WorldWideScience

Sample records for gel composition comprises

  1. Thixotropic gel-like composition and sterile blood-collecting and separating device

    International Nuclear Information System (INIS)

    Semersky, F.E.

    1980-01-01

    A thixotropic gel-like composition comprising liquid polybutadiene and an inorganic inert filler dispersed therein is adapted for use as a sealing barrier between separated phases of differing densities of a fluid in which said composition has at rest a density intermediate said differing densities, said gel-like composition being substantially resistant to sterilizing radiation. There is also disclosed a pre-packaged blood collecting and separating device which contains a mixture of liquid polybutadiene and an inorganic, inert filler, such as silica, as a thixotropic gel adapted at rest to form a sealing barrier between separated blood phases. The device and gel are subjected to sterilizing radiation to form a substantially sterile device, substantially free of backflow contamination without degradation of the physical properties of the gel. (author)

  2. Compositions comprising free-standing two-dimensional nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Barsoum, Michel W.; Gogotsi, Yury; Abdelmalak, Michael Naguib; Mashtalir, Olha

    2017-12-05

    The present invention is directed to methods of transferring urea from an aqueous solution comprising urea to a MXene composition, the method comprising contacting the aqueous solution comprising urea with the MXene composition for a time sufficient to form an intercalated MXene composition comprising urea.

  3. Cationic electrodepositable coating composition comprising lignin

    Science.gov (United States)

    Fenn, David; Bowman, Mark P; Zawacky, Steven R; Van Buskirk, Ellor J; Kamarchik, Peter

    2013-07-30

    A cationic electrodepositable coating composition is disclosed. The present invention in directed to a cationic electrodepositable coating composition comprising a lignin-containing cationic salt resin, that comprises (A) the reaction product of: lignin, an amine, and a carbonyl compound; (B) the reaction product of lignin, epichlorohydrin, and an amine; or (C) combinations thereof.

  4. Sol-gel derived C-SiC composites and protective coatings for sustained durability in the space environment

    Science.gov (United States)

    Haruvy, Yair; Liedtke, Volker

    2003-09-01

    Composites and coatings were produced via the fast sol-gel process of a mixture of alkoxysilane precursors. The composites were comprised of carbon fibers, fabrics, or their precursors as reinforcement, and sol-gel-derived silicon carbide as matrix, aiming at high-temperature stable ceramics that can be utilized for re-entry structures. The protective coatings were comprised of fluorine-rich sol-gel derived resins, which exhibit high flexibility and coherence to provide sustained ATOX protection necessary for LEO space-exposed elements. For producing the composites, the sol-gel-derived resin is cast onto the reinforcement fibers/fabrics mat (carbon or its precursors) to produce a 'green' composite that is being cured. The 'green' composite is converted into a C-SiC composite via a gradual heat-pressure process under inert atmosphere, during which the organic substituents on the silicon atoms undergo internal oxidative pyrolysis via the schematic reaction: (SiRO3/2)n -> SiC + CO2 + H2O. The composition of the resultant silicon-oxi-carbide is tailorable via modifying the composition of the sol-gel reactants. The reinforcement, when made of carbon precursors, is converted into carbon during the heat-and-pressure processing as well. The C-SiC composites thus derived exhibit superior thermal stability and comparable thermal conductivity, combined with good mechanical strength features and failure resistance, which render them greatly applicable for re-entry shielding, heat-exchange pipes, and the like. Fluorine rich sol-gel derived coatings were developed as well, via the use of HF rich sol-gel process. These coatings provide oxidation-protection via the silica formation process, together with flexibility that allows 18,000 repetitive folding of the coating without cracking.

  5. Coating compositions comprising bismuth-alloyed zinc

    DEFF Research Database (Denmark)

    2008-01-01

    The present application discloses (i) a coating composition comprising a particulate zinc-based alloyed material, said material comprising 0.05-0.7% by weight of bismuth (Bi), the D50 of the particulate material being in the range of 2.5-30 µm; (ii) a coated structure comprising a metal structure...... having a first coating of the zinc-containing coating composition applied onto at least a part of the metal structure in a dry film thickness of 5-100 µm; and an outer coating applied onto said zinc-containing coating in a dry film thickness of 30-200 µm; (iii) a particulate zinc-based alloyed material......, wherein the material comprises 0.05-0.7%(w/w) of bismuth (Bi), and wherein the D50 of the particulate material is in the range of 2.5-30 µm; (iv) a composite powder consisting of at least 25%(w/w) of the particulate zinc-based alloyed material, the rest being a particulate material consisting of zinc...

  6. Solvent exchange-induced in situ forming gel comprising ethyl cellulose-antimicrobial drugs.

    Science.gov (United States)

    Phaechamud, Thawatchai; Mahadlek, Jongjan

    2015-10-15

    Solvent-exchanged in situ forming gel is a drug delivery system which is in sol form before administration. When it contacts with the body fluid, then the water miscible organic solvent dissipates and water penetrates into the system, leading the polymer precipitation as in situ gel at the site of injection. The aim of this research was to study the parameters affecting the gel properties, drug release and antimicrobial activities of the in situ forming gels prepared from ethyl cellulose (EC) dissolved in N-methyl pyrrolidone (NMP) to deliver the antimicrobial agents (doxycycline hyclate, metronidazole and benzyl peroxide) for periodontitis treatment. The gel appearance, pH, viscosity, rheology, syringeability, gel formation, rate of water diffusion into the gels, in vitro degradation, drug release behavior and antimicrobial activities against Staphylococcus aureus, Escherichia coli, Candida albicans, Streptococcus mutans and Porphyrommonas gingivalis were determined. Increasing the amount of EC increased the viscosity of system while still exhibiting Newtonian flow and increased the work of syringeability whereas decreased the releasing of drug. The system transformed into the rigid gel formation after being injected into the simulated gingival crevicular fluid. The developed systems containing 5% w/w antimicrobial agent showed the antimicrobial activities against all test bacteria. Thus the developed solvent exchange-induced in situ forming gels comprising EC-antimicrobial drugs exhibited potential use for periodontitis treatment. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Aqueous sulfomethylated melamine gel-forming compositions and methods of use

    Energy Technology Data Exchange (ETDEWEB)

    Meltz, C.N.; Guetzmacher, G.D.; Chang, P.W.

    1989-04-18

    A method is described for the selective modification of the permeability of the strata of a subterranean bydrocarbon-containing reservoir consisting of introducing into a well in, communication with the reservoir; an aqueous gel-forming composition, comprising a 1.0-60.0 weight percent sulfomethylated melamine polymer solution. The solution is prepared with a 1.0 molar equivalent of a malemine, reacted with 3.0-6.7 molar equivalents of formaldehyde or a 2-6 carbon atom containing dialdehyde; 0.25-1.25 molar equivalents of an alkali metal or ammonium salt of surfurous acid; and 0.01-1.5 molar equivalents of a gel-modifying agent.

  8. Non-cementitious compositions comprising vaterite and methods thereof

    Science.gov (United States)

    Devenney, Martin; Fernandez, Miguel; Morgan, Samuel O.

    2015-09-15

    Non-cementitious compositions and products are provided. The compositions of the invention include a carbonate additive comprising vaterite such as reactive vaterite. Additional aspects of the invention include methods of making and using the non-cementitious compositions and products.

  9. Development of an injectable chitosan/marine collagen composite gel

    International Nuclear Information System (INIS)

    Wang Wei; Itoh, Soichiro; Aizawa, Tomoyasu; Demura, Makoto; Okawa, Atsushi; Sakai, Katsuyoshi; Ohkuma, Tsuneo

    2010-01-01

    A chitosan/marine-originated collagen composite has been developed. This composite gel was characterized and its biocompatibility, as well as an inflammatory reaction, was observed. The chitosan gel including N-3-carboxypropanoil-6-O-(carboxymethyl) chitosan of 3 mol%, 6-O-(carboxymethyl) chitosan of 62 mol% and 6-O-(carboxymethyl) chitin of 35 mol% was prepared and compounded with the salmon atelocollagen (SA) gel at different mixture ratios. The composite gels were injected subcutaneously in to the back of rats. The specimens were harvested for a histological survey as well as a tumor necrosis factor-alpha (TNF-α) assay by ELISA. The inflammatory cell infiltration and release of TNF-α were successively controlled low with the ratio of SA to chitosan at 10:90 or 20:80. The SA gel first, within 2 weeks, and then chitosan in the composite gel were slowly absorbed after implantation, followed by soft tissue formation. It is expected that this composite gel will be available as a carrier for tissue filler and drug delivery systems.

  10. Nanophosphor composite scintillators comprising a polymer matrix

    Science.gov (United States)

    Muenchausen, Ross Edward; Mckigney, Edward Allen; Gilbertson, Robert David

    2010-11-16

    An improved nanophosphor composite comprises surface modified nanophosphor particles in a solid matrix. The nanophosphor particle surface is modified with an organic ligand, or by covalently bonding a polymeric or polymeric precursor material. The surface modified nanophosphor particle is essentially charge neutral, thereby preventing agglomeration of the nanophosphor particles during formation of the composite material. The improved nanophosphor composite may be used in any conventional scintillator application, including in a radiation detector.

  11. Metal-polymer composites comprising nanostructures and applications thereof

    Science.gov (United States)

    Wang, Hsing-Lin [Los Alamos, NM; Jeon, Sea Ho [Dracut, MA; Mack, Nathan H [Los Alamos, NM

    2011-08-02

    Metal-polymer composites, and methods of making and use thereof, said composites comprising a thermally-cured dense polyaniline substrate; an acid dopant; and, metal nanostructure deposits wherein the deposits have a morphology dependent upon the acid dopant.

  12. Compositions comprising enhanced graphene oxide structures and related methods

    Science.gov (United States)

    Kumar, Priyank Vijaya; Bardhan, Neelkanth M.; Belcher, Angela; Grossman, Jeffrey

    2016-12-27

    Embodiments described herein generally relate to compositions comprising a graphene oxide species. In some embodiments, the compositions advantageously have relatively high oxygen content, even after annealing.

  13. Cell-Based Fabrication of Organic/Inorganic Composite Gel Material

    Directory of Open Access Journals (Sweden)

    Takayoshi Nakano

    2011-01-01

    Full Text Available Biomaterials containing components similar to the native biological tissue would have benefits as an implantable scaffold material. To obtain such biomimetic materials, cells may be great contributors because of their crucial roles in synthetic organics. In addition, the synthesized organics—especially those derived from osteogenic differentiated cells—become a place where mineral crystals nucleate and grow even in vitro. Therefore to fabricate an organic/inorganic composite material, which is similar to the biological osteoid tissue, bone marrow derived mesenchymal stem cells (BMSCs were cultured in a 3D fibrin gel in this study. BMSCs secreted bone-related proteins that enhanced the biomineralization within the gel when the cells were cultured with an osteogenic differentiation medium. The compositions of both synthesized matrices and precipitated minerals in the obtained materials altered depending on the cell culture period. The mineral obtained in the 3D gel showed low crystalline hydroxyapatite. The composite materials also showed excellent osteoconductivity with new bone formation when implanted in mice tibiae. Thus, we demonstrated the contributions of cells for fabricating implantable organic/inorganic composite gel materials and a method for controlling the material composition in the gel. This cell-based material fabrication method would be a novel method to fabricate organic/inorganic composite biomimetic materials for bone tissue engineering.

  14. Composition comprising lignin and antidi arrheal component

    DEFF Research Database (Denmark)

    2008-01-01

    The present invention relates to a composition comprising lignin and at least one compound selected from the group consisting of bromelain, papain, tannin, carvacrol, thymol, alliin, allicin, fenugreek seed, egg, poppy, poppy seeds, humic acid, roots, kaolin, catechu, cellulase, flavonoid...

  15. Multilayer Electroactive Polymer Composite Material Comprising Carbon Nanotubes

    Science.gov (United States)

    Ounaies, Zoubeida (Inventor); Park, Cheol (Inventor); Harrison, Joycelyn S. (Inventor); Holloway, Nancy M. (Inventor); Draughon, Gregory K. (Inventor)

    2009-01-01

    An electroactive material comprises multiple layers of electroactive composite with each layer having unique dielectric, electrical and mechanical properties that define an electromechanical operation thereof when affected by an external stimulus. For example, each layer can be (i) a 2-phase composite made from a polymer with polarizable moieties and an effective amount of carbon nanotubes incorporated in the polymer for a predetermined electromechanical operation, or (ii) a 3-phase composite having the elements of the 2-phase composite and further including a third component of micro-sized to nano-sized particles of an electroactive ceramic incorporated in the polymer matrix.

  16. Compositions, methods, and systems comprising fluorous-soluble polymers

    Science.gov (United States)

    Swager, Timothy M.; Lim, Jeewoo; Takeda, Yohei

    2015-10-13

    The present invention generally relates to compositions, methods, and systems comprising polymers that are fluorous-soluble and/or organize at interfaces between a fluorous phase and a non-fluorous phase. In some embodiments, emulsions or films are provided comprising a polymer. The polymers, emulsions, and films can be used in many applications, including for determining, treating, and/or imaging a condition and/or disease in a subject. The polymer may also be incorporated into various optoelectronic device such as photovoltaic cells, organic light-emitting diodes, organic field effect transistors, or the like. In some embodiments, the polymers comprise pi-conjugated backbones, and in some cases, are highly emissive.

  17. Sol-gel coatings on carbon/carbon composites

    International Nuclear Information System (INIS)

    Sim, S.M.; Krabill, R.M.; Dalzell, W.J. Jr.; Chu, P.Y.; Clark, D.E.

    1986-01-01

    The need for structural materials that can withstand severe environments up to 4000 0 F has promulgated the investigation of sol-gel derived ceramic and composite coatings on carbon/carbon composite materials. Alumina and zirconia sols have been deposited via thermophoresis on carbon/carbon substrates

  18. Formulation and method for preparing gels comprising hydrous aluminum oxide

    Science.gov (United States)

    Collins, Jack L.

    2014-06-17

    Formulations useful for preparing hydrous aluminum oxide gels contain a metal salt including aluminum, an organic base, and a complexing agent. Methods for preparing gels containing hydrous aluminum oxide include heating a formulation to a temperature sufficient to induce gel formation, where the formulation contains a metal salt including aluminum, an organic base, and a complexing agent.

  19. Electrode material comprising graphene-composite materials in a graphite network

    Science.gov (United States)

    Kung, Harold H.; Lee, Jung K.

    2017-08-08

    A durable electrode material suitable for use in Li ion batteries is provided. The material is comprised of a continuous network of graphite regions integrated with, and in good electrical contact with a composite comprising graphene sheets and an electrically active material, such as silicon, wherein the electrically active material is dispersed between, and supported by, the graphene sheets.

  20. Fibrous composites comprising carbon nanotubes and silica

    Science.gov (United States)

    Peng, Huisheng [Shanghai, CN; Zhu, Yuntian Theodore [Cary, NC; Peterson, Dean E [Los Alamos, NM; Jia, Quanxi [Los Alamos, NM

    2011-10-11

    Fibrous composite comprising a plurality of carbon nanotubes; and a silica-containing moiety having one of the structures: (SiO).sub.3Si--(CH.sub.2).sub.n--NR.sub.1R.sub.2) or (SiO).sub.3Si--(CH.sub.2).sub.n--NCO; where n is from 1 to 6, and R.sub.1 and R.sub.2 are each independently H, CH.sub.3, or C.sub.2H.sub.5.

  1. Photovoltaic device comprising compositionally graded intrinsic photoactive layer

    Science.gov (United States)

    Hoffbauer, Mark A; Williamson, Todd L

    2013-04-30

    Photovoltaic devices and methods of making photovoltaic devices comprising at least one compositionally graded photoactive layer, said method comprising providing a substrate; growing onto the substrate a uniform intrinsic photoactive layer having one surface disposed upon the substrate and an opposing second surface, said intrinsic photoactive layer consisting essentially of In.sub.1-xA.sub.xN,; wherein: i. 0.ltoreq.x.ltoreq.1; ii. A is gallium, aluminum, or combinations thereof; and iii. x is at least 0 on one surface of the intrinsic photoactive layer and is compositionally graded throughout the layer to reach a value of 1 or less on the opposing second surface of the layer; wherein said intrinsic photoactive layer is isothermally grown by means of energetic neutral atom beam lithography and epitaxy at a temperature of 600.degree. C. or less using neutral nitrogen atoms having a kinetic energy of from about 1.0 eV to about 5.0 eV, and wherein the intrinsic photoactive layer is grown at a rate of from about 5 nm/min to about 100 nm/min.

  2. Functionalization of sol-gel zirconia composites with europium complexes

    International Nuclear Information System (INIS)

    Danchova, Nina; Gutzov, Stoyan

    2014-01-01

    Different sol-gel strategies based on functionalization of ZrO 2 :Eu microparticles with 1,10-phenanthroline (phen) and incorporation of colloidal Eu(phen) 2 (NO 3 ) 3 into zirconia have been used to obtain hybrid sol-gel composites with controlled optical properties. The process leads to materials with quantum yields of about 48 % monitoring the 615 nm emission line at 350 nm excitation. Excitation/luminescence spectroscopy, diffuse reflectance spectroscopy and X-ray diffraction have been used to characterize the hybrid zirconia composites. (orig.)

  3. Sol-gel Derived Warfarin - Silica Composites for Controlled Drug Release.

    Science.gov (United States)

    Dolinina, Ekaterina S; Parfenyuk, Elena V

    2017-01-01

    Warfarin, commonly used anticoagulant in clinic, has serious shortcomings due to its unsatisfactory pharmacodynamics. One of the efficient ways for the improvement of pharmacological and consumer properties of drugs is the development of optimal drug delivery systems. The aim of this work is to synthesize novel warfarin - silica composites and to study in vitro the drug release kinetics to obtain the composites with controlled release. The composites of warfarin with unmodified (UMS) and mercaptopropyl modified silica (MPMS) were synthesized by sol-gel method. The composite formation was confirmed by FTIR spectra. The concentrations of warfarin released to media with pH 1.6, 6.8 and 7.4 were measured using UV spectroscopy. The drug release profiles from the solid composites were described by a series of kinetic models which includes zero order kinetics, first order kinetics, the modified Korsmeyer-Peppas model and Hixson-Crowell model. The synthesized sol-gel composites have different kinetic behavior in the studied media. In contrast to the warfarin composite with unmodified silica, the drug release from the composite with mercaptopropyl modified silica follows zero order kinetics for 24 h irrespective to the release medium pH due to mixed mechanism (duffusion + degradation and/or disintegration of silica matrix). The obtained results showed that warfarin - silica sol-gel composites have a potential application for the development of novel oral formulation of the drug with controlled delivery. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  4. Effects of 35% Carbamide Peroxide Gel on Surface Roughness and Hardness of Composite Resins

    Directory of Open Access Journals (Sweden)

    F. Sharafeddin

    2010-03-01

    Full Text Available Objective: Bleaching agents may not be safe for dental materials. The purpose of this invitro study was to evaluate the effects of Opalescent Quick "in-office bleaching gel" containing 35% carbamide peroxide on the surface roughness and hardness of microfilled(Heliomolar and hybride (Spectrum TPH composite resins.Materials and Methods: Twenty specimens of Spectrum TPH composite resins and twenty Heliomolar composite resins were fabricated using a metallic ring (6.5 mm diameter and 2.5 mm thickness and light cured, then their surfaces were polished. Specimens of each composite resin were divided into two equal groups. Ten specimens of each type of composite were stored in water at 37°C as the control groups and 35% carbamide peroxide gel (Opalescence Quick as the other group for 30 minutes a week for 3 weeks. Then the specimens were subject to roughness and hardness tests.Results: This study revealed that using 35% carbamide peroxide bleaching gels had no significant effect on the surface roughness of Spectrum TPH "hybrid" and Heliomolar "microfilled" composite resins. The surface hardness of Spectrum TPH composite treated with the subject gel significantly increased compared to heliomolar, which had no significant change after treatment with this bleaching gel.Conclusion: If tooth color matching of the composite had been satisfactory after office bleaching with 35% carbamide peroxide gel, this material would have been acceptable because it has no adverse effect on Heliomolar and Spectrum TPH composite resins.

  5. Immunogenic compositions comprising human immunodeficiency virus (HIV) mosaic Nef proteins

    Science.gov (United States)

    Korber, Bette T [Los Alamos, NM; Perkins, Simon [Los Alamos, NM; Bhattacharya, Tanmoy [Los Alamos, NM; Fischer, William M [Los Alamos, NM; Theiler, James [Los Alamos, NM; Letvin, Norman [Boston, MA; Haynes, Barton F [Durham, NC; Hahn, Beatrice H [Birmingham, AL; Yusim, Karina [Los Alamos, NM; Kuiken, Carla [Los Alamos, NM

    2012-02-21

    The present invention relates to mosaic clade M HIV-1 Nef polypeptides and to compositions comprising same. The polypeptides of the invention are suitable for use in inducing an immune response to HIV-1 in a human.

  6. A systematic approach to determine optimal composition of gel used in radiation therapy

    International Nuclear Information System (INIS)

    Chang, Yuan-Jen; Hsieh, Bor-Tsung; Liang, Ji-An

    2011-01-01

    The design of experiment was used to find the optimal composition of N-isopropyl acrylamide (NIPAM) gel. Optical computed tomography was used to scan the polymer gel dosimeter, which was irradiated from 0 to 20 Gy. The study was conducted following a statistical method using a two-level fractional factorial plan involving four variables (gelatin-5% and 6%, NIPAM-3% and 5%, Bis-2.5% and 3%, and THPC-5 and 10 mM). We produced three batches of gels of the same composition to replicate the experiments. Based on the statistical analysis, a regression model was built. The optimal gel composition for the dose range 0-15 Gy with linearity up to 1.000 is as follows: gelatin (5.67%), NIPAM (5%), Bis (2.56%), and THPC (10 mM). The dose response of the NIPAM polymer gel attains stability about 24 h after irradiation and remains stable up to 3 months.

  7. Drug Release Profile from Calcium-Induced Alginate-Phosphate Composite Gel Beads

    Directory of Open Access Journals (Sweden)

    Yoshifumi Murata

    2009-01-01

    Full Text Available Calcium-induced alginate-phosphate composite gel beads were prepared, and model drug release profiles were investigated in vitro. The formation of calcium phosphate in the alginate gel matrix was observed and did not affect the rheological properties of the hydrogel beads. X-ray diffraction patterns showed that the calcium phosphate does not exist in crystalline form in the matrix. The initial release amount and release rate of a water-soluble drug, diclofenac, from the alginate gel beads could be controlled by modifying the composition of the matrix with calcium phosphate. In contrast, the release profile was not affected by the modification for hydrocortisone, a drug only slightly soluble in water.

  8. The influence of the matrix structure on the oxidation of aniline in a silica sol-gel composite

    International Nuclear Information System (INIS)

    Widera, J.; Kijak, A.M.; Ca, D.V.; Pacey, G.E.; Taylor, R.T.; Perfect, H.; Cox, J.A.

    2005-01-01

    Mesoporous and microporous silica matrices were formed on indium tin oxide electrodes for liquid-phase voltammetry and as monoliths for solid-state voltammetry of aniline. The pore structure, which was verified by scanning probe microscopy and by surface area measurement, was directed by either control of pH during sol-gel processing or by inclusion of a templating agent. Whether aniline was included as a dopant in the sol-gel or as a component of the contacting liquid, the pore size influenced the coupling of the product of its electrochemical oxidation. With microporous silica, the dominant products were dimers and related short-chain products whereas with mesoporous silica, polymerization was suggested. As a step toward the formation of polyaniline (PANI) that is covalently anchored to the sol-gel, the electrochemistry of aniline was investigated using composites prepared from sols comprising tetraethyl orthosilicate (TEOS), 3-aminophenyl-[3-triethoxylsilyl)-propyl] urea (ormosil), and aniline in various ratios. Combinatorial chemistry identified that the optimum combination of silica precursors in terms of obtaining PANI was a 1:12 mole ratio of ormosil:TEOS

  9. Multifunctional nano-hydroxyapatite and alginate/gelatin based sticky gel composites for potential bone regeneration

    International Nuclear Information System (INIS)

    Cai, Yurong; Yu, Juhong; Kundu, Subhas C.; Yao, Juming

    2016-01-01

    To improve the fixations of the implant and implant-bone integration after joint arthroplasty from locally preventing inflammation and promoting the bone regeneration, we design a multifunctional biomaterial consisting of recombinant human bone morphogenetic protein 2 (rhBMP-2) and antibiotic loaded nano-hydroxyapatite with an alginate/gelatin sticky gel. We investigate its role for the prevention of the inflammation and possibility of inducing a new bone growth along with its adhesive ability. The stickiness exists in the composite, which may help to fix itself on the bone fracture surface. The composite sustains the antibacterial effect and promotes the proliferation and differentiation of MG63 cells in vitro. In vivo experimentation also shows that the composite gel has a role for the reduction of inflammation. It enhances the formation of new bone and blood vessels compared to both the sole rhBMP-2 and non-rhBMP-2/antibiotic loaded composite gels. The multifunctional composite provides a promising material for the prosthetic and bone tissue regeneration. - Highlights: • Multifunctional nanohydroxyapatite composite is fabricated. • The composite consists of nHAP, growth factor, antibiotic and alginate/gelatin gel. • The composite shows antibacterial effect and good cytocompatibility. • No adverse effect to the cells tested in vitro and in vivo.

  10. Multifunctional nano-hydroxyapatite and alginate/gelatin based sticky gel composites for potential bone regeneration

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Yurong; Yu, Juhong [The Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education, National Engineering Lab of Textile Fiber Materials & Processing Technology, College of Materials and Textile, Zhejiang Sci-Tech University, Hangzhou 310018 (China); Kundu, Subhas C. [Department of Biotechnology, Indian Institute of Technology (IIT) Kharagpur, West Bengal 721302 (India); Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 330-714 (Korea, Republic of); Yao, Juming, E-mail: yaoj@zstu.edu.cn [The Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education, National Engineering Lab of Textile Fiber Materials & Processing Technology, College of Materials and Textile, Zhejiang Sci-Tech University, Hangzhou 310018 (China)

    2016-09-15

    To improve the fixations of the implant and implant-bone integration after joint arthroplasty from locally preventing inflammation and promoting the bone regeneration, we design a multifunctional biomaterial consisting of recombinant human bone morphogenetic protein 2 (rhBMP-2) and antibiotic loaded nano-hydroxyapatite with an alginate/gelatin sticky gel. We investigate its role for the prevention of the inflammation and possibility of inducing a new bone growth along with its adhesive ability. The stickiness exists in the composite, which may help to fix itself on the bone fracture surface. The composite sustains the antibacterial effect and promotes the proliferation and differentiation of MG63 cells in vitro. In vivo experimentation also shows that the composite gel has a role for the reduction of inflammation. It enhances the formation of new bone and blood vessels compared to both the sole rhBMP-2 and non-rhBMP-2/antibiotic loaded composite gels. The multifunctional composite provides a promising material for the prosthetic and bone tissue regeneration. - Highlights: • Multifunctional nanohydroxyapatite composite is fabricated. • The composite consists of nHAP, growth factor, antibiotic and alginate/gelatin gel. • The composite shows antibacterial effect and good cytocompatibility. • No adverse effect to the cells tested in vitro and in vivo.

  11. Vapour-phase method in the synthesis of polymer-ibuprofen sodium-silica gel composites.

    Science.gov (United States)

    Kierys, Agnieszka; Krasucka, Patrycja; Grochowicz, Marta

    2017-11-01

    The study discusses the synthesis of polymer-silica composites comprising water soluble drug (ibuprofen sodium, IBS). The polymers selected for this study were poly(TRIM) and poly(HEMA- co -TRIM) produced in the form of permanently porous beads via the suspension-emulsion polymerization method. The acid and base set ternary composites were prepared by the saturation of the solid dispersions of drug (poly(TRIM)-IBS and/or poly(HEMA- co -TRIM)-IBS) with TEOS, and followed by their exposition to the vapour mixture of water and ammonia, or water and hydrochloric acid, at autogenous pressure. The conducted analyses reveal that the internal structure and total porosity of the resulting composites strongly depend on the catalyst which was used for silica precursor gelation. The parameters characterizing the porosity of both of the acid set composites are much lower than the parameters of the base set composites. Moreover, the basic catalyst supplied in the vapour phase does not affect the ibuprofen sodium molecules, whereas the acid one causes transformation of the ibuprofen sodium into the sodium chloride and a derivative of propanoic acid, which is poorly water soluble. The release profiles of ibuprofen sodium from composites demonstrate that there are differences in the rate and efficiency of drug desorption from them. They are mainly affected by the chemical character of the polymeric carrier but are also associated with the restricted swelling of the composites in the buffer solution after precipitation of silica gel.

  12. Vapour-phase method in the synthesis of polymer-ibuprofen sodium-silica gel composites

    Directory of Open Access Journals (Sweden)

    Agnieszka Kierys

    2017-11-01

    Full Text Available The study discusses the synthesis of polymer-silica composites comprising water soluble drug (ibuprofen sodium, IBS. The polymers selected for this study were poly(TRIM and poly(HEMA-co-TRIM produced in the form of permanently porous beads via the suspension-emulsion polymerization method. The acid and base set ternary composites were prepared by the saturation of the solid dispersions of drug (poly(TRIM-IBS and/or poly(HEMA-co-TRIM-IBS with TEOS, and followed by their exposition to the vapour mixture of water and ammonia, or water and hydrochloric acid, at autogenous pressure. The conducted analyses reveal that the internal structure and total porosity of the resulting composites strongly depend on the catalyst which was used for silica precursor gelation. The parameters characterizing the porosity of both of the acid set composites are much lower than the parameters of the base set composites. Moreover, the basic catalyst supplied in the vapour phase does not affect the ibuprofen sodium molecules, whereas the acid one causes transformation of the ibuprofen sodium into the sodium chloride and a derivative of propanoic acid, which is poorly water soluble. The release profiles of ibuprofen sodium from composites demonstrate that there are differences in the rate and efficiency of drug desorption from them. They are mainly affected by the chemical character of the polymeric carrier but are also associated with the restricted swelling of the composites in the buffer solution after precipitation of silica gel.

  13. Sol-gel derived polymer composites for energy storage and conversion

    Science.gov (United States)

    Han, Kuo

    Sol-gel process is a simple chemistry to convert the small precursor molecules into an inorganic polymer, which could be applied to synthesize inorganic materials, modify the interface of materials, bridge the organic and inorganic materials, etc. In this dissertation, novel sol-gel derived composites have been developed for high dielectric breakdown capacitors, low high frequency loss capacitors and flexible piezoelectrics. Numerous efforts have been made in the past decades to improve the energy storage capability of composite materials by incorporating nanometer scale ceramic addictives with high dielectric permittivity into dielectric polymers with high breakdown strength. However, most composites suffer from the low breakdown strength and make the potential gain in energy density small. Here, a new chemical strategy is proposed that, through sol-gel reactions between ceramic precursors and functional groups at the end of the functionalized Poly(vinylidene fluoride -co-chlorotrifluoroethylene) chains, amorphous low permittivity ceramics was in-situ generated in the polymer matrix and cross-linked the polymer chains simultaneously. By carefully tuning precursors, the polymer/precursors feeding ratios, a series of nanocomposites were systematically designed. All the samples are comprehensively characterized and the structure-property correlations are well investigated. The optimal samples exhibit higher breakdown strength than the pristine polymer. The enhanced breakdown strength ascribed to low contrast in permittivity, great dispersion and improved electrical and mechanical properties. This newly developed approach has shown great promise for new composite capacitors. The percolative polymer composites have recently exhibited great potential in energy storage due to their high dielectric permittivities at the neighborhood of the percolation threshold. Yet high energy dissipation and poor voltage endurance of the percolative composites resulted from electrical

  14. Compositions and methods comprising cellulase variants with reduced affinity to non-cellulosic materials

    Energy Technology Data Exchange (ETDEWEB)

    Cascao-Pereira, Luis; Kaper, Thijs; Kelemen, Bradley R.; Liu, Amy D.

    2017-07-04

    The present disclosure relates to cellulase variants. In particular the present disclosure relates to cellulase variants having reduced binding to non-cellulosic materials. Also described are nucleic acids encoding the cellulase, compositions comprising said cellulase, methods of identifying cellulose variants and methods of using the compositions.

  15. Compositions and methods comprising cellulase variants with reduced affinity to non-cellulosic materials

    Science.gov (United States)

    Cascao-Pereira, Luis G.; Kaper, Thijs; Kelemen, Bradley R; Liu, Amy D.

    2012-08-07

    The present disclosure relates to cellulase variants. In particular the present disclosure relates to cellulase variants having reduced binding to non-cellulosic materials. Also described are nucleic acids encoding the cellulase, compositions comprising said cellulase, methods of identifying cellulose variants and methods of using the compositions.

  16. Compositions and methods comprising cellulase variants with reduced affinity to non-cellulosic materials

    Energy Technology Data Exchange (ETDEWEB)

    Cascao-Pereira, Luis G; Kaper, Thijs; Kelemen, Bradley R; Liu, Amy D

    2015-04-07

    The present disclosure relates to cellulase variants. In particular the present disclosure relates to cellulase variants having reduced binding to non-cellulosic materials. Also described are nucleic acids encoding the cellulase, compositions comprising said cellulase, methods of identifying cellulose variants and methods of using the compositions.

  17. Silk-fibrin/hyaluronic acid composite gels for nucleus pulposus tissue regeneration.

    Science.gov (United States)

    Park, Sang-Hyug; Cho, Hongsik; Gil, Eun Seok; Mandal, Biman B; Min, Byoung-Hyun; Kaplan, David L

    2011-12-01

    Scaffold designs are critical for in vitro culture of tissue-engineered cartilage in three-dimensional environments to enhance cellular differentiation for tissue engineering and regenerative medicine. In the present study we demonstrated silk and fibrin/hyaluronic acid (HA) composite gels as scaffolds for nucleus pulposus (NP) cartilage formation, providing both biochemical support for NP outcomes as well as fostering the retention of size of the scaffold during culture due to the combined features of the two proteins. Passage two (P2) human chondrocytes cultured in 10% serum were encapsulated within silk-fibrin/HA gels. Five study groups with fibrin/HA gel culture (F/H) along with varying silk concentrations (2% silk gel only, fibrin/HA gel culture with 1% silk [F/H+1S], 1.5% silk [F/H+1.5S], and 2% silk [F/H+2S]) were cultured in serum-free chondrogenic defined media (CDM) for 4 weeks. Histological examination with alcian blue showed a defined chondrogenic area at 1 week in all groups that widened homogenously until 4 weeks. In particular, chondrogenic differentiation observed in the F/H+1.5S had no reduction in size throughout the culture period. The results of biochemical and molecular biological evaluations supported observations made during histological examination. Mechanical strength measurements showed that the silk mixed gels provided stronger mechanical properties for NP tissue than fibrin/HA composite gels in CDM. This effect could potentially be useful in the study of in vitro NP tissue engineering as well as for clinical implications for NP tissue regeneration.

  18. Modification of gel architecture and TBE/TAE buffer composition to minimize heating during agarose gel electrophoresis.

    Science.gov (United States)

    Sanderson, Brian A; Araki, Naoko; Lilley, Jennifer L; Guerrero, Gilberto; Lewis, L Kevin

    2014-06-01

    Agarose gel electrophoresis of DNA and RNA is routinely performed using buffers containing either Tris, acetate, and EDTA (TAE) or Tris, borate, and EDTA (TBE). Gels are run at a low, constant voltage (∼10 V/cm) to minimize current and asymmetric heating effects, which can induce band artifacts and poor resolution. In this study, alterations of gel structure and conductive media composition were analyzed to identify factors causing higher electrical currents during horizontal slab gel electrophoresis. Current was reduced when thinner gels and smaller chamber buffer volumes were used, but was not influenced by agarose concentration or the presence of ethidium bromide. Current was strongly dependent on the amount and type of EDTA used and on the concentrations of the major acid-base components of each buffer. Interestingly, resolution and the mobilities of circular versus linear plasmid DNAs were also affected by the chemical form and amount of EDTA. With appropriate modifications to gel structure and buffer constituents, electrophoresis could be performed at high voltages (20-25 V/cm), reducing run times by up to 3-fold. The most striking improvements were observed with small DNAs and RNAs (10-100 bp): high voltages and short run times produced sharper bands and higher resolution. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Electrochemical corrosion behavior of composite MAO/sol-gel coatings on magnesium alloy AZ91D using combined micro-arc oxidation and sol-gel technique

    International Nuclear Information System (INIS)

    Shang Wei; Chen Baizhen; Shi Xichang; Chen Ya; Xiao Xiang

    2009-01-01

    Protective composite coatings were obtained on a magnesium alloy by micro-arc oxidation (MAO) and sol-gel technique. The coatings consisted of a MAO layer and a sol-gel layer. The microstructure and composition of the MAO coating and the composite coatings were analyzed by scanning electron microscopy (SEM) and energy dispersive X-rays (EDX). Potentiodynamic polarization, electrochemical impedance spectroscopy (EIS) and total immersion tests were used to evaluate the corrosion behavior of these coatings in a 3.5 wt.% NaCl solution. The results show that the sol-gel layer provides corrosion protection by physically sealing the pores in the MAO coating and acting as a barrier. The composite coatings can suppress the corrosion process by preventing the corrosive ions from transferring or diffusing to the magnesium alloy substrate. This enhances the corrosion resistance of the magnesium alloy AZ91D significantly

  20. Electrical conduction in composites containing copper core-copper

    Indian Academy of Sciences (India)

    Composites of nanometre-sized copper core-copper oxide shell with diameters in the range 6.1 to 7.3 nm dispersed in a silica gel were synthesised by a technique comprising reduction followed by oxidation of a suitably chosen precursor gel. The hot pressed gel powders mixed with nanometre-sized copper particles ...

  1. Biocompatibility of sol-gel hydroxyapatite-titania composite and bilayer coatings

    Energy Technology Data Exchange (ETDEWEB)

    Sidane, D., E-mail: dj.sidane@yahoo.fr [Laboratoire de Génie de l' Environnement (LGE), Faculté de Technologie, Université de Bejaia, 06000, Bejaia (Algeria); Rammal, H. [Equipe d' Accueil 4691 Biomatériaux et Inflammation en Site Osseux, SFR-CAP Santé (FED 4231), Université de Reims Champagne Ardenne, 1 Avenue du Maréchal Juin, 51100 Reims (France); Beljebbar, A. [UMR CNRS 7369, Equipe MéDIAN Biophotonique et Technologies pour la Santé, UFR de Pharmacie, SFR-CAP Santé (FED 4231), Université de Reims Champagne Ardenne, 51 rue Cognacq-Jay, 51096 Reims (France); Gangloff, S.C. [Equipe d' Accueil 4691 Biomatériaux et Inflammation en Site Osseux, SFR-CAP Santé (FED 4231), Université de Reims Champagne Ardenne, 1 Avenue du Maréchal Juin, 51100 Reims (France); Chicot, D. [FRE 3723 - LML - Laboratoire de Mécanique de Lille, Univ. Lille, 59000 Lille (France); Velard, F. [Equipe d' Accueil 4691 Biomatériaux et Inflammation en Site Osseux, SFR-CAP Santé (FED 4231), Université de Reims Champagne Ardenne, 1 Avenue du Maréchal Juin, 51100 Reims (France); Khireddine, H. [Laboratoire de Génie de l' Environnement (LGE), Faculté de Technologie, Université de Bejaia, 06000, Bejaia (Algeria); and others

    2017-03-01

    Titania-Hydroxyapatite (TiO{sub 2}/HAP) reinforced coatings are proposed to enhance the bioactivity and corrosion resistance of 316L stainless steel (316L SS). Herein, spin- and dip-coating sol-gel processes were investigated to construct two kinds of coatings: TiO{sub 2}/HAP composite and TiO{sub 2}/HAP bilayer. Physicochemical characterization highlighted the bioactivity response of the TiO{sub 2}/HAP composite once incubated in physiological conditions for 7 days whereas the TiO{sub 2}/HAP bilayer showed instability and dissolution. Biological analysis revealed a failure in human stem cells adhesion on TiO{sub 2}/HAP bilayer whereas on TiO{sub 2}/HAP composite the presence of polygonal shaped cells, possessing good behaviour attested a good biocompatibility of the composite coating. Finally, TiO{sub 2}/HAP composite with hardness up to 0.6 GPa and elastic modulus up to 18 GPa, showed an increased corrosion resistance of 316L SS. In conclusion, the user-friendly sol-gel processes led to bioactive TiO{sub 2}/HAP composite buildup suitable for biomedical applications. - Highlights: • 316L SS implant TiO{sub 2} reinforced HAP coatings were investigated and compared. • TiO{sub 2}/HAP composite had better structural features and biocompatible properties. • Improvement of 316L SS implants corrosion resistance. • TiO{sub 2}/HAP composite mechanical properties close to bone tissue • Low cost and desired material for hard tissue applications.

  2. Biocompatibility of sol-gel hydroxyapatite-titania composite and bilayer coatings

    International Nuclear Information System (INIS)

    Sidane, D.; Rammal, H.; Beljebbar, A.; Gangloff, S.C.; Chicot, D.; Velard, F.; Khireddine, H.

    2017-01-01

    Titania-Hydroxyapatite (TiO 2 /HAP) reinforced coatings are proposed to enhance the bioactivity and corrosion resistance of 316L stainless steel (316L SS). Herein, spin- and dip-coating sol-gel processes were investigated to construct two kinds of coatings: TiO 2 /HAP composite and TiO 2 /HAP bilayer. Physicochemical characterization highlighted the bioactivity response of the TiO 2 /HAP composite once incubated in physiological conditions for 7 days whereas the TiO 2 /HAP bilayer showed instability and dissolution. Biological analysis revealed a failure in human stem cells adhesion on TiO 2 /HAP bilayer whereas on TiO 2 /HAP composite the presence of polygonal shaped cells, possessing good behaviour attested a good biocompatibility of the composite coating. Finally, TiO 2 /HAP composite with hardness up to 0.6 GPa and elastic modulus up to 18 GPa, showed an increased corrosion resistance of 316L SS. In conclusion, the user-friendly sol-gel processes led to bioactive TiO 2 /HAP composite buildup suitable for biomedical applications. - Highlights: • 316L SS implant TiO 2 reinforced HAP coatings were investigated and compared. • TiO 2 /HAP composite had better structural features and biocompatible properties. • Improvement of 316L SS implants corrosion resistance. • TiO 2 /HAP composite mechanical properties close to bone tissue • Low cost and desired material for hard tissue applications

  3. Composites comprising silicon carbide fibers dispersed in magnesia-aluminate matrix and fabrication thereof and of other composites by sinter forging

    Science.gov (United States)

    Panda, Prakash C.; Seydel, Edgar R.; Raj, Rishi

    1989-10-03

    A novel ceramic-ceramic composite of a uniform dispersion of silicon carbide fibers in a matrix of MgO.multidot.nAl.sub.2 O.sub.3 wherein n ranges from about 1 to about 4.5, said composite comprising by volume from 1 to 50% silicon carbide fibers and from 99 to 50% MgO.multidot.nAl.sub.2 O.sub.3. The composite is readily fabricated by forming a powder comprising a uniform dispersion of silicon carbide fibers in poorly crystalline phase comprising MgO and Al.sub.2 O.sub.3 in a mole ratio of n and either (a) hot pressing or preferably (b) cold pressing to form a preform and then forging utilizing a temperature in the range of 1100.degree. C. to 1900.degree. C. and a strain rate ranging from about 10.sup.-5 seconds .sup.-1 to about 1 seconds .sup.-1 so that surfaces cracks do not appear to obtain a shear deformation greater than 30%.

  4. Preparation of Photocrosslinked Fish Elastin Polypeptide/Microfibrillated Cellulose Composite Gels with Elastic Properties for Biomaterial Applications

    Directory of Open Access Journals (Sweden)

    Shinya Yano

    2015-01-01

    Full Text Available Photocrosslinked hydrogels reinforced by microfibrillated cellulose (MFC were prepared from a methacrylate-functionalized fish elastin polypeptide and MFC dispersed in dimethylsulfoxide (DMSO. First, a water-soluble elastin peptide with a molecular weight of ca. 500 g/mol from the fish bulbus arteriosus was polymerized by N,N′-dicyclohexylcarbodiimide (DCC, a condensation reagent, and then modified with 2-isocyanatoethyl methacrylate (MOI to yield a photocrosslinkable fish elastin polypeptide. The product was dissolved in DMSO and irradiated with UV light in the presence of a radical photoinitiator. We obtained hydrogels successfully by substitution of DMSO with water. The composite gel with MFC was prepared by UV irradiation of the photocrosslinkable elastin polypeptide mixed with dispersed MFC in DMSO, followed by substitution of DMSO with water. The tensile test of the composite gels revealed that the addition of MFC improved the tensile properties, and the shape of the stress–strain curve of the composite gel became more similar to the typical shape of an elastic material with an increase of MFC content. The rheology measurement showed that the elastic modulus of the composite gel increased with an increase of MFC content. The cell proliferation test on the composite gel showed no toxicity.

  5. Applications and Properties of Ionic Liquid- Based Gels and Soft Solid Composites

    Science.gov (United States)

    Voss, Bret Alan McGinness

    2011-12-01

    Solid-liquid composites (gels) have a combination of properties that afford new material applications in which high solute diffusion is desirable. These composites have a soft-solid mechanical integrity and will not flow under gravity, but entrain a liquid matrix (i.e. 60-98 mass %) which allows for high diffusion and high reactivity. Room temperature ionic liquid (RTILs) are molten organic salts with a melting point below room temperature and negligible vapor pressure. If the RTILs are used as the liquid component of a gel, then the gel matrix will not evaporate (unlike other organic solvents) and may be used for long term applications. This thesis research applies RTIL gels for two new applications; carbon dioxide/nitrogen separation and chemical warfare agent (CWA) barrier and decontamination. Separating CO2 from the flue gas of coal and gas fired power-plants is an increasingly economically and environmentally important gas separation. In this first study, RTIL gels are cast in a supported membrane and gas permeability and ideal selectivity are measured. The RTIL matrix has an inherent affinity for CO2 and provides a high diffusion, hence high permeability (i.e. 500-700 barrer). The solidifying component is a low molecular-weight organic gelator (LMOG) which through physical bonding interactions (i.e. hydrogen bonding, pi-pi stacking and van der Walls forces) forms an entangled network which provides mechanical stability (i.e. increase trans-membrane pressure required to expel selective material from the support). In these studies two LMOGs and five RTILs are used to make supported gel membranes and determine gas permeability and temperature dependent trends. The second application for RTIL gels is a decontaminating barrier for CWAs and toxic industrial compounds (TICs). In these studies a layer of RTIL gel is applied on top of a substrate contaminated with a CWA simulant (i.e. chloroethylethylsulfide, CEES). The gel performs well as a barrier, preventing CEES

  6. Uncoupling the Impact of Fracture Properties and Composition on Sensory Perception of Emulsion-Filled Gels

    NARCIS (Netherlands)

    Devezeaux de Lavergne, Marine; Strijbosch, V.M.G.; Broek, Van den A.W.M.; Velde, Van de Fred; Stieger, Markus

    2016-01-01

    The aim of the study is to investigate the effect of fracture properties and composition of emulsion-filled gels on dynamic texture perception. Twelve emulsion-filled gels varying in fracture stress (High/Low) and strain (High/Low) were prepared from three binary gel mixtures. Mechanical

  7. Sol-gel coatings of ceramic fibres for composites with ceramic matrix

    International Nuclear Information System (INIS)

    Maier, B.; Grathwohl, G.; Spallek, M.; Pannhorst, W.

    1992-01-01

    The aim of this work was to show the feasibility in principle of sol-gel coating of ceramic reinforcement components for composites from technical aspects as well. The complexity of the coating task rises with the transition from individual fibres to bundles of fibres of different thickness to weaves, and finally to composites. (orig.) [de

  8. Injectable biocompatible and biodegradable pH-responsive hollow particle gels containing poly(acrylic acid): the effect of copolymer composition on gel properties.

    Science.gov (United States)

    Halacheva, Silvia S; Adlam, Daman J; Hendow, Eseelle K; Freemont, Tony J; Hoyland, Judith; Saunders, Brian R

    2014-05-12

    The potential of various pH-responsive alkyl (meth)acrylate ester- and (meth)acrylic acid-based copolymers, including poly(methyl methacrylate-co-acrylic acid) (PMMA-AA) and poly(n-butyl acrylate-co-methacrylic acid) (PBA-MAA), to form pH-sensitive biocompatible and biodegradable hollow particle gel scaffolds for use in non-load-bearing soft tissue regeneration have been explored. The optimal copolymer design criteria for preparation of these materials have been established. Physical gels which are both pH- and redox-sensitive were formed only from PMMA-AA copolymers. MMA is the optimal hydrophobic monomer, whereas the use of various COOH-containing monomers, e.g., MAA and AA, will always induce a pH-triggered physical gelation. The PMMA-AA gels were prepared at physiological pH range from concentrated dispersions of swollen, hollow, polymer-based particles cross-linked with either cystamine (CYS) or 3,3'-dithiodipropionic acid dihydrazide (DTP). A linear relationship between particle swelling ratios, gel elasticity, and ductility was observed. The PMMA-AA gels with lower AA contents feature lower swelling ratios, mechanical strengths, and ductilities. Increasing the swelling ratio (e.g., through increasing AA content) decreased the intraparticle elasticity; however, intershell contact and gel elasticity were found to increase. The mechanical properties and performance of the gels were tuneable upon varying the copolymers' compositions and the structure of the cross-linker. Compared to PMMA-AA/CYS, the PMMA-AA/DTP gels were more elastic and ductile. The biodegradability and cytotoxicity of the new hollow particle gels were tested for the first time and related to their composition, mechanical properties, and morphology. The new PMMA-AA/CYS and PMMA-AA/DTP gels have shown good biocompatibility, biodegradability, strength, and interconnected porosity and therefore have good potential as a tissue repair agent.

  9. Fabrication of superhydrophobic sol-gel composite films using hydrophobically modified colloidal zinc hydroxide.

    Science.gov (United States)

    Lakshmi, R V; Basu, Bharathibai J

    2009-11-15

    A superhydrophobic sol-gel composite film was fabricated by incorporating hydrophobically modified colloidal zinc hydroxide (CZH) in sol-gel matrix. CZH was prepared by controlled precipitation and modified by treatment with stearic acid. The concentration of stearic acid and stirring time were optimized to obtain modified CZH with very high water contact angle (WCA) of 165 degrees and sliding angle (SA)superhydrophobic surfaces. FTIR spectrum also confirmed the presence of zinc stearate in the composite film. The method is simple and cost-effective and does not involve any expensive chemicals or equipments.

  10. Construction of chitin/PVA composite hydrogels with jellyfish gel-like structure and their biocompatibility.

    Science.gov (United States)

    He, Meng; Wang, Zhenggang; Cao, Yan; Zhao, Yanteng; Duan, Bo; Chen, Yun; Xu, Min; Zhang, Lina

    2014-09-08

    High strength chitin/poly(vinyl alcohol) (PVA) composite hydrogels (RCP) were constructed by adding PVA into chitin dissolved in a NaOH/urea aqueous solution, and then by cross-linking with epichlorohydrin (ECH) and freezing-thawing process. The RCP hydrogels were characterized by field emission scanning electron microscopy, FTIR, differential scanning calorimetry, solid-state (13)C NMR, wide-angle X-ray diffraction, and compressive test. The results revealed that the repeated freezing/thawing cycles induced the bicrosslinked networks consisted of chitin and PVA crystals in the composite gels. Interestingly, a jellyfish gel-like structure occurred in the RCP75 gel with 25 wt % PVA content in which the amorphous and crystalline PVA were immobilized tightly in the chitin matrix through hydrogen bonding interaction. The freezing/thawing cycles played an important role in the formation of the layered porous PVA networks and the tight combining of PVA with the pore wall of chitin. The mechanical properties of RCP75 were much higher than the other RCP gels, and the compressive strength was 20× higher than that of pure chitin gels, as a result of broadly dispersing stress caused by the orderly multilayered networks. Furthermore, the cell culture tests indicated that the chitin/PVA composite hydrogels exhibited excellent biocompatibility and safety, showing potential applications in the field of tissue engineering.

  11. Foamable compositions and formations treatment

    Energy Technology Data Exchange (ETDEWEB)

    Clampitt, R.L.

    1981-11-17

    Thermally stable foamable gelled compositions are disclosed suitable for postprimary oil recovery e.g., steam- or gas-foamed systems comprising water, a surfactant, a polymeric viscosifier, an aldehyde component, and at least one phenolic component such as resorcinol, catechol, and the like, as well as selected oxidized phenolic materials such as 1,4-benzoquinone of natural or synthetic origin and natural and modified tannins. The gel compositions can additionally contain gel stabilizers such as sulfomethylated quebracho (Smq) and chemical buffering agents such as sodium bicarbonate.

  12. Marginal microleakage of class V composite restorations before and after AFP gel application

    Directory of Open Access Journals (Sweden)

    Davari Abdolrahim

    2015-01-01

    Full Text Available   Background and Aims: The most effective preventing tooth decay method is fluoride compounds applications. Some studies suggested that APF gels caused changes on the superficial physical properties of composite. Therefore, the purpose of this study was to evaluate the marginal microleakage of class V composite restorations before and after AFP gel application.   Materials and Methods: The class V cavities in buccal surfaces of 45 molar teeth were made in such a way that occlusal margin was placed in enamel and cervical margin in cement. In group 1, at first fluoride-therapy and then cavity preparation and restoration by composite resin was done. In group 2, at first the class V cavities were prepared and restored, then fluoride-therapy was carried out. In group 3, cavities were prepared and restored with no fluoride-therapy. The dye penetration rate in occlusal and cervical margins was examined by stereomicroscope. Data were statistically analyzed using Kruskal-Wallis and Mann-Whitney test.   Results: There was no statistically significant difference between groups ( P=0.975.   Conclusion: Fluoride-therapy using AFP gel before and after class V composite restorations, had no significant effect on the microleakage of dentin and enamel margins.

  13. Composites comprising novel RTIL-based polymers, and methods of making and using same

    Science.gov (United States)

    Gin, Douglas; Carlisle, Trevor; Noble, Richard; Nicodemus, Garret; McDanel, William; Cowan, Matthew

    2017-06-27

    The invention includes compositions comprising curable imidazolium-functionalized poly(room-temperature ionic liquid) copolymers and homopolymers. The invention further includes methods of preparing and using the compositions of the invention. The invention further includes novel methods of preparing thin, supported, room-temperature ionic liquid-containing polymeric films on a porous support. In certain embodiments, the methods of the invention avoid the use of a gutter layer, which greatly reduces the overall gas permeance and selectivity of the composite membrane. In other embodiments, the films of the invention have increased gas selectivity and permeance over films prepared using methods described in the prior art.

  14. Porous olivine composites synthesized by sol-gel technique

    Energy Technology Data Exchange (ETDEWEB)

    Dominko, R.; Bele, M.; Gaberscek, M.; Jamnik, J. [National Institute of Chemistry, P.O. Box 660, SI-1001 Ljubljana (Slovenia); Remskar, M.; Hanzel, D. [Jozef Stefan Institute, Jamova 39, SI-1000 Ljubljana (Slovenia); Goupil, J.M. [ENSICAEN, UMR CNRS 6506, Catalyse and Spectrochimie Lab, F-14050 Caen (France); Pejovnik, S. [Faculty of Chemistry and Chemical Technology, University of Ljubljana, Askerceva 5, SI-1000 Ljubljana (Slovenia)

    2006-02-28

    Porous LiMPO{sub 4}/C composites (where M stands for Fe and/or Mn) with micro-sized particles were synthesised by sol-gel technique. Particles porosity is discussed in terms of qualitative results obtained from SEM micrographs and in terms of quantitative results obtained from N{sub 2} adsorption isotherms. Porous particles could be described as an inverse picture of nanoparticulate arrangement, where the pores serve as channels for lithium supply and the distance between the pores determines the materials kinetics. Tests show that the electrochemical behaviour of porous LiMPO{sub 4}/C composite is comparable with the results from the literature. The best electrochemical results were obtained with a LiFePO{sub 4}/C composite (over 140mAhg{sup -1} at C/2 rate during continuous cycling). The capacity obtained with LiMnPO{sub 4}/C composite is much lower (40mAhg{sup -1} at C/20 rate), although the textural properties are similar to those observed in the LiFePO{sub 4}/C composite. (author)

  15. Gel electrolytes and electrodes

    Science.gov (United States)

    Fleischmann, Sven; Bunte, Christine; Mikhaylik, Yuriy V.; Viner, Veronika G.

    2017-09-05

    Gel electrolytes, especially gel electrolytes for electrochemical cells, are generally described. In some embodiments, the gel electrolyte layers comprise components a) to c). Component a) may be at least one layer of at least one polymer comprising polymerized units of: a1) at least one monomer containing an ethylenically unsaturated unit and an amido group and a2) at least one crosslinker. Component b) may be at least one conducting salt and component c) may be at least one solvent. Electrodes may comprise the components a), d) and e), wherein component a) may be at least one layer of at least one polymer as described herein. Component d) may be at least one electroactive layer and component e) may be at least one ceramic layer. Furthermore, electrochemical cells comprising component a) which may be at least one layer of at least one polymer as described herein, are also provided.

  16. Development of fluorocarbon/silica composites via sol/gel process

    International Nuclear Information System (INIS)

    Ferreira, Max P.; Maria, Daniel A.; Gomes, Luiza M.F.

    2009-01-01

    Fluorocarbon/silica composites have interesting physical-chemical properties, combining the great resistance to chemical products, the electric insulation, and the thermal stability of fluorine polymers with the optical, magnetic, and dielectric properties of silica. Due to the unique mechanical, thermal, and dielectric properties of fluorocarbon and silica composites, there is interest in their application in the development of fuel cells, the production of integrated circuit boards (ICB), and packages for the transportation of integrated circuits. The sol-gel process is a chemical route to prepare ceramic materials with specific properties that are hard or impossible to obtain by conventional methods. Fluorocarbon/silica composites were obtained by the sol-gel method from tetramethoxysilane - TMOS and fluorinated hydrocarbons with low molecular weight and main chains with 10 - 20 carbon atoms previously obtained from PTFE scraps irradiated with a 60 Co γ source in oxygen atmosphere with a dose of 1 MGy. Syntheses were performed in 125-mL reaction flasks in basic medium at 35 deg C and in acid medium at 60 deg C with N-N dimethylformamide as a chemical additive for drying control. After synthesis, the material was thermally treated in an oven with electronic temperature control. The monoliths obtained were characterized by Fourier transform infrared spectroscopy (FTIR), electron microprobe and by a standard nitrogen adsorption-desorption technique. (author)

  17. Properties of form-stable paraffin/silicon dioxide/expanded graphite phase change composites prepared by sol–gel method

    International Nuclear Information System (INIS)

    Li, Min; Wu, Zhishen; Tan, Jinmiao

    2012-01-01

    Highlights: ► Paraffin/SiO 2 /EG composite PCM was prepared with sol–gel method. ► The thermal conductivity of SiO 2 /paraffin/EG is 94.7% higher than paraffin. ► The latent heat of paraffin/SiO 2 /EG composite is 104.4 J/g. -- Abstract: A form-stable paraffin/silicon dioxide (SiO 2 )/expanded graphite (EG) composite phase change material (PCM) was prepared by sol–gel method. Silica gel acts as the supporting material and EG is used to increase the thermal conductivity. The mass fractions of silicon oxide and graphite are 20.8% and 7.2%, respectively. The composite PCM was characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM) and Fourier transformation infrared spectroscopy (FTIR) method. Thermal properties and thermal stability of the composite PCM were studied using differential scanning calorimetry (DSC). The result shows that paraffin was well dispersed in the network of silica gel and there is no chemical reaction between them. The phase change temperature of the paraffin/SiO 2 composite and the paraffin/SiO 2 /EG composite are 27.53 °C and 27.72 °C, respectively. The latent heat of the paraffin/SiO 2 composite and the paraffin/SiO 2 /EG composite are 112.8 J/g and 104.4 J/g, respectively. The thermal conductivity of the SiO 2 /paraffin composite and the SiO 2 /paraffin/EG composite are 28.2% and 94.7% higher than that of paraffin.

  18. Precursor polymer compositions comprising polybenzimidazole

    Science.gov (United States)

    Klaehn, John R.; Peterson, Eric S.; Orme, Christopher J.

    2015-07-14

    Stable, high performance polymer compositions including polybenzimidazole (PBI) and a melamine-formaldehyde polymer, such as methylated, poly(melamine-co-formaldehyde), for forming structures such as films, fibers and bulky structures. The polymer compositions may be formed by combining polybenzimidazole with the melamine-formaldehyde polymer to form a precursor. The polybenzimidazole may be reacted and/or intertwined with the melamine-formaldehyde polymer to form the polymer composition. For example, a stable, free-standing film having a thickness of, for example, between about 5 .mu.m and about 30 .mu.m may be formed from the polymer composition. Such films may be used as gas separation membranes and may be submerged into water for extended periods without crazing and cracking. The polymer composition may also be used as a coating on substrates, such as metal and ceramics, or may be used for spinning fibers. Precursors for forming such polymer compositions are also disclosed.

  19. Solid polymer electrolyte composite membrane comprising plasma etched porous support

    Science.gov (United States)

    Liu, Han; LaConti, Anthony B.

    2010-10-05

    A solid polymer electrolyte composite membrane and method of manufacturing the same. According to one embodiment, the composite membrane comprises a rigid, non-electrically-conducting support, the support preferably being a sheet of polyimide having a thickness of about 7.5 to 15 microns. The support has a plurality of cylindrical pores extending perpendicularly between opposing top and bottom surfaces of the support. The pores, which preferably have a diameter of about 0.1 to 5 microns, are made by plasma etching and preferably are arranged in a defined pattern, for example, with fewer pores located in areas of high membrane stress and more pores located in areas of low membrane stress. The pores are filled with a first solid polymer electrolyte, such as a perfluorosulfonic acid (PFSA) polymer. A second solid polymer electrolyte, which may be the same as or different than the first solid polymer electrolyte, may be deposited over the top and/or bottom of the first solid polymer electrolyte.

  20. Solid polymer electrolyte composite membrane comprising laser micromachined porous support

    Science.gov (United States)

    Liu, Han [Waltham, MA; LaConti, Anthony B [Lynnfield, MA; Mittelsteadt, Cortney K [Natick, MA; McCallum, Thomas J [Ashland, MA

    2011-01-11

    A solid polymer electrolyte composite membrane and method of manufacturing the same. According to one embodiment, the composite membrane comprises a rigid, non-electrically-conducting support, the support preferably being a sheet of polyimide having a thickness of about 7.5 to 15 microns. The support has a plurality of cylindrical pores extending perpendicularly between opposing top and bottom surfaces of the support. The pores, which preferably have a diameter of about 5 microns, are made by laser micromachining and preferably are arranged in a defined pattern, for example, with fewer pores located in areas of high membrane stress and more pores located in areas of low membrane stress. The pores are filled with a first solid polymer electrolyte, such as a perfluorosulfonic acid (PFSA) polymer. A second solid polymer electrolyte, which may be the same as or different than the first solid polymer electrolyte, may be deposited over the top and/or bottom of the first solid polymer electrolyte.

  1. Development of novel Sol-Gel Indicators (SGI's) for in-situ environmental measurements: Part 1, Program and a new pH Sol-Gel Indicator

    International Nuclear Information System (INIS)

    Livingston, R.R.; Baylor, L.; Wicks, G.G.

    1992-01-01

    The feasibility of incorporating analytical indicators into a sol-gel glassy matrix and then coating substrates with this composite material has bee demonstrated. Substrates coated include paper, wood, glass, and the lens of an analytical probe. The first SRTC sol-gel indicator, comprising bromophenol blue dispersed in a silica matrix, was fabricated and successfully used to measure solution pH in the range of pH 3.0 to 7.5. material exhibited a quick response time, as measured by color changes both qualitatively and quantitatively, and the measuring device was reversible or reusable. Additional indicators with responses over other ranges as well as indicators sensitive to the presence of elements of interest, are also under development. The new SGI composites possess promising properties and an excellent potential for performing a variety important in-situ environmental measurements and area discussed in this report

  2. Composite materials comprising two jonal functions and methods for making the same

    Science.gov (United States)

    Fareed, Ali Syed; Garnier, John Edward; Schiroky, Gerhard Hans; Kennedy, Christopher Robin; Sonuparlak, Birol

    2001-01-01

    The present invention generally relates to mechanisms for preventing undesirable oxidation (i.e., oxidation protection mechanisms) in composite bodies. The oxidation protection mechanisms include getterer materials which are added to the composite body which gather or scavenge undesirable oxidants which may enter the composite body. The getterer materials may be placed into at least a portion of the composite body such that any undesirable oxidant approaching, for example, a fiber reinforcement, would be scavenged by (e.g., reacted with) the getterer. The getterer materials) may form at least one compound which acts as a passivation layer, and/or is able to move by bulk transport (e.g., by viscous flow as a glassy material) to a crack, and sealing the crack, thereby further enhancing the oxidation protection of the composite body. One or more ceramic filler materials which serve as reinforcements may have a plurality of super-imposed coatings thereon, at least one of which coatings may function as or contain an oxidation protection mechanism. Specifically, a coating comprising boron nitride which has been engineered or modified to contain some silicon exhibits improved corrosion resistance, specifically to oxygen and moisture. The coated materials may be useful as reinforcing materials in high performance composites to provide improved mechanical properties such as fracture toughness. The present invention also relates to improved composites which incorporate these materials, and to their methods of manufacture.

  3. Nanocrystal/sol-gel nanocomposites

    Science.gov (United States)

    Petruska, Melissa A [Los Alamos, NM; Klimov, Victor L [Los Alamos, NM

    2007-06-05

    The present invention is directed to solid composites including colloidal nanocrystals within a sol-gel host or matrix and to processes of forming such solid composites. The present invention is further directed to alcohol soluble colloidal nanocrystals useful in formation of sol-gel based solid composites.

  4. Tunable Optical Properties of Metal Nanoparticle Sol-Gel Composites

    Science.gov (United States)

    Smith, David D.; Snow, Lanee A.; Sibille, Laurent; Ignont, Erica

    2001-01-01

    We demonstrate that the linear and non-linear optical properties of sol-gels containing metal nanoparticles are highly tunable with porosity. Moreover, we extend the technique of immersion spectroscopy to inhomogeneous hosts, such as aerogels, and determine rigorous bounds for the average fractional composition of each component, i.e., the porosity of the aerogel, or equivalently, for these materials, the catalytic dispersion. Sol-gels containing noble metal nanoparticles were fabricated and a significant blue-shift in the surface plasmon resonance (SPR) was observed upon formation of an aerogel, as a result of the decrease in the dielectric constant of the matrix upon supercritical extraction of the solvent. However, as a result of chemical interface damping and aggregation this blue-shift does not strictly obey standard effective medium theories. Mitigation of these complications is achieved by avoiding the use of alcohol and by annealing the samples in a reducing atmosphere.

  5. Composites comprising biologically-synthesized nanomaterials

    Science.gov (United States)

    Curran, Seamus; Dias, Sampath; Blau, Werner; Wang, Jun; Oremland, Ronald S; Baesman, Shaun

    2013-04-30

    The present disclosure describes composite materials containing a polymer material and a nanoscale material dispersed in the polymer material. The nanoscale materials may be biologically synthesized, such as tellurium nanorods synthesized by Bacillus selenitireducens. Composite materials of the present disclosure may have optical limiting properties and find use in optical limiting devices.

  6. Effects of gel composition on the radiation induced density change in PAG polymer gel dosimeters: a model and experimental investigations

    International Nuclear Information System (INIS)

    Hilts, M; Jirasek, A; Duzenli, C

    2004-01-01

    Due to a density change that occurs in irradiated polyacrylamide gel (PAG), x-ray computed tomography (CT) has emerged as a feasible method of performing polymer gel dosimetry. However, applicability of the technique is currently limited by low sensitivity of the density change to dose. This work investigates the effect of PAG composition on the radiation induced density change and provides direction for future work in improving the sensitivity of CT polymer gel dosimetry. A model is developed that describes the PAG density change (Δρ gel ) as a function of both polymer yield (%P) and an intrinsic density change, per unit polymer yield, that occurs on conversion of monomer to polymer (Δρ polymer ). %P is a function of the fraction of monomer consumed and the weight fraction of monomer in the unirradiated gel (%T). Applying the model to experimental CT and Raman spectroscopic data, two important fundamental properties of the response of PAG density to dose (Δρ gel dose response) are discovered. The first property is that Δρ polymer depends on PAG %C (cross-linking fraction of total monomer) such that low and high %C PAGs exhibit a higher Δρ polymer than do more intermediate %C PAGs. This relationship is opposite to the relationship of polymer yield to %C and is explained by the effect of %C on the type of polymer formed. The second property is that the Δρ gel dose response is linearly dependent on %T. From the model, the inference is that, at least for %T≤12%, monomer consumption and Δρ polymer depend solely on %C. In terms of optimizing CT polymer gel dosimetry for high sensitivity, these results indicate that Δρ polymer can be expected to vary with each polymer gel system and thus should be considered when choosing a polymer gel for CT gel dosimetry. However, Δρ polymer and %P cannot be maximized simultaneously and maximizing %P, by choosing gels with intermediate %C and high %T, is found to have the greatest impact on increasing the

  7. Determination of arsenate in water by anion selective membrane electrode using polyurethane–silica gel fibrous anion exchanger composite

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Asif Ali, E-mail: asifkhan42003@yahoo.com; Shaheen, Shakeeba, E-mail: shakeebashaheen@ymail.com

    2014-01-15

    Highlights: • PU–Si gel is new anion exchanger material synthesized and characterized. • This material used as anion exchange membrane is applied for electroanalytical studies. • The method for detection and determination of AsO{sub 4}{sup 3−} in traces amounts discussed. • The results are also verified from arsenic analyzer. -- Abstract: Polyurethane (PU)–silica (Si gel) based fibrous anion exchanger composites were prepared by solid–gel polymerization of polyurethane in the presence of different amounts of silica gel. The formation of PU–Si gel fibrous anion exchanger composite was characterized by Fourier transform infra-red spectroscopy (FTIR), X-ray diffraction (XRD), thermogravimetric analysis (TGA-DTA), scanning electron microscopy (SEM) and elemental analysis. The membrane having a composition of 5:3 (PU:Si gel) shows best results for water content, porosity, thickness and swelling. Our studies show that the present ion selective membrane electrode is selective for arsenic, having detection limit (1 × 10{sup −8} M to 1 × 10{sup −1} M), response time (45 s) and working pH range (5–8). The selectivity coefficient values for interfering ions indicate good selectivity for arsenate (AsO{sub 4}{sup 3−}) over interfering anions. The accuracy of the detection limit results was compared by PCA-Arsenomat.

  8. Fabrication and Crystal Structure of Sol-Gel Deposited BST Thin Films with Compositional Gradient

    Directory of Open Access Journals (Sweden)

    Czekaj D.

    2017-06-01

    Full Text Available In the present research technology of compositionally graded barium strontium titanate Ba1-xSrxTiO3 thin films deposited on stainless steel substrates by sol-gel spin coating followed with thermal annealing at T = 650°C is reported. Results of thermal behavior of the sol-gel derived powders with compositions used for fabrication of graded structure (i.e. with Sr mole fraction x = 0.5, 0.4 and 0.3 are described. X-ray diffraction studies of the phase composition and crystal structure of such complex thin film configuration are given. It was found that gel powders exhibited a large total weight loss of about Δm ≈ 44-47%. Three stages of weight loss took place at temperature ranges: below T ≈ 300°C, at ΔT ≈ 300-500°C and between T = 600°C and T = 800°C. Phase analysis has shown that the dominating phase is Ba0.67Sr0.33TiO3 compound while the second phase is Ba0.7Sr0.3TiO3 or Ba0.5Sr0.5TiO3 for “up-graded” and “down-graded” structure, respectively.

  9. GAS SEPARATION MEMBRANES COMPRISING PERMEABILITY ENHANCING ADDITIVES

    NARCIS (Netherlands)

    Wessling, Matthias; Sterescu, D.M.; Stamatialis, Dimitrios

    2007-01-01

    The present invention relates to polymer compositions comprising a (co)polymer comprising (a) an arylene oxide moiety and (b) a dendritic (co)polymer, a hyperbranched (co)polymer or a mixture thereof, and the use of these polymer compositions as membrane materials for the separation of gases. The

  10. Preparation of ZnO/SiO{sub 2} gel composites and their performance of H{sub 2}S removal at room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Guoqiang [Laboratory of Advanced Materials, Department of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Huang, Zheng-Hong, E-mail: zhhuang@tsinghua.edu.cn [Laboratory of Advanced Materials, Department of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Kang, Feiyu [Laboratory of Advanced Materials, Department of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Institute of Advanced Materials Research, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055 (China)

    2012-05-15

    Graphical abstract: The ZnO/SiO{sub 2} gel composites exhibit mixed type isotherms, in which the initial part is type I, and intermediate and high relative pressures are type IV with a hysteresis loop of type H2. The breakthrough time of ZnO/SiO{sub 2} composites first increased sharply up to 400 Degree-Sign C with the H{sub 2}S breakthrough capacity is up to 96.4 mg/g, and then decrease dramatically with further rising of temperature beyond 500 Degree-Sign C. Highlights: Black-Right-Pointing-Pointer High surface area ZnO/SiO{sub 2} gel composites were prepared by co-sol-gel method. Black-Right-Pointing-Pointer The active phase (ZnO) well disperses in the composites. Black-Right-Pointing-Pointer The highest H{sub 2}S adsorption capacity of the composites reaches up to 96.4 mg/g. Black-Right-Pointing-Pointer Both physisorption and the active phase reactivation governed the H{sub 2}S removal process. - Abstract: ZnO/SiO{sub 2} gel composites with different active component loading were prepared by sol-gel method combined with ambient drying process, followed by thermal treatment. The gel composites were characterized by scanning electron microscopy (SEM), nitrogen adsorption, X-ray diffraction (XRD), FTIR and X-ray photoelectron spectroscopy (XPS), and their performances for H{sub 2}S removal were evaluated by dynamic testing at room temperature. The as prepared materials exhibited high surface area with multimodal pore size distributions in micropore and mesopore region. The porous properties were significantly influenced both by the ZnO loading ratio and the treated temperature. The gel composites showed a high performance for H{sub 2}S removal, with the highest H{sub 2}S adsorption capacity of 96.4 mg/g for the sample treated at 400 Degree-Sign C with 30 wt% ZnO. Both physisorption and the active phase reactivation governed the H{sub 2}S removal process. It needs to optimize the composites' porous structure and active component loading amount.

