WorldWideScience

Sample records for gel combustion method

  1. Synthesis and sintering of nanocrystalline hydroxyapatite powders by citric acid sol-gel combustion method

    International Nuclear Information System (INIS)

    Han Yingchao; Li Shipu; Wang Xinyu; Chen Xiaoming

    2004-01-01

    The citric acid sol-gel combustion method has been used for the synthesis of nanocrystalline hydroxyapatite (HAP) powder from calcium nitrate, diammonium hydrogen phosphate and citric acid. The phase composition of HAP powder was characterized by X-ray powder diffraction analysis (XRD). The morphology of HAP powder was observed by transmission electron microscope (TEM). The HAP powder has been sintered into microporous ceramic in air at 1200 deg. C with 3 h soaking time. The microstructure and phase composition of the resulting HAP ceramic were characterized by scanning electron microscope (SEM) and XRD, respectively. The physical characterization of open porosity and flexural strength have also been carried out

  2. Bulk synthesis of nanocrystalline urania powders by citrate gel-combustion method

    International Nuclear Information System (INIS)

    Sanjay Kumar, D.; Ananthasivan, K.; Venkata Krishnan, R.; Amirthapandian, S.; Dasgupta, Arup

    2016-01-01

    Bulk quantities (60 g) of nanocrystalline (nc) free flowing urania powders with crystallite size ranging from 38 to 252 nm have been synthesized for the first time by the citrate gel combustion method. A systematic study of the influence of the fuel (citric acid) to oxidant (nitrate) ratio (R) on the characteristics of the urania powders has been carried out for the first time. Mixture with an “R” value of 0.25 exhibited a vigorous auto-ignition reaction. This reaction was investigated with Differential Scanning Calorimetry (DSC) and in-situ thermogravimetry coupled with differential thermal analysis and mass spectrometry (TG-DTA-MS). The bulk density, specific surface area, X-ray crystallite size, residual carbon and size distribution of particles of this powder were unique. Microscopic and microstructural investigation of selected samples revealed the presence of nanocrystals with irregular exfoliated morphology; their Electron Energy Loss Spectra testified the covalency of the U–O bond. - Highlights: • Bulk quantities of nanocrystalline urania were prepared for the first time using citrate gel combustion method. • Volume combustion was observed in mixtures with fuel to nitrate ratio (R) 0.25. • The value of R was found to significantly influence the characteristics of the final product. • Typical exfoliated microstructure and nanopores were observed. • Established correlation between particle size distribution and bulk density, X-ray crystallite size and lattice strain. • Relationship between fuel to nitrate (R) mole ratio and physical characteristics of powders were also established.

  3. Nano crystals of Ni doped Zn O semiconductor by Sol-Gel combustion method

    Energy Technology Data Exchange (ETDEWEB)

    Carrero, A.; Sagredo, V. [Universidad de Los Andes, Departamento de Fisica, Laboratorio de Magnetismo, 5101 Merida (Venezuela, Bolivarian Republic of); Larionova, J., E-mail: aneelyc@gmail.com [Universite Montpellier II, 2 Place Eugene Bataillon, 34090 Montpellier (France)

    2016-11-01

    Nanoparticles of the system Zn{sub 0.95}O were prepared by sol-gel self - combustion method and a study of their structural, optical and magnetic properties were conducted. X-ray diffraction study shows a hexagonal wurtzite structure for the nano compound. The formation of the wurtzite structure in Ni doped Zn O was further confirmed by Fourier transform infra-red spectrometry. Transmission electron microscopy revealed an average size of 31 nm for the particles. Optical absorption spectra shows that the band energy of Zn{sub 0.95}Ni{sub 0.}9{sub 5}O powders is about 2.54 eV at room temperature. A study of the magnetic properties of the nano powders of Zn O: Ni, reveals paramagnetic behavior, with interaction ferromagnetic between particles. (Author)

  4. Bulk synthesis of nanocrystalline urania powders by citrate gel-combustion method

    Science.gov (United States)

    Sanjay Kumar, D.; Ananthasivan, K.; Venkata Krishnan, R.; Amirthapandian, S.; Dasgupta, Arup

    2016-01-01

    Bulk quantities (60 g) of nanocrystalline (nc) free flowing urania powders with crystallite size ranging from 38 to 252 nm have been synthesized for the first time by the citrate gel combustion method. A systematic study of the influence of the fuel (citric acid) to oxidant (nitrate) ratio (R) on the characteristics of the urania powders has been carried out for the first time. Mixture with an "R" value of 0.25 exhibited a vigorous auto-ignition reaction. This reaction was investigated with Differential Scanning Calorimetry (DSC) and in-situ thermogravimetry coupled with differential thermal analysis and mass spectrometry (TG-DTA-MS). The bulk density, specific surface area, X-ray crystallite size, residual carbon and size distribution of particles of this powder were unique. Microscopic and microstructural investigation of selected samples revealed the presence of nanocrystals with irregular exfoliated morphology; their Electron Energy Loss Spectra testified the covalency of the U-O bond.

  5. Structural and optical characterization of nanoparticulate manganese doped zinc silicate phosphors prepared by sol–gel and combustion methods

    Energy Technology Data Exchange (ETDEWEB)

    Mbule, P.S., E-mail: mbuleps@gmail.com [Department of Physics, CSET, University of South Africa, Johannesburg, 1710 (South Africa); Ntwaeaborwa, O.M. [Department of Physics, University of the Free State, P.O. Box 339, Bloemfontein 9300 (South Africa); Mothudi, B.M.; Dhlamini, M.S. [Department of Physics, CSET, University of South Africa, Johannesburg, 1710 (South Africa)

    2016-11-15

    The present study reports the synthesis, crystallographic structure and optical properties of manganese (Mn{sup 2+}) doped zinc silicate (Zn{sub 2}SiO{sub 4}) nanoparticle phosphors prepared by sol–gel and combustion methods. For samples prepared by sol–gel method, the X-ray diffraction results showed phase transformation from amorphous to α-phase Zn{sub 2}SiO{sub 4} due to annealing temperatures at 600 °C to 1100 °C, whereas for combustion samples an admixture of highly crystalline β-phase and hexagonal wurtzite structure of ZnO was observed at annealing temperature of 600 °C. Photoluminescence spectra with Mn{sup 2+} concentrations ranging from 0.015–0.09 mol% were compared for two methods. Emission band assigned to the {sup 4}T{sub 1}({sup 4}G)→{sup 6}A{sub 1}({sup 6}S) electronic transition of Mn{sup 2+} was observed with maximum intensity at ~573 nm for combustion samples and ~532 nm for sol–gel samples upon UV-excitation by a Xenon lamp. Furthermore, the photoluminescence decay curves of annealed Zn{sub 2}SiO{sub 4}:Mn{sup 2+} samples were observed to be bi-exponential. The fast and slow decay components are due to the pair or cluster formation and isolated ions at higher doping concentration, respectively. - Highlights: • Synthesis, crystallographic and optical properties of Zn{sub 2}SiO{sub 4}:Mn{sup 2+} are presented. • XRD shows amorphous diffraction peak and crystallinity improved by increase of annealing temperature. • Crystallite and particle size from XRD and SAXS techniques, respectively, are compared. • Photoluminescence (PL) spectra are compared for sol-gel and combustion method. • The photoluminescence decay curves of annealed Zn{sub 2}SiO{sub 4}:Mn{sup 2+} samples were observed to be bi-exponential.

  6. Green synthesis of magnetic chitosan nanocomposites by a new sol–gel auto-combustion method

    Energy Technology Data Exchange (ETDEWEB)

    Ansari, Fatemeh [Institute of Nano Science and Nano Technology, University of Kashan, P.O. Box. 87317–51167, Kashan, Islamic Republic of Iran (Iran, Islamic Republic of); Sobhani, Azam [Department of Chemistry, Kosar University of Bojnord, Bojnord, Islamic Republic of Iran (Iran, Islamic Republic of); Salavati-Niasari, Masoud, E-mail: salavati@kashanu.ac.ir [Institute of Nano Science and Nano Technology, University of Kashan, P.O. Box. 87317–51167, Kashan, Islamic Republic of Iran (Iran, Islamic Republic of)

    2016-07-15

    The Fe{sub 2}O{sub 3}/CuFe{sub 2}O{sub 4}/chitosan nanocomposites have been successfully synthesized via a new sol–gel auto-combustion route. To prepare the nanocomposites, copper ferrite (CuFe{sub 2}O{sub 4}) and iron (II) oxide (Fe{sub 2}O{sub 3}) nanostructures were first prepared utilizing onion as a green reductant for the first time, and characterized by SEM, TEM, XRD, IR and VSM. Then chitosan was added into the nanostructures dispersed in water. Chitosan was used to functionalize and modify the nanostructures and also to improve surface properties. The nanocomposites were also characterized by several techniques including SEM, TEM, XRD, IR and VSM. The effects of amount of onion and chitosan on the morphology and particle size of nanocomposites were evaluated. - Highlights: • Fe{sub 2}O{sub 3}/CuFe{sub 2}O{sub 4}/chitosan nanocomposites were synthesized for the first time. • A simple, low-cost and friendly route was used to synthesize the nanocomposites. • Effects of amount of onion and chitosan were investigated.

  7. Synthesis and characterization of nickel substituted cobalt ferrite nanoparticles by sol–gel auto-combustion method

    Energy Technology Data Exchange (ETDEWEB)

    Hankare, P.P., E-mail: p_hankarep@rediffmail.com [Solid State Research Laboratory, Department of Chemistry, Shivaji University, Kolhapur, Maharashtra 416 004 (India); Sanadi, K.R., E-mail: sanadikishor@gmail.com [Solid State Research Laboratory, Department of Chemistry, Shivaji University, Kolhapur, Maharashtra 416 004 (India); Garadkar, K.M. [Solid State Research Laboratory, Department of Chemistry, Shivaji University, Kolhapur, Maharashtra 416 004 (India); Patil, D.R. [Material Research Laboratory, Department of Physics, R.L. College, Parola, Jalgaon, Maharashtra 425 111 (India); Mulla, I.S. [Emeritus Scientist-CSIR, Centre for Materials for Electronics and Technology (C-MET), Panchawati, Pune 411 008 (India)

    2013-03-15

    Highlights: ► Co{sub 1−x}Ni{sub x}Fe{sub 2}O{sub 4} Mixed Metal oxides. ► Sol–gel auto-combustion method. ► Cubic spinel symmetry. ► Nanocrystaline material. ► Semiconducting nature. -- Abstract: Nanocrystalline Co{sub 1−x}Ni{sub x}Fe{sub 2}O{sub 4} (where x = 0.0, 0.25, 0.50, 0.75, 1) were successfully synthesized by sol–gel method using citrate–nitrate precursors. X-ray diffraction (XRD) and transmission electron microscopy (TEM) were effectively utilized to investigate the different structural parameters. XRD showed single cubic spinel phase for all the samples. The decrease in lattice parameter and increase in crystallite size of the ferrispinel was observed with increasing nickel content. The surface morphology and elemental composition were studied by Scanning electron microscope (SEM) and Energy Dispersive X-ray analysis (EDAX) respectively. The nanosize of the synthesized material had been identified by TEM investigation and which is lies in between 20–25 nm. The semiconducting nature of the samples was studied by variation of resistivity and thermal emf with temperature.

  8. In-vitro bioactivity, biocompatibility and dissolution studies of diopside prepared from biowaste by using sol–gel combustion method

    Energy Technology Data Exchange (ETDEWEB)

    Choudhary, Rajan [Department of Chemistry, School of Advanced Sciences, VIT University, Vellore -632014, Tamil Nadu (India); Vecstaudza, Jana [Rudolfs Cimdins Riga Biomaterials Innovations and Development Centre, Institute of General Chemical Engineering, Faculty of Materials Science and Applied Chemistry, Riga Technical University, Riga (Latvia); Krishnamurithy, G.; Raghavendran, Hanumantha Rao Balaji; Murali, Malliga Raman; Kamarul, Tunku [Tissue Engineering Group (TEG), Department of Orthopaedic Surgery (NOCERAL), Faculty of Medicine, University of Malaya, Kuala Lumpur (Malaysia); Swamiappan, Sasikumar, E-mail: ssasikumar@vit.ac.in [Department of Chemistry, School of Advanced Sciences, VIT University, Vellore -632014, Tamil Nadu (India); Locs, Janis [Rudolfs Cimdins Riga Biomaterials Innovations and Development Centre, Institute of General Chemical Engineering, Faculty of Materials Science and Applied Chemistry, Riga Technical University, Riga (Latvia)

    2016-11-01

    Diopside was synthesized from biowaste (Eggshell) by sol–gel combustion method at low calcination temperature and the influence of two different fuels (urea, L-alanine) on the phase formation temperature, physical and biological properties of the resultant diopside was studied. The synthesized materials were characterized by heating microscopy, FTIR, XRD, BET, SEM and EDAX techniques. BET analysis reveals particles were of submicron size with porosity in the nanometer range. Bone-like apatite deposition ability of diopside scaffolds was examined under static and circulation mode of SBF (Simulated Body Fluid). It was noticed that diopside has the capability to deposit HAP (hydroxyapatite) within the early stages of immersion. ICP-OES analysis indicates release of Ca, Mg, Si ions and removal of P ions from the SBF, but in different quantities from diopside scaffolds. Cytocompatability studies on human bone marrow stromal cells (hBMSCs) revealed good cellular attachment on the surface of diopside scaffolds and formation of extracellular matrix (ECM). This study suggests that the usage of eggshell biowaste as calcium source provides an effective substitute for synthetic starting materials to fabricate bioproducts for biomedical applications. - Highlights: • Low temperature synthesis of diopside by sol–gel combustion route using different fuels • Eggshell as calcium source provides an effective substitute for synthetic starting materials. • Thermochemistry of fuels was the major reason for change in phase formation temperature. • Circulation of SBF plays a key role in determining bioactive nature of bioceramics. • Cellular studies show increased cell proliferation and formation of extracellular matrix.

  9. In-vitro bioactivity, biocompatibility and dissolution studies of diopside prepared from biowaste by using sol–gel combustion method

    International Nuclear Information System (INIS)

    Choudhary, Rajan; Vecstaudza, Jana; Krishnamurithy, G.; Raghavendran, Hanumantha Rao Balaji; Murali, Malliga Raman; Kamarul, Tunku; Swamiappan, Sasikumar; Locs, Janis

    2016-01-01

    Diopside was synthesized from biowaste (Eggshell) by sol–gel combustion method at low calcination temperature and the influence of two different fuels (urea, L-alanine) on the phase formation temperature, physical and biological properties of the resultant diopside was studied. The synthesized materials were characterized by heating microscopy, FTIR, XRD, BET, SEM and EDAX techniques. BET analysis reveals particles were of submicron size with porosity in the nanometer range. Bone-like apatite deposition ability of diopside scaffolds was examined under static and circulation mode of SBF (Simulated Body Fluid). It was noticed that diopside has the capability to deposit HAP (hydroxyapatite) within the early stages of immersion. ICP-OES analysis indicates release of Ca, Mg, Si ions and removal of P ions from the SBF, but in different quantities from diopside scaffolds. Cytocompatability studies on human bone marrow stromal cells (hBMSCs) revealed good cellular attachment on the surface of diopside scaffolds and formation of extracellular matrix (ECM). This study suggests that the usage of eggshell biowaste as calcium source provides an effective substitute for synthetic starting materials to fabricate bioproducts for biomedical applications. - Highlights: • Low temperature synthesis of diopside by sol–gel combustion route using different fuels • Eggshell as calcium source provides an effective substitute for synthetic starting materials. • Thermochemistry of fuels was the major reason for change in phase formation temperature. • Circulation of SBF plays a key role in determining bioactive nature of bioceramics. • Cellular studies show increased cell proliferation and formation of extracellular matrix.

  10. Direct synthesis of La9.33Si6O26 ultrafine powder via sol-gel self-combustion method

    International Nuclear Information System (INIS)

    Tian Changan; Liu Junliang; Cai Jun; Zeng Yanwei

    2008-01-01

    Single phase La 9.33 Si 6 O 26 ultrafine powder, as a kind of highly activated precursor to prepare medium-to-low temperature electrolyte for solid oxide fuel cells (SOFCs), has been successfully synthesized via a non-aqueous sol-gel and self-combustion approach from the starting materials: lanthanum nitrate (La(NO 3 ) 3 .6H 2 O), citric acid, ethylene glycol (EG), tetraethyl orthosilicate (TEOS) and ammonium nitrate. The details of gel's self-combustion were investigated by DTA-TG and the structural characterization of as-synthesized powder from self-combustion was performed by XRD and SEM. The results show that La 9.33 Si 6 O 26 single phase of apatite-type crystal structure can be directly synthesized by sol-gel self-combustion method without further calcinations on the condition that the molar ratio (R) of NO 3 - to citric acid and ethylene glycol being 6:1. Such powders composed of well-dispersed particles with an average size of 200 nm and a specific surface area of 5.54 m 2 /g. It can be sintered to 90% of its theoretical density at 1500 deg. C for 10 h, about 200 deg. C lower than the sintering temperature for the powder derived from traditional solid reactions. The sintered material has a thermal expansion coefficient of 9.2 x 10 -6 K -1 between room temperature and 800 deg. C

  11. Low Concentration Fe-Doped Alumina Catalysts Using Sol-Gel and Impregnation Methods: The Synthesis, Characterization and Catalytic Performance during the Combustion of Trichloroethylene

    Directory of Open Access Journals (Sweden)

    Carolina Solis Maldonado

    2014-03-01

    Full Text Available The role of iron in two modes of integration into alumina catalysts was studied at 0.39 wt% Fe and tested in trichloroethylene combustion. One modified alumina was synthesized using the sol-gel method with Fe added in situ during hydrolysis; another modification was performed using calcined alumina, prepared using the sol-gel method and impregnated with Fe. Several characterization techniques were used to study the level of Fe modification in the γ-Al2O3 phase formed and to correlate the catalytic properties during trichloroethylene (TCE combustion. The introduction of Fe in situ during the sol-gel process influenced the crystallite size, and three iron species were generated, namely, magnetite, maghemite and hematite. The impregnated Fe-alumina formed hematite and maghemite, which were highly dispersed on the γ-Al2O3 surface. The X-ray photoelectron spectra (XPS, FT-IR and Mössbauer spectroscopy analyses revealed how Fe interacted with the γ-Al2O3 lattice in both catalysts. The impregnated Fe-catalyst showed the best catalytic performance compared to the catalyst that was Fe-doped in situ by the sol-gel method; both had better catalytic activity than pure alumina. This difference in activity was correlated with the accessibility of the reactants to the hematite iron species on the surface. The chlorine poisoning for all three catalysts was less than 1.8%.

  12. Low Concentration Fe-Doped Alumina Catalysts Using Sol-Gel and Impregnation Methods: The Synthesis, Characterization and Catalytic Performance during the Combustion of Trichloroethylene.

    Science.gov (United States)

    Maldonado, Carolina Solis; De la Rosa, Javier Rivera; Lucio-Ortiz, Carlos J; Hernández-Ramírez, Aracely; Barraza, Felipe F Castillón; Valente, Jaime S

    2014-03-12

    The role of iron in two modes of integration into alumina catalysts was studied at 0.39 wt% Fe and tested in trichloroethylene combustion. One modified alumina was synthesized using the sol-gel method with Fe added in situ during hydrolysis; another modification was performed using calcined alumina, prepared using the sol-gel method and impregnated with Fe. Several characterization techniques were used to study the level of Fe modification in the γ-Al₂O₃ phase formed and to correlate the catalytic properties during trichloroethylene (TCE) combustion. The introduction of Fe in situ during the sol-gel process influenced the crystallite size, and three iron species were generated, namely, magnetite, maghemite and hematite. The impregnated Fe-alumina formed hematite and maghemite, which were highly dispersed on the γ-Al₂O 3 surface. The X-ray photoelectron spectra (XPS), FT-IR and Mössbauer spectroscopy analyses revealed how Fe interacted with the γ-Al₂O₃ lattice in both catalysts. The impregnated Fe-catalyst showed the best catalytic performance compared to the catalyst that was Fe-doped in situ by the sol-gel method; both had better catalytic activity than pure alumina. This difference in activity was correlated with the accessibility of the reactants to the hematite iron species on the surface. The chlorine poisoning for all three catalysts was less than 1.8%.

  13. Gel combustion synthesis of yttria stabilized zirconia

    International Nuclear Information System (INIS)

    Vijay, Soja K.; Chandramouli, V.; Anthonysamy, S.

    2013-01-01

    Nano - crystalline 8 mol% yttria stabilized zirconia (YSZ) powders were synthesized by gel combustion technique employing both microwave heating as well as conventional heating method. Three different fuels - citric acid, urea and glycine were used for the synthesis with fuel to oxidant ratio as 1:1. The effect of fuel on the crystal structure, particle size, specific surface area, morphology and sintering density was studied. X-ray powder diffraction (XRD), BET gas adsorption technique, dynamic light scattering, transmission and scanning electron microscopy (TEM and SEM) and micro-Raman spectroscopy were used to characterize the powders. The results obtained for powders obtained using both methods - microwave assisted and hotplate - were compared. The specific surface area of powders in all cases are comparable except in the case of urea as fuel where microwave assisted synthesis yielded powders with lower surface area. The particle size distribution of all samples obtained using microwave method was unimodal, whereas the particle size distribution of samples prepared using hot plate method using urea fuel showed bimodal distribution. The compacts obtained using powders with citric acid and glycine as fuel showed more than 94% theoretical density, whereas the samples obtained using urea showed density below 90% of theoretical density. (author)

  14. Effect of preparation conditions on Nickel Zinc Ferrite nanoparticles: A comparison between sol–gel auto combustion and co-precipitation methods

    Directory of Open Access Journals (Sweden)

    Manju Kurian

    2016-09-01

    Full Text Available The experimental conditions used in the preparation of nano crystalline mixed ferrite materials play an important role in the particle size of the product. In the present work a comparison is made on sol–gel auto combustion methods and co-precipitation methods by preparing Nickel Zinc Ferrite (Ni0.5Zn0.5Fe2O4 nano particles. The prepared ferrite samples were calcined at different temperatures and characterized by using standard methods. X-ray diffraction analysis indicated the formation of single phase ferrite nanoparticles for samples calcined at 500 °C. The lattice parameter range of 8.32–8.49 Å confirmed the cubic spinel structure. Average crystallite size estimated from X-ray diffractogram was found to be between 17 and 40 nm. The IR spectra showed two main absorption bands, the high frequency band ν1 around 600 cm−1 and the low frequency band ν2 around 400 cm−1 arising from tetrahedral (A and octahedral (B interstitial sites in the spinel lattice. TEM pictures showed particles in the nanometric range confirming the XRD data. The studies revealed that the sol–gel auto combustion method was superior to the co-precipitation method for producing single phase nano particles with smaller crystallite size.

  15. Effect of oxidizer on grain size and low temperature DC electrical conductivity of tin oxide nanomaterial synthesized by gel combustion method

    International Nuclear Information System (INIS)

    Rajeeva, M. P.; Jayanna, H. S.; Ashok, R. L.; Naveen, C. S.; Bothla, V. Prasad

    2014-01-01

    Nanocrystalline Tin oxide material with different grain size was synthesized using gel combustion method by varying the fuel (C 6 H 8 O 7 ) to oxidizer (HNO 3 ) molar ratio by keeping the amount of fuel as constant. The prepared samples were characterized by using X-Ray Diffraction (XRD), Scanning Electron Microscope (SEM) and Energy Dispersive Analysis X-ray Spectroscopy (EDAX). The effect of fuel to oxidizer molar ratio in the gel combustion method was investigated by inspecting the grain size of nano SnO 2 powder. The grain size was found to be reduced with the amount of oxidizer increases from 0 to 6 moles in the step of 2. The X-ray diffraction patterns of the calcined product showed the formation of high purity tetragonal tin (IV) oxide with the grain size in the range of 12 to 31 nm which was calculated by Scherer's formula. Molar ratio and temperature dependence of DC electrical conductivity of SnO 2 nanomaterial was studied using Keithley source meter. DC electrical conductivity of SnO 2 nanomaterial increases with the temperature from 80K to 300K. From the study it was observed that the DC electrical conductivity of SnO 2 nanomaterial decreases with the grain size at constant temperature

  16. Reduced NOX combustion method

    International Nuclear Information System (INIS)

    Delano, M.A.

    1991-01-01

    This patent describes a method for combusting fuel and oxidant to achieve reduced formation of nitrogen oxides. It comprises: It comprises: heating a combustion zone to a temperature at least equal to 1500 degrees F.; injecting into the heated combustion zone a stream of oxidant at a velocity within the range of from 200 to 1070 feet per second; injecting into the combustion zone, spaced from the oxidant stream, a fuel stream at a velocity such that the ratio of oxidant stream velocity to fuel stream velocity does not exceed 20; aspirating combustion gases into the oxidant stream and thereafter intermixing the aspirated oxidant stream and fuel stream to form a combustible mixture; combusting the combustible mixture to produce combustion gases for the aspiration; and maintaining the fuel stream substantially free from contact with oxidant prior to the intermixture with aspirated oxidant

  17. An efficient method for the synthesis of photo catalytically active ZnO nanoparticles by a gel-combustion method for the photo-degradation of Caffeine

    Directory of Open Access Journals (Sweden)

    Rajesha Bedre Jagannatha

    2017-01-01

    Full Text Available In this study, Zinc oxide nanoparticles were synthesized by gel-combustion method using a novel bio-fuel tapioca starch pearls, derived from the tubers of Mannihot esculenta, to investigate the photocatalytic degradation of ccaffeine. The ZnO photocatalyst was characterized by X-ray diffraction (XRD, scanning electron microscopy (SEM, and UV-visible spectroscopy. X-ray diffractometry result for the ZnO nanoparticles exhibit normal crystalline phase features. All observed peaks can be indexed to the pure hexagonal wurtzite crystal structures. There are no other impurities in the diffraction peak. In addition, SEM measurement shows that most of the nanoparticles are spongy and spherical in shape and fairly mono dispersed. A significant degradation of the Caffeine was observed when the catalyst was added into the solution even without the UV light exposure. In addition, the photo degradation increaseds with the photocatalyst loading. Besides the photocatalyst loading, the effect of some parameters on the photo degradation efficiency such as initial concentration and pH were also studied.

  18. Investigation of microstructural and optical properties of La0.8Ca0.2FeO3 nanostructure synthesized via gel combustion method

    Science.gov (United States)

    Naseem, Swaleha; Ali, S. Asad; Khan, Wasi; Khan, Shakeel

    2018-05-01

    Ca substituted LaFeO3 orthoferrite nanostructure perovskite has been synthesized by gel combustion method using citric acid as a fuel. The structural and optical properties were investigated by various tools. The structural analysis through Rietveld refinement of the XRD data revealed single phase of orthorhombic structure in R-3c space group of the sample without presence of any other impurity phase. Scanning electron microscopy (SEM) image exhibits non-uniform distribution of the nanoparticles in agglomerated form. The purity of the sample and stoichiometric ratio of the elements were established through energy dispersive x-ray spectroscopy (EDS). FTIR spectroscopy measurement predicts the presence of various band relation of the chemical species of Ca with LaFeO3. Optical properties were explored through UV-visible absorption spectroscopy that showed absorption edge at 347 nm and energy band gap was estimated as 3.47eV using Tauc's relation.

  19. Annealing temperature dependent structural and magnetic properties of MnFe{sub 2}O{sub 4} nanoparticles grown by sol-gel auto-combustion method

    Energy Technology Data Exchange (ETDEWEB)

    Bhandare, S.V. [Department of Physics, Gulbarga University, Gulbarga 585106 (India); Kumar, R.; Anupama, A.V.; Choudhary, H.K. [Materials Research Centre, Indian Institute of Science, Bangalore 560012 (India); Jali, V.M., E-mail: vmjali@gmail.com [Department of Physics, Gulbarga University, Gulbarga 585106 (India); Sahoo, B., E-mail: bsahoo@mrc.iisc.ernet.in [Materials Research Centre, Indian Institute of Science, Bangalore 560012 (India)

    2017-07-01

    Highlights: • Phase pure MnFe{sub 2}O{sub 4} samples were prepared by sol-gel auto-combustion method. • Annealing MnFe{sub 2}O{sub 4} below ∼500 °C, two spinel phases were observed indicating partial oxidation of Mn{sup 2+} to Mn{sup 3+}. • Oxidation of Mn{sup 2+} to Mn{sup 3+} results in decrease in lattice parameter of the spinel lattice. • Annealing at ≥ 600 °C, MnFe{sub 2}O{sub 4} decomposes into crystalline α-Mn{sub 2}O{sub 3} and α-Fe{sub 2}O{sub 3} along with amorphous-FeO phase. - Abstract: Manganese ferrite (MnFe{sub 2}O{sub 4}) nanoparticles were synthesized by sol-gel auto-combustion method using manganese nitrate and ferric nitrate as precursors and citric acid as a fuel. Scanning electron micrographs show irregularly shaped morphology of the particles. The as-prepared samples were annealed at 400, 500, 600 and 800 °C for 2 h in air. The phase identification and structural characterizations were performed using powder X-ray diffraction technique along with Mössbauer spectroscopy. Magnetization loops and {sup 57}Fe Mössbauer spectra were measured at RT. After annealing the sample at or below ∼ 500 °C, we observed two different spinel phases corresponding to two different lattice parameters. This is originating due to the partial oxidation of Mn{sup 2+} to Mn{sup 3+}. At high annealing temperatures (∼ 600 °C or above) the spinel MnFe{sub 2}O{sub 4} phase decomposes into crystalline α-Mn{sub 2}O{sub 3} and α-Fe{sub 2}O{sub 3} phases, and amorphous FeO phase.

  20. gel template method

    Indian Academy of Sciences (India)

    TiO2 nanotubes have been synthesized by sol–gel template method using alumina membrane. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), Raman spectroscopy, UV absorption spectrum and X-ray diffraction techniques have been used to investigate the structure, morphology and optical ...

  1. Structural, dielectric and magnetic properties of NiFe{sub 2}O{sub 4} prepared via sol–gel auto-combustion method

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Li, E-mail: sunlitut@163.com [Key Lab of Advanced Transducers and Intelligent Control System, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024 (China); College of Physics and Optoelectronics, Taiyuan University of Technology, Taiyuan 030024 (China); Zhang, Ru; Wang, Zhenduo [College of Physics and Optoelectronics, Taiyuan University of Technology, Taiyuan 030024 (China); Ju, Lin [College of Physics and Electrical Engineering, Anyang Normal University, Anyang 455000 (China); Cao, Ensi; Zhang, Yongjia [College of Physics and Optoelectronics, Taiyuan University of Technology, Taiyuan 030024 (China)

    2017-01-01

    Nickelferrite (NiFe{sub 2}O{sub 4})powders were synthesized via sol–gel auto-combustion method and the corresponding temperature dependence of microstructure, dielectric and magnetic properties have been investigated. Results of XRD and SEM indicate that the NiFe{sub 2}O{sub 4} samples exhibit a typical single phase spinel structure and a uniform particle distribution. The dielectric constant and dielectric loss measurements show strong frequency dependence of all the samples. The peak observed in frequency dependence of dielectric loss measurements shifts to higher frequency with the increasing sintering temperature, indicating a Debye-like dielectric relaxation. The remanent magnetization increases with the increasing grain size while the coercivity is just the opposite. The saturation magnetization can achieve 50 emu/g when the sintering temperature is more than 1000 °C, and the lowest coercivity (159.49 Oe) was observed in the NFO sample sintered at 1300 °C for 2 h. - Highlights: • Mr value increases with the increasing grain size while Hc is just the opposite. • Ms achieve 50 emu/g when the sintering temperature is more than 1000 °C. • The lowest Hc value is 159.49 Oe for the NFO sample sintered at 1300 °C.

  2. Mossbauer, Raman and X-ray diffraction studies of superparamagnetic NiFe2O4 nanoparticles prepared by sol-gel auto-combustion method

    International Nuclear Information System (INIS)

    Ahlawat, Anju; Sathe, V.G.; Reddy, V.R.; Gupta, Ajay

    2011-01-01

    Superparamagnetic nickel ferrite single phase nanoparticles with the average crystallite size of ∼9 nm have been synthesized at a low temperature (220 o C) by the sol-gel auto-combustion method. In the present study the as prepared powder was further calcined at different temperatures for 4 h, resulting in nanoparticles of larger size. The nanoparticles exhibited superparamagnetic behavior and changes in cation distribution as revealed by the Mossbauer, Raman and X-ray diffraction studies. The Mossbauer spectra collected at 5 K and under 5 T applied magnetic field showed mixed spinel structure and canted spin order for the nanoparticles, whereas there is collinear spin order with inverse spinel structure for larger particles. The vibrational spectra of the nanoparticles showed a redshift and broadening in the Raman line shape due to confinement effects. - Highlights: → Mossbauer spectra show a canting angle of 48 o for the nanoparticle samples measured at 5 K and 5 T applied magnetic field, the highest canting angle obtained so far in NiFe 2 O 4 nanoparticles. Site inversion in nanoparticles, thus converting it from inverse spinel to mixed spinel structure. → X-ray diffraction results showed a change in sign for the strain of the nanoparticle sample that showed mixed spinel structure. → Our Raman measurements showed a redshift and broadening for nanoparticle samples that is generally interpreted as a signature of quantum confinement.

  3. Synthesis of nanocrystalline NiO/ZnO heterostructured composite powders by sol-gel auto combustion method and their characterizations

    Science.gov (United States)

    Tangcharoen, Thanit; Klysubun, Wantana; Kongmark, Chanapa

    2018-03-01

    Nanocrystalline NiO/ZnO heterostructured composite powders were prepared by the sol-gel auto combustion method, based on nickel and zinc nitrate precursors and using diethanolamine (DEA) as novel fuel. The composition of different NiO and ZnO ratios, ranging from 100/0, 95/5, 90/10, 80/20, 60/40, 50/50, 40/60, 20/80, 10/90, 5/95 to 0/100, were studied. The structural, chemical bonding, morphological, optical, and fluorescence properties including the local atomic structure of each calcined sample were systematically investigated by means of X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy (SEM), UV-visible diffuse reflectance spectroscopy (UV-DRS), photoluminescence (PL) spectroscopy, and synchrotron X-ray absorption spectroscopy (XAS), respectively. For the ZnO concentration below 20%, both XRD and Raman spectroscopy results revealed only the NiO phase. This conformed to the observation of Zn K-edge and Ni K-edge X-ray absorption near edge structure (XANES). The Zn ions found in the samples of low ZnO concentration exhibited six-fold coordination with oxygen atoms rather than the four-fold coordination found in the wurtzite (WZ) structure of ZnO. In contrast, the Ni ions which are found in the samples of low NiO concentration (≤10%) are coordinated both tetrahedrally and octahedrally by four or six oxygen atoms, respectively, rather than the six-fold coordination which is usually observed for Ni ions in the rock salt (RS) form of NiO. All analytical results obtained from experimental XANES spectra were verified by the theoretical calculation of absorption spectra using the FEFF9.7 code. The UV-DRS results showed that there was an increase in the reflectance efficiency for both infrared and visible light conditions as the content of ZnO increases; meanwhile, the values for the energy gap (Eg) of all composite samples were higher than that of pure NiO and ZnO. In addition, the PL spectra revealed major blue emission bands observed at 490

  4. Fundamental electrochemiluminescence characteristics of fluorine-doped tin oxides synthesized by sol-gel combustion.

    Science.gov (United States)

    Moon, B H; Chaoumead, A; Sung, Y M

    2013-10-01

    Fluorine-doped tin oxide (FTO) materials synthesized by sol-gel combustion method were investigated for electrochemical luminescence (ECL) application. Effects of sol-gel combustion conditions on the structures and morphology of the porous FTO (p-FTO) materials were studied. ECL efficiency of p-FTO-based cell was about 251 cd/m2 at 4 V bias, which is higher than the sell using only FTO electrodes (102.8 cd/m2). The highest intensity of the emitting light was obtained at the wavelength of about 610 nm. The porous FTO layer was effective for increasing ECL intensities.

