefore, these effective properties are functions of the changing void fraction of the suspension. Furthermore, the expansion index, which empirically represents the degree to which viscous and inertial forces are present, is traditionally a function of a constant terminal Reynold's number. Because the effective fluid properties are considered to be changing as fluidization proceeds, the degree to which viscous and inertial forces also changes; therefore, the expansion index is written as a function of a local or intermediate Reynold's number. These concepts are further extended to bimodal fluidization in which small or light particles aid in the fluidization of the large or heavy particles. The results indicate that the proposed model more accurately predicts particulate bed expansion for a wider range of systems (gas -- liquid, low Reynold's number -- high Reynold's number) than other analytical or empirical models.

  16. Intruder Motion in Two-Dimensional Shaken Granular Beds

    International Nuclear Information System (INIS)

    Ma Huan-Ping; Lv Yong-Jun; Zheng Ning; Shi Qing-Fan; Li Liang-Sheng

    2014-01-01

    The dynamical behavior of an intruder immersed in a two-dimensional shaken granular bed is experimentally investigated. With two types of background particles, f−Γ phase diagrams depicting the intruder's motion are measured and compared. It is found that even with the same size and density ratio of the intruder to the background particles, the intruder exhibits a distinct behavior at given vibrational conditions: rising behavior in one granular bed; sinking behavior in another granular bed. We slightly tune the size and density ratio to confirm the reliability of the experimental results. In addition, we examine the influences of interstitial air, convection and the initial position on the intruder's motion, speculating that the opposite motion could be traced to the material properties of the background particles

  17. Thermal-hydraulic modeling of porous bed reactors

    International Nuclear Information System (INIS)

    Araj, K.J.; Nourbakhsh, H.P.

    1987-01-01

    Optimum design of nuclear reactor core requires an iterative approach between the thermal-hydraulic, neutronic and operational analysis. This paper concentrates on the thermal-hydraulic behavior of a hydrogen cooled, small particle bed reactor (PBR). The PBR core, modeled here, consists of a hexagonal array of fuel elements embedded in a moderator matrix. The fuel elements are annular packed beds of fuel particles held between two porous cylindrical frits. These particles, 500 to 600 μm in diameter, have a uranium carbide core, which is coated by two layers of graphite and an outer coating of zirconium carbide. Coolant flow, radially inward, from the cold frit through the packed bed and hot frit and axially out the channel, formed by the hot frit, to a common plenum. 5 refs., 1 fig., 2 tabs

  18. Volatiles combustion in fluidized beds. Technical progress report, 4 March 1993--3 June 1993

    Energy Technology Data Exchange (ETDEWEB)

    Hesketh, R.P.

    1993-09-01

    The goal of this project is to investigate the conditions in which volatiles will burn within both the dense and freeboard regions of fluidized beds. Experiments using a fluidized bed operated at incipient fluidization will be performed to characterize the effect of particle surface area, initial fuel concentration, and particle type on the inhibition of volatiles within a fluidized bed. The work conducted during the period 4 March, 1993 through 3 June, 1993 is reported in this technical progress report. The work during this time period consists primarily of the startup and trouble shooting of the fluidized bed reactor and gas phase modeling of methane and propane.

  19. Diffusion model for fluidized-bed drying.

    Science.gov (United States)

    Zoglio, M A; Streng, W H; Carstensen, J T

    1975-11-01

    A sucrose-lactose-starch granulation was used to study particulate motion and attrition in a fluid bed dryer. There is some classification of material in the dryer as drying proceeds; fine particles are dried faster and become less dense, and the less dry but denser large particles show some (although not great) accumulation tendencies in the lower central area. Unlike countercurrent rotary drying, fluid bed drying cannot be accounted for by water diffusion inside the granule as the rate-limiting step. In its place, a model of external water vapor diffusion is proposed and is supported by vapor-concentration curves and by the linear dependence of the rate constants on the linear air velocities. The dried granulation exhibits the same trend as does countercurrent dried material in that larger particles have higher moisture contents than do smaller particles. Quantitative relationships between content of moisture and size were developed and are supported by experimental data. The granulation, upon storage, does not equilibrate, indicating that this type of water distribution is a problem in batch process granulations as well as in the earlier reported case of granulations for continuous production.

  20. Gel Electrophoresis of Gold-DNA Nanoconjugates

    Directory of Open Access Journals (Sweden)

    T. Pellegrino

    2007-01-01

    Full Text Available Gold-DNA conjugates were investigated in detail by a comprehensive gel electrophoresis study based on 1200 gels. A controlled number of single-stranded DNA of different length was attached specifically via thiol-Au bonds to phosphine-stabilized colloidal gold nanoparticles. Alternatively, the surface of the gold particles was saturated with single stranded DNA of different length either specifically via thiol-Au bonds or by nonspecific adsorption. From the experimentally determined electrophoretic mobilities, estimates for the effective diameters of the gold-DNA conjugates were derived by applying two different data treatment approaches. The first method is based on making a calibration curve for the relation between effective diameters and mobilities with gold nanoparticles of known diameter. The second method is based on Ferguson analysis which uses gold nanoparticles of known diameter as reference database. Our study shows that effective diameters derived from gel electrophoresis measurements are affected with a high error bar as the determined values strongly depend on the method of evaluation, though relative changes in size upon binding of molecules can be detected with high precision. Furthermore, in this study, the specific attachment of DNA via gold-thiol bonds to Au nanoparticles is compared to nonspecific adsorption of DNA. Also, the maximum number of DNA molecules that can be bound per particle was determined.

  1. Experimental study of self-leveling behavior in debris bed

    International Nuclear Information System (INIS)

    Zhang, Bin; Harada, Tetsushi; Hirahara, Daisuke; Matsumoto, Tatsuya; Morita, Koji; Fukuda, Kenji; Yamano, Hidemasa; Suzuki, Tohru; Tobita, Yoshiharu

    2008-01-01

    After a core disruptive accident in a sodium-cooled fast reactor, core debris may settle on locations such as within the core-support structure or in the lower inlet plenum of the reactor vessel as debris beds, as a consequence of rapid quenching and fragmentation of core materials in subcooled sodium. The particle beds that are initially of varying depth have been observed to undergo a process of self-leveling when sodium boiling occurs within the beds. The boiling is believed to provide the driven force with debris needed to overcome resisting forces. Self-leveling ability has much effect on heat-removal capability of debris beds. In the present study, characteristics of self-leveling behaviors were investigated experimentally with simulant materials. Although the decay heat from fuel debris drives the coolant boiling in reactor accident conditions, the present experiments employed depressurization boiling of water to simulate axially increasing void distribution in a debris bed, which consists of solid particles of alumina or lead with different density. The particle size (from 0.5 mm to 6 mm in diameter) and shape (spherical or non-spherical particles) were also taken as experimental parameters. A rough criteria for self-leveling occurrence is proposed and compared with the experimental results. Characteristics of the self-leveling behaviors observed are analyzed and extrapolate to reactor accident conditions. (author)

  2. VA National Bed Control System

    Data.gov (United States)

    Department of Veterans Affairs — The VA National Bed Control System records the levels of operating, unavailable and authorized beds at each VAMC, and it tracks requests for changes in these levels....

  3. Agarose gel electrophoresis and polyacrylamide gel electrophoresis for visualization of simple sequence repeats.

    Science.gov (United States)

    Anderson, James; Wright, Drew; Meksem, Khalid

    2013-01-01

    In the modern age of genetic research there is a constant search for ways to improve the efficiency of plant selection. The most recent technology that can result in a highly efficient means of selection and still be done at a low cost is through plant selection directed by simple sequence repeats (SSRs or microsatellites). The molecular markers are used to select for certain desirable plant traits without relying on ambiguous phenotypic data. The best way to detect these is the use of gel electrophoresis. Gel electrophoresis is a common technique in laboratory settings which is used to separate deoxyribonucleic acid (DNA) and ribonucleic acid (RNA) by size. Loading DNA and RNA onto gels allows for visualization of the size of fragments through the separation of DNA and RNA fragments. This is achieved through the use of the charge in the particles. As the fragments separate, they form into distinct bands at set sizes. We describe the ability to visualize SSRs on slab gels of agarose and polyacrylamide gel electrophoresis.

  4. Size distribution of Amazon River bed sediment

    Science.gov (United States)

    Nordin, C.F.; Meade, R.H.; Curtis, W.F.; Bosio, N.J.; Landim, P.M.B.

    1980-01-01

    The first recorded observations of bed material of the Amazon River were made in 1843 by Lt William Lewis Herndon of the US Navy, when he travelled the river from its headwaters to its mouth, sounding its depths, and noting the nature of particles caught in a heavy grease smeared to the bottom of his sounding weight1. He reported the bed material of the river to be mostly sand and fine gravel. Oltman and Ames took samples at a few locations in 1963 and 1964, and reported the bed material at O??bidos, Brazil, to be fine sands, with median diameters ranging from 0.15 to 0.25 mm (ref. 2). We present here a summary of particle-size analyses of samples of streambed material collected from the Amazon River and its major tributaries along a reach of the river from Iquitos in Peru, ???3,500 km above Macapa?? Brazil, to a point 220 km above Macapa??3. ?? 1980 Nature Publishing Group.

  5. 3D Lagrangian Model of Particle Saltation in an Open Channel Flow with Emphasis on Particle-Particle Collisions

    Science.gov (United States)

    Moreno, P. A.; Bombardelli, F. A.

    2012-12-01

    Particles laying motionless at the bed of rivers, lakes and estuaries can be put into motion when the shear stress exerted by the flow on the particles exceeds the critical shear stress. When these particles start their motion they can either remain suspended by long periods of time (suspended load) or move close to the bed (bed load). Particles are transported as bed load in three different modes: Sliding, rolling and saltation. Saltation is usually described as the bouncing motion of sediment particles in a layer a few particle diameters thick. The amount of particles and the bed-load mode in which they move depend on the particle size and density, and the flow intensity, usually quantified by the shear velocity. The bottom shear stress in natural streams will most likely be large enough to set saltation as the most important bed-load transport mechanism among all three modes. Thus, studying the saltation process is crucial for the overall understanding of bed-load transport. Particularly, numerical simulations of this process have been providing important insight regarding the relative importance of the physical mechanisms involved in it. Several processes occur when particles are saltating near the bed: i) Particles collide with the bed, ii) they "fly" between collisions with the bed, as a result of their interaction with the fluid flow, iii) and they collide among themselves. These processes can be simulated using a three-dimensional Eulerian-Lagrangian model. In order to mimic these processes we have experimented with an averaged turbulent flow field represented by the logarithmic law of the wall, and with a more involved approach in which a computed turbulent velocity field for a flat plate was used as a surrogate of the three-dimensional turbulent conditions present close to stream beds. Since flat-plate and open-channel boundary layers are essentially different, a dynamic similarity analysis was performed showing that the highly-resolved three

  6. Gel Fabrication of Molybdenum “Beads”

    Energy Technology Data Exchange (ETDEWEB)

    Lowden, Richard Andrew [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Materials Science and Technology Division; Armstrong, Beth L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Materials Science and Technology Division; Cooley, Kevin M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Materials Science and Technology Division

    2016-11-01

    Spherical molybdenum particles or “beads” of various diameters are of interest as feedstock materials for the additive manufacture of targets and assemblies used in the production of 99Mo medical isotopes using accelerator technology. Small metallic beads or ball bearings are typically fabricated from wire; however, small molybdenum spheres cannot readily be produced in this manner. Sol-gel processes are often employed to produce small dense microspheres of metal oxides across a broad diameter range that in the case of molybdenum could be reduced and sintered to produce metallic spheres. These Sol-gel type processes were examined for forming molybdenum oxide beads; however, the molybdenum trioxide was chemically incompatible with commonly used gelation materials. As an alternative, an aqueous alginate process being assessed for the fabrication of oxide spheres for catalyst applications was employed to form molybdenum trioxide beads that were successfully reduced and sintered to produce small molybdenum spheres.

  7. Nail bed onychomatricoma.

    Science.gov (United States)

    Wang, Lei; Gao, Tianwen; Wang, Gang

    2014-10-01

    Onychomatricoma is a rare tumor originating from the nail matrix, and, in rare conditions, from the ventral aspect of the proximal nailfold. Here we report a rare case of a 51-year-old man presenting with melanonychia mainly involving the distal nail plate. Histopathologic examination showed typical findings of onychomatricoma mainly involving the nail bed, while the nail matrix was largely uninvolved. We also identified fungal infection in a focal area of the distal nail plate. Our findings indicate that onychomatricoma can develop in the surrounding epithelial tissue of the nail unit, including the nail bed, and suggest that fungal infection may represent a secondary phenomenon of onychomatricoma. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  8. Geomechanics of bedded salt

    International Nuclear Information System (INIS)

    Serata, S.; Milnor, S.W.

    1979-01-01

    Creep data from the literature search is reinterpreted by SGI, resulting in a better understanding of the temperature and stress state dependence of the octahedral creep rate and the octahedral shear strength. The concept of a transition strength between the elastic and the plastic states is in agreement with the data. The elastic and rheological properties of salt are described, and a set of constitutive equations is presented. The dependence of material properties on parameters such as temperature is considered. Findings on the permeability of salt are summarized, and the in-situ behavior of openings in bedded salt is described based on extensive engineering experience. A stress measuring system utilizing a finite element computer code is discussed. Geological factors affecting the stability of salt openings are considered, and the Stress Control Technique for designing stable openings in bedded salt formations is explained

  9. Modeling biomass gasification in circulating fluidized beds

    Science.gov (United States)

    Miao, Qi

    In this thesis, the modeling of biomass gasification in circulating fluidized beds was studied. The hydrodynamics of a circulating fluidized bed operating on biomass particles were first investigated, both experimentally and numerically. Then a comprehensive mathematical model was presented to predict the overall performance of a 1.2 MWe biomass gasification and power generation plant. A sensitivity analysis was conducted to test its response to several gasifier operating conditions. The model was validated using the experimental results obtained from the plant and two other circulating fluidized bed biomass gasifiers (CFBBGs). Finally, an ASPEN PLUS simulation model of biomass gasification was presented based on minimization of the Gibbs free energy of the reaction system at chemical equilibrium. Hydrodynamics plays a crucial role in defining the performance of gas-solid circulating fluidized beds (CFBs). A 2-dimensional mathematical model was developed considering the hydrodynamic behavior of CFB gasifiers. In the modeling, the CFB riser was divided into two regions: a dense region at the bottom and a dilute region at the top of the riser. Kunii and Levenspiel (1991)'s model was adopted to express the vertical solids distribution with some other assumptions. Radial distributions of bed voidage were taken into account in the upper zone by using Zhang et al. (1991)'s correlation. For model validation purposes, a cold model CFB was employed, in which sawdust was transported with air as the fluidizing agent. A comprehensive mathematical model was developed to predict the overall performance of a 1.2 MWe biomass gasification and power generation demonstration plant in China. Hydrodynamics as well as chemical reaction kinetics were considered. The fluidized bed riser was divided into two distinct sections: (a) a dense region at the bottom of the bed where biomass undergoes mainly heterogeneous reactions and (b) a dilute region at the top where most of homogeneous

  10. Chiromagnetic nanoparticles and gels

    Science.gov (United States)

    Yeom, Jihyeon; Santos, Uallisson S.; Chekini, Mahshid; Cha, Minjeong; de Moura, André F.; Kotov, Nicholas A.

    2018-01-01

    Chiral inorganic nanostructures have high circular dichroism, but real-time control of their optical activity has so far been achieved only by irreversible chemical changes. Field modulation is a far more desirable path to chiroptical devices. We hypothesized that magnetic field modulation can be attained for chiral nanostructures with large contributions of the magnetic transition dipole moments to polarization rotation. We found that dispersions and gels of paramagnetic Co3O4 nanoparticles with chiral distortions of the crystal lattices exhibited chiroptical activity in the visible range that was 10 times as strong as that of nonparamagnetic nanoparticles of comparable size. Transparency of the nanoparticle gels to circularly polarized light beams in the ultraviolet range was reversibly modulated by magnetic fields. These phenomena were also observed for other nanoscale metal oxides with lattice distortions from imprinted amino acids and other chiral ligands. The large family of chiral ceramic nanostructures and gels can be pivotal for new technologies and knowledge at the nexus of chirality and magnetism.