  11. Effects of 35% Carbamide Peroxide Gel on Surface Roughness and Hardness of Composite Resins

    OpenAIRE

    Sharafeddin, F.; Jamalipour, GR.

    2010-01-01

    Objective: Bleaching agents may not be safe for dental materials. The purpose of this in-vitro study was to evaluate the effects of Opalescent Quick ?in-office bleaching gel? containing 35% carbamide peroxide on the surface roughness and hardness of microfilled (Heliomolar) and hybride (Spectrum TPH) composite resins. Materials and Methods: Twenty specimens of Spectrum TPH composite resins and twenty Heliomolar composite resins were fabricated using a metallic ring (6.5 mm diameter and 2.5 mm...

  12. Bio sorption process for uranium (VI) by using algae-yeast-silica gel composite adsorbent

    International Nuclear Information System (INIS)

    Turkozu, D. A.; Aytas, S.

    2006-01-01

    Many yeast, algae, bacteria and various aquatic flora are known to be capable of concentrating metal species from dilute aqueous solution. Many researcher have found that non-living biomaterials can be used to accumulate metal ions from environment. In recent studies, mainly two process are used in biosorption experiments. These are the use of free cells and the use of immobilized cells on a solid support. A variety of inert supports have been used to immobilize biomaterials either by adsorption or physical entrapment. This uptake is often considerable and frequently selective, and occurs via a variety of mechanisms including active transport, ion exchange or complexation, and adsorption or inorganic precipitation. Biosorbent may be used as an ion exchange material. Adsorption occurs through interaction of the metal ions with functional groups that are found in the cell wall biopolymers of either living or dead organisms. In this study, the algae-yeast-silica gel composite adsorbent was tested for its ability to recover U(VI) from diluted aqueous solutions. Macro marine algae (Jania rubens.), yeast (Saccharomyces cerevisiae) and silica gel were used to prepare composite adsorbent. The ability of the composite biosorbent to adsorb uranium (VI) from aqueous solution has been studied at different optimized conditions of pH, concentration of U(VI), temperature, contact time and matrix ion effect was also investigated. The adsorption patterns of uranium on the composite biosorbent were investigated by the Langmuir, Freundlich and Dubinin-Radushkhevic isotherms. The thermodynamic parameters such as variation of enthalpy ΔH, variation of entropy ΔS and variation of Gibbs free energy ΔG were calculated. The results suggested that the macro algae-yeast-silica gel composite sorbent is suitable as a new biosorbent material for removal of uranium ions from aqueous solutions

  13. Biomimetically-mineralized composite coatings on titanium functionalized with gelatin methacrylate hydrogels

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Guoxin, E-mail: tanguoxin@126.com [School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006 (China); Zhou, Lei [School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006 (China); Ning, Chengyun, E-mail: imcyning@scut.edu.cn [College of Materials Science and Technology, South China University of Technology, Guangzhou, 510641 (China); Tan, Ying [School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006 (China); Ni, Guoxin [Department of Orthopedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515 (China); Liao, Jingwen; Yu, Peng; Chen, Xiaofeng [College of Materials Science and Technology, South China University of Technology, Guangzhou, 510641 (China)

    2013-08-15

    Immobilizing organic–inorganic hybrid composites onto the implant surface is a promising strategy to improve host acceptance of the implant. The objective of this present study was to obtain a unique macroporous titanium-surface with the organic–mineral composite coatings consisting of gelatin methacrylate hydrogel (GelMA) and hydroxyapatite (HA). A 3-(trimethoxysilyl) propyl methacrylate (TMSPMA) layer was first coated onto the titanium surface, and surface was then covalently functionalized with GelMA using a photochemical method. Mineralization of the GelMA coating on the titanium surface was subsequently carried out by a biomimetic method. After 3-day mineralization, a large number of mineral phases comprising spherical amorphous nanoparticles were found randomly deposited inside GelMA matrix. The resulting mineralized hydrogel composites exhibited a unique rough surface of macroporous structure. The structure of the prepared GelMA/HA composite coating was studied by field emission scanning electron microscopy (FESEM), energy dispersive X-ray spectra (EDS), attenuated total refraction Fourier transform infrared spectroscopy (ATR-FTIR), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD). Water contact angle measurement revealed the hydrophilicity properties of composite coatings. GelMA/HA on titanium after the TMSPMA treatment is very stable when tested in vitro with a PBS solution at 37 °C, due to the role of TMSPMA as a molecular bridge. It was expected that the macroporous GelMA/HA composite coatings might potentially promote and accelerate titanium (Ti)-based implants osseointegration for bone repair and regeneration.

  14. Cross-linked Composite Gel Polymer Electrolyte using Mesoporous Methacrylate-Functionalized SiO2 Nanoparticles for Lithium-Ion Polymer Batteries

    Science.gov (United States)

    Shin, Won-Kyung; Cho, Jinhyun; Kannan, Aravindaraj G.; Lee, Yoon-Sung; Kim, Dong-Won

    2016-01-01

    Liquid electrolytes composed of lithium salt in a mixture of organic solvents have been widely used for lithium-ion batteries. However, the high flammability of the organic solvents can lead to thermal runaway and explosions if the system is accidentally subjected to a short circuit or experiences local overheating. In this work, a cross-linked composite gel polymer electrolyte was prepared and applied to lithium-ion polymer cells as a safer and more reliable electrolyte. Mesoporous SiO2 nanoparticles containing reactive methacrylate groups as cross-linking sites were synthesized and dispersed into the fibrous polyacrylonitrile membrane. They directly reacted with gel electrolyte precursors containing tri(ethylene glycol) diacrylate, resulting in the formation of a cross-linked composite gel polymer electrolyte with high ionic conductivity and favorable interfacial characteristics. The mesoporous SiO2 particles also served as HF scavengers to reduce the HF content in the electrolyte at high temperature. As a result, the cycling performance of the lithium-ion polymer cells with cross-linked composite gel polymer electrolytes employing methacrylate-functionalized mesoporous SiO2 nanoparticles was remarkably improved at elevated temperatures. PMID:27189842

  15. Polymer sol-gel composite inverse opal structures.

    Science.gov (United States)

    Zhang, Xiaoran; Blanchard, G J

    2015-03-25

    We report on the formation of composite inverse opal structures where the matrix used to form the inverse opal contains both silica, formed using sol-gel chemistry, and poly(ethylene glycol), PEG. We find that the morphology of the inverse opal structure depends on both the amount of PEG incorporated into the matrix and its molecular weight. The extent of organization in the inverse opal structure, which is characterized by scanning electron microscopy and optical reflectance data, is mediated by the chemical bonding interactions between the silica and PEG constituents in the hybrid matrix. Both polymer chain terminus Si-O-C bonding and hydrogen bonding between the polymer backbone oxygens and silanol functionalities can contribute, with the polymer mediating the extent to which Si-O-Si bonds can form within the silica regions of the matrix due to hydrogen-bonding interactions.

  16. Fabrication of high strength PVA/SWCNT composite fibers by gel spinning

    OpenAIRE

    Xu, Xuezhu; Uddin, Ahmed Jalal; Aoki, Kenta; Gotoh, Yasuo; Saito, Takeshi; Yumura, Motoo

    2010-01-01

    High-strength composite fibers were prepared from polyvinyl alcohol (PVA) (Degree of polymerization: 1500) reinforced by single-walled carbon nanotubes (SWCNTs) containing few defects. The SWCNTs were dispersed in a 10 wt.% PVA/dimethylsulfoxide solution using a mechanical homogenizer that reduced the size of SWCNT aggregations to smaller bundles. The macroscopically homogeneous dispersion was extruded into cold methanol to form fibers by gel spinning followed by a hot-drawing. The tensile st...

  17. Studies of gel metal-oxide composite samples as filling materials for W-188/Re-188 generator column

    Czech Academy of Sciences Publication Activity Database

    Iller, E.; Polkowska-Motrenko, H.; Lada, W.; Wawszczak, D.; Sypula, M.; Doner, K.; Konior, M.; Milczarek, J.; Zoladek, J.; Ráliš, Jan

    2009-01-01

    Roč. 281, č. 1 (2009), s. 83-86 ISSN 0236-5731. [9th International Conference on Nuclear Analytical Methods in the Life Sciences. Lisbon, 07.09.2008-12.09.2008] Institutional research plan: CEZ:AV0Z10480505 Keywords : W-188/Re-188 generator * W-Zr gels * W-Zr composites * Sol-gel process Subject RIV: CH - Nuclear ; Quantum Chemistry Impact factor: 0.631, year: 2009

  18. PREPARATION AND CHARACTERIZATION OF COMPOSITES COMPRISING MODIFIED HARDWOOD AND WOOD POLYMERS/POLY(VINYL CHLORIDE

    Directory of Open Access Journals (Sweden)

    Ruxanda Bodîrlău

    Full Text Available Chemical modification of hardwood sawdust from ash-tree species was carried out with a solution of maleic anhydride in acetone. Wood polymers, lignin, and cellulose were isolated from the wood sawdust and modified by the same method. Samples were characterized by Fourier transform infrared spectroscopy (FTIR, providing evidence that maleic anhydride esterifies the free hydroxyl groups of the wood polymer components. Composites comprising chemically modified wood sawdust and wood polymers (cellulose, lignin-as variable weight percentages-, and poly (vinyl chloride were obtained and further characterized by using FTIR spectroscopy and scanning electron microscopy (SEM. The thermal behavior of composites was investigated by using the thermogravimetric analysis (TGA. In all cases, thermal properties were affected by fillers addition.

  19. Synthesis of Silica Nanoparticles by Sol-Gel: Size-Dependent Properties, Surface Modification, and Applications in Silica-Polymer Nano composites-A Review

    International Nuclear Information System (INIS)

    Ismail, A.R.; Vejayakumaran, P.

    2012-01-01

    Application of silica nanoparticles as fillers in the preparation of nano composite of polymers has drawn much attention, due to the increased demand for new materials with improved thermal, mechanical, physical, and chemical properties. Recent developments in the synthesis of monodispersed, narrow-size distribution of nanoparticles by sol-gel method provide significant boost to development of silica-polymer nano composites. This paper is written by emphasizing on the synthesis of silica nanoparticles, characterization on size-dependent properties, and surface modification for the preparation of homogeneous nano composites, generally by sol-gel technique. The effect of nano silica on the properties of various types of silica-polymer composites is also summarized.

  20. A Comparison of gel point for a Glass/Epoxy Composite and a Neat Epoxy Material during Isothermal Curing

    DEFF Research Database (Denmark)

    Jakobsen, Johnny; Andreasen, Jens H.; Thomsen, Ole Thybo

    2014-01-01

    Determination of gel point is important for a modelling assessment of residual stresses developed during curing of composite materials. Residual stresses in a composite structure may have a detrimental effect on its mechanical performance and compromise its integrity. In this article, the evoluti...

  1. A comparative study of bulk-fill composites: degree of conversion, post-gel shrinkage and cytotoxicity

    Directory of Open Access Journals (Sweden)

    Flávia Gonçalves

    2018-03-01

    Full Text Available Abstract: Bulk-fill composites are claimed to be restorative materials used in deep preparations and effectively photoactivated in layers up to 4 mm. The aim of the present study was to evaluate the degree of conversion, post-gel volumetric shrinkage, and cytotoxicity of six bulk-fill and two conventional composites. Degree of conversion was determined by FTIR spectroscopy; post-gel volumetric shrinkage was determined using the strain gauge method; and cytotoxicity in human fibroblasts was evaluated indirectly by the MTT assay. Data were subjected to one-way ANOVA/Tukey's test (α = 0.05. All materials, including bulk-fill and conventional composites, were classified as non-toxic, with cell viability higher than 70%. Bulk-fill composites exhibited volumetric shrinkage similar to or lower (1.4 to 0.4% than that of conventional composites (1.7–2.1%. However, only four of the bulk-fill composites were able to sustain a homogeneous conversion at the 4-mm depth. Despite their non-toxicity and shrinkage similar to that of conventional materials, not all commercial bulk-fill materials were able to maintain a conversion as high as 80% of the superficial layer, at the 4-mm depth, indicating some failure in the bulk-fill design of some commercial brands. Therefore, the use of bulk-fill materials in dental practice is advantageous, but special attention should be given to the selection and correct use of the materials.

  2. Composite Biomaterials Based on Sol-Gel Mesoporous Silicate Glasses: A Review

    Science.gov (United States)

    Baino, Francesco; Fiorilli, Sonia; Vitale-Brovarone, Chiara

    2017-01-01

    Bioactive glasses are able to bond to bone and stimulate the growth of new tissue while dissolving over time, which makes them ideal materials for regenerative medicine. The advent of mesoporous glasses, which are typically synthesized via sol-gel routes, allowed researchers to develop a broad and versatile class of novel biomaterials that combine superior bone regenerative potential (compared to traditional melt-derived glasses) with the ability of incorporating drugs and various biomolecules for targeted therapy in situ. Mesoporous glass particles can be directly embedded as a bioactive phase within a non-porous (e.g., microspheres), porous (3D scaffolds) or injectable matrix, or be processed to manufacture a surface coating on inorganic or organic (macro)porous substrates, thereby obtaining hierarchical structures with multiscale porosity. This review provides a picture of composite systems and coatings based on mesoporous glasses and highlights the challenges for the future, including the great potential of inorganic–organic hybrid sol-gel biomaterials. PMID:28952496

  3. Dosimetry Evolution in Teletherapy: Polimer Gel

    Science.gov (United States)

    Hamann, J. H.; Peixoto, J. G. P.

    2018-03-01

    Polymer gels evolution and chemical composition used in dosimetry. Type Composition First gels Folin’s Phenol or Gallic Acid Polymer Gel Agarose and N,N’-methylene-bis-acrylamide BANANA Bis, acrylamide, nitrous oxide and agarose BANG-1TM Bis, acrylamide, nitrogen and gelatin BANG-2TM Bis, acrylic acid, sodium hydroxide, nitrogen and gelatin BANG-3TM Bis, methacrylate acid, sodium hydroxide, nitrogen and gelatin MAGIC Methacrylate acid, ascorbic acid, gelatin and copper sulphate

  4. Ball bearings comprising nickel-titanium and methods of manufacture thereof

    Science.gov (United States)

    DellaCorte, Christopher (Inventor); Glennon, Glenn N. (Inventor)

    2012-01-01

    Disclosed herein is a friction reducing nickel-titanium composition. The nickel-titanium composition includes a first phase that comprises nickel and titanium in an atomic ratio of about 0.45:0.55 to about 0.55:0.45; a second phase that comprises nickel and titanium in an atomic ratio of about 0.70:0.30 to about 0.80:0.20; and a third phase that comprises nickel and titanium in an atomic ratio of about 0.52:0.48 to about 0.62:0.38. A bearing for reducing friction comprising a nickel-titanium composition comprising a first phase that comprises nickel and titanium in an atomic ratio of about 0.45:0.55 to about 0.55:0.45; a second phase that comprises nickel and titanium in an atomic ratio of about 0.70:0.30 to about 0.80:0.20; and a third phase that comprises nickel and titanium in an atomic ratio of about 0.52:0.48 to about 0.62:0.38; where the bearing is free from voids and pinholes.

  5. Preparation of sol-gel TiO2/purified Na-bentonite composites and their photovoltaic application for natural dye-sensitized solar cells

    International Nuclear Information System (INIS)

    Saelim, Ni-on; Magaraphan, Rathanawan; Sreethawong, Thammanoon

    2011-01-01

    Highlights: → Natural dye from red cabbage was successfully employed in DSSC. → A fast sol-gel method to produce TiO 2 /clay thin film was proposed. → The sol-gel-prepared TiO 2 /clay was applied as the scattering layer on top of TiO 2 electrode. → Thicker sol-gel-prepared TiO 2 /clay electrode showed higher DSSC efficiency. - Abstract: The sol-gel TiO 2 /purified natural clay electrodes having Ti:Si molar ratios of 95:5 and 90:10 were initially prepared, sensitized with natural red cabbage dye, and compared to the sol-gel TiO 2 electrode in terms of physicochemical characteristics and solar cell efficiency. The results showed that the increase in purified Na-bentonite content greatly increased the specific surface area and total pore volume of the prepared sol-gel TiO 2 /purified Na-bentonite composites because the clay platelets prevented TiO 2 particle agglomeration. The sol-gel TiO 2 /5 mol% Si purified Na-bentonite and sol-gel TiO 2 /10 mol% Si purified Na-bentonite composites could increase the film thickness of solar cells without cracking when they were coated as a scattering layer on the TiO 2 semiconductor-based film, leading to increasing the efficiency of the natural dye-sensitized solar cells in this work.

  6. Sol-Gel Manufactured Energetic Materials

    Science.gov (United States)

    Simpson, Randall L.; Lee, Ronald S.; Tillotson, Thomas M.; Hrubesh, Lawrence W.; Swansiger, Rosalind W.; Fox, Glenn A.

    2005-05-17

    Sol-gel chemistry is used for the preparation of energetic materials (explosives, propellants and pyrotechnics) with improved homogeneity, and/or which can be cast to near-net shape, and/or made into precision molding powders. The sol-gel method is a synthetic chemical process where reactive monomers are mixed into a solution, polymerization occurs leading to a highly cross-linked three dimensional solid network resulting in a gel. The energetic materials can be incorporated during the formation of the solution or during the gel stage of the process. The composition, pore, and primary particle sizes, gel time, surface areas, and density may be tailored and controlled by the solution chemistry. The gel is then dried using supercritical extraction to produce a highly porous low density aerogel or by controlled slow evaporation to produce a xerogel. Applying stress during the extraction phase can result in high density materials. Thus, the sol-gel method can be used for precision detonator explosive manufacturing as well as producing precision explosives, propellants, and pyrotechnics, along with high power composite energetic materials.

  7. Sol-Gel Glasses

    Science.gov (United States)

    Mukherjee, S. P.

    1985-01-01

    Multicomponent homogeneous, ultrapure noncrystalline gels/gel derived glasses are promising batch materials for the containerless glass melting experiments in microgravity. Hence, ultrapure, homogeneous gel precursors could be used to: (1) investigate the effect of the container induced nucleation on the glass forming ability of marginally glass forming compositions; and (2) investigate the influence of gravity on the phase separation and coarsening behavior of gel derived glasses in the liquid-liquid immiscibility zone of the nonsilicate systems having a high density phase. The structure and crystallization behavior of gels in the SiO2-GeO2 as a function of gel chemistry and thermal treatment were investigated. As are the chemical principles involved in the distribution of a second network former in silica gel matrix being investigated. The procedures for synthesizing noncrystalline gels/gel-monoliths in the SiO2-GeO2, GeO2-PbO systems were developed. Preliminary investigations on the levitation and thermal treatment of germania silicate gel-monoliths in the Pressure Facility Acoustic Levitator were done.

  8. Nanoporous titanium niobium oxide and titanium tantalum oxide compositions and their use in anodes of lithium ion batteries

    Science.gov (United States)

    Dai, Sheng; Guo, Bingkun; Sun, Xiao-Guang; Qiao, Zhenan

    2017-10-31

    Nanoporous metal oxide framework compositions useful as anodic materials in a lithium ion battery, the composition comprising metal oxide nanocrystals interconnected in a nanoporous framework and having interconnected channels, wherein the metal in said metal oxide comprises titanium and at least one metal selected from niobium and tantalum, e.g., TiNb.sub.2-x Ta.sub.xO.sub.y (wherein x is a value from 0 to 2, and y is a value from 7 to 10) and Ti.sub.2Nb.sub.10-vTa.sub.vO.sub.w (wherein v is a value from 0 to 2, and w is a value from 27 to 29). A novel sol gel method is also described in which sol gel reactive precursors are combined with a templating agent under sol gel reaction conditions to produce a hybrid precursor, and the precursor calcined to form the anodic composition. The invention is also directed to lithium ion batteries in which the nanoporous framework material is incorporated in an anode of the battery.

  9. Adsorption of Pb(II) using silica gel composite from rice husk ash modified 3-aminopropyltriethoxysilane (APTES)-activated carbon from coconut shell

    Science.gov (United States)

    Yusmaniar, Purwanto, Agung; Putri, Elfriyana Awalita; Rosyidah, Dzakiyyatur

    2017-03-01

    Silica gel modified by 3-aminopropyltriethoxysilane (APTES) was synthesized from rice husk ash combined with activated carbon from coconut shell yielded the composite adsorbent. The composite was characterized by Fourier Transform Infra Red spectroscopy (FT-IR), Electron Dispersive X-Ray (EDX), Surface Area Analyzer (SAA) and adsorption test by Atomic Absorption Spectrometry (AAS). This composite adsorbent has been used moderately for the removal of lead ions from metal solutions and compared with silica gel modified APTES and activated carbon. The adsorption experiments of Pb -ions by adsorbents were performed at different pH and contact time with the same metal solutions concentration, volume solution, and adsorbent dosage. The optimum pH for the adsorption was found to be 5.0 and the equilibrium was achieved for Pb with 20 min of contact time. Pb ions adsorption by composite silica gel modified APTES-activated carbon followed by Langmuir isotherm model with qmax value of 46.9483 mg/g that proved an adsorbent mechanism consistent to the mechanism of monolayer formation.

  10. Thermal behavior of La2O3/Nio composite prepared by sol-gel method

    International Nuclear Information System (INIS)

    Sakallioglu, M.

    2005-01-01

    The La 2 O 3 /NiO composite was prepared by sol-gel method by using transition metal oxides (La 2 O 3 /NiO). The variation of specific heat capacity Cp with temperature for La2O3/NiO composite was investigated by DSC. The heat capacity curve was taken with a heating rate of 20 degrees/min between 0-100 degrees. The variation of specific heat capacity was found by PKI Muse Standard Analysis Program. The thermal stability of the La 2 O 3 /NiO composite was investigated by thermogravimetric analysis (TG) in air atmosphere at a heating rate of 20 degrees/min. The weight loss of La 2 O 3 /NiO composite was determined by the variation of temperature

  11. In-vitro starch hydrolysis of chitosan incorporating whey protein and wheat starch composite gels

    Directory of Open Access Journals (Sweden)

    Natasha Yang

    2017-10-01

    Full Text Available The study examined the influence of chitosan, incorporated into whey protein and wheat starch thermo gels, on the in-vitro hydrolysis of the polysaccharide. Gels were subjected to the following external conditions containing α-amylase at constant incubation temperature of 37 °C: In the first procedure, they were immersed in phosphate buffer (0.05 M and maintained at pH 6.9 throughout the entire digestion. In the second instance, they were introduced into a salt solution, with pH and total volume adjusted at times in sync with the human gastrointestinal tract. Results indicate that low and medium molecular weight chitosan, in combination with whey protein, were effective at enhancing the protective barrier against starch degradation. Less maltose was liberated from gels containing medium molecular weight chitosan, as opposed to the low molecular weight counterpart, and results compare favorably with the outcome of the in-vitro digestion of binary whey protein and wheat starch composites. Keywords: Food science

  12. Gel/Space Ratio Evolution in Ternary Composite System Consisting of Portland Cement, Silica Fume, and Fly Ash.

    Science.gov (United States)

    Wu, Mengxue; Li, Chen; Yao, Wu

    2017-01-11

    In cement-based pastes, the relationship between the complex phase assemblage and mechanical properties is usually described by the "gel/space ratio" descriptor. The gel/space ratio is defined as the volume ratio of the gel to the available space in the composite system, and it has been widely studied in the cement unary system. This work determines the gel/space ratio in the cement-silica fume-fly ash ternary system (C-SF-FA system) by measuring the reaction degrees of the cement, SF, and FA. The effects that the supplementary cementitious material (SCM) replacements exert on the evolution of the gel/space ratio are discussed both theoretically and practically. The relationship between the gel/space ratio and compressive strength is then explored, and the relationship disparities for different mix proportions are analyzed in detail. The results demonstrate that the SCM replacements promote the gel/space ratio evolution only when the SCM reaction degree is higher than a certain value, which is calculated and defined as the critical reaction degree (CRD). The effects of the SCM replacements can be predicted based on the CRD, and the theological predictions agree with the test results quite well. At low gel/space ratios, disparities in the relationship between the gel/space ratio and the compressive strength are caused by porosity, which has also been studied in cement unary systems. The ratio of cement-produced gel to SCM-produced gel ( G C to G S C M ratio) is introduced for use in analyzing high gel/space ratios, in which it plays a major role in creating relationship disparities.

  13. Gel/Space Ratio Evolution in Ternary Composite System Consisting of Portland Cement, Silica Fume, and Fly Ash

    Directory of Open Access Journals (Sweden)

    Mengxue Wu

    2017-01-01

    Full Text Available In cement-based pastes, the relationship between the complex phase assemblage and mechanical properties is usually described by the “gel/space ratio” descriptor. The gel/space ratio is defined as the volume ratio of the gel to the available space in the composite system, and it has been widely studied in the cement unary system. This work determines the gel/space ratio in the cement-silica fume-fly ash ternary system (C-SF-FA system by measuring the reaction degrees of the cement, SF, and FA. The effects that the supplementary cementitious material (SCM replacements exert on the evolution of the gel/space ratio are discussed both theoretically and practically. The relationship between the gel/space ratio and compressive strength is then explored, and the relationship disparities for different mix proportions are analyzed in detail. The results demonstrate that the SCM replacements promote the gel/space ratio evolution only when the SCM reaction degree is higher than a certain value, which is calculated and defined as the critical reaction degree (CRD. The effects of the SCM replacements can be predicted based on the CRD, and the theological predictions agree with the test results quite well. At low gel/space ratios, disparities in the relationship between the gel/space ratio and the compressive strength are caused by porosity, which has also been studied in cement unary systems. The ratio of cement-produced gel to SCM-produced gel ( G C to G S C M ratio is introduced for use in analyzing high gel/space ratios, in which it plays a major role in creating relationship disparities.

  14. Bioactive Glass-Ceramic Scaffolds from Novel ‘Inorganic Gel Casting’ and Sinter-Crystallization

    Science.gov (United States)

    Elsayed, Hamada; Rincón Romero, Acacio; Ferroni, Letizia; Gardin, Chiara; Zavan, Barbara; Bernardo, Enrico

    2017-01-01

    Highly porous wollastonite-diopside glass-ceramics have been successfully obtained by a new gel-casting technique. The gelation of an aqueous slurry of glass powders was not achieved according to the polymerization of an organic monomer, but as the result of alkali activation. The alkali activation of a Ca-Mg silicate glass (with a composition close to 50 mol % wollastonite—50 mol % diopside, with minor amounts of Na2O and P2O5) allowed for the obtainment of well-dispersed concentrated suspensions, undergoing progressive hardening by curing at low temperature (40 °C), owing to the formation of a C–S–H (calcium silicate hydrate) gel. An extensive direct foaming was achieved by vigorous mechanical stirring of partially gelified suspensions, comprising also a surfactant. The open-celled structure resulting from mechanical foaming could be ‘frozen’ by the subsequent sintering treatment, at 900–1000 °C, causing substantial crystallization. A total porosity exceeding 80%, comprising both well-interconnected macro-pores and micro-pores on cell walls, was accompanied by an excellent compressive strength, even above 5 MPa. PMID:28772531

  15. Vanadium dioxide formed by the sol-gel process

    International Nuclear Information System (INIS)

    Potember, R.S.; Speck, K.R.; Hu, H.S.

    1990-01-01

    This patent describes a process for the deposition of a crystalline vanadium dioxide thin film. It comprises: providing a solution comprising a vanadium tetraalkoxide and solvent; allowing hydrolysis and condensation reactions to progressively form a homogeneous sol from the solution, applying a coating of the sol to the substrate; allowing a gel to form from the sol on the substrate by evaporating the solvent; dehydrating the gel by heat treatment under an inert atmosphere to form the crystalline vanadium dioxide film

  16. Optical and structural properties of ZnO/ZnMgO composite thin films prepared by sol–gel technique

    International Nuclear Information System (INIS)

    Xu, Linhua; Su, Jing; Chen, Yulin; Zheng, Gaige; Pei, Shixin; Sun, Tingting; Wang, Junfeng; Lai, Min

    2013-01-01

    Highlights: ► ZnMgO thin film and ZnO/ZnMgO composite thin film have been prepared by sol–gel method. ► The intensity of ultraviolet emission of ZnMgO thin film is enhanced two times compared with that of pure ZnO thin film. ► Compared with ZnMgO thin film, ZnO/ZnMgO composite thin film shows better crystallization and optical properties. ► ZnO/ZnMgO composite thin films prepared by sol–gel method have potential applications in many optoelectronic devices. - Abstract: In this study, pure ZnO thin film, Mg-doped ZnO (ZnMgO) thin film, ZnO/ZnMgO and ZnMgO/ZnO composite thin films were prepared by sol–gel technique. The structural and optical properties of the samples were analyzed by X-ray diffraction, scanning electron microscopy, UV–visible spectrophotometer, ellipsometer and photoluminescence spectra, respectively. The results showed that the incorporation of Mg increased the strain, broadened the optical bandgap, and improved the intensity of ultraviolet emission of ZnO thin film. The full width at half maximum (FWHM) of the ultraviolet emission peak was also increased due to Mg-doping at the same time. Compared with pure ZnO and ZnMgO thin films, the ZnO/ZnMgO thin film showed better crystalline quality and ultraviolet emission performance, smaller strains and higher transmittance in the visible range.

  17. Synthesis, Consolidation and Characterization of Sol-gel Derived Tantalum-Tungsten Oxide Thermite Composites

    Energy Technology Data Exchange (ETDEWEB)

    Cervantes, O [Univ. of California, Davis, CA (United States)

    2010-06-01

    Energetic composite powders consisting of sol-gel (SG) derived nanostructured tungsten oxide were produced with various amounts of micrometer-scale tantalum fuel metal. Such energetic composite powders were ignition-tested and results show that the powders are not sensitive to friction, spark and/or impact ignition. Initial consolidation experiments, using the High Pressure Spark Plasma Sintering (HPSPS) technique, on the SG derived nanostructured tungsten oxide produced samples with higher relative density than can be achieved with commercially available tungsten oxide. The SG derived nanostructured tungsten oxide with immobilized tantalum fuel metal (Ta - WO3) energetic composite was consolidated to a density of 9.17 g·cm-3 or 93% relative density. In addition, those samples were consolidated without significant pre-reaction of the constituents, thus retaining their stored chemical energy.

  18. Rheological Enhancement of Pork Myofibrillar Protein-Lipid Emulsion Composite Gels via Glucose Oxidase Oxidation/Transglutaminase Cross-Linking Pathway.

    Science.gov (United States)

    Wang, Xu; Xiong, Youling L; Sato, Hiroaki

    2017-09-27

    Porcine myofibrillar protein (MP) was modified with glucose oxidase (GluOx)-iron that produces hydroxyl radicals then subjected to microbial transglutaminase (TGase) cross-linking in 0.6 M NaCl at 4 °C. The resulting aggregation and gel formation of MP were examined. The GluOx-mediated oxidation promoted the formation of both soluble and insoluble protein aggregates via disulfide bonds and occlusions of hydrophobic groups. The subsequent TGase treatment converted protein aggregates into highly cross-linked polymers. MP-lipid emulsion composite gels formed with such polymers exhibited markedly enhanced gelling capacity: up to 4.4-fold increases in gel firmness and 3.5-fold increases in gel elasticity over nontreated protein. Microstructural examination showed small oil droplets dispersed in a densely packed gel matrix when MP was oxidatively modified, and the TGase treatment further contributed to such packing. The enzymatic GluOx oxidation/TGase treatment shows promise to improve the textural properties of emulsified meat products.

  19. Fabrication and Properties of Silica Gel/Calcium Sulfate/Strontium-doped β-tricalcium Phosphate Composite Porous Scaffolds for Bone Tissue Engineering

    Directory of Open Access Journals (Sweden)

    QIN Xiao-su

    2018-03-01

    Full Text Available The calcium sulfate/strontium-doped β-tricalcium phosphate composite spherical pellets was fabricated, using the calcium sulfate/strontium-doped β-TCP as raw material, and through the stirring spray drying method, and then composite spherical pellets were combined with silica gel, porous silica gel/calcium sulfate/strontium-doped β-tricalcium phosphate scaffold was obtained by stacking aggregation method in the mould. The XRD, SEM and FT-IR, etc are employed to examine the chemical composition, composite morphology and structure characteristics, and the degradability, porosity, mechanical properties and cytotoxicity of the scaffolds materials were studied. The results reveal that the composite porous scaffolds have irregular pore structure with pore size between 0.2-1.0mm, and they have a large number of micropores on each of the composite spherical pellets, with the aperture between 50-200μm. Moreover, the porosity of the composite scaffolds is about 62%, which can meet the requirements of scaffolds for bone tissue engineering in porosity; the cytotoxicity tests show the composite scaffolds have no cytotoxic effect and it has good degradation. Therefore, it has good application prospect in bone tissue engineering of the bone defect repair of non-bearing site.

  20. Internal structure analysis of particle-double network gels used in a gel organ replica

    Science.gov (United States)

    Abe, Mei; Arai, Masanori; Saito, Azusa; Sakai, Kazuyuki; Kawakami, Masaru; Furukawa, Hidemitsu

    2016-04-01

    In recent years, the fabrication of patient organ replicas using 3D printers has been attracting a great deal of attention in medical fields. However, the cost of these organ replicas is very high as it is necessary to employ very expensive 3D printers and printing materials. Here we present a new gel organ replica, of human kidney, fabricated with a conventional molding technique, using a particle-double network hydrogel (P-DN gel). The replica is transparent and has the feel of a real kidney. It is expected that gel organ replicas produced this way will be a useful tool for the education of trainee surgeons and clinical ultrasonography technologists. In addition to developing a gel organ replica, the internal structure of the P-DN gel used is also discussed. Because the P-DN gel has a complex structure comprised of two different types of network, it has not been possible to investigate them internally in detail. Gels have an inhomogeneous network structure. If it is able to get a more uniform structure, it is considered that this would lead to higher strength in the gel. In the present study we investigate the structure of P-DN gel, using the gel organ replica. We investigated the internal structure of P-DN gel using Scanning Microscopic Light Scattering (SMILS), a non-contacting and non-destructive.

  1. Effect of Opalescence(®) bleaching gels on the elution of bulk-fill composite components.

    Science.gov (United States)

    Schuster, Lena; Reichl, Franz-Xaver; Rothmund, Lena; He, Xiuli; Yang, Yang; Van Landuyt, Kirsten L; Kehe, Kai; Polydorou, Olga; Hickel, Reinhard; Högg, Christof

    2016-02-01

    Bleaching treatments can affect release of components from conventional composites. In this continuing study the influence of two different bleaching gels on the elution of bulk-fill composite components was investigated. The composites Tetric EvoCeram(®) Bulk Fill, QuiXFil™ and X-tra fil were treated with the bleaching gels Opalescence PF 15% (PF 15%) for 5 h and PF 35% (PF 35%) for 30 min and then stored in methanol and water for 24 h and 7 d. The eluates were analyzed by gas chromatography/mass spectrometry (GC/MS). Unbleached specimens were used as control group. A total of 7 different elutable substances have been identified from the investigated composites after bleaching-treatment. Three of them were methacrylates: 2-hydroxyethyl methacrylate (HEMA), triethylene glycol dimethacrylate (TEGDMA) and trimethylolpropane trimethacrylate (TMPTMA). Compared to the unbleached controls an increase in elution after PF 15%-treatment of following compounds was found: HEMA (Tetric EvoCeram(®) Bulk Fill), TEGDMA (QuiXFil™, X-tra fil) and 4-N,N-dimethylaminobenzoic acid butyl ethoxy ester (DMABEE) (Tetric EvoCeram(®) Bulk Fill, QuiXFil™, X-tra fil). Following compounds showed a reduction in elution after PF 35%-treatment compared to controls: TEGDMA (QuiXFil™) and DMABEE (Tetric EvoCeram(®) Bulk Fill). The highest concentration of HEMA was 0.22 mmol/l (Tetric EvoCeram(®) Bulk Fill, methanol, 7 d, PF 15%), the highest concentration of TEGDMA was 0.3 mmol/l (X-tra fil, water, 7 d, PF 15%) and the highest concentration of DMABEE was 0.05 mmol/l (QuiXFil™, water, 7 d, PF 35%). PF 15% and PF 35% can lead to reduced and/or increased elution of some bulk-fill components, compared to unbleached bulk-fill composites. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  2. Tailor-made cell patterning using a near-infrared-responsive composite gel composed of agarose and carbon nanotubes

    International Nuclear Information System (INIS)

    Koga, Haruka; Nakazawa, Kohji; Sada, Takao; Fujigaya, Tsuyohiko; Nakashima, Naotoshi

    2013-01-01

    Micropatterning is useful for regulating culture environments. We developed a highly efficient near-infrared-(NIR)-responsive gel and established a new technique that enables cell patterning by NIR irradiation. As a new culture substratum, we designed a tissue culture plate that was coated with a composite gel composed of agarose and carbon nanotubes (CNTs). A culture plate coated with agarose only showed no response to NIR irradiation. In contrast, NIR laser irradiation induced heat generation by CNTs; this permitted local solation of the CNT/agarose gel, and consequently, selective cell-adhesive regions were exposed on the tissue culture plate. The solation area was controlled by the NIR intensity, magnification of the object lens and CNT concentration in the gel. Furthermore, we formed circular patterns of HeLa cells and linear patterns of 3T3 cells on the same culture plate through selective and stepwise NIR irradiation of the CNT/agarose gel, and we also demonstrated that individual 3T3 cells migrated along a linear path formed on the CNT/agarose gel by NIR irradiation. These results indicate that our technique is useful for tailor-made cell patterning of stepwise and/or complex cell patterns, which has various biological applications such as stepwise co-culture and the study of cell migration. (paper)

  3. Examination of the concrete from an old Portuguese dam: Texture and composition of alkali-silica gel

    International Nuclear Information System (INIS)

    Fernandes, Isabel; Noronha, Fernando; Teles, Madalena

    2007-01-01

    Exudations and pop-outs were identified in the interior galleries of a large dam built in the 1960s. The samples collected were examined by a Scanning Electron Microscope. A dense material with a smooth surface and drying shrinkage cracks or a spongy texture were observed in the samples. The semi-quantitative composition was obtained by energy dispersive spectrometry (EDS) and it was concluded that this material corresponds to alkali-silica gel, composed of SiO 2 -Na 2 O-K 2 O-CaO. A viscous white product in contact with an aggregate particle in a cone sampled from a pop-out was observed through use of the scanning electron microscope and it has characteristics similar to the gel present in the exudations and cavities. Reference is made to the potential alkali reactivity of the aggregate present in the concrete. The texture and composition of the products probably resulting from an alkali-silica reaction are presented, set out in ternary diagrams, and discussed

  4. Method for Forming Fiber Reinforced Composite Bodies with Graded Composition and Stress Zones

    Science.gov (United States)

    Singh, Mrityunjay (Inventor); Levine, Stanley R. (Inventor); Smialek, James A. (Inventor)

    1999-01-01

    A near-net, complex shaped ceramic fiber reinforced silicon carbide based composite bodies with graded compositions and stress zones is disclosed. To provide the composite a fiber preform is first fabricated and an interphase is applied by chemical vapor infiltration, sol-gel or polymer processes. This first body is further infiltrated with a polymer mixture containing carbon, and/or silicon carbide, and additional oxide, carbide, or nitride phases forming a second body. One side of the second body is spray coated or infiltrated with slurries containing high thermal expansion and oxidation resistant. crack sealant phases and the other side of this second body is coated with low expansion phase materials to form a third body. This third body consisting of porous carbonaceous matrix surrounding the previously applied interphase materials, is then infiltrated with molten silicon or molten silicon-refractory metal alloys to form a fourth body. The resulting fourth body comprises dense composites consisting of fibers with the desired interphase which are surrounded by silicon carbide and other second phases materials at the outer and inner surfaces comprising material of silicon, germanium, refractory metal suicides, borides, carbides, oxides, and combinations thereof The resulting composite fourth body has different compositional patterns from one side to the other.

  5. Morphology of one-time coated palladium-alumina composite membrane prepared by sol-gel process and electroless plating technique

    Science.gov (United States)

    Sari, R.; Dewi, R.; Pardi; Hakim, L.; Diana, S.

    2018-03-01

    Palladium coated porous alumina ceramic membrane tube was obtained using a combination of sol-gel process and electroless plating technique. The thickness, structure and composition of palladium-alumina composite membrane were analyzed by transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy-dispersive X-ray (EDX), and atomic force microscopy (AFM). Palladium particle size was 6.18 to 7.64 nm. Palladium membrane with thickness of approximately 301.5 to 815.1 nm was formed at the outer surface of the alumina layer. EDX data confirmed the formation of palladium-alumina membrane containing 45% of palladium. From this research it shows the combination of sol-gel process and electroless plating technique with one-time coating can produce a homogeneous and smoother palladium nano layer film on alumina substrate.

  6. Study of Ion Transport Behaviour in (PVA-NH4I):SIO2 Nano Composite Polymer Electrolyte

    Science.gov (United States)

    Tripathi, Mridula; Trivedi, Shivangi; Upadhyay, Ruby; Singh, Markandey; Pandey, N. D.; Pandey, Kamlesh

    2013-07-01

    Development and characterization of Poly vinyl alcohol (PVA) based nano composite polymer electrolytes comprising of (PVA-NH4I):SiO2 is reported. Sol-gel derived silica powder of nano dimension has been used as ceramic filler for development of nano composite electrolyte. Formation of nano composites, change in the structural and microscopic properties of the system have been investigated by X-ray differaction, SEM and conductivity.

  7. Sol-gel synthesis of magnesium oxide-silicon dioxide glass compositions

    Science.gov (United States)

    Bansal, Narottam P.

    1988-01-01

    MgO-SiO2 glasses containing up to 15 mol pct MgO, which could not have been prepared by the conventional glass melting method due to the presence of stable liquid-liquid immiscibility, were synthesized by the sol-gel technique. Clear and transparent gels were obtained from the hydrolysis and polycondensation of silicon tetraethoxide (TEOS) and magnesium nitrate hexahydrate when the water/TEOS mole ratio was four or more. The gelling time decreased with increase in magnesium content, water/TEOS ratio, and reaction temperature. Magnesium nitrate hexahydrate crystallized out of the gels containing 15 and 20 mol pct MgO on slow drying. This problem was partially alleviated by drying the gels quickly at higher temperatures. Monolithic gel samples were prepared using glycerol as the drying control additive. The gels were subjected to various thermal treatments and characterized by several methods. No organic groups could be detected in the glasses after heat treatments to approx. 800 C, but trace amounts of hydroxyl groups were still present. No crystalline phase was found from X-ray diffraction in the gel samples to approx. 890 C. At higher temperatures, alpha quartz precipitated out as the crystalline phase in gels containing up to 10 mol pct MgO. The overall activation energy for gel formation in 10MgO-90SiO2 (mol pct) system for water/TEOS mole ratio of 7.5 was calculated to be 58.7 kJ/mol.

  8. Surface modification of quartz fibres for dental composites through a sol-gel process.

    Science.gov (United States)

    Wang, Yazi; Wang, Renlin; Habib, Eric; Wang, Ruili; Zhang, Qinghong; Sun, Bin; Zhu, Meifang

    2017-05-01

    In this study, quartz fibres (QFs) surface modification using a sol-gel method was proposed and dental posts reinforced with modified QFs were produced. A silica sol (SS) was prepared using tetraethoxysilane (TEOS) and 3-methacryloxypropyltrimethoxysilane (γ-MPS) as precursors. The amount of γ-MPS in the sol-gel system was varied from 0 to 24wt.% with a constant molar ratio of TEOS, ethanol, deionized water, and HCl. Thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FT-IR), and contact angle (CA) measurements were used to characterize the modified QFs, which confirmed that SS had successfully coated the surface of QFs. SEM images showed good interfacial bonding between the modified QFs and the resin matrix. The results of three-point bending tests of the fibre reinforced composite (FRC) posts showed that the QFs modified by SS with 12wt.% γ-MPS presented the best mechanical properties, demonstrating improvements of 108.3% and 89.6% for the flexural strength and flexural modulus, respectively, compared with untreated QFs. Furthermore, the sorption and solubility of the prepared dental posts were also studied by immersing the posts in artificial saliva (AS) for 4weeks, and yielded favourable results. This sol-gel surface modification method promises to resolve interfacial bonding issues of fibres with the resin matrix, and produce FRC posts with excellent properties. Copyright © 2017. Published by Elsevier B.V.

  9. Preparation and characterization of composites of ultrasonic gel and copper sulphate for using as magnetic resonance body simulator

    International Nuclear Information System (INIS)

    Cardoso, Gabriela P.; Soares, Sidney S.; Gontijo, Rodrigo M.G.; Batista, Adriana S.M.; Pereira, Esther Lorrayne M.

    2017-01-01

    The use of magnetic resonance (MRI) body simulators has application in both equipment control and didactics, providing training to new professionals, regarding the manipulation of parameters related to image weights. For this, it is necessary to simulate longitudinal (T1) and transverse (T2) relaxation times in order to control the extrinsic echo time (TE) and repetition time (TR) parameters in obtaining images with different contrasts. For this purpose, composites with different proportions of ultrasonic gel and copper sulphate were prepared for submission to MRI for the characterization of the times T1 and T2. The selection of copper sulphate, paramagnetic material, was conducted considering relaxation times similar to the different body tissues in order to reproduce images of suitable contrasts. Copper sulphate powder was characterized by the X-Ray Diffraction (XRD) technique which showed characteristic peaks of copper and sulfate group. The composite was evaluated using Fourier Transform Infrared Spectrometry (FTIR) and Visible Ultraviolet Spectrometry (UV-Vis) techniques, demonstrating composite stability for future imaging tests. In the UV-Vis analyzes the peak centered at 725 nm was monitored by the overlap of the peaks at wavelengths between 200 - 450 nm, gel and copper. FTIR of the copper sulphate powder was used for comparison with composite spectrum

  10. Further developments and applications of layer gel dosimetry

    International Nuclear Information System (INIS)

    Gambarini, G; Carrara, M; Colli, V; Gay, S; Tomatis, S

    2004-01-01

    The method used to perform dosimetry with Fricke-xylenol orange-infused gels in form of layers remains the most reliable method for in-phantom dose profiling and imaging in high fluxes of thermal and epithermal neutrons. Gel-dosimeters in form of layers really give the possibility not only of obtaining spatial dose distributions but also of achieving measurements of each dose contribution in neutron fields. These advantages arise from the layer-geometry thanks to which neutron transport is not sensibly altered, even if the elemental gel composition is changed adding particular isotopes (for example 10 B), as necessary to perform the separation of dose contributions. The gel matrix composition and the experimental procedures, adopted for both dosimeter preparation and analysis, have been already described in previous works. In the present work, the improvements of the method employed for gel analysis, dose imaging and gel applications are illustrated

  11. Light scattering from a binary-liquid entanglement gel

    Science.gov (United States)

    Xia, K.-Q.; Maher, J. V.

    1987-09-01

    Light-scattering experiments have been carried out on an entanglement gel with a binary-liquid mixture as solvent. The onset temperature for critical opalescence has a composition dependence which is similar to the coexistence curve of the free-liquid mixture. This system resembles previously reported work on the cross-linked gel polyacrylamide in two ways: (1) As temperature is lowered toward the critical temperature of the free-liquid mixture, the binary-fluid gel exhibits a strong and increasing light scattering over a broad temperature region of several kelvins, and (2) no appreciable temporal fluctuations are observed throughout this temperature region. Two added features are observed in the present, entanglement-gel measurements: (a) Gel samples with solvent composition both near and off the critical composition of the free-liquid mixture exhibit similar light-scattering behavior, and (b) a Lorentzian-squared fit to the light-scattering angular distributions yields a characteristic wave number which does not change with temperature and an amplitude which shows a very strong dependence on the temperature.

  12. Structural studies of gels and gel-glasses in the SiO2-GeO2 system using vibrational spectroscopy

    Science.gov (United States)

    Mukherjee, Shyama P.; Sharma, Shiv K.

    1986-01-01

    GeO2 gel and gels in the SiO2-GeO2 system synthesized by the hydrolytic polycondensation of metal alkoxides have been studied by infrared and Raman spectroscopic techniques. The molecular structures, hydroxyl contents, and crystallinity of gels and gel-glasses in relation to the thermal history and GeO2 concentration were investigated. The binary compositions having up to 70 mol percent GeO2 were examined.

  13. Sol-gel derived sorbents

    Science.gov (United States)

    Sigman, Michael E.; Dindal, Amy B.

    2003-11-11

    Described is a method for producing copolymerized sol-gel derived sorbent particles for the production of copolymerized sol-gel derived sorbent material. The method for producing copolymerized sol-gel derived sorbent particles comprises adding a basic solution to an aqueous metal alkoxide mixture for a pH.ltoreq.8 to hydrolyze the metal alkoxides. Then, allowing the mixture to react at room temperature for a precalculated period of time for the mixture to undergo an increased in viscosity to obtain a desired pore size and surface area. The copolymerized mixture is then added to an immiscible, nonpolar solvent that has been heated to a sufficient temperature wherein the copolymerized mixture forms a solid upon the addition. The solid is recovered from the mixture, and is ready for use in an active sampling trap or activated for use in a passive sampling trap.

  14. Composite gel polymer electrolyte for lithium ion batteries

    Science.gov (United States)

    Naderi, Roya

    Composite gel polymer electrolyte (CGPE) films, consisting of poly (vinylidene fluoride-hexafluoropropylene) (PVdF-HFP) as the membrane, DMF and PC as solvent and plasticizing agent, mixture of charge modified TiO2 and SiO 2 nano particles as ionic conductors, and LiClO4+LiPF 6 as lithium salts were fabricated. Following the work done by Li et al., CGPE was coated on an O2-plasma treated trilayer polypropylene-polyethylene-polypropylene membrane separator using solution casting technique in order to improve the adhesive properties of gel polymer electrolyte to the separator membrane and its respective ionic conductivity due to decreasing the bulk resistance. In acidic CGPE with, the mixture of acid treated TiO2 and neutral SiO2 nano particles played the role of the charge modified nano fillers with enhanced hydroxyl groups. Likely, the mixture of neutral TiO 2 nano particles with basic SiO2 prepared through the hydrolization of tetraethyl orthosilicate (TEOS) provided a more basic environment due to the residues of NH4OH (Ammonium hydroxide) catalyst. The O2 plasma treated separator was coated with the solution of PVDF-HFP: modified nano fillers: Organic solvents with the mixture ratio of 0.1:0.01:1. After the evaporation of the organic solvents, the dried coated separator was soaked in PC-LiClO4+LiPF6 in EC: DMC:DEC (4:2:4 in volume) solution (300% wt. of PVDF-HFP) to form the final CGPE. Lim et al. has reported the enhanced ionic conductivity of 9.78*10-5 Scm-1 in an acidic composite polystyrene-Al2O3 solid electrolyte system with compared to that of basic and neutral in which the ionic conductivity undergoes an ion hopping process in solid interface rather than a segmental movement of ions through the plasticized polymer chain . Half-cells with graphite anode and Li metal as reference electrode were then assembled and the electrochemical measurements and morphology examinations were successfully carried out. Half cells demonstrated a considerable change in their

  15. Gels and gel-derived glasses in the system Na2O-B2O3-SiO2

    Science.gov (United States)

    Mukherjee, S. P.

    1983-01-01

    The containerless melting of high-purity multicomponent homogeneous gels and gel monoliths offers a unique approach to making ultrapure multicomponent optical glasses in the reduced gravity environment of space. Procedures for preparing and characterizing gels and gel-derived glasses in the system Na2O-B2O3-SiO2 are described. Preparation is based on the polymerization reactions of alkoxysilane with trimethyl borate or boric acid and a suitable sodium compound. The chemistry of the gelling process is discussed in terms of process parameters and the gel compositions. The physicochemical nature of gels prepared by three different procedures was found to be significantly different. Infrared absorption spectra indicate finite differences in the molecular structures of the different gels. The melting of the gel powders and the transformation of porous gel monoliths to transparent 'glass' without melting are described.

  16. Force percolation of contractile active gels

    NARCIS (Netherlands)

    Alvarado, José; Sheinman, Michael; Sharma, Abhinav; MacKintosh, Fred C.; Koenderink, Gijsje H.

    2017-01-01

    Living systems provide a paradigmatic example of active soft matter. Cells and tissues comprise viscoelastic materials that exert forces and can actively change shape. This strikingly autonomous behavior is powered by the cytoskeleton, an active gel of semiflexible filaments, crosslinks, and

  17. Hybrid sol-gel optical materials

    Science.gov (United States)

    Zeigler, John M.

    1992-01-01

    Hybrid sol-gel materials comprise silicate sols cross-linked with linear polysilane, polygermane, or poly(silane-germane). The sol-gel materials are useful as optical identifiers in tagging and verification applications and, in a different aspect, as stable, visible light transparent non-linear optical materials. Methyl or phenyl silicones, polyaryl sulfides, polyaryl ethers, and rubbery polysilanes may be used in addition to the linear polysilane. The linear polymers cross-link with the sol to form a matrix having high optical transparency, resistance to thermooxidative aging, adherence to a variety of substrates, brittleness, and a resistance to cracking during thermal cycling.

  18. Metal-silica sol-gel materials

    Science.gov (United States)

    Stiegman, Albert E. (Inventor)

    2002-01-01

    The present invention relates to a single phase metal-silica sol-gel glass formed by the co-condensation of a transition metal with silicon atoms where the metal atoms are uniformly distributed within the sol-gel glass as individual metal centers. Any transition metal may be used in the sol-gel glasses. The present invention also relates to sensor materials where the sensor material is formed using the single phase metal-silica sol-gel glasses. The sensor materials may be in the form of a thin film or may be attached to an optical fiber. The present invention also relates to a method of sensing chemicals using the chemical sensors by monitoring the chromatic change of the metal-silica sol-gel glass when the chemical binds to the sensor. The present invention also relates to oxidation catalysts where a metal-silica sol-gel glass catalyzes the reaction. The present invention also relates to a method of performing oxidation reactions using the metal-silica sol-gel glasses. The present invention also relates to organopolymer metal-silica sol-gel composites where the pores of the metal-silica sol-gel glasses are filled with an organic polymer polymerized by the sol-gel glass.

  19. Electrochemically assisted deposition of sol-gel bio-composite with co-immobilized dehydrogenase and diaphorase

    Energy Technology Data Exchange (ETDEWEB)

    Wang Zhijie [LCPME, UMR 7564, CNRS-Nancy University, 405, rue de Vandoeuvre, 54600 Villers-les-Nancy (France); Etienne, Mathieu, E-mail: mathieu.etienne@lcpme.cnrs-nancy.fr [LCPME, UMR 7564, CNRS-Nancy University, 405, rue de Vandoeuvre, 54600 Villers-les-Nancy (France); Kohring, Gert-Wieland [Mikrobiologie, Universitaet des Saarlandes, Campus, Geb. A1.5, D-66123 Saarbruecken (Germany); Bon-Saint-Come, Yemima; Kuhn, Alexander [Universite Bordeaux, ISM, ENSCPB, 16 avenue Pey Berland, 33607 Pessac (France); Walcarius, Alain [LCPME, UMR 7564, CNRS-Nancy University, 405, rue de Vandoeuvre, 54600 Villers-les-Nancy (France)

    2011-10-30

    We report here that the electrochemically assisted deposition (EAD) of silica thin films can be a good strategy to co-encapsulate D-sorbitol dehydrogenase (DSDH) and diaphorase in an active form. This is achieved via the electrolysis of a hydrolyzed sol containing the biomolecules to initiate the poly-condensation of silica precursors upon electrochemically induced pH increase at the electrode/solution interface. DSDH was found to be very sensitive to the silica gel environment and the addition of a positively-charged polyelectrolyte was necessary to ensure effective operational behavior of the biomolecules. The composition of the sol and the conditions for electrolysis have been optimized with respect to the intensity of the electrochemical response to D-sorbitol oxidation. The K{sub m} of DSDH in the electrodeposited film was in the range of 3 mM, slightly better than the value determined biochemically in solution (6.5 mM). The co-immobilization of DSDH and diaphorase in this way led on the one hand to the possible reduction of NAD{sup +} to NADH (simultaneously to D-sorbitol oxidation) and on the other hand to the safe re-oxidation of the co-factor using a mediator (ferrocenedimethanol) as electron relay. The bioelectrocatalytic response looks promising for electro-enzymatic applications. To support this idea, the EAD of sol-gel bio-composite has been extended to macroporous electrodes displaying a much bigger electroactive surface area.

  20. The Effect of 3% Phosphate Ascorbyl Gel on Bond Strength of Composite Resin to Enamel treated with 35% Hydrogen Peroxide.

    Science.gov (United States)

    de Castro, Milena de Fátima Schalcher; Silva, Alice Carvalho; Franco, Marcela Mayana Pereira; Silva, Ana Paula Brito; Bramante, Fausto da Silva; da Silva, Monica Barros; Lima, Darlon Martins; Pereira, Adriana de Fátima Vasconcelos

    2015-05-01

    To evaluate the effect of 3% phosphate ascorbyl gel (PA) in different times onto the microshear bond strength of composite resin (CR) to bovine enamel treated with 35% hydrogen peroxide (HP). Thirty enamel blocks of bovine incisors were made and divided into 5 groups (n = 6) with three specimens per group (n = 18), according to treatment: G1= No bleaching + CR; G2 = HP + CR after 15d; G3 = HP + CR after 24 hours; G4 = HP + PA (15 min) + CR after 24 hours; G5 = HP + PA (2 hours) + CR after 24 hours. The resin cylinders were made by Tygon matrices. Microshear bond strength test was performed using universal testing machine with a 50N load at a speed of 0.5 mm/min. Fracture modes were assessed by a stereomicroscope 40 ×. Microshear bond strength values were submitted to the analysis of variance (ANOVA) one-way and Tukey test (p 0.05). Failure modes were categorized into adhesive (90%) and mixed (10%). The use of 3% phosphate ascorbyl gel for 15 minutes was able to improve bond strength of composite resin to bleached bovine enamel, but when 3% phosphate ascorbyl gel was applied during 40 minutes it negatively interfered in the adhesion of the resin to bleached bovine enamel.

  1. Ophthalmic gels: Past, present and future.

    Science.gov (United States)

    Al-Kinani, Ali A; Zidan, Ghada; Elsaid, Naba; Seyfoddin, Ali; Alani, Adam W G; Alany, Raid G

    2018-02-15

    Aqueous gels formulated using hydrophilic polymers (hydrogels) along with those based on stimuli responsive polymers (in situ gelling or gel forming systems) continue to attract increasing interest for various eye health-related applications. They allow the incorporation of a variety of ophthalmic pharmaceuticals to achieve therapeutic levels of drugs and bioactives at target ocular sites. The integration of sophisticated drug delivery technologies such as nanotechnology-based ones with intelligent and environment responsive systems can extend current treatment duration to provide more clinically relevant time courses (weeks and months instead of hours and days) which will inevitably reduce dose frequency, increase patient compliance and improve clinical outcomes. Novel applications and design of contact lenses and intracanalicular delivery devices along with the move towards integrating gels into various drug delivery devices like intraocular pumps, injections and implants has the potential to reduce comorbidities caused by glaucoma, corneal keratopathy, cataract, diabetic retinopathies and age-related macular degeneration. This review describes ophthalmic gelling systems with emphasis on mechanism of gel formation and application in ophthalmology. It provides a critical appraisal of the techniques and methods used in the characterization of ophthalmic preformed gels and in situ gelling systems along with a thorough insight into the safety and biocompatibility of these systems. Newly developed ophthalmic gels, hydrogels, preformed gels and in situ gelling systems including the latest in the area of stimuli responsive gels, molecularly imprinted gels, nanogels, 3D printed hydrogels; 3D printed devices comprising ophthalmic gels are covered. Finally, new applications of gels in the production of artificial corneas, corneal wound healing and hydrogel contact lenses are described. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Sol-gel synthesis of hydroxyapatite; Sintese de hidroxiapatita via sol-gel

    Energy Technology Data Exchange (ETDEWEB)

    Zupanski, M.D.; Lucena, M.P.P.; Bergmann, C.P., E-mail: michelledunin@yahoo.com.b [Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS (Brazil)

    2010-07-01

    Hydroxyapatite (HAp) has been established as the calcium phosphate based compound with most applications in the biological field. Among the numerous techniques for synthesis of HAp, the sol-gel processing route affords great control over purity and formed phases using low processing temperatures. In addition, the sol-gel approach offers an option for homogeneous HAp coating on metal substrates, as well as the ability to generate nanocrystalline powders. In this work, the sol-gel synthesis of HAp was investigated employing triethyl phosphate and calcium nitrate tetrahydrate as phosphorous and calcium precursors, respectively. The aging effect on phase composition and powder morphology of the final product was studied in terms of temperature and aging time. The powders were studied by using X-ray diffraction, Fourier transform infrared spectroscopy, particle size distribution by laser diffraction and scanning electron microscopy. (author)

  3. Reagentless D-sorbitol biosensor based on D-sorbitol dehydrogenase immobilized in a sol-gel carbon nanotubes-poly(methylene green) composite.

    Science.gov (United States)

    Wang, Zhijie; Etienne, Mathieu; Urbanova, Veronika; Kohring, Gert-Wieland; Walcarius, Alain

    2013-04-01

    A reagentless D-sorbitol biosensor based on NAD-dependent D-sorbitol dehydrogenase (DSDH) immobilized in a sol-gel carbon nanotubes-poly(methylene green) composite has been developed. It was prepared by durably immobilizing the NAD(+) cofactor with DSDH in a sol-gel thin film on the surface of carbon nanotubes functionalized with poly(methylene green). This device enables selective determination of D-sorbitol at 0.2 V with a sensitivity of 8.7 μA mmol(-1) L cm(-2) and a detection limit of 0.11 mmol L(-1). Moreover, this biosensor has excellent operational stability upon continuous use in hydrodynamic conditions.

  4. Synthesis of yttrium silicate luminescent materials by sol-gel method

    International Nuclear Information System (INIS)

    Arkhipov, D.V.; Vasina, O.Yu.; Popovich, N.V.; Galaktionov, S.S.; Soshchin, N.P.

    1996-01-01

    Several yttrium-silicate composition with Y 2 O 3 content within 44-56% have been synthesized. it is ascertained that employment of sol-gel technique permits preparation of luminescent materials on yttrium silicate basis, which compare favourably with bath-produced specimens. The influence of phase composition of sol-gel phosphors on basic performance indices: intensity and luminescence spectrum, has been analyzed

  5. Processing and mechanical behavior of Nicalon{reg_sign}/SiC composites with sol-gel derived oxide interfacial coatings

    Energy Technology Data Exchange (ETDEWEB)

    Shanmugham, S.; Liaw, P.K. [Tennessee Univ., Knoxville, TN (United States). Dept. of Materials Science and Engineering

    1996-10-01

    Recent analytical and finite element modeling studies have indicated that low modulus interface materials are desirable for obtaining Nicalon/SiC composites with good toughness. Two oxides, Al titanate and mullite, were chosen on this basis as interface materials. The oxide and C coatings were deposited by sol-gel and CVD, respectively. Nicalon/SiC composites with oxide/C and C/oxide/C interfaces were fabricated and evaluated for flexure strength in the as-processed and oxidized conditions. Composites with C/oxide/C interfaces retained considerable strength and damage-tolerant behavior even after 500 h oxidation at 1000 C in air. The C/oxide/C interface shows promise as a viable oxidation-resistant interface alternative to C or BN interfaces.

  6. Gels and gel-derived glasses in the Na2O-B2O3-SiO2 system. [containerless melting in space

    Science.gov (United States)

    Mukherjee, S. P.

    1982-01-01

    The containerless melting of high-purity multicomponent homogeneous gels and gel-monoliths offers a unique approach to making ultrapure multicomponent optical glasses in the reduced gravity environment of space. Procedures for preparing and characterizing gels and gel-derived glasses in the Na2O-B2O3-SiO2 system are described. Preparation is based on the polymerization reactions of alkoxysilane with trimethyl borate or boric acid and a suitable sodium compound. The chemistry of the gelling process is discussed in terms of process parameters and the gel compositions. The physicochemical nature of gels prepared by three different procedures were found to be significantly different. IR absorption spectra indicate finite differences in the molecular structures of the different gels. The melting of the gel powders and the transformation of porous gel-monoliths to transparent 'glass' without melting are described.

  7. Multi-gel casting apparatus for vertical polyacrylamide gels with in-built solution flow system and liquid level detectors.

    Science.gov (United States)

    Maurye, Praveen; Basu, Arpita; Bandyopadhyay, Tapas Kumar; Biswas, Jayanta Kumar; Mohanty, Bimal Prasana

    2017-08-01

    PAGE is the most widely used technique for the separation and biochemical analysis of biomolecules. The ever growing field of proteomics and genomics necessitates the analysis of many proteins and nucleic acid samples to understand further about the structure and function of cells. Simultaneous analysis of multiple protein samples often requires casting of many PAGE gels. Several variants of multi-gel casting/electrophoresis apparatuses are frequently used in research laboratories. Requirement of supplementary gels to match the growing demand for analyzing additional protein samples sometimes become a cause of concern. Available apparatuses are not amenable to and therefore, not recommended for any modification to accommodate additional gel casting units other than what is prescribed by the manufacturer. A novel apparatus is described here for casting multiple PAGE gels comprising four detachable components that provide enhanced practicability and performance of the apparatus. This newly modified apparatus promises to be a reliable source for making multiple gels in less time without hassle. Synchronized functioning of unique components broaden the possibilities of developing inexpensive, safe, and time-saving multi-gel casting apparatus. This apparatus can be easily fabricated and modified to accommodate desired number of gel casting units. The estimated cost (∼$300) for fabrication of the main apparatus is very competitive and effortless assembly procedure can be completed within ∼30 min. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Electromagnetic radiation absorbers and modulators comprising polyaniline

    Science.gov (United States)

    Epstein, Arthur J.; Ginder, John M.; Roe, Mitchell G.; Hajiseyedjavadi, Hamid

    1992-01-01

    A composition for absorbing electromagnetic radiation, wherein said electromagnetic radiation possesses a wavelength generally in the range of from about 1000 Angstroms to about 50 meters, wherein said composition comprises a polyaniline composition of the formula ##STR1## where y can be equal to or greater than zero, and R.sup.1 and R.sup.2 are independently selected from the group containing of H, --OCH.sub.3, --CH.sub.3, --F, --Cl, --Br, --I, NR.sup.3 .sub.2, --NHCOR.sup.3, --OH, --O.sup.-, SR.sup.3, --OCOR.sup.3, --NO.sub.2, --COOH, --COOR.sup.3, --COR.sup.3, --CHO, and --CN, where R.sup.3 is a C.sub.1 to C.sub.8 alkyl, aryl or aralkyl group.

  9. New sol-gel bioactive glass and titania composites with enhanced physico-chemical and biological properties.

    Science.gov (United States)

    Pawlik, Justyna; Widziołek, Magdalena; Cholewa-Kowalska, Katarzyna; Łączka, Maria; Osyczka, Anna Maria

    2014-07-01

    We developed TiO2 matrix composites modified by sol-gel bioactive glasses (SBG) of either high CaO content (A2) or high SiO2 content (S2). The latter were mixed with titanium dioxide (TiO2) at 75:25, 50:50, and 25:75 weight ratios and sintered at 1250°C for 2 h. We examined the effects of various types (A2 or S2) and compositional TiO2 :SBG ratios on the mechanical properties of resulting composites, their bioactivity and human bone marrow mesenchymal stem cells (MSC) response. The chemistry of SBGs influenced the phase composition, mechanical and biological properties of the composites. Rutile and titanite prevailed in A2-TiO2 composites, and rutile and crystobalite in S2-TiO2 composites. Compressive strength increased significantly for 25A2-TiO2 composites (140 MPa) compared to matrix TiO2 (58 MPa). Composites containing 50-75 wt % of either SBG displayed bioactive properties as determined by simulated body fluid test. Compared to TiO2, human bone marrow stromal cell (BMSC) viability was enhanced on the composites containing 25 wt % of either SBG, whereas the composites modified by 25 wt % of S2 enhanced alkaline phosphatase activity and mineralization in cultures treated with osteogenic inducers-dexamethasone (Dex) or bone morphogenetic protein. Increasing amounts of A2 in TiO2 matrix decreased cell viability but increased collagen deposition and mineralized matrix production by BMSC. Considering the physico-chemical and biological properties of the presented composites, the modification of TiO2 with SBG may prove useful strategy in several bone tissue related regeneration strategies. © 2013 Wiley Periodicals, Inc.

  10. Evaluation of Topical Gel Bases Formulated with Various Essential ...

    African Journals Online (AJOL)

    Evaluation of Topical Gel Bases Formulated with Various Essential Oils for Antibacterial Activity against Methicillin- Resistant Staphylococcus Aureus. ... Lemon grass and thyme oils were chosen for further studies, including analysis of their composition by gas chromatography–mass spectrometry (GC/MS). Gels were ...

  11. Synthesis of ZnO-CuO Nanocomposite Aerogels by the Sol-Gel Route

    Directory of Open Access Journals (Sweden)

    Rula M. Allaf

    2014-01-01

    Full Text Available The epoxide addition sol-gel method has been utilized to synthesize porous zinc-copper composite aerogels in the zinc-to-copper molar ratios of 50 : 50 to 90 : 10. A two-step mixing approach has been employed to produce aerogels composed of nano- to micrometer sized particles. The aerogels were characterized by ultrahigh resolution scanning electron microscopy, transmission electron microscopy, and powder X-ray diffraction. The as-synthesized aerogels had a thin flake- or petal-like microstructure comprised of clustered flakes on two size scales; they were identified as being crystalline with the crystalline species identified as copper nitrate hydroxide, zinc hydroxide chloride hydrate, and zinc hydroxide nitrate hydrate. Annealing of the aerogel materials at a relatively low temperature (400°C resulted in a complete phase transition of the material to give highly crystalline ZnO-CuO aerogels; the aerogels consisted of networked nanoparticles in the ~25–550 nm size range with an average crystallite size of ~3 nm and average crystallinity of 98%. ZnO-CuO aerogels are of particular interest due to their particular catalytic and sensing properties. This work emphasizes the versatility of this sol-gel route in synthesizing aerogels; this method offers a possible route for the fabrication of aerogels of different metal oxides and their composites.

  12. Interactions of protein content and globulin subunit composition of soybean proteins in relation to tofu gel properties.

    Science.gov (United States)

    James, Andrew T; Yang, Aijun

    2016-03-01

    The content and globulin subunit composition of soybean proteins are known to affect tofu quality and food-grade soybeans usually have higher levels of proteins. We studied the tofu quality of soybeans with high (44.8%) or low (39.1%) protein content and with or without the 11S globulin polypeptide, 11SA4. Both protein content and 11SA4 significantly affected tofu gel properties. Soybeans containing more protein had smaller seeds which produced significantly firmer (0.663 vs.0.557 N, pseed size, tofu hardness and water holding capacity and led to significant changes to the profile of storage protein subunits, which may have contributed to the improvement in tofu gel properties. These results suggest that, in combination with higher protein content, certain protein subunits or their polypeptides can also be targeted in selecting soybeans to further improve soy food quality. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Abstracts of International Conference on Sol-Gel Materials' 04

    International Nuclear Information System (INIS)

    2004-01-01

    International Conference on Sol-Gel Materials '04 was an important forum for discussion on problems related to sol-gel processes applied for preparation materials with special physical properties and assignment. The application of sol-gel materials as phosphors, surface coatings, sensors, waveguides, medical implants, joints etc. has been presented. Preparation conditions, methods of physical characterization as well as optimal chemical composition of such materials have been also discussed in detail

  14. Preparation of gold nanoparticles-agarose gel composite and its application in SERS detection

    Science.gov (United States)

    Ma, Xiaoyuan; Xia, Yu; Ni, Lili; Song, Liangjing; Wang, Zhouping

    2014-03-01

    Agarose gel/gold nanoparticles hybrid was prepared by adding gold nanoparticles to preformed agarose gel. Nanocomposite structures and properties were characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), and UV-Vis-NIR absorption spectroscopy. Based on the swelling-contraction characteristics of agarose gel and the adjustable localized surface plasmon resonance (LSPR) of the gold nanoparticles, the nanocomposites were used as surface enhanced Raman scattering (SERS) substrate to detect the Raman signal molecules (NBA, MBA, 1NAT). Results revealed that the porous structure of the agarose gel provided a good carrier for the enrichment of the gold nanoparticles. The gold nanoparticles dynamic hot-spot effect arising from the agarose gel contraction loss of water in the air greatly enhanced the Raman signal. Furthermore, the gel could be cleaned with washing solution and recycling could be achieved for Raman detection.