  5. Manifold methods for methane combustion

    Energy Technology Data Exchange (ETDEWEB)

    Yang, B.; Pope, S.B. [Cornell Univ., Ithaca, NY (United States)

    1995-10-01

    Great progresses have been made in combustion research, especially, the computation of laminar flames and the probability density function (PDF) method in turbulent combustion. For one-dimensional laminar flames, by considering the transport mechanism, the detailed chemical kinetic mechanism and the interactions between these two basic processes, today it is a routine matter to calculate flame velocities, extinction, ignition, temperature, and species distributions from the governing equations. Results are in good agreement with those obtained for experiments. However, for turbulent combustion, because of the complexities of turbulent flow, chemical reactions, and the interaction between them, in the foreseeable future, it is impossible to calculate the combustion flow field by directly integrating the basic governing equations. So averaging and modeling are necessary in turbulent combustion studies. Averaging, on one hand, simplifies turbulent combustion calculations, on the other hand, it introduces the infamous closure problems, especially the closure problem with chemical reaction terms. Since in PDF calculations of turbulent combustion, the averages of the chemical reaction terms can be calculated, PDF methods overcome the closure problem with the reaction terms. It has been shown that the PDF method is a most promising method to calculate turbulent combustion. PDF methods have been successfully employed to calculate laboratory turbulent flames: they can predict phenomena such as super equilibrium radical levels, and local extinction. Because of these advantages, PDF methods are becoming used increasingly in industry combustor codes.

  6. Sol-gel auto-combustion synthesis of hydroxyapatite nanotubes array in porous alumina template

    International Nuclear Information System (INIS)

    Yuan Yuan; Liu Changsheng; Zhang Yuan; Shan Xiaoqian

    2008-01-01

    In this paper, an array of highly ordered hydroxyapatite (HAP) nanotubes was synthesized by sol-gel auto-combustion method with porous anodic aluminum oxide (AAO) template for the first time. Based on thermogravimetry (DTA/TG), Fourier transform infrared (FTIR) and X-ray diffraction (XRD), the dried gel, derived from the sol solution with Ca(NO 3 ) 2 .4H 2 O and PO(CH 3 O) 3 as precursors and ethylene glycol as the polymeric matrix, exhibited a typical self-propagating combustion behavior at low temperature, directly resulting in hexagonal crystalline HAP materials. The resultant HAP arrays fabricated from the above sol-gel in the AAO template were uniformly distributed, highly ordered nanotubes with uniform length and diameter according to the observations of scanning electron microscopy (SEM) and transmission electron microscope (TEM). The electron diffraction (ED), XRD and X-ray photoelectron spectroscopy (XPS) survey proved the formation of HAP phase with polycrystalline structure in the AAO template. Based on these results, a potential mechanism of 'an auto-combustion from dried gel to nanoparticles and a subsequent in situ reaction from nanoparticles to nanotubes' was proposed

  7. Microstructural, optical and dielectric properties of La{sub 0.8}Ba{sub 0.2}FeO{sub 3} nanostructures synthesized by sol-gel combustion method

    Energy Technology Data Exchange (ETDEWEB)

    Ali, S. Asad, E-mail: asadsyyed@gmail.com; Naseem, Swaleha; Khan, Wasi; Naqvi, A. H. [Centre of Excellence in Materials Science (Nanomaterials), Department of Applied Physics, Z.H. College of Engg. & Technology, Aligarh Muslim University, Aligarh 202002 (India); Malik, Aisha [Department of Electrical Engineering, Aligarh Muslim University, Aligarh-202002 (India)

    2015-06-24

    Barium doped lanthanum ferrite (LaFeO{sub 3}) nanoparticles (NPs) were prepared by gel combustion method and calcinated at 700°C. Microstructural studies were carried by XRD and SEM techniques. The results of structural characterization show the formation of all samples in single phase without any impurity. Optical properties were studied by UV- visible technique. The energy band gap was calculated and obtained 3.01 eV. Dielectric properties characterized by LCR meter and have been observed appreciable changes. The observed behavior of the dielectric properties can be attributed on the basis of Koop’s theory based on Maxwell-Wagner two layer models in studied nanoparticles.

  8. Nanosized LaCo0.6Fe0.4O3 perovskites synthesized by citrate sol gel auto combustion method

    Directory of Open Access Journals (Sweden)

    Unikoth Megha

    2014-06-01

    Full Text Available LaCo0.6 Fe0.4 O3 (LCFO nanopowder was synthesized from constituent metal nitrates, citric acid and ethylene glycol by citrate sol gel autocombustion method and calcined at different temperatures. The powders were characterized by X-ray diffraction (XRD, scanning electron microscopy (SEM, energy dispersive X-ray analysis (EDAX and Fourier transform infrared spectra (FTIR, whereas dielectric properties were investigated with LCR-meter. The FTIR spectra, taken for the xerogel and the sample calcined at 1000 °C, confirm that the organic groups were removed during calcination and oxide structure was formed. The XRD result shows that LCFO has rhombhohedral crystal structure with R-3C space group and forms single phase after calcination at 600 °C. The activation energy of crystallite growth, determined from the Arrhenius plot, was 17±2 kJ/mol. Surface feature studies of the powders were obtained from SEM. At 1000 °C, dense microstructure with well-shaped grain boundaries was obtained and the average grain size was around 400 nm. EDAX confirms the elemental composition. Finally, from the dielectric studies, it was found that the dielectric constant (εr as well as dielectric loss tangent (tan δ decreases with increase in frequency.

  9. Combustible structural composites and methods of forming combustible structural composites

    Science.gov (United States)

    Daniels, Michael A.; Heaps, Ronald J.; Steffler, Eric D.; Swank, W. David

    2013-04-02

    Combustible structural composites and methods of forming same are disclosed. In an embodiment, a combustible structural composite includes combustible material comprising a fuel metal and a metal oxide. The fuel metal is present in the combustible material at a weight ratio from 1:9 to 1:1 of the fuel metal to the metal oxide. The fuel metal and the metal oxide are capable of exothermically reacting upon application of energy at or above a threshold value to support self-sustaining combustion of the combustible material within the combustible structural composite. Structural-reinforcing fibers are present in the composite at a weight ratio from 1:20 to 10:1 of the structural-reinforcing fibers to the combustible material. Other embodiments and aspects are disclosed.

  10. Synthesis, characterization, temperature dependent electrical and magnetic properties of Ca{sub 3}Co{sub 4}O{sub 9} by a starch assisted sol–gel combustion method

    Energy Technology Data Exchange (ETDEWEB)

    Agilandeswari, K.; Ruban Kumar, A., E-mail: arubankumar@vit.ac.in

    2014-09-01

    In this present work we discussed the synthesis of pure Ca{sub 3}Co{sub 4}O{sub 9} ceramic powder by a starch assisted sol–gel combustion method. The products were characterized by powder X-ray diffraction (XRD), thermogravimetric and differential thermal analyses (TGA–DTA), Fourier transformation infrared spectroscopy (FTIR), scanning electron microscope (SEM) and UV–visible diffuse reflectance spectroscopy (DRS). X-ray diffraction pattern confirmed the formation of single phase Ca{sub 3}Co{sub 4}O{sub 9} at a sintering temperature of 1073 K, and it is also confirmed in the thermal analysis. SEM images indicate the presence of diffused microporous sphere like morphology and the grain sizes are in the range of 150–300 nm. Optical properties of Ca{sub 3}Co{sub 4}O{sub 9} ceramic show a band gap at an energy level of 2.10 eV. A maximum electrical resistivity of 0.002 mΩ cm was exhibited by Ca{sub 3}Co{sub 4}O{sub 9} that was decreased to 0.0012 mΩ cm, when the temperature increased from 300 K to 473 K. Dielectric studies were conducted at various temperatures from room temperature to 673 K and the results indicate that the space charge polarization contributes to the conduction mechanism. It also shows that the dielectric relaxation with activation energy is 0.96 eV. The magnetic properties as a function of temperature represent the ferri-paramagnetic phase transition at above 50 K. M–H curve shows the hysteresis loop with saturation magnetization (M{sub s}) and confirms the presence of soft magnetic materials. - Highlights: • Ca{sub 3}Co{sub 4}O{sub 9} has not yet been reported by this starch assisted sol–gel combustion method. • SEM image shows microporous sphere like morphology. • The optical and dielectric properties of Ca{sub 3}Co{sub 4}O{sub 9} sample were studied. • Temperature dependent magnetic property has been studied for Ca{sub 3}Co{sub 4}O{sub 9}. It behaves as a soft magnetic material at 5 K.

  11. Effect on the structural, DC resistivity and magnetic properties of Zr and Cu co-SubstitutedNi0.5Zn0.5Fe2O4using sol-gel auto-combustion method

    Science.gov (United States)

    Jalaiah, K.; Vijaya Babu, K.; Chandra mouli, K.; Subba Rao, P. S. V.

    2018-04-01

    The Zr and Cu co-substituted Ni0.5Zn0.5Fe2O4 ferrite nanoparticles have been synthesized by the sol-gel auto combustion method. The XRD patterns confirmed single phase cubic spinel structure for present ferrite systems. The substitution of co-dopants in the spinel structure initially decreases the lattice parameter from x = 0.00 to 0.08 and thereafter increases and the same tendency reflecting in cell volume. The DC resistivity was initially increased later followed the decreasing trend; however the drift mobility of all ferrite samples appears to be in opposite phenomenon to DC resistivity. The saturation magnetization and net magnetic moments of all ferrite samples are decreasing with increasing dopant concentration. The coercive field and Y-K angles are increased with dopant concentration. The initial permeability of all samples is decreased with increasing dopant concentration. The Q-Factor for all samples shows the narrow frequency band with increasing frequency.

  12. Method for storing radioactive combustible waste

    Science.gov (United States)

    Godbee, H.W.; Lovelace, R.C.

    1973-10-01

    A method is described for preventing pressure buildup in sealed containers which contain radioactively contaminated combustible waste material by adding an oxide getter material to the container so as to chemically bind sorbed water and combustion product gases. (Official Gazette)

  13. Structural and dielectric studies of Zr and Co co-substituted Ni0.5Zn0.5Fe2O4 using sol-gel auto combustion method

    Science.gov (United States)

    Jalaiah, K.; Vijaya Babu, K.; Rajashekhar Babu, K.; Chandra Mouli, K.

    2018-06-01

    Zr and Co substituted Ni0.5Zn0.5 ZrxCuxFe2-2xO4 with x values varies from the 0.0 to 0.4 in steps of 0.08 wt% ferrites synthesized by using sol-gel auto combustion method. The XRD patterns give evidence for formation of the single phase cubic spinel. The lattice constant was initially decreased from 8.3995 Å to 8.3941 Å with dopant concentration for x = 0.00-0.08 thereafter the lattice parameter steeply increased up to 8.4129 Å fox x = 0.4 with increasing dopant concentration. The estimated crystallite size and measured particle sizes are in comparable nano size. The grain size initially increased 2.3137-3.0430 μm, later it decreased to 2.2952 μm with increasing dopant concentration. The prepared samples porosity shows the opposite trend to grain size. The FT-IR spectrum for prepared samples shows the Fd3m (O7h). The wavenumber for tetrahedral site increased from 579 cm-1 to 593 cm-1 with increasing dopant concentration and the wavenumber of octahedral site are initially decreased from 414 cm-1 to 400 cm-1 for x = 0.00 to x = 0.08 later increased to 422 cm-1 with increasing dopant concentration. The dielectric constant increased from 8.85 to 34.5127 with dopant increasing concentration. The corresponding loss factor was fallows the similar trend as dielectric constant. The AC conductivity increased with increasing dopant concentration from 3.0261 × 10-7 S/m to 4.4169 × 10-6 S/m.

  14. Sinteractive thoria powders derived through gel-combustion and oxalate deagglomeration - a comparison

    International Nuclear Information System (INIS)

    Ananthasivan, K.; Balakrishnan, S.; Anthonysamy, S.; Ganesan, V.; Vasudeva Rao, P.R.

    2011-01-01

    Thorium dioxide finds extensive application in the nuclear industry. Pellets of thoria are used in PHWRs for flux flattening and in FBRs as a blanket material. The development of advanced methods for the synthesis and sintering of thoria is relevant to these applications. This paper attempts to compare the properties of sinteractive nanocrystalline thoria (pure and doped with Ca 2+ and Mg 2+ ) synthesized in our laboratory through two different techniques, viz. gel-combustion and oxalate de-agglomeration. In all the investigations cited above the precursors obtained by using both the procedures were calcined in air at 1073 K. The thoria powders thus obtained were characterised for their specific surface area (SSA), X-ray crystallite size (XCS), bulk density, particle size distribution and residual carbon content. These powders were pelletised and sintered at 1473, 1673, and 1873 K. The sinterability of these powders was compared by measuring the density of the sintered pellets. A matrix density as high as 96.8 % TD (gel combustion) or 98.6 % TD (de-agglomeration) could be obtained at 1873 K, with the powders doped with 0.5 mole % calcia. (author)

  15. A novel gel combustion procedure for the preparation of foam and porous pellets of UO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Sanjay Kumar, D. [Fuel Chemistry Division, Materials Chemistry and Metal Fuel Cycle Group, Homi Bhabha National Institute, Indira Gandhi Centre for Atomic Research, Kalpakkam, 603102, Tamil Nadu (India); Ananthasivan, K., E-mail: asivan@igcar.gov.in [Fuel Chemistry Division, Materials Chemistry and Metal Fuel Cycle Group, Homi Bhabha National Institute, Indira Gandhi Centre for Atomic Research, Kalpakkam, 603102, Tamil Nadu (India); Venkata Krishnan, R.; Maji, Dasarath [Fuel Chemistry Division, Materials Chemistry and Metal Fuel Cycle Group, Indira Gandhi Centre for Atomic Research, Kalpakkam, 603102, Tamil Nadu (India); Dasgupta, Arup [Microscopy and Thermo-Physical Property Division, Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Homi Bhabha National Institute, Kalpakkam, 603102, Tamil Nadu (India)

    2017-01-15

    In this study, it has been demonstrated for the first time how sucrose gel-combustion could be used for the preparation of UO{sub 2} foam. Further the citrate gel-combustion was gainfully used for preparing porous pellets of UO{sub 2}. The utility of two-step sintering (1073 K for 30 min and 1473 K for 4 h) for obtaining these porous bodies was demonstrated for the first time. The foams and pellets possessed meso and macro pores. A starting mixture with sucrose to nitrate ratio of 2.4 was found to yield urania foam with adequate crush strength. The porous pellets were found to possess better handling strength, lesser carbon residue and higher overall density than the foam. A citric acid to nitrate ratio 0.25 in the starting mixture, 180 MPa compaction pressure were optimal for obtaining a pellet with 40% porosity. - Highlights: • Urania foam was successfully prepared for the first time by using sucrose-gel precursor method. • Porous urania pellets were successfully prepared for the first time by using citrate gel-combustion method. • The foam comprised both meso and macro pores, possessed good crush strength and porosity. • Citric acid to nitrate ratio of 0.25 and a compaction pressure of 180 MPa were best suited for the preparation of porous pellets.

  16. Recycling of LiCo0.59Mn0.26Ni0.15O2 cathodic material from spent Li-ion batteries by the method of the citrate gel combustion

    Directory of Open Access Journals (Sweden)

    Senćanski Jelena V.

    2017-01-01

    Full Text Available The Li-ion batteries are the main power source for the high technology devices, such as mobile phones and electric vehicles. Because of that, the number of spent Li-ion batteries significantly increases. Today, the number of active mobile phones crossed 7.19 billion. It is estimated that the mass of the spent lithium ion batteries in China will exceed 500,000 t by 2020. The trouble is in the ingredients of these batteries. They contain Li, Co, Mn, Ni, Cu, Al and toxic and flammable electrolytes which have a harmful affection to the environment. Because of that, the recycling procedure attracts raising attention of researches. Several commercial spent Li-ion batteries were recycled by the relatively fast, economic and simple procedure. The three ways of separating the cathode material from Al collector were examined after the manual dismantling of the components of batteries with the Li(Co–Mn–NiO2 as cathode material. These were: 1. dissolution of the Al collector in the alkali medium, 2. peeling off with N-methylpyrrolidone and 3. thermal decomposition of the adhesive at 700°C. The procedure with the highest yield was the one with the dissolution in alkali medium. The chemical analysis of the single batteries'' components (the crust, Al/Cu collector, cathode material were done by the atomic absorption spectrometry. The components, before the analysis, were dissolved. The re-synthesis of the cathode material by the method of the citrate gel combustion was done after the separating the cathode material and dissolving it in the nitric acid. The obtained product was, after annealing, characterized by the methods of X-ray diffraction and Raman spectroscopy. The recycled product was LiCo0.59Mn0.26Ni0.15O2 stoichiometry, with the hexagonal layered structure α-NaFeO2 type. The functionalization of the resynthesized material was examined in the 1 M solution LiClO4 in the propylene carbonate, by galvanostatic charging, with the current density of 0

  17. Synthesis, structure and electromagnetic properties of Mn–Zn ferrite by sol–gel combustion technique

    International Nuclear Information System (INIS)

    Wang, Wenjie; Zang, Chongguang; Jiao, Qingjie

    2014-01-01

    The electromagnetic absorbing behaviors of a thin coating fabricated by mixing Mn–Zn ferrite with epoxy resin (EP) were studied. The spinel ferrites Mn 1−x Zn x Fe 2 O 4 (x=0.2, 0.5 and 0.8) were synthesized with citrate acid as complex agent by sol–gel combustion method. The microstructure and surface morphology of Mn–Zn ferrite powders were characterized by X-ray diffraction (XRD) and scanning electron microscope (SEM). The complex permittivity and complex permeability of the fabricated ferrite/EP composites were investigated in terms of their contributions to the absorbing properties in the low frequency (10 MHz to 1 GHz). The microwave absorption of the prepared ferrite/EP composites could be tailored by matching the dielectric loss and magnetic loss and by controlling the doped metal ratio. The composites with the ferrite composition x=0.2 are found to show higher reflection loss compared with the composites with other compositions. It is proposed that the prepared composites can potentially be applied in electromagnetic microwave absorbing field. - Highlights: • We designed and synthesized Mn 1−x Zn x Fe 2 O 4 (x=0.2, 0.5 and 0.8), with citrate acid as complex agent by the sol–gel combustion method. • Citrate acid as the complex agent overcomes the aggregation of ferrite resulting in high purity and homogeneous particles. • We investigated the electromagnetic absorbing performance of a fabricated thin coating by introducing Mn–Zn ferrite into epoxy resin (EP). • The Mn 0.8 Zn 0.2 Fe 2 O 4 composite coatings could achieve the satisfactory absorbing value of −17 dB at 800 MHz. • The prepared composites can potentially be used for the application in electromagnetic microwave absorbing field

  18. Preparation of soft-agglomerated nano-sized ceramic powders by sol-gel combustion process

    International Nuclear Information System (INIS)

    Feng, Q.; Ma, X.H.; Yan, Q.Z.; Ge, C.C.

    2009-01-01

    The soft-agglomerated Gd 2 BaCuO 5 (Gd211) nano-powders were synthesized by sol-gel combustion process with binary ligand and the special pretreatment on gel. The mechanism of the formation of weakly agglomerated structure was studied in detail. The results showed that network structure in gelation process was found to be a decisive factor for preventing agglomeration of colloidal particles. The removal of free water, coordinated water, and most of hydroxyl groups during pretreatment further inhibited the formation of hydrogen bonds between adjacent particles. The soft-agglomeration of the particles was confirmed by isolated particles in calcined Gd211 powders and in green compact, a narrow monomodal pore size distribution of the green compact and the low agglomeration coefficient of the calcined Gd211 powder. Extension this process to synthesis of BaCeO 3 , BaTiO 3 and Ce 0.8 Sm 0.2 O 1.9 powders, also led to weakly agglomerated nano-powders. It suggests that this method represents a powerful and facile method for the creation of doped and multi-component nano-sized ceramic powders.

  19. Gel-combustion-synthesized ZnO nanoparticles for visible light ...

    Indian Academy of Sciences (India)

    Zinc oxide nanoparticles (ZnO NPs) synthesized by the gel combustion technique using a bio-fuel, cassava starch (root tubers of Manihot esculenta), have been characterized by various techniques. The X-ray diffractionpattern reveals hexagonal wurtzite structure. The particle size averaged around 45nm with an excellent ...

  20. Evaluation of Antioxidant and Cytotoxicity Activities of Copper Ferrite (CuFe2O4 and Zinc Ferrite (ZnFe2O4 Nanoparticles Synthesized by Sol-Gel Self-Combustion Method

    Directory of Open Access Journals (Sweden)

    Samikannu Kanagesan

    2016-08-01

    Full Text Available Spinel copper ferrite (CuFe2O4 and zinc ferrite (ZnFe2O4 nanoparticles were synthesized using a sol-gel self-combustion technique. The structural, functional, morphological and magnetic properties of the samples were investigated by Fourier transform infrared spectroscopy (FTIR, X-ray diffraction (XRD, Transmission electron microscopy (TEM and vibrating sample magnetometry (VSM. XRD patterns conform to the copper ferrite and zinc ferrite formation, and the average particle sizes were calculated by using a transmission electron microscope, the measured particle sizes being 56 nm for CuFe2O4 and 68 nm for ZnFe2O4. Both spinel ferrite nanoparticles exhibit ferromagnetic behavior with saturation magnetization of 31 emug−1 for copper ferrite (50.63 Am2/Kg and 28.8 Am2/Kg for zinc ferrite. Both synthesized ferrite nanoparticles were equally effective in scavenging 2,2-diphenyl-1-picrylhydrazyl hydrate (DPPH free radicals. ZnFe2O4 and CuFe2O4 nanoparticles showed 30.57% ± 1.0% and 28.69% ± 1.14% scavenging activity at 125 µg/mL concentrations. In vitro cytotoxicity study revealed higher concentrations (>125 µg/mL of ZnFe2O4 and CuFe2O4 with increased toxicity against MCF-7 cells, but were found to be non-toxic at lower concentrations suggesting their biocompatibility.

  1. Aqueous clay suspensions stabilized by alginate fluid gels for coal spontaneous combustion prevention and control.

    Science.gov (United States)

    Qin, Botao; Ma, Dong; Li, Fanglei; Li, Yong

    2017-11-01

    We have developed aqueous clay suspensions stabilized by alginate fluid gels (AFG) for coal spontaneous combustion prevention and control. Specially, this study aimed to characterize the effect of AFG on the microstructure, static and dynamic stability, and coal fire inhibition performances of the prepared AFG-stabilized clay suspensions. Compared with aqueous clay suspensions, the AFG-stabilized clay suspensions manifest high static and dynamic stability, which can be ascribed to the formation of a robust three-dimensional gel network by AFG. The coal acceleration oxidation experimental results show that the prepared AFG-stabilized clay suspensions can improve the coal thermal stability and effectively inhibit the coal spontaneous oxidation process by increasing crossing point temperature (CPT) and reducing CO emission. The prepared low-cost and nontoxic AFG-stabilized clay suspensions, exhibiting excellent coal fire extinguishing performances, indicate great application potentials in coal spontaneous combustion prevention and control.

  2. Magnetic Properties and Structural Characteristics of BaFe12O19 Hexaferrites Synthesized by the Zol-Gel Combustion

    Science.gov (United States)

    Zhuravlev, V. A.; Itin, V. I.; Minin, R. V.; Lopushnyak, Yu. M.; Velikanov, D. A.

    2018-03-01

    The phase structure, structural parameters, and basic magnetic characteristics of BaFe12O19 hexaferrites prepared by the zol-gel combustion method with subsequent annealing at a temperature of 850°C for 6 h are investigated. The influence of the organic fuel type on the properties of synthesized materials is analyzed. Values of the saturation magnetization and the anisotropy field are determined. It is established that they depend on the organic fuel type. It is shown that powders synthesized with citric acid used as a fuel have the largest particle sizes and the highest saturation magnetization.

  3. Flex-flame burner and combustion method

    Science.gov (United States)

    Soupos, Vasilios; Zelepouga, Serguei; Rue, David M.; Abbasi, Hamid A.

    2010-08-24

    A combustion method and apparatus which produce a hybrid flame for heating metals and metal alloys, which hybrid flame has the characteristic of having an oxidant-lean portion proximate the metal or metal alloy and having an oxidant-rich portion disposed above the oxidant lean portion. This hybrid flame is produced by introducing fuel and primary combustion oxidant into the furnace chamber containing the metal or metal alloy in a substoichiometric ratio to produce a fuel-rich flame and by introducing a secondary combustion oxidant into the furnace chamber above the fuel-rich flame in a manner whereby mixing of the secondary combustion oxidant with the fuel-rich flame is delayed for a portion of the length of the flame.

  4. Synthesis, structure and electromagnetic properties of Mn-Zn ferrite by sol-gel combustion technique

    Science.gov (United States)

    Wang, Wenjie; Zang, Chongguang; Jiao, Qingjie

    2014-01-01

    The electromagnetic absorbing behaviors of a thin coating fabricated by mixing Mn-Zn ferrite with epoxy resin (EP) were studied. The spinel ferrites Mn1-xZnxFe2O4 (x=0.2, 0.5 and 0.8) were synthesized with citrate acid as complex agent by sol-gel combustion method. The microstructure and surface morphology of Mn-Zn ferrite powders were characterized by X-ray diffraction (XRD) and scanning electron microscope (SEM). The complex permittivity and complex permeability of the fabricated ferrite/EP composites were investigated in terms of their contributions to the absorbing properties in the low frequency (10 MHz to 1 GHz). The microwave absorption of the prepared ferrite/EP composites could be tailored by matching the dielectric loss and magnetic loss and by controlling the doped metal ratio. The composites with the ferrite composition x=0.2 are found to show higher reflection loss compared with the composites with other compositions. It is proposed that the prepared composites can potentially be applied in electromagnetic microwave absorbing field.

  5. The PDF method for turbulent combustion

    Science.gov (United States)

    Pope, S. B.

    1991-01-01

    Probability Density Function (PDF) methods provide a means of calculating the properties of turbulent reacting flows. They have been successfully applied to many turbulent flames, including some with finite rate kinetic effects. Here the methods are reviewed with an emphasis on computational issues and their application to turbulent combustion.

  6. Comparative analysis of synthesis and characterization of La_0_,_9Sr_0_,_1O_3 via sol-gel and combustion reaction

    International Nuclear Information System (INIS)

    Tarrago, D.P.; Haeser, G.S.; Malfatti, C.F.; Sousa, V.C.

    2011-01-01

    Strontium doped lanthanum manganites (LSM) are potential materials for cathode application in solid oxide fuel cells (SOFC) due to their properties and compatibility with yttria stabilized zirconia. In this work a LSM powder obtained by the sol-gel process is compared others previously obtained combustion synthesis using urea or sucrose as fuel. For the synthesis of LSM the nitrates of lanthanum, strontium and manganese were dissolved in citric acid and ethylene glycol forming a gel that was calcinated at 800 deg C. Both methods allowed the synthesis of a single phase powder, according to the X-ray diffraction patterns. Through gas adsorption it was found a specific surface area of 17m²/g, an intermediary value among the combustion synthesized powders. Scanning electron microscopy (SEM) revealed more compact agglomerates in the sol-gel powder, however, the transmission electron microscope (TEM) showed smaller and more uniform particles in this powder. (author)

  7. Sol-gel method for encapsulating molecules

    Science.gov (United States)

    Brinker, C. Jeffrey; Ashley, Carol S.; Bhatia, Rimple; Singh, Anup K.

    2002-01-01

    A method for encapsulating organic molecules, and in particular, biomolecules using sol-gel chemistry. A silica sol is prepared from an aqueous alkali metal silicate solution, such as a mixture of silicon dioxide and sodium or potassium oxide in water. The pH is adjusted to a suitably low value to stabilize the sol by minimizing the rate of siloxane condensation, thereby allowing storage stability of the sol prior to gelation. The organic molecules, generally in solution, is then added with the organic molecules being encapsulated in the sol matrix. After aging, either a thin film can be prepared or a gel can be formed with the encapsulated molecules. Depending upon the acid used, pH, and other processing conditions, the gelation time can be from one minute up to several days. In the method of the present invention, no alcohols are generated as by-products during the sol-gel and encapsulation steps. The organic molecules can be added at any desired pH value, where the pH value is generally chosen to achieve the desired reactivity of the organic molecules. The method of the present invention thereby presents a sufficiently mild encapsulation method to retain a significant portion of the activity of the biomolecules, compared with the activity of the biomolecules in free solution.

  8. Transparent Hydrophobic Coating by Sol Gel Method

    International Nuclear Information System (INIS)

    Mohd Hamzah Harun; Nik Ghazali Nik Salleh; Mahathir Mohamed; Mohd Sofian Alias

    2016-01-01

    Transparent hydrophobic coating of inorganic based tetra orthosilicate (TEOS) was prepared by sol gel method by varying fluoroalkylsilane (FAS) content which works as hydrophobic agent. Surface contact angle, transmittance degree and surface morphology were characterized for each sample. All samples show good transparency which was confirmed by UV visible spectroscopy. The hydrophobicity obtained increases with FAS content indicates that FAS is best candidate to induce hydrophobicity for inorganic coating. (author)

  9. Ultra-low pollutant emission combustion method and apparatus

    International Nuclear Information System (INIS)

    Khinkis, M.J.

    1992-01-01

    This patent describes a method for ultra-low pollutant emission combustion of fossil fuel. It comprises: introducing into a primary combustion chamber a first fuel portion of about 1 percent to about 20 percent of a total fuel to be combusted; introducing primary combustion air into the primary combustion chamber; introducing a first portion of water into the primary combustion chamber, having a first water heat capacity equivalent to a primary combustion air heat capacity of one of a primary combustion air amount of about 10 percent to about 60 percent of the first stoichiometirc requirement for complete combustion of the first fuel portion and an excess primary combustion air amount of about 20 percent to about 150 percent of the first stoichiometric requirement for complete combustion of the first fuel portion; burning the first fuel portion with the primary combustion air in the primary combustion chamber at a temperature abut 2000 degrees F to about 2700 degrees F producing initial combustion products; passing the initial combustion products into a secondary combustion chamber; introducing into the secondary combustion chamber a second fuel portion of about 80 percent to about 99 percent of the total fuel to be combusted; introducing secondary combustion air into the secondary combustion chamber in an amount of about 105 percent to about 130 percent of a second stoichiometric requirement for complete combustion of the second fuel portion; introducing a second portion of water into the secondary combustion chamber; burning the second fuel portion and any remaining fuel in the initial combustion products; passing the final combustion products into a dilution chamber; introducing dilution air into the dilution chamber; discharging the ultra-low pollutant emission vitiated air form the dilution chamber

  10. Stacking gels: A method for maximising output for pulsed-field gel electrophoresis

    Directory of Open Access Journals (Sweden)

    Heng See

    2009-01-01

    Full Text Available Pulsed field gel electrophoresis (PFGE, the gold standard of molecular typing methods, has a major disadvantage of an unusually long electrophoretic time. From the original protocol of 6 days, it was modified to 3 days and subsequently to a single day. We describe the procedure of stacking five to six gels one on top of another in order to increase and maximize the output in a shorter time without compromising the resolution and reproducibility. All the variables that affect pulsed field gels during electrophoresis were taken into consideration. We firstly optimized the parameters to be used and secondly determined whether stacking of five to six gels had any effect on the molecular separation during electrophoresis in comparison with a single gel run. DNA preparation, restriction, electrophoresis, staining and gel documentation was carried out based on previously published methods. Gels were analysed using BioNumerics and dice coefficient and unweighted pair group methods were used to generate dendrograms based on 1.5% tolerance values. Identical band profiles and band resolution-separation were seen in the PFGE patterns with single gel and multiple stacking gels. Cluster analysis further strengthened the fact that results from stacking gels were reproducible and comparable with a single gel run. This method of stacking gels saves time and maximizes the output at the same time. The run time for a single gel was about 28 hours, but with six stacked gels the run time was 54 hours compared with 28 x 6 = 168 hours if they were run separately as single gels thus saving time of 67.86%. Beside the big factor of saving time, stacking gels save resources (electricity, reagents, water, chemicals and working time by increasing the sample throughput in a shorter time without compromising on quality of data. But optimization of working parameters is vital depending on the PFGE system used.

  11. Formulation and method for preparing gels comprising hydrous aluminum oxide

    Science.gov (United States)

    Collins, Jack L.

    2014-06-17

    Formulations useful for preparing hydrous aluminum oxide gels contain a metal salt including aluminum, an organic base, and a complexing agent. Methods for preparing gels containing hydrous aluminum oxide include heating a formulation to a temperature sufficient to induce gel formation, where the formulation contains a metal salt including aluminum, an organic base, and a complexing agent.

  12. Microscopic evolution of dielectric nanoparticles at different calcination temperatures synthesized via sol-gel auto-combustion

    Energy Technology Data Exchange (ETDEWEB)

    Adil, Muhammad, E-mail: muhammadadil86@hotmail.com; Zaid, Hasnah Mohd, E-mail: hasnamz@petronas.com.my; Chuan, Lee Kean, E-mail: lee.kc@petronas.com.my; Latiff, Noor Rasyada Ahmad, E-mail: syasya.latiff@gmail.com [Fundamental and Applied Sciences Department, Universiti Teknologi PETRONAS Bandar Seri Iskandar, 31750 Tronoh, Perak (Malaysia); Alta’ee, Ali F., E-mail: ali-mangi@petronas.com.my [Geoscience and Petroleum Engineering Department, Universiti Teknologi PETRONAS Bandar Seri Iskandar, 31750 Tronoh, Perak (Malaysia)

    2015-07-22

    Dielectric nano powder synthesis is carried by a simple and fast sol-gel auto-combustion method. The transformation of crystalline phases of as-synthesized nano powders is investigated through the detailed transmission electron microscopy (TEM), revealed the crystallographic alterations and morphological information even at lattice scale. From specific area electron diffraction (SAED) pattern, has specified the d-spacing and corresponding planes supported by the observed lattice fringes. The morphological characterization of nanoparticles is performed through field-emission scanning electron microscopy (FESEM), exhibiting the increment in particle size due to agglomeration with the increase in annealing temperature. Furthermore, EDX pattern has been used to verify the formation of nanoparticles by revealing the presence of required elements.

  13. Microscopic evolution of dielectric nanoparticles at different calcination temperatures synthesized via sol-gel auto-combustion

    International Nuclear Information System (INIS)

    Adil, Muhammad; Zaid, Hasnah Mohd; Chuan, Lee Kean; Latiff, Noor Rasyada Ahmad; Alta’ee, Ali F.

    2015-01-01

    Dielectric nano powder synthesis is carried by a simple and fast sol-gel auto-combustion method. The transformation of crystalline phases of as-synthesized nano powders is investigated through the detailed transmission electron microscopy (TEM), revealed the crystallographic alterations and morphological information even at lattice scale. From specific area electron diffraction (SAED) pattern, has specified the d-spacing and corresponding planes supported by the observed lattice fringes. The morphological characterization of nanoparticles is performed through field-emission scanning electron microscopy (FESEM), exhibiting the increment in particle size due to agglomeration with the increase in annealing temperature. Furthermore, EDX pattern has been used to verify the formation of nanoparticles by revealing the presence of required elements

  14. Lanthanum-doped mesostructured strontium titanates synthesized via sol–gel combustion route using citric acid as complexing agent

    Energy Technology Data Exchange (ETDEWEB)

    Sukpanish, Polthep [Department of Chemical Technology, Faculty of Science, Chulalongkorn University, Patumwan, Bangkok 10330 (Thailand); Center of Excellence on Petrochemical and Materials Technology (PETROMAT), Chulalongkorn University, Patumwan, Bangkok 10330 (Thailand); Lertpanyapornchai, Boontawee [Program in Petrochemistry, Faculty of Science, Chulalongkorn University, Patumwan, Bangkok 10330 (Thailand); Yokoi, Toshiyuki [Division of Catalytic Chemistry, Chemical Resources Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503 (Japan); Ngamcharussrivichai, Chawalit, E-mail: Chawalit.Ng@chula.ac.th [Department of Chemical Technology, Faculty of Science, Chulalongkorn University, Patumwan, Bangkok 10330 (Thailand); Center of Excellence on Petrochemical and Materials Technology (PETROMAT), Chulalongkorn University, Patumwan, Bangkok 10330 (Thailand)

    2016-09-15

    In the present work, a series of lanthanum-doped mesostructured strontium titanate (LMST) materials with different La/Sr ratios were synthesized via a sol–gel combustion method in the presence of citric acid as a complexing agent and Pluronic P123 as a templating agent. The effects of the amount of doped La and calcination temperature on the physicochemical properties of the LMSTs were examined using various techniques. Powder X-ray diffraction confirmed the substitution of La{sup 3+} into the SrTiO{sub 3} lattice, generating cubic perovskite La{sub x}Sr{sub 1−x}TiO{sub 3}, for the LMST materials calcined at 600 °C. The purity and crystallinity of the desired perovskite phase were enhanced by citric acid addition. The solubility limit of La{sup 3+} substitution at an La/Sr ratio of 0.43 was determined by structural and morphological studies. Increasing the La doping amount decreased the crystallinity and compositional homogeneity, because an La-rich amorphous phase segregated on the surface, but improved the mesoporosity. N{sub 2} physisorption measurements indicated that the LMSTs had a bimodal pore size distribution, of which the larger one was characterized by the crystallite size of mixed oxides, and the specific surface area of 24.9–37.3 m{sup 2} g{sup −1}. The formation of mesopores in the LMST materials synthesized via sol–gel combustion was explained based on a combination of soft- and hard-templating chemistries. - Highlights: • La-doped mesoporous SrTiO{sub 3} (LMST) was prepared first time via sol-gel combustion. • Pluronic P123 triblock copolymer was used as a cheap templating agent. • Citric acid as a complexing agent enhanced the purity and crystallinity of SrTiO{sub 3}. • The textural properties of LMST were improved by increasing the La doping amount. • Mesopore formation was explained by a combined soft- and hard-templating route.