  11. Computational fluid dynamic modeling of fluidized-bed polymerization reactors

    Energy Technology Data Exchange (ETDEWEB)

    Rokkam, Ram [Iowa State Univ., Ames, IA (United States)

    2012-01-01

    Polyethylene is one of the most widely used plastics, and over 60 million tons are produced worldwide every year. Polyethylene is obtained by the catalytic polymerization of ethylene in gas and liquid phase reactors. The gas phase processes are more advantageous, and use fluidized-bed reactors for production of polyethylene. Since they operate so close to the melting point of the polymer, agglomeration is an operational concern in all slurry and gas polymerization processes. Electrostatics and hot spot formation are the main factors that contribute to agglomeration in gas-phase processes. Electrostatic charges in gas phase polymerization fluidized bed reactors are known to influence the bed hydrodynamics, particle elutriation, bubble size, bubble shape etc. Accumulation of electrostatic charges in the fluidized-bed can lead to operational issues. In this work a first-principles electrostatic model is developed and coupled with a multi-fluid computational fluid dynamic (CFD) model to understand the effect of electrostatics on the dynamics of a fluidized-bed. The multi-fluid CFD model for gas-particle flow is based on the kinetic theory of granular flows closures. The electrostatic model is developed based on a fixed, size-dependent charge for each type of particle (catalyst, polymer, polymer fines) phase. The combined CFD model is first verified using simple test cases, validated with experiments and applied to a pilot-scale polymerization fluidized-bed reactor. The CFD model reproduced qualitative trends in particle segregation and entrainment due to electrostatic charges observed in experiments. For the scale up of fluidized bed reactor, filtered models are developed and implemented on pilot scale reactor.

  12. Polyacrylamide gel electrophoresis of RNA.

    Science.gov (United States)

    Rio, Donald C; Ares, Manuel; Hannon, Gregory J; Nilsen, Timothy W

    2010-06-01

    Perhaps the most important and certainly the most often used technique in RNA analysis is gel electrophoresis. This technique is generally applicable for RNA detection, quantification, purification by size, and quality assessment. Because RNAs are negatively charged, they migrate toward the anode in the presence of electric current. The gel acts as a sieve to selectively impede the migration of the RNA in proportion to its mass, given that its mass is generally proportional to its charge. Because mass is approximately related to chain length, the length of an RNA is more generally determined by its migration. In addition, topology (i.e., circularity) can affect migration, making RNAs appear longer on the gel than they actually are. Gels are used in a wide variety of techniques, including Northern blotting, primer extension, footprinting, and analyzing processing reactions. They are invaluable as preparative and fractionating tools. There are two common types of gel: polyacrylamide and agarose. For most applications, denaturing acrylamide gels are most appropriate. These gels are extremely versatile and can resolve RNAs from ~600 to RNA-protein complexes, native gels are appropriate. The only disadvantage to acrylamide gels is that they are not suitable for analyzing large RNAs (> or =600 nt); for such applications, agarose gels are preferred. This protocol describes how to prepare, load, and run polyacrylamide gels for RNA analysis.

  13. Radiotherapy gel dosimetry

    International Nuclear Information System (INIS)

    Baldock, C.

    2002-01-01

    shapes and sizes while sparing normal tissue. The situation is further complicated if the normal tissues are critical organs or are particularly sensitive to radiation. Radiotherapy techniques employed to obtain a closer conformation of the dose distribution to the tumour volume are referred to as conformal radiotherapy techniques. The clinical implementation of conformal therapy has been delayed by limitations in the verification of conformal dose distributions calculated by treatment planning systems prior to the irradiation of the patient and the verification of complex treatments during its delivery to the patient. There are several aspects of conformal therapy that complicate dose verification. To achieve the dose distributions conforming to complex 3D volumes, high dose gradients arise in the treatment volume. Further, overdose or underdose regions can exist when separate radiation fields are used to deliver additional radiation. These aspects require that practical dose measurement (dosimetry) techniques be able to integrate dose over time and easily measure dose distributions in 3D with high spatial resolution. Traditional dosimeters, such as ion chambers, thermoluminescent dosimeters and radiographic film do not fulfil these requirements. Novel gel dosimetry techniques are being developed in which dose distributions can potentially be determined in vitro in 3D using anthropomorphic phantoms to simulate a clinically irradiated situation. As long ago as the 1950's, radiation-induced colour change in dyes was used to investigate radiation doses in gels. It was subsequently shown that radiation induced changes in nuclear magnetic resonance (NMR) relaxation properties of gels infused with conventional Fricke dosimetry solutions could be measured using magnetic resonance imaging (MRI). In Fricke gels, Fe 2+ ions in ferrous sulphate solutions are usually dispersed throughout a gelatin, agarose or PVA matrix. Radiation-induced changes in the dosimeters are considered to

  14. Numerical modelling and experimental study of liquid evaporation during gel formation

    Science.gov (United States)

    Pokusaev, B. G.; Khramtsov, D. P.

    2017-11-01

    Gels are promising materials in biotechnology and medicine as a medium for storing cells for bioprinting applications. Gel is a two-phase system consisting of solid medium and liquid phase. Understanding of a gel structure evolution and gel aging during liquid evaporation is a crucial step in developing new additive bioprinting technologies. A numerical and experimental study of liquid evaporation was performed. In experimental study an evaporation process of an agarose gel layer located on Petri dish was observed and mass difference was detected using electronic scales. Numerical model was based on a smoothed particle hydrodynamics method. Gel in a model was represented as a solid-liquid system and liquid evaporation was modelled due to capillary forces and heat transfer. Comparison of experimental data and numerical results demonstrated that model can adequately represent evaporation process in agarose gel.

  15. Self-leveling onset criteria in debris beds

    International Nuclear Information System (INIS)

    Zhang, Bin; Harada, Tetsushi; Hirahara, Daisuke; Matsumoto, Tatsuya; Morita, Koji; Fukuda, Kenji; Yamano, Hidemasa; Suzuki, Tohru; Tobita, Yoshiharu

    2010-01-01

    In a core-disruptive accident of a sodium-cooled fast breeder reactor, core debris may settle on the core-support structure and/or in the lower inlet plenum of the reactor vessel because of rapid quenching and fragmentation of molten core materials in the subcooled sodium plenum. Coolant boiling is the mechanism driving the self-leveling of a debris bed that causes significant changes in the heat-removal capability of the beds. In the present study, we develop criteria establishing the onset of this self-leveling behavior that we base on a force balance model assuming a debris bed with a single-sized spherical particle. The model considers drag, buoyancy, and gravity acting on each particle. A series of experiments with simulant materials verified the applicability of this description of self-leveling. Particle size (between 0.5-6 mm), shape (spherical and nonspherical), density (namely of alumina, zirconia, lead, and stainless steel), along with boiling intensity, bed volume, and even experimental methods were taken into consideration to obtain general characteristics of the self-leveling process. We decided to use depressurization boiling to simulate an axially increasing void distribution in the debris bed, although bottom heating was also used to validate the use of the depressurization method. On the self-leveling onset issues, we obtained good agreement between model predictions and experimental results. Extrapolation of our model to actual reactor conditions is discussed. (author)

  16. Modelling of dynamics of combustion of biomass in fluidized beds

    Directory of Open Access Journals (Sweden)

    Saastamoinen Jaakko J.

    2004-01-01

    Full Text Available New process concepts in energy production and biofuel, which are much more reactive than coal, call for better controllability of the combustion in circulating fluidized bed boilers. Simplified analysis describing the dynamics of combustion in fluidized bed and circulating fluidized bed boilers is presented. Simple formulas for the estimation of the responses of the burning rate and fuel inventory to changes in fuel feeding are presented. Different changes in the fuel feed, such as an impulse, step change, linear increase and cyclic variation are considered. The dynamics of the burning with a change in the feed rate depends on the fuel reactivity and particle size. The response of a fuel mixture with a wide particle size distribution can be found by summing up the effect of different fuel components and size fractions. Methods to extract reaction parameters form dynamic tests in laboratory scale reactors are discussed. The residence time of fuel particles in the bed and the resulting char inventory in the bed decrease with increasing fuel reactivity and differences between coal and biomass is studied. The char inventory affects the stability of combustion. The effect of char inventory and oscillations in the fuel feed on the oscillation of the flue gas oxygen concentration is studied by model calculation. A trend found by earlier measurements is explained by the model.

  17. Granular Leidenfrost effect in vibrated beds with bumpy surfaces.

    Science.gov (United States)

    Lim, E W C

    2010-08-01

    The effects of subjecting a bed of granular materials to horizontal vibrations by a bumpy oscillating surface have been investigated computationally in this study. The behaviour of the granular bed is determined by the vibration conditions applied which include the vibrating frequency and amplitude as well as the bumpiness of the oscillating surface. Under sufficiently vigorous vibration conditions, the granular Leidenfrost effect whereby the entire granular bed is levitated above the vibrating base by a layer of highly energetic particles may be observed. Granular temperature profiles of systems that exhibit the granular Leidenfrost effect indicate an unequal distribution of energy between particles near the vibrating base and those in the bulk. A bumpy oscillating surface was also observed to be more effective at introducing perturbations and transferring energy into a granular bed. The granular Leidenfrost effect can be induced by the application of larger grain sizes of particles constituting the bumpy vibrating base under vibration conditions that are normally insufficient for the onset of the effect. Lastly, a phase diagram which can be utilized for predicting the behaviours of granular beds that are subjected to oscillations by various types of bumpy surfaces has been constructed based on the simulation results obtained.

  18. Soft particles at a fluid interface

    Science.gov (United States)

    Mehrabian, Hadi; Harting, Jens; Snoeijer, Jacco H.

    2015-11-01

    Particles added to a fluid interface can be used as a surface stabilizer in the food, oil and cosmetic industries. As an alternative to rigid particles, it is promising to consider highly deformable particles that can adapt their conformation at the interface. In this study, we compute the shapes of soft elastic particles using molecular dynamics simulations of a cross-linked polymer gel, complemented by continuum calculations based on the linear elasticity. It is shown that the particle shape is not only affected by the Young's modulus of the particle, but also strongly depends on whether the gel is partially or completely wetting the fluid interface. We find that the molecular simulations for the partially wetting case are very accurately described by the continuum theory. By contrast, when the gel is completely wetting the fluid interface the linear theory breaks down and we reveal that molecular details have a strong influence on the equilibrium shape.

  19. Influência da imobilização de biomassa e do tamanho da partícula na fluidodinâmica de um reator anaeróbio de leito fluidizado = The influence of immobilized biomass and particle size on the fluid dynamics of an anaerobic fluidized bed reactor

    Directory of Open Access Journals (Sweden)

    Flavio Bentes Freire

    2008-01-01

    Full Text Available O estudo da fluidodinâmica é muito comum em diversas áreas relacionadas com a engenharia química, tais como nos processos de secagem e nos reatores químicos. Entretanto, em reatores biológicos empregados no tratamento de águas residuárias, esses aspectos ainda necessitam de investigações mais aprofundadas. Deste modo, é fundamental avaliar a influência da presença do biofilme no comportamento fluidodinâmico do reator, por meio de importantes parâmetros como, por exemplo, a velocidade de mínima fluidização, a expansão, a porosidade do leito e a velocidade terminal da partícula. O objetivo deste trabalho foi realizar uma investigação da fluidodinâmica de um reator anaeróbio de leito fluidizado, tratando uma água residuária sintética preparada a partir da solução utilizada para determinação de DBO, tendo o carvão ativado como meio suportepara a imobilização de biomassa. Especificamente, no trabalho, verificou-se que a biomassa imobilizada aumentou a densidade das partículas e alterou os principais parâmetros fluidodinâmicos avaliados.Fluid dynamic analysis is an important branch of several chemical engineering related areas, such as drying processes and chemical reactors. However, aspects concerning fluid dynamics in wastewater treatment bioreactors still require further investigation, as they highly influence process efficiency. Therefore, it is essential to evaluate the influence of biofilm on the reactor fluid dynamicbehavior, through the analysis of a few important parameters, such as minimum fluidization velocity, bed expansion and porosity, and particle terminal velocity. The main objective of the present work was to investigate the fluid dynamics of an anaerobic fluidized bed reactor, having activated carbon particles as support media for biomass immobilization. Reactor performance was tested using synthetic residual water, which was prepared using the solution employed in BOD determination. The results

  20. Sol-gel based oxidation catalyst and coating system using same

    Science.gov (United States)

    Watkins, Anthony N. (Inventor); Leighty, Bradley D. (Inventor); Oglesby, Donald M. (Inventor); Patry, JoAnne L. (Inventor); Schryer, Jacqueline L. (Inventor)

    2010-01-01

    An oxidation catalyst system is formed by particles of an oxidation catalyst dispersed in a porous sol-gel binder. The oxidation catalyst system can be applied by brush or spray painting while the sol-gel binder is in its sol state.

  1. Understanding and predicting bed humidity in fluidized bed granulation.

    Science.gov (United States)

    Hu, Xinhui; Cunningham, John; Winstead, Denita

    2008-04-01

    Bed humidity is a critical parameter that needs to be controlled in a fluidized bed granulation to ensure reliability. To predict and control the bed humidity during the fluidized bed granulation process, a simple model based on the mass conservation of moisture was developed. The moisture mass balance model quantitatively simulates the effects of spray rate, binder solution concentration, airflow rate, inlet air temperature, and dew point on the bed humidity. The model was validated by a series of granulations performed in different scale granulators including Glatt GPCG-1, GPCG-15, and GPCG-60. Good agreement was observed between the theoretical prediction and the measured loss on drying (LOD). The model developed in the current work enables us to choose the appropriate parameters for the fluidized bed granulation and can be used as a valuable tool in process scaling-up. 2007 Wiley-Liss, Inc

  2. Fluid-dynamic behavior of flaxseed fluidized and spouted bed

    Directory of Open Access Journals (Sweden)

    Elza Brandão Santana

    2017-09-01

    Full Text Available ABSTRACT: Processing of particles in a moving bed, such as a fluidized bed or a spouting bed, is commonly used in the operations of drying, coating, and granulation of particulate systems. This process has applications in the chemical, pharmaceutical and, presently, agronomical industries, especially for seed treatment/coating. This research aimed to analyze the fluid-dynamic behavior of fluidized and spouting beds with different air temperatures and loads of flaxseeds (Linum usitatissimum L., with estimates of the fluid-dynamic parameters correlated to each process. The parameters were compared with the values obtained from classical correlations in the literature, with indications of associated percentages of deviation. Influence of fluid dynamics on the physiological quality of seeds was assessed by germination tests and the germination speed index. An analysis of the results indicated that seed processing was adequate for processing in dynamically active beds; however, temperatures above 50ºC in both beds caused significant reductions in the physiological quality of the seeds. Processing in a fluidized bed presented a smaller reduction of the physiological properties of the flaxseed.