  15. Effect of Opalescence® bleaching gels on the elution of dental composite components.

    Science.gov (United States)

    Schuster, Lena; Rothmund, Lena; He, Xiuli; Van Landuyt, Kirsten L; Schweikl, Helmut; Hellwig, Elmar; Carell, Thomas; Hickel, Reinhard; Reichl, Franz-Xaver; Högg, Christof

    2015-06-01

    Bleaching treatments can affect on the polymer network of dental composites. This study was performed to evaluate the influence of different bleaching treatments on the elution of composite components. The composites Tetric EvoCeram(®), CLEARFIL™ AP-X, Tetric EvoFlow(®), Filtek™ Supreme XT, Ceram X(®) mono+, Admira and Filtek™ Silorane were treated with the bleaching gels Opalescence PF 15% (PF 15%) for 5h and PF 35% (PF 35%) for 30 min and then stored in methanol and water for 24h and 7 d. The eluates were analyzed by gas chromatography/mass spectrometry (GC/MS). Unbleached specimens were used as control group. A total of 16 different elutable substances have been identified from the investigated composites after bleaching-treatment. Six of them were methacrylates: 1,10-decandioldimethacrylate (DDDMA), 1,12-dodekandioldimethacrylate (DODDMA), ethylenglycoldimethacrylate (EGDMA), 2-hydroxyethylmethacrylate (HEMA), triethylenglycoldimethacrylate (TEGDMA) and urethandimethacrylate (UDMA). Compared with the unbleached controls the composites Tetric EvoCeram(®), CLEARFIL™ AP-X and Tetric EvoFlow(®) showed a reduced elution of UDMA, TEGDMA and HEMA after bleaching-treatment. Compared with the unbleached controls an increase elution of UDMA, DMABEE, BPA and TEGDMA for the composites Filtek™ Supreme XT, Ceram X(®) mono+, Admira and Filtek™ Silorane after bleaching-treatment has been detected. The highest concentration of UDMA was 0.01 mmol/l (Tetric EvoCeram(®), water, 24h, controls), the highest concentration of TEGDMA was 0.28 mmol/l (CLEARFIL™ AP-X, water, 7 d, controls), the highest concentration of HEMA was 0.74 mmol/l (Tetric EvoFlow(®), methanol, 7 d, PF 35%), the highest concentration of DMABEE was 0.10 mmol/l (Ceram X(®) mono+, water, 7 d, PF 35%) and the highest concentration of BPA was 0.01 mmol/l (Admira, methanol, 7 d, controls). Bleaching treatments can lead to a reduced or an increased elution of substances from the dental composites

  16. Some rheological properties of sodium caseinate-starch gels.

    Science.gov (United States)

    Bertolini, Andrea C; Creamer, Lawrence K; Eppink, Mieke; Boland, Mike

    2005-03-23

    The influence of sodium caseinate on the thermal and rheological properties of starch gels at different concentrations and from different botanical sources was evaluated. In sodium caseinate-starch gels, for all starches with the exception of potato starch, the sodium caseinate promoted an increase in the storage modulus and in the viscosity of the composite gel when compared with starch gels. The addition of sodium caseinate resulted in an increase in the onset temperature, the gelatinization temperature, and the end temperature, and there was a significant interaction between starch and sodium caseinate for the onset temperature, the peak temperature, and the end temperature. Microscopy results suggested that sodium caseinate promoted an increase in the homogeneity in the matrix of cereal starch gels.

  17. Molecular sleds comprising a positively -charged amino acid sequence and a molecular cargo and uses thereof

    NARCIS (Netherlands)

    Mangel, F Walter; Blainey, Paul C; Graziano, Vito; Herrmann, Andreas; McGrath, William J; van Oijen, Antonius Martinus; Xie, Xiaoliang Sunney

    2014-01-01

    The present invention relates to compositions which may comprise a molecular sled linked to cargo and uses thereof. In particular, the present invention relates to a non-naturally occurring or engineered composition which may comprise a molecular sled, linkers and a molecular cargo connected to the

  18. Process for encapsulating active agents in gels

    NARCIS (Netherlands)

    Yilmaz, G.; Jongboom, R.O.J.; Oosterhaven, J.

    2001-01-01

    The present invention relates to a process for encapsulating an active agent in a biopolymer in the form of a gel, comprising the steps of: a) forming a dispersion or solution of the biopolymer in water; and b) adding the active agent to the dispersion or solution obtained in step a); wherein the

  19. Synthesis and optical characterization of C-SiO2 and C-NiO sol-gel composite films for use as selective solar absorbers

    CSIR Research Space (South Africa)

    Makiwa, G

    2008-08-01

    Full Text Available The authors present a cheaper and environmentally friendly method to fabricate efficient spectrally selective solar absorber materials. The sol-gel technique was used to fabricate carbon-silica (C-SiO2) and carbon-nickel oxide (C-NiO) composite...

  20. Ceramic protective coatings applied by sol-gel or electrophoresis

    International Nuclear Information System (INIS)

    Stoch, A.

    1993-01-01

    Sol-gel and electrophoresis are the complementary techniques which may be used for obtaining the ceramic coatings. The composition of such a coatings depends on the composition of electrophoresis bath or sol solution. Thermal treatment is used for densifying the coating and promoting the adherence of coating to the substrate. In presented work silica, silica-alumina or alumina coatings are applied by sol-gel dip coating procedure on steel, aluminium or ceramic substrates. Electrophoresis is employed for obtaining zirconia, alumina or hydroxyapatite coatings on stainless steel. (author). 7 refs

  1. Sol–gel synthesis of tantalum oxide and phosphonic acid-modified carbon nanotubes composite coatings on titanium surfaces

    International Nuclear Information System (INIS)

    Maho, Anthony; Detriche, Simon; Delhalle, Joseph; Mekhalif, Zineb

    2013-01-01

    Carbon nanotubes used as fillers in composite materials are more and more appreciated for the outstanding range of accessible properties and functionalities they generate in numerous domains of nanotechnologies. In the framework of biological and medical sciences, and particularly for orthopedic applications and devices (prostheses, implants, surgical instruments, …), titanium substrates covered by tantalum oxide/carbon nanotube composite coatings have proved to constitute interesting and successful platforms for the conception of solid and biocompatible biomaterials inducing the osseous regeneration processes (hydroxyapatite growth, osteoblasts attachment). This paper describes an original strategy for the conception of resistant and homogeneous tantalum oxide/carbon nanotubes layers on titanium through the introduction of carbon nanotubes functionalized by phosphonic acid moieties (-P(=O)(OH) 2 ). Strong covalent C-P bonds are specifically inserted on their external sidewalls with a ratio of two phosphonic groups per anchoring point. Experimental results highlight the stronger “tantalum capture agent” effect of phosphonic-modified nanotubes during the sol–gel formation process of the deposits compared to nanotubes bearing oxidized functions (-OH, -C=O, -C(=O)OH). Particular attention is also paid to the relative impact of the rate of functionalization and the dispersion degree of the carbon nanotubes in the coatings, as well as their wrapping level by the tantalum oxide matrix material. The resulting effect on the in vitro growth of hydroxyapatite is also evaluated to confirm the primary osseous bioactivity of those materials. Chemical, structural and morphological features of the different composite deposits described herein are assessed by X-ray photoelectron spectroscopy (XPS), scanning (SEM) and transmission (TEM) electronic microscopies, energy dispersive X-rays analysis (EDX) and peeling tests. Highlights: ► Formation of tantalum/carbon nanotube

  2. Sol–gel synthesis of tantalum oxide and phosphonic acid-modified carbon nanotubes composite coatings on titanium surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Maho, Anthony [Laboratory of Chemistry and Electrochemistry of Surfaces, University of Namur (FUNDP), Rue de Bruxelles 61, B-5000 Namur (Belgium); Fonds pour la Formation à la Recherche dans l' Industrie et dans l' Agriculture (FRIA), Rue d' Egmont 5, B-1000 Bruxelles (Belgium); Detriche, Simon; Delhalle, Joseph [Laboratory of Chemistry and Electrochemistry of Surfaces, University of Namur (FUNDP), Rue de Bruxelles 61, B-5000 Namur (Belgium); Mekhalif, Zineb, E-mail: zineb.mekhalif@fundp.ac.be [Laboratory of Chemistry and Electrochemistry of Surfaces, University of Namur (FUNDP), Rue de Bruxelles 61, B-5000 Namur (Belgium)

    2013-07-01

    Carbon nanotubes used as fillers in composite materials are more and more appreciated for the outstanding range of accessible properties and functionalities they generate in numerous domains of nanotechnologies. In the framework of biological and medical sciences, and particularly for orthopedic applications and devices (prostheses, implants, surgical instruments, …), titanium substrates covered by tantalum oxide/carbon nanotube composite coatings have proved to constitute interesting and successful platforms for the conception of solid and biocompatible biomaterials inducing the osseous regeneration processes (hydroxyapatite growth, osteoblasts attachment). This paper describes an original strategy for the conception of resistant and homogeneous tantalum oxide/carbon nanotubes layers on titanium through the introduction of carbon nanotubes functionalized by phosphonic acid moieties (-P(=O)(OH){sub 2}). Strong covalent C-P bonds are specifically inserted on their external sidewalls with a ratio of two phosphonic groups per anchoring point. Experimental results highlight the stronger “tantalum capture agent” effect of phosphonic-modified nanotubes during the sol–gel formation process of the deposits compared to nanotubes bearing oxidized functions (-OH, -C=O, -C(=O)OH). Particular attention is also paid to the relative impact of the rate of functionalization and the dispersion degree of the carbon nanotubes in the coatings, as well as their wrapping level by the tantalum oxide matrix material. The resulting effect on the in vitro growth of hydroxyapatite is also evaluated to confirm the primary osseous bioactivity of those materials. Chemical, structural and morphological features of the different composite deposits described herein are assessed by X-ray photoelectron spectroscopy (XPS), scanning (SEM) and transmission (TEM) electronic microscopies, energy dispersive X-rays analysis (EDX) and peeling tests. Highlights: ► Formation of tantalum

  3. Crystallization of Na2O-SiO2 gel and glass

    Science.gov (United States)

    Neilson, G. F.; Weinberg, M. C.

    1984-01-01

    The crystallization behavior of a 19 wt pct soda silica gel and gel-derived glass was compared to that of the ordinary glass of the same composition. Both bulk and ground glass samples were utilized. X-ray diffraction measurements were made to identify the crystalline phases and gauge the extent of crystallization. It was found that the gel crystallized in a distinctive manner, while the gel glass behavior was not qualitatively different from that of the ordinary glass.

  4. Sol-gel approach to the novel organic-inorganic hybrid composite films with ternary europium complex covalently bonded with silica matrix

    International Nuclear Information System (INIS)

    Dong Dewen; Yang Yongsheng; Jiang Bingzheng

    2006-01-01

    Novel organic-inorganic hybrid composite films with ternary lanthanide complex covalently bonded with silica matrix were prepared in situ via co-ordination of N-(3-propyltriethoxysilane)-4-carboxyphthalimide (TAT) and 1,10-phenanthroline (Phen) with europium ion (Eu 3+ ) during a sol-gel approach and characterized by the means of spectrofluorimeter, phosphorimeter and infrared spectrophotometer (FTIR). The resulting transparent films showed improved photophysical properties, i.e. increased luminescence intensity and longer luminescence lifetime, compared with the corresponding binary composite films without Phen. All the results revealed that the intense luminescence of the composite film was attributed to the efficient energy transfer from ligands, especially Phen, to chelated Eu 3+ and the reduced non-radiation through the rigid silica matrix and 'site isolation'

  5. All-silica nanofluidic devices for DNA-analysis fabricated by imprint of sol-gel silica with silicon stamp

    DEFF Research Database (Denmark)

    Mikkelsen, Morten Bo Lindholm; Letailleur, Alban A; Søndergård, Elin

    2011-01-01

    We present a simple and cheap method for fabrication of silica nanofluidic devices for single-molecule studies. By imprinting sol-gel materials with a multi-level stamp comprising micro- and nanofeatures, channels of different depth are produced in a single process step. Calcination of the imprin......We present a simple and cheap method for fabrication of silica nanofluidic devices for single-molecule studies. By imprinting sol-gel materials with a multi-level stamp comprising micro- and nanofeatures, channels of different depth are produced in a single process step. Calcination...... of the imprinted hybrid sol-gel material produces purely inorganic silica, which has very low autofluorescence and can be fusion bonded to a glass lid. Compared to top-down processing of fused silica or silicon substrates, imprint of sol-gel silica enables fabrication of high-quality nanofluidic devices without...

  6. Sol-gel synthesis of hydroxyapatite

    International Nuclear Information System (INIS)

    Zupanski, M.D.; Lucena, M.P.P.; Bergmann, C.P.

    2010-01-01

    Hydroxyapatite (HAp) has been established as the calcium phosphate based compound with most applications in the biological field. Among the numerous techniques for synthesis of HAp, the sol-gel processing route affords great control over purity and formed phases using low processing temperatures. In addition, the sol-gel approach offers an option for homogeneous HAp coating on metal substrates, as well as the ability to generate nanocrystalline powders. In this work, the sol-gel synthesis of HAp was investigated employing triethyl phosphate and calcium nitrate tetrahydrate as phosphorous and calcium precursors, respectively. The aging effect on phase composition and powder morphology of the final product was studied in terms of temperature and aging time. The powders were studied by using X-ray diffraction, Fourier transform infrared spectroscopy, particle size distribution by laser diffraction and scanning electron microscopy. (author)

  7. Thin film composites in the BiFeO3–Bi4Ti3O12 system obtained by an aqueous solution-gel deposition methodology

    Directory of Open Access Journals (Sweden)

    Carlos Gumiel

    2018-01-01

    Full Text Available Thin film multiferroic composites, with a high quantity of interfaces between the different materials, represent a more feasible alternative to single phase systems in which the multifunctional response is usually hampered due to intrinsic physical constraints. Nowadays some of these composites can be produced by applying deposition techniques such as PLD, CVD, MBE or the like, which allow a high degree of crystallographic control. However, despite their effectiveness, all these techniques also involve a high consumption of energy in terms of temperature and/or vacuum. Within this frame, the present contribution proposes a sustainable chemical solution deposition process to prepare thin films of the multiferroic BiFeO3–Bi4Ti3O12 composite system. More specifically an aqueous solution-gel plus spin-coating methodology is employed which also avoids the organic solvents typically used in a conventional sol–gel method, so further keeping an eye on the environmentally friendly conditions. Attempts are conducted that demonstrate how by systematically controlling the processing parameters it is possible to obtain thin film composites with a promising 3-3 type connectivity at temperatures as low as 600 °C.

  8. Thin film composites in the BiFeO3–Bi4Ti3O12 system obtained by an aqueous solution-gel deposition methodology

    International Nuclear Information System (INIS)

    Gumiel, C.; Vranken, T.; Bernardo, M.S.; Jardiel, T.; Hardy, A.; Van Bael, M.K.; Peiteado, M.

    2018-01-01

    Thin film multiferroic composites, with a high quantity of interfaces between the different materials, represent a more feasible alternative to single phase systems in which the multifunctional response is usually hampered due to intrinsic physical constraints. Nowadays some of these composites can be produced by applying deposition techniques such as PLD, CVD, MBE or the like, which allow a high degree of crystallographic control. However, despite their effectiveness, all these techniques also involve a high consumption of energy in terms of temperature and/or vacuum. Within this frame, the present contribution proposes a sustainable chemical solution deposition process to prepare thin films of the multiferroic BiFeO3–Bi4Ti3O12 composite system. More specifically an aqueous solution-gel plus spin-coating methodology is employed which also avoids the organic solvents typically used in a conventional sol–gel method, so further keeping an eye on the environmentally friendly conditions. Attempts are conducted that demonstrate how by systematically controlling the processing parameters it is possible to obtain thin film composites with a promising 3-3 type connectivity at temperatures as low as 600°C. [es

  9. Viscoplastic fracture transition of a biopolymer gel.

    Science.gov (United States)

    Frieberg, Bradley R; Garatsa, Ray-Shimry; Jones, Ronald L; Bachert, John O; Crawshaw, Benjamin; Liu, X Michael; Chan, Edwin P

    2018-06-13

    Physical gels are swollen polymer networks consisting of transient crosslink junctions associated with hydrogen or ionic bonds. Unlike covalently crosslinked gels, these physical crosslinks are reversible thus enabling these materials to display highly tunable and dynamic mechanical properties. In this work, we study the polymer composition effects on the fracture behavior of a gelatin gel, which is a thermoreversible biopolymer gel consisting of denatured collagen chains bridging physical network junctions formed from triple helices. Below the critical volume fraction for chain entanglement, which we confirm via neutron scattering measurements, we find that the fracture behavior is consistent with a viscoplastic type process characterized by hydrodynamic friction of individual polymer chains through the polymer mesh to show that the enhancement in fracture scales inversely with the squared of the mesh size of the gelatin gel network. Above this critical volume fraction, the fracture process can be described by the Lake-Thomas theory that considers fracture as a chain scission process due to chain entanglements.

  10. Investigating potential physicochemical errors in polymer gel dosimeters

    International Nuclear Information System (INIS)

    Sedaghat, Mahbod; Lepage, Martin; Bujold, Rachel

    2011-01-01

    Measurement errors in polymer gel dosimetry can originate either during irradiation or scanning. One concern related to the exothermic nature of polymerization reaction was that the heat released in polymer gel dosimeters during irradiation modifies their dose response. In this paper, the effect of heat released from the exothermal polymerization reaction on the dose response of a number of dosimeters was studied. In addition, we investigated whether heat-generated geometric distortion existed in newly proposed gel dosimeters that contain highly thermoresponsive polymers. Our results suggest that despite a significant internal temperature increase in some gel compositions, their dose responses are not affected when oxygen is well expelled mechanically from the gel mixture. We also report on significant pre-irradiation instability in some recently developed polymer gel dosimeters but that geometric distortions were not observed. Data obtained by a set of small calibration vials are compared to those obtained from larger phantoms, and potential physicochemical causes of deviations between them are identified.

  11. Investigating potential physicochemical errors in polymer gel dosimeters

    Energy Technology Data Exchange (ETDEWEB)

    Sedaghat, Mahbod; Lepage, Martin [Centre d' imagerie moleculaire de Sherbrooke, Departement de medecine nucleaire et radiobiologie, Universite de Sherbrooke, Sherbrooke, QC (Canada); Bujold, Rachel, E-mail: martin.lepage@usherbrooke.ca [Service de radio-oncologie, Centre hospitalier universitaire de Sherbrooke, Sherbrooke, QC (Canada)

    2011-09-21

    Measurement errors in polymer gel dosimetry can originate either during irradiation or scanning. One concern related to the exothermic nature of polymerization reaction was that the heat released in polymer gel dosimeters during irradiation modifies their dose response. In this paper, the effect of heat released from the exothermal polymerization reaction on the dose response of a number of dosimeters was studied. In addition, we investigated whether heat-generated geometric distortion existed in newly proposed gel dosimeters that contain highly thermoresponsive polymers. Our results suggest that despite a significant internal temperature increase in some gel compositions, their dose responses are not affected when oxygen is well expelled mechanically from the gel mixture. We also report on significant pre-irradiation instability in some recently developed polymer gel dosimeters but that geometric distortions were not observed. Data obtained by a set of small calibration vials are compared to those obtained from larger phantoms, and potential physicochemical causes of deviations between them are identified.

  12. Gel spinning of PVA composite fibers with high content of multi-walled carbon nanotubes and graphene oxide hybrids

    International Nuclear Information System (INIS)

    Wei, Yizhe; Lai, Dengpan; Zou, Liming; Ling, Xinlong; Lu, Hongwei; Xu, Yongjing

    2015-01-01

    In this report, poly (vinyl alcohol) (PVA) composite fibers with high content of multi-walled carbon nanotubes and graphene oxide (MWCNTs-GO) hybrids were prepared by gel spinning, and were characterized by TGA, DSC, SEM, XL-2 yarn strength tester and electrical conductivity measurement. The total content of MWCNTs-GO hybrids in the PVA composite fibers, which is up to 25 wt%, was confirmed by TGA analysis. The DSC measurement shows that the melting and crystallization peaks decreased after the addition of nano-fillers. This is due to the reason that the motion of PVA chains is completely confined by strong hydrogen bonding interaction between PVA and nano-fillers. After the addtion of GO, the dispersibility of MWCNTs in composite fibers improved slightly. And the tensile strength and Young's modulus increased by 38% and 67%, respectively. This is caused by the increased hydrogen bonding interaction and synergistic effect through hybridization of MWCNTs and GO. More significantly, the electrical conductivity of PVA/MWCNTs/GO composite fibers enhanced by three orders of magnitude with the addition of GO. (paper)

  13. Integration of gel-based and gel-free proteomic data for functional analysis of proteins through Soybean Proteome Database

    KAUST Repository

    Komatsu, Setsuko

    2017-05-10

    The Soybean Proteome Database (SPD) stores data on soybean proteins obtained with gel-based and gel-free proteomic techniques. The database was constructed to provide information on proteins for functional analyses. The majority of the data is focused on soybean (Glycine max ‘Enrei’). The growth and yield of soybean are strongly affected by environmental stresses such as flooding. The database was originally constructed using data on soybean proteins separated by two-dimensional polyacrylamide gel electrophoresis, which is a gel-based proteomic technique. Since 2015, the database has been expanded to incorporate data obtained by label-free mass spectrometry-based quantitative proteomics, which is a gel-free proteomic technique. Here, the portions of the database consisting of gel-free proteomic data are described. The gel-free proteomic database contains 39,212 proteins identified in 63 sample sets, such as temporal and organ-specific samples of soybean plants grown under flooding stress or non-stressed conditions. In addition, data on organellar proteins identified in mitochondria, nuclei, and endoplasmic reticulum are stored. Furthermore, the database integrates multiple omics data such as genomics, transcriptomics, metabolomics, and proteomics. The SPD database is accessible at http://proteome.dc.affrc.go.jp/Soybean/. Biological significanceThe Soybean Proteome Database stores data obtained from both gel-based and gel-free proteomic techniques. The gel-free proteomic database comprises 39,212 proteins identified in 63 sample sets, such as different organs of soybean plants grown under flooding stress or non-stressed conditions in a time-dependent manner. In addition, organellar proteins identified in mitochondria, nuclei, and endoplasmic reticulum are stored in the gel-free proteomics database. A total of 44,704 proteins, including 5490 proteins identified using a gel-based proteomic technique, are stored in the SPD. It accounts for approximately 80% of all

  14. Integration of gel-based and gel-free proteomic data for functional analysis of proteins through Soybean Proteome Database.

    Science.gov (United States)

    Komatsu, Setsuko; Wang, Xin; Yin, Xiaojian; Nanjo, Yohei; Ohyanagi, Hajime; Sakata, Katsumi

    2017-06-23

    The Soybean Proteome Database (SPD) stores data on soybean proteins obtained with gel-based and gel-free proteomic techniques. The database was constructed to provide information on proteins for functional analyses. The majority of the data is focused on soybean (Glycine max 'Enrei'). The growth and yield of soybean are strongly affected by environmental stresses such as flooding. The database was originally constructed using data on soybean proteins separated by two-dimensional polyacrylamide gel electrophoresis, which is a gel-based proteomic technique. Since 2015, the database has been expanded to incorporate data obtained by label-free mass spectrometry-based quantitative proteomics, which is a gel-free proteomic technique. Here, the portions of the database consisting of gel-free proteomic data are described. The gel-free proteomic database contains 39,212 proteins identified in 63 sample sets, such as temporal and organ-specific samples of soybean plants grown under flooding stress or non-stressed conditions. In addition, data on organellar proteins identified in mitochondria, nuclei, and endoplasmic reticulum are stored. Furthermore, the database integrates multiple omics data such as genomics, transcriptomics, metabolomics, and proteomics. The SPD database is accessible at http://proteome.dc.affrc.go.jp/Soybean/. The Soybean Proteome Database stores data obtained from both gel-based and gel-free proteomic techniques. The gel-free proteomic database comprises 39,212 proteins identified in 63 sample sets, such as different organs of soybean plants grown under flooding stress or non-stressed conditions in a time-dependent manner. In addition, organellar proteins identified in mitochondria, nuclei, and endoplasmic reticulum are stored in the gel-free proteomics database. A total of 44,704 proteins, including 5490 proteins identified using a gel-based proteomic technique, are stored in the SPD. It accounts for approximately 80% of all predicted proteins from

  15. Integration of gel-based and gel-free proteomic data for functional analysis of proteins through Soybean Proteome Database

    KAUST Repository

    Komatsu, Setsuko; Wang, Xin; Yin, Xiaojian; Nanjo, Yohei; Ohyanagi, Hajime; Sakata, Katsumi

    2017-01-01

    The Soybean Proteome Database (SPD) stores data on soybean proteins obtained with gel-based and gel-free proteomic techniques. The database was constructed to provide information on proteins for functional analyses. The majority of the data is focused on soybean (Glycine max ‘Enrei’). The growth and yield of soybean are strongly affected by environmental stresses such as flooding. The database was originally constructed using data on soybean proteins separated by two-dimensional polyacrylamide gel electrophoresis, which is a gel-based proteomic technique. Since 2015, the database has been expanded to incorporate data obtained by label-free mass spectrometry-based quantitative proteomics, which is a gel-free proteomic technique. Here, the portions of the database consisting of gel-free proteomic data are described. The gel-free proteomic database contains 39,212 proteins identified in 63 sample sets, such as temporal and organ-specific samples of soybean plants grown under flooding stress or non-stressed conditions. In addition, data on organellar proteins identified in mitochondria, nuclei, and endoplasmic reticulum are stored. Furthermore, the database integrates multiple omics data such as genomics, transcriptomics, metabolomics, and proteomics. The SPD database is accessible at http://proteome.dc.affrc.go.jp/Soybean/. Biological significanceThe Soybean Proteome Database stores data obtained from both gel-based and gel-free proteomic techniques. The gel-free proteomic database comprises 39,212 proteins identified in 63 sample sets, such as different organs of soybean plants grown under flooding stress or non-stressed conditions in a time-dependent manner. In addition, organellar proteins identified in mitochondria, nuclei, and endoplasmic reticulum are stored in the gel-free proteomics database. A total of 44,704 proteins, including 5490 proteins identified using a gel-based proteomic technique, are stored in the SPD. It accounts for approximately 80% of all

  16. Process for encapsulating active agents obtaining a gel

    NARCIS (Netherlands)

    Yilmaz, G.; Jongboom, R.O.J.

    2001-01-01

    The present invention relates to a process for encapsulating an active agent in a biopolymer in the form of a gel, comprising the steps of: a) forming a dispersion or solution of the biopolymer in water; and b) adding the active agent to the dispersion or solution obtained in step a); wherein the

  17. Characterization of biomimetically synthesized Hap-Gel nanocomposites as bone substitute

    International Nuclear Information System (INIS)

    Bera, Tanmay; Vivek, A N; Saraf, S K; Ramachandrarao, P

    2008-01-01

    There is an increasing demand for an affordable and easy-to-fabricate material to help patients having a long bone gap. In this paper, we describe the biomimetic synthesis of Hap-Gel in situ nanocomposite powders with varied proportions. Their biocompatibility and bone regeneration abilities were assessed on a rabbit model. The use of Hap crystals and Gel molecule, the soluble form of bone protein, makes the nanocomposites comparable to natural bone in constituents. The application of biomimetic principles improves crystal morphology and the interaction of Hap crystals with the Gel molecules as seen through in vitro characterizations. Out of the various compositions studied, one with 80:20 proportions of Hap to Gel proved to be closest to the characteristics of natural bone. The immunological response to this composite, assessed through intradermal inoculation, did not reveal any reaction. The in vivo implantation studies in the femoral condyle of the animals, as assessed by serial post-operative follow-up radiography and the histological evaluation, revealed a good biocompatibility and bone-regeneration ability of the material. Thus, nanocomposites of Hap-Gel have a great potential for serving as an effective and affordable biomaterial for bone grafting applications

  18. Effect of nightguard vital bleaching gel on the color stability of provisional restorative materials

    Directory of Open Access Journals (Sweden)

    Salwa Omar Bajunaid

    2016-01-01

    Conclusions: Composite-based provisional material showed highest color stability when exposed to vital tooth bleaching gel, whereas methacrylate-based material was the least color stable. Polycarbonate crowns were more color stable when exposed to 15% bleaching gel as opposed to 10% bleaching gel.

  19. The role of quench rate in colloidal gels.

    Science.gov (United States)

    Royall, C Patrick; Malins, Alex

    2012-01-01

    Interactions between colloidal particles have hitherto usually been fixed by the suspension composition. Recent experimental developments now enable the control of interactions in situ. Here we use Brownian dynamics simulations to investigate the effect of controlling interactions upon gelation, by "quenching" the system from an equilibrium fluid to a gel. We find that, contrary to the normal case of an instantaneous quench, where the local structure of the gel is highly disordered, controlled quenching results in a gel with a much higher degree of local order. Under sufficiently slow quenching, local crystallisation is found, which is strongly enhanced when a monodisperse system is used. The higher the degree of local order, the smaller the mean squared displacement, indicating an enhancement of gel stability.

  20. Dehumidifier assisted drying of a model fruit pulp-based gel and sensory attributes.

    Science.gov (United States)

    Tiwari, Shipra; Ravi, Ramasamy; Bhattacharya, Suvendu

    2012-07-01

    Model fruit pulp-based gels were prepared by varying mango pulp (0% to 50%), sucrose (0% to 20%), and agar (1% to 3%) and according to a response surface experimental design followed by drying at a low temperature of 40 °C upto 15 h in a tray dryer assisted by a dehumidifier. The moisture content, shrinkage (SHR), and rheological parameters (failure strain, failure stress (FS), firmness, and energy for compression) were determined as a function of drying time. The composition of gel, particularly the agar content had a prominent effect on the characteristics of the dried gel. Detailed descriptive sensory analysis employing principle component analysis (PCA) biplot indicated two distinct groups of attributes; the first group comprised initial and final moisture contents, extent of moisture removal (EMR), and shrinkage. The fracture stress and energy formed the second group. The analysis of variance for failure stress showed that it depended only on the positive linear and quadratic effects of agar (significant at P ≤ 0.01 and 0.05, respectively). The theoretically predicted extent of moisture removal at 95.6% could be achieved when the level of agar was 1.2%; pulp and sucrose levels were also close to their lowest levels of 3.6% and 0.04%, respectively. Scope exists to develop gel-based fruit analogues wherein an appropriate hydrocolloid can be employed along with fruit juice/pulp. To provide a reasonable shelf-life of the developed intermediate moisture containing product, dehumidifier assisted drying is a pragmatic approach that affects sensory and rheological attributes of the dried fruit analogue. © 2012 Institute of Food Technologists®

  1. Sol-Gel Synthesis Of Aluminoborosilicate Powders

    Science.gov (United States)

    Bull, Jeffrey; Leiser, Daniel; Selvaduray, Guna

    1992-01-01

    Application of sol-gel process to synthesis of aluminoborosilicate powders shows potential for control of microstructures of materials. Development of materials having enhanced processing characteristics prove advantageous in extending high-temperature endurance of fibrous refractory composite insulation made from ceramic fibers.

  2. Effect of nightguard vital bleaching gel on the color stability of provisional restorative materials.

    Science.gov (United States)

    Bajunaid, Salwa Omar

    2016-01-01

    To assess the hypothesis that there was no difference in effect of 10% and 15% tooth bleaching agents on color stability of materials used for provisional fixed dental prosthesis. Fifteen samples from two materials used for provisional fixed dental prosthesis: methacrylate-based and composite-based materials and 15 preformed polycarbonate crowns soaked in bleaching gel or distilled water. Spectrophotometer recorded color of specimens at baseline, after 3, 7, and 14 days. Data were statistically analyzed using two-factor ANOVA test to compare the color stability of tested materials. Methyl-based provisional material exhibited statistically higher color change when exposed to 10% and 15% bleaching gel (delta EFNx01: 9.0 and 11.1, respectively) as compared to distilled water (delta EFNx01: 2.9). Delta EFNx01 of composite-based material specimens exposed to distilled water was statistically higher (6.3) than specimens exposed to 10% and 15% bleaching gel (1.5 and 1.1, respectively). Polycarbonate crowns showed a statistically lower color change when exposed to 15% (0.9) than to 10% bleaching gel (5.1) or distilled water (5.5). Composite-based provisional material showed highest color stability when exposed to vital tooth bleaching gel, whereas methacrylate-based material was the least color stable. Polycarbonate crowns were more color stable when exposed to 15% bleaching gel as opposed to 10% bleaching gel.

  3. Sol-gel materials for optofluidics - process and applications

    DEFF Research Database (Denmark)

    Mikkelsen, Morten Bo Lindholm

    2011-01-01

    This Ph.D. thesis is concerned with the use of sol-gel materials in optofluidic applications and the physics of DNA molecules in nanoconfinement. The bottom-up formation of solid material, which is provided by the sol-gel process, enables control of the chemical composition and porosity...... of the material. At early stages of gelation, thin gel coatings can be structured by nanoimprint lithography, and purely inorganic silica materials can be obtained by subsequent thermal annealing. The sol-gel process thus constitutes a unique method for nanofabrication of silica materials of special properties....... In this work, sol-gel silica is introduced as a new material class for the fabrication of lab-on-a-chip devices for DNA analysis. An imprint process with a rigid, non-permeable stamp was developed, which enabled fabrication of micro- and nanofluidic silica channels in a single process step without use of any...

  4. Making MgO/SiO2 Glasses By The Sol-Gel Process

    Science.gov (United States)

    Bansal, Narottam P.

    1989-01-01

    Silicon dioxide glasses containing 15 mole percent magnesium oxide prepared by sol-gel process. Not made by conventional melting because ingredients immiscible liquids. Synthesis of MgO/SiO2 glass starts with mixing of magnesium nitrate hexahydrate with silicon tetraethoxide, both in alcohol. Water added, and transparent gel forms. Subsequent processing converts gel into glass. Besides producing glasses of new composition at lower processing temperatures, sol-gel method leads to improved homogeneity and higher purity.

  5. Ageing of uranyl gel spherical particles

    International Nuclear Information System (INIS)

    Benadik, A.; Urbanek, V.; Vosecek, V.; Skvor, V.

    1978-01-01

    The structure and chemical composition of U(VI) gel are described and the course of crystal growth in ageing process at 22+-2 degC was found. Store conditions of probes had no influence on crystal growth rate. However, the way of probe storage influenced the quality and appearance of the xerogel obtained by drying via azeotropic distillation. The gel particles stored under trichloroethylene had a good appearance also after storing for 44 hours long. Particles stored in air saturated with H 2 O and NH 3 showed a worse appearance already after 20 hours. After 70 hours particles of spiny form were found. The worst particles were those stored under a trichloroethylene-ethylalcohol mixture. For storing purposes trichloroethylene was recommended as the most appropriate medium of gel protection. (author)

  6. Photopatterned free-standing polyacrylamide gels for microfluidic protein electrophoresis.

    Science.gov (United States)

    Duncombe, Todd A; Herr, Amy E

    2013-06-07

    Designed for compatibility with slab-gel polyacrylamide gel electrophoresis (PAGE) reagents and instruments, we detail development of free-standing polyacrylamide gel (fsPAG) microstructures supporting electrophoretic performance rivalling that of microfluidic platforms. For the protein electrophoresis study described here, fsPAGE lanes are comprised of a sample reservoir and contiguous separation gel. No enclosed microfluidic channels are employed. The fsPAG devices (120 μm tall) are directly photopatterned atop of and covalently attached to planar polymer or glass surfaces. Leveraging the fast prototype-test cycle - significantly faster than mold based fabrication techniques - we optimize the fsPAG architecture to minimize injection dispersion for rapid (prototyping of the fsPAGE provides researchers a powerful tool for developing custom analytical assays. We highlight the utility of assay customization by fabricating a polyacrylamide gel with a spatial pore-size distribution and demonstrate the resulting enhancement in separation performance over a uniform gel. Further, we up-scale from a unit separation to an array of 96 concurrent fsPAGE assays in 10 min run time driven by one electrode pair. The fsPAG array layout matches that of a 96-well plate to facilitate integration of the planar free standing gel array with multi-channel pipettes while remaining compatible with conventional slab-gel PAGE reagents, such as staining for label-free protein detection. Notably, the entire fsPAGE workflow from fabrication, to operation, and readout uses readily available materials and instruments - making this technique highly accessible.

  7. Compositions comprising lignosulfonates for crop protection and crop improvement

    NARCIS (Netherlands)

    Stevens, L.H.; Kok, C.J.; Krieken, van der W.M.

    2009-01-01

    International patent application number: WO2004067699http://www.wipo.int/patentscope/search/en/WO2004067699 (EN)The invention relates to a composition for protecting an agricultural crop against external threats, such as weeds, pathogens, abiotic and biotic stresses and/or for improving the quality

  8. Fabrication of Sericin/Agrose Gel Loaded Lysozyme and Its Potential in Wound Dressing Application

    Directory of Open Access Journals (Sweden)

    Meirong Yang

    2018-04-01

    Full Text Available Sericin is a biomaterial resource for its significant biodegradability, biocompatibility, hydrophilicity, and reactivity. Designing a material with superabsorbent, antiseptic, and non-cytotoxic wound dressing properties is advantageous to reduce wound infection and promote wound healing. Herein, we propose an environment-friendly strategy to obtain an interpenetrating polymer network gel through blending sericin and agarose and freeze-drying. The physicochemical characterizations of the sericin/agarose gel including morphology, porosity, swelling behavior, crystallinity, secondary structure, and thermal property were well characterized. Subsequently, the lysozyme loaded sericin/agarose composite gel was successfully prepared by the solution impregnation method. To evaluate the potential of the lysozyme loaded sericin/agarose gel in wound dressing application, we analyzed the lysozyme loading and release, antimicrobial activity, and cytocompatibility of the resulting gel. The results showed the lysozyme loaded composite gel had high porosity, excellent water absorption property, and good antimicrobial activities against Escherichia coli and Staphylococcus aureus. Also, the lysozyme loaded gel showed excellent cytocompatibility on NIH3T3 and HEK293 cells. So, the lysozyme loaded sericin/agarose gel is a potential alternative biomaterial for wound dressing.

  9. Sol-gel Technology and Advanced Electrochemical Energy Storage Materials

    Science.gov (United States)

    Chu, Chung-tse; Zheng, Haixing

    1996-01-01

    Advanced materials play an important role in the development of electrochemical energy devices such as batteries, fuel cells, and electrochemical capacitors. The sol-gel process is a versatile solution for use in the fabrication of ceramic materials with tailored stoichiometry, microstructure, and properties. This processing technique is particularly useful in producing porous materials with high surface area and low density, two of the most desirable characteristics for electrode materials. In addition,the porous surface of gels can be modified chemically to create tailored surface properties, and inorganic/organic micro-composites can be prepared for improved material performance device fabrication. Applications of several sol-gel derived electrode materials in different energy storage devices are illustrated in this paper. V2O5 gels are shown to be a promising cathode material for solid state lithium batteries. Carbon aerogels, amorphous RuO2 gels and sol-gel derived hafnium compounds have been studied as electrode materials for high energy density and high power density electrochemical capacitors.

  10. A simple gel electrophoresis method for separating polyhedral gold nanoparticles

    Science.gov (United States)

    Kim, Suhee; Lee, Hye Jin

    2015-07-01

    In this paper, a simple approach to separate differently shaped and sized polyhedral gold nanoparticles (NPs) within colloidal solutions via gel electrophoresis is described. Gel running parameters for separating efficiently gold NPs including gel composition, added surfactant types and applied voltage were investigated. The plasmonic properties and physical structure of the separated NPs extracted from the gel matrix were then investigated using transmission electron microscopy (TEM) and UV-vis spectrophotometry respectively. Data analysis revealed that gel electrophoresis conditions of a 1.5 % agarose gel with 0.1 % sodium dodecyl sulfate (SDS) surfactant under an applied voltage of 100 V resulted in the selective isolation of ~ 50 nm polyhedral shaped gold nanoparticles. Further efforts are underway to apply the method to purify biomolecule-conjugated polyhedral Au NPs that can be readily used for NP-enhanced biosensing platforms.

  11. Investigation on the utilization of ZrO2-SiO2 composite microspheres for Sr+2 sorption synthesized via sol-gel method

    International Nuclear Information System (INIS)

    Inan, S.; Tel, H.; Altas, Y.; Eral, M.; Sert, S.; Cetinkaya, B.; Kaplan, U.

    2009-01-01

    Sr-90 is a typical fission product with a half life of approximately 30 years. The removal of long lived radiotoxic strontium from liquid radioactive waste is an important issue for the health safety. Besides, it reduces the storage problems and facilitates the disposal of the waste. Several methods are utilized for the removal of strontium from liquid radioactive waste. One of the important methods is adsorption processes using metal oxides. Especially, sorbents such as hydrous oxides of titanium, silicium and zirconium and their mixtures, titanium and zirconium phosphates, crystalline silico-titanate(CST) have a good thermal and radiation stability, chemical stability even in strong acidic media, high sorption capacity and compatibility to immobilisation step. The major disadvantage of synthetic inorganic sorbents is their unsuitable granulometric and mechanical properties to use in column applications. Preparation of homogen and uniform spherical particles of these composite sorbents by sol-gel method improves the flow dynamics for column operation and extends its practical applications in industry. In this study, ZrO 2 -SiO 2 composite microspheres were synthesized by sol-gel method. for the sorption of Sr 2 +. The optimum Sr 2 + adsorption conditions were determined by 'Central Composite Design' (CCD). Thermodynamic parameters related to adsorption such as ΔHo, ΔSo and ΔGo were calculated. The adsorption data have been interpreted in terms of Langmuir, Freundlich and D-R isotherms.

  12. Combination Comprising Parthenolide For Use In The Treatment Of Alzheimer's Disease And Other Neurodegenerative Disorders

    KAUST Repository

    Bajic, Vladimir B.; Essack, Magbubah

    2015-01-01

    The present invention generally concerns particular methods and compositions for treatment of a neurodegenerative disease, such as Alzheimer's Disease. In particular embodiments, there is a composition comprising Parthenolide and a second agent

  13. Preparation and Properties of Nano-Hydroxyapatite/Gelatin/Poly(vinyl alcohol) Composite Membrane.

    Science.gov (United States)

    Liao, Haotian; Shi, Kun; Peng, Jinrong; Qu, Ying; Liao, Jinfeng; Qian, Zhiyong

    2015-06-01

    In this study, the bone-like composite membrane based on blends of gelatin (Gel), nano-hydroxyapatite (n-HA) and poly(vinyl alcohol) (PVA) was fabricated by solvent casting and evaporation methods. The effect of n-HA content and the ratio of Gel/PVA on the properties of the composite was investigated. The Gel/PVA and n-HA/Gel/PVA composite membranes were characterized by Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), water contact angle measurement and scanning electron microscopy (SEM). The mechanical properties of the composites were determined by tensile tests. The as prepared composite membranes exhibited hydrophobility, the water contact angle of composite membrane was 126.6 when its mass ratio of n-HA/Gel/PVA was 10/50/40. The tensile strength of composite membranes was greatly increased due to the introduction of n-HA, and the tensile strength was increased to 74.92 MPa when the mass ratio of n-HA/Gel/PVA was 10/50/40. SEM observation indicated that n-HA was dispersed in the membranes and a sea-island structure was formed in the n-HA/Gel/PVA composite membranes, resulting in a significant increase in tensile strength. The as-prepared n-HA/Gel/PVA composite membranes may be applied in the field of bone tissue engineering.

  14. Solid polymer electrolyte composite membrane comprising a porous support and a solid polymer electrolyte including a dispersed reduced noble metal or noble metal oxide

    Science.gov (United States)

    Liu, Han; Mittelsteadt, Cortney K; Norman, Timothy J; Griffith, Arthur E; LaConti, Anthony B

    2015-02-24

    A solid polymer electrolyte composite membrane and method of manufacturing the same. According to one embodiment, the composite membrane comprises a thin, rigid, dimensionally-stable, non-electrically-conducting support, the support having a plurality of cylindrical, straight-through pores extending perpendicularly between opposing top and bottom surfaces of the support. The pores are unevenly distributed, with some or no pores located along the periphery and more pores located centrally. The pores are completely filled with a solid polymer electrolyte, the solid polymer electrolyte including a dispersed reduced noble metal or noble metal oxide. The solid polymer electrolyte may also be deposited over the top and/or bottom surfaces of the support.

  15. Smectic liquid crystals in anisotropic colloidal silica gels

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Dennis [Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218 (United States); Borthwick, Matthew A [Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Leheny, Robert L [Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218 (United States)

    2004-05-19

    We report x-ray scattering studies of the smectic liquid crystal octylcyano-biphenol (8CB) confined by strained colloidal silica gels. The gels, comprised of aerosil particles, possess an anisotropic structure that stabilizes long-range nematic order in the liquid crystal while introducing random field effects that disrupt the smectic transition. The short-range smectic correlations that form within this environment are inconsistent with the presence of a topologically ordered state predicted for 3D random field XY systems and are quantitatively like the correlations of smectics confined by isotropic gels. Detailed analysis reveals that the quenched disorder suppresses the anisotropic scaling of the smectic correlation lengths observed in the pure liquid crystal. These results and additional measurements of the smectic-A to smectic-C transition in 4-n-pentylphenylthiol-4'-n-octyloxybenzoate (8barS5) indicate that the observed smectic behaviour is dictated by random fields coupling directly to the smectic order while fields coupling to the nematic director play a subordinate role.

  16. How a gel polymer electrolyte affects performance of lithium/sulfur batteries

    International Nuclear Information System (INIS)

    Zhang, Sheng S.; Tran, Dat T.

    2013-01-01

    Highlights: •Conventional separator is coated with a 50PEO-50SiO 2 (wt.%) composite layer. •Composite coating increases tensile strength and electrolyte wettability. •Coated separator offers an alternative approach for making gel polymer Li/S battery. •Li/S battery takes benefits of gel polymer electrolyte at the expense of capacity. -- Abstract: Gel polymer electrolyte (GPE) and composite gel polymer electrolyte (CGPE) have been widely employed to improve the safety and cycling performance of rechargeable lithium and lithium-ion batteries. In order to determine whether this approach is applicable to lithium/sulfur (Li/S) battery, we examine the effect of CGPE on the cycling and storage performances of Li/S cells by comparing a 50PEO-50SiO 2 (wt.%) composite coated separator (C-separator) with a pristine separator (P-separator). Results show that the composite coating significantly enhances the wettability of liquid electrolyte on the separator and that resulting CGPE can tightly glue the separator and electrode together. In comparison with the P-separator, the C-separator offers Li/S cells similar capacity retention and rate capability; however it greatly affects the specific capacity of sulfur. The analysis on the impedance spectrum of a lithium polysulfide (PS) solution reveal that the reduction of sulfur specific capacity is due to the high viscosity of the CGPE and the strong adsorption of SiO 2 filler to the PS species, which trap PS species in the separator and hence reduce the utilization of sulfur active material. Therefore, the benefits of the GPE and CGPE to the Li/S batteries can be taken only at the expense of sulfur specific capacity

  17. Composite coating prepared by micro-arc oxidation followed by sol-gel process and in vitro degradation properties

    International Nuclear Information System (INIS)

    Zhang Yi; Bai Kuifeng; Fu Zhenya; Zhang Caili; Zhou Huan; Wang Liguo; Zhu Shijie; Guan Shaokang; Li Dongsheng; Hu Junhua

    2012-01-01

    A Mg phosphate coating was prepared on home-developed Mg-Zn-Ca alloy to improve its anticorrosion performance in simulated body fluid (SBF, Kokubo solution). The coating was prepared by micro-arc oxidation (MAO) method at the working voltage of 120-140 V. Evident improvement of anticorrosion was obtained even through the surface was porous. To further diminish the contact with SBF, a TiO 2 layer was coated on the porous MAO layer by sol-gel dip coating followed by an annealing treatment. The coatings were characterized by X-ray diffractometry (XRD), scanning electron microscopy (SEM) and energy dispersion spectroscopy (EDS). The electrochemical performance of the MAO and TiO 2 /MAO coated alloys was evaluated by anodic polarization measurements. The pores on Mg phosphate layer provided accommodation sites for the subsequent TiO 2 sol-gel coating which sealed the pores and hence significantly enhanced the anticorrosion while single MAO coating only improve anticorrosion within a limited range. The present result indicates that fabrication of composite coatings is a significant strategy to improve the corrosion resistance of Mg-Zn-Ca alloy and other alloys, thus enhancing the potential of using Mg alloys as bio-implants.

  18. Electroactive polymer gels based on epoxy resin

    Science.gov (United States)

    Samui, A. B.; Jayakumar, S.; Jayalakshmi, C. G.; Pandey, K.; Sivaraman, P.

    2007-04-01

    Five types of epoxy gels have been synthesized from common epoxy resins and hardeners. Fumed silica and nanoclay, respectively, were used as fillers and butyl methacrylate/acrylamide were used as monomer(s) for making interpenetrating polymer networks (IPNs) in three compositions. Swelling study, tensile property evaluation, dynamic mechanical thermal analysis, thermo-gravimetric analysis, scanning electron microscopy and electroactive property evaluation were done. The gels have sufficient mechanical strength and the time taken for bending to 20° was found to be 22 min for forward bias whereas it was just 12 min for reverse bias.

  19. The effect of aqueous Aloe vera gel extract on serum mineral ...

    African Journals Online (AJOL)

    This study was conducted to determine the effect of Aloe vera gel extract on the serum mineral compositions of Red Sokoto bucks. Blood samples were collected from 30 bucks before the commencement of administration of Aloe vera gel extract for serum minerals and these served as control group. The bucks were now ...

  20. Process of forming a sol-gel/metal hydride composite

    Science.gov (United States)

    Congdon, James W [Aiken, SC

    2009-03-17

    An external gelation process is described which produces granules of metal hydride particles contained within a sol-gel matrix. The resulting granules are dimensionally stable and are useful for applications such as hydrogen separation and hydrogen purification. An additional coating technique for strengthening the granules is also provided.

  1. Selectivity enhancement of phosphate based functional polymeric gels towards Uranium(VI) using ion imprinting

    International Nuclear Information System (INIS)

    Chappa, Sankararao; Agarwal, Chhavi; Pandey, A.K.

    2015-01-01

    The imprinting of gel containing polymer chains of ethylene glycol methacrylate phosphate (EGMP) for U(VI) ions were carried out. The U(VI) imprinting has been carried out in pure EGMP and in EGMP: poly(ethylene glycol) methacrylate (PEGMA) = 1:9 composition. Complexation of the monomer with template (U(VI)) followed by polymerization have been used to imprint the U(VI) onto the polymer chains. The comparison of uptake studies of U(VI) and Pu(IV) at 3 M HNO 3 shows increased selectivity of U(VI) relative to Pu(IV) for both the gel compositions. The less uptake of U(VI) for imprinted EGMP:PEGMA gel relative to pure imprinted EGMP gel at tracer level can be possibly due to the requirement of two EGMP units in the vicinity for U(VI) complexation. (author)

  2. Silver and Cyanine Staining of Oligonucleotides in Polyacrylamide Gel.

    Science.gov (United States)

    Tang, Weizhong; Zhou, Huafu; Li, Wei

    2015-01-01

    To explore why some oligonucleotides in denaturing polyacrylamide gel could not be silver-stained, 134 different oligonucleotides were analyzed using denaturing polyacrylamide gel electrophoresis stained with silver and asymmetric cyanine. As a result, we found that the sensitivity of oligos (dA), (dC), (dG) and (dT) to silver staining could be ranged as (dA) > (dG) > (dC) > (dT) from high to low. It was unexpected that oligo (dT) was hard to be silver-stained. Moreover, the silver staining of an oligonucleotide containing base T could be partially or completely inhibited by base T. The inhibition of silver staining by base T was a competitive inhibition which could be affected by the amounts of the argyrophil nucleobase and base T, the cis-distance between the argyrophil nucleobase and base T, and the gel concentration. The changes of the intensity of an oligonucleotide band caused by the changes of DNA base composition were diverse and interesting. The intensity of some oligonucleotide bands would significantly change when the changes of DNA base composition accumulated to a certain extent (usually ≥ 4 nt). The sensitivity of cyanine staining of ≤ 11-nt long oligonucleotides could be enhanced about 250-fold by fixing the gels with methanol fixing solution.

  3. Genetic heterogeneity of Campylobacter concisus determined by pulsed field gel electrophoresis-based macrorestriction profiling

    DEFF Research Database (Denmark)

    Matsheka, M.I.; Elisha, B.G.; Lastovica, A.L.

    2002-01-01

    1 for pulsed field gel electrophoresis-based genotyping. Subsequently, 53 strains of C concisus, principally from cases of diarrhoea in children, were examined. Fifty-one distinct patterns were obtained, indicating the high discriminatory potential of the method. Patterns comprised between one...... comprised of several genomospecies. The pulsed field gel electrophoresis typing method described here has considerable potential for molecular epidemiological studies of C concisus and may be a useful adjunctive method for helping to resolve key taxonomic issues for this species....... and 14 restriction fragments, with type and reference strains of two well-defined genomospecies of oral and faecal origin containing six and 12 fragments respectively. Our results show that C concisus is genetically diverse and suggest the species as currently defined to be a taxonomic continuum...

  4. Experimental studies on poly methyl methacrylate based gel polymer electrolytes for application in electrical double layer capacitors

    International Nuclear Information System (INIS)

    Hashmi, S A; Kumar, Ashok; Tripathi, S K

    2007-01-01

    Studies have been carried out on gel polymer electrolytes comprising poly methyl methacrylate (PMMA)-ethylene carbonate (EC)-propylene carbonate (PC)-salts, LiClO 4 , NaClO 4 and (C 2 H 5 ) 4 NClO 4 (TEAClO 4 ) with a view to using them as electrolytes in electrical double layer capacitors (EDLCs) based on activated charcoal powder electrodes. The optimum composition of gel electrolytes, PMMA (20 wt%)-EC : PC (1 : 1 v/v)-1.0 M salts exhibit high ionic conductivity of the order of ∼10 -3 S cm -1 at room temperature with good mechanical/dimensional stability, suitable for their application in EDLCs. The EDLCs have been characterized using linear sweep cyclic voltammetry, galvanostatic charge-discharge tests and ac impedance spectroscopy. The values of capacitance of 68-151 mF cm -2 (equivalent to single electrode specific capacitance of 38-78 Fg -1 of activated charcoal powder) have been observed. These values correspond to a specific energy of 5.3-10.8 Wh kg -1 and a power density of 0.19-0.22 kW kg -1 . The capacitance values have been observed to be stable up to 5000 voltammetric cycles or even more. A comparison of studies shows the predominant role of anions of the gel electrolytes in the capacitive behaviour of EDLCs

  5. Nano-composite materials

    Science.gov (United States)

    Lee, Se-Hee; Tracy, C. Edwin; Pitts, J. Roland

    2010-05-25

    Nano-composite materials are disclosed. An exemplary method of producing a nano-composite material may comprise co-sputtering a transition metal and a refractory metal in a reactive atmosphere. The method may also comprise co-depositing a transition metal and a refractory metal composite structure on a substrate. The method may further comprise thermally annealing the deposited transition metal and refractory metal composite structure in a reactive atmosphere.

  6. Sol-gel technology applied to alternative high-level waste forms development

    International Nuclear Information System (INIS)

    Angelini, P.; Stinton, D.P.; Vavruska, J.S.; Caputo, A.J.; Lackey, W.J.

    1981-01-01

    Sol-gel technology appears applicable to waste solidification. It is attractive for remote operation, and a variety of waste compositions and forms can be produced. Spheres and pellets of gel-derived Synroc waste forms were produced. Spheres of the Synroc-B type were coated with pyrolytic carbon and silicon carbide. Partitioning of actinides in Synroc-B was experimentally determined

  7. The Relation between the Rheological Properties of Gels and the Mechanical Properties of Their Corresponding Aerogels

    Directory of Open Access Journals (Sweden)

    Mingze Sun

    2018-04-01

    Full Text Available A series of low density, highly porous clay/poly(vinyl alcohol composite aerogels, incorporating ammonium alginate, were fabricated via a convenient and eco-friendly freeze drying method. It is significant to understand rheological properties of precursor gels because they directly affect the form of aerogels and their processing behaviors. The introduction of ammonium alginate impacted the rheological properties of colloidal gels and improved the mechanical performance of the subject aerogels. The specific compositions and processing conditions applied to those colloidal gel systems brought about different aerogel morphologies, which in turn translated into the observed mechanical properties. The bridge between gel rheologies and aerogel structures are established in the present work.

  8. Solvothermal fabrication of TiO2/sepiolite composite gel with exposed {0 0 1} and {1 0 1} facets and its enhanced photocatalytic activity

    Science.gov (United States)

    Liu, Ruirui; Ji, Zhijiang; Wang, Jing; Zhang, Jinjun

    2018-05-01

    A novel TiO2/sepiolite composite gel (TiSG) was fabricated in the presence of cetyltrimethylammonium bromide (CTAB) through a simple solvothermal reaction in an acetic acid-water solvent. A homogeneous anchoring of TiO2 nanoparticles with exposed {0 0 1} and {1 0 1} facets on sepiolite nanofibers was achieved. CTAB content, solvothermal temperature/time, and HAc content play crucial roles in the morphological and facet formation of TiSG. A possible mechanism for the formation of TiSG was further proposed. CTAB as capping/shape-controlling agent can strongly bind to the more reactive (0 0 1) facet of TiO2 and then mitigate the thermodynamically favored (0 0 1) plane growth. Eventually, the truncated octahedral TiO2 was obtained by controlling the growth rates in 〈0 0 1〉 and 〈1 0 1〉 directions. Sepiolite as a cross-linking agent provides sufficient crosslinking sites for TiO2 to induce three-dimensional (3D) network formation, thereby generating the composite gel. The synthesized TiSG samples were then used as photocatalysts, which exhibited increased methyl orange removal under UV-vis light (350-780 nm) by the synergistic effect of adsorption and in-situ photocatalytic degradation as compared to P25 and bare TiO2. The excellent photocatalytic performance of TiSG was mainly ascribed to the formations of 3D gel structure and surface heterojunctions between (0 0 1) and (1 0 1) facets.

  9. Sol-gel processes and materials. November 1971-October 1989 (Citations from the US Patent data base). Report for November 1971-October 1989

    International Nuclear Information System (INIS)

    1990-01-01

    This bibliography contains citations of selected patents concerning sol-gel processes and sol-gel derived materials and products. Selected patents include sol-gel compositions, ceramic and refractory materials, fabrication of silica glass, sol-gel thin films and coatings, transparent inorganic oxide glass, luminescent quartz glass, cataylsts and catalyst supports, nuclear fuels preparation, abrasives for grinding wheels, sol-gel production of microspheres, alumina composites, photographic materials, and dental materials. (This updated bibliography contains 120 citations, 12 of which are new entries to the previous edition.)

  10. Sol-gel processes and materials. January 1970-August 1989 (Citations from the US Patent data base). Report for January 1970-August 1989

    International Nuclear Information System (INIS)

    1989-09-01

    This bibliography contains citations of selected patents concerning Sol-Gel processes and Sol-Gel derived materials and products. Selected patents include Sol-Gel compositions, ceramic and refractory materials, fabrication of silica glass, Sol-Gel thin films and coatings, transparent inorganic oxide glass, luminescent quartz glass, cataylsts and catalyst supports, nuclear fuels preparation, abrasives for grinding wheels, Sol-Gel production of microspheres, alumina composites, photographic materials, and dental materials. (This updated bibliography contains 108 citations, 37 of which are new entries to the previous edition.)

  11. Sol-gel matrices for direct colorimetric detection of analytes

    Science.gov (United States)

    Charych, Deborah H.; Sasaki, Darryl; Yamanaka, Stacey

    2000-01-01

    The present invention relates to methods and compositions for the direct detection of analytes using color changes that occur in immobilized biopolymeric material in response to selective binding of analytes to their surface. In particular, the present invention provides methods and compositions related to the encapsulation of biopolymeric material into metal oxide glass using the sol-gel method.

  12. Sol-Gel synthesis of MgO-SiO2 glass compositions having stable liquid-liquid immiscibility

    Science.gov (United States)

    Bansal, Narottam P.

    1987-01-01

    MgO-SiO2 glasses containing up to 15 mol % MgO, which could not have been prepared by the conventional glass melting method due to the presence of stable liquid-liquid immiscibility, were synthesized by the sol-gel technique. Clear and transparent gels were obtained from the hydrolysis and polycondensation of silicon tetraethoxide (TEOS) and magnesium nitrate hexahydrate when the water/TEOS mole ratio was four or more. The gelling time decreased with increase in magnesium content, water/TEOS ratio, and reaction temperature. Magnesium nitrate hexahydrate crystallized out of the gels containing 15 and 20 mol % MgO on slow drying. This problem was partially alleviated by drying the gels quickly at higher temperatures. Monolithic gel samples were prepared using glycerol as the drying control additive. The gels were subjected to various thermal treatments and characterized by several methods. No organic groups could be detected in the glasses after heat treatments to approx. 800 C, but trace amounts of hydroxyl groups were still present. No crystalline phase was found from X-ray diffraction in the gel samples to approx. 890 C. At higher temperatures, alpha quartz precipitated out as the crystalline phase in gels containing up to 10 mol % MgO. The overall activation energy for gel formation in 10MgO-90SiO2 (mol %) system for water/TEOS mole ratio of 7.5 was calculated to be 58.7 kJ/mol.

  13. Composition Dependence of Water Permeation Across Multicomponent Gel-Phase Bilayers

    NARCIS (Netherlands)

    Hartkamp, R.M.; Moore, Timothy C.; Iacovella, Christopher R.; Thompson, Michael A.; Bulsara, Pallav A.; Moore, David J.; McCabe, Clare

    2018-01-01

    The permeability of multicomponent phospholipid bilayers in the gel phase is investigated via molecular dynamics simulation. The physical role of the different molecules is probed by comparing multiple mixed-component bilayers containing distearylphosphatidylcholine (DSPC) with varying amounts of

  14. Production of continuous mullite fiber via sol-gel processing

    Science.gov (United States)

    Tucker, Dennis S.; Sparks, J. Scott; Esker, David C.

    1990-01-01

    The development of a continuous ceramic fiber which could be used in rocket engine and rocket boosters applications was investigated at the Marshall Space Flight Center. Methods of ceramic fiber production such as melt spinning, chemical vapor deposition, and precursor polymeric fiber decomposition are discussed and compared with sol-gel processing. The production of ceramics via the sol-gel method consists of two steps, hydrolysis and polycondensation, to form the preceramic, followed by consolidation into the glass or ceramic structure. The advantages of the sol-gel method include better homogeneity and purity, lower preparation temperature, and the ability to form unique compositions. The disadvantages are the high cost of raw materials, large shrinkage during drying and firing which can lead to cracks, and long processing times. Preparation procedures for aluminosilicate sol-gel and for continuous mullite fibers are described.

  15. Thermotropic nanostructured gels with complex hierarchical structure and two gelling components for water shut-off and enhance of oil recovery

    Science.gov (United States)

    Altunina, L. K.; Kuvshinov, I. V.; Kuvshinov, V. A.; Kozlov, V. V.; Stasyeva, L. A.

    2017-12-01

    This work presents the results of laboratory and field tests of thermotropic composition MEGA with two simultaneously acting gelling components, polymer and inorganic. The composition is intended for improving oil recovery and water shut-off at oilfields developed by thermal flooding, and cyclic-steam stimulated oil production wells. The composition forms an in-situ "gel-in-gel" system with improved structural-mechanical properties, using reservoir or carrier fluid heat for gelling. The gel blocks water breakthrough into producing wells and redistribute fluid flows, thus increasing the oil recovery factor.

  16. Compositions and methods of making and using metal-organic framework compositions

    KAUST Repository

    Mohideen, Mohamed Infas Haja; Adil, Karim; Belmabkhout, Youssef; Eddaoudi, Mohamed; Bhatt, Prashant M.

    2017-01-01

    Embodiments of the present disclosure include a metal-organic framework (MOF) composition comprising one or more metal ions, a plurality of organic ligands, and a solvent, wherein the one or more metal ions associate with the plurality of organic ligands sufficient to form a MOF with kag topology. Embodiments of the present disclosure further include a method of making a MOF composition comprising contacting one or more metal ions with a plurality of organic ligands in the presence of a solvent, sufficient to form a MOF with kag topology, wherein the solvent comprises water only. Embodiments of the present disclosure also describe a method of capturing chemical species from a fluid composition comprising contacting a MOF composition with kag topology and pore size of about 3.4Å to 4.8Å with a fluid composition comprising two or more chemical species and capturing one or more captured chemical species from the fluid composition.

  17. Compositions and methods of making and using metal-organic framework compositions

    KAUST Repository

    Mohideen, Mohamed Infas Haja

    2017-05-04

    Embodiments of the present disclosure include a metal-organic framework (MOF) composition comprising one or more metal ions, a plurality of organic ligands, and a solvent, wherein the one or more metal ions associate with the plurality of organic ligands sufficient to form a MOF with kag topology. Embodiments of the present disclosure further include a method of making a MOF composition comprising contacting one or more metal ions with a plurality of organic ligands in the presence of a solvent, sufficient to form a MOF with kag topology, wherein the solvent comprises water only. Embodiments of the present disclosure also describe a method of capturing chemical species from a fluid composition comprising contacting a MOF composition with kag topology and pore size of about 3.4Å to 4.8Å with a fluid composition comprising two or more chemical species and capturing one or more captured chemical species from the fluid composition.

  18. Study Of Calcium And Potassium Different Nature Strength Gel Kappa-Carrageenan

    Directory of Open Access Journals (Sweden)

    Петро Васильович Гурський

    2015-07-01

    Full Text Available The influence of certain organic and mineral salts of potassium and calcium for strength gel kappa-carrageenan. The influence of the mass concentration of individual calcium for strength gels with different content kappa-carrageenan. Grounded mass concentration of some calcium salts for use in the composition of the jelly for sweet and savory dishes based on kappa-carrageenan

  19. Sol-gel-based biosensing applied to medicinal science.

    Science.gov (United States)

    Moreira, Felismina T C; Moreira-Tavares, Ana P; Sales, M Goreti F

    2015-01-01

    Biosensors have opened new horizons in biomedical analysis, by ensuring increased assay speed and flexibility, and allowing point-of-care applications, multi-target analyses, automation and reduced costs of testing. This has been a result of many studies merging nanotechnology with biochemistry over the years, thereby enabling the creation of more suitable environments to biological receptors and their substitution by synthetic analogue materials. Sol-gel chemistry, among other materials, is deeply involved in this process. Sol-gel processing allows the immobilization of organic molecules, biomacromolecules and cells maintaining their properties and activities, permitting their integration into different transduction devices, of electrochemical or optical nature, for single or multiple analyses. Sol-gel also allows to the production of synthetic materials mimicking the activity of natural receptors, while bringing advantages, mostly in terms of cost and stability. Moreover, the biocompatibility of sol-gel materials structures of biological nature allowed the use of these materials in emerging in vivo applications. In this chapter, biosensors for biomedical applications based on sol-gel derived composites are presented, compared and described, along with current emerging applications in vivo, concerning drug delivery or biomaterials. Sol-gel materials are shown as a promising tool for current, emerging and future medical applications.

  20. ANALISA DAYA SERAP SILIKA GEL BERBAHAN DASAR ABU SEKAM PADI

    Directory of Open Access Journals (Sweden)

    Hendriwan Fahmi

    2016-08-01

    Full Text Available Rice husk ash Silica Gel is aproduct which call be used in preventing the humidity by absorbing the water ion on the water andonthe air. This absorbing isbased onthe size, the composition and the total amount ofpolluter which contained on the Silica Gel. The purpose of making this silica gel is to seehow much thiskind of Silica Gel can absorb and compare it to the synthetic one,and also processing rise husk ashto be something useful, Ion water can be absorbed much more by using this natural silica gel if it is compared to the synthetic silica gel. This is because of its capable inabsorbing more –OHand O from water and air. Afterdoing a research with column method, silica gel was beingput in 50 ml water. Fromthis research, natural silica can absorb much more water (0.0010 gr/ml, 0.285 % water level ofweigh in comparing with synthetic one (0.008gr/ml with 0.248 %water level ofweight andsintering (0,007 gr/ml 0.253%water level and non-sintering silica gel contains 39.22 % weight of silica, 30.93 %weight of sintering silica gel, and 33.40 % of the synthetic. More silica and water level, means more total amount of absorbing. This silica gel application is considered with capability ofabsorbing andthe level of the water.

  1. Analysis on the factors affecting the preparation of TIO2-ADUN composite sol by sol-gel method

    International Nuclear Information System (INIS)

    Wang Hui; Yin Rongcai; Liu Jinhong

    2010-01-01

    With C 2 H 2 O 5 and water as solvent and TBT as precursor and HNO 3 as the activator and valorize, the process for preparing TiO 2 -ADUN composite Sol method was studied. The influence of different reaction conditions on Sol-Gel time was analyzed in this study. The optimal reaction condition are: reaction temperature 20-25 degree C; pH value of reaction mixture 2-5; HNO 3 value of reaction mixture 0.3-0.5 ml; molar rations of alcohol to TBT 10, of water to TBT 2-3, respectively. A concentrated ADUN solution with Ti Sol , urea, water as additive is dispersed into uniform which are prepared by external mlii. (authors)

  2. Effects of composition interactions on the response of a turnbull blue radiochromic gel dosimeter

    International Nuclear Information System (INIS)

    Shieh, Jiunn-I; Cheng, Kai-Yuan; Shyu, Huey-Lih; Yu, Yi-Chen; Hsieh, Ling-Ling

    2014-01-01

    In this study, the Taguchi statistical method was used to design experiments for investigating the effects of interactions among compositions on the performance of a Turnbull blue gel (TBG) radiochromic dosimeter. Four parameters were considered as the design factors: (A) concentration of ferric chloride, (B) concentration of potassium ferricyanide, (C) concentration of sulfuric acid, and (D) amount of gelling agent added. Two levels were selected for each factor. The change in optical absorbance at 695 nm under UVA exposures was monitored to determine the response of the dosimeters. The results showed that the contributions of factors A–D on the absorbance were 20.01%, 23.16%, 27.03%, and 0.49%, respectively. The contributions of significant interaction effects were AC (8.60%), BC (5.61%), and ABC (10.56%). This finding indicated that sulfuric acid (C) was the most influential factor, whereas gelling agent (D) was the least influential factor. Sulfuric acid had an important function in two two-way interactions and one three-way interaction in the response of TBG to UV exposure. - Highlights: • Analysis of the composition that influence TBG dosimeters via the design of experiments. • Cross interactions between factors in the TBG dosimeters through multi-factor ANOVA. • Two two-way interactions and one three-way interaction in the TBG dosimeters are significant

  3. Hepatoprotective Activity of Herbal Composition SAL, a Standardize Blend Comprised of Schisandra chinensis, Artemisia capillaris, and Aloe barbadensis

    Directory of Open Access Journals (Sweden)

    Mesfin Yimam

    2016-01-01

    Full Text Available Some botanicals have been reported to possess antioxidative activities acting as scavengers of free radicals rendering their usage in herbal medicine. Here we describe the potential use of “SAL,” a standardized blend comprised of three extracts from Schisandra chinensis, Artemisia capillaris, and Aloe barbadensis, in mitigating chemically induced acute liver toxicities. Acetaminophen and carbon tetrachloride induced acute liver toxicity models in mice were utilized. Hepatic functional tests from serum collected at T24 and hepatic glutathione and superoxide dismutases from liver homogenates were evaluated. Histopathology analysis and merit of blending 3 standardized extracts were also confirmed. Statistically significant and dose-correlated inhibitions in serum ALT ranging from 52.5% (p=0.004 to 34.6% (p=0.05 in the APAP and 46.3% (p<0.001 to 29.9% (p=0.02 in the CCl4 models were observed for SAL administered at doses of 400–250 mg/kg. Moreover, SAL resulted in up to 60.6% and 80.2% reductions in serums AST and bile acid, respectively. The composition replenished depleted hepatic glutathione in association with an increase of hepatic superoxide dismutase. Unexpected synergistic protection from liver damage was also observed. Therefore, the composition SAL could be potentially utilized as an effective hepatic-detoxification agent for the protection from liver damage.

  4. Capability of NIPAM polymer gel in recording dose from the interaction of 10B and thermal neutron in BNCT

    International Nuclear Information System (INIS)

    Khajeali, Azim; Reza Farajollahi, Ali; Kasesaz, Yaser; Khodadadi, Roghayeh; Khalili, Assef; Naseri, Alireza

    2015-01-01

    The capability of N-isopropylacrylamide (NIPAM) polymer gel to record the dose resulting from boron neutron capture reaction in BNCT was determined. In this regard, three compositions of the gel with different concentrations of 10 B were prepared and exposed to gamma radiation and thermal neutrons. Unlike irradiation with gamma rays, the boron-loaded gels irradiated by neutron exhibited sensitivity enhancement compared with the gels without 10 B. It was also found that the neutron sensitivity of the gel increased by the increase of concentration of 10 B. It can be concluded that NIPAM gel might be suitable for the measurement of the absorbed dose enhancement due to 10 B and thermal neutron reaction in BNCT. - Highlights: • Three compositions of NIPAM gel with different concentration of 10 B have been exposed by gamma and thermal neutron. • The vials containing NIPAM gel have been irradiated by an automatic system capable of providing for dose uniformity. • Suitability of NIPAM polymer gel in measuring radiation doses in BNCT has been investigated.