  15. Method and device for diagnosing and controlling combustion instabilities in internal combustion engines operating in or transitioning to homogeneous charge combustion ignition mode

    Science.gov (United States)

    Wagner, Robert M [Knoxville, TN; Daw, Charles S [Knoxville, TN; Green, Johney B [Knoxville, TN; Edwards, Kevin D [Knoxville, TN

    2008-10-07

    This invention is a method of achieving stable, optimal mixtures of HCCI and SI in practical gasoline internal combustion engines comprising the steps of: characterizing the combustion process based on combustion process measurements, determining the ratio of conventional and HCCI combustion, determining the trajectory (sequence) of states for consecutive combustion processes, and determining subsequent combustion process modifications using said information to steer the engine combustion toward desired behavior.

  16. Systems and methods of storing combustion waste products

    Science.gov (United States)

    Chen, Shen-En; Wang, Peng; Miao, Xiexing; Feng, Qiyan; Zhu, Qianlin

    2016-04-12

    In one aspect, methods of storing one or more combustion waste products are described herein. Combustion waste products stored by a method described herein can include solid combustion waste products such as coal ash and/or gaseous combustion products such as carbon dioxide. In some embodiments, a method of storing carbon dioxide comprises providing a carbon dioxide storage medium comprising porous concrete having a macroporous and microporous pore structure and flowing carbon dioxide captured from a combustion flue gas source into the pore structure of the porous concrete.

  17. Mössbauer and XRD studies of NiCuZn ferrites by Sol-Gel auto-combustion

    International Nuclear Information System (INIS)

    Lei Chenglong; Lin Qing; Zhang Hui; He Yun; Huang Haifu

    2013-01-01

    The Ni 0.6 Cu 0.2 Zn 0.2 Ce x Fe 2-x O 4 ferrites (0≤x≤0.85) have been prepared by Sol-Gel auto-combustion method and we have investigated the effect of impurity CeO 2 phase to the microstructure and hyperfine magnetic field in spinel ferrite. The results of XRD patterns confirm the average crystallite size of samples decreases with Ce 3+ substitution increasing and the lattice parameters vary as a function of x content. 57 Fe Mössbauer spectra at room temperature for all samples confirm the [Fe 3+ - O 2- -Fe 3+ ] super exchange interaction decrease due to cerium substitution. For low temperature auto-combustion samples it reveals one normal sextet line and one doublet line x≤0.25, which shows well-resolved ferromagnetic order. Lattice defects are determined and Mössbauer spectrums vary from magnetic sextet to relaxation doublet at x≥0.45 due to a mass of CeO 2 phase. In contrast, the Mössbauer spectra for the samples sintered at 800°C/3h detect the secondary phase α -Fe 2 O 3 where the cation distribution occurs and it collapses to paramagnetic doublet (x≥0.85). Ce 3+ substitution has its maximum limit values of super exchange interaction and high sintering temperature will affect this interaction. (author)

  18. Equipment for production of hydrogel by sol-gel method

    International Nuclear Information System (INIS)

    Urbanek, V.

    1975-01-01

    The method of uranyl gel preparation is described by the sol-gel process of the internal gelation type. A laboratory-scale equipment with an output of 1.5 kg of gel per hour was built at the Nuclear Research Institute, Rez; the diameter of the microspheres produced may vary between 0.5 and 4.0 mm. The reliability of the equipment was verified by producing several tens of kilograms of uranyl gels and of gels based on other non-nuclear materials. (author)

  19. A method for easily customizable gradient gel electrophoresis.

    Science.gov (United States)

    Miller, Andrew J; Roman, Brandon; Norstrom, Eric

    2016-09-15

    Gradient polyacrylamide gel electrophoresis is a powerful tool for the resolution of polypeptides by relative mobility. Here, we present a simplified method for generating polyacrylamide gradient gels for routine analysis without the need for specialized mixing equipment. The method allows for easily customizable gradients which can be optimized for specific polypeptide resolution requirements. Moreover, the method eliminates the possibility of buffer cross contamination in mixing equipment, and the time and resources saved with this method in place of traditional gradient mixing, or the purchase of pre-cast gels, are noteworthy given the frequency with which many labs use gradient gel SDS-PAGE. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Superconductive ceramics obtained with sol gel method

    International Nuclear Information System (INIS)

    Arcangeli, A.; Mosci, A.; Nardi, A.; Vatteroni, R.; Zondini, C.

    1988-01-01

    Several sol gel routes have been considered, studied and developed to produce large quantities of granulates which can be processed to obtain ceramics having good superconducting characteristics. In the considered process a mixture of commercial nitrates is atomized, at room temperature, in a solution 1:1 of Primene JMT and Benzene and a pale blue gel of the starting elements is suddently formed. The granulates obtained are free flowing, very reactive and well suited for pressing. For their intrinsic characteristics they could be very good precursors for the production of large quantities of superconductive ceramics in different forms. The precipitated gel is dried, calcinated, pressed in the form of cylindrical pellets which are sintered up to 960 degrees C. No griding or different thermal treatments are needed. The sintered material has low electric resistence, shows a clear Meissner effect and has a transition temperature of between 91 and 95 K

  1. A simple gel electrophoresis method for separating polyhedral gold nanoparticles

    Science.gov (United States)

    Kim, Suhee; Lee, Hye Jin

    2015-07-01

    In this paper, a simple approach to separate differently shaped and sized polyhedral gold nanoparticles (NPs) within colloidal solutions via gel electrophoresis is described. Gel running parameters for separating efficiently gold NPs including gel composition, added surfactant types and applied voltage were investigated. The plasmonic properties and physical structure of the separated NPs extracted from the gel matrix were then investigated using transmission electron microscopy (TEM) and UV-vis spectrophotometry respectively. Data analysis revealed that gel electrophoresis conditions of a 1.5 % agarose gel with 0.1 % sodium dodecyl sulfate (SDS) surfactant under an applied voltage of 100 V resulted in the selective isolation of ~ 50 nm polyhedral shaped gold nanoparticles. Further efforts are underway to apply the method to purify biomolecule-conjugated polyhedral Au NPs that can be readily used for NP-enhanced biosensing platforms.

  2. Silica scintillating materials prepared by sol-gel methods

    International Nuclear Information System (INIS)

    Werst, D.W.; Sauer, M.C. Jr.; Cromack, K.R.; Lin, Y.; Tartakovsky, E.A.; Trifunac, A.D.

    1993-01-01

    Silica was investigated as a rad-hard alternative to organic polymer hosts for organic scintillators. Silica sol-gels were prepared by hydrolysis of tetramethoxysilane in alcohol solutions. organic dyes were incorporated into the gels by dissolving in methanol at the sol stage of gel formation. The silica sol-gel matrix is very rad-hard. The radiation stability of silica scintillators prepared by this method is dye-limited. Transient radioluminescence was measured following excitation with 30 ps pulses of 20 MeV electrons

  3. Evaluation of solution combustion method in the synthesis of Fe-ZrSiO4 based coral pigment

    International Nuclear Information System (INIS)

    Moosavi, A.; Aghaei, A.

    2008-01-01

    Auto-ignited gel combustion process has been used for producing a red hematite-zircon based pigment. The combustible mixtures contained the metal nitrates and citric acid as oxidizers and fuel, respectively. Sodium silicate (water glass) was used as silica source for producing zircon phase. X-Ray Diffractometry, Electron Microscopy and Simultaneous Thermal Analysis were used for characterization of reactions happened in the resulted dried gel during its heat-treatment. L*a*b* color parameters were measured by the CIE (Commission International de I'Eclairage) colorimetric method. This research has showed that solution combustion was unable 10 produce coral pigment as the end product of combustion without the need for any further heat treatment process

  4. Nanostructured aluminium oxide powders obtained by aspartic acid-nitrate gel-combustion routes

    Energy Technology Data Exchange (ETDEWEB)

    Gardey Merino, Maria Celeste, E-mail: mcgardey@frm.utn.edu.a [Laboratorio de Investigaciones y Servicios Ambientales Mendoza (LISAMEN) - CCT - CONICET, Avda. Ruiz Leal s/n, Parque Gral. San Martin, (M5502IRA) Ciudad de Mendoza, Prov. de Mendoza (Argentina); Grupo CLIOPE, Universidad Tecnologica Nacional - Facultad Regional Mendoza, Rodriguez 273, (M5502AJE) Ciudad de Mendoza, Prov. de Mendoza (Argentina); Lascalea, Gustavo E. [Laboratorio de Investigaciones y Servicios Ambientales Mendoza (LISAMEN) - CCT - CONICET, Avda. Ruiz Leal s/n, Parque Gral. San Martin, (M5502IRA) Ciudad de Mendoza, Prov. de Mendoza (Argentina); Sanchez, Laura M. [CINSO (Centro de Investigaciones en Solidos), CITEFA - CONICET, J.B. de La Salle 4397, (B1603ALO) Villa Martelli, Prov. de Buenos Aires (Argentina); Vazquez, Patricia G. [Centro de Investigacion y Desarrollo en Ciencias Aplicadas ' Dr. Jorge J. Ronco' (CINDECA), CONICET, Universidad Nacional de La Plata, Calle 47 nro. 257, (B1900AJK) La Plata, Prov. de Buenos Aires (Argentina); Cabanillas, Edgardo D. [CONICET and Centro Atomico Constituyentes, Comision Nacional de Energia Atomica, Gral. Paz 1499, (1650) San Martin, Prov. de Buenos Aires (Argentina); Lamas, Diego G. [CINSO (Centro de Investigaciones en Solidos), CITEFA - CONICET, J.B. de La Salle 4397, (B1603ALO) Villa Martelli, Prov. de Buenos Aires (Argentina)

    2010-04-16

    In this work, two new gel-combustion routes for the synthesis of Al{sub 2}O{sub 3} nanopowders with aspartic acid as fuel are presented. The first route is a conventional stoichiometric process, while the second one is a non-stoichiometric, pH-controlled process. These routes were compared with similar synthesis procedures using glycine as fuel, which are well-known in the literature. The samples were calcined in air at different temperatures, in a range of 600-1200 {sup o}C. They were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy and BET specific surface area. Different phases were obtained depending on the calcination temperature: amorphous, {gamma} (metastable) or {alpha} (stable). The amorphous-to-{gamma} transition was found for calcination temperatures in the range of 700-900 {sup o}C, while the {gamma}-to-{alpha} one was observed for calcination temperatures of 1100-1200 {sup o}C. The retention of the metastable {gamma} phase is probably due to a crystallite size effect. It transforms to the {alpha} phase after the crystallite size increases over a critical size during the calcination process at 1200 {sup o}C. The highest BET specific surface areas were obtained for both nitrate-aspartic acid routes proposed in this work, reaching values of about 50 m{sup 2}/g.

  5. System and method for engine combustion

    Science.gov (United States)

    Sczomak, David P.; Gallon, Robert J.; Solomon, Arun S.

    2018-03-13

    A combustion system for use with one or more cylinder bores of an internal combustion engine includes at least one cylinder head defining first and second intake ports in fluid communication with the one or more cylinder bores. A flap is adjustably connected to the at least one cylinder head. The flap includes a first flap portion cooperating with the first intake port extending from an arm and a second flap portion cooperating with the second intake port extending from the arm and disposed adjacent the first flap portion. A controller in electrical communication with an actuator monitors the condition of the engine and actuates the flap to position the first and second flap portions between first and second positions to create a first combustion condition and a second combustion condition.

  6. Internal combustion engine and method for control

    Science.gov (United States)

    Brennan, Daniel G

    2013-05-21

    In one exemplary embodiment of the invention an internal combustion engine includes a piston disposed in a cylinder, a valve configured to control flow of air into the cylinder and an actuator coupled to the valve to control a position of the valve. The internal combustion engine also includes a controller coupled to the actuator, wherein the controller is configured to close the valve when an uncontrolled condition for the internal engine is determined.

  7. Porous oxides synthesized by the combustion method

    International Nuclear Information System (INIS)

    Lugo L, V.

    2005-01-01

    The result of this work, seeks to be a contribution for the treatment of radioactive wastes, with base to the sorption properties that present those porous oxides, synthesized by a method that allows to increase the sorption capacity. The main objective of the present investigation has been the modification of the structural characteristics of the oxides of Fe, Mg and Zn to increase its capacity of sorption of 60 Co in particular. It was studied the effect of the synthesis method by combustion in the inorganic oxides; the obtained solids were characterized using the following techniques: X-ray diffraction (XRD), scanning electron microscopy (SEM), semiquantitative elementary analysis by Dispersive energy spectroscopy (EDS) and determination of surface area by the Brunauner-Emmett-Teller method (BET). Also was carried out batch type experiments for the sorption of Co 2+ , with the purpose of studying the sorption capacity of each one of the prepared oxides. In accordance with that previously exposed, the working plan that was carried out in this investigation is summarized in the following stages: 1. Preparation of inorganic oxides by two different methods, studying the effect of the temperature in the synthesis process. 2. Characterization of the inorganic oxides by XRD, by means of which those were chosen the solids with better properties. 3. Characterization of the inorganic oxides by SEM and EDS where it was studied the morphology of the synthesized materials and the semiquantitative elemental composition. 4. Realization of a sorption experiment type Batch with non radioactive Co 2+ to simulate the sorption of 60 Co and determination of the sorption capacity by means of neutron activation of the non radioactive cobalt. 5. Determination of the surface area by the (BET) technique of the inorganic oxides with better sorption properties. (Author)

  8. Synthesis, structural investigation and magnetic properties of Zn2+ substituted cobalt ferrite nanoparticles prepared by the sol–gel auto-combustion technique

    International Nuclear Information System (INIS)

    Raut, A.V.; Barkule, R.S.; Shengule, D.R.; Jadhav, K.M.

    2014-01-01

    Structural morphology and magnetic properties of the Co 1−x Zn x Fe 2 O 4 (0.0≤x≥1.0) spinel ferrite system synthesized by the sol–gel auto-combustion technique using nitrates of respective metal ions have been studied. The ratio of metal nitrates to citric acid was taken at 1:3. The as prepared powder of cobalt zinc ferrite was sintered at 600 °C for 12 h after TG/DTA thermal studies. Compositional stoichiometry was confirmed by energy dispersive analysis of the X-ray (EDAX) technique. Single phase cubic spinel structure of Co–Zn nanoparticles was confirmed by XRD data. The average crystallite size (t), lattice constant (a) and other structural parameters of zinc substituted cobalt ferrite nanoparticles were calculated from XRD followed by SEM and FTIR. It is observed that the sol–gel auto-combustion technique has many advantages for the synthesis of technologically applicable Co–Zn ferrite nanoparticles. The present investigation clearly shows the effect of the synthesis method and possible relation between magnetic properties and microstructure of the prepared samples. Increase in nonmagnetic Zn 2+ content in cobalt ferrite nanoparticles is followed by decrease in n B , M s and other magnetic parameters. Squareness ratio for the Co-ferrite was 1.096 at room temperature. - Highlights: • Co–Zn nanoparticles are prepared by sol–gel auto-combustion method. • Structural properties were characterized by XRD, SEM, and FTIR. • Compositional stoichiometry was confirmed by EDAX analysis. • Magnetic parameters were measured by the pulse field hysteresis loop technique

  9. Synthesis, structural investigation and magnetic properties of Zn{sup 2+} substituted cobalt ferrite nanoparticles prepared by the sol–gel auto-combustion technique

    Energy Technology Data Exchange (ETDEWEB)

    Raut, A.V., E-mail: nano9993@gmail.com [Vivekanand Arts and Sardar Dalipsingh Commerce and Science College, Aurangabad, 431004 Maharastra (India); Barkule, R.S.; Shengule, D.R. [Vivekanand Arts and Sardar Dalipsingh Commerce and Science College, Aurangabad, 431004 Maharastra (India); Jadhav, K.M., E-mail: drjadhavkm@gmail.com [Department of Physics, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad, 431004 Maharastra (India)

    2014-05-01

    Structural morphology and magnetic properties of the Co{sub 1−x}Zn{sub x}Fe{sub 2}O{sub 4} (0.0≤x≥1.0) spinel ferrite system synthesized by the sol–gel auto-combustion technique using nitrates of respective metal ions have been studied. The ratio of metal nitrates to citric acid was taken at 1:3. The as prepared powder of cobalt zinc ferrite was sintered at 600 °C for 12 h after TG/DTA thermal studies. Compositional stoichiometry was confirmed by energy dispersive analysis of the X-ray (EDAX) technique. Single phase cubic spinel structure of Co–Zn nanoparticles was confirmed by XRD data. The average crystallite size (t), lattice constant (a) and other structural parameters of zinc substituted cobalt ferrite nanoparticles were calculated from XRD followed by SEM and FTIR. It is observed that the sol–gel auto-combustion technique has many advantages for the synthesis of technologically applicable Co–Zn ferrite nanoparticles. The present investigation clearly shows the effect of the synthesis method and possible relation between magnetic properties and microstructure of the prepared samples. Increase in nonmagnetic Zn{sup 2+} content in cobalt ferrite nanoparticles is followed by decrease in n{sub B}, M{sub s} and other magnetic parameters. Squareness ratio for the Co-ferrite was 1.096 at room temperature. - Highlights: • Co–Zn nanoparticles are prepared by sol–gel auto-combustion method. • Structural properties were characterized by XRD, SEM, and FTIR. • Compositional stoichiometry was confirmed by EDAX analysis. • Magnetic parameters were measured by the pulse field hysteresis loop technique.

  10. Method of making ionic liquid mediated sol-gel sorbents

    Science.gov (United States)

    Malik, Abdul; Shearrow, Anne M.

    2017-01-31

    Ionic liquid (IL)-mediated sol-gel hybrid organic-inorganic materials present enormous potential for effective use in analytical microextraction. One obstacle to materializing this prospect arises from high viscosity of ILs significantly slowing down sol-gel reactions. A method was developed which provides phosphonium-based, pyridinium-based, and imidazolium-based IL-mediated advanced sol-gel organic-inorganic hybrid materials for capillary microextraction. Scanning electron microscopy results demonstrate that ILs can serve as porogenic agents in sol-gel reactions. IL-mediated sol-gel coatings prepared with silanol-terminated polymers provided up to 28 times higher extractions compared to analogous sol-gel coatings prepared without any IL in the sol solution. This study shows that IL-generated porous morphology alone is not enough to provide effective extraction media: careful choice of the organic polymer and the precursor with close sol-gel reactivity must be made to ensure effective chemical bonding of the organic polymer to the created sol-gel material to be able to provide the desired sorbent characteristics.

  11. Microstructural changes in NiFe{sub 2}O{sub 4} ceramics prepared with powders derived from different fuels in sol-gel auto-combustion technique

    Energy Technology Data Exchange (ETDEWEB)

    Chauhan, Lalita, E-mail: chauhan.lalita5@gmail.com; Sreenivas, K. [Department of Physics & Astrophysics, University of Delhi, Delhi-110007 (India); Bokolia, Renuka

    2016-05-23

    Structural properties of Nickel ferrite (NiFe{sub 2}O{sub 4}) ceramics prepared from powders derived from sol gel auto-combustion method using different fuels (citric acid, glycine and Dl-alanine) are compared. Changes in the structural properties at different sintering temperatures are investigated. X-ray diffraction (XRD) confirms the formation of single phase material with cubic structure. Ceramics prepared using the different powders obtained from different fuels show that that there are no significant changes in lattice parameters. However increasing sintering temperatures show significant improvement in density and grain size. The DL-alanine fuel is found to be the most effective fuel for producing NIFe{sub 2}O{sub 4} powders by the sol-gel auto combustion method and yields highly crystalline powders in the as-burnt stage itself at a low temperature (80 °C). Subsequent use of the powders in ceramic manufacturing produces dense NiFe{sub 2}O{sub 4} ceramics with a uniform microstructure and a large grain size.

  12. Microstructural changes in NiFe_2O_4 ceramics prepared with powders derived from different fuels in sol-gel auto-combustion technique

    International Nuclear Information System (INIS)

    Chauhan, Lalita; Sreenivas, K.; Bokolia, Renuka

    2016-01-01

    Structural properties of Nickel ferrite (NiFe_2O_4) ceramics prepared from powders derived from sol gel auto-combustion method using different fuels (citric acid, glycine and Dl-alanine) are compared. Changes in the structural properties at different sintering temperatures are investigated. X-ray diffraction (XRD) confirms the formation of single phase material with cubic structure. Ceramics prepared using the different powders obtained from different fuels show that that there are no significant changes in lattice parameters. However increasing sintering temperatures show significant improvement in density and grain size. The DL-alanine fuel is found to be the most effective fuel for producing NIFe_2O_4 powders by the sol-gel auto combustion method and yields highly crystalline powders in the as-burnt stage itself at a low temperature (80 °C). Subsequent use of the powders in ceramic manufacturing produces dense NiFe_2O_4 ceramics with a uniform microstructure and a large grain size.

  13. Microstructural changes in NiFe2O4 ceramics prepared with powders derived from different fuels in sol-gel auto-combustion technique

    Science.gov (United States)

    Chauhan, Lalita; Bokolia, Renuka; Sreenivas, K.

    2016-05-01

    Structural properties of Nickel ferrite (NiFe2O4) ceramics prepared from powders derived from sol gel auto-combustion method using different fuels (citric acid, glycine and Dl-alanine) are compared. Changes in the structural properties at different sintering temperatures are investigated. X-ray diffraction (XRD) confirms the formation of single phase material with cubic structure. Ceramics prepared using the different powders obtained from different fuels show that that there are no significant changes in lattice parameters. However increasing sintering temperatures show significant improvement in density and grain size. The DL-alanine fuel is found to be the most effective fuel for producing NIFe2O4 powders by the sol-gel auto combustion method and yields highly crystalline powders in the as-burnt stage itself at a low temperature (80 °C). Subsequent use of the powders in ceramic manufacturing produces dense NiFe2O4 ceramics with a uniform microstructure and a large grain size.

  14. Gel-combustion synthesis of CoSb2O6 and its reduction to powdery Sb2Co alloy

    Directory of Open Access Journals (Sweden)

    MAJA JOVIC

    2009-01-01

    Full Text Available Sb2Co alloy in powdery form was synthesized via reduction with gaseous hydrogen of the oxide CoSb2O6, obtained by the citrate gel-combustion technique. The precursor was an aqueous solution of antimony nitrate, cobalt nitrate and citric acid. The precursor solution with mole ratio Co(II/Sb(V of 1:2 was gelatinized by evaporation of water. The gel was heated in air up to the temperature of self-ignition. The product of gel combustion was a mixture of oxides and it had to be additionally thermally treated in order to be converted to pure CoSb2O6. The reduction of CoSb2O6 by gaseous hydrogen yielded powdery Sb2Co as the sole phase. The process of oxide reduction to alloy was controlled by thermogravimetry, while X-ray diffractometry was used to control the phase compositions of both the oxides and alloys.

  15. System and method for reducing combustion dynamics in a combustor

    Science.gov (United States)

    Uhm, Jong Ho; Ziminsky, Willy Steve; Johnson, Thomas Edward; Srinivasan, Shiva; York, William David

    2016-11-29

    A system for reducing combustion dynamics in a combustor includes an end cap that extends radially across the combustor and includes an upstream surface axially separated from a downstream surface. A combustion chamber is downstream of the end cap, and tubes extend from the upstream surface through the downstream surface. Each tube provides fluid communication through the end cap to the combustion chamber. The system further includes means for reducing combustion dynamics in the combustor. A method for reducing combustion dynamics in a combustor includes flowing a working fluid through tubes that extend axially through an end cap that extends radially across the combustor and obstructing at least a portion of the working fluid flowing through a first set of the tubes.

  16. Thermal properties and water repellency of cotton fabric prepared through sol-gel method

    Directory of Open Access Journals (Sweden)

    Gu Jia-Li

    2016-01-01

    Full Text Available Cotton fabrics were treated by one-step sol-gel method. The pure silica hydrosol and phosphorus-doped hydrosol were prepared with the addition of a hydrophobic hexadecyltrimethoxysilane to decrease the surface energy of cotton fabric. The thermal properties and water repellency of treated cotton fabric were characterized by thermo-gravimetric analysis, micro combustion, limiting oxygen index, and contact angle measurement. The results showed that cotton fabric treated by phosphorus-doped silica hydrosol had excellent flame retardance, and the water repellence was apparently improved with the addition of hexadecyltrimethoxysilane.

  17. Combustion Chamber Fluid Dynamics and Hypergolic Gel Propellant Chemistry Simulations for Selectable Thrust Rocket Engines

    National Research Council Canada - National Science Library

    Nusca, Michael J; Chen, Chiung-Chu; McQuaid, Michael J

    2007-01-01

    .... Computational fluid dynamics is employed to model the chemically reacting flow within a system's combustion chamber, and computational chemistry is employed to characterize propellant physical and reactive properties...

  18. Method for conducting underground reverse combustion

    Energy Technology Data Exchange (ETDEWEB)

    Craig, Jr, F F; Neil, J D; Parrish, D R; Scott, P H

    1965-05-25

    This is a procedure for conducting a reverse-combustion operation in a formation penetrated by an injection well and a producing well which have objectionable fluids between them. The procedure consists of shutting-in the injection well and injecting a sufficient quantity of oxygen-containing gas into the deposit by the producing well to force these undesirable fluids away from the vicinity of the wells. Next, the deposit is ignited in the vicinity of the producing well. In this manner, the producing well is opened to production. At substantially the same time, an oxygen-containing gas is injected into the deposit through the injection well, so that the resulting combustion-front travels countercurrently to the path of the gas. (4 claims)

  19. Combustion

    CERN Document Server

    Glassman, Irvin

    1987-01-01

    Combustion, Second Edition focuses on the underlying principles of combustion and covers topics ranging from chemical thermodynamics and flame temperatures to chemical kinetics, detonation, ignition, and oxidation characteristics of fuels. Diffusion flames, flame phenomena in premixed combustible gases, and combustion of nonvolatile fuels are also discussed. This book consists of nine chapters and begins by introducing the reader to heats of reaction and formation, free energy and the equilibrium constants, and flame temperature calculations. The next chapter explores the rates of reactio

  20. Combustion

    CERN Document Server

    Glassman, Irvin

    2008-01-01

    Combustion Engineering, a topic generally taught at the upper undergraduate and graduate level in most mechanical engineering programs, and many chemical engineering programs, is the study of rapid energy and mass transfer usually through the common physical phenomena of flame oxidation. It covers the physics and chemistry of this process and the engineering applications-from the generation of power such as the internal combustion automobile engine to the gas turbine engine. Renewed concerns about energy efficiency and fuel costs, along with continued concerns over toxic and particulate emissions have kept the interest in this vital area of engineering high and brought about new developments in both fundamental knowledge of flame and combustion physics as well as new technologies for flame and fuel control. *New chapter on new combustion concepts and technologies, including discussion on nanotechnology as related to combustion, as well as microgravity combustion, microcombustion, and catalytic combustion-all ...

  1. Gel Electrophoresis and Fluorescamine Methods for the Detection of ...

    African Journals Online (AJOL)

    For the fluorescamine method, clarification was achieved by isoelectric precipitation and precipitation with acid to obtain pH 4.6 and 6% TCA soluble extracts respectively. Non-clarified samples were used for gel electrophoresis. Both methods confirmed that raw milk and milk processed at 85/15s were the most proteolysed, ...

  2. Studies on Y{sub 2}SiO{sub 5}:Ce phosphors prepared by gel combustion using new fuels

    Energy Technology Data Exchange (ETDEWEB)

    Muresan, L.E., E-mail: laura_muresan2003@yahoo.com [“Raluca Ripan” Institute for Research in Chemistry, Babeş Bolyai University, Fântânele 30, 400294 Cluj-Napoca (Romania); Oprea, B.F.; Cadis, A.I.; Perhaita, I. [“Raluca Ripan” Institute for Research in Chemistry, Babeş Bolyai University, Fântânele 30, 400294 Cluj-Napoca (Romania); Ponta, O. [Faculty of Physics, Babeş Bolyai University, 400084 Cluj-Napoca (Romania)

    2014-12-05

    Highlights: • Y{sub 2}SiO{sub 5}:Ce was prepared by combustion using aspartic or glutamic acid as fuels. • Combustion process occurs differently depending on the fuels amount. • Single phase X2-Y{sub 2}SiO{sub 5} phosphors were obtained in fuel rich conditions. • PL measurements indicate that aspartic acid is a better fuel than glutamic. • Optimal preparative conditions were established for synthesis of Y{sub 2}SiO{sub 5}:Ce. - Abstract: Cerium activated yttrium silicate (Y{sub 2}SiO{sub 5}:Ce) phosphors were prepared by combustion, using yttrium–cerium nitrate as oxidizer, aspartic or glutamic acid as fuel and TEOS as source of silicon. In this study, aspartic and glutamic acid are used for the first time for the synthesis of Y{sub 2}SiO{sub 5}:Ce phosphors. The fuels molar amount was varied from 0.5 mol to 1.5 mol in order to reveal the thermal behavior of intermediary products (gels and ashes) same as the structural and luminescent characteristics of final products (phosphors). According to thermal analysis correlated with FTIR and XPS investigations, the combustion process occurs differently depending on the fuel amount; unreacted nitrate compounds have been identified in fuel lean conditions and carbonate based compounds along with organic residue in rich fuel conditions. The conversion to well crystallized silicates was revealed by changes of FTIR vibration bands and confirmed by XRD measurements. Based on luminescent spectra, aspartic acid is a better fuel than glutamic acid. A positive effect on the luminescence have been observed for samples fired in air due to complete remove of organic residue. The best luminescence was obtained for combustions with 0.75 mol aspartic acid and 1.25 mol glutamic respectively, fired at 1400 °C for 4 h in air atmosphere.

  3. Combustion

    CERN Document Server

    Glassman, Irvin

    1997-01-01

    This Third Edition of Glassman's classic text clearly defines the role of chemistry, physics, and fluid mechanics as applied to the complex topic of combustion. Glassman's insightful introductory text emphasizes underlying physical and chemical principles, and encompasses engine technology, fire safety, materials synthesis, detonation phenomena, hydrocarbon fuel oxidation mechanisms, and environmental considerations. Combustion has been rewritten to integrate the text, figures, and appendixes, detailing available combustion codes, making it not only an excellent introductory text but also an important reference source for professionals in the field. Key Features * Explains complex combustion phenomena with physical insight rather than extensive mathematics * Clarifies postulates in the text using extensive computational results in figures * Lists modern combustion programs indicating usage and availability * Relates combustion concepts to practical applications.

  4. System and method for reducing combustion dynamics in a combustor

    Science.gov (United States)

    Uhm, Jong Ho; Johnson, Thomas Edward; Zuo, Baifang; York, William David

    2013-08-20

    A system for reducing combustion dynamics in a combustor includes an end cap having an upstream surface axially separated from a downstream surface, and tube bundles extend through the end cap. A diluent supply in fluid communication with the end cap provides diluent flow to the end cap. Diluent distributors circumferentially arranged inside at least one tube bundle extend downstream from the downstream surface and provide fluid communication for the diluent flow through the end cap. A method for reducing combustion dynamics in a combustor includes flowing fuel through tube bundles that extend axially through an end cap, flowing a diluent through diluent distributors into a combustion chamber, wherein the diluent distributors are circumferentially arranged inside at least one tube bundle and each diluent distributor extends downstream from the end cap, and forming a diluent barrier in the combustion chamber between at least one pair of adjacent tube bundles.

  5. Glycine as Alternative Fuel in Making Hydrotalcite Compound by Means of Combustion Method

    International Nuclear Information System (INIS)

    Shamsudin, I.K.; Helwani, Z.; Abdullah, A.Z.

    2013-01-01

    Hydrotalcite is anion compound capable of exchanging ions; it has the potential as a catalyst and adsorbent for variety of applications. Hydrotalcite can be prepared through several approaches, depending on the specific need and the characteristics of the compound. In this study, hydrotalcite was prepared through combustion method using glycine as fuel for the first time. Glycine was selected as opposed to urea so that hydrotalcite is safe for use in food processing or health. Hydrotalcite that was successfully obtained via combustion technique using glycine as fuel showed interesting characteristics. The compound demonstrated high thermal endurance and highest alkalinity, which suited the application for bio diesel production from vegetable oil and hydrogenation in the making of fats. However, the surface area was low in comparison with the same compound obtained from co-precipitation and sol-gel techniques. (author)

  6. Characterization of SrCo1.5Ti1.5Fe9O19 hexagonal ferrite synthesized by sol-gel combustion and solid state route

    International Nuclear Information System (INIS)

    Vinaykumar, R.; Mazumder, R.; Bera, J.

    2017-01-01

    Co-Ti co-substituted SrM hexagonal ferrite (SrCo 1.5 Ti 1.5 Fe 9 O 19 ) was synthesized by sol-gel combustion and solid state route. The effects of sources of TiO 2 raw materials; titanium tetra-isopropoxide (TTIP) and titanyl nitrate (TN) on the phase formation behavior and properties of the ferrite were studied. The thermal decomposition behavior of the gel was studied using TG-DSC. The phase formation behavior of the ferrite was studied by using X-ray powder diffraction and FTIR analysis. Phase formation was comparatively easier in the TN-based sol-gel process. The morphology of powder and sintered ferrite was investigated using scanning electron microscope. Magnetic properties like magnetization, coercivity, permeability, tan δ µ and dielectric properties were investigated. The ferrite synthesized by sol-gel based chemical route showed higher saturation magnetization, permeability and permittivity compared to the ferrite synthesized by solid state route. - Highlights: • SrCo 1.5 Ti 1.5 Fe 9 O 19 ferrite was successfully prepared by sol–gel combustion process. • Sol-gel synthesis of the ferrite using titanyl nitrate has been reported first time. • Phase formation was easier in the titanyl nitrate based sol-gel process. • Better magneto-dielectric properties were observed in sol-gel processed ferrite.

  7. Tapioca starch: An efficient fuel in gel-combustion synthesis of photocatalytically and anti-microbially active ZnO nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Ramasami, Alamelu K. [Centre for Nano and Material Sciences, Jain University, Jakkasandra, Kanakapura (T) (India); Raja Naika, H. [Dept. of Biotechnology, University College of Science, Tumkur University, Tumkur (India); Nagabhushana, H. [CNR Rao Centre for Advanced Materials, Tumkur University, Tumkur (India); Ramakrishnappa, T.; Balakrishna, Geetha R. [Centre for Nano and Material Sciences, Jain University, Jakkasandra, Kanakapura (T) (India); Nagaraju, G., E-mail: nagarajugn@rediffmail.com [Centre for Nano and Material Sciences, Jain University, Jakkasandra, Kanakapura (T) (India); Dept. of Chemistry, Siddaganga Institute of Technology, Tumkur (India)

    2015-01-15

    Zinc oxide nanoparticles were synthesized by gel-combustion method using novel bio-fuel tapioca starch pearls, derived from the tubers of Manihotesculenta. The product is characterized using various techniques. The X-ray diffraction pattern correspond to a hexagonal zincite structure. Fourier transform infrared spectrum showed main absorption peaks at 394 and 508 cm{sup −} {sup 1} due to stretching vibration of Zn–O. Ultravoilet–visible spectrum of zinc oxide nanoparticles showed absorption maximum at 373 nm whereas the maximum of the bulk zinc oxide was 377 nm. The morphology of the product was studied using scanning electron microscopy and transmission electron microscopy. The scanning electron microscopic images showed that the products are agglomerated and porous in nature. The transmission electron microscopic images revealed spherical particles of 40–50 nm in diameter. The photocatalytic degradation of methylene blue was examined using zinc oxide nanoparticles and found more efficient in sunlight than ultra-violet light due to reduced band gap. The antibacterial properties of zinc oxide nanoparticles were investigated against four bacterial strains Klebsiella aerogenes, Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aereus, where Pseudomonas aeruginosa and Staphylococcus aereus exhibited significant antibacterial activity in agar well diffusion method when compared to positive control. - Highlights: • ZnO nanoparticles have been prepared from a new bio-fuel, tapioca starch by gel combustion method. • XRD pattern revealed hexagonal zincite crystal structure with crystallite size 33 nm. • ZnO nanoparticles exhibited a band gap of 2.70 eV. • The ZnO nanoparticles exhibited superior degradation in sunlight in comparison with UV light. • The product showed a good anti-bacterial activity against two bacterial strains.