  3. Coal Bed Methane Primer

    Energy Technology Data Exchange (ETDEWEB)

    Dan Arthur; Bruce Langhus; Jon Seekins

    2005-05-25

    During the second half of the 1990's Coal Bed Methane (CBM) production increased dramatically nationwide to represent a significant new source of income and natural gas for many independent and established producers. Matching these soaring production rates during this period was a heightened public awareness of environmental concerns. These concerns left unexplained and under-addressed have created a significant growth in public involvement generating literally thousands of unfocused project comments for various regional NEPA efforts resulting in the delayed development of public and fee lands. The accelerating interest in CBM development coupled to the growth in public involvement has prompted the conceptualization of this project for the development of a CBM Primer. The Primer is designed to serve as a summary document, which introduces and encapsulates information pertinent to the development of Coal Bed Methane (CBM), including focused discussions of coal deposits, methane as a natural formed gas, split mineral estates, development techniques, operational issues, producing methods, applicable regulatory frameworks, land and resource management, mitigation measures, preparation of project plans, data availability, Indian Trust issues and relevant environmental technologies. An important aspect of gaining access to federal, state, tribal, or fee lands involves education of a broad array of stakeholders, including land and mineral owners, regulators, conservationists, tribal governments, special interest groups, and numerous others that could be impacted by the development of coal bed methane. Perhaps the most crucial aspect of successfully developing CBM resources is stakeholder education. Currently, an inconsistent picture of CBM exists. There is a significant lack of understanding on the parts of nearly all stakeholders, including industry, government, special interest groups, and land owners. It is envisioned the Primer would being used by a variety of

  4. Bed Rest Muscular Atrophy

    Science.gov (United States)

    Greenleaf, John E.

    2000-01-01

    A major debilitating response from prolonged bed rest (BR) is muscle atrophy, defined as a "decrease in size of a part of tissue after full development has been attained: a wasting away of tissue as from disuse, old age, injury or disease". Part of the complicated mechanism for the dizziness, increased body instability, and exaggerated gait in patients who arise immediately after BR may be a result of not only foot pain, but also of muscular atrophy and associated reduction in lower limb strength. Also, there seems to be a close association between muscle atrophy and bone atrophy. A discussion of many facets of the total BR homeostatic syndrome has been published. The old adage that use determines form which promotes function of bone (Wolff's law) also applies to those people exposed to prolonged BR (without exercise training) in whom muscle atrophy is a consistent finding. An extreme case involved a 16-year-old boy who was ordered to bed by his mother in 1932: after 50 years in bed he had "a lily-white frame with limbs as thin as the legs of a ladder-back chair". These findings emphasize the close relationship between muscle atrophy and bone atrophy. In addition to loss of muscle mass during deconditioning, there is a significant loss of muscle strength and a decrease in protein synthesis. Because the decreases in force (strength) are proportionately greater than those in fiber size or muscle cross-sectional area, other contributory factors must be involved; muscle fiber dehydration may be important.

  5. Investigation of debris bed formation, spreading and coolability

    International Nuclear Information System (INIS)

    Kudinov, P.; Konovalenko, A.; Grishchenko, D.; Yakush, S.; Basso, S.; Lubchenko, N.; Karbojian, A.

    2013-08-01

    The work is motivated by the severe accident management strategy adopted in Nordic type BWRs. It is assumed that core melt ejected from the vessel will fragment, quench and form a coolable debris bed in a deep water pool below the vessel. In this work we consider phenomena relevant to the debris bed formation and coolability. Several DEFOR-A (Debris Bed Formation - Agglomeration) tests have been carried out with new corium melt material and a melt releasing nozzle mockup. The influence of the melt material, melt superheat, jet free fall height on the (i) faction of agglomerated debris, (ii) particle size distribution, (iii) ablation/plugging of the nozzle mockup has been addressed. Results of the DECOSIM (Debris Coolability Simulator) code validation against available COOLOCE data are presented in the report. The dependence of DHF on system pressure from COOLOCE experiments can be reproduced quite accurately if either the effective particle diameter or debris bed porosity is increased. For a cylindrical debris bed, good agreement is achieved in DECOSIM simulations for the particle diameter 0.89 mm and porosity 0.4. The results obtained are consistent with MEWA simulation where larger particle diameters and porosities were found to be necessary to reproduce the experimental data on DHF. It is instructive to note that results of DHF prediction are in better agreement with POMECO-HT data obtained for the same particles. It is concluded that further clarification of the discrepancies between different experiments and model predictions. In total 13 exploratory tests were carried out in PDS (particulate debris spreading) facility to clarify potential influence of the COOLOCE (VTT) facility heaters and TCs on particle self-leveling process. Results of the preliminary analysis suggest that there is no significant influence of the pins on self-leveling, at least for the air superficial velocities ranging from 0.17 up to 0.52 m/s. Further confirmatory tests might be needed

  6. Investigation of debris bed formation, spreading and coolability

    Energy Technology Data Exchange (ETDEWEB)

    Kudinov, P.; Konovalenko, A.; Grishchenko, D.; Yakush, S.; Basso, S.; Lubchenko, N.; Karbojian, A. [Royal Institute of Technology, KTH. Div. of Nuclear Power Safety, Stockholm (Sweden)

    2013-08-15

    The work is motivated by the severe accident management strategy adopted in Nordic type BWRs. It is assumed that core melt ejected from the vessel will fragment, quench and form a coolable debris bed in a deep water pool below the vessel. In this work we consider phenomena relevant to the debris bed formation and coolability. Several DEFOR-A (Debris Bed Formation - Agglomeration) tests have been carried out with new corium melt material and a melt releasing nozzle mockup. The influence of the melt material, melt superheat, jet free fall height on the (i) faction of agglomerated debris, (ii) particle size distribution, (iii) ablation/plugging of the nozzle mockup has been addressed. Results of the DECOSIM (Debris Coolability Simulator) code validation against available COOLOCE data are presented in the report. The dependence of DHF on system pressure from COOLOCE experiments can be reproduced quite accurately if either the effective particle diameter or debris bed porosity is increased. For a cylindrical debris bed, good agreement is achieved in DECOSIM simulations for the particle diameter 0.89 mm and porosity 0.4. The results obtained are consistent with MEWA simulation where larger particle diameters and porosities were found to be necessary to reproduce the experimental data on DHF. It is instructive to note that results of DHF prediction are in better agreement with POMECO-HT data obtained for the same particles. It is concluded that further clarification of the discrepancies between different experiments and model predictions. In total 13 exploratory tests were carried out in PDS (particulate debris spreading) facility to clarify potential influence of the COOLOCE (VTT) facility heaters and TCs on particle self-leveling process. Results of the preliminary analysis suggest that there is no significant influence of the pins on self-leveling, at least for the air superficial velocities ranging from 0.17 up to 0.52 m/s. Further confirmatory tests might be needed

  7. Sol-Gel/Hydrothermal Synthesis of Mixed Metal Oxide

    African Journals Online (AJOL)

    Mixed metal oxides of titanium and zinc nanocomposites were prepared through sol-gel method under hydrothermal condition ... Keywords: Nanocomposites, Titanium dioxide, Zinc oxide, Particle sizes, Optical property, X-Ray Diffraction. ABSTRACT. 321 ... doping with other semiconductors like zinc oxide, aluminium oxide ...

  8. Process of forming a sol-gel/metal hydride composite

    Science.gov (United States)

    Congdon, James W [Aiken, SC

    2009-03-17

    An external gelation process is described which produces granules of metal hydride particles contained within a sol-gel matrix. The resulting granules are dimensionally stable and are useful for applications such as hydrogen separation and hydrogen purification. An additional coating technique for strengthening the granules is also provided.

  9. ARSENIC REMOVAL USING SOL-GEL SYNTHESIZED TITANIUM DIOXIDE NANOPARTICLES

    Science.gov (United States)

    In this study, the effectiveness of TiO2 nanoparticles in arsenic adsorption was examined. TiO2 particles (LS) were synthesized via sol-gel techniques and characterized for their crystallinity, surface area and pore volume. Batch adsorption studies were perf...

  10. Heat Transfer in a Fixed Biomass Char Bed

    DEFF Research Database (Denmark)

    Fjellerup, Jan Søren; Henriksen, Ulrik Birk; Glarborg, P.

    2002-01-01

    A thermal conductivity model based on the Yagi and Kunii model together with a bed model was developed to describe the thermal conductivity of a straw char bed. The bed model describes the relationship between the distance between particles and the external porosity. To verify the model, thermal...... conductivity experiments were performed on a wheat straw sample, which were cut in a shredder with two different sieves, 4 and 8 mm, and packed loosely in the thermal conductivity apparatus. The model, using external porosity and char diameter, compared reasonable well with experiments. The two straw samples...... were also packed densely, and the model, using measured external porosity together with the diameter from the loosely packed sample, compared reasonable well with experiments. The verified model was used in a parametric study to evaluate the effect of gas flow rate, particle diameter, porosity...

  11. Laboratory study of gravel-bed cluster formation and disintegration

    Science.gov (United States)

    Heays, K. G.; Friedrich, H.; Melville, B. W.

    2014-03-01

    Increased knowledge of clusters is essential for the understanding of sediment transport behavior and the monitoring and protection of aquatic life. A physical study using graded river gravels is conducted in a laboratory environment. Using photogrammetry and painted gravels, a cluster identification tool (CIT) is developed based on image subtraction between subsequent frames, allowing identification of any stable areas and groups of particles on the bed. This is combined with digital particle tracking (DPT) to present a novel approach for monitoring the formation and disintegration of clusters. Clusters from graded gravels are formed successfully during the experimental stage, allowing investigation into the complex dynamic behavior of cluster formation and disintegration in a simulated natural environment. Various anchor stone arrangements are used in the experiments. However, only about one fifth of the potential anchor stones on the bed surface enable cluster formation. In general, clusters classified as "typical" and "heap" are most common. Inspection of temporal cluster coverage of the test-bed surface shows that the proportion of clusters present on the surface tends to grow with time. Maximum cluster surface coverage of between 5% and 34% is observed. In addition, particles entering and departing from clusters are monitored. Most commonly, particles enter from directly upstream of the cluster, however >20% of particles approach from a direction >20 deg from the streamwise direction. Approximately 35% of all particles directly upstream of a cluster bypass the cluster.

  12. Development of a generic engineering model for packed bed reactors using computational fluid dynamics

    NARCIS (Netherlands)

    Tuinstra, B.F.

    2008-01-01

    Packed bed reactors are used in many chemical processes. With the advent of modern computers, flow simulation (Computational Fluid Dynamics, CFD) can be an aid in the design of process equipment. For particulate systems like packed bed reactors, simulation of the flow around the particles is very

  13. Discrete element modeling and fibre optical measurements for fluidized bed spray granulation

    NARCIS (Netherlands)

    Link, J.M.; Godlieb, W.; Deen, N.G.; Heinrich, S.; Tripp, P.; Peglow, M.; Kuipers, J.A.M.; Schönherr, M.; Mörl, L.

    2007-01-01

    Spout fluidized beds are frequently used for the production of granules or particles through granulation. The products find application in a large variety of applications, for example detergents, fertilizers, pharmaceuticals and food. Spout fluidized beds have a number of advantageous properties,

  14. CFD modeling of a prismatic spouted bed with two adjustable gas inlets

    NARCIS (Netherlands)

    Gryczka, Oliver; Heinrich, Stefan; Deen, N.G.; van Sint Annaland, M.; Kuipers, J.A.M.; Mörl, Lothar

    2009-01-01

    Since the invention of the spouted bed technology by Mathur and Gishler (1955), different kinds of apparatus design were developed and a huge number of applications in nearly all branches of industry have emerged. Modeling of spouted beds by means of modern simulation tools, like discrete particle

  15. Partitioning and analyzing temporal variability of wash and bed ...

    Indian Academy of Sciences (India)

    In this study, 24 samples of suspended load, bed load and channel material were taken bi-weekly for a period of one year from the Kojour River of the Educational and Research Forest Watershed of Tarbiat Modares University in Iran. The suspended sediment concentration and particle-size distribution were determined.

  16. The porosity in a fluidized bed heat transfer model

    NARCIS (Netherlands)

    Visser, G; Visser, G.; Valk, M.

    1993-01-01

    A mathematical model of heat transfer between a fluidized bed and an immersed surface and a model of gas flow and porosity, both recently published, were combined and further modified in the area of low velocities where the particle convective component of heat transfer is low or neglectable.

  17. Discrete element modelling of fluidised bed spray granulation

    NARCIS (Netherlands)

    Goldschmidt, M.J.V.; Weijers, G.G.C.; Boerefijn, R.; Kuipers, J.A.M.

    2003-01-01

    A novel discrete element spray granulation model capturing the key features of fluidised bed hydrodynamics, liquid¿solid contacting and agglomeration is presented. The model computes the motion of every individual particle and droplet in the system, considering the gas phase as a continuum.

  18. On the submerging of a spherical intruder into granular beds

    Directory of Open Access Journals (Sweden)

    Wu Chuan-Yu

    2017-01-01

    Full Text Available Granular materials are complex systems and their mechanical behaviours are determined by the material properties of individual particles, the interaction between particles and the surrounding media, which are still incompletely understood. Using an advanced discrete element method (DEM, we simulate the submerging process of a spherical projectile (an intruder into granular materials of various properties with a zero penetration velocity (i.e. the intruder is touching the top surface of the granular bed and released from stationary and examine its settling behaviour. By systematically changing the density and size of the intruder and the particle density (i.e. the density of the particles in the granular bed, we find that the intruder can sink deep into the granular bed even with a zero penetration velocity. Furthermore, we confirm that under certain conditions the granular bed can behave like a Newtonian liquid and the submerging intruder can reach a constant velocity, i.e. the terminal velocity, identical to the settling of a sphere in a liquid, as observed experimentally. A mathematical model is also developed to predict the maximum penetration depth of the intruder. The model predictions are compared with experimental data reported in the literature,good agreement was obtained, demonstrating the model can accurately predict the submerging behaviour of the intruder in the granular media.

  19. Propylene polymerization in a circulating slugging fluidized bed reactor

    NARCIS (Netherlands)

    van Putten, I.C.

    2004-01-01

    The work presented in this thesis is concerned with research on the riser of a circulating fluidized bed system for olefin polymerization. In the riser section, fluidization takes place in the transporting slugging mode and polymer particles are produced in the riser in a non-isothermal way.

  20. Starch Wastewater Treatment in a Three Phase Fluidized Bed ...

    African Journals Online (AJOL)

    ... out in an inverse fluidized bed bioreactor using low density (870 kg/m3) polypropylene particles. Experiments were carried at different initial substrate concentration of 2250, 4475, 6730 and 8910mg COD/L and for various hydraulic retention time 40, 32, 24, 16 and 8h. Degradation of organic matter was studied at different ...

  1. Interaction of slurry pipe flow with a stationary bed

    Czech Academy of Sciences Publication Activity Database

    Matoušek, Václav

    2007-01-01

    Roč. 107, č. 6 (2007), s. 365-372 ISSN 0038-223X R&D Projects: GA ČR GA103/06/0428 Institutional research plan: CEZ:AV0Z20600510 Keywords : sheet flow * particle dispersion * suspension * concentration profile * bed shear stress Subject RIV: BK - Fluid Dynamics Impact factor: 0.108, year: 2007

  2. On the submerging of a spherical intruder into granular beds

    Science.gov (United States)

    Wu, Chuan-Yu; Zhang, Ling; Chen, Lan

    2017-06-01

    Granular materials are complex systems and their mechanical behaviours are determined by the material properties of individual particles, the interaction between particles and the surrounding media, which are still incompletely understood. Using an advanced discrete element method (DEM), we simulate the submerging process of a spherical projectile (an intruder) into granular materials of various properties with a zero penetration velocity (i.e. the intruder is touching the top surface of the granular bed and released from stationary) and examine its settling behaviour. By systematically changing the density and size of the intruder and the particle density (i.e. the density of the particles in the granular bed), we find that the intruder can sink deep into the granular bed even with a zero penetration velocity. Furthermore, we confirm that under certain conditions the granular bed can behave like a Newtonian liquid and the submerging intruder can reach a constant velocity, i.e. the terminal velocity, identical to the settling of a sphere in a liquid, as observed experimentally. A mathematical model is also developed to predict the maximum penetration depth of the intruder. The model predictions are compared with experimental data reported in the literature,good agreement was obtained, demonstrating the model can accurately predict the submerging behaviour of the intruder in the granular media.