  5. New antifungal compositions

    NARCIS (Netherlands)

    Stark, J.; Rijn, van F.T.J.; Krieken, van der W.M.; Stevens, L.H.

    2008-01-01

    The present invention relates to a process for the treatment of an agricultural product which comprises the addition of a composition which comprises phosphite and natamycin to the agricultural product wherein the composition comprises preferably less than 0.1 g lignosulphonate, more preferably less

  6. 3D MR gel dosimetry with lung equivalent gel

    International Nuclear Information System (INIS)

    Scherer, J.; Solleder, M.; Schiessl, I.; Bogner, L.; Herbst, M.

    1998-01-01

    The MR gel dosimetry is used to verify complex 3D treatment plans. Till now this method served only for dose evaluation in homogeneous phantoms. On the way to build a heterogeneous anthropomorphic gel phantom, a lung equivalent gel with the density 0.4 g/cm 3 was developed. First experiments show a 1.55 times higher dose reponse in the low density gel (LD gel). The comparison of a dose distribution in a gel/LD gel/gel slab phantom with Monte Carlo calculations shows good agreement within 5%. More over the accuray of the measuring device magnetic resonance imager was studied in respect to the now exclusive digital image processing with the software MRD (MR dosimetry). Because of the dimensions of the Fricke gel phantom an artefact correction, based on the data from the unirradiated phantom proved to be essential. (orig.) [de

  7. [Evaluation of the total biological activity and allergenic composition of allergenic extracts].

    Science.gov (United States)

    Lombardero, M; González, R; Duffort, O; Juan, F; Ayuso, R; Ventas, P; Cortés, C; Carreira, J

    1986-01-01

    In the present study, a complete procedure is presented in order to standardize allergenic extracts, the meaning of which is the measurement of the total allergenic activity and the determination of the allergenic composition. The measurement of the biological activity comprises 2 steps: Preparation of Reference Extracts and determination of their "in vivo" activity. Evaluation of the total allergenic activity of extracts for clinical use. Reference extracts were prepared from the main allergens and their "in vivo" biological activity was determined by a quantitative skin prick test in a sample of at least 30 allergic patients. By definition, the protein concentration of Reference Extract that produces, in the allergic population, a geometric mean wheal of 75 mm.2 has an activity of 100 biological units (BUs). The determination of the biological activity of a problem extract is made by RAST inhibition. The sample is compared with the corresponding Reference Extract by this technique and, from this comparison, it is possible to quantify the activity of the problem extract in biologic units (BUs) with clinical significance. Likewise, different techniques have been used to determine the allergenic composition of extracts. These techniques comprise 2 steps: Separation of the components of the extract. Identification of the components that bind specific human IgE. The separation of the components of the extract has been carried out by isoelectric focusing (IEF) and electrophoresis in the presence of sodium dodecyl sulphate (SDS-PAGE). In order to identify the allergenic components, an immunoblotting technique has been employed. The separated components in the IEF gel or SDS-PAGE gel are transferred to a nitrocellulose sheet and later on, this membrane is overlaid with a serum pool from allergic patients and a mouse monoclonal anti-human IgE, labelled with 125I. Finally, the autoradiography of the nitrocellulose membrane is obtained. In this way it is possible to compare

  8. Development of hydroxyapatite-chitosan gel sunscreen combating clinical multidrug-resistant bacteria

    Science.gov (United States)

    Morsy, Reda; Ali, Sameh S.; El-Shetehy, Mohamed

    2017-09-01

    The several harmful effects on infected human skin resulting from exposure to the sun's UV radiation generate an interest in the development of a multifunctional hydroxyapatite-chitosan (HAp-chitosan) gel that works as an antibacterial sunscreen agent for skin care. In this work, HAp-chitosan gel was synthesized via coprecipitation method by dissolving chitosan in phosphoric acid and adding HAp. The characteristics of HAp-chitosan composite were investigated by conventional techniques, such as XRD, FTIR, and SEM techniques, while its sunscreen property was investigated by UV-spectroscopy. In addition to the influence of the gel on bacterial cell morphology, the antibacterial activity of HAp-chitosan gel against clinical multidrug resistant skin pathogens, such as Staphylococcus aureus, Klebsiella pneumoniae, and Pseudomonas aeruginosa has been studied. The results revealed the formation of HAp-chitosan gel having nanosized particles, which confers protection against UV-radiation. The antibacterial activity records showed that chitosan-HAp gel exhibits a significant effect on the growth and ultrastructure of multi-drug resistant bacterial activities. Therefore, the chitosan-HAp gel is promising for skin health care as an antibacterial sunscreen.

  9. Anatomically realistic ultrasound phantoms using gel wax with 3D printed moulds

    Science.gov (United States)

    Maneas, Efthymios; Xia, Wenfeng; Nikitichev, Daniil I.; Daher, Batol; Manimaran, Maniragav; Wong, Rui Yen J.; Chang, Chia-Wei; Rahmani, Benyamin; Capelli, Claudio; Schievano, Silvia; Burriesci, Gaetano; Ourselin, Sebastien; David, Anna L.; Finlay, Malcolm C.; West, Simeon J.; Vercauteren, Tom; Desjardins, Adrien E.

    2018-01-01

    Here we describe methods for creating tissue-mimicking ultrasound phantoms based on patient anatomy using a soft material called gel wax. To recreate acoustically realistic tissue properties, two additives to gel wax were considered: paraffin wax to increase acoustic attenuation, and solid glass spheres to increase backscattering. The frequency dependence of ultrasound attenuation was well described with a power law over the measured range of 3-10 MHz. With the addition of paraffin wax in concentrations of 0 to 8 w/w%, attenuation varied from 0.72 to 2.91 dB cm-1 at 3 MHz and from 6.84 to 26.63 dB cm-1 at 10 MHz. With solid glass sphere concentrations in the range of 0.025-0.9 w/w%, acoustic backscattering consistent with a wide range of ultrasonic appearances was achieved. Native gel wax maintained its integrity during compressive deformations up to 60%; its Young’s modulus was 17.4  ±  1.4 kPa. The gel wax with additives was shaped by melting and pouring it into 3D printed moulds. Three different phantoms were constructed: a nerve and vessel phantom for peripheral nerve blocks, a heart atrium phantom, and a placental phantom for minimally-invasive fetal interventions. In the first, nerves and vessels were represented as hyperechoic and hypoechoic tubular structures, respectively, in a homogeneous background. The second phantom comprised atria derived from an MRI scan of a patient with an intervening septum and adjoining vena cavae. The third comprised the chorionic surface of a placenta with superficial fetal vessels derived from an image of a post-partum human placenta. Gel wax is a material with widely tuneable ultrasound properties and mechanical characteristics that are well suited for creating patient-specific ultrasound phantoms in several clinical disciplines.

  10. Screening of mucoadhesive vaginal gel formulations

    Directory of Open Access Journals (Sweden)

    Ana Ochoa Andrade

    2014-12-01

    Full Text Available Rational design of vaginal drug delivery formulations requires special attention to vehicle properties that optimize vaginal coating and retention. The aim of the present work was to perform a screening of mucoadhesive vaginal gels formulated with carbomer or carrageenan in binary combination with a second polymer (carbomer, guar or xanthan gum. The gels were characterised using in vitroadhesion, spreadability and leakage potential studies, as well as rheological measurements (stress and frequency sweep tests and the effect of dilution with simulated vaginal fluid (SVF on spreadability. Results were analysed using analysis of variance and multiple factor analysis. The combination of polymers enhanced adhesion of both primary gelling agents, carbomer and carrageenan. From the rheological point of view all formulations presented a similar behaviour, prevalently elastic and characterised by loss tangent values well below 1. No correlation between rheological and adhesion behaviour was found. Carbomer and carrageenan gels containing the highest percentage of xanthan gum displayed good in vitro mucoadhesion and spreadability, minimal leakage potential and high resistance to dilution. The positive results obtained with carrageenan-xanthan gum-based gels can encourage the use of natural biocompatible adjuvants in the composition of vaginal products, a formulation field that is currently under the synthetic domain.

  11. Accounting for adjuvant-induced artifacts in the characterization of vaccine formulations by polyacrylamide gel electrophoresis.

    Science.gov (United States)

    Jakob, Virginie; Brunner, Livia; Barnier-Quer, Christophe; Blust, Molly; Collin, Nicolas; Carter, Lauren; Carter, Darrick; Rausch, Kelly M; Fox, Christopher B

    2017-04-01

    Several vaccine adjuvants comprise complex nano- or micro-particle formulations, such as oil-in-water emulsions. In order to characterize interactions and compatibility of oil-in-water emulsion adjuvants with protein antigens in vaccines, effective protein characterization methods that can accommodate potential interference from high concentrations of lipid-based particles are needed. Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) is a standard protein characterization technique which is affected by the presence of adjuvants such as oil-in-water emulsions. In this article, we investigate variations in SDS-PAGE methods that result in a reduction of adjuvant-induced staining artifacts. We have investigated whether the SDS method or the adjuvant composition were the reason for these artifacts and succeeded in reducing the artifacts with a modified sample preparation and different staining procedures. The best results were obtained by using gold staining or silver staining instead of a Coomassie Blue staining procedure. Moreover, the replacement of the dilution buffer (20% SDS to disrupt emulsion) by alternative detergents such as Tween® 80 and Triton® X-100 removed adjuvant-induced streaking artifacts at the top of the gel. These methods may be useful for improving characterization approaches of antigen-adjuvant mixtures by SDS-PAGE.

  12. The effect of two in-office and home bleaching gels on microhardness of composite resin

    Directory of Open Access Journals (Sweden)

    Alizadeh Oskoee P.

    2007-07-01

    Full Text Available Background and Aim: Bleaching products as chemical materials can exert side effects on soft and hard tissues and existing restorative materials with oxidizing mechanism. The aim of this study was to evaluate the effect of 15% and 35% carbamide peroxide gels as home and in-office bleaching agents respectively, on microhardness and surface topography of composite resin.Materials and Methods: In this in vitro study, a total of 75 disc shaped specimens were prepared from Z100  composite resin (3M and randomly divided into three groups with following treatment designs: group 1, 370C distilled water, group 2, 15% carbamide peroxide, 6 hours/day for 3 weeks, group 3, 35% carbamide peroxide 30 minutes/week for 3 weeks. The microhardness (Vickers hardness of samples was measured using Shimadzu set on three different points of each sample. 8 samples of each group were selected randomly to be assessed by scanning electron microscopy (SEM for probable changes in surface topography. Data were analyzed using one way ANOVA and Duncan tests with p<0.05 as the level of significance. Results: 15% carbamide peroxide group had the maximum amount of microhardness (84.59±1.87 and 35% carbamide peroxide group had the minimum (76. 14±1.77. Only the difference between home bleaching and control group was not statistically significant (P=0.24. The SEM assessing revealed no changes in surface topography.Conclusion: Based on the results of this study, in-office bleaching may decrease the microhardness of composite resin.

  13. Composites characterization by sol-gel process using positron lifetime spectroscopy

    International Nuclear Information System (INIS)

    Sousa, Edesia M.B. de; Minas Gerais Univ., Belo Horizonte, MG; Magalhaes, Wellington F. de; Mohallem, Nelci D.S.

    1997-01-01

    Si O 2 matrix were prepared by sol-gel method using TEOS, ethanol and H 2 O in a 1/3/10 mole ratio, with H Cl and HF as catalysts. These silica gels were doped with copper and titanium adding Cu Cl and titanium tetra-iso-propoxide in the starting solution during agitation. The samples were prepared in monolithic shape, dried at 110 0 C for 24 hours and thermally treated for 2 hours at 500, 900 and 110 0 C for 24 hours The structural evolution was studied by X-Ray diffraction, mercury porosimetry and picnometry. In this work it was also used the Positron Annihilation Lifetime Spectroscopy which have been used , now a days, as a microscopic probe in order to investigate the free volume in zeolites, polymers and metallic alloy. All the samples have shown a stable pore structure until 900 0 C and a strong densification process at 1100 0 C. (author). 10 refs., 4 figs., 2 tabs

  14. Investigating Linear and Nonlinear Viscoelastic behaviour and microstructures of Gelatine-Multiwalled carbon nanotubes composites

    KAUST Repository

    Yang, Zhi

    2015-12-01

    We have investigated the linear and nonlinear rheology of various gelatine-multiwalled carbon nanotube (gel-MWNT) composites, namely physically-crosslinked-gelatine gel-MWNT composites, chemically-crosslinked-gelatine gel-MWNT composites, and chemically-physically-crosslinked-gelatine gel-MWNT composites. Further, the internal structures of these gel-MWNT composites were characterized by ultra-small angle neutron scattering and scanning electron microscopy. The adsorption of gelatine onto the surface of MWNT is also investigated to understand gelatine-assisted dispersion of MWNT during ultrasonication. For all gelatine gels, addition of MWNT increases their complex modulus. The dependence of storage modulus with frequency for gelatine-MWNT composites is similar to that of the corresponding neat gelatine matrix. However, by incorporating MWNT, the dependence of the loss modulus on frequency is reduced. The linear viscoelastic region is decreased approximately linearly with the increase of MWNT concentration. The pre-stress results demonstrate that the addition of MWNT does not change the strain-hardening behaviour of physically-crosslinked gelatine gel. However, the addition of MWNT can increase the strain-hardening behaviour of chemically-crosslinked gelatine gel, and chemically-physically crosslinked gelatine gel. Results from light microscopy, cryo-SEM, and USANS demonstrate the hierarchical structures of MWNT, including that tens-of-micron scale MWNT agglomerates are present. Furthermore, the adsorption curve of gelatine onto the surface of MWNT follows two-stage pseudo-saturation behaviour.

  15. Fabrication and Optimization of a PAGATA Gel Dosimeter: Increasing the Melting Point of the PAGAT Gel Dosimeter with Agarose Additive

    Directory of Open Access Journals (Sweden)

    Bakhtiar Azadbakht

    2010-12-01

    Full Text Available Introduction: The PAGAT polymer gel dosimeter melts at 30 ˚C and even at room temperature during the summer, so it needs to be kept in a cool place such as a refrigerator. To increase the stability of the PAGAT gel, different amounts of agarose were added to the PAGAT gel composition and the PAGATA gel was manufactured. Material and Methods: The PAGATA gel vials were irradiated using a Co-60 machine. Then, the samples were evaluated using a 1.5 T Siemens MRI scanner. The ingredients of the PAGATA normoxic gel dosimeter were 4.5% N-N' methylen-bis-acrylamide, 4.5% acrylamide, 4.5% gelatine, 5 mM tetrakis (THPC, 0.01 mM hydroquinone (HQ, 0.5% agarose and 86% de-ionized water (HPLC. Results: Melting point and sensitivity of the PAGAT gel dosimeter with addition of 0.0, 0.3, 0.5, 1.0, 1.5 and 2.0% of agarose were measured, in which the melting points were increased to 30, 82, 86, 88, 89 and 90°C and their sensitivities found to be 0.113, 0.1059, 0.125, 0.122, 0.115 and 0.2  respectively. Discussion and Conclusions: Adding agarose increased the sensitivity and background R2 of the evaluated samples. The optimum amount of agarose was found to be 0.5% regarding these parameters and also the melting point of the gel dosimeter. A value of 0.5% agarose was found to be an optimum value considering the increase of sensitivity to 0.125 and melting point to 86°C but at the expense of increasing the background R2 to 4.530.

  16. Graphene oxide-enhanced sol-gel transition sensitivity and drug release performance of an amphiphilic copolymer-based nanocomposite

    Science.gov (United States)

    Hu, Huawen; Wang, Xiaowen; Lee, Ka I; Ma, Kaikai; Hu, Hong; Xin, John H.

    2016-01-01

    We report the fabrication of a highly sensitive amphiphilic copolymer-based nanocomposite incorporating with graphene oxide (GO), which exhibited a low-intensity UV light-triggered sol-gel transition. Non-cytotoxicity was observed for the composite gels after the GO incorporation. Of particular interest were the microchannels that were formed spontaneously within the GO-incorporated UV-gel, which expedited sustained drug release. Therefore, the present highly UV-sensitive, non-cytotoxic amphiphilic copolymer-based composites is expected to provide enhanced photothermal therapy and chemotherapy by means of GO’s unique photothermal properties, as well as through efficient passive targeting resulting from the sol-gel transition characteristic of the copolymer-based system with improved sensitivity, which thus promises the enhanced treatment of patients with cancer and other diseases. PMID:27539298

  17. Ionic and viscoelastic mechanisms of a bucky-gel actuator

    Science.gov (United States)

    Kruusamäe, Karl; Sugino, Takushi; Asaka, Kinji

    2015-07-01

    Ionic electromechanically active polymers (IEAPs) are considered attractive candidates for soft, miniature, and lightweight actuators. The bucky-gel actuator is a carbonaceous subtype of IEAP that due to its structure (i.e. two highly porous electrodes sandwiching a thin ion-permeable electrolyte layer) and composition (i.e. being composed of soft porous polymer, carbon nanotubes, and ionic liquid) is very similar to an electric double-layer capacitor. In response to the voltage applied between the electrodes of a bucky-gel actuator, the laminar structure bends. The time domain behavior exhibits, however, a phenomenon called the back-relaxation, i.e., after some time the direction of bending is reversed even though voltage remains constant. In spite of the working mechanism of IEAP actuators being generally attributed to the transport of ions within the soft multilayer system, the specific details remain unclear. A so-called two-carrier model proposes that the bending and subsequent back-relaxation are caused by the relocation of two ionic species having different mobilities as they enter and exit the electrode layers. By adopting the two-carrier model for bucky-gel actuators, we see very good agreement between the mathematical representation and the experimental data of the electromechanical behavior. Furthermore, since the bucky-gel actuator is viscoelastic, we propose to use the time domain response of a blocking force as the key parameter related to the inner ionic mechanism. We also introduce a method to estimate the viscoelastic creep compliance function from the time domain responses for curvature and blocking force. This analysis includes four types of bucky-gel actuators of varying composition and structure.

  18. Development of a composite based on hydroxyapatite and magnesium and zinc‐containing sol–gel-derived bioactive glass for bone substitute applications

    International Nuclear Information System (INIS)

    Ashuri, Maziar; Moztarzadeh, Fathollah; Nezafati, Nader; Ansari Hamedani, Ali; Tahriri, Mohammadreza

    2012-01-01

    In the present study, a bioceramic-based composite was prepared by sintering compacts made up of mixtures of hydroxyapatite (HA) and sol–gel-derived bioactive glass (64SiO 2 -26CaO-5MgO-5ZnO) (based on mol%) powders. HA powder was mixed with different concentrations of the glass powders up to 30 wt.%. The effect of adding bioactive glass powder to HA matrix, on the mechanical properties of the composite was assessed by compression test. The specimen with the highest compressive strength was chosen to be immersed in simulated body fluid (SBF) to study apatite forming ability and dissolution behavior. It was found that compressive strength of the specimen was decreased 65% after maintaining in the SBF for 14 days. X-ray diffraction (XRD) showed prevalence of HA and β-TCP related peaks. Also, the surface morphology of the composite was observed using scanning electron microscopy (SEM). The study of degradation behavior revealed Si release capability of this composite. Biological evaluations in vitro confirmed the composite studied could induce osteoblast-like cells' activities. - Highlights: ► A novel composite based on HA/bioactive glass for bone substitutes was developed. ► Evaluations in vitro confirmed the composites induce bone-like cells' activities. ► A successful compromise of bioactivity and cytocompatibility was observed.

  19. Ultrapure glass optical waveguide: Development in microgravity by the sol gel process

    Science.gov (United States)

    Mukherjee, S. P.; Debsikdar, J. C.; Beam, T.

    1983-01-01

    The sol-gel process for the preparation of homogeneous gels in three binary oxide systems was investigated. The glass forming ability of certain compositions in the selected oxide systems (SiO-GeO2, GeO2-PbO, and SiO2-TiO2) were studied based on their potential importance in the design of optical waveguide at longer wavelengths.

  20. Differences in body composition measured using the bioelectrical impedance analysis with steel and gel electrodes – on an example of professional fencers

    Directory of Open Access Journals (Sweden)

    Olga Mizera

    2018-03-01

    Full Text Available Introduction: Regular assessment of body composition in athletes is a key element of their nutritional status and general condition monitoring. Purpose: Analysis of differences in the impedance (I and body composition measurements performed by the use of analyzers with a constant current frequency of 50 kHz with steel and gel electrodes. Material and methods: Analysis were performed in experienced fencers by the use of analyzers: Tanita BC418MA (aT with steel electrodes (eT and Akern BIA101ASE (aA with gel electrodes (eA, eL, eT. During the first stage of the study in 48 athletes I, fat mass (FM and fat free mass (FFM were measured using aA with eB in a supine position and after 3 min using aT with eT in a standing position. Then 10 fencers were randomly selected. For them measurements were performed after 10, 13 and 16 min in a supine position using eA, eL, eB and then after 3 min in a standing one using eT. Intrinsic impedance of the 3 types of gel electrodes (eA, eL, eB were measured using aA. Results: The first stage. Differences in I, FM and FFM between eT and aA were observed (women: 101.4±52.2Ω, 1.2±2.1kg, -1.2±2.1kg, men: 98.8±27.5Ω, 1.1±1.5kg, -1.1±1.5kg, respectively. The second stage. In the subsequent measurements, differences in I were observed (women: eL-eA 3.8±1.8Ω, eB-eA 26.1±8.0Ω, eT-eA 154.4±40.6Ω;, men: of -0.7±9.4Ω, 11.1±9.2Ω, 107±36.3Ω, respectively. In both subgroups along with the increase in I, FM also increased, while  FFM decreased. Intrinsic impedance of the applied gel electrodes was measured and the differences between the results were reported (eL-eA 41.1±22.0Ω, eB-eL 138.4±20.7Ω, eB-eA 179.5Ω. As the intrinsic impedance of gel electrodes increased, an increase in the whole body I was observed. Conclusion: It seems that the observed differences in the whole body impedance were not only a simple effect of changes in a body position but they might have also been related to the intrinsic

  1. High-density 3D graphene-based monolith and related materials, methods, and devices

    Energy Technology Data Exchange (ETDEWEB)

    Worsley, Marcus A.; Baumann, Theodore F.; Biener, Juergen; Charnvanichborikarn, Supakit; Kucheyev, Sergei; Montalvo, Elizabeth; Shin, Swanee; Tylski, Elijah

    2017-03-21

    A composition comprising at least one high-density graphene-based monolith, said monolith comprising a three-dimensional structure of graphene sheets crosslinked by covalent carbon bonds and having a density of at least 0.1 g/cm.sup.3. Also provided is a method comprising: preparing a reaction mixture comprising a suspension and at least one catalyst, said suspension selected from a graphene oxide (GO) suspension and a carbon nanotube suspension; curing the reaction mixture to produce a wet gel; drying the wet gel to produce a dry gel, said drying step is substantially free of supercritical drying and freeze drying; and pyrolyzing the dry gel to produce a high-density graphene-based monolith. Exceptional combinations of properties are achieved including high conductive and mechanical properties.

  2. Sol-gel processing of bioactive glass nanoparticles: A review.

    Science.gov (United States)

    Zheng, Kai; Boccaccini, Aldo R

    2017-11-01

    Silicate-based bioactive glass nanoparticles (BGN) are gaining increasing attention in various biomedical applications due to their unique properties. Controlled synthesis of BGN is critical to their effective use in biomedical applications since BGN characteristics, such as morphology and composition, determining the properties of BGN, are highly related to the synthesis process. In the last decade, numerous investigations focusing on BGN synthesis have been reported. BGN can mainly be produced through the conventional melt-quench approach or by sol-gel methods. The latter approaches are drawing widespread attention, considering the convenience and versatility they offer to tune the properties of BGN. In this paper, we review the strategies of sol-gel processing of BGN, including those adopting different catalysts for initiating the hydrolysis and condensation of silicate precursors as well as those combining sol-gel chemistry with other techniques. The processes and mechanism of different synthesis approaches are introduced and discussed in detail. Considering the importance of the BGN morphology and composition to their biomedical applications, strategies put forward to control the size, shape, pore structure and composition of BGN are discussed. BGN are particularly interesting biomaterials for bone-related applications, however, they also have potential for other biomedical applications, e.g. in soft tissue regeneration/repair. Therefore, in the last part of this review, recently reported applications of BGN in soft tissue repair and wound healing are presented. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Sol-Gel Chemistry for Carbon Dots.

    Science.gov (United States)

    Malfatti, Luca; Innocenzi, Plinio

    2018-03-14

    Carbon dots are an emerging class of carbon-based nanostructures produced by low-cost raw materials which exhibit a widely-tunable photoluminescence and a high quantum yield. The potential of these nanomaterials as a substitute of semiconductor quantum dots in optoelectronics and biomedicine is very high, however they need a customized chemistry to be integrated in host-guest systems or functionalized in core-shell structures. This review is focused on recent advances of the sol-gel chemistry applied to the C-dots technology. The surface modification, the fine tailoring of the chemical composition and the embedding into a complex nanostructured material are the main targets of combining sol-gel processing with C-dots chemistry. In addition, the synergistic effect of the sol-gel precursor combined with the C-dots contribute to modify the intrinsic chemo-physical properties of the dots, empowering the emission efficiency or enabling the tuning of the photoluminescence over a wide range of the visible spectrum. © 2018 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Transdermal delivery of paeonol using cubic gel and microemulsion gel

    Science.gov (United States)

    Luo, Maofu; Shen, Qi; Chen, Jinjin

    2011-01-01

    Background The aim of this study was to develop new systems for transdermal delivery of paeonol, in particular microemulsion gel and cubic gel formulations. Methods Various microemulsion vehicles were prepared using isopropyl myristate as an oil phase, polyoxyethylated castor oil (Cremophor® EL) as a surfactant, and polyethylene glycol 400 as a cosurfactant. In the optimum microemulsion gel formulation, carbomer 940 was selected as the gel matrix, and consisted of 1% paeonol, 4% isopropyl myristate, 28% Cremophor EL/polyethylene glycol 400 (1:1), and 67% water. The cubic gel was prepared containing 3% paeonol, 30% water, and 67% glyceryl monooleate. Results A skin permeability test using excised rat skins indicated that both the cubic gel and microemulsion gel formulations had higher permeability than did the paeonol solution. An in vivo pharmacokinetic study done in rats showed that the relative bioavailability of the cubic gel and microemulsion gel was enhanced by about 1.51-fold and 1.28-fold, respectively, compared with orally administered paeonol suspension. Conclusion Both the cubic gel and microemulsion gel formulations are promising delivery systems to enhance the skin permeability of paeonol, in particular the cubic gel. PMID:21904450

  5. Radiation sensitive polymer gel dosimeters

    International Nuclear Information System (INIS)

    Lepage, M.; Back, S.A.J.; Baldock, C.; Whittaker, A.K.; Rintoul, L.

    2000-01-01

    Full text: Radiation sensitive gels are studied for their potential to retain a permanent 3D dose distribution for applications in radiotherapy. Co-monomers dissolved in a tissue-equivalent hydrogel undergo a polymerization reaction upon absorption of ionizing radiation. The polymer formed influences the local spin-spin relaxation time (T 2 ) of the dosimeter that can be determined using magnetic resonance imaging (MRI). The relationship between T2 and the absorbed dose was studied for different initial chemical compositions. The aim was to find a model linking the changes in T 2 with absorbed dose to the initial composition of the dosimeter. It is believed this will help designing new gel dosimeters having desired properties to minimize the uncertainty in the determination of the dose distribution. 1 H, 13 C nuclear magnetic resonance spectroscopy and FT-Raman spectroscopy were used to quantify the amount of monomers still remaining after the absorption of a given dose of radiation. This data is used to model the changes of T2 as a function of the absorbed dose. A model of fast exchange of magnetization between three proton pools was used, where the fraction of protons (f x H ) in the x th pool is obtained from the chemical composition of the dosimeter and the apparent T2 of each pool is determined for a given composition. Initially, the protons are contained in two pools; a mobile (mob), which contains the water protons and the monomers protons, and a gelatin (gela) proton pool. The mobile pool is partially depleted as polymer is formed, the protons are transferred into the polymer (pol) pool. In the figure, the experimental data along with the calculated values are plotted for three different monomer concentrations, with the gelatin concentration fixed. The model is seen to provide a good fit to the experimental data

  6. Obtention and characterization of dried gels prepared with whey proteins, honey and hydrocolloids mixture.

    Science.gov (United States)

    Rodriguez, Ana C; Torrez Irigoyen, Martín R; Navarro, Alba S; Yamul, Diego K

    2017-11-01

    Large amounts of honey and liquid whey derived from the dairy industry are produced in Argentina. Honey is exported in bulk and whey is transformed into whey protein concentrates and isolates. The objective of this work was to investigate the effect of pH, composition and storage time on the properties of dried gels with honey, whey proteins and hydrocolloids. Color properties varied according to pH and composition. The fracture stress of dried gels prepared with corn starch was higher than that of gels prepared with guar gum in all conditions assayed. Young's modulus was higher at pH 7 for both compositions and increased with storage time. Rubbery characteristics were found in dried gels with guar gum, while both corn starch and guar gum made the microstructure rougher. Multivariate analysis showed that samples could be grouped by pH. Panelists preferred pH 7 products over acidic ones, and no significant differences in sensory properties were found using either corn starch or guar gum in the formulation. The results demonstrated that it is possible to generate a new product, which may open new applications for honey and whey in food formulations. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  7. Amperometric detector for gas chromatography based on a silica sol-gel solid electrolyte.

    Science.gov (United States)

    Steinecker, William H; Miecznikowski, Krzysztof; Kulesza, Pawel J; Sandlin, Zechariah D; Cox, James A

    2017-11-01

    An electrochemical cell comprising a silica sol-gel solid electrolyte, a working electrode that protrudes into a gas phase, and reference and counter electrodes that contact the solid electrolyte comprises an amperometric detector for gas chromatography. Under potentiostatic conditions, a current related to the concentration of an analyte in the gas phase is produced by its oxidation at the three-phase boundary among the sol-gel, working electrode, and the gas phase. The sol-gel is processed to contain an electrolyte that also serves as a humidistat to maintain a constant water activity even in the presence the gas chromatographic mobile phase. Response was demonstrated toward a diverse set of analytes, namely hydrogen, 1,2-ethandithiol, phenol, p-cresol, and thioanisole. Using flow injection amperometry of hydrogen with He as the carrier gas, 90% of the steady-state current was achieved in < 1s at a flow rate of 20mLmin -1 . A separation of 1,2-ethandithiol, phenol, p-cresol, and thioanisole at a 2.2mLmin -1 flow rate was achieved with respective detection limits (k = 3 criterion) of 4, 1, 3, and 70 ppmv when the working electrode potential was 800mV. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Dye-Sensitized Solar Cells with Optimal Gel Electrolyte Using the Taguchi Design Method

    Directory of Open Access Journals (Sweden)

    Jenn-Kai Tsai

    2013-01-01

    Full Text Available The Taguchi method was adopted to determine the optimal gel electrolyte used in dye-sensitized solar cells (DSSCs. Since electrolyte is a very important factor in fabrication of high performance and long-term stability DSSCs, to find the optimal composition of gel electrolyte is desired. In this paper, the common ingredients used in the liquid electrolyte were chosen. The ingredients then mixed with cheap ionic liquids and poly(vinylidenefluoride-co-hexafluoropropylene (PVDF-HFP were added to form colloidal electrolyte (gel. The optimal composition of each materials in the gel electrolyte determined by Taguchi method consists of 0.03 M I2, 0.15 M KI, 0.6 M LiI, 0.5 M 4-tertbutylpyridine (TBP, and 10% PVDF-HFP dissolved in the acetonitrile and 3-methoxypropionitrile (MPN solution with volume ratio of 2 : 1. The short circuit current density of 14.11 mA/cm2, the conversion efficiency (η of 5.52%, and the lifetime of over 110 days were observed for the dye-sensitized solar cell assembled with optimal gel electrolyte. The lifetime increases 10 times when compared with the conventional dye-sensitized solar cell assembled with liquid electrolyte.

  9. Semipermeable thin-film membranes comprising siloxane, alkoxysilyl and aryloxysilyl oligomers and copolymers

    Science.gov (United States)

    Babcock, Walter C.; Friesen, Dwayne T.

    1988-01-01

    Novel semiperimeable membranes and thin film composite (TFC) gas separation membranes useful in the separation of oxygen, nitrogen, hydrogen, water vapor, methane, carbon dioxide, hydrogen sulfide, lower hydrocarbons, and other gases are disclosed. The novel semipermeable membranes comprise the polycondensation reaction product of two complementary polyfunctional compounds, each having at least two functional groups that are mutually reactive in a condensation polymerization reaction, and at least one of which is selected from siloxanes, alkoxsilyls and aryloxysilyls. The TFC membrane comprises a microporous polymeric support, the surface of which has the novel semipermeable film formed thereon, preferably by interfacial polymerization.

  10. Phytic acid derived bioactive CaO-P2O5-SiO2 gel-glasses.

    Science.gov (United States)

    Li, Ailing; Qiu, Dong

    2011-12-01

    The possibility of using phytic acid as a precursor to synthesize CaO-P(2)O(5)-SiO(2) glasses by sol-gel method has been explored and the pseudo ternary phase diagram has been established. It was shown that gel-glasses over a broader range of compositions could be prepared compared to other phosphorus precursors or melt-quenching method. Furthermore, phytic acid was found to assist calcium being incorporated into glass networks. In vitro tests in simulated body fluid (SBF) were performed on the above gel-glasses and it was found that they were bioactive over a much broader compositional range especially at high phosphate content, thus enabling one to design bioactive materials with various degradation rates by adjusting the phosphate content.

  11. Solvent induced supramolecular anisotropy in molecular gels

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, Michael A., E-mail: mroger09@uoguelph.ca [Department of Food Science, University of Guelph, Guelph, Ontario, N3C3X9 (Canada); Corradini, Maria G. [Department of Food Science, University of Massachusetts Amherst, Amherst, MA, 01003 (United States); Emge, Thomas [Department of Chemistry and Biochemistry, Rutgers University, New Brunswick, NJ, 08901 (United States)

    2017-06-15

    Herein is the first report of solvent induced anisotropy in 12-hydroxystearic acid self-assembled fibrillar networks. Increasing the chain length of polar solvent, such as nitriles and ketones, tailored the anisotropy of the fibrillar aggregates. 12HSA molecular gels, comprised of alkanes, exhibited an isotropic fibrillar network irrespective of the alkane chain length. In polar solvents, anisotropy, observed using 2D powder x-ray diffraction profiles, is correlated to a fibrillar supramolecular morphologies in long chain nitriles and ketones while sphereulitic crystals are correlated to x-ray diffraction patterns with an isotropic scatter intensity in short chain ketones and nitriles. These changes directly modify the final physical properties of the gels. - Highlights: • 12-HSA self-assembles into crystalline supramolecular morphologies depending on the solvent. • Alkanes, short chain nitriles and ketones led to 12-HSA displaying supramolecular isotropy. • In long chain nitriles and ketones, 12-HSA displays supramolecular anisotropy.

  12. Solvent induced supramolecular anisotropy in molecular gels

    International Nuclear Information System (INIS)

    Rogers, Michael A.; Corradini, Maria G.; Emge, Thomas

    2017-01-01

    Herein is the first report of solvent induced anisotropy in 12-hydroxystearic acid self-assembled fibrillar networks. Increasing the chain length of polar solvent, such as nitriles and ketones, tailored the anisotropy of the fibrillar aggregates. 12HSA molecular gels, comprised of alkanes, exhibited an isotropic fibrillar network irrespective of the alkane chain length. In polar solvents, anisotropy, observed using 2D powder x-ray diffraction profiles, is correlated to a fibrillar supramolecular morphologies in long chain nitriles and ketones while sphereulitic crystals are correlated to x-ray diffraction patterns with an isotropic scatter intensity in short chain ketones and nitriles. These changes directly modify the final physical properties of the gels. - Highlights: • 12-HSA self-assembles into crystalline supramolecular morphologies depending on the solvent. • Alkanes, short chain nitriles and ketones led to 12-HSA displaying supramolecular isotropy. • In long chain nitriles and ketones, 12-HSA displays supramolecular anisotropy.

  13. Combination Comprising Parthenolide For Use In The Treatment Of Alzheimer's Disease And Other Neurodegenerative Disorders

    KAUST Repository

    Bajic, Vladimir B.

    2015-06-18

    The present invention generally concerns particular methods and compositions for treatment of a neurodegenerative disease, such as Alzheimer\\'s Disease. In particular embodiments, there is a composition comprising Parthenolide and a second agent, including an inhibitor of TLR4/MD-2/CD14, nAChR agonist, Resatorvid, Curcumin, Tilorone or a Tilorone analog, or a combination thereof.

  14. А new factor effecting gel strength of pectin polysaccharides

    Directory of Open Access Journals (Sweden)

    S. E. Kholov

    2016-01-01

    Full Text Available Pectin polysaccharides obtained from various raw materials have a different component composition and form gels with water, sugar and acid or calcium. In this study, an experimental approach the gelation properties of different pectin samples, varied from different sources, using new methods of hydrolysis and purification. Samples were obtained by hydrolysis of accelerated extraction of pectin and purified by diaultrfiltration, have a high gel strength. The highest gel strength have been found in series of high methoxyl (HM- pectin samples of apple, peach, orange and low methoxyl (LM- pectin samples of commercial citrus pectin and apple pectin obtained by new method. It is shown that in addition to the basic parameters (the content of galacturonic acid, degree of esterification, molecular weight and hidrodinamic radius macromolecule to affect gel strength pectins aggregation of macromolecules, which is determined by the z-average molecular weight. There were observed a clear pattern of the influence of the molecular weight on hydrodynamic parameters for both HM- and LM- pectin samples on the gel strength. It were shown that a high values of molecular weight, intrinsic viscosity, and radius of gyration of pectin samples can significantly increase gel strength, while the value of Mz oppositely influenced the gel strength. As a result, a systematic analysis of this parameter and its relationship to the average molecular weight found that indeed the ratio Mz/Mw for pectin’s is an crucial to assess the quality of pectin at the study of gel strength for pectin polysaccharides.

  15. Composition suitable as collection agent in ore flotation process and preparation of said composition

    International Nuclear Information System (INIS)

    Bresson, C.R.; Parlman, R.M.

    1984-01-01

    A composition and process are provided for the recovery of the values of zinc, molybdenum, copper, lead, ion (pyrite), and iron-containing small amounts of gold or uranium, or both, from ores comprising these mineral sulfides. The aqueous composition is the impure form of an alkali metal alkyl trithiocarbonate compound. The process comprises employing said aqueous composition as a collection agent for the above minerals in an ore recovery process. A process for the separation of zinc values from lead values from an ore comprising both is provided by employing an alkali metal alkyl trithiocarbonate compound as a collection agent for zinc. In addition, both a composition and process are provided for the recovery of the values of iron, copper, and lead from ores comprising these values. The composition consists essentially of a dispersant and an impure form of an alkali metal alkyl trithiocarbonate compound. The process comprises employing this composition as a collection agent for the above minerals in an ore recovery process

  16. Self-composite comprised of nanocrystalline diamond and a non-diamond component useful for thermoelectric applications

    Science.gov (United States)

    Gruen, Dieter M [Downers Grove, IL

    2009-08-11

    One provides nanocrystalline diamond material that comprises a plurality of substantially ordered diamond crystallites that are sized no larger than about 10 nanometers. One then disposes a non-diamond component within the nanocrystalline diamond material. By one approach this non-diamond component comprises an electrical conductor that is formed at the grain boundaries that separate the diamond crystallites from one another. The resultant nanowire is then able to exhibit a desired increase with respect to its ability to conduct electricity while also preserving the thermal conductivity behavior of the nanocrystalline diamond material.

  17. Amorphous metal composites

    International Nuclear Information System (INIS)

    Byrne, M.A.; Lupinski, J.H.

    1984-01-01

    This patent discloses an improved amorphous metal composite and process of making the composite. The amorphous metal composite comprises amorphous metal (e.g. iron) and a low molecular weight thermosetting polymer binder. The process comprises placing an amorphous metal in particulate form and a thermosetting polymer binder powder into a container, mixing these materials, and applying heat and pressure to convert the mixture into an amorphous metal composite

  18. Luminescence properties of europium (III) cryptates trapped in sol-gel glass

    International Nuclear Information System (INIS)

    Zaitoun, M.A.; Kim, T.; Jaradat, Q.M.; Momani, K.; Qaseer, H.A.; El-Qisairi, A.K.; Qudah, A.; Radwan, N.E.

    2008-01-01

    The Lanthanide complexes Eu-2.2.1 and Eu-2.2.2 were synthesized and then incorporated into silica based transparent organic-inorganic hybrid material by the sol-gel method as an example of how doped xerogel materials are emerging as an important means of producing new materials. The produced gels were diagnosed to monitor emission spectra of the luminescent trivalent europium (Eu 3+ ) complexes; emissions were compared to those for gels containing uncomplexed Eu 3+ . Results of the experiments (emission and lifetimes) concerning the coordination sphere composition showed that a cryptand ligand with aromatic groups (short range effect) and the hydrophobic gel host (long range effect) settle efficient action in the antenna effect and isolate the central ion from efficient quenchers, as e.g. water molecules. Each ligand imposed a distinct splitting pattern on the europium emission bands that helps identify them

  19. Improved gel electrophoresis matrix for hydrophobic protein separation and identification.

    Science.gov (United States)

    Tokarski, Caroline; Fillet, Marianne; Rolando, Christian

    2011-03-01

    We propose an improved acrylamide gel for the separation of hydrophobic proteins. The separation strategy is based on the incorporation of N-alkylated and N,N'-dialkylated acrylamide monomers in the gel composition in order to increase hydrophobic interactions between the gel matrix and the membrane proteins. Focusing on the most efficient monomer, N,N'-dimethylacrylamide, the potentiality of the new matrix was evaluated on membrane proteins of the human colon HCT-116 cell line. Protein analysis was performed using an adapted analytical strategy based on FT-ICR tandem mass spectrometry. As a result of this comparative study, including advanced reproducibility experiments, more hydrophobic proteins were identified in the new gel (average GRAVY: -0.085) than in the classical gel (average GRAVY: -0.411). Highly hydrophobic peptides were identified reaching a GRAVY value up to 1.450, therefore indicating their probable locations in the membrane. Focusing on predicted transmembrane domains, it can be pointed out that 27 proteins were identified in the hydrophobic gel containing up to 11 transmembrane domains; in the classical gel, only 5 proteins containing 1 transmembrane domain were successfully identified. For example, multiple ionic channels and receptors were characterized in the hydrophobic gel such as the sodium/potassium channel and the glutamate or the transferrin receptors whereas they are traditionally detected using specific enrichment techniques such as immunoprecipitation. In total, membrane proteins identified in the classical gel are well documented in the literature, while most of the membrane proteins only identified on the hydrophobic gel have rarely or never been described using a proteomic-based approach. 2010 Elsevier Inc. All rights reserved.

  20. Photocatalytic properties of P25-doped TiO2 composite film synthesized via sol-gel method on cement substrate.

    Science.gov (United States)

    Guo, Xiang; Rao, Lei; Wang, Peifang; Wang, Chao; Ao, Yanhui; Jiang, Tao; Wang, Wanzhong

    2018-04-01

    TiO 2 films have received increasing attention for the removal of organic pollutants via photocatalysis. To develop a simple and effective method for improving the photodegradation efficiency of pollutants in surface water, we herein examined the preparation of a P25-TiO 2 composite film on a cement substrate via a sol-gel method. In this case, Rhodamine B (RhB) was employed as the target organic pollutant. The self-generated TiO 2 film and the P25-TiO 2 composite film were characterized by X-ray diffraction (XRD), N 2 adsorption/desorption measurements, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and diffuse reflectance spectroscopy (DRS). The photodegradation efficiencies of the two films were studied by RhB removal in water under UV (ultraviolet) irradiation. Over 4day exposure, the P25-TiO 2 composite film exhibited higher photocatalytic performance than the self-generated TiO 2 film. The photodegradation rate indicated that the efficiency of the P25-TiO 2 composite film was enhanced by the addition of the rutile phase Degussa P25 powder. As such, cooperation between the anatase TiO 2 and rutile P25 nanoparticles was beneficial for separation of the photo-induced electrons and holes. In addition, the influence of P25 doping on the P25-TiO 2 composite films was evaluated. We found that up to a certain saturation point, increased doping enhanced the photodegradation ability of the composite film. Thus, we herein demonstrated that the doping of P25 powders is a simple but effective strategy to prepare a P25-TiO 2 composite film on a cement substrate, and the resulting film exhibits excellent removal efficiency in the degradation of organic pollutants. Copyright © 2017. Published by Elsevier B.V.

  1. Al2O3 - TiO2-A simple sol-gel strategy to the synthesis of low temperature sintered alumina-aluminium titanate composites through a core-shell approach

    International Nuclear Information System (INIS)

    Jayasankar, M.; Ananthakumar, S.; Mukundan, P.; Wunderlich, W.; Warrier, K.G.K.

    2008-01-01

    A simple sol-gel based core-shell approach for the synthesis of alumina-aluminium titanate composite is reported. Alumina is the core and titania is the shell. The coating of titania has been performed in aqueous medium on alumina particle by means of heterocoagulation of titanyl chloride. Further heat treatment results in low temperature formation of aluminium titanate as well as low temperature sintering of alumina-aluminium titanate composites. The lowering of the reaction temperature can be attributed to the maximisation of the contact surface between the reactants due to the core-shell approach involving nanoparticles. The mechanism of formation of aluminium titanate and the observations on densification features in the present process are compared with that of mixture of oxides under identical conditions. The sintered alumina-aluminium titanate composite has an average grain size of 2 μm. - Graphical abstract: The article presents a simple sol-gel process through core-shell approach to the synthesis of low temperature sintered alumina-aluminium titanate. The lowering of the reaction temperature can be attributed to the maximisation of the contact surface between the reactant due to the core-shell approach. This material showed the better microstructure control compared to the standard solid-state mixing route

  2. Sol-gel bonding of silicon wafers

    International Nuclear Information System (INIS)

    Barbe, C.J.; Cassidy, D.J.; Triani, G.; Latella, B.A.; Mitchell, D.R.G.; Finnie, K.S.; Bartlett, J.R.; Woolfrey, J.L.; Collins, G.A.

    2005-01-01

    Low temperature bonding of silicon wafers was achieved using sol-gel technology. The initial sol-gel chemistry of the coating solution was found to influence the mechanical properties of the resulting bonds. More precisely, the influence of parameters such as the alkoxide concentration, water-to-alkoxide molar ratio, pH, and solution aging on the final bond morphologies and interfacial fracture energy was studied. The thickness and density of the sol-gel coating were characterised using ellipsometry. The corresponding bonded specimens were investigated using attenuated total reflectance Fourier transformed infrared spectroscopy to monitor their chemical composition, infrared imaging to control bond integrity, and cross-sectional transmission electron microscopy to study their microstructure. Their interfacial fracture energy was measured using microindentation. An optimum water-to-alkoxide molar ratio of 10 and hydrolysis water at pH = 2 were found. Such conditions led to relatively dense films (> 90%), resulting in bonds with a fracture energy of 3.5 J/m 2 , significantly higher than those obtained using classical hydrophilic bonding (typically 1.5-2.5 J/m 2 ). Ageing of the coating solution was found to decrease the bond strength

  3. Optimization and evaluation of thermoresponsive diclofenac sodium ophthalmic in situ gels.

    Science.gov (United States)

    Asasutjarit, Rathapon; Thanasanchokpibull, Suthira; Fuongfuchat, Asira; Veeranondha, Sukitaya

    2011-06-15

    This work was conducted to optimize and evaluate Pluronic F127-based thermoresponsive diclofenac sodium ophthalmic in situ gels (DS in situ gel). They were prepared by cold method and investigated their physicochemical properties i.e., pH, flow ability, sol-gel transition temperature, gelling capacity and rheological properties. An optimized formulation was selected and investigated its physicochemical properties before and after autoclaving, eye irritation potency in SIRC cells and rabbits. In vivo ophthalmic absorption was performed in rabbits. It was found that physicochemical properties of DS in situ gels were affected by formulation compositions. Increment of Pluronic F127 content decreased sol-gel transition temperature of the products while increase in Pluronic F68 concentration tended to increase sol-gel transition temperature. In this study, Carbopol 940 did not affect sol-gel transition temperature but it affected transparency, pH, and gelling capacity of the products. The optimized formulation exhibited sol-gel transition at 32.6 ± 1.1 °C with pseudoplastic flow behavior. It was lost diclofenac sodium content during autoclaving. However, it was accepted as safe for ophthalmic use and could increase diclofenac sodium bioavailability in aqueous humor significantly. In conclusion, the optimized DS in situ gel had potential for using as an alternative to the conventional diclofenac sodium eye drop. However, autoclaving was not a suitable sterilization method for this product. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. Preparation of Si/TiO2 Composite by the Sol-Gel Method Using As the Lithium-Ion Battery Anode

    Science.gov (United States)

    Wang, Quanwei; Ban, Yueqin; Zhou, Hengwei; Zhang, Lili; Huang, Yineng; Shao, Weiquan; Chen, Shaou

    2017-10-01

    Si was a promising anode material for next-generation LIBs due to its extremely large capacity of 4200mAh/g (Li4.4Si phase). However, during repeated lithium insertion/extraction processes, the accompanied huge volume change (400%) induced the structural failure of the active material and resulted in rapid capacity fading. To overcome this problem, Si/TiO2 composite with different mole ratio were prepared by the sol-gel method. The inclusion of TiO2 not only worked as a stable electric conductive pathway but also buffered the volume expansion of the Si during the process of charging and discharging. The Si/TiO2 composite with different mole ratio of 1:2, 1:3, 1:4 electrode reaches 480mAh/g, 2590mAh/g and 980mAh/g, and it delivered a charge capacity of 461mAh/g, 2510mAh/g and 891mAh/g at the first cycle, corresponding to an initial coulombic efficiency of 96%, 96% and 91%. In contrast, the cell with the pure Si nanoparticle exhibited an initial discharge/charge capacity of 48 and 33mAh/g, respectively, which was much lower than the Si/TiO2 composite electrode.

  5. Fast and facile preparation of CTAB based gels and their applications in Au and Ag nanoparticles synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Upadhyay, Ravi Kant, E-mail: rkupadhyay85@gmail.com [Department of Chemistry, School of Natural Sciences, Shiv Nadar University, Gautam Budh Nagar, 201314 Uttar Pradesh (India); Soin, Navneet, E-mail: n.soin@bolton.ac.uk [Knowledge Centre for Materials Chemistry (KCMC), Institute for Materials Research and Innovation (IMRI), University of Bolton, Deane Road, Bolton BL3 5AB (United Kingdom); Saha, Susmita, E-mail: ssaha@bose.res.in [Department of Condensed Matter Physics and Material Sciences, S. N. Bose National Centre for Basic Sciences, Block JD, Sector III, Salt Lake, Kolkata 700 098 (India); Barman, Anjan, E-mail: abarman@bose.res.in [Department of Condensed Matter Physics and Material Sciences, S. N. Bose National Centre for Basic Sciences, Block JD, Sector III, Salt Lake, Kolkata 700 098 (India); Sinha Roy, Susanta, E-mail: susanta.roy@snu.edu.in [Department of Physics, School of Natural Sciences, Shiv Nadar University, Gautam Budh Nagar, 201314 Uttar Pradesh (India)

    2015-04-15

    We have demonstrated that the gel-like mesophase of Cetyltrimethylammonium bromide (CTAB) can be synthesized by judicial adjustment of water to surfactant molar ratio (W{sub 0}), without using any additional salts, gelating agents or co-surfactants. Gel formation was found to be highly dependent on the water to surfactant molar ratio (W{sub 0}), with the lowest value of W{sub 0} (41.5) resulting in rapid gel formation. Environmental scanning electron microscope (ESEM) analysis revealed that the gel was comprised of interconnected cylindrical structures. The presence of hydrogen bonding in the gel-like mesophase was confirmed by Fourier Transform Infrared spectroscopy (FTIR) analysis. Rheology measurements revealed that all the gel samples were highly viscoelastic in nature. Furthermore, Au and Ag containing CTAB gels were explored as precursors for the preparation of spherical Gold (Au) and Silver (Ag) nanoparticles using Sodium borohydride (NaBH{sub 4}) as reducing agent. The effects of NaBH{sub 4} concentration on the particle size and morphology of the Au and Ag nanoparticles have also been studied. - Highlights: • A facile synthesis of CTAB based gel-like mesophase is reported. • CTAB gels were obtained by adjusting water to surfactant molar ratio (W{sub 0}). • FTIR analysis revealed that hydrogen bonding plays a key role in gel formation. • Au, Ag nanoparticles were synthesized by using CTAB gel and NaBH{sub 4}.

  6. Synthesis and characterization of mesoporous ceria/alumina nanocomposite materials via mixing of the corresponding ceria and alumina gel precursors.

    Science.gov (United States)

    Khalil, Kamal M S

    2007-03-01

    Mesoporous ceria/alumina, CeO(2)/Al(2)O(3), composites containing 10, 20 and 30% (w/w) ceria were prepared by a novel gel mixing method. In the method, ceria gel (formed via hydrolysis of ammonium cerium(IV) nitrate by aqueous ammonium carbonate solution) and alumina gel (formed via controlled hydrolysis of aluminum tri-isopropoxide) were mixed together. The mixed gel was subjected to subsequent drying and calcination for 3 h at 400, 600, 800 and 1000 degrees C. The uncalcined (dried at 110 degrees C) and the calcined composites were investigated by different techniques including TGA, DSC, FTIR, XRD, SEM and nitrogen adsorption/desorption isotherms. Results indicated that composites calcined for 3 h at 800 degrees C mainly kept amorphous alumina structure and gamma-alumina formed only upon calcinations at 1000 degrees C. On the other hand, CeO(2) was found to crystallize in the common ceria, cerinite, phase and it kept this structure over the entire calcination range (400-1000 degrees C). Therefore, high surface areas, stable surface textures, and non-aggregated nano-sized ceria dispersions were obtained. A systematic texture change based on ceria ratio was observed, however in all cases mesoporous composite materials exposing thermally stable texture and structure were obtained. The presented method produces composite ceria/alumina materials that suit different applications in the field of catalysis and membranes technology, and throw some light on physicochemical factors that determine textural morphology and thermal stability of such important composite.

  7. Robust high temperature composite and CO sensor made from such composite

    Science.gov (United States)

    Dutta, Prabir K.; Ramasamy, Ramamoorthy; Li, Xiaogan; Akbar, Sheikh A.

    2010-04-13

    Described herein is a composite exhibiting a change in electrical resistance proportional to the concentration of a reducing gas present in a gas mixture, detector and sensor devices comprising the composite, a method for making the composite and for making devices comprising the composite, and a process for detecting and measuring a reducing gas in an atmosphere. In particular, the reducing gas may be carbon monoxide and the composite may comprise rutile-phase TiO2 particles and platinum nanoclusters. The composite, upon exposure to a gas mixture containing CO in concentrations of up to 10,000 ppm, exhibits an electrical resistance proportional to the concentration of the CO present. The composite is useful for making sensitive, low drift, fast recovering detectors and sensors, and for measuring CO concentrations in a gas mixture present at levels from sub-ppm up to 10,000 ppm. The composites, and devices made from the composites, are stable and operable in a temperature range of from about 450.degree. C. to about 700.degree. C., such as may be found in a combustion chamber.

  8. Electrolyte transport in neutral polymer gels embedded with charged inclusions

    Science.gov (United States)

    Hill, Reghan

    2005-11-01

    Ion permeable membranes are the basis of a variety of molecular separation technologies, including ion exchange, gel electrophoresis and dialysis. This work presents a theoretical model of electrolyte transport in membranes comprised of a continuous polymer gel embedded with charged spherical inclusions, e.g., biological cells and synthetic colloids. The microstructure mimics immobilized cell cultures, where electric fields have been used to promote nutrient transport. Because several important characteristics can, in principle, be carefully controlled, the theory provides a quantitative framework to help tailor the bulk properties for enhanced molecular transport, microfluidic pumping, and physicochemical sensing applications. This talk focuses on the electroosmotic flow driven by weak electric fields and electrolyte concentration gradients. Also of importance is the influence of charge on the effective ion diffusion coefficients, bulk electrical conductivity, and membrane diffusion potential.

  9. Rationale, design and methods of the ESPRIT study: Energy, Sexual desire and body PropoRtions wIth AndroGel, Testosterone 1% gel therapy, in hypogonadal men.

    Science.gov (United States)

    Behre, Hermann M; Heinemann, Lothar; Morales, Alvaro; Pexman-Fieth, Claire

    2008-06-01

    Hypogonadism is associated with a range of disease states that have significant effects on morbidity and mortality, and also affect quality of life. The ESPRIT study (Energy, Sexual desire and body PropoRtions wIth AndroGel, Testosterone 1% gel therapy) is a 6-month, multinational, open label, observational study in hypogonadal men being treated with transdermal AndroGel in usual daily clinical practice; 1,700-2,400 patients will be enrolled in Canada, Germany, Central and Eastern Europe, Russia and the Middle East. The main objective will be to evaluate the effect of AndroGel on symptoms of hypogonadism and quality of life as assessed by the Aging Males' Symptoms scale. Further objectives include evaluating the effect and time to onset of improvement in erectile dysfunction and libido/sexual desire (International Index of Erectile Function), fatigue (Multi-dimensional Fatigue Index) and body composition (waist circumference, body mass index). Subgroup analyses will be performed: or = 50 years; absence versus presence of metabolic syndrome. The safety of AndroGel will also be assessed. The study population will consist of newly diagnosed hypogonadal men (age > or = 18 years), in whom testosterone deficiency has been confirmed by clinical features and biochemical tests according to international guidelines, who are currently being prescribed AndroGel (testosterone 1% gel, starting dose 50 mg testosterone per day).

  10. Analyses of laser and furnace treated sol-gel coatings

    NARCIS (Netherlands)

    De Hosson, JT; De Haas, M; Sudarshan, TS; Jeandin, M; Khor, KA

    1998-01-01

    Here we explore a new method that allows thin films to be made with almost any composition and degree of porosity by means of a combination of sol-gel and laser technology. Results are presented for furnace and laser treated TEOTI-(tetraethylorthotitanate as sol precursor) coated silicon samples.

  11. Dimeric fluorescent energy transfer dyes comprising asymmetric cyanine azole-indolenine chromophores

    Science.gov (United States)

    Glazer, Alexander N.; Benson, Scott C.

    1998-01-01

    Novel fluorescent heterodimeric DNA-staining energy transfer dyes are provided combining asymmetric cyanine azole-indolenine dyes, which provide for strong DNA affinity, large Stokes shifts and emission in the red region of the spectrum. The dyes find particular application in gel electrophoresis and for labels which may be bound to a variety of compositions in a variety of contexts. Kits and individual compounds are provided, where the kits find use for simultaneous detection of a variety of moieties, particularly using a single narrow wavelength irradiation source. The individual compounds are characterized by high donor quenching and high affinity to dsDNA as a result of optimizing the length of the linking group separating the two chromophores.

  12. Sol-gel processes and materials. January 1970-August 1988 (Citations from the US Patent data base). Report for January 1970-August 1988

    International Nuclear Information System (INIS)

    1988-08-01

    This bibliography contains citations of selected patents concerning Sol-Gel processes and Sol-Gel derived materials and products. Selected patents include Sol-Gel compositions, ceramic and refractory materials, fabrication of silica glass, cataylsts and catalyst supports, nuclear fuels preparation, abrasives for grinding wheels, Sol-Gel production of microspheres, Sol-Gel thin films and coatings, photographic materials, and dental materials. (Contains 71 citations fully indexed and including a title list.)

  13. GelTouch

    DEFF Research Database (Denmark)

    Miruchna, Viktor; Walter, Robert; Lindlbauer, David

    2015-01-01

    We present GelTouch, a gel-based layer that can selectively transition between soft and stiff to provide tactile multi-touch feedback. It is flexible, transparent when not activated, and contains no mechanical, electromagnetic, or hydraulic components, resulting in a compact form factor (a 2mm thin...... touchscreen layer for our prototype). The activated areas can be morphed freely and continuously, without being limited to fixed, predefined shapes. GelTouch consists of a poly(N-isopropylacrylamide) gel layer which alters its viscoelasticity when activated by applying heat (>32 C). We present three different...

  14. Rheological and structural characterization of colloidal gels used for nuclear decontamination

    International Nuclear Information System (INIS)

    Castellani, Romain

    2013-01-01

    During the exploitation of a nuclear plant, or all other installation which uses radioactive materials, maintenance tasks or decommissioning operations are mandatory in order to preserve people health and environment. Among existing processes, decontaminating gels have been development by CEA in order to overcome the drawbacks of the traditionally used methods. These colloidal gels were originally formulated in an empirical way; however, the knowledge of their structures is important as it rules all the rheological behaviors of the material. The way these gels flow is an important parameter to the process and our laboratory measurements can be transposed to the industrial world. Moreover, other composition refinements have been developed in order to extend their field of use and efficiency. (author) [fr

  15. The influence of precursor addition order on the porosity of sol-gel bioactive glasses.

    Science.gov (United States)

    Fernando, Delihta; Colon, Pierre; Cresswell, Mark; Journet, Catherine; Pradelle-Plasse, Nelly; Jackson, Phil; Grosgogeat, Brigitte; Attik, Nina

    2018-06-16

    The superior textural properties of sol-gel derived bioactive glasses compared to conventional melt quench glasses accounts for their accelerated bioactivity in vitro. Several studies have explored ways to improve the surface properties of sol-gel glasses in order to maximise their efficiency for bone and tooth regeneration. In this study, we investigated the effect of order of network modifying precursor addition on the textural properties of sol-gel derived bioactive glasses. The effect of precursor addition order on the glass characteristics was assessed by switching the order of network modifying precursor (calcium acetate monohydrate and sodium acetate anhydrous) addition for a fixed composition of bioactive glass (75SiO 2 :5CaO:10Na 2 O:10P 2 O 5 ). The results of this study showed that the order of precursor addition does influence the porosity of these glasses. For the glasses of a fixed composition and preparation conditions we achieved a doubling of surface area, a 1.5 times increase in pore volume and a 1.2 times decrease in pore size just by the mixing the network modifying precursors and adding them together in the sol-gel preparation. This simple and straightforward route adaptation to the preparation of bioactive glasses would allow us to enhance the textural properties of existing and novel composition of bioactive glasses and thus accelerate their bioactivity. Copyright © 2018 The Academy of Dental Materials. Published by Elsevier Inc. All rights reserved.

  16. The gel electrophoresis markup language (GelML) from the Proteomics Standards Initiative.

    Science.gov (United States)

    Gibson, Frank; Hoogland, Christine; Martinez-Bartolomé, Salvador; Medina-Aunon, J Alberto; Albar, Juan Pablo; Babnigg, Gyorgy; Wipat, Anil; Hermjakob, Henning; Almeida, Jonas S; Stanislaus, Romesh; Paton, Norman W; Jones, Andrew R

    2010-09-01

    The Human Proteome Organisation's Proteomics Standards Initiative has developed the GelML (gel electrophoresis markup language) data exchange format for representing gel electrophoresis experiments performed in proteomics investigations. The format closely follows the reporting guidelines for gel electrophoresis, which are part of the Minimum Information About a Proteomics Experiment (MIAPE) set of modules. GelML supports the capture of metadata (such as experimental protocols) and data (such as gel images) resulting from gel electrophoresis so that laboratories can be compliant with the MIAPE Gel Electrophoresis guidelines, while allowing such data sets to be exchanged or downloaded from public repositories. The format is sufficiently flexible to capture data from a broad range of experimental processes, and complements other PSI formats for MS data and the results of protein and peptide identifications to capture entire gel-based proteome workflows. GelML has resulted from the open standardisation process of PSI consisting of both public consultation and anonymous review of the specifications.

  17. Study and application of weak gel used for an offshore oilfield

    Energy Technology Data Exchange (ETDEWEB)

    Tang, X.; Liu, Y.; Bai, B.; Liu, G.; Jiang, R. [Petro-China Research Inst. of Petroleum Exploration and Development, Beijing (China); Xiang, W. [China Offshore Oil Research Center of China National Offshore Oil Co. (China)

    2005-07-01

    This paper described the profile modification technique which has been used successfully in China's oil fields on land and which has become one of the key techniques to improve the development of mature fields with high heterogeneity and high water cut. One such reservoir is SZ361, an offshore oilfield characterized by thick oil layers, high permeability contrast, high oil viscosity and high water salinity. All injection wells were completed by liner gravel-packing. Water cut of some production wells is above 90 per cent. A large volume of weak gel treatment was proposed to control water conformance. A new weak gel was developed to address the specific features of offshore oil fields, such as small space of platform and high salinity of injection water. The gel properties were presented along with an evaluation of the salinity and temperature on the thermal stability of the gel. The plugging efficiency of the gel was carried out on different permeability cores. Results show that the selected polymer and cross-linkers can be well dispersed and solved within 30 minutes when mixing with sea water or produced water. The gelation time can be controlled by adjusting the gel composition. The novel gel can be applied in the reservoirs with a temperature range of 30-70 degrees C and salinity below 40,000 mg/l. The gel was tested in one injection well and proved to be economically efficient. 7 refs., 3 tabs., 8 figs.

  18. Stacking gels: A method for maximising output for pulsed-field gel electrophoresis

    Directory of Open Access Journals (Sweden)

    Heng See

    2009-01-01

    Full Text Available Pulsed field gel electrophoresis (PFGE, the gold standard of molecular typing methods, has a major disadvantage of an unusually long electrophoretic time. From the original protocol of 6 days, it was modified to 3 days and subsequently to a single day. We describe the procedure of stacking five to six gels one on top of another in order to increase and maximize the output in a shorter time without compromising the resolution and reproducibility. All the variables that affect pulsed field gels during electrophoresis were taken into consideration. We firstly optimized the parameters to be used and secondly determined whether stacking of five to six gels had any effect on the molecular separation during electrophoresis in comparison with a single gel run. DNA preparation, restriction, electrophoresis, staining and gel documentation was carried out based on previously published methods. Gels were analysed using BioNumerics and dice coefficient and unweighted pair group methods were used to generate dendrograms based on 1.5% tolerance values. Identical band profiles and band resolution-separation were seen in the PFGE patterns with single gel and multiple stacking gels. Cluster analysis further strengthened the fact that results from stacking gels were reproducible and comparable with a single gel run. This method of stacking gels saves time and maximizes the output at the same time. The run time for a single gel was about 28 hours, but with six stacked gels the run time was 54 hours compared with 28 x 6 = 168 hours if they were run separately as single gels thus saving time of 67.86%. Beside the big factor of saving time, stacking gels save resources (electricity, reagents, water, chemicals and working time by increasing the sample throughput in a shorter time without compromising on quality of data. But optimization of working parameters is vital depending on the PFGE system used.

  19. Sequentially-crosslinked biomimetic bioactive glass/gelatin methacryloyl composites hydrogels for bone regeneration.

    Science.gov (United States)

    Zheng, Jiafu; Zhao, Fujian; Zhang, Wen; Mo, Yunfei; Zeng, Lei; Li, Xian; Chen, Xiaofeng

    2018-08-01

    In recent years, gelatin-based composites hydrogels have been intensively investigated because of their inherent bioactivity, biocompatibility and biodegradability. Herein, we fabricated photocrosslinkable biomimetic composites hydrogels from bioactive glass (BG) and gelatin methacryloyl (GelMA) by a sequential physical and chemical crosslinking (gelation + UV) approach. The results showed that the compressive modulus of composites hydrogels increased significantly through the sequential crosslinking approach. The addition of BG resulted in a significant increase in physiological stability and apatite-forming ability. In vitro data indicated that BG/GelMA composites hydrogels promoted cell attachment, proliferation and differentiation. Overall, the BG/GelMA composites hydrogels combined the advantages of good biocompatibility and bioactivity, and had potential applications in bone regeneration. Copyright © 2018. Published by Elsevier B.V.

  20. Effect of interfacial composition and crumbliness on aroma release in soy protein/sugar beet pectin mixed emulsion gels.

    Science.gov (United States)

    Hou, Jun-Jie; Guo, Jian; Wang, Jin-Mei; Yang, Xiao-Quan

    2016-10-01

    In this study, soy protein isolate/sugar beet pectin (SPI/SBP) emulsion gels were prepared through an enzymatic gelation process. The effects of emulsifier (SBP, SPI or SPI/SBP complex) and emulsification process on the microstructure, texture, breakdown properties and aroma release behavior of resulting emulsion gels were investigated. Oil emulsification by SBP/SPI complex resulted in a higher amount of emulsifier absorbing on the oil-water interface than by SBP and SPI alone, indicating that a more compact interfacial network was formed. Flocculation of oil droplets was observed and corresponding emulsion gels exhibited lower fracture force and strain when the oil was emulsified by SPI and SBP/SPI complex. Moreover, emulsion gels with small droplets produced a greater quantity of small fragments after mastication. However, microstructure did not have a significant effect on breakdown properties of emulsion gels. Headspace gas chromatography analysis showed that the release rate of ethyl butyrate before and after mastication was significantly lower in emulsion gel with more compact network, but the release of aroma compounds with higher hydrophobicity did not show a significant influence of the microstructure and texture of emulsion gel. This finding provides a useful application for designing semi-solid foods with desirable flavor perception. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  1. Method of producing exfoliated graphite composite compositions for fuel cell flow field plates

    Energy Technology Data Exchange (ETDEWEB)

    Zhamu, Aruna; Shi, Jinjun; Guo, Jiusheng; Jang, Bor Z

    2014-04-08

    A method of producing an electrically conductive composite composition, which is particularly useful for fuel cell bipolar plate applications. The method comprises: (a) providing a supply of expandable graphite powder; (b) providing a supply of a non-expandable powder component comprising a binder or matrix material; (c) blending the expandable graphite with the non-expandable powder component to form a powder mixture wherein the non-expandable powder component is in the amount of between 3% and 60% by weight based on the total weight of the powder mixture; (d) exposing the powder mixture to a temperature sufficient for exfoliating the expandable graphite to obtain a compressible mixture comprising expanded graphite worms and the non-expandable component; (e) compressing the compressible mixture at a pressure within the range of from about 5 psi to about 50,000 psi in predetermined directions into predetermined forms of cohered graphite composite compact; and (f) treating the so-formed cohered graphite composite to activate the binder or matrix material thereby promoting adhesion within the compact to produce the desired composite composition. Preferably, the non-expandable powder component further comprises an isotropy-promoting agent such as non-expandable graphite particles. Further preferably, step (e) comprises compressing the mixture in at least two directions. The method leads to composite plates with exceptionally high thickness-direction electrical conductivity.

  2. Adhesive compositions and methods

    Science.gov (United States)

    Allen, Scott D.; Sendijarevic, Vahid; O'Connor, James

    2017-12-05

    The present invention encompasses polyurethane adhesive compositions comprising aliphatic polycarbonate chains. In one aspect, the present invention encompasses polyurethane adhesives derived from aliphatic polycarbonate polyols and polyisocyanates wherein the polyol chains contain a primary repeating unit having a structure:. In another aspect, the invention provides articles comprising the inventive polyurethane compositions as well as methods of making such compositions.

  3. DEVELOPMENT OF FORMULATION AND TECHNOLOGY FOR THE POLY[3-(3,4-DIHYDROXYPHENYL)GLYCERIC ACID] GEL.

    Science.gov (United States)

    Gokadze, S; Barbakadze, V; Mulkijanyan, K; Bakuridze, L; Bakuridze, A

    2017-01-01

    One of the most actual problems of pharmacy is the development of medication forms for external application with complex effects on (gel, emplastro, aerosol, etc.) skin wounds, burns and inflammatory factors. The centuries-old practice of using phyto-preparations (herbal remedies) proved that they have fewer side effects in comparison with synthetic drugs. Despite the wide application of herbal preparations, in the literature there is a little information about their application in development of wound and burn healing modern dosage forms. Among the medicinal plants with the mentioned pharmacological actions, comfrey (Symphytum L.) should be distinguished. Phenolic polymer poly[3-(3,4-dihydroxyphenyl)glyceric acid] (PDGA) or poly[oxy-1-carboxy-2-(3,4-dihydroxyphenyl)ethylene], amounting approximately 25% of polysaccharides and 1.5-2.5% of dry plant material, were isolated from the roots and stems of Caucasian comfrey species (S. asperum, S. caucasicum). Contrary to polysaccharides this phenolic polymer of Comfrey appeared to have a high immunomodulatory (anticomplement), antioxidative, antilipoperoxidantive, anti-inflammatory and wound-healing efficacy/activities. The aim of the study was development of the composition and technology of PDGA-containing gel. According to the results of complex biopharmaceutical studies PDGA gel optimal composition has been proved. The technological scheme for preparation of PDGA gel has been developed. PDGA gel stability under normal conditions of storage at +40С was studied. The gel has a shelf life (determined expiration date) of 2 year.

  4. 3D Architectured polyazomethine gel synthesis: its self-assembled ...

    Indian Academy of Sciences (India)

    2018-03-28

    Mar 28, 2018 ... Schiff's base reactions are well-known organic reactions that are the main source of ... it difficult to ver- satile applications and the determination of their structural ... Since non-covalent gel phase materials are formed through weak and .... nitrogen as major elements in the composition, which proves that the ...

