WorldWideScience

Sample records for gel delivery vehicles

  1. Transdermal delivery of paeonol using cubic gel and microemulsion gel

    Science.gov (United States)

    Luo, Maofu; Shen, Qi; Chen, Jinjin

    2011-01-01

    Background The aim of this study was to develop new systems for transdermal delivery of paeonol, in particular microemulsion gel and cubic gel formulations. Methods Various microemulsion vehicles were prepared using isopropyl myristate as an oil phase, polyoxyethylated castor oil (Cremophor® EL) as a surfactant, and polyethylene glycol 400 as a cosurfactant. In the optimum microemulsion gel formulation, carbomer 940 was selected as the gel matrix, and consisted of 1% paeonol, 4% isopropyl myristate, 28% Cremophor EL/polyethylene glycol 400 (1:1), and 67% water. The cubic gel was prepared containing 3% paeonol, 30% water, and 67% glyceryl monooleate. Results A skin permeability test using excised rat skins indicated that both the cubic gel and microemulsion gel formulations had higher permeability than did the paeonol solution. An in vivo pharmacokinetic study done in rats showed that the relative bioavailability of the cubic gel and microemulsion gel was enhanced by about 1.51-fold and 1.28-fold, respectively, compared with orally administered paeonol suspension. Conclusion Both the cubic gel and microemulsion gel formulations are promising delivery systems to enhance the skin permeability of paeonol, in particular the cubic gel. PMID:21904450

  2. Principles of topical treatment: advancement in gel vehicle technology.

    Science.gov (United States)

    Feldman, Steven R

    2014-04-01

    Topical treatment is a pillar of dermatologic practice. The delivery of drug by a topical vehicle is dependent on complex physical chemistry and on how well patients apply the product. The potency of topical agents is not solely dependent on the concentration of active drug in the vehicle. A corticosteroid molecule may have vastly different potency depending on what vehicle is used to deliver it. Similarly, a new gel vehicle is able to deliver considerably more active antifungal than an older vehicle technology and may represent a promising vehicle for other novel formulations. The use of new vehicles can provide more effective means for treating patients with skin disease.

  3. Solid emulsion gel as a vehicle for delivery of polyunsaturated fatty acids: implications for tissue repair, dermal angiogenesis and wound healing.

    Science.gov (United States)

    Shingel, Kirill I; Faure, Marie-Pierre; Azoulay, Laurent; Roberge, Christophe; Deckelbaum, Richard J

    2008-10-01

    The paper describes preparation and biological characterization of the solid hybrid biomaterial that was designed for cell-targeted lipid delivery in healing tissues. The material referred to as 'solid emulsion gel' combines a protein-stabilized lipid emulsion and a hydrogel structure in a single compartment. The potential of the omega-3 (n-3)-fatty acids rich solid emulsion gel for tissue repair applications was investigated at the macro-, micro-, molecular and gene expression levels, using human fibroblasts and endothelial cells and a porcine model of full-thickness wounds. Being non-cytotoxic in vitro and in vivo, the biomaterial was found to affect cell metabolism, modulate expression of certain genes, stimulate early angiogenesis and promote wound repair in vivo. The neovascular response in vivo was correlated with upregulated expression of the genes involved in lipid transport (e.g. adipophilin), anti-apoptosis (e.g. heat shock proteins, haem oxygenase 1) and angiogenesis (vascular endothelial growth factor, placental growth factor). Collectively, the results of this study provide first evidence that the angiogenic response provided by solid emulsion gel-mediated delivery of n-3 fatty acids is an alternative to the topical administration of exogenous growth factors or gene therapy, and can be advantageously used for the stimulation of tissue repair in complex wounds. Copyright (c) 2008 John Wiley & Sons, Ltd.

  4. Sustained subconjunctival protein delivery using a thermosetting gel delivery system.

    Science.gov (United States)

    Rieke, Erin R; Amaral, Juan; Becerra, S Patricia; Lutz, Robert J

    2010-02-01

    An effective treatment modality for posterior eye diseases would provide prolonged delivery of therapeutic agents, including macromolecules, to eye tissues using a safe and minimally invasive method. The goal of this study was to assess the ability of a thermosetting gel to deliver a fluorescently labeled protein, Alexa 647 ovalbumin, to the choroid and retina of rats following a single subconjunctival injection of the gel. Additional experiments were performed to compare in vitro to in vivo ovalbumin release rates from the gel. The ovalbumin content of the eye tissues was monitored by spectrophotometric assays of tissue extracts of Alexa 647 ovalbumin from dissected sclera, choroid, and retina at time points ranging from 2 h to 14 days. At the same time points, fluorescence microscopy images of tissue samples were also obtained. Measurement of intact ovalbumin was verified by LDS-PAGE analysis of the tissue extract solutions. In vitro release of Alexa 488 ovalbumin into 37 degrees C PBS solutions from ovalbumin-loaded gel pellets was also monitored over time by spectrophotometric assay. In vivo ovalbumin release rates were determined by measurement of residual ovalbumin extracted from gel pellets removed from rat eyes at various time intervals. Our results indicate that ovalbumin concentrations can be maintained at measurable levels in the sclera, choroid, and retina of rats for up to 14 days using the thermosetting gel delivery system. The concentration of ovalbumin exhibited a gradient that decreased from sclera to choroid and to retina. The in vitro release rate profiles were similar to the in vivo release profiles. Our findings suggest that the thermosetting gel system may be a feasible method for safe and convenient sustained delivery of proteins to choroidal and retinal tissue in the posterior segments of the eye.

  5. An In Vitro Investigation of Platelet-Rich Plasma-Gel as a Cell and Growth Factor Delivery Vehicle for Tissue Engineering

    OpenAIRE

    Jalowiec, Jagoda M.; D'Este, Matteo; Bara, Jennifer Jane; Denom, Jessica; Menzel, Ursula; Alini, Mauro; Verrier, Sophie; Herrmann, Marietta

    2015-01-01

    Platelet-rich plasma (PRP) has been used for different applications in human and veterinary medicine. Many studies have shown promising therapeutic effects of PRP; however, there are still many controversies regarding its composition, properties, and clinical efficacy. The aim of this study was to evaluate the influence of different platelet concentrations on the rheological properties and growth factor (GF) release profile of PRP-gels. In addition, the viability of incorporated bone marrow-d...

  6. Vehicle Routing Problems for Drone Delivery

    OpenAIRE

    Dorling, Kevin; Heinrichs, Jordan; Messier, Geoffrey G.; Magierowski, Sebastian

    2016-01-01

    Unmanned aerial vehicles, or drones, have the potential to significantly reduce the cost and time of making last-mile deliveries and responding to emergencies. Despite this potential, little work has gone into developing vehicle routing problems (VRPs) specifically for drone delivery scenarios. Existing VRPs are insufficient for planning drone deliveries: either multiple trips to the depot are not permitted, leading to solutions with excess drones, or the effect of battery and payload weight ...

  7. Maize Arabinoxylan Gels as Protein Delivery Matrices

    Directory of Open Access Journals (Sweden)

    Ana Luisa Martínez-López

    2009-04-01

    Full Text Available The laccase induced gelation of maize bran arabinoxylans at 2.5% (w/v in the presence of insulin or β-lactoglobulin at 0.1% (w/v was investigated. Insulin and β-lacto-globulin did not modify either the gel elasticity (9 Pa or the cross-links content (0.03 and 0.015 mg di- and triferulic acids/mg arabinoxylan, respectively. The protein release capability of the gel was also investigated. The rate of protein release from gels was dependent on the protein molecular weight. The apparent diffusion coefficient was 0.99 × 10-7 and 0.79 × 10-7 cm2/s for insulin (5 kDa and β-lactoglobulin (18 kDa, respectively. The results suggest that maize bran arabinoxylan gels can be potential candidates for the controlled release of proteins.

  8. A mucoadhesive in situ gel delivery system for paclitaxel

    OpenAIRE

    Jauhari, Saurabh; Dash, Alekha K.

    2006-01-01

    MUC1 gene encodes a transmembrane mucin glycoprotein that is overexpressed in human breast cancer and colon cancer. The objective of this study was to develop an in situ gel delivery system containing paclitaxel (PTX) and mucoadhesives for sustained and targeted delivery of anticancer drugs. The delivery system consisted of chitosan and glyceryl monooleate (GMO) in 0.33M citric acid containing PTX. The in vitro release of PTX from the gel was performed in presence and absence of Tween 80 at d...

  9. In situ gel systems as 'smart' carriers for sustained ocular drug delivery.

    Science.gov (United States)

    Agrawal, Ashish Kumar; Das, Manasmita; Jain, Sanyog

    2012-04-01

    In situ gel systems refer to a class of novel delivery vehicles, composed of natural, semisynthetic or synthetic polymers, which present the unique property of sol-gel conversion on receipt of biological stimulus. The present review summarizes the latest developments in in situ gel technology, with regard to ophthalmic drug delivery. Starting with the mechanism of ocular absorption, the review expands on the fabrication of various polymeric in situ gel systems, made up of two or more polymers presenting multi-stimuli sensitivity, coupled with other interesting features, such as bio-adhesion, enhanced penetration or sustained release. Various key issues and challenges in this area have been addressed and critically analyzed. The advent of in situ gel systems has inaugurated a new transom for 'smart' ocular delivery. By virtue of possessing stimuli-responsive phase transition properties, these systems can easily be administered into the eye, similar to normal eye drops. Their unique gelling properties endow them with special features, such as prolonged retention at the site of administration, followed by sustained drug release. Despite the superiority of these systems as compared with conventional ophthalmic formulations, further investigations are necessary to address the toxicity issues, so as to minimize regulatory hurdles during commercialization.

  10. A mucoadhesive in situ gel delivery system for paclitaxel.

    Science.gov (United States)

    Jauhari, Saurabh; Dash, Alekha K

    2006-06-02

    MUC1 gene encodes a transmembrane mucin glycoprotein that is overexpressed in human breast cancer and colon cancer. The objective of this study was to develop an in situ gel delivery system containing paclitaxel (PTX) and mucoadhesives for sustained and targeted delivery of anticancer drugs. The delivery system consisted of chitosan and glyceryl monooleate (GMO) in 0.33M citric acid containing PTX. The in vitro release of PTX from the gel was performed in presence and absence of Tween 80 at drug loads of 0.18%, 0.30%, and 0.54% (wt/wt), in Sorensen's phosphate buffer (pH 7.4) at 37 degrees C. Different mucin-producing cell lines (Calu-3>Caco-2) were selected for PTX transport studies. Transport of PTX from solution and gel delivery system was performed in side by side diffusion chambers from apical to basal (A-B) and basal to apical (B-A) directions. In vitro release studies revealed that within 4 hours, only 7.61% +/- 0.19%, 12.0% +/- 0.98%, 31.7% +/- 0.40% of PTX were released from 0.18%, 0.30%, and 0.54% drug-loaded gel formulation, respectively, in absence of Tween 80. However, in presence of surfactant (0.05% wt/vol) in the dissolution medium, percentages of PTX released were 28.1% +/- 4.35%, 44.2% +/- 6.35%, and 97.1% +/- 1.22%, respectively. Paclitaxel has shown a polarized transport in all the cell monolayers with B-A transport 2 to 4 times higher than in the A-B direction. The highest mucin-producing cell line (Calu-3) has shown the lowest percentage of PTX transport from gels as compared with Caco-2 cells. Transport of PTX from mucoadhesive gels was shown to be influenced by the mucin-producing capability of cell.

  11. Nanoparticles laden in situ gel for sustained ocular drug delivery

    Directory of Open Access Journals (Sweden)

    Himanshu Gupta

    2013-01-01

    Full Text Available Proper availability of drug on to corneal surface is a challenging task. However, due to ocular physiological barriers, conventional eye drops display poor ocular bioavailability of drugs (< 1%. To improve precorneal residence time and ocular penetration, earlier our group developed and evaluated in situ gel and nanoparticles for ocular delivery. In interest to evaluate the combined effect of in situ gel and nanoparticles on ocular retention, we combined them. We are the first to term this combination as "nanoparticle laden in situ gel", that is, poly lactic co glycolic acid nanoparticle incorporated in chitosan in situ gel for sparfloxacin ophthalmic delivery. The formulation was tested for various physicochemical properties. It showed gelation pH near pH 7.2. The observation of acquired gamma camera images showed good retention over the entire precorneal area for sparfloxacin nanoparticle laden in situ gel (SNG as compared to marketed formulation. SNG formulation cleared at a very slow rate and remained at corneal surface for longer duration as no radioactivity was observed in systemic circulation. The developed formulation was found to be better in combination and can go up to the clinical evaluation and application.

  12. Tolterodine Tartrate Proniosomal Gel Transdermal Delivery for Overactive Bladder

    Directory of Open Access Journals (Sweden)

    Rajan Rajabalaya

    2016-08-01

    Full Text Available The goal of this study was to formulate and evaluate side effects of transdermal delivery of proniosomal gel compared to oral tolterodine tartrate (TT for the treatment of overactive bladder (OAB. Proniosomal gels are surfactants, lipids and soy lecithin, prepared by coacervation phase separation. Formulations were analyzed for drug entrapment efficiency (EE, vesicle size, surface morphology, attenuated total reflectance Fourier transform infrared (ATR-FTIR spectroscopy, in vitro skin permeation, and in vivo effects. The EE was 44.87%–91.68% and vesicle size was 253–845 nm for Span formulations and morphology showed a loose structure. The stability and skin irritancy test were also carried out for the optimized formulations. Span formulations with cholesterol-containing formulation S1 and glyceryl distearate as well as lecithin containing S3 formulation showed higher cumulative percent of permeation such as 42% and 35%, respectively. In the in vivo salivary secretion model, S1 proniosomal gel had faster recovery, less cholinergic side effect on the salivary gland compared with that of oral TT. Histologically, bladder of rats treated with the proniosomal gel formulation S1 showed morphological improvements greater than those treated with S3. This study demonstrates the potential of proniosomal vesicles for transdermal delivery of TT to treat OAB.

  13. Gel in core carbosomes as novel ophthalmic vehicles with enhanced corneal permeation and residence.

    Science.gov (United States)

    Moustafa, Mona A; El-Refaie, Wessam M; Elnaggar, Yosra S R; Abdallah, Ossama Y

    2018-05-17

    Carbopol is a good bio-adhesive polymer that increases the residence time in the eye. However, the effect of blinking and lacrimation still reduce the amount of polymer and the incorporated drug available for bioadhesion. Gel-core liposomes are advanced systems offering benefits making it a good tool for improved ocular drug delivery and residence time. Incorporation of carbopol in gel-core liposomes and their potential in ocular delivery have not so far been investigated. Fluconazole (FLZ) was selected as a challenging important ocular antifungal suffering from poor corneal permeation and short residence time. In this study, gel-core carbosomes have been elaborated as novel carbopol-based ophthalmic vehicles to solve ocular delivery obstacles of FLZ and to sustain its effect. Full in vitro appraisal was performed considering gel-core structure, entrapment efficiency, particle size and stability of the vesicles as quality attributes. Structure elucidation of the nanocarrier was performed using optical, polarizing and transmission electron microscopy before and after Triton-X100 addition. Ex-vivo ocular permeation and in vivo performance were investigated on male albino rabbits. Optimized formulation (CBS5) showed gel-core structure, nanosize (339.00 ± 5.50 nm) and not defined before (62.00% ± 1.73) entrapment efficiency. Cumulative amount of CBS5 permeated ex-vivo after 6 h, was 2.43 and 3.43 folds higher than that of conventional liposomes and FLZ suspension, respectively. In-vivo corneal permeation of CBS5 showed significantly higher AUC0-24 h (487.12 ± 74.80) compared to that of FLZ suspension (204.34 ± 7.46) with longer residence time in the eye lasts for more than 18 h. In conclusion, novel gel-core carbosomes could successfully be used as a promising delivery system for chronic ocular diseases. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Enhanced in Vivo Delivery of 5-Fluorouracil by Ethosomal Gels in Rabbit Ear Hypertrophic Scar Model

    Directory of Open Access Journals (Sweden)

    Yan Wo

    2014-12-01

    Full Text Available Applying Ethosomal Gels (EGs in transdermal drug delivery systems has evoked considerable interest because of their good water-solubility and biocompatibility. However, there has not been an explicit description of applying EGs as a vehicle for hypertrophic scars treatment. Here, a novel transdermal EGs loaded with 5-fluorouracil (5-FU EGs was successfully prepared and characterized. The stability assay in vitro revealed that 5-FU EGs stored for a period of 30 days at 4 ± 1 °C had a better size stability than that at 25 ± 1 °C. Furthermore, using confocal laser scanning microscopy, EGs labeled with Rhodamine 6 G penetrated into the deep dermis of the hypertrophic scar within 24 h in the rabbit ear hypertrophic model suggested that the EGs were an optional delivery carrier through scar tissues. In addition, the value of the Scar Elevation Index (SEI of 5-FU EGs group in the rabbit ear scar model was lower than that of 5-FU Phosphate Buffered Saline gel and Control groups. To conclude, these results suggest that EGs delivery system loaded 5-fluorouracil is a perfect candidate drug for hypertrophic scars therapy in future.

  15. Nanoemulsions as vehicles for transdermal delivery of glycyrrhizin

    Directory of Open Access Journals (Sweden)

    Ranjit Kumar Harwansh

    2011-12-01

    Full Text Available The present investigation aims to evaluate an isotropic and thermodynamically stable nanoemulsion formulation for transdermal delivery of glycyrrhizin (GZ, with minimum surfactant and cosurfactant (Smix concentrations that could improve its solubility, permeation enhancement, and stability. Pseudo-ternary phase diagrams were developed and various nanoemulsion formulations were prepared using soyabean oil as oil, Span 80, Brij 35 as a surfactant and isopropyl alcohol as a cosurfactant. Nanoemulsion formulations that passed the thermodynamic stability tests were characterized for pH, viscosity and droplet size using a transmission electron microscopy. The transdermal ability of glycyrrhizin through human cadaver skin was determined using Franz diffusion cells. The in vitro skin permeation profile of the optimized nanoemulsion formulation (NE2 was compared to that of conventional gel. A significant increase in permeability parameters such as steady-state flux (Jss and permeability coefficient (Kp was observed in the optimized nanoemulsion formulation (NE2, which consisted of 1% wt/wt of mono ammonium glycyrrhizinate (MAG, 32.4% Span 80, 3.7% Brij 35, 10% isopropyl alcohol, 46.5% soyabean oil and 6.4% distilled water. No obvious skin irritation was observed for the studied nanoemulsion formulation (NE2 or the gel. The results indicated that nanoemulsions are promising vehicles for transdermal delivery of glycyrrhizin through human cadaver skin, without the use of additional permeation enhancers, because excipients of nanoemulsions act as permeation enhancers themselves.O objetivo da investigação é avaliar uma nanoemulsão isotrópica termodinamicamente estável para a administração transdérmica da glicirrizina (GZ, com concentrações mínimas de tensoativo e co-tensoativo (Smix, que poderiam melhorar a sua solubilidade, a permeação e a estabilidade. Os diagramas pseudo-ternários de fase foram desenvolvidos e diversas nanoemulsões foram

  16. Modified thermoresponsive Poloxamer 407 and chitosan sol-gels as potential sustained-release vaccine delivery systems.

    Science.gov (United States)

    Kojarunchitt, Thunjiradasiree; Baldursdottir, Stefania; Dong, Yao-Da; Boyd, Ben J; Rades, Thomas; Hook, Sarah

    2015-01-01

    Thermoresponsive, particle-loaded, Poloxamer 407 (P407)-Pluronic-R® (25R4) or chitosan-methyl cellulose (MC) formulations were developed as single-dose, sustained release vaccines. The sol-gels, loaded either with a particulate vaccine (cubosomes) or soluble antigen (ovalbumin) and adjuvants (Quil A and monophosphoryl lipid A), were free-flowing liquids at room temperature and formed stable gels at physiological temperatures. Rheological results showed that both systems meet the criteria of being thermoresponsive gels. The P407-25R4 sol-gels did not significantly sustain the release of antigen in vivo while the chitosan-MC sol-gels sustained the release of antigen up to at least 14 days after administration. The chitosan-MC sol-gels stimulated both cellular and humoral responses. The inclusion of cubosomes in the sol-gels did not provide a definitive beneficial effect. Further analysis of the formulations with small-angle X-ray scattering (SAXS) revealed that while cubosomes were stable in chitosan-MC gels they were not stable in P407-25R4 formulations. The reason for the mixed response to cubosome-loaded vehicles requires more investigation, however it appears that the cubosomes did not facilitate synchronous vaccine release and may in fact retard release, reducing efficacy in some cases. From these results, chitosan-MC sol-gels show potential as sustained release vaccine delivery systems, as compared to the P407-25R4 system that had a limited ability to sustain antigen release. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Thermosetting gel for the delivery of 5-aminolevulinic acid esters to the cervix.

    Science.gov (United States)

    Collaud, Sabine; Peng, Qian; Gurny, Robert; Lange, Norbert

    2008-07-01

    5-Aminolevulinic acid (5-ALA)-mediated photodynamic therapy has been proposed as an alternative, cervix-sparing treatment for cervical intraepithelial neoplasia (CIN). In this context, topical application of 5-ALA to the cervix is beneficial due to the small necessary dose and its minimal side effects. Therefore, lipophilic 5-ALA esters, such as hexylaminolevulinate (HAL), have led to improved local bioavailability and therapeutic efficacy. Hydrogels have shown to be more appropriate for the local delivery of these derivatives, but due to the limited long-term stability of such formulations at 25 degrees C, the development of an extemporaneously prepared hydrogel targeting CIN can be advantageous. Therefore, a poloxamer 407 thermosetting gel, which is liquid at room temperature and becomes a semi-solid when in contact with the female genital tract, has been evaluated in vitro and in vivo. Rheological evaluation has shown that a 17.0% poloxamer 407 hydrogel with a sol-gel transition at 24.8 +/- 0.6 degrees C was the best formulation for easy application and optimal residence time. Furthermore, similarly to other hydrogels previously tested, such a formulation shows a more complete HAL release in vitro than conventional cream vehicles, and tends to increase porphyrin accumulation in nude mice skin. Finally, in vitro release profiles were correlated to the in vivo results.

  18. Effects of vehicles and enhancers on transdermal delivery of clebopride.

    Science.gov (United States)

    Rhee, Yun-Seok; Huh, Jai-Yong; Park, Chun-Woong; Nam, Tae-Young; Yoon, Koog-Ryul; Chi, Sang-Cheol; Park, Eun-Seok

    2007-09-01

    The effects of vehicles and penetration enhancers on the skin permeation of clebopride were evaluated using Franz type diffusion cells fitted with excised rat dorsal skins. The binary vehicle system, diethylene glycol monoethyl ether/isopropyl myristate (40/60, w/w), significantly enhanced the skin permeation rate of clebopride. The skin permeation enhancers, oleic acid and ethanol when used in the binary vehicle system, resulted in relatively high clebopride skin permeation rates. A gel formulation consisting of 1.5% (w/w) clebopride, 5% (w/w) oleic acid, and 7% (w/w) gelling agent with the binary vehicle system resulted in a permeation rate of 28.90 microg/cm2/h. Overall, these results highlight the potential of clebopride formulation for the transdermal route.

  19. Skin hydration and cooling effect produced by the Voltaren® vehicle gel.

    Science.gov (United States)

    Hug, Agnes M; Schmidts, Thomas; Kuhlmann, Jens; Segger, Dörte; Fotopoulos, Grigorios; Heinzerling, Johanna

    2012-05-01

    Voltaren vehicle gel is the carrier substance of the topical Voltaren products. This vehicle gel is especially formulated to be easily applied on the skin, while providing some sensory benefits. The present study aims to substantiate the widely perceived hydrating and cooling effect of Voltaren vehicle gel. Volar forearm skin hydration and transepidermal water loss (TEWL) were measured and user satisfaction was evaluated by questionnaires, after application in 31 healthy, female volunteers. The cooling effect was investigated for 40 min with thermal imaging on 12 forearm sites of six healthy subjects. Voltaren vehicle gel application increased skin hydration by 13.1% (P = 0.0002) when compared with the untreated site, 8 h after the final treatment after 2 weeks. TEWL decreased on both treated (0.37 g/m(2) /h) and untreated (0.74 g/m(2) /h) forearm sites after 2 weeks (8 h after last treatment), demonstrating a relative increase of 6.5% in water loss. Voltaren vehicle gel application resulted in a rapid reduction of skin surface temperature by 5.1°C after only 3 min with an average maximum reduction of 5.8°C after 10 min. The cooling effect was experienced by 94% subjects, while 74% felt that their skin became softer. No adverse events, including skin irritation, were reported during the study and by the 37 participants. This study showed a statistically significant increase in skin hydration as well as a rapid cooling effect lasting approximately 30 min, after application of Voltaren vehicle gel. The small relative increase in water loss may be attributed to an additional skin surface water loss secondary to the increased water content brought into the skin by the Voltaren vehicle gel. The use did not induce any skin irritation and was found acceptable to use by the majority of participants. © 2011 John Wiley & Sons A/S.

  20. Delivery of Unmanned Aerial Vehicle Data

    Science.gov (United States)

    Ivancic, William D.; Sullivan, Donald V.

    2011-01-01

    To support much of NASA's Upper Atmosphere Research Program science, NASA has acquired two Global Hawk Unmanned Aerial Vehicles (UAVs). Two major missions are currently planned using the Global Hawk: the Global Hawk Pacific (GloPac) and the Genesis and Rapid Intensification Processes (GRIP) missions. This paper briefly describes GloPac and GRIP, the concept of operations and the resulting requirements and communication architectures. Also discussed are requirements for future missions that may use satellite systems and networks owned and operated by third parties.

  1. Kefiran-alginate gel microspheres for oral delivery of ciprofloxacin.

    Science.gov (United States)

    Blandón, Lina M; Islan, German A; Castro, Guillermo R; Noseda, Miguel D; Thomaz-Soccol, Vanete; Soccol, Carlos R

    2016-09-01

    Ciprofloxacin is a broad-spectrum antibiotic associated with gastric and intestinal side effects after extended oral administration. Alginate is a biopolymer commonly employed in gel synthesis by ionotropic gelation, but unstable in the presence of biological metal-chelating compounds and/or under dried conditions. Kefiran is a microbial biopolymer able to form gels with the advantage of displaying antimicrobial activity. In the present study, kefiran-alginate gel microspheres were developed to encapsulate ciprofloxacin for antimicrobial controlled release and enhanced bactericidal effect against common pathogens. Scanning electron microscopy (SEM) analysis of the hybrid gel microspheres showed a spherical structure with a smoother surface compared to alginate gel matrices. In vitro release of ciprofloxacin from kefiran-alginate microspheres was less than 3.0% and 5.0% at pH 1.2 (stomach), and 5.0% and 25.0% at pH 7.4 (intestine) in 3 and 21h, respectively. Fourier transform infrared spectroscopy (FTIR) of ciprofloxacin-kefiran showed the displacement of typical bands of ciprofloxacin and kefiran, suggesting a cooperative interaction by hydrogen bridges between both molecules. Additionally, the thermal analysis of ciprofloxacin-kefiran showed a protective effect of the biopolymer against ciprofloxacin degradation at high temperatures. Finally, antimicrobial assays of Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Salmonella typhymurium, and Staphylococcus aureus demonstrated the synergic effect between ciprofloxacin and kefiran against the tested microorganisms. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Temperature-sensitive microemulsion gel: an effective topical delivery system for simultaneous delivery of vitamins C and E.

    Science.gov (United States)

    Rozman, Branka; Zvonar, Alenka; Falson, Francoise; Gasperlin, Mirjana

    2009-01-01

    Microemulsions (ME)--nanostructured systems composed of water, oil, and surfactants--have frequently been used in attempts to increase cutaneous drug delivery. The primary objective addressed in this work has been the development of temperature-sensitive microemulsion gel (called gel-like ME), as an effective and safe delivery system suitable for simultaneous topical application of a hydrophilic vitamin C and a lipophilic vitamin E. By changing water content of liquid o/w ME (o/w ME), a gel-like ME with temperature-sensitive rheological properties was formed. The temperature-driven changes in its microstructure were confirmed by rotational rheometry, viscosity measurements, and droplet size determination. The release studies have shown that the vitamins' release at skin temperature from gel-like ME were comparable to those from o/w ME and were much faster and more complete than from o/w ME conventionally thickened with polymer (o/w ME carbomer). According to effectiveness in skin delivery of both vitamins, o/w ME was found the most appropriate, followed by gel-like ME and by o/w ME carbomer, indicating that no simple correlation between vitamins release and skin absorption could be found. The cytotoxicity studies revealed good cell viability after exposure to ME and confirmed all tested microemulsions as nonirritant.

  3. Intrathecal Delivery of Ketorolac Loaded In Situ Gels for Prolonged ...

    African Journals Online (AJOL)

    of 1.11 to 6 cps at 50 rpm and shear thinning property (rheology testing). Additionally, the gels ... (51.6 % inhibition of rat paw edema) in the animal model of vertebral fracture. Conclusion: The ... The present work deals with the development of.

  4. Design and Development of Repaglinide Microemulsion Gel for Transdermal Delivery.

    Science.gov (United States)

    Shinde, Ujwala A; Modani, Sheela H; Singh, Kavita H

    2018-01-01

    Microemulsion formulation of repaglinide, a BCS class II hypoglycemic agent with limited oral bioavailability, was developed considering its solubility in various oils, surfactants, and cosurfactants. The pseudo-ternary phase diagrams for microemulsion regions were constructed by water titration method at K m 1:1 and characterized for optical birefringence, percentage transmittance, pH, refractive index, globule size, zeta potential, viscosity, drug content, and thermodynamic stability. To enhance the drug permeation and residence time, the optimized microemulsions having mean globule size of 36.15 ± 9.89 nm was gelled with xanthan gum. The developed microemulsion-based gel was characterized for globule size, zeta potential, pH, and drug content. All evaluation parameters upon gelling were found to be satisfactory. Ex vivo permeability study across rat skin demonstrated higher steady-state flux (P microemulsion of repaglinide in comparison to the repaglinide microemulsion gel. At the end of 24 h, the cumulative drug permeation from microemulsion and microemulsion gel was found to be 229.19 ± 24.34 and 180.84 ± 17.40 μg/cm 2 , respectively. The microemulsion formulation showed 12.30-fold increase in flux as compared to drug suspension with highest enhancement ratio (E r ) of 12.36. Whereas microemulsion gel exhibited 10.97-fold increase in flux (with highest E r , 11.78) as compared to repaglinide (RPG) suspension. In vivo efficacy study was performed in normal Sprague-Dawley rats by using oral glucose tolerance test. Results of RPG transdermal microemulsion gel demonstrated remarkable advantage over orally administered RPG by reducing the glucose level in controlled manner. Hence, it could be a new, alternative dosage form for effective therapy of type 2 diabetes mellitus.

  5. Novel adjuvants & delivery vehicles for vaccines development: a road ahead.

    Science.gov (United States)

    Mohan, Teena; Verma, Priyanka; Rao, D Nageswara

    2013-11-01

    The pure recombinant and synthetic antigens used in modern day vaccines are generally less immunogenic than older style live/attenuated and killed whole organism vaccines. One can improve the quality of vaccine production by incorporating immunomodulators or adjuvants with modified delivery vehicles viz. liposomes, immune stimulating complexes (ISCOMs), micro/nanospheres apart from alum, being used as gold standard. Adjuvants are used to augment the effect of a vaccine by stimulating the immune system to respond to the vaccine, more vigorously, and thus providing increased immunity to a particular disease. Adjuvants accomplish this task by mimicking specific sets of evolutionary conserved molecules which include lipopolysaccharides (LPS), components of bacterial cell wall, endocytosed nucleic acids such as dsRNA, ssDNA and unmethylated CpG dinucleotide containing DNA. This review provides information on various vaccine adjuvants and delivery vehicles being developed to date. From literature, it seems that the humoral immune responses have been observed for most adjuvants and delivery platforms while viral-vector, ISCOMs and Montanides have shown cytotoxic T-cell response in the clinical trials. MF59 and MPL® have elicited Th1 responses, and virus-like particles (VLPs), non-degradable nanoparticle and liposomes have also generated cellular immunity. Such vaccine components have also been evaluated for alternative routes of administration with clinical success reported for intranasal delivery of viral-vectors and proteosomes and oral delivery of VLP vaccines.

  6. Drug delivery matrices based on scleroglucan/alginate/borax gels.

    Science.gov (United States)

    Matricardi, Pietro; Onorati, Ilenia; Coviello, Tommasina; Alhaique, Franco

    2006-06-19

    The aim of this work is to obtain a new drug delivery matrix, especially designed for protein delivery, based on biodegradable and biocompatible polymers, and to describe its main physico-chemical properties. A polysaccharide based semi-interpenetrating polymer network (semi-IPN) was built up, composed by sodium alginate chains interspersed into a scleroglucan/borax hydrogel network. Tablets were obtained by compression of the resulting freeze-dried hydrogel. The different release and physico-chemical properties possessed by the two starting polymers in various aqueous media were combined in the new matrix. In this work, description is given of the in vitro ability of the matrix to deliver in a controlled manner a protein, Myoglobin, in distilled water, simulated gastric fluid and simulated intestinal fluid; the release, simulating a gastric passage, followed by an enteric delivery, was also carried out. Water uptake data, colorimetric experiments and scanning electron microscopy images are given for the characterization of this new solid dosage form; the importance of the borax presence is also discussed.

  7. Diacerein niosomal gel for topical delivery: development, in vitro and in vivo assessment.

    Science.gov (United States)

    El-Say, Khalid M; Abd-Allah, Fathy I; Lila, Ahmed E; Hassan, Abd El-Saboor A; Kassem, Alaa Eldin A

    2016-01-01

    The purpose of this study was to load diacerein (DCR) in niosomes by applying response surface methodology and incorporate these niosomes in gel base for topical delivery. Box-Behnken design was used to investigate the effect of charge-inducing agent (X1), surfactant HLB (X2) and sonication time (X3) on the vesicle size (Y1), entrapment efficiency (Y2) and cumulative drug released (Y3). DCR niosomal formulations were prepared by thin film hydration method. The optimized formula was incorporated in different gel bases. DCR niosomal gels were evaluated for homogeneity, rheological behavior; in vitro release and pharmacodynamic activity by carrageenan-induced hind paw edema method in the rat compared with DCR commercial gel. The results revealed that the mean vesicle sizes of the prepared niosomes ranged from 7.33 to 23.72 µm and the entrapment efficiency ranged from 9.52% to 58.43% with controlled release pattern over 8 h. DCR niosomal gels exhibited pseudoplastic flow with thixotropic behavior. The pharmacodynamic activity of DCR niosomal gel in 3% HPMC showed significant, 37.66%, maximum inhibition of edema size in comparison with 20.83% for the commercial gel (p < 0.05). These results recommended the incorporation of DCR niosomes in 3% HPMC for topical application as a potent anti-inflammatory drug for the treatment of osteoarthritis.

  8. Preparation and evaluation of chitosan-based nanogels/gels for oral delivery of myricetin.

    Science.gov (United States)

    Yao, Yashu; Xia, Mengxin; Wang, Huizhen; Li, Guowen; Shen, Hongyi; Ji, Guang; Meng, Qianchao; Xie, Yan

    2016-08-25

    A novel nanogel/gel based on chitosan (CS) for the oral delivery of myricetin (Myr) was developed and evaluated comprehensively. The particle size of the obtained Myr-loaded CS/β-glycerol phosphate (β-GP) nanogels was in the range of 100-300nm. The rheological tests showed that the sol-gel transition happened when the nanogels were exposed to physiological temperatures, and 3D network structures of the gelatinized nanogels (gels) were confirmed by Scanning Electron Microscopy. Myr was released from CS/β-GP nanogel/gel in acidic buffers via a Fickian mechanism, and this release was simultaneously accompanied by swelling and erosion. Moreover, the nanogel/gel exhibited no cytotoxicity by MTT assay, and the oral bioavailability of Myr in rats was improved with an accelerated absorption rate after Myr was loaded into CS/β-GP nanogel/gel. In summary, all of the above showed that CS/β-GP nanogel/gel was an excellent system for orally delivering Myr. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Nonaqueous gel for the transdermal delivery of a DTPA penta-ethyl ester prodrug.

    Science.gov (United States)

    Zhang, Yong; Sadgrove, Matthew P; Sueda, Katsuhiko; Yang, Yu-Tsai; Pacyniak, Erik K; Kagel, John R; Braun, Brenda A; Zamboni, William C; Mumper, Russell J; Jay, Michael

    2013-04-01

    Diethylenetriamine pentaacetic acid penta-ethyl ester, designated as C2E5, was successfully incorporated into a nonaqueous gel for transdermal delivery. The thermal and rheological properties of a formulation containing 40% C2E5, 20% ethyl cellulose, and 40% Miglyol 840® prepared using the solvent evaporation method demonstrated that the gel had acceptable content uniformity and flow properties. In vitro studies showed that C2E5 was steadily released from the gel at a rate suitable for transdermal delivery. Topical application of the gel at a 200 mg C2E5/kg dose level in rats achieved significantly higher plasma exposures of several active metabolites compared with neat C2E5 oil at the same dose level. The results suggest that transdermal delivery of a chelator prodrug is an effective radionuclide decorporation strategy by delivering chelators to the circulation with a pharmacokinetic profile that is more consistent with the biokinetic profile of transuranic elements in contaminated individuals.

  10. Enhancement of transdermal delivery of ibuprofen using microemulsion vehicle.

    Science.gov (United States)

    Hu, Liandong; Hu, Qiaofeng; Yang, Jianxue

    2014-10-01

    The objective of this study was to find a stable microemulsion vehicle for transdermal delivery of ibuprofen to improve the skin permeability. Microemulsion was prepared using different sorts of oils, surfactants and co-surfactants. Pseudo-ternary phase diagrams were used to evaluate the microemulsion domain. The effects of oleic acid and surfactant mixture on skin permeation of ibuprofen were evaluated with excised skins. The optimum formulation F3 consisting of 6% oleic acid, 30% Cremophor RH40/Transcutol P (2:1, w/w) and 59% water phase, showed a high permeation rate of 42.98 µg/cm(2)/hr. The mean droplet size of microemulsion was about 43 nm and no skin irritation signs were observed on the skin of rabbits. These results indicated that this novel microemulsion is a useful formulation for the transdermal delivery of ibuprofen.

  11. Preparation and characterization of vinculin-targeted polymer-lipid nanoparticle as intracellular delivery vehicle.

    Science.gov (United States)

    Wang, Junping; Ornek-Ballanco, Ceren; Xu, Jiahua; Yang, Weiguo; Yu, Xiaojun

    2013-01-01

    Intracellular delivery vehicles have been extensively investigated as these can serve as an effective tool in studying the cellular mechanism, by delivering functional protein to specific locations of the cells. In the current study, a polymer-lipid nanoparticle (PLN) system was developed as an intracellular delivery vehicle specifically targeting vinculin, a focal adhesion protein associated with cellular adhesive structures, such as focal adhesions and adherens junctions. The PLNs possessed an average size of 106 nm and had a positively charged surface. With a lower encapsulation efficiency 32% compared with poly(lactic-co-glycolic) acid (PLGA) nanoparticles (46%), the PLNs showed the sustained release profile of model drug BSA, while PLGA nanoparticles demonstrated an initial burst-release property. Cell-uptake experiments using mouse embryonic fibroblasts cultured in fibrin-fibronectin gels observed, under confocal microscope, that the anti-vinculin conjugated PLNs could successfully ship the cargo to the cytoplasm of fibroblasts, adhered to fibronectin-fibrin. With the use of cationic lipid, the unconjugated PLNs were shown to have high gene transfection efficiency. Furthermore, the unconjugated PLNs had nuclear-targeting capability in the absence of nuclear-localization signals. Therefore, the PLNs could be manipulated easily via different type of targeting ligands and could potentially be used as a powerful tool for cellular mechanism study, by delivering drugs to specific cellular organelles.

  12. Optimization and evaluation of pluronic lecithin organogels as a transdermal delivery vehicle for sinomenine.

    Science.gov (United States)

    Ba, Wenqiang; Li, Zhou; Wang, Lisheng; Wang, Ding; Liao, Weiguo; Fan, Wentao; Wu, Yinai; Liao, Fengyun; Yu, Jianye

    2016-08-01

    The purpose of the present study was to prepare and optimize sinomenine (SIN) pluronic lecithin organogels system (PLO), and to evaluate the permeability of the optimized PLO in vitro and in vivo. Box-Behnken design was used to optimize the PLO and the optimized formulation was pluronic F127 of 19.61%, lecithin of 3.60% and SIN of 1.27%. The formulation was evaluated its skin permeation and drug deposition both in vitro and in vivo compared with gel. Permeation and deposition studies of PLO were carried out with Franz diffusion cells in vitro and with microdialysis in vivo. In vitro studies, permeation rate (Jss) of SIN from PLO was 146.55 ± 2.93 μg/cm(2)/h, significantly higher than that of gel (120.39 μg/cm(2)/h) and the amount of SIN deposited in skin from the PLO was 10.08 ± 0.86 μg/cm(2), significantly larger than that from gel (6.01 ± 0.04 μg/cm(2)). In vivo skin microdialysis studies showed that the maximum concentration (Cmax) of SIN from PLO in "permeation study" and "drug-deposition study" were 150.27 ± 20.85 μg/ml and 67.95 μg/ml, respectively, both significantly higher than that of SIN from gel (29.66 and 6.73 μg/ml). The results recommend that PLO can be used as an advantageous transdermal delivery vehicle to enhance the permeation and skin deposition of SIN.

  13. Increasing vaginal progesterone gel supplementation after frozen-thawed embryo transfer significantly increases the delivery rate

    DEFF Research Database (Denmark)

    Alsbjerg, Birgit; Polyzos, Nikolaos P; Elbaek, Helle Olesen

    2013-01-01

    The aim of this study was to evaluate the reproductive outcome in patients receiving frozen-thawed embryo transfer before and after doubling of the vaginal progesterone gel supplementation. The study was a retrospective study performed in The Fertility Clinic, Skive Regional Hospital, Denmark....... A total of 346 infertility patients with oligoamenorrhoea undergoing frozen-thawed embryo transfer after priming with oestradiol and vaginal progesterone gel were included. The vaginal progesterone dose was changed from 90mg (Crinone) once a day to twice a day and the reproductive outcome during the two...... rate (8.7% versus 20.5%, respectively; P=0.002). Doubling of the vaginal progesterone gel supplementation during frozen-thawed embryo transfer cycles decreased the early pregnancy loss rate, resulting in a significantly higher delivery rate. This study evaluated the reproductive outcome of 346 women...

  14. METHOD OF CHOOSING THE TECHNOLOGY OF VEHICLE OPERATION ON DELIVERY ROUTES

    Directory of Open Access Journals (Sweden)

    Ye. Nagornyi

    2014-10-01

    Full Text Available A method for determining the technology of vehicles operation on delivery (team routes, which allows to determine the optimal sequence of cargo delivery to customers by vehicles of certain capacity in order to meet the requirements of cargo owners regarding the conditions of service is offered. Recommendations for creation of an automated system of forming the technology of vehicles operation on delivery routes are developed.

  15. Lipid Nanocapsule-Based Gels for Enhancement of Transdermal Delivery of Ketorolac Tromethamine

    Directory of Open Access Journals (Sweden)

    Jaleh Varshosaz

    2011-01-01

    Full Text Available Previous reports show ineffective transdermal delivery of ketorolac by nanostructured lipid carriers (NLCs. The aim of the present work was enhancement of transdermal delivery of ketorolac by another colloidal carriers, lipid nanocapsules (LNCs. LNCs were prepared by emulsification with phase transition method and mixed in a Carbomer 934P gel base with oleic acid or propylene glycol as penetration enhancers. Permeation studies were performed by Franz diffusion cell using excised rat abdominal skin. Aerosil-induced rat paw edema model was used to investigate the in vivo performance. LNCs containing polyethylene glycol hydroxyl stearate, lecithin in Labrafac as the oily phase, and dilution of the primary emulsion with 3.5-fold volume of cold water produced the optimized nanoparticles. The 1% Carbomer gel base containing 10% oleic acid loaded with nanoparticles enhanced and prolonged the anti-inflammatory effects of this drug to more than 12 h in Aerosil-induced rat paw edema model.

  16. Wax-incorporated emulsion gel beads of calcium pectinate for intragastric floating drug delivery.

    Science.gov (United States)

    Sriamornsak, Pornsak; Asavapichayont, Panida; Nunthanid, Jurairat; Luangtana-Anan, Manee; Limmatvapirat, Sontaya; Piriyaprasarth, Suchada

    2008-01-01

    The purpose of this study was to prepare wax-incorporated pectin-based emulsion gel beads using a modified emulsion-gelation method. The waxes in pectin-olive oil mixtures containing a model drug, metronidazole, were hot-melted, homogenized and then extruded into calcium chloride solution. The beads formed were separated, washed with distilled water and dried for 12 h. The influence of various types and amounts of wax on floating and drug release behavior of emulsion gel beads of calcium pectinate was investigated. The drug-loaded gel beads were found to float on simulated gastric fluid if the sufficient amount of oil was used. Incorporation of wax into the emulsion gel beads affected the drug release. Water-soluble wax (i.e. polyethylene glycol) increased the drug release while other water-insoluble waxes (i.e. glyceryl monostearate, stearyl alcohol, carnauba wax, spermaceti wax and white wax) significantly retarded the drug release. Different waxes had a slight effect on the drug release. However, the increased amount of incorporated wax in the formulations significantly sustained the drug release while the beads remained floating. The results suggest that wax-incorporated emulsion gel beads could be used as a carrier for intragastric floating drug delivery.

  17. Magnetotactic Bacterial Cages as Safe and Smart Gene Delivery Vehicles

    KAUST Repository

    Alsaiari, Shahad K.

    2016-07-27

    In spite of the huge advances in the area of synthetic carriers, their efficiency still poorly compares to natural vectors. Herein, we report the use of unmodified magnetotactic bacteria as a guidable delivery vehicle for DNA functionalized gold nanoparticles (AuNPs). High cargo loading is established under anaerobic conditions (bacteria is alive) through endocytosis where AuNPs are employed as transmembrane proteins mimics (facilitate endocytosis) as well as imaging agents to verify and quantify loading and release. The naturally bio-mineralized magnetosomes, within the bacteria, induce heat generation inside bacteria through magnetic hyperthermia. Most importantly after exposing the system to air (bacteria is dead) the cell wall stays intact providing an efficient bacterial vessel. Upon incubation with THP-1 cells, the magnetotactic bacterial cages (MBCs) adhere to the cell wall and are directly engulfed through the phagocytic activity of these cells. Applying magnetic hyperthermia leads to the dissociation of the bacterial microcarrier and eventual release of cargo.

  18. Magnetotactic Bacterial Cages as Safe and Smart Gene Delivery Vehicles

    KAUST Repository

    Alsaiari, Shahad K.; Ezzedine, Alaa H.; Abdallah, Abdallah; Sougrat, Rachid; Khashab, Niveen M.

    2016-01-01

    In spite of the huge advances in the area of synthetic carriers, their efficiency still poorly compares to natural vectors. Herein, we report the use of unmodified magnetotactic bacteria as a guidable delivery vehicle for DNA functionalized gold nanoparticles (AuNPs). High cargo loading is established under anaerobic conditions (bacteria is alive) through endocytosis where AuNPs are employed as transmembrane proteins mimics (facilitate endocytosis) as well as imaging agents to verify and quantify loading and release. The naturally bio-mineralized magnetosomes, within the bacteria, induce heat generation inside bacteria through magnetic hyperthermia. Most importantly after exposing the system to air (bacteria is dead) the cell wall stays intact providing an efficient bacterial vessel. Upon incubation with THP-1 cells, the magnetotactic bacterial cages (MBCs) adhere to the cell wall and are directly engulfed through the phagocytic activity of these cells. Applying magnetic hyperthermia leads to the dissociation of the bacterial microcarrier and eventual release of cargo.

  19. Silica nanoparticles as vehicles for therapy delivery in neurological injury

    Science.gov (United States)

    Schenk, Desiree

    Acrolein, a very reactive aldehyde, is a culprit in the biochemical cascade after primary, mechanical spinal cord injury (SCI), which leads to the destruction of tissue initially unharmed, referred to as "secondary injury". Additionally, in models of multiple sclerosis (MS) and some clinical research, acrolein levels are significantly increased. This aldehyde overwhelms the natural anti-oxidant system, reacts freely with proteins, and releases during lipid peroxidation (LPO), effectively regenerating its self. Due to its ability to make more copies of itself in the presence of tissue via lipid peroxidation, researchers believe that acrolein plays a role in the increased destruction of the central nervous system in both SCI and MS. Hydralazine, an FDA-approved hypertension drug, has been shown to scavenge acrolein, but its side effects and short half life at the appropriate dose for acrolein scavenging must be improved for beneficial clinical translation. Due to the inefficient delivery of therapeutic drugs, nanoparticles have become a major field of exploration for medical applications. Based on their material properties, they can help treat disease by delivering drugs to specific tissues, enhancing detection methods, or a mixture of both. Nanoparticles made from silica provide distinct advantages. They form porous networks that can carry therapeutic molecules throughout the body. Therefore, a nanomedical approach has been designed using silica nanoparticles as a porous delivery vehicle hydralazine. The silica nanoparticles are formed in a one-step method that incorporates poly(ethylene) glycol (PEG), a stealth molecule, directly onto the nanoparticles. As an additional avenue for study, a natural product in green tea, epigallocatechin gallate (EGCG), has been explored for its ability to react with acrolein, disabling its reactive capabilities. Upon demonstration of attenuating acrolein, EGCG's delivery may also be improved using the nanomedical approach. The

  20. Fabrication and characterization of sol-gel based nanoparticles for drug delivery

    Science.gov (United States)

    Yadav, Reeta

    Nanogels are cross linked polymeric sol-gel based nanoparticles that offer an interior network for incorporation and protection of biomolecules, exhibiting unique advantages for polymer based delivery systems. We have successfully synthesized stable sol-gel nanoparticles by means of [a] silicification reactions using cationic peptides like polylysine as gelating agents, and [b] lyophilization of sol-gels. Macromolecules such as Hemoglobin and Glucose Oxidase and small molecules such as Sodium Nitroprusside (SNP) and antibiotics were encapsulated within the nanogels. We have used transmission electron microscopy, dynamic light scattering, zeta potential analysis, and spectroscopy to perform a physicochemical characterization of the nanogels resulting from the two approaches. Our studies have indicated that the nanogel encapsulated proteins and small molecules remain intact, stable and functional. A Hydrogen Peroxide (H2O2) and Nitric Oxide (NO) generating drug carrier was synthesized using these nanogels and the effect of generation of H2O2 from Glucose Oxidase encapsulated nanogels and NO from SNP encapsulated nanogels was tested on E.coli. The results show that the nanoparticles exert antimicrobial activity against E.Coli, in addition NO generating nanogels potentiated H2O2 generating nanogels induced killing. These data suggest that these NO and H2O2 releasing nanogels have the potential to serve as a novel class of antimicrobials for the treatment of multidrug resistant bacteria. The unique properties of these protein/drug incorporated nanogels raise the prospect of fine tailoring to specific applications such as drug delivery and bio imaging.

  1. Core-Shell Microneedle Gel for Self-Regulated Insulin Delivery.

    Science.gov (United States)

    Wang, Jinqiang; Ye, Yanqi; Yu, Jicheng; Kahkoska, Anna R; Zhang, Xudong; Wang, Chao; Sun, Wujin; Corder, Ria D; Chen, Zhaowei; Khan, Saad A; Buse, John B; Gu, Zhen

    2018-03-27

    A bioinspired glucose-responsive insulin delivery system for self-regulation of blood glucose levels is desirable for improving health and quality of life outcomes for patients with type 1 and advanced type 2 diabetes. Here we describe a painless core-shell microneedle array patch consisting of degradable cross-linked gel for smart insulin delivery with rapid responsiveness and excellent biocompatibility. This gel-based device can partially dissociate and subsequently release insulin when triggered by hydrogen peroxide (H 2 O 2 ) generated during the oxidation of glucose by a glucose-specific enzyme covalently attached inside the gel. Importantly, the H 2 O 2 -responsive microneedles are coated with a thin-layer embedding H 2 O 2 -scavenging enzyme, thus mimicking the complementary function of enzymes in peroxisomes to protect normal tissues from injury caused by oxidative stress. Utilizing a chemically induced type 1 diabetic mouse model, we demonstrated that this smart insulin patch with a bioresponsive core and protective shell could effectively regulate the blood glucose levels within a normal range with improved biocompatibility.

  2. A novel vehicle for local protein delivery to the inner ear: injectable and biodegradable thermosensitive hydrogel loaded with PLGA nanoparticles.

    Science.gov (United States)

    Dai, Juan; Long, Wei; Liang, Zhongping; Wen, Lu; Yang, Fan; Chen, Gang

    2018-01-01

    Delivery of biomacromolecular drugs into the inner ear is challenging, mainly because of their inherent instability as well as physiological and anatomical barriers. Therefore, protein-friendly, hydrogel-based delivery systems following local administration are being developed for inner ear therapy. Herein, biodegradable poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) containing interferon α-2 b (IFN α-2 b) were loaded in chitosan/glycerophosphate (CS/GP)-based thermosensitive hydrogel for IFN delivery by intratympanic injection. The injectable hydrogel possessed a physiological pH and formed semi-solid gel at 37 °C, with good swelling and deswelling properties. The CS/GP hydrogel could slowly degrade as visualized by scanning electron microscopy (SEM). The presence of NPs in CS/GP gel largely influenced in vitro drug release. In the guinea pig cochlea, a 1.5- to 3-fold increase in the drug exposure time of NPs-CS/GP was found than those of the solution, NPs and IFN-loaded hydrogel. Most importantly, a prolonged residence time was attained without obvious histological changes in the inner ear. This biodegradable, injectable, and thermosensitive NPs-CS/GP system may allow longer delivery of protein drugs to the inner ear, thus may be a potential novel vehicle for inner ear therapy.

  3. Thermoresponsive nanocomposite gel for local drug delivery to suppress the growth of glioma by inducing autophagy.

    Science.gov (United States)

    Ding, Li; Wang, Qi; Shen, Ming; Sun, Ying; Zhang, Xiangyu; Huang, Can; Chen, Jianhua; Li, Rongxin; Duan, Yourong

    2017-07-03

    Although the treatments of malignant glioma include surgery, radiotherapy and chemotherapy by oral drug administration, the prognosis of patients with glioma remains very poor. We developed a polyethylene glycol-dipalmitoylphosphatidyle- thanoiamine (mPEG-DPPE) calcium phosphate nanoparticles (NPs) injectable thermoresponsive hydrogel (nanocomposite gel) that could provide a sustained and local delivery of paclitaxel (PTX) and temozolomide (TMZ). In addition, the proportion of PTX and TMZ for the optimal synergistic antiglioma effect on C6 cells was determined to be 1:100 (w/w) by the Chou and Talalay method. Our results clearly indicated that the autophagy induced by PTX:TMZ NPs plays an important role in regulating tumor cell death, while autophagy inhibition dramatically reverses the antitumor effect of PTX:TMZ NPs, suggesting that antiproliferative autophagy occurs in response to PTX:TMZ NPs treatment. The antitumor efficacy of the PTX:TMZ NP-loaded gel was evaluated in situ using C6 tumor-bearing rats, and the PTX:TMZ NP-loaded gel exhibited superior antitumor performance. The antitumor effects of the nanocomposite gel in vivo were shown to correlate with autophagic cell death in this study. The in vivo results further confirmed the advantages of such a strategy. The present study may provide evidence supporting the development of nanomedicine for potential clinical application.

  4. Rosemary Essential Oil-Loaded Lipid Nanoparticles: In Vivo Topical Activity from Gel Vehicles

    Directory of Open Access Journals (Sweden)

    Lucia Montenegro

    2017-10-01

    Full Text Available Although rosemary essential oil (EO shows many biological activities, its topical benefits have not been clearly demonstrated. In this work, we assessed the effects on skin hydration and elasticity of rosemary EO after topical application via gel vehicles in human volunteers. To improve its topical efficacy, rosemary EO was loaded into lipid nanoparticles (NLCs consisting of cetyl palmitate as a solid lipid, and non-ionic surfactants. Such NLCs were prepared using different ratios of EO/solid lipid and those containing EO 3% w/w and cetyl pamitate 7% w/w were selected for in vivo studies, showing the best technological properties (small particle size, low polydispersity index and good stability. Gels containing free EO or EO-loaded NLCs were applied on the hand skin surface of ten healthy volunteers twice a day for one week. Skin hydration and elasticity changes were recorded using the instrument Soft Plus. Gels containing EO-loaded NLCs showed a significant increase in skin hydration in comparison with gels containing free EO. Skin elasticity increased, as well, although to a lesser extent. The results of this study point out the usefulness of rosemary EO-loaded NLCs for the treatment of cutaneous alterations involving loss of skin hydration and elasticity.

  5. Intracranial drug-delivery scaffolds: Biocompatibility evaluation of sucrose acetate isobutyrate gels

    International Nuclear Information System (INIS)

    Lee, James; Jallo, George I.; Penno, Margaret B.; Gabrielson, Kathleen L.; Young, G. David; Johnson, Randolph M.; Gillis, Edward M.; Rampersaud, Charles; Carson, Benjamin S.; Guarnieri, Michael

    2006-01-01

    Introduction: Sucrose acetate isobutyrate (SAIB) is a water insoluble, biodegradable gel used for controlled-release oral and subcutaneous drug delivery. We investigated SAIB compatibility in the rat central nervous system (CNS) by implanting solutions of SAIB in adult and in neonatal brains. Methods: 10-15 μL solutions of SAIB gels in 0-30% ethanol were injected into the cerebral cortex of adult Fischer 344 rats. Control animals were implanted with a 10 mg biodegradable poly anhydride copolymer of poly [bis (p-carboxyphenoxy) propane] anhydride and sebacic acid (PCPP:SA). Adult rats were evaluated for signs of pain and distress, including changes in posture, facial signs, and grooming behavior. 1-2 μL solutions of SAIB gels in 15% ethanol were injected into brains of 12-24 h-old rats. Neonatal rats were evaluated for survival. Adult and neonatal brains were examined by histopathology 3-48 days after implant. Results: Gel implants produced elliptical compression of cortical tissue, cell loss, and inflammation. Cell loss appeared to be confined to the implantation wound and associated neuronal fields. In adult rats, neurophil compression, inflammation, and cell loss appeared similar with the 10-mg PCPP:SA implants and the 10-mg SAIB implants. There was no clinical evidence of pain or distress from SAIB implants. 1-2 μL implants of SAIB-15% ethanol had no effect on survival of neonatal animals. Conclusion: Brain implants of SAIB induce a mild to moderate inflammatory response and associated neuronal cell damage. The implants appeared to be biocompatible in adult and neonatal animals. These results suggest that further studies of SAIB as an injectable drug-delivery scaffold for CNS therapeutic agents are warranted

  6. Small field dose delivery evaluations using cone beam optical computed tomography-based polymer gel dosimetry

    Directory of Open Access Journals (Sweden)

    Timothy Olding

    2011-01-01

    Full Text Available This paper explores the combination of cone beam optical computed tomography with an N-isopropylacrylamide (NIPAM-based polymer gel dosimeter for three-dimensional dose imaging of small field deliveries. Initial investigations indicate that cone beam optical imaging of polymer gels is complicated by scattered stray light perturbation. This can lead to significant dosimetry failures in comparison to dose readout by magnetic resonance imaging (MRI. For example, only 60% of the voxels from an optical CT dose readout of a 1 l dosimeter passed a two-dimensional Low′s gamma test (at a 3%, 3 mm criteria, relative to a treatment plan for a well-characterized pencil beam delivery. When the same dosimeter was probed by MRI, a 93% pass rate was observed. The optical dose measurement was improved after modifications to the dosimeter preparation, matching its performance with the imaging capabilities of the scanner. With the new dosimeter preparation, 99.7% of the optical CT voxels passed a Low′s gamma test at the 3%, 3 mm criteria and 92.7% at a 2%, 2 mm criteria. The fitted interjar dose responses of a small sample set of modified dosimeters prepared (a from the same gel batch and (b from different gel batches prepared on the same day were found to be in agreement to within 3.6% and 3.8%, respectively, over the full dose range. Without drawing any statistical conclusions, this experiment gives a preliminary indication that intrabatch or interbatch NIPAM dosimeters prepared on the same day should be suitable for dose sensitivity calibration.

  7. AAV vectors as gene delivery vehicles in the central nervous system

    NARCIS (Netherlands)

    Broekman, M.L.D.

    2006-01-01

    Recombinant gene delivery vehicles based on the replication-defective AAV have gained a preeminent position in the field of gene delivery to the brain. Efficient global gene delivery to the CNS is beneficial for the study of gene products is the entire CNS as well as for introducing and expressing

  8. Lignin nanotubes as vehicles for gene delivery into human cells.

    Science.gov (United States)

    Ten, Elena; Ling, Chen; Wang, Yuan; Srivastava, Arun; Dempere, Luisa Amelia; Vermerris, Wilfred

    2014-01-13

    Lignin nanotubes (LNTs) synthesized from the aromatic plant cell wall polymer lignin in a sacrificial alumina membrane template have as useful features their flexibility, ease of functionalization due to the availability of many functional groups, label-free detection by autofluorescence, and customizable optical properties. In this report we show that the physicochemical properties of LNTs can be varied over a wide range to match requirements for specific applications by using lignin with different subunit composition, a function of plant species and genotype, and by choosing the lignin isolation method (thioglycolic acid, phosphoric acid, sulfuric acid (Klason), sodium hydroxide lignin), which influences the size and reactivity of the lignin fragments. Cytotoxicity studies with human HeLa cells showed that concentrations of up to 90 mg/mL are tolerated, which is a 10-fold higher concentration than observed for single- or multiwalled carbon nanotubes (CNTs). Confocal microscopy imaging revealed that all LNT formulations enter HeLa cells without auxiliary agents and that LNTs made from NaOH-lignin penetrate the cell nucleus. We further show that DNA can adsorb to LNTs. Consequently, exposure of HeLa cells to LNTs coated with DNA encoding the green fluorescent protein (GFP) leads to transfection and expression of GFP. The highest transfection efficiency was obtained with LNTs made from NaOH-lignin due to a combination of high DNA binding capacity and DNA delivery directly into the nucleus. These combined features of LNTs make LNTs attractive as smart delivery vehicles of DNA without the cytotoxicity associated with CNTs or the immunogenicity of viral vectors.

  9. Formulation development of smart gel periodontal drug delivery system for local delivery of chemotherapeutic agents with application of experimental design.

    Science.gov (United States)

    Dabhi, Mahesh R; Nagori, Stavan A; Gohel, Mukesh C; Parikh, Rajesh K; Sheth, Navin R

    2010-01-01

    Smart gel periodontal drug delivery systems (SGPDDS) containing gellan gum (0.1-0.8% w/v), lutrol F127 (14, 16, and 18% w/v), and ornidazole (1% w/v) were designed for the treatment of periodontal diseases. Each formulation was characterized in terms of in vitro gelling capacity, viscosity, rheology, content uniformity, in vitro drug release, and syringeability. In vitro gelation time and the nature of the gel formed in simulated saliva for prepared formulations showed polymeric concentration dependency. Drug release data from all formulations was fitted to different kinetic models and the Korsemeyer-Peppas model was the best fit model. Drug release was significantly decreased as the concentration of each polymer component was increased. Increasing the concentration of each polymeric component significantly increased viscosity, syringeability, and time for 50%, 70%, and 90% drug release. In conclusion, the formulations described offer a wide range of physical and drug release characteristics. The formulation containing 0.8% w/v of gellan gum and 16% w/v of lutrol F127 exhibited superior physical characteristics.

  10. Formulation and Evaluation of Optimized Oxybenzone Microsponge Gel for Topical Delivery

    Directory of Open Access Journals (Sweden)

    Atmaram P. Pawar

    2015-01-01

    Full Text Available Background. Oxybenzone, a broad spectrum sunscreen agent widely used in the form of lotion and cream, has been reported to cause skin irritation, dermatitis, and systemic absorption. Aim. The objective of the present study was to formulate oxybenzone loaded microsponge gel for enhanced sun protection factor with reduced toxicity. Material and Method. Microsponge for topical delivery of oxybenzone was successfully prepared by quasiemulsion solvent diffusion method. The effects of ethyl cellulose and dichloromethane were optimized by the 32 factorial design. The optimized microsponges were dispersed into the hydrogel and further evaluated. Results. The microsponges were spherical with pore size in the range of 0.10–0.22 µm. The optimized formulation possesses the particle size and entrapment efficiency of 72 ± 0.77 µm and 96.9 ± 0.52%, respectively. The microsponge gel showed the controlled release and was nonirritant to the rat skin. In creep recovery test it had shown highest recovery indicating elasticity. The controlled release of oxybenzone from microsponge and barrier effect of gel result in prolonged retention of oxybenzone with reduced permeation activity. Conclusion. Evaluation study revealed remarkable and enhanced topical retention of oxybenzone for prolonged period of time. It also showed the enhanced sun protection factor compared to the marketed preparation with reduced irritation and toxicity.

  11. Surfactant-assisted sol–gel synthesis of forsterite nanoparticles as a novel drug delivery system

    Energy Technology Data Exchange (ETDEWEB)

    Hassanzadeh-Tabrizi, S.A., E-mail: tabrizi1980@gmail.com [Young Researchers and Elite Club, Najafabad Branch, Islamic Azad University, Najafabad, Isfahan (Iran, Islamic Republic of); Bigham, Ashkan [Advanced Materials Research Center, Materials Engineering Department, Najafabad Branch, Islamic Azad University, Najafabad, Isfahan (Iran, Islamic Republic of); Rafienia, Mohammad [Biosensor Research Center, Isfahan University of Medical Sciences, Isfahan (Iran, Islamic Republic of)

    2016-01-01

    In the present study, forsterite nanoparticles were synthesized via surfactant-assisted sol–gel method using cetyltrimethyl ammonium bromide (CTAB) as a surfactant. The effects of CTAB contents and heat treatment on the textural properties and drug release from nanoparticles were investigated. The synthesized powders were studied by X-ray diffraction, Fourier transform infrared spectra, Brunauer–Emmett–Teller surface area analysis and transmission electron microscope images. Mg{sub 2}SiO{sub 4} materials demonstrated mesoporous characteristics and large specific surface area ranging from 159 to 30 m{sup 2}/g. The TEM results showed that forsterite nanorods had diameters about 4 nm and lengths ranging from 10 to 60 nm. It was found that the samples with 6 g CTAB show slower drug release rate than the other specimens, which is due to smaller pore size. This study revealed that the drug delivery of forsterite can be tailored by changing the amount of surfactant. - Highlights: • Forsterite nanoparticles were synthesized via surfactant-assisted sol–gel method. • Nanoparticles were loaded with ibuprofen as a novel drug delivery system. • Synthesized nanoparticles had a rod-like morphology. • CTAB concentration strongly affected the textural properties and drug release of the nanoparticles.

  12. Modified thermoresponsive Poloxamer 407 and chitosan sol-gels as potential sustained-release vaccine delivery systems

    DEFF Research Database (Denmark)

    Kojarunchitt, Thunjiradasiree; Baldursdottir, Stefania; Dong, Yao-Da

    2015-01-01

    Thermoresponsive, particle-loaded, Poloxamer 407 (P407)-Pluronic-R® (25R4) or chitosan-methyl cellulose (MC) formulations were developed as single-dose, sustained release vaccines. The sol-gels, loaded either with a particulate vaccine (cubosomes) or soluble antigen (ovalbumin) and adjuvants (Quil...... the chitosan-MC sol-gels sustained the release of antigen up to at least 14 days after administration. The chitosan-MC sol-gels stimulated both cellular and humoral responses. The inclusion of cubosomes in the sol-gels did not provide a definitive beneficial effect. Further analysis of the formulations...... with small-angle X-ray scattering (SAXS) revealed that while cubosomes were stable in chitosan-MC gels they were not stable in P407-25R4 formulations. The reason for the mixed response to cubosome-loaded vehicles requires more investigation, however it appears that the cubosomes did not facilitate...

  13. Efficacy of local drug delivery of Achyranthes aspera gel in the management of chronic periodontitis: A clinical study

    Directory of Open Access Journals (Sweden)

    Ramanarayana Boyapati

    2017-01-01

    Full Text Available Context: Periodontitis is an inflammatory disease of microbial origin. Locally delivered antimicrobials reduce subgingival flora. Achyranthes aspera gel has antimicrobial, antioxidant, anti-inflammatory, and immunostimulant effects. Aims: To evaluate the efficacy of local drug delivery of A. aspera gel in the management of chronic periodontitis. Materials and Methods: Thirty patients with chronic periodontitis were considered in the study and categorized into two equal groups (Group A: scaling and root planing (SRP with A. aspera gel, Group B: SRP with placebo gel. Patients were enlisted from the Department of Periodontics, Mamata Dental College and Hospital. The clinical parameters (gingival index, bleeding on probing, probing pocket depth, and clinical attachment level were recorded at baseline and 3 months. Statistical Analysis Used: All the obtained data were sent for statistical analyses using SPSS version 18. Results: The periodontitis and the Achyranthes were statistically analyzed. A comparison of clinical parameters for test group and control group from baseline to 3 months was done using paired t-test. Intergroup comparison for both the groups was done using independent sample t-test. Conclusions: A. aspera gel when delivered locally along with SRP showed a beneficial effect. A. aspera gel as a non-surgical local drug delivery system proved to be without any side effects in the management of periodontitis. A. aspera gel has strong anti-inflammatory effects in addition to its antioxidant activity.

  14. Efficacy of local drug delivery of Achyranthes aspera gel in the management of chronic periodontitis: A clinical study.

    Science.gov (United States)

    Boyapati, Ramanarayana; Gojja, Prathibha; Chintalapani, Srikanth; Nagubandi, Kirankumar; Ramisetti, Arpita; Salavadhi, Shyam Sunder

    2017-01-01

    Periodontitis is an inflammatory disease of microbial origin. Locally delivered antimicrobials reduce subgingival flora. Achyranthes aspera gel has antimicrobial, antioxidant, anti-inflammatory, and immunostimulant effects. To evaluate the efficacy of local drug delivery of A. aspera gel in the management of chronic periodontitis. Thirty patients with chronic periodontitis were considered in the study and categorized into two equal groups (Group A: scaling and root planing (SRP) with A. aspera gel, Group B: SRP with placebo gel). Patients were enlisted from the Department of Periodontics, Mamata Dental College and Hospital. The clinical parameters (gingival index, bleeding on probing, probing pocket depth, and clinical attachment level) were recorded at baseline and 3 months. All the obtained data were sent for statistical analyses using SPSS version 18. The periodontitis and the Achyranthes were statistically analyzed. A comparison of clinical parameters for test group and control group from baseline to 3 months was done using paired t -test. Intergroup comparison for both the groups was done using independent sample t -test. A. aspera gel when delivered locally along with SRP showed a beneficial effect. A. aspera gel as a non-surgical local drug delivery system proved to be without any side effects in the management of periodontitis. A. aspera gel has strong anti-inflammatory effects in addition to its antioxidant activity.

  15. Transethosomal gels as carriers for the transdermal delivery of colchicine: statistical optimization, characterization, and ex vivo evaluation.

    Science.gov (United States)

    Abdulbaqi, Ibrahim M; Darwis, Yusrida; Assi, Reem Abou; Khan, Nurzalina Abdul Karim

    2018-01-01

    Colchicine is used for the treatment of gout, pseudo-gout, familial Mediterranean fever, and many other illnesses. Its oral administration is associated with poor bioavailability and severe gastrointestinal side effects. The drug is also known to have a low therapeutic index. Thus to overcome these drawbacks, the transdermal delivery of colchicine was investigated using transethosomal gels as potential carriers. Colchicine-loaded transethosomes (TEs) were prepared by the cold method and statistically optimized using three sets of 24 factorial design experiments. The optimized formulations were incorporated into Carbopol 940 ® gel base. The prepared colchicine-loaded transethosomal gels were further characterized for vesicular size, dispersity, zeta potential, drug content, pH, viscosity, yield, rheological behavior, and ex vivo skin permeation through Sprague Dawley rats' back skin. The results showed that the colchicine-loaded TEs had aspherical irregular shape, nanometric size range, and high entrapment efficiency. All the formulated gels exhibited non-Newtonian plastic flow without thixotropy. Colchicine-loaded transethosomal gels were able to significantly enhance the skin permeation parameters of the drug in comparison to the non-ethosomal gel. These findings suggested that the transethosomal gels are promising carriers for the transdermal delivery of colchicine, providing an alternative route for drug administration.