  8. Sol-gel auto-combustion synthesis and properties of Co2Z-type hexagonal ferrite ultrafine powders

    Science.gov (United States)

    Liu, Junliang; Yang, Min; Wang, Shengyun; Lv, Jingqing; Li, Yuqing; Zhang, Ming

    2018-05-01

    Z-type hexagonal ferrite ultrafine powders with chemical formulations of (BaxSr1-x)3Co2Fe24O41 (x varied from 0.0 to 1.0) have been synthesized by a sol-gel auto-combustion technique. The average particle sizes of the synthesized powders ranged from 2 to 5 μm. The partial substitution of Ba2+ by Sr2+ led to the shrinkage of the crystal lattices and resulted in changes in the magnetic sub-lattices, which tailored the static and dynamic magnetic properties of the as-synthesized powders. As the substitution ratio of Ba2+ by Sr2+, the saturation magnetization of the synthesized powders almost consistently increased from 43.3 to 56.1 emu/g, while the real part of permeability approached to a relatively high value about 2.2 owing to the balance of the saturation magnetization and magnetic anisotropy field.

  9. Blood grouping based on PCR methods and agarose gel electrophoresis.

    Science.gov (United States)

    Sell, Ana Maria; Visentainer, Jeane Eliete Laguila

    2015-01-01

    The study of erythrocyte antigens continues to be an intense field of research, particularly after the development of molecular testing methods. More than 300 specificities have been described by the International Society for Blood Transfusion as belonging to 33 blood group systems. The polymerase chain reaction (PCR) is a central tool for red blood cells (RBC) genotyping. PCR and agarose gel electrophoresis are low cost, easy, and versatile in vitro methods for amplifying defined target DNA (RBC polymorphic region). Multiplex-PCR, AS-PCR (Specific Allele Polymerase Chain Reaction), and RFLP-PCR (Restriction Fragment Length Polymorphism-Polymerase Chain Reaction) techniques are usually to identify RBC polymorphisms. Furthermore, it is an easy methodology to implement. This chapter describes the PCR methodology and agarose gel electrophoresis to identify the polymorphisms of the Kell, Duffy, Kidd, and MNS blood group systems.

  10. Fibrinopeptide A radioimmunoassay by the gel adsorption method

    International Nuclear Information System (INIS)

    Borlinghaus, P.

    1981-01-01

    The aim of these studies was to test the fibrinopeptide-A radioinmunoassay by the gel adsorption method for its clinical application, its validity and its accuracy concerning clinical questions. Fibrinopeptide-A levels (individual values) and the kinetics of fibrinopeptide-A liberation in vitro (FPA-formation curves) were therefore determined for 'normal persons' and patients with various illnesses. (orig./MG) [de

  11. Multiscale methods in turbulent combustion: strategies and computational challenges

    International Nuclear Information System (INIS)

    Echekki, Tarek

    2009-01-01

    A principal challenge in modeling turbulent combustion flows is associated with their complex, multiscale nature. Traditional paradigms in the modeling of these flows have attempted to address this nature through different strategies, including exploiting the separation of turbulence and combustion scales and a reduced description of the composition space. The resulting moment-based methods often yield reasonable predictions of flow and reactive scalars' statistics under certain conditions. However, these methods must constantly evolve to address combustion at different regimes, modes or with dominant chemistries. In recent years, alternative multiscale strategies have emerged, which although in part inspired by the traditional approaches, also draw upon basic tools from computational science, applied mathematics and the increasing availability of powerful computational resources. This review presents a general overview of different strategies adopted for multiscale solutions of turbulent combustion flows. Within these strategies, some specific models are discussed or outlined to illustrate their capabilities and underlying assumptions. These strategies may be classified under four different classes, including (i) closure models for atomistic processes, (ii) multigrid and multiresolution strategies, (iii) flame-embedding strategies and (iv) hybrid large-eddy simulation-low-dimensional strategies. A combination of these strategies and models can potentially represent a robust alternative strategy to moment-based models; but a significant challenge remains in the development of computational frameworks for these approaches as well as their underlying theories. (topical review)

  12. Dosimetry using radiosensitive gels in radiotherapy: significance and methods

    International Nuclear Information System (INIS)

    Gibon, D.; Bourel, P.; Castelain, B.; Marchandise, X.; Rousseau, J.

    2001-01-01

    The goal of conformal radiotherapy is to concentrate the dose in a well-defined volume by avoiding the neighbouring healthy structures. This technique requires powerful treatment planning software and a rigorous control of estimated dosimetry. The usual dosimetric tools are not adapted to visualize and validate complex 3D treatment. Dosimetry by radiosensitive gel permits visualization and measurement of the three-dimensional dose distribution. The objective of this work is to report on current work in this field and, based on our results and our experience, to draw prospects for an optimal use of this technique. Further developments will relate to the realization of new radiosensitive gels satisfying, as well as possible, cost requirements, easy realization and use, magnetic resonance imagery (MRI) sensitivity, tissue equivalence, and stability. Other developments focus on scanning methods, especially in MRI to measure T1 and T2. (author)

  13. Introduction to Analytical Methods for Internal Combustion Engine Cam Mechanisms

    CERN Document Server

    Williams, J J

    2013-01-01

    Modern design methods of Automotive Cam Design require the computation of a range of parameters. This book provides a logical sequence of steps for the derivation of the relevant equations from first principles, for the more widely used cam mechanisms. Although originally derived for use in high performance engines, this work is equally applicable to the design of mass produced automotive and other internal combustion engines.   Introduction to Analytical Methods for Internal Combustion Engine Cam Mechanisms provides the equations necessary for the design of cam lift curves with an associated smooth acceleration curve. The equations are derived for the kinematics and kinetics of all the mechanisms considered, together with those for cam curvature and oil entrainment velocity. This permits the cam shape, all loads, and contact stresses to be evaluated, and the relevant tribology to be assessed. The effects of asymmetry on the manufacture of cams for finger follower and offset translating curved followers is ...

  14. Comparison and Application of Two types of Filling Gel to Prevent Spontaneous Combustion at the Region where Top-Coal Caves above Entry

    Directory of Open Access Journals (Sweden)

    Wang Yuhuai

    2016-01-01

    Full Text Available Two types of gel were developed, by taking fly ash and foaming cement as aggregate, which is usually used as filling material at the region where top-coal caves above coal entry in the Jinggezhuang coal mine, and adding high molecular polymer and bio-gel as additive. Sweating rates of the two types of gel under various matching ratio and temperature were tested. And then sweating ratio and water retention ratio of the two gels were calculated, based on which, the optimized matching ratios, were determined. Viscosity indexes of the two-type gel under different ratios were tested. The optimized filling ratios of the two types of gel were determined according to the two indexes, water retention rate and the viscosity. The filling experiments were implemented and evaluated in site, the Jinggezhuang coal mine. The results show that the fly ash gel has a good achievement on preventing spontaneous combustion at the Region where Top-Coal Caves above entries. It is promising, economically and environmental friendly, and valuable in popularization in coal mines.

  15. Structural, magnetic and gas sensing properties of nanosized copper ferrite powder synthesized by sol gel combustion technique

    Energy Technology Data Exchange (ETDEWEB)

    Sumangala, T.P.; Mahender, C. [Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Bombay, Powai, Mumbai 400076 (India); Barnabe, A. [Université de Toulouse, Institut Carnot CIRIMAT – UMR CNRS-UPS-INP 5085, Université Paul Sabatier, Toulouse 31062 (France); Venkataramani, N. [Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Bombay, Powai, Mumbai 400076 (India); Prasad, Shiva, E-mail: shiva.pd@gmail.com [Department of Physics, Indian Institute of Technology Bombay, Powai, Mumbai 400076 (India)

    2016-11-15

    Stoichiometric nano sized copper ferrite particles were synthesized by sol gel combustion technique. They were then calcined at various temperatures ranging from 300–800 °C and were either furnace cooled or quenched in liquid nitrogen. A high magnetisation value of 48.2 emu/g signifying the cubic phase of copper ferrite, was obtained for sample quenched to liquid nitrogen temperature from 800 °C. The ethanol sensing response of the samples was studied and a maximum of 86% response was obtained for 500 ppm ethanol in the case of a furnace cooled sample calcined at 800 °C. The chemical sensing is seen to be correlated with the c/a ratio and is best in the case of tetragonal copper ferrite. - Highlights: • One of the first study on ethanol sensing of cubic copper ferrite. • In-situ High temperature XRD done shows phase transition from cubic to tetragonal. • A non-monotonic increase in magnetization was seen with calcination temperature. • A response of 86% was obtained towards 500 ppm ethanol. • Tried to correlate sensing response and ion content in spinel structure.

  16. Agar/gelatin bilayer gel matrix fabricated by simple thermo-responsive sol-gel transition method.

    Science.gov (United States)

    Wang, Yifeng; Dong, Meng; Guo, Mengmeng; Wang, Xia; Zhou, Jing; Lei, Jian; Guo, Chuanhang; Qin, Chaoran

    2017-08-01

    We present a simple and environmentally-friendly method to generate an agar/gelatin bilayer gel matrix for further biomedical applications. In this method, the thermally responsive sol-gel transitions of agar and gelatin combined with the different transition temperatures are exquisitely employed to fabricate the agar/gelatin bilayer gel matrix and achieve separate loading for various materials (e.g., drugs, fluorescent materials, and nanoparticles). Importantly, the resulting bilayer gel matrix provides two different biopolymer environments (a polysaccharide environment vs a protein environment) with a well-defined border, which allows the loaded materials in different layers to retain their original properties (e.g., magnetism and fluorescence) and reduce mutual interference. In addition, the loaded materials in the bilayer gel matrix exhibit an interesting release behavior under the control of thermal stimuli. Consequently, the resulting agar/gelatin bilayer gel matrix is a promising candidate for biomedical applications in drug delivery, controlled release, fluorescence labeling, and bio-imaging. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Use of Thermoanalytic Methods in the Evaluation of Combusted Materials

    Directory of Open Access Journals (Sweden)

    František Krepelka

    2006-12-01

    Full Text Available The paper describes possibilities of using thermoanalytic methods for the evaluation and comparison of materials designed for a direct combustion. Differential thermal analysis (DTA and thermogravimetric analysis (TGA were both used in the evaluation. The paper includes a description of methods of data processing from analyses for the purposes of comparison of used materials regarding their heating values. The following materials were analysed in the experiments: wooden coal of objectional grain size, fly ash from heating plant exhaust funnels, dendromass waste: spruce sawdust, micro-briquettes of spruce sawdust and fly-ash combined.

  18. Gradual combustion - method for nitrogen oxide suppression during brown coal combustion

    Energy Technology Data Exchange (ETDEWEB)

    Kotler, V.P.; Verzakov, V.N.; Lobov, T.V.

    1990-10-01

    Discusses combustion of brown coal in BKZ-500-140-1 boilers and factors that influence emission of nitrogen oxides. Temperature distribution in the furnace was evaluated. Effects of burner position, burner number and burner type as well as air excess ratio on chemical reactions during brown coal combustion, formation of nitrogen oxides and their emission were comparatively evaluated. Analyses showed that by optimum arrangement of burners and selecting the optimum air excess ratio a part of nitrogen oxides formed during the initial phase of combustion was reduced to molecular nitrogen in the second phase. On the basis of evaluations the following recommendations for furnace design are made: use of straight-flow burners characterized by a reduced mixing ratio with secondary air, parallel arrangement of burners which guarantees mixing of the combustion products from the burners with stable and unstable combustion (products of incomplete coal combustion), reducing the air excess ratio to below 1.0. 5 refs.

  19. Nanocrystalline (U0.5Ce0.5)O2±x solid solutions through citrate gel-combustion

    Science.gov (United States)

    Maji, D.; Ananthasivan, K.; Venkata Krishnan, R.; Balakrishnan, S.; Amirthapandian, S.; Joseph, Kitheri; Dasgupta, Arup

    2018-04-01

    Nanocrystalline powders of (U0.5Ce0.5)O2±x solid solutions were synthesized in bulk (100-200 g) through the citrate gel combustion. The fuel (citric acid) to oxidant (nitrate) mole ratio (R) was varied from 0.1 to 1.0. Two independent lots of the products obtained through the gel-combustion were calcined at 973 K in air and in a mixture of argon containing 8% H2 respectively. All these powders were characterized for their bulk density, X-ray crystallite size, specific surface area, size distribution of the particles, porosity as well as residual carbon. The morphology and microstructures of these powders were studied by using scanning electron microscopy (SEM) and transmission electron microscopy (TEM) respectively. Nanocrystalline single phase fluorite solid solutions having a typical crystallite size of about (7-15 nm) were obtained. These powders were highly porous comprising cuboidal flaky agglomerates. The combustion mixture with an 'R' value of 0.25 was found to undergo volume combustion and was found to yield a product that was distinctly different. The systematic investigation on synthesis and characterization of nanocrystalline UCeO2 is reported for the first time.

  20. Apparatus and method for solid fuel chemical looping combustion

    Science.gov (United States)

    Siriwardane, Ranjani V; Weber, Justin M

    2015-04-14

    The disclosure provides an apparatus and method utilizing fuel reactor comprised of a fuel section, an oxygen carrier section, and a porous divider separating the fuel section and the oxygen carrier section. The porous divider allows fluid communication between the fuel section and the oxygen carrier section while preventing the migration of solids of a particular size. Maintaining particle segregation between the oxygen carrier section and the fuel section during solid fuel gasification and combustion processes allows gases generated in either section to participate in necessary reactions while greatly mitigating issues associated with mixture of the oxygen carrier with char or ash products. The apparatus and method may be utilized with an oxygen uncoupling oxygen carrier such as CuO, Mn.sub.3O.sub.4, or Co.sub.3O.sub.4, or utilized with a CO/H.sub.2 reducing oxygen carrier such as Fe.sub.2O.sub.3.

  1. Characterization of Mg-containing hydroxyapatites synthesized by combustion method

    Science.gov (United States)

    Kaygili, Omer; Keser, Serhat; Bulut, Niyazi; Ates, Tankut

    2018-05-01

    In the present paper, Mg-substituted hydroxyapatites with the morphology, composed of the stacked plate- and rod-like structures, were prepared at the temperature of 600 °C by combustion method using glycerine as a fuel. A significant decrease in the crystallite size values calculated for both Scherrer and Williamson-Hall methods is found. The crystallinity, lattice parameter of a, stress and anisotropic energy density values decreased by adding of Mg, whereas the lattice strain increased. The amount of HAp phase decreases with increasing amount of Mg and the β-tricalcium phosphate content increases. Mg incorporation the apatitic structure was detected. Depending on the increase in Mg content, Ca-deficiency was observed.

  2. The structure of alkali silicate gel by total scattering methods

    KAUST Repository

    Benmore, C.J.

    2010-06-01

    The structure of the alkali silicate gel (ASR) collected from the galleries of Furnas Dam in Brazil was determined by a pair distribution function (PDF) analysis of high energy X-ray diffraction data. Since this method is relatively new to concrete structure analysis a detailed introduction on the PDF method is given for glassy SiO2. The bulk amorphous structure of the dam material is confirmed as no Bragg peaks are observed in the scattered intensity. The real space results show that the local structure of the amorphous material is similar to kanemite (KHSi2O5:3H2O) however the long range layer structure of the crystal is broken up in the amorphous state, so that ordering only persists of the length scale of a few polyhedra. The silicate layer structure is a much more disordered than predicted by molecular dynamics models. The X-ray results are consistent with the molecular dynamics model of Kirkpatrick et al. (2005) [1] which predicts that most of the water resides in pores within the amorphous network rather than in layers. The total scattering data provide a rigorous basis against which other models may also be tested. © 2010.

  3. The structure of alkali silicate gel by total scattering methods

    KAUST Repository

    Benmore, C.J.; Monteiro, Paulo J.M.

    2010-01-01

    The structure of the alkali silicate gel (ASR) collected from the galleries of Furnas Dam in Brazil was determined by a pair distribution function (PDF) analysis of high energy X-ray diffraction data. Since this method is relatively new to concrete structure analysis a detailed introduction on the PDF method is given for glassy SiO2. The bulk amorphous structure of the dam material is confirmed as no Bragg peaks are observed in the scattered intensity. The real space results show that the local structure of the amorphous material is similar to kanemite (KHSi2O5:3H2O) however the long range layer structure of the crystal is broken up in the amorphous state, so that ordering only persists of the length scale of a few polyhedra. The silicate layer structure is a much more disordered than predicted by molecular dynamics models. The X-ray results are consistent with the molecular dynamics model of Kirkpatrick et al. (2005) [1] which predicts that most of the water resides in pores within the amorphous network rather than in layers. The total scattering data provide a rigorous basis against which other models may also be tested. © 2010.

  4. Porous oxides synthesized by the combustion method; Oxidos porosos sintetizados por el metodo de combustion

    Energy Technology Data Exchange (ETDEWEB)

    Lugo L, V

    2005-07-01

    The result of this work, seeks to be a contribution for the treatment of radioactive wastes, with base to the sorption properties that present those porous oxides, synthesized by a method that allows to increase the sorption capacity. The main objective of the present investigation has been the modification of the structural characteristics of the oxides of Fe, Mg and Zn to increase its capacity of sorption of {sup 60} Co in particular. It was studied the effect of the synthesis method by combustion in the inorganic oxides; the obtained solids were characterized using the following techniques: X-ray diffraction (XRD), scanning electron microscopy (SEM), semiquantitative elementary analysis by Dispersive energy spectroscopy (EDS) and determination of surface area by the Brunauner-Emmett-Teller method (BET). Also was carried out batch type experiments for the sorption of Co{sup 2+}, with the purpose of studying the sorption capacity of each one of the prepared oxides. In accordance with that previously exposed, the working plan that was carried out in this investigation is summarized in the following stages: 1. Preparation of inorganic oxides by two different methods, studying the effect of the temperature in the synthesis process. 2. Characterization of the inorganic oxides by XRD, by means of which those were chosen the solids with better properties. 3. Characterization of the inorganic oxides by SEM and EDS where it was studied the morphology of the synthesized materials and the semiquantitative elemental composition. 4. Realization of a sorption experiment type Batch with non radioactive Co{sup 2+} to simulate the sorption of {sup 60} Co and determination of the sorption capacity by means of neutron activation of the non radioactive cobalt. 5. Determination of the surface area by the (BET) technique of the inorganic oxides with better sorption properties. (Author)

  5. A method for determining the completeness of fuel combustion

    Energy Technology Data Exchange (ETDEWEB)

    Tavger, M.D.; Chepkin, V.M.; Gruzdev, V.N.; Talantov, A.V.

    1982-01-01

    The current of conductivity (ionization) of gaseous combustion products, which forms with feeding of electric voltage to a special probe, is proposed for determining the completeness of fuel combustion. Here, the charged particles are formed from substances which form in the intermediate stages of the combustion reaction. The volume of charged particles is proportional to the volume of the intermediate substances, whose presence attests to the incompleteness of the combustion reaction. The fullness of fuel combustion is determined from a formula which includes the stoichiometric coefficient, a gas constant, the energy of activation, the characteristics of the chemical activity of the intermediate substances, the coefficient of air excess, the temperature of the combustion products and the conductivity current.

  6. Reproducibility of measurement of the environmental carbon-14 samples prepared by the gel suspension method

    International Nuclear Information System (INIS)

    Ohura, Hirotaka; Wakabayashi, Genichiro; Nakamura, Kouji; Okai, Tomio; Matoba, Masaru; Kakiuchi, Hideki; Momoshima, Noriyuki; Kawamura, Hidehisa.

    1997-01-01

    Simple liquid scintillation counting technique for the assay of 14 C in the environment was developed. This technique was done by using gel suspension method, in which sample preparation is very simple and requires no special equipments. The reproducibility of this technique was considered and it was shown that the gel suspension method had enough reproducibility to monitor the environmental 14 C. (author)

  7. Structural and optical properties of chromium doped zinc oxide nanoparticles synthesized by sol-gel method

    Energy Technology Data Exchange (ETDEWEB)

    Naqvi, Syed Mohd. Adnan, E-mail: adiaks2004@yahoo.co.in [Department of Fundamental and Applied Sciences, Universiti Teknologi Petronas, Bandar Seri Iskandar, Perak (Malaysia); Irshad, Kashif, E-mail: alig.kashif@gmail.com [Department of Mechanical Engineering, Universiti Teknologi Petronas, Bandar Seri Iskandar, Perak (Malaysia); Soleimani, Hassan, E-mail: hassan.soleimani@petronas.com.my, E-mail: noorhana-yahya@petronas.com.my; Yahya, Noorhana, E-mail: hassan.soleimani@petronas.com.my, E-mail: noorhana-yahya@petronas.com.my

    2014-10-24

    Nanosized Cr-doped ZnO nano particles were synthesized by facile sol-gel auto combustion method. The structural and optical properties of Cr-doped ZnO nanoparticles have been investigated by XRD and UV-Vis spectroscopy at room temperature for 0% to 8% concentration. X-ray diffraction analysis reveals that the Cr-doped ZnO crystallizes in a single phase polycrystalline nature with wurtzite lattice. With every % of doping, the peaks are shifting scarcely and doping of Cr is possible up to 7%. After that, the last peak vanishes, that signifies its structure is transmuted from 8% doping. The average crystallite size decreases with increase in Cr concentration (i.e. 28.9 nm for 0% to 25.8 nm for 8%). The UV-Vis spectra of the nanoparticles betoken an incrementation in the band gap energy from 3.401, 3.415, 3.431, 3.437,3.453, 3.514,3.521, 3.530 and 3.538 eV respectively, for 0,1, 2, 3, 4, 5, 6, 7 and 8 % doping concentration.

  8. Structural and optical properties of chromium doped zinc oxide nanoparticles synthesized by sol-gel method

    International Nuclear Information System (INIS)

    Naqvi, Syed Mohd. Adnan; Irshad, Kashif; Soleimani, Hassan; Yahya, Noorhana

    2014-01-01

    Nanosized Cr-doped ZnO nano particles were synthesized by facile sol-gel auto combustion method. The structural and optical properties of Cr-doped ZnO nanoparticles have been investigated by XRD and UV-Vis spectroscopy at room temperature for 0% to 8% concentration. X-ray diffraction analysis reveals that the Cr-doped ZnO crystallizes in a single phase polycrystalline nature with wurtzite lattice. With every % of doping, the peaks are shifting scarcely and doping of Cr is possible up to 7%. After that, the last peak vanishes, that signifies its structure is transmuted from 8% doping. The average crystallite size decreases with increase in Cr concentration (i.e. 28.9 nm for 0% to 25.8 nm for 8%). The UV-Vis spectra of the nanoparticles betoken an incrementation in the band gap energy from 3.401, 3.415, 3.431, 3.437,3.453, 3.514,3.521, 3.530 and 3.538 eV respectively, for 0,1, 2, 3, 4, 5, 6, 7 and 8 % doping concentration

  9. Preparation of silica by sol-gel method using formamide

    Directory of Open Access Journals (Sweden)

    R.F.S. Lenza

    2001-07-01

    Full Text Available In this work we obtained microporous and mesoporous silica gels by sol-gel processing. Tetraethylortosilicate (TEOS was used as precursor. Nitric acid and hydrofluoric acid were used as catalysts. In order to study the affect of formamide as drying additive, we used a molar ratio alkoxide/formamide of 1/1. The performance of formamide in obtaining crack-free gels was evaluated through monolithicity measurements. The structural evolution occurring in the interconnected network of the gels during thermal treatment was monitored by Fourier transform infrared spectroscopy (FTIR, shrinkage and density measurements and nitrogen gas sorption. We noted that in the presence of formamide, the Si-O-Si bonds are stronger and belong to a more cross-linked structure. The samples obtained in the presence of formamide have larger pore volume and its pore structure is in the range of mesoporosity. The samples obtained without additive are microporous. Formamide allowed the preparation of crack-free silica gels stabilized at high temperatures.

  10. Ducted combustion chamber for direct injection engines and method

    Science.gov (United States)

    Mueller, Charles

    2015-03-03

    An internal combustion engine includes an engine block having a cylinder bore and a cylinder head having a flame deck surface disposed at one end of the cylinder bore. A piston connected to a rotatable crankshaft and configured to reciprocate within the cylinder bore has a piston crown portion facing the flame deck surface such that a combustion chamber is defined within the cylinder bore and between the piston crown and the flame deck surface. A fuel injector having a nozzle tip disposed in fluid communication with the combustion chamber has at least one nozzle opening configured to inject a fuel jet into the combustion chamber along a fuel jet centerline. At least one duct defined in the combustion chamber between the piston crown and the flame deck surface has a generally rectangular cross section and extends in a radial direction relative to the cylinder bore substantially along the fuel jet centerline.

  11. Evaluation of different flamelet tabulation methods for laminar spray combustion

    Science.gov (United States)

    Luo, Yujuan; Wen, Xu; Wang, Haiou; Luo, Kun; Fan, Jianren

    2018-05-01

    In this work, three different flamelet tabulation methods for spray combustion are evaluated. Major differences among these methods lie in the treatment of the temperature boundary conditions of the flamelet equations. Particularly, in the first tabulation method ("M1"), both the fuel and oxidizer temperature boundary conditions are set to be fixed. In the second tabulation method ("M2"), the fuel temperature boundary condition is varied while the oxidizer temperature boundary condition is fixed. In the third tabulation method ("M3"), both the fuel and oxidizer temperature boundary conditions are varied and set to be equal. The focus of this work is to investigate whether the heat transfer between the droplet phase and gas phase can be represented by the studied tabulation methods through a priori analyses. To this end, spray flames stabilized in a three-dimensional counterflow are first simulated with detailed chemistry. Then, the trajectory variables are calculated from the detailed chemistry solutions. Finally, the tabulated thermo-chemical quantities are compared to the corresponding values from the detailed chemistry solutions. The comparisons show that the gas temperature cannot be predicted by "M1" with only a mixture fraction and reaction progress variable being the trajectory variables. The gas temperature can be correctly predicted by both "M2" and "M3," in which the total enthalpy is introduced as an additional manifold. In "M2," variations of the oxidizer temperature are considered with a temperature modification technique, which is not required in "M3." Interestingly, it is found that the mass fractions of the reactants and major products are not sensitive to the representation of the interphase heat transfer in the flamelet chemtables, and they can be correctly predicted by all tabulation methods. By contrast, the intermediate species CO and H2 in the premixed flame reaction zone are over-predicted by all tabulation methods.

  12. Method and apparatus for active control of combustion rate through modulation of heat transfer from the combustion chamber wall

    Science.gov (United States)

    Roberts, Jr., Charles E.; Chadwell, Christopher J.

    2004-09-21

    The flame propagation rate resulting from a combustion event in the combustion chamber of an internal combustion engine is controlled by modulation of the heat transfer from the combustion flame to the combustion chamber walls. In one embodiment, heat transfer from the combustion flame to the combustion chamber walls is mechanically modulated by a movable member that is inserted into, or withdrawn from, the combustion chamber thereby changing the shape of the combustion chamber and the combustion chamber wall surface area. In another embodiment, heat transfer from the combustion flame to the combustion chamber walls is modulated by cooling the surface of a portion of the combustion chamber wall that is in close proximity to the area of the combustion chamber where flame speed control is desired.

  13. Recovery of DNA from agarose gel by trap method

    African Journals Online (AJOL)

    Administrator

    2011-09-05

    Sep 5, 2011 ... gels, which can recover DNA with common laboratory facilities. This way can provide another ... which is difficult for the micro centrifuge. But our DNA could be extracted from n-butanol. ... taken out from the traps to 15 ml centrifuge tubes with a Pasteur pipette. The volume of the buffer extracted was equal to ...

  14. Recovery of DNA from agarose gel by trap method | Xia | African ...

    African Journals Online (AJOL)

    Recovery of DNA from agarose gel electrophoresis is a basic operation during molecular cloning. Circular or linear DNA fragments which vary from 1.5 to 6.5 kb and correspond to 1 kb marker can be recovered from 0.8 to 1.0% agarose gel smoothly with a simple and rapid trap method. The recovery efficiency could be ...

  15. Method and device for the combustion of pulverised coal

    Energy Technology Data Exchange (ETDEWEB)

    Schoppe, F

    1977-01-13

    Until now, high combustion space loadings in pulverised coal firing were only obtained with melting combustion, where the ash is fluid. The disadvantage of this is that part of the heating surface is covered by liquid slack, and this type of combustion cannot operate in 'on-off operation', as the slack solidifies when the boiler is switched off. According to the invention, however, pulverised coal, which is reluctant to react, can be burnt at high combustion space loadings of over 2000 Mcal/cu. metre. hour. atm. with dry ash extraction, so that its use is possible for the combustion in central heating plants in detached houses and blocks of flats, with 'on-off operation'. For this purpose, the pulverised coal is heated under excess pressure in an atmosphere with a maximum of 10% of oxygen with a speed of heating of 1000/sup 0/C/sec up to 100 to 150/sup 0/C above its ignition temperature, and can be blown into the combustion air. Tangentially to the flame jet, a cold gas flow is guided so that burning particles thrown out at the sides are cooled below the ash melting temperature, before they reach the walls. The burning flame jet is accelerated, by using the excess pressure, via an injector, into a zone at less than the ash melting temperature, so that dry ash extraction is guaranteed.

  16. Modeling local extinction in turbulent combustion using an embedding method

    Science.gov (United States)

    Knaus, Robert; Pantano, Carlos

    2012-11-01

    Local regions of extinction in diffusion flames, called ``flame holes,'' can reduce the efficiency of combustion and increase the production of certain pollutants. At sufficiently high speeds, a flame may also be lifted from the rim of the burner to a downstream location that may be stable. These two phenomena share a common underlying mechanism of propagation related to edge-flame dynamics where chemistry and fluid mechanics are equally important. We present a formulation that describes the formation, propagation, and growth of flames holes on the stoichiometric surface using edge flame dynamics. The boundary separating the flame from the quenched region is modeled using a progress variable defined on the moving stoichiometric surface that is embedded in the three-dimensional space using an extension algorithm. This Cartesian problem is solved using a high-order finite-volume WENO method extended to this nonconservative problem. This algorithm can track the dynamics of flame holes in a turbulent reacting-shear layer and model flame liftoff without requiring full chemistry calculations.

  17. Comparison methods between methane and hydrogen combustion for useful transfer in furnaces

    International Nuclear Information System (INIS)

    Ghiea, V.V.

    2009-01-01

    The advantages and disadvantages of hydrogen use by industrial combustion are critically presented. Greenhouse effect due natural water vapors from atmosphere and these produced by hydrogen industrial combustion is critically analyzed, together with problems of gas fuels containing hydrogen as the relative largest component. A comparison method between methane and hydrogen combustion for pressure loss in burner feeding pipe, is conceived. It is deduced the ratio of radiation useful heat transfer characteristics and convection heat transfer coefficients from combustion gases at industrial furnaces and heat recuperators for hydrogen and methane combustion, establishing specific comparison methods. Using criterial equations special processed for convection heat transfer determination, a calculation generalizing formula is established. The proposed comparison methods are general valid for different gaseous fuels. (author)

  18. Characterization of SrCo{sub 1.5}Ti{sub 1.5}Fe{sub 9}O{sub 19} hexagonal ferrite synthesized by sol-gel combustion and solid state route

    Energy Technology Data Exchange (ETDEWEB)

    Vinaykumar, R., E-mail: vinaykumar.r1984@gmail.com; Mazumder, R., E-mail: ranabrata@nitrkl.ac.in; Bera, J., E-mail: jbera@nitrkl.ac.in

    2017-05-01

    Co-Ti co-substituted SrM hexagonal ferrite (SrCo{sub 1.5}Ti{sub 1.5}Fe{sub 9}O{sub 19}) was synthesized by sol-gel combustion and solid state route. The effects of sources of TiO{sub 2} raw materials; titanium tetra-isopropoxide (TTIP) and titanyl nitrate (TN) on the phase formation behavior and properties of the ferrite were studied. The thermal decomposition behavior of the gel was studied using TG-DSC. The phase formation behavior of the ferrite was studied by using X-ray powder diffraction and FTIR analysis. Phase formation was comparatively easier in the TN-based sol-gel process. The morphology of powder and sintered ferrite was investigated using scanning electron microscope. Magnetic properties like magnetization, coercivity, permeability, tan δ{sub µ} and dielectric properties were investigated. The ferrite synthesized by sol-gel based chemical route showed higher saturation magnetization, permeability and permittivity compared to the ferrite synthesized by solid state route. - Highlights: • SrCo{sub 1.5}Ti{sub 1.5}Fe{sub 9}O{sub 19} ferrite was successfully prepared by sol–gel combustion process. • Sol-gel synthesis of the ferrite using titanyl nitrate has been reported first time. • Phase formation was easier in the titanyl nitrate based sol-gel process. • Better magneto-dielectric properties were observed in sol-gel processed ferrite.

  19. Preparation of oxide glasses from metal alkoxides by sol-gel method

    Science.gov (United States)

    Kamiya, K.; Yoko, T.; Sakka, S.

    1987-01-01

    An investigation is carried out on the types of siloxane polymers produced in the course of the hydrolysis of silicon tetraethoxide, as well as the preparation of oxide glasses from metal alkoxides by the sol-gel method.

  20. Synthesis of Bi4Si3O12 powders by a sol–gel method

    International Nuclear Information System (INIS)

    Xie Huidong; Jia Caixia; Jiang Yuanru; Wang Xiaochang

    2012-01-01

    Highlights: ► Bi 4 Si 3 O 12 were synthesized by a sol–gel method, using stoichiometric materials. ► The calcining process of the as-dried gel was studied by different analyses. ► Phase separation in the sol–gel process was found during the calcination. - Abstract: Micro-crystals of bismuth orthosilicate (Bi 4 Si 3 O 12 ) were synthesized by a sol–gel method, using stoichiometric Si(OC 2 H 5 ) 4 , Bi(NO 3 ) 3 ·5H 2 O as the precursors and acetic acid as the solvent. The calcining process of the as-dried gel was studied by total gravity/differential scanning calory (TG/DSC), X-ray diffraction (XRD) and infrared (IR) spectra. Experiments showed that single phase of Bi 4 Si 3 O 12 could be obtained by sol–gel method at a calcining temperature of 900 °C. Phase separation in the sol–gel process was found during the calcination.

  1. Comparison study for the CCME reference method for determination of PHC in soil by using internal and external standard methods and by using silica gel column cleanup and in-situ silica gel cleanup methods

    International Nuclear Information System (INIS)

    Wang, Z.; Fingas, M.; Sigouin, L.; Yang, C.; Hollebone, B.

    2003-01-01

    The assessment, cleanup, and remediation of hydrocarbon contaminated sites is covered in the Reference Method for Canada-Wide Standard for Petroleum Hydrocarbons-Tier 1 Method. It replaces several analytical methods used in the past by some laboratories and jurisdictions in Canada. The authors conducted two comparative evaluations to validate the Tier 1 Analytical Method. The first compared the Internal and External Standard Methods, and the second compared the Silica Gel Column Cleanup Method with the In-situ Silica Gel Cleanup Method. The Canadian Council of Ministers of the Environment (CCME) Tier 1 Method recommends and requires the External Standard Method to determine petroleum hydrocarbons (PHC) in soil samples. The Internal Method is widely used to quantify various organic and inorganic pollutants in environmental samples. The Tier 1 Method offers two options for the same extract cleanup. They are: Option A - In-situ Silica Gel Cleanup, and Option B - Silica Gel Column Cleanup. Linearity, precision, and PHC quantification results were the parameters considered for diesel and motor oil solutions, for diesel spiked soil samples, and for motor oil spiked soil samples. It was concluded that both the External and Internal Standard Methods for gas chromatograph (GC) determination of PHC in soil possess their own advantages. The PHC results obtained using the In-Situ Silica Gel Cleanup Method were lower than those obtained with the Silica Gel Column Cleanup Methods. The more efficient and effective sample cleanup method proved to be the Silica Gel Column Method. 13 refs., 7 tabs., 7 figs

  2. Superconducting YBa2Cu3O7-x fibers from the thermoplastic gel method

    International Nuclear Information System (INIS)

    Uchikawa, F.; Mackenzie, J.D.