  5. Investigating Linear and Nonlinear Viscoelastic behaviour and microstructures of Gelatine-Multiwalled carbon nanotubes composites

    KAUST Repository

    Yang, Zhi; Chaieb, Saharoui; Hemar, Yacine; deCampo, Liliana; Rehm, Christine; McGillivray, Duncan James

    2015-01-01

    , and chemically-physically-crosslinked-gelatine gel-MWNT composites. Further, the internal structures of these gel-MWNT composites were characterized by ultra-small angle neutron scattering and scanning electron microscopy. The adsorption of gelatine onto

  6. Characterization and bioactivity of nano-submicro octacalcium phosphate/gelatin composite

    International Nuclear Information System (INIS)

    Miura, Kei-ichiro; Anada, Takahisa; Honda, Yoshitomo; Shiwaku, Yukari; Kawai, Tadashi; Echigo, Seishi; Takahashi, Tetsu; Suzuki, Osamu

    2013-01-01

    The present study was designed to investigate the physicochemical and bioactive properties of a nano-submicro sized octacalcium phosphate (OCP)-dispersed gelatin (Gel) composite (nano-submicro OCP/Gel) used as a bone substitute material in various bone defects. Well-grown, synthesized OCP was mechanically ground from 100 to 300 μm-sieved granules to particles that were approximately 500 nm in size. Then, 50 wt% of the nano-submicro OCP was mixed with porcine skin-derived acid extracted gelatin. The mixture was molded and lyophilized and then subjected to dehydrothermal crosslinking. X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy showed that the structure of OCP was retained even after mechanical grinding to a nano-submicro scale level as well as inclusion in the Gel matrix. The bioactivity of nano-submicro OCP/Gel was examined by immersing the composite in simulated body fluid (SBF) for 7 days and by implanting it in rat critical-sized calvaria defects for 8 weeks. The nano-submicro OCP tended to convert to low crystalline hydroxyapatite (HA) in SBF as assessed by XRD. The nano-submicro OCP/Gel exhibited osteoconductivity in vivo, yielding new bone formation that was closely associated with the implanted composite. These results suggest that the nano-submicro OCP/Gel composite exhibits similar osteoconductivity as observed in other OCP-based materials previously reported and could be used as a bone substitute material for repairing various defects in bone.

  7. Characterization and bioactivity of nano-submicro octacalcium phosphate/gelatin composite

    Energy Technology Data Exchange (ETDEWEB)

    Miura, Kei-ichiro [Division of Craniofacial Function Engineering, Tohoku University Graduate School of Dentistry, Sendai (Japan); Division of Oral and Maxillofacial Surgery, Tohoku University Graduate School of Dentistry, Sendai (Japan); Anada, Takahisa; Honda, Yoshitomo [Division of Craniofacial Function Engineering, Tohoku University Graduate School of Dentistry, Sendai (Japan); Shiwaku, Yukari [Division of Craniofacial Function Engineering, Tohoku University Graduate School of Dentistry, Sendai (Japan); Division of Advanced Prosthetic Dentistry, Tohoku University Graduate School of Dentistry, Sendai (Japan); Kawai, Tadashi; Echigo, Seishi; Takahashi, Tetsu [Division of Oral and Maxillofacial Surgery, Tohoku University Graduate School of Dentistry, Sendai (Japan); Suzuki, Osamu, E-mail: suzuki-o@m.tohoku.ac.jp [Division of Craniofacial Function Engineering, Tohoku University Graduate School of Dentistry, Sendai (Japan)

    2013-10-01

    The present study was designed to investigate the physicochemical and bioactive properties of a nano-submicro sized octacalcium phosphate (OCP)-dispersed gelatin (Gel) composite (nano-submicro OCP/Gel) used as a bone substitute material in various bone defects. Well-grown, synthesized OCP was mechanically ground from 100 to 300 μm-sieved granules to particles that were approximately 500 nm in size. Then, 50 wt% of the nano-submicro OCP was mixed with porcine skin-derived acid extracted gelatin. The mixture was molded and lyophilized and then subjected to dehydrothermal crosslinking. X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy showed that the structure of OCP was retained even after mechanical grinding to a nano-submicro scale level as well as inclusion in the Gel matrix. The bioactivity of nano-submicro OCP/Gel was examined by immersing the composite in simulated body fluid (SBF) for 7 days and by implanting it in rat critical-sized calvaria defects for 8 weeks. The nano-submicro OCP tended to convert to low crystalline hydroxyapatite (HA) in SBF as assessed by XRD. The nano-submicro OCP/Gel exhibited osteoconductivity in vivo, yielding new bone formation that was closely associated with the implanted composite. These results suggest that the nano-submicro OCP/Gel composite exhibits similar osteoconductivity as observed in other OCP-based materials previously reported and could be used as a bone substitute material for repairing various defects in bone.

  8. Method for fabrication of ceramic dielectric films on copper foils

    Science.gov (United States)

    Ma, Beihai; Narayanan, Manoj; Dorris, Stephen E.; Balachandran, Uthamalingam

    2015-03-10

    The present invention provides a method for fabricating a ceramic film on a copper foil. The method comprises applying a layer of a sol-gel composition onto a copper foil. The sol-gel composition comprises a precursor of a ceramic material suspended in 2-methoxyethanol. The layer of sol-gel is then dried at a temperature up to about 250.degree. C. The dried layer is then pyrolyzed at a temperature in the range of about 300 to about 450.degree. C. to form a ceramic film from the ceramic precursor. The ceramic film is then crystallized at a temperature in the range of about 600 to about 750.degree. C. The drying, pyrolyzing and crystallizing are performed under a flowing stream of an inert gas. In some embodiments an additional layer of the sol-gel composition is applied onto the ceramic film and the drying, pyrolyzing and crystallizing steps are repeated for the additional layer to build up a thicker ceramic layer on the copper foil. The process can be repeated one or more times if desired.

  9. Combined sol–gel and carbothermal synthesis of ZrC–TiC powders for composites

    Energy Technology Data Exchange (ETDEWEB)

    Umalas, Madis [Institute of Physics, University of Tartu, Riia 142, 51014, Tartu (Estonia); Estonian Nanotechnology Competence Centre, Riia 142, 51014, Tartu (Estonia); Hussainova, Irina, E-mail: irina.hussainova@ttu.ee [Department of Materials Engineering, Tallinn University of Technology, Ehitajate 5, 19086, Tallinn (Estonia); ITMO University, Kronverksky 49, St. Petersburg, 197101 (Russian Federation); Reedo, Valter [Institute of Physics, University of Tartu, Riia 142, 51014, Tartu (Estonia); Young, Der-Liang [Department of Materials Engineering, Tallinn University of Technology, Ehitajate 5, 19086, Tallinn (Estonia); Cura, Erkin; Hannula, Simo-Pekka [Department of Materials Science and Engineering, Aalto University, School of Chemical Technology, POB 16200, Aalto, 00076 (Finland); Lõhmus, Rünno [Institute of Physics, University of Tartu, Riia 142, 51014, Tartu (Estonia); Estonian Nanotechnology Competence Centre, Riia 142, 51014, Tartu (Estonia); Lõhmus, Ants [Institute of Physics, University of Tartu, Riia 142, 51014, Tartu (Estonia)

    2015-03-01

    The TiC–ZrC binary compound of nanostructured powders was synthesised by combination of sol–gel and carbothermal reduction. The polymeric precursor of the blend was produced by sol–gel process from titanium tetrabutoxide, zirconium tetrabutoxide and benzene-1.4-diol; then carbothermally reduced to the TiC–ZrC blend at 1600 °C in an inert environment. The chemical reactions occurring in the system were monitored by infrared spectrometry. Stable alkoxide solution was obtained by adding acetylacetone to avoid premature gelation of the metal alkoxide mixture. A solid solution of ZrTiC{sub 2} was produced by spark plasma sintering at temperature of 2000 °C. - Highlights: • A polymeric precursor of TiC–ZrC blend was synthesised by sol–gel process. • The polymeric precursor synthesis was studied by infrared spectroscopy. • TiC–ZrC powder blend was carbothermally reduced from polymeric precursor. • TiC–ZrC powder blend was sintered to ZrTiC{sub 2} solid solution by spark plasma sintering. • Sintered ZrTiC{sub 2} have good mechanical properties.

  10. Combined sol–gel and carbothermal synthesis of ZrC–TiC powders for composites

    International Nuclear Information System (INIS)

    Umalas, Madis; Hussainova, Irina; Reedo, Valter; Young, Der-Liang; Cura, Erkin; Hannula, Simo-Pekka; Lõhmus, Rünno; Lõhmus, Ants

    2015-01-01

    The TiC–ZrC binary compound of nanostructured powders was synthesised by combination of sol–gel and carbothermal reduction. The polymeric precursor of the blend was produced by sol–gel process from titanium tetrabutoxide, zirconium tetrabutoxide and benzene-1.4-diol; then carbothermally reduced to the TiC–ZrC blend at 1600 °C in an inert environment. The chemical reactions occurring in the system were monitored by infrared spectrometry. Stable alkoxide solution was obtained by adding acetylacetone to avoid premature gelation of the metal alkoxide mixture. A solid solution of ZrTiC 2 was produced by spark plasma sintering at temperature of 2000 °C. - Highlights: • A polymeric precursor of TiC–ZrC blend was synthesised by sol–gel process. • The polymeric precursor synthesis was studied by infrared spectroscopy. • TiC–ZrC powder blend was carbothermally reduced from polymeric precursor. • TiC–ZrC powder blend was sintered to ZrTiC 2 solid solution by spark plasma sintering. • Sintered ZrTiC 2 have good mechanical properties

  11. Synthesis of biodegradable polymer/glass fiber composite by EB irradiation and its biodegradability

    International Nuclear Information System (INIS)

    Yoshii, Fumio; Doam Thi The

    2006-01-01

    A composite was synthesized by irradiation of poly (butylene succinate), PBS and glass fiber (GF) in the presence of a polyfunctional monomer, trimethallyl isocyanurate (TMAIC), which accelerates gel formation of the matrix (PBS). The highest gel fraction was achieved at 1% concentration of TMAIC at the dose level of 200 kGy. Mechanical properties of the composites were highly dependent on the gel fraction of the polymer and volume fraction of glass fiber reinforcement in the composite. Optimal conditions to synthesize a PBS/GF composite reaching maximum value of bending strength were 1% TMAIC, 67% fiber volume fraction, and radiation dose of 200 kGy. These synthesized PBS/GF composites can be degraded by enzymes produced by the microorganism population in soil. (author)

  12. Characterization of the Rheological and Swelling Properties of Synthetic Alkali Silicate Gels in Order to Predict Their Behavior in ASR Damaged Concrete

    Science.gov (United States)

    Vayghan, Asghar Gholizadeh

    Alkali-silica reaction (ASR) is a major concrete durability concern that is responsible for the deterioration of concrete infrastructure in the world. The resultant of the reaction between the cement alkali hydroxides and the metastable silicates in the aggregates is a hygroscopic and expansive alkali-silicate gel (referred to as ASR gel in this document). The swelling behavior of ASR gels determines the extent of damage to concrete structures and, as such, mitigation of ASR relies on understanding these gels and finding ways to prevent them either from formation, or from swelling after formation. This dissertation focuses on the synthesis and characterization of ASR gels with wide ranges of compositions similar to what has been reported for the filed ASR gels in the literature. The experimental work consisted of three phases as follow. Phase I: Investigation of rheology, chemistry and physics of ASR gels produced through sol-method. Inspired from the existing literature, two sol-gel methods have been developed for the synthesis of ASR gels. The rheological (primarily gelation time, yield stress, and equilibrium stress), chemical (pore solution pH, pore solution composition, osmotic pressure, solid phase composition, stoichiometry of gelation reactions) and physical (evaporable water, solid content, etc.) properties of synthetic ASR gels have been extensively investigated in this phase. Ca/Si, Na/Si and K/Si, and water content were considered as the main chemical composition variables. In order to investigate the suppressing effects of lithium on the swelling properties of ASR gels, the gels were added with lithium in a part of the experimental program. The results strongly suggested that Ca/Si has a positive effect on the yield stress of the gels and their rate of gelation. Na/Si was found to have a decreasing effect on the yield stress and gelation rate (especially at low Ca/Si levels). K/Si and Li/Si had second-order (i.e., polynomial) effects on the yield

  13. Sol-gel-cum-hydrothermal synthesis of mesoporous Co-Fe@Al2O3 ...

    Indian Academy of Sciences (India)

    Oxides; sol-gel; adsorption; surface properties; composite materials. 1. Introduction. Industrial dyes ... acid green 25, Congo red, N719), phenolic compounds. (bromophenol blue .... microscopy (TEM) images were obtained using Philips CM.

  14. Electrophoresis of DNA in agarose gels, polyacrylamide gels and in free solution

    Science.gov (United States)

    Stellwagen, Nancy C.

    2009-01-01

    This review describes the electrophoresis of curved and normal DNA molecules in agarose gels, polyacrylamide gels and in free solution. These studies were undertaken to clarify why curved DNA molecules migrate anomalously slowly in polyacrylamide gels but not in agarose gels. Two milestone papers are cited, in which Ferguson plots were used to estimate the effective pore size of agarose and polyacrylamide gels. Subsequent studies on the effect of the electric field on agarose and polyacrylamide gel matrices, DNA interactions with the two gel matrices, and the effect of curvature on the free solution mobility of DNA are also described. The combined results suggest that the anomalously slow mobilities observed for curved DNA molecules in polyacrylamide gels are due primarily to preferential interactions of curved DNAs with the polyacrylamide gel matrix; the restrictive pore size of the matrix is of lesser importance. In free solution, DNA mobilities increase with increasing molecular mass until leveling off at a plateau value of (3.17 ± 0.01) × 10-4 cm2/Vs in 40 mM Tris-acetate-EDTA buffer at 20°C. Curved DNA molecules migrate anomalously slowly in free solution as well as in polyacrylamide gels, explaining why the Ferguson plots of curved and normal DNAs containing the same number of base pairs extrapolate to different mobilities at zero gel concentration. PMID:19517510

  15. Enzymatically crosslinked carboxymethyl-chitosan/gelatin/nano-hydroxyapatite injectable gels for in situ bone tissue engineering application

    Energy Technology Data Exchange (ETDEWEB)

    Mishra, Debasish; Bhunia, Bibhas; Banerjee, Indranil [Department of Biotechnology, Indian Institute of Technology Kharagpur (India); Datta, Pallab; Dhara, Santanu [School of Medical Science and Technology, Indian Institute of Technology Kharagpur (India); Maiti, Tapas K., E-mail: maititapask@gmail.com [Department of Biotechnology, Indian Institute of Technology Kharagpur (India)

    2011-10-10

    Present study reports synthesis and characterization of an enzymatically crosslinked injectable gel (iGel) suitable for cell based bone tissue engineering application. The gel comprises of carboxymethyl-chitosan (CMC)/gelatin/nano-hydroxyapatite (nHAp) susceptible to tyrosinase/p-cresol mediated in situ gelling at physiological temperature. Study revealed that a combination of tyrosinase (60U) and p-cresol (2 mM) as crosslinking agents yield rigid gels at physiological temperature when applied to CMC/gelatin within 35 min in presence or absence of nHAp. Rheological study in conjugation with FT-IR analysis showed that an increase in CMC concentration in the gel leads to higher degree of crosslinking and higher strength. Scanning electron microscopy showed that pore sizes of iGels increased with higher gelatin concentration. In vitro study of osteoblast cell proliferation and differentiation showed that, although all iGels are supportive towards the growth of primary osteoblast cells, GC1:1 supported cellular differentiation to the maximum. Application of iGels in mice revealed that stability of the in situ formed gels depends on the degree of crosslinking and CMC concentration. In conclusion, the iGels may be used in treating irregular small bone defects with minimal clinical invasion as well as for bone cell delivery. - Research Highlights: {yields} Enzymatically crosslinked injectable gel made up of CM-chitosan (C)/gelatin (G)/nHAp. {yields} Tyrosinase/p-cresol used for crosslinking and in situ gelling of polymers at 37deg. C. {yields} 60U tyrosinase and 2mM p-cresol is needed for gelation in 35 min. {yields} Higher GC ratio manifests lower crosslinking and gel strength but higher porosity. {yields} GC1:1 shows maximum in vivo gel stability and in vitro osteoblast differentiation.

  16. Method of forming a nanocluster comprising dielectric layer and device comprising such a layer

    NARCIS (Netherlands)

    2009-01-01

    A method of forming a dielectric layer (330) on a further layer (114, 320) of a semiconductor device (300) is disclosed. The method comprises depositing a dielectric precursor compound and a further precursor compound over the further layer (114, 320), the dielectric precursor compound comprising a

  17. Nanoporous metal-carbon composite

    Science.gov (United States)

    Worsley, Marcus A.; Satcher, Joe; Kucheyev, Sergei; Charnvanichborikarn, Supakit; Colvin, Jeffrey; Felter, Thomas; Kim, Sangil; Merrill, Matthew; Orme, Christine

    2017-12-19

    Described here is a metal-carbon composite, comprising (a) a porous three-dimensional scaffold comprising one or more of carbon nanotubes, graphene and graphene oxide, and (b) metal nanoparticles disposed on said porous scaffold, wherein the metal-carbon composite has a density of 1 g/cm.sup.3 or less, and wherein the metal nanoparticles account for 1 wt. % or more of the metal-carbon composite. Also described are methods for making the metal-carbon composite.

  18. Physically Gelled Room-Temperature Ionic Liquid-Based Composite Membranes for CO2/N-2 Separation: Effect of Composition and Thickness on Membrane Properties and Performance

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, PT; Voss, BA; Wiesenauer, EF; Gin, DL; Nobe, RD

    2013-07-03

    An aspartame-based, low molecular-weight organic gelator (LMOG) was used to form melt-infused and composite membranes with two different imidazolium-based room-temperature ionic liquids (RTILs) for CO2 separation from N-2. Previous work demonstrated that LMOGs can gel RTILs at low, loading levels, and this aspartame-based LMOG was selected because it has been reported to gel a large number of RTILs. The imidazolium-based RTILs were used because of their inherent good properties for CO2/light gas separations. Analysis of the resulting bulk RTIL/LMOG physical gels showed that these materials have high sol-gel transition temperatures (ca. 135 degrees C) suitable for flue gas applications. Gas permeabilities and burst pressure measurements of thick, melt infused membranes revealed a trade-off between high CO2 permeabilities and good mechanical stability as a function of the LMOG loading. Defect-free, composite membranes of the gelled RTILs were successfully fabricated by choosing an appropriate porous membrane support (hydrophobic PTFE) using a suitable coating technique (roller coating). The thicknesses of the applied composite gel layers ranged from 10.3 to 20.7 mu m, which represents an order of magnitude decrease in active layer thickness, compared to the original melt-infused gel RTIL membranes.

  19. Sol-gel/hydrothermal synthesis of mixed metal oxide of Titanium and ...

    African Journals Online (AJOL)

    Mixed metal oxides of titanium and zinc nanocomposites were prepared through sol-gel method under hydrothermal condition using titanium oxy-(1, 2 - pentadione) and zinc acetate without hazardous additives. The resulting composites were characterized by X-Ray Diffractometer (XRD), Scanning Electron Microscope ...

  20. Preparation and characterization of composites of ultrasonic gel and copper sulphate for using as magnetic resonance body simulator; Preparação e caracterização de compósitos de gel de ultrassom e sulfato de cobre para uso como simulador de corpo em exames de resonância magnética

    Energy Technology Data Exchange (ETDEWEB)

    Cardoso, Gabriela P.; Soares, Sidney S.; Gontijo, Rodrigo M.G.; Batista, Adriana S.M., E-mail: sidneyss70soares@gmail.com, E-mail: gabrielapontesc@gmail.com, E-mail: rodrigogadelhagontijo1@hotmail.com, E-mail: driananuclear@yahoo.com.br [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Departamento de Anatomia e Imagem; Pereira, Esther Lorrayne M., E-mail: esther_machado@outlook.com.br [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Departamento de Engenharia Nuclear

    2017-07-01

    The use of magnetic resonance (MRI) body simulators has application in both equipment control and didactics, providing training to new professionals, regarding the manipulation of parameters related to image weights. For this, it is necessary to simulate longitudinal (T1) and transverse (T2) relaxation times in order to control the extrinsic echo time (TE) and repetition time (TR) parameters in obtaining images with different contrasts. For this purpose, composites with different proportions of ultrasonic gel and copper sulphate were prepared for submission to MRI for the characterization of the times T1 and T2. The selection of copper sulphate, paramagnetic material, was conducted considering relaxation times similar to the different body tissues in order to reproduce images of suitable contrasts. Copper sulphate powder was characterized by the X-Ray Diffraction (XRD) technique which showed characteristic peaks of copper and sulfate group. The composite was evaluated using Fourier Transform Infrared Spectrometry (FTIR) and Visible Ultraviolet Spectrometry (UV-Vis) techniques, demonstrating composite stability for future imaging tests. In the UV-Vis analyzes the peak centered at 725 nm was monitored by the overlap of the peaks at wavelengths between 200 - 450 nm, gel and copper. FTIR of the copper sulphate powder was used for comparison with composite spectrum.

  1. Shear elastic modulus of magnetic gels with random distribution of magnetizable particles

    Science.gov (United States)

    Iskakova, L. Yu; Zubarev, A. Yu

    2017-04-01

    Magnetic gels present new type of composite materials with rich set of uniquie physical properties, which find active applications in many industrial and bio-medical technologies. We present results of mathematically strict theoretical study of elastic modulus of these systems with randomly distributed magnetizable particles in an elastic medium. The results show that an external magnetic field can pronouncedly increase the shear modulus of these composites.

  2. Property Relationship in Organosilanes and Nanotubes Filled Polypropylene Hybrid Composites

    Directory of Open Access Journals (Sweden)

    Alejandra J. Monsiváis-Barrón

    2014-10-01

    Full Text Available Polypropylene composites with different filler contents were prepared by creating a masterbatch containing 3 wt%. filler. A variety of silanol groups were used to synthetized three compounds in different media trough a sol-gel process with acetic acid, formic acid and ammonium hydroxide as catalysts. Besides, four different nanotubular fillers were also used to analyze their behavior and compare it with the effect caused by the silanol groups. These tubular structures comprise: unmodified halloysite, carbon nanotubes and functionalized halloysite and carbon nanotubes. Morphological characterization in SEM and STEM/TEM showed dispersion in the polypropylene matrix. According to TGA and DSC measurements thermal behavior remain similar for all the composites. Mechanical test in tension demonstrate that modulus of the composites increases for all samples with a major impact for materials containing silanol groups synthetized in formic acid. Rheological measurements show a significantly increment in viscosity for samples containing unmodified and modified carbon nanotubes. No difference was found for samples containing silanol groups and halloysite when compared to neat polypropylene. Finally, the oxygen transmission rate increased for all samples showing high barrier properties only for samples containing natural and functionalized halloysite nanotubes.

  3. Property Relationship in Organosilanes and Nanotubes Filled Polypropylene Hybrid Composites.

    Science.gov (United States)

    Monsiváis-Barrón, Alejandra J; Bonilla-Rios, Jaime; Sánchez-Fernández, Antonio

    2014-10-20

    Polypropylene composites with different filler contents were prepared by creating a masterbatch containing 3 wt%. filler. A variety of silanol groups were used to synthetized three compounds in different media trough a sol-gel process with acetic acid, formic acid and ammonium hydroxide as catalysts. Besides, four different nanotubular fillers were also used to analyze their behavior and compare it with the effect caused by the silanol groups. These tubular structures comprise: unmodified halloysite, carbon nanotubes and functionalized halloysite and carbon nanotubes. Morphological characterization in SEM and STEM/TEM showed dispersion in the polypropylene matrix. According to TGA and DSC measurements thermal behavior remain similar for all the composites. Mechanical test in tension demonstrate that modulus of the composites increases for all samples with a major impact for materials containing silanol groups synthetized in formic acid. Rheological measurements show a significantly increment in viscosity for samples containing unmodified and modified carbon nanotubes. No difference was found for samples containing silanol groups and halloysite when compared to neat polypropylene. Finally, the oxygen transmission rate increased for all samples showing high barrier properties only for samples containing natural and functionalized halloysite nanotubes.

  4. Bioactive glass-ceramic coatings prepared by pulsed laser deposition from RKKP targets (sol-gel vs melt-processing route)

    Energy Technology Data Exchange (ETDEWEB)

    Rau, J.V., E-mail: giulietta.rau@ism.cnr.it [Istituto di Struttura della Materia, Consiglio Nazionale delle Ricerche, Via del Fosso del Cavaliere, 100-00133 Rome (Italy); Teghil, R. [Universita della Basilicata, Dipartimento di Chimica ' A.M. Tamburro' , Via dell' Ateneo Lucano, 10-85100 Potenza (Italy); CNR-IMIP U.O.S. di Potenza, Zona Industriale di Tito scalo (PZ) (Italy); Fosca, M. [Istituto di Struttura della Materia, Consiglio Nazionale delle Ricerche, Via del Fosso del Cavaliere, 100-00133 Rome (Italy); Universita di Roma ' La Sapienza' , Dipartimento di Chimica, Piazzale Aldo Moro, 5-00185 Rome (Italy); De Bonis, A. [Universita della Basilicata, Dipartimento di Chimica ' A.M. Tamburro' , Via dell' Ateneo Lucano, 10-85100 Potenza (Italy); CNR-IMIP U.O.S. di Potenza, Zona Industriale di Tito scalo (PZ) (Italy); Cacciotti, I.; Bianco, A. [Universita di Roma ' Tor Vergata' , Dipartimento di Ingegneria Industriale, UR INSTM ' Roma Tor Vergata' , Via del Politecnico, 1-00133 Rome (Italy); Albertini, V. Rossi [Istituto di Struttura della Materia, Consiglio Nazionale delle Ricerche, Via del Fosso del Cavaliere, 100-00133 Rome (Italy); Caminiti, R. [Universita di Roma ' La Sapienza' , Dipartimento di Chimica, Piazzale Aldo Moro, 5-00185 Rome (Italy); Ravaglioli, A. [Parco Torricelli delle Arti e delle Scienze, Via Granarolo, 64-48018 Faenza (Ra) (Italy)

    2012-05-15

    Highlights: Black-Right-Pointing-Pointer Bioactive glass-ceramic coatings for bone tissue repair and regeneration. Black-Right-Pointing-Pointer Pulsed Lased Deposition allowed congruent transfer of target composition to coating. Black-Right-Pointing-Pointer Target was prepared by sol-gel process suitable for compositional tailoring. Black-Right-Pointing-Pointer Titanium, widely used for orthopaedics and dental implants, was used as substrate. Black-Right-Pointing-Pointer The physico-chemical properties of the prepared coatings are reported. -- Abstract: The deposition of innovative glass-ceramic composition (i.e. RKKP) coatings by Pulsed Lased Deposition (PLD) technique is reported. RKKP was synthesised following two methodologies: melt-processing and sol-gel, the latter being particularly suitable to tailor the compositional range. The PLD advantage with respect to other deposition techniques is the congruent transfer of the target composition to the coating. The physico-chemical properties of films were investigated by Scanning Electron and Atomic Force Microscopies, Fourier Transform Infrared Spectroscopy, Angular and Energy Dispersive X-ray Diffraction, and Vickers microhardness. The deposition performed at 12 J/cm{sup 2} and 500 Degree-Sign C allows to prepare crystalline films with the composition that replicates rather well that of the initial targets. The 0.6 {mu}m thin melt-processing RKKP films, possessing the hardness of 25 GPa, and the 4.3 {mu}m thick sol-gel films with the hardness of 17 GPa were obtained.

  5. Bioactive glass–ceramic coatings prepared by pulsed laser deposition from RKKP targets (sol–gel vs melt-processing route)

    International Nuclear Information System (INIS)

    Rau, J.V.; Teghil, R.; Fosca, M.; De Bonis, A.; Cacciotti, I.; Bianco, A.; Albertini, V. Rossi; Caminiti, R.; Ravaglioli, A.

    2012-01-01

    Highlights: ► Bioactive glass–ceramic coatings for bone tissue repair and regeneration. ► Pulsed Lased Deposition allowed congruent transfer of target composition to coating. ► Target was prepared by sol–gel process suitable for compositional tailoring. ► Titanium, widely used for orthopaedics and dental implants, was used as substrate. ► The physico-chemical properties of the prepared coatings are reported. -- Abstract: The deposition of innovative glass–ceramic composition (i.e. RKKP) coatings by Pulsed Lased Deposition (PLD) technique is reported. RKKP was synthesised following two methodologies: melt-processing and sol–gel, the latter being particularly suitable to tailor the compositional range. The PLD advantage with respect to other deposition techniques is the congruent transfer of the target composition to the coating. The physico-chemical properties of films were investigated by Scanning Electron and Atomic Force Microscopies, Fourier Transform Infrared Spectroscopy, Angular and Energy Dispersive X-ray Diffraction, and Vickers microhardness. The deposition performed at 12 J/cm 2 and 500 °C allows to prepare crystalline films with the composition that replicates rather well that of the initial targets. The 0.6 μm thin melt-processing RKKP films, possessing the hardness of 25 GPa, and the 4.3 μm thick sol–gel films with the hardness of 17 GPa were obtained.

  6. Polymer compositions and methods

    Energy Technology Data Exchange (ETDEWEB)

    Allen, Scott D.; Willkomm, Wayne R.

    2018-02-06

    The present invention encompasses polyurethane compositions comprising aliphatic polycarbonate chains. In one aspect, the present invention encompasses polyurethane foams, thermoplastics and elastomers derived from aliphatic polycarbonate polyols and polyisocyanates wherein the polyol chains contain a primary repeating unit having a structure: ##STR00001## In another aspect, the invention provides articles comprising the inventive foam and elastomer compositions as well as methods of making such compositions.

  7. Surface analysis and biocorrosion properties of nanostructured surface sol-gel coatings on Ti6Al4V titanium alloy implants.

    Science.gov (United States)

    Advincula, Maria C; Petersen, Don; Rahemtulla, Firoz; Advincula, Rigoberto; Lemons, Jack E

    2007-01-01

    Surfaces of biocompatible alloys used as implants play a significant role in their osseointegration. Surface sol-gel processing (SSP), a variant of the bulk sol-gel technique, is a relatively new process to prepare bioreactive nanostructured titanium oxide for thin film coatings. The surface topography, roughness, and composition of sol-gel processed Ti6Al4V titanium alloy coatings was investigated by atomic force microscopy (AFM) and X-ray electron spectroscopy (XPS). This was correlated with corrosion properties, adhesive strength, and bioreactivity in simulated body fluids (SBF). Electroimpedance spectroscopy (EIS) and polarization studies indicated similar advantageous corrosion properties between sol-gel coated and uncoated Ti6Al4V, which was attributed to the stable TiO2 composition, topography, and adhesive strength of the sol-gel coating. In addition, inductive coupled plasma (ICP) and scanning electron microscopy with energy dispersive spectrometry (SEM-EDS) analysis of substrates immersed in SBF revealed higher deposition of calcium and phosphate and low release rates of alloying elements from the sol-gel modified alloys. The equivalent corrosion behavior and the definite increase in nucleation of calcium apatite indicate the potential of the sol-gel coating for enhanced bioimplant applications. 2006 Wiley Periodicals, Inc.

  8. Sol-gel derived porous bioactive nanocomposites: Synthesis and in vitro bioactivity

    Science.gov (United States)

    Shankhwar, Nisha; Kothiyal, G. P.; Srinivasan, A.

    2013-06-01

    Porous bioactive composites consisting of SiO2-CaO-Na2O-P2O5 bioactive glass-ceramic and synthetic water soluble polymer Polyvinylpyrrolidone [PVP (C6H9NO)n, MW˜40000 g/mol] have been synthesized by sol-gel route. As-prepared polymeric composites were characterized by X-ray diffraction (XRD) technique. Two major bone mineral phases, viz., hydroxyapatite [Ca10(PO4)6(OH)2] and wollastonite [calcium silicate (CaSiO3)] have been identified in the XRD patterns of the composites. Presence of these bone minerals indicates the bioactive nature of the composites. In vitro bioactivity tests confirm bioactivity in the porous composites. The flexibility offered by these bioactive polymer composites is advantageous for its application as implant material.

  9. Transport Phenomena in Gel

    Directory of Open Access Journals (Sweden)

    Masayuki Tokita

    2016-05-01

    Full Text Available Gel becomes an important class of soft materials since it can be seen in a wide variety of the chemical and the biological systems. The unique properties of gel arise from the structure, namely, the three-dimensional polymer network that is swollen by a huge amount of solvent. Despite the small volume fraction of the polymer network, which is usually only a few percent or less, gel shows the typical properties that belong to solids such as the elasticity. Gel is, therefore, regarded as a dilute solid because its elasticity is much smaller than that of typical solids. Because of the diluted structure, small molecules can pass along the open space of the polymer network. In addition to the viscous resistance of gel fluid, however, the substance experiences resistance due to the polymer network of gel during the transport process. It is, therefore, of importance to study the diffusion of the small molecules in gel as well as the flow of gel fluid itself through the polymer network of gel. It may be natural to assume that the effects of the resistance due to the polymer network of gel depends strongly on the network structure. Therefore, detailed study on the transport processes in and through gel may open a new insight into the relationship between the structure and the transport properties of gel. The two typical transport processes in and through gel, that is, the diffusion of small molecules due to the thermal fluctuations and the flow of gel fluid that is caused by the mechanical pressure gradient will be reviewed.

  10. Sol–gel method to fabricate CaP scaffolds by robocasting for tissue engineering

    Science.gov (United States)

    Fu, Qiang; Saiz, Eduardo; Tomsia, Antoni P.

    2012-01-01

    Highly porous calcium phosphate (CaP) scaffolds for bone-tissue engineering were fabricated by combining a robocasting process with a sol–gel synthesis that mixed Calcium Nitrate Tetrahydrate and Triethyl Phosphite precursors in an aqueous medium. The resulting gels were used to print scaffolds by robocasting without the use of binder to increase the viscosity of the paste. X-ray diffraction analysis confirmed that the process yielded hydroxyapatite and β-tricalcium phosphate biphasic composite powders. Thus, the scaffold composition after crystallization of the amorphous structure could be easily modified by varying the initial Ca/P ratio during synthesis. The compressive strengths of the scaffolds are ~6 MPa, which is in the range of human cancellous bone (2–12 MPa). These highly porous scaffolds (~73 vol% porosity) are composed of macro-pores of ~260 μm in size; such porosity is expected to enable bone ingrowth into the scaffold for bone repair applications. The chemistry, porosity, and surface topography of such scaffolds can also be modified by the process parameters to favor bone formation. The studied sol–gel process can be used to coat these scaffolds by dip-coating, which induces a significant enhancement of mechanical properties. This can adjust scaffold properties such as composition and surface morphology, which consequently may improve their performances. PMID:22311079

  11. Gel electrolytes based on poly(acrylonitrile)/sulpholane with hybrid TiO2/SiO2 filler for advanced lithium polymer batteries

    International Nuclear Information System (INIS)

    Kurc, Beata

    2014-01-01

    Highlights: • Paper describes properties of gel electrolyte based on PAN with TMS and TiO 2 -SiO 2 . • The TiO 2 -SiO 2 oxide composite was precipitated in the emulsion system and used as the fillers. • The capacity of the graphite anode depends on the current rate and the amount of TiO 2 -SiO 2 . • For PE3 electrolyte was obtained practical capacity more than 90% of the theoretical capacity. - Abstract: This paper describes the synthesis and properties of a new type of ceramic fillers for composite polymer gel electrolytes. Hybrid TiO 2 -SiO 2 ceramic powders have been obtained by co-precipitation from titanium(IV) sulfate solution using sodium silicate as the precipitating agent. The resulting submicron-size powders have been applied as fillers for composite polymer gel electrolytes for Li-ion batteries based on polyacrylonitrile (PAN) membranes. The powders and gel electrolytes have been examined structurally and electrochemically, showing favorable properties in terms of electrolyte uptake and electrochemical characteristics in Li-ion cells

  12. Characterization of composites prepared by sol-gel process through positrons lifetime spectroscopy

    International Nuclear Information System (INIS)

    Sousa, Edesia M.B. de; Magalhaes, Welligton F. de; Mohallem, Nelcy D.S.

    1996-01-01

    Si O 2 matrix were prepared by sol-gel method using TEOS, ethanol and H 2 O in a 1/3/10 mol ratio, with HCl and HF as catalysts. This silica gels were doped with copper and titanium adding Cu Cl and titanium tetra-iso-prop oxide in the starting solution, during agitation. The samples were prepared in monolithic shape, were dried at 110 deg C for 24 hours and thermally treated for 2 hours at 500, 900 and 1100 deg C. The structural evolution was studied y x-ray diffraction, mercury porosimetry and pycnometry. In this work, it was also used the Position Annihilation Lifetime Spectroscopy which have been used, nowadays, as a microscopic probe in order to investigate the free volume in zeolites, polymers and metallic alloy. All the samples have shown a stable pore structure until 900 deg C and a strong densification process at 1100 deg C. (author)

  13. Preparation and characterization of hydrated salts/silica composite as shape-stabilized phase change material via sol–gel process

    International Nuclear Information System (INIS)

    Wu, Yuping; Wang, Tao

    2014-01-01

    Highlights: • A mixture of hydrated salts were adopted as phase change materials. • Phase segregation of the hydrated salts was inhibited. • Subcooling was slightly mitigated. • Thermal cycling performance was greatly improved after PVP coating. - Abstract: A novel shape-stabilized phase change material composite was prepared by impregnating the mixture of hydrated salts (Na 2 SO 4 ·10H 2 O–Na 2 HPO 4 ·12H 2 O) into porous silica matrix obtained by sol–gel process and further coated with polyvinylpyrrolidone (PVP) to improve the thermal cycling performance. The chemical compatibility, morphology and phase change properties were investigated by Fourier transform infrared spectroscopy (FT-IR), scanning electron microscope (SEM), hot-stage polarizing optical microscope (HS-POM) and differential scanning calorimetry (DSC). Confined in the silica matrix, phase segregation of the hydrated salts was inhibited and subcooling was slightly mitigated. No leakage was observed during the solid–liquid phase transition even when the mass ratio of hydrated salts to silica was as high as 70:30. Results showed that the melting enthalpy of the composite can reach 106.2 kJ/kg with the melting temperature at 30.13 °C and there was no significant enthalpy loss after 30 thermal cycles

  14. Amino Acid Composition, Molecular Weight Distribution and Gel Electrophoresis of Walnut (Juglans regia L. Proteins and Protein Fractionations

    Directory of Open Access Journals (Sweden)

    Xiaoying Mao

    2014-01-01

    Full Text Available As a by-product of oil production, walnut proteins are considered as an additional source of plant protein for human food. To make full use of the protein resource, a comprehensive understanding of composition and characteristics of walnut proteins are required. Walnut proteins have been fractionated and characterized in this study. Amino acid composition, molecular weight distribution and gel electrophoresis of walnut proteins and protein fractionations were analyzed. The proteins were sequentially separated into four fractions according to their solubility. Glutelin was the main component of the protein extract. The content of glutelin, albumin, globulin and prolamin was about 72.06%, 7.54%, 15.67% and 4.73% respectively. Glutelin, albumin and globulin have a balanced content of essential amino acids, except for methionine, with respect to the FAO pattern recommended for adults. SDS-PAGE patterns of albumin, globulin and glutelin showed several polypeptides with molecular weights 14.4 to 66.2 kDa. The pattern of walnut proteins in two-dimension electrophoresis (2-DE showed that the isoelectric point was mainly in the range of 4.8–6.8. The results of size exclusion chromatogram indicated molecular weight of the major components of walnut proteins were between 3.54 and 81.76 kDa.

  15. Novel Stable Gel Polymer Electrolyte: Toward a High Safety and Long Life Li-Air Battery.

    Science.gov (United States)

    Yi, Jin; Liu, Xizheng; Guo, Shaohua; Zhu, Kai; Xue, Hailong; Zhou, Haoshen

    2015-10-28

    Nonaqueous Li-air battery, as a promising electrochemical energy storage device, has attracted substantial interest, while the safety issues derived from the intrinsic instability of organic liquid electrolytes may become a possible bottleneck for the future application of Li-air battery. Herein, through elaborate design, a novel stable composite gel polymer electrolyte is first proposed and explored for Li-air battery. By use of the composite gel polymer electrolyte, the Li-air polymer batteries composed of a lithium foil anode and Super P cathode are assembled and operated in ambient air and their cycling performance is evaluated. The batteries exhibit enhanced cycling stability and safety, where 100 cycles are achieved in ambient air at room temperature. The feasibility study demonstrates that the gel polymer electrolyte-based polymer Li-air battery is highly advantageous and could be used as a useful alternative strategy for the development of Li-air battery upon further application.

  16. Alcohol dose dumping: The influence of ethanol on hot-melt extruded pellets comprising solid lipids.

    Science.gov (United States)

    Jedinger, N; Schrank, S; Mohr, S; Feichtinger, A; Khinast, J; Roblegg, E

    2015-05-01

    The objective of the present study was to investigate interactions between alcohol and hot-melt extruded pellets and the resulting drug release behavior. The pellets were composed of vegetable calcium stearate as matrix carrier and paracetamol or codeine phosphate as model drugs. Two solid lipids (Compritol® and Precirol®) were incorporated into the matrix to form robust/compact pellets. The drug release characteristics were a strong function of the API solubility, the addition of solid lipids, the dissolution media composition (i.e., alcohol concentration) and correspondingly, the pellet wettability. Pellets comprising paracetamol, which is highly soluble in ethanol, showed alcohol dose dumping regardless of the matrix composition. The wettability increased with increasing ethanol concentrations due to higher paracetamol solubilities yielding increased dissolution rates. For pellets containing codeine phosphate, which has a lower solubility in ethanol than in acidic media, the wettability was a function of the matrix composition. Dose dumping occurred for formulations comprising solid lipids as they showed increased wettabilities with increasing ethanol concentrations. In contrast, pellets comprising calcium stearate as single matrix component showed robustness in alcoholic media due to wettabilities that were not affected by the addition of ethanol. The results clearly indicate that the physico-chemical properties of the drug and the matrix systems are crucial for the design of ethanol-resistant dosage forms. Moreover, hydrophobic calcium stearate can be considered a suitable matrix system that minimizes the risk of ethanol-induced dose dumping for certain API's. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. An investigation of the chemical stability of a monomer/polymer gel dosimeter

    International Nuclear Information System (INIS)

    De Deene, Y.; De Wagter, C.; De Neve, W.; Achten, E.

    2000-01-01

    The aim of this work is to investigate the temporal stability of a polyacrylamide gelatin hydrogel used for 3D monomer/polymer gel dosimetry techniques involving different methods of analysis. Long-term instabilities for a similar gel have recently been reported, but differ markedly from those described in this work. Two kinds of long-term instabilities are described. One affects the slope of the dose-R 2 plot and is related to post-irradiation polymerization of the comonomer/polymer aggregates. It is observed that post-irradiation polymerization only lasts 12 hours after irradiation. The other instability affects the intercept of the dose-R 2 plot, lasts for up to 30 days and is related to the gelation process of gelatin. Further studies were performed on gelatin gels of varying compositions to obtain a better understanding of the molecular mechanism that causes the instability due to gelation. The studies included observations of the spin-spin and spin-lattice relaxation rates in combination with diffusion measurements and optical measurements. It is shown that the heating history during the manufacture of the gel affects the absolute R 2 value of the gel but not its variation. The findings presented in this study may help in producing more stable and reproducible monomer/polymer gel dosimeters. (author)

  18. Gel electrolytes with I-/I3- redox mediator based on methylcellulose for dye-sensitized solar cells

    Science.gov (United States)

    Yusof, S. Z.; Woo, H. J.; Careem, M. A.; Arof, A. K.

    2018-05-01

    A new gel electrolyte comprising methylcellulose (MC), LiBOB and succinonitrile (SN) has been prepared with dimethyl sulfoxide (DMSO) as solvent. The electrolyte with composition 8.73 wt % MC-2.92 wt % LiBOB-1.01 wt % SN-87.34 wt % DMSO exhibits the highest conductivity of 1.18 mS cm-1 at 25 °C. On partially substituting LiBOB with TMAI, the sample designated as TMAI 95 has the highest conducting composition of 8.70 wt % MC-0.14 wt % LiBOB-1.01 wt % SN-2.77 wt % TMAI-0.35 wt % I2-87.03 wt % DMSO. The conductivity is 1.96 mS cm-1. This sample is used to fabricate a dye sensitized photovoltaic cell that converts photons to electricity at an efficiency of 3.46%. The conductivity of this sample has been enhanced to 3.08 mS cm-1 on addition of 1.0 wt % butyl-methyl immidazolium iodide (BMII) ionic liquid and the efficiency of the cell fabricated is 4.63%. Total replacement of LiBOB component in the electrolyte with the same amount of LiI results in a conductivity increase of ∼23.5% and the DSSC exhibits a 5.72% efficiency.

  19. Site selective generation of sol-gel deposits in layered bimetallic macroporous electrode architectures.

    Science.gov (United States)

    Lalo, Hélène; Bon-Saint-Côme, Yémima; Plano, Bernard; Etienne, Mathieu; Walcarius, Alain; Kuhn, Alexander

    2012-02-07

    The elaboration of an original composite bimetallic macroporous electrode containing a site-selective sol-gel deposit is reported. Regular colloidal crystals, obtained by a modified Langmuir-Blodgett approach, are used as templates for the electrogeneration of the desired metals in the form of a well-defined layered bimetallic porous electrode. This porous matrix shows a spatially modulated electroactivity which is subsequently used as a strategy for targeted electrogeneration of a sol-gel deposit, exclusively in one predefined part of the porous electrode.

  20. Synthesis of organic/inorganic hybrid gel with acid activated clay after γ-ray radiation.

    Science.gov (United States)

    Kim, Donghyun; Lee, Hoik; Sohn, Daewon

    2014-08-01

    A hybrid gel was prepared from acid activated clay (AA clay) and acrylic acid by gamma ray irradiation. Irradiated inorganic particles which have peroxide groups act as initiator because it generates oxide radicals by increasing temperature. Inorganic nanoparticles which are rigid part in hybrid gel also contribute to increase the mechanical property as a crosslinker. We prepared two hybrid gels to compare the effect of acid activated treatment of clay; one is synthesized with raw clay particles and another is synthesized with AA clay particles. The composition and structure of AA clay particles and raw clay particles were confirmed by X-ray diffraction (XRD), X-ray fluorescence instrument and surface area analyzer. And chemical and physical property of hybrid gel with different ratios of acrylic acid and clay particle was tested by Raman spectroscope and universal testing machine (UTM). The synthesized hydrogel with 76% gel contents can elongated approximately 1000% of its original size.

  1. Diffusion measurement in ferrous infused gel dosimeters

    International Nuclear Information System (INIS)

    Zahmatkesh, M. H.; Healy, B. J.

    2003-01-01

    Background: The compositions of Ferrous sulphate, Agarose and Xylenol orange dye and Ferrous sulphate, Gelatin and Xylenol orange dye in solution of distilled water and sulphuric acid are two tissue-equivalent gel dosimeters. Ionizing radiation causes oxidation of Fe 2+ ion to Fe 3+ ions which diffuse through the gel matrix and blur the image of absorbed dose over a period of hours after irradiation. Materials and methods: 25 m M sulphuric acid, 0.4 mm ferrous ammonium sulphate, 0.2 mm xylenol orange dye and 1% by weight agarose in distilled water named Agarose and Xylenol orange dye and 0.1 mm ferrous ammonium sulphate, 0.1 mm xylenol orange dye, 50 mm sulphuric acid and 5% by weight gelatin in distilled water named Gelatin and Xylenol orange dye are used as two gel dosimeters. All chemicals were supplied by Sigma Ald ridge Company, Germany. The gels were poured in Perspex casts and were irradiated to a beam of X ray from linear accelerators or X ray machine. Results: In this study diffusion coefficients of Agarose and Xylenol orange dye and Gelatin and Xylenol orange dye dosimeters have been measured through a computer program for different temperature. The ferric ion diffusion coefficient (D) for the Agarose and Xylenol orange dye and Gelatin and Xylenol orange dye dosimeters were measured as (1.19.±0.03) x 10 -2 cm 2 .hr -1 and (0.83±0.03) x 10 -2 cm 2 .hr -1 respectively at room temperature. Conclusion: For both dosimeters the diffusion coefficients decreased with gel storage temperatures down to 6 d ig C . Gelatin and Xylenol orange dye dosimeters have advantage of lower diffusion coefficient for a specified temperature

  2. Bacterial Artificial Chromosome Clones of Viruses Comprising the Towne Cytomegalovirus Vaccine

    Directory of Open Access Journals (Sweden)

    Xiaohong Cui

    2012-01-01

    Full Text Available Bacterial artificial chromosome (BAC clones have proven invaluable for genetic manipulation of herpesvirus genomes. BAC cloning can also be useful for capturing representative genomes that comprise a viral stock or mixture. The Towne live attenuated cytomegalovirus vaccine was developed in the 1970s by serial passage in cultured fibroblasts. Although its safety, immunogenicity, and efficacy have been evaluated in nearly a thousand human subjects, the vaccine itself has been little studied. Instead, genetic composition and in vitro growth properties have been inferred from studies of laboratory stocks that may not always accurately represent the viruses that comprise the vaccine. Here we describe the use of BAC cloning to define the genotypic and phenotypic properties of viruses from the Towne vaccine. Given the extensive safety history of the Towne vaccine, these BACs provide a logical starting point for the development of next-generation rationally engineered cytomegalovirus vaccines.

  3. Bacterial artificial chromosome clones of viruses comprising the towne cytomegalovirus vaccine.

    Science.gov (United States)

    Cui, Xiaohong; Adler, Stuart P; Davison, Andrew J; Smith, Larry; Habib, El-Sayed E; McVoy, Michael A

    2012-01-01

    Bacterial artificial chromosome (BAC) clones have proven invaluable for genetic manipulation of herpesvirus genomes. BAC cloning can also be useful for capturing representative genomes that comprise a viral stock or mixture. The Towne live attenuated cytomegalovirus vaccine was developed in the 1970s by serial passage in cultured fibroblasts. Although its safety, immunogenicity, and efficacy have been evaluated in nearly a thousand human subjects, the vaccine itself has been little studied. Instead, genetic composition and in vitro growth properties have been inferred from studies of laboratory stocks that may not always accurately represent the viruses that comprise the vaccine. Here we describe the use of BAC cloning to define the genotypic and phenotypic properties of viruses from the Towne vaccine. Given the extensive safety history of the Towne vaccine, these BACs provide a logical starting point for the development of next-generation rationally engineered cytomegalovirus vaccines.

  4. Electrophoretically active sol-gel processes to backfill, seal, and/or densify porous, flawed, and/or cracked coatings on electrically conductive material

    Science.gov (United States)

    Panitz, Janda K.; Reed, Scott T.; Ashley, Carol S.; Neiser, Richard A.; Moffatt, William C.

    1999-01-01

    Electrophoretically active sol-gel processes to fill, seal, and/or density porous, flawed, and/or cracked coatings on electrically conductive substrates. Such coatings may be dielectrics, ceramics, or semiconductors and, by the present invention, may have deposited onto and into them sol-gel ceramic precursor compounds which are subsequently converted to sol-gel ceramics to yield composite materials with various tailored properties.

  5. Thorium inorganic gels

    International Nuclear Information System (INIS)

    Genet, M.; Brandel, V.

    1988-01-01

    The optimum pH and concentration values of thorium salts and oxoacids or oxoacid salts which lead to transparent and stable inorganic gels have been determined. The isotherm drying process of the gel at 50 0 C leads successively to a partly dehydrated gel, then, to the formation of an unusual liquid phase and, finally to a dry amorphous solid phase which is still transparent. This kind of transparent inorganic gels and amorphous phase can be used as matrices for spectroscopic studies [fr

  6. Dielectric and piezoelectric properties of sol-gel derived Ca doped PbTiO3

    International Nuclear Information System (INIS)

    Chauhan, Arun Kumar Singh; Gupta, Vinay; Sreenivas, K.

    2006-01-01

    Synthesis of Ca doped PbTiO 3 powder by a chemically derived sol-gel process is described. Crystallization characteristics of different compositions Pb 1-x Ca x TiO 3 (PCT) with varying calcium (Ca) content in the range x = 0-0.45 has been investigated by DTA/TGA, X-ray diffraction and scanning electron microscopy. The crystallization temperature is found to decrease with increasing calcium content. X-ray diffraction reveals a tetragonal structure for PCT compositions with x ≤ 0.35, and a cubic structure for x = 0.45. Dielectric properties on sintered ceramics prepared with fine sol-gel derived powders have been measured. The dielectric constant is found to increase with increasing Ca content, and the dielectric loss decreases continuously. Sol-gel derived Pb 1-x Ca x TiO 3 ceramics with x = 0.45 after poling exhibit infinite electromechanical anisotropy (k t /k p ) with a high d 33 = 80 pC/N, ε' = 298 and low dielectric loss (tan δ = 0.0041)

  7. Osteoconducting bioglass synthesis via sol-gel process; Biovidro osteocondutor sintetizado pelo processo sol-gel

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, R.V.; Aragones, A.; Barra, G.O.M.; Salmoria, G.V.; Fredel, M.C., E-mail: rafaelavpereira@gmail.com [Universidade Federal de Santa Catarina (UFSC), Florianopolis, SC (Brazil)

    2012-07-01

    The presence of bioglasses in scaffolds has been studied as they promote the osteoconduction in bones. The scaffolds are developed in order to induce the repair and regeneration in bone tissue. An absorbable bioglass from SiO2-CaO-P2O5 system was synthesized by sol-gel process with the intent of producing these scaffolds. Bioglass 58S was define for these work once it presents ions (Ca and P) which assist at the carbonated apatite layer formation when released. The apatite layer presents an important role at the bone regeneration and metabolism, being involved at grow and mineralization of bones. FTIR was realized to characterize the synthesized bioglass on its chemical composition, XRD to analyze the crystalline structure, solubility test to observe the weight variance and SEM to observe the particles morphology. The obtained results confirmed the production of a bioglass with the desired composition to produce osteoconducting scaffolds. (author)

  8. Effect of waxy rice flour and cassava starch on freeze-thaw stability of rice starch gels.

    Science.gov (United States)

    Charoenrein, Sanguansri; Preechathammawong, Nutsuda

    2012-10-01

    Repeatedly frozen and thawed rice starch gel affects quality. This study investigated how incorporating waxy rice flour (WF) and cassava starch (CS) in rice starch gel affects factors used to measure quality. When rice starch gels containing 0-2% WF and CS were subjected to 5 freeze-thaw cycles, both WF and CS reduced the syneresis in first few cycles. However CS was more effective in reducing syneresis than WF. The different composite arrangement of rice starch with WF or CS caused different mechanisms associated with the rice starch gel retardation of retrogradation, reduced the spongy structure and lowered syneresis. Both swollen granules of rice starch and CS caused an increase in the hardness of the unfrozen and freeze-thawed starch gel while highly swollen WF granules caused softer gels. These results suggested that WF and CS were effective in preserving quality in frozen rice starch based products. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. A new sol–gel synthesis of 45S5 bioactive glass using an organic acid as catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Faure, J., E-mail: joel.faure@univ-reims.fr [Université de Reims Champagne-Ardenne, Laboratoire Ingénierie et Sciences des Matériaux, LISM EA 4695, 21 rue Clément ADER, 51685 REIMS Cedex 2 (France); Drevet, R., E-mail: richard.drevet@univ-reims.fr [Université de Reims Champagne-Ardenne, Laboratoire Ingénierie et Sciences des Matériaux, LISM EA 4695, 21 rue Clément ADER, 51685 REIMS Cedex 2 (France); Lemelle, A.; Ben Jaber, N.; Tara, A. [Université de Reims Champagne-Ardenne, Laboratoire Ingénierie et Sciences des Matériaux, LISM EA 4695, 21 rue Clément ADER, 51685 REIMS Cedex 2 (France); El Btaouri, H. [Université de Reims Champagne-Ardenne UMR CNRS MEDyC, EA 7369, Campus Moulin de la Housse, 51687 REIMS Cedex 2 (France); Benhayoune, H. [Université de Reims Champagne-Ardenne, Laboratoire Ingénierie et Sciences des Matériaux, LISM EA 4695, 21 rue Clément ADER, 51685 REIMS Cedex 2 (France)

    2015-02-01

    In this paper a new sol–gel approach was explored for the synthesis of the 45S5 bioactive glass. We demonstrate that citric acid can be used instead of the usual nitric acid to catalyze the sol–gel reactions. The substitution of nitric acid by citric acid allows to reduce strongly the concentration of the acid solution necessary to catalyze the hydrolysis of silicon and phosphorus alkoxides. Two sol–gel powders with chemical compositions very close to that of the 45S5 were obtained by using either a 2 M nitric acid solution or either a 5 mM citric acid solution. These powders were characterized and compared to the commercial Bioglass®. The surface properties of the two bioglass powders were assessed by scanning electron microscopy (SEM) and by Brunauer–Emmett–Teller method (BET). The Fourier transformed infrared spectroscopy (FTIR) and the X-ray diffraction (XRD) revealed a partial crystallization associated to the formation of crystalline phases on the two sol–gel powders. The in vitro bioactivity was then studied at the key times during the first hours of immersion into acellular Simulated Body Fluid (SBF). After 4 h immersion into SBF we clearly demonstrate that the bioactivity level of the two sol–gel powders is similar and much higher than that of the commercial Bioglass®. This bioactivity improvement is associated to the increase of the porosity and the specific surface area of the powders synthesized by the sol–gel process. Moreover, the nitric acid is efficiently substituted by the citric acid to catalyze the sol–gel reactions without alteration of the bioactivity of the 45S5 bioactive glass. - Highlights: • Citric acid is employed as a catalyzer of the sol–gel process. • This catalyzer is used at a very low concentration for the hydrolysis reaction. • The chemical composition of the bioglass synthesized by the sol–gel process is optimized. • The properties of two sol–gel bioglasses are compared with those of the commercial

  10. A new sol–gel synthesis of 45S5 bioactive glass using an organic acid as catalyst

    International Nuclear Information System (INIS)

    Faure, J.; Drevet, R.; Lemelle, A.; Ben Jaber, N.; Tara, A.; El Btaouri, H.; Benhayoune, H.

    2015-01-01

    In this paper a new sol–gel approach was explored for the synthesis of the 45S5 bioactive glass. We demonstrate that citric acid can be used instead of the usual nitric acid to catalyze the sol–gel reactions. The substitution of nitric acid by citric acid allows to reduce strongly the concentration of the acid solution necessary to catalyze the hydrolysis of silicon and phosphorus alkoxides. Two sol–gel powders with chemical compositions very close to that of the 45S5 were obtained by using either a 2 M nitric acid solution or either a 5 mM citric acid solution. These powders were characterized and compared to the commercial Bioglass®. The surface properties of the two bioglass powders were assessed by scanning electron microscopy (SEM) and by Brunauer–Emmett–Teller method (BET). The Fourier transformed infrared spectroscopy (FTIR) and the X-ray diffraction (XRD) revealed a partial crystallization associated to the formation of crystalline phases on the two sol–gel powders. The in vitro bioactivity was then studied at the key times during the first hours of immersion into acellular Simulated Body Fluid (SBF). After 4 h immersion into SBF we clearly demonstrate that the bioactivity level of the two sol–gel powders is similar and much higher than that of the commercial Bioglass®. This bioactivity improvement is associated to the increase of the porosity and the specific surface area of the powders synthesized by the sol–gel process. Moreover, the nitric acid is efficiently substituted by the citric acid to catalyze the sol–gel reactions without alteration of the bioactivity of the 45S5 bioactive glass. - Highlights: • Citric acid is employed as a catalyzer of the sol–gel process. • This catalyzer is used at a very low concentration for the hydrolysis reaction. • The chemical composition of the bioglass synthesized by the sol–gel process is optimized. • The properties of two sol–gel bioglasses are compared with those of the commercial

  11. Photocatalytic Oxidation of NO over Composites of Titanium Dioxide and Zeolite ZSM-5

    Directory of Open Access Journals (Sweden)

    Akram Tawari

    2016-02-01

    Full Text Available Composites of TiO2 (Hombikat, P25, sol-gel synthesis and zeolite ZSM-5 (nSi/nAl = 55 with mass fractions from 25/75 to 75/25 were prepared by mechanical mixing, solid-state dispersion and sol-gel synthesis. Characterization of the composites by X-ray diffraction (XRD, N2-sorption, scanning electron microscopy (SEM, and UV-Vis spectroscopy show that mechanical mixing and solid-state dispersion lead to comparable textural properties of the composites. A homogeneous distribution and intimate contact of small TiO2 particles on the crystal surface of zeolite ZSM-5 were achieved by sol-gel synthesis. The composites were studied in the photocatalytic oxidation (PCO of NO in a flatbed reactor under continuous flow according to ISO 22197-1. The highest NO conversion of 41% at an NO2 selectivity as low as 19% stable for 24 h on-stream was reached over the TiO2/ZSM-5 composite from sol-gel synthesis with equal amounts of the two components after calcination at 523 K. The higher activity and stability for complete NO oxidation than for pure TiO2 from sol-gel synthesis, Hombikat, or P25 is attributed to the adsorptive properties of the zeolite ZSM-5 in the composite catalyst. Increasing the calcination temperature up to 823 K leads to larger TiO2 particles and a lower photocatalytic activity.

  12. Solution-processable electrochemiluminescent ion gels for flexible, low-voltage, emissive displays on plastic.

    Science.gov (United States)

    Moon, Hong Chul; Lodge, Timothy P; Frisbie, C Daniel

    2014-03-05

    Ion gels comprising ABA triblock copolymers and ionic liquids have received much attention as functional materials in numerous applications, especially as gate dielectrics in organic transistors. Here we have expanded the functionality of ion gels by demonstrating low-voltage, flexible electrochemiluminescent (ECL) devices using patterned ion gels containing redox-active luminophores. The ECL devices consisted only of a 30 μm thick emissive gel and two electrodes and were fabricated on indium tin oxide-coated substrates (e.g., polyester) simply by solution-casting the ECL gel and brush-painting a top Ag electrode. The triblock copolymer employed in the gel was polystyrene-block-poly(methyl methacrylate)-block-polystyrene, where the solvophobic polystyrene end blocks associate into micellar cross-links in the versatile ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([EMI][TFSI]). An ECL gel containing ~6.25 wt % Ru(bpy)3Cl2 (relative to [EMI][TFSI]) as the luminophore turned on at an AC peak-to-peak voltage as low as 2.6 V (i.e., -1.3 to +1.3 V) and showed a relatively rapid response (sub-ms). The wavelength of maximum emission was 610 nm (red-orange). With the use of an iridium(III) complex, Ir(diFppy)2(bpy)PF6 [diFppy = 2-(2',4'-difluorophenyl)pyridine; bpy = 2,2'-bipyridyl], the emitting color was tuned to a maximum wavelength of 540 nm (green). Moreover, when a blended luminophore system containing a 60:40 mixture of Ru(bpy)3(2+) and Ir(diFppy)2(bpy)(+) was used in the emissive layer, the luminance of red-orange-colored light was enhanced by a factor of 2, which is explained by the generation of the additional excited state Ru(bpy)3(2+)* by a coreactant pathway with Ir(diFppy)2(bpy)(+)* in addition to the usual annihilation pathway. This is the first time that enhanced ECL has been achieved in ion gels (or ionic liquids) using a coreactant. Overall, the results indicate that ECL ion gels are attractive multifunctional materials for

  13. [Establishment of two-dimensional differential gel electrophoresis using cerebrospinal fluid from neurocysticercosis patients].

    Science.gov (United States)

    Li, Jing-Yi; Tian, Xiao-Jun; Huang, Yong; Yang, Yan-Jun; Ma, Qiao-Rong; Xue, Yan-Ping

    2008-06-30

    To establish the method of two-dimensional differential gel electrophoresis and obtain high resolution 2D images from cerebrospinal fluid (CSF) of patients with neurocysticercosis. CSF samples were collected from four patients diagnosed as neurocysticercosis clinically and by ELISA, computed tomography (CT) or magnetic resonance imaging (MRI), and from four healthy subjects without neurological disorders. The CSF samples were precipitated with cold acetone, then pooled by equal amount as patients and controls. The internal standard comprised equal amounts of proteins extracted from both groups. Internal standard, and proteins from the two groups were labeled prior to electrophoresis with spectrally resolvable fluorescent dyes, cyanein dye2 (Cy2), Cy3 and Cy5. Sodium dodecylsulfonate polyacrylamide gel chromatography (SDS-PAGE) and two-dimensional differential in-gel electrophoresis (2-D DIGE) of labeled samples were then run. The differential expressed proteins showed in the images of SDS-PAGE and 2-D DIGE gels scanned with 488 nm, 532 nm and 633 nm wavelength laser were analyzed by ImageQuant and DeCyde 5.0 respectively. Spot detection and quantification was performed for the differential in-gel analysis (DIA) module of DeCyder. Biological variation analysis (BVA) module of DeCyder was matched gel 1 and gel 2 images to provide data on differential protein expression levels between the two groups. The ImageQuant result displayed that the CSF protein was compatible with the dye, and the difference of protein amount was revealed by the difference of fluorescence intensity. DIA indicated that there were 896 and 894 protein dots on gel 1 and gel 2 respectively, and 90% of them were matched each other. BVA showed that there were 55 protein spots with different expressional level between neurocysticercosis and control groups. Protein spots with two-fold increase or decrease were 47 and 8 respectively in neurocysticercosis patients compared with healthy controls. The

  14. Colloid molecular weight estimation by gel chromatography/acrylamide gel electrophoresis

    International Nuclear Information System (INIS)

    Liberatore, F.A.; Dearborn, C.; Nigam, S.; Poon, C.; Camin, L.; Liteplo, M.

    1984-01-01

    Size or molecular weight (MW) estimation of radiolabeled collides in aqueous solutions has long been a problem. The authors have prepared several minimicroaggregated albumin colloids (mμAA) by heat denaturation of stannous-containing HSA solutions at pH 7.0, 7.5, and 8.5). The resulting colloids were labeled with Tc-99m and compared with Au-198 colloid and Tc-99m-antimony sulfide colloid (Tc-99m-Sb/sub 2/S3) by gel chromatography and gel electrophoresis. Tc-99mm-mμAA aggregated at pH 7.0 and the Au-198 colloid appeared in the external void volume of a BioRad A5.0 agarose column indicating an apparent MW of > 5 x 10/sup 6/ daltons. The pH7.5 Tc-99m-mμAA, migrated within the filtration range of the column as did a small fraction of Tc-99m-Sb/sub 2/S/sub 3/, suggesting that the MW is between 6 x 10/sup 4/ - 5 x 10/sup 6/ daltons. The Tc-99m-mμAA, aggregated at pH 8.5, had an apparent MW on gel filtration similar to that of untreated albumin, MW 6.6 x 10-/sup 4/ daltons. The mobilities of the colloids, on acrylamide disc gel electrophoresis, were consistent with the results on gel chromatography. The largest colloids, Au-198 colloid and pH 7.0 Tc-99m-mμAA, barely entered the separating gel; intermediate sized colloids, a small fraction of Tc-99m-Sb/sub 2/S/sub 3/ and pH 7.5 Tc-99m-mμAA migrated farther into the separating gel; while pH 8.5 Tc-99m-mμAA had mobility approaching that of untreated albumin. Lymphoscintigraphy studies using these colloids in animals showed the predicted, particle size-related differences in migration and clearance. The authors conclude that gel chromatography and gel electrophoresis are useful methods for estimating the apparent size of the colloidal particles

  15. BALLISTIC RESISTANT ARTICLES COMPRISING TAPES

    NARCIS (Netherlands)

    VAN DER EEM, JORIS; HARINGS, JULES; JANSE, GERARDUS; TJADEN, HENDRIK

    2015-01-01

    The invention pertains to a ballistic-resistant moulded article comprising a compressed stack of sheets comprising reinforcing tapes having a tensile strength of at least 1.0 GPa, a tensile modulus of at least 40 GPa, and a tensile energy-to-break of at least 15 J/g, the direction of the tapes

  16. Study of the confined solutions properties: case of gel formed during nuclear glass alteration

    International Nuclear Information System (INIS)

    Matar-Briman, I.

    2012-01-01

    In this study, we have investigated the thermodynamic properties, the structure and the dynamics of confined solutions in model gels and in a gel coming from glass alteration. The first step was to determine the structure and the dynamics of pure confined water in porous materials by using nuclear magnetic resonance and neutron scattering. Meso-porous silica was elaborated and grafted by sol-gel route to decrease the pore sizes from 2.7 to 2 nm and to modify pore surfaces to have Si-OH, Zr-OH and Al-OH. The second step involved determining the dynamics of water in leachate confined in the model gels and in the gel of altered glass by using neutron scattering. In the model gels and at a 10 -12 -10 -9 second timescale, two kinds of waters were highlighted: first, an interfacial water linked to the pore surfaces and second, a free water in the pore core. Their ratio depends on the pore size and pore surface composition. Whatever the pore surface, when the pore size decreases the free water ratio in the pore center also decreases. For pores smaller than 2.3 nm and pore surfaces with Zr-OH or Al-OH surfaces, water is strongly linked to the surface and few water molecules are mobile. This is due to the ability of alumina and zirconia to immobilize water molecules through chemical coordination bonds stronger than the physical bonds established between silica and water. The result also highlight that pore surface composition could be the predominant parameter affecting the fixed proton content. Moreover, the mobility of water confined in a leachate is not modified. The study of the water dynamics in a gel formed during alteration of glass constituted of SiO 2 , Al 2 O 3 and CaO, and having a porosity between 2 and 7 nm showed the same behavior as water confined in pores presenting an Al-OH surface. (author) [fr

  17. Sol-gel synthesis and characterisation of nano-scale hydroxyapatite

    International Nuclear Information System (INIS)

    Bilton, M; Brown, A P; Milne, S J

    2010-01-01

    Hydroxyapatite (HAp) forms the main mineral component of bone and teeth. This naturally occurring HAp is in the form of nano-metre sized crystallites of Ca 10 (PO 4 ) 6 (OH) 2 that contain a number of cation and anion impurities, for example CO 3 2- , F - , Na + , Mg 2+ and Sr 2+ . Synthetic nano-sized HAp particles exhibit favourable biocompatibility and bioactivity and in order to better match the composition to natural HAp there is great interest in producing a range of chemically modified powders. In this study, two HAp powders have been synthesised via a water-based low-temperature sol-gel method and a third, commercial powder from Sigma-Aldrich have been analysed. Subsequent powder calcination has been carried out within the temperature range of 500-700 0 C and the products characterised by bulk chemical analysis, X-ray diffraction and electron microscopy. Energy dispersive X-ray spectroscopy (EDX) in the TEM has been used to assess the composition of individual HAp particles. In order to do this accurately it is first necessary to account for the sensitivity of the HAp structure and composition to irradiation by the high energy electron beam of the TEM. This was done by monitoring the estimated Ca/P ratio derived from TEM-EDX of stoichiometric HAp under increasing levels of electron fluence. A fluence threshold (at a given beam energy) was established below which the measured Ca/P ratio can be considered to be stable. Subsequent elemental analysis at or below this threshold has enabled the variation in composition between particles both within and between synthesis batches to be accurately assessed. Compositional variability between particles is also evident, even in the commercial powder, but is far greater in the powders prepared by the sol-gel method.

  18. Spherical LDH-Ag°-montmorillonite heterocoagulated system with a pH-dependent sol-gel structure for controlled accessibility of AgNPs immobilized on the clay lamellae.

    Science.gov (United States)

    Deák, Ágota; Janovák, László; Tallósy, Szabolcs Péter; Bitó, Tamás; Sebők, Dániel; Buzás, Norbert; Pálinkó, István; Dékány, Imre

    2015-02-17

    Aqueous suspensions of spherical ZnMgAl-layered double hydroxides [LDH(sph)] and antibacterial silver nanoparticles (AgNPs) deposited on the lamellae of montmorillonite were used for the synthesis of composites, which behave like coherent gels at low pH (≲4.5) and incoherent sols at higher pH (≳4.5). The composition of the composite was chosen as LDH(sph)/Ag°-montm. = 25:75 wt % in order to ensure a sol-gel transition that can also be characterized by viscometry. This pH-sensitive heterocoagulated system consisting of oppositely charged colloid particles was suitable for the release of antimicrobial AgNPs immobilized on the clay lamellae via a pH-controlled gel-sol transition. The heterocoagulation process was also characterized by surface charge titration measurements. Spherical LDH/Ag°-montmorillonite composite samples were identified by X-ray diffraction (XRD) measurements. The morphological properties of the composites were studied, and the presence of the heterocoagulated structure was confirmed by scanning electron microscopy (SEM). The nanoscale structure of the LDH(sph)-Ag°-montmorillonite composite obtained was also verified by small-angle X-ray scattering (SAXS), and the rheological characteristics were studied at various pH values. The viscosity and yield value of the composite decreased by an order of magnitude upon increasing the pH from 3.0 to 5.5. The sol-gel transition of the composite suspension was reversible in the previously mentioned pH range.

  19. Composite media for fluid stream processing, a method of forming the composite media, and a related method of processing a fluid stream

    Science.gov (United States)

    Garn, Troy G; Law, Jack D; Greenhalgh, Mitchell R; Tranter, Rhonda

    2014-04-01

    A composite media including at least one crystalline aluminosilicate material in polyacrylonitrile. A method of forming a composite media is also disclosed. The method comprises dissolving polyacrylonitrile in an organic solvent to form a matrix solution. At least one crystalline aluminosilicate material is combined with the matrix solution to form a composite media solution. The organic solvent present in the composite media solution is diluted. The composite media solution is solidified. In addition, a method of processing a fluid stream is disclosed. The method comprises providing a beads of a composite media comprising at least one crystalline aluminosilicate material dispersed in a polyacrylonitrile matrix. The beads of the composite media are contacted with a fluid stream comprising at least one constituent. The at least one constituent is substantially removed from the fluid stream.