  16. Transethosomal gels as carriers for the transdermal delivery of colchicine: statistical optimization, characterization, and ex vivo evaluation

    Directory of Open Access Journals (Sweden)

    Abdulbaqi IM

    2018-04-01

    Full Text Available Ibrahim M Abdulbaqi, Yusrida Darwis, Reem Abou Assi, Nurzalina Abdul Karim Khan School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden, Penang, Malaysia Introduction: Colchicine is used for the treatment of gout, pseudo-gout, familial Mediterranean fever, and many other illnesses. Its oral administration is associated with poor bioavailability and severe gastrointestinal side effects. The drug is also known to have a low therapeutic index. Thus to overcome these drawbacks, the transdermal delivery of colchicine was investigated using transethosomal gels as potential carriers.Methods: Colchicine-loaded transethosomes (TEs were prepared by the cold method and statistically optimized using three sets of 24 factorial design experiments. The optimized formulations were incorporated into Carbopol 940® gel base. The prepared colchicine-loaded transethosomal gels were further characterized for vesicular size, dispersity, zeta potential, drug content, pH, viscosity, yield, rheological behavior, and ex vivo skin permeation through Sprague Dawley rats’ back skin.Results: The results showed that the colchicine-loaded TEs had aspherical irregular shape, nanometric size range, and high entrapment efficiency. All the formulated gels exhibited non-Newtonian plastic flow without thixotropy. Colchicine-loaded transethosomal gels were able to significantly enhance the skin permeation parameters of the drug in comparison to the non-ethosomal gel.Conclusion: These findings suggested that the transethosomal gels are promising carriers for the transdermal delivery of colchicine, providing an alternative route for drug administration. Keywords: transethosomes, ethosomal nanocarriers, colchicine, factorial design, skin permeation, rheology

  17. Exosomes as Novel microRNA-Delivery Vehicles to Modulate Prostate Cancer Progression

    Science.gov (United States)

    2015-10-01

    AWARD NUMBER: W81XWH-14-1-0548 TITLE: Exosomes as Novel microRNA-Delivery Vehicles to Modulate Prostate Cancer Progression PRINCIPAL...Sep 2015 4. TITLE AND SUBTITLE Exosomes as Novel microRNA-Delivery Vehicles to Modulate Prostate Cancer Progression 5a. CONTRACT NUMBER 5b. GRANT...In this exploratory award, we are investigating the functional significance of exosomal miRNAs in prostate cancer . We are characterizing the miRNA

  18. Lecithin-based nanostructured gels for skin delivery: an update on state of art and recent applications.

    Science.gov (United States)

    Elnaggar, Yosra S R; El-Refaie, Wessam M; El-Massik, Magda A; Abdallah, Ossama Y

    2014-04-28

    Conventional carriers for skin delivery encounter obstacles of drug leakage, scanty permeation and low entrapment efficiency. Phospholipid nanogels have recently been recognized as prominent delivery systems to circumvent such obstacles and impart easier application. The current review provides an overview on different types of lecithin nanostructured gels, with particular emphasis on liposomal versus microemulsion gelled systems. Liposomal gels investigated encompassed classic liposomal hydrogel, modified liposomal gels (e.g. Transferosomal, Ethosomal, Pro-liposomal and Phytosomal gels), Microgel in liposomes (M-i-L) and Vesicular phospholipid gel (VPG). Microemulsion gelled systems encompassed Lecithin microemulsion-based organogels (LMBGs), Pluronic lecithin organogels (PLOs) and Lecithin-stabilized microemulsion-based hydrogels. All systems were reviewed regarding matrix composition, state of art, characterization and updated applications. Different classes of lecithin nanogels exhibited crucial impact on transdermal delivery regarding drug permeation, drug loading and stability aspects. Future perspectives of this theme issue are discussed based on current laboratory studies. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Alginate and DNA Gels Are Suitable Delivery Systems for Diabetic Wound Healing.

    Science.gov (United States)

    Tellechea, Ana; Silva, Eduardo A; Min, Jianghong; Leal, Ermelindo C; Auster, Michael E; Pradhan-Nabzdyk, Leena; Shih, William; Mooney, David J; Veves, Aristidis

    2015-06-01

    Diabetic foot ulcers (DFU) represent a severe health problem and an unmet clinical challenge. In this study, we tested the efficacy of novel biomaterials in improving wound healing in mouse models of diabetes mellitus (DM). The biomaterials are composed of alginate- and deoxyribonucleic acid (DNA)-based gels that allow incorporation of effector cells, such as outgrowth endothelial cells (OEC), and provide sustained release of bioactive factors, such as neuropeptides and growth factors, which have been previously validated in experimental models of DM wound healing or hind limb ischemia. We tested these biomaterials in mice and demonstrate that they are biocompatible and can be injected into the wound margins without major adverse effects. In addition, we show that the combination of OEC and the neuropeptide Substance P has a better healing outcome than the delivery of OEC alone, while subtherapeutic doses of vascular endothelial growth factor (VEGF) are required for the transplanted cells to exert their beneficial effects in wound healing. In summary, alginate and DNA scaffolds could serve as potential delivery systems for the next-generation DFU therapies. © The Author(s) 2015.

  20. Single-Commodity Vehicle Routing Problem with Pickup and Delivery Service

    Directory of Open Access Journals (Sweden)

    Goran Martinovic

    2008-01-01

    Full Text Available We present a novel variation of the vehicle routing problem (VRP. Single commodity cargo with pickup and delivery service is considered. Customers are labeled as either cargo sink or cargo source, depending on their pickup or delivery demand. This problem is called a single commodity vehicle routing problem with pickup and delivery service (1-VRPPD. 1-VRPPD deals with multiple vehicles and is the same as the single-commodity traveling salesman problem (1-PDTSP when the number of vehicles is equal to 1. Since 1-VRPPD specializes VRP, it is hard in the strong sense. Iterative modified simulated annealing (IMSA is presented along with greedy random-based initial solution algorithm. IMSA provides a good approximation to the global optimum in a large search space. Experiment is done for the instances with different number of customers and their demands. With respect to average values of IMSA execution times, proposed method is appropriate for practical applications.

  1. Formulation, functional evaluation and ex vivo performance of thermoresponsive soluble gels - A platform for therapeutic delivery to mucosal sinus tissue.

    Science.gov (United States)

    Pandey, Preeti; Cabot, Peter J; Wallwork, Benjamin; Panizza, Benedict J; Parekh, Harendra S

    2017-01-01

    Mucoadhesive in situ gelling systems (soluble gels) have received considerable attention recently as effective stimuli-transforming vectors for a range of drug delivery applications. Considering this fact, the present work involves systematic formulation development, optimization, functional evaluation and ex vivo performance of thermosensitive soluble gels containing dexamethasone 21-phosphate disodium salt (DXN) as the model therapeutic. A series of in situ gel-forming systems comprising the thermoreversible polymer poloxamer-407 (P407), along with hydroxypropyl methyl cellulose (HPMC) and chitosan were first formulated. The optimized soluble gels were evaluated for their potential to promote greater retention at the mucosal surface, for improved therapeutic efficacy, compared to existing solution/suspension-based steroid formulations used clinically. Optimized soluble gels demonstrated a desirable gelation temperature with Newtonian fluid behaviour observed under storage conditions (4-8°C), and pseudoplastic fluid behaviour recorded at nasal cavity/sinus temperature (≈34°C). The in vitro characterization of formulations including rheological evaluation, textural analysis and mucoadhesion studies of the gel form were investigated. Considerable improvement in mechanical properties and mucoadhesion was observed with incorporation of HPMC and chitosan into the gelling systems. The lead poloxamer-based soluble gels, PGHC4 and PGHC7, which were carried through to ex vivo permeation studies displayed extended drug release profiles in conditions mimicking the human nasal cavity, which indicates their suitability for treating a range of conditions affecting the nasal cavity/sinuses. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Food Delivery System with the Utilization of Vehicle Using Geographical Information System (GIS) and A Star Algorithm

    Science.gov (United States)

    Siregar, B.; Gunawan, D.; Andayani, U.; Sari Lubis, Elita; Fahmi, F.

    2017-01-01

    Food delivery system is one kind of geographical information systems (GIS) that can be applied through digitation process. The main case in food delivery system is the way to determine the shortest path and food delivery vehicle movement tracking. Therefore, to make sure that the digitation process of food delivery system can be applied efficiently, it is needed to add shortest path determination facility and food delivery vehicle tracking. This research uses A Star (A*) algorithm for determining shortest path and location-based system (LBS) programming for moving food delivery vehicle object tracking. According to this research, it is generated the integrated system that can be used by food delivery driver, customer, and administrator in terms of simplifying the food delivery system. Through the application of shortest path and the tracking of moving vehicle, thus the application of food delivery system in the scope of geographical information system (GIS) can be executed.

  3. An Update on in Vivo Imaging of Extracellular Vesicles as Drug Delivery Vehicles

    Directory of Open Access Journals (Sweden)

    Prakash Gangadaran

    2018-02-01

    Full Text Available Extracellular vesicles (EVs are currently being considered as promising drug delivery vehicles. EVs are naturally occurring vesicles that exhibit many characteristics favorable to serve as drug delivery vehicles. In addition, EVs have inherent properties for treatment of cancers and other diseases. For research and clinical translation of use of EVs as drug delivery vehicles, in vivo tracking of EVs is essential. The latest molecular imaging techniques enable the tracking of EVs in living animals. However, each molecular imaging technique has its certain advantages and limitations for the in vivo imaging of EVs; therefore, understanding the molecular imaging techniques is essential to select the most appropriate imaging technology to achieve the desired imaging goal. In this review, we summarize the characteristics of EVs as drug delivery vehicles and the molecular imaging techniques used in visualizing and monitoring EVs in in vivo environments. Furthermore, we provide a perceptual vision of EVs as drug delivery vehicles and in vivo monitoring of EVs using molecular imaging technologies.

  4. Peptide-based soft materials as potential drug delivery vehicles.

    Science.gov (United States)

    Verma, Sandeep; Joshi, K B; Ghosh, Surajit

    2007-11-01

    Emerging concepts in the construction of nanostructures hold immense potential in the areas of drug delivery and targeting. Such nanoscopic assemblies/structures, similar to natural proteins and self-associating systems, may lead to the formation of programmable soft structures with expanded drug delivery options and the capability to circumvent first-pass metabolism. This article aims to illustrate key recent developments and innovative bioinspired design paradigms pertaining to peptide-containing self-assembled tubular and vesicular soft structures. Soft structures are composed of components that self-assemble to reveal diverse morphologies stabilized by weak, noncovalent interactions. Morphological properties of such structures and their ability to encapsulate drugs, biologicals and bioactive small molecules, with the promise of targeted delivery, are discussed.

  5. Synthesis of mesoporous silica nanoparticles by sol–gel as nanocontainer for future drug delivery applications

    Energy Technology Data Exchange (ETDEWEB)

    Vazquez, N.I.; Gonzalez, Z.; Ferrari, B.; Castro, Y.

    2017-07-01

    Development of mesoporous silica nanoparticles as carriers for drug delivery systems has increased exponentially during the last decade. The present work is focused on the synthesis of silica carriers by sol–gel from tetraethyl orthosilicate (TEOS) as precursor of silica and cetyltrimethylammonium bromide (CTAB) as pore generating agent. The synthesis conditions were modified varying the molar ratio of water/TEOS, NH3/TEOS and amount of CTAB. The silica particles were characterized by scan electron microscopy techniques (FESEM), high resolution transmission electron microscopy (HR-TEM), N2 adsorption–desorption isotherms, Zeta-potential and Dynamic Light Scattering (DLS). The results show that the specific surface area and the porosity of silica particles were strongly affected by the addition of CTAB and the amount of H2O. The dispersion and stability of silica mesoporous particles is achieved in spite of the high surface reactivity. The synthesis formulation affects considerably to the particle morphology, which changes from spheres to rods when the molar ratio of H2O increases. A maximum specific surface area of 1480m2/g was obtained with pore sizes ranging 2.5–2.8nm. (Author)

  6. HDL as a drug and nucleic acid delivery vehicle

    Directory of Open Access Journals (Sweden)

    Andras G Lacko

    2015-10-01

    Full Text Available This review is intended to evaluate the research findings and potential clinical applications of drug transport systems, developed based on the concepts of the structure/function and physiological role(s of high density lipoprotein=type nanoparticles. These macromolecules provide targeted transport of cholesteryl esters (a highly lipophilic payload in their natural/physiological environment. The property of accommodating highly water insoluble constituents in their core region enables HDL type nanoparticles to effectively transport hydrophobic drugs upon intravenous administration. Even though the application of reconstituted HDL in the treatment of a number of diseases is reviewed, the primary focus is on the application of HDL type drug delivery agents in cancer chemotherapy. The use of both native and synthetic HDL as drug delivery agents are compared to evaluate their respective potentials for commercial and clinical development. The current status and future perspectives for HDL type nanoparticles are discussed, including current obstacles and future applications in therapeutics.

  7. Modified biomolecule as potential vehicle for buccal delivery of doxepin.

    Science.gov (United States)

    Laffleur, Flavia; Zilio, Martina; Shuwisitkul, Duangratana

    2016-10-01

    Doxepin is a traditional tricyclic antidepressant with analgesic and anesthetic properties when applied topically to the mucosa. Doxepin is one approach in treating insomnia and depression in Parkinson's disease. Patients with Parkinson's disease suffer difficulties in swallowing. Therefore, it was the aim of this study to develop a buccal-adhesive delivery system. Pectin was modified with cysteine. Stability assays in form of disintegration assay according to the Ph.Eur were performed. Furthermore, bioadhesiveness on buccal mucosa was investigated incorporating the drug doxepin. The adhesiveness was improved 1.4-fold and revealed a sustained release over 3 h. Taking these findings into account, the modifications render this designed excipient fruitful for buccal delivery.

  8. Design of a multi-vehicles delivery tours satisfying duration constraints

    Energy Technology Data Exchange (ETDEWEB)

    Langevin, A; Soumis, F

    1987-01-01

    The following organization was studied for the letter and parcel pick-up and delivery problem in an urban environment. The day is divided in periods of time in which each vehicle starts from a sorting centre, travels to a very precise area of the region, picks up and delivers letters and parcels, and returns to the depot to have the collected material sorted out for delivery during the following period. The intent of this approach is to have each zone serviced by one vehicle only, in order to facilitate the work of the dispatcher and routing of each vehicle. A method has been developed of partitioning an urban region into zones to be assigned, each one to a specific vehicle, so as to minimize the total number of vehicles used or the total distance travelled by all vehicles. The first part of the method determines the zones and the average number of points to visit. Then, a first refinement of the method takes into account the daily variability of the demand in each zone, whereas a second refinement examines the advantage of allowing some overlapping of zones for the purpose of having an overloaded vehicle relieved by one from an adjacent zone. 17 refs., 11 figs., 2 tabs.

  9. In situ delivery of thermosensitive gel-mediated 5-fluorouracil microemulsion for the treatment of colorectal cancer

    Science.gov (United States)

    Wang, Lu-Lu; Huang, Shuai; Guo, Hui-Hui; Han, Yan-Xing; Zheng, Wen-Sheng; Jiang, Jian-Dong

    2016-01-01

    In situ administration of 5-fluorouracil (5FU) “thermosensitive” gel effectively reduced systemic side effects in treating colon rectal cancer; however, the penetration efficacy of the formulation was considerably low due to the poor lipid solubility of 5FU. The aim of this study was to develop thermosensitive gel-mediated 5FU water-in-oil microemulsion (TG-5FU-ME) for improving the infiltration of 5FU. An in vitro release test showed that TG-5FU-ME sustained the drug’s release up to 10 hours. TG-5FU-ME exhibited good stability, and the microemulsion entrapped did not show any change in morphology and 5FU content during the 4-month storage. Transportation test in the Caco-2 cell monolayer showed that TG-5FU-ME had a permeability 6.3 times higher than that of 5FU thermosensitive gel, and the intracellular uptake of 5FU increased by 5.4-fold compared to that of 5FU thermosensitive gel. In vivo tissue distribution analysis exhibited that the TG-5FU-ME group had drug levels in rectal tissue and mesenteric lymph nodes, which were significantly higher than those of 5FU thermosensitive gel group, with very low blood levels of 5FU in both groups. Furthermore, TG-5FU-ME was not associated with detectable morphological damage to the rectal tissue. Conclusively, TG-5FU-ME might be an efficient rectal delivery system to treat colorectal cancer. PMID:27660416

  10. Branch-and-cut algorithms for the split delivery vehicle routing problem

    NARCIS (Netherlands)

    Archetti, Claudia; Bianchessi, Nicola; Speranza, M. Grazia

    2014-01-01

    In this paper we present two exact branch-and-cut algorithms for the Split Delivery Vehicle Routing Problem (SDVRP) based on two relaxed formulations that provide lower bounds to the optimum. Procedures to obtain feasible solutions to the SDVRP from a feasible solution to the relaxed formulations

  11. An Ant Colony Optimization and Hybrid Metaheuristics Algorithm to Solve the Split Delivery Vehicle Routing Problem

    Science.gov (United States)

    2015-01-01

    solution approach that combines heuristic search and integer programming. Boudia et al. (2007) solved an SDVRP instance using a memetic algorithm with...Boudia, M., Prins, C., Reghioui, M., 2007. An effective memetic algorithm with population management for the split delivery vehicle routing problem

  12. Development and Evaluation of Naproxen Sodium Gel Using Piper cubeba for Enhanced Transdermal Drug Delivery and Therapeutic Facilitation.

    Science.gov (United States)

    Patwardhan, Sunetra; Patil, Manohar; Sockalingam, Anbazhagan

    2017-01-01

    The absorption of drug through skin avoids many side effects of oral route like gastric irritation, nausea, systemic toxicity etc and thus improves patient compliance. Naproxen sodium (NPRS) is one of the potent NSAID agents. The present study was aimed to develop and evaluate the gel formulation containing NPRS for transdermal drug delivery reducing the side effects and improving patient compliance. The patents on topical delivery of NSAIDS (US 9012402 B1, US 9072659 B2, US 20150258196 A1) and patents indicating use of herbal penetration enhancers (US 20100273746A1, WO 2005009510 A2, US 6004969 A) helped in selecting the drug, excipients. Current protocol employs various extracts of Piper cubeba fruit to evaluate its role in absorption of NPRS. Various batches containing 1% NPRS and varying concentrations of synthetic permeation enhancers or the extracts were formulated in carbopol gel. Gel was evaluated for parameters like organoleptic parameters, pH, viscosity and spreadability. An ex-vivo percutaneous absorption of NPRS from gel was investigated and compared with best performing synthetic enhancer, transcutol P (TP). The batch containing 2% n-hexane extract (NHE) of Piper cubeba showed higher permeation than TP and Chloroform (CE), Methanolic (ME) and aqueous (AE) extracts as well. It showed improved % cumulative release (85.09%) and flux (278.61μg/cm2.h), as compared to TP and other extracts. Histopathology indicated the formulation safer as compared to that with synthetic enhancer. It suggests P. cubeba as effective and safer tool for transdermal delivery and acts as therapeutic facilitator for naproxen. GC-MS analysis indicates lignans & terpenes in NHE to which this permeation enhancement activity may be attributed. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  13. Biophysical aspects of using liposomes as delivery vehicles.

    Science.gov (United States)

    Ulrich, Anne S

    2002-04-01

    Liposomes are used as biocompatible carriers of drugs, peptides, proteins, plasmic DNA, antisense oligonucleotides or ribozymes, for pharmaceutical, cosmetic, and biochemical purposes. The enormous versatility in particle size and in the physical parameters of the lipids affords an attractive potential for constructing tailor-made vehicles for a wide range of applications. Some of the recent literature will be reviewed here and presented from a biophysical point of view, thus providing a background for the more specialized articles in this special issue on liposome technology. Different properties (size, colloidal behavior, phase transitions, and polymorphism) of diverse lipid formulations (liposomes, lipoplexes, cubic phases, emulsions, and solid lipid nanoparticles) for distinct applications (parenteral, transdermal, pulmonary, and oral administration) will be rationalized in terms of common structural, thermodynamic and kinetic parameters of the lipids. This general biophysical basis helps to understand pharmaceutically relevant aspects such as liposome stability during storage and towards serum, the biodistribution and specific targeting of cargo, and how to trigger drug release and membrane fusion. Methods for the preparation and characterization of liposomal formulations in vitro will be outlined, too.

  14. Time Dependent Heterogeneous Vehicle Routing Problem for Catering Service Delivery Problem

    Science.gov (United States)

    Azis, Zainal; Mawengkang, Herman

    2017-09-01

    The heterogeneous vehicle routing problem (HVRP) is a variant of vehicle routing problem (VRP) which describes various types of vehicles with different capacity to serve a set of customers with known geographical locations. This paper considers the optimal service deliveries of meals of a catering company located in Medan City, Indonesia. Due to the road condition as well as traffic, it is necessary for the company to use different type of vehicle to fulfill customers demand in time. The HVRP incorporates time dependency of travel times on the particular time of the day. The objective is to minimize the sum of the costs of travelling and elapsed time over the planning horizon. The problem can be modeled as a linear mixed integer program and we address a feasible neighbourhood search approach to solve the problem.

  15. Mesoporous silica nanoparticles as a biomolecule delivery vehicle in plants

    Energy Technology Data Exchange (ETDEWEB)

    Hussain, Hashmath I., E-mail: hashmath.i@deakin.edu.au [Deakin University, Centre for Chemistry and Biotechnology, School of Life and Environmental Sciences (Australia); Yi, Zhifeng [Deakin University, Institute for Frontier Materials (Australia); Rookes, James E. [Deakin University, Centre for Chemistry and Biotechnology, School of Life and Environmental Sciences (Australia); Kong, Lingxue X. [Deakin University, Institute for Frontier Materials (Australia); Cahill, David M. [Deakin University, Centre for Chemistry and Biotechnology, School of Life and Environmental Sciences (Australia)

    2013-06-15

    We report the uptake by wheat, lupin and Arabidopsis of mesoporous silica nanoparticles functionalised with amine cross-linked fluorescein isothiocyanate (MSN-APTES-FITC). The preparation of these particles at room temperature enabled the synthesis of 20 nm particles that contained a network of interconnected pores around 2 nm in diameter. The uptake and distribution of these nanoparticles were examined during seed germination, in roots of plants grown in a hydroponic system and in whole leaves and roots of plants via vacuum infiltration. The nanoparticles did not affect seed germination in lupin and there was no phytotoxicity. Following germination of wheat and lupin grown in a nutrient solution containing nanoparticles, they were found within cells and cell walls of the emerging root and in the vascular transport elements, the xylem, and in other associated cells. In leaves and roots of Arabidopsis the nanoparticles were found, following vacuum infiltration of whole seedlings, to be taken up by the entire leaf and they were principally found in the intercellular spaces of the mesophyll but also throughout much of the root system. We propose that MSNs could be used as a novel delivery system for small molecules in plants.

  16. Aptamer-Mediated Polymeric Vehicles for Enhanced Cell-Targeted Drug Delivery.

    Science.gov (United States)

    Tan, Kei X; Danquah, Michael K; Sidhu, Amandeep; Yon, Lau Sie; Ongkudon, Clarence M

    2018-02-08

    The search for smart delivery systems for enhanced pre-clinical and clinical pharmaceutical delivery and cell targeting continues to be a major biomedical research endeavor owing to differences in the physicochemical characteristics and physiological effects of drug molecules, and this affects the delivery mechanisms to elicit maximum therapeutic effects. Targeted drug delivery is a smart evolution essential to address major challenges associated with conventional drug delivery systems. These challenges mostly result in poor pharmacokinetics due to the inability of the active pharmaceutical ingredients to specifically act on malignant cells thus, causing poor therapeutic index and toxicity to surrounding normal cells. Aptamers are oligonucleotides with engineered affinities to bind specifically to their cognate targets. Aptamers have gained significant interests as effective targeting elements for enhanced therapeutic delivery as they can be generated to specifically bind to wide range of targets including proteins, peptides, ions, cells and tissues. Notwithstanding, effective delivery of aptamers as therapeutic vehicles is challenged by cell membrane electrostatic repulsion, endonuclease degradation, low pH cleavage, and binding conformation stability. The application of molecularly engineered biodegradable and biocompatible polymeric particles with tunable features such as surface area and chemistry, particulate size distribution and toxicity creates opportunities to develop smart aptamer-mediated delivery systems for controlled drug release. This article discusses opportunities for particulate aptamer-drug formulations to advance current drug delivery modalities by navigating active ingredients through cellular and biomolecular traffic to target sites for sustained and controlled release at effective therapeutic dosages while minimizing systemic cytotoxic effects. A proposal for a novel drug-polymer-aptamer-polymer (DPAP) design of aptamer-drug formulation with

  17. An acceptability and safety study of the Duet cervical barrier and gel delivery system in Zimbabwe.

    Science.gov (United States)

    Montgomery, Elizabeth T; Woodsong, Cynthia; Musara, Petina; Cheng, Helen; Chipato, Tsungai; Moench, Thomas R; Spielberg, Freya; van der Straten, Ariane

    2010-08-05

    Adherence problems with coitally dependent, female-initiated HIV prevention methods have contributed to several trials' failure to establish efficacy. Continuous use of a cervical barrier with once-daily cleaning and immediate reinsertion may simplify use for women and improve adherence. We assessed the acceptability and safety of precoital and continuous use of the Duet, a cervical barrier and gel delivery system, in Zimbabwean women. Using a two-arm crossover design with a parallel observation group, we randomized 103 women in a 2:2:1 ratio: (1) to use the Duet continuously for 14 days, followed by a minimum of seven days of washout and then 14 days of precoital use; (2) to use the same Duet regimens in reverse order; or (3) for observation only. Women were aged 18 to 40 years; half were recruited from a pool of previous diaphragm study participants and the other half from the general community. Acceptability and adherence were assessed through an interviewer-administered questionnaire at each of two follow-up visits. Safety was monitored through pelvic speculum exams and report of adverse events. The proportion of women who reported consistent Duet use during sex was virtually identical during continuous and precoital regimens (88.6% vs. 88.9%). Partner refusal was the most common reason cited for non-use during sex in both use regimens. Not having the device handy was the most common reason cited for non-daily use (in the continuous regimen). Most women were "very comfortable" using it continuously (86.3%) and inserting it precoitally (92.8%). The most favoured Duet attribute was that it did not interfere with "natural" sex (55%). The least favoured Duet attribute was the concern that it might come out during sex (71.3%). No serious adverse events were reported during the study; 57 participants reported 90 adverse events classified as mild or moderate. There were no statistically significant differences in: (1) the proportion of women reporting adverse events

  18. Intracellular cargo delivery by virus capsid protein-based vehicles: From nano to micro.

    Science.gov (United States)

    Gao, Ding; Lin, Xiu-Ping; Zhang, Zhi-Ping; Li, Wei; Men, Dong; Zhang, Xian-En; Cui, Zong-Qiang

    2016-02-01

    Cellular delivery is an important concern for the efficiency of medicines and sensors for disease diagnoses and therapy. However, this task is quite challenging. Self-assembly virus capsid proteins might be developed as building blocks for multifunctional cellular delivery vehicles. In this work, we found that SV40 VP1 (Simian virus 40 major capsid protein) could function as a new cell-penetrating protein. The VP1 protein could carry foreign proteins into cells in a pentameric structure. A double color structure, with red QDs (Quantum dots) encapsulated by viral capsids fused with EGFP, was created for imaging cargo delivery and release from viral capsids. The viral capsids encapsulating QDs were further used for cellular delivery of micron-sized iron oxide particles (MPIOs). MPIOs were efficiently delivered into live cells and controlled by a magnetic field. Therefore, our study built virus-based cellular delivery systems for different sizes of cargos: protein molecules, nanoparticles, and micron-sized particles. Much research is being done to investigate methods for efficient and specific cellular delivery of drugs, proteins or genetic material. In this article, the authors describe their approach in using self-assembly virus capsid proteins SV40 VP1 (Simian virus 40 major capsid protein). The cell-penetrating behavior provided excellent cellular delivery and should give a new method for biomedical applications. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Dry Gel Containing Optimized Felodipine-Loaded Transferosomes: a Promising Transdermal Delivery System to Enhance Drug Bioavailability.

    Science.gov (United States)

    Kassem, Mohammed Ali; Aboul-Einien, Mona Hassan; El Taweel, Mai Magdy

    2018-04-30

    Felodipine has a very low bioavailability due to first-pass metabolism. The aim of this study was to enhance its bioavailability by transdermal application. Felodipine-loaded transferosomes were prepared by thin-film hydration using different formulation variables. An optimized formula was designed using statistical experimental design. The independent variables were the used edge activator, its molar ratio to phosphatidylcholine, and presence or absence of cholesterol. The responses were entrapment efficiency of transferosomes, their size, polydispersity index, zeta potential, and percent drug released after 8 h. The optimized formula was subjected to differential scanning calorimetry studies and its stability on storage at 4°C for 6 months was estimated. This formula was improved by incorporation of different permeation enhancers where ex vivo drug flux through mice skin was estimated and the best improved formula was formulated in a gel and lyophilized. The prepared gel was subjected to in vivo study using Plendil® tablets as a reference. According to the calculated desirability, the optimized transferosome formula was that containing sodium deoxycholate as edge activator at 5:1 M ratio to phosphatidylcholine and no cholesterol. The thermograms of this formula indicated the incorporation of felodipine inside the prepared vesicles. None of the tested parameters differed significantly on storage. The lyophilized gel of labrasol-containing formula was chosen for in vivo study. The relative bioavailability of felodipine from the designed gel was 1.7. In conclusion, topically applied lyophilized gel containing felodipine-loaded transferosomes is a promising transdermal delivery system to enhance its bioavailability.

  20. Injury severity in delivery-motorcycle to vehicle crashes in the Seoul metropolitan area.

    Science.gov (United States)

    Chung, Younshik; Song, Tai-Jin; Yoon, Byoung-Jo

    2014-01-01

    More than 56% of motorcycles in Korea are used for the purpose of delivering parcels and food. Since such delivery requires quick service, most motorcyclists commit traffic violations while delivering, such as crossing the centerline, speeding, running a red light, and driving in the opposite direction down one-way streets. In addition, the fatality rate for motorcycle crashes is about 12% of the fatality rate for road traffic crashes, which is considered to be high, although motorcycle crashes account for only 5% of road traffic crashes in South Korea. Therefore, the objective of this study is to analyze the injury severity of vehicle-to-motorcycle crashes that have occurred during delivery. To examine the risk of different injury levels sustained under all crash types of vehicle-to-motorcycle, this study applied an ordered probit model. Based on the results, this study proposes policy implications to reduce the injury severity of vehicle-to-motorcycle crashes during delivery. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Hydraulic Hybrid and Conventional Parcel Delivery Vehicles' Measured Laboratory Fuel Economy on Targeted Drive Cycles

    Energy Technology Data Exchange (ETDEWEB)

    Lammert, M. P.; Burton, J.; Sindler, P.; Duran, A.

    2014-10-01

    This research project compares laboratory-measured fuel economy of a medium-duty diesel powered hydraulic hybrid vehicle drivetrain to both a conventional diesel drivetrain and a conventional gasoline drivetrain in a typical commercial parcel delivery application. Vehicles in this study included a model year 2012 Freightliner P100H hybrid compared to a 2012 conventional gasoline P100 and a 2012 conventional diesel parcel delivery van of similar specifications. Drive cycle analysis of 484 days of hybrid parcel delivery van commercial operation from multiple vehicles was used to select three standard laboratory drive cycles as well as to create a custom representative cycle. These four cycles encompass and bracket the range of real world in-use data observed in Baltimore United Parcel Service operations. The NY Composite cycle, the City Suburban Heavy Vehicle Cycle cycle, and the California Air Resources Board Heavy Heavy-Duty Diesel Truck (HHDDT) cycle as well as a custom Baltimore parcel delivery cycle were tested at the National Renewable Energy Laboratory's Renewable Fuels and Lubricants Laboratory. Fuel consumption was measured and analyzed for all three vehicles. Vehicle laboratory results are compared on the basis of fuel economy. The hydraulic hybrid parcel delivery van demonstrated 19%-52% better fuel economy than the conventional diesel parcel delivery van and 30%-56% better fuel economy than the conventional gasoline parcel delivery van on cycles other than the highway-oriented HHDDT cycle.

  2. Carbon nanotubes part I: preparation of a novel and versatile drug-delivery vehicle

    Science.gov (United States)

    Karimi, Mahdi; Solati, Navid; Amiri, Mohammad; Mirshekari, Hamed; Mohamed, Elmira; Taheri, Mahdiar; Hashemkhani, Mahshid; Saeidi, Ahad; Estiar, Mehrdad Asghari; Kiani, Parnian; Ghasemi, Amir; Basri, Seyed Masoud Moosavi; Aref, Amir R

    2015-01-01

    Introduction It is 23 years since carbon allotrope known as carbon nanotubes (CNT) was discovered by Iijima, who described them as “rolled graphite sheets inserted into each other”. Since then, CNTs have been studied in nanoelectronic devices. However, CNTs also possess the versatility to act as drug- and gene-delivery vehicles. Areas covered This review covers the synthesis, purification and functionalization of CNTs. Arc discharge, laser ablation and chemical vapor deposition are the principle synthesis methods. Non-covalent functionalization relies on attachment of biomolecules by coating the CNT with surfactants, synthetic polymers and biopolymers. Covalent functionalization often involves the initial introduction of carboxylic acids or amine groups, diazonium addition, 1,3-dipolar cycloaddition or reductive alkylation. The aim is to produce functional groups to attach the active cargo. Expert opinion In this review, the feasibility of CNT being used as a drug-delivery vehicle is explored. The molecular composition of CNT is extremely hydrophobic and highly aggregation-prone. Therefore, most of the efforts towards drug delivery has centered on chemical functionalization, which is usually divided in two categories; non-covalent and covalent. The biomedical applications of CNT are growing apace, and new drug-delivery technologies play a major role in these efforts. PMID:25601356

  3. Autonomous self-navigating drug-delivery vehicles: from science fiction to reality.

    Science.gov (United States)

    Petrenko, Valery A

    2017-12-01

    Low efficacy of targeted nanomedicines in biological experiments enforced us to challenge the traditional concept of drug targeting and suggest a paradigm of 'addressed self-navigating drug-delivery vehicles,' in which affinity selection of targeting peptides and vasculature-directed in vivo phage screening is replaced by the migration selection, which explores ability of 'promiscuous' phages and their proteins to migrate through the tumor-surrounding cellular barriers, using a 'hub and spoke' delivery strategy, and penetrate into the tumor affecting the diverse tumor cell population. The 'self-navigating' drug-delivery paradigm can be used as a theoretical and technical platform in design of a novel generation of molecular medications and imaging probes for precise and personal medicine. [Formula: see text].

  4. Preparation and evaluation of a phospholipid-based injectable gel for the long term delivery of leuprolide acetaterrh.

    Science.gov (United States)

    Long, Danhong; Gong, Tao; Zhang, Zhirong; Ding, Rui; Fu, Yao

    2016-07-01

    A phospholipid-based injectable gel was developed for the sustained delivery of leuprolide acetate (LA). The gel system was prepared using biocompatible materials (SPME), including soya phosphatidyl choline (SPC), medium chain triglyceride (MCT) and ethanol. The system displayed a sol state with low viscosity in vitro and underwent in situ gelation in vivo after subcutaneous injection. An in vitro release study was performed using a dialysis setup with different release media containing different percentages of ethanol. The stability of LA in the SPME system was investigated under different temperatures and in the presence of various antioxidants. In vivo studies in male rats were performed to elucidate the pharmacokinetic profiles and pharmacodynamic efficacy. A sustained release of LA for 28 days was observed without obvious initial burst in vivo. The pharmacodynamic study showed that once-a-month injection of LA-loaded SPME (SPME-LA) led to comparable suppression effects on the serum testosterone level as observed in LA solution except for the onset time. These findings demonstrate excellent potential for this novel SPME system as a sustained release delivery system for LA.

  5. Preparation and evaluation of a phospholipid-based injectable gel for the long term delivery of leuprolide acetaterrh

    Directory of Open Access Journals (Sweden)

    Danhong Long

    2016-07-01

    Full Text Available A phospholipid-based injectable gel was developed for the sustained delivery of leuprolide acetate (LA. The gel system was prepared using biocompatible materials (SPME, including soya phosphatidyl choline (SPC, medium chain triglyceride (MCT and ethanol. The system displayed a sol state with low viscosity in vitro and underwent in situ gelation in vivo after subcutaneous injection. An in vitro release study was performed using a dialysis setup with different release media containing different percentages of ethanol. The stability of LA in the SPME system was investigated under different temperatures and in the presence of various antioxidants. In vivo studies in male rats were performed to elucidate the pharmacokinetic profiles and pharmacodynamic efficacy. A sustained release of LA for 28 days was observed without obvious initial burst in vivo. The pharmacodynamic study showed that once-a-month injection of LA-loaded SPME (SPME-LA led to comparable suppression effects on the serum testosterone level as observed in LA solution except for the onset time. These findings demonstrate excellent potential for this novel SPME system as a sustained release delivery system for LA.

  6. Magnetic iron oxide nanoparticles (MIONs) cross-linked natural polymer-based hybrid gel beads: Controlled nano anti-TB drug delivery application.

    Science.gov (United States)

    Kesavan, Mookkandi Palsamy; Ayyanaar, Srinivasan; Vijayakumar, Vijayaparthasarathi; Dhaveethu Raja, Jeyaraj; Annaraj, Jamespandi; Sakthipandi, Kathiresan; Rajesh, Jegathalaprathaban

    2018-04-01

    The nanosized rifampicin (RIF) has been prepared to increase the solubility in aqueous solution, which leads to remarkable enhancement of its bioavailability and their convenient delivery system studied by newly produced nontoxic, biodegradable magnetic iron oxide nanoparticles (MIONs) cross-linked polyethylene glycol hybrid chitosan (mCS-PEG) gel beads. The functionalization of both nano RIF and mCS-PEG gel beads were studied using various spectroscopic and microscopic techniques. The size of prepared nano RIF was found to be 70.20 ± 3.50 nm. The mechanical stability and swelling ratio of the magnetic gel beads increased by the addition of PEG with a maximum swelling ratio of 38.67 ± 0.29 g/g. Interestingly, this magnetic gel bead has dual responsive assets in the nano drug delivery application (pH and the magnetic field). As we expected, magnetic gel beads show higher nano drug releasing efficacy at acidic medium (pH = 5.0) with maximum efficiency of 71.00 ± 0.87%. This efficacy may also be tuned by altering the external magnetic field and the weight percentage (wt%) of PEG. These results suggest that such a dual responsive magnetic gel beads can be used as a potential system in the nano drug delivery applications. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 1039-1050, 2018. © 2017 Wiley Periodicals, Inc.

  7. Lemongrass essential oil gel as a local drug delivery agent for the treatment of periodontitis

    Directory of Open Access Journals (Sweden)

    Shivaraj B Warad

    2013-01-01

    Full Text Available Background: It has been long recognized that periodontal diseases are infections of the periodontium, comprising the bacterial etiology, an immune response, and tissue destruction. Treatment strategies aiming primarily at suppressing or eliminating specific periodontal pathogens include adjunct use of local and systemic antibiotics as part of nonsurgical periodontal therapy. Unwanted side effects and resistance of microorganisms toward antibiotics due to their widespread use have modified the general perception about their efficacy. Research in phytosciences has revealed various medicinal plants offering a new choice of optional antimicrobial therapy. Cymbopogon citratus, Stapf. (lemongrass is a popular medicinal plant. At a concentration ≤2%, lemongrass essential oil inhibits the growth of several kinds of microorganisms including periodontal pathogens, especially the reference strains Actinomyces naeslundii and Porphyromonas gingivalis, which were resistant to tetracycline hydrochloride. Aims: To evaluate the efficacy of locally delivered 2% lemongrass essential oil in gel form as an adjunct to scaling and root planing, as compared to scaling and root planing alone for the treatment of chronic periodontitis. Materials and Methods: 2% Lemongrass essential oil gel was prepared and placed in moderate to deep periodontal pockets after scaling and root planing. Results: Statistically significant reduction in probing depth and gingival index and gain in relative attachment level were noted in the experimental group as compared to the control group at 1 and 3 months. Conclusion: Locally delivered 2% lemongrass essential oil gel offers a new choice of safe and effective adjunct to scaling and root planing in periodontal therapy.

  8. Lemongrass essential oil gel as a local drug delivery agent for the treatment of periodontitis

    Science.gov (United States)

    Warad, Shivaraj B.; Kolar, Sahana S.; Kalburgi, Veena; Kalburgi, Nagaraj B.

    2013-01-01

    Background: It has been long recognized that periodontal diseases are infections of the periodontium, comprising the bacterial etiology, an immune response, and tissue destruction. Treatment strategies aiming primarily at suppressing or eliminating specific periodontal pathogens include adjunct use of local and systemic antibiotics as part of nonsurgical periodontal therapy. Unwanted side effects and resistance of microorganisms toward antibiotics due to their widespread use have modified the general perception about their efficacy. Research in phytosciences has revealed various medicinal plants offering a new choice of optional antimicrobial therapy. Cymbopogon citratus, Stapf. (lemongrass) is a popular medicinal plant. At a concentration ≤2%, lemongrass essential oil inhibits the growth of several kinds of microorganisms including periodontal pathogens, especially the reference strains Actinomyces naeslundii and Porphyromonas gingivalis, which were resistant to tetracycline hydrochloride. Aims: To evaluate the efficacy of locally delivered 2% lemongrass essential oil in gel form as an adjunct to scaling and root planing, as compared to scaling and root planing alone for the treatment of chronic periodontitis. Materials and Methods: 2% Lemongrass essential oil gel was prepared and placed in moderate to deep periodontal pockets after scaling and root planing. Results: Statistically significant reduction in probing depth and gingival index and gain in relative attachment level were noted in the experimental group as compared to the control group at 1 and 3 months. Conclusion: Locally delivered 2% lemongrass essential oil gel offers a new choice of safe and effective adjunct to scaling and root planing in periodontal therapy. PMID:24991068

  9. Effects of Carbopol® 934 proportion on nanoemulsion gel for topical and transdermal drug delivery: a skin permeation study

    Directory of Open Access Journals (Sweden)

    Zheng Y

    2016-11-01

    Full Text Available Yin Zheng,1 Wu-Qing Ouyang,1 Yun-Peng Wei,1 Shahid Faraz Syed,2,3 Chao-Shuang Hao,1 Bo-Zhen Wang,4 Yan-Hong Shang1,5 1Department of Basic Veterinary Sciences, College of Veterinary Medicine, 2Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi; 3Faculty of Veterinary and Animal Sciences, Lasbella University of Agriculture Water and Marine Sciences, Uthal Baluchistan, Pakistan; 4College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang, 5College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China Abstract: Nanoemulsions (NEs are used as transdermal drug delivery systems for systematic therapeutic purposes. We hypothesized that the skin permeation profile of an NE could be modulated by incorporating it into a hydrogel containing differing proportions of thickening agent. The objectives of this study were as follows: 1 to determine the stability and skin irritability of NE gels (NGs containing 1%, 2%, and 3% (w/w Carbopol® 934 (CP934 (termed NG1, NG2, and NG3, respectively; 2 to compare the skin permeation profiles and drug deposition patterns of the NGs; and 3 to visualize the drug delivery routes of the NGs. Terbinafine and citral were incorporated into the NGs as model drugs. Ex vivo skin permeation tests indicated that the percutaneous flux rates of terbinafine decreased in the order NE (215 µg/cm2 > NG1 (213 µg/cm2 > NG2 (123 µg/cm2 > NG3 (74.3 µg/cm2. The flux rates of citral decreased in the order NE (1,026 µg/cm2 > NG1 (1,021 µg/cm2 > NG2 (541 µg/cm2 > NG3 (353 µg/cm2. The NGs accumulated greater amounts of the drugs in the stratum corneum and less in the epidermis/dermis than did the NE (P<0.05 over a period of 12 h. Laser scanning confocal microscopy indicated that the NGs altered the main drug delivery routes from skin appendages to intercellular paths. Histological images suggested

  10. Split delivery vehicle routing problem with time windows: a case study

    Science.gov (United States)

    Latiffianti, E.; Siswanto, N.; Firmandani, R. A.

    2018-04-01

    This paper aims to implement an extension of VRP so called split delivery vehicle routing problem (SDVRP) with time windows in a case study involving pickups and deliveries of workers from several points of origin and several destinations. Each origin represents a bus stop and the destination represents either site or office location. An integer linear programming of the SDVRP problem is presented. The solution was generated using three stages of defining the starting points, assigning busses, and solving the SDVRP with time windows using an exact method. Although the overall computational time was relatively lengthy, the results indicated that the produced solution was better than the existing routing and scheduling that the firm used. The produced solution was also capable of reducing fuel cost by 9% that was obtained from shorter total distance travelled by the shuttle buses.

  11. Effects of Fuel Type and Fuel Delivery System on Pollutant Emissions of Pride and Samand Vehicles

    Directory of Open Access Journals (Sweden)

    Akbar Sarhadi

    2017-04-01

    Full Text Available This research was aimed to study the effect of the type of fuel delivery system (petrol, dedicated or bifuel, the type of consumed fuel (petrol or gas, the portion of consumed fuel and also the duration of dual-fuelling in producing carbon monoxide, carbon dioxide and unburned hydrocarbons from Pride and Samand. According to research objectives, data gathering from 2000 vehicles has been done by visiting Hafiz Vehicle Inspection Center every day for 2 months. The results of this survey indicated that although there is no significant difference between various fuel delivery systems in terms of producing the carbon monoxide, carbon dioxide and unburned hydrocarbons by Samand, considering the emission amount of carbon dioxide, the engine performance of Pride in bifuel and dedicated state in GTXI and 132 types is more unsatisfactory than that of petrol state by 0.3 and 0.4%, respectively. On the other hand, consuming natural gas increases the amount of carbon monoxide emission in dual- fuel Pride by 0.18% and decreases that in dual-fuel Samand by 1.2%, which signifies the better design of Samand in terms of fuel pumps, used kit type and other engine parts to use this alternative fuel compared to Pride. Since the portion of consumed fuel and also duration of dual-fuelling does not have a significant effect on the amount of output pollutants from the studied vehicles, it can be claimed that the output substances from the vehicle exhaust are more related to the vehicle’s condition than the fuel type.

  12. Synthetic Nano-Low Density Lipoprotein as Targeted Drug DeliveryVehicle for Glioblastoma Multiforme

    Energy Technology Data Exchange (ETDEWEB)

    Nikanjam, Mina; Blakely, Eleanor A.; Bjornstad, Kathleen A.; Shu,Xiao; Budinger, Thomas F.; Forte, Trudy M.

    2006-06-14

    This paper discribes a synthetic low density lipoprotein(LDL) made by complexing a 29 amino acid that consists of a lipid bindingdomain and the LDL receptor binding domain with a lipid microemulsion.The nano-LDL particles were intermdiate in size between LDL and HDL andbound to LDL receptors on GBM brain tumor cells. Synthetic nano-LDLuptake by GBM cells was LDL receptor specific and dependent on cellreceptor number. It is suggested that these synthetic particles can serveas a delivery vehicle for hydophobic anti-tumor drugs by targeting theLDL receptor.

  13. A novel drug delivery gel of terbinafine hydrochloride with high penetration for external use.

    Science.gov (United States)

    Yang, Yan; Ou, Rujing; Guan, Shixia; Ye, Xiaoling; Hu, Bo; Zhang, Yi; Lu, Shufan; Zhou, Yubin; Yuan, Zhongwen; Zhang, Jun; Li, Qing-Guo

    2015-12-01

    Terbinafine hydrochloride is an antifungal drug for onychomycosis. Poor permeability of its external preparation leads to poor curative effect. Transfersomes, also known as flexible liposome, could improve transmission of drug for local external use. Terbinafine hydrochloride-loaded liposome is expected to become a breakthrough on the treatment of onychomycosis. This study is aimed to prepare high skin penetration terbinafine hydrochloride transfersomes with high encapsulation efficiency, appropriate drug loading and good stability. Taking entrapment efficiency as the main indicator, the formulations and the processes of preparation were investigated. Transfersomes with different surfactants were prepared in the optimization processes, and the formulations were optimized through the transdermal test in vitro. As a result, a gel contained transfersomes was obtained with a brief evaluation. Its pharmacokinetic properties of going through the skin were studied by using the micro dialysis technology and liquid chromatography-mass spectrometry to assay the penetration behavior of terbinafine. Mean particle size of the terbinafine hydrochloride transfersomes was 69.6 ± 1.23 nm, and the entrapment efficiency was 95.4% ± 0.51. The content of the gel was 4.45 ± 0.15 mg/g. The accumulated permeation of the transfersomes gel in 12 h was 88.52 ± 4.06 µg cm -2 and the intracutaneous drug detention was 94.38 ± 5.26 µg cm -2 . The results of pharmacokinetic studies showed the C max and area under the curve (AUC) were apparently higher than the commercial cream. The terbinafine hydrochloride transfersomes was highly absorbed by the skin. The absorption rate was significantly higher than that of the commercial cream either in the transdermal test in vitro or in the pharmacokinetic studies in vivo.

  14. Microneedle assisted micro-particle delivery from gene guns: experiments using skin-mimicking agarose gel.

    Science.gov (United States)

    Zhang, Dongwei; Das, Diganta B; Rielly, Chris D

    2014-02-01

    A set of laboratory experiments has been carried out to determine if micro-needles (MNs) can enhance penetration depths of high-speed micro-particles delivered by a type of gene gun. The micro-particles were fired into a model target material, agarose gel, which was prepared to mimic the viscoelastic properties of porcine skin. The agarose gel was chosen as a model target as it can be prepared as a homogeneous and transparent medium with controllable and reproducible properties allowing accurate determination of penetration depths. Insertions of various MNs into gels have been analysed to show that the length of the holes increases with an increase in the agarose concentration. The penetration depths of micro-particle were analysed in relation to a number of variables, namely the operating pressure, the particle size, the size of a mesh used for particle separation and the MN dimensions. The results suggest that the penetration depths increase with an increase of the mesh pore size, because of the passage of large agglomerates. As these particles seem to damage the target surface, then smaller mesh sizes are recommended; here, a mesh with a pore size of 178 μm was used for the majority of the experiments. The operating pressure provides a positive effect on the penetration depth, that is it increases as pressure is increased. Further, as expected, an application of MNs maximises the micro-particle penetration depth. The maximum penetration depth is found to increase as the lengths of the MNs increase, for example it is found to be 1272 ± 42, 1009 ± 49 and 656 ± 85 μm at 4.5 bar pressure for spherical micro-particles of 18 ± 7 μm diameter when we used MNs of 1500, 1200 and 750 μm length, respectively. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.

  15. The applicability of a gel delivery system for self-administration of buprenorphine to laboratory mice

    DEFF Research Database (Denmark)

    Hovard, A. M. B.; Teilmann, A. C.; Hau, J.

    2015-01-01

    have previously demonstrated sticky nut and chocolate paste to be well-liked by mice and readily ingested in most cases. However, a disadvantage with nut and chocolate paste is its high content of fat and sugar, which may have undesirable effects in some experimental models. Alternatively, a delivery...

  16. Performance Characterization of a Lithium-ion Gel Polymer Battery Power Supply System for an Unmanned Aerial Vehicle

    Science.gov (United States)

    Reid, Concha M.; Manzo, Michelle A.; Logan, Michael J.

    2004-01-01

    Unmanned aerial vehicles (UAVs) are currently under development for NASA missions, earth sciences, aeronautics, the military, and commercial applications. The design of an all electric power and propulsion system for small UAVs was the focus of a detailed study. Currently, many of these small vehicles are powered by primary (nonrechargeable) lithium-based batteries. While this type of battery is capable of satisfying some of the mission needs, a secondary (rechargeable) battery power supply system that can provide the same functionality as the current system at the same or lower system mass and volume is desired. A study of commercially available secondary battery cell technologies that could provide the desired performance characteristics was performed. Due to the strict mass limitations and wide operating temperature requirements of small UAVs, the only viable cell chemistries were determined to be lithium-ion liquid electrolyte systems and lithium-ion gel polymer electrolyte systems. Two lithium-ion gel polymer cell designs were selected as candidates and were tested using potential load profiles for UAV applications. Because lithium primary batteries have a higher specific energy and energy density, for the same mass and volume allocation, the secondary batteries resulted in shorter flight times than the primary batteries typically provide. When the batteries were operated at lower ambient temperatures (0 to -20 C), flight times were even further reduced. Despite the reduced flight times demonstrated, for certain UAV applications, the secondary batteries operated within the acceptable range of flight times at room temperature and above. The results of this testing indicate that a secondary battery power supply system can provide some benefits over the primary battery power supply system. A UAV can be operated for hundreds of flights using a secondary battery power supply system that provides the combined benefits of rechargeability and an inherently safer

  17. Vehicle to Grid regulation services of electric delivery trucks: Economic and environmental benefit analysis

    International Nuclear Information System (INIS)

    Zhao, Yang; Noori, Mehdi; Tatari, Omer

    2016-01-01

    Highlights: • Potential net present revenues of electric truck based V2G regulation services are investigated. • GHG emission mitigation of V2G regulation services provided by electric trucks are quantified. • The total cost of ownership and the life-cycle GHG emissions of electric trucks are also analyzed. • V2G regulation services for electric trucks could yield considerable revenues and GHG emission savings. - Abstract: Concerns regarding the fuel costs and climate change impacts associated with petroleum combustion are among the main driving factors for the adoption of electric vehicles. Future commercial delivery truck fleets may include Battery Electric Vehicles (BEVs) and Extended Range Electric Vehicles (EREVs); in addition to savings on fuel and maintenance costs, the introduction of these grid accessible electric vehicles will also provide fleet owners with possible Vehicle to Grid (V2G) opportunities. This study investigates the potential net present revenues and greenhouse gas (GHG) emission mitigation of V2G regulation services provided by electric trucks in a typical fleet. The total cost of ownership and the life-cycle GHG emissions of electric trucks are also analyzed and compared to those of traditional diesel trucks. To account for uncertainties, possible ranges for key parameters are considered instead of only considering fixed single data values for each parameter. The results of this research indicate that providing V2G regulation services for electric trucks could yield considerable additional revenues ($20,000–50,000) and significant GHG emission savings (approximately 300 ton CO_2) compared to conventional diesel trucks.

  18. Hyaluronic acid: a unique topical vehicle for the localized delivery of drugs to the skin.

    Science.gov (United States)

    Brown, M B; Jones, S A

    2005-05-01

    Hyaluronic acid (HA) is a naturally occurring polyanionic, polysaccharide that consists of N-acetyl-D-glucosamine and beta-glucoronic acid. It is present in the intercellular matrix of most vertebrate connective tissues especially skin where it has a protective, structure stabilizing and shock-absorbing role. The unique viscoelastic nature of HA along with its biocompatibility and non-immunogenicity has led to its use in a number of clinical applications, which include: the supplementation of joint fluid in arthritis; as a surgical aid in eye surgery; and to facilitate the healing and regeneration of surgical wounds. More recently, HA has been investigated as a drug delivery agent for various routes of administration, including ophthalmic, nasal, pulmonary, parenteral and topical. In fact, regulatory approval in the USA, Canada and Europe was granted recently for 3% diclofenac in 2.5% HA gel, Solaraze, for the topical treatment of actinic keratoses, which is the third most common skin complaint in the USA. The gel is well tolerated, safe and efficacious and provides an attractive, cost-effective alternative to cryoablation, curettage or dermabrasion, or treatment with 5-fluorouracil. The purpose of this review is to describe briefly the physical, chemical and biological properties of HA together with some details of its medical and pharmaceutical uses with emphasis on this more recent topical application.

  19. Novel local drug delivery system using thermoreversible gel in combination with polymeric microspheres or liposomes.

    Science.gov (United States)

    Arai, Takao; Benny, Ofra; Joki, Tatsuhiro; Menon, Lata G; Machluf, Marcelle; Abe, Toshiaki; Carroll, Rona S; Black, Peter M

    2010-04-01

    The purpose of our study was to evaluate the application of thermoreversible gelation polymer (TGP) as a local drug delivery system for malignant glioma. Polymeric microspheres or liposomes loaded with doxorubicin (sphere-dox or lipo-dox) were combined with TGP to provide continuous drug delivery of doxorubicin (dox) for kinetic release studies and cell viability assays on glioma cell lines in vitro. For in vivo studies, TGP loaded with dox alone (TGP-dox) was combined with sphere-dox or lipo-dox. Their antitumor effects on subcutaneous human glioma xenografts were evaluated in nude mice. In vitro, TGP combined with sphere-dox or lipo-dox released dox for up to 30 days. In vivo, TGP-dox combined with sphere-dox or lipo-dox inhibited subcutaneous glioma tumor growth until day 32 and day 38, respectively. TGP in combination with microspheres or liposomes successfully prolonged the release of dox and its antitumor effects.

  20. Distribution and clearance of PEG-single-walled carbon nanotube cancer drug delivery vehicles in mice.

    Science.gov (United States)

    Bhirde, Ashwin A; Patel, Sachin; Sousa, Alioscka A; Patel, Vyomesh; Molinolo, Alfredo A; Ji, Youngmi; Leapman, Richard D; Gutkind, J Silvio; Rusling, James F

    2010-12-01

    To study the distribution and clearance of polyethylene glycol (PEG)-ylated single-walled carbon nanotube (SWCNTs) as drug delivery vehicles for the anticancer drug cisplatin in mice. PEG layers were attached to SWCNTs and dispersed in aqueous media and characterized using dynamic light scattering, scanning transmission electron microscopy and Raman spectroscopy. Cytotoxicity was assessed in vitro using Annexin-V assay, and the distribution and clearance pathways in mice were studied by histological staining and Raman spectroscopy. Efficacy of PEG-SWCNT-cisplatin for tumor growth inhibition was studied in mice. PEG-SWCNTs were efficiently dispersed in aqueous media compared with controls, and did not induce apoptosis in vitro. Hematoxylin and eosin staining, and Raman bands for SWCNTs in tissues from several vital organs from mice injected intravenously with nanotube bioconjugates revealed that control SWCNTs were lodged in lung tissue as large aggregates compared with the PEG-SWCNTs, which showed little or no accumulation. Characteristic SWCNT Raman bands in feces revealed the presence of bilary or renal excretion routes. Attachment of cisplatin on bioconjugates was visualized with Z-contrast scanning transmission electron microscopy. PEG-SWCNT-cisplatin with the attached targeting ligand EGF successfully inhibited growth of head and neck tumor xenografts in mice. PEG-SWCNTs, as opposed to control SWCNTs, form more highly dispersed delivery vehicles that, when loaded with both cisplatin and EGF, inhibit growth of squamous cell tumors.

  1. Efficacy of nano- and microemulsion-based topical gels in delivery of ibuprofen: an in vivo study.

    Science.gov (United States)

    Azizi, Mosayeb; Esmaeili, Fariba; Partoazar, Alireza; Ejtemaei Mehr, Shahram; Amani, Amir

    2017-03-01

    Nanoemulsion has shown many advantages in drug delivery systems. In this study, for the first time, analgesic and anti-inflammatory properties of a nanomelusion of almond oil with and without ibuprofen was compared with corresponding microemulsion and commercial topical gel of the drug using formalin and carrageenan tests, respectively. Almond oil (oil phase) was mixed with Tween 80 and Span 80 (surfactants), and ethanol (co-surfactant) and them distilled water (aqueous phase) was then added to the mixture at once. Prepared nanoemulsions were pre-emulsified into a 100 ml beaker using magnet/stirrer (1000 rpm). Then, using a probe ultrasonicator (Hielscher UP400s, Hielscher, Ringwood, NJ) the nanoemulsions were formed. The optimised nanoemulsion formulation containing 2.5% ibuprofen, showed improved analgesic and anti-inflammatory effects compared with commercial product and corresponding microemulsion product containing 5% ibuprofen (i.e. twice the content of ibuprofen in the nanoemulsion) in vivo. The nanoemulsion preparation showed superior analgesic activities during chronic phase. Also, it decreased the inflammation from the first hour, while the microemulsion and the commercial product started to show their anti-inflammatory effects after 2 and 3 h, respectively. Our finding suggests that the size of the emulsion particles must be considered as an important factor in topical drug delivery systems.

  2. Effects of Carbopol® 934 proportion on nanoemulsion gel for topical and transdermal drug delivery: a skin permeation study.

    Science.gov (United States)

    Zheng, Yin; Ouyang, Wu-Qing; Wei, Yun-Peng; Syed, Shahid Faraz; Hao, Chao-Shuang; Wang, Bo-Zhen; Shang, Yan-Hong

    Nanoemulsions (NEs) are used as transdermal drug delivery systems for systematic therapeutic purposes. We hypothesized that the skin permeation profile of an NE could be modulated by incorporating it into a hydrogel containing differing proportions of thickening agent. The objectives of this study were as follows: 1) to determine the stability and skin irritability of NE gels (NGs) containing 1%, 2%, and 3% (w/w) Carbopol ® 934 (CP934) (termed NG1, NG2, and NG3, respectively); 2) to compare the skin permeation profiles and drug deposition patterns of the NGs; and 3) to visualize the drug delivery routes of the NGs. Terbinafine and citral were incorporated into the NGs as model drugs. Ex vivo skin permeation tests indicated that the percutaneous flux rates of terbinafine decreased in the order NE (215 μg/cm 2 ) > NG1 (213 μg/cm 2 ) > NG2 (123 μg/cm 2 ) > NG3 (74.3 μg/cm 2 ). The flux rates of citral decreased in the order NE (1,026 μg/cm 2 ) > NG1 (1,021 μg/cm 2 ) > NG2 (541 μg/cm 2 ) > NG3 (353 μg/cm 2 ). The NGs accumulated greater amounts of the drugs in the stratum corneum and less in the epidermis/dermis than did the NE ( P drug delivery routes from skin appendages to intercellular paths. Histological images suggested that perturbations to the skin structure, specifically the size of the epidermal intercellular spaces and the separation distance of dermal collagen bundles, could be significantly minimized by increasing the proportion of CP934. These results suggest that adjustments of the CP934 proportions can be used to modulate the skin permeation profiles of NGs for specific therapeutic purposes.

  3. Exosomes as Drug Delivery Vehicles for Parkinson’s Disease Therapy

    Science.gov (United States)

    Haney, Matthew J.; Klyachko, Natalia L.; Zhao, Yuling; Gupta, Richa; Plotnikova, Evgeniya G.; He, Zhijian; Patel, Tejash; Piroyan, Aleksandr; Sokolsky, Marina; Kabanov, Alexander V.; Batrakova, Elena V.

    2015-01-01

    Exosomes are naturally occurring nanosized vesicles that have attracted considerable attention as drug delivery vehicles in the past few years. Exosomes are comprised of natural lipid bilayers with the abundance of adhesive proteins that readily interact with cellular membranes. We posit that exosomes secreted by monocytes and macrophages can provide an unprecedented opportunity to avoid entrapment in mononuclear phagocytes (as a part of the host immune system), and at the same time enhance delivery of incorporated drugs to target cells ultimately increasing drug therapeutic efficacy. In light of this, we developed a new exosomal-based delivery system for a potent antioxidant, catalase, to treat Parkinson’s disease (PD). Catalase was loaded into exosomes ex vivo using different methods: the incubation at room temperature, permeabilization with saponin, freeze-thaw cycles, sonication, or extrusion. The size of the obtained catalase-loaded exosomes (exoCAT) was in the range of 100 - 200 nm. A reformation of exosomes upon sonication and extrusion, or permeabilization with saponin resulted in high loading efficiency, sustained release, and catalase preservation against proteases degradation. Exosomes were readily taken up by neuronal cells in vitro. A considerable amount of exosomes was detected in PD mouse brain following intranasal administration. ExoCAT provided significant neuroprotective effects in in vitro and in vivo models of PD. Overall, exosome-based catalase formulations have a potential to be a versatile strategy to treat inflammatory and neurodegenerative disorders. PMID:25836593

  4. Cascade Storage and Delivery System for a Multi Mission Space Exploration Vehicle (MMSEV)

    Science.gov (United States)

    Yagoda, Evan; Swickrath, Michael; Stambaugh, Imelda

    2012-01-01

    NASA is developing a Multi Mission Space Exploration Vehicle (MMSEV) for missions beyond Low Earth Orbit (LEO). The MMSEV is a pressurized vehicle used to extend the human exploration envelope for Lunar, Near Earth Object (NEO), and Deep Space missions. The Johnson Space Center is developing the Environmental Control and Life Support System (ECLSS) for the MMSEV. The MMSEV s intended use is to support longer sortie lengths with multiple Extra Vehicular Activities (EVAs) on a higher magnitude than any previous vehicle. This paper presents an analysis of a high pressure oxygen cascade storage and delivery system that will accommodate the crew during long duration Intra Vehicular Activity (IVA) and capable of multiple high pressure oxygen fills to the Portable Life Support System (PLSS) worn by the crew during EVAs. A cascade is a high pressure gas cylinder system used for the refilling of smaller compressed gas cylinders. Each of the large cylinders are filled by a compressor, but the cascade system allows small cylinders to be filled without the need of a compressor. In addition, the cascade system is useful as a "reservoir" to accommodate low pressure needs. A regression model was developed to provide the mechanism to size the cascade systems subject to constraints such as number of crew, extravehicular activity duration and frequency, and ullage gas requirements under contingency scenarios. The sizing routine employed a numerical integration scheme to determine gas compressibility changes during depressurization and compressibility effects were captured using the Soave-Redlich-Kwong (SRK) equation of state. A multi-dimensional nonlinear optimization routine was used to find the minimum cascade tank system mass that meets the mission requirements. The sizing algorithms developed in this analysis provide a powerful framework to assess cascade filling, compressor, and hybrid systems to design long duration vehicle ECLSS architecture. 1

  5. NREL/Industry Range-Extended Electric Vehicle for Package Delivery

    Energy Technology Data Exchange (ETDEWEB)

    Farrell, John T [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Kelly, Kenneth J [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Duran, Adam W [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Lammert, Michael P [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Miller, Eric S [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2018-01-15

    Range-extended electric vehicle (EV) technology can be a viable option for reducing fuel consumption from medium-duty (MD) and heavy-duty (HD) engines by approximately 50 percent or more. Such engines have wide variations in use and duty cycles, however, and identifying the vocations/duty cycles most suitable for range-extended applications is vital for maximizing the potential benefits. This presentation provides information about NREL's research on range-extended EV technologies, with a focus on NREL's real-world data collection and analysis approach to identifying the vocations/duty cycles best suited for range-extender applications and to help guide related powertrain optimization and design requirements. The presentation also details NREL's drive cycle development process as it pertains to package delivery applications.

  6. Fibrin glue as the cell-delivery vehicle for mesenchymal stromal cells in regenerative medicine.

    Science.gov (United States)

    Wu, Xiuwen; Ren, Jianan; Li, Jieshou

    2012-05-01

    The use of tissue-engineering techniques such as stem-cell therapy to renew injured tissues is a promising strategy in regenerative medicine. As a cell-delivery vehicle, fibrin glues (FG) facilitate cell attachment, growth and differentiation and, ultimately, tissue formation and organization by its three-dimensional structure. Numerous studies have provided evidence that stromal cells derived from bone marrow (bone marrow stromal cells; BMSC) and adipose tissue (adipose-derived stromal cells; ADSC) contain a population of adult multipotent mesenchymal stromal cells (MSC) and endothelial progenitor cells that can differentiate into several lineages. By combining MSC with FG, the implantation could take advantage of the mutual benefits. Researchers and physicians have pinned their hopes on stem cells for developing novel approaches in regenerative medicine. This review focuses on the therapeutic potential of MSC with FG in bone defect reconstruction, cartilage and tendon injury repair, ligament, heart and nerve regeneration, and, furthermore, wound healing.

  7. Hyaluronic Acid Graft Copolymers with Cleavable Arms as Potential Intravitreal Drug Delivery Vehicles.

    Science.gov (United States)

    Borke, Tina; Najberg, Mathie; Ilina, Polina; Bhattacharya, Madhushree; Urtti, Arto; Tenhu, Heikki; Hietala, Sami

    2018-01-01

    Treatment of retinal diseases currently demands frequent intravitreal injections due to rapid clearance of the therapeutics. The use of high molecular weight polymers can extend the residence time in the vitreous and prolong the injection intervals. This study reports a water soluble graft copolymer as a potential vehicle for sustained intravitreal drug delivery. The copolymer features a high molecular weight hyaluronic acid (HA) backbone and poly(glyceryl glycerol) (PGG) side chains attached via hydrolysable ester linkers. PGG, a polyether with 1,2-diol groups in every repeating unit available for conjugation, serves as a detachable carrier. The influence of synthesis conditions and incubation in physiological media on the molecular weight of HA is studied. The cleavage of the PGG grafts from the HA backbone is quantified and polymer-from-polymer release kinetics are determined. The biocompatibility of the materials is tested in different cell cultures. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Albumin–Polymer–Drug Conjugates: Long Circulating, High Payload Drug Delivery Vehicles

    DEFF Research Database (Denmark)

    Smith, Anton Allen Abbotsford; Zuwala, Kaja; Pilgram, Oliver

    2016-01-01

    Albumin is an exquisite tool of nature used in biomedicine to achieve long blood residence time for drugs, but the payload it can carry is typically limited to one molecule per protein. In contrast, synthetic macromolecular prodrugs contain multiple copies of drugs per polymer chain but offer only...... a marginal increase in the circulation lifetime of the drugs. We combine the benefits of the two platforms and at the same time overcome their respective limitations. Specifically, we develop the synthesis of albumin–polymer–drug conjugates to obtain long circulating, high payload drug delivery vehicles....... In vivo data validate that albumin endows the conjugate with a blood residence time similar to that of the protein and well exceeding that of the polymer. Therapeutic activity of the conjugates is validated using prodrugs of panobinostat, an HIV latency reversal agent, in which case the conjugates matched...

  9. Lipophilic Polycation Vehicles Display High Plasmid DNA Delivery to Multiple Cell Types.

    Science.gov (United States)

    Wu, Yaoying; Smith, Adam E; Reineke, Theresa M

    2017-08-16

    A class of cationic poly(alkylamidoamine)s (PAAAs) containing lipophilic methylene linkers were designed and examined as in vitro plasmid DNA (pDNA) delivery agents. The PAAAs were synthesized via step-growth polymerization between a diamine monomer and each of four different diacid chloride monomers with varying methylene linker lengths, including glutaryl chloride, adipoyl chloride, pimeloyl chloride, and suberoyl chloride, which served to systematically increase the lipophilicity of the polymers. The synthesized polymers successfully complexed with pDNA in reduced serum medium at N/P ratios of 5 and greater, resulting in polyplexes with hydrodynamic diameters of approximately 1 μm. These polyplexes were tested for in vitro transgene expression and cytotoxicity using HDFa (human dermal fibroblast), HeLa (human cervical carcinoma), HMEC (human mammary epithelial), and HUVEC (human umbilical vein endothelial) cells. Interestingly, select PAAA polyplex formulations were found to be more effective than Lipofectamine 2000 at promoting transgene expression (GFP) while maintaining comparable or higher cell viability. Transgene expression was highest in HeLa cells (∼90% for most formulations) and lowest in HDFa cells (up to ∼20%) as measured by GFP fluorescence. In addition, the cytotoxicity of PAAA polyplex formulations was significantly increased as the molecular weight, N/P ratio, and methylene linker length were increased. The PAAA vehicles developed herein provide a new delivery vehicle design strategy of displaying attributes of both polycations and lipids, which show promise as a tunable scaffold for refining the structure-activity-toxicity profiles for future genome editing studies.