  3. Gel polymer electrolytes for batteries

    Science.gov (United States)

    Balsara, Nitash Pervez; Eitouni, Hany Basam; Gur, Ilan; Singh, Mohit; Hudson, William

    2014-11-18

    Nanostructured gel polymer electrolytes that have both high ionic conductivity and high mechanical strength are disclosed. The electrolytes have at least two domains--one domain contains an ionically-conductive gel polymer and the other domain contains a rigid polymer that provides structure for the electrolyte. The domains are formed by block copolymers. The first block provides a polymer matrix that may or may not be conductive on by itself, but that can soak up a liquid electrolyte, thereby making a gel. An exemplary nanostructured gel polymer electrolyte has an ionic conductivity of at least 1.times.10.sup.-4 S cm.sup.-1 at 25.degree. C.

  4. Thoria sol-gel processes

    International Nuclear Information System (INIS)

    Matthews, R.B.

    1978-10-01

    Alternate fuel fabrication techniques are being developed at WNRE as part of the thorium fuel cycle program. The sol-gel techniques are attractive and this report assembles and summarizes information relating to thoria sol-gel fuels. Some background information on the behaviour and advantages of sol-gel fuel forms is presented, followed by a review of relevant colloid chemistry and an explanation of the fundamental steps of sol-gel processes. Finally, several variants to the basic process are reviewed and evaluated. (author)

  5. Radiotherapy gel dosimetry: a review

    International Nuclear Information System (INIS)

    Baldock, C.

    2003-01-01

    Radiation therapy or radiotherapy is a common form of cancer treatment. Recent advances in radiotherapy such as intensity modulated radiation therapy indicate that treatment outcomes may be improved. The principle limitation of these more advanced techniques of radiation therapy is the ability to quantify the absorbed radiation dose to the tumour which is related to the 3- dimensional geometry of the tumour. The main advances in 3-dimensional radiation dosimetry are the development of radiation sensitive polymer gel dosimeters. The use of radiation sensitive gels for radiation dosimetry in cancer therapy was first suggested in the 1950s. It was subsequently shown in 1984 that radiation induced changes in nuclear magnetic resonance relaxation properties of gels infused with conventional Fricke dosimetry solutions could be measured. Due to diffusion-related limitations in the use of Fricke gels, alternative polymer gel dosimeters were subsequently suggested in 1992. Since then, both magnetic resonance and optical imaging techniques have been used to evaluate polymer gel dosimeters to produce three-dimensional radiation dose distributions. More recently the uses of x-ray computer tomography and vibrational spectroscopy have also been demonstrated as valuable techniques in the evaluation of these dosimetry gels. Although not yet used routinely clinically, applications of these radiologically soft-tissue equivalent gel dosimeters have been shown to have great potential in the evaluation of complex radiation dose distributions. A review of 3-dimensional radiotherapy gel dosimetry is presented

  6. Fluidized bed combustion and gasification of corncobs

    Energy Technology Data Exchange (ETDEWEB)

    Butuk, N.; Morey, R.V.

    1987-01-01

    A 15.2 cm (6 in) diameter fluidized bed reactor was evaluated in combustion and gasification modes using hammer milled corncobs with average particle size of 0.2 cm (0.08 in). Combustion tests were run at 10 and 32% w.b. moisture contents and 710 degrees C and 815 degrees C bed temperatures. Heat output rates of 13.4 to 16.2 MJ/h were achieved. Gasification tests were run at 10 and 22% w.b. moisture contents and 710 degrees C bed temperature, and heat output rates of 84 to 133 MJ/h were achieved. Particulates in the exhaust gases were determined in both the combustion and gasification modes of operation. The measurements showed the inadequacy of the flame holder for flaring the gas in the gasification mode. A combustion model based on elemental balances and the first law of thermodynamics was developed and compared to experimental results. The model adequately predicted fuel-air ratios and exhaust gas mass fractions in the combustion mode.

  7. An SEM/EDX study of bed agglomerates formed during fluidized bed combustion of three biomass fuels

    International Nuclear Information System (INIS)

    Scala, Fabrizio; Chirone, Riccardo

    2008-01-01

    The agglomeration behaviour of three biomass fuels (exhausted and virgin olive husk and pine seed shells) during fluidized bed combustion in a lab-scale reactor was studied by means of SEM/EDX analysis of bed agglomerate samples. The effect of the fuel ash composition, bed temperature and sand particle size on agglomeration was investigated. The study was focused on the main fuel ash components and on their interaction with the bed sand particles. Agglomeration was favoured by high temperature, small sand size, a high fraction of K and Na and a low fraction of Ca and Mg in the fuel ash. An initial fuel ash composition close to the low-melting point eutectic composition appears to enhance agglomeration. The agglomerates examined by SEM showed a hollow structure, with an internal region enriched in K and Na where extensive melting is evident and an external one where sand particles are only attached by a limited number of fused necks. Non-molten or partially molten ash structures deposited on the sand surface and enriched in Ca and Mg were also observed. These results support an ash deposition-melting mechanism: the ash released by burning char particles inside the agglomerates is quantitatively deposited on the sand surface and then gradually embedded in the melt. The low-melting point compounds in the ash migrate towards the sand surface enriching the outermost layer, while the ash structure is progressively depleted of these compounds

  8. Variability of Bed Drag on Cohesive Beds under Wave Action

    Directory of Open Access Journals (Sweden)

    Ilgar Safak

    2016-04-01

    Full Text Available Drag force at the bed acting on water flow is a major control on water circulation and sediment transport. Bed drag has been thoroughly studied in sandy waters, but less so in muddy coastal waters. The variation of bed drag on a muddy shelf is investigated here using field observations of currents, waves, and sediment concentration collected during moderate wind and wave events. To estimate bottom shear stress and the bed drag coefficient, an indirect empirical method of logarithmic fitting to current velocity profiles (log-law, a bottom boundary layer model for combined wave-current flow, and a direct method that uses turbulent fluctuations of velocity are used. The overestimation by the log-law is significantly reduced by taking turbulence suppression due to sediment-induced stratification into account. The best agreement between the model and the direct estimates is obtained by using a hydraulic roughness of 10 - 4 m in the model. Direct estimate of bed drag on the muddy bed is found to have a decreasing trend with increasing current speed, and is estimated to be around 0.0025 in conditions where wave-induced flow is relatively weak. Bed drag shows an increase (up to fourfold with increasing wave energy. These findings can be used to test the bed drag parameterizations in hydrodynamic and sediment transport models and the skills of these models in predicting flows in muddy environments.

  9. Variability of bed drag on cohesive beds under wave action

    Science.gov (United States)

    Safak, Ilgar

    2016-01-01

    Drag force at the bed acting on water flow is a major control on water circulation and sediment transport. Bed drag has been thoroughly studied in sandy waters, but less so in muddy coastal waters. The variation of bed drag on a muddy shelf is investigated here using field observations of currents, waves, and sediment concentration collected during moderate wind and wave events. To estimate bottom shear stress and the bed drag coefficient, an indirect empirical method of logarithmic fitting to current velocity profiles (log-law), a bottom boundary layer model for combined wave-current flow, and a direct method that uses turbulent fluctuations of velocity are used. The overestimation by the log-law is significantly reduced by taking turbulence suppression due to sediment-induced stratification into account. The best agreement between the model and the direct estimates is obtained by using a hydraulic roughness of 10 -4">−4 m in the model. Direct estimate of bed drag on the muddy bed is found to have a decreasing trend with increasing current speed, and is estimated to be around 0.0025 in conditions where wave-induced flow is relatively weak. Bed drag shows an increase (up to fourfold) with increasing wave energy. These findings can be used to test the bed drag parameterizations in hydrodynamic and sediment transport models and the skills of these models in predicting flows in muddy environments.

  10. Particle Pollution

    Science.gov (United States)

    ... Your Health Particle Pollution Public Health Issues Particle Pollution Recommend on Facebook Tweet Share Compartir Particle pollution — ... see them in the air. Where does particle pollution come from? Particle pollution can come from two ...

  11. Experimental and Numerical Investigation of Four- Phase Flow (Water–Gasoline-Air-Solid in a Fluidized Bed Column

    Directory of Open Access Journals (Sweden)

    Riyadh S. Al-Turaihi

    2016-03-01

    Full Text Available In this paper four phase fluidized bed is experimentally built and numerically modeled to study the bed characteristics such as ratio (the static bed height of solid particle / the bed diameter (H/D, air, gasoline , and water superficial velocity. The test pipe for the experimental rig is Perspex pipe with 1 m long and 0.0254 m diameter. The 2D numerical model has been established with Ansys fluent 15.0. Pressure drop equation is found to relate the pressure drop with the bed parameters with deviation of 22%. The Four-phases was represented by air, water, gasoline and solid particle. The results show that the pressure of the bed increases as the ratio H/D increases and air, gasoline , and water superficial velocity increases. As well as the expansion of the bed increases as air, gasoline, and water superficial velocity increases.

  12. Host Tissue Interaction, Fate, and Risks of Degradable and Nondegradable Gel Fillers

    DEFF Research Database (Denmark)

    Christensen, Lise

    2009-01-01

    BACKGROUND A constantly increasing number of gel fillers for aesthetic and reconstructive purposes have been introduced during the last 20 years. Most of the new ones are modified versions of the original collagen and hyaluronic acid gels. They have been reconstructed, often by adding cross......-bindings to the polymer in order to obtain a more dense molecular structure, which will prolong degradation and filling effect of the gel. Other gel fillers contain particles of organic (poly-lactic acid) or inorganic (calcium hydroxylapatite) material, which have been used in human tissue for other purposes (degradable...

  13. Rheology and structure of milk protein gels

    NARCIS (Netherlands)

    Vliet, van T.; Lakemond, C.M.M.; Visschers, R.W.

    2004-01-01

    Recent studies on gel formation and rheology of milk gels are reviewed. A distinction is made between gels formed by aggregated casein, gels of `pure` whey proteins and gels in which both casein and whey proteins contribute to their properties. For casein' whey protein mixtures, it has been shown

  14. Effect of pioglitazone on various parameters of insulin resistance including lipoprotein subclass according to particle size by a gel-permeation high-performance liquid chromatography in newly diagnosed patients with type 2 diabetes.

    Science.gov (United States)

    Nakano, Koji; Hasegawa, Goji; Fukui, Michiaki; Yamasaki, Masahiro; Ishihara, Kiyoshi; Takashima, Tooru; Kitagawa, Yoshihiro; Fujinami, Aya; Ohta, Mitsuhiro; Hara, Hirokazu; Adachi, Tetsuo; Ogata, Masakazu; Obayashi, Hiroshi; Nakamura, Naoto

    2010-01-01

    Pioglitazone is an insulin-sensitizing agent that has been reported to have anti-arteriosclerotic effects. The aim of this study was to obtain a better understanding of the mechanism involved in the insulin sensitizing effect of pioglitazone. A total of 50 newly diagnosed patients with type 2 diabetes were enrolled in this study and divided into two groups, 25 of who were treated with 15 mg/day pioglitazone and 25 with 500 mg/day metformin for 12 weeks. Changes in various parameters of insulin resistance including lipoprotein subclass according to particle size determined by high performance liquid chromatography, as well as glucose metabolism, were monitored to determine the relationship between lipoprotein subclass and other insulin resistance parameters. Both pioglitazone and metformin treatment were associated with significant reductions in hyperglycemia, HOMA-IR and HbA1c levels. Pioglitazone treatment, but not metformin treatment resulted in significant reductions in serum large very low-density lipoprotein (VLDL: 44.5-64.0 nm) and increases in serum adiponectin levels (both net electronegative charged modified-LDL (r=0.412, P=0.0399), and inversely with changes in adiponectin level (r=-0.526, P=0.0061). The results in this study suggest that the hypoglycemic effect of pioglitazone is achieved mainly through improvement of hepatic insulin resistance, and that pioglitazone may have an antiatherosclerotic effect by decreasing serum atherogenic modified-LDL and by increasing adiponectin.

  15. Carbon dioxide adsorption on polyacrylamide-impregnated silica gel and breakthrough modeling

    Science.gov (United States)

    Zhao, Yi; Shen, Yanmei; Bai, Lu; Ni, Shiqing

    2012-11-01

    Polyacrylamide-impregnated silica gel was prepared to capture CO2 from flue gas. The polymerization of acrylamide was carried out in AN solvent using AIBN as initiator and EGDMA as crosslinker. The adsorbents were characterized by N2 adsorption, FTIR analysis, SEM analysis, and thermal gravimetric analysis. The results showed that the polymer was not only occupying the porosity of the silica, but necessarily surrounding silica particles, and the amide groups was successfully loaded on the support silica. The impregnated silica displayed good thermal-stability at 250 °C. The CO2 adsorption isotherms were measured to examine CO2 adsorption on adsorbents, and the results showed that the capacity was increased significantly after modification. The CO2 isosteric adsorption heats calculated from the isotherms showed that the adsorption interaction of CO2 with the functionalized material may be mainly an intermolecular force or hydrogen bond. Fixed-bed breakthrough model of CO2 adsorption on functionalized silica was successfully developed to describe the breakthrough curves under different adsorption temperature, CO2 concentration, and gas flow rate. The mass transfer coefficients of CO2 were calculated from the breakthrough model, the results showed that adsorption rate could be promoted by increasing temperature, flow rate and CO2 concentration, among which the effect of gas flow rate is the most obvious.

  16. Gel placement in porous media

    NARCIS (Netherlands)

    F.J. Vermolen; J. Bruining; C.J. van Duijn (Hans)

    1999-01-01

    textabstractIn this paper we analyse advective transport of polymers, crosslinkers and gel, taking into account non-equilibrium gelation, gel adsorption and crosslinker precipitation. In absence of diffusion/dispersion the resulting model consists of hyperbolic transport-reaction equations. These

  17. Dynamic Scaling of Colloidal Gel Formation at Intermediate Concentrations.

    Science.gov (United States)

    Zhang, Qingteng; Bahadur, Divya; Dufresne, Eric M; Grybos, Pawel; Kmon, Piotr; Leheny, Robert L; Maj, Piotr; Narayanan, Suresh; Szczygiel, Robert; Ramakrishnan, Subramanian; Sandy, Alec

    2017-10-27

    We have examined the formation and dissolution of gels composed of intermediate volume-fraction nanoparticles with temperature-dependent short-range attractions using small-angle x-ray scattering, x-ray photon correlation spectroscopy, and rheology to obtain nanoscale and macroscale sensitivity to structure and dynamics. Gel formation after temperature quenches to the vicinity of the rheologically determined gel temperature, T_{gel}, was characterized via the slowdown of dynamics and changes in microstructure observed in the intensity autocorrelation functions and structure factor, respectively, as a function of quench depth (ΔT=T_{quench}-T_{gel}), wave vector, and formation time t_{f}. We find the wave-vector-dependent dynamics, microstructure, and rheology at a particular ΔT and t_{f} map to those at other ΔTs and t_{f}s via an effective scaling temperature, T_{s}. A single T_{s} applies to a broad range of ΔT and t_{f} but does depend on the particle size. The rate of formation implied by the scaling is a far stronger function of ΔT than expected from the attraction strength between colloids. We interpret this strong temperature dependence in terms of cooperative bonding required to form stable gels via energetically favored, local structures.