  20. Sol-Gel-Hydrothermal Synthesis of the Heterostructured TiO2/N-Bi2WO6 Composite with High-Visible-Light- and Ultraviolet-Light-Induced Photocatalytic Performances

    Directory of Open Access Journals (Sweden)

    Jiang Zhang

    2012-01-01

    Full Text Available The heterostructured TiO2/N-Bi2WO6 composites were prepared by a facile sol-gel-hydrothermal method. The phase structures, morphologies, and optical properties of the samples were characterized by using X-ray powder diffraction (XRD, scanning electron microscopy (SEM, high-resolution transmission electron microscopy (HRTEM, energy dispersive spectroscopy (EDS, and UV-vis diffuse reflectance spectroscopy. The photocatalytic activities for rhodamine B of the as-prepared products were measured under visible and ultraviolet light irradiation at room temperature. The TiO2/N-Bi2WO6 composites exhibited much higher photocatalytic performances than TiO2 as well as Bi2WO6. The enhancement in the visible light photocatalytic performance of the TiO2/N-Bi2WO6 composites could be attributed to the effective electron-hole separations at the interfaces of the two semiconductors, which facilitate the transfer of the photoinduced carriers.

  1. Novel hybrid sol-gel coatings for corrosion protection of AZ31B magnesium alloy

    International Nuclear Information System (INIS)

    Lamaka, S.V.; Montemor, M.F.; Galio, A.F.; Zheludkevich, M.L.; Trindade, C.; Dick, L.F.; Ferreira, M.G.S.

    2008-01-01

    This work aims to develop and study new anticorrosion films for AZ31B magnesium alloy based on the sol-gel coating approach. Hybrid organic-inorganic sols were synthesized by copolymerization of epoxy-siloxane and titanium or zirconium alkoxides. Tris(trimethylsilyl) phosphate was also used as additive to confer additional corrosion protection to magnesium-based alloy. A sol-gel coating, about 5-μm thick, shows good adhesion to the metal substrate and prevents corrosion attack in 0.005 M NaCl solution for 2 weeks. The sol-gel coating system doped with tris(trimethylsilyl)-phosphate revealed improved corrosion protection of the magnesium alloy due to formation of hydrolytically stable Mg-O-P chemical bonds. The structure and the thickness of the sol-gel film were characterized by transmission electron microscopy (TEM) and scanning electron microscopy (SEM). The corrosion behaviour of AZ31B substrates pre-treated with the sol-gel derived hybrid coatings was tested by electrochemical impedance spectroscopy (EIS). The chemical composition of the silylphosphate-containing sol-gel film at different depths was investigated by X-ray photoelectron spectroscopy (XPS) with depth profiling

  2. Preparation and characterization of conductive and transparent ruthenium dioxide sol-gel films.

    Science.gov (United States)

    Allhusen, John S; Conboy, John C

    2013-11-27

    RuO2 conductive thin films were synthesized using the sol-gel method and deposited onto transparent insulating substrates. The optical transmission, film thickness, surface morphology and composition, resistivity, and spectroelectrochemical performance have been characterized. The optical transmission values of these films ranged from 70 to 89% in the visible region and from 56 to 88% in the infrared region. Resistivity values of the RuO2 sol-gel films varied from 1.02 × 10(-3) to 1.13 Ω cm and are highly dependent on the initial solution concentration of RuO2 in the sol-gel. The RuO2 sol-gel films were used as electrodes for the electrochemical oxidation and reduction of ferrocenemethanol. The electrochemical behavior of our novel RuO2 sol-gel films was compared to that of a standard platinum disk electrode and showed no appreciable differences in the half-wave potential (E1/2). The mechanical and chemical stability of the coatings was tested by physical abrasion and exposure to highly acidic, oxidizing Piranha solution. Repeated exposure to these extreme conditions did not result in any appreciable decline in electrochemical performance. Finally, the use of the novel RuO2 sol-gel conductive and transparent films was demonstrated in a spectroelectrochemistry experiment in which the oxidation and reduction of ferrocenemethanol was monitored via UV-vis spectroscopy as the applied potential was cycled.

  3. Graphene macro-assembly-fullerene composite for electrical energy storage

    Science.gov (United States)

    Campbell, Patrick G.; Baumann, Theodore F.; Biener, Juergen; Merrill, Matthew; Montalvo, Elizabeth; Worsley, Marcus A.; Biener, Monika M.; Hernandez, Maira Raquel Ceron

    2018-01-16

    Disclosed here is a method for producing a graphene macro-assembly (GMA)-fullerene composite, comprising providing a GMA comprising a three-dimensional network of graphene sheets crosslinked by covalent carbon bonds, and incorporating at least 20 wt. % of at least one fullerene compound into the GMA based on the initial weight of the GMA to obtain a GMA-fullerene composite. Also described are a GMA-fullerene composite produced, an electrode comprising the GMA-fullerene composite, and a supercapacitor comprising the electrode and optionally an organic or ionic liquid electrolyte in contact with the electrode.

  4. Dielectric and piezoelectric properties of sol-gel derived Ca doped PbTiO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Chauhan, Arun Kumar Singh [Department of Physics and Astrophysics, University of Delhi, Delhi 110007 (India); Gupta, Vinay [Department of Physics and Astrophysics, University of Delhi, Delhi 110007 (India)]. E-mail: drvin_gupta@rediffmail.com; Sreenivas, K. [Department of Physics and Astrophysics, University of Delhi, Delhi 110007 (India)

    2006-06-15

    Synthesis of Ca doped PbTiO{sub 3} powder by a chemically derived sol-gel process is described. Crystallization characteristics of different compositions Pb{sub 1-x}Ca {sub x}TiO{sub 3} (PCT) with varying calcium (Ca) content in the range x = 0-0.45 has been investigated by DTA/TGA, X-ray diffraction and scanning electron microscopy. The crystallization temperature is found to decrease with increasing calcium content. X-ray diffraction reveals a tetragonal structure for PCT compositions with x {<=} 0.35, and a cubic structure for x = 0.45. Dielectric properties on sintered ceramics prepared with fine sol-gel derived powders have been measured. The dielectric constant is found to increase with increasing Ca content, and the dielectric loss decreases continuously. Sol-gel derived Pb{sub 1-x}Ca {sub x}TiO{sub 3} ceramics with x = 0.45 after poling exhibit infinite electromechanical anisotropy (k {sub t}/k {sub p}) with a high d {sub 33} = 80 pC/N, {epsilon}' = 298 and low dielectric loss (tan {delta} = 0.0041)

  5. Preparation of electrodes on cfrp composites with low contact resistance comprising laser-based surface pre-treatment

    KAUST Repository

    Almuhammadi, Khaled Hamdan

    2016-12-29

    Various examples are provided related to the preparation of electrodes on carbon fiber reinforced polymer (CFRP) composites with low contact resistance. Laser-based surface preparation can be used for bonding to CFRP composites. In one example, a method includes preparing a pretreated target area on a CFRP composite surface using laser pulsed irradiation and bonding an electrode to exposed fibers in the pretreated target area. The surface preparation can allow the electrode to have a low contact resistance with the CFRP composite.

  6. Effect of process conditions on the gel viscosity and gel strength of semi-refined carrageenan (SRC produced from seaweed (Kappaphycus alvarezii

    Directory of Open Access Journals (Sweden)

    Awang Bono

    2014-01-01

    Full Text Available Kappaphycus alvarezii or commonly known Euchema cottonii is a good source of kappa-carrageenan and can be found cultivated in the coastal areas of Malaysia, Philippines and Indonesia. Carrageenans have many applications and are utilized in human food and pet-food industry. Carrageenans are also utilized in non-food industry such as pharmaceuticals, cosmetics, printing and textile formulations. Currently, the Southeast Asian region is producing semi refined carrageenan (SRC. There are various works in producing SRC; however, there are limited efforts to develop the optimization of cooking process parameters. Hence, the present study features on the cooking process (alkaline treatment where the parameters (concentration of potassium hydroxide solution, cooking time and cooking temperature and the ranges are identified experimentally. The effects of these parameters on carrageenan quality such as gel viscosity and gel strength were studied. The optimization of cooking process parameters and the experimental design was conducted based on the Central Composite Design (CCD of Response Surface Methodology (RSM. The experimental result showed that gel viscosity increases with the decrease of cooking time, cooking temperature and potassium hydroxide (KOH concentration (% w/w. In contrast, gel strength increases as cooking time, cooking temperature and KOH concentration (% w/w increases. From the optimization, the best conditions for alkaline treatment found were cooking temperature 80 °C, cooking time 30 min and KOH concentration 10 (% w/w which are similar to current practice in industry.

  7. Bibliography on Ceramic Matrix Composites and Reinforcing Whiskers, Platelets, and Fibers, 1970-1990

    Science.gov (United States)

    1993-08-01

    Triphasic Sol-Gel Route 2.2.3.8 Srikanth, V. Ravindranathan, P. Crystallization of Gel-Derived Mullite-Zirconia Rani, L. Roy, R. Composites Metal and...179 9.8.1 ArmorMaterials 9.8.1.5 Ceramic Matrix Composite Reactor /Radiator 9.8.1.1 Armor Structures Development and Current Status of Armor Pacquette, E

  8. A thermodynamic model for C-(N-)A-S-H gel: CNASHss. Derivation and validation

    International Nuclear Information System (INIS)

    Myers, Rupert J.; Bernal, Susan A.; Provis, John L.

    2014-01-01

    The main reaction product in Ca-rich alkali-activated cements and hybrid Portland cement (PC)-based materials is a calcium (alkali) aluminosilicate hydrate (C-(N-)A-S-H) gel. Thermodynamic models without explicit definitions of structurally-incorporated Al species have been used in numerous past studies to describe this gel, but offer limited ability to simulate the chemistry of blended PC materials and alkali-activated cements. Here, a thermodynamic model for C-(N-)A-S-H gel is derived and parameterised to describe solubility data for the CaO–(Na 2 O,Al 2 O 3 )–SiO 2 –H 2 O systems and alkali-activated slag (AAS) cements, and chemical composition data for C-A-S-H gels. Simulated C-(N-)A-S-H gel densities and molar volumes are consistent with the corresponding values reported for AAS cements, meaning that the model can be used to describe chemical shrinkage in these materials. Therefore, this model can provide insight into the chemistry of AAS cements at advanced ages, which is important for understanding the long-term durability of these materials

  9. Polymer gel dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Baldock, C [Institute of Medical Physics, School of Physics, University of Sydney (Australia); De Deene, Y [Radiotherapy and Nuclear Medicine, Ghent University Hospital (Belgium); Doran, S [CRUK Clinical Magnetic Resonance Research Group, Institute of Cancer Research, Surrey (United Kingdom); Ibbott, G [Radiation Physics, UT M D Anderson Cancer Center, Houston, TX (United States); Jirasek, A [Department of Physics and Astronomy, University of Victoria, Victoria, BC (Canada); Lepage, M [Centre d' imagerie moleculaire de Sherbrooke, Departement de medecine nucleaire et de radiobiologie, Universite de Sherbrooke, Sherbrooke, QC (Canada); McAuley, K B [Department of Chemical Engineering, Queen' s University, Kingston, ON (Canada); Oldham, M [Department of Radiation Oncology, Duke University Medical Center, Durham, NC (United States); Schreiner, L J [Cancer Centre of South Eastern Ontario, Kingston, ON (Canada)], E-mail: c.baldock@physics.usyd.edu.au, E-mail: yves.dedeene@ugent.be

    2010-03-07

    Polymer gel dosimeters are fabricated from radiation sensitive chemicals which, upon irradiation, polymerize as a function of the absorbed radiation dose. These gel dosimeters, with the capacity to uniquely record the radiation dose distribution in three-dimensions (3D), have specific advantages when compared to one-dimensional dosimeters, such as ion chambers, and two-dimensional dosimeters, such as film. These advantages are particularly significant in dosimetry situations where steep dose gradients exist such as in intensity-modulated radiation therapy (IMRT) and stereotactic radiosurgery. Polymer gel dosimeters also have specific advantages for brachytherapy dosimetry. Potential dosimetry applications include those for low-energy x-rays, high-linear energy transfer (LET) and proton therapy, radionuclide and boron capture neutron therapy dosimetries. These 3D dosimeters are radiologically soft-tissue equivalent with properties that may be modified depending on the application. The 3D radiation dose distribution in polymer gel dosimeters may be imaged using magnetic resonance imaging (MRI), optical-computerized tomography (optical-CT), x-ray CT or ultrasound. The fundamental science underpinning polymer gel dosimetry is reviewed along with the various evaluation techniques. Clinical dosimetry applications of polymer gel dosimetry are also presented. (topical review)

  10. Induced viscosity fibre system for the treatment or prevention of gastro-oesophageal reflux (gor)

    NARCIS (Netherlands)

    Belle, F.N.; Harthoorn, L.F.; Venema, P.; Choi, W.M.C.

    2014-01-01

    The invention pertains to the use of pectin and alginate in the manufacture of a liquid nutritional composition in the treatment or prevention of gastro-oesophageal reflux in a patient, said composition comprising pectin and alginate, said composition exhibiting a maximum gel strength at a pH in the

  11. Applications of gel dosimetry

    International Nuclear Information System (INIS)

    Ibbott, Geoffrey S

    2004-01-01

    Gel dosimetry has been examined as a clinical dosimeter since the 1950s. During the last two decades, however, a rapid increase in the number of investigators has been seen, and the body of knowledge regarding gel dosimetry has expanded considerably. Gel dosimetry is still considered a research project, and the introduction of this tool into clinical use is proceeding slowly. This paper will review the characteristics of gel dosimetry that make it desirable for clinical use, the postulated and demonstrated applications of gel dosimetry, and some complications, set-backs, and failures that have contributed to the slow introduction into routine clinical use

  12. Removing water from gels

    International Nuclear Information System (INIS)

    Lane, E.S.; Winter, J.A.

    1982-01-01

    Water is removed from a gel material by contacting the gel material with an organic liquid and contacting the organic liquid with a gas such that water is taken up by the gas. The invention, in one embodiment, may be used to dry gel materials whilst maintaining an open porous network therein. In one example, the invention is applied to gel precipitated spheres containing uranium and plutonium. (author)

  13. Synthesis and characterization of hydroxyapatite-gelatine composite materials for orthopaedic application

    International Nuclear Information System (INIS)

    Yanovska, A.; Kuznetsov, V.; Stanislavov, A.; Husak, E.; Pogorielov, M.; Starikov, V.; Bolshanina, S.; Danilchenko, S.

    2016-01-01

    The composite materials based on hydroxyapatite (HA) and gelatine (Gel) with addition of silver and zirconium oxide were obtained. The study investigates a combination of low powered ultrasonic irradiation and low concentration of gelatine in the co-precipitation synthesis. These composites have different weight ratios of organic/inorganic components and may be synthesized in two ways: simple mixing and co-precipitation. Both of which were compared. The estimation of porosity, in vivo testing, surface morphology and phase composition as well as the IR-analysis were provided. Hydroxyapatite was the main crystalline phase in obtained composites. While around powdered HA-Gel composite the connective tissue capsule is formed without bone tissue formation, HA-Gel-Ag porous composite implantation leads to formation of new bone tissue and activation of cell proliferation. Addition of silver ions into composite material allows decreasing inflammation on the first stage of implantation and has positive effect on bone tissue formation. Some of the obtained composite materials containing silver or ZrO_2 are biocompatible. bio-resorbable and osteoconductive with high level of porosity (75–85%). - Highlights: • Hydroxyapatite-gelatine composites with addition of Ag"+ and ZrO_2 were obtained. • Composites were synthesized in two ways: simple mixing and co-precipitation. • Co-precipitation synthesis combined ultrasonic treatment and low concentration of gelatine. • Obtained composites have different weight ratios of organic/inorganic components. • Some composites are osteoconductive and all of them have high level of porosity (75–85%).

  14. Laminated exfoliated graphite composite-metal compositions for fuel cell flow field plate or bipolar plate applications

    Science.gov (United States)

    Zhamu, Aruna; Shi, Jinjun; Guo, Jiusheng; Jang, Bor Z

    2014-05-20

    An electrically conductive laminate composition for fuel cell flow field plate or bipolar plate applications. The laminate composition comprises at least a thin metal sheet having two opposed exterior surfaces and a first exfoliated graphite composite sheet bonded to the first of the two exterior surfaces of the metal sheet wherein the exfoliated graphite composite sheet comprises: (a) expanded or exfoliated graphite and (b) a binder or matrix material to bond the expanded graphite for forming a cohered sheet, wherein the binder or matrix material is between 3% and 60% by weight based on the total weight of the first exfoliated graphite composite sheet. Preferably, the first exfoliated graphite composite sheet further comprises particles of non-expandable graphite or carbon in the amount of between 3% and 60% by weight based on the total weight of the non-expandable particles and the expanded graphite. Further preferably, the laminate comprises a second exfoliated graphite composite sheet bonded to the second surface of the metal sheet to form a three-layer laminate. Surface flow channels and other desired geometric features can be built onto the exterior surfaces of the laminate to form a flow field plate or bipolar plate. The resulting laminate has an exceptionally high thickness-direction conductivity and excellent resistance to gas permeation.

  15. Iron-based soft magnetic composites with Mn-Zn ferrite nanoparticles coating obtained by sol-gel method

    Science.gov (United States)

    Wu, Shen; Sun, Aizhi; Xu, Wenhuan; Zhang, Qian; Zhai, Fuqiang; Logan, Philip; Volinsky, Alex A.

    2012-11-01

    This paper focuses on iron-based soft magnetic composites which were synthesized by utilizing Mn-Zn ferrite nanoparticles to coat iron powder. The nanocrystalline iron powders, with an average particle diameter of 20 nm, were obtained via the sol-gel method. Scanning electron microscopy, energy dispersive X-ray spectroscopy and distribution maps show that the iron particle surface is covered with a thin layer of Mn-Zn ferrites. Mn-Zn ferrite uniformly coated the surface of the powder particles, resulting in a reduced imaginary permeability, increased electrical resistivity and a higher operating frequency of the synthesized magnets. Mn-Zn ferrite coated samples have higher permeability and lower magnetic loss when compared with the non-magnetic epoxy resin coated compacts. The real part of permeability increases by 33.5% when compared with the epoxy resin coated samples at 10 kHz. The effects of heat treatment temperature on crystalline phase formation and on the magnetic properties of the Mn-Zn ferrite were investigated via X-ray diffraction and a vibrating sample magnetometer. Ferrites decomposed to FeO and MnO after annealing above 400 °C in nitrogen; thus it is the optimum annealing temperature to attain the desired permeability.

  16. Categorization of rheological scaling models for particle gels applied to casein gels

    NARCIS (Netherlands)

    Mellema, M.; Opheusden, van J.H.J.; Vliet, van T.

    2002-01-01

    Rennet-induced casein gels made from skim milk were studied rheologically. A scaling model or framework for describing the rheological behavior of gels is discussed and used for classification of the structure of casein gels. There are two main parameters in the model that describe the number of

  17. Thermal Diffusivity and Thermal Conductivity of Dispersed Glass Sphere Composites Over a Range of Volume Fractions

    Science.gov (United States)

    Carson, James K.

    2018-06-01

    Glass spheres are often used as filler materials for composites. Comparatively few articles in the literature have been devoted to the measurement or modelling of thermal properties of composites containing glass spheres, and there does not appear to be any reported data on the measurement of thermal diffusivities over a range of filler volume fractions. In this study, the thermal diffusivities of guar-gel/glass sphere composites were measured using a transient comparative method. The addition of the glass beads to the gel increased the thermal diffusivity of the composite, more than doubling the thermal diffusivity of the composite relative to the diffusivity of the gel at the maximum glass volume fraction of approximately 0.57. Thermal conductivities of the composites were derived from the thermal diffusivity measurements, measured densities and estimated specific heat capacities of the composites. Two approaches to modelling the effective thermal diffusivity were considered.

  18. Polymer gel dosimeter based on itaconic acid

    International Nuclear Information System (INIS)

    Mattea, Facundo; Chacón, David

    2015-01-01

    A new polymeric dosimeter based on itaconic acid and N, N’-methylenebisacrylamide was studied. The preparation method, compositions of monomer and crosslinking agent and the presence of oxygen in the dosimetric system were analyzed. The resulting materials were irradiated with an X-ray tube at 158 cGy/min, 226 cGy min and 298 cGy/min with doses up to 1000 Gy. The dosimeters presented a linear response in the dose range 75–1000 Gy, sensitivities of 0.037 1/Gy at 298 cGy/min and an increase in the sensitivity with lower dose rates. One of the most relevant outcomes in this study was obtaining different monomer to crosslinker inclusion in the formed gel for the dosimeters where oxygen was purged during the preparation method. This effect has not been reported in other typical dosimeters and could be attributed to the large differences in the reactivity among these species. - Highlights: • A novel polymer gel dosimeters based on itaconic acid is presented and characterized. • The typical linear trend of the dose behavior in a specific dose range was found. • Different gel structures were formed when oxygen and an antioxidant were present. • Absorbed dose is univocally correlated with optic absorbance and Raman spectroscopy. • Itaconic acid appears as a reliable radiation dosimeter that may be further improved.

  19. Puncture-Healing Thermoplastic Resin Carbon-Fiber-Reinforced Composites

    Science.gov (United States)

    Gordon, Keith L. (Inventor); Siochi, Emilie J. (Inventor); Grimsley, Brian W. (Inventor); Cano, Roberto J. (Inventor); Czabaj, Michael W. (Inventor)

    2015-01-01

    A composite comprising a combination of a self-healing polymer matrix and a carbon fiber reinforcement is described. In one embodiment, the matrix is a polybutadiene graft copolymer matrix, such as polybutadiene graft copolymer comprising poly(butadiene)-graft-poly(methyl acrylate-co-acrylonitrile). A method of fabricating the composite is also described, comprising the steps of manufacturing a pre-impregnated unidirectional carbon fiber preform by wetting a plurality of carbon fibers with a solution, the solution comprising a self-healing polymer and a solvent, and curing the preform. A method of repairing a structure made from the composite of the invention is described. A novel prepreg material used to manufacture the composite of the invention is described.

  20. Lecithin-based nanostructured gels for skin delivery: an update on state of art and recent applications.

    Science.gov (United States)

    Elnaggar, Yosra S R; El-Refaie, Wessam M; El-Massik, Magda A; Abdallah, Ossama Y

    2014-04-28

    Conventional carriers for skin delivery encounter obstacles of drug leakage, scanty permeation and low entrapment efficiency. Phospholipid nanogels have recently been recognized as prominent delivery systems to circumvent such obstacles and impart easier application. The current review provides an overview on different types of lecithin nanostructured gels, with particular emphasis on liposomal versus microemulsion gelled systems. Liposomal gels investigated encompassed classic liposomal hydrogel, modified liposomal gels (e.g. Transferosomal, Ethosomal, Pro-liposomal and Phytosomal gels), Microgel in liposomes (M-i-L) and Vesicular phospholipid gel (VPG). Microemulsion gelled systems encompassed Lecithin microemulsion-based organogels (LMBGs), Pluronic lecithin organogels (PLOs) and Lecithin-stabilized microemulsion-based hydrogels. All systems were reviewed regarding matrix composition, state of art, characterization and updated applications. Different classes of lecithin nanogels exhibited crucial impact on transdermal delivery regarding drug permeation, drug loading and stability aspects. Future perspectives of this theme issue are discussed based on current laboratory studies. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Method and compositions for producting optically clear photocatalytic coatings

    DEFF Research Database (Denmark)

    2009-01-01

    The invention relates to a method and compositions for producing a hydrophilic coating on a surface of a solid material. The method comprises a cleaning step and a coating step. The cleaning step may be preceded by an initial cleaning step and it may optionally be succeeded by a preconditioning...... step prior to the coating step. The cleaning step comprises cleaning and preconditioning a surface of a material by use of a first cleaning fluid composition comprising ceria (CeO2) particles. The coating step comprises treatment by use of a coating fluid composition comprising photocatalytically...

  2. A lightweight scalable agarose-gel-synthesized thermoelectric composite

    Science.gov (United States)

    Kim, Jin Ho; Fernandes, Gustavo E.; Lee, Do-Joong; Hirst, Elizabeth S.; Osgood, Richard M., III; Xu, Jimmy

    2018-03-01

    Electronic devices are now advancing beyond classical, rigid systems and moving into lighweight flexible regimes, enabling new applications such as body-wearables and ‘e-textiles’. To support this new electronic platform, composite materials that are highly conductive yet scalable, flexible, and wearable are needed. Materials with high electrical conductivity often have poor thermoelectric properties because their thermal transport is made greater by the same factors as their electronic conductivity. We demonstrate, in proof-of-principle experiments, that a novel binary composite can disrupt thermal (phononic) transport, while maintaining high electrical conductivity, thus yielding promising thermoelectric properties. Highly conductive Multi-Wall Carbon Nanotube (MWCNT) composites are combined with a low-band gap semiconductor, PbS. The work functions of the two materials are closely matched, minimizing the electrical contact resistance within the composite. Disparities in the speed of sound in MWCNTs and PbS help to inhibit phonon propagation, and boundary layer scattering at interfaces between these two materials lead to large Seebeck coefficient (> 150 μV/K) (Mott N F and Davis E A 1971 Electronic Processes in Non-crystalline Materials (Oxford: Clarendon), p 47) and a power factor as high as 10 μW/(K2 m). The overall fabrication process is not only scalable but also conformal and compatible with large-area flexible hosts including metal sheets, films, coatings, possibly arrays of fibers, textiles and fabrics. We explain the behavior of this novel thermoelectric material platform in terms of differing length scales for electrical conductivity and phononic heat transfer, and explore new material configurations for potentially lightweight and flexible thermoelectric devices that could be networked in a textile.

  3. Adjustable rheology of fumed silica dispersion in urethane prepolymers: Composition-dependent sol and gel behaviors and energy-mediated shear responses

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Zhong, E-mail: 11329038@zju.edu.cn; Song, Yihu, E-mail: s-yh0411@zju.edu.cn; Wang, Xiang, E-mail: 11229036@zju.edu.cn; Zheng, Qiang, E-mail: zhengqiang@zju.edu.cn [MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027 (China)

    2015-07-15

    Variation of colloidal and interfacial interactions leads to a microstructural diversity in fumed silica dispersions exhibiting absolutely different sol- or gel-like rheological responses. In this study, fumed silicas with different surface areas (200–400 m{sup 2}/g) and surface characteristics (hydrophilic or hydrophobic) are dispersed into moisture-cured polyurethane. The microstructures investigated using transmission electron microscope are associated perfectly with three different rheological behaviors: (i) Sols with well-dispersed silica aggregates, (ii) weak gels with agglomerate-linked networks, and (iii) strong gels with concentrated networks of large agglomerates. Though sols and gels are well distinguished by shear thickening or sustained thinning response through steady shear flow test, it is interesting that the sols and weak gels exhibit a uniform modulus plateau-softening-hardening-softening response with increasing dynamic strain at frequency 10 rad s{sup −1} while the strong gels show a sustained softening beyond the linear regime. Furthermore, the onset of softening and hardening can be normalized: The two softening are isoenergetic at mechanical energies of 0.3 J m{sup −3} and 10 kJ m{sup −3}. On the other hand, the hardening is initiated by a critical strain of 60%. The mechanisms involved in the generation of the sol- and the gel-like dispersions and their structural evolutions during shear are thoroughly clarified in relation to the polyols, the characteristic and content of silica and the curing catalysts.

  4. Carbon Cryogel Silicon Composite Anode Materials for Lithium Ion Batteries

    Science.gov (United States)

    Woodworth James; Baldwin, Richard; Bennett, William

    2010-01-01

    A variety of materials are under investigation for use as anode materials in lithium-ion batteries, of which, the most promising are those containing silicon. 10 One such material is a composite formed via the dispersion of silicon in a resorcinol-formaldehyde (RF) gel followed by pyrolysis. Two silicon-carbon composite materials, carbon microspheres and nanofoams produced from nano-phase silicon impregnated RF gel precursors have been synthesized and investigated. Carbon microspheres are produced by forming the silicon-containing RF gel into microspheres whereas carbon nano-foams are produced by impregnating carbon fiber paper with the silicon containing RF gel to create a free standing electrode. 1-4,9 Both materials have demonstrated their ability to function as anodes and utilize the silicon present in the material. Stable reversible capacities above 400 mAh/g for the bulk material and above 1000 mAh/g of Si have been observed.

  5. Sol-gel synthesis and densification of aluminoborosilicate powders. Part 1: Synthesis

    Science.gov (United States)

    Bull, Jeffrey; Selvaduray, Guna; Leiser, Daniel

    1992-01-01

    Aluminoborosilicate powders high in alumina content were synthesized by the sol-gel process utilizing various methods of preparation. Properties and microstructural effects related to these syntheses were examined. After heating to 600 C for 2 h in flowing air, the powders were amorphous with the metal oxides comprising 87 percent of the weight and uncombusted organics the remainder. DTA of dried powders revealed a T(sub g) at approximately 835 C and an exotherm near 900 C due to crystallization. Powders derived from aluminum secbutoxide consisted of particles with a mean diameter 5 microns less than those from aluminum isopropoxide. Powders synthesized with aluminum isopropoxide produced agglomerates comprised of rod shaped particulates while powders made with the secbutoxide precursor produced irregular glassy shards. Compacts formed from these powders required different loadings for equivalent densities according to the method of synthesis.

  6. New Coll–HA/BT composite materials for hard tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Zanfir, Andrei Vlad [Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Material Science, “Politehnica” University of Bucharest, 1-7 Gh. Polizu Street, RO-011061 Bucharest (Romania); Voicu, Georgeta, E-mail: getav2001@yahoo.co.uk [Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Material Science, “Politehnica” University of Bucharest, 1-7 Gh. Polizu Street, RO-011061 Bucharest (Romania); Busuioc, Cristina; Jinga, Sorin Ion [Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Material Science, “Politehnica” University of Bucharest, 1-7 Gh. Polizu Street, RO-011061 Bucharest (Romania); Albu, Madalina Georgiana [Department of Collagen, Branch of Leather and Footwear Research, National Institute of Research and Development for Textile and Leather, 93 I. Minulescu Street, RO-031215 Bucharest (Romania); Iordache, Florin [Department of Fetal and Adult Stem Cell Therapy, “Nicolae Simionescu” Institute of Cellular Biology and Pathology of Romanian Academy, 8 B.P. Hasdeu Street, RO-050568 Bucharest (Romania)

    2016-05-01

    The integration of ceramic powders in composite materials for bone scaffolds can improve the osseointegration process. This work was aimed to the synthesis and characterization of new collagen–hydroxyapatite/barium titanate (Coll–HA/BT) composite materials starting from barium titanate (BT) nanopowder, hydroxyapatite (HA) nanopowder and collagen (Coll) gel. BT nanopowder was produced by combining two wet-chemical approaches, sol–gel and hydrothermal methods. The resulting materials were characterized in terms of phase composition and microstructure by X-ray diffraction, Raman spectroscopy, scanning electron microscopy and transmission electron microscopy. Moreover, the biocompatibility and bioactivity of the composite materials were assessed by in vitro tests. The synthesized BT particles exhibit an average size of around 35 nm and a spherical morphology, with a pseudo-cubic or tetragonal symmetry. The diffraction spectra of Coll–HA and Coll–HA/BT composite materials indicate a pronounced interaction between Col and the mineral phases, meaning a good mineralization of Col fibres. As well, the in vitro tests highlight excellent osteoinductive properties for all biological samples, especially for Coll–HA/BT composite materials, fact that can be attributed to the ferromagnetic properties of BT. - Highlights: • Collagen–hydroxyapatite/barium titanate composite materials were synthesized. • Barium titanate was produced by combining the sol–gel and hydrothermal methods. • The in vitro tests highlight excellent osteoinductive properties for all samples.

  7. New Coll–HA/BT composite materials for hard tissue engineering

    International Nuclear Information System (INIS)

    Zanfir, Andrei Vlad; Voicu, Georgeta; Busuioc, Cristina; Jinga, Sorin Ion; Albu, Madalina Georgiana; Iordache, Florin

    2016-01-01

    The integration of ceramic powders in composite materials for bone scaffolds can improve the osseointegration process. This work was aimed to the synthesis and characterization of new collagen–hydroxyapatite/barium titanate (Coll–HA/BT) composite materials starting from barium titanate (BT) nanopowder, hydroxyapatite (HA) nanopowder and collagen (Coll) gel. BT nanopowder was produced by combining two wet-chemical approaches, sol–gel and hydrothermal methods. The resulting materials were characterized in terms of phase composition and microstructure by X-ray diffraction, Raman spectroscopy, scanning electron microscopy and transmission electron microscopy. Moreover, the biocompatibility and bioactivity of the composite materials were assessed by in vitro tests. The synthesized BT particles exhibit an average size of around 35 nm and a spherical morphology, with a pseudo-cubic or tetragonal symmetry. The diffraction spectra of Coll–HA and Coll–HA/BT composite materials indicate a pronounced interaction between Col and the mineral phases, meaning a good mineralization of Col fibres. As well, the in vitro tests highlight excellent osteoinductive properties for all biological samples, especially for Coll–HA/BT composite materials, fact that can be attributed to the ferromagnetic properties of BT. - Highlights: • Collagen–hydroxyapatite/barium titanate composite materials were synthesized. • Barium titanate was produced by combining the sol–gel and hydrothermal methods. • The in vitro tests highlight excellent osteoinductive properties for all samples.

  8. Gel structure has an impact on pericellular and extracellular matrix deposition, which subsequently alters metabolic activities in chondrocyte-laden PEG hydrogels.

    Science.gov (United States)

    Nicodemus, G D; Skaalure, S C; Bryant, S J

    2011-02-01

    While designing poly(ethylene glycol) hydrogels with high moduli suitable for in situ placement is attractive for cartilage regeneration, the impact of a tighter crosslinked structure on the organization and deposition of the matrix is not fully understood. The objectives of this study were to characterize the composition and spatial organization of new matrix as a function of gel crosslinking and study its impact on chondrocytes in terms of anabolic and catabolic gene expression and catabolic activity. Bovine articular chondrocytes were encapsulated in hydrogels with three crosslinking densities (compressive moduli 60, 320 and 590 kPa) and cultured for 25 days. Glycosaminoglycan production increased with culture time and was greatest in the gels with lowest crosslinking. Collagens II and VI, aggrecan, link protein and decorin were localized to pericellular regions in all gels, but their presence decreased with increasing gel crosslinking. Collagen II and aggrecan expression were initially up-regulated in gels with higher crosslinking, but increased similarly up to day 15. Matrix metalloproteinase (MMP)-1 and MMP-13 expression were elevated (∼25-fold) in gels with higher crosslinking throughout the study, while MMP-3 was unaffected by gel crosslinking. The presence of aggrecan and collagen degradation products confirmed MMP activity. These findings indicate that chondrocytes synthesized the major cartilage components within PEG hydrogels, however, gel structure had a significant impact on the composition and spatial organization of the new tissue and on how chondrocytes responded to their environment, particularly with respect to their catabolic expression. Copyright © 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  9. New generation poly(ε-caprolactone)/gel-derived bioactive glass composites for bone tissue engineering: Part I. Material properties.

    Science.gov (United States)

    Dziadek, Michal; Menaszek, Elzbieta; Zagrajczuk, Barbara; Pawlik, Justyna; Cholewa-Kowalska, Katarzyna

    2015-11-01

    Poly(ε-caprolactone) (PCL) based composite films containing 12 and 21vol.% bioactive glass (SBG) microparticles were prepared by solvent casting method. Two gel-derived SBGs of SiO2-CaO-P2O5 system differing in SiO2 and CaO contents were applied (mol%): S2: 80SiO2, 16CaO, 4P2O5 and A2: 40SiO2, 54CaO, 6P2O5. The surfaces of the films in contact with Petri dish and exposed to the gas phase during casting were denoted as GS and AS, respectively. Both surfaces of films were characterised in terms of their morphology, micro- and nano-topography as well as wettability. Also mechanical properties (tensile strength, Young's modulus) and PCL matrix crystallinity (degree of crystallinity, crystal size) were evaluated. Degradation behaviour was examined by incubation of materials in UHQ-water at 37°C for 56weeks. The crystallinity, melting temperature and mass loss of incubated materials and pH changes of water were monitored. Furthermore, proliferation of MG-63 osteoblastic cells by direct contact and cytotoxic effect of obtained materials were investigated. Results showed that opposite surfaces of the same polymer and composite films differ in studied surface parameters. The addition of SBG particles into PCL matrix improves nano- and micro-roughness of both surfaces, enhances the hydrophilicity of GS surfaces (~67° for 21A2-PCL compared to ~78° for pure PCL) and also makes AS surface more hydrophobic (~94° for 21S2-PCL compared to ~86° for pure PCL). The nucleation density of PCL was increased with increasing content of SBG particles, which results in the large number of fine spherulites on composite AS surfaces observed using polarized optical (POM), scanning electron (SEM), and atomic force (AFM) microscopies. Higher content of SBG particles causes a notable increase of Young's modulus (from 0.38GPa for pure PCL, 0.90GPa for 12A2-PCL to 1.31GPa for 21A2-PCL), which also depends on SBG chemical composition. After 56-week degradation test, considerably higher

  10. Study of nuclear glasses alteration gel and synthesis of some model gels; Etude du gel d`alteration des verres nucleaires et synthese de gels modeles

    Energy Technology Data Exchange (ETDEWEB)

    Ricol, S

    1995-10-05

    This work deals with the general problem of alteration of the reference nuclear glass R7T7. Attention is paid particularly to the altered layer formed at the glass surface during alteration process. In opposition to previous works, related essentially to glass dissolution kinetics based on chemical analyses of lixiviated elements, this thesis deals with alteration problems through structural studies of the reference glass and derived gel. This approach allows the determination of mechanisms for the gel formation and a better understanding of the behaviour of glasses towards lixiviation. Both approaches appeared complementary. Based on several spectroscopic techniques, this work showed the particular role of cations such as calcium, zirconium and iron. Studies of silica-based synthetic gels showed the synergic effect of formers cation and of one highly coordinated cation. The variation of the wavenumber related to Si-O-Si asymmetric stretching vibration can be correlated to O/Si ratio for ternary systems Si/Na/Zr. On the contrary, the Si losses of the materials depend on the number of non-bridging oxygen atoms. In the perspective of long-term behaviour, the alteration gel presents better characteristics than initial glass. It is therefore a highly stable material in static conditions. In the same way, synthetic gels are materials with very low solubilities (much lower than the alteration gel) and could be used as confining matrices. (authors). refs., 71 figs., 37 tabs.

  11. Thoria sol-gel processes

    International Nuclear Information System (INIS)

    Matthews, R.B.

    1978-10-01

    Alternate fuel fabrication techniques are being developed at WNRE as part of the thorium fuel cycle program. The sol-gel techniques are attractive and this report assembles and summarizes information relating to thoria sol-gel fuels. Some background information on the behaviour and advantages of sol-gel fuel forms is presented, followed by a review of relevant colloid chemistry and an explanation of the fundamental steps of sol-gel processes. Finally, several variants to the basic process are reviewed and evaluated. (author)

  12. Review of Fricke gel dosimeters

    International Nuclear Information System (INIS)

    Schreiner, L J

    2004-01-01

    The innovation of adding a gel matrix to the traditional Fricke dosimeter to stabilize geometric information established the field of gel dosimetry for radiation therapy. A discussion of Fricke gels provides an overview of the issues that determine the dose response of all gel dosimeters in general. In this paper we review some of the features of Fricke systems to illustrate these issues and, in addition, to motivate renewed clinical interest in Fricke gels

  13. Gel nano-particulates against radioactivity; Des nanoparticules en gel contre la radioactivite

    Energy Technology Data Exchange (ETDEWEB)

    Deroin, Ph

    2004-11-01

    The Argonne research center (USA) has developed a 'super-gel' compound, a polymer close to those used in baby's diapers, which can reach a 90% efficiency in the radioactive decontamination of porous materials, like bricks or concrete. The contaminated materials are sprayed with a mixture of polymer gel and wetting agent with nano-particulates in suspension. Under the action of the wetting agent, radioactivity migrates from the pores to the gel and is trapped by the nano-particulates. The drying and recycling of the gel allows to reduce the volume of radioactive wastes. Short paper. (J.S.)

  14. Conducting compositions of matter

    Science.gov (United States)

    Viswanathan, Tito (Inventor)

    2000-01-01

    The invention provides conductive compositions of matter, as well as methods for the preparation of the conductive compositions of matter, solutions comprising the conductive compositions of matter, and methods of preparing fibers or fabrics having improved anti-static properties employing the conductive compositions of matter.

  15. Optimization and formulation design of carbopol loaded Piroxicam gel using novel penetration enhancers.

    Science.gov (United States)

    Chaudhary, Hema; Rohilla, Ajay; Rathee, Permender; Kumar, Vikash

    2013-04-01

    The aim of the study was to develop and optimize Piroxicam transdermal gel formulation using three-factor, three-level Box-Behnken design by deriving a second-order polynomial equation to construct contour plots for prediction of responses as three selected independent variables with ratio of carbopol 974 (X1), ratio of propylene glycol (PG) (X2) and ratio of ethanol (X3). The dependent variables studied were the skin permeation rate of piroxicam (Y1), viscosity of the gel (Y2) and pH of the gel (Y3). Response surface plots were drawn, statistical validity of the polynomials was established to find the compositions of optimized formulation which was evaluated using the vertical Franz-type diffusion cell. The permeation rate of piroxicam increased proportionally with ethanol concentration but decreased with polymer concentration. The design demonstrated the role of the derived polynomial equation and contour plots in predicting the values of dependent variables for the preparation and optimization of gel formulation. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Synthesis of LiFePO4/C composites based on natural iron stone using a sol gel method

    Science.gov (United States)

    Angela, Riyan; Islam, Humaatul; Sari, Vamellia; Latif, Chaironi; Zainuri, Mochamad; Pratapa, Suminar

    2017-01-01

    Synthesis of LiFePO4/C composites has been carried out using a sol gel method. The Fe precursor was made from a natural iron stone of Tanah Laut, South Kalimantan, while the other raw materials were commercial Li2CO3 powder and NH4H2PO4 powder with HCl and water as solvents. Citric acid was used as the carbon source in the synthesis. This study used a molar ratio of 1:1:2 for Li:Fe:P with variation of added citric acid of 1.5 and 2.5 g. The solutions were dried in air at 100°C. The dried powders were characterized using DSC-TGA and then calcined at 600 and 700°C under argon environment for 10 hours. The calcined powders were characterized by X-ray diffractometry (XRD), scanning electron microscopy-energy dispersive x-ray (SEM-EDX), and LCR meter. It was found that the samples contained LiFePO4 as the dominant phase and LiFeP2O7 and Fe2O3 as secondary phases. The analysis showed that the addition of citric acid influenced the electronic conductivity of the composites. A Rietveld relative weight fraction of up to 94.7% was achieved in the synthesis at temperature 600°C. The LFP/C sample exhibited electronic conductivity of 4.56×10-3 Scm-1 which was six times of that of the pure LFP.

  17. Polymer gel dosimeters with enhanced sensitivity for use in x-ray CT polymer gel dosimetry

    International Nuclear Information System (INIS)

    Jirasek, A; Hilts, M; McAuley, K B

    2010-01-01

    A primary limitation of current x-ray CT polymer gel dosimetry is the low contrast, and hence poor dose resolution, of dose images produced by the system. The low contrast is largely due to the low-dose sensitivity of current formulations of polymer gel for x-ray CT imaging. This study reports on the investigation of new dosimeter formulations with improved dose sensitivity for x-ray CT polymer gel dosimetry. We incorporate an isopropanol co-solvent into an N-isopropylacrylamide-based gel formulation in order to increase the total monomer/crosslinker concentration (%T) within the formulation. It is shown that gels of high %T exhibit enhanced dose sensitivity and dose resolutions over traditional formulations. The gels are shown to be temporally stable and reproducible. A single formulation (16%T) is used to demonstrate the capabilities of the x-ray CT polymer gel dosimetry system in measuring known dose distributions. A 1 L gel volume is exposed to three separate irradiations: a single-field percent depth dose, a two-field 'cross' and a three-field 'test case'. The first two irradiations are used to generate a dose calibration curve by which images are calibrated. The calibrated images are compared with treatment planning predictions and it is shown that the x-ray CT polymer gel dosimetry system is capable of capturing spatial and dose information accurately. The proposed new gel formulation is shown to be sensitive, stable and to improve the dose resolution over current formulations so as to provide a feasible gel for clinical applications of x-ray CT polymer gel dosimetry.

  18. In situ immobilization on the silica gel surface and adsorption capacity of polymer-based azobenzene on toxic metal ions

    Science.gov (United States)

    Savchenko, Irina; Yanovska, Elina; Sternik, Dariusz; Kychkyruk, Olga; Ol'khovik, Lidiya; Polonska, Yana

    2018-03-01

    In situ immobilization of poly[(4-methacryloyloxy-(4'-carboxy)azobenzene] on silica gel surface has been performed by radical polymerization of monomer. The fact of polymer immobilization is confirmed by IR spectroscopy. TG and DSC-MS analysis showed that the mass of the immobilized polymer was 10.61%. The SEM-microphotograph-synthesized composite analysis showed that the immobilized polymer on the silica gel surface is placed in the form of fibers. It has been found that the synthesized composite exhibits the sorption ability in terms of microquantities of Cu(II), Cd(II), Pb(II), Mn(II) and Fe(III) ions in a neutral aqueous medium. The quantitative sorption of microquantities of Pb(II) and Fe(III) ions has been recorded. It has been found that immobilization of the silica gel surface leads to an increase in its sorption capacitance for Fe(III), Cu(II) and Pb(II) ions by half.

  19. REINFORCED COMPOSITE PANEL

    DEFF Research Database (Denmark)

    2003-01-01

    A composite panel having front and back faces, the panel comprising facing reinforcement, backing reinforcement and matrix material binding to the facing and backing reinforcements, the facing and backing reinforcements each independently comprising one or more reinforcing sheets, the facing rein...... by matrix material, the facing and backing reinforcements being interconnected to resist out-of-plane relative movement. The reinforced composite panel is useful as a barrier element for shielding structures, equipment and personnel from blast and/or ballistic impact damage....

  20. Design of Autonomous Gel Actuators

    Directory of Open Access Journals (Sweden)

    Shuji Hashimoto

    2011-01-01

    Full Text Available In this paper, we introduce autonomous gel actuators driven by chemical energy. The polymer gels prepared here have cyclic chemical reaction networks. With a cyclic reaction, the polymer gels generate periodical motion. The periodic motion of the gel is produced by the chemical energy of the oscillatory Belouzov-Zhabotinsky (BZ reaction. We have succeeded in making synthetic polymer gel move autonomously like a living organism. This experimental fact represents the great possibility of the chemical robot.

  1. Low temperature synthesis of CaO-SiO2 glasses having stable liquid-liquid immiscibility by sol-gel process

    Science.gov (United States)

    Bansal, Narottam P.

    1990-01-01

    Calcium silicate glass compositions lying within the liquid-liquid immiscibility dome of the phase diagram, which could not have been prepared by the conventional melting method, were synthesized by the sol-gel process. Hydrolysis and polycondensation of tetraethyl orthosilicate (TEOS) solutions containing up to 20 mol percent calcium nitrate resulted in the formation of clear and transparent gels. The gel formation time decreased with increase in water:TEOS mole ratio, calcium content, and the reaction temperature. Smaller values of gel times in the presence of calcium nitrate are probably caused by lowering of the ionic charge on the sol particles by the salt present. The gelation activation energy, E(sub gel), was evaluated from temperature dependence of the gel time. Presence of Ca(2+) ions or the water:TEOS mole ratio did not have an appreciable effect on the value of E(sub gel). Presence of glycerol in the solution helped in the formation of crack-free monolithic gel specimens. Chemical and structural changes occurring in the gels, as a function of the heat treatments, have been monitored using DTA, TGA, IR-spectroscopy, x ray diffraction, surface area and pore size distribution measurements.

  2. Synthesis and characterization of hydroxyapatite-gelatine composite materials for orthopaedic application

    Energy Technology Data Exchange (ETDEWEB)

    Yanovska, A., E-mail: biophy@yandex.ru [Institute of Applied Physics, National Academy of Sciences of Ukraine, 58 Petropavlovskaya Str., 40000, Sumy (Ukraine); Sumy State University, Ministry of Education and Science of Ukraine, 2 R. Korsakova Str., 40007, Sumy (Ukraine); Kuznetsov, V. [Institute of Applied Physics, National Academy of Sciences of Ukraine, 58 Petropavlovskaya Str., 40000, Sumy (Ukraine); Sumy State University, Ministry of Education and Science of Ukraine, 2 R. Korsakova Str., 40007, Sumy (Ukraine); Stanislavov, A. [Institute of Applied Physics, National Academy of Sciences of Ukraine, 58 Petropavlovskaya Str., 40000, Sumy (Ukraine); Husak, E. [Institute of Applied Physics, National Academy of Sciences of Ukraine, 58 Petropavlovskaya Str., 40000, Sumy (Ukraine); Sumy State University, Ministry of Education and Science of Ukraine, 2 R. Korsakova Str., 40007, Sumy (Ukraine); Pogorielov, M. [Sumy State University, Ministry of Education and Science of Ukraine, 2 R. Korsakova Str., 40007, Sumy (Ukraine); Starikov, V. [National Technical University ”Kharkov Polytechnic Institute”, 21 Frunze Str., 61002, Kharkov (Ukraine); Bolshanina, S. [Sumy State University, Ministry of Education and Science of Ukraine, 2 R. Korsakova Str., 40007, Sumy (Ukraine); Danilchenko, S. [Institute of Applied Physics, National Academy of Sciences of Ukraine, 58 Petropavlovskaya Str., 40000, Sumy (Ukraine)

    2016-11-01

    The composite materials based on hydroxyapatite (HA) and gelatine (Gel) with addition of silver and zirconium oxide were obtained. The study investigates a combination of low powered ultrasonic irradiation and low concentration of gelatine in the co-precipitation synthesis. These composites have different weight ratios of organic/inorganic components and may be synthesized in two ways: simple mixing and co-precipitation. Both of which were compared. The estimation of porosity, in vivo testing, surface morphology and phase composition as well as the IR-analysis were provided. Hydroxyapatite was the main crystalline phase in obtained composites. While around powdered HA-Gel composite the connective tissue capsule is formed without bone tissue formation, HA-Gel-Ag porous composite implantation leads to formation of new bone tissue and activation of cell proliferation. Addition of silver ions into composite material allows decreasing inflammation on the first stage of implantation and has positive effect on bone tissue formation. Some of the obtained composite materials containing silver or ZrO{sub 2} are biocompatible. bio-resorbable and osteoconductive with high level of porosity (75–85%). - Highlights: • Hydroxyapatite-gelatine composites with addition of Ag{sup +} and ZrO{sub 2} were obtained. • Composites were synthesized in two ways: simple mixing and co-precipitation. • Co-precipitation synthesis combined ultrasonic treatment and low concentration of gelatine. • Obtained composites have different weight ratios of organic/inorganic components. • Some composites are osteoconductive and all of them have high level of porosity (75–85%).

  3. Half esters and coating compositions comprising reactions products of half esters and polyepoxides

    NARCIS (Netherlands)

    Blaauw, R.; Mulder, W.J.; Koelewijn, R.; Boswinkel, G.

    2006-01-01

    The present invention relates to half esters based on dicarboxylic acid derivatives and dimer fatty diols, wherein the dimer fatty dio ls are based on dimerised and/or trimerised and/or oligomerised unsaturated fatty acids. The present invention further relates to resin compositions based on the

  4. Optimal processing for gel electrophoresis images: Applying Monte Carlo Tree Search in GelApp.

    Science.gov (United States)

    Nguyen, Phi-Vu; Ghezal, Ali; Hsueh, Ya-Chih; Boudier, Thomas; Gan, Samuel Ken-En; Lee, Hwee Kuan

    2016-08-01

    In biomedical research, gel band size estimation in electrophoresis analysis is a routine process. To facilitate and automate this process, numerous software have been released, notably the GelApp mobile app. However, the band detection accuracy is limited due to a band detection algorithm that cannot adapt to the variations in input images. To address this, we used the Monte Carlo Tree Search with Upper Confidence Bound (MCTS-UCB) method to efficiently search for optimal image processing pipelines for the band detection task, thereby improving the segmentation algorithm. Incorporating this into GelApp, we report a significant enhancement of gel band detection accuracy by 55.9 ± 2.0% for protein polyacrylamide gels, and 35.9 ± 2.5% for DNA SYBR green agarose gels. This implementation is a proof-of-concept in demonstrating MCTS-UCB as a strategy to optimize general image segmentation. The improved version of GelApp-GelApp 2.0-is freely available on both Google Play Store (for Android platform), and Apple App Store (for iOS platform). © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Highly conductive, multi-layer composite precursor composition to fuel cell flow field plate or bipolar plate

    Science.gov (United States)

    Jang, Bor Z [Centerville, OH; Zhamu, Aruna [Centerville, OH; Guo, Jiusheng [Centerville, OH

    2011-02-15

    This invention provides a moldable, multiple-layer composite composition, which is a precursor to an electrically conductive composite flow field plate or bipolar plate. In one preferred embodiment, the composition comprises a plurality of conductive sheets and a plurality of mixture layers of a curable resin and conductive fillers, wherein (A) each conductive sheet is attached to at least one resin-filler mixture layer; (B) at least one of the conductive sheets comprises flexible graphite; and (C) at least one resin-filler mixture layer comprises a thermosetting resin and conductive fillers with the fillers being present in a sufficient quantity to render the resulting flow field plate or bipolar plate electrically conductive with a conductivity no less than 100 S/cm and thickness-direction areal conductivity no less than 200 S/cm.sup.2.

  6. Denaturing gradient gel electrophoresis profiling of bacterial communities composition in Arabian Sea

    Digital Repository Service at National Institute of Oceanography (India)

    Singh, S.K.; Ramaiah, N.

    of Environmental Biology circleshadowdwnMay 2011circleshadowdwn Introduction The bacteria play a major role in carbon dynamics of marine ecosystems and, the importance of heterotrophic bacteria in marine ecosystem functioning is very well recognized (Azam et al..., 2008). Denaturing gradient gel-electrophoressis (DGGE) based fingerprinting helps estimate the numbers of dominant phylotype in a given sample (Muyzer et al., 1993). Very diverse bacterial assemblages such as those in the soils present many bands...

  7. Electrochemical energy storage devices comprising self-compensating polymers

    Science.gov (United States)

    Johnson, Paul; Bautista-Martinez, Jose Antonio; Friesen, Cody; Switzer, Elise

    2018-01-30

    The disclosed technology relates generally to devices comprising conductive polymers and more particularly to electrochemical devices comprising self-compensating conductive polymers. In one aspect, electrochemical energy storage device comprises a negative electrode comprising an active material including a redox-active polymer. The device additionally comprises a positive electrode comprising an active material including a redox-active polymer. The device further comprises an electrolyte material interposed between the negative electrode and positive electrode and configured to conduct mobile counterions therethrough between the negative electrode and positive electrode. At least one of the negative electrode redox-active polymer and the positive electrode redox-active polymer comprises a zwitterionic polymer unit configured to reversibly switch between a zwitterionic state in which the zwitterionic polymer unit has first and second charge centers having opposite charge states that compensate each other, and a non-zwitterionic state in which the zwitterionic polymer unit has one of the first and second charge centers whose charge state is compensated by mobile counterions.

  8. Semiconductor device comprising a pn-heterojunction

    NARCIS (Netherlands)

    2007-01-01

    An electric device is disclosed comprising a pn-heterojunction ( 4 ) formed by a nanowire ( 3 ) of 111 -V semiconductor material and a semiconductor body ( 1 ) comprising a group IV semiconductor material. The nanowire ( 3 ) is positioned in direct contact with the surface ( 2 ) of the semiconductor

  9. Polymer gel dosimeters with enhanced sensitivity for use in x-ray CT polymer gel dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Jirasek, A [Department of Physics and Astronomy, University of Victoria, Victoria BC V8W 3P6 (Canada); Hilts, M [Medical Physics, BC Cancer Agency-Vancouver Island Centre, Victoria BC V6R 2B6 (Canada); McAuley, K B, E-mail: jirasek@uvic.c [Department of Chemical Engineering, Queens University, Kingston, ON K7 L 3N6 (Canada)

    2010-09-21

    A primary limitation of current x-ray CT polymer gel dosimetry is the low contrast, and hence poor dose resolution, of dose images produced by the system. The low contrast is largely due to the low-dose sensitivity of current formulations of polymer gel for x-ray CT imaging. This study reports on the investigation of new dosimeter formulations with improved dose sensitivity for x-ray CT polymer gel dosimetry. We incorporate an isopropanol co-solvent into an N-isopropylacrylamide-based gel formulation in order to increase the total monomer/crosslinker concentration (%T) within the formulation. It is shown that gels of high %T exhibit enhanced dose sensitivity and dose resolutions over traditional formulations. The gels are shown to be temporally stable and reproducible. A single formulation (16%T) is used to demonstrate the capabilities of the x-ray CT polymer gel dosimetry system in measuring known dose distributions. A 1 L gel volume is exposed to three separate irradiations: a single-field percent depth dose, a two-field 'cross' and a three-field 'test case'. The first two irradiations are used to generate a dose calibration curve by which images are calibrated. The calibrated images are compared with treatment planning predictions and it is shown that the x-ray CT polymer gel dosimetry system is capable of capturing spatial and dose information accurately. The proposed new gel formulation is shown to be sensitive, stable and to improve the dose resolution over current formulations so as to provide a feasible gel for clinical applications of x-ray CT polymer gel dosimetry.

  10. Preparation of fullerene/glass composites

    Science.gov (United States)

    Mattes, Benjamin R.; McBranch, Duncan W.; Robinson, Jeanne M.; Koskelo, Aaron C.; Love, Steven P.

    1995-01-01

    Synthesis of fullerene/glass composites. A direct method for preparing solid solutions of C.sub.60 in silicon dioxide (SiO.sub.2) glass matrices by means of sol-gel chemistry is described. In order to produce highly concentrated fullerene-sol-gel-composites it is necessary to increase the solubility of these "guests" in a delivery solvent which is compatible with the starter sol (receiving solvent). Sonication results in aggregate disruption by treatment with high frequency sound waves, thereby accelerating the rate of hydrolysis of the alkoxide precursor, and the solution process for the C.sub.60. Depending upon the preparative procedure, C.sub.60 dispersed within the glass matrix as microcrystalline domains, or dispersed as true molecular solutions of C.sub.60 in a solid glass matrix, is generated by the present method.

  11. Polyetherimide/bucky gels nanocomposites with superior conductivity and thermal stability

    KAUST Repository

    Chen, Ye

    2013-08-14

    Polyetherimide (PEI) nanocomposites comprising bucky gels of industrial-grade multiwalled carbon nanotubes (MWCNTs) and ionic liquid (IL, 1-butyl-3-methyl imidazolium hexafluorophosphate ([BMIM][PF6])) were prepared. The processing framework for this nanocomposite is simple, reproducible, and easily scalable. The strong interaction between IL and MWCNTs caused the latter to uniformly disperse in the PEI matrix while IL flowed into the gaps between the nanotubes\\' walls. The nanocomposite exhibited an enhanced conductivity of 2.01 × 104 Ω·cm volume resistivity at room temperature; the value decreased dramatically by 12 orders of magnitude, compared to pristine PEI. The IL free ions and MWCNTs networks provided excellent channels for electron transfer. PEI/bucky gels nanocomposites also showed improved thermal stability and high tensile strength. Other than having antiwear properties, this material can have numerous applications in the aerospace and electronics industries. Moreover, our work presents a "green" method toward modified nanocomposites industrial production as IL is environmentally safe and is easily recyclable. © 2013 American Chemical Society.

  12. Polyetherimide/bucky gels nanocomposites with superior conductivity and thermal stability

    KAUST Repository

    Chen, Ye; Tao, Jing; Deng, Lin; LI, LIANG; Li., Jun; Yang, Yang; Khashab, Niveen M.

    2013-01-01

    Polyetherimide (PEI) nanocomposites comprising bucky gels of industrial-grade multiwalled carbon nanotubes (MWCNTs) and ionic liquid (IL, 1-butyl-3-methyl imidazolium hexafluorophosphate ([BMIM][PF6])) were prepared. The processing framework for this nanocomposite is simple, reproducible, and easily scalable. The strong interaction between IL and MWCNTs caused the latter to uniformly disperse in the PEI matrix while IL flowed into the gaps between the nanotubes' walls. The nanocomposite exhibited an enhanced conductivity of 2.01 × 104 Ω·cm volume resistivity at room temperature; the value decreased dramatically by 12 orders of magnitude, compared to pristine PEI. The IL free ions and MWCNTs networks provided excellent channels for electron transfer. PEI/bucky gels nanocomposites also showed improved thermal stability and high tensile strength. Other than having antiwear properties, this material can have numerous applications in the aerospace and electronics industries. Moreover, our work presents a "green" method toward modified nanocomposites industrial production as IL is environmentally safe and is easily recyclable. © 2013 American Chemical Society.

  13. Effect of Laser-assisted and Conventional In-office Bleaching on Monomer Release from Microhybrid and Nanohybrid Composite.

    Science.gov (United States)

    Omrani, Ladan Ranjbar; Farjadfar, Shayan; Pedram, Parham; Sadray, Sima; Kamangar, Sedighe Sadat Hashemi; Chiniforoush, Nasim

    2017-06-30

    Bleaching might affect structural properties of composite materials, and lead to monomer release. This study aimed to evaluate the effect of Laser-assisted and conventional in-office bleaching on the release of BIS-GMA, TEGDMA, and UDMA monomers from a nanohybrid and a microhybrid BIS-GMA based composite. 32 samples of each composite, were divided into 4 subgroups; subgroup 1: Conventional in-office bleaching (CIB) with the Opalescence Boost PF 38% gel, subgroup 2: Laser-assisted bleaching (LBO) with the Opalescence Boost PF 38% gel, subgroup 3: Laser-assisted bleaching (LBH) with the JW Power bleaching gel, subgroup 4: (CO) control without bleaching. All the samples were immersed in tubes of 2cc Ethanol 75% medium. The released monomers were analyzed using the high performance liquid chromatography (HPLC) method 24 h, 7, and 28 days. Data's were analyzed by Univariate Analysis of Variance test followed by Tukeys HSD. The amount of TEGDMA monomer released was not significant. However, nanohybrid composites showed significantly more monomer release than microhybrid composites (P Bleaching by laser with JW Power Bleaching gel led to more monomer release in nanohybrid composite.

  14. Dynamic swelling of tunable full-color block copolymer photonic gels via counterion exchange.

    Science.gov (United States)

    Lim, Ho Sun; Lee, Jae-Hwang; Walish, Joseph J; Thomas, Edwin L

    2012-10-23

    One-dimensionally periodic block copolymer photonic lamellar gels with full-color tunability as a result of a direct exchange of counteranions were fabricated via a two-step procedure comprising the self-assembly of a hydrophobic block-hydrophilic polyelectrolyte block copolymer, polystyrene-b-poly(2-vinyl pyridine) (PS-b-P2VP), followed by sequential quaternization of the P2VP layers in 1-bromoethane solution. Depending on the hydration characteristics of each counteranion, the selective swelling of the block copolymer lamellar structures leads to large tunability of the photonic stop band from blue to red wavelengths. More extensive quaternization of the P2VP block allows the photonic lamellar gels to swell more and red shift to longer wavelength. Here, we investigate the dynamic swelling behavior in the photonic gel films through time-resolved in situ measurement of UV-vis transmission. We model the swelling behavior using the transfer matrix method based on the experimentally observed reflectivity data with substitution of appropriate counterions. These tunable structural color materials may be attractive for numerous applications such as high-contrast displays without using a backlight, color filters, and optical mirrors for flexible lasing.

  15. Novel thermally stable poly(vinyl chloride) composites for sulfate removal

    Energy Technology Data Exchange (ETDEWEB)

    Nadagouda, Mallikarjuna N., E-mail: Nadagouda.mallikarjuna@epa.gov [Water Supply and Water Resources Division, National Risk Management Research Laboratory U.S. Environmental Protection Agency, 26 W. Martin Luther King Drive Cincinnati, Ohio 45268 (United States); Pressman, Jonathan; White, Colin; Speth, Thomas F.; McCurry, Daniel L. [Water Supply and Water Resources Division, National Risk Management Research Laboratory U.S. Environmental Protection Agency, 26 W. Martin Luther King Drive Cincinnati, Ohio 45268 (United States)

    2011-04-15

    Graphical abstract: Barium carbonate and/or barium carbonate-loaded silica aero-gels dispersed polyvinyl chloride (PVC) composites were prepared by dissolving PVC in tetrahydrofuran (THF), dispersing BaCO{sub 3} and/or BaCO{sub 3}-loaded silica aero-gels, re-precipitating the PVC with water at room temperature. The PVC composites were then characterized using scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), X-ray mapping, X-ray diffraction (XRD), thermogravimetric analysis (TGA) and inductively coupled plasma mass spectrometry (ICP-MS) analysis. The obtained composites had better thermal properties than the control PVC. The composites were tested for sulfate removal and found to significantly reduce sulfate when compared with control PVC. - Abstract: BaCO{sub 3} dispersed PVC composites were prepared through a polymer re-precipitation method. The composites were tested for sulfate removal using rapid small scale column test (RSSCT) and found to significantly reduce sulfate concentration. The method was extended to synthesize barium carbonate-loaded silica aero-gels-polyvinyl chloride (PVC) polymer composites. The PVC composites were characterized using scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), X-ray mapping, X-ray diffraction (XRD), thermogravimetric analysis (TGA) and inductively coupled plasma mass spectrometry (ICP-MS) analysis. The method has advantages over conventional sulfate precipitation (sulfate removal process) using BaCO{sub 3} wherein clogging of the filter can be avoided. The method is environmentally friendly and does not interfere with natural organic matter as the conventional resin does. Some of the composites were thermally more stable as compared with the pure PVC discussed in the literature.

  16. Novel thermally stable poly(vinyl chloride) composites for sulfate removal

    International Nuclear Information System (INIS)

    Nadagouda, Mallikarjuna N.; Pressman, Jonathan; White, Colin; Speth, Thomas F.; McCurry, Daniel L.

    2011-01-01

    Graphical abstract: Barium carbonate and/or barium carbonate-loaded silica aero-gels dispersed polyvinyl chloride (PVC) composites were prepared by dissolving PVC in tetrahydrofuran (THF), dispersing BaCO 3 and/or BaCO 3 -loaded silica aero-gels, re-precipitating the PVC with water at room temperature. The PVC composites were then characterized using scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), X-ray mapping, X-ray diffraction (XRD), thermogravimetric analysis (TGA) and inductively coupled plasma mass spectrometry (ICP-MS) analysis. The obtained composites had better thermal properties than the control PVC. The composites were tested for sulfate removal and found to significantly reduce sulfate when compared with control PVC. - Abstract: BaCO 3 dispersed PVC composites were prepared through a polymer re-precipitation method. The composites were tested for sulfate removal using rapid small scale column test (RSSCT) and found to significantly reduce sulfate concentration. The method was extended to synthesize barium carbonate-loaded silica aero-gels-polyvinyl chloride (PVC) polymer composites. The PVC composites were characterized using scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), X-ray mapping, X-ray diffraction (XRD), thermogravimetric analysis (TGA) and inductively coupled plasma mass spectrometry (ICP-MS) analysis. The method has advantages over conventional sulfate precipitation (sulfate removal process) using BaCO 3 wherein clogging of the filter can be avoided. The method is environmentally friendly and does not interfere with natural organic matter as the conventional resin does. Some of the composites were thermally more stable as compared with the pure PVC discussed in the literature.

  17. The study of polymeric hydro-gels with unique properties obtained by polymerization with gamma radiation processing

    International Nuclear Information System (INIS)

    Dragusin, M.

    1995-01-01

    This thesis presents the work carried out on polymeric hydro-gels obtained by radiation processing using 60 Co gamma rays from the irradiation facility IETI-10.000 (10 k Ci), and on the polymeric hydro-gels obtained by irradiation with the electron beams from a linear accelerator (6 MeV). The aim of the study was to determine the effect of the rate dose and total dose absorbed in the materials. There are presented the preparation methods of homo- and co-polymer hydro-gels (acrylics, namely anionic and neutral monomers (acrylamide, acrylic acid, vinyl acetate) and cationic monomers (di-methyl di-allyl ammonium chloride)) such as floculants, additives, absorbers, etc. Concerning with these we have analysed the preparation methods, the mechanical, thermal, diffusivity, and swelling properties of polymeric hydro-gels in a large variety of gels of type I or II. The technological aspects and end use were studied in connection with the characteristics of the radiation processing of these hydro-gels as a function of chemical composition rate and absorbed dose, swelling degree (low and very high hydro-soluble), mechanical and diffusional properties. (author) 33 figs., 12 tabs., 101 refs

  18. Composite scintillators for detection of ionizing radiation

    Science.gov (United States)

    Dai, Sheng [Knoxville, TN; Stephan, Andrew Curtis [Knoxville, TN; Brown, Suree S [Knoxville, TN; Wallace, Steven A [Knoxville, TN; Rondinone, Adam J [Knoxville, TN

    2010-12-28

    Applicant's present invention is a composite scintillator having enhanced transparency for detecting ionizing radiation comprising a material having optical transparency wherein said material comprises nano-sized objects having a size in at least one dimension that is less than the wavelength of light emitted by the composite scintillator wherein the composite scintillator is designed to have selected properties suitable for a particular application.

  19. Role of clove oil in solvent exchange-induced doxycycline hyclate-loaded Eudragit RS in situ forming gel

    Directory of Open Access Journals (Sweden)

    Thawatchai Phaechamud

    2018-03-01

    Full Text Available Solvent exchange induced in situ forming gel (ISG is the promising drug delivery system for periodontitis treatment owing to the prospect of maintaining an effective high drug level in the gingival crevicular fluid. In the present study, the influence of clove oil (CO on the characteristics of doxycycline hyclate (DH-loaded ISG comprising Eudragit RS (ERS was investigated including viscosity/rheology, syringeability, in vitro gel formation/drug release, matrix formation/solvent diffusion and antimicrobial activities. CO could dissolve ERS and increase the viscosity of ISG and its hydrophobicity could also retard the diffusion of solvent and hinder the drug diffusion; thus, the minimization of burst effect and sustained drug release were achieved effectively. All the prepared ISGs comprising CO could expel through the 27-gauge needle for administration by injection and transform into matrix depot after exposure to the simulated gingival crevicular fluid. The antimicrobial activities against Staphylococcus aureus, Escherichia coli, Streptococcus mutans and Porphyromonas gingivalis were increased when the ratio of CO and N-methyl pyrrolidone (NMP was decreased from 1:1 to 1:10 owing to higher diffusion of DH except that for C. albicans was increased as CO amount was higher. Therefore, CO could minimize the burst while prolonging the drug release of DH-loaded ERS ISG for use as a local drug delivery system for periodontitis treatment. Keywords: In situ forming gel, Eudragit RS, Clove oil, Doxycycline hyclate, Periodonditis, Burst release

  20. Preparation of electrodes on cfrp composites with low contact resistance comprising laser-based surface pre-treatment

    KAUST Repository

    Almuhammadi, Khaled Hamdan; Lubineau, Gilles; Alfano, Marco Francesco; Buttner, Ulrich

    2016-01-01

    Various examples are provided related to the preparation of electrodes on carbon fiber reinforced polymer (CFRP) composites with low contact resistance. Laser-based surface preparation can be used for bonding to CFRP composites. In one example, a

  1. Composite material

    Science.gov (United States)

    Hutchens, Stacy A [Knoxville, TN; Woodward, Jonathan [Solihull, GB; Evans, Barbara R [Oak Ridge, TN; O'Neill, Hugh M [Knoxville, TN

    2012-02-07

    A composite biocompatible hydrogel material includes a porous polymer matrix, the polymer matrix including a plurality of pores and providing a Young's modulus of at least 10 GPa. A calcium comprising salt is disposed in at least some of the pores. The porous polymer matrix can comprise cellulose, including bacterial cellulose. The composite can be used as a bone graft material. A method of tissue repair within the body of animals includes the steps of providing a composite biocompatible hydrogel material including a porous polymer matrix, the polymer matrix including a plurality of pores and providing a Young's modulus of at least 10 GPa, and inserting the hydrogel material into cartilage or bone tissue of an animal, wherein the hydrogel material supports cell colonization in vitro for autologous cell seeding.

  2. Novel thixotropic gel electrolytes based on dicationic bis-imidazolium salts for quasi-solid-state dye-sensitized solar cells

    Science.gov (United States)

    Kim, Jun Young; Kim, Tae Ho; Kim, Dong Young; Park, Nam-Gyu; Ahn, Kwang-Duk

    Novel thixotropic gel electrolytes have been successfully prepared by utilizing oligomeric poly(ethylene oxide) (PEO)-based bis-imidazolium diiodide salts and hydrophilic silica nanoparticles for application in quasi-solid-state dye-sensitized solar cells (DSSCs). The thixotropic gel-state of the ionic liquid-based composite electrolytes is confirmed by observing the typical hysteresis loop and temporary hydrogen bonding. On using the PEO-based composite electrolyte, a quasi-solid-state DSSC exhibited highly improved properties such as easy penetration of the electrolyte into the cell without leakage, long-term stability, high open-circuit voltage without the use of 4- tert-butylpyridine, and a high energy-conversion efficiency of 5.25% under AM 1.5 illumination (100 mW cm -2).