  10. Novel vehicle based on cubosomes for ophthalmic delivery of flurbiprofen with low irritancy and high bioavailability

    Science.gov (United States)

    Han, Shun; Shen, Jin-qiu; Gan, Yong; Geng, Hai-ming; Zhang, Xin-xin; Zhu, Chun-liu; Gan, Li

    2010-01-01

    Aim: To develop a novel vehicle based on cubosomes as an ophthalmic drug delivery system for flurbiprofen (FB) to reduce ocular irritancy and improve bioavailability. Methods: FB-loaded cubosomes were prepared using hot and high-pressure homogenization. Cubosomes were then characterized by particle size, zeta potential, encapsulation efficiency, particle morphology, inner cubic structure and in vitro release. Corneal permeation was evaluated using modified Franz-type cells. Ocular irritation was then evaluated using both the Draize method and histological examination. The ocular pharmacokinetics of FB was determined using microdialysis. Results: The particle size of each cubosome formulation was about 150 nm. A bicontinuous cubic phase of cubic P-type was determined using cryo-transmission electron microscopy (cryo-TEM) observation and small angle X-ray scattering (SAXS) analysis. In vitro corneal permeation study revealed that FB formulated in cubosomes exhibited 2.5-fold (F1) and 2.0-fold (F2) increase in Papp compared with FB PBS. In the ocular irritation test, irritation scores for each group were less than 2, indicating that all formulations exhibited excellent ocular tolerance. Histological examination revealed that neither the structure nor the integrity of the cornea was visibly affected after incubation with FB cubosomes. The AUC of FB administered as FB cubosome F2 was 486.36±38.93 ng·mL−1·min·μg−1, which was significantly higher than that of FB Na eye drops (P<0.01). Compared with FB Na eye drops, the Tmax of FB cubosome F2 was about 1.6-fold higher and the MRT was also significantly longer (P<0.001). Conclusion: This novel low-irritant vehicle based on cubosomes might be a promising system for effective ocular drug delivery. PMID:20686524

  11. Star-shaped poly(oligoethylene glycol) copolymer-based gels: Thermo-responsive behaviour and bioapplicability for risedronate intranasal delivery.

    Science.gov (United States)

    Soliman, Mahmoud E; Elmowafy, Enas; Casettari, Luca; Alexander, Cameron

    2018-05-30

    The aim of this work was to obtain an intranasal delivery system with improved mechanical and mucoadhesive properties that could provide prolonged retention time for the delivery of risedronate (RS). For this, novel in situ forming gels comprising thermo-responsive star-shaped polymers, utilizing either polyethylene glycol methyl ether (PEGMA-ME 188, Mn 188) or polyethylene glycol ethyl ether (PEGMA-EE 246, Mn 246), with polyethylene glycol methyl ether (PEGMA-ME 475, Mn 475), were synthesized and characterized. RS was trapped in the selected gel-forming solutions at a concentration of 0.2% w/v. The pH, rheological properties, in vitro drug release, ex vivo permeation as well as mucoadhesion were also examined. MTT assays were conducted to verify nasal tolerability of the developed formulations. Initial in vivo studies were carried out to evaluate anti-osteoporotic activity in a glucocorticoid induced osteoporosis model in rats. The results showed successful development of thermo-sensitive formulations with favorable mechanical properties at 37 °C, which formed non-irritant, mucoadhesive porous networks, facilitating nasal RS delivery. Moreover, sustained release of RS, augmented permeability and marked anti-osteoporotic efficacy as compared to intranasal (IN) and intravenous (IV) RS solutions were realized. The combined results show that the in situ gels should have promising application as nasal drug delivery systems. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Construction of a Nanodiamond–Tamoxifen Complex as a Breast Cancer Drug Delivery Vehicle

    Directory of Open Access Journals (Sweden)

    Linda-Lucila Landeros-Martínez

    2016-01-01

    Full Text Available According to the World Health Organization, breast cancer represents 16% of all cancer cases in women and is the second most common cancer. In the past decades, the mortality among patients with metastasis breast cancer has been reduced significantly via drug delivery by means of nanodiamond therapies, which are both biocompatible and scalable. In this study, we determined a theoretical pathway for the construction of a nanodiamond–tamoxifen complex that will act as a drug delivery vehicle for targeting tumor tissues of breast cancer. The tamoxifen pharmacophore was defined and the binding zone was identified for the electrostatic interaction between tamoxifen and a functionalized site of a nanodiamond particle allowing for attachment of the payload (this drug to the surface of the nanodiamond particle. In addition, an analysis of the intermolecular interaction between the nanodiamond and tamoxifen was conducted, showing three hydrogen bonds complying fully with Lipinski’s rule of five, which states that a compound should have five or fewer hydrogen bonds to be permeating and easily absorbed by the body (qualitative prediction. All calculations were performed using the conceptual Density Functional Theory with the M06 functional and the basis set 6-31G(d. The solvent effect has been taken into account by an implicit model, the conductor like polarizable continuum model.

  13. Encapsulation of Curcumin in Self-Assembling Peptide Hydrogels as Injectable Drug Delivery Vehicles

    Science.gov (United States)

    Altunbas, Aysegul; Lee, Seung Joon; Rajasekaran, Sigrid A.; Schneider, Joel P.; Pochan, Darrin J.

    2011-01-01

    Curcumin, a hydrophobic polyphenol, is an extract of turmeric root with antioxidant, anti-inflammatory and anti-tumorigenic properties. Its lack of water solubility and relatively low bioavailability set major limitations for its therapeutic use. In this study, a self-assembling peptide hydrogel is demonstrated to be an effective vehicle for the localized delivery of curcumin over sustained periods of time. The curcumin-hydrogel is prepared in-situ where curcumin encapsulation within the hydrogel network is accomplished concurrently with peptide self-assembly. Physical and in vitro biological studies were used to demonstrate the effectiveness of curcumin-loaded β-hairpin hydrogels as injectable agents for localized curcumin delivery. Notably, rheological characterization of the curcumin loaded hydrogel before and after shear flow have indicated solid-like properties even at high curcumin payloads. In vitro experiments with a medulloblastoma cell line confirm that the encapsulation of the curcumin within the hydrogel does not have an adverse effect on its bioactivity. Most importantly, the rate of curcumin release and its consequent therapeutic efficacy can be conveniently modulated as a function of the concentration of the MAX8 peptide. PMID:21601921

  14. Red blood cells and polyelectrolyte multilayer capsules: natural carriers versus polymer-based drug delivery vehicles.

    Science.gov (United States)

    Kolesnikova, Tatiana A; Skirtach, Andre G; Möhwald, Helmuth

    2013-01-01

    Red blood cells (RBCs) and lipid-based carriers on the one hand and polymeric capsules on the other hand represent two of the most widely used carriers in drug delivery. Each class of these carriers has its own set of properties, specificity and advantages. Thorough comparative studies of such systems are reported here for the first time. In this review, RBCs are described in comparison with synthetic polymeric drug delivery vehicles using polyelectrolyte multilayer capsules as an example. Lipid-based composition of the shell in the former case is particularly attractive due to their inherent biocompatibility and flexibility of the carriers. On the other hand, synthetic approaches to fabrication of polyelectrolyte multilayer capsules permit manipulation of the permeability of their shell as well as tuning their composition, mechanical properties, release methods and targeting. In conclusion, properties of RBCs and polyelectrolyte multilayer capsules are reported here highlighting similarities and differences in their preparation and applications. In addition, their advantages and disadvantages are discussed.

  15. Percutaneous delivery of econazole using microemulsion as vehicle: formulation, evaluation and vesicle-skin interaction.

    Science.gov (United States)

    Ge, Shumin; Lin, Yuanyuan; Lu, Haoyang; Li, Qi; He, Jian; Chen, Bao; Wu, Chuanbin; Xu, Yuehong

    2014-04-25

    This project was carried out to exploit the feasibility of using microemulsion (ME) as an alternative carrier for percutaneous delivery econazole nitrate (ECN) and elucidate the underlying mechanism of permeation enhancement. The ME was developed based on Labrafil M 1944 Cs as oil phase, Solutol HS15 and Span 80 as surfactants, Transcutol P as cosurfactant and water as aqueous phase. The solubility of ECN was firstly determined for screening the ingredients of the system. Pseudo-ternary phase diagrams were constructed to formulate ME and select surfactant and cosurfactant. Central composite design-response surface methodology (CCD-RSM) was utilized to optimize the formulation of ME. The ECN loaded ME was characterized in terms of morphology, particle size and size distribution, pH value, refractive index, viscosity and conductivity, and storage stability of the ECN loaded ME was assayed. Percutaneous permeation of ECN from ME in vitro through rat skin was investigated in comparison with PBS aqueous suspension (1%, w/w), and results showed that ME enhanced drug retention in the skin and permeation through the skin, the enhancement of ME on skin deposition was further visualized through fluorescent-labeled ME by confocal laser scanning microscope (CLSM). The action mechanism of ME on improving percutaneous delivery was studied by performing a pretreatment test. It can speculate that ME does not simply behave as enhancer but it also acts as drug carrier. Furthermore, ME-skin interaction was elucidated through transmission electron microscope (TEM), and attenuated total reflectance fourier-transform infrared (ATR-FTIR). TEM was performed to visualize the micro morphological change of skin. ATR-FTIR was carried out to investigate the molecular vibrations of the components of stratum corneum (SC). The results indicate that the ME system may be a promising vehicle for percutaneous delivery of ECN. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Dual stimuli-responsive nano-vehicles for controlled drug delivery: mesoporous silica nanoparticles end-capped with natural chitosan.

    Science.gov (United States)

    Hakeem, Abdul; Duan, Ruixue; Zahid, Fouzia; Dong, Chao; Wang, Boya; Hong, Fan; Ou, Xiaowen; Jia, Yongmei; Lou, Xiaoding; Xia, Fan

    2014-11-11

    Herein, we report natural chitosan end-capped MCM-41 type MSNPs as novel, dual stimuli, responsive nano-vehicles for controlled anticancer drug delivery. The chitosan nanovalves tightly close the pores of the MSNPs to control premature cargo release under physiological conditions but respond to lysozyme and acidic media to release the trapped cargo.

  17. pH and temperature dual-sensitive liposome gel based on novel cleavable mPEG-Hz-CHEMS polymeric vaginal delivery system

    Directory of Open Access Journals (Sweden)

    Chen D

    2012-05-01

    Full Text Available Daquan Chen,1,2 Kaoxiang Sun,1,2 Hongjie Mu,1 Mingtan Tang,3 Rongcai Liang,1,2 Aiping Wang,1,2 Shasha Zhou,1 Haijun Sun,1 Feng Zhao,1 Jianwen Yao,1 Wanhui Liu1,21School of Pharmacy, Yantai University, 2State Key Laboratory of Longacting and Targeting Drug Delivery Systems, Yantai, 3School of Pharmaceutical Sciences, Shandong University, Jinan, People's Republic of ChinaBackground: In this study, a pH and temperature dual-sensitive liposome gel based on a novel cleavable hydrazone-based pH-sensitive methoxy polyethylene glycol 2000-hydrazone-cholesteryl hemisuccinate (mPEG-Hz-CHEMS polymer was used for vaginal administration.Methods: The pH-sensitive, cleavable mPEG-Hz-CHEMS was designed as a modified pH-sensitive liposome that would selectively degrade under locally acidic vaginal conditions. The novel pH-sensitive liposome was engineered to form a thermogel at body temperature and to degrade in an acidic environment.Results: A dual-sensitive liposome gel with a high encapsulation efficiency of arctigenin was formed and improved the solubility of arctigenin characterized by Fourier transform infrared spectroscopy and differential scanning calorimetry. The dual-sensitive liposome gel with a sol-gel transition at body temperature was degraded in a pH-dependent manner, and was stable for a long period of time at neutral and basic pH, but cleavable under acidic conditions (pH 5.0. Arctigenin encapsulated in a dual-sensitive liposome gel was more stable and less toxic than arctigenin loaded into pH-sensitive liposomes. In vitro drug release results indicated that dual-sensitive liposome gels showed constant release of arctigenin over 3 days, but showed sustained release of arctigenin in buffers at pH 7.4 and pH 9.0.Conclusion: This research has shed some light on a pH and temperature dual-sensitive liposome gel using a cleavable mPEG-Hz-CHEMS polymer for vaginal delivery.Keywords: mPEG-Hz-CHEMS polymer, pH-sensitive liposomes, thermosensitive

  18. Development of Wax-Incorporated Emulsion Gel Beads for the Encapsulation and Intragastric Floating Delivery of the Active Antioxidant from Tamarindus indica L.

    Science.gov (United States)

    Soradech, Sitthiphong; Petchtubtim, Intira; Thongdon-A, Jeerayu; Muangman, Thanchanok

    2016-03-22

    In this study, tamarind (Tamarindus indica L.) seed extracts with potential antioxidant activity and toxicity to cancer cells were developed as functional foods and nutraceutical ingredients in the form of emulsion gel beads. Three extracts were obtained from ethanol and water: TSCH50, TSCH95 and TSCH. All extracts exhibited high potential for superoxide anion scavenging activity over the IC50 range emulsion gel beads, which were prepared using a modified ionotropic gelation technique. Tamarind seed extract at 1% (w/w) was used as the active ingredient in all formulations. The effect of the types and amounts of wax on the encapsulation efficiency and percentage of the active release of alginate gel beads was also investigated. The results demonstrated that the incorporation of both waxes into the gel beads had an effect on the percentage of encapsulation efficiency (%) and the percentage of the active ingredient release. Furthermore, the addition of water insoluble waxes (carnauba and bee wax) significantly retarded the release of the active ingredient. The addition of both waxes had a slight effect on drug release behavior. Nevertheless, the increase in incorporated waxes in all formulations could sustain the percentage of active ingredient release. In conclusion, wax-incorporated emulsion gel beads using a modified ionotropic gelation technique could be applied for the intragastric floating delivery and controlled release of functional food and nutraceutical products for their antioxidant and anticancer capacity.

  19. Mathematical Analysis of Vehicle Delivery Scale of Bike-Sharing Rental Nodes

    Science.gov (United States)

    Zhai, Y.; Liu, J.; Liu, L.

    2018-04-01

    Aiming at the lack of scientific and reasonable judgment of vehicles delivery scale and insufficient optimization of scheduling decision, based on features of the bike-sharing usage, this paper analyses the applicability of the discrete time and state of the Markov chain, and proves its properties to be irreducible, aperiodic and positive recurrent. Based on above analysis, the paper has reached to the conclusion that limit state (steady state) probability of the bike-sharing Markov chain only exists and is independent of the initial probability distribution. Then this paper analyses the difficulty of the transition probability matrix parameter statistics and the linear equations group solution in the traditional solving algorithm of the bike-sharing Markov chain. In order to improve the feasibility, this paper proposes a "virtual two-node vehicle scale solution" algorithm which considered the all the nodes beside the node to be solved as a virtual node, offered the transition probability matrix, steady state linear equations group and the computational methods related to the steady state scale, steady state arrival time and scheduling decision of the node to be solved. Finally, the paper evaluates the rationality and accuracy of the steady state probability of the proposed algorithm by comparing with the traditional algorithm. By solving the steady state scale of the nodes one by one, the proposed algorithm is proved to have strong feasibility because it lowers the level of computational difficulty and reduces the number of statistic, which will help the bike-sharing companies to optimize the scale and scheduling of nodes.

  20. MATHEMATICAL ANALYSIS OF VEHICLE DELIVERY SCALE OF BIKE-SHARING RENTAL NODES

    Directory of Open Access Journals (Sweden)

    Y. Zhai

    2018-04-01

    Full Text Available Aiming at the lack of scientific and reasonable judgment of vehicles delivery scale and insufficient optimization of scheduling decision, based on features of the bike-sharing usage, this paper analyses the applicability of the discrete time and state of the Markov chain, and proves its properties to be irreducible, aperiodic and positive recurrent. Based on above analysis, the paper has reached to the conclusion that limit state (steady state probability of the bike-sharing Markov chain only exists and is independent of the initial probability distribution. Then this paper analyses the difficulty of the transition probability matrix parameter statistics and the linear equations group solution in the traditional solving algorithm of the bike-sharing Markov chain. In order to improve the feasibility, this paper proposes a "virtual two-node vehicle scale solution" algorithm which considered the all the nodes beside the node to be solved as a virtual node, offered the transition probability matrix, steady state linear equations group and the computational methods related to the steady state scale, steady state arrival time and scheduling decision of the node to be solved. Finally, the paper evaluates the rationality and accuracy of the steady state probability of the proposed algorithm by comparing with the traditional algorithm. By solving the steady state scale of the nodes one by one, the proposed algorithm is proved to have strong feasibility because it lowers the level of computational difficulty and reduces the number of statistic, which will help the bike-sharing companies to optimize the scale and scheduling of nodes.

  1. pH and temperature dual-sensitive liposome gel based on novel cleavable mPEG-Hz-CHEMS polymeric vaginal delivery system

    Science.gov (United States)

    Chen, Daquan; Sun, Kaoxiang; Mu, Hongjie; Tang, Mingtan; Liang, Rongcai; Wang, Aiping; Zhou, Shasha; Sun, Haijun; Zhao, Feng; Yao, Jianwen; Liu, Wanhui

    2012-01-01

    Background In this study, a pH and temperature dual-sensitive liposome gel based on a novel cleavable hydrazone-based pH-sensitive methoxy polyethylene glycol 2000-hydrazone-cholesteryl hemisuccinate (mPEG-Hz-CHEMS) polymer was used for vaginal administration. Methods The pH-sensitive, cleavable mPEG-Hz-CHEMS was designed as a modified pH-sensitive liposome that would selectively degrade under locally acidic vaginal conditions. The novel pH-sensitive liposome was engineered to form a thermogel at body temperature and to degrade in an acidic environment. Results A dual-sensitive liposome gel with a high encapsulation efficiency of arctigenin was formed and improved the solubility of arctigenin characterized by Fourier transform infrared spectroscopy and differential scanning calorimetry. The dual-sensitive liposome gel with a sol-gel transition at body temperature was degraded in a pH-dependent manner, and was stable for a long period of time at neutral and basic pH, but cleavable under acidic conditions (pH 5.0). Arctigenin encapsulated in a dual-sensitive liposome gel was more stable and less toxic than arctigenin loaded into pH-sensitive liposomes. In vitro drug release results indicated that dual-sensitive liposome gels showed constant release of arctigenin over 3 days, but showed sustained release of arctigenin in buffers at pH 7.4 and pH 9.0. Conclusion This research has shed some light on a pH and temperature dual-sensitive liposome gel using a cleavable mPEG-Hz-CHEMS polymer for vaginal delivery. PMID:22679372

  2. Poloxamer-Based Thermoreversible Gel for Topical Delivery of Emodin: Influence of P407 and P188 on Solubility of Emodin and Its Application in Cellular Activity Screening

    Directory of Open Access Journals (Sweden)

    Eunmi Ban

    2017-02-01

    Full Text Available Emodin is a component in a Chinese herb, Rheum officinale Baill, traditionally used for diabetes and anticancer. Its poor solubility is one of the major challenges to pharmaceutical scientists. We previously reported on thermoreversible gel formulations based on poloxamer for the topical delivery of emodin. The present study was to understand the effect of poloxamer type on emodin solubility and its application in cellular activity screening. Various gel formulations composed of poloxamer 407 (P407, poloxamer 188 (P188 and PEG400 were prepared and evaluated. Major evaluation parameters were the gelation temperature (Tgel and solubility of emodin. The emodin solubility increased with increasing poloxamer concentration and the Tgel was modulated by the proper combination of P407. In particular, this study showed that the amount of P407 in thermoreversible poloxamer gel (PG was the dominant factor in enhancing solubility and P188 was effective at fixing gelation temperature in the desired range. A thermoreversible emodin PG was selected as the proper composition with the liquid state at room temperature and gel state at body temperature. The gel showed the solubility enhancement of emodin at least 100-fold compared to 10% ethanol or water. The thermoreversible formulation was applied for in vitro cellular activity screening in the human dermal fibroblast cell line and DLD-1 colon cancer cell line after dilution with cell culture media. The thermoreversible gel formulation remained as a clear solution in the microplate, which allowed reliable cellular activity screening. In contrast, emodin solution in ethanol or DMSO showed precipitation at the corresponding emodin concentration, complicating data interpretation. In conclusion, the gel formulation is proposed as a useful prototype topical formulation for testing emodin in vivo as well as in vitro.

  3. Study of Mesoporous Silica Nanoparticles' (MSNs) intracellular trafficking and their application as drug delivery vehicles

    Science.gov (United States)

    Yanes, Rolando Eduardo

    Mesoporous silica nanoparticles (MSNs) are attractive drug delivery vehicle candidates due to their biocompatibility, stability, high surface area and efficient cellular uptake. In this dissertation, I discuss three aspects of MSNs' cellular behavior. First, MSNs are targeted to primary and metastatic cancer cell lines, then their exocytosis from cancer cells is studied, and finally they are used to recover intracellular proteins. Targeting of MSNs to primary cancer cells is achieved by conjugating transferrin on the surface of the mesoporous framework, which resulted in enhancement of nanoparticle uptake and drug delivery efficacy in cells that overexpress the transferrin receptor. Similarly, RGD peptides are used to target metastatic cancer cell lines that over-express integrin alphanubeta3. A circular RGD peptide is bound to the surface of MSNs and the endocytosis and cell killing efficacy of camptothecin loaded nanoparticles is significantly improved in cells that express the target receptor. Besides targeting, I studied the ultimate fate of phosphonate coated mesoporous silica nanoparticles inside cells. I discovered that the nanoparticles are exocytosed from cells through lysosomal exocytosis. The nanoparticles are exocytosed in intact form and the time that they remain inside the cells is affected by the surface properties of the nanoparticles and the type of cells. Cells that have a high rate of lysosomal exocytosis excrete the nanoparticles rapidly, which makes them more resistant to drug loaded nanoparticles because the amount of drug that is released inside the cell is limited. When the exocytosis of MSNs is inhibited, the cell killing efficacy of nanoparticles loaded with camptothecin is enhanced. The discovery that MSNs are exocytosed by cells led to a study to determine if proteins could be recovered from the exocytosed nanoparticles. The procedure to isolate exocytosed zinc-doped iron core MSNs and identify the proteins bound to them was developed

  4. Mucoadhesive in situ gel formulation for vaginal delivery of clotrimazole: formulation, preparation, and in vitro/in vivo evaluation.

    Science.gov (United States)

    Rençber, Seda; Karavana, Sinem Yaprak; Şenyiğit, Zeynep Ay; Eraç, Bayri; Limoncu, Mine Hoşgör; Baloğlu, Esra

    2017-06-01

    The purpose of this study was to develop a suitable mucoadhesive in situ gel formulation of clotrimazole (CLO) for the treatment of vaginal candidiasis. For this aim, the mixture of poloxamer (PLX) 407 and 188 were used to prepare in situ gels. Hydroxypropyl methylcellulose (HPMC) K100M or E50 was added to in situ gels in 0.5% ratio to improve the mucoadhesive and mechanical properties of formulations and to prolong the residence time in vaginal cavity. After the preparation of mucoadhesive in situ gels; gelation temperature/time, viscosity, mechanical, mucoadhesive, syringeability, spreadibility and rheological properties, in vitro release behavior, and anticandidal activities were determined. Moreover vaginal retention of mucoadhesive in situ gels was investigated with in vivo distribution studies in rats. Based on the obtained results, it was found that gels prepared with 20% PLX 407, 10% PLX 188 and 0.5% HPMC K100M/E50 might be suitable for vaginal administration of CLO. In addition, the results of in vivo distribution studies showed that gel formulations remained on the vaginal mucosa even 24 h after application. In conclusion, the mucoadhesive in situ gels of CLO would be alternative candidate for treatment of vaginal candidiasis since it has suitable gel properties with good vaginal retention.

  5. Cell mediated therapeutics for cancer treatment: Tumor homing cells as therapeutic delivery vehicles

    Science.gov (United States)

    Balivada, Sivasai

    Many cell types were known to have migratory properties towards tumors and different research groups have shown reliable results regarding cells as delivery vehicles of therapeutics for targeted cancer treatment. Present report discusses proof of concept for 1. Cell mediated delivery of Magnetic nanoparticles (MNPs) and targeted Magnetic hyperthermia (MHT) as a cancer treatment by using in vivo mouse cancer models, 2. Cells surface engineering with chimeric proteins for targeted cancer treatment by using in vitro models. 1. Tumor homing cells can carry MNPs specifically to the tumor site and tumor burden will decrease after alternating magnetic field (AMF) exposure. To test this hypothesis, first we loaded Fe/Fe3O4 bi-magnetic NPs into neural progenitor cells (NPCs), which were previously shown to migrate towards melanoma tumors. We observed that NPCs loaded with MNPs travel to subcutaneous melanoma tumors. After alternating magnetic field (AMF) exposure, the targeted delivery of MNPs by the NPCs resulted in a mild decrease in tumor size (Chapter-2). Monocytes/macrophages (Mo/Ma) are known to infiltrate tumor sites, and also have phagocytic activity which can increase their uptake of MNPs. To test Mo/Ma-mediated MHT we transplanted Mo/Ma loaded with MNPs into a mouse model of pancreatic peritoneal carcinomatosis. We observed that MNP-loaded Mo/Ma infiltrated pancreatic tumors and, after AMF treatment, significantly prolonged the lives of mice bearing disseminated intraperitoneal pancreatic tumors (Chapter-3). 2. Targeted cancer treatment could be achieved by engineering tumor homing cell surfaces with tumor proteases cleavable, cancer cell specific recombinant therapeutic proteins. To test this, Urokinase and Calpain (tumor specific proteases) cleavable; prostate cancer cell (CaP) specific (CaP1 targeting peptide); apoptosis inducible (Caspase3 V266ED3)- rCasp3V266ED3 chimeric protein was designed in silico. Hypothesized membrane anchored chimeric protein (rCasp3V

  6. Evaluation of synthetic zeolites as oral delivery vehicle for anti-inflammatory drugs

    Directory of Open Access Journals (Sweden)

    Elham Khodaverdi

    2014-05-01

    Full Text Available Objective(s: In this research, zeolite X and zeolite Y were used as vehicle to prepare intestine targeted oral delivery systems of indomethacin and ibuprofen. Materials and Methods: A soaking procedure was implemented to encapsulate indomethacin or ibuprofen within synthetic zeolites. Gravimetric methods and IR spectra of prepared formulations were used to assess drug loading efficiencies into zeolite structures. Scanning Electron Microscopy (SEM was also utilized to determine morphologies changes in synthetic zeolites after drug loading. At the next stage, dissolution studies were used to predict the in vivo performance of prepared formulations at HCl 0.1 N and PBS pH 6.5 as simulated gastric fluid (SGF and simulated intestine fluid (SIF, respectively. Results: Drug loadings of prepared formulations was determined between 24-26 % w/w. Dissolution tests at SGF were shown that zeolites could retain acidic model drugs in their porous structures and can be able to limit their release into the stomach. On the other hand, all prepared formulations completely released model drugs during 3 hr in simulated intestine fluid. Conclusion: Obtained results indicated zeolites could potentially be able to release indomethacin and ibuprofen in a sustained and controlled manner and reduced adverse effects commonly accompanying oral administrations of NSAIDs.

  7. Metallothionein bioconjugates as delivery vehicles for bismuth-212 alpha particle therapy

    International Nuclear Information System (INIS)

    Macklis, R.M.; Morris, C.; Humm, J.; Hines, J.; Atcher, R.

    1991-01-01

    Metallothioneins (MTHs) are small cysteine-rich polypeptides that binds cationic metals at physiologic pH ranges through noncovalent -SH ligand interactions. Some leucine-rich renal MTHs have a particular avidity for bismuth. The authors have examined the ability of MTHs to selectively incorporate Bi-212, a short-lived high-energy alpha particle emitter currently under exploration as a potential therapeutic radiolabel for use in molecularly targeted cancer therapy. They find that under physiologic conditions, MTH will selectively incorporate Bi-212 after incubation with an equilibrium mixture of its upstream and downstream parents. The MTH moieties may be linked to tumor-binding macromolecules such as antibodies via thiolation reactions using SPDP, and the resultant Bismuth-avid molecules may be used either as primary delivery vehicles for the Bi-212 or as part of a 2-step release-and-catch isotope localization system in which the MTH-antibody conjugate is pre-localized at the tumor site and the radiometal is then administered and chelated in situ. They present the chemistry, dosimetry and potential clinical applications of this system

  8. Cinnamate of inulin as a vehicle for delivery of colonic drugs.

    Science.gov (United States)

    López-Molina, Dorotea; Chazarra, Soledad; How, Chee Wun; Pruidze, Nikolov; Navarro-Perán, Enma; García-Cánovas, Francisco; García-Ruiz, Pedro Antonio; Rojas-Melgarejo, Francisco; Rodríguez-López, José Neptuno

    2015-02-01

    Colon diseases are difficult to treat because oral administrated drugs are absorbed at the stomach and intestine levels and they do not reach colon; in addition, intravenous administrated drugs are eliminated from the body before reaching colon. Inulin is a naturally occurring polysaccharide found in many plants. It consists of β 2-1 linked D-fructose molecules having a glucosyl unit at the reducing end. Various inulin and dextran hydrogels have been developed that serve as potential carrier for introduction of drugs into the colon. Because inulin is not absorbed in the stomach or in the small intestine, and inulin is degraded by colonic bacteria, drugs encapsulated in inulin-coated vesicles could be specifically liberated in the colon. Therefore, the use of inulin-coated vesicles could represent an advance for the treatment of colon diseases. Here, we study the use of a cinnamoylated derivative of chicory inulin as a vehicle for the controlled delivery of colonic drugs. The encapsulation of methotrexate in inulin vesicles and its release and activity was studied in colon cancer cells in cultures. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Lipoamino acid-based micelles as promising delivery vehicles for monomeric amphotericin B.

    Science.gov (United States)

    Serafim, Cláudia; Ferreira, Inês; Rijo, Patrícia; Pinheiro, Lídia; Faustino, Célia; Calado, António; Garcia-Rio, Luis

    2016-01-30

    Lipoamino acid-based micelles have been developed as delivery vehicles for the hydrophobic drug amphotericin B (AmB). The micellar solubilisation of AmB by a gemini lipoamino acid (LAA) derived from cysteine and its equimolar mixtures with the bile salts sodium cholate (NaC) and sodium deoxycholate (NaDC), as well as the aggregation sate of the drug in the micellar systems, was studied under biomimetic conditions (phosphate buffered-saline, pH 7.4) using UV-vis spectroscopy. Pure surfactant systems and equimolar mixtures were characterized by tensiometry and important parameters were determined, such as critical micelle concentration (CMC), surface tension at the CMC (γCMC), maximum surface excess concentration (Γmax), and minimum area occupied per molecule at the water/air interface (Amin). Rheological behaviour from viscosity measurements at different shear rates was also addressed. Solubilisation capacity was quantified in terms of molar solubilisation ratio (χ), micelle-water partition coefficient (KM) and Gibbs energy of solubilisation (ΔGs°). Formulations of AmB in micellar media were compared in terms of drug loading, encapsulation efficiency, aggregation state of AmB and in vitro antifungal activity against Candida albicans. The LAA-containing micellar systems solubilise AmB in its monomeric and less toxic form and exhibit in vitro antifungal activity comparable to that of the commercial formulation Fungizone. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Development of Wax-Incorporated Emulsion Gel Beads for the Encapsulation and Intragastric Floating Delivery of the Active Antioxidant from Tamarindus indica L.

    Directory of Open Access Journals (Sweden)

    Sitthiphong Soradech

    2016-03-01

    Full Text Available In this study, tamarind (Tamarindus indica L. seed extracts with potential antioxidant activity and toxicity to cancer cells were developed as functional foods and nutraceutical ingredients in the form of emulsion gel beads. Three extracts were obtained from ethanol and water: TSCH50, TSCH95 and TSCH. All extracts exhibited high potential for superoxide anion scavenging activity over the IC50 range < 5–11 µg/mL and had no toxic effects on normal cells, however, the water extract (TSCH was the most effective due to its free radical scavenging activity and toxicity in mitochondrial membranes of cancer cells. Next a study was designed to develop a new formulation for encapsulation and intragastric floating delivery of tamarind seed extract (TSCH using wax-incorporated emulsion gel beads, which were prepared using a modified ionotropic gelation technique. Tamarind seed extract at 1% (w/w was used as the active ingredient in all formulations. The effect of the types and amounts of wax on the encapsulation efficiency and percentage of the active release of alginate gel beads was also investigated. The results demonstrated that the incorporation of both waxes into the gel beads had an effect on the percentage of encapsulation efficiency (% and the percentage of the active ingredient release. Furthermore, the addition of water insoluble waxes (carnauba and bee wax significantly retarded the release of the active ingredient. The addition of both waxes had a slight effect on drug release behavior. Nevertheless, the increase in incorporated waxes in all formulations could sustain the percentage of active ingredient release. In conclusion, wax-incorporated emulsion gel beads using a modified ionotropic gelation technique could be applied for the intragastric floating delivery and controlled release of functional food and nutraceutical products for their antioxidant and anticancer capacity.

  11. Vehicle Routing Problem with Time Windows and Simultaneous Delivery and Pick-Up Service Based on MCPSO

    Directory of Open Access Journals (Sweden)

    Xiaobing Gan

    2012-01-01

    Full Text Available This paper considers two additional factors of the widely researched vehicle routing problem with time windows (VRPTW. The two factors, which are very common characteristics in realworld, are uncertain number of vehicles and simultaneous delivery and pick-up service. Using minimization of the total transport costs as the objective of the extension VRPTW, a mathematic model is constructed. To solve the problem, an efficient multiswarm cooperative particle swarm optimization (MCPSO algorithm is applied. And a new encoding method is proposed for the extension VRPTW. Finally, comparing with genetic algorithm (GA and particle swarm optimization (PSO algorithm, the MCPSO algorithm performs best for solving this problem.

  12. Photo-triggered destabilization of nanoscopic vehicles by dihydroindolizine for enhanced anticancer drug delivery in cervical carcinoma.

    Science.gov (United States)

    Singh, Priya; Choudhury, Susobhan; Kulanthaivel, Senthilguru; Bagchi, Damayanti; Banerjee, Indranil; Ahmed, Saleh A; Pal, Samir Kumar

    2018-02-01

    The efficacy and toxicity of drugs depend not only on their potency but also on their ability to reach the target sites in preference to non-target sites. In this regards destabilization of delivery vehicles induced by light can be an effective strategy for enhancing drug delivery with spatial and temporal control. Herein we demonstrate that the photoinduced isomerization from closed (hydrophobic) to open isomeric form (hydrophilic) of a novel DHI encapsulated in liposome leads to potential light-controlled drug delivery vehicles. We have used steady state and picosecond resolved dynamics of a drug 8-anilino-1-naphthalenesulfonic acid ammonium salt (ANS) incorporated in liposome to monitor the efficacy of destabilization of liposome in absence and presence UVA irradiation. Steady state and picosecond resolved polarization gated spectroscopy including the well-known strategy of solvation dynamics and Förster resonance energy transfer; reveal the possible mechanism out of various phenomena involved in destabilization of liposome. We have also investigated the therapeutic efficacy of doxorubicin (DOX) delivery from liposome to cervical cancer cell line HeLa. The FACS, confocal fluorescence microscopic and MTT assay studies reveal an enhanced cellular uptake of DOX leading to significant reduction in cell viability (∼40%) of HeLa followed by photoresponsive destabilization of liposome. Our studies successfully demonstrate that these DHI encapsulated liposomes have potential application as a smart photosensitive drug delivery system. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Supramolecular polypseudorotaxane gels for controlled delivery of rAAV vectors in human mesenchymal stem cells for regenerative medicine.

    Science.gov (United States)

    Rey-Rico, Ana; Babicz, Heiko; Madry, Henning; Concheiro, Angel; Alvarez-Lorenzo, Carmen; Cucchiarini, Magali

    2017-10-15

    The aim of this work was to investigate, for the first time, the possibility of using supramolecular polypseudorotaxane gels as scaffolds that can durably deliver rAAV vectors for applications in cartilage regeneration. Dispersions of Pluronic ® F68 (PF68) or Tetronic ® 908 (T908) containing either hyaluronic acid (HA) or chondroitin sulfate (CS) were prepared in PBS. Then, alpha-cyclodextrin (αCD) was added to some dispersions to form polypseudorotaxane gels. Polysaccharides and αCD reinforced the viscoelasticity of the gels, which could withstand autoclaving without changes. In vitro release of rAAV vectors and subsequent transduction of human mesenchymal stem cells (hMSCs) by rAAV vectors from the release medium and from gels in direct contact with the cells were investigated. Compared with free vectors, the gels provided higher levels of transgene expression. CS (or HA)/PF68/αCD gels rapidly released rAAV vectors while CS (or HA)/T908/αCD gels provided sustained release probably due to different interactions with the viral vectors. Incorporation of αCD into CS (or HA)/PF68 gels resulted on higher rAAV concentrations and sustained levels of transgene expression over time. HA increased the bioactivity and cytocompatibility of the gels, especially those based on T908. Overall, combining rAAV gene transfer with polypseudorotaxane gels may provide new, promising tools for human tissue engineering and regenerative medicine strategies. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Exact Solutions to the Symmetric and Asymmetric Vehicle Routing Problem with Simultaneous Delivery and Pick-Up

    Directory of Open Access Journals (Sweden)

    Julia Rieck

    2013-05-01

    Full Text Available In reverse logistics networks, products (e.g., bottles or containers have to be transported from a depot to customer locations and, after use, from customer locations back to the depot. In order to operate economically beneficial, companies prefer a simultaneous delivery and pick-up service. The resulting Vehicle Routing Problem with Simultaneous Delivery and Pick-up (VRPSDP is an operational problem, which has to be solved daily by many companies. We present two mixed-integer linear model formulations for the VRPSDP, namely a vehicle-flow and a commodity-flow model. In order to strengthen the models, domain-reducing preprocessing techniques, and effective cutting planes are outlined. Symmetric benchmark instances known from the literature as well as new asymmetric instances derived from real-world problems are solved to optimality using CPLEX 12.1.

  15. Performance evaluation of an improved optical computed tomography polymer gel dosimeter system for 3D dose verification of static and dynamic phantom deliveries

    International Nuclear Information System (INIS)

    Lopatiuk-Tirpak, O.; Langen, K. M.; Meeks, S. L.; Kupelian, P. A.; Zeidan, O. A.; Maryanski, M. J.

    2008-01-01

    The performance of a next-generation optical computed tomography scanner (OCTOPUS-5X) is characterized in the context of three-dimensional gel dosimetry. Large-volume (2.2 L), muscle-equivalent, radiation-sensitive polymer gel dosimeters (BANG-3) were used. Improvements in scanner design leading to shorter acquisition times are discussed. The spatial resolution, detectable absorbance range, and reproducibility are assessed. An efficient method for calibrating gel dosimeters using the depth-dose relationship is applied, with photon- and electron-based deliveries yielding equivalent results. A procedure involving a preirradiation scan was used to reduce the edge artifacts in reconstructed images, thereby increasing the useful cross-sectional area of the dosimeter by nearly a factor of 2. Dose distributions derived from optical density measurements using the calibration coefficient show good agreement with the treatment planning system simulations and radiographic film measurements. The feasibility of use for motion (four-dimensional) dosimetry is demonstrated on an example comparing dose distributions from static and dynamic delivery of a single-field photon plan. The capability to visualize three-dimensional dose distributions is also illustrated

  16. Routing strategies for efficient deployment of alternative fuel vehicles for freight delivery.

    Science.gov (United States)

    2017-02-01

    With increasing concerns on environmental issues, recent research on Vehicle Routing Problems : (VRP) has added new factors such as greenhouse gas emissions and alternative fuel vehicles into : the models. In this report, we consider one such promisi...

  17. Highly stable, protein capped gold nanoparticles as effective drug delivery vehicles for amino-glycosidic antibiotics

    International Nuclear Information System (INIS)

    Rastogi, Lori; Kora, Aruna Jyothi; Arunachalam, J.

    2012-01-01

    A method for the production of highly stable gold nanoparticles (Au NP) was optimized using sodium borohydride as reducing agent and bovine serum albumin as capping agent. The synthesized nanoparticles were characterized using UV–visible spectroscopy, transmission electron microscopy, X‐ray diffraction (XRD) and dynamic light scattering techniques. The formation of gold nanoparticles was confirmed from the appearance of pink colour and an absorption maximum at 532 nm. These protein capped nanoparticles exhibited excellent stability towards pH modification and electrolyte addition. The produced nanoparticles were found to be spherical in shape, nearly monodispersed and with an average particle size of 7.8 ± 1.7 nm. Crystalline nature of the nanoparticles in face centered cubic structure is confirmed from the selected‐area electron diffraction and XRD patterns. The nanoparticles were functionalized with various amino-glycosidic antibiotics for utilizing them as drug delivery vehicles. Using Fourier transform infrared spectroscopy, the possible functional groups of antibiotics bound to the nanoparticle surface have been examined. These drug loaded nanoparticle solutions were tested for their antibacterial activity against Gram-negative and Gram-positive bacterial strains, by well diffusion assay. The antibiotic conjugated Au NP exhibited enhanced antibacterial activity, compared to pure antibiotic at the same concentration. Being protein capped and highly stable, these gold nanoparticles can act as effective carriers for drugs and might have considerable applications in the field of infection prevention and therapeutics. - Highlights: ► Method for NaBH 4 reduced and BSA capped gold nanoparticle was standardized. ► Nanoparticles were spherical and nearly monodispersed with a size of 7.8 nm. ► Nanoparticles are extremely stable towards pH modification and electrolyte addition. ► Antibiotic conjugated nanoparticles exhibited enhanced antibacterial activity

  18. Polymer gel measurement of dose homogeneity in the breast: comparing MLC intensity modulation with standard wedged delivery

    International Nuclear Information System (INIS)

    Love, P A; Evans, P M; Leach, M O; Webb, S

    2003-01-01

    Polymer gel dosimetry has been used to measure the radiotherapy dose homogeneity in a breast phantom for two different treatment methods. The first 'standard' method uses two tangential wedged fields while the second method has three static fields shaped by multileaf collimators (MLCs) in addition to the standard wedged fields to create intensity modulated fields. Gel dose distributions from the multileaf modulation treatment show an improved dose uniformity in comparison to the standard treatment with a decreased volume receiving doses over 105%

  19. Fast sol-gel synthesis of LiFePO{sub 4}/C for high power lithium-ion batteries for hybrid electric vehicle application

    Energy Technology Data Exchange (ETDEWEB)

    Beninati, Sabina; Damen, Libero; Mastragostino, Marina [University of Bologna, Department of Metal Science, Electrochemistry and Chemical Techniques, Via San Donato 15, 40127 Bologna (Italy)

    2009-12-01

    LiFePO{sub 4}/C of high purity grade was successfully synthesized by microwave accelerated sol-gel synthesis and showed excellent electrochemical performance in terms of specific capacity and stability. This cathode material was characterized in battery configuration with a graphite counter electrode by USABC-DOE tests for power-assist hybrid electric vehicle. It yielded a non-conventional Ragone plot that represents complexity of battery functioning in power-assist HEV and shows that the pulse power capability and available energy of such a battery surpasses the DOE goal for such an application. (author)

  20. A PLGA-PEG-PLGA Thermosensitive Gel Enabling Sustained Delivery of Ropivacaine Hydrochloride for Postoperative Pain Relief.

    Science.gov (United States)

    Fu, Xudong; Zeng, Huilin; Guo, Jiaping; Liu, Hong; Shi, Zhen; Chen, Huhai; Li, Dezong; Xie, Xiangyang; Kuang, Changchun

    2017-01-01

    Postoperative pain is a complex physiological response to disease and tissue injury. Moderate-to-severe pain typically occurs within 48 h after surgery. Amino amide local anesthetics are widely applied to manage postoperative pain, and they have high efficacy, a low risk for addiction and limited side effects. However, these anesthetics also have short half-lives, often necessitating continuous injection to obtain satisfactory pain relief. In the current work, we used a poly(lactic-co-glycolic acid) (PLGA)-polyethylene glycol (PEG)-PLGA (PLGA-PEG-PLGA) temperature-sensitive gel to deliver a local anesthetic, ropivacaine hydrochloride (RP), to prolong its analgesic effect. We investigated the influence of polymer and drug concentration on gelation temperature and the in vitro drug release rate from the temperature-sensitive gel. RP-loaded PLGA-PEG-PLGA solution is a liquid at room temperature and forms a gel at temperatures slightly lower than body temperature. With regard to the gel's drug release rate, 37.5, 51.3 and 72.6% of RP was released at 12, 24 and 48 h, respectively. This in vitro drug release profile conformed to the Higuchi equation. To assess pain control efficacy when using the gel, we evaluated the mechanical paw withdrawal reflex threshold, thermal pain threshold and incision cumulative pain scores in a rat incisional model. The results showed that the anti-pain effect of a single injection of RP-loaded gel at the incision site lasted for 48 h, which is significantly longer than the effect produced by injection of RP solution alone. The use of RP-loaded thermosensitive gels could provide a promising method for managing postoperative pain.

  1. Mesenchymal stromal cell secretomes are modulated by suspension time, delivery vehicle, passage through catheter, and exposure to adjuvants.

    Science.gov (United States)

    Parsha, Kaushik; Mir, Osman; Satani, Nikunj; Yang, Bing; Guerrero, Waldo; Mei, Zhuyong; Cai, Chunyan; Chen, Peng R; Gee, Adrian; Hanley, Patrick J; Aronowski, Jaroslaw; Savitz, Sean I

    2017-01-01

    Extensive animal data indicate that mesenchymal stromal cells (MSCs) improve outcome in stroke models. Intra-arterial (IA) injection is a promising route of delivery for MSCs. Therapeutic effect of MSCs in stroke is likely based on the broad repertoire of secreted trophic and immunomodulatory cytokines produced by MSCs. We determined the differential effects of exposing MSCs to different types of clinically relevant vehicles, and/or different additives and passage through a catheter relevant to IA injections. MSCs derived from human bone marrow were tested in the following vehicles: 5% albumin (ALB), 6% Hextend (HEX) and 40% dextran (DEX). Each solution was tested (i) alone, (ii) with low-dose heparin, (iii) with 10% Omnipaque, or (iv) a combination of heparin and Omnipaque. Cells in vehicles were collected directly or passed through an IA catheter, and MSC viability and cytokine release profiles were assessed. Cell viability remained above 90% under all tested conditions with albumin being the highest at 97%. Viability was slightly reduced after catheter passage or exposure to heparin or Omnipaque. Catheter passage had little effect on MSC cytokine secretion. ALB led to increased release of angiogenic factors such as vascular endothelial growth factor compared with other vehicles, while HEX and DEX led to suppression of pro-inflammatory cytokines such as interleukin-6. However, when these three vehicles were subjected to catheter passage and/or exposure to additives, the cytokine release profile varied depending on the combination of conditions to which MSCs were exposed. Exposure of MSCs to certain types of vehicles or additives changes the profile of cytokine secretion. The activation phenotype of MSCs may therefore be affected by the vehicles used for these cells or the exposure to the adjuvants used in their administration. Copyright © 2017 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  2. Multitriggered Tumor-Responsive Drug Delivery Vehicles Based on Protein and Polypeptide Coassembly for Enhanced Photodynamic Tumor Ablation.

    Science.gov (United States)

    Zhang, Ning; Zhao, Fenfang; Zou, Qianli; Li, Yongxin; Ma, Guanghui; Yan, Xuehai

    2016-11-01

    Tumor-responsive nanocarriers are highly valuable and demanded for smart drug delivery particularly in the field of photodynamic therapy (PDT), where a quick release of photosensitizers in tumors is preferred. Herein, it is demonstrated that protein-based nanospheres, prepared by the electrostatic assembly of proteins and polypeptides with intermolecular disulfide cross-linking and surface polyethylene glycol coupling, can be used as versatile tumor-responsive drug delivery vehicles for effective PDT. These nanospheres are capable of encapsulation of various photosensitizers including Chlorin e6 (Ce6), protoporphyrin IX, and verteporfin. The Chlorin e6-encapsulated nanospheres (Ce6-Ns) are responsive to changes in pH, redox potential, and proteinase concentration, resulting in multitriggered rapid release of Ce6 in an environment mimicking tumor tissues. In vivo fluorescence imaging results indicate that Ce6-Ns selectively accumulate near tumors and the quick release of Ce6 from Ce6-Ns can be triggered by tumors. In tumors the fluorescence of released Ce6 from Ce6-Ns is observed at 0.5 h postinjection, while in normal tissues the fluorescence appeared at 12 h postinjection. Tumor ablation is demonstrated by in vivo PDT using Ce6-Ns and the biocompatibility of Ce6-Ns is evident from the histopathology imaging, confirming the enhanced in vivo PDT efficacy and the biocompatibility of the assembled drug delivery vehicles. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Sugarcane bagasse lignin, and silica gel and magneto-silica as drug vehicles for development of innocuous methotrexate drug against rheumatoid arthritis disease in albino rats

    Energy Technology Data Exchange (ETDEWEB)

    Wahba, Sanaa M.R. [Zoology department, Women College, Ain-Shams University,11566 Cairo (Egypt); Darwish, Atef S., E-mail: atef_mouharam@sci.asu.edu.eg [Chemistry department, Faculty of Science, Ain Shams University, Cairo (Egypt); Shehata, Iman H. [Microbiology and Immunology Department, Faculty of Medicine, Ain-Shams University, Cairo (Egypt); Abd Elhalem, Sahar S. [Zoology department, Women College, Ain-Shams University,11566 Cairo (Egypt)

    2015-03-01

    The present study clarifies co-therapy action of deliveries from their textural changes point of view. Methotrexate (MTX) was immobilized onto biodegradable lignin, silica gel and iron/silica nanocomposite. Loaded-MTX was i.p. injected into albino rats at doses of 0.25 and 0.5 mg/kg/week for 2.5 months, after which spleen, liver, testes and knee joint tissues were collected for tests. IFN-γ and IL-17A mRNA gene expressions in spleen in all biological samples were determined by RT-PCR. Physicochemical features of drug carriers were monitored by XRD, BET-PSD, SEM and TEM. Drug inflammatory-site targeting was found to be closely related to the physico-features of deliverers. The interlayered lignin of micro- and meso-pore channels directed MTX toward concealed infected cells in liver and testes tissues, while meso-structured silica flacks satisfied by gathering MTX around knee joints. The magneto-silica nanocomposite targeted MTX toward spleen tissue, which is considered as a lively factory for the production of electron rich compounds. - Highlights: • Opening the door to synthesize smart targeted drug deliveries against RA disease • Therapy action of MTX-laden lignin and Fe{sub 3}O{sub 4}/SiO{sub 2} composite toward RA disease • Procure selective targeted drug deliveries of near 100% curing against RA disease • Revolutionary clinical therapies for RA disease by inventive MTX-delivery models.

  4. Sugarcane bagasse lignin, and silica gel and magneto-silica as drug vehicles for development of innocuous methotrexate drug against rheumatoid arthritis disease in albino rats

    International Nuclear Information System (INIS)

    Wahba, Sanaa M.R.; Darwish, Atef S.; Shehata, Iman H.; Abd Elhalem, Sahar S.

    2015-01-01

    The present study clarifies co-therapy action of deliveries from their textural changes point of view. Methotrexate (MTX) was immobilized onto biodegradable lignin, silica gel and iron/silica nanocomposite. Loaded-MTX was i.p. injected into albino rats at doses of 0.25 and 0.5 mg/kg/week for 2.5 months, after which spleen, liver, testes and knee joint tissues were collected for tests. IFN-γ and IL-17A mRNA gene expressions in spleen in all biological samples were determined by RT-PCR. Physicochemical features of drug carriers were monitored by XRD, BET-PSD, SEM and TEM. Drug inflammatory-site targeting was found to be closely related to the physico-features of deliverers. The interlayered lignin of micro- and meso-pore channels directed MTX toward concealed infected cells in liver and testes tissues, while meso-structured silica flacks satisfied by gathering MTX around knee joints. The magneto-silica nanocomposite targeted MTX toward spleen tissue, which is considered as a lively factory for the production of electron rich compounds. - Highlights: • Opening the door to synthesize smart targeted drug deliveries against RA disease • Therapy action of MTX-laden lignin and Fe 3 O 4 /SiO 2 composite toward RA disease • Procure selective targeted drug deliveries of near 100% curing against RA disease • Revolutionary clinical therapies for RA disease by inventive MTX-delivery models

  5. Formulation Optimization and Ex Vivo and In Vivo Evaluation of Celecoxib Microemulsion-Based Gel for Transdermal Delivery.

    Science.gov (United States)

    Cao, Mengyuan; Ren, Lili; Chen, Guoguang

    2017-08-01

    Celecoxib (CXB) is a poorly aqueous solubility sulfonamide non-steroidal anti-inflammatory drug (NSAID). Hence, the formulation of CXB was selected for solubilization and bioavailability. To find out suitable formulation for microemulsion, the solubility of CXB in triacetin (oil phase), Tween 80 (surfactant), and Transcutol-P (co-surfactant) was screened respectively and optimized by using orthogonal experimental design. The Km value and concentration of oil, S mix , and water were confirmed by pseudo-ternary phase diagram studies and central composite design. One percent carbopol 934 was added to form CXB microemulsion-based gel. The final formulation was evaluated for its appearance, pH, viscosity, stability, drug content determination, globule size, and zeta potential. Its ex vivo drug permeation and the in vivo pharmacokinetic was investigated. Further research was performed to ensure the safety and validity by skin irritation study and in vivo anti-inflammatory activity study. Ex vivo permeation study in mice was designed to compare permeation and transdermal ability between microemulsion formulation and conventional gel. The results revealed that optimized microemulsion-based gel gained higher permeation based on smaller globule size and high drug loading of microemulsion. Transdermal ability was also greatly improved. Bioavailability was compared to market Celebrex® by the in vivo pharmacokinetic study in rabbits. The results indicated that CXB microemulsion-based gel had better bioavailability than Celebrex®.

  6. Sol–gel one-pot synthesis in soft conditions of mesoporous silica materials ready for drug delivery system

    NARCIS (Netherlands)

    Tourne-Peteilh, C.; Begu, S.; Lerner, D.A.; Galarneau, A.; Lafont, U.; Devoiselle, J.M.

    2011-01-01

    The present work reveals a new and simple strategy, a one-step sol–gel procedure, to encapsulate a low water-soluble drug in silica mesostructured microparticles and to improve its release in physiological media. The synthesis of these new materials is based on the efficient solubilisation of a

  7. Characterization of gelation process and drug release profile of thermosensitive liquid lecithin/poloxamer 407 based gels as carriers for percutaneous delivery of ibuprofen.

    Science.gov (United States)

    Djekic, Ljiljana; Krajisnik, Danina; Martinovic, Martina; Djordjevic, Dragana; Primorac, Marija

    2015-07-25

    Suitability of liquid lecithin (i.e., solution of lecithin in soy bean oil with ∼ 60% w/w of phospholipids) for formation of gels, upon addition of water solution of poloxamer 407, was investigated, and formulated systems were evaluated as carriers for percutaneous delivery of ibuprofen. Formulation study of pseudo-ternary system liquid lecithin/poloxamer 407/water at constant liquid lecithin/poloxamer 407 mass ratio (2.0) revealed that minimum concentrations of liquid lecithin and poloxamer 407 required for formation of gel like systems were 15.75% w/w and 13.13% w/w, respectively, while the maximum content of water was 60.62% w/w. The systems comprising water concentrations in a range from 55 to 60.62% w/w were soft semisolids suitable for topical application, and they were selected for physicochemical and biopharmaceutical evaluation. Analysis of conductivity results and light microscopy examination revealed that investigated systems were water dilutable dispersions of spherical oligolamellar associates of phospholipids and triglyceride molecules in the copolymer water solution. Rheological behavior evaluation results indicated that the investigated gels were thermosensitive shear thinning systems. Ibuprofen (5% w/w) was incorporated by dispersing into the previously prepared carriers. Drug-loaded systems were physically stable at storage temperature from 5 ± 3°C to 40 ± 2°C, for 30 days. In vitro ibuprofen release was in accordance with the Higuchi model (rH>0.95) and sustained for 12h. The obtained results implicated that formulated LLPBGs, optimized regarding drug release and organoleptic properties, represent promising carriers for sustained percutaneous drug delivery of poorly soluble drugs. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Analysis of alcohol-based hand sanitizer delivery systems: efficacy of foam, gel, and wipes against influenza A (H1N1) virus on hands.

    Science.gov (United States)

    Larson, Elaine L; Cohen, Bevin; Baxter, Kathleen A

    2012-11-01

    Minimal research has been published evaluating the effectiveness of hand hygiene delivery systems (ie, rubs, foams, or wipes) at removing viruses from hands. The purposes of this study were to determine the effect of several alcohol-based hand sanitizers in removing influenza A (H1N1) virus, and to compare the effectiveness of foam, gel, and hand wipe products. Hands of 30 volunteers were inoculated with H1N1 and randomized to treatment with foam, gel, or hand wipe applied to half of each volunteer's finger pads. The log(10) count of each subject's treated and untreated finger pads were averaged. Log(10) reductions were calculated from these differences and averaged within treatment group. Between-treatment analysis compared changes from the untreated finger pads using analysis of covariance with treatment as a factor and the average log(10) untreated finger pads as the covariate. Log(10) counts on control finger pads were 2.7-5.3 log(10) of the 50% infectious dose for tissue culture (TCID(50)/0.1 mL) (mean, 3.8 ± 0.5 log(10) TCID(50)/0.1 mL), and treated finger pad counts for all test products were 0.5-1.9 log(10) TCID(50)/0.1 mL (mean, 0.53 ± 0.17 log(10) TCID(50)/0.1 mL). Treatments with all products resulted in a significant reduction in viral titers (>3 logs) at their respective exposure times that were statistically comparable. All 3 delivery systems (foam, gel, and wipe) produced significantly reduced viral counts on hands. Copyright © 2012 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Mosby, Inc. All rights reserved.

  9. Surface engineering of macrophages with nanoparticles to generate a cell-nanoparticle hybrid vehicle for hypoxia-targeted drug delivery.

    Science.gov (United States)

    Holden, Christopher A; Yuan, Quan; Yeudall, W Andrew; Lebman, Deborah A; Yang, Hu

    2010-02-02

    Tumors frequently contain hypoxic regions that result from a shortage of oxygen due to poorly organized tumor vasculature. Cancer cells in these areas are resistant to radiation- and chemotherapy, limiting the treatment efficacy. Macrophages have inherent hypoxia-targeting ability and hold great advantages for targeted delivery of anticancer therapeutics to cancer cells in hypoxic areas. However, most anticancer drugs cannot be directly loaded into macrophages because of their toxicity. In this work, we designed a novel drug delivery vehicle by hybridizing macrophages with nanoparticles through cell surface modification. Nanoparticles immobilized on the cell surface provide numerous new sites for anticancer drug loading, hence potentially minimizing the toxic effect of anticancer drugs on the viability and hypoxia-targeting ability of the macrophage vehicles. In particular, quantum dots and 5-(aminoacetamido) fluorescein-labeled polyamidoamine dendrimer G4.5, both of which were coated with amine-derivatized polyethylene glycol, were immobilized to the sodium periodate-treated surface of RAW264.7 macrophages through a transient Schiff base linkage. Further, a reducing agent, sodium cyanoborohydride, was applied to reduce Schiff bases to stable secondary amine linkages. The distribution of nanoparticles on the cell surface was confirmed by fluorescence imaging, and it was found to be dependent on the stability of the linkages coupling nanoparticles to the cell surface.

  10. Nanostructured liquid crystalline particles as an alternative delivery vehicle for plant agrochemicals.

    Science.gov (United States)

    Nadiminti, Pavani P; Dong, Yao D; Sayer, Chad; Hay, Phillip; Rookes, James E; Boyd, Ben J; Cahill, David M

    2013-03-13

    Agrochemical spray formulations applied to plants are often mixed with surfactants that facilitate delivery of the active ingredient. However, surfactants cause phytotoxicity and off-target effects in the environment. We propose the use of nanostructured liquid crystalline particles (NLCP) as an alternative to surfactant-based agrochemical delivery. For this, we have compared the application of commercial surfactants, di (2-ethylhexyl) sulfosuccinate and alkyl dimethyl betaine, with NLCP made from phytantriol, at concentrations of 0.1%, 1% and 5% on the adaxial surface of leaves of four plant species Ttriticum aestivum (wheat), Zea mays (maize), Lupinus angustifolius (lupin), and Arabidopsis thaliana. In comparison with the application of surfactants there was less phytotoxicity on leaves of each species following treatment with NLCP. Following treatment of leaves with NLCP analysis of cuticular wax micromorphology revealed less wax solubilization in the monocot species. The results clearly show that there are advantages in the use of NLCP rather than surfactants for agrochemical delivery.

  11. Clotrimazole microemulsion and microemulsion-based gel: evaluation of buccal drug delivery and irritancy using chick chorioallantoic membrane as the model.

    Science.gov (United States)

    Kaewbanjong, Jarika; Wan Sia Heng, Paul; Boonme, Prapaporn

    2017-12-01

    To investigate the efficacy of clotrimazole microemulsion (CTZ-ME) and its gel form, clotrimazole microemulsion-based gel (CTZ-MBG), for the treatment of oral candidiasis. CTZ-ME and CTZ-MBG were characterized for droplet size and texture, respectively. The ex-vivo permeation study and irritancy assessment of CTZ-ME and CTZ-MBG were performed using chick chorioallantoic membrane (CAM) as the model. Antifungal activity against Candida albicans ATCC 10 231 of CTZ-ME and CTZ-MBG was determined by agar diffusion method compared to the blank counterparts. CTZ-ME contained nano-sized droplets and CTZ-MBG had acceptable firmness and spreadability. CTZ-ME exhibited faster CAM permeation of the drug and larger inhibition zone than CTZ-MBG as the increased viscosity of CTZ-MBG resulted in more retardation and higher fluctuations in drug diffusion. As there were no detectable visual changes in CAM blood vessels after applying CTZ-ME or CTZ-MBG, both formulations were non-irritants. CTZ-ME and CTZ-MBG could deliver the drug through CAM, the model for buccal delivery. Additionally, they did not cause irritancy and had effective antifungal activity against C. albicans. The results indicated that CTZ-ME and CTZ-MBG were potential effective antifungal formulations to treat oral candidiasis. © 2017 Royal Pharmaceutical Society.

  12. Gel-like TPGS-Based Microemulsions for Imiquimod Dermal Delivery: Role of Mesostructure on the Uptake and Distribution into the Skin.

    Science.gov (United States)

    Telò, Isabella; Favero, Elena Del; Cantù, Laura; Frattini, Noemi; Pescina, Silvia; Padula, Cristina; Santi, Patrizia; Sonvico, Fabio; Nicoli, Sara

    2017-10-02

    The aim of this work was to develop an innovative microemulsion with gel-like properties for the cutaneous delivery of imiquimod, an immunostimulant drug employed for the treatment of cutaneous infections and neoplastic conditions. A pseudoternary phase diagram was built using a 1/1 TPGS (d-α-tocopheryl polyethylene glycol 1000 succinate)/Transcutol mixture as surfactant system, and oleic acid as oil phase. Eight microemulsions-selected from the 1.25/8.75 oil/surfactants ratio, along the water dilution line (from 20 to 56% w/w)-were characterized in terms of rheological behavior, optical properties via polarized microscopy, and supramolecular structure using X-ray scattering. Then, these formulations were loaded with imiquimod and the uptake and distribution into the skin was evaluated on full-thickness porcine skin. X-ray scattering experiments revealed the presence of disconnected drops in the case of microemulsion with 20% water content. Diluting the system up to 48% water content, the structure turned into an interconnected lamellar microemulsion, reaching a proper disconnected lamellar structure for the highest water percentages (52-56%). Upon water addition, also the rheological properties changed from nearly Newtonian fluids to gel-like structures, displaying the maximum of viscosity for the 48% water content. Skin uptake experiments demonstrated that formulation viscosity, drug loading, and surfactant concentration did not play an important role on imiquimod uptake into the skin, while the skin penetration was related instead to the microemulsion mesostructure. In fact, drug uptake became enhanced by locally lamellar interconnected structures, while it was reduced in the presence of disconnected structures, either drops or proper lamellae. Finally, the data demonstrated that mesostructure also affects the drug distribution between the epidermis and dermis. In particular, a significantly higher dermal accumulation was found when disconnected lamellar

  13. 41 CFR 101-26.501-6 - Forms used in connection with delivery of vehicles.

    Science.gov (United States)

    2010-07-01

    ... repairs pursuant to the warranty. (b) Standard Form 368, Quality Deficiency Report (Category II). GSA is constantly striving to improve customer service and the quality of motor vehicles for which it contracts. To... correction. Procedures for documenting and reporting quality deficiencies are set forth in the GSA...

  14. [In vitro evaluation of the gels properties prepared on Pluronic F-127 as vehicles for administration prolactin by injection].

    Science.gov (United States)

    Karolewicz, Bozena; Pawlik-Gałczyńska, Anna; Pluta, Janusz; Ryszka, Florian

    2011-01-01

    The aim of this study was to prepare a thermoresponsive formulations, which are a carrier for proteins--prolactin administered directly into solid tumor and which obtain sol-gel transitions at physiological ranges of temperature. Prolactin (PRL) is a hormone that in vivo and in vitro exhibits antiangiogenic properties. Application of this protein in the proposed formulations can be particularly advantageous because of its relatively low stability and limited ability to transmembrane penetration. The paper prepared thermoresponsive carriers, based on nonionic polymer Pluronic F-127 with selected excipients such as dextran 7000, PEG 400, Tween 20 and Tween 80. The sol-gel transition temperature of the formulations was investigated and their physicochemical properties such as pH, density, osmotic pressure were studied. In the remainder of the work carried out tests of prolactin release from the proposed media. The results obtained indicate that a significant influence on the theological parameters obtained carriers and the availability of pharmaceutical composition of prolactin was developed formulation.

  15. DNA origami as an in vivo drug delivery vehicle for cancer therapy.

    Science.gov (United States)

    Zhang, Qian; Jiang, Qiao; Li, Na; Dai, Luru; Liu, Qing; Song, Linlin; Wang, Jinye; Li, Yaqian; Tian, Jie; Ding, Baoquan; Du, Yang

    2014-07-22

    Many chemotherapeutics used for cancer treatments encounter issues during delivery to tumors in vivo and may have high levels of systemic toxicity due to their nonspecific distribution. Various materials have been explored to fabricate nanoparticles as drug carriers to improve delivery efficiency. However, most of these materials suffer from multiple drawbacks, such as limited biocompatibility and inability to engineer spatially addressable surfaces that can be utilized for multifunctional activity. Here, we demonstrate that DNA origami possessed enhanced tumor passive targeting and long-lasting properties at the tumor region. Particularly, the triangle-shaped DNA origami exhibits optimal tumor passive targeting accumulation. The delivery of the known anticancer drug doxorubicin into tumors by self-assembled DNA origami nanostructures was performed, and this approach showed prominent therapeutic efficacy in vivo. The DNA origami carriers were prepared through the self-assembly of M13mp18 phage DNA and hundreds of complementary DNA helper strands; the doxorubicin was subsequently noncovalently intercalated into these nanostructures. After conducting fluorescence imaging and safety evaluation, the doxorubicin-containing DNA origami exhibited remarkable antitumor efficacy without observable systemic toxicity in nude mice bearing orthotopic breast tumors labeled with green fluorescent protein. Our results demonstrated the potential of DNA origami nanostructures as innovative platforms for the efficient and safe drug delivery of cancer therapeutics in vivo.

  16. Mucosal vaccines: a paradigm shift in the development of mucosal adjuvants and delivery vehicles.

    Science.gov (United States)

    Srivastava, Atul; Gowda, Devegowda Vishakante; Madhunapantula, SubbaRao V; Shinde, Chetan G; Iyer, Meenakshi

    2015-04-01

    Mucosal immune responses are the first-line defensive mechanisms against a variety of infections. Therefore, immunizations of mucosal surfaces from which majority of infectious agents make their entry, helps to protect the body against infections. Hence, vaccinization of mucosal surfaces by using mucosal vaccines provides the basis for generating protective immunity both in the mucosal and systemic immune compartments. Mucosal vaccines offer several advantages over parenteral immunization. For example, (i) ease of administration; (ii) non-invasiveness; (iii) high-patient compliance; and (iv) suitability for mass vaccination. Despite these benefits, to date, only very few mucosal vaccines have been developed using whole microorganisms and approved for use in humans. This is due to various challenges associated with the development of an effective mucosal vaccine that can work against a variety of infections, and various problems concerned with the safe delivery of developed vaccine. For instance, protein antigen alone is not just sufficient enough for the optimal delivery of antigen(s) mucosally. Hence, efforts have been made to develop better prophylactic and therapeutic vaccines for improved mucosal Th1 and Th2 immune responses using an efficient and safe immunostimulatory molecule and novel delivery carriers. Therefore, in this review, we have made an attempt to cover the recent advancements in the development of adjuvants and delivery carriers for safe and effective mucosal vaccine production. © 2015 APMIS. Published by John Wiley & Sons Ltd.

  17. Double emulsion electrospun nanofibers as a growth factor delivery vehicle for salivary gland regeneration

    Science.gov (United States)

    Foraida, Zahraa I.; Sharikova, Anna; Peerzada, Lubna N.; Khmaladze, Alexander; Larsen, Melinda; Castracane, James

    2017-08-01

    Sustained delivery of growth factors, proteins, drugs and other biologically active molecules is necessary for tissue engineering applications. Electrospun fibers are attractive tissue engineering scaffolds as they partially mimic the topography of the extracellular matrix (ECM). However, they do not provide continuous nourishment to the tissue. In search of a biomimetic scaffold for salivary gland tissue regeneration, we previously developed a blend nanofiber scaffold composed of the protein elastin and the synthetic polymer polylactic-co-glycolic acid (PLGA). The nanofiber scaffold promoted in vivo-like salivary epithelial cell tissue organization and apicobasal polarization. However, in order to enhance the salivary cell proliferation and biomimetic character of the scaffold, sustained growth factor delivery is needed. The composite nanofiber scaffold was optimized to act as a growth factor delivery system using epidermal growth factor (EGF) as a model protein. The nanofiber/EGF hybrid nanofibers were synthesized by double emulsion electrospinning where EGF is emulsified within a water/oil/water (w/o/w) double emulsion system. Successful incorporation of EGF was confirmed using Raman spectroscopy. EGF release profile was characterized using enzyme-linked immunosorbent assay (ELIZA) of the EGF content. Double emulsion electrospinning resulted in slower release of EGF. We demonstrated the potential of the proposed double emulsion electrospun nanofiber scaffold for the delivery of growth factors and/or drugs for tissue engineering and pharmaceutical applications.

  18. Silk Electrogel Based Gastroretentive Drug Delivery System

    Science.gov (United States)

    Wang, Qianrui

    Gastric cancer has become a global pandemic and there is imperative to develop efficient therapies. Oral dosing strategy is the preferred route to deliver drugs for treating the disease. Recent studies suggested silk electro hydrogel, which is pH sensitive and reversible, has potential as a vehicle to deliver the drug in the stomach environment. The aim of this study is to establish in vitro electrogelation e-gel based silk gel as a gastroretentive drug delivery system. We successfully extended the duration of silk e-gel in artificial gastric juice by mixing silk solution with glycerol at different ratios before the electrogelation. Structural analysis indicated the extended duration was due to the change of beta sheet content. The glycerol mixed silk e-gel had good doxorubicin loading capability and could release doxorubicin in a sustained-release profile. Doxorubicin loaded silk e-gels were applied to human gastric cancer cells. Significant cell viability decrease was observed. We believe that with further characterization as well as functional analysis, the silk e-gel system has the potential to become an effective vehicle for gastric drug delivery applications.

  19. Poly(ester amide-Poly(ethylene oxide Graft Copolymers: Towards Micellar Drug Delivery Vehicles

    Directory of Open Access Journals (Sweden)

    Gregory J. Zilinskas

    2012-01-01

    Full Text Available Micelles formed from amphiphilic copolymers are promising materials for the delivery of drug molecules, potentially leading to enhanced biological properties and efficacy. In this work, new poly(ester amide-poly(ethylene oxide (PEA-PEO graft copolymers were synthesized and their assembly into micelles in aqueous solution was investigated. It was possible to tune the sizes of the micelles by varying the PEO content of the polymers and the method of micelle preparation. Under optimized conditions, it was possible to obtain micelles with diameters less than 100 nm as measured by dynamic light scattering and transmission electron microscopy. These micelles were demonstrated to encapsulate and release a model drug, Nile Red, and were nontoxic to HeLa cells as measured by an MTT assay. Overall, the properties of these micelles suggest that they are promising new materials for drug delivery systems.