    1989-01-01

    The successful fabrication of ceramic superconducting YBa 2 Cu 3 O 7-x fibers has been investigated. A new method was proposed for synthesis of the fibers through a solution route. The thermoplastic gels were synthesized using Y, Ba, Cu, ethoxides, and diethylenetriamine. The fibers were drawn from the reheated gels. The fibers were characterized by x-ray diffraction, SEM, and shrinkage ratio measurements. The fired and then annealed fiber is shown to have a superconducting transition temperature of 91 K (onset) and zero resistance temperature of 84 K. With regard to the fired fibers, it is found that the surface area increased and superconducting transition temperature decreased with increasing organic content in the initial gel. The usefulness of this method is shown and the structure of the synthesized gel is discussed

  3. Porous alumina scaffold produced by sol-gel combined polymeric sponge method

    Science.gov (United States)

    Hasmaliza, M.; Fazliah, M. N.; Shafinaz, R. J.

    2012-09-01

    Sol gel is a novel method used to produce high purity alumina with nanometric scale. In this study, three-dimensional porous alumina scaffold was produced using sol-gel polymeric sponge method. Briefly, sol gel alumina was prepared by evaporation and polymeric sponge cut to designated sizes were immersed in the sol gel followed by sintering at 1250 and 1550°C. In order to study the cell interaction, the porous alumina scaffold was sterilized using autoclave prior to Human Mesenchymal Stem Cells (HMSCs) seeding on the scaffold and the cell proliferation was assessed by alamarBlue® assay. SEM results showed that during the 21 day period, HMSCs were able to attach on the scaffold surface and the interconnecting pores while maintaining its proliferation. These findings suggested the potential use of the porous alumina produced as a scaffold for implantation procedure.

  4. FC and ZFC magnetic properties of ferro-spinels (MFe2O4) prepared by solution-combustion method

    Science.gov (United States)

    Aravind, G.; Kumar, R. Vijaya; Nathaniyal, V.; Rambabu, T.; Ravinder, D.

    2017-07-01

    Magnetic ferro-spinels MFe2O4 (M= Co and Ni) prepared by citrate-gel solution combustion method using metal nitrates with low sintering temperature (500°C). From the XRD and TEM studies confirm that a nano crystalline nature of the prepared samples. Field Cooled (FC) and Zero Field Cooled (ZFC) magnetic studies of the prepared ferro-spinels are measured by using vibrating sample magnetometer (VSM). The resultant magnetization of the prepared samples as a function of an applied magnetic field 10 T was measured at two different temperatures 5 K and 310 K. Field Cooled (FC) and Zero Field Cooled (ZFC) magnetization measurements under an applied field of 100 Oe and 1000 Oe in the temperature range of 5-375 K were carried out, which shows the blocking temperature of these two samples at around 350 K.

  5. Future combustion methods for biomethane powered tractor engines

    International Nuclear Information System (INIS)

    Prehn, Sascha; Harndorf, Horst; Wichmann, Volker; Beberdick, Wolfgang

    2016-01-01

    Biomethane represents an alternative to fossil fuels (petrol, diesel), not only in the on-road sector. Methane-based fuels come in focus of farmers in the agriculture sector, due to cost constraints, increasing regulation of pollutant emissions and reduction of carbondioxid. To represent a monovalent gas operation, a functional model is derived from a series diesel engine for agricultural use. On the test engine, systematic studies on the combustion process are carried out by cylinder pressure indication and exhaust-emission measurement. Combustion under stoichiometric conditions (with or without exhaust gas recirculation) as well as the conversion of fuel from excess air is observed. The study shows that with a natural-gas engine, a complex post-treatment system of exhaust gas (DOC + DPF + SCR) that is typically for diesel engines can be dispensed with. The exhaust gas limits in force since 2014 and a limitation of methane on 0,5 g/kWh can be met with a stoichiometric combustion concept and a three way catalytic converter optimized for the methane oxidation.

  6. Sol-gel auto-combustion synthesis of SiO{sub 2}-doped NiZn ferrite by using various fuels

    Energy Technology Data Exchange (ETDEWEB)

    Wu, K.H. [Department of Applied Chemistry, Chung Cheng Institute of Technology, NDU, No. 190, Sanyuan 1st Street, Dashi Jen, Tahsi, Taoyuan 335, Taiwan (China)]. E-mail: khwu@ccit.edu.tw; Ting, T.H. [Department of Applied Chemistry, Chung Cheng Institute of Technology, NDU, No. 190, Sanyuan 1st Street, Dashi Jen, Tahsi, Taoyuan 335, Taiwan (China); Li, M.C. [Department of Applied Chemistry, Chung Cheng Institute of Technology, NDU, No. 190, Sanyuan 1st Street, Dashi Jen, Tahsi, Taoyuan 335, Taiwan (China); Ho, W.D. [Chemical Systems Research Division, Chung Shan Institute of Science and Technology, Taoyuan, Taiwan (China)

    2006-03-15

    A nitrate-chelate-silica gel was prepared from metallic nitrates, citric acid and tetraethoxysilane (TEOS) by sol-gel process with different complexing agents such as glycine, hydrazine and citric acid, and it was further used to synthesize Ni{sub 0.5}Zn{sub 0.5}Fe{sub 2}O{sub 4}/20 wt% SiO{sub 2} nanocomposites by auto-combustion. The effect of varying complexing agent on the structural and magnetic properties of the composites was studied by FTIR, {sup 29}Si CP/MAS NMR, XRD, TEM, EPR and SQUID measurements. The complexing agent in the starting solution influenced the magnetic interaction between NiZn ferrite and silica, and then determined on the particle size. Further, the complexing agent type had a direct effect on the EPR parameters ({delta}H {sub PP}, g-factor and T {sub 2}) and SQUID parameters (M {sub s}, M {sub r} and H {sub c}) of the as-synthesized powder.

  7. Analysis of charge transport in gels containing polyoxometallates using methods of different sensitivity to migration.

    Science.gov (United States)

    Caban, Karolina; Lewera, Adam; Zukowska, Grazyna Z; Kulesza, Pawel J; Stojek, Zbigniew; Jeffrey, Kenneth R

    2006-08-04

    Two methods have been used for examination of transport of charge in gels soaked with DMF and containing dissolved polyoxometallates. The first method is based on the analysis of both Cottrellian and steady-state currents and therefore is capable of giving the concentration of the electroactive redox centres and their transport (diffusion-type) coefficient. The second method provides the real diffusion coefficients, i.e. transport coefficients free of migrational influence, for both the substrate and the product of the electrode reaction. Several gels based on poly(methyl methacrylate), with charged (addition of 1-acrylamido-2-methyl-2-propanesulphonic acid to the polymerization mixture) and uncharged chains, have been used in the investigation. The ratio obtained for the diffusion coefficient (second method) and transport coefficient (first method) was smaller for the gels containing charged polymer chains than for the gels with uncharged chains. In part these changes could be explained by the contribution of migration to the transport of polyoxomatallates in the gels. However, the impact of the changes in the polymer-channel capacity at the electrode surface while the electrode process proceeds was also considered. These structural changes should affect differently the methods based on different time domains.

  8. Method and Apparatus for Thermal Spraying of Metal Coatings Using Pulsejet Resonant Pulsed Combustion

    Science.gov (United States)

    Paxson, Daniel E. (Inventor)

    2014-01-01

    An apparatus and method for thermal spraying a metal coating on a substrate is accomplished with a modified pulsejet and optionally an ejector to assist in preventing oxidation. Metal such as Aluminum or Magnesium may be used. A pulsejet is first initiated by applying fuel, air, and a spark. Metal is inserted continuously in a high volume of metal into a combustion chamber of the pulsejet. The combustion is thereafter controlled resonantly at high frequency and the metal is heated to a molten state. The metal is then transported from the combustion chamber into a tailpipe of said pulsejet and is expelled therefrom at high velocity and deposited on a target substrate.

  9. Preparation and characterization of bismuth ruthenate pyrochlore via solid state reaction and sol-gel methods

    Directory of Open Access Journals (Sweden)

    Mayuree Sansernnivet

    2010-01-01

    Full Text Available Bismuth ruthenate pyrochlores, potential cathode materials for intermediate temperature solid oxide fuel cells(ITSOFCs, were prepared via solid-state and sol-gel method. Effects of the preparation routes and conditions on the phase and microstructures of the materials were investigated in this study using XRD and SEM. The study showed that the preparation method and the adding sequence of the starting meterials have a significant effect on the crystal phase and the particle size obtained. Sol-gel synthesis could yield a material with only pyrochlore structure, i.e. Bi2Ru2O7, while the solid state method yielded powder with a small amount of the secondary RuO2 phase. The sol-gel synthesis resulted in materialswith a finer particle size (~0.3-1.0 μm compared to powder synthesized via the solid state reaction method.

  10. Release of Inorganic Elements during Wood Combustion. Release to the Gas Phase of Inorganic Elements during: Wood Combustion. Part 1: Development and Evaluation of Quantification Methods

    DEFF Research Database (Denmark)

    van Lith, Simone Cornelia; Alonso-Ramírez, Violeta; Jensen, Peter Arendt

    2006-01-01

    During wood combustion, inorganic elements such as alkali metals, sulfur, chlorine, and some heavy metals are partly released to the gas phase, which may cause problems in combustion facilities because of deposit formation and corrosion. Furthermore, it may cause harmful emissions of gases......) in this reactor, whereas methods B and C involved initial pyrolysis and combustion, respectively, of a large fuel sample (~5 kg) in a bench-scale fixed-bed reactor at 500 C. The methods were evaluated by comparing the data on the release of Cl, S, K, Na, Zn, and Pb from fiber board obtained by the three methods...

  11. Investigation of sol-gel transition by rheological methods. Part I. Experimental methods.

    Directory of Open Access Journals (Sweden)

    KUDRYAVTSEV Pavel Gennadievich

    2017-08-01

    Full Text Available In this work rheological studies of the gelling process were carried out. We have developed a measuring system for studying the rheology of the gelation process. It consisted of several measuring cells of the Weiler-Rebinder type, system for automatic regulation of the composition of the medium and hermostabilization system. This complex is designed to measure the dependence of the value of the ultimate shear stress as a function of time, from the start of the sol-gel transition to the complete conversion of the sol to the gel. The developed device has a wide range of measured values of critical shear stresses τ0 = (0,05÷50000 Dyne/cm2. Using the developed instrument, it was possible to establish the shape of the initial section of the curve τ0 = f(t and develop a methodology for more accurate determination of gelation time. The developed method proved that the classical method for determining the start time of the sol-gel transition using the point of intersection of the tangent to the linear part of the rheological curve τ0 = f(t,gives significantly distorted results. A new phenomenon has been discovered: the kinetic curves in the coordinates of the Avrami-Erofeev-Bogolyubov equation have an inflection point which separates the kinetic curve into two parts, the initial and the final. It was found that the constant k in the Avrami–Erofeev–Bogolyubov quation does not depend on the temperature and is the same for both the initial and final parts of the kinetic curve. It depends only on the chemical nature of the reacting system. It was found that for the initial section of the kinetic curves, the value of the parameter n in the Avrami-Erofeev-Bogolyubov equation was n = 23,4±2,8 and, unlike the final section of the rheological curve, does not depend on temperature. A large value of this parameter can be interpreted as the average number of directions of growth of a fractal aggregate during its growth. The value of this parameter depends

  12. Phenomenological modeling of combustion and NOx emissions using detailed tabulated chemistry methods in diesel engines

    OpenAIRE

    Rezaei, R.; Dinkelacker, F.; Tilch, B.; Delebinski, T.; Brauer, M.

    2016-01-01

    Enhancing the predictive quality of engine models, while maintaining an affordable computational cost, is of great importance. In this study, a phenomenological combustion and a tabulated NOx model, focusing on efficient modeling and improvement of computational effort, is presented. The proposed approach employs physical and chemical sub-models for local processes such as injection, spray formation, ignition, combustion, and NOx formation, being based on detailed tabulated chemistry methods....

  13. Combustible gas recombining method and processing facility for gas waste

    International Nuclear Information System (INIS)

    Watabe, Atsushi; Murakami, Kazuo

    1998-01-01

    Combustible gases (hydrogen, oxygen) generated by radiation decomposition of reactor water in the vicinity of a reactor core in a reactor pressure vessel of a BWR type nuclear power plant pass, together with flow of steams, through a gas/water separator and a steam dryer disposed at the upper portion of a reactor core. A catalyst for allowing hydrogen and oxygen to react efficiently and recombine them into water is plated on the surface of the steam dryer. The catalyst comprises palladium (Pd) or platinum (Pt) or a Pd-Pt alloy. The combustible gases passing through the steam dryer are recombined and formed into steams by the catalyst. A slight amount of hydrogen and oxygen which are not recombined transfers, together with main steams, from a main steam pipe to a main condensator by way of a turbine. Then they are released, together with air from an air extraction device, from an activated carbon-type rare gas hold up tower. (I.N.)

  14. Fabrication of the flexible nanogenerator from BTO nanopowders on graphene coated PMMA substrates by sol-gel method

    Energy Technology Data Exchange (ETDEWEB)

    Sankar Ganesh, R. [Department of Physics and Nanotechnology, SRM University, Kattankullathur, Chennai, 603203, Tamil Nadu (India); Research Institute of Electronics, Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu, Shizuoka, 432-8011 (Japan); Sharma, Sanjeev K., E-mail: sksharma@dongguk.edu [Department of Semiconductor Science, Dongguk University-Seoul, Jung-gu, Seoul, 04620 (Korea, Republic of); Abinnas, N. [Department of Physics and Nanotechnology, SRM University, Kattankullathur, Chennai, 603203, Tamil Nadu (India); Durgadevi, E. [Research Institute of Electronics, Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu, Shizuoka, 432-8011 (Japan); Raji, P. [Department of Physics, Mepco Schlenk Engineering College, Sivakasi, 626 005, Tamil Nadu (India); Ponnusamy, S., E-mail: suruponnus@gmail.com [Department of Physics and Nanotechnology, SRM University, Kattankullathur, Chennai, 603203, Tamil Nadu (India); Muthamizhchelvan, C. [Department of Physics and Nanotechnology, SRM University, Kattankullathur, Chennai, 603203, Tamil Nadu (India); Hayakawa, Y. [Research Institute of Electronics, Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu, Shizuoka, 432-8011 (Japan); Kim, Deuk Young [Department of Semiconductor Science, Dongguk University-Seoul, Jung-gu, Seoul, 04620 (Korea, Republic of)

    2017-05-01

    Nanostructured bismuth titanate (Bi{sub 4}Ti{sub 3}O{sub 12}) or BTO powders were synthesized by the combustion method. The crystalline phase of BTO nanopowders was evaluated from X-ray diffraction (XRD) and further confirmed by selected area electron diffraction (SAED) pattern. The SEM and TEM micrographic images clearly showed the nanosheets like morphology of BTO nanopowder. The EDS spectrum of BTO nanopowder showed the elemental peaks of O, Bi and Ti at 0.53 keV, 2.41 keV and 4.49 keV, respectively. FTIR band peaks were observed at 815 and 595 cm{sup -1} corresponding to the stretching vibrations of Bi-O and Ti-O. The red shift in optical absorption of BTO was observed and the bandgap decreased from 3.18 to 3.08 eV as the calcined temperature increased from 600 to 800 °C. The sandwich structure, called the nanogenerator, Graphene/BTO-PDMS/Graphene (G/BTO/G), was fabricated on graphene coated polymethyl methacrylate (PMMA) substrates, which produced a peak voltage (10 mV) by applying the pressure from human's finger. The switching mechanism of BTO nanosheets was observed to be dependent on the polarity and intrinsic dipole formation. - Highlights: • Bi{sub 4}Ti{sub 3}O{sub 12} (BTO) nanosheets synthesized from a simple combustion method. • SEM & TEM images confirmed the nanosheets structure with a hexagonal shape. • XRD and SAED pattern of BTO nanosheets confirmed the orthorhombic crystal structure. • Flexible G/BTO/G nanogenerator fabricated by sol-gel method. • Peak voltage was observed to be 10 mV by applying pressure from human's finger.

  15. A simple immunoblotting method after separation of proteins in agarose gel

    DEFF Research Database (Denmark)

    Koch, C; Skjødt, K; Laursen, I

    1985-01-01

    A simple and sensitive method for immunoblotting of proteins after separation in agarose gels is described. It involves transfer of proteins onto nitrocellulose paper simply by diffusion through pressure, a transfer which only takes about 10 min. By this method we have demonstrated the existence ...

  16. Simple analytical technique for liquid scintillation counting of environmental carbon-14 using gel suspension method

    International Nuclear Information System (INIS)

    Okai, Tomio; Wakabayashi, Genichiro; Nagao, Kenjiro; Matoba, Masaru; Ohura, Hirotaka; Momoshima, Noriyuki; Kawamura, Hidehisa

    2000-01-01

    A simple analytical technique for liquid scintillation counting of environmental 14 C was developed. Commercially available gelling agent, N-lauroyl-L -glutamic -α,γ-dibutylamide, was used for the gel-formation of the samples (gel suspension method) and for the subsequent liquid scintillation counting of 14 C in the form of CaCO 3 . Our procedure for sample preparation is much simpler than that of the conventional methods and requires no special equipment. Self absorption, stability and reproducibility of gel suspension samples were investigated in order to evaluate the characteristics of the gel suspension method for 14 C activity measurement. The self absorption factor is about 70% and slightly decrease as CaCO 3 weight increase. This is considered to be mainly due to the absorption of β-rays and scintillation light by the CaCO 3 sample itself. No change of the counting rate for the gel suspension sample was observed for more than 2 years after the sample preparation. Four samples were used for checking the reproducibility of the sample preparation method. The same values were obtained for the counting rate of 24 C activity within the counting error. No change of the counting rate was observed for the 're-gelated' sample. These results show that the gel suspension method is appropriate for the 14 C activity measurement by the liquid scintillation counting method and useful for a long-term preservation of the sample for repeated measurement. The above analytical technique was applied to actual environmental samples in Fukuoka prefecture, Japan. Results obtained were comparable with those by other researchers and appear to be reasonable. Therefore, the newly developed technique is useful for the routine monitoring of environmental 14 C. (author)

  17. Standard Test Method for Gel Time of Carbon Fiber-Epoxy Prepreg

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    1999-01-01

    1.1 This test method covers the determination of gel time of carbon fiber-epoxy tape and sheet. The test method is suitable for the measurement of gel time of resin systems having either high or low viscosity. 1.2 The values stated in SI units are to be regarded as standard. The values in parentheses are for reference only. 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

  18. A Novel Method for Detection of Glycoproteins on Sodium Dodecyl Sulphate Polyacrylamide Gel Using Radio-Iodinated Tyrosine

    DEFF Research Database (Denmark)

    Nalla, Amarnadh; Draz, Hossam M.; Dole, Anita

    2009-01-01

    The aim of this study is to develop a novel method for detection of glycoproteins on polyacrylamide gel. In this method, radio-iodinated-tyrosine (125I-tyrosine) was conjugated to glycoprotein by schiff's base mechanism on the sodium dodecyl sulfate- polyacrylamide gel. Ovalbumin and Concanavalin...... of glycoproteins using 125I-tyrosine selectively detected ovalbumin. Present results showed that MPD enhanced glycoprotein detection method can be used as a sensitive tool for the detection of glycoproteins on polyacrylamide gel...

  19. Thermal stability of octadecylsilane hybrid silicas prepared by grafting and sol-gel methods

    International Nuclear Information System (INIS)

    Brambilla, Rodrigo; Santos, Joao H.Z. dos; Miranda, Marcia S.L.; Frost, Ray L.

    2008-01-01

    Hybrid silicas bearing octadecylsilane groups were prepared by grafting and sol-gel (SG) methods. The effect of the preparative route on the thermal stability was evaluated by means of thermal gravimetric analysis (TGA), infrared emission spectroscopy (IRES) and, complementary, by 13 C solid-state nuclear magnetic resonance ( 13 C NMR) and matrix assisted laser deionization time of flight mass spectroscopy (MALDI-TOF-MS). Silicas prepared by the grafting route seem to be slightly more stable than those produced by the sol-gel method. This behavior seems to be associated to the preparative route, since grafting affords a liquid-like conformation, while in the case of sol-gel a highly organized crystalline chain conformation was observed

  20. Dye-Sensitized Solar Cells with Optimal Gel Electrolyte Using the Taguchi Design Method

    Directory of Open Access Journals (Sweden)

    Jenn-Kai Tsai

    2013-01-01

    Full Text Available The Taguchi method was adopted to determine the optimal gel electrolyte used in dye-sensitized solar cells (DSSCs. Since electrolyte is a very important factor in fabrication of high performance and long-term stability DSSCs, to find the optimal composition of gel electrolyte is desired. In this paper, the common ingredients used in the liquid electrolyte were chosen. The ingredients then mixed with cheap ionic liquids and poly(vinylidenefluoride-co-hexafluoropropylene (PVDF-HFP were added to form colloidal electrolyte (gel. The optimal composition of each materials in the gel electrolyte determined by Taguchi method consists of 0.03 M I2, 0.15 M KI, 0.6 M LiI, 0.5 M 4-tertbutylpyridine (TBP, and 10% PVDF-HFP dissolved in the acetonitrile and 3-methoxypropionitrile (MPN solution with volume ratio of 2 : 1. The short circuit current density of 14.11 mA/cm2, the conversion efficiency (η of 5.52%, and the lifetime of over 110 days were observed for the dye-sensitized solar cell assembled with optimal gel electrolyte. The lifetime increases 10 times when compared with the conventional dye-sensitized solar cell assembled with liquid electrolyte.

  1. Structural, impedance and Mössbauer studies of magnesium ferrite synthesized via sol–gel auto-combustion process

    Directory of Open Access Journals (Sweden)

    Shahid Khan Durrani

    2017-12-01

    Full Text Available Crystalline magnesium ferrite (MgFe2O4 spinel oxide powder was synthesized by nitrate–citrate sol–gel auto-combustion process with stoichiometric composition of metal nitrate salts, urea and citric acid. The study was focused on the modification of synthesis conditions and effect of these modified conditions on the structural and electrical properties of synthesized MgFe2O4 ceramic materials. Phase composition, crystallinity, structure and surface morphology were studied by X-ray diffraction, FTIR and SEM. Pure single phase MgFe2O4 spinel ferrite was obtained after calcination at 850 °C. Rietveld refinement of XRD result confirmed the single cubic phase spinel oxide with the lattice constant of a = 8.3931 Å and Fd3m symmetry. UV–visible absorption study of calcined powder revealed an optical band gap of 2.17 eV. SEM images of sintered specimens (1050–1450 °C showed that the grain size increased with the increase in sintering temperature. From the impedance results of the sintered MgFe2O4 specimens, it was found that the resistance of grain, grain boundary and electrode effect decreased with an increase in sintering temperature and associated grain growth. In the intermediate frequency region lowering of impedance and dielectric values was observed due to the decrease in grain boundary areas. Mössbauer studies indicated that magnesium ferrite had a mixed spinel structure in calcined and sintered samples, however, the well refined single phase MgFe2O4 was observed due to well developed high crystalline structure at 1350 °C and 1450 °C. Keywords: Sol–gel auto-combustion, Magnesium ferrite, X-ray diffraction, SEM, Mössbauer spectroscopy, Impedance spectroscopy

  2. Tetragonal-cubic phase boundary in nanocrystalline ZrO2-Y2O3 solid solutions synthesized by gel-combustion

    International Nuclear Information System (INIS)

    Fabregas, Ismael O.; Craievich, Aldo F.; Fantini, Marcia C.A.; Millen, Ricardo P.; Temperini, Marcia L.A.; Lamas, Diego G.

    2011-01-01

    Research highlights: → Gel-combustion synthesis yields compositionally homogeneous, single-phased ZrO 2 -Y 2 O 3 nanopowders, that exhibit the presence at room temperature of three different phases depending on Y 2 O 3 content, namely two tetragonal forms (t' and t'') and the cubic phase. → Phase identification can be achieved by synchrotron XPD (SXPD) and Raman spectroscopy since the tetragonal forms and the cubic phase can be distinguished by these techniques. → The crystallographic features of ZrO 2 -Y 2 O 3 nanopowders were determined by SXPD. They are similar to those reported by Yashima and coworkers for compositionally homogeneous materials containing larger (micro)crystals. However, the lattice parameters are slightly different and the axial ratios c/a of our t' samples are smaller than those reported by these authors. → Compositional t'/t'' and t''/cubic phase boundaries are located at (9 ± 1) and (10.5 ± 0.5) mol% Y 2 O 3 , respectively. → For the whole series of nanocrystalline ZrO 2 -Y 2 O 3 solid solutions studied in the present work, no evidences of the presence of a mixture of phases - as reported by Yashima and coworkers for microcrystalline solid solutions - were detected. - Abstract: By means of synchrotron X-ray powder diffraction (SXPD) and Raman spectroscopy, we have detected, in a series of nanocrystalline and compositionally homogeneous ZrO 2 -Y 2 O 3 solid solutions, the presence at room temperature of three different phases depending on Y 2 O 3 content, namely two tetragonal forms and the cubic phase. The studied materials, with average crystallite sizes within the range 7-10 nm, were synthesized by a nitrate-citrate gel-combustion process. The crystal structure of these phases was also investigated by SXPD. The results presented here indicate that the studied nanocrystalline ZrO 2 -Y 2 O 3 solid solutions exhibit the same phases reported in the literature for compositionally homogeneous materials containing larger (micro

  3. Tetragonal-cubic phase boundary in nanocrystalline ZrO{sub 2}-Y{sub 2}O{sub 3} solid solutions synthesized by gel-combustion

    Energy Technology Data Exchange (ETDEWEB)

    Fabregas, Ismael O. [CINSO (Centro de Investigaciones en Solidos), CITEFA-CONICET, J.B. de La Salle 4397, 1603 Villa Martelli, Pcia. de Buenos Aires (Argentina); Craievich, Aldo F.; Fantini, Marcia C.A. [Instituto de Fisica, Universidade de Sao Paulo, Travessa R da Rua do Matao, No. 187, Cidade Universitaria, 05508-900 Sao Paulo (Brazil); Millen, Ricardo P.; Temperini, Marcia L.A. [Instituto de Quimica, Universidade de Sao Paulo, Avenida Prof. Lineu Prestes 748, Cidade Universitaria, 05508-900 Sao Paulo (Brazil); Lamas, Diego G., E-mail: dlamas@uncoma.edu.ar [CINSO (Centro de Investigaciones en Solidos), CITEFA-CONICET, J.B. de La Salle 4397, 1603 Villa Martelli, Pcia. de Buenos Aires (Argentina); Laboratorio de Caracterizacion de Materiales, Facultad de Ingenieria, Universidad Nacional del Comahue, Buenos Aires 1400, (8300) Neuquen Capital, Prov. de Neuquen (Argentina)

    2011-04-21

    Research highlights: > Gel-combustion synthesis yields compositionally homogeneous, single-phased ZrO{sub 2}-Y{sub 2}O{sub 3} nanopowders, that exhibit the presence at room temperature of three different phases depending on Y{sub 2}O{sub 3} content, namely two tetragonal forms (t' and t'') and the cubic phase. > Phase identification can be achieved by synchrotron XPD (SXPD) and Raman spectroscopy since the tetragonal forms and the cubic phase can be distinguished by these techniques. > The crystallographic features of ZrO{sub 2}-Y{sub 2}O{sub 3} nanopowders were determined by SXPD. They are similar to those reported by Yashima and coworkers for compositionally homogeneous materials containing larger (micro)crystals. However, the lattice parameters are slightly different and the axial ratios c/a of our t' samples are smaller than those reported by these authors. > Compositional t'/t'' and t''/cubic phase boundaries are located at (9 {+-} 1) and (10.5 {+-} 0.5) mol% Y{sub 2}O{sub 3}, respectively. > For the whole series of nanocrystalline ZrO{sub 2}-Y{sub 2}O{sub 3} solid solutions studied in the present work, no evidences of the presence of a mixture of phases - as reported by Yashima and coworkers for microcrystalline solid solutions - were detected. - Abstract: By means of synchrotron X-ray powder diffraction (SXPD) and Raman spectroscopy, we have detected, in a series of nanocrystalline and compositionally homogeneous ZrO{sub 2}-Y{sub 2}O{sub 3} solid solutions, the presence at room temperature of three different phases depending on Y{sub 2}O{sub 3} content, namely two tetragonal forms and the cubic phase. The studied materials, with average crystallite sizes within the range 7-10 nm, were synthesized by a nitrate-citrate gel-combustion process. The crystal structure of these phases was also investigated by SXPD. The results presented here indicate that the studied nanocrystalline ZrO{sub 2}-Y{sub 2}O{sub 3} solid

  4. Method of improving heterogeneous oil reservoir polymer flooding effect by positively-charged gel profile control

    Science.gov (United States)

    Zhao, Ling; Xia, Huifen

    2018-01-01

    The project of polymer flooding has achieved great success in Daqing oilfield, and the main oil reservoir recovery can be improved by more than 15%. But, for some strong oil reservoir heterogeneity carrying out polymer flooding, polymer solution will be inefficient and invalid loop problem in the high permeability layer, then cause the larger polymer volume, and a significant reduction in the polymer flooding efficiency. Aiming at this problem, it is studied the method that improves heterogeneous oil reservoir polymer flooding effect by positively-charged gel profile control. The research results show that the polymer physical and chemical reaction of positively-charged gel with the residual polymer in high permeability layer can generate three-dimensional network of polymer, plugging high permeable layer, and increase injection pressure gradient, then improve the effect of polymer flooding development. Under the condition of the same dosage, positively-charged gel profile control can improve the polymer flooding recovery factor by 2.3∼3.8 percentage points. Under the condition of the same polymer flooding recovery factor increase value, after positively-charged gel profile control, it can reduce the polymer volume by 50 %. Applying mechanism of positively-charged gel profile control technology is feasible, cost savings, simple construction, and no environmental pollution, therefore has good application prospect.

  5. Application of spectroscopy and positron annihilation methods in studies of the gel-glasses materials

    International Nuclear Information System (INIS)

    Legendziewicz, J.; Guzik, M.; Glinski, J.; Jerie, K.; Baranowski, A.; Kochel, A.

    2008-01-01

    The results of optical spectroscopy (absorption and emission) and positron annihilation investigations of glasses are presented and discussed. The alcoholic sol-gel method was adapted for the incorporation of Ln(III) into silica gel network and the resulting gels were prepared with chlorides of selected lanthanides (cerium, praseodymium, europium, ytterbium) and with or without some addition of ethylene glycol. During the sol-gel process, a new type of compound with general formula of C 12 H 24 Cl 3 O 12 Pr 2 , 3(Cl) was crystallized. Its crystal structure was determined by X-ray diffraction studies what helps understanding the silica network structure. Measurements of absorption, emission and emission excitation spectra were carried out at 4 and 293 K. The optical properties of gels were compared with the spectroscopic data of C 12 H 24 Cl 3 O 12 Pr 2 , 3(Cl) single crystal. The experimental results of positron annihilation investigations were correlated with those from optical spectroscopy

  6. Combustible gas concentration control facility and operation method therefor

    International Nuclear Information System (INIS)

    Yoshikawa, Kazuhiro; Ando, Koji; Kinoshita, Shoichiro; Yamanari, Shozo; Moriya, Kimiaki; Karasawa, Hidetoshi

    1998-01-01

    The present invention provides a hydrogen gas-control facility by using a fuel battery-type combustible gas concentration reducing device as a countermeasure for controlling a hydrogen gas in a reactor container. Namely, a hydrogen electrode adsorb hydrogen by using an ion exchange membrane comprising hydrogen ions as a charge carrier. An air electrode adsorb oxygen in the air. A fuel battery converts recombining energy of hydrogen and oxygen to electric energy. Hydrogen in this case is supplied from an atmosphere in the container. Oxygen in this case is supplied from the air outside of the container. If hydrogen gas should be generated in the reactor, power generation of is performed by the fuel battery by using hydrogen gas, as a fuel, on the side of the hydrogen electrode of the fuel battery and using oxygen, as a fuel, in the air outside of the container on the side of the air electrode. Then, the hydrogen gas is consumed thereby controlling the hydrogen gas concentration in the container. Electric current generated in the fuel battery is used as an emergency power source for the countermeasure for a severe accident. (I.S.)

  7. Combustible gas concentration control facility and operation method therefor

    Energy Technology Data Exchange (ETDEWEB)

    Yoshikawa, Kazuhiro; Ando, Koji; Kinoshita, Shoichiro; Yamanari, Shozo; Moriya, Kimiaki; Karasawa, Hidetoshi

    1998-09-25

    The present invention provides a hydrogen gas-control facility by using a fuel battery-type combustible gas concentration reducing device as a countermeasure for controlling a hydrogen gas in a reactor container. Namely, a hydrogen electrode adsorb hydrogen by using an ion exchange membrane comprising hydrogen ions as a charge carrier. An air electrode adsorb oxygen in the air. A fuel battery converts recombining energy of hydrogen and oxygen to electric energy. Hydrogen in this case is supplied from an atmosphere in the container. Oxygen in this case is supplied from the air outside of the container. If hydrogen gas should be generated in the reactor, power generation of is performed by the fuel battery by using hydrogen gas, as a fuel, on the side of the hydrogen electrode of the fuel battery and using oxygen, as a fuel, in the air outside of the container on the side of the air electrode. Then, the hydrogen gas is consumed thereby controlling the hydrogen gas concentration in the container. Electric current generated in the fuel battery is used as an emergency power source for the countermeasure for a severe accident. (I.S.)

  8. Staining Method for Protein Analysis by Capillary Gel Electrophoresis

    Science.gov (United States)

    Wu, Shuqing; Lu, Joann J; Wang, Shili; Peck, Kristy L.; Li, Guigen; Liu, Shaorong

    2009-01-01

    A novel staining method and the associated fluorescent dye were developed for protein analysis by capillary SDS-PAGE. The method strategy is to synthesize a pseudo-SDS dye and use it to replace some of the SDS in SDS–protein complexes so that the protein can be fluorescently detected. The pseudo-SDS dye consists of a long, straight alkyl chain connected to a negative charged fluorescent head and binds to proteins just as SDS. The number of dye molecules incorporated with a protein depends on the dye concentration relative to SDS in the sample solution, since SDS and dye bind to proteins competitively. In this work, we synthesized a series of pseudo-SDS dyes, and tested their performances for capillary SDS-PAGE. FT-16 (a fluorescein molecule linked with a hexadodecyl group) seemed to be the best among all the dyes tested. Although the numbers of dye molecules bound to proteins (and the fluorescence signals from these protein complexes) were maximized in the absence of SDS, high-quality separations were obtained when co-complexes of SDS–protein–dye were formed. The migration time correlates well with protein size even after some of the SDS in the SDS–protein complexes was replaced by the pseudo-SDS dye. Under optimized experimental conditions and using a laser-induced fluorescence detector, limits of detection of as low as 0.13 ng/mL (bovine serum albumin) and dynamic ranges over 5 orders of magnitude in which fluorescence response is proportional to the square root of analyte concentration were obtained. The method and dye were also tested for separations of real-world samples from E. coli. PMID:17874848

  9. A sol-gel method to synthesize indium tin oxide nanoparticles

    Institute of Scientific and Technical Information of China (English)

    Xiuhua Li; Xiujuan xu; Xin Yin; Chunzhong Li; Jianrong Zhang

    2011-01-01

    Transparent conductive indium tin oxide (ITO) nanoparticles were synthesized by a novel sol-gel method.Granulated indium and tin were dissolved in HNO3 and partially complexed with citric acid.A sol-gel process was induced when tertiary butyl alcohol was added dropwise to the above solution.ITO nanoparticles with an average crystallite size of 18.5 nm and surface area of 32.6 m2/g were obtained after the gel was heat-treated at 700 C.The ITO nanoparticles showed good sinterability,the starting sintering temperature decreased sharply to 900 C,and the 1400 C sintered pellet had a density of 98.1 % of theoretical density (TD).

  10. Synthesis of lithium silicates by the modified method of combustion. XRD and IR

    International Nuclear Information System (INIS)

    Cruz, D.; Bulbulian, S.