  3. Polymer gels and networks

    National Research Council Canada - National Science Library

    Osada, Yoshihito; Khokhlov, A. R

    2002-01-01

    ... or magnetic field, etc.). It was realized that not only can polymer gels absorb and hold a considerable volume of liquids, but they can also be forced to expel the absorbed liquid in a controlled manner. Of particular interest are hydrogels, i.e., polymer gels, which swell extensively in water. The most common hydrogels are polyelectrolyte gels: ...

  4. Preparation of continuous alumina gel fibres by aqueous sol–gel ...

    Indian Academy of Sciences (India)

    Abstract. Continuous alumina gel fibres were prepared by sol–gel method. The spinning sol was prepared by mixing aluminum nitrate, lactic acid and polyvinylpyrrolidone with a mass ratio of 10:3:1·5. Thermogravimetry– differential scanning calorimetry (TG–DSC), Fourier transform infrared (FTIR) spectra, X-ray diffraction ...

  5. Conductive polymer composition

    NARCIS (Netherlands)

    2010-01-01

    The present invention relates to a process for the preparation of a conductive polymer composition comprising graphene and the articles obtained by this process. The process comprises the following steps: A) contacting graphite oxide in an aqueous medium with a water-soluble or dispersible

  6. Silica based gel as a potential waste form for high level waste from fuel reprocessing

    International Nuclear Information System (INIS)

    Ford, C.E.; Dempster, T.J.; Melling, P.J.

    1983-10-01

    To assess the feasibility of safe disposal of high-level radioactive waste as synthetic clay, or material that would react with ground water to form clay, experiments have been carried out to determine the hydrothermal crystallisation and leaching behaviour of silica based gels fired at 900 deg C. Crystallisation rates at a pressure of 500 bars and at temperatures below 400 deg C are negligible and this more or less precludes pre-disposal production of synthetic clay on the scale required. Leaching experiments suggest that the leach rates of Cs from gels by distilled water are higher than those of boro-silicate glasses and SYNROC at the lower temperatures that would be preferred for geological storage. However, amounts of bulk dissolution of gels may be lower than those of boro-silicate glasses. The initial leaching behaviour of gels might be considerably improved by hot compaction at 900 to 1000 deg C. Consideration of likely waste form dissolution behaviour in a repository environment suggests that gels of appropriate composition might perform as well as, or better than, boro-silicate glasses. A novel hypothetical plant is described that could produce the gel waste form on the scale required on a more or less continuous basis. (author)

  7. Compositions for enhancing hydroysis of cellulosic material by cellulolytic enzyme compositions

    Science.gov (United States)

    Quinlan, Jason; Xu, Feng; Sweeney, Matthew; Johansen, Katja Salomon

    2014-09-30

    The present invention relates to compositions comprising a GH61 polypeptide having cellulolytic enhancing activity and an organic compound comprising a carboxylic acid moiety, a lactone moiety, a phenolic moiety, a flavonoid moiety, or a combination thereof, wherein the combination of the GH61 polypeptide having cellulolytic enhancing activity and the organic compound enhances hydrolysis of a cellulosic material by a cellulolytic enzyme compared to the GH61 polypeptide alone or the organic compound alone. The present invention also relates to methods of using the compositions.

  8. Sealing wells with gel

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, E C

    1967-10-01

    A new system is being used in Mexico to temporarily plug producing wells. The temporary seal is a gel with a catalyst. The use of this temporary plug allows gas-lift wells to be taken off production in order to carry out emergency repairs. The gel solidifies by the action of the catalyst to a high temperature (70 - 150/sup 0/C). By locating the bottom of the tubing at the top of the production interval, the gel material will go into the permeable formation, and immediately set. When the gel has solidified, it seals off the horizon that must not be stimulated, and leaves the others exposed to the acid action. When the treatment is finished, the gel, by action of the catalyst, is liquefied and removed from the formation, being produced with the oil.

  9. Gel-eletroforese no diagnóstico da varíola Gel-electrophoresis in the smallpox diagnosis

    Directory of Open Access Journals (Sweden)

    Julio A. Mesquita

    1972-01-01

    Full Text Available O emprego de gel-eletroforese no diagnóstico da varíola, demonstrou ser ao menos trinta vezes (30X mais sensível que o teste de agar-gel, nas condições descritas (tabela I. Doze (12 espécimes, cujos testes convencionais de inoculação em ovos embrionados e de agar-gel resultaram positivos, foram testados em suas diluições originais congeladas por mais de um ano, sendo seis deles revelados por gel-eletroforese enquanto nenhum o foi por agar-gel (tabela II. Trinta e três (33 amostras isoladas no laboratório, foram testadas com material colhido de membrana cório-alantóica da primeira inoculação para o diagnóstico, conservado em glicerina 50%, resultando 15 positivas em gel-eletroforese e apenas 3 em agar-gel (tabela II. Os últimos 60 espécimes recebidos para diagnóstico, através a Campanha de Erradicação da Varíola, também resultaram negativos em gel-eletroforese, que não mostrou falsos-positivos nas condições descritas.The test of gel-electrophoresis applied to the pox virus group showed to be at least thirth times (30X more sensitive than agar-gel test on the described conditions (Table I. Twelve specimens, which were positives form Smallpox in the conventional tests of egg inoculation and agar-gel difusion test, have been screened in their original dilutions frozen for more than 1 year and six of them were still detectable by gel-eletrophoresis, while by agar-gel test any of them was positive (Table II. Thirty three Smallpox isolates have been tested with material from first egg inoculation (chorioallantoic membranes which have been stored in glycerin 50%, at - 15ºC. Fifteen of them were still positive by gel-electrophoresis and only 3 by agar-gel (Table II. The last 60 specimens received for diagnosis from Smallpox Erradication Campaign (CEV, were negatives by both tests. The gel-electrophoresis, did not show false-positives on described conditions.

  10. How do monomeric components of a polymer gel dosimeter respond to ionising radiation: A steady-state radiolysis towards preparation of a 3D polymer gel dosimeter

    International Nuclear Information System (INIS)

    Kozicki, Marek

    2011-01-01

    Ionising radiation-induced reactions of aqueous single monomer solutions and mixtures of poly(ethylene glycol) diacrylate (PEGDA) and N,N'-methylenebisacrylamide (Bis) in a steady-state condition are presented below and above gelation doses in order to highlight reactions in irradiated 3D polymer gel dosimeters, which are assigned for radiotherapy dosimetry. Both monomers are shown to undergo radical polymerisation and cross-linking, which result in the measured increase in molecular weight and radius of gyration of the formed polydisperse polymer coils. The formation of nanogels was also observed for Bis solutions at a low concentration. In the case of PEGDA-Bis mixtures, co-polymerisation is suggested as well. At a sufficiently high radiation dose, the formation of a polymer network was observed for both monomers and their mixture. For this reason a sol-gel analysis for PEGDA and Bis was performed gravimetrically and a proposition of an alternative to this method employing a nuclear magnetic resonance technique is made. The two monomers were used for preparation of 3D polymer gel dosimeters having the acronyms PABIG and PABIG nx . The latter is presented for the first time in this work and is a type of the formerly established PABIG polymer gel dosimeter. The elementary characteristics of the new composition are presented, underlining the ease of its preparation, low dose threshold, and slightly increased sensitivity but lower quasi-linear range of dose response in comparison to PABIG. - Highlights: → Steady-state radiolysis of Bis, PEGDA and Bis-PEGDA is examined. → High Mw products are formed at low absorbed doses. → Formation of Bis nanogels is likely; PEGDA solutions form hydrogels. → NMR technique can be used for sol-gel analysis. → Features of 3D polymer gel dosimeters made from PEGDA and Bis are shown.

  11. Synthesis, structure and electromagnetic properties of Mn–Zn ferrite by sol–gel combustion technique

    International Nuclear Information System (INIS)

    Wang, Wenjie; Zang, Chongguang; Jiao, Qingjie

    2014-01-01

    The electromagnetic absorbing behaviors of a thin coating fabricated by mixing Mn–Zn ferrite with epoxy resin (EP) were studied. The spinel ferrites Mn 1−x Zn x Fe 2 O 4 (x=0.2, 0.5 and 0.8) were synthesized with citrate acid as complex agent by sol–gel combustion method. The microstructure and surface morphology of Mn–Zn ferrite powders were characterized by X-ray diffraction (XRD) and scanning electron microscope (SEM). The complex permittivity and complex permeability of the fabricated ferrite/EP composites were investigated in terms of their contributions to the absorbing properties in the low frequency (10 MHz to 1 GHz). The microwave absorption of the prepared ferrite/EP composites could be tailored by matching the dielectric loss and magnetic loss and by controlling the doped metal ratio. The composites with the ferrite composition x=0.2 are found to show higher reflection loss compared with the composites with other compositions. It is proposed that the prepared composites can potentially be applied in electromagnetic microwave absorbing field. - Highlights: • We designed and synthesized Mn 1−x Zn x Fe 2 O 4 (x=0.2, 0.5 and 0.8), with citrate acid as complex agent by the sol–gel combustion method. • Citrate acid as the complex agent overcomes the aggregation of ferrite resulting in high purity and homogeneous particles. • We investigated the electromagnetic absorbing performance of a fabricated thin coating by introducing Mn–Zn ferrite into epoxy resin (EP). • The Mn 0.8 Zn 0.2 Fe 2 O 4 composite coatings could achieve the satisfactory absorbing value of −17 dB at 800 MHz. • The prepared composites can potentially be used for the application in electromagnetic microwave absorbing field

  12. Low temperature synthesis of CaO-SiO2 glasses having stable liquid-liquid immiscibility by the sol-gel process

    Science.gov (United States)

    Bansal, N. P.

    1992-01-01

    Calcium silicate glass compositions lying within the liquid-liquid immiscibility dome of the phase diagram, which could not have been prepared by the conventional melting method, were synthesized by the sol-gel process. Hydrolysis and polycondensation of tetraethyl orthosilicate (TEOS) solutions containing up to 20 mol percent calcium nitrate resulted in the formation of clear and transparent gels. The gel formation time decreased with increase in water: TEOS mole ratio, calcium content, and the reaction temperature. Smaller values of gel times in the presence of calcium nitrate are probably caused by lowering of the ionic charge on the sol particles by the salt present. The gelation activation energy, E(sub gel), was evaluated from temperature dependence of the gel time. Presence of Ca(2+) ions or the water:TEOS mole ratio did not have an appreciable effect on the value of E(sub gel). Presence of glycerol in the solution helped in the formation of crack-free monolithic gel specimens. Chemical and structural changes occurring in the gels, as a function of the heat treatments, have been monitored using DTA, TGA, IR-spectroscopy, X-ray diffraction, surface area and pore size distribution measurements.

  13. Instrumental texture profile analysis of gelatin gel extracted from grouper skin and commercial (bovine and porcine) gelatin gels.

    Science.gov (United States)

    Rahman, Mohammad Shafiur; Al-Mahrouqi, Abdullah Issa

    2009-01-01

    Mechanical compression was used to study the gelling characteristics of gelatin gels. Texture profile analysis (TPA) showed that the hardness of fish and mammalian gelatin increased significantly as the concentrations of gels increased. TPA attributes of 10% fish skin gel showed significant differences from those obtained from 20% and 30% gels. In bovine and porcine cases, such generic trends were not observed. Mechanical characteristics of 10% gels of gelatin from fish skin, determined from one cycle compression, were significantly lower than other sources of gelatin gels, while bovine and porcine gels did not show any significant differences. In the case of TPA, hardness of bovine gelatin gel was highest at 41 N for 10% gel, followed by porcine (30 N) then fish skin (5 N) gelatin gels. The gels prepared from different sources did not show any generic trends when all other mechanical attributes were considered.

  14. Effect of Acidulated Phosphate Fluoride (APF on the Mcroleakage of Composite Flow and Fssure Sealant Restorations

    Directory of Open Access Journals (Sweden)

    Arash Poorsattar Bejeh Mir

    2012-09-01

    Full Text Available Background and Aims: A large number of investigations have revealed that physical and chemical alterations and weight loss could occur in composite materials exposed to acidic phosphate fluoride (APF gel. The purpose of this study was to assess the microleakage of a fissure sealant and a flow composite exposed to acidulated phosphate fluoride (APF gel. Materials and Methods: In this in vitro study, 60 intact human extracted premolar teeth were used. After preparing the occlusal groove, the teeth were divided into two groups (n=30. Teeth were filled with either Helioseal fissure sealant (Vivadent, Germany or Tetric flow composite (Vivadent, Germany. After that, each group was divided into two subgroups (n=15: 1.23% APF gel (Sultan, U.S.A was applied in the case subgroups, while control subgroups were preserved in normal saline solution. All of teeth were covered with 2 layers of nail varnish except for the filling zone and 1mm around the border of filling. After submerging in 0.5% fushin solution, specimens were sectioned bucco-lingually. Then dye penetration through the filling and fissure sealant was assessed by means of a stereo-microscope. The depth of dye penetration was scored. The data were analyzed using One-way ANOVA and Levene test. Results: The mean values of dye penetration were 1.26±1.09, 1.4±1.05, 1.2±1.37, and 1.4±1.35 for fissure sealant+gel, composite+gel, composite+normal saline, and normal saline groups, respectively. No significant difference was found in inter-groups (P=0.96. Conclusion: Considering the result of the present research, APF gel had no significant effect on the microleakage of Tetric flow composite filling and Helioseal fissure sealant and thus, it can be applied for routine usage.

  15. Compatibility between weak gel and microorganisms in weak gel-assisted microbial enhanced oil recovery.

    Science.gov (United States)

    Qi, Yi-Bin; Zheng, Cheng-Gang; Lv, Cheng-Yuan; Lun, Zeng-Min; Ma, Tao

    2018-03-20

    To investigate weak gel-assisted microbial flooding in Block Wang Long Zhuang in the Jiangsu Oilfield, the compatibility of weak gel and microbe was evaluated using laboratory experiments. Bacillus sp. W5 was isolated from the formation water in Block Wang Long Zhuang. The rate of oil degradation reached 178 mg/day, and the rate of viscosity reduction reached 75.3%. Strain W5 could produce lipopeptide with a yield of 1254 mg/L. Emulsified crude oil was dispersed in the microbial degradation system, and the average diameter of the emulsified oil particles was 18.54 μm. Bacillus sp. W5 did not affect the rheological properties of the weak gel, and the presence of the weak gel did not significantly affect bacterial reproduction (as indicated by an unchanged microbial biomass), emulsification (surface tension is 35.56 mN/m and average oil particles size is 21.38 μm), oil degradation (162 mg/day) and oil viscosity reduction (72.7%). Core-flooding experiments indicated oil recovery of 23.6% when both weak gel and Bacillus sp. W5 were injected into the system, 14.76% when only the weak gel was injected, and 9.78% with strain W5 was injected without the weak gel. The results demonstrate good compatibility between strains W5 and the weak gel and highlight the application potential of weak gel-assisted microbial flooding. Copyright © 2018 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  16. A colourimetric method for the determination of the degree of chemical cross-linking in aspartic acid-based polymer gels

    Directory of Open Access Journals (Sweden)

    B. Gyarmati

    2015-02-01

    Full Text Available A 2,4,6-trinitrobenzenesulphonic acid (TNBS-based assay is developed to determine the degree of chemical cross-linking in aspartic acid-based polymer gels. The conventional colourimetric method for the quantitative determination of amine groups is difficult to use in polymer networks; thus, an improved method is developed to analyse polymer gels swollen in dimethyl sulfoxide (DMSO. Reaction products of the derivatizing reaction are examined by NMR. The chemical stability of the reagent is increased in DMSO, and the method shows satisfactory linearity and accuracy. The degree of chemical cross-linking in the investigated gels is close to its theoretical maximum, but the conversion of the pendant amine groups to cross-linking points is strongly dependent on the feed composition of the gels.

  17. High transparent shape memory gel

    Science.gov (United States)

    Gong, Jin; Arai, Masanori; Kabir, M. H.; Makino, Masato; Furukawa, Hidemitsu

    2014-03-01

    Gels are a new material having three-dimensional network structures of macromolecules. They possess excellent properties as swellability, high permeability and biocompatibility, and have been applied in various fields of daily life, food, medicine, architecture, and chemistry. In this study, we tried to prepare new multi-functional and high-strength gels by using Meso-Decoration (Meso-Deco), one new method of structure design at intermediate mesoscale. High-performance rigid-rod aromatic polymorphic crystals, and the functional groups of thermoreversible Diels-Alder reaction were introduced into soft gels as crosslinkable pendent chains. The functionalization and strengthening of gels can be realized by meso-decorating the gels' structure using high-performance polymorphic crystals and thermoreversible pendent chains. New gels with good mechanical properties, novel optical properties and thermal properties are expected to be developed.

  18. Application of gel microsphere processes to preparation of Sphere-Pac nuclear fuel

    International Nuclear Information System (INIS)

    Haas, P.A.; Notz, K.J.; Spence, R.D.

    1978-01-01

    Sphere-Pac fabrication of nuclear fuels using two or more sizes of oxide or carbide spheres is ideally suited to nonproliferation-fuel cycles and remote refabrication. The sizes and compositions of spheres necessary for such fuel cycles have not been commonly prepared; therefore, modifications of sol-gel processes to meet these requirements are being developed and demonstrated

  19. New reusable elastomer electrodes for assessing body composition

    International Nuclear Information System (INIS)

    Moreno, M-V; Chaset, L; Bittner, P A; Barthod, C; Passard, M

    2013-01-01

    The development of telemedicine requires finding solutions of reusable electrodes for use in patients' homes. The objective of this study is to evaluate the relevance of reusable elastomer electrodes for measuring body composition. We measured a population of healthy Caucasian (n = 17). A measurement was made with a reference device, the Xitron®, associated with AgCl Gel electrodes (Gel) and another measurement with a multifrequency impedancemeter Z-Metrix® associated with reusable elastomer electrodes (Elast). We obtained a low variability with an average error of repeatability of 0.39% for Re and 0.32% for Rinf. There is a non significantly difference (P T-test > 0.1) about 200 ml between extracellular water Ve measured with Gel and Elast in supine and in standing position. For total body water Vt, we note a non significantly difference (P T-test > 0.1) about 100 ml and 2.2 1 respectively in supine and standing position. The results give low dispersion, with R 2 superior to 0.90, with a 1.5% maximal error between Gel and Elast on Ve in standing position. It looks possible, taking a few precautions, using elastomer electrodes for assessing body composition.

  20. Influence of pre-cooking protein paste gelation conditions and post-cooking gel storage conditions on gel texture.

    Science.gov (United States)

    Paker, Ilgin; Matak, Kristen E

    2016-01-15

    Gelation conditions affect the setting of myofibrillar fish protein gels. Therefore the impact of widely applied pre-cooking gelation time/temperature strategies and post-cooking period on the texture and color of final protein gels was determined. Four pre-cooking gelation strategies (no setting time, 30 min at 25 °C, 1 h at 40 °C or 24 h at 4 °C) were applied to protein pastes (fish protein concentrate and standard functional additives). After cooking, texture and color were analyzed either directly or after 24 h at 4 °C on gels adjusted to 25 °C. No-set gels were harder, gummier and chewier (P cooking. Gel-setting conditions had a greater (P cooking stored gels in texture and color, depending on the pre-cooking gelation strategy. Pre-cooking gelation conditions will affect final protein gel texture and color, with gel stability benefiting from a gel-setting period. However, post-cooking storage may have a greater impact on final gels, with textural attributes becoming more consistent between all samples. © 2015 Society of Chemical Industry.

  1. Silica-gel structural characterization during the initial phases of gelation and drying

    International Nuclear Information System (INIS)

    Ferreira, Max Passos

    1996-01-01

    For centuries, glasses and ceramics have been made via melting or solid state reactions at temperatures above 100 deg C. The sol-gel process offers new approaches to the synthesis of glasses and ceramics, combining control of composition and structure at the molecular level with the ability to shape materials in bulk, powder, fiber and thin-film forms. The growth of sol-gel technology research is due to the many unique features of that class of materials. Major applications include optical elements and integrated optical devices, ceramic filters, membranes, supercondutors, magnetic, catalytic and manostructured materials to antioxidant, anticorrosion coatings and composite and biomedical materials. In this work a variety of techniques like spectroscopy, Raman spectroscopy, ultraviolet-visible spectroscopy, light scattering nuclear magnetic resonance, X ray diffraction and nitrogen adsorption have been employed to investigate the initial phase of the sol-gel transition of gamma ray irradiated tetramethoxysilane (TMOS) solutions and non-irradiated TMOS solution and to get information about the structure of the silica gels obtained under different gelation conditions. Typically the tetramethoxysilane solutions were prepared using a molar ratio of TMOS to demineralized water of 1 to 16. Some experiments were made under catalysed conditions. The mixing was carried out at room temperature. The turbidity and light scattering experiments on the polycondensation of tetramethoxysilane show that exists no drastic difference in the gelling time of a gamma ray irradiated and a non-irradiated TMOS+H 2 O (1+16 M) solution. In the absence of a catalyst, the gelling time for both reactions occurs in about 3.30 h. When HNO 3 (o.03 M) was used, the gelling time observed was 3 days. Raman and ultraviolet-visible spectroscopy show no drastic difference during the initial phase at the sol-gel transition under ambient temperature/pressure and under gamma radiation. The gels heated

  2. Incorporation of sol–gel bioactive glass into PLGA improves mechanical properties and bioactivity of composite scaffolds and results in their osteoinductive properties

    International Nuclear Information System (INIS)

    Filipowska, J; Tylko, G; Osyczka, A M; Pawlik, J; Cholewa-Kowalska, K; Laczka, M; Pamula, E; Niedzwiedzki, L; Szuta, M

    2014-01-01

    In this study, 3D porous bioactive composite scaffolds were produced and evaluated for their physico-chemical and biological properties. Polymer poly-L-lactide-co-glycolide (PLGA) matrix scaffolds were modified with sol–gel-derived bioactive glasses (SBGs) of CaO–SiO 2 –P 2 O 5 systems. We hypothesized that SBG incorporation into PLGA matrix would improve the chemical and biological activity of composite materials as well as their mechanical properties. We applied two bioactive glasses, designated as S2 or A2, differing in the content of SiO 2 and CaO (i.e. 80 mol% SiO 2 , 16 mol% CaO for S2 and 40 mol% SiO 2 , 52 mol% CaO for A2). The composites were characterized for their porosity, bioactivity, microstructure and mechanical properties. The osteoinductive properties of these composites were evaluated in human bone marrow stromal cell (hBMSC) cultures grown in either standard growth medium or treated with recombinant human bone morphogenetic protein-2 (rhBMP-2) or dexamethasone (Dex). After incubation in simulated body fluid, calcium phosphate precipitates formed inside the pores of both A2-PLGA and S2-PLGA scaffolds. The compressive strength of the latter was increased slightly compared to PLGA. Both composites promoted superior hBMSC attachment to the material surface and stimulated the expression of several osteogenic markers in hBMSC compared to cells grown on unmodified PLGA. There were also marked differences in the response of hBMSC to composite scaffolds, depending on chemical compositions of the scaffolds and culture treatments. Compared to silica-rich S2-PLGA, hBMSC grown on calcium-rich A2-PLGA were overall less responsive to rhBMP-2 or Dex and the osteoinductive properties of these A2-PLGA scaffolds seemed partially dependent on their ability to induce BMP signaling in untreated hBMSC. Thus, beyond the ability of currently studied composites to enhance hBMSC osteogenesis, it may become possible to modulate the osteogenic response of h

  3. Reduced degree of irritation during a second cycle of ingenol mebutate gel 0.015% for the treatment of actinic keratosis.

    Science.gov (United States)

    Jim On, Shelbi C; Haddican, Madelaine; Yaroshinsky, Alex; Singer, Giselle; Lebwohl, Mark

    2015-01-01

    Ingenol mebutate gel is a topical field treatment of actinic keratosis (AK). One of several proposed mechanisms of action for ingenol mebutate is induction of cell death in proliferating keratinocytes, suggesting a preferential action on AKs rather than healthy skin. Local skin reactions (LSRs) during 2 sequential 4-week cycles of AK treatment with ingenol mebutate gel 0.015% on the face or scalp were evaluated to test the hypothesis that reapplication of the study product would produce lower LSR scores than during the first treatment cycle. In this unblinded study, 20 participants with AKs on the face or scalp were treated with ingenol mebutate gel 0.015% once daily for 3 days in 2 sequential 4-week cycles. Composite LSR scores were evaluated during both cycles. The composite LSR score during the second cycle was found to be significantly lower than the first cycle (P=.0002). The proportion of participants who experienced LSRs in the second treatment cycle was less than the first cycle. Ingenol mebutate gel 0.015% may cumulatively reduce the burden of sun-damaged skin over 2 treatment cycles by targeting and removing transformed keratinocytes.

  4. Agar/gelatin bilayer gel matrix fabricated by simple thermo-responsive sol-gel transition method.

    Science.gov (United States)

    Wang, Yifeng; Dong, Meng; Guo, Mengmeng; Wang, Xia; Zhou, Jing; Lei, Jian; Guo, Chuanhang; Qin, Chaoran

    2017-08-01

    We present a simple and environmentally-friendly method to generate an agar/gelatin bilayer gel matrix for further biomedical applications. In this method, the thermally responsive sol-gel transitions of agar and gelatin combined with the different transition temperatures are exquisitely employed to fabricate the agar/gelatin bilayer gel matrix and achieve separate loading for various materials (e.g., drugs, fluorescent materials, and nanoparticles). Importantly, the resulting bilayer gel matrix provides two different biopolymer environments (a polysaccharide environment vs a protein environment) with a well-defined border, which allows the loaded materials in different layers to retain their original properties (e.g., magnetism and fluorescence) and reduce mutual interference. In addition, the loaded materials in the bilayer gel matrix exhibit an interesting release behavior under the control of thermal stimuli. Consequently, the resulting agar/gelatin bilayer gel matrix is a promising candidate for biomedical applications in drug delivery, controlled release, fluorescence labeling, and bio-imaging. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Metal hydride compositions and lithium ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Young, Kwo; Nei, Jean

    2018-04-24

    Heterogeneous metal hydride (MH) compositions comprising a main region comprising a first metal hydride and a secondary region comprising one or more additional components selected from the group consisting of second metal hydrides, metals, metal alloys and further metal compounds are suitable as anode materials for lithium ion cells. The first metal hydride is for example MgH.sub.2. Methods for preparing the composition include coating, mechanical grinding, sintering, heat treatment and quenching techniques.

  6. CHARACTERISTICS OF INTERACTIONS BETWEEN SOME TEXTURE PROPERTIES AND COMPOSITION OF CARRAGEENAN GELS AS A RESULT OF ITS DEFINED DIVERSIFIED FREEZING AND THAWING TREATMENT

    Directory of Open Access Journals (Sweden)

    Katarzyna Kozłowicz

    2013-06-01

    Full Text Available Model samples of carrageenan gels based on water, milk and juice were air-blast frozen and frozen by immersion in glycol and in liquid nitrogen. The gel freezing rate was determined on the basis of the kinetics of freezing. Carrageenan gel samples were characterized by evaluation of its thawing drip loss and hardness determined with compression and penetration tests. Freezing in liquid nitrogen ensured the highest freezing rates. Thawing drip loss of gels significantly depended on the carrageenan content, pH of the solution, freezing method and freezing rate. The resulting relationships are linear functions with high determination coefficients. The results of compression and penetration tests prove the significant effect of the carrageenan content and pH on gel hardness. The higher carrageenan content in a sample, the higher compression force and penetration of the gel. Gel freezing resulted in lower hardness. Freezing conditions had a significant effect on the properties tested. The correlation between compression forces and penetration depending on the carrageenan content and the freezing method was described using regression equations with high determination coefficients. Gels based on milk and juice with 2.2% carrageenan content are recommended for immersion freezing at rates above 5.0 cm·h-1.

  7. Nanostructured sol-gel coatings doped with cerium nitrate as pre-treatments for AA2024-T3

    International Nuclear Information System (INIS)

    Zheludkevich, M.L.; Serra, R.; Montemor, M.F.; Yasakau, K.A.; Salvado, I.M. Miranda; Ferreira, M.G.S.

    2005-01-01

    Nanostructured hybrid sol-gel coatings doped with cerium ions were investigated in the present work as pre-treatments for the AA2024-T3 alloy. The sol-gel films have been synthesized from tetraethylorthosilicate (TEOS) and 3-glycidoxypropyltrimethoxysilane (GPTMS) precursors. Additionally the hybrid sol was doped with zirconia nanoparticles prepared from hydrolyzed tetra-n-propoxyzirconium (TPOZ). Cerium nitrate, as corrosion inhibitor, was added into the hybrid matrix or into the oxide nanoparticles. The chemical composition and the structure of the hybrid sol-gel films were studied by XPS (X-ray photoelectron spectroscopy) and AFM (atomic force microscopy), respectively. The evolution of the corrosion protection properties of the sol-gel films was studied by EIS (electrochemical impedance spectroscopy), which can provide quantitative information on the role of the different pre-treatments. Different equivalent circuits, for different stages of the corrosion processes, were used in order to model the coating degradation. The models were supported by SEM (scanning electron microscopy) measurements. The results show that the sol-gel films containing zirconia nanoparticles present improved barrier properties. Doping the hybrid nanostructured sol-gel coatings with cerium nitrate leads to additional improvement of the corrosion protection. The zirconia particles present in the sol-gel matrix seem to act as nanoreservoirs providing a prolonged release of cerium ions. The nanostructured sol-gel films doped with cerium nitrate can be proposed as a potential candidate for substitution of the chromate pre-treatments for AA2024-T3

  8. ZnO-SiO{sub 2} based nanocomposites prepared by a modified sol-gel method

    Energy Technology Data Exchange (ETDEWEB)

    Grigorie, Alexandra Carmen [Politehnica University Timisoara, Faculty of Industrial Chemistry and Environmental Engineering, 6 V. Parvan Blv., RO-300223, Timisoara (Romania); Muntean, Cornelia, E-mail: cornelia.muntean@upt.ro [Politehnica University Timisoara, Faculty of Industrial Chemistry and Environmental Engineering, 6 V. Parvan Blv., RO-300223, Timisoara (Romania); Politehnica University Timisoara, Research Institute for Renewable Energy, 2 Piata Victoriei, RO-300006, Timisoara (Romania); Vlase, Titus [West University of Timisoara, 4 V. Parvan Blv., RO-300223, Timisoara (Romania); Locovei, Cosmin [Politehnica University Timisoara, Research Institute for Renewable Energy, 2 Piata Victoriei, RO-300006, Timisoara (Romania); Politehnica University Timisoara, Faculty of Mechanical Engineering, 1 Mihai Viteazul Blv., RO-300222, Timisoara (Romania); Stefanescu, Mircea [Politehnica University Timisoara, Faculty of Industrial Chemistry and Environmental Engineering, 6 V. Parvan Blv., RO-300223, Timisoara (Romania)

    2017-01-15

    This paper presents a study on nanocomposites formation in ZnO-SiO{sub 2} systems with different ZnO:SiO{sub 2} molar ratios (1:4, 1:1, and 4:1), prepared employing a sol-gel method modified by an original procedure. The evolution of ZnO-SiO{sub 2} systems depending on the composition and temperature was studied by thermal analysis, Fourier transform infrared spectroscopy, X-ray diffractometry and transmission electron microscopy. Zn(II) carboxylate was synthesized in situ in hybrid silica gels by redox reaction between zinc nitrate and 1,3-propanediol. Its thermal decomposition at low temperatures led to ZnO dispersed in the pores of silica matrix. Only for the 4:1 system, at 400 and 600 °C, ZnO nanocrystallites (average size ∼9 nm) embedded in the amorphous silica matrix were obtained, the other systems being amorphous. Whatever the mixture composition is, above 600 °C, ZnO reacts with SiO{sub 2} to form zinc silicate. At 800 °C, for both 1:4 and 1:1 systems, poor crystallized β-Zn{sub 2}SiO{sub 4} and α-Zn{sub 2}SiO{sub 4} phases embedded in silica matrix were formed. Increasing the temperature, at 1000 °C, only for 1:1 system, β-Zn{sub 2}SiO{sub 4} phase turned into single phase α-Zn{sub 2}SiO{sub 4} (average crystallites size 28.3 nm). For 4:1 composition, at 800 and 1000 °C, systems consisting of ZnO and α-Zn{sub 2}SiO{sub 4} nanocrystallites dispersed in silica were obtained. - Highlights: • By modified sol-gel method, ZnO/SiO{sub 2} and Zn{sub 2}SiO{sub 4}/SiO{sub 2} nanocomposites were obtained. • ZnO dispersed in silica matrix results from zinc carboxylate thermal decomposition. • Zinc carboxylate was synthesized in situ in hybrid silica gels via redox reaction. • Evolution of ZnO in SiO{sub 2} matrix depends on temperature and system composition.

  9. Chemical Gel for Surface Decontamination

    International Nuclear Information System (INIS)

    Jung, Chong Hun; Moon, J. K.; Won, H. J.; Lee, K. W.; Kim, C. K.

    2010-01-01

    Many chemical decontamination processes operate by immersing components in aggressive chemical solutions. In these applications chemical decontamination technique produce large amounts of radioactive liquid waste. Therefore it is necessary to develop processes using chemical gels instead of chemical solutions, to avoid the well-known disadvantages of chemical decontamination techniques while retaining their high efficiency. Chemical gels decontamination process consists of applying the gel by spraying it onto the surface of large area components (floors, walls, etc) to be decontaminated. The gel adheres to any vertical or complex surface due to their thixotropic properties and operates by dissolving the radioactive deposit, along with a thin layer of the gel support, so that the radioactivity trapped at the surface can be removed. Important aspects of the gels are that small quantities can be used and they show thixitropic properties : liquid during spraying, and solid when stationary, allowing for strong adherence to surfaces. This work investigates the decontamination behaviors of organic-based chemical gel for SS 304 metallic surfaces contaminated with radioactive materials

  10. Thixotropic gel for vadose zone remediation

    Science.gov (United States)

    Rhia, Brian D [Augusta, GA

    2011-03-01

    A thixotropic gel suitable for use in subsurface bioremediation is provided along with a process of using the gel. The thixotropic gel provides a non-migrating injectable substrate that can provide below ground barrier properties. In addition, the gel components provide for a favorable environment in which certain contaminants are preferentially sequestered in the gel and subsequently remediated by either indigenous or introduced microorganisms.

  11. Meso-Decorated Switching-Knot Gels

    Science.gov (United States)

    Gong, Jin; Sawamura, Kensuke; Makino, Masato; Kabir, M. H.; Furukawa, Hidemitsu

    Gels are a new material having three-dimensional network structures of macromolecules. They possess excellent properties as swellability, high permeability and biocompatibility, and have been applied in various fields of daily life, food, medicine, architecture, and chemistry .In this study, we tried to prepare new multi-functional and high-strength gels by using Meso-Decoration (Meso-Deco), one new method of structure design at intermediate mesoscale. High-performance rigid-rod aromatic polymorphic crystals. The strengthening of gels can be realized by meso-decorating the gels' structure using high-performance polymorphic crystals. New gels with good mechanical properties, novel optical properties and thermal properties are expected to be developed.

  12. Spectroscopic and electrochemical characterization of cytochrome c encapsulated in a bio sol-gel matrix.

    Science.gov (United States)

    Deriu, Daniela; Pagnotta, Sara Emanuela; Santucci, Roberto; Rosato, Nicola

    2008-08-01

    Sol-gel technique represents a remarkably versatile method for protein encapsulation. To enhance sol-gel biocompatibility, systems envisaging the presence of calcium and phosphates in the sol-gel composition were recently prepared and investigated. Unfortunately, the low pH at which solutions were prepared (pH proteins, because the acidic environment induces protein denaturation. In this paper we apply a new protocol based on the introduction of calcium nitrate to the inorganic phase, with formation of a binary bioactive system. In this case protein encapsulation results versatile and secure, being achieved at a pH close to neutrality (pH 6.0); also, the presence of calcium is expected to enhance system biocompatibility. To determine the properties of the salt-doped sol-gel and the influence exerted on entrapped biosystems, the structural and functional properties of embedded cytochrome c have been investigated. Data obtained indicate that the salt-doped sol-gel induces no significant change in the structure and the redox properties of the embedded protein; also, the matrix increases protein stability. Interestingly, the presence of calcium nitrate appears determinant for refolding of the acid-denatured protein. This is of interest in the perspective of future applications in biosensoristic area.

  13. Automatic DNA Diagnosis for 1D Gel Electrophoresis Images using Bio-image Processing Technique.

    Science.gov (United States)

    Intarapanich, Apichart; Kaewkamnerd, Saowaluck; Shaw, Philip J; Ukosakit, Kittipat; Tragoonrung, Somvong; Tongsima, Sissades

    2015-01-01

    DNA gel electrophoresis is a molecular biology technique for separating different sizes of DNA fragments. Applications of DNA gel electrophoresis include DNA fingerprinting (genetic diagnosis), size estimation of DNA, and DNA separation for Southern blotting. Accurate interpretation of DNA banding patterns from electrophoretic images can be laborious and error prone when a large number of bands are interrogated manually. Although many bio-imaging techniques have been proposed, none of them can fully automate the typing of DNA owing to the complexities of migration patterns typically obtained. We developed an image-processing tool that automatically calls genotypes from DNA gel electrophoresis images. The image processing workflow comprises three main steps: 1) lane segmentation, 2) extraction of DNA bands and 3) band genotyping classification. The tool was originally intended to facilitate large-scale genotyping analysis of sugarcane cultivars. We tested the proposed tool on 10 gel images (433 cultivars) obtained from polyacrylamide gel electrophoresis (PAGE) of PCR amplicons for detecting intron length polymorphisms (ILP) on one locus of the sugarcanes. These gel images demonstrated many challenges in automated lane/band segmentation in image processing including lane distortion, band deformity, high degree of noise in the background, and bands that are very close together (doublets). Using the proposed bio-imaging workflow, lanes and DNA bands contained within are properly segmented, even for adjacent bands with aberrant migration that cannot be separated by conventional techniques. The software, called GELect, automatically performs genotype calling on each lane by comparing with an all-banding reference, which was created by clustering the existing bands into the non-redundant set of reference bands. The automated genotype calling results were verified by independent manual typing by molecular biologists. This work presents an automated genotyping tool from DNA

  14. Automatic DNA Diagnosis for 1D Gel Electrophoresis Images using Bio-image Processing Technique

    Science.gov (United States)

    2015-01-01

    Background DNA gel electrophoresis is a molecular biology technique for separating different sizes of DNA fragments. Applications of DNA gel electrophoresis include DNA fingerprinting (genetic diagnosis), size estimation of DNA, and DNA separation for Southern blotting. Accurate interpretation of DNA banding patterns from electrophoretic images can be laborious and error prone when a large number of bands are interrogated manually. Although many bio-imaging techniques have been proposed, none of them can fully automate the typing of DNA owing to the complexities of migration patterns typically obtained. Results We developed an image-processing tool that automatically calls genotypes from DNA gel electrophoresis images. The image processing workflow comprises three main steps: 1) lane segmentation, 2) extraction of DNA bands and 3) band genotyping classification. The tool was originally intended to facilitate large-scale genotyping analysis of sugarcane cultivars. We tested the proposed tool on 10 gel images (433 cultivars) obtained from polyacrylamide gel electrophoresis (PAGE) of PCR amplicons for detecting intron length polymorphisms (ILP) on one locus of the sugarcanes. These gel images demonstrated many challenges in automated lane/band segmentation in image processing including lane distortion, band deformity, high degree of noise in the background, and bands that are very close together (doublets). Using the proposed bio-imaging workflow, lanes and DNA bands contained within are properly segmented, even for adjacent bands with aberrant migration that cannot be separated by conventional techniques. The software, called GELect, automatically performs genotype calling on each lane by comparing with an all-banding reference, which was created by clustering the existing bands into the non-redundant set of reference bands. The automated genotype calling results were verified by independent manual typing by molecular biologists. Conclusions This work presents an

  15. Mesoscopic objects, porous layers and nanocomposites-Possibilities of sol-gel chemistry

    International Nuclear Information System (INIS)

    Piwonski, Ireneusz

    2009-01-01

    The goal of this study was to prepare mesoscopic objects, thin porous films and nanocomposite coatings with the use of sol-gel technique. Silica nanotubes, titania nanoparticles, porous titania and zirconia coatings as well as titania nanocomposites were successfully synthesized by changing the type of sol-gel precursor, sol composition and applying dip-coating deposition procedure in order to obtain thin films or coatings. All materials were visualized and characterized by the Atomic Force Microcscopy (AFM) technique. Moreover, characterization of titania nanocomposites was extended to the tribological tests performed by means of microtribometer operating in normal loads range of 30-100 mN. The AFM analysis of mesoscopic objects and nanoparticles showed that the diameter of synthesized silica nanotubes was 60-70 nm and the size of titania nanoparticles was 43 nm. In case of porous layers the pore size in titania and zirconia coatings oscillated between 100 and 240 nm, however their shape and distribution were irregular. Microtribological studies of nanocomposites revealed the moderate decrease of the coefficient of friction for samples containing 5, 15 and 5 wt.% of zirconia nanoparticles in titania coatings annealed at 100, 500 and 1000 deg. C respectively. An enhancement of antiwear properties was already observed for 1 wt.% of nanophase content, except the sample annealed at 500 deg. C. It was also found that the annealing at high temperatures is a primary factor which affects the reduction of friction and wear of titania coatings while the presence of nanoparticles has secondary effect. Investigations in this study carried out with the use of the AFM technique highlighted the potential and flexibility of sol-gel approach in designing of various types of advanced materials in a form of mesoscopic objects, porous coatings and composite layers. Results collected in this study clearly demonstrated that sol-gel technique can be applied effectively in preparation of

  16. Structure of mineral gels

    International Nuclear Information System (INIS)

    Miranda Salvado, I.M.; Margaca, F.M.A.; Teixeira, J.

    1999-01-01

    Small Angle Neutron Scattering (SANS) measurements have been performed to investigate the nanoscale structure of materials of the systems xTiO 2 -(1-x)SiO 2 and xZrO 2 -(1-x)SiO 2 with x ≤ 10 mol % at different processing stages. The materials were prepared by sol-gel using the alkoxides method, in strong acidic conditions. Samples were studied as xerogels heat-treated at 120 and 850 deg. C and as wet gels at gel point and after aging. All samples showed identical microstructure at gel point, extended linear chains ∼10 nm long. The aged gel has a mass fractal structure with fractal dimension of 1.7 - 1.9. The 120 deg. C heat-treated xerogels show homogeneous oxide regions with mass fractal structure. For the 850 deg. C heat-treated xerogel the oxide regions average size has reduced and it has densified as compared to 120 deg. C heat-treated sample. (author)

  17. Novel thixotropic gel electrolytes based on dicationic bis-imidazolium salts for quasi-solid-state dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jun Young [Department of Polymer Science and Engineering, SungKyunKwan University, Suwon, Kyunggi-do 440-746 (Korea); Functional Polymer Lab., Korea Institute of Science and Technology, Seoul 136-791 (Korea); Kim, Tae Ho [Department of Polymer Science and Engineering, SungKyunKwan University, Suwon, Kyunggi-do 440-746 (Korea); Kim, Dong Young; Park, Nam-Gyu [Energy Materials Research Center, Korea Institute of Science and Technology, Seoul 136-791 (Korea); Ahn, Kwang-Duk [Functional Polymer Lab., Korea Institute of Science and Technology, Seoul 136-791 (Korea)

    2008-01-03

    Novel thixotropic gel electrolytes have been successfully prepared by utilizing oligomeric poly(ethylene oxide) (PEO)-based bis-imidazolium diiodide salts and hydrophilic silica nanoparticles for application in quasi-solid-state dye-sensitized solar cells (DSSCs). The thixotropic gel-state of the ionic liquid-based composite electrolytes is confirmed by observing the typical hysteresis loop and temporary hydrogen bonding. On using the PEO-based composite electrolyte, a quasi-solid-state DSSC exhibited highly improved properties such as easy penetration of the electrolyte into the cell without leakage, long-term stability, high open-circuit voltage without the use of 4-tert-butylpyridine, and a high energy-conversion efficiency of 5.25% under AM 1.5 illumination (100 mW cm{sup -2}). (author)

  18. Preparation and characterization of multi-walled carbon nanotube/hydroxyapatite nanocomposite film dip coated on Ti–6Al–4V by sol–gel method for biomedical applications: An in vitro study

    International Nuclear Information System (INIS)

    Abrishamchian, Alireza; Hooshmand, Tabassom; Mohammadi, Mohammadreza; Najafi, Farhood

    2013-01-01

    In the present research, the introduction of multi-walled carbon nanotubes (MWCNTs) into the hydroxyapatite (HA) matrix and dip coating of nanocomposite on titanium alloy (Ti–6Al–4V) plate was conducted in order to improve the performance of the HA-coated implant via the sol–gel method. The structural characterization and electron microscopy results confirmed well crystallized HA–MWCNT coating and homogenous dispersion of carbon nanotubes in the ceramic matrix at temperatures as low as 500 °C. The evaluation of the mechanical properties of HA and HA/MWCNT composite coatings with different weight percentages of MWCNTs showed that the addition of low concentrations of MWCNTs (0.5 and 1 wt.%) had improved effect on the mechanical properties of nanocomposite coatings. Moreover, this in vitro study ascertained the biocompatibility of the prepared sol–gel-derived HA/MWCNT composite coatings. - Highlights: ► Carbon nanotube/hydroxyapatite composite was successfully dip-coated on Ti by sol–gel. ► Well-crystallized HA–MWCNT and homogenous dispersion of nanotubes were obtained. ► Low concentration of CNTs improved the mechanical properties of composite coating. ► Biocompatibility of the prepared sol–gel-derived HA/MWCNT films was ascertained

  19. Preparation and characterization of multi-walled carbon nanotube/hydroxyapatite nanocomposite film dip coated on Ti–6Al–4V by sol–gel method for biomedical applications: An in vitro study

    Energy Technology Data Exchange (ETDEWEB)

    Abrishamchian, Alireza [Department of Dental Biomaterials, School of Dentistry/Research Center for Science and Technology in Medicine, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Hooshmand, Tabassom, E-mail: hoshmand@sina.tums.ac.ir [Department of Dental Biomaterials, School of Dentistry/Research Center for Science and Technology in Medicine, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Mohammadi, Mohammadreza [Department of Materials Science and Engineering, Sharif University of Technology, Tehran (Iran, Islamic Republic of); Najafi, Farhood [Department of Resin and Additives, Institute for Color Science and Technology, Tehran (Iran, Islamic Republic of)

    2013-05-01

    In the present research, the introduction of multi-walled carbon nanotubes (MWCNTs) into the hydroxyapatite (HA) matrix and dip coating of nanocomposite on titanium alloy (Ti–6Al–4V) plate was conducted in order to improve the performance of the HA-coated implant via the sol–gel method. The structural characterization and electron microscopy results confirmed well crystallized HA–MWCNT coating and homogenous dispersion of carbon nanotubes in the ceramic matrix at temperatures as low as 500 °C. The evaluation of the mechanical properties of HA and HA/MWCNT composite coatings with different weight percentages of MWCNTs showed that the addition of low concentrations of MWCNTs (0.5 and 1 wt.%) had improved effect on the mechanical properties of nanocomposite coatings. Moreover, this in vitro study ascertained the biocompatibility of the prepared sol–gel-derived HA/MWCNT composite coatings. - Highlights: ► Carbon nanotube/hydroxyapatite composite was successfully dip-coated on Ti by sol–gel. ► Well-crystallized HA–MWCNT and homogenous dispersion of nanotubes were obtained. ► Low concentration of CNTs improved the mechanical properties of composite coating. ► Biocompatibility of the prepared sol–gel-derived HA/MWCNT films was ascertained.

  20. Cyanocobalamin Nasal Gel

    Science.gov (United States)

    ... to supply extra vitamin B12 to people who need unusually large amounts of this vitamin because they are pregnant or have certain diseases. ... Cyanocobalamin nasal gel will supply you with enough vitamin B12 only as ... it regularly. You may need to use cyanocobalamin nasal gel every week for ...

  1. Control size of silver nanoparticles in sol-gel glasses

    Science.gov (United States)

    Renteria, Victor M.; Celis, Antonio C.; Garcia-Macedo, Jorge A.

    2000-10-01

    By the sol-gel processing, silver ions in presence of stabilizing function (3-thiocyanatopropyl)triethoxysilane are reduced by heating gels at 180 C for several times in air atmosphere. The spectroscopic Uv-Vis observations, confirm silver nanoparticles presence with peak maximum around 350 nm. The optical properties of the metallic particles are observed at room temperature as function of time, and the absorption spectra practically do not change, which indicated they are trapped and stabilized within the fine porous silica cage. Mie theory calculations, considering the mean free path effect of the conduction electrons, are compatible with experimental spectra, indicating homogeneity in size and form of the metallic nanoparticles. Smithard correlation curve, between half width height (W1/2) of the optical absorption and the particle diameter 2r, predict silver particles size between 4 and 10 nm, during composite heating. Activation energy was measured and compared with previous data on similar systems and the probable reduction process are discussed.

  2. Novel polymeric systems for lithium ion batteries gel electrolytes

    International Nuclear Information System (INIS)

    Appetecchi, G.B.; Alessandrini, F.; Passerini, S.; Caporiccio, G.; Boutevin, B.; Guida-PietraSanta, F.

    2005-01-01

    Cross-linked, self-supporting, membranes for lithium ion battery gel electrolytes were obtained by cross-linking a mixture of polyfluorosilicone (PFSi) and polysilicone containing ethylene oxide (EO) units [P(Si-EO)]. The membranes were also reinforced with nanosized silica. The two polymer precursors were synthesized with functional groups capable to form inter-molecular cross-linking, thus obtaining three-dimensional, polymer matrices. The precursors were dissolved in a common solvent and cross-linked to obtain free-standing PFSi/P(Si-EO):SiO 2 composite films. The latter were undergone to swelling processes in (non-aqueous, aprotic, lithium salt containing) electrolytic solutions to obtain gel-type polymer electrolytes. The properties of the swelled PFSi/P(Si-EO):SiO 2 samples were evaluated as a function of the electrolytic solutions and the dipping time. The PFSi/P(Si-EO):SiO 2 membranes exhibited large swelling properties, high ionic conductivity and good electrochemical stability

  3. Study of Different Sol-Gel Coatings to Enhance the Lifetime of PDMS Devices: Evaluation of Their Biocompatibility.

    Science.gov (United States)

    Aymerich, María; Gómez-Varela, Ana I; Álvarez, Ezequiel; Flores-Arias, María T

    2016-08-25

    A study of PDMS (polydimethylsiloxane) sol-gel-coated channels fabricated using soft lithography and a laser direct writing technique is presented. PDMS is a biocompatible material that presents a high versatility to reproduce several structures. It is widely employed in the fabrication of preclinical devices due to its advantages but it presents a rapid chemical deterioration to organic solvents. The use of sol-gel layers to cover the PDMS overcomes this problem since it provides the robustness of glass for the structures made with PDMS, decreasing its deterioration and changing the biocompatibility of the surface. In this work, PDMS channels are coated with three different kinds of sol-gel compositions (60MTES/40TEOS, 70MTES/30TISP and 80MTES/20TISP). The endothelial cell adhesion to the different coated devices is evaluated in order to determine the most suitable sol-gel preparation conditions to enhance cellular adhesion.

  4. Preliminary study of diffusion effects in Fricke gel dosimeters

    International Nuclear Information System (INIS)

    Quiroga, A.; Vedelago, J.; Valente, M.

    2014-08-01

    in standard dependence of optical density differences and actual, non-diffused, absorbed dose distributions. The obtained values for ferric ion diffusion coefficient, in mm 2 h -1 were (1.24 ± 0.07) and (1.15 ± 0.05) for the 1D and 2D method, respectively, in the first approach method and (0.65 ± 0.01), (0.68 ± 0.02) and (0.65 ± 0.02) in the second approach method. The results show good agreement with previous works corresponding to similar Fricke gel dosimeter compositions. Thus, more accurate 2D and 3D dose mapping might be attained that constitutes valuable improvements in Fricke gel dosimetry, and parallel a high precision methods of diffusion model and calculation have been developed. (Author)

  5. Gel properties and interactions of Mesona blumes polysaccharide-soy protein isolates mixed gel: The effect of salt addition.

    Science.gov (United States)

    Wang, Wenjie; Shen, Mingyue; Liu, Suchen; Jiang, Lian; Song, Qianqian; Xie, Jianhua

    2018-07-15

    Effect of different salt ions on the gel properties and microstructure of Mesona blumes polysaccharide (MBP)-soy protein isolates (SPI) mixed gels were investigated. Sodium and calcium ions were chosen to explore their effects on the rheological behavior and gel properties of MBP-SPI mixed gels were evaluated by using rheological, X-ray diffraction, protein solubility determination, and microstructure analysis. Results showed that the addition of salt ions change the crystalline state of gels system, the crystal of gel was enhanced at low ion concentrations (0.005-0.01 M). The two peaks of gel characteristic at 8.9° and 19.9° almost disappeared at high salt ions concentrations (0.015-0.02 M), and new crystallization peaks appeared at around 30° and 45°. The elasticity, viscosity, gel strength, water holding capacity, and thermal stability of gel were increased at low ion concentration. Results showed that the main interactions which promoted gel formation and maintain the three-dimensional structure of the gel were electrostatic interactions, hydrophobic interactions, and disulfide interactions. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Formulation, functional evaluation and ex vivo performance of thermoresponsive soluble gels - A platform for therapeutic delivery to mucosal sinus tissue.

    Science.gov (United States)

    Pandey, Preeti; Cabot, Peter J; Wallwork, Benjamin; Panizza, Benedict J; Parekh, Harendra S

    2017-01-01

    Mucoadhesive in situ gelling systems (soluble gels) have received considerable attention recently as effective stimuli-transforming vectors for a range of drug delivery applications. Considering this fact, the present work involves systematic formulation development, optimization, functional evaluation and ex vivo performance of thermosensitive soluble gels containing dexamethasone 21-phosphate disodium salt (DXN) as the model therapeutic. A series of in situ gel-forming systems comprising the thermoreversible polymer poloxamer-407 (P407), along with hydroxypropyl methyl cellulose (HPMC) and chitosan were first formulated. The optimized soluble gels were evaluated for their potential to promote greater retention at the mucosal surface, for improved therapeutic efficacy, compared to existing solution/suspension-based steroid formulations used clinically. Optimized soluble gels demonstrated a desirable gelation temperature with Newtonian fluid behaviour observed under storage conditions (4-8°C), and pseudoplastic fluid behaviour recorded at nasal cavity/sinus temperature (≈34°C). The in vitro characterization of formulations including rheological evaluation, textural analysis and mucoadhesion studies of the gel form were investigated. Considerable improvement in mechanical properties and mucoadhesion was observed with incorporation of HPMC and chitosan into the gelling systems. The lead poloxamer-based soluble gels, PGHC4 and PGHC7, which were carried through to ex vivo permeation studies displayed extended drug release profiles in conditions mimicking the human nasal cavity, which indicates their suitability for treating a range of conditions affecting the nasal cavity/sinuses. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Study of nuclear glasses alteration gel and synthesis of some model gels

    International Nuclear Information System (INIS)

    Ricol, S.

    1995-01-01

    This work deals with the general problem of alteration of the reference nuclear glass R7T7. Attention is paid particularly to the altered layer formed at the glass surface during alteration process. In opposition to previous works, related essentially to glass dissolution kinetics based on chemical analyses of lixiviated elements, this thesis deals with alteration problems through structural studies of the reference glass and derived gel. This approach allows the determination of mechanisms for the gel formation and a better understanding of the behaviour of glasses towards lixiviation. Both approaches appeared complementary. Based on several spectroscopic techniques, this work showed the particular role of cations such as calcium, zirconium and iron. Studies of silica-based synthetic gels showed the synergic effect of formers cation and of one highly coordinated cation. The variation of the wavenumber related to Si-O-Si asymmetric stretching vibration can be correlated to O/Si ratio for ternary systems Si/Na/Zr. On the contrary, the Si losses of the materials depend on the number of non-bridging oxygen atoms. In the perspective of long-term behaviour, the alteration gel presents better characteristics than initial glass. It is therefore a highly stable material in static conditions. In the same way, synthetic gels are materials with very low solubilities (much lower than the alteration gel) and could be used as confining matrices. (authors). refs., 71 figs., 37 tabs

  8. Polymer and Polymer Gel of Liquid Crystalline Semiconductors

    Institute of Scientific and Technical Information of China (English)

    Teppei Shimakawa; Naoki Yoshimoto; Jun-ichi Hanna

    2004-01-01

    It prepared a polymer and polymer gel of a liquid crystalline (LC) semiconductor having a 2-phenylnaphthalene moiety and studied their charge carrier transport properties by the time-of-flight technique. It is found that polyacrylate having the mesogenic core moiety of 2-phenylnaphtalene (PNP-acrylate) exhibited a comparable mobility of 10-4cm2/Vs in smectic A phase to those in smectic A (SmA) phase of small molecular liquid crystals with the same core moiety, e.g., 6-(4'-octylphenyl)- 2-dodecyloxynaphthalene (8-PNP-O12), and an enhanced mobility up to 10-3cm2/Vs in the LC-glassy phase at room temperature, when mixed with a small amount of 8-PNP-O12. On the other hand, the polymer gel consisting of 20 wt %-hexamethylenediacrylate (HDA)-based cross-linked polymer and 8-PNP-O12 exhibited no degraded mobility when cross-linked at the mesophase. These results indicate that the polymer and polymer composite of liquid crystalline semiconductors provide us with an easy way to realize a quality organic semiconductor thin film for the immediate device applications.

  9. Dapsone gel 5% in combination with adapalene gel 0.1%, benzoyl peroxide gel 4% or moisturizer for the treatment of acne vulgaris: a 12-week, randomized, double-blind study.

    Science.gov (United States)

    Fleischer, Alan B; Shalita, Alan; Eichenfield, Lawrence F; Abramovits, William; Lucky, Anne; Garrett, Steven

    2010-01-01

    To evaluate the safety and efficacy of dapsone gel 5% in the treatment of acne when used in combination with adapalene gel 0.1%, benzoyl peroxide gel 4% or moisturizer. This was a twelve-week, randomized, double-blind study. Patients aged 12 years and older (n=301) applied dapsone gel twice daily and were randomly assigned (1:1:1) to one of three additional treatments, applied once daily. By week 12, dapsone gel combined with any of the three additional treatments reduced the mean number of inflammatory lesions. However, the authors did not detect a significant difference in the reduction of inflammatory lesions when dapsone was used in combination with adapalene gel or with benzoyl peroxide gel compared to the dapsone plus moisturizer combination group (P=0.052 for both versus moisturizer combination). Patients treated with dapsone gel combined with adapalene showed a significantly better response in reduction in non-inflammatory and total acne lesion count than those who received the moisturizer combination. Local adverse reactions in all three treatment groups were minimal and generally mild in severity. Dapsone gel in combination with adapalene gel or benzoyl peroxide gel is safe and well tolerated for the treatment of acne vulgaris.

  10. Vanadium oxide thin films and fibers obtained by acetylacetonate sol–gel method

    Energy Technology Data Exchange (ETDEWEB)

    Berezina, O.; Kirienko, D. [Department of Physical Engineering, Petrozavodsk State University, 185910 Petrozavodsk (Russian Federation); Pergament, A., E-mail: aperg@psu.karelia.ru [Department of Physical Engineering, Petrozavodsk State University, 185910 Petrozavodsk (Russian Federation); Stefanovich, G.; Velichko, A. [Department of Physical Engineering, Petrozavodsk State University, 185910 Petrozavodsk (Russian Federation); Zlomanov, V. [Department of Chemistry, Moscow State University, 119991 Moscow (Russian Federation)

    2015-01-01

    Vanadium oxide films and fibers have been fabricated by the acetylacetonate sol–gel method followed by annealing in wet nitrogen. The samples are characterized by X-ray diffraction and electrical conductivity measurements. The effects of a sol aging, the precursor decomposition and the gas atmosphere composition on the annealing process, structure and properties of the films are discussed. The two-stage temperature regime of annealing of amorphous films in wet nitrogen for formation of the well crystallized VO{sub 2} phase is chosen: 1) 25–550 °C and 2) 550–600 °C. The obtained films demonstrate the metal–insulator transition and electrical switching. Also, the effect of the polyvinylpyrrolidone additive concentration and electrospinning parameters on qualitative (absence of defects and gel drops) and quantitative (length and diameter) characteristics of vanadium oxide fibers is studied. - Highlights: • Vanadium oxide thin films and fibers are synthesized by sol–gel method. • The effect of annealing, atmosphere, time and electrospinning parameters is studied. • Produced VO{sub 2} structures exhibit metal–insulator transition and electrical switching.

  11. Silver nitrate based gel dosimeter

    International Nuclear Information System (INIS)

    Titus, D; Samuel, E J J; Srinivasan, K; Roopan, S M; Madhu, C S

    2017-01-01

    A new radiochromic gel dosimeter based on silver nitrate and a normoxic gel dosimeter was investigated using UV-Visible spectrophotometry in the clinical dose range. Gamma radiation induced the synthesis of silver nanoparticles in the gel and is confirmed from the UV-Visible spectrum which shows an absorbance peak at around 450 nm. The dose response function of the dosimeter is found to be linear upto12Gy. In addition, the gel samples were found to be stable which were kept under refrigeration. (paper)

  12. An additional simple denitrification bioreactor using packed gel envelopes applicable to industrial wastewater treatment.

    Science.gov (United States)

    Morita, Masahiko; Uemoto, Hiroaki; Watanabe, Atsushi

    2007-08-15

    A simple denitrification bioreactor for nitrate-containing wastewater without organic compounds was developed. This bioreactor consisted of packed gel envelopes in a single tank. Each envelope comprised two plates of gels containing Paracoccus denitrificans cells with an internal space between the plates. As an electron donor for denitrification, ethanol was injected into the internal space and not directly into the wastewater. P. denitrificans cells in the gel reduced nitrate to nitrogen gas by using the injected ethanol. Nitrate-containing desulfurization wastewater derived from a coal-fired thermal power plant was continuously treated with 20 packed gel envelopes (size, 1,000 x 900 x 12 mm; surface area, 1.44 m(2)) in a reactor tank (volume 1.5 m(3)). When the total nitrogen concentration in the inflow was around 150 mg-N x L(-1), the envelopes removed approximately 60-80% of the total nitrogen, and the maximum nitrogen removal rate was 5.0 g-N x day(-1) per square meter of the gel surface. This value corresponded to the volumetric nitrogen removal performance of 0.109 kg-N x m(-3) x day(-1). In each envelope, a high utilization efficiency of the electron donor was attained, although more than the double amount of the electron donor was empirically injected in the present activated sludge system to achieve denitrification when compared with the theoretical value. The bioreactor using the envelopes would be extremely effective as an additional denitrification system because these envelopes can be easily installed in the vacant spaces of preinstalled water treatment systems, without requiring additional facilities for removing surplus ethanol and sludge. (c) 2007 Wiley Periodicals, Inc.

  13. Co-electrospun gelatin-poly(L-lactic acid) scaffolds: Modulation of mechanical properties and chondrocyte response as a function of composition

    Energy Technology Data Exchange (ETDEWEB)

    Torricelli, Paola [Preclinical and Surgical Studies Laboratory, Codivilla Putti Research Institute, Rizzoli Orthopaedic Institute, via di Barbiano, 1/10, 40136 Bologna (Italy); Laboratory of Biocompatibility, Innovative Technologies and Advanced Therapies—Department Rizzoli Research, Innovation, Technology, via di Barbiano, 1/10, 40136 Bologna (Italy); Gioffrè, Michela; Fiorani, Andrea; Panzavolta, Silvia [Department of Chemistry “G. Ciamician” and National Consortium of Materials Science and Technology (INSTM, Bologna RU), University of Bologna (Italy); Gualandi, Chiara [Department of Chemistry “G. Ciamician” and National Consortium of Materials Science and Technology (INSTM, Bologna RU), University of Bologna (Italy); Advanced Mechanics and Materials—Interdepartmental Center for Industrial Research (AMM ICIR), University of Bologna (Italy); Fini, Milena [Preclinical and Surgical Studies Laboratory, Codivilla Putti Research Institute, Rizzoli Orthopaedic Institute, via di Barbiano, 1/10, 40136 Bologna (Italy); Laboratory of Biocompatibility, Innovative Technologies and Advanced Therapies—Department Rizzoli Research, Innovation, Technology, via di Barbiano, 1/10, 40136 Bologna (Italy); Focarete, Maria Letizia, E-mail: marialetizia.focarete@unibo.it [Department of Chemistry “G. Ciamician” and National Consortium of Materials Science and Technology (INSTM, Bologna RU), University of Bologna (Italy); Health Sciences and Technologies—Interdepartmental Center for Industrial Research (HST-ICIR) (Italy); Bigi, Adriana [Department of Chemistry “G. Ciamician” and National Consortium of Materials Science and Technology (INSTM, Bologna RU), University of Bologna (Italy)

    2014-03-01

    Bio-synthetic scaffolds of interspersed poly(L-lactic acid) (PLLA) and gelatin (GEL) fibers are fabricated by co-electrospinning. Tailored PLLA/GEL compositions are obtained and GEL crosslinking with genipin provides for the maintenance of good fiber morphology. Scaffold tensile mechanical properties are intermediate between those of pure PLLA and GEL and vary as a function of PLLA content. Primary human chondrocytes grown on the scaffolds exhibit good proliferation and increased values of the differentiation parameters, especially for intermediate PLLA/GEL compositions. Mineralization tests enable the deposition of a uniform layer of poorly crystalline apatite onto the scaffolds, suggesting potential applications involving cartilage as well as cartilage–bone interface tissue engineering. - Highlights: • Bio-synthetic scaffolds of PLLA and gelatin are produced by co-electrospinning. • Scaffolds with tailored PLLA–gelatin composition are fabricated. • PLLA/gelatin ratio controls scaffold mechanical properties and mineralization. • Chondrocyte proliferation and differentiation are modulated. • Scaffolds are suitable for cartilage–bone interface tissue engineering.

  14. Characteristics of supported nano-TiO2/ZSM-5/silica gel (SNTZS): Photocatalytic degradation of phenol

    International Nuclear Information System (INIS)

    Zainudin, Nor Fauziah; Abdullah, Ahmad Zuhairi; Mohamed, Abdul Rahman

    2010-01-01

    Photocatalytic degradation of phenol was investigated using the supported nano-TiO 2 /ZSM-5/silica gel (SNTZS) as a photocatalyst in a batch reactor. The prepared photocatalyst was characterized using XRD, TEM, FT-IR and BET surface area analysis. The synthesized photocatalyst composition was developed using nano-TiO 2 as the photoactive component and zeolite (ZSM-5) as the adsorbents, all supported on silica gel using colloidal silica gel binder. The optimum formulation of SNTZS catalyst was observed to be (nano-TiO 2 :ZSM-5:silica gel:colloidal silica gel = 1:0.6:0.6:1) which giving about 90% degradation of 50 mg/L phenol solution in 180 min. The SNTZS exhibited higher photocatalytic activity than that of the commercial Degussa P25 which only gave 67% degradation. Its high photocatalytic activity was due to its large specific surface area (275.7 m 2 /g), small particle size (8.1 nm), high crystalline quality of the synthesized catalyst and low electron-hole pairs recombination rate as ZSM-5 adsorbent was used. The SNTZS photocatalyst synthesized in this study also has been proven to have an excellent adhesion and reusability.

  15. A gel probe equilibrium sampler for measuring arsenic porewater profiles and sorption gradients in sediments: II. Field application to Haiwee reservoir sediment

    Science.gov (United States)

    Campbell, K.M.; Root, R.; O'Day, P. A.; Hering, J.G.

    2008-01-01

    Arsenic (As) geochemistry and sorption behavior were measured in As- and iron (Fe)-rich sediments of Haiwee Reservoir by deploying undoped (clear) polyacrylamide gels and hydrous ferric oxide (HFO)-doped gels in a gel probe equilibrium sampler, which is a novel technique for directly measuring the effects of porewater composition on As adsorption to Fe oxides phases in situ. Arsenic is deposited at the sediment surface as As(V) and is reduced to As(III) in the upper layers of the sediment (0-8 cm), but the reduction of As(V) does not cause mobilization into the porewater. Dissolved As and Fe concentrations increased at depth in the sediment column driven by the reductive dissolution of amorphous Fe(III) oxyhydroxides and conversion to a mixed Fe(II, III) green rust-type phase. Adsorption of As and phosphorous (P) onto HFO-doped gels was inhibited at intermediate depths (10-20 cm), possibly due to dissolved organic or inorganic carbon, indicating that dissolved As concentrations were at least partially controlled by porewater composition rather than surface site availability. In sediments that had been recently exposed to air, the region of sorption inhibition was not observed, suggesting that prior exposure to air affected the extent of reductive dissolution, porewater chemistry, and As adsorption behavior. Arsenic adsorption onto the HFO-doped gels increased at depths >20 cm, and the extent of adsorption was most likely controlled by the competitive effects of dissolved phosphate. Sediment As adsorption capacity appeared to be controlled by changes in porewater composition and competitive effects at shallower depths, and by reductive dissolution and availability of sorption sites at greater burial depths. ?? 2008 American Chemical Society.

  16. Improving the temperature performance of low-density ceramic heatshields through sol-gel processing

    Science.gov (United States)

    Bull, Jeffrey; Leiser, Daniel; Sommers, Jeneen; Esfahani, Lili

    1991-01-01

    The performance of rigid insulations for use as thermal protection materials on reentry vehicles can be characterized by their resistance to dimensional and morphological change when exposed to an isothermal environment equivalent to that generated in entry. Improvements in these material characteristics for alumina-enhanced thermal barrier insulation by compositional modification through sol-gel processing are reported.

  17. Surface grafted chitosan gels. Part II. Gel formation and characterization

    DEFF Research Database (Denmark)

    Liu, Chao; Thormann, Esben; Claesson, Per M.

    2014-01-01

    Responsive biomaterial hydrogels attract significant attention due to their biocompatibility and degradability. In order to make chitosan based gels, we first graft one layer of chitosan to silica, and then build a chitosan/poly(acrylic acid) multilayer using the layer-by-layer approach. After...... cross-linking the chitosan present in the polyelectrolyte multilayer, poly(acrylic acid) is partly removed by exposing the multilayer structure to a concentrated carbonate buffer solution at a high pH, leaving a surface-grafted cross-linked gel. Chemical cross-linking enhances the gel stability against...... detachment and decomposition. The chemical reaction between gluteraldehyde, the cross-linking agent, and chitosan was followed in situ using total internal reflection Raman (TIRR) spectroscopy, which provided a molecular insight into the complex reaction mechanism, as well as the means to quantify the cross...

  18. Rheology and structure of milk protein gels

    NARCIS (Netherlands)

    Vliet, van T.; Lakemond, C.M.M.; Visschers, R.W.

    2004-01-01

    Recent studies on gel formation and rheology of milk gels are reviewed. A distinction is made between gels formed by aggregated casein, gels of `pure` whey proteins and gels in which both casein and whey proteins contribute to their properties. For casein' whey protein mixtures, it has been shown

  19. A Study of Dip-Coatable, High-Capacitance Ion Gel Dielectrics for 3D EWOD Device Fabrication

    Directory of Open Access Journals (Sweden)

    Carlos E. Clement

    2017-01-01

    Full Text Available We present a dip-coatable, high-capacitance ion gel dielectric for scalable fabrication of three-dimensional (3D electrowetting-on-dielectric (EWOD devices such as an n × n liquid prism array. Due to the formation of a nanometer-thick electric double layer (EDL capacitor, an ion gel dielectric offers two to three orders higher specific capacitance (c ≈ 10 μF/cm2 than that of conventional dielectrics such as SiO2. However, the previous spin-coating method used for gel layer deposition poses several issues for 3D EWOD device fabrication, particularly when assembling multiple modules. Not only does the spin-coating process require multiple repetitions per module, but the ion gel layer also comes in risks of damage or contamination due to handling errors caused during assembly. In addition, it was observed that the chemical formulation previously used for the spin-coating method causes the surface defects on the dip-coated gel layers and thus leads to poor EWOD performance. In this paper, we alternatively propose a dip-coating method with modified gel solutions to obtain defect-free, functional ion gel layers without the issues arising from the spin-coating method for 3D device fabrication. A dip-coating approach offers a single-step coating solution with the benefits of simplicity, scalability, and high throughput for deposition of high-capacitance gel layers on non-planar EWOD devices. An ion gel solution was prepared by combining the [EMIM][TFSI] ionic liquid and the [P(VDF-HFP] copolymer at various wt % ratios in acetone solvent. Experimental studies were conducted to fully understand the effects of chemical composition ratios in the gel solution and how varying thicknesses of ion gel and Teflon layers affects EWOD performance. The effectiveness and potentiality of dip-coatable gel layers for 3D EWOD devices have been demonstrated through fabricating 5 × 1 arrayed liquid prisms using a single-step dip-coating method. Each prism module has

  20. Magnetostriction in composites of LiFe5O8-BaTiO3

    International Nuclear Information System (INIS)

    Sarah, P.; Suryanarayana, S.V.