  20. Exploring Heuristics for the Vehicle Routing Problem with Split Deliveries and Time Windows

    Science.gov (United States)

    2014-09-18

    calculated and then the future value of each COP’s inventory is calculated in the same fashion as for a single delivery. The value of the total...defined. This initial demand is calculated based on the delta between a current inventory value and inventory level at which the maximum value is...34 Discrete Optimization, vol. 5, pp. 434-456, 2008. [50] T. Ibaraki, S. Imahori, M. Kubo , T. Masuda, T. Uno and M. Yagiura, "Effective Local Search

  1. Effect of Surface-Modified Paclitaxel Nanowires on U937 Cells In Vitro: A Novel Drug Delivery Vehicle

    Directory of Open Access Journals (Sweden)

    Mohamed H. Abumaree

    2012-01-01

    Full Text Available We have fabricated surface-modified paclitaxel nanowires (SM-PNs with a precise diameter and an average length of 50 μm. The surface of these nanowires is coated with a monolayer of octadecylsiloxane (ODS, which prevents aggregation and enhances dispersivity in aqueous media. This system constitutes a novel drug delivery vehicle based on one-dimensional (1D nanostructures with a large drug to vehicle ratio. We assayed the cytotoxicity of different diameter SM-PNs (200, 80, 35, and 18 nm with U937 cells and compared their activity to microcrystalline paclitaxel. SM-PNs reduced U937 cell proliferation in culture followed by cell death. For the same amount of paclitaxel, different diameter SM-PNs displayed different cytotoxic effect at the same incubation time period. SM-PNs with 35 nm diameters were the most efficient in completely halting cell proliferation following the first 24 hours of treatment, associated with 42% cell death. SM-PNs with 18 nm diameters were least effective. These SM-PNs can be tailored to fit a certain treatment protocol by simply choosing the appropriate diameter.

  2. Assessing the Battery Cost at Which Plug-In Hybrid Medium-Duty Parcel Delivery Vehicles Become Cost-Effective

    Energy Technology Data Exchange (ETDEWEB)

    Ramroth, L. A.; Gonder, J. D.; Brooker, A. D.

    2013-04-01

    The National Renewable Energy Laboratory (NREL) validated diesel-conventional and diesel-hybrid medium-duty parcel delivery vehicle models to evaluate petroleum reductions and cost implications of hybrid and plug-in hybrid diesel variants. The hybrid and plug-in hybrid variants are run on a field data-derived design matrix to analyze the effect of drive cycle, distance, engine downsizing, battery replacements, and battery energy on fuel consumption and lifetime cost. For an array of diesel fuel costs, the battery cost per kilowatt-hour at which the hybridized configuration becomes cost-effective is calculated. This builds on a previous analysis that found the fuel savings from medium duty plug-in hybrids more than offset the vehicles' incremental price under future battery and fuel cost projections, but that they seldom did so under present day cost assumptions in the absence of purchase incentives. The results also highlight the importance of understanding the application's drive cycle specific daily distance and kinetic intensity.

  3. Effect of neat and binary vehicle systems on the solubility and cutaneous delivery of piperine

    Directory of Open Access Journals (Sweden)

    Abdullah Hasan Alomrani

    2018-02-01

    Full Text Available Vitiligo is a skin disease characterized by depigmentation disorders due to lack of melanin production. Piperine, an alkaloid extracted from black piper, is active in melanocytes proliferation. To achieve this, the drug has to reach the melanocytes which exist in the deep layer of the epidermis. Higher drug concentration can be obtained after application of optimized formulation to skin. Accordingly, the aim of this work is to investigate the effect of vehicles on skin penetration of piperine as the first step in development of optimized formulation. The tested vehicles include ethanol (Eth, propylene glycol (PG, polyethylene glycol 400 (PEG, and oleic acid (OA and their combinations. Water was used as the control and skin permeation was monitored using rabbit ear model skin. The highest piperine solubility (48.6 mg/ml and flux (40.8 μg/cm2 h was achieved by Eth and the lowest piperine flux (1.17 μg/cm2 h was reported for PEG. PG and OA showed piperine flux values comparable to that of the control. Among different combination systems, Eth-OA (75:25 binary system had the highest piperine flux (59.3 μg/cm2 h followed by Eth-OA (50:50 (32.3 μg/cm2 h and PG-OA (90:10 (22.7 μg/cm2 h. The study thus introduced a vehicle system as the first step in the development of topical formulation of piperine.

  4. HSA/PSS coated gold nanorods as thermo-triggered drug delivery vehicles for combined cancer photothermal therapy and chemotherapy

    Science.gov (United States)

    Tu, Ting-Yu; Yang, Shu-Jyuan; Wang, Chung-Hao; Lee, Shin-Yu; Shieh, Ming-Jium

    2018-02-01

    Drug delivery systems combined multimodal therapy strategies are very promising in cancer theranostic applications. In this work, a new drug-delivery vehicles based on human serum albumin (HSA)-coated gold nanorods (GNR/PSS/HSA NPs) was developed. The success of coating was verified by transmission electron microscopy (TEM), zeta potential and fourier transform infrared spectroscopy (FTIR). Furthermore, it is demonstrated that doxorubicin (DOX) is successfully loaded among multilayered gold nanorods by the electrostatic and hydrophobic force, and DOX@GNR/PSS/HSA NPs were highly biocompatible and stable in various physiological solutions. The NPs possess strong absorbance in nearinfrared (NIR) region, and high photothermal conversion efficiency for outstanding photothermal therapy applications. A bimodal drug release triggered by proteinase or NIR irradiation has been revealed, resulting in a significant chemotherapeutic effect in tumor sites because of the preferential drug accumulation and triggered release. Importantly, the in vitro and in vivo experiments demonstrated that DOX@GNR/PSS/HSA NPs, which combined photothermal and chemotherapy for cancer therapy, revealing a remarkably superior synergistic anticancer effect over either monotherapy. All these results suggested a considerable potential of DOX@GNR/PSS/HSA NPs nano-platform for antitumor therapy.

  5. Layer-by-layer nanoparticles as an efficient siRNA delivery vehicle for SPARC silencing.

    Science.gov (United States)

    Tan, Yang Fei; Mundargi, Raghavendra C; Chen, Min Hui Averil; Lessig, Jacqueline; Neu, Björn; Venkatraman, Subbu S; Wong, Tina T

    2014-05-14

    Efficient and safe delivery systems for siRNA therapeutics remain a challenge. Elevated secreted protein, acidic, and rich in cysteine (SPARC) protein expression is associated with tissue scarring and fibrosis. Here we investigate the feasibility of encapsulating SPARC-siRNA in the bilayers of layer-by-layer (LbL) nanoparticles (NPs) with poly(L-arginine) (ARG) and dextran (DXS) as polyelectrolytes. Cellular binding and uptake of LbL NPs as well as siRNA delivery were studied in FibroGRO cells. siGLO-siRNA and SPARC-siRNA were efficiently coated onto hydroxyapatite nanoparticles. The multilayered NPs were characterized with regard to particle size, zeta potential and surface morphology using dynamic light scattering and transmission electron microscopy. The SPARC-gene silencing and mRNA levels were analyzed using ChemiDOC western blot technique and RT-PCR. The multilayer SPARC-siRNA incorporated nanoparticles are about 200 nm in diameter and are efficiently internalized into FibroGRO cells. Their intracellular fate was also followed by tagging with suitable reporter siRNA as well as with lysotracker dye; confocal microscopy clearly indicates endosomal escape of the particles. Significant (60%) SPARC-gene knock down was achieved by using 0.4 pmole siRNA/μg of LbL NPs in FibroGRO cells and the relative expression of SPARC mRNA reduced significantly (60%) against untreated cells. The cytotoxicity as evaluated by xCelligence real-time cell proliferation and MTT cell assay, indicated that the SPARC-siRNA-loaded LbL NPs are non-toxic. In conclusion, the LbL NP system described provides a promising, safe and efficient delivery platform as a non-viral vector for siRNA delivery that uses biopolymers to enhance the gene knock down efficiency for the development of siRNA therapeutics. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. para-Sulfonatocalix[4]arene and polyamidoamine dendrimer nanocomplexes as delivery vehicles for a novel platinum anticancer agent.

    Science.gov (United States)

    Pang, Chi Ting; Ammit, Alaina J; Ong, Yu Qing Elysia; Wheate, Nial J

    2017-11-01

    Novel para-sulfonatocalix[4]arene (sCX[4]) and polyamidoamine (PAMAM) dendrimer nanocomplexes were evaluated as delivery vehicles for the platinum anticancer agent [(1,10-phenanthroline)(1S,2S-diaminocyclohexane)platinum(II)] chloride (PHENSS). Different ratios of sCX[4] to PHENSS were tested for their compatibility, with a ratio of 6:1 sCX[4]:PHENSS having the best solubility. The loading of sCX[4], and sCX[4]-bound PHENSS, onto three different generations of PAMAM dendrimers (G3.0-5.0) was examined using UV-visible spectrophotometry. The quantity of sCX[4] bound was found to increase exponentially with dendrimer size: G3, 15 sCX[4] molecules per dendrimer; G4, 37; and G5, 78. Similarly, the loading of sCX[4]-bound PHENSS also increased with increasing dendrimer size: G3, 7 PHENSS molecules per dendrimer; G4, 14; and G5, 28.5. The loading of sCX[4]-bound PHENSS molecules is significantly lower when compared with that of sCX[4], which indicates that less than half of the binding sites were occupied (45, 44, and 44%, respectively). By 1 H NMR and UV-vis analysis, the nanocomplex was found to be stable in NaCl solutions at concentrations up to 150mM. While PHENSS is more active in vitro than cisplatin against the human breast cancer cell line, MCF-7, delivery of PHENSS using the sCX[4]-dendrimer nanocomplexes, regardless of dendrimer generation, had little effect on PHENSS cytotoxicity. The results of this study may have application in the delivery of a variety of small molecule metal-based drugs for which chemical conjugation to a nanoparticle is undesired or not feasible. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Towards boron neutron capture therapy: the formulation and preliminary in vitro evaluation of liposomal vehicles for the therapeutic delivery of the dequalinium salt of bis-nido-carborane.

    Science.gov (United States)

    Theodoropoulos, Dimitrios; Rova, Aikaterini; Smith, James R; Barbu, Eugen; Calabrese, Gianpiero; Vizirianakis, Ioannis S; Tsibouklis, John; Fatouros, Dimitrios G

    2013-11-15

    Liposomes of phosphatidylcholine or of dimyristoylphosphatidylcholine that incorporate bis-nido-carborane dequalinium salt are stable in physiologically relevant media and have in vitro toxicity profiles that appear to be compatible with potential therapeutic applications. These features render the structures suitable candidate boron-delivery vehicles for evaluation in the boron neutron capture therapy of cancer. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Economic and Environmental Evaluation of a Brick Delivery System Based on Multi-Trip Vehicle Loader Routing Problem for Small Construction Sites

    Directory of Open Access Journals (Sweden)

    Heungjo An

    2018-05-01

    Full Text Available While large construction sites have on-site loaders to handle heavy and large packages of bricks, small brick manufacturers employ a truck-mounted loader or sometimes deploy a loader truck to accompany normal brick delivery trucks to small construction sites lacking on-site loaders. It may be very challenging for small contractors to manage a sustainable delivery system that is both cost-effective and environmentally friendly. To address this issue, this paper proposes to solve a multi-trip vehicle loader routing problem by uniquely planning routes and schedules of several types of vehicles considering their synchronized operations at customer sites and multi trips. This paper also evaluates the sustainability of the developed model from both economic and environmental perspectives. Case studies based on small construction sites in the Middle East demonstrate applications of the proposed model to make the most economical plans for delivering bricks. Compared to the single-trip vehicle loader routing problem, the proposed model reduces, on average, 18.7% of the total delivery cost while increasing CO2 emission negligibly. The economic benefit is mainly achieved by reducing the required number of vehicles. Brick plant managers can use the proposed mathematical model to plan the most cost-effective delivery schedules sustainably while minimizing negative environmental effects.

  9. Chitosan-Poly (I:C-PADRE Based Nanoparticles as Delivery Vehicles for Synthetic Peptide Vaccines

    Directory of Open Access Journals (Sweden)

    Jorge F. Correia-Pinto

    2015-09-01

    Full Text Available The safety and precision of peptide antigens has prompted the search for adjuvants capable of increasing the immune response against these intrinsically poorly immunogenic antigens. The integration of both immunostimulants and peptide antigens within nanometric delivery systems for their co-delivery to immune cells is a promising vaccination strategy. With this in mind, the potential synergistic effect of the immunostimulant poly (I:C (pIC and a T-Helper peptide (PADRE, integrated into a chitosan (CS based nanostructure, was explored. The value of this nanostructured combination of materials was assessed for a peptide antigen (1338aa derived from the HPV-16 L2 protein. These nanoparticles, produced by ionic gelation technique, exhibited a nanometric size (<300 nm, a high positive surface charge (>40 mV and high pIC association efficiency (>96%. They also showed capacity for the association of both the 1338aa and PADRE peptides. The influence of the presence of pIC and PADRE in the nanocomposition, as well as that of the peptide presentation form (encapsulated versus surface adsorbed on the antibody induction was evaluated in a preliminary in vivo study. The data obtained highlights the possibility to engineer nanoparticles through the rational combination of a number of adjuvant molecules together with the antigen.

  10. Dendrimer-magnetic nanoparticles as multiple stimuli responsive and enzymatic drug delivery vehicle

    International Nuclear Information System (INIS)

    Chandra, Sudeshna; Noronha, Glen; Dietrich, Sascha; Lang, Heinrich; Bahadur, Dhirendra

    2015-01-01

    Two different chain lengths of (poly)ethylene glycol-PAMAM dendrimers namely, L6-PEG-PAMAM and S6-PEG-PAMAM with six end-grafted ethylene glycol ether-tentacles of type CH 2 CH 2 C(O)O(CH 2 CH 2 O) 9 CH 3 and CH 2 CH 2 C(O)O(CH 2 CH 2 O) 2 C 2 H 5 , respectively, were synthesized. These dendrimers have multiple σ-donor capabilities and therefore, were used for stabilizing the magnetite (Fe 3 O 4 ) nanoparticles. Both the dendrimer-magnetic nanoparticles (L6-PEG-PAMAM-MNPs and S6-PEG-PAMAM-MNPs) were characterized by different spectroscopic and microstructural techniques. The nanoparticles were mesoporous and superparamagnetic and therefore, explored for their possible use in delivery of cancer drug, doxorubicin (DOX). In the developed drug delivery system, achieving high drug-loading efficiency with controllable release were the main challenges. The change in zeta potential and quenching of fluorescence intensity suggests chemical interaction between DOX and the nanoparticles. The loading efficiency was calculated to be over 95% with a sustained pH and temperature sensitive release. Further, enzyme cathepsin B has also been used to degrade the dendritic shell to trigger sustained drug release in the vicinity of tumor cells

  11. Dendrimer-magnetic nanoparticles as multiple stimuli responsive and enzymatic drug delivery vehicle

    Energy Technology Data Exchange (ETDEWEB)

    Chandra, Sudeshna; Noronha, Glen [Metallurgical and Materials Science Department, Indian Institute of Technology Bombay, Powai, Mumbai, 400076 (India); Dietrich, Sascha; Lang, Heinrich [Technische Universität Chemnitz, Institute of Chemistry, Straße der Nationen 62, d-09111 Chemnitz (Germany); Bahadur, Dhirendra, E-mail: dhirenb@iitb.ac.in [Metallurgical and Materials Science Department, Indian Institute of Technology Bombay, Powai, Mumbai, 400076 (India)

    2015-04-15

    Two different chain lengths of (poly)ethylene glycol-PAMAM dendrimers namely, L6-PEG-PAMAM and S6-PEG-PAMAM with six end-grafted ethylene glycol ether-tentacles of type CH{sub 2}CH{sub 2}C(O)O(CH{sub 2}CH{sub 2}O){sub 9}CH{sub 3} and CH{sub 2}CH{sub 2}C(O)O(CH{sub 2}CH{sub 2}O){sub 2}C{sub 2}H{sub 5}, respectively, were synthesized. These dendrimers have multiple σ-donor capabilities and therefore, were used for stabilizing the magnetite (Fe{sub 3}O{sub 4}) nanoparticles. Both the dendrimer-magnetic nanoparticles (L6-PEG-PAMAM-MNPs and S6-PEG-PAMAM-MNPs) were characterized by different spectroscopic and microstructural techniques. The nanoparticles were mesoporous and superparamagnetic and therefore, explored for their possible use in delivery of cancer drug, doxorubicin (DOX). In the developed drug delivery system, achieving high drug-loading efficiency with controllable release were the main challenges. The change in zeta potential and quenching of fluorescence intensity suggests chemical interaction between DOX and the nanoparticles. The loading efficiency was calculated to be over 95% with a sustained pH and temperature sensitive release. Further, enzyme cathepsin B has also been used to degrade the dendritic shell to trigger sustained drug release in the vicinity of tumor cells.

  12. Inclusion bodies as potential vehicles for recombinant protein delivery into epithelial cells

    Science.gov (United States)

    2012-01-01

    Background We present the potential of inclusion bodies (IBs) as a protein delivery method for polymeric filamentous proteins. We used as cell factory a strain of E. coli, a conventional host organism, and keratin 14 (K14) as an example of a complex protein. Keratins build the intermediate filament cytoskeleton of all epithelial cells. In order to build filaments, monomeric K14 needs first to dimerize with its binding partner (keratin 5, K5), which is then followed by heterodimer assembly into filaments. Results K14 IBs were electroporated into SW13 cells grown in culture together with a “reporter” plasmid containing EYFP labeled keratin 5 (K5) cDNA. As SW13 cells do not normally express keratins, and keratin filaments are built exclusively of keratin heterodimers (i.e. K5/K14), the short filamentous structures we obtained in this study can only be the result of: a) if both IBs and plasmid DNA are transfected simultaneously into the cell(s); b) once inside the cells, K14 protein is being released from IBs; c) released K14 is functional, able to form heterodimers with EYFP-K5. Conclusions Soluble IBs may be also developed for complex cytoskeletal proteins and used as nanoparticles for their delivery into epithelial cells. PMID:22624805

  13. Poly methacrylic acid modified CDHA nanocomposites as potential pH responsive drug delivery vehicles.

    Science.gov (United States)

    Victor, Sunita Prem; Sharma, Chandra P

    2013-08-01

    The objective of this study was to prepare pH sensitive polymethacrylic acid-calcium deficient hydroxyapatite (CDHA) nanocomposites. The CDHA nanoparticles were prepared by coprecipitation method. The modification of CDHA by methacrylic acid (MA) was achieved by AIBN initiated free radical polymerization with sodium bisulphite as catalyst followed by emulsion technique. These nanocomposites with a half life of 8h consisted of high aspect ratio, needle like particles and exhibited an increase in swelling behaviour with pH. The in vivo potential of the nanocomposites was evaluated in vitro by the results of cell aggregation, protein adsorption, MTT assay and haemolytic activity. The invitro loading and release studies using albumin as a model drug indicate that the nanocomposites gave better loading when compared to the CDHA nanoparticles and altered the drug release rates. The nanocomposites also exhibited good uptake on C6 glioma cells as studied by fluorescence microscopy. The results obtained suggest that these nanocomposites have great potential for oral controlled protein delivery and can be extended further for intracellular drug delivery applications. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Biodegradable "Smart" Polyphosphazenes with Intrinsic Multifunctionality as Intracellular Protein Delivery Vehicles.

    Science.gov (United States)

    Martinez, Andre P; Qamar, Bareera; Fuerst, Thomas R; Muro, Silvia; Andrianov, Alexander K

    2017-06-12

    A series of biodegradable drug delivery polymers with intrinsic multifunctionality have been designed and synthesized utilizing a polyphosphazene macromolecular engineering approach. Novel water-soluble polymers, which contain carboxylic acid and pyrrolidone moieties attached to an inorganic phosphorus-nitrogen backbone, were characterized by a suite of physicochemical methods to confirm their structure, composition, and molecular sizes. All synthesized polyphosphazenes displayed composition-dependent hydrolytic degradability in aqueous solutions at neutral pH. Their formulations were stable at lower temperatures, potentially indicating adequate shelf life, but were characterized by accelerated degradation kinetics at elevated temperatures, including 37 °C. It was found that synthesized polyphosphazenes are capable of environmentally triggered self-assembly to produce nanoparticles with narrow polydispersity in the size range of 150-700 nm. Protein loading capacity of copolymers has been validated via their ability to noncovalently bind avidin without altering biological functionality. Acid-induced membrane-disruptive activity of polyphosphazenes has been established with an onset corresponding to the endosomal pH range and being dependent on polymer composition. The synthesized polyphosphazenes facilitated cell-surface interactions followed by time-dependent, vesicular-mediated, and saturable internalization of a model protein cargo into cancer cells, demonstrating the potential for intracellular delivery.

  15. Microencapsulated foods as a functional delivery vehicle for omega-3 fatty acids: a pilot study

    Directory of Open Access Journals (Sweden)

    David Robert M

    2009-05-01

    Full Text Available Abstract It is well established that the ingestion of the omega-3 (N3 fatty acids docosahexaenoic acid (DHA and eicosapentaenoic acid (EPA positively benefit a variety of health indices. Despite these benefits the actual intake of fish derived N3 is relatively small in the United States. The primary aim of our study was to examine a technology capable of delivering omega-3 fatty acids in common foods via microencapsulation (MicroN3 in young, healthy, active participants who are at low risk for cardiovascular disease. Accordingly, we randomized 20 participants (25.4 ± 6.2 y; 73.4 ± 5.1 kg to receive the double blind delivery of a placebo-matched breakfast meal (~2093 kJ containing MicroN3 (450–550 mg EPA/DHA during a 2-week pilot trial. Overall, we observed no differences in overall dietary macronutrient intake other than the N3 delivery during our treatment regimen. Post-test ANOVA analysis showed a significant elevation in mean (SE plasma DHA (91.18 ± 9.3 vs. 125.58 ± 11.3 umol/L; P

  16. Hyaluronic acid/Chitosan nanoparticles as delivery vehicles for VEGF and PDGF-BB.

    Science.gov (United States)

    Parajó, Yolanda; D'Angelo, Ivana; Welle, Alexander; Garcia-Fuentes, Marcos; Alonso, María José

    2010-11-01

    The development of a vascular network in tissue-engineered constructs is a fundamental bottleneck of bioregenerative medicine, particularly when the size of the implant exceeds a certain limit given by diffusion lengths and/or if the host tissue shows a very active metabolism. One of the approaches to achieve the vascularization of tissue constructs is generating a sustained release of proangiogenic factors from the ischemic site. This work describes the formation and characterization of hyaluronic acid-chitosan (HA/CS) nanoparticles for the delivery of two pro-angiogenic growth factors: vascular endothelial growth factor (VEGF) and platelet derived growth factor (PDGF-BB). These nanoparticles were prepared by an ionic gelification technique, and different formulations were developed by encapsulating the growth factors in association with two stabilizing agents: bovine serum albumin or heparin sodium salt. These carriers were characterized with regard to their physicochemical properties, their stability in biological media, and their cytotoxicity in the C3a hepatoma cell line. The results show that nanoparticles around 200 nm can be prepared by this method. HA/CS nanoparticles were stable when incubated in EMEM cell culture medium or in water at 37°C for 24 h. Cell culture tests confirmed that HA/CS nanoparticles are not cytotoxic within the concentration range used for growth factor delivery. Moreover, HA/CS nanoparticles were able to entrap efficiently both growth factors, reaching association values of 94% and 54% for VEGF and PDGF, respectively. In vitro release studies confirm that PDGF-BB is released from HA/CS nanoparticles in a sustained manner over approximately 1 week. On the other hand, VEGF is completely released within the first 24 h.

  17. RNAi-based therapeutic nanostrategy: IL-8 gene silencing in pancreatic cancer cells using gold nanorods delivery vehicles

    International Nuclear Information System (INIS)

    Panwar, Nishtha; Yang, Chengbin; Yin, Feng; Chuan, Tjin Swee; Yong, Ken-Tye; Yoon, Ho Sup

    2015-01-01

    RNA interference (RNAi)-based gene silencing possesses great ability for therapeutic intervention in pancreatic cancer. Among various oncogene mutations, Interleukin-8 (IL-8) gene mutations are found to be overexpressed in many pancreatic cell lines. In this work, we demonstrate IL-8 gene silencing by employing an RNAi-based gene therapy approach and this is achieved by using gold nanorods (AuNRs) for efficient delivery of IL-8 small interfering RNA (siRNA) to the pancreatic cell lines of MiaPaCa-2 and Panc-1. Upon comparing to Panc-1 cells, we found that the dominant expression of the IL-8 gene in MiaPaCa-2 cells resulted in an aggressive behavior towards the processes of cell invasion and metastasis. We have hence investigated the suitability of using AuNRs as novel non-viral nanocarriers for the efficient uptake and delivery of IL-8 siRNA in realizing gene knockdown of both MiaPaCa-2 and Panc-1 cells. Flow cytometry and fluorescence imaging techniques have been applied to confirm transfection and release of IL-8 siRNA. The ratio of AuNRs and siRNA has been optimized and transfection efficiencies as high as 88.40 ± 2.14% have been achieved. Upon successful delivery of IL-8 siRNA into cancer cells, the effects of IL-8 gene knockdown are quantified in terms of gene expression, cell invasion, cell migration and cell apoptosis assays. Statistical comparative studies for both MiaPaCa-2 and Panc-1 cells are presented in this work. IL-8 gene silencing has been demonstrated with knockdown efficiencies of 81.02 ± 10.14% and 75.73 ± 6.41% in MiaPaCa-2 and Panc-1 cells, respectively. Our results are then compared with a commercial transfection reagent, Oligofectamine, serving as positive control. The gene knockdown results illustrate the potential role of AuNRs as non-viral gene delivery vehicles for RNAi-based targeted cancer therapy applications. (paper)

  18. Precise engineering of siRNA delivery vehicles to tumors using polyion complexes and gold nanoparticles.

    Science.gov (United States)

    Kim, Hyun Jin; Takemoto, Hiroyasu; Yi, Yu; Zheng, Meng; Maeda, Yoshinori; Chaya, Hiroyuki; Hayashi, Kotaro; Mi, Peng; Pittella, Frederico; Christie, R James; Toh, Kazuko; Matsumoto, Yu; Nishiyama, Nobuhiro; Miyata, Kanjiro; Kataoka, Kazunori

    2014-09-23

    For systemic delivery of siRNA to solid tumors, a size-regulated and reversibly stabilized nanoarchitecture was constructed by using a 20 kDa siRNA-loaded unimer polyion complex (uPIC) and 20 nm gold nanoparticle (AuNP). The uPIC was selectively prepared by charge-matched polyionic complexation of a poly(ethylene glycol)-b-poly(L-lysine) (PEG-PLL) copolymer bearing ∼40 positive charges (and thiol group at the ω-end) with a single siRNA bearing 40 negative charges. The thiol group at the ω-end of PEG-PLL further enabled successful conjugation of the uPICs onto the single AuNP through coordinate bonding, generating a nanoarchitecture (uPIC-AuNP) with a size of 38 nm and a narrow size distribution. In contrast, mixing thiolated PEG-PLLs and AuNPs produced a large aggregate in the absence of siRNA, suggesting the essential role of the preformed uPIC in the formation of nanoarchitecture. The smart uPIC-AuNPs were stable in serum-containing media and more resistant against heparin-induced counter polyanion exchange, compared to uPICs alone. On the other hand, the treatment of uPIC-AuNPs with an intracellular concentration of glutathione substantially compromised their stability and triggered the release of siRNA, demonstrating the reversible stability of these nanoarchitectures relative to thiol exchange and negatively charged AuNP surface. The uPIC-AuNPs efficiently delivered siRNA into cultured cancer cells, facilitating significant sequence-specific gene silencing without cytotoxicity. Systemically administered uPIC-AuNPs showed appreciably longer blood circulation time compared to controls, i.e., bare AuNPs and uPICs, indicating that the conjugation of uPICs onto AuNP was crucial for enhancing blood circulation time. Finally, the uPIC-AuNPs efficiently accumulated in a subcutaneously inoculated luciferase-expressing cervical cancer (HeLa-Luc) model and achieved significant luciferase gene silencing in the tumor tissue. These results demonstrate the strong

  19. Novel Hydrogel-Advanced Modified Clay Nanocomposites as Possible Vehicles for Drug Delivery and Controlled Release

    Directory of Open Access Journals (Sweden)

    Raluca Ianchis

    2017-12-01

    Full Text Available Present study refers to the synthesis of new advanced materials based on poly(methacrylic acid (PMAA with previously reported own advanced modified clays by edge covalent bonding. This will create the premises to obtain nanocomposite hydrogels with combined hydrophilic-hydrophobic behavior absolutely necessary for co-delivery of polar/nonpolar substances. For the synthesis, N,N’-methylenebisacrylamide was used as cross-linker and ammonium persulphate as initiator. As a consequence of the inclusion of clay into the polymer matrix and the intercalation of PMAA between the layers as well as the presence of hydrophobic interactions occurred between partners, the final hydrogel nanocomposites possessed greater swelling degrees, slower de-swelling process and enhanced mechanical properties depending on the clay type in comparison with pure hydrogel. In vitro MTS ([3-(4,5-dimethylthiazol-2-yl-5-(3-carboxymethoxyphenyl-2-(4-sulfophenyl-2H-tetrazolium, inner salt] colorimetric assay showed that direct exposure with PMMA-clay-based constructs did not affect cell viability and proliferation in time (24 and 48 h on either normal or adenocarcinoma cell lines.

  20. Novel Hydrogel-Advanced Modified Clay Nanocomposites as Possible Vehicles for Drug Delivery and Controlled Release.

    Science.gov (United States)

    Ianchis, Raluca; Ninciuleanu, Claudia M; Gifu, Ioana C; Alexandrescu, Elvira; Somoghi, Raluca; Gabor, Augusta R; Preda, Silviu; Nistor, Cristina L; Nitu, Sabina; Petcu, Cristian; Icriverzi, Madalina; Florian, Paula E; Roseanu, Anca M

    2017-12-13

    Present study refers to the synthesis of new advanced materials based on poly(methacrylic acid) (PMAA) with previously reported own advanced modified clays by edge covalent bonding. This will create the premises to obtain nanocomposite hydrogels with combined hydrophilic-hydrophobic behavior absolutely necessary for co-delivery of polar/nonpolar substances. For the synthesis, N , N '-methylenebisacrylamide was used as cross-linker and ammonium persulphate as initiator. As a consequence of the inclusion of clay into the polymer matrix and the intercalation of PMAA between the layers as well as the presence of hydrophobic interactions occurred between partners, the final hydrogel nanocomposites possessed greater swelling degrees, slower de-swelling process and enhanced mechanical properties depending on the clay type in comparison with pure hydrogel. In vitro MTS ([3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2 H -tetrazolium, inner salt]) colorimetric assay showed that direct exposure with PMMA-clay-based constructs did not affect cell viability and proliferation in time (24 and 48 h) on either normal or adenocarcinoma cell lines.

  1. Empty Turnip yellow mosaic virus capsids as delivery vehicles to mammalian cells.

    Science.gov (United States)

    Kim, Doyeong; Lee, Younghee; Dreher, Theo W; Cho, Tae-Ju

    2018-05-03

    Turnip yellow mosaic virus (TYMV) was able to enter animal cells when the spherical plant virus was conjugated with Tat, a cell penetrating peptide (CPP). Tat was chemically attached to the surface lysine residues of TYMV using hydrazone chemistry. Baby hamster kidney (BHK) cells were incubated with either unmodified or Tat-conjugated TYMV and examined by flow cytometry and confocal microscopic analyses. Tat conjugation was shown to be more efficient than Lipofectamine in allowing TYMV to enter the mammalian cells. Tat-assisted-transfection was also associated with less loss of cell viability than lipofection. Among the CPPs tested (Tat, R8, Pep-1 and Pen), it was observed that R8 and Pen were also effective while Pep-1 was not. We also examined if the internal space of TYMV can be used to load fluorescein dye as a model cargo. When TYMV is treated by freezing and thawing, the virus is known to convert into a structure with a 6-8 nm hole and release viral RNA. When the resultant pot-like particles were reacted with fluorescein-5-maleimide using interior sulfhydryl groups as conjugation sites, about 145 fluorescein molecules were added per particle. The fluorescein-loaded TYMV particles were conjugated with Tat and introduced into BHK cells, again with higher transfection efficiency compared to lipofection. Our studies demonstrate the potential of modified TYMV as an efficient system for therapeutic cargo delivery to mammalian cells. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Sugarcane bagasse lignin, and silica gel and magneto-silica as drug vehicles for development of innocuous methotrexate drug against rheumatoid arthritis disease in albino rats.

    Science.gov (United States)

    Wahba, Sanaa M R; Darwish, Atef S; Shehata, Iman H; Abd Elhalem, Sahar S

    2015-03-01

    The present study clarifies co-therapy action of deliveries from their textural changes point of view. Methotrexate (MTX) was immobilized onto biodegradable lignin, silica gel and iron/silica nanocomposite. Loaded-MTX was i.p. injected into albino rats at doses of 0.25 and 0.5mg/kg/week for 2.5months, after which spleen, liver, testes and knee joint tissues were collected for tests. IFN-γ and IL-17A mRNA gene expressions in spleen in all biological samples were determined by RT-PCR. Physicochemical features of drug carriers were monitored by XRD, BET-PSD, SEM and TEM. Drug inflammatory-site targeting was found to be closely related to the physico-features of deliverers. The interlayered lignin of micro- and meso-pore channels directed MTX toward concealed infected cells in liver and testes tissues, while meso-structured silica flacks satisfied by gathering MTX around knee joints. The magneto-silica nanocomposite targeted MTX toward spleen tissue, which is considered as a lively factory for the production of electron rich compounds. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Gellan gum fluid gels for topical administration of diclofenac.

    Science.gov (United States)

    Mahdi, Mohammed H; Conway, Barbara R; Mills, Thomas; Smith, Alan M

    2016-12-30

    Diclofenac topical formulations are often preferred for drug administration to patients who experience serious GIT problems. Absorption of the drug through the skin, however, can be challenging due to the natural protective feature of the stratum corneum (SC). In this article, fluid gels prepared from gellan gum were explored as a topical drug delivery vehicle. Rheological analysis of the formulations showed that it was possible to produce a topical gel with a viscosity and the mechanical strength similar to that of the commercially available Voltaren ® gel using 1% w/w of a 50:50 low acyl/high acyl (LA/HA) gellan blend. Soft-tribology was used to assess the lubrication properties of gellan fluid gels. The lubrication of the gellan gum fluid gel formulations at high rubbing speeds was similar to the lubrication of the Voltaren ® gel. The use of gellan gum dramatically increased skin permeation of diclofenac when compared with the commercially available formulation and could be controlled by changing the gellan gum concentration and/or sodium ion concentration in the formulation. This study highlights the potential use of fluid gels that can be easily tuned to have physical properties suitable for topical formulations with the added advantage of increasing drug permeation. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. The clinical impact of vehicle technology using a patented formulation of benzoyl peroxide 5%/clindamycin 1% gel: comparative assessments of skin tolerability and evaluation of combination use with a topical retinoid.

    Science.gov (United States)

    Del Rosso, James Q; Tanghetti, Emil

    2006-02-01

    A major challenge encountered in clinical practice in patients with acne vulgaris is irritation related to topical medications used for treatment. Advances in vehicle technology have improved formulations containing active ingredients known to produce irritation in some patients, such as benzoyl peroxide (BP) and topical retinoids. Clinical studies, including combination therapy studies have demonstrated that certain additives, such as silicates and specific humectants, reduce irritation by maintaining barrier integrity. A patented gel formulation of BP 5%/clindamycin phosphate 1% (clindamycin) containing dimethicone and glycerin has been studied both as a monotherapy and in combination with topical retinoid use. This article evaluates specific vehicle additives included in this gel formulation and explains their role in reducing irritation. Data from clinical trials utilizing this technology in acne management are also reviewed.

  5. Murine bone marrow-derived mesenchymal stem cells as vehicles for interleukin-12 gene delivery into Ewing sarcoma tumors.

    Science.gov (United States)

    Duan, Xiaoping; Guan, Hui; Cao, Ying; Kleinerman, Eugenie S

    2009-01-01

    This study evaluated the therapeutic efficacy of interleukin 12 (IL-12) gene therapy in Ewing sarcoma and whether murine mesenchymal stem cells (MSCs) could serve as vehicles for IL-12 gene delivery. MSCs were isolated from murine bone marrow cells. Cells were phenotyped using flow cytometry. Cultured MSCs differentiated into osteocytes and adipocytes using the appropriate media. Freshly isolated MSCs were transfected with adenoviral vectors containing either the beta-galactosidase (Ad:beta-gal) or the IL-12 (Ad:IL-12) gene. Expression of IL-12 was confirmed using reverse transcription polymerase chain reaction. Mice with TC71 Ewing sarcoma tumors were then treated intravenously with MSCs transfected with Ad:beta-gal or Ad:IL-12. Tumors were measured and analyzed by immunohistochemical analysis for expression of IL-12 protein. Expression of both p35 and p40 IL-12 subunits was demonstrated in MSCs transfected in vitro with Ad:IL-12. IL-12 expression was seen in tumors from mice treated with MSCs transfected with Ad:IL-12. Tumor growth was also significantly inhibited compared with that in mice treated with MSCs transfected with Ad:beta-gal. MSCs can be transfected with the IL-12 gene. These transfected cells localize to tumors after intravenous injection and induce local IL-12 protein production and the regression of established tumors. Copyright (c) 2008 American Cancer Society.

  6. A New TS Algorithm for Solving Low-Carbon Logistics Vehicle Routing Problem with Split Deliveries by Backpack—From a Green Operation Perspective

    Science.gov (United States)

    Fu, Zhuo; Wang, Jiangtao

    2018-01-01

    In order to promote the development of low-carbon logistics and economize logistics distribution costs, the vehicle routing problem with split deliveries by backpack is studied. With the help of the model of classical capacitated vehicle routing problem, in this study, a form of discrete split deliveries was designed in which the customer demand can be split only by backpack. A double-objective mathematical model and the corresponding adaptive tabu search (TS) algorithm were constructed for solving this problem. By embedding the adaptive penalty mechanism, and adopting the random neighborhood selection strategy and reinitialization principle, the global optimization ability of the new algorithm was enhanced. Comparisons with the results in the literature show the effectiveness of the proposed algorithm. The proposed method can save the costs of low-carbon logistics and reduce carbon emissions, which is conducive to the sustainable development of low-carbon logistics. PMID:29747469

  7. A New TS Algorithm for Solving Low-Carbon Logistics Vehicle Routing Problem with Split Deliveries by Backpack-From a Green Operation Perspective.

    Science.gov (United States)

    Xia, Yangkun; Fu, Zhuo; Tsai, Sang-Bing; Wang, Jiangtao

    2018-05-10

    In order to promote the development of low-carbon logistics and economize logistics distribution costs, the vehicle routing problem with split deliveries by backpack is studied. With the help of the model of classical capacitated vehicle routing problem, in this study, a form of discrete split deliveries was designed in which the customer demand can be split only by backpack. A double-objective mathematical model and the corresponding adaptive tabu search (TS) algorithm were constructed for solving this problem. By embedding the adaptive penalty mechanism, and adopting the random neighborhood selection strategy and reinitialization principle, the global optimization ability of the new algorithm was enhanced. Comparisons with the results in the literature show the effectiveness of the proposed algorithm. The proposed method can save the costs of low-carbon logistics and reduce carbon emissions, which is conducive to the sustainable development of low-carbon logistics.

  8. Screening of mucoadhesive vaginal gel formulations

    Directory of Open Access Journals (Sweden)

    Ana Ochoa Andrade

    2014-12-01

    Full Text Available Rational design of vaginal drug delivery formulations requires special attention to vehicle properties that optimize vaginal coating and retention. The aim of the present work was to perform a screening of mucoadhesive vaginal gels formulated with carbomer or carrageenan in binary combination with a second polymer (carbomer, guar or xanthan gum. The gels were characterised using in vitroadhesion, spreadability and leakage potential studies, as well as rheological measurements (stress and frequency sweep tests and the effect of dilution with simulated vaginal fluid (SVF on spreadability. Results were analysed using analysis of variance and multiple factor analysis. The combination of polymers enhanced adhesion of both primary gelling agents, carbomer and carrageenan. From the rheological point of view all formulations presented a similar behaviour, prevalently elastic and characterised by loss tangent values well below 1. No correlation between rheological and adhesion behaviour was found. Carbomer and carrageenan gels containing the highest percentage of xanthan gum displayed good in vitro mucoadhesion and spreadability, minimal leakage potential and high resistance to dilution. The positive results obtained with carrageenan-xanthan gum-based gels can encourage the use of natural biocompatible adjuvants in the composition of vaginal products, a formulation field that is currently under the synthetic domain.

  9. Effects of vehicles and prodrug properties and their interactions on the delivery of 6-mercaptopurine through skin: bisacyloxymethyl-6-mercaptopurine prodrugs.

    Science.gov (United States)

    Waranis, R P; Sloan, K B

    1987-08-01

    A series of S6,9-bisacyloxymethyl-6-mercaptopurine (6,9-bis-6-MP) prodrug derivatives was synthesized and characterized. The solubilities of the derivatives in solvents (vehicles), which exhibited a wide range of polarities from water to oleic acid, were measured. The abilities of the prodrugs to deliver 6-mercaptopurine (6-MP) from the vehicles have also been determined, and experimental fluxes and permeability coefficients (Kp) have been calculated for a large number of prodrug: vehicle combinations. Generally the best prodrugs of the series in terms of delivering 6-MP, regardless of the vehicle, were the first two members--the bisacetyl- and the bispropionyloxymethyl-6-mercaptopurine prodrugs. This result has been attributed mainly to the increased water solubility of these two prodrugs compared with that of 6-MP and the other prodrugs, since all of the prodrugs are much more lipid soluble than 6-MP. For three vehicles--isopropyl myristate, propylene glycol, and water--there was a good correlation between log experimental Kp for the delivery of 6-MP by the prodrugs from those vehicles and the theoretical solubility parameters of the prodrugs. The stabilities of the bisacetyl-(2), bisproprionyl-(3), and bisbutyryloxymethyl-6-mercaptopurine (4) derivatives were determined in buffer and in buffer containing enzymes leached from the dermis. Prodrug 2 was more stable than 3 or 4 in the buffer containing the enzymes, while 4 was more stable than 2 or 3 in the plain buffer.

  10. Penerapan Algoritma Genetika Untuk Penyelesaian Vehicle Routing Problem With Delivery And Pick-Up (VRP-DP)

    OpenAIRE

    Simanullang, Herlin

    2013-01-01

    Vehicle Routing Problem (VRP) is a problem of combinatorial optimization complexeses that has essential role in management distribution system which is aimed to minimize the needed cost, the cost is determined in relationship with the distance of route which is taken by the distribution vehicle. The characteristic from VRP is the use of vehicle in certain capacity and its activity is centralized in one depot to serve the customer on certain locations with certain known demand. ...

  11. Investigation of microemulsion system for transdermal delivery of itraconazole

    Science.gov (United States)

    Chudasama, Arpan; Patel, Vineetkumar; Nivsarkar, Manish; Vasu, Kamala; Shishoo, Chamanlal

    2011-01-01

    A new oil-in-water microemulsion-based (ME) gel containing 1% itraconazole (ITZ) was developed for topical delivery. The solubility of ITZ in oils and surfactants was evaluated to identify potential excipients. The microemulsion existence ranges were defined through the construction of the pseudoternary phase diagrams. The optimized microemulsion was characterized for its morphology and particle size distribution. The optimized microemulsion was incorporated into polymeric gels of Lutrol F127, Xanthan gum, and Carbopol 934 for convenient application and evaluated for pH, drug content, viscosity, and spreadability. In vitro drug permeation of ME gels was determined across excised rat skins. Furthermore, in vitro antimycotic inhibitory activity of the gels was conducted using agar-cup method and Candida albicans as a test organism. The droplet size of the optimized microemulsion was found to be <100 nm. The optimized Lutrol F 127 ME gel showed pH in the range of 5.68±0.02 and spreadability of 5.75±1.396 gcm/s. The viscosity of ME gel was found to be 1805.535±542.4 mPa s. The permeation rate (flux) of ITZ from prepared ME gel was found to be 4.234 μg/cm/h. The release profile exhibited diffusion controlled mechanism of drug release from ME ITZ gel. The developed ME gels were nonirritant and there was no erythema or edema. The antifungal activity of ITZ showed the widest zone of inhibition with Lutrol F127 ME gel. These results indicate that the studied ME gel may be a promising vehicle for topical delivery of ITZ. PMID:22171289

  12. Stimuli responsive ion gels based on polysaccharides and other polymers prepared using ionic liquids and deep eutectic solvents.

    Science.gov (United States)

    Prasad, Kamalesh; Mondal, Dibyendu; Sharma, Mukesh; Freire, Mara G; Mukesh, Chandrakant; Bhatt, Jitkumar

    2018-01-15

    Ion gels and self-healing gels prepared using ionic liquids (ILs) and deep eutectic solvents (DESs) have been largely investigated in the past years due to their remarkable applications in different research areas. Herewith we provide an overview on the ILs and DESs used for the preparation of ion gels, highlight the preparation and physicochemical characteristics of stimuli responsive gel materials based on co-polymers and biopolymers, with special emphasis on polysaccharides and discuss their applications. Overall, this review summarizes the fundamentals and advances in ion gels with switchable properties prepared using ILs or DESs, as well as their potential applications in electrochemistry, in sensing devices and as drug delivery vehicles. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Special Advanced Studies for Pollution Prevention. Delivery Order 0017: Sol-Gel Surface Preparation for Carbon Steel and Stainless Steel Bonding

    National Research Council Canada - National Science Library

    Zheng, Haixing

    1997-01-01

    The objective of this program is to study the feasibility of using sol-gel active alumina coatings for the surface preparation of carbon steel and stainless steel for adhesive bonding, and to optimize...

  14. Effect of 1.2% of simvastatin gel as a local drug delivery system on Gingival Crevicular Fluid interleukin-6 & interleukin-8 levels in non surgical treatment of chronic periodontitis patients.

    Science.gov (United States)

    Gunjiganur Vemanaradhya, Gayathri; Emani, Shilpa; Mehta, Dhoom Singh; Bhandari, Shilpy

    2017-10-01

    The present study was carried out to evaluate the effect of 1.2% simvastatin gel as local drug delivery (LDD) system on Gingival Crevicular Fluid (GCF) Interleukin -6 (IL-6) and Interleukin-8 (IL-8) levels in chronic periodontitis patients, in addition to scaling and root planing (SRP). A total of 46 chronic periodontitis patients were equally divided into two groups. Group I patients were treated by SRP; Group II patients were treated by SRP followed by LDD of 1.2% simvastatin (SMV) gel. Plaque index (PI), Gingival index(GI), Sulcus Bleeding Index (SBI), Probing pocket depth (PPD) and Relative clinical attachment level (CAL) were recorded & GCF samples were collected at baseline (0day) and at 45th day from both the groups. The collected GCF samples were analysed for IL-6 and IL-8 levels with enzyme-linked immunosorbent assay (ELISA). Both the groups showed significant reduction in all the clinical parameters scores and IL-6 and IL-8 levels after non-surgical periodontal therapy (SRP for group I/SRP+1.2% SMV gel for group II) in contrast to baseline values. However, a greater reduction was observed in group II. A non-significant positive correlation was observed between clinical parameters and IL-6 and IL-8 levels except at baseline, a significant correlation was observed between PPD &IL 6 levels in group II. In adjunct to SRP, 1.2% Simvastatin gel acts as an effective local drug delivery agent for the management of chronic periodontitis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Cell Based Drug Delivery: Micrococcus luteus Loaded Neutrophils as Chlorhexidine Delivery Vehicles in a Mouse Model of Liver Abscesses in Cattle.

    Science.gov (United States)

    Wendel, Sebastian O; Menon, Sailesh; Alshetaiwi, Hamad; Shrestha, Tej B; Chlebanowski, Lauren; Hsu, Wei-Wen; Bossmann, Stefan H; Narayanan, Sanjeev; Troyer, Deryl L

    2015-01-01

    The recent WHO report on antibiotic resistances shows a dramatic increase of microbial resistance against antibiotics. With only a few new antibiotics in the pipeline, a different drug delivery approach is urgently needed. We have obtained evidence demonstrating the effectiveness of a cell based drug delivery system that utilizes the innate immune system as targeting carrier for antibacterial drugs. In this study we show the efficient loading of neutrophil granulocytes with chlorhexidine and the complete killing of E. coli as well as Fusobacterium necrophorum in in-vitro studies. Fusobacterium necrophorum causes hepatic abscesses in cattle fed high grain diets. We also show in a mouse model that this delivery system targets infections of F. necrophorum in the liver and reduces the bacterial burden by an order of magnitude from approximately 2•106 to 1•105.

  16. Improving Transportation Services for the University of the Thai Chamber of Commerce: A Case Study on Solving the Mixed-Fleet Vehicle Routing Problem with Split Deliveries

    Science.gov (United States)

    Suthikarnnarunai, N.; Olinick, E.

    2009-01-01

    We present a case study on the application of techniques for solving the Vehicle Routing Problem (VRP) to improve the transportation service provided by the University of The Thai Chamber of Commerce to its staff. The problem is modeled as VRP with time windows, split deliveries, and a mixed fleet. An exact algorithm and a heuristic solution procedure are developed to solve the problem and implemented in the AMPL modeling language and CPLEX Integer Programming solver. Empirical results indicate that the heuristic can find relatively good solutions in a small fraction of the time required by the exact method. We also perform sensitivity analysis and find that a savings in outsourcing cost can be achieved with a small increase in vehicle capacity.

  17. Transdermal solid delivery of epigallocatechin-3-gallate using self-double-emulsifying drug delivery system as vehicle: Formulation, evaluation and vesicle-skin interaction.

    Science.gov (United States)

    Hu, Caibiao; Gu, Chengyu; Fang, Qiao; Wang, Qiang; Xia, Qiang

    2016-02-01

    The present study investigated a self-double-emulsifying drug delivery system loaded with epigallocatechin-3-gallate to improve epigallocatechin-3-gallate skin retention. The long chain solid lipids (cetostearyl alcohol) and macadamia oil were utilized as a carrier to deliver the bioactive ingredient. Response surface methodology was used to optimize the formulation, and the solid lipid to total lipid weight ratio, concentration of epigallocatechin-3-gallate and hydrophilic surfactant on skin retention were found to be the principal factors. The optimum formulation with high encapsulation efficiency (95.75%), self-double-emulsification performance (99.58%) and skin retention (87.24%) were derived from the fitted models and experimentally examined, demonstrating a reasonable agreement between experimental and predicted values. Epigallocatechin-3-gallate-self-double-emulsifying drug delivery system was found to be stable for 3 months. Transdermal studies could explain a higher skin diffusion of epigallocatechin-3-gallate from the self-double-emulsifying drug delivery system compared with EGCG aqueous solution. In vitro cytotoxicity showed that epigallocatechin-3-gallate-self-double-emulsifying drug delivery system did not exert hazardous effect on L929 cells up to 1:10. © The Author(s) 2015.

  18. Lipid microbubbles as a vehicle for targeted drug delivery using focused ultrasound-induced blood-brain barrier opening.

    Science.gov (United States)

    Sierra, Carlos; Acosta, Camilo; Chen, Cherry; Wu, Shih-Ying; Karakatsani, Maria E; Bernal, Manuel; Konofagou, Elisa E

    2017-04-01

    Focused ultrasound in conjunction with lipid microbubbles has fully demonstrated its ability to induce non-invasive, transient, and reversible blood-brain barrier opening. This study was aimed at testing the feasibility of our lipid-coated microbubbles as a vector for targeted drug delivery in the treatment of central nervous system diseases. These microbubbles were labeled with the fluorophore 5-dodecanoylaminfluorescein. Focused ultrasound targeted mouse brains in vivo in the presence of these microbubbles for trans-blood-brain barrier delivery of 5-dodecanoylaminfluorescein. This new approach, compared to previously studies of our group, where fluorescently labeled dextrans and microbubbles were co-administered, represents an appreciable improvement in safety outcome and targeted drug delivery. This novel technique allows the delivery of 5-dodecanoylaminfluorescein at the region of interest unlike the alternative of systemic exposure. 5-dodecanoylaminfluorescein delivery was assessed by ex vivo fluorescence imaging and by in vivo transcranial passive cavitation detection. Stable and inertial cavitation doses were quantified. The cavitation dose thresholds for estimating, a priori, successful targeted drug delivery were, for the first time, identified with inertial cavitation were concluded to be necessary for successful delivery. The findings presented herein indicate the feasibility and safety of the proposed microbubble-based targeted drug delivery and that, if successful, can be predicted by cavitation detection in vivo.

  19. Lipid microbubbles as a vehicle for targeted drug delivery using focused ultrasound-induced blood–brain barrier opening

    Science.gov (United States)

    Sierra, Carlos; Acosta, Camilo; Chen, Cherry; Wu, Shih-Ying; Karakatsani, Maria E; Bernal, Manuel

    2016-01-01

    Focused ultrasound in conjunction with lipid microbubbles has fully demonstrated its ability to induce non-invasive, transient, and reversible blood–brain barrier opening. This study was aimed at testing the feasibility of our lipid-coated microbubbles as a vector for targeted drug delivery in the treatment of central nervous system diseases. These microbubbles were labeled with the fluorophore 5-dodecanoylaminfluorescein. Focused ultrasound targeted mouse brains in vivo in the presence of these microbubbles for trans-blood–brain barrier delivery of 5-dodecanoylaminfluorescein. This new approach, compared to previously studies of our group, where fluorescently labeled dextrans and microbubbles were co-administered, represents an appreciable improvement in safety outcome and targeted drug delivery. This novel technique allows the delivery of 5-dodecanoylaminfluorescein at the region of interest unlike the alternative of systemic exposure. 5-dodecanoylaminfluorescein delivery was assessed by ex vivo fluorescence imaging and by in vivo transcranial passive cavitation detection. Stable and inertial cavitation doses were quantified. The cavitation dose thresholds for estimating, a priori, successful targeted drug delivery were, for the first time, identified with inertial cavitation were concluded to be necessary for successful delivery. The findings presented herein indicate the feasibility and safety of the proposed microbubble-based targeted drug delivery and that, if successful, can be predicted by cavitation detection in vivo. PMID:27278929

  20. Combined local and systemic antibiotic delivery improves eradication of wound contamination: An animal experimental model of contaminated fracture.

    Science.gov (United States)

    Rand, B C C; Penn-Barwell, J G; Wenke, J C

    2015-10-01

    Systemic antibiotics reduce infection in open fractures. Local delivery of antibiotics can provide higher doses to wounds without toxic systemic effects. This study investigated the effect on infection of combining systemic with local antibiotics via polymethylmethacrylate (PMMA) beads or gel delivery. An established Staphylococcus aureus contaminated fracture model in rats was used. Wounds were debrided and irrigated six hours after contamination and animals assigned to one of three groups, all of which received systemic antibiotics. One group had local delivery via antibiotic gel, another PMMA beads and the control group received no local antibiotics. After two weeks, bacterial levels were quantified. Combined local and systemic antibiotics were superior to systemic antibiotics alone at reducing the quantity of bacteria recoverable from each group (p = 0.002 for gel; p = 0.032 for beads). There was no difference in the bacterial counts between bead and gel delivery (p = 0.62). These results suggest that local antibiotics augment the antimicrobial effect of systemic antibiotics. Although no significant difference was found between vehicles, gel delivery offers technical advantages with its biodegradable nature, ability to conform to wound shape and to deliver increased doses. Further study is required to see if the gel delivery system has a clinical role. ©2015 The British Editorial Society of Bone & Joint Surgery.

  1. Pick-up and Delivery: A Comparison of Functional Alignments and the Impact on Customer Service and Vehicle Operator Utilization

    National Research Council Canada - National Science Library

    Booher, Shawn K

    2005-01-01

    ...) to the Vehicle Operations section (LGRVO). The motivation of this initiative, more specifically referred to as Supply/Transportation Reengineering, was to streamline similar processes, and to effectively and efficiently utilize resources...

  2. Virosome, a hybrid vehicle for efficient and safe drug delivery and its emerging application in cancer treatment.

    Science.gov (United States)

    Liu, Hanqing; Tu, Zhigang; Feng, Fan; Shi, Haifeng; Chen, Keping; Xu, Ximing

    2015-06-01

    A virosome is an innovative hybrid drug delivery system with advantages of both viral and non-viral vectors. Studies have shown that a virosome can carry various biologically active molecules, such as nucleic acids, peptides, proteins and small organic molecules. Targeted drug delivery using virosome-based systems can be achieved through surface modifications of virosomes. A number of virosome-based prophylactic and therapeutic products with high safety profiles are currently available in the market. Cancer treatment is a big battlefield for virosome-based drug delivery systems. This review provides an overview of the general concept, preparation procedures, working mechanisms, preclinical studies and clinical applications of virosomes in cancer treatment.

  3. Novel microemulsion-based gel formulation of tazarotene for therapy of acne.

    Science.gov (United States)

    Patel, Mrunali Rashmin; Patel, Rashmin Bharatbhai; Parikh, Jolly R; Patel, Bharat G

    2016-12-01

    The objective of this study was to develop and evaluate a novel microemulsion based gel formulation containing tazarotene for targeted topical therapy of acne. Psudoternary phase diagrams were constructed to obtain the concentration range of oil, surfactant, and co-surfactant for microemulsion formation. The optimized microemulsion formulation containing 0.05% tazarotene was formulated by spontaneous microemulsification method consisting of 10% Labrafac CC, mixed emulsifiers 15% Labrasol-Cremophor-RH 40 (1:1), 15% Capmul MCM, and 60% distilled water (w/w) as an external phase. All plain and tazarotene-loaded microemulsions were clear and showed physicochemical parameters for desired topical delivery and stability. The permeation profiles of tazarotene through rat skin from optimized microemulsion formulation followed the Higuchi model for controlled permeation. Microemulsion-based gel was prepared by incorporating Carbopol®971P NF in optimized microemulsion formulation having suitable skin permeation rate and skin uptake. Microemulsion-based gel showed desired physicochemical parameters and demonstrated advantage over marketed formulation in improving the skin tolerability of tazarotene indicating its potential in improving its topical delivery. The developed microemulsion-based gel may be a potential drug delivery vehicle for targeted topical delivery of tazarotene in the treatment of acne.

  4. Synthetic surfactant- and cross-linker-free preparation of highly stable lipid-polymer hybrid nanoparticles as potential oral delivery vehicles.

    Science.gov (United States)

    Wang, Taoran; Xue, Jingyi; Hu, Qiaobin; Zhou, Mingyong; Chang, Chao; Luo, Yangchao

    2017-06-05

    The toxicity associated with concentrated synthetic surfactants and the poor stability at gastrointestinal condition are two major constraints for practical applications of solid lipid nanoparticles (SLN) as oral delivery vehicles. In this study, a synthetic surfactant-free and cross-linker-free method was developed to fabricate effective, safe, and ultra-stable lipid-polymer hybrid nanoparticles (LPN). Bovine serum albumin (BSA) and dextran varying in molecular weights were first conjugated through Maillard reaction and the conjugates were exploited to emulsify solid lipid by a solvent diffusion and sonication method. The multilayer structure was formed by self-assembly of BSA-dextran micelles to envelope solid lipid via a pH- and heating-induced facile process with simultaneous surface deposition of pectin. The efficiency of different BSA-dextran conjugates was systematically studied to prepare LPN with the smallest size, the most homogeneous distribution and the greatest stability. The molecular interactions were characterized by Fourier transform infrared and fluorescence spectroscopies. Both nano spray drying and freeze-drying methods were tested to produce spherical and uniform pectin-coated LPN powders that were able to re-assemble nanoscale structure when redispersed in water. The results demonstrated the promise of a synthetic surfactant- and cross-linker-free technique to prepare highly stable pectin-coated LPN from all natural biomaterials as potential oral delivery vehicles.

  5. Sustained ocular delivery of Dorzolamide-HCl via proniosomal gel formulation: in-vitro characterization, statistical optimization, and in-vivo pharmacodynamic evaluation in rabbits.

    Science.gov (United States)

    Fouda, Nagwa Hussein; Abdelrehim, Randa Tag; Hegazy, Doaa Abdelmagid; Habib, Basant Ahmed

    2018-11-01

    Glaucoma is the second cause of blindness worldwide. Frequent administration of traditional topical dosage forms may lead to patient incompliance and failure of treatment. Our study aims to formulate proniosomal gel formulations that sustain the release of the water-soluble anti-glaucoma drug Dorzolamide-HCl (Dorz). Proniosomal gel formulations were prepared using coacervation phase separation method according to a 5 2 full factorial design. The effects of Cholesterol and surfactant (Span 40) amounts (independent variables) on the percentage entrapment efficiency (EE%), particle size (PS), and the percent of drug released after 8 h (Q8h) (dependent variables (DVs)) were investigated. An optimized formulation (OF) was chosen based on maximizing EE% and Q8h and minimizing PS. An intraocular pressure (IOP) pharmacodynamic study was performed in rabbits to evaluate the in-vivo performance of the OF-gel compared to the marketed Trusopt ® eye drops. The results showed that the independent variables studied significantly affected EE%, PS, and Q8h. OF was the one containing 60 mg Cholesterol and 540 mg Span 40. It had desirability of 0.885 and its actually measured DVs deviated from the predicted ones by a maximum of 4.8%. The in-vivo pharmacodynamic study showed that OF could result in higher reduction in IOP, significantly sustain that reduction in IOP and increase Dorz bioavailability compared to Trusopt ® eye drops. Thus the OF-gel is very promising for being used in glaucoma treatment.

  6. Evaluation of local drug-delivery system containing 2% whole turmeric gel used as an adjunct to scaling and root planing in chronic periodontitis: A clinical and microbiological study

    Directory of Open Access Journals (Sweden)

    Roobal Behal

    2011-01-01

    Full Text Available Aim: To compare the effect of experimental local-drug delivery system containing 2% whole turmeric (gel form as an adjunct to scaling and root planing (SRP with the effect achieved using SRP alone by assessing their respective effects on plaque, gingival inflammation, bleeding on probing pocket depth, relative attachment levels and trypsin-like enzyme activity of "red complex " microorganisms, namely, Bacteroides forsythus, Porphvromonas gingivalis and Treponema denticola. Material and Methods: Thirty subjects with chronic localized or generalized periodontitis with pocket depth of 5 to 7 mm were selected in a split-mouth study design. Control sites received SRP alone, while experimental sites received SRP plus experimental material (2% whole turmeric gel. Plaque index (PI, gingival index (GI, sulcus bleeding index (SBI, probing pocket depth (PPD, relative attachment loss (RAL, microbiological study of collected plaque sample for trypsin-like activity of "red complex" by BAPNA assay were the parameters recorded on day 0, 30 days and 45 days. Results: Both groups demonstrated statistically significant reduction in PI, GI, SBI, PPD; and gain in RAL. Significant reduction in the trypsin-like enzyme activity of "red complex" (BAPNA values was observed for both the groups when compared to the baseline activity. Greater reduction was seen in all the parameters in the experimental group in comparison to the control group. Conclusion: The experimental local drug-delivery system containing 2% whole turmeric gel can be effectively used as an adjunct to scaling and root planing and is more effective than scaling and root planing alone in the treatment of periodontal pockets.

  7. Optimisation of cosolvent concentration for topical drug delivery III--influence of lipophilic vehicles on ibuprofen permeation.

    Science.gov (United States)

    Watkinson, R M; Guy, R H; Oliveira, G; Hadgraft, J; Lane, M E

    2011-01-01

    Previously, we have reported the effects of water, ethanol, propylene glycol and various binary and ternary mixtures of these solvents on the permeation of ibuprofen in model membranes and in skin. The present study investigates the influence of lipophilic vehicles on the transport of ibuprofen in silicone membrane and in human skin. The permeation of ibuprofen was measured from mineral oil (MO), Miglyol® 812 (MG) and binary mixtures of MO and MG. The solubility of ibuprofen was 5-fold higher in MG than in MO, however, the permeation of ibuprofen from the pure vehicles and combinations of both was comparable in silicone membrane. Additionally, there were no significant differences in skin permeation for MO and MG vehicles. When the permeation of various hydrophilic and lipophilic vehicles is considered, a trend between flux values for the model membrane and skin is evident (r(2) = 0.71). The findings suggest that silicone membrane may provide information on qualitative trends in skin permeation for vehicles of diverse solubility and partition characteristics. Copyright © 2010 S. Karger AG, Basel.

  8. A dose-finding, cross-over study to evaluate the effect of a Nestorone®/Estradiol transdermal gel delivery on ovulation suppression in normal ovulating women.

    Science.gov (United States)

    Brache, Vivian; Merkatz, Ruth; Kumar, Narender; Jesam, Cristian; Sussman, Heather; Hoskin, Elena; Roberts, Kevin; Alami, Mohcine; Taylor, Deshawn; Jorge, Aidelis; Croxatto, Horacio; Lorange, Ellen; Mishell, Daniel R; Sitruk-Ware, Regine

    2015-10-01

    This study aims to determine the lowest effective of three Nestorone (NES)/estradiol (E2) transdermal gel doses to ensure ovulation suppression in 90-95% of cycles. This was a randomized, open-label, three-treatment-period cross-over study to evaluate the effects of NES/E2 transdermal gel on ovulation inhibition, suppression of follicular growth and pharmacokinetic parameters. The doses were low (1.5 mg NES/0.5 mg E2), medium (3.0 mg NES/1.0 mg E2) and high (4.5 mg NES/1.5 mg E2). Participants applied gel daily to a fixed area on the abdomen for 21 consecutive days. They were interviewed regarding their experiences using the gel. Eighteen participants were randomized; 16 completed the study. Median NES C(max) values for low, medium and high dose groups at day 21 were 318.6 pmol/L, 783.0 pmol/L and 1063.8 pmol/L, respectively. Median maximum follicular diameter was higher with the lowest dose with 16.2 mm versus 10.0 and 10.4 mm with the medium and high doses, respectively. Among adherent participants, ovulation was inhibited in all dose groups, except for one participant in the medium dose (6.7%) that had luteal activity and an ultrasound image suggestive of a luteinized unruptured follicle. There were few reports of unscheduled bleeding, with more episodes reported for the lower dose. Adverse events were mild, and no skin irritation was reported from gel application. While all three doses blocked ovulation effectively and were evaluated as safe and acceptable, the medium dose was considered the lowest effective dose based on a more adequate suppression of follicular development. Further development of this novel contraceptive delivering NES and E2 is warranted and has potential for improved safety compared to ethinyl-estradiol-based methods. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Benchmarking the ERG valve tip and MRI Interventions Smart Flow neurocatheter convection-enhanced delivery system's performance in a gel model of the brain: employing infusion protocols proposed for gene therapy for Parkinson's disease

    Science.gov (United States)

    Sillay, Karl; Schomberg, Dominic; Hinchman, Angelica; Kumbier, Lauren; Ross, Chris; Kubota, Ken; Brodsky, Ethan; Miranpuri, Gurwattan

    2012-04-01

    Convection-enhanced delivery (CED) is an advanced infusion technique used to deliver therapeutic agents into the brain. CED has shown promise in recent clinical trials. Independent verification of published parameters is warranted with benchmark testing of published parameters in applicable models such as gel phantoms, ex vivo tissue and in vivo non-human animal models to effectively inform planned and future clinical therapies. In the current study, specific performance characteristics of two CED infusion catheter systems, such as backflow, infusion cloud morphology, volume of distribution (mm3) versus the infused volume (mm3) (Vd/Vi) ratios, rate of infusion (µl min-1) and pressure (mmHg), were examined to ensure published performance standards for the ERG valve-tip (VT) catheter. We tested the hypothesis that the ERG VT catheter with an infusion protocol of a steady 1 µl min-1 functionality is comparable to the newly FDA approved MRI Interventions Smart Flow (SF) catheter with the UCSF infusion protocol in an agarose gel model. In the gel phantom models, no significant difference was found in performance parameters between the VT and SF catheter. We report, for the first time, such benchmark characteristics in CED between these two otherwise similar single-end port VT with stylet and end-port non-stylet infusion systems. Results of the current study in agarose gel models suggest that the performance of the VT catheter is comparable to the SF catheter and warrants further investigation as a tool in the armamentarium of CED techniques for eventual clinical use and application.

  10. Hydraulic Hybrid Vehicles

    Science.gov (United States)

    EPA and the United Parcel Service (UPS) have developed a hydraulic hybrid delivery vehicle to explore and demonstrate the environmental benefits of the hydraulic hybrid for urban pick-up and delivery fleets.

  11. A Multi-Depot Two-Echelon Vehicle Routing Problem with Delivery Options Arising in the Last Mile Distribution

    NARCIS (Netherlands)

    Zhou, Lin; Baldacci, Roberto; Vigo, Daniele; Wang, Xu

    2018-01-01

    In this paper, we introduce a new city logistics problem arising in the last mile distribution of e-commerce. The problem involves two levels of routing problems. The first requires a design of the routes for a vehicle fleet located at the depots to transport the customer demands to a subset of the

  12. In Vitro and In Vivo Investigation of the Potential of Amorphous Microporous Silica as a Protein Delivery Vehicle

    Directory of Open Access Journals (Sweden)

    Amol Chaudhari

    2013-01-01

    Full Text Available Delivering growth factors (GFs at bone/implant interface needs to be optimized to achieve faster osseointegration. Amorphous microporous silica (AMS has a potential to be used as a carrier and delivery platform for GFs. In this work, adsorption (loading and release (delivery mechanism of a model protein, bovine serum albumin (BSA, from AMS was investigated in vitro as well as in vivo. In general, strong BSA adsorption to AMS was observed. The interaction was stronger at lower pH owing to favorable electrostatic interaction. In vitro evaluation of BSA release revealed a peculiar release profile, involving a burst release followed by a 6 h period without appreciable BSA release and a further slower release later. Experimental data supporting this observation are discussed. Apart from understanding protein/biomaterial (BSA/AMS interaction, determination of in vivo protein release is an essential aspect of the evaluation of a protein delivery system. In this regard micropositron emission tomography (μ-PET was used in an exploratory experiment to determine in vivo BSA release profile from AMS. Results suggest stronger in vivo retention of BSA when adsorbed on AMS. This study highlights the possible use of AMS as a controlled protein delivery platform which may facilitate osseointegration.

  13. Structured triglyceride vehicles for oral delivery of halofantrine: examination of intestinal lymphatic transport and bioavailability in conscious rats

    DEFF Research Database (Denmark)

    Holm, René; Porter, Christopher J H; Müllertz, Anette

    2002-01-01

    PURPOSE: To compare the influence of triglyceride vehicle intramolecular structure on the intestinal lymphatic transport and systemic absorption of halofantrine in conscious rats. METHODS: Conscious, lymph cannulated and nonlymph cannulated rats were dosed orally with three structurally different...... triglycerides; sunflower oil, and two structured triglycerides containing different proportion and position of medium-(M) and long-chain (L) fatty acids on the glycerol backbone. The two structured triglycerides were abbreviated MLM and LML to reflect the structural position on the glycerol. The concentration...... animals, and this was most pronounced for the animals dosed with the structured triglycerides. CONCLUSIONS: Using MLM as vehicle increases the portal absorption of halofantrine and results in similar lymphatic transport levels when compared to sunflower oil. Total absorption when assessed as absorption...