    2002-01-01

    The combustion method is fixed in exothermic reactions for producing ceramic compounds. The precursor solutions are mixtures of metal nitrates and the fuels. This method was modified using non-oxidant compounds as lithium hydroxide and silicide acid and urea as fuel. The precursors were heated during 5 minutes at temperatures between 250 C and 550 C allowing so the mixture combustion. The obtained ceramics were characterized by X-ray diffraction and IR spectroscopy. The sample pollution with carbonates was evaluated and it was found that the presence of these diminish according as increase the calcination temperature. (Author)

  11. New visible and selective DNA staining method in gels with tetrazolium salts.

    Science.gov (United States)

    Paredes, Aaron J; Naranjo-Palma, Tatiana; Alfaro-Valdés, Hilda M; Barriga, Andrés; Babul, Jorge; Wilson, Christian A M

    2017-01-15

    DNA staining in gels has historically been carried out using silver staining and fluorescent dyes like ethidium bromide and SYBR Green I (SGI). Using fluorescent dyes allows recovery of the analyte, but requires instruments such as a transilluminator or fluorimeter to visualize the DNA. Here we described a new and simple method that allows DNA visualization to the naked eye by generating a colored precipitate. It works by soaking the acrylamide or agarose DNA gel in SGI and nitro blue tetrazolium (NBT) solution that, when exposed to sunlight, produces a purple insoluble formazan precipitate that remains in the gel after exposure to light. A calibration curve made with a DNA standard established a detection limit of approximately 180 pg/band at 500 bp. Selectivity of this assay was determined using different biomolecules, demonstrating a high selectivity for DNA. Integrity and functionality of the DNA recovered from gels was determined by enzymatic cutting with a restriction enzyme and by transforming competent cells after the different staining methods, respectively. Our method showed the best performance among the dyes employed. Based on its specificity, low cost and its adequacy for field work, this new methodology has enormous potential benefits to research and industry. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Dissolution testing of intermediary products in uranium dioxide production by the sol-gel method

    International Nuclear Information System (INIS)

    Melichar, F.; Landspersky, H.; Urbanek, V.

    1979-01-01

    A method was developed of dissolving polyuranates and uranium dioxides in sulphuric acid and in carbonate solutions for testing intermediate products in the sol-gel process preparation of uranium dioxide. A detailed granulometric analysis of spherical particle dispersion was included as part of the tests. Two different production methods were used for the two types of studied materials. The test results show that the test method is suitable for determining temperature sensitivity of the materials to dissolution reaction. The geometrical distribution of impurities in the spherical particles can be determined from the dissolution kinetics. The method allows the determination of the effect of carbon from impurities on the process of uranium dioxide leaching and is thus applicable for testing materials prepared by the sol-gel method. (Z.M.)

  13. Synthesis of Li2MO3 (M = Ti or Zr) by the combustion method

    International Nuclear Information System (INIS)

    Cruza, D.; Bulbuliana, S.; Cruza, D.; Pfeifferc, H.

    2006-01-01

    The advantages and disadvantages of the combustion method to prepare Li 2 TiO 3 and Li 2 ZrO 3 ceramics were studied. Firstly, the ceramic powders were prepared by the combustion process using LiOH, MO 2 (where M=Ti or Zr) and urea in different molar ratios (from 2:1:3 to 3:1:3) at different temperatures for 5 minutes. Li 2 TiO 3 and Li 2 ZrO 3 were also obtained by the solid-state method, and the results were compared with those obtained by the combustion process. The powders were characterized by X-ray diffraction and scanning electron microscopy. It was found that the combustion process reduces the synthesis time of Li 2 TiO 3 (1 minute at 750 C), but it does not have any advantage on producing Li 2 ZrO 3 , due to thermodynamic factors. On the other hand, the combustion process produces carbon contaminants in the solids. It was necessary to add excess of lithium hydroxide, in order to compensate the quantity of Li sublimated during the production of the ceramics. Finally, it seems that both reactions follow the same mechanism, which is determined by the lithium diffusion into the metal oxides. (authors)

  14. Analysis of sperm antigens by sodium dodecyl sulfate gel/protein blot radioimmunobinding method

    International Nuclear Information System (INIS)

    Lee, C.Y.G.; Huang, Y.S.; Hu, P.C.; Gomel, V.; Menge, A.C.

    1982-01-01

    A radioimmunobinding method based on the blotting of renatured proteins from sodium dodecyl sulfate gels on to nitrocellulose filter papers was developed to analyze the sperm antigens that elicit serum anti-sperm antibodies. In rabbits, serum anti-sperm antibodies were raised by immunization with homologous epididymal spermatozoa mixed with complete Freund's adjuvant. The raised antisera from either male or female rabbits were shown to react with three major sperm protein bands on sodium dodecyl sulfate gels with the corresponding molecular weights of about 70,000 +/- 5000, 14,000, and 13,000, respectively. In humans, the monoclonal antibodies against human sperm were raised by a hybridoma technique. Out of six independent hybrid cell lines that were generated, three of them were shown to secrete immunoglobulins that react with the same two protein bands on sodium dodecyl sulfate gels, which have the approximate molecular weight of 10,000. The same procedure was also used to analyze human serum samples that were shown to contain anti-sperm antibodies by the known techniques. Unique sperm antigens that elicit anti-sperm antibodies in humans were identified and correlated. The results of this study suggest that sodium dodecyl sulfate gel/protein blot radioimmunobinding method may be a sensitive and useful tool for the study of sperm antigens that elicit autoimmune responses and their association with human infertility

  15. THERMALLY STABLE NANOCRYSTALLINE TIO2 PHOTOCATALYSTS SYNTHESIZED VIA SOL-GEL METHODS MODIFIED WITH IONIC LIQUID AND SURFACTANT MOLECULES

    Science.gov (United States)

    Recently, sol-gel methods employing ionic liquids (ILs) have shown significant implications for the synthesis of well-defined nanostructured inorganic materials. Herein, we synthesized nanocrystalline TiO2 particles via an alkoxide sol-gel method employing a water-immi...

  16. Chemical analysis of solid residue from liquid and solid fuel combustion: Method development and validation

    Energy Technology Data Exchange (ETDEWEB)

    Trkmic, M. [University of Zagreb, Faculty of Mechanical Engineering and Naval Architecturek Zagreb (Croatia); Curkovic, L. [University of Zagreb, Faculty of Chemical Engineering and Technology, Zagreb (Croatia); Asperger, D. [HEP-Proizvodnja, Thermal Power Plant Department, Zagreb (Croatia)

    2012-06-15

    This paper deals with the development and validation of methods for identifying the composition of solid residue after liquid and solid fuel combustion in thermal power plant furnaces. The methods were developed for energy dispersive X-ray fluorescence (EDXRF) spectrometer analysis. Due to the fuels used, the different composition and the location of creation of solid residue, it was necessary to develop two methods. The first method is used for identifying solid residue composition after fuel oil combustion (Method 1), while the second method is used for identifying solid residue composition after the combustion of solid fuels, i. e. coal (Method 2). Method calibration was performed on sets of 12 (Method 1) and 6 (Method 2) certified reference materials (CRM). CRMs and analysis test samples were prepared in pellet form using hydraulic press. For the purpose of method validation the linearity, accuracy, precision and specificity were determined, and the measurement uncertainty of methods for each analyte separately was assessed. The methods were applied in the analysis of real furnace residue samples. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  17. A direct method to visualise the aryl acylamidase activity on cholinesterases in polyacrylamide gels

    Directory of Open Access Journals (Sweden)

    Boopathy Rathanam

    2000-12-01

    Full Text Available Abstract Background In vertebrates, two types of cholinesterases exist, acetylcholinesterase and butyrylcholinesterase. The function of acetylcholinesterase is to hydrolyse acetylcholine, thereby terminating the neurotransmission at cholinergic synapse, while the precise physiological function of butyrylcholinesterase has not been identified. The presence of cholinesterases in tissues that are not cholinergically innervated indicate that cholinesterases may have functions unrelated to neurotransmission. Furthermore, cholinesterases display a genuine aryl acylamidase activity apart from their predominant acylcholine hydrolase activity. The physiological significance of this aryl acylamidase activity is also not known. The study on the aryl acylamidase has been, in part hampered by the lack of a specific method to visualise this activity. We have developed a method to visualise the aryl acylamidase activity on cholinesterase in polyacrylamide gels. Results The o-nitroaniline liberated from o-nitroacetanilide by the action of aryl acylamidase activity on cholinesterases, in the presence of nitrous acid formed a diazonium compound. This compound gave an azo dye complex with N-(1-napthyl-ethylenediamine, which appeared as purple bands in polyacrylamide gels. Treating the stained gels with trichloroacetic acid followed by Tris-HCl buffer helped in fixation of the stain in the gels. By using specific inhibitors for acetylcholinesterase and butyrylcholinesterase, respectively, differential staining for the aryl acylamidase activities on butyrylcholinesterase and acetylcholinesterase in a sample containing both these enzymes has been demonstrated. A linear relationship between the intensity of colour developed and activity of the enzyme was obtained. Conclusions A novel method to visualise the aryl acylamidase activity on cholinesterases in polyacrylamide gels has been developed.

  18. Fabrication of YBa2Cu3O7-δ superconducting fibers by the sol-gel method

    International Nuclear Information System (INIS)

    Umeda, Tetsu; Kozuka, Hiromitsu; Sakka, Sumio

    1988-01-01

    High-T c superconducting oxide fibers were fabricated by the sol-gel method. An aqueous solution of metal acetates was concentrated to form a viscous sol, from which gel fibers were spun. The gel fibers, 5 to 1,000 μm in diameter, were converted to ceramic fibers by heating to 900 degree C. The fired fibers (T c (onset) of 94 K and T c (end) of 62.2 K) were rough and had porous microstructures

  19. Fabrication of Y{sub 2}Ti{sub 2}O{sub 7}:Yb{sup 3+},Ho{sup 3+} nanoparticles by a gel-combustion approach and upconverting luminescent properties

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Zhongsheng, E-mail: zhshcheng@ecit.cn [State Key Laboratory Breeding Base of Nuclear Resources and Environment, East China Institute of Technology, Nanchang, Jiangxi 330013 (China); Wang, Min; Wang, Haiqing; Le, Zhanggao; Huang, Guolin; Zou, Lixia; Liu, Zhirong [State Key Laboratory Breeding Base of Nuclear Resources and Environment, East China Institute of Technology, Nanchang, Jiangxi 330013 (China); Wang, Dianyuan; Wang, Qingkai [College of Science, Jiujiang University, Jiujiang, Jiangxi 332005 (China); Gong, Weiping [Electronic Science Department, Huizhou University, Huizhou, Guangdong 516001 (China)

    2014-09-01

    Highlights: • Co-doped (Y{sub 0.99−x}Ho{sub 0.01}Yb{sub x}){sub 2}Ti{sub 2}O{sub 7} nanophosphors were fabricated by gel-combustion method. • The effect of calcination and Yb{sup 3+} doping on upconverting spectra of nanophosphors was studied. • The dependence of upconverting intensity on the excitation power was examined. - Abstract: Yb{sup 3+}, Ho{sup 3+} co-doped pyrochlore-structured (Y{sub 0.99−x}Ho{sub 0.01}Yb{sub x}){sub 2}Ti{sub 2}O{sub 7} (x = 0, 2.5, 5.0, 7.5, 10.0 and 12.5 mol%) nanoparticles (NPs) were successfully fabricated via a gel-combustion approach. The products as-obtained were characterized by various techniques, i.e. X-ray diffraction, transmission electron microscope, Fourier transformed infrared spectra and upconverting spectra. The results indicate that the bright green (∼540 nm) and red (∼660 nm) emissions are observed in Y{sub 2}Ti{sub 2}O{sub 7}:Ho{sup 3+},Yb{sup 3+} NPs under the 980 nm excitation, which is ascribed to the radiative transitions ({sup 5}F{sub 4},{sup 5}S{sub 2}) → {sup 5}I{sub 8} and {sup 5}F{sub 5} → {sup 5}I{sub 8} of Ho{sup 3+} ions, respectively. It is also found that the calcining temperature and Yb{sup 3+} ion doping level have a great influence on the upconverting spectra of (Y{sub 0.99−x}Ho{sub 0.01}Yb{sub x}){sub 2}Ti{sub 2}O{sub 7} NPs. The emission intensities increase initially and then fall down from 800 to 1000 °C. The optimum doping level of Yb{sup 3+} ions is 7.5 mol%, and the intensity of upconverting emissions for (Y{sub 0.915}Ho{sub 0.01}Yb{sub 0.075}){sub 2}Ti{sub 2}O{sub 7} NPs is enhanced by the fold of 32 compared to the Yb{sup 3+}-free samples. The dependence of upconverting intensity on the excitation power reveals the contribution of two photons to both the green and red upconverting process under lower excitation power, and the possible upconverting mechanisms have been proposed accordingly.

  20. Carrageenan :the difference between PNG and KCL gel precipitation method as Lactobacillus acidophilus encapsulation material

    Science.gov (United States)

    Setijawati, D.; Nursyam, H.; Salis, H.

    2018-04-01

    The study on the effects of using of materials and methods in the preparation of the microcapsules Lactobacillus acidophilus towards the viability has been done. The research method used is experimental laboratory design. Variable research was kind of material (A) as the first factor with sub factor (A1 = Eucheuma cottonii) (A2 = Eucheuma spinosum) (A3 = mixture of Eucheuma cottonii and Eucheuma spinosum 1:1 ratio), while the second factor is a method of extraction to produce caragenan (B) with sub factor (B1 = Philipine Natural Grade modification) (B2 = KCl gel Press Precipitation). Analysis of different influences uses Analysis Of Varians followed by Fisher’s test. Analysis of data uses Mini tab 16. The results shows that the kind of extraction factors and methods gave significantly different effects on the viability of Lactobacillus acidophilus. The highest mean of Viablity obtained in the treatment of materials with a mixture of Eucheuma cottonii and Eucheuma spinosum and used KCl Gel Press method is equal to 7.14 log (CFU / mL). It is ssuggested using of kappa-iota carrageenanmixture asencapsulation material with KCl Gel Press method on Lactobacillus acidophilus microencapsulation process because it treatment gavethe highest average of Lactobacillus acidophilus viability.

  1. 49 CFR Appendix H to Part 173 - Method of Testing for Sustained Combustibility

    Science.gov (United States)

    2010-10-01

    ... standard manner sustains combustion. 2. Principle of the method A metal block with a concave depression... consisting of a block of aluminum alloy or other corrosion-resistant metal of high thermal conductivity is... is 2.2 mm (see Figure 32.5.2.1); (b) Thermometer, mercury in glass, for horizontal operation, with a...

  2. [A simple method for the rapid detection of bacterial hyaluronidase in K hyaluronate-containing gel].

    Science.gov (United States)

    Balke, E; Weiss, R

    1984-08-01

    For detection of hyaluronidase activities we investigated several groups of bacteria. The bacteria were inoculated on a 1,5% agarose gel in Petri plates of 4 cm diameter or gel discs of 7 mm diameter, containing 0,1% of K-hyaluronate as well as nutritient medium, and were incubated for 2-20 h at 37 degrees C in a moist chamber. Subsequently some ml of a 10% solution of cetylpyridiniumchloride were poured on the gel to precipitate the polymere hyaluronate. If the hyaluronate was depolymerized by hyaluronidase, a translucent area was visible around the colonies. We found out, that a gel layer of 1 mm was sufficient to detect the small amounts of hyaluronidase, which were produced by bacteria within an incubation time of 2 h. These results were confirmed by incubation for 20 h and in some cases 36 h. The hyaluronidase production by different anaerobic Clostridium strains was always proved after a 20 h growth period. The bacteria were inoculated with the whole loop of a self made platin sowing wire loop. By this method quantitative differences of hyaluronidase activities between different strains of bacteria could be detected.

  3. "Cold combustion" as a new method of toxic waste destruction

    Directory of Open Access Journals (Sweden)

    Екатерина Юрьевна Ткаченко

    2015-05-01

    Full Text Available This article describes a promising new method for the destruction of toxic industrial waste, obsolete pesticides and military poisons and explosives. The proposed method can be used to create mobile modular units that will produce the destruction of the "field", to clean the soil and water containing low concentrations of a pollutant, to solve the problem of disposal of explosives, which is often accompanied by the destruction of uncontrolled detonation. The proposed method is environmentally friendly, using ice as the working body

  4. Periodic equivalence ratio modulation method and apparatus for controlling combustion instability

    Science.gov (United States)

    Richards, George A.; Janus, Michael C.; Griffith, Richard A.

    2000-01-01

    The periodic equivalence ratio modulation (PERM) method and apparatus significantly reduces and/or eliminates unstable conditions within a combustion chamber. The method involves modulating the equivalence ratio for the combustion device, such that the combustion device periodically operates outside of an identified unstable oscillation region. The equivalence ratio is modulated between preselected reference points, according to the shape of the oscillation region and operating parameters of the system. Preferably, the equivalence ratio is modulated from a first stable condition to a second stable condition, and, alternatively, the equivalence ratio is modulated from a stable condition to an unstable condition. The method is further applicable to multi-nozzle combustor designs, whereby individual nozzles are alternately modulated from stable to unstable conditions. Periodic equivalence ratio modulation (PERM) is accomplished by active control involving periodic, low frequency fuel modulation, whereby low frequency fuel pulses are injected into the main fuel delivery. Importantly, the fuel pulses are injected at a rate so as not to affect the desired time-average equivalence ratio for the combustion device.

  5. Quenching Combustible Dust Mixtures Using Electric Particulate Suspensions (EPS): A New Testing Method For Microgravity

    Science.gov (United States)

    Colver, Gerald M.; Greene, Nathanael; Shoemaker, David; Xu, Hua

    2003-01-01

    The Electric Particulate Suspension (EPS) is a combustion ignition system being developed at Iowa State University for evaluating quenching effects of powders in microgravity (quenching distance, ignition energy, flammability limits). Because of the high cloud uniformity possible and its simplicity, the EPS method has potential for "benchmark" design of quenching flames that would provide NASA and the scientific community with a new fire standard. Microgravity is expected to increase suspension uniformity even further and extend combustion testing to higher concentrations (rich fuel limit) than is possible at normal gravity. Two new combustion parameters are being investigated with this new method: (1) the particle velocity distribution and (2) particle-oxidant slip velocity. Both walls and (inert) particles can be tested as quenching media. The EPS method supports combustion modeling by providing accurate measurement of flame-quenching distance as a parameter in laminar flame theory as it closely relates to characteristic flame thickness and flame structure. Because of its design simplicity, EPS is suitable for testing on the International Space Station (ISS). Laser scans showing stratification effects at 1-g have been studied for different materials, aluminum, glass, and copper. PTV/PIV and a leak hole sampling rig give particle velocity distribution with particle slip velocity evaluated using LDA. Sample quenching and ignition energy curves are given for aluminum powder. Testing is planned for the KC-135 and NASA s two second drop tower. Only 1-g ground-based data have been reported to date.

  6. Combustion engine variable compression ratio apparatus and method

    Science.gov (United States)

    Lawrence,; Keith, E [Peoria, IL; Strawbridge, Bryan E [Dunlap, IL; Dutart, Charles H [Washington, IL

    2006-06-06

    An apparatus and method for varying a compression ratio of an engine having a block and a head mounted thereto. The apparatus and method includes a cylinder having a block portion and a head portion, a piston linearly movable in the block portion of the cylinder, a cylinder plug linearly movable in the head portion of the cylinder, and a valve located in the cylinder plug and operable to provide controlled fluid communication with the block portion of the cylinder.

  7. Gel-aided sample preparation (GASP)--a simplified method for gel-assisted proteomic sample generation from protein extracts and intact cells.

    Science.gov (United States)

    Fischer, Roman; Kessler, Benedikt M

    2015-04-01

    We describe a "gel-assisted" proteomic sample preparation method for MS analysis. Solubilized protein extracts or intact cells are copolymerized with acrylamide, facilitating denaturation, reduction, quantitative cysteine alkylation, and matrix formation. Gel-aided sample preparation has been optimized to be highly flexible, scalable, and to allow reproducible sample generation from 50 cells to milligrams of protein extracts. This methodology is fast, sensitive, easy-to-use on a wide range of sample types, and accessible to nonspecialists. © 2014 The Authors. PROTEOMICS published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Method for the combustion of a gas, in fixed bed, with an oxidized solid and associated installation

    OpenAIRE

    Abanades García, Juan Carlos; Fernández García, José Ramón

    2014-01-01

    [EN] The present invention pertains to the field of the generation of energy from combustible gases, incorporating the capture of carbon dioxide for use or permanent storage and, specifically relates to cyclical methods of gas combustion with oxidized solids (chemical looping processes), in fixed bed, for solving the problem of controlling temperature in the combustion of gaseous fuels in fixed beds of metal oxides operating at high pressures, and also the associated installation.

  9. A Review of Photocatalysts Prepared by Sol-Gel Method for VOCs Removal

    Directory of Open Access Journals (Sweden)

    Ting Ke Tseng

    2010-05-01

    Full Text Available The sol-gel process is a wet-chemical technique (chemical solution deposition, which has been widely used in the fields of materials science, ceramic engineering, and especially in the preparation of photocatalysts. Volatile organic compounds (VOCs are prevalent components of indoor air pollution. Among the approaches to remove VOCs from indoor air, photocatalytic oxidation (PCO is regarded as a promising method. This paper is a review of the status of research on the sol-gel method for photocatalyst preparation and for the PCO purification of VOCs. The review and discussion will focus on the preparation and coating of various photocatalysts, operational parameters, and will provide an overview of general PCO models described in the literature.

  10. Development of methods to measure hemoglobin adducts by gel electrophoresis - Preliminary results

    International Nuclear Information System (INIS)

    Sun, J.D.; McBride, S.M.

    1988-01-01

    Chemical adducts formed on blood hemoglobin may be a useful biomarker for assessing human exposures to these compounds. This paper reports preliminary results in the development of methods to measure such adducts that may be generally applicable for a wide variety of chemicals. Male F344/N rats were intraperitoneally injected with 14 C-BaP dissolved in corn oil. Twenty-four hours later, the rats were sacrificed. Blood samples were collected and globin was isolated. Globin protein was then cleaved into peptide fragments using cyanogen bromide and the fragments separated using 2-dimensional gel electrophoresis. The results showed that the adducted 14 C-globin fragments migrated to different areas of the gel than did unadducted fragments. Further research is being conducted to develop methods that will allow quantitation of separated adducted globin fragments from human blood samples without the use of a radiolabel. (author)

  11. Characterization of selenium doped silica glasses synthesized by sol-gel method

    International Nuclear Information System (INIS)

    Kobayashi, R.A.; Toffoli, S.M.

    2012-01-01

    Selenium is a rare element in nature. It is used in the food, pharmaceutical, and glass industries. In commercial glasses, selenium is the element responsible for most of the pink or light red color, but its effect is primarily dependent on the oxidation state of the element in the glassy matrix. Besides, selenium is highly volatile, and as high as 80 wt% may be lost in the furnace during the industrial glass elaboration. The sol– gel method yields synthesized materials of high purity and homogeneity, and uses low processing temperatures. Samples of silica glass were obtained by sol-gel method, incorporating precursors of selenium, with the main objective of reducing selenium losses during its heating. The results of optical absorption, XRD and thermal analysis (TGA, DSC) of the glasses are presented and discussed. (author)

  12. EXPERIMENTAL INSTALLATION FOR AN ASSESSMENT OF METHODS OF WATER SUPPLY IN AN INTERNAL COMBUSTION ENGINE

    Directory of Open Access Journals (Sweden)

    A. V. Bizhaev

    2015-01-01

    Full Text Available The water additive to fuel became one of effective ways of the solution of the main problems of the piston internal combustion engines (ICE as it reduces thermal factor of the engine, toxic emissions of exhaust products, and also increases efficiency by some operating modes. The way of fuel and air mix with water feeding in the combustion chamber has a great influence on process of combustion. Experimental installation for obtaining comparative characteristics of the main methods of water supply in the ICE combustion chamber was created. It was defined that there are two ways of water supply in the combustion chamber. At the first way water feed is carried out in the form of a water fuel emulsion which moves to the combustion chamber through a nozzle by means of the fuel pump with a high pressure. At the second way water arrives with air through the spraying element - the carburetor or a nozzle. This way is very simple in difference of emulsion feeding. The easiest way is nozzles application. It was established that the emulsion as the non-uniform highly dispersed fluid can be divide into components. Therefore it is necessary to use during the feeding system operation special emulsifiers with air for the uniformity water getting to the cylinder. The system for each nozzle opening at some point was offered. System of feedback with sensors of exhaust gases temperature in a final collector for adjustment of duration of injection was worked out. It was showed that at the developed experimental stand it is possible to carry out tests at various power modes. As result it will be possible to estimate both ways of fuel and air mix with water feeding.

  13. Effect of Precursor Concentration of MgO nanostructure by using Sol-Gel Method

    Directory of Open Access Journals (Sweden)

    V.T. Srisuvetha

    2017-04-01

    Full Text Available MgO thin flims have been prepared on substrates by a novel and simple sol-gel method using magnesium nitrate and collusion as starting material.The MgO nano catalyst with good sensor crystallization were obtained after annealing at 100°C Magnesium oxide was prepared by sol-gel method. The method involves the hydrolysis of magnesium alkoxide in the presence of acid or basic catalysts followed by a Oxalic acid reaction. The synthesized solids were characterized by IR spectroscopy X-ray diffraction electron microscopy. Ultraviolet visible absorbance measurement photoluminescence and Raman scattering spectra. X-ray diffraction (XRD characterization showed the formation of smaller particles after sol gel irradiation the structure and morphology of the MgO particles were analyzed byXRD. These articles were used for FTIR spectroscopic measurement and spectra were collected. In EDS we calculated the peak intensity the SEM the images of metal oxide.UV (Ultra Violet refers to adsorption spectroscopy optical properties of assorption, band gap energy.This means if use light in the visible and adjacent ranges.

  14. Using X-ray methods to evaluate the combustion sulfur minerals and graphitic carbon in coals and ashes

    International Nuclear Information System (INIS)

    Wertz, D.L.; Collins, L.W.

    1988-01-01

    Coals are complex mixtures of vastly different materials whose combustion kinetics may well exhibit symbiotic effects. Although the sulfur oxide gases produced during the combustion of coals may have a variety of sources, they are frequently caused by the thermal degradation of inorganic minerals to produce ''acid rain''. Since many of the minerals involved either as reactants or products in coal combustion produce well defined x-ray power diffraction (XRPD) patterns, the fate of these minerals may be followed by measuring the XRPD patterns of combustion products. Coal 1368P, a coal with an unusually high pyrite (FeS/sub 2/) fraction, has been the subject materials in our investigations of the fate of the inorganic minerals during combustion. These studies include measuring the fate of pyrite and of graphitic carbon in coal 1368P under varying combustion conditions. The results discussed in this paper were obtained by standard XRPD methods

  15. Quantitative evaluation of an image registration method for a NIPAM gel dosimeter

    International Nuclear Information System (INIS)

    Chang, Yuan-Jen; Yao, Chun-Hsu; Wu, Jay; Hsieh, Bor-Tsung; Tsang, Yuk-Wah; Chen, Chin-Hsing

    2015-01-01

    One of the problems in obtaining quality results is image registration when a gel dosimeter is used in conjunction with optical computed tomography (CT). This study proposes a passive alignment mechanism to obtain a precisely measured dose map. A holder plate with two pin–hole pairs is placed on the gel container cap. These two pin–hole pairs attach the gel container to the vertical shaft and can be precisely aligned with the rotation center of the vertical shaft at any time. Accordingly, a better reconstructed image quality is obtained. After obtaining a precisely measured dose map, the scale invariant feature transform (SIFT)-flow algorithm is utilized as an image registration method to align the treatment plan software (TPS) image with the measured dose map image. The results show that the gamma pass rate for the single-field irradiation increases from 83.39% to 94.03% when the algorithm is applied. And the gamma pass rate for the five-field irradiation treatment plan increases from 87.36% to 94.34%. The translation, scaling, and rotation occurring in the dose map image constructed using an optical CT scanner are also aligned with those in the TPS image using the SIFT-flow algorithm. Accordingly, improved gamma comparison results and a higher gamma pass rate are obtained. - Highlights: • A passive alignment method for obtaining a precisely measured dose map is developed. • The SIFT-flow algorithm is adopted as an image registration method for the gel dosimeter. • The SIFT-flow algorithm increases the gamma pass rate from 83.39% to 94.03% for the single-field irradiation. • The SIFT-flow algorithm increases the gamma pass rate from 87.36% to 94.34% for the five-field irradiation. • The translation, scaling, and rotation in the measured dose map image are aligned with those in the TPS image using the SIFT-flow algorithm

  16. Quantitative evaluation of an image registration method for a NIPAM gel dosimeter

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Yuan-Jen [Department of Management Information Systems, Central Taiwan University of Science and Technology, No. 666, Buzih Rd., Beitun District, Taichung City, Taiwan (R.O.C.) (China); Institute of Biomedical Engineering and Materials Science, Central Taiwan University of Science and Technology, No. 666, Buzih Rd., Beitun District, Taichung City, Taiwan (R.O.C.) (China); Yao, Chun-Hsu [School of Chinese Medicine, China Medical University, Taichung, Taiwan (R.O.C.) (China); Department of Biomedical Imaging and Radiological Science, China Medical University, Taichung, Taiwan (R.O.C.) (China); Department of Biomedical Informatics, Asia University, Taichung, Taiwan (R.O.C.) (China); Wu, Jay [Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei, Taiwan (R.O.C.) (China); Hsieh, Bor-Tsung [Department of Biomedical Imaging and Radiological Sciences, Central Taiwan University of Science and Technology, Taichung, Taiwan (R.O.C.) (China); Tsang, Yuk-Wah [Department of Radiation Oncology, Ditmanson Medical Foundation Chiayi Christian Hospital, Chiayi, Taiwan (R.O.C.) (China); Chen, Chin-Hsing [Department of Management Information Systems, Central Taiwan University of Science and Technology, No. 666, Buzih Rd., Beitun District, Taichung City, Taiwan (R.O.C.) (China)

    2015-06-01

    One of the problems in obtaining quality results is image registration when a gel dosimeter is used in conjunction with optical computed tomography (CT). This study proposes a passive alignment mechanism to obtain a precisely measured dose map. A holder plate with two pin–hole pairs is placed on the gel container cap. These two pin–hole pairs attach the gel container to the vertical shaft and can be precisely aligned with the rotation center of the vertical shaft at any time. Accordingly, a better reconstructed image quality is obtained. After obtaining a precisely measured dose map, the scale invariant feature transform (SIFT)-flow algorithm is utilized as an image registration method to align the treatment plan software (TPS) image with the measured dose map image. The results show that the gamma pass rate for the single-field irradiation increases from 83.39% to 94.03% when the algorithm is applied. And the gamma pass rate for the five-field irradiation treatment plan increases from 87.36% to 94.34%. The translation, scaling, and rotation occurring in the dose map image constructed using an optical CT scanner are also aligned with those in the TPS image using the SIFT-flow algorithm. Accordingly, improved gamma comparison results and a higher gamma pass rate are obtained. - Highlights: • A passive alignment method for obtaining a precisely measured dose map is developed. • The SIFT-flow algorithm is adopted as an image registration method for the gel dosimeter. • The SIFT-flow algorithm increases the gamma pass rate from 83.39% to 94.03% for the single-field irradiation. • The SIFT-flow algorithm increases the gamma pass rate from 87.36% to 94.34% for the five-field irradiation. • The translation, scaling, and rotation in the measured dose map image are aligned with those in the TPS image using the SIFT-flow algorithm.

  17. Post combustion methods for control of NOx emission

    Energy Technology Data Exchange (ETDEWEB)

    Rosenberg, H S; Curran, L M; Slack, A V; Ando, J; Oxley, J H

    1980-01-01

    Review of stack gas treatment methods for the control of NOx emissions. Particular emphasis is placed on status of development and factors affecting the performance of the processes. Catalytic, noncatalytic, and scrubbing processes are compared on a uniform engineering basis. Most of the active process development work is taking place in Japan. The three leading stack gas treatment techniques for NOx control are catalytic reduction with ammonia, noncatalytic reduction with ammonia, and direct scrubbing of NO with simultaneous absorption of SO2. The wet processes are much less developed than the dry processes.

  18. PDF methods for combustion in high-speed turbulent flows

    Science.gov (United States)

    Pope, Stephen B.

    1995-01-01

    This report describes the research performed during the second year of this three-year project. The ultimate objective of the project is extend the applicability of probability density function (pdf) methods from incompressible to compressible turbulent reactive flows. As described in subsequent sections, progress has been made on: (1) formulation and modelling of pdf equations for compressible turbulence, in both homogeneous and inhomogeneous inert flows; and (2) implementation of the compressible model in various flow configurations, namely decaying isotropic turbulence, homogeneous shear flow and plane mixing layer.

  19. A spot-matching method using cumulative frequency matrix in 2D gel images

    Science.gov (United States)

    Han, Chan-Myeong; Park, Joon-Ho; Chang, Chu-Seok; Ryoo, Myung-Chun

    2014-01-01

    A new method for spot matching in two-dimensional gel electrophoresis images using a cumulative frequency matrix is proposed. The method improves on the weak points of the previous method called ‘spot matching by topological patterns of neighbour spots’. It accumulates the frequencies of neighbour spot pairs produced through the entire matching process and determines spot pairs one by one in order of higher frequency. Spot matching by frequencies of neighbour spot pairs shows a fairly better performance. However, it can give researchers a hint for whether the matching results can be trustworthy or not, which can save researchers a lot of effort for verification of the results. PMID:26019609

  20. Magnetic studies of cobalt doped barium hexaferrite nanoparticles prepared by modified sol-gel method

    International Nuclear Information System (INIS)

    Shalini, M. Govindaraj; Sahoo, Subasa C.

    2016-01-01

    M-type barium hexaferrite (BaFe_1_2O_1_9) and cobalt doped barium hexaferrite (BaFe_1_1CoO_1_9) nanopowders were synthesized by modified sol-gel auto-combustion technique and were annealed at 900°C in air for 4 hours. The annealed powders were studied in the present work and X-ray diffraction studies showed pure phase formation after annealing. The average grain size in the nanopowder sample was decreased after doping. Magnetization value of 60 emu/g was observed at 300 K for the barium hexaferrite and was reduced to 54 emu/g after doping. The coercivity of 5586 Oe was observed at 300 K for the undoped sample and was found to be decreased in the doped sample. As the measurement temperature was decreased from 300 K to 60 K, magnetization value was increased in both the samples compared to those at 300 K. The coercivity of the undoped sample was found to decrease whereas it was increased for the doped sample at 60 K. The observed magnetic properties may be understood on the basis of modified exchange interaction and anisotropy in the doped sample compared to that of pure barium hexaferrite.

  1. Aqueous sulfomethylated melamine gel-forming compositions and methods of use

    Energy Technology Data Exchange (ETDEWEB)

    Meltz, C.N.; Guetzmacher, G.D.; Chang, P.W.

    1989-04-18

    A method is described for the selective modification of the permeability of the strata of a subterranean bydrocarbon-containing reservoir consisting of introducing into a well in, communication with the reservoir; an aqueous gel-forming composition, comprising a 1.0-60.0 weight percent sulfomethylated melamine polymer solution. The solution is prepared with a 1.0 molar equivalent of a malemine, reacted with 3.0-6.7 molar equivalents of formaldehyde or a 2-6 carbon atom containing dialdehyde; 0.25-1.25 molar equivalents of an alkali metal or ammonium salt of surfurous acid; and 0.01-1.5 molar equivalents of a gel-modifying agent.

  2. Hydrogen permeation through steel coated with erbium oxide by sol-gel method

    International Nuclear Information System (INIS)

    Yao Zhenyu; Suzuki, Akihiro; Levchuk, Denis; Chikada, Takumi; Tanaka, Teruya; Muroga, Takeo; Terai, Takayuki

    2009-01-01

    Er 2 O 3 coating is formed on austenitic stainless steel 316ss by sol-gel method. The results showed good crystallization of coating by baking in high purity flowing-argon at 973 K, and indicated that a little oxygen in baking atmosphere is necessary to crystallization of coating. The best baking temperature could be thought as 973 K, to get good crystallization of coating and avoid strong oxidation of steel substrate. The deuterium permeation test was performed for coated and bare 316ss, to evaluate the property of Er 2 O 3 sol-gel coating as a potential tritium permeation barrier. In this study, the deuterium permeability of coated 316ss is about 1-2 orders of magnitude lower than that of bare 316ss, and is about 2-3 orders of magnitude than the referred data of bare Eurofer97 and F82H martensitic steel.