  18. The heat transfer mechanisms in fluidized beds; Laemmoensiirtomekanismit leijukerroksessa

    Energy Technology Data Exchange (ETDEWEB)

    Fogelholm, C.J.; Blomster, A.M.; Kojola, H. [Helsinki Univ. of Technology, Espoo (Finland)

    1996-12-01

    The goal of the research project is to improve the accuracy of the heat transfer correlation in circulating fluidized beds and to define how the heat transfer is distributed in radiation and convection in the different parts of the fluidized bed. This will be carried out by studying the behaviour and heat transfer of the fluidized bed in the boundary layer near the wall. The total and radiative heat transfer as well as the particle concentration will be measured. Based on the data a correlation will be created. Two different measurement systems are used. The particle concentration is measured by a image-analysis system. A video camera and a Super VHS recorder are used to capture live images from the bed. The images are digitized and stored on a PC. The system has been used in previous research projects at our laboratory. In earlier projects all measurements have been carried out in cold environments. In this project the system will be modified for hot environments. The radiative heat transfer is measured by a radiative heat transfer probe connected to a PC via an A/D converter. The probe consists of a heat flow detector which is isolated from the bed by a sapphire window so that only the radiative part of the heat transfer is detected. The probe will be calibrated in a black body oven so that the effect of the conduction and the sapphire window can be separated. (author)

  19. Neutron detector based on lithiated sol-gel glass

    CERN Document Server

    Wallace, S; Miller, L F; Dai, S

    2002-01-01

    A neutron detector technology is demonstrated based on sup 6 Li/ sup 1 sup 0 B doped sol-gel glass. The detector is a sol-gel glass film coated silicon surface barrier detector (SBD). The ionized charged particles from (n, alpha) reactions in the sol-gel film enter the SBD and are counted. Data showing that gamma-ray pulse amplitudes interfere with identifying charged particles that exit the film layer with energies below the gamma-ray energy is presented. Experiments were performed showing the effect of sup 1 sup 3 sup 7 Cs and sup 6 sup 0 Co gamma rays on the SBD detector. The reaction product energies of the triton and alpha particles from sup 6 Li are significantly greater than the energies of the Compton electrons from high-energy gamma rays, allowing the measurement of neutrons in a high gamma background. The sol-gel radiation detection technology may be applicable to the characterization of transuranic waste, spent nuclear fuel and to the monitoring of stored plutonium.

  20. Effectiveness of Bed Bug Pesticides

    Science.gov (United States)

    Before EPA allows a bed bug claim on a label, the product must be supported by data showing it will kill bed bugs when applied according to the label. Also consider factors such as extent of infestation, site preparation, and insect life stages.

  1. Turning patients over in bed

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/patientinstructions/000426.htm Turning patients over in bed To use the sharing features on this page, ... Patient The following steps should be followed when turning a patient: If you can, raise the bed to a level that reduces back strain for ...

  2. Importance of fragmentation on the steady state combustion of wood char in a bubbling fluidized bed

    Energy Technology Data Exchange (ETDEWEB)

    Pinho, Carlos [Universidade do Porto (CEFT/FEUP), Porto (Portugal). Faculdade de Engenharia. Centro de Estudos de Fenomenos de Transporte], E-mail: ctp@fe.up.pt

    2010-07-01

    A simple mathematical model for the analysis of the steady state behavior of a bubbling fluidized bed burner is presented, with the main intention of evaluating the importance of the primary fragmentation of fuel particles on the performance of this type of burners. This model has pedagogical advantages because of its simplicity and easiness of application to the analysis of realistic situations. The model is based upon the classical models used for the study of batch combustion processes in fluidized bed reactors. Experimental data from studies of fluidized bed combustion of portuguese vegetable chars are used to support the analysis of the performance of a 1 m diameter fluidized bed combustor. (author)

  3. Mixing Behaviors of Wet Granular Materials in a Pulsating Fluidized Bed

    Science.gov (United States)

    Lim, Eldin Wee Chuan

    2017-11-01

    The Discrete Element Method combined with Computational Fluid Dynamics was coupled with a capillary liquid bridge force model for computational studies of mixing behaviors in a gas fluidized bed containing wet granular materials. There was a high tendency for wet particles to form large agglomerates within which relative motions between adjacent particles were hindered. This resulted in much lower mixing efficiencies compared with fluidization of dry particles. Capillary liquid bridge forces were on average stronger than both fluid drag forces and particle-particle collision forces. Particle exchange between agglomerates was necessary for mixing to occur during fluidization of wet granular materials but required strong capillary liquid bridge forces to be overcome. When pulsation of the inlet gas flow was applied, voidage waves comprising regions of high and low particle concentration formed within the fluidized bed. This allowed particles to cluster and disperse repeatedly, thus facilitating exchange of particles between agglomerates and promoting mixing of particles throughout the fluidized bed. This points towards the possibility of utilizing pulsed fluidization as an effective means of improving mixing efficiencies in fluidized bed systems containing wet granular materials.

  4. Characterisation of coal and chars in fluidised bed gasification

    CSIR Research Space (South Africa)

    Oboirien, BO

    2009-03-01

    Full Text Available gasification of high-ash Chinese coal in a pilot plant. The data also shows that the mean particle sizes of the various residual char were smaller than the feed coal and the particle size of the bed char were higher than the particle of the cyclone char... and ultimate analysis Results consisting of proximate and ultimate analyses together calorific value of the parent coals and chars are presented in Table 4. The ash content of the different coal samples ranges from 33.4- 40.4 wt %, the calorific value...

  5. Investigation of hydrodynamics and heat transfer in pseudo 2D spouted beds with and without draft plates

    Directory of Open Access Journals (Sweden)

    S. H. Hosseini

    Full Text Available Abstract In the present study, hydrodynamics and gas to particle heat transfer in pseudo two dimensional spouted beds (2DSB with and without draft plates were investigated using the Eulerian-Eulerian approach. The main objective of the study was to provide an understanding of effects of the presence of draft plates on the hydrodynamics and heat transfer behavior of solid particles in the spouted beds. To validate the model, the predicted mean particle vertical velocity at the bed axis, the lateral profiles of vertical particle velocity at different bed heights for both systems, and the particle velocity vector fields in the beds were compared with the experimental measurements. A close agreement between the CFD results and the experimental data was found for both systems. The simulation results showed that the particle volume fraction in the spout and fountain regions of the spouted bed with draft plates is considerably lower than that in a conventional spouted bed (without draft plates. Simulation results also showed significant differences between the temperature distributions of gas and solid phases in spouted beds with and without draft plates.

  6. The effect of mixing on glutenin particle properties: Aggregation factors that affect gluten function in dough

    NARCIS (Netherlands)

    Don, C.; Lichtendonk, W.J.; Plijter, J.J.; Vliet, T. van; Hamer, R.J.

    2005-01-01

    Previously we reported that the SDS insoluble gel-layer: the Glutenin Macro Polymer (GMP) can be considered as a gel consisting of protein particles. These glutenin particles have a size of about 10-1-102 μm and consist of HMW-GS and LMW-GS only. In GMP isolates from flour, the particles are

  7. The effect of mixing on glutenin particle properties: aggregation factors that effect gluten function in dough

    NARCIS (Netherlands)

    Don, C.; Lichtendonk, T.; Plijter, J.J.; Vliet, van T.; Hamer, R.J.

    2005-01-01

    Previously we reported that the SDS insoluble gel-layer: the Glutenin Macro Polymer (GMP) can be considered as a gel consisting of protein particles. These glutenin particles have a size of about 10-1–102 µm and consist of HMW-GS and LMW-GS only. In GMP isolates from flour, the particles are

  8. Minimum rate of spouting and peak pressure-drop in a spouted bed

    International Nuclear Information System (INIS)

    Ogino, Fumiaru; Zhang, Laiying; Maehashi, Yasuo

    1993-01-01

    Spouted beds are a type of fluidized bed, but one which has certain advantages, viz., (1) the capability of handling coarse particles; (2) the capability of handling particles with complicated shapes; (3) the absence of the need to have a high flow-rate; and (4) a small pressure drop. The first and second of these advantages, in particular, are responsible for spouted beds having found use in industry in the drying of powdered materials, in granulation apparatus, in the roasting of mineral ores, and in waste incinerators, while their application in coal gasification and shale pyrolysis is, also, examined

  9. Rheology of Emulsion-Filled Gels Applied to the Development of Food Materials

    Directory of Open Access Journals (Sweden)

    Ivana M. Geremias-Andrade

    2016-08-01

    Full Text Available Emulsion-filled gels are classified as soft solid materials and are complex colloids formed by matrices of polymeric gels into which emulsion droplets are incorporated. Several structural aspects of these gels have been studied in the past few years, including their applications in food, which is the focus of this review. Knowledge of the rheological behavior of emulsion-filled gels is extremely important because it can measure interferences promoted by droplets or particle inclusion on the textural properties of the gelled systems. Dynamic oscillatory tests, more specifically, small amplitude oscillatory shear, creep-recovery tests, and large deformation experiments, are discussed in this review as techniques present in the literature to characterize rheological behavior of emulsion-filled gels. Moreover, the correlation of mechanical properties with sensory aspects of emulsion-filled gels appearing in recent studies is discussed, demonstrating the applicability of these parameters in understanding mastication processes.

  10. Defluidization in fluidized bed gasifiers using high-alkali content fuels

    DEFF Research Database (Denmark)

    Narayan, Vikas; Jensen, Peter Arendt; Henriksen, Ulrik Birk

    2016-01-01

    samples,agglomeration could be attributed to viscous silicate melts formed from reaction of inorganic alkalineand alkali earth species with silica from the bed particles. A mathematical model that addresses the defluidization behavior of alkali-rich samples was developed based on the experiments performed...... and calcium, which may form viscous melts that adhere on the surface of the colliding bed particles and bind them to form agglomerates. In this paper, studies were made to understand the behavior of inorganic elements (mainly K, Si and Ca) on agglomeration and de-fluidization of alkali rich bed...... in the bench-scale fluidized bed reactor as well as on results from literature. The model was then used topredict the de-fluidization behavior of alkali-rich bed material in a large-scale LTCFB gasifier....

  11. A comparative study on the effective thermal conductivity of a single size beryllium pebble bed

    International Nuclear Information System (INIS)

    Abou-Sena, A.; Ying, A.; Abdou, M.

    2004-01-01

    Solid breeder blankets generally use beryllium-helium pebble beds to ensure sufficient tritium breeding. The data of the effective thermal conductivity, k eff , of beryllium pebble beds is important to the design of fusion blankets. It serves as a database for benchmarking the models of pebble beds. The objective of this paper is to review and compare the available data (obtained by several studies) of the effective thermal conductivity of beryllium pebble beds in order to address the current status of these data. Two comparisons are presented: one for the data of k eff versus bed mean temperature and the second one for the data of k eff versus external applied pressures. The data (k eff versus bed temperature) reported by Enoeda et al., Dalle Donne et al., and UCLA, have a similar particle size and packing fraction. Despite their similarity, the standard deviation values of their data are around 32%. Also, the data of the effective thermal conductivity as a function of mechanical pressure have standard deviation values of ∼50%. From the presented comparisons, significant discrepancies among the available data of k eff of the beryllium pebble beds were observed. These discrepancies may be attributed to the apparent differences among available studies, such as experiment technique, packing fraction, particle characteristics, bed dimensions, and temperature range and gradient across the bed. (author)

  12. Lignite air-steam gasification in the fluidized bed of iron-containing slag catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Kuznetsov, B.N.; Shchipko, M.L.; Golovin, Yu. [Inst. of Chemistry of Natural Organic Materials, Academgorodok, Krasnoyarsk (Russian Federation)

    1995-12-01

    The influence of fluidized bed of iron-containing slag particles on air-steam gasification of powdered Kansk-Achinsk lignite in entrained flow was studied in pilot installation with productivity about 60 kg per hour. Slag of Martin process and boiler slag were used as catalytic active materials until their complete mechanical attrition. Two following methods of catalytic gasification of lignite were compared: the partial gasification in stationary fluidized bed of slag particles with degree of fuel conversion 40-70% and complete gasification in circulating bed of slag particles. In the first case only the most reactive part of fuel is gasified with the simultaneously formation of porous carbon residue with good sorption ability. It was found the catalytic fluidized bed improves heat transfer from combustion to reduction zone of gas-generator and increases the rate of fuel conversion at the temperature range 900-1000{degrees}C. At these temperatures the degree of conversion is depended considerably on the duration time of fuel particles in the catalytic fluidized bed. The influence of catalytic fluidized bed height and velocity of reaction mixture on the temperature profiles in the gas-generator was studied. The optimal relationship was found between the fluidized bed height and velocity of flow which makes possible to produce the gas with higher calorific value at maximum degree of fuel conversion.

  13. Contribution to the knowledge of spouted beds, including in particular an experimental study on the void fraction of the dense phase

    International Nuclear Information System (INIS)

    Eljas, Yves.

    1975-10-01

    The spouted bed is a gas-solid contact technique used to replace fluidisation when the solid particles are too large and too dense. Part one gives a bibliographical study on the aerodynamic aspect of spouted beds. Part two describes an experimental study of the void fraction distribution in a two-dimensional bed [fr

  14. Chemical Gel for Surface Decontamination

    International Nuclear Information System (INIS)

    Jung, Chong Hun; Moon, J. K.; Won, H. J.; Lee, K. W.; Kim, C. K.

    2010-01-01

    Many chemical decontamination processes operate by immersing components in aggressive chemical solutions. In these applications chemical decontamination technique produce large amounts of radioactive liquid waste. Therefore it is necessary to develop processes using chemical gels instead of chemical solutions, to avoid the well-known disadvantages of chemical decontamination techniques while retaining their high efficiency. Chemical gels decontamination process consists of applying the gel by spraying it onto the surface of large area components (floors, walls, etc) to be decontaminated. The gel adheres to any vertical or complex surface due to their thixotropic properties and operates by dissolving the radioactive deposit, along with a thin layer of the gel support, so that the radioactivity trapped at the surface can be removed. Important aspects of the gels are that small quantities can be used and they show thixitropic properties : liquid during spraying, and solid when stationary, allowing for strong adherence to surfaces. This work investigates the decontamination behaviors of organic-based chemical gel for SS 304 metallic surfaces contaminated with radioactive materials

  15. Fluidized bed coupled rotary reactor for nanoparticles coating via atomic layer deposition.

    Science.gov (United States)

    Duan, Chen-Long; Liu, Xiao; Shan, Bin; Chen, Rong

    2015-07-01

    A fluidized bed coupled rotary reactor has been designed for coating on nanoparticles (NPs) via atomic layer deposition. It consists of five major parts: reaction chamber, dosing and fluidizing section, pumping section, rotary manipulator components, as well as a double-layer cartridge for the storage of particles. In the deposition procedure, continuous fluidization of particles enlarges and homogenizes the void fraction in the particle bed, while rotation enhances the gas-solid interactions to stabilize fluidization. The particle cartridge presented here enables both the fluidization and rotation acting on the particle bed, demonstrated by the analysis of pressure drop. Moreover, enlarged interstitials and intense gas-solid contact under sufficient fluidizing velocity and proper rotation speed facilitate the precursor delivery throughout the particle bed and consequently provide a fast coating process. The cartridge can ensure precursors flowing through the particle bed exclusively to achieve high utilization without static exposure operation. By optimizing superficial gas velocities and rotation speeds, minimum pulse time for complete coating has been shortened in experiment, and in situ mass spectrometry showed the precursor usage can reach 90%. Inductively coupled plasma-optical emission spectroscopy results suggested a saturated growth of nanoscale Al2O3 films on spherical SiO2 NPs. Finally, the uniformity and composition of the shells were characterized by high angle annular dark field-transmission electron microscopy and energy dispersive X-ray spectroscopy.

  16. Denaturing gradient gel electrophoresis

    International Nuclear Information System (INIS)

    Kocherginskaya, S.A.; Cann, I.K.O.; Mackie, R.I.