  14. Renewable poly(δ-decalactone based block copolymer micelles as drug delivery vehicle: in vitro and in vivo evaluation

    Directory of Open Access Journals (Sweden)

    Kuldeep K. Bansal

    2018-03-01

    Full Text Available Polymers from natural resources are attracting much attention in various fields including drug delivery as green alternatives to fossil fuel based polymers. In this quest, novel block copolymers based on renewable poly(δ-decalactone (PDL were evaluated for their drug delivery capabilities and compared with a fossil fuel based polymer i.e. methoxy-poly(ethylene glycol-b-poly(ε-caprolactone (mPEG-b-PCL. Using curcumin as a hydrophobic drug model, micelles of PDL block copolymers with different orientation i.e. AB (mPEG-b-PDL, ABA (PDL-b-PEG-b-PDL, ABC (mPEG-b-PDL-b-poly(pentadecalactone and (mPEG-b-PCL were prepared by nanoprecipitation method. The size, drug loading and curcumin stability studies results indicated that mPEG-b-PDL micelles was comparable to its counterpart mPEG-b-PCL micelles towards improved delivery of curcumin. Therefore, mixed micelles using these two copolymers were also evaluated to see any change in size, loading and drug release. Drug release studies proposed that sustained release can be obtained using poly(pentadecalactone as crystalline core whereas rapid release can be achieved using amorphous PDL core. Further, mPEG-b-PDL micelles were found to be non-haemolytic, up to the concentration of 40 mg/mL. In vivo toxicity studies on rats advised low-toxic behaviour of these micelles up to 400 mg/kg dose, as evident by histopathological and biochemical analysis. In summary, it is anticipated that mPEG-b-PDL block copolymer micelles could serve as a renewable alternative for mPEG-b-PCL copolymers in drug delivery applications.

  15. Human umbilical blood mononuclear cell-derived mesenchymal stem cells serve as interleukin-21 gene delivery vehicles for epithelial ovarian cancer therapy in nude mice.

    Science.gov (United States)

    Hu, Weihua; Wang, Jing; He, Xiangfeng; Zhang, Hongyi; Yu, Fangliu; Jiang, Longwei; Chen, Dengyu; Chen, Junsong; Dou, Jun

    2011-01-01

    Ovarian cancer causes more deaths than any other cancer of the female reproductive system, and its overall cure rate remains low. The present study investigated human umbilical blood mononuclear cell (UBMC)-derived mesenchymal stem cells (UBMC-MSCs) as interleukin-21 (IL-21) gene delivery vehicles for ovarian cancer therapy in nude mice. MSCs were isolated from UBMCs and the expanded cells were phenotyped by flow cytometry. Cultured UBMCs were differentiated into osteocytes and adipocytes using appropriate media and then the UBMC-MSCs were transfected with recombinant pIRES2-IL-21-enhancement green fluorescent protein. UBMC-MSCs expressing IL-21 were named as UBMC-MSC-IL-21. Mice with A2780 ovarian cancer were treated with UBMC-MSC-IL-21 intravenously, and the therapeutic efficacy was evaluated by the tumor volume and mouse survival. To address the mechanism of UBMC-MSC-IL-21 against ovarian cancer, the expression of IL-21, natural killer glucoprotein 2 domain and major histocompatibility complex class I chain-related molecules A/B were detected in UBMC-MSC-IL-21 and in the tumor sites. Interferon-γ-secreting splenocyte numbers and natural killer cytotoxicity were significantly increased in the UBMC-MSC-IL-21-treated mice as compared with the UBMC-MSCs or the UBMC-MSC-mock plasmid-treated mice. Most notably, tumor growth was delayed and survival was prolonged in ovarian-cancer-bearing mice treated with UBMC-MSC-IL-21. Our data provide important evidence that UBMC-MSCs can serve as vehicles for IL-21 gene delivery and inhibit the established tumor. Copyright © 2011 International Union of Biochemistry and Molecular Biology, Inc.

  16. A novel injectable thermoresponsive and cytocompatible gel of poly(N-isopropylacrylamide) with layered double hydroxides facilitates siRNA delivery into chondrocytes in 3D culture

    NARCIS (Netherlands)

    Yang, H.Y.; Ee, R.J. van; Timmer, K.; Craenmehr, E.G.M.; Huang, J.H.; Öner, C.; Dhert, W.J.A.; Kragten, A.H.M.; Willems, N.; Grinwis, G.C.M.; Tryfonidou, M.A.; Papen-Botterhuis, N.E.; Creemers, L.B.

    2015-01-01

    Hybrid hydrogels composed of poly(N-isopropylacrylamide) (pNIPAAM) and layered double hydroxides (LDHs) are presented in this study as novel injectable and thermoresponsive materials for siRNA delivery, which could specifically target several negative regulators of tissue homeostasis in

  17. A novel injectable thermoresponsive and cytocompatible gel of poly(N-isopropylacrylamide) with layered double hydroxides facilitates siRNA delivery into chondrocytes in 3D culture

    NARCIS (Netherlands)

    Yang, Hsiao-yin; van Ee, Renz J; Timmer, Klaas; Craenmehr, Eric G M; Huang, Julie H; Oner, F. Cumhur; Dhert, Wouter J A; Kragten, Angela H M; Willems, Nicole; Grinwis, Guy C M; Tryfonidou, Marianna A; Papen-Botterhuis, Nicole E; Creemers, Laura B

    Hybrid hydrogels composed of poly(N-isopropylacrylamide) (pNIPAAM) and layered double hydroxides (LDHs) are presented in this study as novel injectable and thermoresponsive materials for siRNA delivery, which could specifically target several negative regulators of tissue homeostasis in

  18. Clinical and microbiological efficacy of 3% satranidazole gel as a local drug delivery system in the treatment of chronic periodontitis: A randomized, controlled clinical trial

    Directory of Open Access Journals (Sweden)

    N Priyanka

    2015-01-01

    Full Text Available Aim: The present clinical trial was designed to investigate the effectiveness of subgingivally delivered satranidazole (SZ gel as an adjunct to scaling and root planing (SRP in the treatment of chronic periodontitis. Materials and Methods: Seventy subjects with probing depth (PD ≥5 mm were selected. Thirty-five subjects each were randomly assigned to SRP + placebo (Group 1 and SRP + SZ (Group 2. The clinical outcomes evaluated were plaque index, gingival index, clinical attachment level (CAL, and PD at baseline; 1 month, 3 months, and 6 months interval. Furthermore, microbial analysis using polymerase chain reaction was done to estimate the number of sites harboring periodontopathogens. Results: Sixty four subjects were evaluated up to 6 months. At 6 months, the Group 2 resulted in greater mean reduction (4.10 mm in PD as compared to Group 1 (1.49 mm, and also a greater mean CAL gain (4.20 mm in Group 2 as compared to Group 1 (1.13 mm. These subjects also showed a significant reduction in the number of sites harboring periodontopathogens. Conclusion: The use of 3% SZ gel, when used as an adjunct to nonsurgical periodontal therapy in subjects with periodontitis, achieved better results than initial periodontal treatment alone.

  19. BNNTs under the influence of external electric field as potential new drug delivery vehicle of Glu, Lys, Gly and Ser amino acids: A first-principles study

    International Nuclear Information System (INIS)

    Farmanzadeh, Davood; Ghazanfary, Samereh

    2014-01-01

    Graphical abstract: - Highlights: • Solvation energies show that the BNNTs/amino acids complex stabilizes in presence of solvent. • The adsorption process is sensitive to the external electric field. • The electric field is a suitable method for adsorption and storage of amino acids on BNNTs. - Abstract: The interaction of Glu (Glutamic acid), Lys (Lysine), Gly (Glycine) and Ser (Serine) amino acids with different polarities and (9, 0) zigzag single-wall boron nitride nanotubes (BNNTs) with various lengths in the presence and absence of external electric field (EF) in gas and solvent phases, are studied using density functional theory. It is found that interaction of Glu, Lys, Gly and Ser amino acids with BNNTs in both phases is energetically favorable. From solvation energy calculations, it can be seen that the BNNTs/amino acid complex dissolution in water is spontaneous. The adsorption energies and quantum molecular descriptors changed in the presence of external EF. Therefore, the study of BNNTs/amino acid complex under influence of external electric field is very important in proposing or designing new drug delivery systems in the presence of external EF. Results indicate that Glu, Lys, Gly and Ser amino acids can be adsorbed considerably on the BNNTs in the existence of external electric field. Our results showed that the BNNTs can act as a suitable drug delivery vehicle of Glu, Lys, Gly and Ser amino acids within biological systems and strength of adsorption and rate of drug release can be controlled by the external EF

  20. Structured triglyceride vehicles for oral delivery of halofantrine: examination of intestinal lymphatic transport and bioavailability in conscious rats.

    Science.gov (United States)

    Holm, René; Porter, Christopher J H; Müllertz, Anette; Kristensen, Henning G; Charman, William N

    2002-09-01

    To compare the influence of triglyceride vehicle intramolecular structure on the intestinal lymphatic transport and systemic absorption of halofantrine in conscious rats. Conscious, lymph cannulated and nonlymph cannulated rats were dosed orally with three structurally different triglycerides; sunflower oil, and two structured triglycerides containing different proportion and position of medium-(M) and long-chain (L) fatty acids on the glycerol backbone. The two structured triglycerides were abbreviated MLM and LML to reflect the structural position on the glycerol. The concentration of halofantrine in blood and lymph samples was analyzed by HPLC. Both the lymphatic transport and the total absorption of halofantrine were enhanced by the use the MLM triglyceride. The estimated total absorption of halofantrine in the lymph cannulated animals was higher than in the nonlymph cannulated animals, and this was most pronounced for the animals dosed with the structured triglycerides. Using MLM as vehicle increases the portal absorption of halofantrine and results in similar lymphatic transport levels when compared to sunflower oil. Total absorption when assessed as absorption in the blood plus lymphatic transport for halofantrine after administration in the MLM triglyceride was higher than after administration in sunflower oil.

  1. Locally Targeted Delivery of a Micron-Size Radiation Therapy Source Using Temperature-Sensitive Hydrogel

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yusung, E-mail: yusung-kim@uiowa.edu [Department of Radiation Oncology, The University of Iowa, Iowa City, Iowa (United States); Seol, Dong Rim [Department of Orthopaedic Surgery, The University of Iowa, Iowa City, Iowa (United States); Mohapatra, Sucheta [Department of Biomedical Engineering, The University of Iowa, Iowa City, Iowa (United States); Sunderland, John J. [Department of Radiology, The University of Iowa, Iowa City, Iowa (United States); Schultz, Michael K. [Department of Radiation Oncology, The University of Iowa, Iowa City, Iowa (United States); Department of Radiology, The University of Iowa, Iowa City, Iowa (United States); Domann, Frederick E. [Department of Radiation Oncology, The University of Iowa, Iowa City, Iowa (United States); Department of Surgery, The University of Iowa, Iowa City, Iowa (United States); Lim, Tae-Hong [Department of Biomedical Engineering, The University of Iowa, Iowa City, Iowa (United States)

    2014-04-01

    Purpose: To propose a novel radiation therapy (RT) delivery modality: locally targeted delivery of micron-size RT sources by using temperature-sensitive hydrogel (RT-GEL) as an injectable vehicle. Methods and Materials: Hydrogel is a water-like liquid at room temperature but gels at body temperature. Two US Food and Drug Administration-approved polymers were synthesized. Indium-111 (In-111) was used as the radioactive RT-GEL source. The release characteristics of In-111 from polymerized RT-GEL were evaluated. The injectability and efficacy of RT-GEL delivery to human breast tumor were tested using animal models with control datasets of RT-saline injection. As proof-of-concept studies, a total of 6 nude mice were tested by injecting 4 million tumor cells into their upper backs after a week of acclimatization. Three mice were injected with RT-GEL and 3 with RT-saline. Single-photon emission computed tomography (SPECT) and CT scans were performed on each mouse at 0, 24, and 48 h after injection. The efficacy of RT-GEL was determined by comparison with that of the control datasets by measuring kidney In-111 accumulation (mean nCi/cc), representing the distant diffusion of In-111. Results: RT-GEL was successfully injected into the tumor by using a 30-gauge needle. No difficulties due to polymerization of hydrogel during injection and intratumoral pressure were observed during RT-GEL injection. No back flow occurred for either RT-GEL or RT-saline. The residual tumor activities of In-111 were 49% at 24 h (44% at 48 h, respectively) for RT-GEL and 29% (22%, respectively) for RT-saline. Fused SPECT-CT images of RT-saline showed considerable kidney accumulation of In-111 (2886%, 261%, and 262% of RT-GEL at 0, 24, and 48 h, respectively). Conclusions: RT-GEL was successfully injected and showed much higher residual tumor activity: 170% (200%, respectively), than that of RT-saline at 24 h (48 h, respectively) after injection with a minimal accumulation of In-111 to the

  2. Smart materials on the way to theranostic nanorobots: Molecular machines and nanomotors, advanced biosensors, and intelligent vehicles for drug delivery.

    Science.gov (United States)

    Sokolov, Ilya L; Cherkasov, Vladimir R; Tregubov, Andrey A; Buiucli, Sveatoslav R; Nikitin, Maxim P

    2017-06-01

    Theranostics, a fusion of two key parts of modern medicine - diagnostics and therapy of the organism's disorders, promises to bring the efficacy of medical treatment to a fundamentally new level and to become the basis of personalized medicine. Extrapolating today's progress in the field of smart materials to the long-run prospect, we can imagine future intelligent agents capable of performing complex analysis of different physiological factors inside the living organism and implementing a built-in program thereby triggering a series of therapeutic actions. These agents, by analogy with their macroscopic counterparts, can be called nanorobots. It is quite obscure what these devices are going to look like but they will be more or less based on today's achievements in nanobiotechnology. The present Review is an attempt to systematize highly diverse nanomaterials, which may potentially serve as modules for theranostic nanorobotics, e.g., nanomotors, sensing units, and payload carriers. Biocomputing-based sensing, externally actuated or chemically "fueled" autonomous movement, swarm inter-agent communication behavior are just a few inspiring examples that nanobiotechnology can offer today for construction of truly intelligent drug delivery systems. The progress of smart nanomaterials toward fully autonomous drug delivery nanorobots is an exciting prospect for disease treatment. Synergistic combination of the available approaches and their further development may produce intelligent drugs of unmatched functionality. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Nanodiamond decorated liposomes as highly biocompatible delivery vehicles and a comparison with carbon nanotubes and graphene oxide.

    Science.gov (United States)

    Wang, Feng; Liu, Juewen

    2013-12-21

    Studying interactions between nano-carbons and lipid membranes is important for multiplexed drug delivery, device fabrication and for understanding toxicity. Herein, we report that nanodiamond (ND, sp(3) carbon) forms a complex with highly biocompatible zwitterionic liposomes based on hydrogen bonding, which is confirmed by pH-dependent and urea-dependent assays. Despite such weak interaction, the complex is highly stable. Comparisons were made with two sp(2) carbons: nanoscale graphene oxide (NGO) and carbon nanotubes (CNTs), where CNT adsorption is the weakest. Adsorption of the nano-carbons does not induce liposome leakage or affect lipid phase transition temperature. Therefore, the potential toxicity of nano-carbons is unlikely to be related to direct membrane damage. ND facilitates cellular uptake of liposomes and co-delivery of negatively charged calcein and positively charged doxorubicin has been demonstrated. ND has the lowest toxicity, while CNTs and NGO are slightly more toxic. The effect of introducing fusogenic lipids and cholesterol was further studied to understand the effect of lipid formulation.

  4. Formulation of Bioadhesive Carbomer Gel Incorporating Drug ...

    African Journals Online (AJOL)

    incorporated into carbomer gel and evaluated for drug release. Results: ... localized delivery system for the treatment inflammation and infection in periodontal pockets. ..... loaded with diclofenac sodium for intra- articular administration. J Drug ...

  5. Patient-derived mesenchymal stem cells as delivery vehicles for oncolytic virotherapy: novel state-of-the-art technology

    Directory of Open Access Journals (Sweden)

    Ramírez M

    2015-10-01

    Full Text Available Manuel Ramírez,1 Javier García-Castro,2 Gustavo J Melen,1 África González-Murillo,1 Lidia Franco-Luzón1 1Oncohematología, Hospital Universitario Niño Jesús, 2Unidad de Biotecnología Celular, Instituto de Salud Carlos III, Madrid, Spain Abstract: Oncolytic virotherapy is gaining interest in the clinic as a new weapon against cancer. In vivo administration of oncolytic viruses showed important limitations that decrease their effectiveness very significantly: the antiviral immune response causes the elimination of the therapeutic effect, and the poor natural ability of oncolytic viruses to infect micrometastatic lesions significantly minimizes the effective dose of virus. This review will focus on updating the technical and scientific foundations of one of the strategies developed to overcome these limitations, ie, using cells as vehicles for oncolytic viruses. Among many candidates, a special type of adult stem cell, mesenchymal stem cells (MSCs, have already been used in the clinic as cell vehicles for oncolytic viruses, partly due to the fact that these cells are actively being evaluated for other indications. MSC carrier cells are used as Trojan horses loaded with oncoviruses, are administered systemically, and release their cargos at the right places. MSCs are equipped with an array of molecules involved in cell arrest in the capillaries (integrins and selectins, migration toward specific parenchymal locations within tissues (chemokine receptors, and invasion and degradation of the extracellular matrix (proteases. In addition to anatomical targeting capacity, MSCs have a well-recognized role in modulating immune responses by affecting cells of the innate (antigen-presenting cells, natural killer cells and adaptive immune system (effector and regulatory lymphocytes. Therefore, carrier MSCs may also modulate the immune responses taking place after therapy, ie, the antiviral and the antitumor immune responses. Keywords: virotherapy

  6. Delivery of completed irradiation vehicles and the quality assurance document to the High Flux Isotope Reactor for irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Petrie, Christian M. [Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States); McDuffee, Joel Lee [Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States); Katoh, Yutai [Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States); Terrani, Kurt A. [Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)

    2015-10-01

    This report details the initial fabrication and delivery of two Fuel Cycle Research and Development (FCRD) irradiation capsules (ATFSC01 and ATFSC02), with associated quality assurance documentation, to the High Flux Isotope Reactor (HFIR). The capsules and documentation were delivered by September 30, 2015, thus meeting the deadline for milestone M3FT-15OR0202268. These irradiation experiments are testing silicon carbide composite tubes in order to obtain experimental validation of thermo-mechanical models of stress states in SiC cladding irradiated under a prototypic high heat flux. This document contains a copy of the completed capsule fabrication request sheets, which detail all constituent components, pertinent drawings, etc., along with a detailed summary of the capsule assembly process performed by the Thermal Hydraulics and Irradiation Engineering Group (THIEG) in the Reactor and Nuclear Systems Division (RNSD). A complete fabrication package record is maintained by the THIEG and is available upon request.

  7. Platelets as Contractile Nanomachines for Targeting Drug Delivery in Hemostasis and Thrombosis

    Science.gov (United States)

    2015-12-01

    capsules were suspended in platelet - rich plasma, which was subsequently exposed to 1 U/mL of thrombin, the capsules successfully targeted target...thrombotic sites via integration into the forming fibrin networks and binding to activated platelets . The delivery vehicles successfully adhere to platelet ...rupture has successfully been achieved in static fibrin gels comprised of a high concentration of platelets (Figure 3). Only capsules incorporated into

  8. Biodegradable PLGA85/15 nanoparticles as a delivery vehicle for Chlamydia trachomatis recombinant MOMP-187 peptide

    International Nuclear Information System (INIS)

    Taha, Murtada A; Singh, Shree R; Dennis, Vida A

    2012-01-01

    Development of a Chlamydia trachomatis vaccine has been a formidable task partly because of an ineffective delivery system. Our laboratory has generated a recombinant peptide of C. trachomatis major outer membrane protein (MOMP) (rMOMP-187) and demonstrated that it induced at 20 μg ml −1 maximal interleukin (IL)-6 and IL-12p40 Th1 cytokines in mouse J774 macrophages. In a continuous pursuit of a C. trachomatis effective vaccine-delivery system, we encapsulated rMOMP-187 in poly(d,l-lactic-co-glycolic acid) (PLGA, 85:15 PLA/PGA ratio) to serve as a nanovaccine candidate. Physiochemical characterizations were assessed by Fourier transform-infrared spectroscopy, atomic force microscopy, Zetasizer, Zeta potential, transmission electron microcopy and differential scanning calorimetry. The encapsulated rMOMP-187 was small (∼200 nm) with an apparently smooth uniform oval structure, thermally stable (54 °C), negatively charged ( − 27.00 mV) and exhibited minimal toxicity at concentrations −1 to eukaryotic cells (>95% viable cells) over a 24–72 h period. We achieved a high encapsulation efficiency of rMOMP-187 (∼98%) in PLGA, a loading peptide capacity of 2.7% and a slow release of the encapsulated peptide. Stimulation of J774 macrophages with a concentration as low as 1 μg ml −1 of encapsulated rMOMP-187 evoked high production levels of the Th1 cytokines IL-6 (874 pg ml −1 ) and IL-12p40 (674 pg ml −1 ) as well as nitric oxide (8 μM) at 24 h post-stimulation, and in a dose-response and time-kinetics manner. Our data indicate the successful encapsulation and characterization of rMOMP-187 in PLGA and, more importantly, that PLGA enhanced the capacity of the peptide to induce Th1 cytokines and NO in vitro. These findings make this nanovaccine an attractive candidate in pursuit of an efficacious vaccine against C. trachomatis. (paper)

  9. Mucosal delivery of a transmission-blocking DNA vaccine encoding Giardia lamblia CWP2 by Salmonella typhimurium bactofection vehicle.

    Science.gov (United States)

    Abdul-Wahid, Aws; Faubert, Gaétan

    2007-12-05

    In this study, we investigated the use of Salmonella typhimurium (STM1 strain) as a bactofection vehicle to deliver a transmission-blocking DNA vaccine (TBDV) plasmid to the intestinal immune system. The gene encoding the full length cyst wall protein-2 (CWP2) from Giardia lamblia was subcloned into the pCDNA3 mammalian expression vector and stably introduced into S. typhimurium STM1. Eight-week-old female BALB/c mice were orally immunized every 2 weeks, for a total of three immunizations. Vaccinated and control mice were sacrificed 1 week following the last injection. Administration of the DNA vaccine led to the production of CWP2-specific cellular immune responses characterized by a mixed Th1/Th2 response. Using ELISA, antigen-specific IgA and IgG antibodies were detected in intestinal secretions. Moreover, analysis of sera demonstrated that the DNA immunization also stimulated the production of CWP2-specific IgG antibodies that were mainly of the IgG2a isotype. Finally, challenge infection with live Giardia muris cysts revealed that mice receiving the CWP2-encoding DNA vaccine were able to reduce cyst shedding by approximately 60% compared to control mice. These results demonstrate, for the first time, the development of parasite transmission-blocking immunity at the intestinal level following the administration of a mucosal DNA vaccine delivered by S. typhimurium STM1.

  10. Synthesis and characterization of thiolated carboxymethyl chitosan-graft-cyclodextrin nanoparticles as a drug delivery vehicle for albendazole.

    Science.gov (United States)

    Alamdarnejad, Ghazaleh; Sharif, Alireza; Taranejoo, Shahrouz; Janmaleki, Mohsen; Kalaee, Mohammad Reza; Dadgar, Mohsen; Khakpour, Mazyar

    2013-08-01

    A new strategy for the synthesis of thiolated carboxymethyl chitosan-g-cyclodextrin nanoparticles by an ionic-gelation method is presented. The synthetic approach was based on the utilization of 1,6-hexamethylene diisocyanate during cyclodextrin grafting onto carboxymethyl chitosan. The use of the 1,6-hexamethylene diisocyanate resulted in reactions between cyclodextrin and active sites at the C6-position of chitosan, and preserved amino groups of chitosan for subsequent reactions with thioglycolic acid, as the thiolating agent, and tripolyphosphate, as the gelling counterion. Various methods such as scanning electron microscopy, rheology and in vitro release studies were employed to exhibit significant features of the nanoparticles for mucosal albendazole delivery applications. It was found that the thiolated carboxymethyl chitosan-g-cyclodextrin nanoparticles prepared using an aqueous solution containing 1 wt% of tripolyphosphate and having 115.65 (μmol/g polymer) of grafted thiol groups show both the highest mucoadhesive properties and the highest albendazole entrapment efficiency. The latter was confirmed theoretically by calculating the enthalpy of mixing of albendazole in the above thiolated chitosan polymer.

  11. Future of human Chlamydia vaccine: potential of self-adjuvanting biodegradable nanoparticles as safe vaccine delivery vehicles.

    Science.gov (United States)

    Sahu, Rajnish; Verma, Richa; Dixit, Saurabh; Igietseme, Joseph U; Black, Carolyn M; Duncan, Skyla; Singh, Shree R; Dennis, Vida A

    2018-03-01

    There is a persisting global burden and considerable public health challenge by the plethora of ocular, genital and respiratory diseases caused by members of the Gram-negative bacteria of the genus Chlamydia. The major diseases are conjunctivitis and blinding trachoma, non-gonococcal urethritis, cervicitis, pelvic inflammatory disease, ectopic pregnancy, tubal factor infertility, and interstitial pneumonia. The failures in screening and other prevention programs led to the current medical opinion that an efficacious prophylactic vaccine is the best approach to protect humans from chlamydial infections. Unfortunately, there is no human Chlamydia vaccine despite successful veterinary vaccines. A major challenge has been the effective delivery of vaccine antigens to induce safe and effective immune effectors to confer long-term protective immunity. The dawn of the era of biodegradable polymeric nanoparticles and the adjuvanted derivatives may accelerate the realization of the dream of human vaccine in the foreseeable future. Areas covered: This review focuses on the current status of human chlamydial vaccine research, specifically the potential of biodegradable polymeric nanovaccines to provide efficacious Chlamydia vaccines in the near future. Expert commentary: The safety of biodegradable polymeric nanoparticles-based experimental vaccines with or without adjuvants and the array of available chlamydial vaccine candidates would suggest that clinical trials in humans may be imminent. Also, the promising results from vaccine testing in animal models could lead to human vaccines against trachoma and reproductive diseases simultaneously.

  12. Quantitative characterization of all single amino acid variants of a viral capsid-based drug delivery vehicle.

    Science.gov (United States)

    Hartman, Emily C; Jakobson, Christopher M; Favor, Andrew H; Lobba, Marco J; Álvarez-Benedicto, Ester; Francis, Matthew B; Tullman-Ercek, Danielle

    2018-04-11

    Self-assembling proteins are critical to biological systems and industrial technologies, but predicting how mutations affect self-assembly remains a significant challenge. Here, we report a technique, termed SyMAPS (Systematic Mutation and Assembled Particle Selection), that can be used to characterize the assembly competency of all single amino acid variants of a self-assembling viral structural protein. SyMAPS studies on the MS2 bacteriophage coat protein revealed a high-resolution fitness landscape that challenges some conventional assumptions of protein engineering. An additional round of selection identified a previously unknown variant (CP[T71H]) that is stable at neutral pH but less tolerant to acidic conditions than the wild-type coat protein. The capsids formed by this variant could be more amenable to disassembly in late endosomes or early lysosomes-a feature that is advantageous for delivery applications. In addition to providing a mutability blueprint for virus-like particles, SyMAPS can be readily applied to other self-assembling proteins.

  13. Communications data delivery system analysis task 2 report : high-level options for secure communications data delivery systems.

    Science.gov (United States)

    2012-05-16

    This Communications Data Delivery System Analysis Task 2 report describes and analyzes options for Vehicle to Vehicle (V2V) and Vehicle to Infrastructure (V2I) communications data delivery systems using various communication media (Dedicated Short Ra...

  14. Membrane and Nuclear Permeabilization by Polymeric pDNA Vehicles: Efficient Method for Gene Delivery or Mechanism of Cytotoxicity?

    Science.gov (United States)

    Grandinetti, Giovanna; Smith, Adam E.; Reineke, Theresa M.

    2012-01-01

    The aim of this study is to compare the cytotoxicity mechanisms of linear PEI to two analogous polymers synthesized by our group: a hydroxyl-containing poly(L-tartaramidoamine) (T4) and a version containing an alkyl chain spacer poly(adipamidopentaethylenetetramine) (A4) by studying the cellular responses to polymer transfection. We have also synthesized analogues of T4 with different molecular weights (degrees of polymerization of 6, 12, and 43) to examine the role of molecular weight on the cytotoxicity mechanisms. Several mechanisms of polymer-induced cytotoxicity are investigated, including plasma membrane permeabilization, the formation of potentially harmful polymer degradation products during transfection including reactive oxygen species, and nuclear membrane permeabilization. We hypothesized that since cationic polymers are capable of disrupting the plasma membrane, they may also be capable of disrupting the nuclear envelope, which could be a potential mechanism of how the pDNA is delivered into the nucleus (other than nuclear envelope breakdown during mitosis). Using flow cytometry and confocal microscopy, we show that the polycations with the highest amount of protein expression and toxicity, PEI and T443, are capable of inducing nuclear membrane permeability. This finding is important for the field of nucleic acid delivery in that not only could direct nucleus permeabilization be a mechanism for pDNA nuclear import but also a potential mechanism of cytotoxicity and cell death. We also show that the production of reactive oxygen species is not a main mechanism of cytotoxicity, and that the presence or absence of hydroxyl groups as well as polymer length plays a role in polyplex size and charge in addition to protein expression efficiency and toxicity. PMID:22175236

  15. Self-assembly of core-polyethylene glycol-lipid shell (CPLS) nanoparticles and their potential as drug delivery vehicles

    Science.gov (United States)

    Shen, Zhiqiang; Loe, David T.; Awino, Joseph K.; Kröger, Martin; Rouge, Jessica L.; Li, Ying

    2016-08-01

    potential of simulation-driven approaches for guiding the design of more efficient nanomaterial delivery platforms.Herein a new multifunctional formulation, referred to as a core-polyethylene glycol-lipid shell (CPLS) nanoparticle, has been proposed and studied in silico via large scale coarse-grained molecular dynamics simulations. A PEGylated core with surface tethered polyethylene glycol (PEG) chains is used as the starting configuration, where the free ends of the PEG chains are covalently bonded with lipid molecules (lipid heads). A complete lipid bilayer is formed at the surface of the PEGylated particle core upon addition of free lipids, driven by the hydrophobic properties of the lipid tails, leading to the formation of a CPLS nanoparticle. The self-assembly process is found to be sensitive to the grafting density and molecular weight of the tethered PEG chains, as well as the amount of free lipids added. At low grafting densities the assembly of CPLS nanoparticles cannot be accomplished. As demonstrated by simulations, a lipid bud/vesicle can be formed on the surface when an excess amount of free lipids is added at high grafting density. Therefore, the CPLS nanoparticles can only be formed under appropriate conditions of both PEG and free lipids. The CPLS nanoparticle has been recognized to be able to store a large quantity of water molecules, particularly with high molecular weight of PEG chains, indicating its capacity for carrying hydrophilic molecules such as therapeutic biomolecules or imaging agents. Under identical size and surface chemistry conditions of a liposome, it has been observed that the CPLS particle can be more efficiently wrapped by the lipid membrane, indicating its potential for a greater efficiency in delivering its hydrophilic cargo. As a proof-of-concept, the experimental realization of CPLS nanoparticles is explicitly demonstrated in this study. To test the capacity of the CPLS to store small molecule cargo a hydrophilic dye was

  16. Acute toxicity evaluation of in situ gel-forming controlled drug delivery system based on biodegradable poly(ε-caprolactone)-poly(ethylene glycol)-poly(ε-caprolactone) copolymer

    International Nuclear Information System (INIS)

    Fang Fang; Gong Changyang; Dong Pengwei; Fu Shaozhi; Gu Yingchun; Guo Gang; Zhao Xia; Wei Yuquan; Qian Zhiyong

    2009-01-01

    In this paper, biodegradable poly(ε-caprolactone)-poly(ethylene glycol)-poly(ε-caprolactone) (PCL-PEG-PCL) triblock copolymer was synthesized, and was characterized by FTIR, 1 H-NMR and GPC. The PCL-PEG-PCL/dimethyl sulfoxide (DMSO) solution displayed in situ gelling behavior when subcutaneously injected into the body. Toxicity tests and a histopathological study were performed in BALB/c mice. We focused mainly on acute organ toxicity of BALB/c mice by subcutaneous injection. In the acute toxicity test, the dose of subcutaneous injection was 5 g/kg body weight (b.w.), and the mice were observed continuously for 14 days. For the histopathological study, samples including heart, lung, liver, kidneys, spleen, stomach and intestine were histochemically prepared and stained with hematoxylin-eosin for histopathological examination. No mortality or significant signs of toxicity were observed during the whole observation period, and there is no significant lesion to be shown in histopathological study of major organs in the mice. Therefore, the maximal tolerance dose of dimethyl sulfoxide (DMSO) solution of PCL-PEG-PCL copolymer by subcutaneous injection was calculated to be higher than 5 g/kg b.w. Therefore, the PCL-PEG-PCL/DMSO system was thought to be non-toxic after subcutaneous injection, and it might be a candidate for an in situ gelling controlled drug delivery system.

  17. Caffeine-catalyzed gels.

    Science.gov (United States)

    DiCiccio, Angela M; Lee, Young-Ah Lucy; Glettig, Dean L; Walton, Elizabeth S E; de la Serna, Eva L; Montgomery, Veronica A; Grant, Tyler M; Langer, Robert; Traverso, Giovanni

    2018-07-01

    Covalently cross-linked gels are utilized in a broad range of biomedical applications though their synthesis often compromises easy implementation. Cross-linking reactions commonly utilize catalysts or conditions that can damage biologics and sensitive compounds, producing materials that require extensive post processing to achieve acceptable biocompatibility. As an alternative, we report a batch synthesis platform to produce covalently cross-linked materials appropriate for direct biomedical application enabled by green chemistry and commonly available food grade ingredients. Using caffeine, a mild base, to catalyze anhydrous carboxylate ring-opening of diglycidyl-ether functionalized monomers with citric acid as a tri-functional crosslinking agent we introduce a novel poly(ester-ether) gel synthesis platform. We demonstrate that biocompatible Caffeine Catalyzed Gels (CCGs) exhibit dynamic physical, chemical, and mechanical properties, which can be tailored in shape, surface texture, solvent response, cargo release, shear and tensile strength, among other potential attributes. The demonstrated versatility, low cost and facile synthesis of these CCGs renders them appropriate for a broad range of customized engineering applications including drug delivery constructs, tissue engineering scaffolds, and medical devices. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  18. Hybrid Electric Vehicle Publications | Transportation Research | NREL

    Science.gov (United States)

    Hybrid Electric Vehicle Publications Hybrid Electric Vehicle Publications The following technical papers, conference papers, and fact sheets provide information about NREL's hybrid electric fleet vehicle Class 8 Hybrid Electric Delivery Trucks. Mike Lammert. (2011) FedEx Delivery Trucks In-Use and Vehicle

  19. Ophthalmic gels: Past, present and future.

    Science.gov (United States)

    Al-Kinani, Ali A; Zidan, Ghada; Elsaid, Naba; Seyfoddin, Ali; Alani, Adam W G; Alany, Raid G

    2018-02-15

    Aqueous gels formulated using hydrophilic polymers (hydrogels) along with those based on stimuli responsive polymers (in situ gelling or gel forming systems) continue to attract increasing interest for various eye health-related applications. They allow the incorporation of a variety of ophthalmic pharmaceuticals to achieve therapeutic levels of drugs and bioactives at target ocular sites. The integration of sophisticated drug delivery technologies such as nanotechnology-based ones with intelligent and environment responsive systems can extend current treatment duration to provide more clinically relevant time courses (weeks and months instead of hours and days) which will inevitably reduce dose frequency, increase patient compliance and improve clinical outcomes. Novel applications and design of contact lenses and intracanalicular delivery devices along with the move towards integrating gels into various drug delivery devices like intraocular pumps, injections and implants has the potential to reduce comorbidities caused by glaucoma, corneal keratopathy, cataract, diabetic retinopathies and age-related macular degeneration. This review describes ophthalmic gelling systems with emphasis on mechanism of gel formation and application in ophthalmology. It provides a critical appraisal of the techniques and methods used in the characterization of ophthalmic preformed gels and in situ gelling systems along with a thorough insight into the safety and biocompatibility of these systems. Newly developed ophthalmic gels, hydrogels, preformed gels and in situ gelling systems including the latest in the area of stimuli responsive gels, molecularly imprinted gels, nanogels, 3D printed hydrogels; 3D printed devices comprising ophthalmic gels are covered. Finally, new applications of gels in the production of artificial corneas, corneal wound healing and hydrogel contact lenses are described. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Nanocomposite Hydrogels: 3D Polymer-Nanoparticle Synergies for On-Demand Drug Delivery.

    Science.gov (United States)

    Merino, Sonia; Martín, Cristina; Kostarelos, Kostas; Prato, Maurizio; Vázquez, Ester

    2015-05-26

    Considerable progress in the synthesis and technology of hydrogels makes these materials attractive structures for designing controlled-release drug delivery systems. In particular, this review highlights the latest advances in nanocomposite hydrogels as drug delivery vehicles. The inclusion/incorporation of nanoparticles in three-dimensional polymeric structures is an innovative means for obtaining multicomponent systems with diverse functionality within a hybrid hydrogel network. Nanoparticle-hydrogel combinations add synergistic benefits to the new 3D structures. Nanogels as carriers for cancer therapy and injectable gels with improved self-healing properties have also been described as new nanocomposite systems.

  1. Fabrication and physical and biological properties of fibrin gel derived from human plasma

    Science.gov (United States)

    Zhao, Haiguang; Ma, Lie; Zhou, Jie; Mao, Zhengwei; Gao, Changyou; Shen, Jiacong

    2008-03-01

    The fast development of tissue engineering and regenerative medicine drives the old biomaterials, for example, fibrin glue, to find new applications in these areas. Aiming at developing a commercially available hydrogel for cell entrapment and delivery, in this study we optimized the fabrication and gelation conditions of fibrin gel. Fibrinogen was isolated from human plasma by a freeze-thaw circle. Gelation of the fibrinogen was accomplished by mixing with thrombin. Absorbance of the fibrinogen/thrombin mixture at 550 nm as a function of reaction time was monitored by UV-VIS spectroscopy. It was found that the clotting time is significantly influenced by the thrombin concentration and the temperature, while less influenced by the fibrinogen concentration. After freeze-drying, the fibrin gel was characterized by scanning electron microscopy (SEM), revealing fibrous microstructure. Thermal gravimetric analysis found that the degradation temperature of the crosslinked fibrin gel starts from 288 °C, which is about 30 °C higher than that of the fibrinogen. The hydrogel has an initial water-uptake ratio of ~50, decreased to 30-40 after incubation in water for 11 h depending on the thrombin concentration. The fibrin gels lost their weights in PBS very rapidly, while slowly in DMEM/fetal bovine serum and DMEM. In vitro cell culture found that human fibroblasts could normally proliferate in the fibrin gel with spreading morphology. In conclusion, the fibrin gel containing higher concentration of fibrinogen (20 mg ml-1) and thrombin (5 U ml-1) has suitable gelation time and handling properties, and thus is applicable as a delivery vehicle for cells such as fibroblasts.

  2. PLGA-PEG-PLGA microspheres as a delivery vehicle for antisense oligonucleotides to CTGF: Implications on post-surgical peritoneal adhesion prevention

    Science.gov (United States)

    Azeke, John Imuetinyan-Jesu, Jr.

    Abdominal adhesions are the aberrant result of peritoneal wound healing commonly associated with surgery and inflammation. A subject of a large number of studies since the first half of the last century, peritoneal adhesion prevention has, for the most part, evaded the scientific community and continues to cost Americans an estimated $2-4 billion annually. It is known that transforming growth factor-beta (TGF-beta) plays a key role in the wound healing cascade; however, suppression of this multifunctional growth factor's activity may have more harmful consequences than can be tolerated. As a result, much attention has fallen on connective tissue growth factor (CTGF), a downstream mediator of TGF-beta's fibrotic action. It has been demonstrated in several in vitro models, that the suppression of CTGF hinders fibroblast proliferation, a necessary condition for fibrosis. Furthermore, antisense oligonucleotides (antisense oligos, AO) to CTGF have been shown to knock down CTGF mRNA levels by specifically hindering the translation of CTGF protein. Antisense technologies have met with a great deal of excitement as a viable means of preventing diseases such as adhesions by hindering protein translation at the mRNA level. However, the great challenge associated with the use of these drugs lies in the short circulation time when administered "naked". Viral delivery systems, although excellent platforms in metabolic studies, are not ideal for diagnostic use because of the inherent danger associated with viral vectors. Microparticles made of biodegradable polymers have therefore presented themselves as a viable means of delivering these drugs to target cells over extended periods. Herein, we present two in vivo studies confirming the up-regulation of TGF-beta protein and CTGF mRNA following injury to the uterine tissues of female rats. We were able to selectively knockdown post-operative CTGF protein levels following surgery, however, our observations led us to conclude that

  3. A Practical Use for FXG Gel Dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Olding, T; Salomons, G; Darko, J; Schreiner, L J, E-mail: Tim.Olding@krcc.on.c

    2010-11-01

    In-phantom Fricke-xylenol orange-gelatin (FXG) gel dosimetry yields three dimensional (3D) dose data for intensity modulated radiation therapy (IMRT) treatment plan verification within 18-24 hours from the point of request. The information obtained from a 3% dose difference, 3 mm distance-to-agreement gamma function comparison between treatment plan dose and gel-measured dose then provides a useful secondary 3D quality assurance check of the treatment plan prior to delivery.

  4. Polylysine as a vehicle for extracellular matrix-targeted local drug delivery, providing high accumulation and long-term retention within the vascular wall

    NARCIS (Netherlands)

    Sakharov, D.V.; Jie, A.F.H.; Bekkers, M.E.A.; Emeis, J.J.; Rijken, D.C.

    2001-01-01

    We present the first steps in the elaboration of an approach of extracellular matrix-targeted local drug delivery (ECM-LDD), designed to provide a high concentration, ubiquitous distribution, and long-term retention of a drug within the vessel wall after local intravascular delivery. The approach is

  5. Protein kinase A inhibition modulates the intracellular routing of gene delivery vehicles in HeLa cells, leading to productive transfection

    NARCIS (Netherlands)

    Rehman, Zia Ur; Hoekstra, Dick; Zuhorn, Inge S.

    2011-01-01

    Cellular entry of nanoparticles for drug- and gene delivery relies on various endocytic pathways, including clathrin-and caveolae-mediated endocytosis. To improve delivery, i.e., the therapeutic and/or cell biological impact, current efforts are aimed at avoiding processing of the carriers along the

  6. pH Memory Effects of Tunable Block Copolymer Photonic Gels and Their Applications

    Science.gov (United States)

    Kang, Youngjong; Thomas, Edwin L.

    2007-03-01

    Materials with hysteresis, showing a bistable state to the external stimuli, have been widely investigated due to their potential applications. For example, they could be used as memory devices or optical switches when they have magnetic or optical hysteresis response to the external stimuli. Here we report pH tunable photonic gels which are spontaneously assembled from block copolymers. The general idea of this research is based on the selective swelling of block copolymer lamellar mesogels, where the solubility of one block is responsive to the change of pH. In this system, the domain spacing of the lamellar is varied with the extent of swelling. As a model system, we used protonated polystyrene-b-poly(2-vinly pyridine) (PS-b-P2VP) block copolymers forming lamellar structures. The photonic gel films prepared from protonated PS-b-P2VP show a strong reflectance in aqueous solution and the band position was varied with pH. Interestingly, a very strong optical hysteresis was observed while the reflection band of photonic gels was tuned by changing pH. We anticipate that pH tunable photonic gels with hysteresis can be applicable to novel applications such as a component of memory devices, photonic switches or drug delivery vehicles.

  7. Nanostructured lipid carriers-based flurbiprofen gel after topical administration: acute skin irritation, pharmacodynamics, and percutaneous absorption mechanism.

    Science.gov (United States)

    Song, Aihua; Su, Zhen; Li, Sanming; Han, Fei

    2015-01-01

    In order to assess the preliminary safety and effectiveness of nanostructured lipid carriers-based flurbiprofen gel (FP NLC-gel), the acute irritation test, in vivo pharmacodynamics evaluation and pharmacokinetic study were investigated after topical application. No dropsy and erythema were observed after continuous dosing 7 d of FP NLC-gel on the rabbit skin, and the xylene-induced ear drossy could be inhibited by FP NLC-gel at different dosages. The maximum concentration of FP in rats muscle was 2.03 μg/g and 1.55 μg/g after oral and topical administration, respectively. While the peak concentration in untreated muscle after topical administration was only 0.37 μg/mL. And at any time, following topical administration the mean muscle-plasma concentration ratio Cmuscle/CPlasma was obviously higher than that following oral administration. Results indicated that FP could directly penetrate into the subcutaneous muscle tissue from the administration site. Thus, the developed FP NLC-gel could be a safe and effective vehicle for topical delivery of FP.

  8. Radiotherapy gel dosimetry

    International Nuclear Information System (INIS)

    Baldock, C.

    2002-01-01

    shapes and sizes while sparing normal tissue. The situation is further complicated if the normal tissues are critical organs or are particularly sensitive to radiation. Radiotherapy techniques employed to obtain a closer conformation of the dose distribution to the tumour volume are referred to as conformal radiotherapy techniques. The clinical implementation of conformal therapy has been delayed by limitations in the verification of conformal dose distributions calculated by treatment planning systems prior to the irradiation of the patient and the verification of complex treatments during its delivery to the patient. There are several aspects of conformal therapy that complicate dose verification. To achieve the dose distributions conforming to complex 3D volumes, high dose gradients arise in the treatment volume. Further, overdose or underdose regions can exist when separate radiation fields are used to deliver additional radiation. These aspects require that practical dose measurement (dosimetry) techniques be able to integrate dose over time and easily measure dose distributions in 3D with high spatial resolution. Traditional dosimeters, such as ion chambers, thermoluminescent dosimeters and radiographic film do not fulfil these requirements. Novel gel dosimetry techniques are being developed in which dose distributions can potentially be determined in vitro in 3D using anthropomorphic phantoms to simulate a clinically irradiated situation. As long ago as the 1950's, radiation-induced colour change in dyes was used to investigate radiation doses in gels. It was subsequently shown that radiation induced changes in nuclear magnetic resonance (NMR) relaxation properties of gels infused with conventional Fricke dosimetry solutions could be measured using magnetic resonance imaging (MRI). In Fricke gels, Fe 2+ ions in ferrous sulphate solutions are usually dispersed throughout a gelatin, agarose or PVA matrix. Radiation-induced changes in the dosimeters are considered to

  9. UAV Delivery Monitoring System

    Directory of Open Access Journals (Sweden)

    San Khin Thida

    2018-01-01

    Full Text Available UAV-based delivery systems are increasingly being used in the logistics field, particularly to achieve faster last-mile delivery. This study develops a UAV delivery system that manages delivery order assignments, autonomous flight operation, real time control for UAV flights, and delivery status tracking. To manage the delivery item assignments, we apply the concurrent scheduler approach with a genetic algorithm. The present paper describes real time flight data based on a micro air vehicle communication protocol (MAVLink. It also presents the detailed hardware components used for the field tests. Finally, we provide UAV component analysis to choose the suitable components for delivery in terms of battery capacity, flight time, payload weight and motor thrust ratio.

  10. Prevention and Reduction of Atrophic Acne Scars with Adapalene 0.3%/Benzoyl Peroxide 2.5% Gel in Subjects with Moderate or Severe Facial Acne: Results of a 6-Month Randomized, Vehicle-Controlled Trial Using Intra-Individual Comparison.

    Science.gov (United States)

    Dréno, Brigitte; Bissonnette, Robert; Gagné-Henley, Angélique; Barankin, Benjamin; Lynde, Charles; Kerrouche, Nabil; Tan, Jerry

    2018-04-01

    Very few clinical trials have investigated the effect of topical acne treatment on scarring. Our objective was to evaluate the efficacy of adapalene 0.3%/benzoyl peroxide 2.5% gel (A0.3/BPO2.5) in atrophic acne scar formation in patients with acne. In this multicenter, randomized, investigator-blinded, vehicle-controlled study, subjects with moderate or severe facial acne (Investigator's Global Assessment [IGA] score 3 or 4; ≥ 25 inflammatory lesions; ten or more atrophic acne scars) applied A0.3/BPO2.5 or vehicle daily per half face for 24 weeks. Subjects with acne requiring systemic treatment were excluded. Assessments included investigator atrophic acne scar count, Scar Global Assessment (SGA), acne lesion count, IGA, skin roughness and skin texture, subject self-assessment of clinical acne-related scars and satisfaction questionnaire, tolerability, and safety. Included subjects (n = 67) had mainly moderate acne (92.5% IGA 3); mean scores at baseline were approximately 40 acne lesions and 12 scars per half face. By week 24, the change from baseline in total scar count was - 15.5% for A0.3/BPO2.5 versus  + 14.4% for vehicle (approximately 30% difference), with a mean of 9.5 scars versus 13.3 per half face, respectively (p vehicle (p vehicle (p vehicle side, most commonly skin irritation (14.9 vs. 6%, respectively). Topical A0.3/BPO2.5 prevented and reduced atrophic scar formation. Scar count increased with vehicle (+ 14.4%) but decreased with A0.3/BPO2.5 (- 15.5%) over 24 weeks. ClinicalTrials.gov identifier NCT02735421.

  11. Clinical efficacy of new aloe vera- and myrrh-based oral mucoadhesive gels in the management of minor recurrent aphthous stomatitis: a randomized, double-blind, vehicle-controlled study.

    Science.gov (United States)

    Mansour, Ghada; Ouda, Soliman; Shaker, Ahmed; Abdallah, Hossam M

    2014-07-01

    To evaluate the clinical efficacy, and safety of newly customized natural oral mucoadhesive gels, containing either aloe vera or myrrh as active ingredients, in the management of minor recurrent aphthous stomatitis (MiRAS). Ninety subjects with MiRAS were recruited from Oral Medicine Clinic, at Faculty of Dentistry, King Abdulaziz University, Saudi Arabia, for this randomized, double-blind, placebo-controlled study. Two new natural gels, containing aloe vera and myrrh, were prepared in a concentration of (0.5% w/w), in addition to a plain mucoadhesive gel used as a placebo. Patients with fresh ulcers (aloe gel showed complete ulcer healing, 86.7%, and 80% of them revealed subsidence of erythema and exudation, respectively, especially at day 6 visit, whereas 76.7% of myrrh-treated patients revealed almost absence of pain at day 6. No side effects were encountered with the use of any of the three gels. The new formulated aloe- and myrrh-based gels proved to be effective in topical management of MiRAS. Aloe was superior in decreasing ulcer size, erythema, and exudation; whereas myrrh resulted in more pain reduction. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  12. Preparation And Evaluation Of Fluconazole Gels | Abdel-Mottaleb ...

    African Journals Online (AJOL)

    Gels dosage forms are successfully used as drug delivery systems considering their ability to control drug release and to protect medicaments from a hostile environment. Thus, it was desired in this study to formulate fluconazole into a gel that could be used locally in the treatment of different skin fungal infections. Cellulose ...

  13. Tracked vehicles in hazardous environments

    International Nuclear Information System (INIS)

    Jones, S.; Walton, P.J.

    1993-01-01

    A programme of remote inspections has been conducted on the Magnox steel reactor pressure vessel at Trawsfynydd Power Station using climbing vehicles. Tracked remotely operated vehicles supported the inspection programme by assisting with the delivery and recovery of the climbing vehicles and facilitating the use of various accessory packages. This paper presents details of the support project, the tracked vehicles and of the uses made of them during the inspection programme. (author)

  14. Supplier Cooperation in Drone Delivery

    OpenAIRE

    Sawadsitang, Suttinee; Niyato, Dusit; Siew, Tan Puay; Wang, Ping

    2018-01-01

    Recently, unmanned aerial vehicles (UAVs), also known as drones, has emerged as an efficient and cost-effective solution for package delivery. Especially, drones are expected to incur lower cost, and achieve fast and environment friendly delivery. While most of existing drone research concentrates on surveillance applications, few works studied the drone package delivery planning problem. Even so, the previous works only focus on the drone delivery planning of a single supplier. In this paper...

  15. Removing water from gels

    International Nuclear Information System (INIS)

    Lane, E.S.; Winter, J.A.

    1982-01-01

    Water is removed from a gel material by contacting the gel material with an organic liquid and contacting the organic liquid with a gas such that water is taken up by the gas. The invention, in one embodiment, may be used to dry gel materials whilst maintaining an open porous network therein. In one example, the invention is applied to gel precipitated spheres containing uranium and plutonium. (author)

  16. An evaluation of 10 percent and 20 percent benzocaine gels in patients with acute toothaches

    Science.gov (United States)

    Hersh, Elliot V.; Ciancio, Sebastian G.; Kuperstein, Arthur S.; Stoopler, Eric T.; Moore, Paul A.; Boynes, Sean G.; Levine, Steven C.; Casamassimo, Paul; Leyva, Rina; Mathew, Tanya; Shibly, Othman; Creighton, Paul; Jeffers, Gary E.; Corby, Patricia M.A.; Turetzky, Stanley N.; Papas, Athena; Wallen, Jillian; Idzik-Starr, Cynthia; Gordon, Sharon M.

    2013-01-01

    Background The authors evaluated the efficacy and tolerability of 10 percent and 20 percent benzocaine gels compared with those of a vehicle (placebo) gel for the temporary relief of toothache pain. They also assessed the compliance with the label dose administration directions on the part of participants with toothache pain. Methods Under double-masked conditions, 576 participants self-applied study gel to an open tooth cavity and surrounding oral tissues. Participants evaluated their pain intensity and pain relief for 120 minutes. The authors determined the amount of gel the participants applied. Results The responders’ rates (the primary efficacy parameter), defined as the percentage of participants who had an improvement in pain intensity as exhibited by a pain score reduction of at least one unit on the dental pain scale from baseline for two consecutive assessments any time between the five- and 20-minute points, were 87.3 percent, 80.7 percent and 70.4 percent, respectively, for 20 percent benzocaine gel, 10 percent benzocaine gel and vehicle gel. Both benzocaine gels were significantly (P ≤ .05) better than vehicle gel; the 20 percent benzocaine gel also was significantly (P ≤ .05) better than the 10 percent benzocaine gel. The mean amount of gel applied was 235.6 milligrams, with 88.2 percent of participants applying 400 mg or less. Conclusions Both 10 percent and 20 percent benzocaine gels were more efficacious than the vehicle gel, and the 20 percent benzocaine gel was more efficacious than the 10 percent benzocaine gel. All treatments were well tolerated by participants. Practical Implications Patients can use 10 percent and 20 percent benzocaine gels to temporarily treat toothache pain safely. PMID:23633700

  17. Polymer gels and networks

    National Research Council Canada - National Science Library

    Osada, Yoshihito; Khokhlov, A. R

    2002-01-01

    ... or magnetic field, etc.). It was realized that not only can polymer gels absorb and hold a considerable volume of liquids, but they can also be forced to expel the absorbed liquid in a controlled manner. Of particular interest are hydrogels, i.e., polymer gels, which swell extensively in water. The most common hydrogels are polyelectrolyte gels: ...

  18. Applications of gel dosimetry

    International Nuclear Information System (INIS)

    Ibbott, Geoffrey S

    2004-01-01

    Gel dosimetry has been examined as a clinical dosimeter since the 1950s. During the last two decades, however, a rapid increase in the number of investigators has been seen, and the body of knowledge regarding gel dosimetry has expanded considerably. Gel dosimetry is still considered a research project, and the introduction of this tool into clinical use is proceeding slowly. This paper will review the characteristics of gel dosimetry that make it desirable for clinical use, the postulated and demonstrated applications of gel dosimetry, and some complications, set-backs, and failures that have contributed to the slow introduction into routine clinical use

  19. Design of Hybrid Gels Based on Gellan-Cholesterol Derivative and P90G Liposomes for Drug Depot Applications

    Directory of Open Access Journals (Sweden)

    Nicole Zoratto

    2017-05-01

    Full Text Available Gels are extensively studied in the drug delivery field because of their potential benefits in therapeutics. Depot gel systems fall in this area, and the interest in their development has been focused on long-lasting, biocompatible, and resorbable delivery devices. The present work describes a new class of hybrid gels that stem from the interaction between liposomes based on P90G phospholipid and the cholesterol derivative of the polysaccharide gellan. The mechanical properties of these gels and the delivery profiles of the anti-inflammatory model drug diclofenac embedded in such systems confirmed the suitability of these hybrid gels as a good candidate for drug depot applications.

  20. Transport Phenomena in Gel

    Directory of Open Access Journals (Sweden)

    Masayuki Tokita

    2016-05-01

    Full Text Available Gel becomes an important class of soft materials since it can be seen in a wide variety of the chemical and the biological systems. The unique properties of gel arise from the structure, namely, the three-dimensional polymer network that is swollen by a huge amount of solvent. Despite the small volume fraction of the polymer network, which is usually only a few percent or less, gel shows the typical properties that belong to solids such as the elasticity. Gel is, therefore, regarded as a dilute solid because its elasticity is much smaller than that of typical solids. Because of the diluted structure, small molecules can pass along the open space of the polymer network. In addition to the viscous resistance of gel fluid, however, the substance experiences resistance due to the polymer network of gel during the transport process. It is, therefore, of importance to study the diffusion of the small molecules in gel as well as the flow of gel fluid itself through the polymer network of gel. It may be natural to assume that the effects of the resistance due to the polymer network of gel depends strongly on the network structure. Therefore, detailed study on the transport processes in and through gel may open a new insight into the relationship between the structure and the transport properties of gel. The two typical transport processes in and through gel, that is, the diffusion of small molecules due to the thermal fluctuations and the flow of gel fluid that is caused by the mechanical pressure gradient will be reviewed.

  1. Development and evaluation of exemestane-loaded lyotropic liquid crystalline gel formulations

    OpenAIRE

    Musa, Muhammad Nuh; David, Sheba Rani; Zulkipli, Ihsan Nazurah; Mahadi, Abdul Hanif; Chakravarthi, Srikumar; Rajabalaya, Rajan

    2017-01-01

    Introduction: The use of liquid crystalline (LC) gel formulations for drug delivery has considerably improved the current delivery methods in terms of bioavailability and efficacy. The purpose of this study was to develop and evaluate LC gel formulations to deliver the anti-cancer drug exemestane through transdermal route. Methods: Two LC gel formulations were prepared by phase separation coacervation method using glyceryl monooleate (GMO), Tween 80 and Pluronic® F127 (F127). The formulations...

  2. A high-density ammonia storage/delivery system based on Mg(NH3)6Cl2 for SCR-DeNOx in vehicles

    DEFF Research Database (Denmark)

    Elmøe, Tobias Dokkedal; Sørensen, Rasmus Zink; Quaade, Ulrich

    2006-01-01

    ammonia density of up to 93% of that of liquid ammonia. This provides a long lasting ammonia storage (approximate to 20000 km of driving per 6.2 L Mg(NH(3))(6)Cl(2) for an average medium-sized vehicle). The controlled thermal decomposition of Mg(NH(3))(6)Cl(2) was demonstrated. A small reactor......(NE(3))(6)Cl(2) ideal for use as an ammonia storage compound in both diesel and lean-burn gasoline-driven automobiles. (c) 2005 Elsevier Ltd. All rights reserved....

  3. Sol-Gel Glasses

    Science.gov (United States)

    Mukherjee, S. P.

    1985-01-01

    Multicomponent homogeneous, ultrapure noncrystalline gels/gel derived glasses are promising batch materials for the containerless glass melting experiments in microgravity. Hence, ultrapure, homogeneous gel precursors could be used to: (1) investigate the effect of the container induced nucleation on the glass forming ability of marginally glass forming compositions; and (2) investigate the influence of gravity on the phase separation and coarsening behavior of gel derived glasses in the liquid-liquid immiscibility zone of the nonsilicate systems having a high density phase. The structure and crystallization behavior of gels in the SiO2-GeO2 as a function of gel chemistry and thermal treatment were investigated. As are the chemical principles involved in the distribution of a second network former in silica gel matrix being investigated. The procedures for synthesizing noncrystalline gels/gel-monoliths in the SiO2-GeO2, GeO2-PbO systems were developed. Preliminary investigations on the levitation and thermal treatment of germania silicate gel-monoliths in the Pressure Facility Acoustic Levitator were done.

  4. Emissions from light and medium goods vehicles in Denmark

    DEFF Research Database (Denmark)

    Jørgensen, Kaj

    1996-01-01

    The article analyses atmospheric pollution of light goods vehicles (i.e. freight vehicles lighter than 6 tonnes) and medium goods vehicles (i.e. 6-24 t delivery trucks) in Denmark, and evaluated the scope for emission reductions. Light goods vehicles are very inefficient vehicles, and moreover have...

  5. A novel high drug loading mussel-inspired polydopamine hybrid nanoparticle as a pH-sensitive vehicle for drug delivery.

    Science.gov (United States)

    Hou, Jie; Guo, Chunlei; Shi, Yuzhi; Liu, Ergang; Dong, Weibing; Yu, Bo; Liu, Shiyuan; Gong, Junbo

    2017-11-25

    A novel high drug loading pH-cleavable polymer hybrid nanoparticle was prepared via doxorubicin (DOX) grafted onto PEGylated, mussel-inspired polydopamine (PDA) and then coated onto hollow silica nanoparticles for drug delivery. A series of characterization shed light on the formation mechanisms of PDA coatings on hollow silica. We hypothesized that dopamine was first absorbed onto the surface of hollow silica and then began self-polymerization. A Dox-containing thiol moiety was fabricated with conjugation between doxorubicin hydrochloride and Mercaptopropionyalkali with a pH-cleavable hydrozone bond. Using a Michael addition reaction, several Dox-containing thiol moieties were grafted onto the surface of the PDA. The drug loading capacity can reach 35.43%. It can minimize the metabolic problem of silica. The released behavior of Dox can be significantly enhanced at endosomal pH compared to physiological pH. After folate modification, nanoparticles can lead to more cellular endocytosis. Meanwhile animal assays showed that more Dox accumulated in tumor tissue, which can enhanced the cytotoxicity to 4T1 cancer cells with a targeting group compared to free DOX and untargeted groups. Meanwhile, the tumor growth was significantly inhibited. This promising material shows a promising future as a drug delivery system. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Graphene Oxide Based Nanocarrier Combined with a pH-Sensitive Tracer: A Vehicle for Concurrent pH Sensing and pH-Responsive Oligonucleotide Delivery.

    Science.gov (United States)

    Hsieh, Chia-Jung; Chen, Yu-Cheng; Hsieh, Pei-Ying; Liu, Shi-Rong; Wu, Shu-Pao; Hsieh, You-Zung; Hsu, Hsin-Yun

    2015-06-03

    We chemically tuned the oxidation status of graphene oxide (GO) and constructed a GO-based nanoplatform combined with a pH-sensitive fluorescence tracer that is designed for both pH sensing and pH-responsive drug delivery. A series of GOs oxidized to distinct degrees were examined to optimize the adsorption of the model drug, poly dT30. We determined that highly oxidized GO was a superior drug-carrier candidate in vitro when compared to GOs oxidized to lesser degrees. In the cell experiment, the synthesized pH-sensitive rhodamine dye was first applied to monitor cellular pH; under acidic conditions, protonated rhodamine fluoresces at 588 nm (λex=561 nm). When the dT30-GO nanocarrier was introduced into cells, a rhodamine-triggered competition reaction occurred, and this led to the release of the oligonucleotides and the quenching of rhodamine fluorescence by GO. Our results indicate high drug loading (FAM-dT30/GO=25/50 μg/mL) and rapid cellular uptake (<0.5 h) of the nanocarrier which can potentially be used for targeted RNAi delivery to the acidic milieu of tumors.

  7. Co-delivery of evodiamine and rutaecarpine in a microemulsion-based hyaluronic acid hydrogel for enhanced analgesic effects on mouse pain models.

    Science.gov (United States)

    Zhang, Yong-Tai; Li, Zhe; Zhang, Kai; Zhang, Hong-Yu; He, Ze-Hui; Xia, Qing; Zhao, Ji-Hui; Feng, Nian-Ping

    2017-08-07

    The aim of this study was to improve the analgesic effect of evodiamine and rutaecarpine, using a microemulsion-based hydrogel (ME-Gel) as the transdermal co-delivery vehicle, and to assess hyaluronic acid as a hydrogel matrix for microemulsion entrapment. A microemulsion was formulated with ethyl oleate as the oil core to improve the solubility of the alkaloids and was loaded into a hyaluronic acid-structured hydrogel. Permeation-enhancing effects of the microemulsion enabled evodiamine and rutaecarpine in ME-Gel to achieve 2.60- and 2.59-fold higher transdermal fluxes compared with hydrogel control (pmicroemulsion exhibited good skin biocompatibility, whereas effective ME-Gel co-delivery of evodiamine and rutaecarpine through the skin enhanced the analgesic effect in mouse pain models compared with hydrogel. Notably, evodiamine and rutaecarpine administered using ME-Gel effectively down-regulated serum levels of prostaglandin E 2 , interleukin 6, and tumor necrosis factor α in formaldehyde-induced mouse pain models, possibly reflecting the improved transdermal permeability of ME-Gel co-delivered evodiamine and rutaecarpine, particularly with hyaluronic acid as the hydrogel matrix. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. GelTouch

    DEFF Research Database (Denmark)

    Miruchna, Viktor; Walter, Robert; Lindlbauer, David

    2015-01-01

    We present GelTouch, a gel-based layer that can selectively transition between soft and stiff to provide tactile multi-touch feedback. It is flexible, transparent when not activated, and contains no mechanical, electromagnetic, or hydraulic components, resulting in a compact form factor (a 2mm thin...... touchscreen layer for our prototype). The activated areas can be morphed freely and continuously, without being limited to fixed, predefined shapes. GelTouch consists of a poly(N-isopropylacrylamide) gel layer which alters its viscoelasticity when activated by applying heat (>32 C). We present three different...

  9. Thorium inorganic gels

    International Nuclear Information System (INIS)

    Genet, M.; Brandel, V.

    1988-01-01

    The optimum pH and concentration values of thorium salts and oxoacids or oxoacid salts which lead to transparent and stable inorganic gels have been determined. The isotherm drying process of the gel at 50 0 C leads successively to a partly dehydrated gel, then, to the formation of an unusual liquid phase and, finally to a dry amorphous solid phase which is still transparent. This kind of transparent inorganic gels and amorphous phase can be used as matrices for spectroscopic studies [fr

  10. Cost Analysis of Treating Neonatal Hypoglycemia with Dextrose Gel.

    Science.gov (United States)

    Glasgow, Matthew J; Harding, Jane E; Edlin, Richard

    2018-04-03

    To evaluate the costs of using dextrose gel as a primary treatment for neonatal hypoglycemia in the first 48 hours after birth compared with standard care. We used a decision tree to model overall costs, including those specific to hypoglycemia monitoring and treatment and those related to the infant's length of stay in the postnatal ward or neonatal intensive care unit, comparing the use of dextrose gel for treatment of neonatal hypoglycemia with placebo, using data from the Sugar Babies randomized trial. Sensitivity analyses assessed the impact of dextrose gel cost, neonatal intensive care cost, cesarean delivery rate, and costs of glucose monitoring. In the primary analysis, treating neonatal hypoglycemia using dextrose gel had an overall cost of NZ$6863.81 and standard care (placebo) cost NZ$8178.25; a saving of NZ$1314.44 per infant treated. Sensitivity analyses showed that dextrose gel remained cost saving with wide variations in dextrose gel costs, neonatal intensive care unit costs, cesarean delivery rates, and costs of monitoring. Use of buccal dextrose gel reduces hospital costs for management of neonatal hypoglycemia. Because it is also noninvasive, well tolerated, safe, and associated with improved breastfeeding, buccal dextrose gel should be routinely used for initial treatment of neonatal hypoglycemia. Australian New Zealand Clinical Trials Registry: ACTRN12608000623392. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. Quantitative analysis of microbicide concentrations in fluids, gels and tissues using confocal Raman spectroscopy.

    Directory of Open Access Journals (Sweden)

    Oranat Chuchuen

    Full Text Available Topical vaginal anti-HIV microbicides are an important focus in female-based strategies to prevent the sexual transmission of HIV. Understanding microbicide pharmacokinetics is essential to development, characterization and implementation of efficacious microbicide drug delivery formulations. Current methods to measure drug concentrations in tissue (e.g., LC-MS/MS, liquid chromatography coupled with tandem mass spectrometry are highly sensitive, but destructive and complex. This project explored the use of confocal Raman spectroscopy to detect microbicide drugs and to measure their local concentrations in fluids, drug delivery gels, and tissues. We evaluated three candidate microbicide drugs: tenofovir, Dapivirine and IQP-0528. Measurements were performed in freshly excised porcine buccal tissue specimens, gel vehicles and fluids using two Horiba Raman microscopes, one of which is confocal. Characteristic spectral peak calibrations for each drug were obtained using serial dilutions in the three matrices. These specific Raman bands demonstrated strong linear concentration dependences in the matrices and were characterized with respect to their unique vibrational signatures. At least one specific Raman feature was identified for each drug as a marker band for detection in tissue. Sensitivity of detection was evaluated in the three matrices. A specific peak was also identified for tenofovir diphosphate, the anti-HIV bioactive product of tenofovir after phosphorylation in host cells. Z-scans of drug concentrations vs. depth in excised tissue specimens, incubated under layers of tenofovir solution in a Transwell assay, showed decreasing concentration with depth from the surface into the tissue. Time-dependent concentration profiles were obtained from tissue samples incubated in the Transwell assay, for times ranging 30 minutes - 6 hours. Calibrations and measurements from tissue permeation studies for tenofovir showed good correlation with gold

  12. Quantitative Analysis of Microbicide Concentrations in Fluids, Gels and Tissues Using Confocal Raman Spectroscopy

    Science.gov (United States)

    Chuchuen, Oranat; Henderson, Marcus H.; Sykes, Craig; Kim, Min Sung; Kashuba, Angela D. M.; Katz, David F.

    2013-01-01

    Topical vaginal anti-HIV microbicides are an important focus in female-based strategies to prevent the sexual transmission of HIV. Understanding microbicide pharmacokinetics is essential to development, characterization and implementation of efficacious microbicide drug delivery formulations. Current methods to measure drug concentrations in tissue (e.g., LC-MS/MS, liquid chromatography coupled with tandem mass spectrometry) are highly sensitive, but destructive and complex. This project explored the use of confocal Raman spectroscopy to detect microbicide drugs and to measure their local concentrations in fluids, drug delivery gels, and tissues. We evaluated three candidate microbicide drugs: tenofovir, Dapivirine and IQP-0528. Measurements were performed in freshly excised porcine buccal tissue specimens, gel vehicles and fluids using two Horiba Raman microscopes, one of which is confocal. Characteristic spectral peak calibrations for each drug were obtained using serial dilutions in the three matrices. These specific Raman bands demonstrated strong linear concentration dependences in the matrices and were characterized with respect to their unique vibrational signatures. At least one specific Raman feature was identified for each drug as a marker band for detection in tissue. Sensitivity of detection was evaluated in the three matrices. A specific peak was also identified for tenofovir diphosphate, the anti-HIV bioactive product of tenofovir after phosphorylation in host cells. Z-scans of drug concentrations vs. depth in excised tissue specimens, incubated under layers of tenofovir solution in a Transwell assay, showed decreasing concentration with depth from the surface into the tissue. Time-dependent concentration profiles were obtained from tissue samples incubated in the Transwell assay, for times ranging 30 minutes - 6 hours. Calibrations and measurements from tissue permeation studies for tenofovir showed good correlation with gold standard LC-MS/MS data

  13. Quantification of Horseradish Peroxidase Delivery into the Arterial Wall In Vivo as a Model of Local Drug Treatment: Comparison Between a Porous and a Gel-Coated Balloon Catheter

    International Nuclear Information System (INIS)

    Dick, Armin; Kromen, Wolfgang; Juengling, Eberhard; Grosskortenhaus, Stephanie; Kammermeier, Helmut; Vorwerk, Dierk; Guenther, Rolf W.