  3. Effect of vanadium on the obtaining of the titanium dioxide by Sol-Gel Method

    International Nuclear Information System (INIS)

    Granado, S.R.; Silva, D.W.; Lopes, S.A.; Cavalheiro, A.A.

    2011-01-01

    The obtaining of transition metal modified titanium dioxide (TiO 2 ) can be a promising path to promote changes in crystal structure of anatase phase in order to displace the band gap toward frequencies near to visible region. The insertion of the heterovalent ions such as vanadium can be shift the titanium coordination number in the anatase matrix, leading to important changes in the photonic characteristics of the material. In Sol-Gel method, the presence of the non alkoxide precursors can affects the stability of the solution and the gelifying process, with consequences on the characteristics of the material. In this work, it was investigated the effect of 5mol% of vanadium by thermal analysis of the dried gel and XRD and adsorption isotherm in the samples obtained at different temperatures. The decomposition steps of the precursor were associated to phase formation in the material, leading to conclusion that the presence of vanadium affects the stability of anatase phase. (author)

  4. Comparison of a New and Rapid Method: Brucella Coombs Gel Test With Other Diagnostic Tests.

    Science.gov (United States)

    Kalem, Fatma; Ergün, Ayşe Gül; Durmaz, Süleyman; Doğan, Metin; Ertuğrul, Ömür; Gündem, Seval

    2016-09-01

    The aim of this study was to detect reliability of Brucella Coombs gel test (BCGT) by comparing with with ELISA (IgG + IgM), Standard agglutination test, and Brucella immunocapture agglutination methods in serological diagnosis of brucellosis. Brucella Coombs gel test (BCGT), Brucella ELISA (IgG + IgM), Standard agglutination test, and Brucella immunocapture agglutination tests of 78 patients with presumptive diagnosis of brucellosis which were sent to Microbiology Laboratory of Konya Numune Hospital from various regions of Konya were studied. Of 78 patients with ELISA IgG and IgM, STA, BICA and BCGT; 26, 21, 10, 12 and 12 were positive. When compared with BICA, the sensitivity and specifity of BCGT were 100% and 100%, respectively. According to results BCGT can be used as a diagnostic test in routine laboratories after more comprehensive studies in control groups and patients. © 2016 Wiley Periodicals, Inc.

  5. Optical characterization of Er-implanted ZnO films formed by sol-gel method

    International Nuclear Information System (INIS)

    Fukudome, T.; Kaminaka, A.; Isshiki, H.; Saito, R.; Yugo, S.; Kimura, T.

    2003-01-01

    In this paper, we report on the 1.54 μm photoluminescence (PL) of Er-implanted ZnO thin films formed by a sol-gel method on Si substrates. In spite of the polycrystalline structure of the sol-gel ZnO thin films, they showed strong PL emissions due to the near band edge recombination at 375 nm as well as the Er-related luminescence at 1.54 μm. The Er-related luminescence showed no decrease (quench) in the intensity up to the Er concentration of 1.5 x 10 21 cm -3 . The PL intensity of Er-implanted ZnO at 1.54 μm was found to be as strong as Er-doped PS (porous Si) at 20 K, and the intensity reduced to 1/3 at room temperature

  6. On-chip detection of gel transition temperature using a novel micro-thermomechanical method.

    Directory of Open Access Journals (Sweden)

    Tsenguun Byambadorj

    Full Text Available We present a new thermomechanical method and a platform to measure the phase transition temperature at microscale. A thin film metal sensor on a membrane simultaneously measures both temperature and mechanical strain of the sample during heating and cooling cycles. This thermomechanical principle of operation is described in detail. Physical hydrogel samples are prepared as a disc-shaped gels (200 μm thick and 1 mm diameter and placed between an on-chip heater and sensor devices. The sol-gel transition temperature of gelatin solution at various concentrations, used as a model physical hydrogel, shows less than 3% deviation from in-depth rheological results. The developed thermomechanical methodology is promising for precise characterization of phase transition temperature of thermogels at microscale.

  7. Ozonation and sol-gel method to obtain Cu/Cu O nanoparticles from cyanidation wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Soria A, M. J.; Puente S, D. M.; Carrillo P, F. R. [Universidad Autonoma de Coahuila, Facultad de Metalurgia, Carretera 57 Km 4.5, 25710 Monclova, Coahuila (Mexico); Garcia C, L. A. [Centro de Investigacion en Quimica Aplicada, Blvd. Enrique Reyna No. 140, Col. Los Pinos, 25253 Saltillo, Coahuila (Mexico); Velazquez S, J., E-mail: frrcarrillo@yahoo.com.mx [University of Texas at San Antonio, Department of Physics and Astronomy, San Antonio TX 78249 (United States)

    2015-07-01

    The extraction process of gold and silver by cyanidation generates large amounts of effluent which also contain contaminants such as cyanide and significant metal values such as copper. This paper presents the results of the removal and recovery of copper from ozonation treatment of a residual aqueous cyanide. The residual solution was treated by ozonation-precipitation to obtain a precipitate of copper. From this, copper nano composites obtained by Pechini modified sol-gel method were obtained. The compounds obtained were characterized by X-ray diffraction, showing a dependence of the type of compounds formed over time of ozonation and heat treatment of the gel. The particle size was measured by scanning electron microscopy and calculated by the Scherrer equation, being between 50 and 120 nm. (Author)

  8. Vanadium oxide thin films and fibers obtained by acetylacetonate sol–gel method

    Energy Technology Data Exchange (ETDEWEB)

    Berezina, O.; Kirienko, D. [Department of Physical Engineering, Petrozavodsk State University, 185910 Petrozavodsk (Russian Federation); Pergament, A., E-mail: aperg@psu.karelia.ru [Department of Physical Engineering, Petrozavodsk State University, 185910 Petrozavodsk (Russian Federation); Stefanovich, G.; Velichko, A. [Department of Physical Engineering, Petrozavodsk State University, 185910 Petrozavodsk (Russian Federation); Zlomanov, V. [Department of Chemistry, Moscow State University, 119991 Moscow (Russian Federation)

    2015-01-01

    Vanadium oxide films and fibers have been fabricated by the acetylacetonate sol–gel method followed by annealing in wet nitrogen. The samples are characterized by X-ray diffraction and electrical conductivity measurements. The effects of a sol aging, the precursor decomposition and the gas atmosphere composition on the annealing process, structure and properties of the films are discussed. The two-stage temperature regime of annealing of amorphous films in wet nitrogen for formation of the well crystallized VO{sub 2} phase is chosen: 1) 25–550 °C and 2) 550–600 °C. The obtained films demonstrate the metal–insulator transition and electrical switching. Also, the effect of the polyvinylpyrrolidone additive concentration and electrospinning parameters on qualitative (absence of defects and gel drops) and quantitative (length and diameter) characteristics of vanadium oxide fibers is studied. - Highlights: • Vanadium oxide thin films and fibers are synthesized by sol–gel method. • The effect of annealing, atmosphere, time and electrospinning parameters is studied. • Produced VO{sub 2} structures exhibit metal–insulator transition and electrical switching.

  9. Synthesis of lithium silicates generators of tritium by a modified method of combustion

    International Nuclear Information System (INIS)

    Cruz G, D.

    2003-01-01

    The ceramics of lithium have been proposed as generating materials of tritium through the following reaction: 6 Li + 1 n → 4 He + 3 H . In previous works carried out by Pfeiffer and collaborators, the lithium silicates generators of tritium were prepared using the following methods: reactions of solid state, precipitation and sol-gel synthesis. Although those methods have advantages, it is required of heating at high temperatures (900 C during four hours) to be able to obtain the crystalline compounds. Those products found in these works were diverse crystallization forms of the lithium silicates and of SiO 2 , such as, Li 2 SiO 3 , Li 2 Si 2 0 5 , Li 4 SiO 4 , and quartz (SiO 2 ). The combustion method uses exothermic reactions to take place ceramic compounds. The precursor solutions are mixtures of the nitrate of metal oxidizer and the fuels (urea, glycine, carbohydrazide). However the reported method in the literature, it is not useful to prepare lithium silicates, for what was modified using non oxidizers compounds. The lithium hydroxide (LiOH) and the silicic acid (H 2 SiO 3 ) they were the compounds non oxidizers used, and the urea (CH 4 N 2 O) it was the one fuel. They were carried out two series of experiments; inside the series 1 of experiments are varied the molar ratio of lithium hydroxide and urea (LiOH : H 2 SiO 3 = 1, 2 and 3, LiOH : CH 4 N 2 O = 1, 2, 3, 4 and 5) and the prepared mixtures were taken to one muffle previously preheated to a temperature of 450 C during 5 minutes. In the series 2 of experiments was studied the effect of the temperature and of the washed with distilled water in the prepared samples with the following molar ratios: LiOH : H 2 SiO 3 : CH 4 N 2 O = 1:1:3, 2:1:3, 3:1:3 and 3:1:6, those which were heated to temperatures from 450 C up to 750 C and were washed. The obtained samples were characterized by X-ray diffraction (XRD), Infrared spectroscopy (I S), semiquantitative elemental analysis (EDS) and Thermal gravimetric

  10. Toward the modeling of combustion reactions through discrete element method (DEM) simulations

    Science.gov (United States)

    Reis, Martina Costa; Alobaid, Falah; Wang, Yongqi

    2018-03-01

    In this work, the process of combustion of coal particles under turbulent regime in a high-temperature reaction chamber is modeled through 3D discrete element method (DEM) simulations. By assuming the occurrence of interfacial transport phenomena between the gas and solid phases, one investigates the influence of the physicochemical properties of particles on the rates of heterogeneous chemical reactions, as well as the influence of eddies present in the gas phase on the mass transport of reactants toward the coal particles surface. Moreover, by considering a simplistic chemical mechanism for the combustion process, thermochemical and kinetic parameters obtained from the simulations are employed to discuss some phenomenological aspects of the combustion process. In particular, the observed changes in the mass and volume of coal particles during the gasification and combustion steps are discussed by emphasizing the changes in the chemical structure of the coal. In addition to illustrate how DEM simulations can be used in the modeling of consecutive and parallel chemical reactions, this work also shows how heterogeneous and homogeneous chemical reactions become a source of mass and energy for the gas phase.

  11. Staged combustion - main method for suppressing nitrogen oxides in pulverized-coal fired boilers

    Energy Technology Data Exchange (ETDEWEB)

    Kotler, V.R. (Vsesoyuznyi Teplotekhnicheskii Institut (USSR))

    1989-08-01

    Describes principles behind staged combustion, which is based on organizing furnace operations so that only part of the air from the fuel is taken into the furnace. The remaining air, which is needed for combustion, is fed as a tertiary blast jet into the intermediate flame zone. Following inflammation and combustion of the volatile matter, the oxygen concentration in the flame drops sharply causing a retardation of the oxidation reactions forming NO and an intensification of the reactions causing the nitrogen-containing radicals NH{sub i} and CN to be converted into N{sub 2}. When the reducing agents CO, H{sub 2} and CH{sub 4} are present in certain flame zones, even the nitrogen oxide is reduced to N{sub 2}. The NO concentrations in the flame are reduced until the jet of tertiary air is introduced. Discusses with reference to practice in the USA and Western Europe how to achieve maximum effect of this method for different types of boiler and presents the results of observations of the introduction of staged combustion to the BKZ-210-140 boiler burning Kuznetsk gassy coal. 5 refs.

  12. Development of plasma melting technology for treatment of low level radioactive waste. Pt. 9. Treatment method for combustible wastes

    International Nuclear Information System (INIS)

    Yasui, Shinji; Adachi, Kazuo; Amakawa, Masashi

    1996-01-01

    This paper describes the incineration method for the miscellaneous solid waste containing the low level radioactive combustibles (wood, PE, PVC) in a plasma furnace. The maximum weights of the respective combustibles to be fed into the plasma furnace and the incineration conditions for continuous feeding of the respective combustibles were examined experimentally. As a result, a experimental equation which expresses the maximum weights of the respective combustibles to be fed in reference to the residence time in the plasma furnace was obtained by using apparent reaction rate constants. Furthermore, a calculation method for the feeding intervals in reference to the weights of the combustibles fed each time was obtained for the continuous feeding in the plasma furnace, and the method was found to be consistent with experimental results. (author)

  13. Novel method based on Fricke gel dosimeters for dose verification in IMRT techniques

    International Nuclear Information System (INIS)

    Aon, E.; Brunetto, M.; Sansogne, R.; Castellano, G.; Valente, M.

    2008-01-01

    Modern radiotherapy is becoming increasingly complex. Conformal and intensity modulated (IMRT) techniques are nowadays available for achieving better tumour control. However, accurate methods for 3D dose verification for these modern irradiation techniques have not been adequately established yet. Fricke gel dosimeters consist, essentially, in a ferrous sulphate (Fricke) solution fixed to a gel matrix, which enables spatial resolution. A suitable radiochromic marker (xylenol orange) is added to the solution in order to produce radiochromic changes within the visible spectrum range, due to the chemical internal conversion (oxidation) of ferrous ions to ferric ions. In addition, xylenol orange has proved to slow down the internal diffusion effect of ferric ions. These dosimeters suitably shaped in form of thin layers and optically analyzed by means of visible light transmission imaging have recently been proposed as a method for 3D absorbed dose distribution determinations in radiotherapy, and tested in several IMRT applications employing a homogeneous plane (visible light) illuminator and a CCD camera with a monochromatic filter for sample analysis by means of transmittance images. In this work, the performance of an alternative read-out method is characterized, consisting on visible light images, acquired before and after irradiation by means of a commercially available flatbed-like scanner. Registered images are suitably converted to matrices and analyzed by means of dedicated 'in-house' software. The integral developed method allows performing 1D (profiles), 2D (surfaces) and 3D (volumes) dose mapping. In addition, quantitative comparisons have been performed by means of the Gamma composite criteria. Dose distribution comparisons between Fricke gel dosimeters and traditional standard dosimetric techniques for IMRT irradiations show an overall good agreement, supporting the suitability of the method. The agreement, quantified by the gamma index (that seldom

  14. Quantitative evaluation of an image registration method for a NIPAM gel dosimeter

    Science.gov (United States)

    Chang, Yuan-Jen; Yao, Chun-Hsu; Wu, Jay; Hsieh, Bor-Tsung; Tsang, Yuk-Wah; Chen, Chin-Hsing

    2015-06-01

    One of the problems in obtaining quality results is image registration when a gel dosimeter is used in conjunction with optical computed tomography (CT). This study proposes a passive alignment mechanism to obtain a precisely measured dose map. A holder plate with two pin-hole pairs is placed on the gel container cap. These two pin-hole pairs attach the gel container to the vertical shaft and can be precisely aligned with the rotation center of the vertical shaft at any time. Accordingly, a better reconstructed image quality is obtained. After obtaining a precisely measured dose map, the scale invariant feature transform (SIFT)-flow algorithm is utilized as an image registration method to align the treatment plan software (TPS) image with the measured dose map image. The results show that the gamma pass rate for the single-field irradiation increases from 83.39% to 94.03% when the algorithm is applied. And the gamma pass rate for the five-field irradiation treatment plan increases from 87.36% to 94.34%. The translation, scaling, and rotation occurring in the dose map image constructed using an optical CT scanner are also aligned with those in the TPS image using the SIFT-flow algorithm. Accordingly, improved gamma comparison results and a higher gamma pass rate are obtained.

  15. Preparation, microstructure and properties of yttrium aluminum garnet fibers prepared by sol-gel method

    Energy Technology Data Exchange (ETDEWEB)

    Li Chengshun [Key Laboratory for Liquid Structure and Heredity of Materials of Ministry of Education, Shandong University, Jinan 250061 (China); Zhang Yujun [Key Laboratory for Liquid Structure and Heredity of Materials of Ministry of Education, Shandong University, Jinan 250061 (China)], E-mail: yujunzhangcn@sdu.edu.cn; Gong Hongyu; Zhang Jingde; Nie Lifang [Key Laboratory for Liquid Structure and Heredity of Materials of Ministry of Education, Shandong University, Jinan 250061 (China)

    2009-01-15

    Yttrium aluminum garnet (YAG) fiber was prepared by sol-gel method using water as the solvent. The spinnable YAG sol was synthesized using Al powder, Y(CH{sub 3}COOH){sub 3}.4H{sub 2}O and HCl as precursors, polyethylene oxide as viscosity adjusting agent. Gel fibers with diameter of 5-10 {mu}m were prepared from the YAG sol by using centrifugal spinning technique. YAG crystalline fibers were obtained by drying gel fibers and heat-treating at selected temperature. TG/DTA analysis showed an exotherm at 906 deg. C attributed to formation of YAG phase and weight loss of 45% at 1000 deg. C. XRD and FT-IR analysis showed that phase-pure YAG can be formed at 900 deg. C, and no other intermediate was observed. The grain size of YAG fibers increased from 25 to 220 nm and tensile strength decreased rapidly from 970 to 380 MPa when the sintering temperature increased from 900 to 1550 deg. C.

  16. Highly increased detection of silver stained protein bands in polyacrylamide gels with thermo-optical methods

    Science.gov (United States)

    Mazza, Giulia; Posnicek, Thomas; Brandl, Martin

    2016-11-01

    Sodium dodecyl sulfate polyacrylamide gel electrophoresis is a well-known technique to separate proteins by their molecular weight. After electrophoresis, the gels are commonly stained for protein band analysis with silver stain; this allows the detection of protein loads to about 1 ng. To increase the detection sensitivity of the protein bands down in the subnanogram level, a sensor has been developed based on the thermal lens effect to scan and quantify protein loads which would remain undetected using the standard imaging systems. The thermal lens sensor is equipped with a 450 nm diode pump laser modulated at 1 Hz and a HeNe probe laser mounted in collinear geometry. The sensor could detect protein bands of 0.05 ng when the gel was soaked in methanol/water and 0.1 ng in water. The limit of detection ranged from 8 to 20 pg, depending on the soaking medium and the staining efficiency. Thus, the detection of silver stain by thermal lens effect results 10 to 20 times more sensitive than the standard colorimetric method.

  17. An effective placental cotyledons proteins extraction method for 2D gel electrophoresis.

    Science.gov (United States)

    Tan, Niu J; Daim, Leona D J; Jamil, Amilia A M; Mohtarrudin, Norhafizah; Thilakavathy, Karuppiah

    2017-03-01

    Effective protein extraction is essential especially in producing a well-resolved proteome on 2D gels. A well-resolved placental cotyledon proteome, with good reproducibility, have allowed researchers to study the proteins underlying the physiology and pathophysiology of pregnancy. The aim of this study is to determine the best protein extraction protocol for the extraction of protein from placental cotyledons tissues for a two-dimensional gel electrophoresis (2D-GE). Based on widely used protein extraction strategies, 12 different extraction methodologies were carefully selected, which included one chemical extraction, two mechanical extraction coupled protein precipitations, and nine chemical extraction coupled protein precipitations. Extracted proteins were resolved in a one-dimensional gel electrophoresis and 2D-GE; then, it was compared with set criteria: extraction efficacy, protein resolution, reproducibility, and recovery efficiency. Our results revealed that a better profile was obtained by chemical extraction in comparison to mechanical extraction. We further compared chemical extraction coupled protein precipitation methodologies, where the DNase/lithium chloride-dense sucrose homogenization coupled dichloromethane-methanol precipitation (DNase/LiCl-DSH-D/MPE) method showed good protein extraction efficiency. This, however, was carried out with the best protein resolution and proteome reproducibility on 2D-gels. DNase/LiCl-DSH-D/MPE was efficient in the extraction of proteins from placental cotyledons tissues. In addition, this methodology could hypothetically allow the protein extraction of any tissue that contains highly abundant lipid and glycogen. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. An Improved 2-Dimensional Gel Electrophoresis Method for Resolving Human Erythrocyte Membrane Proteins.

    Science.gov (United States)

    Kumar, Manoj; Singh, Rajendra; Meena, Anil; Patidar, Bhagwan S; Prasad, Rajendra; Chhabra, Sunil K; Bansal, Surendra K

    2017-01-01

    The 2-dimensional gel electrophoresis (2-DE) technique is widely used for the analysis of complex protein mixtures extracted from biological samples. It is one of the most commonly used analytical techniques in proteomics to study qualitative and quantitative protein changes between different states of a cell or an organism (eg, healthy and diseased), conditionally expressed proteins, posttranslational modifications, and so on. The 2-DE technique is used for its unparalleled ability to separate thousands of proteins simultaneously. The resolution of the proteins by 2-DE largely depends on the quality of sample prepared during protein extraction which increases results in terms of reproducibility and minimizes protein modifications that may result in artifactual spots on 2-DE gels. The buffer used for the extraction and solubilization of proteins influences the quality and reproducibility of the resolution of proteins on 2-DE gel. The purification by cleanup kit is another powerful process to prevent horizontal streaking which occurs during isoelectric focusing due to the presence of contaminants such as salts, lipids, nucleic acids, and detergents. Erythrocyte membrane proteins serve as prototypes for multifunctional proteins in various erythroid and nonerythroid cells. In this study, we therefore optimized the selected major conditions of 2-DE for resolving various proteins of human erythrocyte membrane. The modification included the optimization of conditions for sample preparation, cleanup of protein sample, isoelectric focusing, equilibration, and storage of immobilized pH gradient strips, which were further carefully examined to achieve optimum conditions for improving the quality of protein spots on 2-DE gels. The present improved 2-DE analysis method enabled better detection of protein spots with higher quality and reproducibility. Therefore, the conditions established in this study may be used for the 2-DE analysis of erythrocyte membrane proteins for

  19. Method of reduction of diagnostic parameters during observation on the example of a combustion engine

    Directory of Open Access Journals (Sweden)

    Orczyk Malgorzata

    2017-01-01

    Full Text Available The article presents a method of selecting diagnostic parameters which map the process of damaging the object. This method consists in calculating, during the observation, the correlation coefficient between the intensity of damage and the individual diagnostic parameters; and discarding of those parameters whose correlation coefficient values are outside of the narrowest confidence interval of the correlation coefficient. The characteristic feature of this method is that the parameters are reduced during the diagnostic experiment. The essence of the proposed method is illustrated by the vibration diagnosis of an internal combustion engine.

  20. Method for operating a spark-ignition, direct-injection internal combustion engine

    Science.gov (United States)

    Narayanaswamy, Kushal; Koch, Calvin K.; Najt, Paul M.; Szekely, Jr., Gerald A.; Toner, Joel G.

    2015-06-02

    A spark-ignition, direct-injection internal combustion engine is coupled to an exhaust aftertreatment system including a three-way catalytic converter upstream of an NH3-SCR catalyst. A method for operating the engine includes operating the engine in a fuel cutoff mode and coincidentally executing a second fuel injection control scheme upon detecting an engine load that permits operation in the fuel cutoff mode.

  1. Combustion water purification techniques influence on OBT analysing using liquid scintillation counting method

    Energy Technology Data Exchange (ETDEWEB)

    Varlam, C.; Vagner, I.; Faurescu, I.; Faurescu, D. [National Institute for Cryogenics and Isotopic Technologies, Valcea (Romania)

    2015-03-15

    In order to determine organically bound tritium (OBT) from environmental samples, these must be converted into water, measurable by liquid scintillation counting (LSC). For this purpose we conducted some experiments to determine OBT level of a grass sample collected from an uncontaminated area. The studied grass sample was combusted in a Parr bomb. However usual interfering phenomena were identified: color or chemical quench, chemiluminescence, overlap over tritium spectrum because of other radionuclides presence as impurities ({sup 14}C from organically compounds, {sup 36}Cl as chloride and free chlorine, {sup 40}K as potassium cations) and emulsion separation. So the purification of the combustion water before scintillation counting appeared to be essential. 5 purification methods were tested: distillation with chemical treatment (Na{sub 2}O{sub 2} and KMnO{sub 4}), lyophilization, chemical treatment (Na{sub 2}O{sub 2} and KMnO{sub 4}) followed by lyophilization, azeotropic distillation with toluene and treatment with a volcanic tuff followed by lyophilization. After the purification step each sample was measured and the OBT measured concentration, together with physico-chemical analysis of the water analyzed, revealed that the most efficient method applied for purification of the combustion water was the method using chemical treatment followed by lyophilization.

  2. Technological methods of reducing the emissions of nitrogen oxides during the combustion of solid fuel

    Energy Technology Data Exchange (ETDEWEB)

    Kotler, V.R.

    1981-01-01

    For protecting the atmosphere from emissions of toxic NO /SUB x/ during combustion of fuel in boilers the amount of NO /SUB x/ can be reduced in the process of combustion, or the flue gases (FG) from the boiler can be cleaned. The latter method is bound up with the necessity for treatment of a large quantity of FG with a comparatively low concentration in them of nitrogen oxides, chemically stable and poorly soluble in water. The problem is complicated by the presence in the FG of SO /SUB x/, O/sub 2/, and solid particles. The method of purifying the FG is complicated and requires large capital investment and operating expenses. By laboratory studies in the All-Union Institute of Heat Engineering im. F.E. Dzerzhinskiy (VTI) it was established that thermal NO /SUB x/ is formed at a combustion temperature greater than or equal to 1550 /sup 0/C and that the 0/sub 2/ concentration and considerably less the temperature strongly affect NO /SUB x/ formation. On the basis of laboratory studies and industrial tests in the VTI, methods of reducing NO /SUB x/ emissions by large-scale boilers are recommended.

  3. Combustion water purification techniques influence on OBT analysing using liquid scintillation counting method

    International Nuclear Information System (INIS)

    Varlam, C.; Vagner, I.; Faurescu, I.; Faurescu, D.

    2015-01-01

    In order to determine organically bound tritium (OBT) from environmental samples, these must be converted into water, measurable by liquid scintillation counting (LSC). For this purpose we conducted some experiments to determine OBT level of a grass sample collected from an uncontaminated area. The studied grass sample was combusted in a Parr bomb. However usual interfering phenomena were identified: color or chemical quench, chemiluminescence, overlap over tritium spectrum because of other radionuclides presence as impurities ( 14 C from organically compounds, 36 Cl as chloride and free chlorine, 40 K as potassium cations) and emulsion separation. So the purification of the combustion water before scintillation counting appeared to be essential. 5 purification methods were tested: distillation with chemical treatment (Na 2 O 2 and KMnO 4 ), lyophilization, chemical treatment (Na 2 O 2 and KMnO 4 ) followed by lyophilization, azeotropic distillation with toluene and treatment with a volcanic tuff followed by lyophilization. After the purification step each sample was measured and the OBT measured concentration, together with physico-chemical analysis of the water analyzed, revealed that the most efficient method applied for purification of the combustion water was the method using chemical treatment followed by lyophilization

  4. Comparison of Different Protein Extraction Methods for Gel-Based Proteomic Analysis of Ganoderma spp.

    Science.gov (United States)

    Al-Obaidi, Jameel R; Saidi, Noor Baity; Usuldin, Siti Rokhiyah Ahmad; Hussin, Siti Nahdatul Isnaini Said; Yusoff, Noornabeela Md; Idris, Abu Seman

    2016-04-01

    Ganoderma species are a group of fungi that have the ability to degrade lignin polymers and cause severe diseases such as stem and root rot and can infect economically important plants and perennial crops such as oil palm, especially in tropical countries such as Malaysia. Unfortunately, very little is known about the complex interplay between oil palm and Ganoderma in the pathogenesis of the diseases. Proteomic technologies are simple yet powerful tools in comparing protein profile and have been widely used to study plant-fungus interaction. A critical step to perform a good proteome research is to establish a method that gives the best quality and a wide coverage of total proteins. Despite the availability of various protein extraction protocols from pathogenic fungi in the literature, no single extraction method was found suitable for all types of pathogenic fungi. To develop an optimized protein extraction protocol for 2-DE gel analysis of Ganoderma spp., three previously reported protein extraction protocols were compared: trichloroacetic acid, sucrose and phenol/ammonium acetate in methanol. The third method was found to give the most reproducible gels and highest protein concentration. Using the later method, a total of 10 protein spots (5 from each species) were successfully identified. Hence, the results from this study propose phenol/ammonium acetate in methanol as the most effective protein extraction method for 2-DE proteomic studies of Ganoderma spp.

  5. A rapid and efficient two-step gel electrophoresis method for the purification of major rye grass pollen allergens.

    Science.gov (United States)

    Levy, D; Davies, J; O'Hehir, R; Suphioglu, C

    2001-06-01

    Purified proteins are mandatory for molecular, immunological and cellular studies. However, purification of proteins from complex mixtures requires specialised chromatography methods (i.e., gel filtration, ion exchange, etc.) using fast protein liquid chromatography (FPLC) or high-performance liquid chromatography (HPLC) systems. Such systems are expensive and certain proteins require two or more different steps for sufficient purity and generally result in low recovery. The aim of this study was to develop a rapid, inexpensive and efficient gel-electrophoresis-based protein purification method using basic and readily available laboratory equipment. We have used crude rye grass pollen extract to purify the major allergens Lol p 1 and Lol p 5 as the model protein candidates. Total proteins were resolved on large primary gel and Coomassie Brilliant Blue (CBB)-stained Lol p 1/5 allergens were excised and purified on a secondary "mini"-gel. Purified proteins were extracted from unstained separating gels and subjected to sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and immunoblot analyses. Silver-stained SDS-PAGE gels resolved pure proteins (i.e., 875 microg of Lol p 1 recovered from a 8 mg crude starting material) while immunoblot analysis confirmed immunological reactivity of the purified proteins. Such a purification method is rapid, inexpensive, and efficient in generating proteins of sufficient purity for use in monoclonal antibody (mAb) production, protein sequencing and general molecular, immunological, and cellular studies.

  6. A safe and efficient method to retrieve mesenchymal stem cells from three-dimensional fibrin gels.

    Science.gov (United States)

    Carrion, Bita; Janson, Isaac A; Kong, Yen P; Putnam, Andrew J

    2014-03-01

    Mesenchymal stem cells (MSCs) display multipotent characteristics that make them ideal for potential therapeutic applications. MSCs are typically cultured as monolayers on tissue culture plastic, but there is increasing evidence suggesting that they may lose their multipotency over time in vitro and eventually cease to retain any resemblance to in vivo resident MSCs. Three-dimensional (3D) culture systems that more closely recapitulate the physiological environment of MSCs and other cell types are increasingly explored for their capacity to support and maintain the cell phenotypes. In much of our own work, we have utilized fibrin, a natural protein-based material that serves as the provisional extracellular matrix during wound healing. Fibrin has proven to be useful in numerous tissue engineering applications and has been used clinically as a hemostatic material. Its rapid self-assembly driven by thrombin-mediated alteration of fibrinogen makes fibrin an attractive 3D substrate, in which cells can adhere, spread, proliferate, and undergo complex morphogenetic programs. However, there is a significant need for simple cost-effective methods to safely retrieve cells encapsulated within fibrin hydrogels to perform additional analyses or use the cells for therapy. Here, we present a safe and efficient protocol for the isolation of MSCs from 3D fibrin gels. The key ingredient of our successful extraction method is nattokinase, a serine protease of the subtilisin family that has a strong fibrinolytic activity. Our data show that MSCs recovered from 3D fibrin gels using nattokinase are not only viable but also retain their proliferative and multilineage potentials. Demonstrated for MSCs, this method can be readily adapted to retrieve any other cell type from 3D fibrin gel constructs for various applications, including expansion, bioassays, and in vivo implantation.

  7. Preparation and Characterization of Nano-structured Ceramic Powders Synthesized by Emulsion Combustion Method

    International Nuclear Information System (INIS)

    Takatori, Kazumasa; Tani, Takao; Watanabe, Naoyoshi; Kamiya, Nobuo

    1999-01-01

    The emulsion combustion method (ECM), a novel powder production process, was originally developed to synthesize nano-structured metal-oxide powders. Metal ions in the aqueous droplets were rapidly oxidized by the combustion of the surrounding flammable liquid. The ECM achieved a small reaction field and a short reaction period to fabricate the submicron-sized hollow ceramic particles with extremely thin wall and chemically homogeneous ceramic powder. Alumina, zirconia, zirconia-ceria solid solutions and barium titanate were synthesized by the ECM process. Alumina and zirconia powders were characterized to be metastable in crystalline phase and hollow structure. The wall thickness of alumina was about 10 nm. The zirconia-ceria powders were found to be single-phase solid solutions for a wide composition range. These powders were characterized as equiaxed-shape, submicron-sized chemically homogeneous materials. The powder formation mechanism was investigated through the synthesis of barium titanate powder with different metal sources

  8. System and method for reducing combustion dynamics and NO.sub.x in a combustor

    Science.gov (United States)

    Uhm, Jong H.; Johnson, Thomas Edward

    2015-11-20

    A system for reducing combustion dynamics and NO.sub.x in a combustor includes a tube bundle that extends radially across at least a portion of the combustor, wherein the tube bundle comprises an upstream surface axially separated from a downstream surface. A shroud circumferentially surrounds the upstream and downstream surfaces. A plurality of tubes extends through the tube bundle from the upstream surface through the downstream surface, wherein the downstream surface is stepped to produce tubes having different lengths through the tube bundle. A method for reducing combustion dynamics and NO.sub.x in a combustor includes flowing a working fluid through a plurality of tubes radially arranged between an upstream surface and a downstream surface of an end cap that extends radially across at least a portion of the combustor, wherein the downstream surface is stepped.

  9. Synthesis of antimony-doped tin oxide (ATO) nanoparticles by the nitrate-citrate combustion method

    International Nuclear Information System (INIS)

    Zhang Jianrong; Gao Lian

    2004-01-01

    Antimony-doped tin oxide (ATO) nanoparticles having rutile structure have been synthesized by the combustion method using citric acid (CA) as fuel and nitrate as an oxidant, the metal sources were granulated tin and Sb 2 O 3 . The influence of citric acid (fuel) to metal ratio on the average crystallite size, specific surface area and morphology of the nanoparticles has been investigated. X-ray diffraction showed the tin ions were reduced to elemental tin during combustion reaction. The average ATO crystallite size increased with the increase of citric acid (fuel). Powder morphology and the comparison of crystallite size and grain size shows that the degree of agglomeration of the powder decreased with an increase of the ratio. The highest specific surface area was 37.5 m 2 /g when the citric acid to tin ratio was about 6

  10. Axisymmetric vortex method for low-Mach number, diffusion-controlled combustion

    CERN Document Server

    Lakkis, I

    2003-01-01

    A grid-free, Lagrangian method for the accurate simulation of low-Mach number, variable-density, diffusion-controlled reacting flow is presented. A fast-chemistry model in which the conversion rate of reactants to products is limited by the local mixing rate is assumed in order to reduce the combustion problem to the solution of a convection-diffusion-generation equation with volumetric expansion and vorticity generation at the reaction fronts. The solutions of the continuity and vorticity equations, and the equations governing the transport of species and energy, are obtained using a formulation in which particles transport conserved quantities by convection and diffusion. The dynamic impact of exothermic combustion is captured through accurate integration of source terms in the vorticity transport equations at the location of the particles, and the extra velocity field associated with volumetric expansion at low Mach number computed to enforced mass conservation. The formulation is obtained for an axisymmet...

  11. Apparatus and method for temperature mapping a turbine component in a high temperature combustion environment

    Science.gov (United States)

    Baleine, Erwan; Sheldon, Danny M

    2014-06-10

    Method and system for calibrating a thermal radiance map of a turbine component in a combustion environment. At least one spot (18) of material is disposed on a surface of the component. An infrared (IR) imager (14) is arranged so that the spot is within a field of view of the imager to acquire imaging data of the spot. A processor (30) is configured to process the imaging data to generate a sequence of images as a temperature of the combustion environment is increased. A monitor (42, 44) may be coupled to the processor to monitor the sequence of images of to determine an occurrence of a physical change of the spot as the temperature is increased. A calibration module (46) may be configured to assign a first temperature value to the surface of the turbine component when the occurrence of the physical change of the spot is determined.

  12. Management methods ash from combustion of biomass. Review of productions and associated methods. Extended abstract

    International Nuclear Information System (INIS)

    Boulday, D.; Marcovecchio, F.