    2005-01-01

    It is worthwhile considering that only some 30 species make up the bulk of the bacterial population in human faeces at any one time based on the classical cultivation-based approach. The situation in the rumen is similar. Thus, it is practical to focus on specific groups of interest within the complex community. These may be the predominant or the most active species, specific physiological groups or readily identifiable (genetic) clusters of phylogenetically related organisms. Several 16S rDNA fingerprinting techniques can be invaluable for selecting and monitoring sequences or phylogenetic groups of interest and are described below. Over the past few decades, considerable attention was focussed on the identification of pure cultures of microbes on the basis of genetic polymorphisms of DNA encoding rRNA such as ribotyping, amplified fragment length polymorphism and randomly amplified polymorphic DNA. However, many of these methods require prior cultivation and are less suitable for use in analysis of complex mixed populations although important in describing cultivated microbial diversity in molecular terms. Much less attention was given to molecular characterization of complex communities. In particular, research into diversity and community structure over time has been revolutionized by the advent of molecular fingerprinting techniques for complex communities. Denaturing or temperature gradient gel electrophoresis (DGGE/TGGE) methods have been successfully applied to the analysis of human, pig, cattle, dog and rodent intestinal populations

  17. A method for improving predictions of bed-load discharges to reservoirs

    Science.gov (United States)

    Lopes, V.L.; Osterkamp, W.R.; Bravo-Espinosa, M.

    2007-01-01

    Effective management options for mitigating the loss of reservoir water storage capacity to sedimentation depend on improved predictions of bed-load discharges into the reservoirs. Most predictions of bed-load discharges, however, are based on the assumption that the rates of bed-load sediment availability equal the transport capacity of the flow, ignoring the spatio-temporal variability of the sediment supply. This paper develops a semiquantitative method to characterize bed-load sediment transport in alluvial channels, assuming a channel reach is non-supply limited when the bed-load discharge of a given sediment particle-size class is functionally related to the energy that is available to transport that fraction of the total bed-load. The method was applied to 22 alluvial stream channels in the USA to determine whether a channel reach had a supply-limited or non-supply-limited bed-load transport regime. The non-supply-limited transport regime was further subdivided into two groups on the basis of statistical tests. The results indicated the pattern of bed-load sediment transport in alluvial channels depends on the complete spectrum of sediment particle sizes available for transport rather than individual particle-size fractions represented by one characteristic particle size. The application of the method developed in this paper should assist reservoir managers in selecting bed-load sediment transport equations to improve predictions of bed-load discharge in alluvial streams, thereby significantly increasing the efficiency of management options for maintaining the storage capacity of waterbodies. ?? 2007 Blackwell Publishing Asia Pty Ltd.

  18. COOLOCE debris bed experiments and simulations investigating the coolability of cylindrical beds with different materials and flow modes

    Energy Technology Data Exchange (ETDEWEB)

    Takasuo, E.; Kinnunen, T.; Holmstroem, S.; Lehtikuusi, T. [VTT Technical Research Centre of Finland (Finland)

    2013-07-15

    The COOLOCE experiments aim at investigating the coolability of debris beds of different geometries, flow modes and materials. A debris bed may be formed of solidified corium as a result of a severe accident in a nuclear power reactor. The COOLOCE-8 test series consisted of experiments with a top-flooded test bed with irregular gravel as the simulant material. The objective was to produce comparison data useful in estimating the effects of different particle materials and the possible effect of the test arrangement on the results. It was found that the dryout heat flux (DHF) measured for the gravel was lower compared to previous experiments with spherical beads, and somewhat lower compared to the early STYX experiments. The difference between the beads and gravel is at least partially explained by the smaller average size of the gravel particles. The COOLOCE-9 test series included scoping experiments examining the effect of subcooling of the water pool in which the debris bed is immersed. The experiments with initially subcooled pool suggest that the subcooling may increase DHF and increase coolability. The aim of the COOLOCE-10 experiments was to investigate the effect of lateral flooding on the DHF a cylindrical test bed. The top of the test cylinder and its sidewall were open to water infiltration. It was found that the DHF is increased compared to a top-flooded cylinder by more than 50%. This suggests that coolability is notably improved. 2D simulations of the top-flooded test beds have been run with the MEWA code. Prior to the simulations, the effective particle diameter for the spherical beads and the irregular gravel was estimated by single-phase pressure loss measurements performed at KTH in Sweden. Parameter variations were done for particle size and porosity used as input in the models. It was found that with the measured effective particle diameter and porosity, the simulation models predict DHF with a relatively good accuracy in the case of spherical

  19. State-of-the-art review and report on critical aspects and scale-up considerations in the design of fluidized-bed reactors. Final report on Phase 1

    Energy Technology Data Exchange (ETDEWEB)

    1980-01-01

    Information is given on the design of distributor plates and opening geometry to provide uniform flow over the reactor area. The design of granular bed filters is also considered. Pressure drops and particle size in the bed are discussed. (LTN)

  20. Torsion testing of bed joints

    DEFF Research Database (Denmark)

    Hansen, Klavs Feilberg; Pedersen, Carsten Mørk

    2008-01-01

    be carried out directly in a normal testing machine. The torsion strength is believed to be the most important parameter in out-of-plane resistance of masonry walls subjected to bending about an axis perpendicular to the bed joints. The paper also contains a few test results from bending of small walls about...... an axis perpendicular to the bed joints, which indicate the close connection between these results and results from torsion tests. These characteristics make the torsion strength well suited to act as substitute parameter for the bending strength of masonry about an axis perpendicular to the bed joints....

  1. DNA binding during expanded bed adsorption and factors affecting adsorbent aggregation

    DEFF Research Database (Denmark)

    Arpanaei, Ayyoob; Mathiasen, N.; Hobley, Timothy John

    2008-01-01

    DNA-induced aggregation and contraction of expanded bed adsorption chromatography beds have been examined using strong anion exchanger Q HyperZ and calf thymus DNA in buffers containing added NaCl. Two batches of adsorbent with different ionic capacities were used allowing the effects of different...... tolerance of anion exchangers when binding DNA. However, more importantly. with the adsorbents examined here. attempts to reduce bed aggregation by feedstock conditioning with added salt may increase DNA binding leading to a reduction in expanded bed adsorption performance compromising protein capture...... ligand densities to be examined. Very high dynamic binding capacities at 10% breakthrough were found in the absence of added salt. However, the highest binding capacities (similar to 10 and similar to 19mg DNA ml(-1) gel) were found in buffers containing added salt at concentrations of either 0.25 or 0...

  2. Fluoride Rinses, Gels and Foams

    DEFF Research Database (Denmark)

    Twetman, Svante; Keller, Mette K

    2016-01-01

    AIM: The aim of this conference paper was to systematically review the quality of evidence and summarize the findings of clinical trials published after 2002 using fluoride mouth rinses, fluoride gels or foams for the prevention of dental caries. METHODS: Relevant papers were selected after...... (6 on fluoride mouth rinse, 10 on fluoride gel and 3 on fluoride foam); 6 had a low risk of bias while 2 had a moderate risk. All fluoride measures appeared to be beneficial in preventing crown caries and reversing root caries, but the quality of evidence was graded as low for fluoride mouth rinse......, moderate for fluoride gel and very low for acidulated fluoride foam. No conclusions could be drawn on the cost-effectiveness. CONCLUSIONS: This review, covering the recent decade, has further substantiated the evidence for a caries-preventive effect of fluoride mouth rinse, fluoride gel and foam...

  3. Ash and heavy metals in fluidized bed-combustion; Tuhka ja raskasmetallit puuperaeisen jaetteen kerrosleijupoltossa

    Energy Technology Data Exchange (ETDEWEB)

    Kaessi, T.; Aittoniemi, P. [IVO International, Vantaa (Finland)

    1996-12-01

    Combustion ashes and submicron fly ash particles were characterized in two industrial boilers (bubbling vs. circulating fluidized bed) burning paper mill deinking sludge and bark or wood as support fuel. Bulk samples from fly ash, circulating ash and bottom ash were analyzed. Fine particles in fly ash were monitored and sampled for microscopic studies. The mass size distribution of fly ash was measured and the chemical composition according to particle size was analyzed. The results showed that ash consists of large and friable clusters formed by sintering of small mineral particles originating from paper fillers. Very few ash particles were fused and they were found only among the smallest particles. No agglomerates of fused particles were found. If the residence time in furnace is long enough sintering may proceed further and ash structure grows more dense. No indication of ash vaporization was detected. These results were similar for bubbling and circulating fluidized bed boilers. (author)

  4. Thermal denitrification of evaporators concentrates in reactor with fluidized bed

    International Nuclear Information System (INIS)

    Brugnot, C.

    1993-11-01

    As part of the treatments of liquid wastes coming from the Marcoule reprocessing plant, the study of a thermal denitrification process for evaporator concentrates has been chosen by the CEA/CEN Cadarache: the fluidized-bed calcination. This work presents the study of a calcination pilot-plant for wastes with a very high sodium nitrate content. After a reactional analysis carried out in a thermobalance on samples which are representative of the fluidized-bed compounds, the perfecting of many of the plant parameters - such as the solution injection system - was carried out on a scale-model at first. Then, it was verified on the pilot-plant, and some experiments have been carried out. A mathematical model for the particle growth inside the fluidized-bed is proposed. (author). 179 refs., 65 figs., 23 tabs

  5. A computational fluid dynamic model for fluidized bed heat transfer

    International Nuclear Information System (INIS)

    Yusuf, R.; Melaaen, M.C.; Mathiesen, V.

    2005-01-01

    The objective of this work is to study heat transfer from a heated wall in a gas fluidized bed using the computational fluid dynamic (CFD) approach. An Eulerian-Eulerian simulation of a two dimensional bubbling bed at ambient conditions with a heated wall is carried out on the in-house code FLOTRACS-MP-3D. An empirical as well as a mechanistic model for solid phase thermal conductivity is tested. Effect of operating parameters like velocity and particle size are also investigated. The fluid dynamic model is able to predict the qualitative trends for the influence of operating parameters as well as high heat transfer coefficients observed in gas fluidized beds. (author)

  6. Coal hydrogenation and deashing in ebullated bed catalytic reactor

    Science.gov (United States)

    Huibers, Derk T. A.; Johanson, Edwin S.

    1983-01-01

    An improved process for hydrogenation of coal containing ash with agglomeration and removal of ash from an ebullated bed catalytic reactor to produce deashed hydrocarbon liquid and gas products. In the process, a flowable coal-oil slurry is reacted with hydrogen in an ebullated catalyst bed reaction zone at elevated temperature and pressure conditions. The upward velocity and viscosity of the reactor liquid are controlled so that a substantial portion of the ash released from the coal is agglomerated to form larger particles in the upper portion of the reactor above the catalyst bed, from which the agglomerated ash is separately withdrawn along with adhering reaction zone liquid. The resulting hydrogenated hydrocarbon effluent material product is phase separated to remove vapor fractions, after which any ash remaining in the liquid fraction can be removed to produce substantially ash-free coal-derived liquid products.

  7. Bed Bugs: The Australian Response

    Directory of Open Access Journals (Sweden)

    Richard C. Russell

    2011-04-01

    Full Text Available Australia has experienced a sudden and unexpected resurgence in bed bug infestations from both Cimex lectularius L. and Cimex hemipterus F. A survey in 2006 revealed that infestations had increased across the nation by an average of 4,500% since the start of the decade. In response, a multi-disciplinary approach to combat the rise of this public health pest was implemented and involved the coordinated efforts of several organizations. The key components of the strategy included the introduction of a pest management standard ‘A Code of Practice for the Control of Bed Bug Infestations in Australia’ that defines and promotes ‘best practice’ in bed bug eradication, the development of a policy and procedural guide for accommodation providers, education of stakeholders in best management practices, and research. These strategies continue to evolve with developments that lead to improvements in ‘best practice’ while bed bugs remain problematic in Australia.

  8. Getting Rid of Bed Bugs

    Science.gov (United States)

    ... control is very important whether you are considering hiring a professional or planning to do it yourself. Controlling bed ... control methods, as others may cause serious harm. Hiring a pest management professional is a good option in many cases, but ...

  9. Sea bed mapping and inspection

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    The conference has 24 presentations on the topics: Sea bed mapping, inspection, positioning, hydrography, marine archaeology, remote operation vehicles and computerized simulation technologies, oil field activities and plans, technological experiences and problems. (tk)

  10. Injectable gels for tissue engineering.

    Science.gov (United States)

    Gutowska, A; Jeong, B; Jasionowski, M

    2001-08-01

    Recently, tissue engineering approaches using injectable, in situ gel forming systems have been reported. In this review, the gelation processes and several injectable systems that exhibit in situ gel formation at physiological conditions are discussed. Applications of selected injectable systems (alginate, chitosan, hyaluronan, polyethylene oxide/polypropylene oxide) in tissue engineering are also described. Injectable polymer formulation can gel in vivo in response to temperature change (thermal gelation), pH change, ionic cross-linking, or solvent exchange. Kinetics of gelation is directly affected by its mechanism. Injectable formulations offer specific advantages over preformed scaffolds such as: possibility of a minimally invasive implantation, an ability to fill a desired shape, and easy incorporation of various therapeutic agents. Several factors need to be considered before an injectable gel can be selected as a candidate for tissue engineering applications. Apart from tissue-specific cell-matrix interactions, the following gel properties need to be considered: gelation kinetics, matrix resorption rate, possible toxicity of degradation products and their elimination routes, and finally possible interference of the gel matrix with histogenesis. Copyright 2001 Wiley-Liss, Inc.

  11. Combustion of peanut shells in a cone-shaped bubbling fluidized-bed combustor using alumina as the bed material

    International Nuclear Information System (INIS)

    Arromdee, Porametr; Kuprianov, Vladimir I.

    2012-01-01

    Highlights: ► We propose burning of peanut shells in a conical fluidized bed using alumina sand. ► We examine hydrodynamic, combustion and emission characteristics of the reactor. ► High, over 99%, combustion efficiency is achievable. ► Emissions of CO and NO from the combustor meet the national emission limits. ► Composition of the bed material undergoes significant changes during the combustion. -- Abstract: This paper reports experimental studies on burning peanut shells in the conical fluidized-bed combustor using alumina sand as the fluidizing agent. Prior to combustion tests, hydrodynamic regimes and characteristics of a conical alumina–biomass bed were investigated under cold-state conditions for variable percentage of peanut shells in the mixture and static bed height. With selected particle sizes (300–500 μm) and static bed height (30 cm), alumina ensured bubbling fluidization regime of the bed at operating conditions specified for firing biomass. Combustion tests were performed at 60 kg/h and 45 kg/h fuel feed rates, while ranging excess air from 20% to 80% at a fixed combustor load. Temperature and gas concentrations (O 2 , CO, C x H y as CH 4 , and NO) were measured along radial and axial directions inside the reactor as well as at stack in order to characterize combustion and emission performance of the combustor for the ranges of operating conditions. For firing 60 kg/h peanut shells, excess air of 40% can be selected as an appropriate value ensuring high, about 99%, combustion efficiency and rather low emissions of CO and NO: 520 ppm and 125 ppm, respectively (both on a dry basis and at 6% O 2 ). With reducing combustor load, the combustion efficiency and emission characteristics were improved to a little extent. No evidence of bed agglomeration was found during 30-h combustion tests on this conical fluidized-bed combustor using alumina sand as the bed material. However, the timescale effect on the composition of the bed material was

  12. Operating characteristics of rotating beds

    Energy Technology Data Exchange (ETDEWEB)

    Keyvani, M.; Gardner, N.C.

    1988-01-01

    Vapor-liquid contacting in high gravitational fields offers prospects for significant reductions in the physical size, capital, and operating costs of packed towers. Pressure drops, power requirements, mass transfer coefficients and liquid residence time distributions are reported for a rotating bed separator. The beds studied were rigid, foamed aluminum, with specific surface areas ranging from 650 to 3000 m{sup 2}/m{sup 2}. Gravitational fields were varied from 50 to 300g.