    1999-01-01

    Purpose: To quantify horseradish peroxidase (HRP) delivery into the arterial wall, as a model of local drug delivery, and to compare two different percutaneous delivery balloons. Methods: Perforated and hydrophilic hydrogel-coated balloon catheters were used to deliver HRP in aqueous solution into the wall of porcine iliac arteries in vivo. HRP solutions of 1 mg/ml were used together with both perforated and hydrophilic hydrogel-coated balloon catheters and 40 mg/ml HRP solutions were used with the hydrogel-coated balloon only. The amount of HRP deposited in the arterial wall was then determined photospectrometrically. Results: Using the 1 mg/ml HRP solution, the hydrogel-coated balloon absorbed 0.047 mg HRP into the coating. Treatment with this balloon resulted in a mean vessel wall concentration of 7.4 μg HRP/g tissue ± 93% (standard deviation) (n 7). Treatment with the hydrogel-coated balloon that had absorbed 1.88 mg HRP into the coating (using the 40 mg/ml HRP solution) led to a mean vessel wall concentration of 69.5 μg HRP/g tissue ± 74% (n = 7). Treatment with the perforated balloon using 1 mg/ml aqueous HRP solution led to a mean vessel wall concentration of 174 μg/g ± 81% (n = 7). Differences between the hydrogel-coated and perforated balloons (1 mg/g solutions of HRP) and between hydrogel-coated balloons (0.047 mg vs 1.88 mg absorbed into the balloon coating) were significant (p < 0.05; two-sided Wilcoxon test). Conclusions: The use of a perforated balloon catheter allowed the delivery of a higher total amount of HRP compared with the hydrogel-coated balloon, but at the cost of a higher systemic HRP application. To deliver 174 μg HRP per gram of vessel wall with the perforated balloon, 6.5 ± 1.5 mg HRP were lost into the arterial blood (delivery efficiency range = 0.2%-0.3%). With 0.047 mg HRP loaded into the coating of the hydrogel balloon, 7.4 μg HRP could be applied to 1 g of vessel wall (delivery efficiency 1.7%), and with 1.88 mg HRP loaded

  14. Cyanocobalamin Nasal Gel

    Science.gov (United States)

    ... to supply extra vitamin B12 to people who need unusually large amounts of this vitamin because they are pregnant or have certain diseases. ... Cyanocobalamin nasal gel will supply you with enough vitamin B12 only as ... it regularly. You may need to use cyanocobalamin nasal gel every week for ...

  15. Transdermal Spray in Hormone Delivery

    African Journals Online (AJOL)

    market for the delivery system and ongoing development of transdermal sprays for hormone ... (DOAJ), African Journal Online, Bioline International, Open-J-Gate and Pharmacy Abstracts ... patches and gels have been very popular owing ... This product was developed for ... In a safety announcement, the US Food and.

  16. Sealing wells with gel

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, E C

    1967-10-01

    A new system is being used in Mexico to temporarily plug producing wells. The temporary seal is a gel with a catalyst. The use of this temporary plug allows gas-lift wells to be taken off production in order to carry out emergency repairs. The gel solidifies by the action of the catalyst to a high temperature (70 - 150/sup 0/C). By locating the bottom of the tubing at the top of the production interval, the gel material will go into the permeable formation, and immediately set. When the gel has solidified, it seals off the horizon that must not be stimulated, and leaves the others exposed to the acid action. When the treatment is finished, the gel, by action of the catalyst, is liquefied and removed from the formation, being produced with the oil.

  17. Isoosmolar enemas demonstrate preferential gastrointestinal distribution, safety, and acceptability compared with hyperosmolar and hypoosmolar enemas as a potential delivery vehicle for rectal microbicides.

    Science.gov (United States)

    Leyva, Francisco J; Bakshi, Rahul P; Fuchs, Edward J; Li, Liye; Caffo, Brian S; Goldsmith, Arthur J; Ventuneac, Ana; Carballo-Diéguez, Alex; Du, Yong; Leal, Jeffrey P; Lee, Linda A; Torbenson, Michael S; Hendrix, Craig W

    2013-11-01

    Rectally applied antiretroviral microbicides for preexposure prophylaxis (PrEP) of HIV infection are currently in development. Since enemas (rectal douches) are commonly used by men who have sex with men prior to receptive anal intercourse, a microbicide enema could enhance PrEP adherence by fitting seamlessly within the usual sexual practices. We assessed the distribution, safety, and acceptability of three enema types-hyperosmolar (Fleet), hypoosmolar (distilled water), and isoosmolar (Normosol-R)-in a crossover design. Nine men received each enema type in random order. Enemas were radiolabeled [(99m)Tc-diethylene triamine pentaacetic acid (DTPA)] to assess enema distribution in the colon using single photon emission computed tomography/computed tomography (SPECT/CT) imaging. Plasma (99m)Tc-DTPA indicated mucosal permeability. Sigmoidoscopic colon tissue biopsies were taken to assess injury as well as tissue penetration of the (99m)Tc-DTPA. Acceptability was assessed after each product use and at the end of the study. SPECT/CT imaging showed that the isoosmolar enema had greater proximal colonic distribution (up to the splenic flexure) and greater luminal and colon tissue concentrations of (99m)Tc-DTPA when compared to the other enemas (pgood with no clear preferences among the three enema types. The isoosmolar enema was superior or similar to the other enemas in all categories and is a good candidate for further development as a rectal microbicide vehicle.

  18. Delivery presentations

    Science.gov (United States)

    Pregnancy - delivery presentation; Labor - delivery presentation; Occiput posterior; Occiput anterior; Brow presentation ... The mother can walk, rock, and try different delivery positions during labor to help encourage the baby ...

  19. Lecithin-gold hybrid nanocarriers as efficient and pH selective vehicles for oral delivery of diacerein-In-vitro and in-vivo study.

    Science.gov (United States)

    Javed, Ibrahim; Hussain, Syed Zajif; Shahzad, Atif; Khan, Jahanzeb Muhammad; Ur-Rehman, Habib; Rehman, Mubashar; Usman, Faisal; Razi, Muhammad Tahir; Shah, Muhammad Raza; Hussain, Irshad

    2016-05-01

    We report the synthesis and evaluation of lecithin-gold hybrid nanocarriers for the oral delivery of drugs with improved pharmacokinetics, Au-drug interactive bioactivity and controlled drug releasing behavior at physiological pH inside human body. For this purpose, diacerein, a hydrophobic anti-arthritic drug, was loaded in lecithin NPs (LD NPs), which were further coated by Au NPs either by in-situ production of Au NPs on LD NPs or by employing pre-synthesized Au NPs. All LDAu NPs were found to release drug selectively at the physiological pH of 7.4 and showed 2.5 times increase in the oral bioavailability of diacerein. Pharmacological efficacy was significantly improved i.e., greater than the additive effect of diacerein and Au NPs alone. LDAu NPs started suppressing inflammation at first phase, whereas LD NPs showed activity in the second phase of inflammation. These results indicate the interaction of Au NPs with prostaglandins and histaminic mediators of first phase of carrageenan induced inflammation. Acute toxicity study showed no hepatic damage but the renal toxicity parameters were close to the upper safety limits. Toxicity parameters were dependent on surface engineering of LDAu NPs. Apart from enhancing the oral bioavailability of hydrophobic drugs and improving their anti-inflammatory activity, these hybrid nanocarriers may have potential applications in gold-based photothermal therapy and the tracing of inflammation at atherosclerotic and arthritic site. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Vehicle to Vehicle Services

    DEFF Research Database (Denmark)

    Brønsted, Jeppe Rørbæk

    2008-01-01

    location aware infotainment, increase safety, and lessen environmental strain. This dissertation is about service oriented architecture for pervasive computing with an emphasis on vehicle to vehicle applications. If devices are exposed as services, applications can be created by composing a set of services...... be evaluated. Service composition mechanisms for pervasive computing are categorized and we discuss how the characteristics of pervasive computing can be supported by service composition mechanisms. Finally, we investigate how to make pervasive computing systems capable of being noticed and understood...

  1. Self-Assembled Cationic Biodegradable Nanoparticles from pH-Responsive Amino-Acid-Based Poly(Ester Urea Urethane)s and Their Application As a Drug Delivery Vehicle.

    Science.gov (United States)

    He, Mingyu; Potuck, Alicia; Kohn, Julie C; Fung, Katharina; Reinhart-King, Cynthia A; Chu, Chih-Chang

    2016-02-08

    The objective of this study is to develop a new family of biodegradable and biologically active copolymers and their subsequent self-assembled cationic nanoparticles as better delivery vehicles for anticancer drugs to achieve the synergism between the cytotoxicity effects of the loaded drugs and the macrophage inflammatory response of the delivery vehicle. This family of cationic nanoparticles was formulated from a new family of amphiphilic cationic Arginine-Leucine (Arg-Leu)-based poly(ester urea urethane) (Arg-Leu PEUU) synthesized from four building blocks (amino acids, diols, glycerol α-monoallyl ether, and 1,6 hexamethylene diisocyanate). The chemical, physical, and biological properties of Arg-Leu PEUU biomaterials can be tuned by controlling the feed ratio of the four building blocks. The Arg-Leu PEUU copolymers have weight-average molecular weights from 13.4 to 16.8 kDa and glass-transition temperatures from -3.4 to -4.6 °C. The self-assembled cationic nanoparticles (Arg-Leu PEUU NPs) were prepared using a facile dialysis method. Arg-Leu PEUU NPs have average diameters ranging from 187 to 272 nm, show good biocompatibility with 3T3 fibroblasts, and they support bovine aortic endothelial cell (BAEC) proliferation and adhesion. Arg-Leu PEUU NPs also enhanced the macrophages' production of tumor necrosis factor-α (TNF-α) and nitric oxide (NO), but produced relatively low levels of interleukin-10 (IL-10), and therefore, the antitumor activity of macrophages might be enhanced. Arg-Leu PEUU NPs were taken up by HeLa cells after 4 h of incubation. The in vitro hemolysis assay showed the cationic Arg-Leu PEUU NPs increased their chance of endosomal escape at a more acidic pH. Doxorubicin (DOX) was successfully incorporated into the Arg-Leu PEUU NPs, and the DOX-loaded Arg-Leu PEUU NPs exhibited a pH-dependent drug release profile with accelerated release kinetics in a mild acidic condition. The DOX-loaded 6-Arg-4-Leu-4 A/L-2/1 NPs showed higher HeLa cell

  2. Anti-arthritic effects of microneedling with bee venom gel

    OpenAIRE

    Mengdi Zhao; Jie Bai; Yang Lu; Shouying Du; Kexin Shang; Pengyue Li; Liu Yang; Boyu Dong; Ning Tan

    2016-01-01

    Objective: To combine with transdermal drug delivery using microneedle to simulate the bee venom therapy to evaluate the permeation of bee venom gel. Methods: In this study, the sodium urate and LPS were used on rats and mice to construct the model. Bee venom gel–microneedle combination effect on the model is to determine the role of microneedle gel permeation by observing inflammation factors. Results: Compared with the model group, the bee venom gel–microneedle combination group can r...

  3. Synthesis of Pure Hydroxyapatite (Ca10 (PO46 (OH2 by the Sol –Gel Method and the Doxycycline Loaded in Presence of Gelatin for the Application of Drug Delivery DOI 10.2412/mmse.89.93.112

    Directory of Open Access Journals (Sweden)

    B. Shalini

    2017-06-01

    Full Text Available Hydroxyapatite (HAp is the most widely accepted biomaterial for the repair and reconstruction of bone tissue defects. The current study is based on HAp was synthesized using sol – gel method. The drug was loaded in presence of gelatin with pure HAp. Precursors like calcium nitrate tetrahydrate and diammonium hydrogen orthophosphate were used and ammonia solution was added to maintain the pH value at 10.5 throughout the reaction. The synthesized HAp and drug loaded HAp with gelatin were characterized using PXRD, FTIR, SEM, Drug loading, drug release studies. Results show that the average crystallite size for prepared HAp and drug loaded HAp with polymer are ~ 30 to 300 nm respectively was calculated using PXRD and morphology of pure HAp and drug loaded HAp with polymer was found using SEM. Drug loading and release percentage was calculated. Keeping the above points in the present study was aimed to produce the biocompatibility and bioactivity of HAp.

  4. Nanostructured lipid carriers (NLCs) versus solid lipid nanoparticles (SLNs) for topical delivery of meloxicam.

    Science.gov (United States)

    Khalil, Rawia M; Abd-Elbary, A; Kassem, Mahfoz A; Ghorab, Mamdouh M; Basha, Mona

    2014-05-01

    The aim of this study was to develop nanostructured lipid carriers (NLCs) as well as solid lipid nanoparticles (SLNs) and evaluate their potential in the topical delivery of meloxicam (MLX). The effect of various compositional variations on their physicochemical properties was investigated. Furthermore, MLX-loaded lipid nanoparticles-based hydrogels were formulated and the gels were evaluated as vehicles for topical application. The results showed that NLC and SLN dispersions had spherical shapes with an average size between 215 and 430 nm. High entrapment efficiency was obtained ranging from 61.94 to 90.38% with negatively charged zeta potential in the range of -19.1 to -25.7 mV. The release profiles of all formulations exhibited sustained release characteristics over 48 h and the release rates increased as the amount of liquid lipid in lipid core increased. Finally, Precirol NLC with 50% Miglyol® 812 and its corresponding SLN were incorporated in hydrogels. The gels showed adequate pH, non-Newtonian flow with shear-thinning behavior and controlled release profiles. The biological evaluation revealed that MLX-loaded NLC gel showed more pronounced effect compared to MLX-loaded SLN gel. It can be concluded that lipid nanoparticles represent promising particulate carriers for topical application.

  5. Hydrogen vehicle fueling station

    Energy Technology Data Exchange (ETDEWEB)

    Daney, D.E.; Edeskuty, F.J.; Daugherty, M.A. [Los Alamos National Lab., NM (United States)] [and others

    1995-09-01

    Hydrogen fueling stations are an essential element in the practical application of hydrogen as a vehicle fuel, and a number of issues such as safety, efficiency, design, and operating procedures can only be accurately addressed by a practical demonstration. Regardless of whether the vehicle is powered by an internal combustion engine or fuel cell, or whether the vehicle has a liquid or gaseous fuel tank, the fueling station is a critical technology which is the link between the local storage facility and the vehicle. Because most merchant hydrogen delivered in the US today (and in the near future) is in liquid form due to the overall economics of production and delivery, we believe a practical refueling station should be designed to receive liquid. Systems studies confirm this assumption for stations fueling up to about 300 vehicles. Our fueling station, aimed at refueling fleet vehicles, will receive hydrogen as a liquid and dispense it as either liquid, high pressure gas, or low pressure gas. Thus, it can refuel any of the three types of tanks proposed for hydrogen-powered vehicles -- liquid, gaseous, or hydride. The paper discusses the fueling station design. Results of a numerical model of liquid hydrogen vehicle tank filling, with emphasis on no vent filling, are presented to illustrate the usefulness of the model as a design tool. Results of our vehicle performance model illustrate our thesis that it is too early to judge what the preferred method of on-board vehicle fuel storage will be in practice -- thus our decision to accommodate all three methods.

  6. Etodolac Containing Topical Niosomal Gel: Formulation Development and Evaluation

    Directory of Open Access Journals (Sweden)

    Gyati Shilakari Asthana

    2016-01-01

    Full Text Available The present study aimed to investigate the delivery potential of Etodolac (ETD containing topical niosomal gel. Niosomal formulations were prepared by thin film hydration method at various ratios of cholesterol and Span 60 and were evaluated with respect to particle size, shape, entrapment efficiency, and in vitro characteristics. Dicetyl phosphate (DCP was also added in the niosomal formulation. Mean particle size of niosomal formulation was found to be in the range of 2 μm to 4 μm. Niosomal formulation N2 (1 : 1 ratio of cholesterol and surfactant displayed good entrapment efficiency (96.72%. TEM analyses showed that niosomal formulation was spherical in shape. Niosomal formulation (N2 displayed high percentage of drug release after 24 h (94.91 at (1 : 1 ratio of cholesterol : surfactant. Further selected niosomal formulation was used to formulate topical gel and was characterized with respect to its various parameters such as pH, viscosity, spreadability, ex vivo study, and in vivo potential permeation. Ex vivo study showed that niosomal gel possessed better skin permeation study than the plain topical gel. Further in vivo study revealed good inhibition of inflammation in case of topical niosomal gel than plain gel and niosomal formulation. The present study suggested that topical niosomal gel formulations provide sustained and prolonged delivery of drug.

  7. Parallel Hybrid Vehicle Optimal Storage System

    Science.gov (United States)

    Bloomfield, Aaron P.

    2009-01-01

    A paper reports the results of a Hybrid Diesel Vehicle Project focused on a parallel hybrid configuration suitable for diesel-powered, medium-sized, commercial vehicles commonly used for parcel delivery and shuttle buses, as the missions of these types of vehicles require frequent stops. During these stops, electric hybridization can effectively recover the vehicle's kinetic energy during the deceleration, store it onboard, and then use that energy to assist in the subsequent acceleration.

  8. Engineered modular biomaterial logic gates for environmentally triggered therapeutic delivery

    Science.gov (United States)

    Badeau, Barry A.; Comerford, Michael P.; Arakawa, Christopher K.; Shadish, Jared A.; Deforest, Cole A.

    2018-03-01

    The successful transport of drug- and cell-based therapeutics to diseased sites represents a major barrier in the development of clinical therapies. Targeted delivery can be mediated through degradable biomaterial vehicles that utilize disease biomarkers to trigger payload release. Here, we report a modular chemical framework for imparting hydrogels with precise degradative responsiveness by using multiple environmental cues to trigger reactions that operate user-programmable Boolean logic. By specifying the molecular architecture and connectivity of orthogonal stimuli-labile moieties within material cross-linkers, we show selective control over gel dissolution and therapeutic delivery. To illustrate the versatility of this methodology, we synthesized 17 distinct stimuli-responsive materials that collectively yielded all possible YES/OR/AND logic outputs from input combinations involving enzyme, reductant and light. Using these hydrogels we demonstrate the first sequential and environmentally stimulated release of multiple cell lines in well-defined combinations from a material. We expect these platforms will find utility in several diverse fields including drug delivery, diagnostics and regenerative medicine.

  9. Polymer gel dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Baldock, C [Institute of Medical Physics, School of Physics, University of Sydney (Australia); De Deene, Y [Radiotherapy and Nuclear Medicine, Ghent University Hospital (Belgium); Doran, S [CRUK Clinical Magnetic Resonance Research Group, Institute of Cancer Research, Surrey (United Kingdom); Ibbott, G [Radiation Physics, UT M D Anderson Cancer Center, Houston, TX (United States); Jirasek, A [Department of Physics and Astronomy, University of Victoria, Victoria, BC (Canada); Lepage, M [Centre d' imagerie moleculaire de Sherbrooke, Departement de medecine nucleaire et de radiobiologie, Universite de Sherbrooke, Sherbrooke, QC (Canada); McAuley, K B [Department of Chemical Engineering, Queen' s University, Kingston, ON (Canada); Oldham, M [Department of Radiation Oncology, Duke University Medical Center, Durham, NC (United States); Schreiner, L J [Cancer Centre of South Eastern Ontario, Kingston, ON (Canada)], E-mail: c.baldock@physics.usyd.edu.au, E-mail: yves.dedeene@ugent.be

    2010-03-07

    Polymer gel dosimeters are fabricated from radiation sensitive chemicals which, upon irradiation, polymerize as a function of the absorbed radiation dose. These gel dosimeters, with the capacity to uniquely record the radiation dose distribution in three-dimensions (3D), have specific advantages when compared to one-dimensional dosimeters, such as ion chambers, and two-dimensional dosimeters, such as film. These advantages are particularly significant in dosimetry situations where steep dose gradients exist such as in intensity-modulated radiation therapy (IMRT) and stereotactic radiosurgery. Polymer gel dosimeters also have specific advantages for brachytherapy dosimetry. Potential dosimetry applications include those for low-energy x-rays, high-linear energy transfer (LET) and proton therapy, radionuclide and boron capture neutron therapy dosimetries. These 3D dosimeters are radiologically soft-tissue equivalent with properties that may be modified depending on the application. The 3D radiation dose distribution in polymer gel dosimeters may be imaged using magnetic resonance imaging (MRI), optical-computerized tomography (optical-CT), x-ray CT or ultrasound. The fundamental science underpinning polymer gel dosimetry is reviewed along with the various evaluation techniques. Clinical dosimetry applications of polymer gel dosimetry are also presented. (topical review)

  10. Evaluation of Urban Freight Deliveries using Microsimulation and Surrogate Safety Measures

    Science.gov (United States)

    2018-02-01

    Freight deliveries on signalized urban streets are known to cause lane blockages during deliveries. When delivery vehicles block lanes of traffic near signalized intersections, the capacity of the intersection is affected. Current practice is for tra...

  11. Transungual Gel of Terbinafine Hydrochloride for the Management of Onychomycosis: Formulation, Optimization, and Evaluation.

    Science.gov (United States)

    Thatai, Purva; Sapra, Bharti

    2017-08-01

    The present study was aimed to optimize, develop, and evaluate microemulsion and microemulsion-based gel as a vehicle for transungual drug delivery of terbinafine hydrochloride for the treatment of onychomycosis. D-optimal mixture experimental design was adopted to optimize the composition of microemulsion having amount of oil (X 1 ), Smix (mixture of surfactant and cosurfactant; X 2 ), and water (X 3 ) as the independent variables. The formulations were assessed for permeation (micrograms per square centimeter per hour; Y 1 ), particle size (nanometer; Y 2 ), and solubility of the drug in the formulation (milligrams per milliliter; Y 3 ). The microemulsion containing 3.05% oil, 24.98% Smix, and 71.96% water was selected as the optimized formulation. The microemulsion-based gel showed better penetration (∼5 folds) as well as more retention (∼9 fold) in the animal hoof as compared to the commercial cream. The techniques used to screen penetration enhancers (hydration enhancement factor, ATR-FTIR, SEM, and DSC) revealed the synergistic effect of combination of urea and n-acetyl cysteine in disruption of the structure of hoof and hence, leading to enhanced penetration of drug.

  12. Design of Autonomous Gel Actuators

    Directory of Open Access Journals (Sweden)

    Shuji Hashimoto

    2011-01-01

    Full Text Available In this paper, we introduce autonomous gel actuators driven by chemical energy. The polymer gels prepared here have cyclic chemical reaction networks. With a cyclic reaction, the polymer gels generate periodical motion. The periodic motion of the gel is produced by the chemical energy of the oscillatory Belouzov-Zhabotinsky (BZ reaction. We have succeeded in making synthetic polymer gel move autonomously like a living organism. This experimental fact represents the great possibility of the chemical robot.

  13. Review of Fricke gel dosimeters

    International Nuclear Information System (INIS)

    Schreiner, L J

    2004-01-01

    The innovation of adding a gel matrix to the traditional Fricke dosimeter to stabilize geometric information established the field of gel dosimetry for radiation therapy. A discussion of Fricke gels provides an overview of the issues that determine the dose response of all gel dosimeters in general. In this paper we review some of the features of Fricke systems to illustrate these issues and, in addition, to motivate renewed clinical interest in Fricke gels

  14. Bioresponsive matrices in drug delivery

    Directory of Open Access Journals (Sweden)

    Ye George JC

    2010-11-01

    Full Text Available Abstract For years, the field of drug delivery has focused on (1 controlling the release of a therapeutic and (2 targeting the therapeutic to a specific cell type. These research endeavors have concentrated mainly on the development of new degradable polymers and molecule-labeled drug delivery vehicles. Recent interest in biomaterials that respond to their environment have opened new methods to trigger the release of drugs and localize the therapeutic within a particular site. These novel biomaterials, usually termed "smart" or "intelligent", are able to deliver a therapeutic agent based on either environmental cues or a remote stimulus. Stimuli-responsive materials could potentially elicit a therapeutically effective dose without adverse side effects. Polymers responding to different stimuli, such as pH, light, temperature, ultrasound, magnetism, or biomolecules have been investigated as potential drug delivery vehicles. This review describes the most recent advances in "smart" drug delivery systems that respond to one or multiple stimuli.

  15. 3D MR gel dosimetry with lung equivalent gel

    International Nuclear Information System (INIS)

    Scherer, J.; Solleder, M.; Schiessl, I.; Bogner, L.; Herbst, M.

    1998-01-01

    The MR gel dosimetry is used to verify complex 3D treatment plans. Till now this method served only for dose evaluation in homogeneous phantoms. On the way to build a heterogeneous anthropomorphic gel phantom, a lung equivalent gel with the density 0.4 g/cm 3 was developed. First experiments show a 1.55 times higher dose reponse in the low density gel (LD gel). The comparison of a dose distribution in a gel/LD gel/gel slab phantom with Monte Carlo calculations shows good agreement within 5%. More over the accuray of the measuring device magnetic resonance imager was studied in respect to the now exclusive digital image processing with the software MRD (MR dosimetry). Because of the dimensions of the Fricke gel phantom an artefact correction, based on the data from the unirradiated phantom proved to be essential. (orig.) [de

  16. Structure of mineral gels

    International Nuclear Information System (INIS)

    Miranda Salvado, I.M.; Margaca, F.M.A.; Teixeira, J.

    1999-01-01

    Small Angle Neutron Scattering (SANS) measurements have been performed to investigate the nanoscale structure of materials of the systems xTiO 2 -(1-x)SiO 2 and xZrO 2 -(1-x)SiO 2 with x ≤ 10 mol % at different processing stages. The materials were prepared by sol-gel using the alkoxides method, in strong acidic conditions. Samples were studied as xerogels heat-treated at 120 and 850 deg. C and as wet gels at gel point and after aging. All samples showed identical microstructure at gel point, extended linear chains ∼10 nm long. The aged gel has a mass fractal structure with fractal dimension of 1.7 - 1.9. The 120 deg. C heat-treated xerogels show homogeneous oxide regions with mass fractal structure. For the 850 deg. C heat-treated xerogel the oxide regions average size has reduced and it has densified as compared to 120 deg. C heat-treated sample. (author)

  17. Gel electrolytes and electrodes

    Science.gov (United States)

    Fleischmann, Sven; Bunte, Christine; Mikhaylik, Yuriy V.; Viner, Veronika G.

    2017-09-05

    Gel electrolytes, especially gel electrolytes for electrochemical cells, are generally described. In some embodiments, the gel electrolyte layers comprise components a) to c). Component a) may be at least one layer of at least one polymer comprising polymerized units of: a1) at least one monomer containing an ethylenically unsaturated unit and an amido group and a2) at least one crosslinker. Component b) may be at least one conducting salt and component c) may be at least one solvent. Electrodes may comprise the components a), d) and e), wherein component a) may be at least one layer of at least one polymer as described herein. Component d) may be at least one electroactive layer and component e) may be at least one ceramic layer. Furthermore, electrochemical cells comprising component a) which may be at least one layer of at least one polymer as described herein, are also provided.

  18. In Vitro and In Vivo Evaluation of Diclofenac Sodium Gel Prepared ...

    African Journals Online (AJOL)

    Purpose: To develop diclofenac sodium gel using high molecular weight hydroxypropyl methylcellulose (HPMC) and Carbopol 934P for topical and systemic delivery. Methods: Diclofenac sodium gel was prepared with HPMC K100M and Carbopol 934P as gelling agents. The formulations were examined for pH, ...

  19. Electroblotting from Polyacrylamide Gels.

    Science.gov (United States)

    Goldman, Aaron; Ursitti, Jeanine A; Mozdzanowski, Jacek; Speicher, David W

    2015-11-02

    Transferring proteins from polyacrylamide gels onto retentive membranes is now primarily used for immunoblotting. A second application that was quite common up to about a decade ago was electroblotting of proteins for N-terminal and internal sequencing using Edman chemistry. This unit contains procedures for electroblotting proteins from polyacrylamide gels onto a variety of membranes, including polyvinylidene difluoride (PVDF) and nitrocellulose. In addition to the commonly used tank or wet transfer system, protocols are provided for electroblotting using semidry and dry systems. This unit also describes procedures for eluting proteins from membranes using detergents or acidic extraction with organic solvents for specialized applications. Copyright © 2015 John Wiley & Sons, Inc.

  20. Hydrogel-based ultra-moisturizing cream formulation for skin hydration and enhanced dermal drug delivery.

    Science.gov (United States)

    Lee, Sang Gon; Kim, Sung Rae; Cho, Hye In; Kang, Mean Hyung; Yeom, Dong Woo; Lee, Seo Hyun; Lee, Sangkil; Choi, Young Wook

    2014-01-01

    To develop an external vehicle for skin hydration and enhanced dermal drug delivery, a hydrogel-based ultra-moisturizing cream (HUMC) was successfully formulated with carbopol 934P, urea, Tinocare GL, grape seed oil, and other excipients. The HUMC showed plastic flow behavior due to a gel structure with a cream base. Different types of drug-free vehicles such as a hydrogel, conventional cream (CC), and three HUMCs were prepared and subjected to an in vivo skin hydration test on a hairless mouse using a corneometer. Hydration effect (∆AU) was in the order of HUMC2>HUMC1 ≥ CC>HUMC3>hydrogel. Using nile red (NR) and 5-carboxyfluorescein (5-CF) as lipophilic and hydrophilic fluorescent probes, respectively, in vitro skin permeation and accumulation studies were conducted using Franz diffusion cells. The values of steady-state flux (Jss, ng/h/cm(2)) were obtained: 74.8 (CC), 145.6 (HUMC1), and 161.9 (HUMC2) for NR delivery; 6.8 (CC), 8.3 (HUMC1), and 10.9 (HUMC2) for 5-CF delivery. The amounts retained in the skin at 12 h (Qr, ng/cm(2)) were determined: 86.4 (CC) and 102.0 (HUMC2) for NR; and 70.1 (CC) and 195.6 (HUMC2) for 5-CF. Confocal microscopy was used to visualize the distribution of the fluorescent probes. NR tended to be localized into the deeper part of the skin with adipose tissue whereas 5-CF localized in the upper layer of the skin. Thus we propose that HUMC2 is an efficacious vehicle for skin hydration and enhances dermal delivery of lipophilic and hydrophilic drugs.

  1. Yosemite Waters Vehicle Evaluation Report: Final Results

    Energy Technology Data Exchange (ETDEWEB)

    Eudy, L.; Barnitt, R.; Alleman, T. L.

    2005-08-01

    Document details the evaluation of Fischer-Tropsch diesel, a gas-to-liquid fuel, in medium-duty delivery vehicles at Yosemite Waters. The study was conducted by NREL at the company's Fullerton, California, bottling headquarters.

  2. Inspection vehicle

    International Nuclear Information System (INIS)

    Takahashi, Masaki; Omote, Tatsuyuki; Yoneya, Yutaka; Tanaka, Keiji; Waki, Tetsuro; Yoshida, Tomiji; Kido, Tsuyoshi.

    1993-01-01

    An inspection vehicle comprises a small-sized battery directly connected with a power motor or a direct power source from trolly lines and a switching circuit operated by external signals. The switch judges advance or retreat by two kinds of signals and the inspection vehicle is recovered by self-running. In order to recover the abnormally stopped inspection vehicle to the targeted place, the inspection vehicle is made in a free-running state by using a clutch mechanism and is pushed by an other vehicle. (T.M.)

  3. Synthetic LDL as targeted drug delivery vehicle

    Science.gov (United States)

    Forte, Trudy M [Berkeley, CA; Nikanjam, Mina [Richmond, CA

    2012-08-28

    The present invention provides a synthetic LDL nanoparticle comprising a lipid moiety and a synthetic chimeric peptide so as to be capable of binding the LDL receptor. The synthetic LDL nanoparticle of the present invention is capable of incorporating and targeting therapeutics to cells expressing the LDL receptor for diseases associated with the expression of the LDL receptor such as central nervous system diseases. The invention further provides methods of using such synthetic LDL nanoparticles.

  4. gel template method

    Indian Academy of Sciences (India)

    TiO2 nanotubes have been synthesized by sol–gel template method using alumina membrane. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), Raman spectroscopy, UV absorption spectrum and X-ray diffraction techniques have been used to investigate the structure, morphology and optical ...

  5. Influence of colloidal silicon dioxide on gel strength, robustness, and adhesive properties of diclofenac gel formulation for topical application.

    Science.gov (United States)

    Lu, Zheng; Fassihi, Reza

    2015-06-01

    The objective of this study is to identify the extent of stiffness, adhesiveness, and thixotropic character of a three-dimensional gel network of a 1% diclofenac sodium topical gel formulation in the presence and absence of colloidal silicon dioxide (CSD) and assess its ease of application and adhesiveness using both objective and subjective analysis. The 1% diclofenac gel was mixed with different amounts of CSD (e.g., 0.5, 1, 2, 3, and 5% w/w) and allowed to equilibrate prior to testing. The texture analyzer in combination with a cone-cap assembly was used to objectively investigate the changes in spreadability and adhesiveness of the gel system before and after addition of CSD. Results indicate that an increase in pliability and adhesiveness at levels ≥2 to ≤5% w/w of CSD dispersed in the gel ensues. For subjective analysis, gels with (2% w/w) CSD and in the absence of CSD were uniformly applied to a 20-cm(2) (5 cm × 4 cm) surface area on the forearms of healthy volunteers and vehicle preferences by the volunteers regarding ease of application, durability on the skin, compliance, and feelings concerning its textural properties were assessed. It appears that changes in the gel formulation with the addition of CSD enhance gel viscosity and bonding to the skin. Results further show that changes in physical and rheological characteristics of gel containing 2% w/w CSD did not significantly change subject preferences for the gel preparations. These findings may help formulators to have additional options to develop more robust and cost-effective formulations.

  6. A pneumatic device for rapid loading of DNA sequencing gels.

    Science.gov (United States)

    Panussis, D A; Cook, M W; Rifkin, L L; Snider, J E; Strong, J T; McGrane, R M; Wilson, R K; Mardis, E R

    1998-05-01

    This work describes the design and construction of a device that facilitates the loading of DNA samples onto polyacrylamide gels for detection in the Perkin Elmer/Applied Biosystems (PE/ABI) 373 and 377 DNA sequencing instruments. The device is mounted onto the existing gel cassettes and makes the process of loading high-density gels less cumbersome while the associated time and errors are reduced. The principle of operation includes the simultaneous transfer of the entire batch of samples, in which a spring-loaded air cylinder generates positive pressure and flexible silica capillaries transfer the samples. A retractable capillary array carrier allows the delivery ends of the capillaries to be held up clear of the gel during loader attachment on the gel plates, while enabling their insertion in the gel wells once the device is securely mounted. Gel-loading devices capable of simultaneously transferring 72 samples onto the PE/ABI 373 and 377 are currently being used in our production sequencing groups while a 96-sample transfer prototype undergoes testing.

  7. Development of an injectable chitosan/marine collagen composite gel

    International Nuclear Information System (INIS)

    Wang Wei; Itoh, Soichiro; Aizawa, Tomoyasu; Demura, Makoto; Okawa, Atsushi; Sakai, Katsuyoshi; Ohkuma, Tsuneo

    2010-01-01

    A chitosan/marine-originated collagen composite has been developed. This composite gel was characterized and its biocompatibility, as well as an inflammatory reaction, was observed. The chitosan gel including N-3-carboxypropanoil-6-O-(carboxymethyl) chitosan of 3 mol%, 6-O-(carboxymethyl) chitosan of 62 mol% and 6-O-(carboxymethyl) chitin of 35 mol% was prepared and compounded with the salmon atelocollagen (SA) gel at different mixture ratios. The composite gels were injected subcutaneously in to the back of rats. The specimens were harvested for a histological survey as well as a tumor necrosis factor-alpha (TNF-α) assay by ELISA. The inflammatory cell infiltration and release of TNF-α were successively controlled low with the ratio of SA to chitosan at 10:90 or 20:80. The SA gel first, within 2 weeks, and then chitosan in the composite gel were slowly absorbed after implantation, followed by soft tissue formation. It is expected that this composite gel will be available as a carrier for tissue filler and drug delivery systems.

  8. Electric vehicles

    Science.gov (United States)

    1990-03-01

    Quiet, clean, and efficient, electric vehicles (EVs) may someday become a practical mode of transportation for the general public. Electric vehicles can provide many advantages for the nation's environment and energy supply because they run on electricity, which can be produced from many sources of energy such as coal, natural gas, uranium, and hydropower. These vehicles offer fuel versatility to the transportation sector, which depends almost solely on oil for its energy needs. Electric vehicles are any mode of transportation operated by a motor that receives electricity from a battery or fuel cell. EVs come in all shapes and sizes and may be used for different tasks. Some EVs are small and simple, such as golf carts and electric wheel chairs. Others are larger and more complex, such as automobile and vans. Some EVs, such as fork lifts, are used in industries. In this fact sheet, we will discuss mostly automobiles and vans. There are also variations on electric vehicles, such as hybrid vehicles and solar-powered vehicles. Hybrid vehicles use electricity as their primary source of energy, however, they also use a backup source of energy, such as gasoline, methanol or ethanol. Solar-powered vehicles are electric vehicles that use photovoltaic cells (cells that convert solar energy to electricity) rather than utility-supplied electricity to recharge the batteries. These concepts are discussed.

  9. Protein nanoparticles for therapeutic protein delivery.

    Science.gov (United States)

    Herrera Estrada, L P; Champion, J A

    2015-06-01

    Therapeutic proteins can face substantial challenges to their activity, requiring protein modification or use of a delivery vehicle. Nanoparticles can significantly enhance delivery of encapsulated cargo, but traditional small molecule carriers have some limitations in their use for protein delivery. Nanoparticles made from protein have been proposed as alternative carriers and have benefits specific to therapeutic protein delivery. This review describes protein nanoparticles made by self-assembly, including protein cages, protein polymers, and charged or amphipathic peptides, and by desolvation. It presents particle fabrication and delivery characterization for a variety of therapeutic and model proteins, as well as comparison of the features of different protein nanoparticles.

  10. The Gel Generator option

    International Nuclear Information System (INIS)

    Boyd, R.E.

    1999-01-01

    The development of a national policy for guaranteeing an ample supply of 99m Tc to nuclear medicine, involves issues which go beyond the means by which radioactivation is achieved. Indeed, in such an exercise the pragmatic dictates of business and the sensitivities of politics must also be taken into account. Furthermore where a preference towards the nuclear reactor or the potential of cyclotrons is being questioned, the debate is incomplete if the only options that are considered are the fission-based 99 Mo generator versus the direct cyclotron production of 99m Tc. There is a third option (also neutron γ-based), an alternative to the fission 99 Mo generator, which ought not be overlooked. The application of low specific activity (n,γ) 99 Mo to a new type of generator, the Gel Generator, has been the focus of much research, particularly in Australia and more recently in China. After the initial concept had been established in the laboratory, the Australian researchers then undertook a comprehensive program of tests on the Gel Generator to assess its potential, either in the clinical laboratory or the centralised radiopharmacy, for supplying 99m Tc suitable for nuclear medicine. The outcome of this program was a clear indication that the Gel Generator innovation had the capability to provide both technical and economic advantages to the nuclear medicine industry. These advantages are described. Since that time the Gel Generator has been selected for routine use in China where it now satisfies more than 30% of the 99m Tc demand. (author)

  11. Chiromagnetic nanoparticles and gels

    Science.gov (United States)

    Yeom, Jihyeon; Santos, Uallisson S.; Chekini, Mahshid; Cha, Minjeong; de Moura, André F.; Kotov, Nicholas A.

    2018-01-01

    Chiral inorganic nanostructures have high circular dichroism, but real-time control of their optical activity has so far been achieved only by irreversible chemical changes. Field modulation is a far more desirable path to chiroptical devices. We hypothesized that magnetic field modulation can be attained for chiral nanostructures with large contributions of the magnetic transition dipole moments to polarization rotation. We found that dispersions and gels of paramagnetic Co3O4 nanoparticles with chiral distortions of the crystal lattices exhibited chiroptical activity in the visible range that was 10 times as strong as that of nonparamagnetic nanoparticles of comparable size. Transparency of the nanoparticle gels to circularly polarized light beams in the ultraviolet range was reversibly modulated by magnetic fields. These phenomena were also observed for other nanoscale metal oxides with lattice distortions from imprinted amino acids and other chiral ligands. The large family of chiral ceramic nanostructures and gels can be pivotal for new technologies and knowledge at the nexus of chirality and magnetism.

  12. Highly-correlated charges in polyelectrolyte gels

    Science.gov (United States)

    Sing, Charles; Zwanikken, Johannes; Olvera de La Cruz, Monica

    2013-03-01

    Polyelectrolyte gels are ubiquitous in polymer physics due to their attractive combination of structural and chemical features that permit the realization of ``environmentally responsive'' systems. The conventional conceptual picture of the volume response of these systems is based on a competition between osmotic and elastic effects. We elaborate on this fundamental understanding by including ion correlations through the use of liquid-state integral equation theory. This allows for a statistical mechanical representation of the state of the system that not only surpasses traditional Poisson-Boltzmann theories but also renders structural features in a highly accurate fashion. In particular, the local ion structure is elucidated, allowing for detailed articulation of charge inversion and condensation effects in the context of gel swelling. The inclusion of correlations has a number of ramifications that become apparent, with enhanced gel collapse and excluded volume competitions that give rise to novel and ion-dependent reentrant swelling effects. We expect this rigorous theory to prove instructive in understanding any number of gelated structures, such as chromosomes or designed synthetic materials for drug delivery.

  13. Regulation of the fate of dental-derived mesenchymal stem cells using engineered alginate-GelMA hydrogels.

    Science.gov (United States)

    Ansari, Sahar; Sarrion, Patricia; Hasani-Sadrabadi, Mohammad Mahdi; Aghaloo, Tara; Wu, Benjamin M; Moshaverinia, Alireza

    2017-11-01

    Mesenchymal stem cells (MSCs) derived from dental and orofacial tissues provide an alternative therapeutic option for craniofacial bone tissue regeneration. However, there is still a need to improve stem cell delivery vehicles to regulate the fate of the encapsulated MSCs for high quality tissue regeneration. Matrix elasticity plays a vital role in MSC fate determination. Here, we have prepared various hydrogel formulations based on alginate and gelatin methacryloyl (GelMA) and have encapsulated gingival mesenchymal stem cells (GMSCs) and human bone marrow MSCs (hBMMSCs) within these fabricated hydrogels. We demonstrate that addition of the GelMA to alginate hydrogel reduces the elasticity of the hydrogel mixture. While presence of GelMA in an alginate-based scaffold significantly increased the viability of encapsulated MSCs, increasing the concentration of GelMA downregulated the osteogenic differentiation of encapsulated MSCs in vitro due to decrease in the stiffness of the hydrogel matrix. The osteogenic suppression was rescued by addition of a potent osteogenic growth factor such as rh-BMP-2. In contrast, MSCs encapsulated in alginate hydrogel without GelMA were successfully osteo-differentiated without the aid of additional growth factors, as confirmed by expression of osteogenic markers (Runx2 and OCN), as well as positive staining using Xylenol orange. Interestingly, after two weeks of osteo-differentiation, hBMMSCs and GMSCs encapsulated in alginate/GelMA hydrogels still expressed CD146, an MSC surface marker, while MSCs encapsulated in alginate hydrogel failed to express any positive staining. Altogether, our findings suggest that it is possible to control the fate of encapsulated MSCs within hydrogels by tuning the mechanical properties of the matrix. We also reconfirmed the important role of the presence of inductive signals in guiding MSC differentiation. These findings may enable the design of new multifunctional scaffolds for spatial and temporal

  14. Vehicle regulations.

    NARCIS (Netherlands)

    2006-01-01

    In the Netherlands, all vehicles using public roads must meet so-called permanent requirements. This is enforced by the police and, for some categories, also during the MOT. In the Netherlands, most types of motor vehicle1 can only be introduced to the market if they meet the entry requirements. For

  15. Sistem Pengantaran Makanan dengan Pendayagunaan Vehicle Menggunakan Geographical Information System (GIS) dan Algoritma A Star (A*)

    OpenAIRE

    Lubis, Elita Sari

    2016-01-01

    Food delivery system is one various of geographical information systems (GIS) that can be applied through digitation process. The main case in food delivery service is the way to acquire shortest path and movement tracking of food delivery vehicle. Therefore, to accomplish the efficient food delivery system digitation process, it is needed to add facility of shortest path determination and food delivery vehicle tracking. This research uses A* shortest path algorithm to determine shortest path...

  16. Influence of microemulsions on cutaneous drug delivery

    DEFF Research Database (Denmark)

    Kreilgaard, Mads

    2002-01-01

    In attempt to increase cutaneous drug delivery, microemulsion vehicles have been more and more frequently employed over recent years. Microemulsion formulations have been shown to be superior for both transdermal and dermal delivery of particularly lipophilic compounds, but also hydrophilic...... compounds appear to benefit from application in microemulsions compared to conventional vehicles, like hydrogels, emulsions and liposomes. The favourable drug delivery properties of microemulsions appear to mainly be attributed to the excellent solubility properties. However, the vehicles may also act...... as penetration enhancers depending on the oil/surfactant constituents, which involves a risk of inducing local irritancy. The correlation between microemulsion structure/composition and drug delivery potential is not yet fully elucidated. However, a few studies have indicated that the internal structure...

  17. Congestion avoidance and break scheduling within vehicle routing

    NARCIS (Netherlands)

    Kok, A.L.

    2010-01-01

    Vehicle routing is a complex daily task for businesses such as logistic service providers and distribution firms. Planners have to assign many orders to many vehicles and, for each vehicle, assign a delivery sequence. The objective is to minimize total transport costs. These costs typically include

  18. PREPARATION AND PROPERTIES OF COMPOUND ARNEBIAE RADIX MICROEMULSION GEL.

    Science.gov (United States)

    Chen, Jing; He, Yanping; Gao, Ting; Zhang, Licheng; Zhao, Yuna

    2017-01-01

    Compound Arnebiae radix oil has been clinically applied to treat burns and scalds for a long time. However, it is unstable and inconvenient to use. The aim of this study was to prepare a compound Arnebiae radix microemulsion gel for transdermal delivery system and evaluate its characteristics. Based on the solubility of Shikonin, the active component of Arnebiae radix and the results of phase studies, adequate ratio of each component in microemulsion was determined. The optimized microemulsion gel was prepared using Carbomer 940. The gels were characterized in terms of appearance, preliminary stability test and the content of Shikonin in the compound Arnebiae radix microemulsion gel with HPLC analysis. The optimized conditions for preparing microemulsion were Tween-80, glycerin, isopropyl myristate (IPM) with the ratio of 6:3:2. The optimal microemulsion gel was obtained with Carbomer 940 (1.0%). The prepared compound Arnebiae radix microemulsion gel showed good stability over time. It is more convenience in application than the previous used formulations.

  19. Sol-gel-based biosensing applied to medicinal science.

    Science.gov (United States)

    Moreira, Felismina T C; Moreira-Tavares, Ana P; Sales, M Goreti F

    2015-01-01

    Biosensors have opened new horizons in biomedical analysis, by ensuring increased assay speed and flexibility, and allowing point-of-care applications, multi-target analyses, automation and reduced costs of testing. This has been a result of many studies merging nanotechnology with biochemistry over the years, thereby enabling the creation of more suitable environments to biological receptors and their substitution by synthetic analogue materials. Sol-gel chemistry, among other materials, is deeply involved in this process. Sol-gel processing allows the immobilization of organic molecules, biomacromolecules and cells maintaining their properties and activities, permitting their integration into different transduction devices, of electrochemical or optical nature, for single or multiple analyses. Sol-gel also allows to the production of synthetic materials mimicking the activity of natural receptors, while bringing advantages, mostly in terms of cost and stability. Moreover, the biocompatibility of sol-gel materials structures of biological nature allowed the use of these materials in emerging in vivo applications. In this chapter, biosensors for biomedical applications based on sol-gel derived composites are presented, compared and described, along with current emerging applications in vivo, concerning drug delivery or biomaterials. Sol-gel materials are shown as a promising tool for current, emerging and future medical applications.

  20. High lane density slab-gel electrophoresis using micromachined instrumentation.

    Science.gov (United States)

    Papautsky, I; Mohanty, S; Weiss, R; Frazier, A B

    2001-10-01

    In this paper, micromachined pipette arrays (MPAs) and microcombs were studied as a means of enabling high lane density gel electrophoresis. The MPA provide a miniaturized format to interface sub-microliter volumes of samples between macroscale sample preparation formats and microscale biochemical analysis systems. The microcombs provide a means of creating sample loading wells in the gel material on the same center-to-center spacing as the MPAs. Together, the two micromachined instruments provide an alternative to current combs and pipetting technologies used for creating sample loading wells and sample delivery in gel electrophoresis systems. Using three designs for the microcomb-MPA pair, center-to-center spacings of 1.0 mm, 500 microm, and 250 microm are studied. The results demonstrate an approximate 10-fold increase in lane density and a 10-fold reduction in sample size from 5 microL to 500 pL. As a result, the number of theoretical plates has increased 2.5-fold, while system resolution has increased 1.5-fold over the conventional agarose gel systems. An examination of changes in resolution across the width of individual separation lanes in both systems revealed dependence in the case of the conventional gels and no dependence for the gels loaded with the micromachined instrumentation.

  1. In Situ Formation of Steroidal Supramolecular Gels Designed for Drug Release

    Directory of Open Access Journals (Sweden)

    Hana Bunzen

    2013-03-01

    Full Text Available In this work, a steroidal gelator containing an imine bond was synthesized, and its gelation behavior as well as a sensitivity of its gels towards acids was investigated. It was shown that the gels were acid-responsive, and that the gelator molecules could be prepared either by a conventional synthesis or directly in situ during the gel forming process. The gels prepared by both methods were studied and it was found that they had very similar macro- and microscopic properties. Furthermore, the possibility to use the gels as carriers for aromatic drugs such as 5-chloro-8-hydroxyquinoline, pyrazinecarboxamide, and antipyrine was investigated and the prepared two-component gels were studied with regard to their potential applications in drug delivery, particularly in a pH-controlled drug release.

  2. Agar/gelatin bilayer gel matrix fabricated by simple thermo-responsive sol-gel transition method.

    Science.gov (United States)

    Wang, Yifeng; Dong, Meng; Guo, Mengmeng; Wang, Xia; Zhou, Jing; Lei, Jian; Guo, Chuanhang; Qin, Chaoran

    2017-08-01

    We present a simple and environmentally-friendly method to generate an agar/gelatin bilayer gel matrix for further biomedical applications. In this method, the thermally responsive sol-gel transitions of agar and gelatin combined with the different transition temperatures are exquisitely employed to fabricate the agar/gelatin bilayer gel matrix and achieve separate loading for various materials (e.g., drugs, fluorescent materials, and nanoparticles). Importantly, the resulting bilayer gel matrix provides two different biopolymer environments (a polysaccharide environment vs a protein environment) with a well-defined border, which allows the loaded materials in different layers to retain their original properties (e.g., magnetism and fluorescence) and reduce mutual interference. In addition, the loaded materials in the bilayer gel matrix exhibit an interesting release behavior under the control of thermal stimuli. Consequently, the resulting agar/gelatin bilayer gel matrix is a promising candidate for biomedical applications in drug delivery, controlled release, fluorescence labeling, and bio-imaging. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. High transparent shape memory gel

    Science.gov (United States)

    Gong, Jin; Arai, Masanori; Kabir, M. H.; Makino, Masato; Furukawa, Hidemitsu

    2014-03-01

    Gels are a new material having three-dimensional network structures of macromolecules. They possess excellent properties as swellability, high permeability and biocompatibility, and have been applied in various fields of daily life, food, medicine, architecture, and chemistry. In this study, we tried to prepare new multi-functional and high-strength gels by using Meso-Decoration (Meso-Deco), one new method of structure design at intermediate mesoscale. High-performance rigid-rod aromatic polymorphic crystals, and the functional groups of thermoreversible Diels-Alder reaction were introduced into soft gels as crosslinkable pendent chains. The functionalization and strengthening of gels can be realized by meso-decorating the gels' structure using high-performance polymorphic crystals and thermoreversible pendent chains. New gels with good mechanical properties, novel optical properties and thermal properties are expected to be developed.

  4. After Delivery

    Science.gov (United States)

    ... Rights Employment Discrimination Health Care Professionals Law Enforcement Driver's License For Lawyers Food & Fitness Home Food MyFoodAdvisor ... A Listen En Español After Delivery After your baby arrives, your body begins to recover from the ...

  5. Comparative study on the effects of negatively-charged biopolymers on chitosan-based gels for the development of instantaneous gels

    International Nuclear Information System (INIS)

    Jimeno, Austin Ed B.; Chakraborty, Soma

    2015-01-01

    Polymeric electrolytic complexes are solutions of charged/ionized chains. These solutions of positive and negative charge can be combined to make instantaneous networks bonded by electrostatic interactions, a gel network. These electrostatic interaction allows for easy application in injectable gels as the network can be temporarily distributed with the application of force and reformed on the relief of it. Possible applications for these injectable gels include drug delivery and wound-healing. κ-Carrageenan, dextran sulfate, alginate, and chitosan are polyelectrolytic biocompatible polymers which are widely studied and used for a variety of biomedical applications. Gel networks are made by combining a negatively-charged (κ-Carrageenan, dextran sulfate, or alginate) and positively charged (chitosan) solutions. The strong electrostatic interaction between the opposite charges from the gel network and the inherent biocompatibility of the polymers allow future biomedical applications. Quat 188-modified chitosan has additional sites for electrostatic bonding, can be dissolved in neutral, basic, and acidic pH, and has shown inherent antibacterial activity. The objectives of this study are the following: to formulate chitosan-based gels mixing solutions of chitosan with solutions of either κ-Carrageenan, dextran sulfate, or alginate, study the gelation of the gels as function of time and pH (4, 7, and 9) using UV-Vis, characterize the chitosan-based gels through DSC and DMA, characterize the physiological degradation of the chitosan-based gels, and compare results with those from Quat 188-modified chitosan-based gels. Polyelectrolytic solutions of chitosan and negatively-charged biopolymer of similar viscosities were mixed. It was determined from the UV-Vis spectroscopy of the chitosan-carrageenan gels under pH7 buffer that the increase of concentration by a factor of 5 for 0.006M-0.0095M and 1.25 for 0.0095M-0.0150M Chitosan-Carrageenan gels improved gelation by the

  6. Abandoned vehicles

    CERN Multimedia

    Relations with the Host States Service

    2004-01-01

    The services in charge of managing the CERN site have recently noted an increase in the number of abandoned vehicles. This poses a risk from the point of view of safety and security and, on the eve of several important events in honour of CERN's fiftieth anniversary, is detrimental to the Organization's image. Owners of vehicles that have been left immobile for some time on the CERN site, including on the external car park by the flags, are therefore invited to contact the Reception and Access Control Service (service-parking-longterm@cern.ch) before 1st October 2004 and, where appropriate, move their vehicle to a designated long-term parking area. After this date, any vehicle whose owner has failed to respond to this request and which is without a number plate, has been stationary for several weeks or is out of service, may be impounded at the owner's risk and expense. Relations with the Host States Service Tel. 72848

  7. Intrathecal Delivery of Ketorolac Loaded In Situ Gels for Prolonged ...

    African Journals Online (AJOL)

    ... parent drug calculated on the basis of drug contents; b Mean ± SEM, n = 6; c Change in .... Block JH and Beale JM, Eds, Wilson and Giswolds Text ... nano- hydroxyapatite/collagen/alginate hydrogels for osteochondral tissue engineering.

  8. Drug delivery with microsecond laser pulses into gelatin

    Science.gov (United States)

    Shangguan, Hanqun; Casperson, Lee W.; Shearin, Alan; Gregory, Kenton W.; Prahl, Scott A.

    1996-07-01

    Photoacoustic drug delivery is a technique for localized drug delivery by laser-induced hydrodynamic pressure following cavitation bubble expansion and collapse. Photoacoustic drug delivery was investigated on gelatin-based thrombus models with planar and cylindrical geometries by use of one microsecond laser pulses. Solutions of a hydrophobic dye in mineral oil permitted monitoring of delivered colored oil into clear gelatin-based thrombus models. Cavitation bubble development and photoacoustic drug delivery were visualized with flash photography. This study demonstrated that cavitation is the governing mechanism for photoacoustic drug delivery, and the deepest penetration of colored oil in gels followed the bubble collapse. Spatial distribution measurements revealed that colored oil could be driven a few millimeters into the gels in both axial and radial directions, and the penetration was less than 500 mu m when the gelatin structure was not fractured. localized drug delivery, cavitation bubble, laser thrombolysis.

  9. Thoria sol-gel processes

    International Nuclear Information System (INIS)

    Matthews, R.B.

    1978-10-01

    Alternate fuel fabrication techniques are being developed at WNRE as part of the thorium fuel cycle program. The sol-gel techniques are attractive and this report assembles and summarizes information relating to thoria sol-gel fuels. Some background information on the behaviour and advantages of sol-gel fuel forms is presented, followed by a review of relevant colloid chemistry and an explanation of the fundamental steps of sol-gel processes. Finally, several variants to the basic process are reviewed and evaluated. (author)

  10. Silver nitrate based gel dosimeter

    International Nuclear Information System (INIS)

    Titus, D; Samuel, E J J; Srinivasan, K; Roopan, S M; Madhu, C S

    2017-01-01

    A new radiochromic gel dosimeter based on silver nitrate and a normoxic gel dosimeter was investigated using UV-Visible spectrophotometry in the clinical dose range. Gamma radiation induced the synthesis of silver nanoparticles in the gel and is confirmed from the UV-Visible spectrum which shows an absorbance peak at around 450 nm. The dose response function of the dosimeter is found to be linear upto12Gy. In addition, the gel samples were found to be stable which were kept under refrigeration. (paper)

  11. Gel polymer electrolytes for batteries

    Science.gov (United States)

    Balsara, Nitash Pervez; Eitouni, Hany Basam; Gur, Ilan; Singh, Mohit; Hudson, William

    2014-11-18

    Nanostructured gel polymer electrolytes that have both high ionic conductivity and high mechanical strength are disclosed. The electrolytes have at least two domains--one domain contains an ionically-conductive gel polymer and the other domain contains a rigid polymer that provides structure for the electrolyte. The domains are formed by block copolymers. The first block provides a polymer matrix that may or may not be conductive on by itself, but that can soak up a liquid electrolyte, thereby making a gel. An exemplary nanostructured gel polymer electrolyte has an ionic conductivity of at least 1.times.10.sup.-4 S cm.sup.-1 at 25.degree. C.

  12. Connected vehicle applications : safety.

    Science.gov (United States)

    2016-01-01

    Connected vehicle safety applications are designed to increase situational awareness : and reduce or eliminate crashes through vehicle-to-infrastructure, vehicle-to-vehicle, : and vehicle-to-pedestrian data transmissions. Applications support advisor...

  13. Effect of pressure sensitive adhesive and vehicles on permeation of terbinafine across porcine hoof membrane.

    Science.gov (United States)

    Ahn, Tai Sang; Lee, Jung-Phil; Kim, Juhyun; Oh, Seaung Youl; Chun, Myung-Kwan; Choi, Hoo-Kyun

    2013-11-01

    The purpose of this study was to investigate characteristics of transungual drug delivery and the feasibility of developing a drug-in-adhesive formulation of terbinafine. The permeation of terbinafine from a PSA matrix across porcine hoof membrane was determined using a plate containing poloxamer gel. The permeation rate of terbinafine across hairless mouse skin was evaluated using a flow-through diffusion cell system. The permeation of terbinafine across the hoof membranes was the highest from the silicone adhesive matrix, followed by PIB, and most of the acrylic adhesives, SIS, and SBS. The rank order of permeation rate across mice skin was different from the rank order across porcine hooves. The amount of terbinafine permeated across the porcine hoof membranes poorly correlated with the amount of terbinafine remaining inside the hooves after 20 days, however, the ratio between rate of terbinafine partitioning into the hoof membrane and its rate of diffusion across the membrane was relatively constant within the same type of PSA. For influence of various vehicles in enhancing permeation of terbinafine across the hoof membrane, all vehicles except Labrasol(®) showed tendency to improve permeation rate. However, the enhancement ratio of a given vehicle differed from one adhesive to another with a moderate correlation between them. The infrared spectrum of the hoof treated with NMP, PPG 400 or PEG 200 indicated that the conformation of keratin changed from a non-helical to a helical structure.

  14. Rheology and structure of milk protein gels

    NARCIS (Netherlands)

    Vliet, van T.; Lakemond, C.M.M.; Visschers, R.W.

    2004-01-01

    Recent studies on gel formation and rheology of milk gels are reviewed. A distinction is made between gels formed by aggregated casein, gels of `pure` whey proteins and gels in which both casein and whey proteins contribute to their properties. For casein' whey protein mixtures, it has been shown

  15. Pecan drying with silica gel

    Energy Technology Data Exchange (ETDEWEB)

    Ghate, S.R.; Chhinnan, M.S.

    1983-07-01

    High moisture in-shell pecans were dried by keeping them in direct and indirect contact with silica gel to investigate their drying characteristics. In-shell pecans were also dried with ambient air from a controlled environment chamber and with air dehumidified by silica gel. Direct contact and dehumidified air drying seemed feasible approaches.

  16. Nanocrystal/sol-gel nanocomposites

    Science.gov (United States)

    Petruska, Melissa A [Los Alamos, NM; Klimov, Victor L [Los Alamos, NM

    2007-06-05

    The present invention is directed to solid composites including colloidal nanocrystals within a sol-gel host or matrix and to processes of forming such solid composites. The present invention is further directed to alcohol soluble colloidal nanocrystals useful in formation of sol-gel based solid composites.

  17. Dosimetric evaluation of a novel polymer gel dosimeter for proton therapy

    Energy Technology Data Exchange (ETDEWEB)

    Zeidan, O. A.; Sriprisan, S. I.; Lopatiuk-Tirpak, O.; Kupelian, P. A.; Meeks, S. L.; Hsi, W. C.; Li, Z.; Palta, J. R.; Maryanski, M. J. [M. D. Anderson Cancer Center Orlando, Orlando, Florida 32806 (United States); University of Florida Proton Therapy Institute, Jacksonville, Florida 32206 (United States); MGS Research, Inc., Madison, Connecticut 06443 (United States)

    2010-05-15

    Purpose: The aim of this study is to evaluate the dosimetric performance of a newly developed proton-sensitive polymer gel formulation for proton therapy dosimetry. Methods: Using passive scattered modulated and nonmodulated proton beams, the dose response of the gel was assessed. A next-generation optical CT scanner is used as the readout mechanism of the radiation-induced absorbance in the gel medium. Comparison of relative dose profiles in the gel to ion chamber profiles in water is performed. A simple and easily reproducible calibration protocol is established for routine gel batch calibrations. Relative stopping power ratio measurement of the gel medium was performed to ensure accurate water-equivalent depth dose scaling. Measured dose distributions in the gel were compared to treatment planning system for benchmark irradiations and quality of agreement is assessed using clinically relevant gamma index criteria. Results: The dosimetric response of the gel was mapped up to 600 cGy using an electron-based calibration technique. Excellent dosimetric agreement is observed between ion chamber data and gel. The most notable result of this work is the fact that this gel has no observed dose quenching in the Bragg peak region. Quantitative dose distribution comparisons to treatment planning system calculations show that most (>97%) of the gel dose maps pass the 3%/3 mm gamma criterion. Conclusions: This study shows that the new proton-sensitive gel dosimeter is capable of reproducing ion chamber dose data for modulated and nonmodulated Bragg peak beams with different clinical beam energies. The findings suggest that the gel dosimeter can be used as QA tool for millimeter range verification of proton beam deliveries in the dosimeter medium.

  18. Dosimetric evaluation of a novel polymer gel dosimeter for proton therapy

    International Nuclear Information System (INIS)

    Zeidan, O. A.; Sriprisan, S. I.; Lopatiuk-Tirpak, O.; Kupelian, P. A.; Meeks, S. L.; Hsi, W. C.; Li, Z.; Palta, J. R.; Maryanski, M. J.

    2010-01-01

    Purpose: The aim of this study is to evaluate the dosimetric performance of a newly developed proton-sensitive polymer gel formulation for proton therapy dosimetry. Methods: Using passive scattered modulated and nonmodulated proton beams, the dose response of the gel was assessed. A next-generation optical CT scanner is used as the readout mechanism of the radiation-induced absorbance in the gel medium. Comparison of relative dose profiles in the gel to ion chamber profiles in water is performed. A simple and easily reproducible calibration protocol is established for routine gel batch calibrations. Relative stopping power ratio measurement of the gel medium was performed to ensure accurate water-equivalent depth dose scaling. Measured dose distributions in the gel were compared to treatment planning system for benchmark irradiations and quality of agreement is assessed using clinically relevant gamma index criteria. Results: The dosimetric response of the gel was mapped up to 600 cGy using an electron-based calibration technique. Excellent dosimetric agreement is observed between ion chamber data and gel. The most notable result of this work is the fact that this gel has no observed dose quenching in the Bragg peak region. Quantitative dose distribution comparisons to treatment planning system calculations show that most (>97%) of the gel dose maps pass the 3%/3 mm gamma criterion. Conclusions: This study shows that the new proton-sensitive gel dosimeter is capable of reproducing ion chamber dose data for modulated and nonmodulated Bragg peak beams with different clinical beam energies. The findings suggest that the gel dosimeter can be used as QA tool for millimeter range verification of proton beam deliveries in the dosimeter medium.

  19. electric vehicle

    Directory of Open Access Journals (Sweden)

    W. R. Lee

    1999-01-01

    Full Text Available A major problem facing battery-powered electric vehicles is in their batteries: weight and charge capacity. Thus, a battery-powered electric vehicle only has a short driving range. To travel for a longer distance, the batteries are required to be recharged frequently. In this paper, we construct a model for a battery-powered electric vehicle, in which driving strategy is to be obtained such that the total travelling time between two locations is minimized. The problem is formulated as an optimization problem with switching times and speed as decision variables. This is an unconventional optimization problem. However, by using the control parametrization enhancing technique (CPET, it is shown that this unconventional optimization is equivalent to a conventional optimal parameter selection problem. Numerical examples are solved using the proposed method.

  20. Periodic Heterogeneous Vehicle Routing Problem With Driver Scheduling

    Science.gov (United States)

    Mardiana Panggabean, Ellis; Mawengkang, Herman; Azis, Zainal; Filia Sari, Rina

    2018-01-01

    The paper develops a model for the optimal management of logistic delivery of a given commodity. The company has different type of vehicles with different capacity to deliver the commodity for customers. The problem is then called Periodic Heterogeneous Vehicle Routing Problem (PHVRP). The goal is to schedule the deliveries according to feasible combinations of delivery days and to determine the scheduling of fleet and driver and routing policies of the vehicles. The objective is to minimize the sum of the costs of all routes over the planning horizon. We propose a combined approach of heuristic algorithm and exact method to solve the problem.

  1. Electric-Drive Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Septon, Kendall K [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-09-11

    Electric-drive vehicles use electricity as their primary fuel or to improve the efficiency of conventional vehicle designs. These vehicles can be divided into three categories: Hybrid electric vehicles (HEVs), Plug-in hybrid electric vehicles (PHEVs), All-electric vehicles (EVs). Together, PHEVs and EVs can also be referred to as plug-in electric vehicles (PEVs).

  2. Electric-Drive Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    None

    2017-09-01

    Electric-drive vehicles use electricity as their primary fuel or to improve the efficiency of conventional vehicle designs. These vehicles can be divided into three categories: Hybrid electric vehicles (HEVs), Plug-in hybrid electric vehicles (PHEVs), All-electric vehicles (EVs). Together, PHEVs and EVs can also be referred to as plug-in electric vehicles (PEVs).

  3. Entrapment of Probiotics in Water Extractable Arabinoxylan Gels: Rheological and Microstructural Characterization

    Directory of Open Access Journals (Sweden)

    Adriana Morales-Ortega

    2014-03-01

    Full Text Available Due to their porous structure, aqueous environment and dietary fiber nature arabinoxylan (AX gels could have potential applications for colon-specific therapeutic molecule delivery. In addition, prebiotic and health related effects of AX have been previously demonstrated. It has been also reported that cross-linked AX can be degraded by bacteria from the intestinal microbiota. However, AX gels have not been abundantly studied as carrier systems and there is no information available concerning their capability to entrap cells. In this regard, probiotic bacteria such as Bifidobacterium longum have been the focus of intense research activity lately. The objective of this research was to investigate the entrapment of probiotic B. longum in AX gels. AX solution at 2% (w/v containing B. longum (1 × 107 CFU/cm formed gels induced by laccase as cross-linking agent. The entrapment of B. longum decreased gel elasticity from 31 to 23 Pa, probably by affecting the physical interactions taking place between WEAX chains. Images of AX gels containing B. longum viewed under a scanning electron microscope show the gel network with the bacterial cells entrapped inside. The microstructure of these gels resembles that of an imperfect honeycomb. The results suggest that AX gels can be potential candidates for the entrapment of probiotics.

  4. Use of normoxic polymer gel dosimeters for measuring diagnostic doses on CT scanners

    International Nuclear Information System (INIS)

    Hill, B; Venning, A J; Baldock, C

    2004-01-01

    X-ray CT has been used to evaluate polymer gel dosimeters for dose response in the therapeutic dose range. This method of polymer gel dosimeter evaluation has been shown to be useful for instance in the comparison of complex sterotactic field distributions with treatment plans. Image averaging and subtraction techniques are used for noise reduction in polymer gel dosimeters resulting in the delivery of several CT slices across the polymer gel dosimeters. It was a logical progression to evaluate normoxic polymer gel dosimeters with optimized CT scanning protocols. During these investigations it was found that unirradiated regions in irradiated normoxic polymer gel dosimetry phantoms polymerised possibly as a result of the evaluation using CT. This prompted an investigation of the CT diagnostic dose response of the normoxic polymer gel dosimeter in order to determine the dose contribution when evaluated using a CT scanner. Having established that there was an effect on the normoxic polymer gel dosimeter when evaluating with a CT scanner the suitability of these gels in the determination of CT diagnostic dose measurement was further investigated

  5. Solvent exchange-induced in situ forming gel comprising ethyl cellulose-antimicrobial drugs.

    Science.gov (United States)

    Phaechamud, Thawatchai; Mahadlek, Jongjan

    2015-10-15

    Solvent-exchanged in situ forming gel is a drug delivery system which is in sol form before administration. When it contacts with the body fluid, then the water miscible organic solvent dissipates and water penetrates into the system, leading the polymer precipitation as in situ gel at the site of injection. The aim of this research was to study the parameters affecting the gel properties, drug release and antimicrobial activities of the in situ forming gels prepared from ethyl cellulose (EC) dissolved in N-methyl pyrrolidone (NMP) to deliver the antimicrobial agents (doxycycline hyclate, metronidazole and benzyl peroxide) for periodontitis treatment. The gel appearance, pH, viscosity, rheology, syringeability, gel formation, rate of water diffusion into the gels, in vitro degradation, drug release behavior and antimicrobial activities against Staphylococcus aureus, Escherichia coli, Candida albicans, Streptococcus mutans and Porphyrommonas gingivalis were determined. Increasing the amount of EC increased the viscosity of system while still exhibiting Newtonian flow and increased the work of syringeability whereas decreased the releasing of drug. The system transformed into the rigid gel formation after being injected into the simulated gingival crevicular fluid. The developed systems containing 5% w/w antimicrobial agent showed the antimicrobial activities against all test bacteria. Thus the developed solvent exchange-induced in situ forming gels comprising EC-antimicrobial drugs exhibited potential use for periodontitis treatment. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Chemical Gel for Surface Decontamination

    International Nuclear Information System (INIS)

    Jung, Chong Hun; Moon, J. K.; Won, H. J.; Lee, K. W.; Kim, C. K.

    2010-01-01

    Many chemical decontamination processes operate by immersing components in aggressive chemical solutions. In these applications chemical decontamination technique produce large amounts of radioactive liquid waste. Therefore it is necessary to develop processes using chemical gels instead of chemical solutions, to avoid the well-known disadvantages of chemical decontamination techniques while retaining their high efficiency. Chemical gels decontamination process consists of applying the gel by spraying it onto the surface of large area components (floors, walls, etc) to be decontaminated. The gel adheres to any vertical or complex surface due to their thixotropic properties and operates by dissolving the radioactive deposit, along with a thin layer of the gel support, so that the radioactivity trapped at the surface can be removed. Important aspects of the gels are that small quantities can be used and they show thixitropic properties : liquid during spraying, and solid when stationary, allowing for strong adherence to surfaces. This work investigates the decontamination behaviors of organic-based chemical gel for SS 304 metallic surfaces contaminated with radioactive materials

  7. Silica-Coated Liposomes for Insulin Delivery

    Directory of Open Access Journals (Sweden)

    Neelam Dwivedi

    2010-01-01

    Full Text Available Liposomes coated with silica were explored as protein delivery vehicles for their enhanced stability and improved encapsulation efficiency. Insulin was encapsulated within the fluidic phosphatidylcholine lipid vesicles by thin film hydration at pH 2.5, and layer of silica was formed above lipid bilayer by acid catalysis. The presence of silica coating and encapsulated insulin was identified using confocal and electron microscopy. The native state of insulin present in the formulation was evident from Confocal Micro-Raman spectroscopy. Silica coat enhances the stability of insulin-loaded delivery vehicles. In vivo study shows that these silica coated formulations were biologically active in reducing glucose levels.