    2003-01-01

    Polycrystalline lithium ferrite, LiFe 5 O 8 was prepared by adopting two preparation techniques, the solid-state double sintering method and the sol-gel method. This ferrite powder was thoroughly mixed with barium titanate, BaTiO 3 for preparation of di-phasic composites of lithium ferrite and barium titanate. X-ray diffraction study of these composites revealed the presence of both the phases. Magnetostriction of these composites was measured in varying magnetic fields. The value of magnetostriction for the composites prepared by the sol-gel method was found to be higher than the values obtained in case of composites prepared by the solid-state method. Magnetostriction was found to decrease with increasing content of barium titanate. The saturation field was found to increase with the introduction of barium titanate

  1. Ion transport properties of lithium ionic liquids and their ion gels

    International Nuclear Information System (INIS)

    Shobukawa, Hitoshi; Tokuda, Hiroyuki; Susan, Md. Abu Bin Hasan; Watanabe, Masayoshi

    2005-01-01

    A new series of lithium ionic liquids were prepared by introducing of two electron-withdrawing trifluoroacetyl groups in borate salts containing two methoxy-oligo(ethylene oxide) groups in the structures. Successive substitution reactions of oligo-ethylene glycol monomethyl ether and trifluroacetic acid from LiBH 4 yielded the lithium salts, which were clear and colorless liquids at room temperature. The fundamental physicochemical properties, such as density, thermal property, viscosity, ionic conductivity, self-diffusion coefficients, and electrochemical stability, were measured. The lithium ionic liquids had self-dissociation ability and conducted ions even in the absence of organic solvents. New polymer electrolytes, named 'ion gels', were prepared by radical cross-linking reactions of a poly(ethylene oxide-co-propylene oxide)tri-acrylate macromonomer in the presence the lithium ionic liquid. An increase in the glass transition temperatures (T g ) of the ion gels was very small even with increasing lithium ionic liquid concentration, and the T g 's were lower than that of the ionic liquid itself. The ionic conductivity of the ion gels surpassed that of the lithium ionic liquid in the bulk at certain compositions

  2. Antimicrobial efficacy of alcohol-based hand gels.

    Science.gov (United States)

    Guilhermetti, M; Marques Wiirzler, L A; Castanheira Facio, B; da Silva Furlan, M; Campo Meschial, W; Bronharo Tognim, M C; Botelho Garcia, L; Luiz Cardoso, C

    2010-03-01

    In recent years, several commercial alcohol-based hand gels have appeared on the market to improve the hand-cleansing compliance of healthcare workers. Although the antimicrobial efficacy of these products has been reported in different countries, few studies have investigated this subject in Brazil. In this study, we assessed the antimicrobial efficacy of 12 alcohol-based hand gels produced in Brazil, containing 70% w/w or v/v ethyl alcohol as the active ingredient, according to the European Standard EN 1500 (EN 1500). The following alcohol gels were tested: Hand Gel, Voga Gel, Solumax Solugel, Doctor Clean, Rio Gel, Clear Gel, Sevengel, Hand CHC, Gel Bac, WBL-50 Gel, Sanigel and Soft Care Gel. In addition, 70% w/w ethyl alcohol and three alcohol-based hand rubs (Sterillium, Sterillium Gel, and Spitaderm), commonly used in Europe and effective according to EN 1500, were also tested. All the products tested, except for two, were approved by the EN 1500 test protocol with a 60s application. The results confirmed the antimicrobial efficacy of the majority of the alcohol gels produced in Brazil for hand hygiene of healthcare workers. Copyright 2009 The Hospital Infection Society. Published by Elsevier Ltd. All rights reserved.

  3. Agarose gel electrophoresis and polyacrylamide gel electrophoresis for visualization of simple sequence repeats.

    Science.gov (United States)

    Anderson, James; Wright, Drew; Meksem, Khalid

    2013-01-01

    In the modern age of genetic research there is a constant search for ways to improve the efficiency of plant selection. The most recent technology that can result in a highly efficient means of selection and still be done at a low cost is through plant selection directed by simple sequence repeats (SSRs or microsatellites). The molecular markers are used to select for certain desirable plant traits without relying on ambiguous phenotypic data. The best way to detect these is the use of gel electrophoresis. Gel electrophoresis is a common technique in laboratory settings which is used to separate deoxyribonucleic acid (DNA) and ribonucleic acid (RNA) by size. Loading DNA and RNA onto gels allows for visualization of the size of fragments through the separation of DNA and RNA fragments. This is achieved through the use of the charge in the particles. As the fragments separate, they form into distinct bands at set sizes. We describe the ability to visualize SSRs on slab gels of agarose and polyacrylamide gel electrophoresis.

  4. Preparation of zirconium molybdate gel for 99mTc gel generator

    International Nuclear Information System (INIS)

    Aliludin, Z.; Ohkubo, Masatake; Kushita, Kouhei

    1988-09-01

    Zirconium molybdate gel has excellent characteristics for use as column matrix material of 99m Tc generators. In this work, zirconium molybdate gels were prepared under different conditions; pH's of molybdate solutions from 2.5 to 7.0, Mo:Zr molar ratios from 0.7:1.0 to 1.3:1.0, drying temperatures from an ambient temperature to 200 deg C, and drying times from 1 h to 25 h. Contents of water, nitrate, molybdenum and zirconium were measured to examine the fundamental conditions in gel preparation. The Mo:Zr molar ratio was 1.0:1.0 for the most of gels obtained. A 99m Tc generator was prepared with an amorphous zirconium molybdate containing a tracer level of 99 Mo as column matrix material. Elution of 99m Tc was rapid and the average elution efficiency was 90 % for 6 ml elutions. Contents of radionuclidic impurities, Zr and Mo in the eluates, were low enough to meet the pharmacopoeia requirements for human use. (author)

  5. Sol–Gel-Derived Glass-Ceramic Photorefractive Films for Photonic Structures

    Directory of Open Access Journals (Sweden)

    Anna Lukowiak

    2017-02-01

    Full Text Available Glass photonics are widespread, from everyday objects around us to high-tech specialized devices. Among different technologies, sol–gel synthesis allows for nanoscale materials engineering by exploiting its unique structures, such as transparent glass-ceramics, to tailor optical and electromagnetic properties and to boost photon-management yield. Here, we briefly discuss the state of the technology and show that the choice of the sol–gel as a synthesis method brings the advantage of process versatility regarding materials composition and ease of implementation. In this context, we present tin-dioxide–silica (SnO2–SiO2 glass-ceramic waveguides activated by europium ions (Eu3+. The focus is on the photorefractive properties of this system because its photoluminescence properties have already been discussed in the papers presented in the bibliography. The main findings include the high photosensitivity of sol–gel 25SnO2:75SiO2 glass-ceramic waveguides; the ultraviolet (UV-induced refractive index change (Δn ~ −1.6 × 10−3, the easy fabrication process, and the low propagation losses (0.5 ± 0.2 dB/cm, that make this glass-ceramic an interesting photonic material for smart optical applications.

  6. The adhesion strength and residual stress of colloidal-sol gel derived β-Tricalcium-Phosphate/Fluoridated-Hydroxyapatite biphasic coatings

    International Nuclear Information System (INIS)

    Cheng Kui; Zhang, Sam; Weng Wenjian; Khor, Khiam Aik; Miao Shundong; Wang Yongsheng

    2008-01-01

    β-tricalcium phosphate (β-TCP) powders are embedded in a fluoridated hydroxyapatite (FHA) matrix to form β-TCP-FHA composites via colloidal-sol gel method. This composite layer is deposited on top of a FHA layer to form a β-TCP-FHA/FHA biphasic coating. The effect of the nanosized powder on the residual stress is characterized through the X-ray diffraction peak shift. The powder incorporation increases the residual stress, while a large amount of β-TCP (Ca powder /Ca sol ratio is higher than 1/2) results in less gel shrinkage that partially compensates the mismatch of thermal expansion coefficient and thus the residual stress. Despite the elevated residual stress as more powders are embedded, the coating adhesion strength remains virtually constant: around 430 mN-500 mN in scanning scratch test

  7. Radiation Processing of Advanced Composite Materials

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Phil Hyun; Jeun, Joonpyo; Nho, Young Chang [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2008-04-15

    Advanced composites, such as carbon-fiber-reinforced plastics, are being used widely for many applications. Carbon fiber/epoxies composites have attracted special attention from the aircraft, aerospace, marine engineering, sporting goods and transportation industries, because they have useful mechanical properties including high strength-to-weight and stiffness-to-weight ratios, a corrosion resistant, impact and damage tolerance characteristics and wear properties. Thermal curing has been the dominant industrial process for advanced composites until now, however, a radiation curing process using UV, microwave x-ray, electron-beam(E-beam) and {gamma}-ray has emerged as a better alternative in recent years. These processes are compatible with the manufacturing of composites using traditional fabrication methods including a filament/tape winding, pultrusion, resin transfer moulding and hand lay-up. In this study, E-beam curable carbon fiber/epoxy composites were manufactured, and their mechanical properties were investigated. Two epoxy resins (bisphenol-A, bisphenol-F) containing photo-initiators (tri aryl sulfonium hexafluorophosphate, tri aryl sulfonium hexafluoroantimonate) were used as a matrix and a 4H-satin carbon woven fabric was used as a reinforcement. And then an electron beam irradiated the composites up to 200 kGy in a vacuum and an inert atmosphere. The cure cycle was optimized and the properties of composites were evaluated and analyzed via a differential scanning calorimetry, scanning electron microscopy, sol-gel extractions, FT-NIR, universal test machine, and an impact tester. The gel content, glass transition temperature and mechanical strength of the irradiated composites were increased with an increasing radiation dose.

  8. Binding of Lysozyme to Spherical Poly(styrenesulfonate Gels

    Directory of Open Access Journals (Sweden)

    Martin Andersson

    2018-01-01

    Full Text Available Polyelectrolyte gels are useful as carriers of proteins and other biomacromolecules in, e.g., drug delivery. The rational design of such systems requires knowledge about how the binding and release are affected by electrostatic and hydrophobic interactions between the components. To this end we have investigated the uptake of lysozyme by weakly crosslinked spherical poly(styrenesulfonate (PSS microgels and macrogels by means of micromanipulator assisted light microscopy and small angle X-ray scattering (SAXS in an aqueous environment. The results show that the binding process is an order of magnitude slower than for cytochrome c and for lysozyme binding to sodium polyacrylate gels under the same conditions. This is attributed to the formation of very dense protein-rich shells in the outer layers of the microgels with low permeability to the protein. The shells in macrogels contain 60 wt % water and nearly charge stoichiometric amounts of lysozyme and PSS in the form of dense complexes of radius 8 nm comprising 30–60 lysozyme molecules. With support from kinetic modelling results we propose that the rate of protein binding and the relaxation rate of the microgel are controlled by the protein mass transport through the shell, which is strongly affected by hydrophobic and electrostatic interactions. The mechanism explains, in turn, an observed dependence of the diffusion rate on the apparent degree of crosslinking of the networks.

  9. Gel electrophoresis of inorganic cations

    International Nuclear Information System (INIS)

    Schoenhofer, F.; Grass, F.

    1978-01-01

    In order to be able to separate the largest possible amounts of substance, polyacryl amide gel (PAA) and silica gel are used as carrier for the electrophoresis. Milligramme quantities can easily be separated on PAA gel plates. Electrophoretic ion focussing considerably improves it. Separations of Sr/Y and lanthanoids were carried out. The behaviour of the readily soluble complexing agent acids on silica gel thin layers was minutely investigated and an interpretation of the focussing effect was derived. The conditions for separating radionuclides were optimized. A further improved separation can be achieved by a time sequence combination of normal electrophoresis and ion focussing. Selective isolation methods are advantageous to determine radionuclide traces in environmental samples. The selective adsorption on preformed deposits was transferred to electrophoresis. After pre-investigations on silica gel layers, strontium and barium could also be retained on PAA gel and radium on strontium sulphate in PAA, whereas the disturbing calcium can easily pass through. Cesium can also be retained by prussian blue in the electrophoresis. (orig.) [de

  10. Initial investigation of a novel light-scattering gel phantom for evaluation of optical CT scanners for radiotherapy gel dosimetry

    International Nuclear Information System (INIS)

    Bosi, Stephen; Naseri, Pourandokht; Puran, Alicia; Davies, Justin; Baldock, Clive

    2007-01-01

    There is a need for stable gel materials for phantoms used to validate optical computerized tomography (CT) scanners used in conjunction with radiation-induced polymerizing gel dosimeters. Phantoms based on addition of light-absorbing dyes to gelatine to simulate gel dosimeters have been employed. However, to more accurately simulate polymerizing gels one requires phantoms that employ light-scattering colloidal suspensions added to the gel. In this paper, we present the initial results of using an optical CT scanner to evaluate a novel phantom in which radiation-exposed polymer gels are simulated by the addition of colloidal suspensions of varying turbidity. The phantom may be useful as a calibration transfer standard for polymer gel dosimeters. The tests reveal some phenomena peculiar to light-scattering gels that need to be taken into account when calibrating polymer gel dosimeters

  11. Sol–gel synthesis and electrochemical properties of 9LiFePO4·Li3V2(PO4)3/C composite cathode material for lithium ion batteries

    International Nuclear Information System (INIS)

    Zhong Shengkui; Wu Ling; Liu Jiequn

    2012-01-01

    Highlights: ► Nano-sized 9LiFePO 4 ·Li 3 V 2 (PO 4 ) 3 /C powders are prepared by a sol–gel method. ► Mutual doping in 9LiFePO 4 ·Li 3 V 2 (PO 4 ) 3 /C can improve its electronic conductivity. ► The addition of Li 3 V 2 (PO 4 ) 3 can improve the ionic diffusivity of LiFePO 4 . ► LiFePO 4 , Li 3 V 2 (PO 4 ) 3 and LiFePO 4 –Li 3 V 2 (PO 4 ) 3 unit cells coexist in the composite. - Abstract: 9LiFePO 4 ·Li 3 V 2 (PO 4 ) 3 /C composite cathode material is prepared by a sol–gel method, using ferric citrate, V 2 O 5 , Li 2 CO 3 , NH 4 H 2 PO 4 and citric acid as raw materials. The composite material is composed of the olivine LiFePO 4 and monoclinic Li 3 V 2 (PO 4 ) 3 phases. XRD results indicate that most of the iron and vanadium in the raw materials tend to form the LiFePO 4 and Li 3 V 2 (PO 4 ) 3 phases, and only small amounts of Fe and V as the dopants enter into the lattice of Li 3 V 2 (PO 4 ) 3 and LiFePO 4 , respectively. The electronic conductivity and Li + diffusion coefficient of 9LiFePO 4 ·Li 3 V 2 (PO 4 ) 3 /C are 6.615 × 10 −3 S cm −1 and ∼10 −10 cm 2 s −1 , which are three orders of magnitude and one order of magnitude larger than those of the LiFePO 4 /C, respectively. The composite material shows a first discharge specific capacity of 131.3 mAh g −1 and capacity retention of 95.1% after 200 cycles at 10 C rate. Compared with the LiFePO 4 /C, its rate capability and cycle performance are both remarkably improved.

  12. Ternary Phase-Separation Investigation of Sol-Gel Derived Silica from Ethyl Silicate 40

    Science.gov (United States)

    Wang, Shengnan; Wang, David K.; Smart, Simon; Diniz da Costa, João C.

    2015-01-01

    A ternary phase-separation investigation of the ethyl silicate 40 (ES40) sol-gel process was conducted using ethanol and water as the solvent and hydrolysing agent, respectively. This oligomeric silica precursor underwent various degrees of phase separation behaviour in solution during the sol-gel reactions as a function of temperature and H2O/Si ratios. The solution composition within the immiscible region of the ES40 phase-separated system shows that the hydrolysis and condensation reactions decreased with decreasing reaction temperature. A mesoporous structure was obtained at low temperature due to weak drying forces from slow solvent evaporation on one hand and formation of unreacted ES40 cages in the other, which reduced network shrinkage and produced larger pores. This was attributed to the concentration of the reactive sites around the phase-separated interface, which enhanced the condensation and crosslinking. Contrary to dense silica structures obtained from sol-gel reactions in the miscible region, higher microporosity was produced via a phase-separated sol-gel system by using high H2O/Si ratios. This tailoring process facilitated further condensation reactions and crosslinking of silica chains, which coupled with stiffening of the network, made it more resistant to compression and densification. PMID:26411484

  13. Sol-gel technology for biomedical engineering

    International Nuclear Information System (INIS)

    Podbielska, H.; Ulatowska-Jarza, A.

    2005-01-01

    Sol-gel derived silica possess many promising features, including low-temperature preparation procedure, porosity, chemical and physical stability. Applications exploiting porous materials to encapsulate sensor molecules, enzymes and many other compounds, are developing rapidly. In this paper some potential applications, with emphasis on biomedical and environmental ones, are reviewed. The material preparation procedure is described and practical remarks on silica-based sol-gels are included. It is reported that sol-gels with entrapped various molecules may be used in construction of implants and coatings with bioactive properties. It is shown how to exploit the sol-gel production route for construction of sol-gel coated fiberoptic applicators for laser therapy. The applications of bioactive materials are discussed, as well. It is demonstrated that it is possible to immobilize photosensitive compounds in sol-gel matrix without loosing their photoactivity. Some examples of sol-gel based biosensors are demonstrated, as well, showing their potential for detecting various gases, toxic substances, acidity, humidity, enzymes and biologically active agents. (authors)

  14. Water equivalence of polymer gel dosimeters

    International Nuclear Information System (INIS)

    Sellakumar, P.; James Jebaseelan Samuel, E.; Supe, Sanjay S.

    2007-01-01

    To evaluate the water equivalence and radiation transport properties of polymer gel dosimeters over the wide range of photon and electron energies 14 different types of polymer gels were considered. Their water equivalence was evaluated in terms of effective atomic number (Z eff ), electron density (ρ e ), photon mass attenuation coefficient (μ/ρ), photon mass energy absorption coefficient (μ en /ρ) and total stopping power (S/ρ) tot of electrons using the XCOM and the ESTAR database. The study showed that the effective atomic number of polymer gels were very close ( en /ρ for all polymer gels were in close agreement ( tot of electrons in polymer gel dosimeters were within 1% agreement with that of water. From the study we conclude that at lower energy (<80keV) the polymer gel dosimeters cannot be considered water equivalent and study has to be carried out before using the polymer gel for clinical application

  15. Aerogel and xerogel composites for use as carbon anodes

    Science.gov (United States)

    Cooper, John F [Oakland, CA; Tillotson, Thomas M [Tracy, CA; Hrubesh, Lawrence W [Pleasanton, CA

    2008-08-12

    Disclosed herein are aerogel and xerogel composite materials suitable for use as anodes in fuel cells and batteries. Precursors to the aerogel and xerogel compounds are infused with inorganic polymeric materials or carbon particles and then gelled. The gels are then pyrolyzed to form composites with internal structural support.

  16. Room temperature synthesis of high temperature stable lanthanum phosphate–yttria nano composite

    International Nuclear Information System (INIS)

    Sankar, Sasidharan; Raj, Athira N.; Jyothi, C.K.; Warrier, K.G.K.; Padmanabhan, P.V.A.

    2012-01-01

    Graphical abstract: A facile aqueous sol–gel route involving precipitation–peptization mechanism followed by electrostatic stabilization is used for synthesizing nanocrystalline composite containing lanthanum phosphate and yttria. Highlights: ► A novel lanthanum phosphate–Y 2 O 3 nano composite is synthesized for the first time using a modified facile sol gel process. ► The composite becomes crystalline at 600 °C and X-ray diffraction pattern is indexed for monoclinic LaPO 4 and cubic yttria. ► The composite synthesized was tested up to 1300 °C and no reaction between the phases of the constituents is observed with the morphologies of the phases being retained. -- Abstract: A facile aqueous sol–gel route involving precipitation–peptization mechanism followed by electrostatic stabilization is used for synthesizing nanocrystalline composite containing lanthanum phosphate and yttria. Lanthanum phosphate (80 wt%)–yttria (20 wt%) nano composite (LaPO 4 –20%Y 2 O 3 ), has an average particle size of ∼70 nm after heat treatment of precursor at 600 °C. TG–DTA analysis reveals that stable phase of the composite is formed on heating the precursor at 600 °C. The TEM images of the composite show rod shape morphology of LaPO 4 in which yttria is acquiring near spherical shape. Phase identification of the composite as well as the phase stability up to 1300 °C was carried out using X-ray diffraction technique. With the phases being stable at higher temperatures, the composite synthesized should be a potential material for high temperature applications like thermal barrier coatings and metal melting applications.

  17. Whey protein isolate gel for separation: A formation, characterization, and application study

    Science.gov (United States)

    Teo, Jiunn Yeong

    Novel microporous membranes made of whey protein isolate (WPI) were developed. Aggregates of WPI comprised the bulk of the membrane, the size and packing density of which were varied by changing CaCl2 concentration (0.05--0.3M) and WPI concentration (30--40wt%), respectively. Aggregate sizes of the membranes made with 0.3M, 0.1M, 0.05M CaCl2 were roughly 1.5mum, 1mum, and 0.8mum, respectively. Skin layer of thickness about 0.5mum was found on either side of the membrane, but the thickness could reach 5mum at 0.3M CaCl2. Additionally, the porosity of the skin layer was shown to be modifiable with the addition of surfactant. Membranes were stable in hexane with flux values on the order of 1--1000gal/ft 2·d depending on the morphology of the membrane. The molecular weight cutoffs (MWCOs) of the WPI membranes with skins were evaluated using two different methods: (i) dextran marker method and (ii) protein/vitamin marker method. Membranes were found to have MWCOs of 1,000 or greater with variations when the concentration of salt used to control aggregate size, or surfactant used to modify skin properties were selected. The microporous WPI gel was also used as a cation exchanger and a hydrophobic adsorbent. The WPI cation exchanger has a maximum capacity of 68mg cupric chloride per gram dry WPI gel at neutral pH and can be regenerated effectively by reducing the pH of the solution. The WPI gel has also been found to be an excellent adsorbent for total phenolic compounds from grape extract with a partition coefficient higher than 1000 in aqueous system. The mechanism for total phenolic compounds adsorption is believed to be physical sorption, particularly sorption/condensation of total phenolic compounds in the pores and on all surfaces of WPI gel. The gel has a low extractables of 1ng/ml.g gel, and has an isoelectric point of 5.5. Although WPI gel was made into a monolith for continuous bed chromatography, channeling problems have made it very hard to evaluate the

  18. Gel nano-particulates against radioactivity

    International Nuclear Information System (INIS)

    Deroin, Ph.

    2004-01-01

    The Argonne research center (USA) has developed a 'super-gel' compound, a polymer close to those used in baby's diapers, which can reach a 90% efficiency in the radioactive decontamination of porous materials, like bricks or concrete. The contaminated materials are sprayed with a mixture of polymer gel and wetting agent with nano-particulates in suspension. Under the action of the wetting agent, radioactivity migrates from the pores to the gel and is trapped by the nano-particulates. The drying and recycling of the gel allows to reduce the volume of radioactive wastes. Short paper. (J.S.)

  19. Antibiotic-containing hyaluronic acid gel as an antibacterial carrier: Usefulness of sponge and film-formed HA gel in deep infection.

    Science.gov (United States)

    Matsuno, Hiroaki; Yudoh, Kazuo; Hashimoto, Masamichi; Himeda, Yasukazu; Miyoshi, Teruzo; Yoshida, Kaoru; Kano, Syogo

    2006-03-01

    We have developed a novel bioabsorbable antibacterial carrier using hyaluronic acid (HA) gel for prevention and treatment of orthopedic infections. In this study, we investigated the in vivo antibacterial effects of two forms of this new material, an HA gel sponge and an HA gel film. A titanium cylinder was inserted into the intramedullary cavity of each rabbit femur, along with an HA gel sponge or HA gel film containing antibiotics. The HA gel sponge contained gentamycin, vancomycin, tobramycin, or minomycin. The HA gel film contained gentamycin or vancomycin. After 0, 7, and 14 days, the rabbit bone marrow was collected, and the antibacterial activity of the HA gel was determined by agar diffusion test. As a control, we used Septocoll, a commercially available antibacterial carrier. Both the HA gel sponge and HA gel film exhibited antibacterial activity. The present results indicate that HA gel containing antibiotics is a clinically useful bioabsorbable antibacterial carrier. Copyright 2006 Orthopaedic Research Society.

  20. Stimuli-Triggered Sol-Gel Transitions of Polypeptides Derived from α-Amino Acid N-Carboxyanhydride (NCA) Polymerizations.

    Science.gov (United States)

    He, Xun; Fan, Jingwei; Wooley, Karen L

    2016-02-18

    The past decade has witnessed significantly increased interest in the development of smart polypeptide-based organo- and hydrogel systems with stimuli responsiveness, especially those that exhibit sol-gel phase-transition properties, with an anticipation of their utility in the construction of adaptive materials, sensor designs, and controlled release systems, among other applications. Such developments have been facilitated by dramatic progress in controlled polymerizations of α-amino acid N-carboxyanhydrides (NCAs), together with advanced orthogonal functionalization techniques, which have enabled economical and practical syntheses of well-defined polypeptides and peptide hybrid polymeric materials. One-dimensional stacking of polypeptides or peptide aggregations in the forms of certain ordered conformations, such as α helices and β sheets, in combination with further physical or chemical cross-linking, result in the construction of three-dimensional matrices of polypeptide gel systems. The macroscopic sol-gel transitions, resulting from the construction or deconstruction of gel networks and the conformational changes between secondary structures, can be triggered by external stimuli, including environmental factors, electromagnetic fields, and (bio)chemical species. Herein, the most recent advances in polypeptide gel systems are described, covering synthetic strategies, gelation mechanisms, and stimuli-triggered sol-gel transitions, with the aim of demonstrating the relationships between chemical compositions, supramolecular structures, and responsive properties of polypeptide-based organo- and hydrogels. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Improvement of ionic conductivity and performance of quasi-solid-state dye sensitized solar cell using PEO/PMMA gel electrolyte

    International Nuclear Information System (INIS)

    Aram, E.; Ehsani, M.; Khonakdar, H.A.

    2015-01-01

    Graphical abstract: Reduced interfacial resistance of a quasi-solid-state dye sensitized solar cell with PEO/PMMA blend gel electrolytes. - Highlights: • A new polymer gel electrolyte containing PEO/PMMA was developed for DSSCs. • Optimization of polymer gel electrolyte was done for dye sensitized solar cell. • The best ionic conductivity was found in PEO/PMMA blend with 10/90 w/w composition. • The DSSC with the PEO/PMMA based electrolyte showed good photovoltaic performance. • Significant stability improvement for quasi-solid state DSSC was obtained. - Abstract: Polymer blend gel electrolytes based on polyethylene oxide (PEO) and poly(methyl methacrylate) (PMMA) as host polymers with various weight ratios, LiI/I 2 as redox couple in electrolyte and 4-tert-butyl pyridine as additive were prepared by solution method. The introduction of PMMA in the PEO gel electrolyte reduced the degree of crystallinity of PEO, which was confirmed by differential scanning calorimetry (DSC). Complexation and ionic conductivity as a function of temperature were investigated with Fourier transform infrared and ionic conductometry, respectively. A good correlation was found between the degree of crystallinity and ionic conductivity. The reduction in crystallinity, governed by blending ratio, led to improvement of ionic conductivity. The best ionic conductivity was attained in PEO/PMMA blend with 10/90 w/w composition. The performance of a quasi-solid-state dye sensitized solar cell using the optimized polymer gel electrolyte was investigated. The optimized system of high ionic conductivity of 7 mS cm −1 , with fill factor of 0.59, short-circuit density of 11.11 mA cm −2 , open-circuit voltage of 0.75 V and the conversion efficiency of 4.9% under air mass 1.5 irradiation (100 mW cm −2 ) was obtained. The long-term stability of the dye-sensitized solar cell (DSSC) during 600 h was improved by using PEO/PMMA gel electrolyte relative to a liquid type electrolyte

  2. Improvement of ionic conductivity and performance of quasi-solid-state dye sensitized solar cell using PEO/PMMA gel electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Aram, E. [Iran Polymer and Petrochemical Institute, 14965/115 Tehran (Iran, Islamic Republic of); Ehsani, M., E-mail: m.ehsani@ippi.ac.ir [Iran Polymer and Petrochemical Institute, 14965/115 Tehran (Iran, Islamic Republic of); Khonakdar, H.A. [Iran Polymer and Petrochemical Institute, 14965/115 Tehran (Iran, Islamic Republic of); Leibniz Institute of Polymer Research, D-01067 Dresden (Germany)

    2015-09-10

    Graphical abstract: Reduced interfacial resistance of a quasi-solid-state dye sensitized solar cell with PEO/PMMA blend gel electrolytes. - Highlights: • A new polymer gel electrolyte containing PEO/PMMA was developed for DSSCs. • Optimization of polymer gel electrolyte was done for dye sensitized solar cell. • The best ionic conductivity was found in PEO/PMMA blend with 10/90 w/w composition. • The DSSC with the PEO/PMMA based electrolyte showed good photovoltaic performance. • Significant stability improvement for quasi-solid state DSSC was obtained. - Abstract: Polymer blend gel electrolytes based on polyethylene oxide (PEO) and poly(methyl methacrylate) (PMMA) as host polymers with various weight ratios, LiI/I{sub 2} as redox couple in electrolyte and 4-tert-butyl pyridine as additive were prepared by solution method. The introduction of PMMA in the PEO gel electrolyte reduced the degree of crystallinity of PEO, which was confirmed by differential scanning calorimetry (DSC). Complexation and ionic conductivity as a function of temperature were investigated with Fourier transform infrared and ionic conductometry, respectively. A good correlation was found between the degree of crystallinity and ionic conductivity. The reduction in crystallinity, governed by blending ratio, led to improvement of ionic conductivity. The best ionic conductivity was attained in PEO/PMMA blend with 10/90 w/w composition. The performance of a quasi-solid-state dye sensitized solar cell using the optimized polymer gel electrolyte was investigated. The optimized system of high ionic conductivity of 7 mS cm{sup −1}, with fill factor of 0.59, short-circuit density of 11.11 mA cm{sup −2}, open-circuit voltage of 0.75 V and the conversion efficiency of 4.9% under air mass 1.5 irradiation (100 mW cm{sup −2}) was obtained. The long-term stability of the dye-sensitized solar cell (DSSC) during 600 h was improved by using PEO/PMMA gel electrolyte relative to a liquid type

  3. Physical Properties of Silicone Gel Breast Implants.

    Science.gov (United States)

    Jewell, Mark L; Bengtson, Bradley P; Smither, Kate; Nuti, Gina; Perry, TracyAnn

    2018-04-28

    Surgical applications using breast implants are individualized operations to fill and shape the breast. Physical properties beyond shape, size, and surface texture are important considerations during implant selection. Compare form stability, gel material properties, and shell thickness of textured shaped, textured round, and smooth round breast implants from 4 manufacturers: Allergan, Mentor, Sientra, and Establishment Labs through bench testing. Using a mandrel height gauge, form stability was measured by retention of dimensions on device movement from a horizontal to vertical supported orientation. Dynamic response of gel material (gel cohesivity, resistance to gel deformation, energy absorption) was measured using a synchronized target laser following application of graded negative pressure. Shell thickness was measured using digital thickness gauge calipers. Form stability, gel material properties, and shell thickness differed across breast implants. Of textured shaped devices, Allergan Natrelle 410 exhibited greater form stability than Mentor MemoryShape and Sientra Shaped implants. Allergan Inspira round implants containing TruForm 3 gel had greater form stability, higher gel cohesivity, greater resistance to gel deformation, and lower energy absorption than those containing TruForm 2 gel and in turn, implants containing TruForm 1 gel. Shell thickness was greater for textured versus smooth devices, and differed across styles. Gel cohesivity, resistance to gel deformation, and energy absorption are directly related to form stability, which in turn determines shape retention. These characteristics provide information to aid surgeons choosing an implant based on surgical application, patient tissue characteristics, and desired outcome.

  4. Reinforcement of LENRA film by in-situ generated silica produced by sol gel process

    International Nuclear Information System (INIS)

    Mahathir Mohamed; Eda Yuhana Ariffin; Dahlan Mohd; Ibrahim Abdullah

    2008-08-01

    Liquid epoxidised natural rubber acrylate (LENRA) film was reinforced with silica-siloxane structures formed in-situ via sol gel process. Combination of these two components produces organic-inorganic composites. Tetraethylorthosilicate (TEOS) was used as precursor material for silica generation. Sol gel reaction was carried out at different concentrations of TEOS i.e. between 10 and 50 phr. Instrumental analysis was carried out by dynamic mechanical analysis (DMA), thermogravimetry analysis (TGA) and FTIR. It was found that miscibility between organic and inorganic components improved with the presence of silanol groups (Si-OH) and polar solvent i.e. THF, via hydrogen bonding formation between siloxane and LENRA. In this work, the effects of TEOS composition on mechanical properties and interaction that occurs between fillers and matrix have also been studied. It was observed that increasing the concentration of TEOS improved the scratch and stress properties of the film. Morphology study by the scanning electron microscopy (SEM) showed in-situ generated silica particles were homogenous and well dispersed at low concentrations of TEOS. (Author)

  5. Carbon Cryogel and Carbon Paper-Based Silicon Composite Anode Materials for Lithium-Ion Batteries

    Science.gov (United States)

    Woodworth, James; Baldwin, Richard; Bennett, William

    2010-01-01

    A variety of materials are under investigation for use as anode materials in lithium-ion batteries, of which, the most promising are those containing silicon. 6 One such material is a composite formed via the dispersion of silicon in a resorcinol-formaldehyde (RF) gel followed by pyrolysis. Two silicon-carbon composite materials, carbon microspheres and nanofoams produced from nano-phase silicon impregnated RF gel precursors have been synthesized and investigated. Carbon microspheres are produced by forming the silicon-containing RF gel into microspheres whereas carbon nano-foams are produced by impregnating carbon fiber paper with the silicon containing RF gel to create a free standing electrode. 1-5 Both materials have demonstrated their ability to function as anodes and utilize the silicon present in the material. Stable reversible capacities above 400 mAh/g for the bulk material and above 1000 mAh/g of Si have been observed.

  6. Characteristics of supported nano-TiO{sub 2}/ZSM-5/silica gel (SNTZS): Photocatalytic degradation of phenol

    Energy Technology Data Exchange (ETDEWEB)

    Zainudin, Nor Fauziah; Abdullah, Ahmad Zuhairi [School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, Seri Ampangan, 14300 Nibong Tebal, Penang (Malaysia); Mohamed, Abdul Rahman, E-mail: chrahman@eng.usm.my [School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, Seri Ampangan, 14300 Nibong Tebal, Penang (Malaysia)

    2010-02-15

    Photocatalytic degradation of phenol was investigated using the supported nano-TiO{sub 2}/ZSM-5/silica gel (SNTZS) as a photocatalyst in a batch reactor. The prepared photocatalyst was characterized using XRD, TEM, FT-IR and BET surface area analysis. The synthesized photocatalyst composition was developed using nano-TiO{sub 2} as the photoactive component and zeolite (ZSM-5) as the adsorbents, all supported on silica gel using colloidal silica gel binder. The optimum formulation of SNTZS catalyst was observed to be (nano-TiO{sub 2}:ZSM-5:silica gel:colloidal silica gel = 1:0.6:0.6:1) which giving about 90% degradation of 50 mg/L phenol solution in 180 min. The SNTZS exhibited higher photocatalytic activity than that of the commercial Degussa P25 which only gave 67% degradation. Its high photocatalytic activity was due to its large specific surface area (275.7 m{sup 2}/g), small particle size (8.1 nm), high crystalline quality of the synthesized catalyst and low electron-hole pairs recombination rate as ZSM-5 adsorbent was used. The SNTZS photocatalyst synthesized in this study also has been proven to have an excellent adhesion and reusability.

  7. A thermodynamic model for C-(N-)A-S-H gel: CNASH{sub s}s. Derivation and validation

    Energy Technology Data Exchange (ETDEWEB)

    Myers, Rupert J.; Bernal, Susan A.; Provis, John L., E-mail: j.provis@sheffield.ac.uk

    2014-12-15

    The main reaction product in Ca-rich alkali-activated cements and hybrid Portland cement (PC)-based materials is a calcium (alkali) aluminosilicate hydrate (C-(N-)A-S-H) gel. Thermodynamic models without explicit definitions of structurally-incorporated Al species have been used in numerous past studies to describe this gel, but offer limited ability to simulate the chemistry of blended PC materials and alkali-activated cements. Here, a thermodynamic model for C-(N-)A-S-H gel is derived and parameterised to describe solubility data for the CaO–(Na{sub 2}O,Al{sub 2}O{sub 3})–SiO{sub 2}–H{sub 2}O systems and alkali-activated slag (AAS) cements, and chemical composition data for C-A-S-H gels. Simulated C-(N-)A-S-H gel densities and molar volumes are consistent with the corresponding values reported for AAS cements, meaning that the model can be used to describe chemical shrinkage in these materials. Therefore, this model can provide insight into the chemistry of AAS cements at advanced ages, which is important for understanding the long-term durability of these materials.

  8. The Effect of Gel Microstructure on Simulated Gastric Digestion of Protein Gels

    NARCIS (Netherlands)

    Opazo-Navarrete, Mauricio; Altenburg, Marte D.; Boom, Remko M.; Janssen, Anja E.M.

    2018-01-01

    The objective of this study was to analyse the impact of the gel structure obtained by different heat-induced temperatures on the in vitro gastric digestibility at pH 2. To achieve this, gels were prepared from soy protein, pea protein, albumin from chicken egg white and whey protein isolate at

  9. SU-E-T-243: MonteCarlo Simulation Study of Polymer and Radiochromic Gel for Three-Dimensional Proton Dose Distribution

    International Nuclear Information System (INIS)

    Park, M; Jung, H; Kim, G; Ji, Y; Kim, K; Park, S

    2014-01-01

    Purpose: To estimate the three dimensional dose distributions in a polymer gel and a radiochromic gel by comparing with the virtual water phantom exposed to proton beams by applying Monte Carlo simulation. Methods: The polymer gel dosimeter is the compositeness material of gelatin, methacrylic acid, hydroquinone, tetrakis, and distilled water. The radiochromic gel is PRESAGE product. The densities of polymer and radiochromic gel were 1.040 and 1.0005 g/cm3, respectively. The shape of water phantom was a hexahedron with the size of 13 × 13 × 15 cm3. The proton beam energies of 72 and 116 MeV were used in the simulation. Proton beam was directed to the top of the phantom with Z-axis and the shape of beam was quadrangle with 10 × 10 cm2 dimension. The Percent depth dose and the dose distribution were evaluated for estimating the dose distribution of proton particle in two gel dosimeters, and compared with the virtual water phantom. Results: The Bragg-peak for proton particles in two gel dosimeters was similar to the virtual water phantom. Bragg-peak regions of polymer gel, radiochromic gel, and virtual water phantom were represented in the identical region (4.3 cm) for 72 MeV proton beam. For 116 MeV proton beam, the Bragg-peak regions of polymer gel, radiochromic gel, and virtual water phantom were represented in 9.9, 9.9 and 9.7 cm, respectively. The dose distribution of proton particles in polymer gel, radiochromic gel, and virtual water phantom was approximately identical in the case of 72 and 116 MeV energies. The errors for the simulation were under 10%. Conclusion: This work indicates the evaluation of three dimensional dose distributions by exposing proton particles to polymer and radiochromic gel dosimeter by comparing with the water phantom. The polymer gel and the radiochromic gel dosimeter show similar dose distributions for the proton beams

  10. Structure and Properties of LENRA/ Silica Composite

    International Nuclear Information System (INIS)

    Mahathir Mohamed; Dahlan Mohd

    2010-01-01

    The sol-gel reaction using tetra ethoxysilane (TEOS) was conducted for modified natural rubber (NR) matrix to obtain in situ generated NR/ silica composite. The present of acrylate group in the modified NR chain turns the composite into radiation-curable. The maximum amount of silica generated in the matrix was 50 p hr by weight. During the sol-gel process the inorganic mineral was deposited in the rubber matrix forming hydrogen bonding between organic and inorganic phases. The composites obtained were characterized by various techniques including thermogravimetric analysis and infrared spectrometry to study their molecular structure. The increase in mechanical properties was observed for low silica contents ( 30 p hr) where more silica were generated, agglomerations were observed at the expense of the mechanical properties. From the DMTA data, it shows an increase of the interaction between the rubber and silica phases up to 30 p hr TEOS. Structure and morphology of the heterogeneous system were analyzed by transmission electron microscopy. The average particle sizes of between 150 nm to 300 nm were achieved for the composites that contain less than 20 p hr of TEOS. (author)

  11. Gel polymer electrolytes for batteries

    Science.gov (United States)

    Balsara, Nitash Pervez; Eitouni, Hany Basam; Gur, Ilan; Singh, Mohit; Hudson, William

    2014-11-18

    Nanostructured gel polymer electrolytes that have both high ionic conductivity and high mechanical strength are disclosed. The electrolytes have at least two domains--one domain contains an ionically-conductive gel polymer and the other domain contains a rigid polymer that provides structure for the electrolyte. The domains are formed by block copolymers. The first block provides a polymer matrix that may or may not be conductive on by itself, but that can soak up a liquid electrolyte, thereby making a gel. An exemplary nanostructured gel polymer electrolyte has an ionic conductivity of at least 1.times.10.sup.-4 S cm.sup.-1 at 25.degree. C.

  12. Glass Composition for the use as a Sealant

    DEFF Research Database (Denmark)

    2014-01-01

    The invention concerns a glass composition for the use as a sealant, particularly in a solid oxide fuel cell (SOFC) or in a solid oxide electrolyser cell (SOEC). The glass composition comprises 35-70 mol% CaO, 5-45 mol% ZnO, 5-50 mol% B2O3, 1-45 mol% SiO2, and 1 mol% or less of each element...... of the group, comprising Ba, Na and Sr, based on the total glass composition. Furthermore, the invention relates to an SOFC and an SOEC employing a sealant of said glass composition....

  13. Skin barrier composition

    International Nuclear Information System (INIS)

    Osburn, F.G.

    1985-01-01

    A skin barrier composition comprises a mixture of a copolymer resin of ethylene and vinyl acetate (EVA), and a water-insoluble dry tack-providing elastomer such as polyisobutylene. The composition after mixing and molding, is subjected to ionizing irradiation to form cross-linked polymer networks of the EVA. The compositions have exceptional properties for use as barrier sheets, rings, or strips in ostomy, wound drainage, and incontinence devices. (author)

  14. Skin barrier composition

    Energy Technology Data Exchange (ETDEWEB)

    Osburn, F G

    1985-06-12

    A skin barrier composition comprises a mixture of a copolymer resin of ethylene and vinyl acetate (EVA), and a water-insoluble dry tack-providing elastomer such as polyisobutylene. The composition after mixing and molding, is subjected to ionizing irradiation to form cross-linked polymer networks of the EVA. The compositions have exceptional properties for use as barrier sheets, rings, or strips in ostomy, wound drainage, and incontinence devices.

  15. Characterization of the proteins comprising the integral matrix of Strongylocentrotus purpuratus embryonic spicules

    Science.gov (United States)

    Killian, C. E.; Wilt, F. H.

    1996-01-01

    In the present study, we enumerate and characterize the proteins that comprise the integral spicule matrix of the Strongylocentrotus purpuratus embryo. Two-dimensional gel electrophoresis of [35S]methionine radiolabeled spicule matrix proteins reveals that there are 12 strongly radiolabeled spicule matrix proteins and approximately three dozen less strongly radiolabeled spicule matrix proteins. The majority of the proteins have acidic isoelectric points; however, there are several spicule matrix proteins that have more alkaline isoelectric points. Western blotting analysis indicates that SM50 is the spicule matrix protein with the most alkaline isoelectric point. In addition, two distinct SM30 proteins are identified in embryonic spicules, and they have apparent molecular masses of approximately 43 and 46 kDa. Comparisons between embryonic spicule matrix proteins and adult spine integral matrix proteins suggest that the embryonic 43-kDa SM30 protein is an embryonic isoform of SM30. An adult 49-kDa spine matrix protein is also identified as a possible adult isoform of SM30. Analysis of the SM30 amino acid sequences indicates that a portion of SM30 proteins is very similar to the carbohydrate recognition domain of C-type lectin proteins.

  16. Preliminary study of diffusion effects in Fricke gel dosimeters

    Energy Technology Data Exchange (ETDEWEB)

    Quiroga, A. [Centro de Investigacion y Estudios de Matematica de Cordoba, Oficina 318 FaMAF - UNC, Ciudad Universitaria, 5000 Cordoba (Argentina); Vedelago, J. [Laboratorio de Investigaciones e Instrumentacion en Fisica Aplicada a la Medicina e Imagenes por Rayos X, Laboratorio 448 FaMAF - UNC, Ciudad Universitaria, 5000 Cordoba (Argentina); Valente, M., E-mail: aiquiroga@famaf.unc.edu [Instituto de Fisica Enrique Gaviola, Oficina 102 FaMAF - UNC, Av. Luis Medina Allende, Ciudad Universitaria, 5000 Cordoba (Argentina)

    2014-08-15

    in standard dependence of optical density differences and actual, non-diffused, absorbed dose distributions. The obtained values for ferric ion diffusion coefficient, in mm{sup 2} h{sup -1} were (1.24 ± 0.07) and (1.15 ± 0.05) for the 1D and 2D method, respectively, in the first approach method and (0.65 ± 0.01), (0.68 ± 0.02) and (0.65 ± 0.02) in the second approach method. The results show good agreement with previous works corresponding to similar Fricke gel dosimeter compositions. Thus, more accurate 2D and 3D dose mapping might be attained that constitutes valuable improvements in Fricke gel dosimetry, and parallel a high precision methods of diffusion model and calculation have been developed. (Author)

  17. Comparative study on the effects of negatively-charged biopolymers on chitosan-based gels for the development of instantaneous gels

    International Nuclear Information System (INIS)

    Jimeno, Austin Ed B.; Chakraborty, Soma

    2015-01-01

    Polymeric electrolytic complexes are solutions of charged/ionized chains. These solutions of positive and negative charge can be combined to make instantaneous networks bonded by electrostatic interactions, a gel network. These electrostatic interaction allows for easy application in injectable gels as the network can be temporarily distributed with the application of force and reformed on the relief of it. Possible applications for these injectable gels include drug delivery and wound-healing. κ-Carrageenan, dextran sulfate, alginate, and chitosan are polyelectrolytic biocompatible polymers which are widely studied and used for a variety of biomedical applications. Gel networks are made by combining a negatively-charged (κ-Carrageenan, dextran sulfate, or alginate) and positively charged (chitosan) solutions. The strong electrostatic interaction between the opposite charges from the gel network and the inherent biocompatibility of the polymers allow future biomedical applications. Quat 188-modified chitosan has additional sites for electrostatic bonding, can be dissolved in neutral, basic, and acidic pH, and has shown inherent antibacterial activity. The objectives of this study are the following: to formulate chitosan-based gels mixing solutions of chitosan with solutions of either κ-Carrageenan, dextran sulfate, or alginate, study the gelation of the gels as function of time and pH (4, 7, and 9) using UV-Vis, characterize the chitosan-based gels through DSC and DMA, characterize the physiological degradation of the chitosan-based gels, and compare results with those from Quat 188-modified chitosan-based gels. Polyelectrolytic solutions of chitosan and negatively-charged biopolymer of similar viscosities were mixed. It was determined from the UV-Vis spectroscopy of the chitosan-carrageenan gels under pH7 buffer that the increase of concentration by a factor of 5 for 0.006M-0.0095M and 1.25 for 0.0095M-0.0150M Chitosan-Carrageenan gels improved gelation by the

  18. Medical preparation container comprising microwave powered sensor assembly

    DEFF Research Database (Denmark)

    2016-01-01

    The present invention relates to a medical preparation container which comprises a microwave powered sensor assembly. The microwave powered sensor assembly comprises a sensor configured to measure a physical property or chemical property of a medical preparation during its heating in a microwave ...... oven. The microwave powered sensor assembly is configured for harvesting energy from microwave radiation emitted by the microwave oven and energize the sensor by the harvested microwave energy.......The present invention relates to a medical preparation container which comprises a microwave powered sensor assembly. The microwave powered sensor assembly comprises a sensor configured to measure a physical property or chemical property of a medical preparation during its heating in a microwave...

  19. Research on pre-staining gel electrophoresis

    International Nuclear Information System (INIS)

    Zhong Ruibo; Liu Yushuang; Zhang Ping; Liu Jingran; Zhao Guofen; Zhang Feng

    2014-01-01

    Background: Gel electrophoresis is a powerful biochemical separation technique. Most biological molecules are completely transparent in the visible region of light, so it is necessary to use staining to show the results after gel electrophoresis, and the general steps of conventional staining methods are time-consuming. Purpose: We try to develop a novel approach to simplify the gel electrophoresis: Pre-Staining Gel Electrophoresis (PSGE), which can make the gel electrophoresis results monitored in real time. Methods: Pre-stain the protein samples with Coomassie Brilliant Blue (CBB) for 30 min before loading the sample into the gel well. Results and Conclusion: PSGE can be successfully used to analyze the binding efficiency of Bovine Serum Albumin (BSA) and amphiphilic polymer via chemical coupling and physical absorption, and the double PSGE also shows a great potential in bio-analytical chemistry. (authors)

  20. Purification of Peptide Components including Melittin from Bee Venom using gel filtration chromatography and propionic acid/urea polyacrylamide gel electrophoresis

    Directory of Open Access Journals (Sweden)

    Young Chon Choi

    2006-06-01

    Full Text Available Objectives : This study was conducted to carry out Purification of Melittin and other peptide components from Bee Venom using gel filtration chromatography and propionic acid/urea polyacrylamide gel electrophoresis Methods : Melittin and other peptide components were separated from bee venom by using gel filtration chromatography on Sephadex G-50 column in 0.05M ammonium acetate buffer. Results : Melittin and other peptide components were separated from bee venom by using gel filtration chromatography on Sephadex G-50 column in 0.05M ammonium acetate buffer. The fractions obtained from gel filtration chromatography was analyzed by using SDS-PAGE and propionic acid/urea polyacrylamide gel electrophoresis. The melittin obtained from the gel filtration contained residual amount of phospholipase A2 and a protein with molecular weight of 6,000. The contaminating proteins were removed by the second gel filtration chromatography. Conclusion : Gel filtration chromatography and propionic acid/urea polyacrylamide gel electrophoresis are useful to separate peptide components including melittin from bee venom.

  1. Encapsulation of nanoclusters in dried gel materials via an inverse micelle/sol gel synthesis

    Science.gov (United States)

    Martino, Anthony; Yamanaka, Stacey A.; Kawola, Jeffrey S.; Showalter, Steven K.; Loy, Douglas A.

    1998-01-01

    A dried gel material sterically entrapping nanoclusters of a catalytically active material and a process to make the material via an inverse micelle/sol-gel synthesis. A surfactant is mixed with an apolar solvent to form an inverse micelle solution. A salt of a catalytically active material, such as gold chloride, is added along with a silica gel precursor to the solution to form a mixture. To the mixture are then added a reducing agent for the purpose of reducing the gold in the gold chloride to atomic gold to form the nanoclusters and a condensing agent to form the gel which sterically entraps the nanoclusters. The nanoclusters are normally in the average size range of from 5-10 nm in diameter with a monodisperse size distribution.

  2. Transparent Glass-Ceramics Produced by Sol-Gel: A Suitable Alternative for Photonic Materials.

    Science.gov (United States)

    Gorni, Giulio; Velázquez, Jose J; Mosa, Jadra; Balda, Rolindes; Fernández, Joaquin; Durán, Alicia; Castro, Yolanda

    2018-01-30

    Transparent glass-ceramics have shown interesting optical properties for several photonic applications. In particular, compositions based on oxide glass matrices with fluoride crystals embedded inside, known as oxyfluoride glass-ceramics, have gained increasing interest in the last few decades. Melt-quenching is still the most used method to prepare these materials but sol-gel has been indicated as a suitable alternative. Many papers have been published since the end of the 1990s, when these materials were prepared by sol-gel for the first time, thus a review of the achievements obtained so far is necessary. In the first part of this paper, a review of transparent sol-gel glass-ceramics is made focusing mainly on oxyfluoride compositions. Many interesting optical results have been obtained but very little innovation of synthesis and processing is found with respect to pioneering papers published 20 years ago. In the second part we describe the improvements in synthesis and processing obtained by the authors during the last five years. The main achievements are the preparation of oxyfluoride glass-ceramics with a much higher fluoride crystal fraction, at least double that reported up to now, and the first synthesis of NaGdF₄ glass-ceramics. Moreover, a new SiO₂ precursor was introduced in the synthesis, allowing for a reduction in the treatment temperature and favoring hydroxyl group removal. Interesting optical properties demonstrated the incorporation of dopant ions in the fluoride crystals, thus obtaining crystal-like spectra along with higher efficiencies with respect to xerogels, and hence demonstrating that these materials are a suitable alternative for photonic applications.

  3. Macromolecular composition of phloem exudate from white lupin (Lupinus albus L.

    Directory of Open Access Journals (Sweden)

    Mann Anthea J

    2011-02-01

    Full Text Available Abstract Background Members of the legume genus Lupinus exude phloem 'spontaneously' from incisions made to the vasculature. This feature was exploited to document macromolecules present in exudate of white lupin (Lupinus albus [L.] cv Kiev mutant, in particular to identify proteins and RNA molecules, including microRNA (miRNA. Results Proteomic analysis tentatively identified 86 proteins from 130 spots collected from 2D gels analysed by partial amino acid sequence determination using MS/MS. Analysis of a cDNA library constructed from exudate identified 609 unique transcripts. Both proteins and transcripts were classified into functional groups. The largest group of proteins comprised those involved in metabolism (24%, followed by protein modification/turnover (9%, redox regulation (8%, cell structural components (6%, stress and defence response (6% with fewer in other groups. More prominent proteins were cyclophilin, ubiquitin, a glycine-rich RNA-binding protein, a group of proteins that comprise a glutathione/ascorbate-based mechanism to scavenge oxygen radicals, enzymes of glycolysis and other metabolism including methionine and ethylene synthesis. Potential signalling macromolecules such as transcripts encoding proteins mediating calcium level and the Flowering locus T (FT protein were also identified. From around 330 small RNA clones (18-25 nt 12 were identified as probable miRNAs by homology with those from other species. miRNA composition of exudate varied with site of collection (e.g. upward versus downward translocation streams and nutrition (e.g. phosphorus level. Conclusions This is the first inventory of macromolecule composition of phloem exudate from a species in the Fabaceae, providing a basis to identify systemic signalling macromolecules with potential roles in regulating development, growth and stress response of legumes.

  4. Composite wound dressings of pectin and gelatin with aloe vera and curcumin as bioactive agents.

    Science.gov (United States)

    Tummalapalli, Mythili; Berthet, Morgane; Verrier, Bernard; Deopura, B L; Alam, M S; Gupta, Bhuvanesh

    2016-01-01

    Aloe vera and curcumin loaded oxidized pectin-gelatin (OP-Gel) matrices were used as antimicrobial finishes on nonwoven cotton fabrics to produce composite wound care devices. The drug release characteristics of the biocomposite dressings indicated that curcumin is released through a biphasic mechanism - erosion of the polymeric matrix, followed by diffusion, while aloe vera is released upon leaching of the polymeric matrix. A 50/50 composition of aloe vera/curcumin was used to fabricate OP-Gel-Aloe Curcumin dressings. However, contrary to our expectations, OP-Gel-Aloe Curcumin dressings exhibited lesser antimicrobial activity compared to OP-Gel-Aloe and OP-Gel-Curcumin dressings. The cytocompatibility of the fabricated dressings was evaluated using NIH3T3 mouse fibroblast cells. OP-Gel-Aloe treated fibroblasts had the highest viability, with the matrices providing a substrate for good cell attachment and proliferation. On the other hand, OP-Gel-Curcumin and OP-Gel-Aloe Curcumin seemed to have induced apoptosis in NIH3T3 cells. In vivo wound healing analysis was carried out using an excisional splint wound model on C57BL/6J mice. OP-Gel-Aloe treated wounds exhibited very rapid healing with 80% of the wound healing in just 8 days. Furthermore, aloe vera exerted a strong anti-inflammatory effect and prominent scar prevention. Histological examination revealed that an ordered collagen formation and neovascularization could be observed along with migration of nuclei. Therefore, OP-Gel-Aloe biocomposite dressings are proposed as viable materials for effective wound management. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Characterization of silica particles prepared via urease-catalyzed urea hydrolysis and activity of urease in sol–gel silica matrix

    International Nuclear Information System (INIS)

    Kato, Katsuya; Nishida, Masakazu; Ito, Kimiyasu; Tomita, Masahiro

    2012-01-01

    Highlights: ► Silica precipitation occurred via urease-catalytic reactions. ► Higher urease activity for silica synthesis enables mesostructure of silica–urease composites. ► Urease encapsulating in silica matrix retained high activity. - Abstract: Urease templated precipitation of silica synthesized by sol–gel chemistry produces a composite material allowing high urease activity. This study investigates the structural properties of the composite material that allow for the retention of the urease hydrolysis activity. Scanning (SEM) and transmission (TEM) electron microscopy reveal that the composite has a mesoporous structure composed of closely packed spherical structures ∼20–50 nm in diameter. Brunauer–Emmett–Teller (BET) analysis revealed that the surface area and pore volume of the composite prepared under the conditions of 50 mM urea and 25 °C is relatively high (324 m 2 /g and 1.0 cm 3 /g). These values are equivalent to those of usual mesoporous silica materials synthesized from the self-assembly of triblock copolymers as organic templates. In addition, after encapsulating in a sol–gel silica matrix, urease retained high activity (∼90% of the activity compared with native urease). Our results suggest a new method for synthesizing mesoporous silica materials with highly tunable pore sizes and shapes under mild conditions.

  6. Sulphur cement pre-composition and process for preparing such sulphur cement pre-composition

    NARCIS (Netherlands)

    2013-01-01

    The invention provides a process for the preparation of a sulphur cement pre-composition comprising reacting sulphur modifier with polysulphide-containing organosilane to obtain in the presence of sulphur the sulphur cement pre-composition, wherein the organosilane has the general molecular formula:

  7. Polymer gel dosimeter with AQUAJOINT® as hydrogel matrix

    Science.gov (United States)

    Maeyama, Takuya; Ishida, Yasuhiro; Kudo, Yoshihiro; Fukasaku, Kazuaki; Ishikawa, Kenichi L.; Fukunishi, Nobuhisa

    2018-05-01

    We report a polymer gel dosimeter based on a new gel matrix (AQUAJOINT®) that is a thermo-irreversible hydrogel formed by mixing two types of water-based liquids at room temperature. Normoxic N-vinylpyrrolidone-based polymer gels were prepared with AQUAJOINT® instead of gelatin. This AQUAJOINT®-based gel dosimeter exhibits a 2.5-fold increase in sensitivity over a gelatin-based gel dosimeter and a linear dose-response in the dose range of 0-8 Gy. This gel has heat resistance in a jar and controlled gel properties such as viscoelastic and mechanical characters, which may be useful for deformable polymer gel dosimetry.

  8. Sol-gel applications for ceramic membrane preparation

    Science.gov (United States)

    Erdem, I.

    2017-02-01

    Ceramic membranes possessing superior properties compared to polymeric membranes are more durable under severe working conditions and therefore their service life is longer. The ceramic membranes are composed of some layers. The support is the layer composed of coarser ceramic structure and responsible for mechanical durability under filtration pressure and it is prepared by consolidation of ceramic powders. The top layer is composed of a finer ceramic micro-structure mainly responsible for the separation of components present in the fluid to be filtered and sol-gel method is a versatile tool to prepare such a tailor-made ceramic filtration structure with finer pores. Depending on the type of filtration (e.g. micro-filtration, ultra-filtration, nano-filtration) aiming separation of components with different sizes, sols with different particulate sizes should be prepared and consolidated with varying precursors and preparation conditions. The coating of sol on the support layer and heat treatment application to have a stable ceramic micro-structure are also important steps determining the final properties of the top layer. Sol-gel method with various controllable parameters (e.g. precursor type, sol formation kinetics, heat treatment conditions) is a practical tool for the preparation of top layers of ceramic composite membranes with desired physicochemical properties.

  9. Formation and Characterization of Anisotropic Block Copolymer Gels

    Science.gov (United States)

    Liaw, Chya Yan; Joester, Derk; Burghardt, Wesley; Shull, Kenneth

    2012-02-01

    Cylindrical micelles formed from block copolymer solutions closely mimic biological fibers that are presumed to guide mineral formation during biosynthesis of hard tissues like bone. The goal of our work is to use acrylic block copolymers as oriented templates for studying mineral formation reactions in model systems where the structure of the underlying template is well characterized and reproducible. Self-consistent mean field theory is first applied to investigate the thermodynamically stable micellar morphologies as a function of temperature and block copolymer composition. Small-angle x-ray scattering, optical birefringence and shear rheometry are used to study the morphology development during thermal processing. Initial experiments are based on a thermally-reversible alcohol-soluble system that can be converted to an aqueous gel by hydrolysis of a poly(t-butyl methacrylate) block to a poly(methacrylic acid) block. Aligned cylindrical domains are formed in the alcohol-based system when shear is applied in an appropriate temperature regime, which is below the critical micelle temperature but above the temperature at which the relaxation time of the gels becomes too large. Processing strategies for producing the desired cylindrical morphologies are being developed that account for both thermodynamic and kinetic effects.

  10. Nanostructured energetic materials derived from sol-gel chemistry

    International Nuclear Information System (INIS)

    Simpson, R L; Tillotson, T M; Hrubesh, L W; Gash, A E

    2000-01-01

    Initiation and detonation properties are dramatically affected by an energetic material's microstructural properties. Sol-gel chemistry allows intimacy of mixing to be controlled and dramatically improved over existing methodologies. One material goal is to create very high power energetic materials which also have high energy densities. Using sol-gel chemistry we have made a nanostructured composite energetic material. Here a solid skeleton of fuel, based on resorcinol-formaldehyde, has nanocrystalline ammonium perchlorate, the oxidizer, trapped within its pores. At optimum stoichiometry it has approximately the energy density of HMX. Transmission electron microscopy indicated no ammonium perchlorate crystallites larger than 20 nm while near-edge soft x-ray absorption microscopy showed that nitrogen was uniformly distributed, at least on the scale of less than 80 nm. Small-angle neutron scattering studies were conducted on the material. Those results were consistent with historical ones for this class of nanostructured materials. The average skeletal primary particle size was on the order of 2.7 nm, while the nanocomposite showed the growth of small 1 nm size crystals of ammonium perchlorate with some clustering to form particles greater than 10 nm

  11. The C-S-H gel of Portland cement mortars: Part I. The interpretation of energy-dispersive X-ray microanalyses from scanning electron microscopy, with some observations on C-S-H, AFm and AFt phase compositions

    International Nuclear Information System (INIS)

    Famy, C.; Brough, A.R.; Taylor, H.F.W.

    2003-01-01

    Scanning electron microscopy (SEM) microanalyses of the calcium-silicate-hydrate (C-S-H) gel in Portland cement pastes rarely represent single phases. Essential experimental requirements are summarised and new procedures for interpreting the data are described. These include, notably, plots of Si/Ca against other atom ratios, 3D plots to allow three such ratios to be correlated and solution of linear simultaneous equations to test and quantify hypotheses regarding the phases contributing to individual microanalyses. Application of these methods to the C-S-H gel of a 1-day-old mortar identified a phase with Al/Ca=0.67 and S/Ca=0.33, which we consider to be a highly substituted ettringite of probable composition C 6 A 2 S-bar 2 H 34 or {Ca 6 [Al(OH) 6 ] 2 ·24H 2 O}(SO 4 ) 2 [Al(OH) 4 ] 2 . If this is true for Portland cements in general, it might explain observed discrepancies between observed and calculated aluminate concentrations in the pore solution. The C-S-H gel of a similar mortar aged 600 days contained unsubstituted ettringite and an AFm phase with S/Ca=0.125

  12. Iron-based soft magnetic composites with Mn–Zn ferrite nanoparticles coating obtained by sol–gel method

    International Nuclear Information System (INIS)

    Wu, Shen; Sun, Aizhi; Xu, Wenhuan; Zhang, Qian; Zhai, Fuqiang; Logan, Philip; Volinsky, Alex A.

    2012-01-01

    This paper focuses on iron-based soft magnetic composites which were synthesized by utilizing Mn–Zn ferrite nanoparticles to coat iron powder. The nanocrystalline iron powders, with an average particle diameter of 20 nm, were obtained via the sol–gel method. Scanning electron microscopy, energy dispersive X-ray spectroscopy and distribution maps show that the iron particle surface is covered with a thin layer of Mn–Zn ferrites. Mn–Zn ferrite uniformly coated the surface of the powder particles, resulting in a reduced imaginary permeability, increased electrical resistivity and a higher operating frequency of the synthesized magnets. Mn–Zn ferrite coated samples have higher permeability and lower magnetic loss when compared with the non-magnetic epoxy resin coated compacts. The real part of permeability increases by 33.5% when compared with the epoxy resin coated samples at 10 kHz. The effects of heat treatment temperature on crystalline phase formation and on the magnetic properties of the Mn–Zn ferrite were investigated via X-ray diffraction and a vibrating sample magnetometer. Ferrites decomposed to FeO and MnO after annealing above 400 °C in nitrogen; thus it is the optimum annealing temperature to attain the desired permeability. - Highlights: ► Uniformly coated Mn–Zn ferrite powder increased the operating frequency of SMCs. ► Compared with epoxy coated, the permeability of SMCs increased by 33.5% at 10 kHz. ► 400 °C is the optimum annealing temperature to attain the desired permeability.

  13. Radiolabelled sucralfate compositions

    International Nuclear Information System (INIS)

    Vasquez, T.E.; Bridges, R.L.; Braunstein, P.; Jansholt, A.

    1984-01-01

    A novel radiopharmaceutical composition comprising an aqueous solution or suspension containing a radiolabelled sucralfate or sucralfate derivative or precursor is claimed. The composition is effective for in vivo scintigraphic imaging of the gastrointestinal muscosal areas in humans. The sucralfate is combined with a radiolabelled albumin or other protein or protein derivative under acidic conditions

  14. Starch/fiber/poly(lactic acid) foam and compressed foam composites

    Science.gov (United States)

    Composites of starch, fiber, and poly(lactic acid) (PLA) were made using a foam substrate formed by dehydrating starch or starch/fiber gels. PLA was infiltrated into the dry foam to provide better moisture resistance. Foam composites were compressed into plastics using force ranging from 4-76MPa. Te...

  15. Comparison effect of azithromycin gel 2% with clindamycin gel 1% in patients with acne

    Directory of Open Access Journals (Sweden)

    Fatemeh Mokhtari

    2016-01-01

    Conclusion: Azithromycin gel has medical impact at least similar to Clindamycin Gel in treatment of mild to moderate acne vulgaris, and it may be consider as suitable drug for resistant acne to conventional topical therapy.

  16. Study of total seed proteins pattern of sesame (sesamum indicum l.) landraces via sodium dodecyl sulfate polyacrylamide gel electrophoresis (sds-page)

    International Nuclear Information System (INIS)

    Akbar, F.; Shinwari, Z.K.

    2012-01-01

    The sesame (Sesamum indicum L.) germplasm, comprising of 105 accessions was characterized for total seed storage proteins using sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). The germplasm was collected from diverse agro-ecological regions of Pakistan. To our information, no studies have yet been carried out in Pakistan on the genetic evaluation of sesame genotypes based on total seed protein. Total seed proteins were electrophoretically separated on 12% polyacrylamide gels by standard protocols. A total of 20 polypeptide bands were observed, of which 14 (70%) were polymorphic and 6 (30%) were monomorphic, with molecular weight ranging from 13.5 to 100 kDa. Six bands i.e., 7, 11, 12, 15, 16 and 18 were common in all genotypes. Similarity coefficients varied fro m 0.50 to 1.00. The dendrogram based on dissimilarity matrix using unweighted pair group method with arithmetic averages (UPGMA) separated all sesame accessions into three main groups i.e., A, B, C, comprising 89, 14 and 2 genotypes, respectively. Overall a low to medium level of genetic variability was observed for SDS-PAGE (single dimension). As SDS-PAGE alone did not reveal high level of genetic variability, hence 2-D gel electrophoresis along with other advanced type DNA markers and more number of sesame accessions from all over the country are recommended for the future genetic evaluation. Our investigation will significantly support the classification, development, genetic evaluation and conservation of sesame germplasm in Pakistan. (author)

  17. Study of total seed proteins pattern of sesame (sesamum indicum l.) landraces via sodium dodecyl sulfate polyacrylamide gel electrophoresis (sds-page)

    Energy Technology Data Exchange (ETDEWEB)

    Akbar, F; Shinwari, Z K [Quaid-e-Azam University, Islamabad (Pakistan). Dept. of Biotechnology; Yousif, N; Masood, M S [Institute of Agri-Biotechnology and Genetic Resources, Islamabad (Pakistan)

    2012-11-15

    The sesame (Sesamum indicum L.) germplasm, comprising of 105 accessions was characterized for total seed storage proteins using sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). The germplasm was collected from diverse agro-ecological regions of Pakistan. To our information, no studies have yet been carried out in Pakistan on the genetic evaluation of sesame genotypes based on total seed protein. Total seed proteins were electrophoretically separated on 12% polyacrylamide gels by standard protocols. A total of 20 polypeptide bands were observed, of which 14 (70%) were polymorphic and 6 (30%) were monomorphic, with molecular weight ranging from 13.5 to 100 kDa. Six bands i.e., 7, 11, 12, 15, 16 and 18 were common in all genotypes. Similarity coefficients varied fro m 0.50 to 1.00. The dendrogram based on dissimilarity matrix using unweighted pair group method with arithmetic averages (UPGMA) separated all sesame accessions into three main groups i.e., A, B, C, comprising 89, 14 and 2 genotypes, respectively. Overall a low to medium level of genetic variability was observed for SDS-PAGE (single dimension). As SDS-PAGE alone did not reveal high level of genetic variability, hence 2-D gel electrophoresis along with other advanced type DNA markers and more number of sesame accessions from all over the country are recommended for the future genetic evaluation. Our investigation will significantly support the classification, development, genetic evaluation and conservation of sesame germplasm in Pakistan. (author)

  18. A review of hydroxyapatite-based coating techniques: Sol-gel and electrochemical depositions on biocompatible metals.

    Science.gov (United States)

    Asri, R I M; Harun, W S W; Hassan, M A; Ghani, S A C; Buyong, Z

    2016-04-01

    New promising techniques for depositing biocompatible hydroxyapatite-based coatings on biocompatible metal substrates for biomedical applications have continuously been exploited for more than two decades. Currently, various experimental deposition processes have been employed. In this review, the two most frequently used deposition processes will be discussed: a sol-gel dip coating and an electrochemical deposition. This study deliberates the surface morphologies and chemical composition, mechanical performance and biological responses of sol-gel dip coating as well as the electrochemical deposition for two different sample conditions, with and without coating. The review shows that sol-gel dip coatings and electrochemical deposition were able to obtain the uniform and homogeneous coating thickness and high adherent biocompatible coatings even in complex shapes. It has been accepted that both coating techniques improve bone strength and initial osseointegration rate. The main advantages and limitations of those techniques of hydroxyapatite-based coatings are presented. Furthermore, the most significant challenges and critical issues are also highlighted. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Magnetic nanosized rare earth iron garnets R_3Fe_5O_1_2: Sol–gel fabrication, characterization and reinspection

    International Nuclear Information System (INIS)

    Opuchovic, Olga; Kareiva, Aivaras; Mazeika, Kestutis; Baltrunas, Dalis

    2017-01-01

    The magnetic nanosized rare earth iron garnets (R_3Fe_5O_1_2, where R=Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu) were prepared by an aqueous sol–gel method. Herein we present, that all these garnets can be obtained by this effective synthesis method simply by changing the temperature of the final annealing. It was also demonstrated, that a different annealing temperature leads to a different particle size distribution of the final product. The SEM analysis results revealed that the smallest particles were formed in the range of 75–130 nm. The phase purity and structure of the rare earth iron garnets were estimated using XRD analysis and Mössbauer spectroscopy. Magnetic properties were determined by magnetization measurements. The relation between the particle size, composition and magnetic properties of the sol-gel derived garnets were also discussed in this study. - Highlights: • First time series of R_3Fe_5O_1_2 (R=from Sm to Lu) are prepared by sol–gel process. • Different sintering temperature leads to the different particle size distribution. • Correlation between microstructure, composition and magnetic properties is shown.

  20. Silicon Composite Anode Materials for Lithium Ion Batteries Based on Carbon Cryogels and Carbon Paper

    Science.gov (United States)

    Woodworth, James; Baldwin, Richard; Bennett, William

    2010-01-01

    A variety of materials are under investigation for use as anode materials in lithium-ion batteries, of which, the most promising are those containing silicon. One such material is a composite formed via the dispersion of silicon in a resorcinol-formaldehyde (RF) gel followed by pyrolysis. Two silicon-carbon composite materials, carbon microspheres and nanofoams produced from nano-phase silicon impregnated RF gel precursors have been synthesized and investigated. Carbon microspheres are produced by forming the silicon-containing RF gel into microspheres whereas carbon nanofoams are produced by impregnating carbon fiber paper with the silicon containing RF gel to create a free standing electrode. Both materials have demonstrated their ability to function as anodes and utilize the silicon present in the material. Stable reversible capacities above 400 mAh/g for the bulk material and above 1000 mAh/g of Si have been observed.