  13. A Granular Bed for Use in a Nanoparticle Respiratory Deposition Sampler.

    Science.gov (United States)

    Park, Jae Hong; Mudunkotuwa, Imali A; Mines, Levi W D; Anthony, T Renée; Grassian, Vicki H; Peters, Thomas M

    A granular bed was designed to collect nanoparticles as an alternative to nylon mesh screens for use in a nanoparticle respiratory deposition (NRD) sampler. The granular bed consisted of five layers in series: a coarse mesh, a large-bead layer, a small-bead layer, a second large-bead layer, and a second coarse mesh. The bed was designed to primarily collect particles in the small-bead layer, with the coarse mesh and large-bead layers designed to hold the collection layer in position. The collection efficiency of the granular bed was measured for varying depths of the small-bead layer and for test particles with different shape (cuboid, salt particles; and fractal, and stainless steel and welding particles). Experimental measurements of collection efficiency were compared to estimates of efficiency from theory and to the nanoparticulate matter (NPM) criterion, which was established to reflect the total deposition in the human respiratory system for particles smaller than 300 nm. The shape of the collection efficiency curve for the granular bed was similar to the NPM criterion in these experiments. The collection efficiency increased with increasing depth of the small-bead layer: the particle size associated with 50% collection efficiency, d 50 , for salt particles was 25 nm for a depth of 2.2 mm, 35 nm for 3.2 mm, and 45 nm for 4.3 mm. The best-fit to the NPM criterion was found for the bed with a small-bead layer of 3.2 mm. Compared to cubic salt particles, the collection efficiency was higher for fractal-shaped particles larger than 50 nm, presumably due to increased interception. Copyright 2015 American Association for Aerosol Research.

  14. Synchrotron Radiation Pair Distribution Function Analysis of Gels in Cements

    Directory of Open Access Journals (Sweden)

    Ana Cuesta

    2017-10-01

    Full Text Available The analysis of atomic ordering in a nanocrystalline phase with small particle sizes, below 5 nm, is intrinsically complicated because of the lack of long-range order. Furthermore, the presence of additional crystalline phase(s may exacerbate the problem, as is the case in cement pastes. Here, we use the synchrotron pair distribution function (PDF chiefly to characterize the local atomic order of the nanocrystalline phases, gels, in cement pastes. We have used a multi r-range analysis approach, where the ~4–7 nm r-range allows determining the crystalline phase contents; the ~1–2.5 nm r-range is used to characterize the atomic ordering in the nanocrystalline component; and the ~0.2–1.0 nm r-range gives insights about additional amorphous components. Specifically, we have prepared four alite pastes with variable water contents, and the analyses showed that a defective tobermorite, Ca11Si9O28(OH2.8.5H2O, gave the best fit. Furthermore, the PDF analyses suggest that the calcium silicate hydrate gel is composed of this tobermorite and amorphous calcium hydroxide. Finally, this approach has been used to study alternative cements. The hydration of monocalcium aluminate and ye’elimite pastes yield aluminum hydroxide gels. PDF analyses show that these gels are constituted of nanocrystalline gibbsite, and the particle size can be as small as 2.5 nm.

  15. Model investigations 3D of gas-powder two phase flow in descending bed with consideration radial distribution of flow

    Directory of Open Access Journals (Sweden)

    B. Panic

    2013-04-01

    Full Text Available The results of experimental investigations concerning radial distribution of powder accumulation in bed and static pressure were presented in this paper. To realize this research physical model of gas-powder two phase flow with descending bed was projected and constructed. Amounts of “dynamic” and “static” powder accumulated in bed, in dependence on gas velocity and of bed particles were investigated. In 3D model “static” powder (with its radial distribution at the tuyere level and in the higher part of bed was measured. The influence of bed particles, powder and gas radial distribution on values of interaction forces between flow phases in investigated system was defined.

  16. Characterization of granular phase change materials for thermal energy storage applications in fluidized beds

    International Nuclear Information System (INIS)

    Izquierdo-Barrientos, M.A.; Sobrino, C.; Almendros-Ibáñez, J.A.; Barreneche, C.; Ellis, N.; Cabeza, L.F.

    2016-01-01

    Highlights: • Granular PCMs are tested in 3D and 2D fluidized beds. • Density, particle size and angle of repose were measured for different granular PCMs. • DSC measurements confirm that there is no loss of material after fluidization. - Abstract: This work investigates commercially available granular phase change materials (PCMs) with different transition temperatures for the use of thermal-energy storage systems in fluidized beds. The hydrodynamic characteristics of granular PCMs were tested in cylindrical-3D and planar-2D fluidized beds. The density, particle size distribution and angle of repose were measured for various PCM materials. Further attrition studies were conducted with changes in particle surface from abrasion, which were characterized using a Scanning Electron Microscope (SEM). The results indicate that some materials with smaller particle size and thinner supporting structure can lose the paraffin during the fluidization process, when paraffin is in a liquid state. As a consequence, the particles agglomerate, and the bed defluidizes. For all of the tested materials, only GR50 (with a transition temperature of 50 °C) properly fluidizes when the paraffin is in the liquid state and has shown to endure >75 h of continuous operation and 15 melting-solidification cycles in a fluidized bed. Additional differential scanning calorimetry (DSC) measurements of the cycled particles did not show a decrease in energy storage capacity of the granular PCM, which corroborates that there is no loss of material after >75 h of fluidization.

  17. Variability of Wolman pebble samples in gravel/cobble bed streams

    Directory of Open Access Journals (Sweden)

    Tomáš Galia

    2017-01-01

    Full Text Available Wolman [1954] pebble sampling is the most commonly used method to estimate surface bed grain sizes in gravel-bed streams. A few studies documented different results between individual operators or repeated measurements within the same channel-reach obtained by this method. We tested potential differences in pebble sample distributions and related grain-size percentiles (D10, D50 and D90 between two fluvial geomorphologists and two almost inexperienced students in three channel-reaches and one gravel bar. None of sampled locations provided statistically consistent particle-size distributions and related percentiles when comparing measurements of all operators. The samples of experienced fluvial geomorphologists were most consistent for the channel-reaches with assumed widest range of particle sizes; a post-hoc test documented significant differences for the gravel bar and the lower plane bed reach. Medians of particle-size distributions for the gravel bar were equal for three of four operators; the fourth operator probably included also coarser particle population between the channel bed and bar. It implies that 100 sampled particles are most likely sufficient only for D50 estimations and homogenous sediment populations (i.e. well-sorted gravel bars. In any other case, much larger number of particles should be sampled in gravel/cobble bed streams to obtain narrower confidence limits of related grainsize percentiles.

  18. Biomass pyrolysis in a fluidized bed reactor. Part 2: experimental validation of model results

    NARCIS (Netherlands)

    Wang, X.; Kersten, Sascha R.A.; Prins, W.; van Swaaij, Willibrordus Petrus Maria

    2005-01-01

    Various types of cylindrical biomass particles (pine, beech, bamboo, demolition wood) have been pyrolyzed in a batch-wise operated fluid bed laboratory setup. Conversion times, product yields, and product compositions were measured as a function of the particle size (0.7−17 mm), the vapor's

  19. Granular dynamics simulation of segregation phenomena in bubbling gas-fluidised beds

    NARCIS (Netherlands)

    Hoomans, B.P.B.; Kuipers, J.A.M.; van Swaaij, Willibrordus Petrus Maria

    2000-01-01

    A hard-sphere discrete particle model of a gas-fluidised bed was used in order to simulate segregation phenomena in systems consisting of particles of different sizes. In the model, the gas-phase hydrodynamics is described by the spatially averaged Navier¿Stokes equations for two-phase flow. For

  20. Unexpected decoupling of stretching and bending modes in protein gels.

    Science.gov (United States)

    Gibaud, Thomas; Zaccone, Alessio; Del Gado, Emanuela; Trappe, Véronique; Schurtenberger, Peter

    2013-02-01

    We show that gels formed by arrested spinodal decomposition of protein solutions exhibit elastic properties in two distinct frequency domains, both elastic moduli exhibiting a remarkably strong dependence on volume fraction. Considering the large difference between the protein size and the characteristic length of the network we model the gels as porous media and show that the high and low frequency elastic moduli can be respectively attributed to stretching and bending modes. The unexpected decoupling of the two modes in the frequency domain is attributed to the length scale involved: while stretching mainly relates to the relative displacement of two particles, bending involves the deformation of a strand with a thickness of the order of a thousand particle diameters.

  1. STUCTURE OF PULSED BED

    Directory of Open Access Journals (Sweden)

    I. A. Bokun

    2014-01-01

    Full Text Available The structure of pulsed layer is proposed which can be suggested as a state of particulates that is blown by intermittent gas flow with speed which has the force to start material moving. Layer during one cycle is in a suspension, falling down and immobile state resulting in changes of particles arrangement as well as ways of gas flowing through layer. Moreover, it allows carrying out effective interphase heat exchange even adamant real granulation.The process of formation of impact flows is considered aw well as their influence on formation of air bubbles in pulsed layer. At startup of air blast the balance between the force of hydro-dynamic resistance is broken, on one side, and forces of gravity, particles inertia and their links with walls on the other side. The layer is transferred in the state of pulsed pseudo-fluidization, and presents gas-disperse mixture, inside of which impulse of pressure increasing is spreading to all sides as pressure waves (compression. These waves are the sources of impact flows’ formation, the force of which is two times more than during the stationary flow.The waves of pressure are divided into weak and strong ones depending on movement velocity within gas-disperse system. Weak waves are moving with a sound speed and strong ones in active phase of pulsed layer are moving over the speed of sound limit within gas-disperse system. The peculiarity of strong wave is that parameters of system (pressure, density and others are changing in discrete steps.The article describes the regime of layer’s falling down in the passive stage of cycle, which begins after finishing of gas impulse action. And suspension layer of moving up granular material is transferred in the state of falling resulting in change of the layer structure.

  2. Volatiles combustion in fluidized beds. Final technical report, 4 September 1992--4 June 1995

    Energy Technology Data Exchange (ETDEWEB)

    Pendergrass, R.A. II; Raffensperger, C.; Hesketh, R.P.

    1996-02-29

    The goal of this project is to investigate the conditions in which volatiles will burn within both the dense and freeboard regions of fluidized beds. Experiments using a fluidized bed operated at incipient fluidization are being conducted to characterize the effect of particle surface area, initial fuel concentration, and particle type on the inhibition of volatiles within a fluidized bed. A review of the work conducted under this grant is presented in this Final Technical Report. Both experimental and theoretical work have been conducted to examine the inhibition of the combustion by the fluidized bed material, sand. It has been shown that particulate phase at incipient fluidization inhibits the combustion of propane by free radical destruction at the surface of sand particles within the particulate phase. The implications of these findings is that at bed temperatures lower than the critical temperatures, gas combustion can only occur in the bubble phase or at the top surface of a bubbling fluidized bed. In modeling fluidized bed combustion this inhibition by the particulate phase should be included.

  3. In silico modeling of in situ fluidized bed melt granulation.

    Science.gov (United States)

    Aleksić, Ivana; Duriš, Jelena; Ilić, Ilija; Ibrić, Svetlana; Parojčić, Jelena; Srčič, Stanko

    2014-05-15

    Fluidized bed melt granulation has recently been recognized as a promising technique with numerous advantages over conventional granulation techniques. The aim of this study was to evaluate the possibility of using response surface methodology and artificial neural networks for optimizing in situ fluidized bed melt granulation and to compare them with regard to modeling ability and predictability. The experiments were organized in line with the Box-Behnken design. The influence of binder content, binder particle size, and granulation time on granule properties was evaluated. In addition to the response surface analysis, a multilayer perceptron neural network was applied for data modeling. It was found that in situ fluidized bed melt granulation can be used for production of spherical granules with good flowability. Binder particle size had the most pronounced influence on granule size and shape, suggesting the importance of this parameter in achieving desired granule properties. It was found that binder content can be a critical factor for the width of granule size distribution and yield when immersion and layering is the dominant agglomeration mechanism. The results obtained indicate that both in silico techniques can be useful tools in defining the design space and optimization of in situ fluidized bed melt granulation. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Technological processes intensification in devices with magneto-fluidized bed

    Directory of Open Access Journals (Sweden)

    Egorov Ivan

    2017-01-01

    Full Text Available The paper shows the efficiency of application of magneto-fluidized bed formed of ferromagnetic materials in press-forms dosed filling and milling devices. For powders without natural fluidity, dosing device is situated between electromagnets creating constant magnetic field with horizontal induction lines and alternating gradient magnetic field with vertical induction lines and higher induction gradient in the lowest part of chamber with powder. This configuration allows development of uniform efflux speed of ferromagnetic powders from 2 mm diameter opening. For example, mass efflux speed of strontium ferrite powder with 1 μm average particle size in magneto-fluidized bed reached 181.1 mg/s and the dosing time of 2000 mg of this powder was 11.1 s. For practical usage of magneto-fluidized bed in the milling device, beater mill is situated between electromagnet poles in the way that induction lines of constant and alternating gradient magnetic fields were mutually perpendicular and parallel to the plane of rotating beaters. Milling of particulate strontium ferrite with 1558.5 μm average particle size during 120 minutes in magneto-fluidized bed allows increasing milling degree in 16.2 times by comparison with processing without electromagnetic effect.

  5. Mixing large and small particles in a pilot scale rotary kiln

    DEFF Research Database (Denmark)

    Nielsen, Anders Rooma; Aniol, Rasmus Wochnik; Larsen, Morten Boberg

    2011-01-01

    The mixing of solid alternative fuel particles in cement raw materials was studied experimentally by visual observation in a pilot scale rotary kiln. Fuel particles were placed on top of the raw material bed prior to the experiment. The percentage of particles visible above the bed as a function...... of time was evaluated with the bed predominantly in the rolling bed mode. Experiments were conducted to investigate the effects of fuel particle size and shape, fuel particle density, rotary kiln fill degree and rotational speed. Large fuel particles and low-density fuel particles appeared more on top.......Results can be up-scaled to industrial conditions in cement rotary kilns and show that even relatively large fuel particles will predominantly be covered by raw material after less than 30s in the rotary kiln. This affects the heating and combustion mechanisms for the fuel particles....

  6. Performances of continuous dryer with inert medium fluidized bed

    Directory of Open Access Journals (Sweden)

    Arsenijević Zorana Lj.

    2008-01-01

    Full Text Available A fluid bed dryer with inert particles represents a very attractive alternative to other drying technologies according to the main efficiency criteria, i.e. specific water evaporation rate, specific heat consumption and speci­fic air consumption. A high drying efficiency results from the large con­tact area and from the large temperature difference between the inlet and outlet air. A rapid mixing of the particles leads to nearly isothermal conditions throughout the bed. A fluid bed dryer with inert particles was used for drying of slurries. Experiments were performed in a cylindrical column 215 mm in diameter with glass spheres as inert particles. In this paper, results of drying experi­ments with slurries of Zineb fungicide, copper hydroxide, calcium carbo­nate and pure water used as the feed material are presented. In our fluidized bed we successfully dried a number of other materials such as: fungicides and pesticides (Ziram, Propineb, Mangozeb, copper oxy-chloride, copper oxy-sulphate, Bordeaux mixture, other inorganic compounds (calcium sulphate, cobalt carbonate, electrolytic copper, sodium chloride, and a complex compound (organo-bentonite. The effects of operating conditions on dryer throughput and product quality were investigated. Main performance criteria, i.e. specific water evaporation rate, specific heat consumption and specific air consumption, were quantified. Temperature profile along the bed was mapped, and nearly isothermal conditions were found due to thorough mixing of the particles. Analysis of drying and energy efficiencies as a function of inlet and outlet air temperature difference was performed for deeper insight in dryer behavior and for optimizing dryer design and operation from an energy point of view. A simple mathematical model based on an overall heat balance predicts the dryer performance quite well. The industrial prototype with fluid bed of 0.8 m in diameter and capacity 650 kg of evaporated moisture per

  7. Anomalous Dispersion in a Sand Bed River

    Science.gov (United States)

    Bradley, D. N.; Tucker, G. E.; Benson, D. M.