  8. Denaturing gradient gel electrophoresis

    International Nuclear Information System (INIS)

    Kocherginskaya, S.A.; Cann, I.K.O.; Mackie, R.I.

    2005-01-01

    It is worthwhile considering that only some 30 species make up the bulk of the bacterial population in human faeces at any one time based on the classical cultivation-based approach. The situation in the rumen is similar. Thus, it is practical to focus on specific groups of interest within the complex community. These may be the predominant or the most active species, specific physiological groups or readily identifiable (genetic) clusters of phylogenetically related organisms. Several 16S rDNA fingerprinting techniques can be invaluable for selecting and monitoring sequences or phylogenetic groups of interest and are described below. Over the past few decades, considerable attention was focussed on the identification of pure cultures of microbes on the basis of genetic polymorphisms of DNA encoding rRNA such as ribotyping, amplified fragment length polymorphism and randomly amplified polymorphic DNA. However, many of these methods require prior cultivation and are less suitable for use in analysis of complex mixed populations although important in describing cultivated microbial diversity in molecular terms. Much less attention was given to molecular characterization of complex communities. In particular, research into diversity and community structure over time has been revolutionized by the advent of molecular fingerprinting techniques for complex communities. Denaturing or temperature gradient gel electrophoresis (DGGE/TGGE) methods have been successfully applied to the analysis of human, pig, cattle, dog and rodent intestinal populations

  9. Applications of nanodiamonds in drug delivery and catalysis

    KAUST Repository

    Moosa, Basem; Fhayli, Karim; Li, Song; Julfakyan, Khachatur; Ezzeddine, Alaa; Khashab, Niveen M.

    2014-01-01

    The interest of researchers in utilizing nanomaterials as carriers for a wide spectrum of molecules has exploded in the last two decades. Nanodiamonds are one class of carbon-based nanomaterials that have emerged as promising drug delivery vehicles

  10. Fluoride Rinses, Gels and Foams

    DEFF Research Database (Denmark)

    Twetman, Svante; Keller, Mette K

    2016-01-01

    AIM: The aim of this conference paper was to systematically review the quality of evidence and summarize the findings of clinical trials published after 2002 using fluoride mouth rinses, fluoride gels or foams for the prevention of dental caries. METHODS: Relevant papers were selected after...... (6 on fluoride mouth rinse, 10 on fluoride gel and 3 on fluoride foam); 6 had a low risk of bias while 2 had a moderate risk. All fluoride measures appeared to be beneficial in preventing crown caries and reversing root caries, but the quality of evidence was graded as low for fluoride mouth rinse......, moderate for fluoride gel and very low for acidulated fluoride foam. No conclusions could be drawn on the cost-effectiveness. CONCLUSIONS: This review, covering the recent decade, has further substantiated the evidence for a caries-preventive effect of fluoride mouth rinse, fluoride gel and foam...

  11. Microemulsion and Microemulsion-Based Gels for Topical Antifungal Therapy with Phytochemicals.

    Science.gov (United States)

    Boonme, Prapaporn; Kaewbanjong, Jarika; Amnuaikit, Thanaporn; Andreani, Tatiana; Silva, Amélia M; Souto, Eliana B

    2016-01-01

    Skin fungal infections are regular injuries suffered by people living in tropical areas. Most common pathogens are Trichophyton, Microsporum and Epidermophyton which can cause skin lesions in many parts of body. Topical antifungal phytochemicals are commonly used to avoid systemic adverse events and are more convenient for patient application than those administered by other routes. However, the effectiveness of topical treatments in eradicating fungal infection is more limited since the stratum corneum acts as the skin barrier, resulting in long treatment duration and low patient's compliance. The goal of this work is to identify optimized drug delivery systems to improve topic clinical efficacy. Microemulsions i.e. liquid dispersions of oil and water stabilized with an interfacial film of surfactant are well known drug delivery systems. A thickening agent may be included to form microemulsion-based gels to increase skin adhesion. Microemulsions and microemulsion-based gels can be loaded with several hydrophilic and lipophilic drugs because they are composed of both water and oil phases. Microemulsions and microemulsion-based gels can also be used for the delivery of many drugs including antifungal drugs through stratum corneum due to their capacity to act as skin penetration enhancement. In addition to a comprehensive review of microemulsion and microemulsion-based gels as suitable carriers for skin delivery of various antifungal drugs, this review also aims to discuss the delivery of antifungal phytochemicals.

  12. Gel electrophoresis of inorganic cations

    International Nuclear Information System (INIS)

    Schoenhofer, F.; Grass, F.

    1978-01-01

    In order to be able to separate the largest possible amounts of substance, polyacryl amide gel (PAA) and silica gel are used as carrier for the electrophoresis. Milligramme quantities can easily be separated on PAA gel plates. Electrophoretic ion focussing considerably improves it. Separations of Sr/Y and lanthanoids were carried out. The behaviour of the readily soluble complexing agent acids on silica gel thin layers was minutely investigated and an interpretation of the focussing effect was derived. The conditions for separating radionuclides were optimized. A further improved separation can be achieved by a time sequence combination of normal electrophoresis and ion focussing. Selective isolation methods are advantageous to determine radionuclide traces in environmental samples. The selective adsorption on preformed deposits was transferred to electrophoresis. After pre-investigations on silica gel layers, strontium and barium could also be retained on PAA gel and radium on strontium sulphate in PAA, whereas the disturbing calcium can easily pass through. Cesium can also be retained by prussian blue in the electrophoresis. (orig.) [de

  13. Vehicle Controller

    Science.gov (United States)

    1985-01-01

    UNISTICK is an airplane-like joystick being developed by Johnson Engineering under NASA and VA sponsorship. It allows a driver to control a vehicle with one hand, and is based upon technology developed for the Apollo Lunar Landings of the 1970's. It allows severely handicapped drivers to operate an automobile or van easily. The system is expected to be in production by March 1986.

  14. Hydraulic Hybrid Parcel Delivery Truck Deployment, Testing & Demonstration

    Energy Technology Data Exchange (ETDEWEB)

    Gallo, Jean-Baptiste [Calstart Incorporated, Pasadena, CA (United States)

    2014-03-07

    Although hydraulic hybrid systems have shown promise over the last few years, commercial deployment of these systems has primarily been limited to Class 8 refuse trucks. In 2005, the Hybrid Truck Users Forum initiated the Parcel Delivery Working Group including the largest parcel delivery fleets in North America. The goal of the working group was to evaluate and accelerate commercialization of hydraulic hybrid technology for parcel delivery vehicles. FedEx Ground, Purolator and United Parcel Service (UPS) took delivery of the world’s first commercially available hydraulic hybrid parcel delivery trucks in early 2012. The vehicle chassis includes a Parker Hannifin hydraulic hybrid drive system, integrated and assembled by Freightliner Custom Chassis Corp., with a body installed by Morgan Olson. With funding from the U.S. Department of Energy, CALSTART and its project partners assessed the performance, reliability, maintainability and fleet acceptance of three pre-production Class 6 hydraulic hybrid parcel delivery vehicles using information and data from in-use data collection and on-road testing. This document reports on the deployment of these vehicles operated by FedEx Ground, Purolator and UPS. The results presented provide a comprehensive overview of the performance of commercial hydraulic hybrid vehicles in parcel delivery applications. This project also informs fleets and manufacturers on the overall performance of hydraulic hybrid vehicles, provides insights on how the technology can be both improved and more effectively used. The key findings and recommendations of this project fall into four major categories: -Performance, -Fleet deployment, -Maintenance, -Business case. Hydraulic hybrid technology is relatively new to the market, as commercial vehicles have been introduced only in the past few years in refuse and parcel delivery applications. Successful demonstration could pave the way for additional purchases of hydraulic hybrid vehicles throughout the

  15. Hybrid dendrimer hydrogel/poly(lactic-co-glycolic acid) nanoparticle platform: an advanced vehicle for topical delivery of antiglaucoma drugs and a likely solution to improving compliance and adherence in glaucoma management.

    Science.gov (United States)

    Yang, Hu; Leffler, Christopher T

    2013-03-01

    Glaucoma therapy typically begins with topical medications, of which there are 4 major classes in common use in the United States: beta-adrenergic antagonists, alpha-agonists, carbonic anhydrase inhibitors, and prostaglandin analogs. Unfortunately, all 4 classes require at least daily dosing, and 3 of the 4 classes are approved to be administered 2 or 3 times daily. This need for frequent dosing with multiple medications makes compliance difficult. Longer-acting formulations and combinations that require less frequent administration might improve compliance and therefore medication effectiveness. Recently, we developed an ocular drug delivery system, a hybrid dendrimer hydrogel/poly(lactic-co-glycolic acid) nanoparticle platform for delivering glaucoma therapeutics topically. This platform is designed to deliver glaucoma drugs to the eye efficiently and release the drug in a slow fashion. Furthermore, this delivery platform is designed to be compatible with many of the glaucoma drugs that are currently approved for use. In this article, we review this new delivery system with in-depth discussion of its structural features, properties, and preclinical application in glaucoma treatment. In addition, future directions and translational efforts for marketing this technology are elaborated.

  16. Experimental and numerical models of three-dimensional gravity-driven flow of shear-thinning polymer solutions used in vaginal delivery of microbicides.

    Science.gov (United States)

    Kheyfets, Vitaly O; Kieweg, Sarah L

    2013-06-01

    HIV/AIDS is a growing global pandemic. A microbicide is a formulation of a pharmaceutical agent suspended in a delivery vehicle, and can be used by women to protect themselves against HIV infection during intercourse. We have developed a three-dimensional (3D) computational model of a shear-thinning power-law fluid spreading under the influence of gravity to represent the distribution of a microbicide gel over the vaginal epithelium. This model, accompanied by a new experimental methodology, is a step in developing a tool for optimizing a delivery vehicle's structure/function relationship for clinical application. We compare our model with experiments in order to identify critical considerations for simulating 3D free-surface flows of shear-thinning fluids. Here we found that neglecting lateral spreading, when modeling gravity-induced flow, resulted in up to 47% overestimation of the experimental axial spreading after 90 s. In contrast, the inclusion of lateral spreading in 3D computational models resulted in rms errors in axial spreading under 7%. In addition, the choice of the initial condition for shape in the numerical simulation influences the model's ability to describe early time spreading behavior. Finally, we present a parametric study and sensitivity analysis of the power-law parameters' influence on axial spreading, and to examine the impact of changing rheological properties as a result of dilution or formulation conditions. Both the shear-thinning index (n) and consistency (m) impacted the spreading length and deceleration of the moving front. The sensitivity analysis showed that gels with midrange m and n values (for the ranges in this study) would be most sensitive (over 8% changes in spreading length) to 10% changes (e.g., from dilution) in both rheological properties. This work is applicable to many industrial and geophysical thin-film flow applications of non-Newtonian fluids; in addition to biological applications in microbicide drug delivery.

  17. Microemulsion Using Polyoxyethylene Sorbitan Trioleate and its Usage for Skin Delivery of Resveratrol to Protect Skin against UV-Induced Damage.

    Science.gov (United States)

    Yutani, Reiko; Teraoka, Reiko; Kitagawa, Shuji

    2015-01-01

    We examined the phase behavior of various polyoxyethylene sorbitan fatty acid ester (polysorbates)/ethanol/isopropyl myristate (IPM)/150 mM NaCl solution (NaClaq) systems in order to prepare a microemulsion containing a low ratio of ethanol, which is more suitable for in vivo application. Using polyoxyethylene sorbitan trioleate (Tween 85), which has a large lipophilic moiety, as a surfactant component, single-phase domain of the phase diagram was the largest of all the polysorbates examined, and in particular a large oil-rich single-phase domain was obtained. When the ratio of Tween 85 to ethanol was changed from 1 : 1 to 3 : 1, the oil-rich single-phase domain further expanded, which led to a reduced ethanol concentration in the preparation. Thus, we determined the composition of the microemulsion to be Tween 85 : ethanol : IPM : NaClaq=30 : 10 : 53 : 7, and used it for skin delivery of resveratrol. Microemulsion gel was also prepared by adding 6.5% Aerosil) 200 into the microemulsion for ease of topical application. When applied with each vehicle, delivery of resveratrol into guinea pig skin in vitro was significantly enhanced compared with that by IPM, and resveratrol incorporated into the skin by microemulsion gel decreased lipid peroxidation to 29.5% compared with that of the control. Pretreatment of guinea pig dorsal skin with the microemulsion gel containing resveratrol almost completely prevented UV-B-induced erythema formation in vivo. These findings demonstrate that the microemulsion using Tween 85 containing a minimal concentration of ethanol enhanced the skin delivery of resveratrol and the incorporated resveratrol exhibited a protective effect against UV-induced oxidative damage.

  18. Assisted Vaginal Delivery

    Science.gov (United States)

    ... Education & Events Advocacy For Patients About ACOG Assisted Vaginal Delivery Home For Patients Search FAQs Assisted Vaginal ... Vaginal Delivery FAQ192, February 2016 PDF Format Assisted Vaginal Delivery Labor, Delivery, and Postpartum Care What is ...

  19. NMR mechanisms in gel dosimetry

    International Nuclear Information System (INIS)

    Schreiner, L J

    2009-01-01

    Nuclear magnetic resonance was critical to the development of gel dosimetry, as it established the potential for three dimensional dosimetry with chemical dosimeter systems through magnetic resonance imaging [1]. In the last two decades MRI has served as the gold standard for imaging, while NMR relaxometry has played an important role in the development and understanding of the behaviour of new gel dosimetry systems. Therefore, an appreciation of the relaxation mechanisms determining the NMR behaviour of irradiated gel dosimeters is important for a full comprehension of a considerable component of the literature on gel dosimetry. A number of excellent papers have presented this important theory, this brief review will highlight some of the salient points made previously [1-5]. The spin relaxation of gel dosimeters (which determines the dose dependence in most conventional MR imaging) is determined principally by the protons on water molecules in the system. These water protons exist in different environments, or groups (see Figure 1): on bulk water, on water hydrating the chemical species that are being modified under irradiation, and on water hydrating the gel matrix used to spatially stabilize the dosimeter (e.g., gelatin, agarose, etc). The spin relaxation depends on the inherent relaxation rate of each spin group, that is, on the relaxation rate which would be observed for the specific group if it were isolated. Also, the different water environments are not isolated from each other, and the observed relaxation rate also depends on the rate of exchange of magnetization between the groups, and on the fraction of protons in each group. In fact, the water exchanges quickly between the environments, so that relaxation is in what is usually termed the fast exchange regime. In the limit of fast exchange, the relaxation of the water protons is well characterized by a single exponential and hence by a single apparent relaxation rate. In irradiated gel dosimeters this

  20. Calcium phosphate ceramics in drug delivery

    Science.gov (United States)

    Bose, Susmita; Tarafder, Solaiman; Edgington, Joe; Bandyopadhyay, Amit

    2011-04-01

    Calcium phosphate (CaP) particulates, cements and scaffolds have attracted significant interest as drug delivery vehicles. CaP systems, including both hydroxyapaptite and tricalcium phosphates, possess variable stoichiometry, functionality and dissolution properties which make them suitable for cellular delivery. Their chemical similarity to bone and thus biocompatibility, as well as variable surface charge density contribute to their controlled release properties. Among specific research areas, nanoparticle size, morphology, surface area due to porosity, and chemistry controlled release kinetics are the most active. This article discusses CaP systems in their particulate, cements, and scaffold forms for drug, protein, and growth factor delivery toward orthopedic and dental applications.

  1. Improved Ant Colony Optimization for Seafood Product Delivery Routing Problem

    Directory of Open Access Journals (Sweden)

    Baozhen Yao

    2014-02-01

    Full Text Available This paper deals with a real-life vehicle delivery routing problem, which is a seafood product delivery routing problem. Considering the features of the seafood product delivery routing problem, this paper formulated this problem as a multi-depot open vehicle routing problem. Since the multi-depot open vehicle routing problem is a very complex problem, a method is used to reduce the complexity of the problem by changing the multi-depot open vehicle routing problem into an open vehicle routing problem with a dummy central depot in this paper. Then, ant colony optimization is used to solve the problem. To improve the performance of the algorithm, crossover operation and some adaptive strategies are used. Finally, the computational results for the benchmark problems of the multi-depot vehicle routing problem indicate that the proposed ant colony optimization is an effective method to solve the multi-depot vehicle routing problem. Furthermore, the computation results of the seafood product delivery problem from Dalian, China also suggest that the proposed ant colony optimization is feasible to solve the seafood product delivery routing problem.

  2. Thixotropic gel for vadose zone remediation

    Science.gov (United States)

    Rhia, Brian D [Augusta, GA

    2011-03-01

    A thixotropic gel suitable for use in subsurface bioremediation is provided along with a process of using the gel. The thixotropic gel provides a non-migrating injectable substrate that can provide below ground barrier properties. In addition, the gel components provide for a favorable environment in which certain contaminants are preferentially sequestered in the gel and subsequently remediated by either indigenous or introduced microorganisms.

  3. Bactericidal micron-thin sol-gel films prevent pin tract and periprosthetic infection.

    Science.gov (United States)

    Qu, Haibo; Knabe, Christine; Burke, Megan; Radin, Shula; Garino, Jonathan; Schaer, Thomas; Ducheyne, Paul

    2014-08-01

    Orthopedic injuries constitute the majority of wounds sustained by U.S. soldiers in recent conflicts. The risk of infection is considerable with fracture fixation devices. In this pilot study, we examined the use of unique bactericidal micron-thin sol-gel films on fracture fixation devices and their ability to prevent and eradicate infections. External fixation was studied with micron-thin sol-gel coated percutaneous pins releasing triclosan and inserted medially into rabbit tibiae. A total of 11 rabbits received percutaneous pins that were either uncoated or sol-gel/triclosan coated. Internal fracture fixation was also studied using sol-gel coated intramedullary (IM) nails releasing vancomycin in the intramedullary tibiae. Six sheep received IM nails that were coated with a sol-gel film that either contained vancomycin or did not contain vancomycin. All animals were challenged with Staphylococcus aureus around the implant. Animals were euthanized at 1 month postoperative. Rabbits receiving triclosan/sol-gel coated percutaneous pins did not show signs of infection. Uncoated percutaneous pins had a significantly higher infection rate. In the sheep study, there were no radiographic signs of osteomyelitis with vancomycin/sol-gel coated IM nails, in contrast to the observations in the control cohort. Hence, the nanostructured sol-gel controlled release technology offers the promise of a reliable and continuous delivery system of bactericidals from orthopedic devices to prevent and treat infection. Reprint & Copyright © 2014 Association of Military Surgeons of the U.S.

  4. Premature delivery

    Directory of Open Access Journals (Sweden)

    Bernardita Donoso Bernales

    2012-09-01

    Full Text Available Preterm delivery is the single most important cause of perinatal morbidity and mortality. In Chile, preterm births have increased in the past decade, although neonatal morbidity and mortality attributable to it shows a downward trend, thanks to improvements in neonatal care of premature babies, rather than the success of obstetric preventive and therapeutic strategies. This article describes clinical entities, disease processes and conditions that constitute predisposing factors of preterm birth, as well as an outline for the prevention and clinical management of women at risk of preterm birth.

  5. The pickup and delivery problem with cross-docking opportunity

    DEFF Research Database (Denmark)

    Petersen, Hanne Løhmann; Røpke, Stefan

    2011-01-01

    delivery by one truck, or by being picked up and transported to the cross-dock by one vehicle, and subsequently delivered at its final destination by another vehicle. Handling times at customers sites and terminal are given. A typical daily instance includes 500-1,000 requests. We solve the problem using...

  6. Surface grafted chitosan gels. Part II. Gel formation and characterization

    DEFF Research Database (Denmark)

    Liu, Chao; Thormann, Esben; Claesson, Per M.

    2014-01-01

    Responsive biomaterial hydrogels attract significant attention due to their biocompatibility and degradability. In order to make chitosan based gels, we first graft one layer of chitosan to silica, and then build a chitosan/poly(acrylic acid) multilayer using the layer-by-layer approach. After...... cross-linking the chitosan present in the polyelectrolyte multilayer, poly(acrylic acid) is partly removed by exposing the multilayer structure to a concentrated carbonate buffer solution at a high pH, leaving a surface-grafted cross-linked gel. Chemical cross-linking enhances the gel stability against...... detachment and decomposition. The chemical reaction between gluteraldehyde, the cross-linking agent, and chitosan was followed in situ using total internal reflection Raman (TIRR) spectroscopy, which provided a molecular insight into the complex reaction mechanism, as well as the means to quantify the cross...

  7. Improving the temperature performance of low-density ceramic heatshields through sol-gel processing

    Science.gov (United States)

    Bull, Jeffrey; Leiser, Daniel; Sommers, Jeneen; Esfahani, Lili

    1991-01-01

    The performance of rigid insulations for use as thermal protection materials on reentry vehicles can be characterized by their resistance to dimensional and morphological change when exposed to an isothermal environment equivalent to that generated in entry. Improvements in these material characteristics for alumina-enhanced thermal barrier insulation by compositional modification through sol-gel processing are reported.

  8. Oral transmucosal delivery of naratriptan.

    Science.gov (United States)

    Sattar, Mohammed; Lane, Majella E

    2016-11-30

    Naratriptan (NAR) is currently used as the hydrochloride salt (NAR.HCl) for the treatment of migraine and is available in tablet dosage forms for oral administration. Buccal drug delivery offers a number of advantages compared with conventional oral delivery including rapid absorption, avoidance of first pass metabolism and improved patient compliance. We have previously prepared and characterised the base form of NAR and shown that it has more favourable properties for buccal delivery compared with NAR.HCl. This study describes the design and evaluation of a range of formulations for oral transmucosal delivery of NAR base. Permeation studies were conducted using excised porcine buccal tissue mounted in Franz cells. Of the neat solvents examined, Transcutol ® P (TC) showed the greatest enhancement effects and was the vehicle in which NAR was most soluble. The mechanisms by which TC might promote permeation were further probed using binary systems containing TC with either buffer or Miglyol 812 ® (MG). Mass balance studies were also conducted for these systems. The permeation of TC as well as NAR was also monitored for TC:MG formulations. Overall, TC appears to promote enhanced membrane permeation of NAR because of its rapid uptake into the buccal tissue. Synergistic enhancement of buccal permeation was observed when TC was combined with MG and this is attributed to the increased thermodynamic activity of NAR in these formulations. Significantly enhanced permeation of NAR was achieved for TC:MG and this was also associated with less TC remaining on the tissue or in the tissue at the end of the experiment. To our knowledge this is the first report where both enhancer and active have been monitored in buccal permeation studies. The findings underline the importance of understanding the fate of vehicle components for rational formulation design of buccal delivery systems. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. The split delivery capacitated team orienteering problem

    NARCIS (Netherlands)

    Archetti, C.; Bianchessi, N.; Speranza, M. G.; Hertz, A.

    2014-01-01

    In this article, we study the capacitated team orienteering problem where split deliveries are allowed. A set of potential customers is given, each associated with a demand and a profit. The set of customers to be served by a fleet of capacitated vehicles has to be identified in such a way that the

  10. Alternative Fuel Fleet Vehicle Evaluations | Transportation Research | NREL

    Science.gov (United States)

    delivery, transit, and freight vehicles. Although biodiesel is the most commonly used alternative fuel in Diesel and Biodiesel Renewable diesel is a conventional petroleum diesel substitute produced from alternative to conventional diesel and does not require any vehicle modifications. Biodiesel is an oxygenated

  11. An approach to communications security for a communications data delivery system for V2V/V2I safety : technical description and identification of policy and institutional issues.

    Science.gov (United States)

    This report identifies the security approach associated with a communications data delivery system that supports vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) communications. The report describes the risks associated with communication...

  12. Clotrimazole nanoparticle gel for mucosal administration

    Energy Technology Data Exchange (ETDEWEB)

    Esposito, Elisabetta, E-mail: ese@unife.it [Department of Pharmaceutical Sciences, University of Ferrara, I-44121 Ferrara (Italy); Ravani, Laura [Department of Pharmaceutical Sciences, University of Ferrara, I-44121 Ferrara (Italy); Contado, Catia [Department of Chemistry, University of Ferrara, Ferrara (Italy); Costenaro, Andrea [Department of Pharmaceutical Sciences, University of Ferrara, I-44121 Ferrara (Italy); Drechsler, Markus [Macromolecular Chemistry II, University of Bayreuth (Germany); Rossi, Damiano [Department of Biology and Evolution, LT Terra and Acqua Tech UR7, University of Ferrara, Ferrara (Italy); Menegatti, Enea [Department of Pharmaceutical Sciences, University of Ferrara, I-44121 Ferrara (Italy); Grandini, Alessandro [Department of Biology and Evolution, LT Terra and Acqua Tech UR7, University of Ferrara, Ferrara (Italy); Cortesi, Rita [Department of Pharmaceutical Sciences, University of Ferrara, I-44121 Ferrara (Italy)

    2013-01-01

    In this study a formulation suitable to be applied on oral and/or vaginal mucosa has been developed for the treatment of fungal infections. The aim of the research is a comparison between clotrimazole (CLO) containing semisolid formulations based on monoolein aqueous dispersion (MAD) or nanostructured lipid carrier (NLC). MAD and NLC have been characterized in terms of morphology and dimensional distribution by cryogenic Transmission Electron Microscopy (cryo-TEM) and Photon Correlation Spectroscopy (PCS). CLO was encapsulated with high entrapment efficiency both in MAD and in NLC, according to Sedimentation Field Flow Fractionation (SdFFF) combined with HPLC. CLO recovery in MAD and NLC has been investigated by time. In order to obtain formulations with suitable viscosity for mucosal application, MAD was diluted with a carbomer gel, while NLC was directly viscosized by the addition of poloxamer 407 in the dispersion. The rheological properties of MAD and NLC after viscosizing have been investigated. Franz cell has been employed to study CLO diffusion from the different vehicles, evidencing diffusion rates from MAD and NLC superimposable to that obtained using Canesten{sup Registered-Sign }. An anticandidal activity study demonstrated that both CLO-MAD and CLO-NLC were more active against Candida albicans with respect to the pure drug. Highlights: Black-Right-Pointing-Pointer Comparison between monoolein aqueous dispersion (MAD) and nanostructured lipid carrier (NLC). Black-Right-Pointing-Pointer Clotrimazole (CLO) encapsulated with high entrapment efficiency both in MAD and in NLC. Black-Right-Pointing-Pointer The solid matrix of NLC controls CLO degradation better than MAD. Black-Right-Pointing-Pointer CLO containing MAD and NLC exhibits a higher anticandidal activity than the free drug. Black-Right-Pointing-Pointer Simple production of CLO-NLC based poloxamer gel, suitable for industry scaling up.

  13. Clotrimazole nanoparticle gel for mucosal administration

    International Nuclear Information System (INIS)

    Esposito, Elisabetta; Ravani, Laura; Contado, Catia; Costenaro, Andrea; Drechsler, Markus; Rossi, Damiano; Menegatti, Enea; Grandini, Alessandro; Cortesi, Rita

    2013-01-01

    In this study a formulation suitable to be applied on oral and/or vaginal mucosa has been developed for the treatment of fungal infections. The aim of the research is a comparison between clotrimazole (CLO) containing semisolid formulations based on monoolein aqueous dispersion (MAD) or nanostructured lipid carrier (NLC). MAD and NLC have been characterized in terms of morphology and dimensional distribution by cryogenic Transmission Electron Microscopy (cryo-TEM) and Photon Correlation Spectroscopy (PCS). CLO was encapsulated with high entrapment efficiency both in MAD and in NLC, according to Sedimentation Field Flow Fractionation (SdFFF) combined with HPLC. CLO recovery in MAD and NLC has been investigated by time. In order to obtain formulations with suitable viscosity for mucosal application, MAD was diluted with a carbomer gel, while NLC was directly viscosized by the addition of poloxamer 407 in the dispersion. The rheological properties of MAD and NLC after viscosizing have been investigated. Franz cell has been employed to study CLO diffusion from the different vehicles, evidencing diffusion rates from MAD and NLC superimposable to that obtained using Canesten ® . An anticandidal activity study demonstrated that both CLO-MAD and CLO-NLC were more active against Candida albicans with respect to the pure drug. Highlights: ► Comparison between monoolein aqueous dispersion (MAD) and nanostructured lipid carrier (NLC). ► Clotrimazole (CLO) encapsulated with high entrapment efficiency both in MAD and in NLC. ► The solid matrix of NLC controls CLO degradation better than MAD. ► CLO containing MAD and NLC exhibits a higher anticandidal activity than the free drug. ► Simple production of CLO-NLC based poloxamer gel, suitable for industry scaling up

  14. Assessment of Extension Service Delivery on Improved Cassava ...

    African Journals Online (AJOL)

    Extension service delivery is too often merely seen as a vehicle for spreading scientific and technical progress and technology transfer. In the real sense, however, dissemination of knowledge is not a one way affair from scientists to producers. The study was conducted to assess extension service delivery on improved ...

  15. Sol-gel derived sorbents

    Science.gov (United States)

    Sigman, Michael E.; Dindal, Amy B.

    2003-11-11

    Described is a method for producing copolymerized sol-gel derived sorbent particles for the production of copolymerized sol-gel derived sorbent material. The method for producing copolymerized sol-gel derived sorbent particles comprises adding a basic solution to an aqueous metal alkoxide mixture for a pH.ltoreq.8 to hydrolyze the metal alkoxides. Then, allowing the mixture to react at room temperature for a precalculated period of time for the mixture to undergo an increased in viscosity to obtain a desired pore size and surface area. The copolymerized mixture is then added to an immiscible, nonpolar solvent that has been heated to a sufficient temperature wherein the copolymerized mixture forms a solid upon the addition. The solid is recovered from the mixture, and is ready for use in an active sampling trap or activated for use in a passive sampling trap.

  16. Fundamentals of Polymer Gel Dosimeters

    Science.gov (United States)

    McAuley, Kim B.

    2006-12-01

    The recent literature on polymer gel dosimetry contains application papers and basic experimental studies involving polymethacrylic-acid-based and polyacrylamide-based gel dosimeters. The basic studies assess the relative merits of these two most commonly used dosimeters, and explore the effects of tetrakis hydroxymethyl phosphonium chloride (THPC) antioxidant on dosimeter performance. Polymer gel dosimeters that contain THPC or other oxygen scavengers are called normoxic dosimeters, because they can be prepared under normal atmospheric conditions, rather than in a glove box that excludes oxygen. In this review, an effort is made to explain some of the underlying chemical phenomena that affect dosimeter performance using THPC, and that lead to differences in behaviour between dosimeters made using the two types of monomer systems. Progress on the development of new more effective and less toxic dosimeters is also reported.

  17. Repair costs and the intensity of vehicle use

    Directory of Open Access Journals (Sweden)

    Paweł DROŹDZIEL

    2013-01-01

    Full Text Available This paper presents correlation analyses of real-life data associated with the intensity of use of vehicles and the costs of replacement of operating materials and components performed in a three-year period for delivery vans, which was operated by the Poczta Polska (Polish Mail delivery office in Lublin.

  18. Biomimetic chimeric peptide-tethered hydrogels for human mesenchymal stem cell delivery.

    Science.gov (United States)

    Shim, Gayong; Kim, Gunwoo; Choi, Junhyeok; Yi, TacGhee; Cho, Yun Kyoung; Song, Sun Uk; Byun, Youngro; Oh, Yu-Kyoung

    2015-12-01

    Here, we report a chimeric peptide-tethered fibrin hydrogel scaffold for delivery of human mesenchymal stem cells (hMSC). Osteopontin-derived peptide (OP) was used as an hMSC-tethering moiety. OP showed hMSC adhesion properties and enhanced hMSC proliferation. A natural fibrin-binding protein-derived peptide (FBP) was tested for its ability to tether hMSC to the fibrin gel matrix. FBP loading on fibrin gels was 8.2-fold higher than that of a scrambled peptide (scFBP). FBP-loaded fibrin gels were retained at injection sites longer than scFBP-loaded fibrin gels, showing a 15.9-fold higher photon intensity of fluorescent FBP-grafted fibrin gels than fluorescent scFBP-loaded fibrin gels 48 h after injection. On the basis of the fibrin gel-binding properties of FBP and the hMSC-binding and proliferation-supporting properties of OP, we constructed chimeric peptides containing FBP and OP linked with a spacer (FBPsOP). Four days after transplantation, the survival of hMSC in FBPsOP-grafted fibrin gels was 3.9-fold higher than hMSC in fibrin gels alone. Our results suggest the potential of FBPsOP-grafted fibrin gels as a bioactive delivery system for enhanced survival of stem cells. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Connected vehicle application : safety.

    Science.gov (United States)

    2015-01-01

    Connected vehicle safety applications are designed to increase situational awareness : and reduce or eliminate crashes through vehicle-to-infrastructure (V2I), vehicle-to-vehicle (V2V), and vehicle-to-pedestrian (V2P) data transmissions. Applications...

  20. Development of a lightweight electric urban delivery truck

    Energy Technology Data Exchange (ETDEWEB)

    Gillespie, G.; Martin, R.; Vader, S. [Unicell Ltd., Toronto, ON (Canada)

    2007-07-15

    A study was conducted to develop a lightweight urban parcel delivery vehicle that features a composite material, monocoque low-floor body and a zero-emission electric drive system. The long-term goal of project was to produce a vehicle with an energy efficiency that was nearly 90 per cent better than a conventional delivery vehicle. The objectives of the development phase were to complete the structural design of the composite, monocoque low-floor body. Electric drive options were explored to confirm the feasibility in terms of vehicle range, zero emissions and energy efficiency. This involved characterization of the vehicle duty cycle, development of a computer model of the electric powertrain, and simulations to confirm the vehicle's power and energy requirements. The design of the prototype was validated through testing in accordance with recognized vehicle performance tests and an in-service trial by Purolator Courier Ltd., a major Canadian courier service. Testing of the QuickSider delivery truck included vehicle dynamics, energy consumption, safety compliance, and in-service evaluation. No unacceptable stresses, deflections or resonances were identified in the structure. The vehicle's performance was found to be consistent with design expectations. Dynamometer tests have indicated that the ZEV range of the prototype is greater than the targeted 120 km. The overall energy efficiency of the vehicle was 50 per cent, as compared 11 per cent for a conventional diesel delivery truck. It was concluded that an overall energy efficiency of 75 per cent is achievable in production vehicles if improvements are made to the battery system, drive train, regenerative braking and auxiliary systems. 29 figs., 2 appendices.

  1. Comparative costs and benefits of hydrogen vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Berry, G.D. [Lawrence Livermore National Lab., CA (United States)

    1996-10-01

    The costs and benefits of hydrogen as a vehicle fuel are compared to gasoline, natural gas, and battery-powered vehicles. Costs, energy, efficiency, and tail-pipe and full fuel cycle emissions of air pollutants and greenhouse gases were estimated for hydrogen from a broad range of delivery pathways and scales: from individual vehicle refueling systems to large stations refueling 300 cars/day. Hydrogen production from natural gas, methanol, and ammonia, as well as water electrolysis based on alkaline or polymer electrolytes and steam electrolysis using solid oxide electrolytes are considered. These estimates were compared to estimates for competing fuels and vehicles, and used to construct oil use, air pollutant, and greenhouse gas emission scenarios for the U.S. passenger car fleet from 2005-2050. Fuel costs need not be an overriding concern in evaluating the suitability of hydrogen as a fuel for passenger vehicles. The combined emissions and oil import reduction benefits of hydrogen cars are estimated to be significant, valued at up to {approximately}$400/yr for each hydrogen car when primarily clean energy sources are used for hydrogen production. These benefits alone, however, become tenuous as the basis supporting a compelling rationale for hydrogen fueled vehicles, if efficient, advanced fossil-fuel hybrid electric vehicles (HEV`s) can achieve actual on-road emissions at or below ULEV standards in the 2005-2015 timeframe. It appears a robust rationale for hydrogen fuel and vehicles will need to also consider unique, strategic, and long-range benefits of hydrogen vehicles which can be achieved through the use of production, storage, delivery, and utilization methods for hydrogen which are unique among fuels: efficient use of intermittent renewable energy sources, (e,g, wind, solar), small-scale feasibility, fuel production at or near the point of use, electrolytic production, diverse storage technologies, and electrochemical conversion to electricity.

  2. Silica reinforced triblock copolymer gels

    DEFF Research Database (Denmark)

    Theunissen, E.; Overbergh, N.; Reynaers, H.

    2004-01-01

    The effect of silica and polymer coated silica particles as reinforcing agents on the structural and mechanical properties of polystyrene-poly(ethylene/butylene)-polystyrene (PS-PEB-PS) triblock gel has been investigated. Different types of chemically modified silica have been compared in order...

  3. Enzymatically crosslinked carboxymethyl-chitosan/gelatin/nano-hydroxyapatite injectable gels for in situ bone tissue engineering application

    Energy Technology Data Exchange (ETDEWEB)

    Mishra, Debasish; Bhunia, Bibhas; Banerjee, Indranil [Department of Biotechnology, Indian Institute of Technology Kharagpur (India); Datta, Pallab; Dhara, Santanu [School of Medical Science and Technology, Indian Institute of Technology Kharagpur (India); Maiti, Tapas K., E-mail: maititapask@gmail.com [Department of Biotechnology, Indian Institute of Technology Kharagpur (India)

    2011-10-10

    Present study reports synthesis and characterization of an enzymatically crosslinked injectable gel (iGel) suitable for cell based bone tissue engineering application. The gel comprises of carboxymethyl-chitosan (CMC)/gelatin/nano-hydroxyapatite (nHAp) susceptible to tyrosinase/p-cresol mediated in situ gelling at physiological temperature. Study revealed that a combination of tyrosinase (60U) and p-cresol (2 mM) as crosslinking agents yield rigid gels at physiological temperature when applied to CMC/gelatin within 35 min in presence or absence of nHAp. Rheological study in conjugation with FT-IR analysis showed that an increase in CMC concentration in the gel leads to higher degree of crosslinking and higher strength. Scanning electron microscopy showed that pore sizes of iGels increased with higher gelatin concentration. In vitro study of osteoblast cell proliferation and differentiation showed that, although all iGels are supportive towards the growth of primary osteoblast cells, GC1:1 supported cellular differentiation to the maximum. Application of iGels in mice revealed that stability of the in situ formed gels depends on the degree of crosslinking and CMC concentration. In conclusion, the iGels may be used in treating irregular small bone defects with minimal clinical invasion as well as for bone cell delivery. - Research Highlights: {yields} Enzymatically crosslinked injectable gel made up of CM-chitosan (C)/gelatin (G)/nHAp. {yields} Tyrosinase/p-cresol used for crosslinking and in situ gelling of polymers at 37deg. C. {yields} 60U tyrosinase and 2mM p-cresol is needed for gelation in 35 min. {yields} Higher GC ratio manifests lower crosslinking and gel strength but higher porosity. {yields} GC1:1 shows maximum in vivo gel stability and in vitro osteoblast differentiation.

  4. Connected vehicles and cybersecurity.

    Science.gov (United States)

    2016-01-01

    Connected vehicles are a next-generation technology in vehicles and in infrastructure that will make travel safer, cleaner, and more efficient. The advanced wireless technology enables vehicles to share and communicate information with each other and...

  5. Polyionic hydrocolloids for the intestinal delivery of protein drugs: alginate and chitosan--a review.

    Science.gov (United States)

    George, Meera; Abraham, T Emilia

    2006-08-10

    The protein pharmaceutical market is rapidly growing, since it is gaining support from the recombinant DNA technology. To deliver these drugs via the oral route, the most preferred route, is the toughest challenge. In the design of oral delivery of peptide or protein drugs, pH sensitive hydrogels like alginate and chitosan have attracted increasing attention, since most of the synthetic polymers are immunogenic and the incorporation of proteins in to these polymers require harsh environment which may denature and inactivate the desired protein. Alginate is a water-soluble linear polysaccharide composed of alternating blocks of 1-4 linked alpha-L-guluronic and beta-D-mannuronic acid residues where as chitosan is a co polymer of D-glucosamine and N-acetyl glucosamine. The incorporation of protein into these two matrices can be done under relatively mild environment and hence the chances of protein denaturation are minimal. The limitations of these polymers, like drug leaching during preparation can be overcome by different techniques which increase their encapsulation efficiency. Alginate, being an anionic polymer with carboxyl end groups, is a good mucoadhesive agent. The pore size of alginate gel microbeads has been shown to be between 5 and 200 nm and coated beads and microspheres are found to be better oral delivery vehicles. Cross-linked alginate has more capacity to retain the entrapped drugs and mixing of alginate with other polymers such as neutral gums, pectin, chitosan, and eudragit have been found to solve the problem of drug leaching. Chitosan has only limited ability for controlling the release of encapsulated compound due to its hydrophilic nature and easy solubility in acidic medium. By simple covalent modifications of the polymer, its physicochemical properties can be changed and can be made suitable for the peroral drug delivery purpose. Ionic interactions between positively charged amino groups in chitosan and the negatively charged mucus gel layer

  6. 21 CFR 866.4900 - Support gel.

    Science.gov (United States)

    2010-04-01

    ... IMMUNOLOGY AND MICROBIOLOGY DEVICES Immunology Laboratory Equipment and Reagents § 866.4900 Support gel. (a) Identification. A support gel for clinical use is a device that consists of an agar or agarose preparation that...

  7. Vehicle Development Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Supports the development of prototype deployment platform vehicles for offboard countermeasure systems.DESCRIPTION: The Vehicle Development Laboratory is...

  8. Yield stress determination of a physical gel

    DEFF Research Database (Denmark)

    Hvidt, Søren

    2013-01-01

    Pluronic F127 solutions form gels in water with high elastic moduli. Pluronic gels can, however, only withstand small deformations and stresses. Different steady shear and oscillatory methods traditionally used to determine yield stress values are compared. The results show that the yield stresses...... values of these gels depend on test type and measurement time, and no absolute yield stress value can be determined for these physical gels....

  9. Assisted delivery with forceps

    Science.gov (United States)

    ... page: //medlineplus.gov/ency/patientinstructions/000509.htm Assisted delivery with forceps To use the sharing features on ... called vacuum assisted delivery . When is a Forceps Delivery Needed? Even after your cervix is fully dilated ( ...

  10. Assessment of the adsorption mechanism of Flutamide anticancer drug on the functionalized single-walled carbon nanotube surface as a drug delivery vehicle: An alternative theoretical approach based on DFT and MD

    Science.gov (United States)

    Kamel, Maedeh; Raissi, Heidar; Morsali, Ali; Shahabi, Mahnaz

    2018-03-01

    In the present work, we have studied the drug delivery performance of the functionalized (5, 5) single-walled carbon nanotube with a carboxylic acid group for Flutamide anticancer drug in the gas phase as well as water solution by means of density functional theory calculations. The obtained results confirmed the energetic stability of the optimized geometries and revealed that the nature of drug adsorption on the functionalized carbon nanotube is physical. Our computations showed that the hydrogen bonding between active sites of Flutamide molecule and the carboxyl functional group of the nanotube plays a vital role in the stabilization of the considered configurations. The natural bond orbital analysis suggested that the functionalized nanotube plays the role of an electron donor and Flutamide molecule acts as an electron acceptor at the investigated complexes. In addition, molecular dynamics simulation is also utilized to investigate the effect of functionalized carbon nanotube chirality on the dynamic process of drug molecule adsorption on the nanotube surface. Simulation results demonstrated that drug molecules are strongly adsorbed on the functionalized nanotube surface with (10,5) chirality, as reflected by the most negative van der Waals interaction energy and a high number of hydrogen bonds between the functionalized nanotube and drug molecules.

  11. Physical Properties of Silicone Gel Breast Implants.

    Science.gov (United States)

    Jewell, Mark L; Bengtson, Bradley P; Smither, Kate; Nuti, Gina; Perry, TracyAnn

    2018-04-28

    Surgical applications using breast implants are individualized operations to fill and shape the breast. Physical properties beyond shape, size, and surface texture are important considerations during implant selection. Compare form stability, gel material properties, and shell thickness of textured shaped, textured round, and smooth round breast implants from 4 manufacturers: Allergan, Mentor, Sientra, and Establishment Labs through bench testing. Using a mandrel height gauge, form stability was measured by retention of dimensions on device movement from a horizontal to vertical supported orientation. Dynamic response of gel material (gel cohesivity, resistance to gel deformation, energy absorption) was measured using a synchronized target laser following application of graded negative pressure. Shell thickness was measured using digital thickness gauge calipers. Form stability, gel material properties, and shell thickness differed across breast implants. Of textured shaped devices, Allergan Natrelle 410 exhibited greater form stability than Mentor MemoryShape and Sientra Shaped implants. Allergan Inspira round implants containing TruForm 3 gel had greater form stability, higher gel cohesivity, greater resistance to gel deformation, and lower energy absorption than those containing TruForm 2 gel and in turn, implants containing TruForm 1 gel. Shell thickness was greater for textured versus smooth devices, and differed across styles. Gel cohesivity, resistance to gel deformation, and energy absorption are directly related to form stability, which in turn determines shape retention. These characteristics provide information to aid surgeons choosing an implant based on surgical application, patient tissue characteristics, and desired outcome.

  12. Polymer nanogels: a versatile nanoscopic drug delivery platform

    Science.gov (United States)

    Chacko, Reuben T.; Ventura, Judy; Zhuang, Jiaming; Thayumanavan, S.

    2012-01-01

    In this review we put the spotlight on crosslinked polymer nanogels, a promising platform that has the characteristics of an “ideal” drug delivery vehicle. Some of the key aspects of drug delivery vehicle design like stability, response to biologically relevant stimuli, passive targeting, active targeting, toxicity and ease of synthesis are discussed. We discuss several delivery systems in this light and highlight some examples of systems, which satisfy some or all of these design requirements. In particular, we point to the advantages that crosslinked polymeric systems bring to drug delivery. We review some of the synthetic methods of nanogel synthesis and conclude with the diverse applications in drug delivery where nanogels have been fruitfully employed. PMID:22342438

  13. The gel electrophoresis markup language (GelML) from the Proteomics Standards Initiative.

    Science.gov (United States)

    Gibson, Frank; Hoogland, Christine; Martinez-Bartolomé, Salvador; Medina-Aunon, J Alberto; Albar, Juan Pablo; Babnigg, Gyorgy; Wipat, Anil; Hermjakob, Henning; Almeida, Jonas S; Stanislaus, Romesh; Paton, Norman W; Jones, Andrew R

    2010-09-01

    The Human Proteome Organisation's Proteomics Standards Initiative has developed the GelML (gel electrophoresis markup language) data exchange format for representing gel electrophoresis experiments performed in proteomics investigations. The format closely follows the reporting guidelines for gel electrophoresis, which are part of the Minimum Information About a Proteomics Experiment (MIAPE) set of modules. GelML supports the capture of metadata (such as experimental protocols) and data (such as gel images) resulting from gel electrophoresis so that laboratories can be compliant with the MIAPE Gel Electrophoresis guidelines, while allowing such data sets to be exchanged or downloaded from public repositories. The format is sufficiently flexible to capture data from a broad range of experimental processes, and complements other PSI formats for MS data and the results of protein and peptide identifications to capture entire gel-based proteome workflows. GelML has resulted from the open standardisation process of PSI consisting of both public consultation and anonymous review of the specifications.

  14. Influence of a multiple emulsion, liposomes and a microemulsion gel on sebum, skin hydration and TEWL.

    Science.gov (United States)

    Mahrhauser, D; Nagelreiter, C; Baierl, A; Skipiol, J; Valenta, C

    2015-04-01

    In this study, the influence of three cosmetically relevant, priorly characterized vehicles on skin hydration, sebum content and transepidermal water loss was investigated. The chosen vehicles included a liposomal pre-formulation, a multiple W/O/W emulsion and a microemulsion gel. The in vivo effects of these vehicles were demonstrated and compared among them. The stability of the prepared vehicles was determined visually, microscopically, rheologically by pH measurements and particle size. Interactions with skin were assessed by non-invasive biophysical techniques using the Corneometer(®), Aqua Flux(®) and Sebumeter, measuring skin hydration, TEWL and skin sebum content, respectively. All vehicles remained stable over an observation period of 6 weeks. The multiple emulsion increased sebum content and skin hydration. In case of the liposomes, each monitored parameter remained almost constant. In contrast, the microemulsion gel lowered skin hydration and increased TEWL values, but even 1 week after termination of the treatment TEWL decreased almost close to control levels. All produced vehicles were proven to remain physically stable over the duration of this study. The used multiple emulsion showed very skin-friendly properties by increasing sebum and skin hydration. Likewise, the liposomal pre-formulation exhibited no negative effects. On the contrary, the investigated microemulsion gel seemed to have skin dehydrating and TEWL increasing features. However, the multiple emulsion as well as liposomes was identified to be well-tolerated vehicles for skin which might qualify them for the use in cosmetic formulations. © 2014 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  15. Gel dosimetry for conformal radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Gambarini, G [Department of Physics of the University and INFN, Milan (Italy)

    2005-07-01

    With the continuum development of conformal radio therapies, aimed at delivering high dose to tumor tissue and low dose to the healthy tissue around, the necessities has appeared of suitable improvement of dosimetry techniques giving the possibility of obtaining dose images to be compared with diagnostic images. Also if wide software has been developed for calculating dose distributions in the fields of various radiotherapy units, experimental verifications are necessary, in particular in the case of complex geometries in conformal radiotherapy. Gel dosimetry is a promising method for imaging the absorbed dose in tissue-equivalent phantoms, with the possibility of 3D reconstruction of the spatial dose distribution, with milli metric resolution. Optical imaging of gel dosimeters, based on visible light absorbance analysis, has shown to be a reliable technique for achieving dose distributions. (Author)

  16. Electric and hybrid vehicles

    Science.gov (United States)

    1979-01-01

    Report characterizes state-of-the-art electric and hybrid (combined electric and heat engine) vehicles. Performance data for representative number of these vehicles were obtained from track and dynamometer tests. User experience information was obtained from fleet operators and individual owners of electric vehicles. Data on performance and physical characteristics of large number of vehicles were obtained from manufacturers and available literature.

  17. Water equivalence of polymer gel dosimeters

    International Nuclear Information System (INIS)

    Sellakumar, P.; James Jebaseelan Samuel, E.; Supe, Sanjay S.

    2007-01-01

    To evaluate the water equivalence and radiation transport properties of polymer gel dosimeters over the wide range of photon and electron energies 14 different types of polymer gels were considered. Their water equivalence was evaluated in terms of effective atomic number (Z eff ), electron density (ρ e ), photon mass attenuation coefficient (μ/ρ), photon mass energy absorption coefficient (μ en /ρ) and total stopping power (S/ρ) tot of electrons using the XCOM and the ESTAR database. The study showed that the effective atomic number of polymer gels were very close ( en /ρ for all polymer gels were in close agreement ( tot of electrons in polymer gel dosimeters were within 1% agreement with that of water. From the study we conclude that at lower energy (<80keV) the polymer gel dosimeters cannot be considered water equivalent and study has to be carried out before using the polymer gel for clinical application

  18. A Multi-Modality Mobility Concept for a Small Package Delivery UAV

    Science.gov (United States)

    Young, L. A.

    2017-01-01

    This paper will discuss a different approach to the typical notional small package delivery drone concept. Most delivery drone concepts employ a point-to-point aerial delivery CONOPS (Concept of Operations) from a warehouse directly to the front or back yards of a customers residence or a commercial office space. Instead, the proposed approach is somewhat analogous to current postal deliveries: a small aerial vehicle flies from a warehouse to designated neighborhood VTOL (Vertical Take-Off and Landing) landing spots where the aerial vehicle then converts to a "roadable" (ground-mobility) vehicle that then transits on sidewalks and/or bicycle paths till it arrives to the residence/office drop-off points. This concept and associated platform or vehicle will be referred in this paper as MICHAEL (Multimodal Intra-City Hauling and Aerial-Effected Logistics) concept. It is suggested that the MICHAEL concept potentially results in a more community friendly "delivery drone" approach.

  19. Vehicle Based Vector Sensor

    Science.gov (United States)

    2015-09-28

    buoyant underwater vehicle with an interior space in which a length of said underwater vehicle is equal to one tenth of the acoustic wavelength...underwater vehicle with an interior space in which a length of said underwater vehicle is equal to one tenth of the acoustic wavelength; an...unmanned underwater vehicle that can function as an acoustic vector sensor. (2) Description of the Prior Art [0004] It is known that a propagating

  20. Optimization of Microemulsion Based Transdermal Gel of Triamcinolone.

    Science.gov (United States)

    Jagdale, Swati; Chaudhari, Bhagyashree

    2017-01-01

    Triamcinolone is a long acting corticosteroid used in the treatment of arthritis, eczema, psoriasis and similar conditions which cause inflammation. Triamcinolone has half-life of 88min. Prolonged oral use is associated with gastrointestinal adverse effects as peptic ulcer, abdominal distention and ulcerative esophagitis as described in various patents. Microemulgel offers advantage of better stability, better loading capacity and controlled release especially for drug with short half life. Objective of the present study was to optimize microemulgel based transdermal delivery of triamcinolone. Saturated solubility of triamcinolone in various oils, surfactants and co-surfactants is estimated. Pseudo-ternary phase diagrams were constructed to determine the region of transparent microemulsion. Microemulsion was evaluated for globule size (FE-SEM, zetasizer), % transmittance, pH, viscosity, conductivity etc. Design of experiment was used to optimize microemulsion based gel. Carbopol 971P and HPMC K100M were used as independent variables. Microemulsion based gel was evaluated for in-vitro as well as ex-vivo parameters. Microemulsion was formulated with oleic acid, lauroglycol FCC and propylene glycol. PDI 0.197 indicated microemulsion is mono-disperse. 32 factorial design gave batch F8 as optimized. Design expert suggested drug release; gel viscosity and bio-adhesive strength were three significant dependant factors affecting the transdermal delivery. F8 showed drug release 92.62.16±1.22% through egg membrane, 95.23±1.44% through goat skin after 8hr and Korsmeyer-Peppas release model was followed. It can be concluded that a stable, effective controlled release transdermal microemulgel was optimised for triamcinolone. This would be a promising tool to deliver triamcinolone with enhanced bioavailability and reduced dosing frequency. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  1. Sodium alginate-polyvinyl alcohol-bovin serum albumin coated Fe3O4 nanoparticles as anticancer drug delivery vehicle: Doxorubicin loading and in vitro release study and cytotoxicity to HepG2 and L02 cells.

    Science.gov (United States)

    Prabha, G; Raj, V

    2017-10-01

    The challenging part of this work was to research the potential aspects of sodium alginate (SA)-polyvinyl alcohol (PVA)-bovin serum albumin (BSA) coated Fe 3 O 4 nanoparticles (Fe 3 O 4 -SA-PVA-BSA) as a drug delivery system for doxorubicin (DOX). The anticancer drug doxorubicin was selected as a model drug which is powerful for numerous cancer treatments. Superparamagnetic Fe 3 O 4 nanoparticles were prepared by co-precipitation method. The mixture solution of Fe 3 O 4 -sodium alginate (SA) - doxorubicin (DOX) was crosslinked with Ca 2+ to form (Fe 3 O 4 -SA-DOX) nanoparticles and addition of PVA and BSA with (Fe 3 O 4 -SA-DOX) nanoparticles was prepared by coating procedure. Doxorubicin drug loaded NPs were prepared by a simple crosslinking method by calcium chloride solution. The prepared polymer coated magnetic nanoparticles (Fe 3 O 4 -SA-PVA-BSA) were characterized by using SEM, AFM, FT-IR, XRD and VSM. The mean sizes of the obtained drug loaded nanoparticles (Fe 3 O 4 -SA-DOX, Fe 3 O 4 -SA-DOX-PVA and Fe 3 O 4 -SA-DOX-PVA-BSA) were between 240±8.3 and 460±8.7nm and zeta potential of the particles also was evaluated using Malvern Zetasizer which ranged between -48.1±2.3 and -22.4±4.1mV. The encapsulation efficiency, was between 36.2±0.01 and 96.45±2.12. Moreover drug loading and drug release properties of the polymer coated magnetic nanoparticles loaded with doxorubicin (Fe 3 O 4 -SA-DOX-PVA-BSA) were also studied. In addition, the cytotoxicity of the created nanoparticles was performed by using MTT assay analysis which showed that DOX loaded nanoparticles (Fe 3 O 4 -SA-DOX-PVA-BSA) were toxic to HepG2 cell lines and non-toxic to L02 cell lines. The in-vitro drug release was studied by using UV-Visible spectrophotometer at acidic environment (pH5.0) and basic environment (pH7.4) as well as at different temperatures (37°C and 42°C). It was found that DOX drug is released much faster in acidic environment (pH5.0) than in the basic environment (pH7

  2. Transdermal drug delivery

    OpenAIRE

    Prausnitz, Mark R.; Langer, Robert

    2008-01-01

    Transdermal drug delivery has made an important contribution to medical practice, but has yet to fully achieve its potential as an alternative to oral delivery and hypodermic injections. First-generation transdermal delivery systems have continued their steady increase in clinical use for delivery of small, lipophilic, low-dose drugs. Second-generation delivery systems using chemical enhancers, non-cavitational ultrasound and iontophoresis have also resulted in clinical products; the ability ...

  3. Optimization of a truck-drone in tandem delivery network using K-means and genetic algorithm

    OpenAIRE

    Mourelo Ferrandez, Sergio; Harbison, Timothy; Webwer, Troy; Sturges, Robert; Rich, Robert

    2016-01-01

    Purpose: The purpose of this paper is to investigate the effectiveness of implementing unmanned aerial delivery vehicles in delivery networks. We investigate the notion of the reduced overall delivery time and energy for a truck-drone network by comparing the in-tandem system with a stand-alone delivery effort. The objectives are (1) to investigate the time and energy associated to a truck-drone delivery network compared to standalone truck or drone, (2) to propose an optimizat...

  4. Metal-silica sol-gel materials

    Science.gov (United States)

    Stiegman, Albert E. (Inventor)

    2002-01-01

    The present invention relates to a single phase metal-silica sol-gel glass formed by the co-condensation of a transition metal with silicon atoms where the metal atoms are uniformly distributed within the sol-gel glass as individual metal centers. Any transition metal may be used in the sol-gel glasses. The present invention also relates to sensor materials where the sensor material is formed using the single phase metal-silica sol-gel glasses. The sensor materials may be in the form of a thin film or may be attached to an optical fiber. The present invention also relates to a method of sensing chemicals using the chemical sensors by monitoring the chromatic change of the metal-silica sol-gel glass when the chemical binds to the sensor. The present invention also relates to oxidation catalysts where a metal-silica sol-gel glass catalyzes the reaction. The present invention also relates to a method of performing oxidation reactions using the metal-silica sol-gel glasses. The present invention also relates to organopolymer metal-silica sol-gel composites where the pores of the metal-silica sol-gel glasses are filled with an organic polymer polymerized by the sol-gel glass.

  5. Controlled release of vancomycin from thin sol-gel films on implant surfaces successfully controls osteomyelitis.

    Science.gov (United States)

    Adams, Christopher S; Antoci, Valentin; Harrison, Gerald; Patal, Payal; Freeman, Terry A; Shapiro, Irving M; Parvizi, Javad; Hickok, Noreen J; Radin, Shula; Ducheyne, Paul

    2009-06-01

    Peri-prosthetic infection remains a serious complication of joint replacement surgery. Herein, we demonstrate that a vancomycin-containing sol-gel film on Ti alloy rods can successfully treat bacterial infections in an animal model. The vancomycin-containing sol-gel films exhibited predictable release kinetics, while significantly inhibiting S. aureus adhesion. When evaluated in a rat osteomyelitis model, microbiological analysis indicated that the vancomycin-containing sol-gel film caused a profound decrease in S. aureus number. Radiologically, while the control side showed extensive bone degradation, including abscesses and an extensive periosteal reaction, rods coated with the vancomycin-containing sol-gel film resulted in minimal signs of infection. MicroCT analysis confirmed the radiological results, while demonstrating that the vancomycin-containing sol-gel film significantly protected dense bone from resorption and minimized remodeling. These results clearly demonstrate that this novel thin sol-gel technology can be used for the targeted delivery of antibiotics for the treatment of periprosthetic as well as other bone infections. Copyright 2008 Orthopaedic Research Society

  6. Impact of Protein Gel Porosity on the Digestion of Lipid Emulsions.

    Science.gov (United States)

    Sarkar, Anwesha; Juan, Jean-Marc; Kolodziejczyk, Eric; Acquistapace, Simone; Donato-Capel, Laurence; Wooster, Tim J

    2015-10-14

    The present study sought to understand how the microstructure of protein gels impacts lipolysis of gelled emulsions. The selected system consisted of an oil-in-water (o/w) emulsion embedded within gelatin gels. The gelatin-gelled emulsions consisted of a discontinuous network of aggregated emulsion droplets (mesoscale), dispersed within a continuous network of gelatin (microscale). The viscoelastic properties of the gelled emulsions were dominated by the rheological behavior of the gelatin, suggesting a gelatin continuous microstructure rather than a bicontinuous gel. A direct relationship between the speed of fat digestion and gel average mesh size was found, indicating that the digestion of fat within gelatin-gelled emulsions is controlled by the ability of the gel's microstructure to slow lipase diffusion to the interface of fat droplets. Digestion of fat was facilitated by gradual breakdown of the gelatin network, which mainly occurred via surface erosion catalyzed by proteases. Overall, this work has demonstrated that the lipolysis kinetics of gelled emulsions is driven by the microstructure of protein gels; this knowledge is key for the future development of microstructures to control fat digestion and/or the delivery of nutrients to different parts of the gastrointestinal tract.

  7. Preparation and in vitro evaluation of a pluronic lecithin organogel containing ricinoleic acid for transdermal delivery.

    Science.gov (United States)

    Boddu, Sai Hs; Bonam, Sindhu Prabha; Wei, Yangjie; Alexander, Kenneth

    2014-01-01

    The present study deals with the preparation and in vitro evaluation of a Pluronic lecithin organogel gel containing ricinoleic acid for transdermal delivery. Blank Pluronic lecithin organogel gels were prepared using ricinoleic acid as the oil phase and characterized for pH, viscosity, gelation temperature, and microscopic structure. The optimized Pluronic lecithin organogel gel formulation was further evaluated using ketoprofen (10%) and dexamethasone (0.5%) as model drugs. The stability and in vitro permeability of ketoprofen and dexamethasone was evaluated and compared with the corresponding control formulation (Pluronic lecithin organogel gel made with isopropyl palmitate as the oil phase). The pH and viscosity of blank Pluronic lecithin organogel gel prepared with ricinoleic acid was comparable with the isopropyl palmitate Pluronic lecithin organogel gel. The thixotropic property of ricinoleic acid Pluronic lecithin organogel gel was found to be better than the control. Drug-loaded Pluronic lecithin organogel gels behaved in a similar manner and all formulations were found to be stable at 25 degrees C, 35 degrees C, and 40 degrees C for up to 35 days. The penetration profile of dexamethasone was similar from both the Pluronic lecithin organogel gels, while the permeability for ketoprofen from Pluronic lecithin organogel gel containing ricinoleic acid was found to be three times higher as compared to the control formulation.

  8. Silica-Coated Liposomes for Insulin Delivery

    OpenAIRE

    Neelam Dwivedi; M. A. Arunagirinathan; Somesh Sharma; Jayesh Bellare

    2010-01-01

    Liposomes coated with silica were explored as protein delivery vehicles for their enhanced stability and improved encapsulation efficiency. Insulin was encapsulated within the fluidic phosphatidylcholine lipid vesicles by thin film hydration at pH 2.5, and layer of silica was formed above lipid bilayer by acid catalysis. The presence of silica coating and encapsulated insulin was identified using confocal and electron microscopy. The native state of insulin present in the formulation was evid...

  9. Recombinant Amphiphilic Protein Micelles for Drug Delivery

    OpenAIRE

    Kim, Wookhyun; Xiao, Jiantao; Chaikof, Elliot L.

    2011-01-01

    Amphiphilic block polypeptides can self-assemble into a range of nanostructures in solution, including micelles and vesicles. Our group has recently described the capacity of recombinant amphiphilic diblock copolypeptides to form highly stable micelles. In this report, we demonstrate the utility of protein nanoparticles to serve as a vehicle for controlled drug delivery. Drug-loaded micelles were produced by encapsulating dipyridamole as a model hydrophobic drug with anti-inflammatory activit...

  10. The impact of the oxygen scavenger on the dose-rate dependence and dose sensitivity of MAGIC type polymer gels

    Science.gov (United States)

    Khan, Muzafar; Heilemann, Gerd; Kuess, Peter; Georg, Dietmar; Berg, Andreas

    2018-03-01

    Recent developments in radiation therapy aimed at more precise dose delivery along with higher dose gradients (dose painting) and more efficient dose delivery with higher dose rates e.g. flattening filter free (FFF) irradiation. Magnetic-resonance-imaging based polymer gel dosimetry offers 3D information for precise dose delivery techniques. Many of the proposed polymer gels have been reported to exhibit a dose response, measured as relaxation rate ΔR2(D), which is dose rate dependent. A lack of or a reduced dose-rate sensitivity is very important for dosimetric accuracy, especially with regard to the increasing clinical use of FFF irradiation protocols with LINACs at high dose rates. Some commonly used polymer gels are based on Methacrylic-Acid-Gel-Initiated-by-Copper (MAGIC). Here, we report on the dose sensitivity (ΔR2/ΔD) of MAGIC-type gels with different oxygen scavenger concentration for their specific dependence on the applied dose rate in order to improve the dosimetric performance, especially for high dose rates. A preclinical x-ray machine (‘Yxlon’, E  =  200 kV) was used for irradiation to cover a range of dose rates from low \\dot{D} min  =  0.6 Gy min-1 to high \\dot{D} max  =  18 Gy min-1. The dose response was evaluated using R2-imaging of the gel on a human high-field (7T) MR-scanner. The results indicate that all of the investigated dose rates had an impact on the dose response in polymer gel dosimeters, being strongest in the high dose region and less effective for low dose levels. The absolute dose rate dependence \\frac{(Δ R2/Δ D)}{Δ \\dot{D}} of the dose response in MAGIC-type gel is significantly reduced using higher concentrations of oxygen scavenger at the expense of reduced dose sensitivity. For quantitative dose evaluations the relative dose rate dependence of a polymer gel, normalized to its sensitivity is important. Based on this normalized sensitivity the dose rate sensitivity was reduced distinctly

  11. Transdermal drug delivery

    Science.gov (United States)

    Prausnitz, Mark R.; Langer, Robert

    2009-01-01

    Transdermal drug delivery has made an important contribution to medical practice, but has yet to fully achieve its potential as an alternative to oral delivery and hypodermic injections. First-generation transdermal delivery systems have continued their steady increase in clinical use for delivery of small, lipophilic, low-dose drugs. Second-generation delivery systems using chemical enhancers, non-cavitational ultrasound and iontophoresis have also resulted in clinical products; the ability of iontophoresis to control delivery rates in real time provides added functionality. Third-generation delivery systems target their effects to skin’s barrier layer of stratum corneum using microneedles, thermal ablation, microdermabrasion, electroporation and cavitational ultrasound. Microneedles and thermal ablation are currently progressing through clinical trials for delivery of macromolecules and vaccines, such as insulin, parathyroid hormone and influenza vaccine. Using these novel second- and third-generation enhancement strategies, transdermal delivery is poised to significantly increase impact on medicine. PMID:18997767

  12. Research on pre-staining gel electrophoresis

    International Nuclear Information System (INIS)

    Zhong Ruibo; Liu Yushuang; Zhang Ping; Liu Jingran; Zhao Guofen; Zhang Feng

    2014-01-01

    Background: Gel electrophoresis is a powerful biochemical separation technique. Most biological molecules are completely transparent in the visible region of light, so it is necessary to use staining to show the results after gel electrophoresis, and the general steps of conventional staining methods are time-consuming. Purpose: We try to develop a novel approach to simplify the gel electrophoresis: Pre-Staining Gel Electrophoresis (PSGE), which can make the gel electrophoresis results monitored in real time. Methods: Pre-stain the protein samples with Coomassie Brilliant Blue (CBB) for 30 min before loading the sample into the gel well. Results and Conclusion: PSGE can be successfully used to analyze the binding efficiency of Bovine Serum Albumin (BSA) and amphiphilic polymer via chemical coupling and physical absorption, and the double PSGE also shows a great potential in bio-analytical chemistry. (authors)

  13. Functional coatings: the sol-gel approach

    International Nuclear Information System (INIS)

    Belleville, Ph.

    2010-01-01

    CEA's sol-gel laboratory is specialized in the development of innovative sol-gel optical coatings and has extended its application field to membrane materials and coatings for energy conversion, to electric coatings for microelectronics devices and to thin films for gas sensing. This article describes, by way of examples, the laboratory's research on sol-gel functional coatings, including nano-material synthesis, organic-inorganic hybrid-based solution preparation as well as deposition process development and prototyping. (author)

  14. Dosimetry Evolution in Teletherapy: Polimer Gel

    Science.gov (United States)

    Hamann, J. H.; Peixoto, J. G. P.

    2018-03-01

    Polymer gels evolution and chemical composition used in dosimetry. Type Composition First gels Folin’s Phenol or Gallic Acid Polymer Gel Agarose and N,N’-methylene-bis-acrylamide BANANA Bis, acrylamide, nitrous oxide and agarose BANG-1TM Bis, acrylamide, nitrogen and gelatin BANG-2TM Bis, acrylic acid, sodium hydroxide, nitrogen and gelatin BANG-3TM Bis, methacrylate acid, sodium hydroxide, nitrogen and gelatin MAGIC Methacrylate acid, ascorbic acid, gelatin and copper sulphate

  15. Stabilized aqueous gels and uses thereof

    Energy Technology Data Exchange (ETDEWEB)

    Swanson, B.L.

    1978-08-29

    New improved aqueous gels, and methods of using same in contacting subterranean formations, are provided. The gels are prepared by gelling an aqueous brine having incorporated therein a water-soluble cellulose ether such as a carboxymethylcellulose (CMC), and are rendered more stable to decomposition by incorporating a sulfoalkylated tannin stabilizing agent, such as a sulfomethylated quebracho (SMQ), in the gel during the preparation thereof.

  16. Microfluidics of soft granular gels

    Science.gov (United States)

    Nixon, Ryan; Bhattacharjee, Tapomoy; Sawyer, W. Gregory; Angelini, Thomas E.

    Microfluidic methods for encapsulating cells and particles typically involve drop making with two immiscible fluids. The main materials constraint in this approach is surface tension, creating inherent instability between the two fluids. We can eliminate this instability by using miscible inner and outer phases. This is achieved by using granular micro gels which are chemically miscible but physically do not mix. These microgels are yield stress materials, so they flow as solid plugs far from shear gradients, and fluidize where gradients are generated - near an injection nozzle for example. We have found that tuning the yield stress of the material by varying polymer concentration, device performance can be controlled. The solid like behavior of the gel allows us to produces infinitely stable jets that maintain their integrity and configuration over long distances and times. These properties can be combined and manipulated to produce discrete particulate bunches of an inner phase, flowing inside of an outer phase, well enough even to print a Morse code message suspended within flow chambers about a millimeter in diameter moving at millimeters a second.

  17. Conducting polymer electrodes for gel electrophoresis.

    Directory of Open Access Journals (Sweden)

    Katarina Bengtsson

    Full Text Available In nearly all cases, electrophoresis in gels is driven via the electrolysis of water at the electrodes, where the process consumes water and produces electrochemical by-products. We have previously demonstrated that π-conjugated polymers such as poly(3,4-ethylenedioxythiophene (PEDOT can be placed between traditional metal electrodes and an electrolyte to mitigate electrolysis in liquid (capillary electroosmosis/electrophoresis systems. In this report, we extend our previous result to gel electrophoresis, and show that electrodes containing PEDOT can be used with a commercial polyacrylamide gel electrophoresis system with minimal impact to the resulting gel image or the ionic transport measured during a separation.

  18. Ionic liquid based multifunctional double network gel

    Science.gov (United States)

    Ahmed, Kumkum; Higashihara, Tomoya; Arafune, Hiroyuki; Kamijo, Toshio; Morinaga, Takashi; Sato, Takaya; Furukawa, Hidemitsu

    2015-04-01

    Gels are a promising class of soft and wet materials with diverse application in tissue engineering and bio-medical purpose. In order to accelerate the development of gels, it is required to synthesize multi-functional gels of high mechanical strength, ultra low surface friction and suitable elastic modulus with a variety of methods and new materials. Among many types of gel ionic gel made from ionic liquids (ILs) could be used for diverse applications in electrochemical devices and in the field of tribology. IL, a promising materials for lubrication, is a salt with a melting point lower than 100 °C. As a lubricant, ILs are characterized by an extremely low vapor pressure, high thermal stability and high ion conductivity. In this work a novel approach of making double network DN ionic gel using IL has been made utilizing photo polymerization process. A hydrophobic monomer Methyl methacrylate (MMA) has been used as a first network and a hydrophobic IL monomer, N,N-diethyl-N-(2-mthacryloylethyl)-N-methylammonium bistrifluoromethylsulfonyl)imide (DEMM-TFSI) has been used as a second network using photo initiator benzophenon and crosslinker triethylene glycol dimethacrylate (TEGDMA). The resulting DN ionic gel shows transparency, flexibility, high thermal stability, good mechanical toughness and low friction coefficient value which can be a potential candidate as a gel slider in different mechanical devices and can open a new area in the field of gel tribology.

  19. Gel nano-particulates against radioactivity

    International Nuclear Information System (INIS)

    Deroin, Ph.

    2004-01-01

    The Argonne research center (USA) has developed a 'super-gel' compound, a polymer close to those used in baby's diapers, which can reach a 90% efficiency in the radioactive decontamination of porous materials, like bricks or concrete. The contaminated materials are sprayed with a mixture of polymer gel and wetting agent with nano-particulates in suspension. Under the action of the wetting agent, radioactivity migrates from the pores to the gel and is trapped by the nano-particulates. The drying and recycling of the gel allows to reduce the volume of radioactive wastes. Short paper. (J.S.)

  20. Conducting polymer electrodes for gel electrophoresis.

    Science.gov (United States)

    Bengtsson, Katarina; Nilsson, Sara; Robinson, Nathaniel D

    2014-01-01

    In nearly all cases, electrophoresis in gels is driven via the electrolysis of water at the electrodes, where the process consumes water and produces electrochemical by-products. We have previously demonstrated that π-conjugated polymers such as poly(3,4-ethylenedioxythiophene) (PEDOT) can be placed between traditional metal electrodes and an electrolyte to mitigate electrolysis in liquid (capillary electroosmosis/electrophoresis) systems. In this report, we extend our previous result to gel electrophoresis, and show that electrodes containing PEDOT can be used with a commercial polyacrylamide gel electrophoresis system with minimal impact to the resulting gel image or the ionic transport measured during a separation.

  1. A Comparative Analysis of the Environmental Benefits of Drone-Based Delivery Services in Urban and Rural Areas

    OpenAIRE

    Jiyoon Park; Solhee Kim; Kyo Suh

    2018-01-01

    Unmanned aerial vehicles (UAV, drones) used as delivery vehicles have received increasing attention due to their mobility and accessibility to remote areas. The purpose of this study is to evaluate the environmental impacts of drone versus motorcycle delivery and to compare the expected environmental improvements due to drone delivery in urban and rural areas. In addition, the potential environmental contributions of electric motorcycles were assessed to determine the effects of introducing t...

  2. The development of Cutina lipogels and gel microemulsion for topical administration of fluconazole

    OpenAIRE

    Ellaithy, H. M.; El-Shaboury, K. M. F.

    2002-01-01

    The influence of the vehicle on the release and permeation of fluconazole, a topical antifungal drug dissolved in Jojoba oil was evaluated. Series of Cutina lipogels (Cutina CPA [cetyl palmitate], CBS [mixture of glyceryl stearate, cetearyl alcohol, cetyl palmitate, and cocoglycerides], MD [glyceryl stearate], and GMS [glyceryl monostearate]) in different concentrations as well as gel microemulsion were prepared. In-vitro drug release in Sorensens citrate buffer (pH 5.5) and permeation throug...

  3. Comparison effect of azithromycin gel 2% with clindamycin gel 1% in patients with acne

    Directory of Open Access Journals (Sweden)

    Fatemeh Mokhtari

    2016-01-01

    Conclusion: Azithromycin gel has medical impact at least similar to Clindamycin Gel in treatment of mild to moderate acne vulgaris, and it may be consider as suitable drug for resistant acne to conventional topical therapy.

  4. Bridge vehicle impact assessment.

    Science.gov (United States)

    2011-12-01

    Bridges in New York State have been experiencing close to 200 bridge hits a year. These : accidents are attributed to numerous factors including: improperly stored equipment on trucks; : violation of vehicle posting signs; illegal commercial vehicles...

  5. The Electric Vehicle Development

    DEFF Research Database (Denmark)

    Wang, Jingyu; Liu, Yingqi; Kokko, Ari

    2014-01-01

    In order to respond to the energy crisis and environment problem, countries carry out their research and promotion about electric vehicles. As the ten cities one thousand new energy buses started in 2009, the new energy vehicles have been greatly developed in China, while the development...... in three aspects-city environment, government and stakeholders. Then the paper discusses the promotion ways and role of government and consumer. Finally, the paper offers some suggestions to promote electric vehicles in China: focusing on feasibility and adaptability of electric vehicles, playing...... of electric vehicles is not that good. This paper selects four cities-Los Angeles, Kanagawa, Hamburg, Amsterdam-that promote electric vehicles successfully and deeply analyzes the development of electric vehicles in these four cities and analyzes the factors that affect the development of electric vehicles...

  6. Energy harvesting water vehicle

    KAUST Repository

    Singh, Devendra

    2018-01-01

    An efficient energy harvesting (EEH) water vehicle is disclosed. The base of the EEH water vehicle is fabricated with rolling cylindrical drums that can rotate freely in the same direction of the water medium. The drums reduce the drag

  7. Integration of Fricke gel dosimetry with Ag nanoparticles for experimental dose enhancement determination in theranostics

    International Nuclear Information System (INIS)

    Vedelago, J.; Valente, M.; Mattea, F.

    2017-10-01

    The use and implementation of nanoparticles in medicine has grown exponentially in the last twenty years. Their main applications include drug delivery, theranostics, tissue engineering and magneto function. Dosimetry techniques can take advantage of inorganic nanoparticles properties and their combination with gel dosimetry techniques could be used as a first step for their later inclusion in radio-diagnostics or radiotherapy treatments. This work presents preliminary results of properly synthesized and purify silver nanoparticles integration with Fricke gel dosimeters. Used nanoparticles presented mean sizes ranging from 2 to 20 nm, with a lognormal distribution. Xylenol orange concentration in Fricke gel dosimeter was adjust in order to allow sample optical readout, accounting nanoparticles plasmon. Dose enhancement was assessed irradiating dosimeters setting X-ray beams energies below and above silver K-edge. (Author)

  8. Integration of Fricke gel dosimetry with Ag nanoparticles for experimental dose enhancement determination in theranostics

    Energy Technology Data Exchange (ETDEWEB)

    Vedelago, J.; Valente, M. [Instituto de Fisica Enrique Gaviola - CONICET, Av. Medina Allende s/n, Ciudad Universitaria, X5000HUA Cordoba (Argentina); Mattea, F., E-mail: jvedelago@famaf.unc.edu.ar [Universidad Nacional de Cordoba, FAMAF, Laboratorio de Investigacion e Instrumentacion en Fisica Aplicada a la Medicina e Imagenes por Rayos X, Av. Medina Allende s/n, Ciudad Universitaria, X5000HUA Cordoba (Argentina)

    2017-10-15

    The use and implementation of nanoparticles in medicine has grown exponentially in the last twenty years. Their main applications include drug delivery, theranostics, tissue engineering and magneto function. Dosimetry techniques can take advantage of inorganic nanoparticles properties and their combination with gel dosimetry techniques could be used as a first step for their later inclusion in radio-diagnostics or radiotherapy treatments. This work presents preliminary results of properly synthesized and purify silver nanoparticles integration with Fricke gel dosimeters. Used nanoparticles presented mean sizes ranging from 2 to 20 nm, with a lognormal distribution. Xylenol orange concentration in Fricke gel dosimeter was adjust in order to allow sample optical readout, accounting nanoparticles plasmon. Dose enhancement was assessed irradiating dosimeters setting X-ray beams energies below and above silver K-edge. (Author)

  9. Stacking gels: A method for maximising output for pulsed-field gel electrophoresis

    Directory of Open Access Journals (Sweden)

    Heng See

    2009-01-01

    Full Text Available Pulsed field gel electrophoresis (PFGE, the gold standard of molecular typing methods, has a major disadvantage of an unusually long electrophoretic time. From the original protocol of 6 days, it was modified to 3 days and subsequently to a single day. We describe the procedure of stacking five to six gels one on top of another in order to increase and maximize the output in a shorter time without compromising the resolution and reproducibility. All the variables that affect pulsed field gels during electrophoresis were taken into consideration. We firstly optimized the parameters to be used and secondly determined whether stacking of five to six gels had any effect on the molecular separation during electrophoresis in comparison with a single gel run. DNA preparation, restriction, electrophoresis, staining and gel documentation was carried out based on previously published methods. Gels were analysed using BioNumerics and dice coefficient and unweighted pair group methods were used to generate dendrograms based on 1.5% tolerance values. Identical band profiles and band resolution-separation were seen in the PFGE patterns with single gel and multiple stacking gels. Cluster analysis further strengthened the fact that results from stacking gels were reproducible and comparable with a single gel run. This method of stacking gels saves time and maximizes the output at the same time. The run time for a single gel was about 28 hours, but with six stacked gels the run time was 54 hours compared with 28 x 6 = 168 hours if they were run separately as single gels thus saving time of 67.86%. Beside the big factor of saving time, stacking gels save resources (electricity, reagents, water, chemicals and working time by increasing the sample throughput in a shorter time without compromising on quality of data. But optimization of working parameters is vital depending on the PFGE system used.

  10. Multifunctional DNA-gold nanoparticles for targeted doxorubicin delivery.

    Science.gov (United States)

    Alexander, Colleen M; Hamner, Kristen L; Maye, Mathew M; Dabrowiak, James C

    2014-07-16

    In this report we describe the synthesis, characterization, and cytotoxic properties of DNA-capped gold nanoparticles having attached folic acid (FA), a thermoresponsive polymer (p), and/or poly(ethylene glycol) (PEG) oligomers that could be used to deliver the anticancer drug doxorubicin (DOX) in chemotherapy. The FA-DNA oligomer used in the construction of the delivery vehicle was synthesized through the reaction of the isolated folic acid N-hydroxysuccinimide ester with the amino-DNA and the conjugated DNA product was purified using high performance liquid chromatography (HPLC). This approach ultimately allowed control of the amount of FA attached to the surface of the delivery vehicle. Cytotoxicity studies using SK-N-SH neuroblastoma cells with drug loaded delivery vehicles were carried out using a variety of exposure times (1-48 h) and recovery times (1-72 h), and in order to access the effects of varying amounts of attached FA, in culture media deficient in FA. DOX loaded delivery vehicles having 50% of the DNA strands with attached FA were more cytotoxic than when all of the strands contained FA. Since FA stimulates cell growth, the reduced cytotoxicity of vehicles fully covered with FA suggests that the stimulatory effects of FA can more than compensate for the cytotoxic effects of the drug on the cell population. While attachment of hexa-ethylene glycol PEG(18) to the surface of the delivery vehicle had no effect on cytotoxicity, 100% FA plus the thermoresponsive polymer resulted in IC50 = 0.48 ± 0.01 for an exposure time of 24 h and a recovery time of 1 h, which is an order of magnitude more cytotoxic than free DOX. Confocal microscopic studies using fluorescence detection showed that SK-N-SH neuroblastoma cells exposed to DOX-loaded vehicles have drug accumulation inside the cell and, in the case of vehicles with attached FA and thermoresponsive polymer, the drug appears more concentrated. Since the biological target of DOX is DNA, the latter

  11. Full truckload vehicle routing problem with profits

    Directory of Open Access Journals (Sweden)

    Jian Li

    2014-04-01

    Full Text Available A new variant of the full truckload vehicle routing problem is studied. In this problem there are more than one delivery points corresponding to the same pickup point, and one order is allowed to be served several times by the same vehicle or different vehicles. For the orders which cannot be assigned because of resource constraint, the logistics company outsources them to other logistics companies at a certain cost. To maximize its profits, logistics company decides which to be transported by private fleet and which to be outsourced. The mathematical model is constructed for the problem. Since the problem is NP-hard and it is difficult to solve the large-scale problems with an exact algorithm, a hybrid genetic algorithm is proposed. Computational results show the effectiveness of the hybrid genetic algorithm.

  12. Implementing electric vehicles in urban distribution: A discrete event simulation

    OpenAIRE

    Lebeau, Philippe; Macharis, Cathy; Mierlo, Joeri Van; Maes, Guillaume

    2013-01-01

    Urban freight transport becomes increasingly important with the development of cities. However, it generates also inefficiencies on social, economic and environmental aspects. A possible solution is the use of urban distribution centres in order to rationalise the deliveries and to operate the last miles with clean vehicles. Electric vehicles are gaining attention lately but some barriers remain. Since costs barriers were already investigated, the paper aimed at evaluating the difference of p...

  13. Optimal Routing for Heterogeneous Fixed Fleets of Multicompartment Vehicles

    OpenAIRE

    Wang, Qian; Ji, Qingkai; Chiu, Chun-Hung

    2014-01-01

    We present a metaheuristic called the reactive guided tabu search (RGTS) to solve the heterogeneous fleet multicompartment vehicle routing problem (MCVRP), where a single vehicle is required for cotransporting multiple customer orders. MCVRP is commonly found in delivery of fashion apparel, petroleum distribution, food distribution, and waste collection. In searching the optimum solution of MCVRP, we need to handle a large amount of local optima in the solution spaces. To overcome this proble...

  14. The use of autologous platelet-leukocyte gels to enhance the healing process in surgery, a review

    NARCIS (Netherlands)

    Everts, P. A.; Overdevest, E. P.; Jakimowicz, J. J.; Oosterbos, C. J.; Schonberger, J. P.; Knape, J. T.; van Zundert, A.

    2007-01-01

    Background: The therapeutic use of autologously prepared, platelet-leukocyte-enriched gel (PLG) is a relatively new technology for the stimulation and acceleration of soft tissue and bone healing. The effectiveness of this procedure lies in the delivery of a wide range of platelet growth factors

  15. eDelivery

    Data.gov (United States)

    US Agency for International Development — eDelivery provides the electronic packaging and delivery of closed and complete OPM investigation files to government agencies, including USAID, in a secure manner....

  16. Vacuum-assisted delivery

    Science.gov (United States)

    ... medlineplus.gov/ency/patientinstructions/000514.htm Vacuum-assisted delivery To use the sharing features on this page, ... through the birth canal. When is Vacuum-assisted Delivery Needed? Even after your cervix is fully dilated ( ...

  17. Categorization of rheological scaling models for particle gels applied to casein gels

    NARCIS (Netherlands)

    Mellema, M.; Opheusden, van J.H.J.; Vliet, van T.

    2002-01-01

    Rennet-induced casein gels made from skim milk were studied rheologically. A scaling model or framework for describing the rheological behavior of gels is discussed and used for classification of the structure of casein gels. There are two main parameters in the model that describe the number of

  18. Electric Vehicle Technician

    Science.gov (United States)

    Moore, Pam

    2011-01-01

    With President Obama's goal to have one million electric vehicles (EV) on the road by 2015, the electric vehicle technician should have a promising and busy future. "The job force in the car industry is ramping up for a revitalized green car industry," according to Greencareersguide.com. An electric vehicle technician will safely troubleshoot and…

  19. Supercavitating Vehicle Control

    Science.gov (United States)

    2008-10-10

    401) 832-1511. DISTRIBUTION STATEMENT Approved for Public Release Distribution is unlimited 20081027289 Attorney Docket No. 96674 SUPERCAVITATING ...methods and more specifically to systems and methods for controlling a trajectory of a supercavitating vehicle. (2) Description of the Prior Art [0004...1 [0005) Some investigations into reducing the drag of high-speed, underwater vehicles have focused attention on supercavitating underwater vehicles

  20. MRV - Modular Robotic Vehicle

    Science.gov (United States)

    Ridley, Justin; Bluethmann, Bill

    2015-01-01

    The Modular Robotic Vehicle, or MRV, completed in 2013, was developed at the Johnson Space Center in order to advance technologies which have applications for future vehicles both in space and on Earth. With seating for two people, MRV is a fully electric vehicle modeled as a "city car", suited for busy urban environments.

  1. An evaluation of prostaglandin E2 vaginal gel use in practice.

    Science.gov (United States)

    Taylor, S J; Peat, J K; Armour, C L

    1999-08-01

    The purpose of this study was to investigate the effectiveness of prostaglandin E2 vaginal gel as used in practice, rather than its efficacy as assessed in randomised, controlled, clinical trials. This product is used to ripen the cervix prior to induction of labour, sometimes making unnecessary the use of the standard treatment for induction, artificial rupture of the membranes (ARM) plus oxytocin. In this study, effectiveness of the gel was assessed in terms of changes in mode of delivery, and in particular the risk of Caesarean section. An historical control was used and the risk of Caesarean section for women induced in the 1990/91 (before the introduction of the gel) was compared with that for women induced in 1992/93 (after the introduction of the gel). Maternal characteristics which may have been different in the two groups and factors which might influence the risk of Caesarean section were controlled for statistically using logistic regression, thus reducing any bias towards one group. After adjusting for the factors which had a significant effect on the process of labour from induction to birth, it was found that the risk of Caesarean section was not significantly lower in the 1992/93-time period, when the gel was in regular use, from that in the 2 years prior to its introduction (Odds ratio 1.09, CI95% 0.88, 1.36). Following the introduction of PGE2 gel, no difference in effectiveness, as measured in terms of mode of delivery, was detected in this study of practice, which included patients with more complex obstetric problems.

  2. Live RB51 vaccine lyophilized hydrogel formulations with increased shelf life for practical ballistic delivery

    Science.gov (United States)

    Ballistic delivery capability is essential to delivering vaccines and other therapeutics effectively to both livestock and wildlife in many global scenarios. Here, lyophilized poly(ethylene glycol) (PEG)-glycolide dimethacrylate crosslinked but degradable hydrogels were assessed as payload vehicles ...

  3. Clinical developments of chemotherapeutic nanomedicines: Polymers and liposomes for delivery of camptothecins and platinum (II) drugs

    KAUST Repository

    Kieler-Ferguson, Heidi M.; Frechet, Jean; Szoka, Francis C.

    2013-01-01

    For the past 40 years, liposomal and polymeric delivery vehicles have been studied as systems capable of modulating the cytotoxicity of small molecule chemotherapeutics, increasing tumor bearing animal survival times, and improving drug targeting

  4. Communications data delivery system analysis : public workshop read-ahead document.

    Science.gov (United States)

    2012-04-09

    This document presents an overview of work conducted to date around development and analysis of communications data delivery systems for : supporting transactions in the connected vehicle environment. It presents the results of technical analysis of ...

  5. Articulating feedstock delivery device

    Science.gov (United States)

    Jordan, Kevin

    2013-11-05

    A fully articulable feedstock delivery device that is designed to operate at pressure and temperature extremes. The device incorporates an articulating ball assembly which allows for more accurate delivery of the feedstock to a target location. The device is suitable for a variety of applications including, but not limited to, delivery of feedstock to a high-pressure reaction chamber or process zone.

  6. Polyelectrolyte Complex Inclusive Biohybrid Microgels for Tailoring Delivery of Copigmented Anthocyanins.

    Science.gov (United States)

    Tan, Chen; B Celli, Giovana; Lee, Michelle; Licker, Jonathan; Abbaspourrad, Alireza

    2018-05-14

    This study fabricated a novel biohybrid microgel containing polysaccharide-based polyelectrolyte complexes (PECs) for anthocyanins. Herein, anthocyanins were encapsulated into PECs composed of chondroitin sulfate and chitosan, followed by incorporation into alginate microgels using emulsification/internal gelation method. We demonstrated that PECs incorporation strongly affected the properties of microgels, dependent on the polysaccharide concentration and pH in which they were fabricated. The dense internal network surrounded by an alginate shell was clearly visualized in cross-sectioned PECs-microgels. Stability studies carried out under varying ionic strength and pH conditions demonstrated the stimuli-responsiveness of the PECs-microgels. Additionally, the presence of PECs conferred microgels with high rigidity during freeze-drying and excellent reconstitution capacity upon rehydration. These observations were attributed to the modulation of electrostatic and hydrogen-bonding cross-linking between PECs and the alginate gel matrix and suggest the PECs inclusive microgels hold promise as delivery vehicles for the controlled release of hydrophilic bioactive compounds.

  7. Procurement Policy for Armored Vehicles

    National Research Council Canada - National Science Library

    Jolliffe, Richard B; Burton, Bruce A; Carros, Deborah L; Schaefer, Beth K; Truong, Linh; Palmer, Kevin A; Chun, Judy M; Smith, Jessica M; Abraham, Amanda M; Peters, Anthony R

    2007-01-01

    ...., and Armor Holdings, Inc., for armored vehicles. This report addresses armored vehicles, specifically the Buffalo Mine Protected Clearance Vehicle, the Cougar, the Joint Explosive Ordnance Disposal Rapid Response Vehicle (JERRV...

  8. Radiation sensitive polymer gel dosimeters

    International Nuclear Information System (INIS)

    Lepage, M.; Back, S.A.J.; Baldock, C.; Whittaker, A.K.; Rintoul, L.

    2000-01-01

    Full text: Radiation sensitive gels are studied for their potential to retain a permanent 3D dose distribution for applications in radiotherapy. Co-monomers dissolved in a tissue-equivalent hydrogel undergo a polymerization reaction upon absorption of ionizing radiation. The polymer formed influences the local spin-spin relaxation time (T 2 ) of the dosimeter that can be determined using magnetic resonance imaging (MRI). The relationship between T2 and the absorbed dose was studied for different initial chemical compositions. The aim was to find a model linking the changes in T 2 with absorbed dose to the initial composition of the dosimeter. It is believed this will help designing new gel dosimeters having desired properties to minimize the uncertainty in the determination of the dose distribution. 1 H, 13 C nuclear magnetic resonance spectroscopy and FT-Raman spectroscopy were used to quantify the amount of monomers still remaining after the absorption of a given dose of radiation. This data is used to model the changes of T2 as a function of the absorbed dose. A model of fast exchange of magnetization between three proton pools was used, where the fraction of protons (f x H ) in the x th pool is obtained from the chemical composition of the dosimeter and the apparent T2 of each pool is determined for a given composition. Initially, the protons are contained in two pools; a mobile (mob), which contains the water protons and the monomers protons, and a gelatin (gela) proton pool. The mobile pool is partially depleted as polymer is formed, the protons are transferred into the polymer (pol) pool. In the figure, the experimental data along with the calculated values are plotted for three different monomer concentrations, with the gelatin concentration fixed. The model is seen to provide a good fit to the experimental data

  9. Silica gel matrix immobilized Chlorophyta hydrodictyon africanum ...

    African Journals Online (AJOL)

    Chlorophyta hydrodictyon africanum was immobilized on a silica gel matrix to improve its mechanical properties. The algae-silica gel adsorbent was used for batch sorption studies of a cationic dye, methylene blue (MB). Optimum adsorption was obtained with a dosage of 0.8 g bio sorbent. Results from sorption studies ...

  10. Contaminant containment using polymer gel barriers

    NARCIS (Netherlands)

    Darwish, M.I.M.; Rowe, R.K.; Maarel, van der J.R.C.; Pel, L.; Huinink, H.P.; Zitha, P.L.J.

    2004-01-01

    Polymer gels are well known in the oil industry, but their potential for use as barriers to contaminant transport has not previously received significant study. As a first step, this paper examines the potential for a polyelectrolyte gel to serve as a barrier to the migration of sodium chloride. Two

  11. Serum release boosts sweetness intensity in gels

    NARCIS (Netherlands)

    Sala, G.; Stieger, M.A.; Velde, van de F.

    2010-01-01

    This paper describes the effect of serum release on sweetness intensity in mixed whey protein isolate/gellan gum gels. The impact of gellan gum and sugar concentration on microstructure, permeability, serum release and large deformation properties of the gels was determined. With increasing gellan

  12. Fast Processing of Sol-Gel TCO

    NARCIS (Netherlands)

    Deelen, J. van; Rem, M.; Arfsten, N.; Buskens, P.P.

    2016-01-01

    TCOs are usually deposited using sputtering or chemical vapor deposition, which have a yield of typically 50-75%. The sol gel method does not need low pressure and can be done with a high precursor yield in the range of 90 – 100%. Sol gel enables also the TCO function as a planarization or

  13. Space vehicle chassis

    Science.gov (United States)

    Judd, Stephen; Dallmann, Nicholas; Seitz, Daniel; Martinez, John; Storms, Steven; Kestell, Gayle

    2017-07-18

    A modular space vehicle chassis may facilitate convenient access to internal components of the space vehicle. Each module may be removable from the others such that each module may be worked on individually. Multiple panels of at least one of the modules may swing open or otherwise be removable, exposing large portions of the internal components of the space vehicle. Such chassis architectures may reduce the time required for and difficulty of performing maintenance or modifications, may allow multiple space vehicles to take advantage of a common chassis design, and may further allow for highly customizable space vehicles.

  14. Ariane transfer vehicle scenario

    Science.gov (United States)

    Deutscher, Norbert; Cougnet, Claude

    1990-10-01

    ESA's Ariane Transfer Vehicle (ATV) is a vehicle design concept for the transfer of payloads from Ariane 5 launch vehicle orbit insertion to a space station, on the basis of the Ariane 5 program-developed Upper Stage Propulsion Module and Vehicle Equipment Bay. The ATV is conceived as a complement to the Hermes manned vehicle for lower cost unmanned carriage of logistics modules and other large structural elements, as well as waste disposal. It is also anticipated that the ATV will have an essential role in the building block transportation logistics of any prospective European space station.

  15. Design and Fabrication of N-Alkyl-Polyethylenimine-Stabilized Iron Oxide Nanoclusters for Gene Delivery

    OpenAIRE

    Liu, Gang; Wang, Zhiyong; Lee, Seulki; Ai, Hua; Chen, Xiaoyuan

    2012-01-01

    With the rapid development of nanotechnology, inorganic magnetic nanoparticles, especially iron oxide nanoparticles (IOs), have emerged as great vehicles for biomedical diagnostic and therapeutic applications. In order to rationally design IO-based gene delivery nanovectors, surface modification is essential and determines the loading and release of the gene of interest. Here we highlight the basic concepts and applications of nonviral gene delivery vehicles based on low molecular weight N-al...

  16. Meso-Decorated Switching-Knot Gels

    Science.gov (United States)

    Gong, Jin; Sawamura, Kensuke; Makino, Masato; Kabir, M. H.; Furukawa, Hidemitsu

    Gels are a new material having three-dimensional network structures of macromolecules. They possess excellent properties as swellability, high permeability and biocompatibility, and have been applied in various fields of daily life, food, medicine, architecture, and chemistry .In this study, we tried to prepare new multi-functional and high-strength gels by using Meso-Decoration (Meso-Deco), one new method of structure design at intermediate mesoscale. High-performance rigid-rod aromatic polymorphic crystals. The strengthening of gels can be realized by meso-decorating the gels' structure using high-performance polymorphic crystals. New gels with good mechanical properties, novel optical properties and thermal properties are expected to be developed.

  17. Polymer architecture of magnetic gels: a review

    Science.gov (United States)

    Weeber, Rudolf; Hermes, Melissa; Schmidt, Annette M.; Holm, Christian

    2018-02-01

    In this review article, we provide an introduction to ferrogels, i.e. polymeric gels with embedded magnetic particles. Due to the interplay between magnetic and elastic properties of these materials, they are promising candidates for engineering and biomedical applications such as actuation and controlled drug release. Particular emphasis will be put on the polymer architecture of magnetic gels since it controls the degrees of freedom of the magnetic particles in the gel, and it is important for the particle-polymer coupling determining the mechanisms available for the gel deformation in magnetic fields. We report on the different polymer architectures that have been realized so far, and provide an overview of synthesis strategies and experimental techniques for the characterization of these materials. We further focus on theoretical and simulational studies carried out on magnetic gels, and highlight their contributions towards understanding the influence of the gels’ polymer architecture.

  18. On shear rheology of gel propellants

    Energy Technology Data Exchange (ETDEWEB)

    Rahimi, Shai; Peretz, Arie [RAFAEL, MANOR Propulsion and Explosive Systems Division, Haifa (Israel); Natan, Benveniste [Faculty of Aerospace Engineering, Technion - Israel Institute of Technology, Haifa (Israel)

    2007-04-15

    Selected fuel, oxidizer and simulant gels were prepared and rheologically characterized using a rotational rheometer. For fuel gelation both organic and inorganic gellants were utilized, whereas oxidizers and simulants were gelled with addition of silica and polysaccharides, respectively. The generalized Herschel-Bulkley constitutive model was found to most adequately represent the gels studied. Hydrazine-based fuels, gelled with polysaccharides, were characterized as shear-thinning pseudoplastic fluids with low shear yield stress, whereas inhibited red-fuming nitric acid (IRFNA) and hydrogen peroxide oxidizers, gelled with silica, were characterized as yield thixotropic fluids with significant shear yield stress. Creep tests were conducted on two rheological types of gels with different gellant content and the results were fitted by Burgers-Kelvin viscoelastic constitutive model. The effect of temperature on the rheological properties of gel propellant simulants was also investigated. A general rheological classification of gel propellants and simulants is proposed. (Abstract Copyright [2007], Wiley Periodicals, Inc.)

  19. Gelled-electrolyte batteries for electric vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Tuphorn, H. (Accumulatorenfabrik Sonnenschein GmbH, Buedingen (Germany))

    1992-09-15

    Increasing problems of air pollution have pushed activities of electric vehicle projects world-wide and in spite of projects for developing new battery systems for high energy densities, today lead/acid batteries are almost the single system, ready for technical usage in this application. Valve-regulated lead/acid batteries with gelled electrolyte have the advantage that no maintenance is required and because the gel system does not cause problems with electrolyte stratification, no additional appliances for central filling or acid addition are required, which makes the system simple. Those batteries with high density active masses indicate high endurance results and field tests with 40 VW-CityStromers, equipped with 96 V/160 A h gel batteries with thermal management show good results during four years. In addition, gelled lead acid batteries possess superior high rate performance compared with conventional lead/acid batteries, which guarantees good acceleration results of the car and which makes the system recommendable for application in electric vehicles. (orig.).

  20. Gelled-electrolyte batteries for electric vehicles

    Science.gov (United States)

    Tuphorn, Hans

    Increasing problems of air pollution have pushed activities of electric vehicle projects worldwide and in spite of projects for developing new battery systems for high energy densities, today lead/acid batteries are almost the single system, ready for technical usage in this application. Valve-regulated lead/acid batteries with gelled electrolyte have the advantage that no maintenance is required and because the gel system does not cause problems with electrolyte stratification, no additional appliances for central filling or acid addition are required, which makes the system simple. Those batteries with high density active masses indicate high endurance results and field tests with 40 VW-CityStromers, equipped with 96 V/160 A h gel batteries with thermal management show good results during four years. In addition, gelled lead/acid batteries possess superior high rate performance compared with conventional lead/acid batteries, which guarantees good acceleration results of the car and which makes the system recommendable for application in electric vehicles.

  1. Internal structure analysis of particle-double network gels used in a gel organ replica

    Science.gov (United States)

    Abe, Mei; Arai, Masanori; Saito, Azusa; Sakai, Kazuyuki; Kawakami, Masaru; Furukawa, Hidemitsu

    2016-04-01

    In recent years, the fabrication of patient organ replicas using 3D printers has been attracting a great deal of attention in medical fields. However, the cost of these organ replicas is very high as it is necessary to employ very expensive 3D printers and printing materials. Here we present a new gel organ replica, of human kidney, fabricated with a conventional molding technique, using a particle-double network hydrogel (P-DN gel). The replica is transparent and has the feel of a real kidney. It is expected that gel organ replicas produced this way will be a useful tool for the education of trainee surgeons and clinical ultrasonography technologists. In addition to developing a gel organ replica, the internal structure of the P-DN gel used is also discussed. Because the P-DN gel has a complex structure comprised of two different types of network, it has not been possible to investigate them internally in detail. Gels have an inhomogeneous network structure. If it is able to get a more uniform structure, it is considered that this would lead to higher strength in the gel. In the present study we investigate the structure of P-DN gel, using the gel organ replica. We investigated the internal structure of P-DN gel using Scanning Microscopic Light Scattering (SMILS), a non-contacting and non-destructive.

  2. Electrophoresis of DNA in agarose gels, polyacrylamide gels and in free solution

    Science.gov (United States)

    Stellwagen, Nancy C.

    2009-01-01

    This review describes the electrophoresis of curved and normal DNA molecules in agarose gels, polyacrylamide gels and in free solution. These studies were undertaken to clarify why curved DNA molecules migrate anomalously slowly in polyacrylamide gels but not in agarose gels. Two milestone papers are cited, in which Ferguson plots were used to estimate the effective pore size of agarose and polyacrylamide gels. Subsequent studies on the effect of the electric field on agarose and polyacrylamide gel matrices, DNA interactions with the two gel matrices, and the effect of curvature on the free solution mobility of DNA are also described. The combined results suggest that the anomalously slow mobilities observed for curved DNA molecules in polyacrylamide gels are due primarily to preferential interactions of curved DNAs with the polyacrylamide gel matrix; the restrictive pore size of the matrix is of lesser importance. In free solution, DNA mobilities increase with increasing molecular mass until leveling off at a plateau value of (3.17 ± 0.01) × 10-4 cm2/Vs in 40 mM Tris-acetate-EDTA buffer at 20°C. Curved DNA molecules migrate anomalously slowly in free solution as well as in polyacrylamide gels, explaining why the Ferguson plots of curved and normal DNAs containing the same number of base pairs extrapolate to different mobilities at zero gel concentration. PMID:19517510

  3. Long-term delivery of protein therapeutics.

    Science.gov (United States)

    Vaishya, Ravi; Khurana, Varun; Patel, Sulabh; Mitra, Ashim K

    2015-03-01

    Proteins are effective biotherapeutics with applications in diverse ailments. Despite being specific and potent, their full clinical potential has not yet been realized. This can be attributed to short half-lives, complex structures, poor in vivo stability, low permeability, frequent parenteral administrations and poor adherence to treatment in chronic diseases. A sustained release system, providing controlled release of proteins, may overcome many of these limitations. This review focuses on recent development in approaches, especially polymer-based formulations, which can provide therapeutic levels of proteins over extended periods. Advances in particulate, gel-based formulations and novel approaches for extended protein delivery are discussed. Emphasis is placed on dosage form, method of preparation, mechanism of release and stability of biotherapeutics. Substantial advancements have been made in the field of extended protein delivery via various polymer-based formulations over last decade despite the unique delivery-related challenges posed by protein biologics. A number of injectable sustained-release formulations have reached market. However, therapeutic application of proteins is still hampered by delivery-related issues. A large number of protein molecules are under clinical trials, and hence, there is an urgent need to develop new methods to deliver these highly potent biologics.

  4. Fluid Delivery System For Capillary Electrophoretic Applications.

    Science.gov (United States)

    Li, Qingbo; Liu, Changsheng; Kane, Thomas E.; Kernan, John R.; Sonnenschein, Bernard; Sharer, Michael V.

    2002-04-23

    An automated electrophoretic system is disclosed. The system employs a capillary cartridge having a plurality of capillary tubes. The cartridge has a first array of capillary ends projecting from one side of a plate. The first array of capillary ends are spaced apart in substantially the same manner as the wells of a microtitre tray of standard size. This allows one to simultaneously perform capillary electrophoresis on samples present in each of the wells of the tray. The system includes a stacked, dual carrousel arrangement to eliminate cross-contamination resulting from reuse of the same buffer tray on consecutive executions from electrophoresis. The system also has a gel delivery module containing a gel syringe/a stepper motor or a high pressure chamber with a pump to quickly and uniformly deliver gel through the capillary tubes. The system further includes a multi-wavelength beam generator to generate a laser beam which produces a beam with a wide range of wavelengths. An off-line capillary reconditioner thoroughly cleans a capillary cartridge to enable simultaneous execution of electrophoresis with another capillary cartridge. The streamlined nature of the off-line capillary reconditioner offers the advantage of increased system throughput with a minimal increase in system cost.

  5. Micelles as delivery vehicles for oligofluorene for bioimaging.

    Science.gov (United States)

    Su, Fengyu; Alam, Ruhaniyah; Mei, Qian; Tian, Yanqing; Meldrum, Deirdre R

    2011-01-01

    With the successful development of organic/polymeric light emitting diodes, many organic and polymeric fluorophores with high quantum efficiencies and optical stability were synthesized. However, most of these materials which have excellent optical properties are insoluble in water, limiting their applications in biological fields. Herein, we used micelles formed from an amino-group-containing poly(ε-caprolactone)-block-poly(ethylene glycol) (PCL-b-PEG-NH(2)) to incorporate a hydrophobic blue emitter oligofluorene (OF) to enable its application in biological conditions. Although OF is completely insoluble in water, it was successfully transferred into aqueous solutions with a good retention of its photophysical properties. OF exhibited a high quantum efficiency of 0.84 in a typical organic solvent of tetrahydrofuran (THF). In addition, OF also showed a good quantum efficiency of 0.46 after being encapsulated into micelles. Two cells lines, human glioblastoma (U87MG) and esophagus premalignant (CP-A), were used to study the cellular internalization of the OF incorporated micelles. Results showed that the hydrophobic OF was located in the cytoplasm, which was confirmed by co-staining the cells with nucleic acid specific SYTO 9, lysosome specific LysoTracker Red®, and mitochondria specific MitoTracker Red. MTT assay indicated non-toxicity of the OF-incorporated micelles. This study will broaden the application of hydrophobic functional organic compounds, oligomers, and polymers with good optical properties to enable their applications in biological research fields.

  6. Micelles as delivery vehicles for oligofluorene for bioimaging.

    Directory of Open Access Journals (Sweden)

    Fengyu Su

    Full Text Available With the successful development of organic/polymeric light emitting diodes, many organic and polymeric fluorophores with high quantum efficiencies and optical stability were synthesized. However, most of these materials which have excellent optical properties are insoluble in water, limiting their applications in biological fields. Herein, we used micelles formed from an amino-group-containing poly(ε-caprolactone-block-poly(ethylene glycol (PCL-b-PEG-NH(2 to incorporate a hydrophobic blue emitter oligofluorene (OF to enable its application in biological conditions. Although OF is completely insoluble in water, it was successfully transferred into aqueous solutions with a good retention of its photophysical properties. OF exhibited a high quantum efficiency of 0.84 in a typical organic solvent of tetrahydrofuran (THF. In addition, OF also showed a good quantum efficiency of 0.46 after being encapsulated into micelles. Two cells lines, human glioblastoma (U87MG and esophagus premalignant (CP-A, were used to study the cellular internalization of the OF incorporated micelles. Results showed that the hydrophobic OF was located in the cytoplasm, which was confirmed by co-staining the cells with nucleic acid specific SYTO 9, lysosome specific LysoTracker Red®, and mitochondria specific MitoTracker Red. MTT assay indicated non-toxicity of the OF-incorporated micelles. This study will broaden the application of hydrophobic functional organic compounds, oligomers, and polymers with good optical properties to enable their applications in biological research fields.

  7. M13 Bacteriophage-Polymer Nanoassemblies as Drug Delivery Vehicles

    Science.gov (United States)

    2011-01-01

    2011, 4(5): 483–493 490 a solution of folic acid, EDC, and sulfo-NHS (in a molar ratio of 1:1.1:2.5) in anhydrous dimethylsulfoxide ( DMSO ) (1 mL...and stirred overnight. The mass ratio of M13 to PCL–P2VP was 1:5, whereas the solvent ratio of buffer to THF was 19:1. Free DOX was removed from FA

  8. Procurement and Delivery of Joint Service Armor Protected Vehicles

    Science.gov (United States)

    2009-01-29

    from theater co mmanders. Army Deputy Chi ef ofS tarr G-3/517 of’ti cials stated thaI the Army con tinues to purchase I-IM MWVs to meel its li ght...8217 whi ch hi stori ca l co nt ract pricing data did not ex ist. Price Evaluation Team Reports M SC offi cials cstablishcd a pri cc eva luation tea m...noted thai the rcpo rt incorrectly li sts the price oCthe initial test vehic les as $88 million when it was actually $23 mill ion. Thi s inrormation is

  9. Protein nanoparticle: A unique system as drug delivery vehicles

    African Journals Online (AJOL)

    STORAGESEVER

    2008-12-29

    Dec 29, 2008 ... Nanobiotechnology Research Center, Faculty of Chemical Engineering, Babol University of Technology, Iran. ... as potential carriers with unique advantages including ..... for intracellular uptake in BT/20 human breast cancer.

  10. Mesenchymal stem cells as therapeutic delivery vehicles targeting tumor stroma

    DEFF Research Database (Denmark)

    Serakinci, Nedime; Christensen, Rikke; Sørensen, Flemming Brandt

    2011-01-01

    The field of stem cell biology continues to evolve by characterization of further types of stem cells and by exploring their therapeutic potential for experimental and clinical applications. Human mesenchymal stem cells (hMSCs) are one of the most promising candidates simply because...... better understanding and in vivo supporting data. The homing ability of hMSCs was investigated by creating a human xenograft model by transplanting an ovarian cancer cell line into immunocompromised mice. Then, genetically engineered hMSC-telo1 cells were injected through the tail vein...

  11. Comparison of chitosan nanoparticles and chitosan hydrogels for vaccine delivery

    DEFF Research Database (Denmark)

    Gordon, Sarah; Saupe, Anne; McBurney, Warren

    2008-01-01

    In this work the potential of chitosan nanoparticles (CNP) and thermosensitive chitosan hydrogels as particulate and sustained release vaccine delivery systems was investigated. CNP and chitosan hydrogels were prepared, loaded with the model protein antigen ovalbumin (OVA) and characterised...... of the release of fluorescently-labelled OVA (FITC-OVA) from CNP and chitosan hydrogels in-vitro showed that approximately 50% of the total protein was released from CNP within a period of ten days; release of antigen from chitosan gel occurred in a more sustained manner, with ... released after 10 days. The slow release from gel formulations may be explained by the strong interactions of the protein with chitosan. While OVA-loaded CNP showed no significant immunogenicity, formulations of OVA in chitosan gel were able to stimulate both cell-mediated and humoral immunity in-vivo....

  12. Hydrogen storage and delivery system development: Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Handrock, J.L. [Sandia National Labs., Livermore, CA (United States)

    1996-10-01

    Hydrogen storage and delivery is an important element in effective hydrogen utilization for energy applications and is an important part of the FY1994-1998 Hydrogen Program Implementation Plan. This project is part of the Field Work Proposal entitled Hydrogen Utilization in Internal Combustion Engines (ICE). The goal of the Hydrogen Storage and Delivery System Development Project is to expand the state-of-the-art of hydrogen storage and delivery system design and development. At the foundation of this activity is the development of both analytical and experimental evaluation platforms. These tools provide the basis for an integrated approach for coupling hydrogen storage and delivery technology to the operating characteristics of potential hydrogen energy use applications. Results of the analytical model development portion of this project will be discussed. Analytical models have been developed for internal combustion engine (ICE) hybrid and fuel cell driven vehicles. The dependence of hydride storage system weight and energy use efficiency on engine brake efficiency and exhaust temperature for ICE hybrid vehicle applications is examined. Results show that while storage system weight decreases with increasing engine brake efficiency energy use efficiency remains relatively unchanged. The development, capability, and use of a recently developed fuel cell vehicle storage system model will also be discussed. As an example of model use, power distribution and control for a simulated driving cycle is presented. Model calibration results of fuel cell fluid inlet and exit temperatures at various fuel cell idle speeds, assumed fuel cell heat capacities, and ambient temperatures are presented. The model predicts general increases in temperature with fuel cell power and differences between inlet and exit temperatures, but under predicts absolute temperature values, especially at higher power levels.

  13. Microemulsions based transdermal drug delivery systems.

    Science.gov (United States)

    Vadlamudi, Harini C; Narendran, Hyndavi; Nagaswaram, Tejeswari; Yaga, Gowri; Thanniru, Jyotsna; Yalavarthi, Prasanna R

    2014-01-01

    Since the discovery of microemulsions by Jack H Schulman, there has been huge progress made in applying microemulsion systems in plethora of research and industrial process. Microemulsions are optically isotropic systems consisting of water, oil and amphiphile. These systems are beneficial due to their thermodynamic stability, optical clarity, ease of preparation, higher diffusion and absorption rates. Moreover, it has been reported that the ingredients of microemulsion can effectively overcome the diffusion barrier and penetrate through the stratum corneum of the skin. Hence it becomes promising for both transdermal and dermal drug delivery. However, low viscosity of microemulsion restrains its applicability in pharmaceutical industry. To overcome the above drawback, the low viscous microemulsions were added to viscous gel bases to potentiate its applications as topical drug delivery systems so that various drug related toxic effects and erratic drug absorption can be avoided. The present review deals with the microemulsions, various techniques involved in the development of organic nanoparticles. The review emphasized on microemulsion based systems such as hydrogels and organogels. The physicochemical characteristics, mechanical properties, rheological and stability principles involved in microemulsion based viscous gels were also explored.

  14. Increasing efficacy and reducing systemic absorption of brimonidine tartrate ophthalmic gels in rabbits.

    Science.gov (United States)

    Pang, Xiaochen; Li, Jiawei; Pi, Jiaxin; Qi, Dongli; Guo, Pan; Li, Nan; Wu, Yumei; Liu, Zhidong

    2018-03-01

    Systemic absorption of ocularly administered Brimonidine Tartrate has been reported to give rise to several side-effects. Hence, it has become crucial to develop a delivery system that could increase efficacy and reduce systemic absorption. Therefore, the present work aims to develop Brimonidine Tartrate gels with different concentrations (0.05%, 0.1%, and 0.2% w/v, respectively) using Carbopol 974 P and HPMC E4M, and compare the therapeutic efficacy and systemic absorption with that of eye drop (0.2%, w/v) by UPLC-MS/MS. The result of histological analysis did not show any morphological or structural changes after the administration of formulations. In vitro residence time studies demonstrated that the gels exhibited a better precorneal residence time as compared with the eye drop. The gels with lower concentrations of the drug (0.05% and 0.1%, w/v) could significantly decrease intraocular pressure (IOP) in both normal and water-loaded rabbits as compared to the eye drop. Finally, the values of the ratio of AUC (0→∞) in comparison to eye drop showed the gels with lower concentrations of Brimonidine Tartrate could decrease the systemic absorption. From the result, it can be concluded the 0.1% ophthalmic gel has a potential to improve therapeutic efficacy and reduce the potential toxicity caused by systemic absorption.

  15. Terbinafine hydrochloride nanovesicular gel: In vitro characterization, ex vivo permeation and clinical investigation.

    Science.gov (United States)

    AbdelSamie, Sara M; Kamel, Amany O; Sammour, Omaima A; Ibrahim, Shady M

    2016-06-10

    In this work, nanovesicular chitosan gels were prepared for dermal delivery of terbinafine hydrochloride (TBN HCl). Ethosomes and vesicles containing different types of penetration enhancers (PEs) viz. Terpenes (cineole and limonene), labrasol and transcutol were developed. The prepared vesicles were evaluated for physical characteristics as well as skin interaction. The selected vesicles were incorporated into chitosan gel. An in vivo animal study was done on rat induced superficial Candida infection model. Moreover, randomized double blind clinical study was done on patients to compare the effect of the selected nanovesicular gel against the market product. Results showed the formation of nearly spherical, mostly deformable vesicular systems with size range of 95.5-530nm, zeta potential range of -0.1 to 15mV and entrapment efficiency range of 20-96.7%. Penetration enhancer vesicles (PEVs) prepared with 4% limonene (ELI4) showed the highest percent of drug deposition in the skin (53%) and the highest local accumulation efficiency value (35.3). In vivo animal study showed that the lowest fungal burden produced with ELI4 chitosan gel. Clinical studies showed cure rate of 86% within 7days treatment in case of limonene nanovesicular gel compared to 20% for market product (Lamisil® cream). Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Formulation and evaluation of microemulsion-based hydrogel for topical delivery.

    Science.gov (United States)

    Sabale, Vidya; Vora, Sejal

    2012-07-01

    The purpose of this study was to develop microemulsion-based hydrogel formulation for topical delivery of bifonazole with an objective to increase the solubility and skin permeability of the drug. Oleic acid was screened as the oil phase of microemulsions, due to a good solubilizing capacity of the microemulison systems. The pseudo-ternary phase diagrams for microemulsion regions were constructed using oleic acid as the oil, Tween 80 as the surfactant and isopropyl alcohol (IPA) as the cosurfactant. Various microemulsion formulations were prepared and optimized by 3(2) factorial design on the basis of percentage (%) transmittance, globule size, zeta potential, drug release, and skin permeability. The abilities of various microemulsions to deliver bifonazole through the skin were evaluated ex vivo using Franz diffusion cells fitted with rat skins. The Hydroxy Propyl Methyl Cellulose (HPMC) K100 M as a gel matrix was used to construct the microemulsion-based hydrogel for improving the viscosity of microemulsion for topical administration. The optimized microemulsion-based hydrogel was evaluated for viscosity, spreadability, skin irritancy, skin permeability, stability, and antifungal activity by comparing it with marketed bifonazole cream. The mechanism of drug release from microemulsion-based hydrogel was observed to follow zero order kinetics. The studied optimized microemulsion-based hydrogel showed a good stability over the period of 3 months. Average globule size of optimized microemulsion (F5) was found to be 18.98 nm, zeta potential was found to be -5.56 mv, and permeability of drug from microemulsion within 8 h was observed 84%. The antifungal activity of microemulsion-based hydrogel was found to be comparable with marketed cream. The results indicate that the studied microemulsion-based hydrogel (F5) has a potential for sustained action of drug release and it may act as promising vehicle for topical delivery of ibuprofen.

  17. siRNA delivery with lipid-based systems

    DEFF Research Database (Denmark)

    Foged, Camilla

    2012-01-01

    A key hurdle for the further development of RNA interference (RNAi) therapeutics like small interfering RNA (siRNA) is their safe and effective delivery. Lipids are promising and versatile carriers because they are based on Nature's own building blocks and can be provided with properties which......RNA into more hydrophobic lipoplexes, which promote passage of the siRNA across cellular membrane barriers, especially when lipids are added that facilitate membrane fusion. Despite these attractive features, siRNA delivery vehicles are facing a number of challenges such as the limited delivery efficiency...

  18. An intelligent biopolymer gel with pendant L-proline methyl ester

    International Nuclear Information System (INIS)

    Yoshida, Masaru; Safranj, A.; Omichi, Hideki; Katakai, Ryoichi.

    1995-01-01

    Linear poly(acryloyl-L-proline methyl ester, A-ProOMe), obtained by radiation-induced polymerization of its monomer in ethanol, exhibits a lower critical solution temperature (LCST) at 14degC. A-ProOMe was copolymerized with a minor amount of 2-hydroxypropyl methacrylate (HPMA) or 2-hydroxyethyl methacrylate (HEMA), to obtain intelligent biopolymer gels for application in drug delivery systems. The poly(A-ProOMe/HPMA) gel was characterized by an initial rapid shrinkage at the surface in the swollen state, as resulting in formation of a rigid membrane barrier devoid of micropores. This gel is called a surface regulated matrix. In the case of poly(A-ProOMe/HEMA), no such a barrier formed, instead, the whole matrix shrunk without the disappearance of micropores. This gel is called a matrix pumping gel. Testosterone (T) was incorporated into the poly(A-ProOMe/HPMA) gel, and it was found that the daily dose of T released in vivo from this formulation remained constant at approximately 30 μg/day throughout an experimental period of 54 weeks. On the other hand, 9-β-D-arabinofuranosyladenine (Ara-A) was incorporated into the poly(A-ProOMe/HEMA) gel to evaluate the pulsatile drug release when cycled at 10 and 37degC. The in vitro release rate of Ara-A was found to be 11 ng/h at 10degC and 33 ng/h at 37degC. (author)

  19. Thermosetting gels with modulated gelation temperature for ophthalmic use: the rheological and gamma scintigraphic studies.

    Science.gov (United States)

    Wei, Gang; Xu, Hui; Ding, Ping Tian; Li, San Ming; Zheng, Jun Min

    2002-09-18

    For ophthalmic drug delivery, Pluronic F127 solutions have a phase transition temperature too low for them to be instilled into the eye at room temperature. Refrigerator storage is usually required to make administration easier, whereas the potential irritation of cold to the sensitive ocular tissues may result in poor topical bioavailability. The purpose of this study is to develop a thermosetting gel with a suitable phase transition temperature by combining Pluronic analogs and to examine the influence of incorporating mucoadhesive polysaccharide, sodium hyaluronate (HA-Na), on the ocular retention of the gel. Dynamic rheological method and single photon emission computing tomography (SPECT) technique were used to ex/in vivo evaluate the thermosetting gels, respectively. An optimized formulation containing 21% F127 and 10% F68 increased the phase transition temperature by 9 degrees C as evaluated by elasticity modulus compared to that of individual 21% F127 solution. Rheological behaviors of the Pluronic solutions showed that the combined Pluronic formulation was free flowing liquid below 25 degrees C and converted to a firm gel under the physiological condition. Furthermore, this formulation possessed the highest viscosity both before and after tear dilution at 35 degrees C. Gamma scintigraphic data demonstrated that the clearance of the thermosetting gel labeled with 99mTc-DTPA was significantly delayed with respect to the phosphate buffered solution, and at least a threefold increase of the corneal residence time was achieved. However, no further improvement in the ocular retention was observed when adding HA-Na into the thermosetting gel due to the substantially decreased gel strength. Copyright 2002 Elsevier Science B.V.

  20. Plasmid DNA Delivery: Nanotopography Matters.

    Science.gov (United States)

    Song, Hao; Yu, Meihua; Lu, Yao; Gu, Zhengying; Yang, Yannan; Zhang, Min; Fu, Jianye; Yu, Chengzhong

    2017-12-20

    Plasmid DNA molecules with unique loop structures have widespread bioapplications, in many cases relying heavily on delivery vehicles to introduce them into cells and achieve their functions. Herein, we demonstrate that control over delicate nanotopography of silica nanoparticles as plasmid DNA vectors has significant impact on the transfection efficacy. For silica nanoparticles with rambutan-, raspberry-, and flower-like morphologies composed of spike-, hemisphere-, and bowl-type subunit nanotopographies, respectively, the rambutan-like nanoparticles with spiky surfaces demonstrate the highest plasmid DNA binding capability and transfection efficacy of 88%, higher than those reported for silica-based nanovectors. Moreover, it is shown that the surface spikes of rambutan nanoparticles provide a continuous open space to bind DNA chains via multivalent interactions and protect the gene molecules sheltered in the spiky layer against nuclease degradation, exhibiting no significant transfection decay. This unique protection feature is in great contrast to a commercial transfection agent with similar transfection performance but poor protection capability against enzymatic cleavage. Our study provides new understandings in the rational design of nonviral vectors for efficient gene delivery.

  1. Design and Evaluation of Microemulsion Gel System of Nadifloxacin

    Science.gov (United States)

    Shinde, Ujwala; Pokharkar, Sharda; Modani, Sheela

    2012-01-01

    Topical microemulsion systems for the antiacne agent, nadifloxacin were designed and developed to overcome the problems associated with the cutaneous delivery due to poor water solubility. The solubility of nadifloxacin in oils, surfactants and cosurfactants was evaluated to screen the components of the microemulsion. Various surfactants and cosurfactants were screened for their ability to emulsify the selected oily phase. The pseudoternary diagrams were constructed to identify the area of microemulsion existence. The influence of km (surfactant/cosurfactant) ratio on the microemulsion existence region was determined and optimum systems were designed. The systems were assessed for drug-loading efficiency and characterised for optical birefringence, pH and refractive index, robustness to dilution, globule size, drug content and thermodynamic stability. Optimised microemulsion systems were formulated into gel form and evaluated for viscosity, spreadability, drug content, ex vivo skin permeation and antibacterial activity. The maximum solubility of nadifloxacin in the microemulsion system was found to be 0.25%. The nadifloxacin microemulsions had a small and uniform globule size (67.3-121.23 nm). The stability results revealed that all formulations showed a stable globule size and the polydispersity index under stress conditions. Incorporation of nadifloxacin in microemulsion gel increased the ex vivo skin permeation and antibacterial activity when compared to marketed cream. PMID:23439454

  2. Binding of Lysozyme to Spherical Poly(styrenesulfonate Gels

    Directory of Open Access Journals (Sweden)

    Martin Andersson

    2018-01-01

    Full Text Available Polyelectrolyte gels are useful as carriers of proteins and other biomacromolecules in, e.g., drug delivery. The rational design of such systems requires knowledge about how the binding and release are affected by electrostatic and hydrophobic interactions between the components. To this end we have investigated the uptake of lysozyme by weakly crosslinked spherical poly(styrenesulfonate (PSS microgels and macrogels by means of micromanipulator assisted light microscopy and small angle X-ray scattering (SAXS in an aqueous environment. The results show that the binding process is an order of magnitude slower than for cytochrome c and for lysozyme binding to sodium polyacrylate gels under the same conditions. This is attributed to the formation of very dense protein-rich shells in the outer layers of the microgels with low permeability to the protein. The shells in macrogels contain 60 wt % water and nearly charge stoichiometric amounts of lysozyme and PSS in the form of dense complexes of radius 8 nm comprising 30–60 lysozyme molecules. With support from kinetic modelling results we propose that the rate of protein binding and the relaxation rate of the microgel are controlled by the protein mass transport through the shell, which is strongly affected by hydrophobic and electrostatic interactions. The mechanism explains, in turn, an observed dependence of the diffusion rate on the apparent degree of crosslinking of the networks.

  3. Ionic liquid gel materials: applications in green and sustainable chemistry

    OpenAIRE

    Marr, Patricia C.; Marr, Andrew C.

    2016-01-01

    Ionic liquid gel materials offer a way to further utilise ionic liquids in technological applications. Combining the controlled and directed assembly of gels, with the diverse applications of ionic liquids, enables the design of a heady combination of functional tailored materials, leading to the development of task specific / functional ionic liquid gels. This review introduces gels and gel classification, focusing on ionic liquid gels and their potential roles in a more sustainable future. ...

  4. Vehicle to vehicle communications for trucks.

    Science.gov (United States)

    2014-01-01

    The trucking industry is a critical component of American commerce. The American : Trucking Association estimates that over 80 percent of U.S. communities depend : exclusively on trucking for delivery of their goods and commodities

  5. Sol-gel technology for biomedical engineering

    International Nuclear Information System (INIS)

    Podbielska, H.; Ulatowska-Jarza, A.

    2005-01-01

    Sol-gel derived silica possess many promising features, including low-temperature preparation procedure, porosity, chemical and physical stability. Applications exploiting porous materials to encapsulate sensor molecules, enzymes and many other compounds, are developing rapidly. In this paper some potential applications, with emphasis on biomedical and environmental ones, are reviewed. The material preparation procedure is described and practical remarks on silica-based sol-gels are included. It is reported that sol-gels with entrapped various molecules may be used in construction of implants and coatings with bioactive properties. It is shown how to exploit the sol-gel production route for construction of sol-gel coated fiberoptic applicators for laser therapy. The applications of bioactive materials are discussed, as well. It is demonstrated that it is possible to immobilize photosensitive compounds in sol-gel matrix without loosing their photoactivity. Some examples of sol-gel based biosensors are demonstrated, as well, showing their potential for detecting various gases, toxic substances, acidity, humidity, enzymes and biologically active agents. (authors)

  6. Sol-Gel Manufactured Energetic Materials

    Science.gov (United States)

    Simpson, Randall L.; Lee, Ronald S.; Tillotson, Thomas M.; Hrubesh, Lawrence W.; Swansiger, Rosalind W.; Fox, Glenn A.

    2005-05-17

    Sol-gel chemistry is used for the preparation of energetic materials (explosives, propellants and pyrotechnics) with improved homogeneity, and/or which can be cast to near-net shape, and/or made into precision molding powders. The sol-gel method is a synthetic chemical process where reactive monomers are mixed into a solution, polymerization occurs leading to a highly cross-linked three dimensional solid network resulting in a gel. The energetic materials can be incorporated during the formation of the solution or during the gel stage of the process. The composition, pore, and primary particle sizes, gel time, surface areas, and density may be tailored and controlled by the solution chemistry. The gel is then dried using supercritical extraction to produce a highly porous low density aerogel or by controlled slow evaporation to produce a xerogel. Applying stress during the extraction phase can result in high density materials. Thus, the sol-gel method can be used for precision detonator explosive manufacturing as well as producing precision explosives, propellants, and pyrotechnics, along with high power composite energetic materials.

  7. Sol-gel bonding of silicon wafers

    International Nuclear Information System (INIS)

    Barbe, C.J.; Cassidy, D.J.; Triani, G.; Latella, B.A.; Mitchell, D.R.G.; Finnie, K.S.; Short, K.; Bartlett, J.R.; Woolfrey, J.L.; Collins, G.A.

    2005-01-01

    Sol-gel bonds have been produced between smooth, clean silicon substrates by spin-coating solutions containing partially hydrolysed silicon alkoxides. The two coated substrates were assembled and the resulting sandwich fired at temperatures ranging from 60 to 600 deg. C. The sol-gel coatings were characterised using attenuated total reflectance Fourier transform infrared spectroscopy, ellipsometry, and atomic force microscopy, while the corresponding bonded specimens were investigated using scanning electron microscopy and cross-sectional transmission electron microscopy. Mechanical properties were characterised using both microindentation and tensile testing. Bonding of silicon wafers has been successfully achieved at temperatures as low as 60 deg. C. At 300 deg. C, the interfacial fracture energy was 1.55 J/m 2 . At 600 deg. C, sol-gel bonding provided superior interfacial fracture energy over classical hydrophilic bonding (3.4 J/m 2 vs. 1.5 J/m 2 ). The increase in the interfacial fracture energy is related to the increase in film density due to the sintering of the sol-gel interface with increasing temperature. The superior interfacial fracture energy obtained by sol-gel bonding at low temperature is due to the formation of an interfacial layer, which chemically bonds the two sol-gel coatings on each wafer. Application of a tensile stress on the resulting bond leads to fracture of the samples at the silicon/sol-gel interface

  8. Polymer gel dosimeter with AQUAJOINT® as hydrogel matrix

    Science.gov (United States)

    Maeyama, Takuya; Ishida, Yasuhiro; Kudo, Yoshihiro; Fukasaku, Kazuaki; Ishikawa, Kenichi L.; Fukunishi, Nobuhisa

    2018-05-01

    We report a polymer gel dosimeter based on a new gel matrix (AQUAJOINT®) that is a thermo-irreversible hydrogel formed by mixing two types of water-based liquids at room temperature. Normoxic N-vinylpyrrolidone-based polymer gels were prepared with AQUAJOINT® instead of gelatin. This AQUAJOINT®-based gel dosimeter exhibits a 2.5-fold increase in sensitivity over a gelatin-based gel dosimeter and a linear dose-response in the dose range of 0-8 Gy. This gel has heat resistance in a jar and controlled gel properties such as viscoelastic and mechanical characters, which may be useful for deformable polymer gel dosimetry.

  9. Operator Informational Needs for Multiple Autonomous Small Vehicles

    Science.gov (United States)

    Trujillo, Anna C.; Fan, Henry; Cross, Charles D.; Hempley, Lucas E.; Cichella, Venanzio; Puig-Navarro, Javier; Mehdi, Syed Bilal

    2015-01-01

    With the anticipated explosion of small unmanned aerial vehicles, it is highly likely that operators will be controlling fleets of autonomous vehicles. To fulfill the promise of autonomy, vehicle operators will not be concerned with manual control of the vehicle; instead, they will deal with the overall mission. Furthermore, the one operator to many vehicles is becoming a constant meme with various industries including package delivery, search and rescue, and utility companies. In order for an operator to concurrently control several vehicles, his station must look and behave very differently than the current ground control station instantiations. Furthermore, the vehicle will have to be much more autonomous, especially during non-normal operations, in order to accommodate the knowledge deficit or the information overload of the operator in charge of several vehicles. The expected usage increase of small drones requires presenting the operational information generated by a fleet of heterogeneous autonomous agents to an operator. NASA Langley Research Center's Autonomy Incubator has brought together researchers in various disciplines including controls, trajectory planning, systems engineering, and human factors to develop an integrated system to study autonomy issues. The initial human factors effort is focusing on mission displays that would give an operator the overall status of all autonomous agents involved in the current mission. This paper will discuss the specifics of the mission displays for operators controlling several vehicles.

  10. New formulation and branch-and-cut algorithm for the pickup and delivery traveling salesman problem with multiple stacks: new formulation and branch-and-cut algorithm

    NARCIS (Netherlands)

    Sampaio Oliveira, A.H.; Urrutia, S.

    2017-01-01

    In this paper, we consider the pickup and delivery traveling salesman problem with multiple stacks in which a single vehicle must serve a set of customer requests defined by a pair of pickup and delivery destinations of an item. The vehicle contains a fixed number of stacks, where each item is

  11. Development of A Hydraulic Drive for a novel Diesel-Hydraulic system for Large commercial Vehicles

    DEFF Research Database (Denmark)

    Stecki, J. S.; Conrad, Finn; Matheson, P.

    2002-01-01

    The objectives and results of the research project Hybrid Diesel-Hydraulic System for Large commercial vehicles, e.g. urban freight delivery, buses or garbage trucks. The paper presents and discusses the research and development of the system, modelling approach and results from preliminary...... performance tests on a 10 ton vehicle....

  12. 16 CFR 309.15 - Posting of non-liquid alternative vehicle fuel rating.

    Science.gov (United States)

    2010-01-01

    ... rating. (a) If you are a retailer who offers for sale or sells non-liquid alternative vehicle fuel (other... fuel. If you are a retailer who offers for sale or sells electricity to consumers through an electric... vehicle fuel dispensing system, either by letter or on the delivery ticket or other paper, or by a...

  13. Acoustic evaluation of polymer gel dosimeters

    International Nuclear Information System (INIS)

    Mather, M.L.; De Deene, Y.; Baldock, C.; Whittaker, A.K.

    2002-01-01

    Advances in radiotherapy treatment techniques such as intensity modulated radiotherapy are placing increasing demands on radiation dosimetry for verification of dose distributions in 3D. In response, polymer gel dosimeters that are capable of recording dose distributions in 3D are currently being developed. Recently, a new technique for evaluation of absorbed dose distributions in these dosimeters using ultrasound was introduced. The current work aims to demonstrate the potential of ultrasound as an evaluation technique for polymer gel dosimeters and to investigate the ultrasound properties of two different dosimeter formulations, PAG and MAGIC gels

  14. Pulsed field gel electrophoresis a practical guide

    CERN Document Server

    Birren, Bruce

    1993-01-01

    Pulsed Field Gel Electrophoresis: A Practical Guide is the first laboratory manual to describe the theory and practice of this technique. Based on the authors' experience developing pulsed field gel instruments and teaching procedures, this book provides everything a researcher or student needs to know in order to understand and carry out pulsed field gel experiments. Clear, well-tested protocols assume only that users have a basic familiarity with molecular biology. Thorough coverage of useful data, theory, and applications ensures that this book is also a lasting resource for more adv

  15. Applications of sol gel ceramic coatings

    International Nuclear Information System (INIS)

    Barrow, D.

    1996-01-01

    The sol gel method is a chemical technique in which polycrystalline ceramic films are fabricated from a solution of organometallic precursors. The technique is attractive for many industrial applications because it is a simple (films are processed in air), flexible (can be used to coat complex geometries) and cost effective (does not require expensive equipment) process. In addition, dense, high quality coatings can be achieved at much lower temperatures than is generally required for sintering bulk ceramics. In this paper the conventional sol gel method and the new datec process are reviewed and potential applications of sol gel coatings in automotive, aerospace, petrochemical, nuclear and electronic industries are discussed. (orig.)

  16. Vehicle underbody fairing

    Science.gov (United States)

    Ortega, Jason M.; Salari, Kambiz; McCallen, Rose

    2010-11-09

    A vehicle underbody fairing apparatus for reducing aerodynamic drag caused by a vehicle wheel assembly, by reducing the size of a recirculation zone formed under the vehicle body immediately downstream of the vehicle wheel assembly. The fairing body has a tapered aerodynamic surface that extends from a front end to a rear end of the fairing body with a substantially U-shaped cross-section that tapers in both height and width. Fasteners or other mounting devices secure the fairing body to an underside surface of the vehicle body, so that the front end is immediately downstream of the vehicle wheel assembly and a bottom section of the tapered aerodynamic surface rises towards the underside surface as it extends in a downstream direction.

  17. Heparin-binding peptide amphiphile supramolecular architectures as platforms for angiogenesis and drug delivery

    Science.gov (United States)

    Chow, Lesleyann W.

    A fascinating phenomenon in nature is the self-assembly of molecules into a functional, hierarchical structure. In the past decade, the Stupp Laboratory has developed several classes of self-assembling biomaterials, one of which is the synthetic peptide amphiphile (PA). Self-assembling PAs are attractive and versatile biomolecules that can be customized for specific applications in regenerative medicine. In particular, a heparin-binding peptide amphiphile (HBPA) containing a specific heparin-binding peptide sequence was used here to induce angiogenesis and serve as a delivery vehicle for growth factors and small hydrophobic molecules. Throughout this dissertation, the HBPA/heparin system is used in different architectures for a variety of regenerative medicine applications. In one aspect of this work, hybrid scaffolds made from HBPA/heparin gelled on a poly(L-lactic acid) (PLLA) fiber mesh were used to promote angiogenesis to facilitate pancreatic islet transplantation for the treatment of type 1 diabetes. Delivery of growth factors with HBPA/PLLA scafflolds increased vessel density in vivo and correlated with improved transplant outcomes in a streptozotocin-induced diabetic mouse model. Soluble HBPA nanofiber architectures were also useful for islet transplantation applications. These nanofibers were used at concentrations below gelation to deliver growth factors into the dense islet cell aggregate, promoting cell survival and angiogenesis in vitro. The nanostructures infiltrated the islets and promoted the retention of heparin and growth factors within the islet. Another interesting growth factor release system discussed here is the HBPA membrane structure. HBPA was found to self-assemble with hyaluronic acid, a large biopolymer found in the body, into macroscopic, hierarchically-ordered membranes. Heparin was incorporated into these membranes and affected the membrane's mechanical properties and growth factor release. Human mesenchymal stem cells were also shown

  18. Baculoviral delivery of CRISPR/Cas9 facilitates efficient genome editing in human cells

    NARCIS (Netherlands)

    Hindriksen, Sanne; Bramer, Arne J; Truong, My Anh; Vromans, Martijn J M; Post, Jasmin B; Verlaan-Klink, Ingrid; Snippert, Hugo J; Lens, Susanne M A; Hadders, Michael A

    2017-01-01

    The CRISPR/Cas9 system is a highly effective tool for genome editing. Key to robust genome editing is the efficient delivery of the CRISPR/Cas9 machinery. Viral delivery systems are efficient vehicles for the transduction of foreign genes but commonly used viral vectors suffer from a limited

  19. Control of Electric Vehicle

    OpenAIRE

    Huang, Qi; Chen, Yong; Li, Jian

    2010-01-01

    In this chapter, the modeling of electric vehicle is discussed in detail. Then, the control of electric vehicle driven by different motors is discussed. Both brushed and brushless DC (Direct Current) motors are discussed. And for AC (Alternative Current) motors, the discussion is focused on induction motor and permanent magnet synchronous motor. The design of controllers for different motor-driven electric vehicle is discussed in-depth, and the tested high-performance control strategies for d...

  20. Trust in vehicle technology

    OpenAIRE

    Walker, Guy, H.; Stanton, Neville, A.; Salmon, Paul

    2016-01-01

    Driver trust has potentially important implications for how vehicle technology is used and interacted with. In this paper it will be seen how driver trust functions and how it can be understood and manipulated by insightful vehicle design. It will review the theoretical literature to define steps that can be taken establish trust in vehicle technology in the first place, maintain trust in the long term, and even re-establish trust that has been lost along the way. The implication throughout i...