    2009-04-01

    There has been a recent surge of interest in non-local, heavy-tailed models of sediment transport and dispersion that are governed by fractional order differential equations. These models have a firm mathematical foundation and have been successfully applied in a variety of transport systems, but their use in geomorphology has been minimal because the data required to validate the models is difficult to acquire. We use data from a nearly 50-year-old tracer experiment to test a fluvial bed load transport model with a two unique features. First, the model uses a heavy-tailed particle velocity distribution with a divergent second moment to reproduce the anomalously high fraction of tracer mass observed in the downstream tail of the spatial distribution. Second, the model partitions mass into a detectable mobile phase and an undetectable, immobile phase. This two-phase transport model predicts two other features observed in the data: a decrease in the amount of detected tracer mass over the course of the experiment and the high initial velocity of the tracer plume. Because our model uses a heavy-tailed velocity distribution with a divergent second moment it is non-local and non-Fickian and able to reproduce aspects of the data that a local, Fickian model cannot. The model's successful prediction of the observed concentration profiles provides some of the first evidence of anomalous dispersion of bed load in a natural river.

  8. Coupling scales for modelling heavy metal vaporization from municipal solid waste incineration in a fluid bed by CFD

    Energy Technology Data Exchange (ETDEWEB)

    Soria, José, E-mail: jose.soria@probien.gob.ar [Institute for Research and Development in Process Engineering, Biotechnology and Alternative Energies (PROBIEN, CONICET – UNCo), 1400 Buenos Aires St., 8300 Neuquén (Argentina); Gauthier, Daniel; Flamant, Gilles [Processes, Materials and Solar Energy Laboratory (PROMES-CNRS, UPR 8521), 7 Four Solaire Street, Odeillo, 66120 Font-Romeu (France); Rodriguez, Rosa [Chemical Engineering Institute, National University of San Juan, 1109 Libertador (O) Avenue, 5400 San Juan (Argentina); Mazza, Germán [Institute for Research and Development in Process Engineering, Biotechnology and Alternative Energies (PROBIEN, CONICET – UNCo), 1400 Buenos Aires St., 8300 Neuquén (Argentina)

    2015-09-15

    Highlights: • A CFD two-scale model is formulated to simulate heavy metal vaporization from waste incineration in fluidized beds. • MSW particle is modelled with the macroscopic particle model. • Influence of bed dynamics on HM vaporization is included. • CFD predicted results agree well with experimental data reported in literature. • This approach may be helpful for fluidized bed reactor modelling purposes. - Abstract: Municipal Solid Waste Incineration (MSWI) in fluidized bed is a very interesting technology mainly due to high combustion efficiency, great flexibility for treating several types of waste fuels and reduction in pollutants emitted with the flue gas. However, there is a great concern with respect to the fate of heavy metals (HM) contained in MSW and their environmental impact. In this study, a coupled two-scale CFD model was developed for MSWI in a bubbling fluidized bed. It presents an original scheme that combines a single particle model and a global fluidized bed model in order to represent the HM vaporization during MSW combustion. Two of the most representative HM (Cd and Pb) with bed temperatures ranging between 923 and 1073 K have been considered. This new approach uses ANSYS FLUENT 14.0 as the modelling platform for the simulations along with a complete set of self-developed user-defined functions (UDFs). The simulation results are compared to the experimental data obtained previously by the research group in a lab-scale fluid bed incinerator. The comparison indicates that the proposed CFD model predicts well the evolution of the HM release for the bed temperatures analyzed. It shows that both bed temperature and bed dynamics have influence on the HM vaporization rate. It can be concluded that CFD is a rigorous tool that provides valuable information about HM vaporization and that the original two-scale simulation scheme adopted allows to better represent the actual particle behavior in a fluid bed incinerator.

  9. Minimum slugging velocity in fluidized beds containing vertical rods

    Energy Technology Data Exchange (ETDEWEB)

    Coronella, C.J.; Lee, S.Y.; Seader, J.D. (University of Utah, Salt Lake City, UT (United States). Dept. of Chemical Engineering)

    1994-09-01

    A new method for determining the onset of slugging in fluidized beds is presented. Pressure-drop fluctuations, measured from below the distributor to the gas exit line, are transformed to the frequency domain by the power spectral desity function (PSDF). The dominant frequency of the PSDF corresponds to the eruption frequency of bubbles or slugs. A fluidized bed is in the slugging regime when this dominant frequency, f[sub d], remains constant with changing gas velocity. This method is an improvement over previous methods because of the simple nature of the apparatus required, and because it is possible to locate the pressure probes so that they do not interfere with the fluidization or undergo rapid wear from the constant particle movement. This method was used to determine the gas velocity corresponding to the transition from the bubbling to the slugging regime for a 10cm diameter bed of sand fluidized with air and containing three 1.9cm diameter vertical rods at 5.2cm centre-to-centre triangular spacing and extending the length of the bed, and to compare the results with those from the same bed without any internal rods. The presence of the vertical rods inhibited the onset of the slugging regime, and significantly extended the bubbling regime to higher gas velocities. 32 refs., 12 figs.

  10. Determination of fluidized bed granulation end point using near-infrared spectroscopy and phenomenological analysis.

    Science.gov (United States)

    Findlay, W Paul; Peck, Garnet R; Morris, Kenneth R

    2005-03-01

    Simultaneous real-time monitoring of particle size and moisture content by near-infrared spectroscopy through a window into the bed of a fluidized bed granulator is used to determine the granulation end point. The moisture content and particle size determined by the near-infrared monitor correlates well with off-line moisture content and particle size measurements. The measured particle size is modeled using a population balance approach, and the moisture content is shown to follow accepted models during drying. Given a known formulation, with predefined parameters for peak moisture content, final moisture content, and final granule size, the near-infrared monitoring system can be used to control a fluidized bed granulation by determining when binder addition should be stopped and when drying of the granules is complete. Copyright 2005 Wiley-Liss, Inc. and the American Pharmacists Association.

  11. Development of a vibrofluidized bed and fluid-dynamic study with dry and wet adipic acid

    Directory of Open Access Journals (Sweden)

    Silva-Moris V.A.

    2003-01-01

    Full Text Available The vibrofluidized bed developed in this work, consisting of a transparent plexiglass tube with an inner diameter of 0.1 m and a height of 0.5 m, was designed for the fluidization of adipic acid. The fluidization behavior of dry adipic acid with particle diameters in the range of 75 - 600 mm and a density of 1340kg/m³ was studied using mechanical vibration for different sample loads. Variables studied for the wet material include frequency and amplitude of vibration and moisture content of the particles. On the basis of the quantitative flow curve data and visual observations, it is concluded that the fluid dynamics of the bed with wet sticky particles, both vibrating and not vibrating, is different from that of the bed with dry particles.

  12. THERMALLY STABLE NANOCRYSTALLINE TIO2 PHOTOCATALYSTS SYNTHESIZED VIA SOL-GEL METHODS MODIFIED WITH IONIC LIQUID AND SURFACTANT MOLECULES

    Science.gov (United States)

    Recently, sol-gel methods employing ionic liquids (ILs) have shown significant implications for the synthesis of well-defined nanostructured inorganic materials. Herein, we synthesized nanocrystalline TiO2 particles via an alkoxide sol-gel method employing a water-immi...

  13. The Importance of Splat Events to the Spatiotemporal Structure of Near-Bed Fluid Velocity and Bed Load Motion Over Bed Forms: Laboratory Experiments Downstream of a Backward Facing Step

    Science.gov (United States)

    Leary, K. C. P.; Schmeeckle, M. W.

    2017-12-01

    Flow separation/reattachment on the lee side of alluvial bed forms is known to produce a complex turbulence field, but the spatiotemporal details of the associated patterns of bed load sediment transported remain largely unknown. Here we report turbulence-resolving, simultaneous measurements of bed load motion and near-bed fluid velocity downstream of a backward facing step in a laboratory flume. Two synchronized high-speed video cameras simultaneously observed bed load motion and the motion of neutrally buoyant particles in a laser light sheet 6 mm above the bed at 250 frames/s downstream of a 3.8 cm backward facing step. Particle Imaging Velocimetry (PIV) and Acoustic Doppler Velocimetry (ADV) were used to characterize fluid turbulent patterns, while manual particle tracking techniques were used to characterize bed load transport. Octant analysis, conducted using ADV data, coupled with Markovian sequence probability analysis highlights differences in the flow near reattachment versus farther downstream. Near reattachment, three distinct flow patterns are apparent. Farther downstream we see the development of a dominant flow sequence. Localized, intermittent, high-magnitude transport events are more apparent near flow reattachment. These events are composed of streamwise and cross-stream fluxes of comparable magnitudes. Transport pattern and fluid velocity data are consistent with the existence of permeable "splat events," wherein a volume of fluid moves toward and impinges on the bed (sweep) causing a radial movement of fluid in all directions around the point of impingement (outward interaction). This is congruent with flow patterns, identified with octant analysis, proximal to flow reattachment.

  14. Operation of Packed-Bed Reactors Studied in Microgravity

    Science.gov (United States)

    Motil, Brian J.; Balakotaiah, Vemuri

    2004-01-01

    The operation of a packed bed reactor (PBR) involves gas and liquid flowing simultaneously through a fixed-bed of solid particles. Depending on the application, the particles can be various shapes and sizes but are generally designed to force the two fluid phases through a tortuous route of narrow channels connecting the interstitial space. The PBR is the most common type of reactor in industry because it provides for intimate contact and high rates of transport between the phases needed to sustain chemical or biological reactions. The packing may also serve as either a catalyst or as a support for growing biological material. Furthermore, this type of reactor is relatively compact and requires minimal power to operate. This makes it an excellent candidate for unit operations in support of long-duration human space activities.

  15. Combustion of Jordanian oil shale using circulating fluidized bed

    International Nuclear Information System (INIS)

    Hamdan, M.; Al-Azzam, S.

    1998-11-01

    this study re[resents design and manufacturing of a lab-scale circulating fluidized bed (C.F.B) to burn low grade fuel such as Jordanian oil shale. Hydrodynamic properties of C.F.B. were studied like minimum fluidization velocity, circulation flux and carryover rate. a hot run was firstly conducted by the combustion of L.P.G. to start up the combustion process. It proceeds until reaching the minimum burning temperature of oil shale particles, at which time the LPG supply was gradually reduced and oil shale feeding started. soon after reaching a self sustainable condition of oil shale particles, the LPG supply was cut off. The main combustion variables were investigated such as air to fuel ratios, temperature profiles across the bed, exhaust gas analysis and combustion efficiency. a combustion intensity of 859 kg/hr.m 2 and combustion efficiency of 96% were achieved. (authors). 19 refs., 9 tab., 18 fig

  16. Bleach gel: a simple agarose gel for analyzing RNA quality.

    Science.gov (United States)

    Aranda, Patrick S; LaJoie, Dollie M; Jorcyk, Cheryl L

    2012-01-01

    RNA-based applications requiring high-quality, non-degraded RNA are a foundational element of many research studies. As such, it is paramount that the integrity of experimental RNA is validated prior to cDNA synthesis or other downstream applications. In the absence of expensive equipment such as microfluidic electrophoretic devices, and as an alternative to the costly and time-consuming standard formaldehyde gel, RNA quality can be quickly analyzed by adding small amounts of commercial bleach to TAE buffer-based agarose gels prior to electrophoresis. In the presence of low concentrations of bleach, the secondary structure of RNA is denatured and potential contaminating RNases are destroyed. Because of this, the 'bleach gel' is a functional approach that addresses the need for an inexpensive and safe way to evaluate RNA integrity and will improve the ability of researchers to rapidly analyze RNA quality. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Experimental investigation of coolability behaviour of irregularly shaped particulate debris bed

    International Nuclear Information System (INIS)

    Kulkarni, P.P.; Rashid, M.; Kulenovic, R.; Nayak, A.K.

    2010-01-01

    In case of a severe nuclear reactor accident, the core can melt and form a particulate debris bed in the lower plenum of the reactor pressure vessel (RPV). Due to the decay heat, the particle bed, if not cooled properly, can cause failure of the RPV. In order to avoid further propagation of the accident, complete coolability of the debris bed is necessary. For that, understanding of various phenomena taking place during the quenching is important. In the frame of the reactor safety research, fundamental experiments on the coolability of debris beds are carried out at IKE with the test facility 'DEBRIS'. In the present paper, the boiling and dry-out experimental results on a particle bed with irregularly shaped particles mixed with stainless steel balls have been reported. The pressure drops and dry-out heat fluxes of the irregular-particle bed are very similar to those for the single-sized 3 mm spheres bed, despite the fact that the irregular-particle bed is composed of particles with equivalent diameters ranging from 2 to 10 mm. Under top-flooding conditions, the pressure gradients are all smaller than the hydrostatic pressure gradient of water, indicating an important role of the counter-current interfacial drag force. For bottom-flooding with a liquid inflow velocity higher than about 2.7 mm/s, the pressure gradient generally increases consistently with the vapour velocity and the fluid-particle drag becomes important. The system pressures (1 and 3 bar) have negligible effects on qualitative behaviour of the pressure gradients. The coolability of debris beds is mainly limited by the counter-current flooding limit (CCFL) even under bottom-flooding conditions with low flow rates. The system pressure and the flow rate are found to have a distinct effect on the dry-out heat flux. Different classical models have been used to predict the pressure drop characteristics and the dry-out heat flux (DHF). Comparisons are made among the models and experimental results for

  18. Multiscale Analysis of Pebble Bed Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Hans Gougar; Woo Yoon; Abderrafi Ougouag

    2010-10-01

    – The PEBBED code was developed at the Idaho National Laboratory for design and analysis of pebble-bed high temperature reactors. The diffusion-depletion-pebble-mixing algorithm of the original PEBBED code was enhanced through coupling with the THERMIX-KONVEK code for thermal fluid analysis and by the COMBINE code for online cross section generation. The COMBINE code solves the B-1 or B-3 approximations to the transport equation for neutron slowing down and resonance interactions in a homogeneous medium with simple corrections for shadowing and thermal self-shielding. The number densities of materials within specified regions of the core are averaged and transferred to COMBINE from PEBBED for updating during the burnup iteration. The simple treatment of self-shielding in previous versions of COMBINE led to inaccurate results for cross sections and unsatisfactory core performance calculations. A new version of COMBINE has been developed that treats all levels of heterogeneity using the 1D transport code ANISN. In a 3-stage calculation, slowing down is performed in 167 groups for each homogeneous subregion (kernel, particle layers, graphite shell, control rod absorber annulus, etc.) Particles in a local average pebble are homogenized using ANISN then passed to the next (pebble) stage. A 1D transport solution is again performed over the pebble geometry and the homogenized pebble cross sections are passed to a 1-d radial model of a wedge of the pebble bed core. This wedge may also include homogeneous reflector regions and a control rod region composed of annuli of different absorbing regions. Radial leakage effects are therefore captured with discrete ordinates transport while axial and azimuthal effects are captured with a transverse buckling term. In this paper, results of various PBR models will be compared with comparable models from literature. Performance of the code will be assessed.

  19. Distributor effects near the bottom region of turbulent fluidized beds

    OpenAIRE

    Sobrino Fernández, Celia; Ellis, Noko; Vega Blázquez, Mercedes de

    2009-01-01

    The distributor plate effects on the hydrodynamic characteristics of turbulent fluidized beds are investigated by obtaining measurements of pressure and radial voidage profiles in a column diameter of 0.29 m with Group A particles using bubble bubble-cap or perforated plate distributors. Distributor pressure drop measurements between the two distributors are compared with the theoretical estimations while the influence of the mass inventory is studied. Comparison is established fo...

  20. Comparison of fibre optical measurements and discrete element simulations for the study of granulation in a spout fluidized bed

    NARCIS (Netherlands)

    Link, J.M.; Godlieb, W.; Tripp, P.; Deen, N.G.; Heinrich, S.; Kuipers, J.A.M.; Schönherr, M.; Peglow, M.

    2009-01-01

    Spout fluidized beds are frequently used for the production of granules or particles through granulation. The products find application in a large variety of applications, for example detergents, fertilizers, pharmaceuticals and food. Spout fluidized beds have a number of advantageous properties,