    2016-02-01

    The study deals with the management of biomass ashes from industrial and collective facilities (wood log excluded) and provides a state of the art, in France and in Europe, flows, methods of recovery and post-treatment, physico-chemical characteristics and programs for new opportunities. Currently, flows of biomass ash are estimated at 110 kt-330 kt in France and 1 500 kt - 4 500 kt in Europe and should amount respectively 330 kt-1000 kt and 3100 kt-8000 kt in 2020. The physical and chemical composition of biomass ash is influenced by many factors: fuel, pretreatment, post-treatment, additives, fly and bottom ash, power installation, type of combustion equipment, extraction mode...However, these ashes have characteristics which are commonly accepted: liming / neutralizing power, fertilizer, pozzolanic behavior generally almost zero. In France and Europe, a distinction is made between fly and bottom ashes, usually less polluted. However, this separation does not always make sense according to the valuation mode, the type of equipment (including fluidized bed or grid) or mixtures of ash made in the plant (e.g. mix of bottom and coarse ash). Currently, the main outlet is ash landfill, followed by agricultural and forestry recycling. The other identified opportunities concern a few countries and marginal flows: brick-works, road engineering... The development of biomass energy, coupled with a reduction in landfill options, has given rise to many research and demonstration programs in recent years, particularly in France, with some promising solutions. Many limiting factors, which can be different according to opportunities, have been identified. More or less advanced solutions aimed at reducing the harmful effects of these factors (slaking lime, sorting, grinding...).However to date, the most robust and massive solution for ash recycling material remains undoubtedly the agricultural recycling. According to the study, it's necessary to consolidate the agricultural

  13. Nano sized La2Co2O6 double perovskite synthesized by sol gel method

    Science.gov (United States)

    Solanki, Neha; Lodhi, Pavitra Devi; Choudhary, K. K.; Kaurav, Netram

    2018-05-01

    We report here the synthesis of double perovskite La2Co2O6 (LCO) compound by a sol gel route method. The double perovskite structure of LCO system was confirmed via X-ray diffraction (XRD) analysis. Further, the lattice parameter, unit cell volume and bond length were refined by means of rietveld analysis using the full proof software. Debye Scherer formula was used to determine the particle size. The compound crystallized in triclinic structure with space group P-1 in ambient condition. We also obtained Raman modes from XRD spectra of poly-crystalline LCO sample. These results were interpreted for the observation of phonon excitations in this compound.

  14. Monolithic lithium-based aerogels via dispersed inorganic sol-gel method

    International Nuclear Information System (INIS)

    Xiao Shufang; Zhou Bin; Du Ai; Xu Xiang; Yang Xiaoyun; Shen Jun; Wu Guangming; Zhang Zhihua; Wan Huijun

    2008-01-01

    Monolithic lithium-based aerogels were prepared by poly acrylic acid (PAA) and propylene oxide (PO) via the dispersed inorganic sol-gel method and drying with CO 2 supercritical fluid dry process. The density of the prepared sample is about 150 g/m 3 . The microstructure of the lithium-based aerogels was characterized by TEM, IR, XPS and BET. The results show that the material mainly contains Li, C and O element s. BET surface area is up to 18.9 m 2 /g. (authors)

  15. Structural study of some gadolinium glass ceramics obtained by sol-gel method

    International Nuclear Information System (INIS)

    Coroiu, Ilioara; Simiti, Vida I.; Bratu, I.; Borodi, Gh.; Darabont, Al.

    2004-01-01

    Increased interest in silicate systems containing different rare earth oxides has resulted from their important applications in various fields of technology including laser, optical fiber and optical waveguides in telecommunication applications, microelectronics and catalysis. Glass-ceramics of 0.95 SiO 2 -0.05 Na 2 O composition containing up to 15% molar Gd 2 O 3 were obtained by the sol-gel method. We chose the sol-gel method because this offers the advantage of a good chemical homogeneity and a better control of physical and chemical properties in comparison with traditional methods used to obtain glasses and ceramics. The obtained samples were pressed at 200 kgf/cm 2 as disks with a diameter of Φ=22 mm and a thickness of around 1 mm. Then, they were heat-treated at 250 deg C, 500 deg C and 1000 deg C for about 48 hours. The structural study was made using X-ray diffraction, scanning electron microscopy (SEM) and IR spectroscopy. The X-ray diffraction patterns show that addition of Gd 2 O 3 exerts an important influence on the crystallization process of the studied samples. The crystalline phase decreases with increasing the Gd 2 O 3 concentration. SEM data support this assertion. IR spectra point out also that the increasing of the gadolinium oxide content and the thermal treatment temperature produce the strengthening of the glass ceramic network. Thus, the gadolinium ions play the role of network modifier of the glass ceramic structure. (authors)

  16. Fabrication of mesoporous silica nanoparticles by sol gel method followed various hydrothermal temperature

    Science.gov (United States)

    Purwaningsih, Hariyati; Pratiwi, Vania Mitha; Purwana, Siti Annisa Bani; Nurdiansyah, Haniffudin; Rahmawati, Yenny; Susanti, Diah

    2018-04-01

    Rice husk is an agricultural waste that is potentially used as natural silica resources. Natural silica claimed to be safe in handling, cheap and can be generate from cheap resource. In this study mesoporous silica was synthesized using sodium silicate extracted from rice husk ash. This research's aim are to study the optimization of silica extraction from rice husk, characterizing mesoporous silica from sol-gel method and surfactant templating from rice husk and the effect of hydrothermal temperature on mesoporous silica nanoparticle (MSNp) formation. In this research, rice husk was extracted with sol-gel method and was followed by hydrothermal treatment; several of hydrothermal temperatures were 85°C, 100°C, 115°C, 130°C and 145° for 24 hours. X-ray diffraction analysis was identified of α-SiO2 phase and NaCl compound impurities. Scherer's analysis method for crystallite size have resulted 6.27-40.3 nm. FTIR results of silica from extraction and MSNp indicated Si-O-Si bonds on the sample. SEM result showed the morphology of the sample that has spherical shape and smooth surface. TEM result showed particle size ranged between 69,69-84,42 nm. BET showed that the pore size classified as mesoporous with pore diameter size is 19,29 nm.

  17. Designing antimicrobial bioactive glass materials with embedded metal ions synthesized by the sol–gel method

    Energy Technology Data Exchange (ETDEWEB)

    Palza, Humberto, E-mail: hpalza@ing.uchile.cl [Departamento de Ingeniería Química y Biotecnología, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Santiago (Chile); Escobar, Blanca; Bejarano, Julian [Departamento de Ingeniería Química y Biotecnología, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Santiago (Chile); Bravo, Denisse [Departamento de Patología, Facultad de Odontología, Universidad de Chile, Santiago (Chile); Diaz-Dosque, Mario [Departamento de Ciencias Básicas y Comunitarias, Facultad de Odontología, Universidad de Chile, Santiago (Chile); Perez, Javier [Departamento de Ingeniería Química y Biotecnología, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Santiago (Chile)

    2013-10-15

    Bioactive glasses (SiO{sub 2}–P{sub 2}O{sub 5}–CaO) having tailored concentrations of different biocide metal ions (copper or silver) were produced by the sol–gel method. All the particles release phosphorous ions when immersed in water and simulated body fluid (SBF). Moreover, a surface layer of polycrystalline hydroxy-carbonate apatite was formed on the particle surfaces after 10 day immersion in SBF as confirmed by X-ray diffraction and scanning electron microscopy (SEM) showing the bioactive materials. Samples with embedded either copper or silver ions were able to further release the biocide ions with a release rate that depends on the metal embedded and the dissolution medium: water or SBF. This biocide ion release from the samples explains the antimicrobial effect of our active particles against Escherichia coli DH5α ampicillin-resistant (Gram-negative) and Streptococcus mutans (Gram-positive) as determined by the Minimum Bactericidal Concentration (MBC) method. The antimicrobial behavior of the particles depends on the bacteria and the biocide ion used. Noteworthy, although samples with copper are able to release more metal ion than samples with silver, they present higher MBC showing the high effect of silver against these bacteria. - Highlights: • Copper and silver act as antimicrobial additives in bioactive glass materials. • Silver is more toxic than copper ions in these bioactive materials. • Sol–gel method allows the synthesis of antimicrobial bioactive materials.

  18. Designing antimicrobial bioactive glass materials with embedded metal ions synthesized by the sol–gel method

    International Nuclear Information System (INIS)

    Palza, Humberto; Escobar, Blanca; Bejarano, Julian; Bravo, Denisse; Diaz-Dosque, Mario; Perez, Javier

    2013-01-01

    Bioactive glasses (SiO 2 –P 2 O 5 –CaO) having tailored concentrations of different biocide metal ions (copper or silver) were produced by the sol–gel method. All the particles release phosphorous ions when immersed in water and simulated body fluid (SBF). Moreover, a surface layer of polycrystalline hydroxy-carbonate apatite was formed on the particle surfaces after 10 day immersion in SBF as confirmed by X-ray diffraction and scanning electron microscopy (SEM) showing the bioactive materials. Samples with embedded either copper or silver ions were able to further release the biocide ions with a release rate that depends on the metal embedded and the dissolution medium: water or SBF. This biocide ion release from the samples explains the antimicrobial effect of our active particles against Escherichia coli DH5α ampicillin-resistant (Gram-negative) and Streptococcus mutans (Gram-positive) as determined by the Minimum Bactericidal Concentration (MBC) method. The antimicrobial behavior of the particles depends on the bacteria and the biocide ion used. Noteworthy, although samples with copper are able to release more metal ion than samples with silver, they present higher MBC showing the high effect of silver against these bacteria. - Highlights: • Copper and silver act as antimicrobial additives in bioactive glass materials. • Silver is more toxic than copper ions in these bioactive materials. • Sol–gel method allows the synthesis of antimicrobial bioactive materials

  19. Coal-water slurry fuel internal combustion engine and method for operating same

    Science.gov (United States)

    McMillian, Michael H.

    1992-01-01

    An internal combustion engine fueled with a coal-water slurry is described. About 90 percent of the coal-water slurry charge utilized in the power cycle of the engine is directly injected into the main combustion chamber where it is ignited by a hot stream of combustion gases discharged from a pilot combustion chamber of a size less than about 10 percent of the total clearance volume of main combustion chamber with the piston at top dead center. The stream of hot combustion gases is provided by injecting less than about 10 percent of the total coal-water slurry charge into the pilot combustion chamber and using a portion of the air from the main combustion chamber that has been heated by the walls defining the pilot combustion chamber as the ignition source for the coal-water slurry injected into the pilot combustion chamber.

  20. Combustion Model and Control Parameter Optimization Methods for Single Cylinder Diesel Engine

    Directory of Open Access Journals (Sweden)

    Bambang Wahono

    2014-01-01

    Full Text Available This research presents a method to construct a combustion model and a method to optimize some control parameters of diesel engine in order to develop a model-based control system. The construction purpose of the model is to appropriately manage some control parameters to obtain the values of fuel consumption and emission as the engine output objectives. Stepwise method considering multicollinearity was applied to construct combustion model with the polynomial model. Using the experimental data of a single cylinder diesel engine, the model of power, BSFC, NOx, and soot on multiple injection diesel engines was built. The proposed method succesfully developed the model that describes control parameters in relation to the engine outputs. Although many control devices can be mounted to diesel engine, optimization technique is required to utilize this method in finding optimal engine operating conditions efficiently beside the existing development of individual emission control methods. Particle swarm optimization (PSO was used to calculate control parameters to optimize fuel consumption and emission based on the model. The proposed method is able to calculate control parameters efficiently to optimize evaluation item based on the model. Finally, the model which added PSO then was compiled in a microcontroller.

  1. Production methods for decreasing nitrous oxide effluents during solid fuel combustion

    Energy Technology Data Exchange (ETDEWEB)

    Kotler, V.R.

    1981-01-01

    The atmosphere can be protected from toxic NO /SUB x/ effluents during fuel combustion in boilers by reducing the amount of NO /SUB x/ during combustion or by cleaning the smoky gases after they leave the boiler. The second method results from the need to process a large amount of smoky gases with a relatively low concentration of nitrous oxide which is chemically resistant and which is not highly soluble in water. The problem is complicated by the SO /SUB x/ , O/sub 2/ and solid particles in the smoky gaes. The method for cleaning smoky gases is complicated and requires mator capital investments and operating expenses. Laboratory tests in the F. E. Dzerzhinskiy Heat Engineering Institute showed that thermal NO /SUB x/ is formed at combustion temperatures above 1550/sup 0/C, and that the concentration of O/sub 2/ has a significant impact on NO /SUB x/ formation, while temperature has much less effect. On the basis of laboratory and industrial tests, the Institute recommended a method to reduce NO /SUB x/ effluents from large boilers: for Kansk-Achinski coals -- low-temperature combustion. The temperature in the combustion nucleus is maintained at 1290/sup 0/C by using a set of measures individual dust systems with direct intection, grinder-blowers, fuel drying and recirculation of about 20% of the smoky gases with the primary air, tangential direct flow burners in several rows along the top). The effectiveness of this system has been checked on a PK-10Sh boiler at the Krasnoyarsk Thermal Power Plant No. 1 and a BK3-210-140 boiler at the Vladivostok Thermal Power Plant No. 2. Further reduction of NO /SUB x/ (by about 20%) requires redistribution of the secondary air along the row of burners. These measures are suggested for use on the P-67 boiler of the 800 MW unit of the Berezovsk State Regional Power Station No. 1. A brief summary of the design and operating measures are provided.

  2. Synthesis of lithium silicates generators of tritium by a modified method of combustion; Sintesis de silicatos de litio generadores de tritio por un metodo modificado de combustion

    Energy Technology Data Exchange (ETDEWEB)

    Cruz G, D

    2003-07-01

    The ceramics of lithium have been proposed as generating materials of tritium through the following reaction: {sup 6} Li + {sup 1} n {yields} {sup 4} He + {sup 3} H . In previous works carried out by Pfeiffer and collaborators, the lithium silicates generators of tritium were prepared using the following methods: reactions of solid state, precipitation and sol-gel synthesis. Although those methods have advantages, it is required of heating at high temperatures (900 C during four hours) to be able to obtain the crystalline compounds. Those products found in these works were diverse crystallization forms of the lithium silicates and of SiO{sub 2}, such as, Li{sub 2}SiO{sub 3}, Li{sub 2}Si{sub 2}0{sub 5}, Li{sub 4}SiO{sub 4}, and quartz (SiO{sub 2}). The combustion method uses exothermic reactions to take place ceramic compounds. The precursor solutions are mixtures of the nitrate of metal oxidizer and the fuels (urea, glycine, carbohydrazide). However the reported method in the literature, it is not useful to prepare lithium silicates, for what was modified using non oxidizers compounds. The lithium hydroxide (LiOH) and the silicic acid (H{sub 2}SiO{sub 3}) they were the compounds non oxidizers used, and the urea (CH{sub 4}N{sub 2}O) it was the one fuel. They were carried out two series of experiments; inside the series 1 of experiments are varied the molar ratio of lithium hydroxide and urea (LiOH : H{sub 2}SiO{sub 3} = 1, 2 and 3, LiOH : CH{sub 4}N{sub 2}O = 1, 2, 3, 4 and 5) and the prepared mixtures were taken to one muffle previously preheated to a temperature of 450 C during 5 minutes. In the series 2 of experiments was studied the effect of the temperature and of the washed with distilled water in the prepared samples with the following molar ratios: LiOH : H{sub 2}SiO{sub 3} : CH{sub 4}N{sub 2}O = 1:1:3, 2:1:3, 3:1:3 and 3:1:6, those which were heated to temperatures from 450 C up to 750 C and were washed. The obtained samples were characterized by X

  3. The Brief Introduction of Different Laser Diagnostics Methods Used in Aeroengine Combustion Research

    Directory of Open Access Journals (Sweden)

    Fei Xing

    2016-01-01

    Full Text Available Combustion test diagnosis has always been one of the most important technologies for the development of aerospace engineering. The traditional methods of measurement have been unable to meet the requirements of accurate capture of the flow field in the development process of the aeroengine combustor. Therefore, the development of high-precision measurement and diagnostic techniques to meet the needs of the aeroengine combustor design is imperative. Laser diagnostics techniques developed quickly in the past several years. They are used to measure the parameters of the combustion flow field such as velocity, temperature, and components concentration with high space and time resolution and brought no disturbance. Planar laser-induced fluorescence, coherent anti-Stokes Raman scattering, tunable diode laser absorption spectroscopy, and Raman scattering were introduced systemically in this paper. After analysis of their own advantages and disadvantages, the authors considered validated Raman scattering system and Tunable Diode Laser Absorption Tomography are more suitable for research activities on aeroengine combustion systems.

  4. Obtaining ZnO nanocrystalline through methods of combustion and precipitation

    International Nuclear Information System (INIS)

    Garcia, A.P.; Guaglianoni, W.C.; Cunha, M.A.; Basegio, T.M.; Bergmann, C.P.

    2012-01-01

    Zinc oxide is important technological applications in rubber and industrial paints. The chemical properties and microstructure of ZnO powder depends on the synthesis method employed. In this work, it was obtained nanosized ZnO using different synthesis processes, such as solution combustion and precipitation, varying the concentrations of reactants and the working temperature. The obtained powders were characterized by SEM, BET, XRD, crystallite size determination and thermal analysis (TGA and DTA). It was possible to obtain nanosized ZnO with the methods used. (author)

  5. Methods and systems to thermally protect fuel nozzles in combustion systems

    Science.gov (United States)

    Helmick, David Andrew; Johnson, Thomas Edward; York, William David; Lacy, Benjamin Paul

    2013-12-17

    A method of assembling a gas turbine engine is provided. The method includes coupling a combustor in flow communication with a compressor such that the combustor receives at least some of the air discharged by the compressor. A fuel nozzle assembly is coupled to the combustor and includes at least one fuel nozzle that includes a plurality of interior surfaces, wherein a thermal barrier coating is applied across at least one of the plurality of interior surfaces to facilitate shielding the interior surfaces from combustion gases.

  6. Bioactive nanocrystalline wollastonite synthesized by sol–gel ...

    Indian Academy of Sciences (India)

    The sol–gel combustion method was employed to synthesize the nanocrystalline wollastonite by taking the raw eggshell powder as a calcium source and TEOS as a source of silicate. Glycine was .... 94·37% CaCO3, hence in order to prepare 1 M Ca2+ ion solu- ... requires an acid or base catalyst hence the pH of the solu-.

  7. Bioactive nanocrystalline wollastonite synthesized by sol–gel ...

    Indian Academy of Sciences (India)

    The sol–gel combustion method was employed to synthesize the nanocrystalline wollastonite by taking the raw eggshell powder as a calcium source and TEOS as a source of silicate. Glycine was used as a reductant or fuel and nitrate ions present in metal nitrate acts as an oxidizer. The phase purity of the wollastonite was ...

  8. Characterizations of maghemite thin films prepared by a sol-gel method

    Energy Technology Data Exchange (ETDEWEB)

    Lau, L. N., E-mail: lau7798@gmail.com; Ibrahim, N. B., E-mail: baayah@ukm.edu.my [School of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor. Malaysia (Malaysia)

    2015-09-25

    Iron is one of the abundant elements of Mother Nature and its compound, iron oxide is an interesting material to study since its discovery in the form of magnetite. It can exist in many phases such as hematite and maghemite, this unique nature has put it as a potential candidate in various applications. The aim of this work is to study the influence of different precursor concentrations on the microstructural and magnetic properties of iron oxide thin film. All samples were prepared via the sol-gel method followed by a spin coating technique on quartz substrates. Iron oxide films were confirmed as maghemite phase from X-ray diffraction patterns. The film morphology was examined by a field emission scanning electron microscope and it showed non-systematic value of average grain size and film thickness throughout the study. Hysteresis loop further confirmed that maghemite is a magnetic material when it was characterized by a vibrating sample magnetometer. The coercivity did not show any correlation with molarity. Nevertheless, it increased as the precursor concentration of the film increased due to the domain behaviour. In conclusion, maghemite thin films were successfully synthesized by the sol-gel method with different precursor concentrations in this work.

  9. Antimicrobial Activity of Thin Solid Films of Silver Doped Hydroxyapatite Prepared by Sol-Gel Method

    Science.gov (United States)

    Iconaru, Simona Liliana; Chapon, Patrick; Le Coustumer, Philippe; Predoi, Daniela

    2014-01-01

    In this work, the preparation and characterization of silver doped hydroxyapatite thin films were reported and their antimicrobial activity was characterized. Silver doped hydroxyapatite (Ag:HAp) thin films coatings substrate was prepared on commercially pure Si disks by sol-gel method. The silver doped hydroxyapatite thin films were characterized by various techniques such as Scanning electron microscopy (SEM) with energy Dispersive X-ray attachment (X-EDS), Fourier transform infrared spectroscopy (FT-IR), and glow discharge optical emission spectroscopy (GDOES). These techniques have permitted the structural and chemical characterisation of the silver doped hydroxyapatite thin films. The antimicrobial effect of the Ag:HAp thin films on Escherichia coli and Staphylococcus aureus bacteria was then investigated. This is the first study on the antimicrobial effect of Ag:HAp thin films obtained by sol-gel method. The results of this study have shown that the Ag:HAp thin films with x Ag = 0.5 are effective against E. coli and S. aureus after 24 h. PMID:24523630

  10. Synthesis of hybrid chitosan/calcium aluminosilicate using a sol-gel method for optical applications

    Energy Technology Data Exchange (ETDEWEB)

    Elnahrawy, Amany Mohamed [Department of Solid State, Physics Division, National Research Center (NRC), Giza 12622, Cairo (Egypt); Kim, Yong Soo, E-mail: yskim2@ulsan.ac.kr [Department of Physics and Energy Harvest-Storage Research Center (EHSRC), University of Ulsan, Ulsan 44610 (Korea, Republic of); Ali, Ahmed I., E-mail: Ahmed_ali_2010@helwan.edu.eg [Department of Physics and Energy Harvest-Storage Research Center (EHSRC), University of Ulsan, Ulsan 44610 (Korea, Republic of); Basic Science Department, Faculty of Industrial Education & Technology, Helwan University, Cairo 11281 (Egypt)

    2016-08-15

    Hybrid chitosan (CS)/calcium aluminosilicate nanocomposites thin films and membranes were prepared using a sol–gel method with three different concentrations of Al{sub 2}O{sub 3} (5, 7 and 10 mol. %). The prepared nanocomposites were characterized by transmission electron microscopy, X-ray diffraction and Fourier Transform Infrared spectroscopy. The optical properties of the prepared samples were analyzed by UV/Vis spectrophotometry and photoluminescence (PL) spectroscopy. The optical parameters revealed an increase in both the refractive index and band gap of the nanocomposites with increasing Al concentration. In addition, the PL spectra revealed a blue shift that was consistent with an increase in the optical band gap. These results suggest that CS/calcium aluminosilicate in two different forms can be a good candidate for optical sensors applications. - Highlights: • We show a large specific surface area of hybrid CS/calcium aluminosilicate thin films and membranes using sol-gel method. • Inorganic SiO{sub 2}-based phase are perfectly embedded onto chitosan matrix has a reliable stability. • CS/calcium aluminosilicate could be usable for optical sensors, planar waveguide, and bio-sensing.

  11. Tracking of Nuclear Cable Insulation Polymer Structural Changes using the Gel Fraction and Uptake Factor Method

    Energy Technology Data Exchange (ETDEWEB)

    Correa, Miguel; Huang, Qian; Fifield, Leonard S.

    2018-04-11

    Cross-linked polyethylene (XLPE) cable insulation samples were exposed to heat and gamma radiation at a series of temperatures, dose rates, and exposure times to evaluate the effects of these variables on material degradation. The samples were tested using the solvent incubation method to collect gel fraction and uptake factor data in order to assess the crosslinking and chain scission occurring in polymer samples with aging. Consistent with previous reports, gel fraction values were observed to increase and uptake factor values to decrease with radiation and thermal exposure. The trends seen were also more prominent as exposure time increased, suggesting this to be a viable method of tracking structural changes in the XLPE-insulated cable material over extended periods. For the conditions explored, the cable insulation material evaluated did not indicate signs of anomalous aging such as inverse temperature effect in which radiation-induced aging is more severe at lower temperature. Ongoing aging under identical radiation conditions and at lower temperature will further inform conclusions regarding the importance of inverse temperature effects for this material under these conditions.

  12. Antimicrobial activity of thin solid films of silver doped hydroxyapatite prepared by sol-gel method.

    Science.gov (United States)

    Iconaru, Simona Liliana; Chapon, Patrick; Le Coustumer, Philippe; Predoi, Daniela

    2014-01-01

    In this work, the preparation and characterization of silver doped hydroxyapatite thin films were reported and their antimicrobial activity was characterized. Silver doped hydroxyapatite (Ag:HAp) thin films coatings substrate was prepared on commercially pure Si disks by sol-gel method. The silver doped hydroxyapatite thin films were characterized by various techniques such as Scanning electron microscopy (SEM) with energy Dispersive X-ray attachment (X-EDS), Fourier transform infrared spectroscopy (FT-IR), and glow discharge optical emission spectroscopy (GDOES). These techniques have permitted the structural and chemical characterisation of the silver doped hydroxyapatite thin films. The antimicrobial effect of the Ag:HAp thin films on Escherichia coli and Staphylococcus aureus bacteria was then investigated. This is the first study on the antimicrobial effect of Ag:HAp thin films obtained by sol-gel method. The results of this study have shown that the Ag:HAp thin films with x(Ag) = 0.5 are effective against E. coli and S. aureus after 24 h.

  13. Antimicrobial Activity of Thin Solid Films of Silver Doped Hydroxyapatite Prepared by Sol-Gel Method

    Directory of Open Access Journals (Sweden)

    Simona Liliana Iconaru

    2014-01-01

    Full Text Available In this work, the preparation and characterization of silver doped hydroxyapatite thin films were reported and their antimicrobial activity was characterized. Silver doped hydroxyapatite (Ag:HAp thin films coatings substrate was prepared on commercially pure Si disks by sol-gel method. The silver doped hydroxyapatite thin films were characterized by various techniques such as Scanning electron microscopy (SEM with energy Dispersive X-ray attachment (X-EDS, Fourier transform infrared spectroscopy (FT-IR, and glow discharge optical emission spectroscopy (GDOES. These techniques have permitted the structural and chemical characterisation of the silver doped hydroxyapatite thin films. The antimicrobial effect of the Ag:HAp thin films on Escherichia coli and Staphylococcus aureus bacteria was then investigated. This is the first study on the antimicrobial effect of Ag:HAp thin films obtained by sol-gel method. The results of this study have shown that the Ag:HAp thin films with xAg=0.5 are effective against E. coli and S. aureus after 24 h.

  14. Improved methods for the fluorographic detection of weak β-emitting radioisotopes in agarose and acrylamide gel electrophoresis media

    International Nuclear Information System (INIS)

    Pulleyblank, D.E.; Booth, G.M.

    1981-01-01

    The use of acetic acid as a solvent for diphenyloxazole (PPO) in fluorographic procedures has been investigated. It is demonstrated to be superior to both dimethyl sulfoxide and methanol with respect to its suitability in both agarose and acrylamide gel electrophoresis systems. In addition, a method has been developed for impregnating fragile gels such as those used for immunodiffusion with PPO in preparation for fluorography. (Auth.)

  15. Simple measurement of 14C in the environment using a gel suspension method

    International Nuclear Information System (INIS)

    Wakabayashi, G.; Ohura, H.; Okai, T.; Matoba, M.

    1999-01-01

    A simple analytical method for environmental 14 C with a low background liquid scintillation counter was developed. A new gelling agent, N-lauroyl-L-glutamic-α,γ-dibutylamide was used, for the liquid scintillation counting of 14 C as CaCO 3 (gel suspension method). Our procedure for sample preparation was much simpler than that of conventional methods and required no special equipment. The samples prepared with the standard sample of CaCO 3 were measured to evaluate the self absorption of the sample, the optimum condition of counting and the detection limit. Our results indicated that the newly developed technique could be efficiently applied for the monitoring of environmental 14 C. (author)

  16. Methods for characterizing convective cryoprobe heat transfer in ultrasound gel phantoms.

    Science.gov (United States)

    Etheridge, Michael L; Choi, Jeunghwan; Ramadhyani, Satish; Bischof, John C

    2013-02-01

    While cryosurgery has proven capable in treating of a variety of conditions, it has met with some resistance among physicians, in part due to shortcomings in the ability to predict treatment outcomes. Here we attempt to address several key issues related to predictive modeling by demonstrating methods for accurately characterizing heat transfer from cryoprobes, report temperature dependent thermal properties for ultrasound gel (a convenient tissue phantom) down to cryogenic temperatures, and demonstrate the ability of convective exchange heat transfer boundary conditions to accurately describe freezing in the case of single and multiple interacting cryoprobe(s). Temperature dependent changes in the specific heat and thermal conductivity for ultrasound gel are reported down to -150 °C for the first time here and these data were used to accurately describe freezing in ultrasound gel in subsequent modeling. Freezing around a single and two interacting cryoprobe(s) was characterized in the ultrasound gel phantom by mapping the temperature in and around the "iceball" with carefully placed thermocouple arrays. These experimental data were fit with finite-element modeling in COMSOL Multiphysics, which was used to investigate the sensitivity and effectiveness of convective boundary conditions in describing heat transfer from the cryoprobes. Heat transfer at the probe tip was described in terms of a convective coefficient and the cryogen temperature. While model accuracy depended strongly on spatial (i.e., along the exchange surface) variation in the convective coefficient, it was much less sensitive to spatial and transient variations in the cryogen temperature parameter. The optimized fit, convective exchange conditions for the single-probe case also provided close agreement with the experimental data for the case of two interacting cryoprobes, suggesting that this basic characterization and modeling approach can be extended to accurately describe more complicated

  17. High-gravity combustion synthesis and in situ melt infiltration: A new method for preparing cemented carbides

    International Nuclear Information System (INIS)

    Liu, Guanghua; Li, Jiangtao; Yang, Zengchao; Guo, Shibin; Chen, Yixiang

    2013-01-01

    A new method of high-gravity combustion synthesis and in situ melt infiltration is reported for preparing cemented carbides, where hot nickel melt is in situ synthesized from a highly exothermic combustion reaction and then infiltrated into tungsten carbide powder compacts. The as-prepared sample showed a homogeneous microstructure, and its relative density, hardness and flexural strength were 94.4%, 84 HRA and 1.49 GPa, respectively. Compared with conventional powder metallurgy approaches, high-gravity combustion synthesis offers a fast and furnace-free way to produce cemented carbides

  18. Effect of templates on inverse opals fabricated through annular self-assembly/sol-gel method

    International Nuclear Information System (INIS)

    Ge Dengteng; Yang Lili; Fan Zeng; Zhao Jiupeng; Li Yao

    2011-01-01

    Highlights: → Flexible inverse opals could be facilely prepared through annular growth method. → The infiltrated materials are highly densified due to the existence of templates. → The crystalline grains are refined due to the the existence of templates. - Abstract: There is a strong interest in simple preparation of flexible inverse opals for applications. In this article, indium tin oxides (ITO) flexible inverse opals were prepared through annular growth of templates and sol-gel process. It is shown that this method provides a facile route for large scale flexible inverse opals with excellent ordered structures. ITO materials are found much denser in inverse opals, which is due to the increased capillary force during drying process and enhanced shrinkage during annealing process. It is also found that the crystalline grains are refined and the photoluminescence performance is strengthened in low frequency.

  19. Preparation and characterization of ZnO transparent semiconductor thin films by sol-gel method

    International Nuclear Information System (INIS)

    Tsay, Chien-Yie; Fan, Kai-Shiung; Chen, Sih-Han; Tsai, Chia-Hao

    2010-01-01

    Transparent semiconductor thin films of zinc oxide (ZnO) were deposited onto alkali-free glass substrates by the sol-gel method and spin-coating technique. In this study, authors investigate the influence of the heating rate of the preheating process (4 or 10 o C/min) on the crystallization, surface morphology, and optical properties of sol-gel derived ZnO thin films. The ZnO sol was synthesized by dissolving zinc acetate dehydrate in ethanol, and then adding monoethanolamine. The as-coated films were preheated at 300 o C for 10 min and annealed at 500 o C for 1 h in air ambiance. Experimental results indicate that the heating rate of the preheating process strongly affected the surface morphology and transparency of ZnO thin film. Specifically, a heating rate of 10 o C/min for the preheating process produces a preferred orientation along the (0 0 2) plane and a high transmittance of 92% at a wavelength of 550 nm. Furthermore, this study reports the fabrication of thin-film transistors (TFTs) with a transparent ZnO active channel layer and evaluates their electrical performance.

  20. Fabrication of optical chemical ammonia sensors using anodized alumina supports and sol-gel method.

    Science.gov (United States)

    Markovics, Akos; Kovács, Barna

    2013-05-15

    In this comparative study, the fabrication and the sensing properties of various reflectometric optical ammonia gas sensors are described. In the first set of experiments the role of the support material was investigated on four different sensor membranes. Two of them were prepared by the adsorption of bromocresol green indicator on anodized aluminum plates. The applied anodizing voltages were 12 V and 24 V, which resulted in different dynamic ranges and response times for gaseous ammonia. The sol-gel method was used for the preparation of the other batch of sensors. These layers were coated on anodized aluminum plates (24 V) and on standard microscope cover glasses. In spite of the identical sensing chemistry, slightly different response times were measured merely because of the aluminum surface porosity. Gas molecules can remain entrapped in the pores, which results in delayed recovery time. On the other hand, the porous oxide film provides excellent adhesion, making the anodized aluminum an attractive support for the sol-gel layer. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Preparation and characterization of strontium-fluorapatite nanopowders by sol-gel method

    Science.gov (United States)

    Kamaei, Maryam; Fathi, Mohammad Hossein

    2018-01-01

    Biomaterials based on calcium orthophosphate are especially attractive for use in medicine, for bone and teeth implants due to their biological properties, such as biocompatibility and bioactivity. Among them, hydroxyapatite (HAP; Ca10(PO4)6(OH)2) is used particularly because of its similarities to the inorganic component of bone. Hydroxyapatite has been widely used for biomedical applications. Despite desirable properties such as bioactivity, biocompatibility, solubility and adsorption, synthetic HA is limited in application due to poor thermostability and poor mechanical properties. Properties of HA can be tailored over a wide range by incorporating different ions into HA lattice. Use of the sol-gel technique is technically simple, cost effective and beneficial for fabrication biomaterials. This research aimed to prepare and characterize Sr-doped FA nanopowders (Sr-FA). Sr-FA with different Sr contents was prepared by sol-gel method. The designated degree of substitution of Ca by Sr in the mixture was determined by the x value in the general formula of (Ca10-x Srx(PO4)6F2), where x=0,0.5,1. X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) techniques were utilized to characterize the obtained nano powders. Results showed that Sr ions entered into the fluorapatite lattice and occupied Ca sites. The incorporation of Sr ions into the fluorapatite resulted in the increase of the lattice parameters.

  2. Synthesis, characterization of nickel aluminate nanoparticles by microwave combustion method and their catalytic properties

    Energy Technology Data Exchange (ETDEWEB)

    Ragupathi, C. [Catalysis and Nanomaterials Research Laboratory, Department of Chemistry, Loyola College (Autonomous), Chennai 600034 (India); Vijaya, J. Judith, E-mail: jjvijayaloyola@yahoo.co.in [Catalysis and Nanomaterials Research Laboratory, Department of Chemistry, Loyola College (Autonomous), Chennai 600034 (India); Kennedy, L. John [Materials Division, School of Advanced Sciences, Vellore Institute of Technology (VIT) University, Chennai Campus, Chennai 600127 (India)

    2014-05-01

    Highlights: • Simple route for the preparation of nickel aluminate. • NiAl{sub 2}O{sub 4} microwave absorbent was invented by a simple method. • High specific surface area was obtained at low temperature. • Evaluation of magnetic, optical and catalytic properties. - Abstract: Microwave combustion method (MCM) is a direct method to synthesize NiAl{sub 2}O{sub 4} nanoparticles and for the first time we report the using of Sesame (Sesame indicum L.) plant extract in the present study. Solutions of metal nitrates and plant extract as a gelling agent are subsequently combusted using microwave. The structure and morphology of NiAl{sub 2}O{sub 4} nanoparticles are investigated by X-ray diffraction (XRD), Fourier transforms infrared spectra (FT-IR), high resolution scanning electron microscopy (HR-SEM), energy dispersive X-ray analysis (EDX), high resolution transmission electron microscopy (HR-TEM), diffuse reflectance spectroscopy (DRS) and photoluminescence (PL) spectroscopy, Brunauer–Emmett–Teller (BET) analysis and vibrating sample magnetometer (VSM). XRD pattern confirmed the formation of cubic phase NiAl{sub 2}O{sub 4}. The formation of NiAl{sub 2}O{sub 4} is also confirmed by FT-IR. The formation of NiAl{sub 2}O{sub 4} nanoparticles is confirmed by HR-SEM and HR-TEM. Furthermore, the microwave combustion leads to the formation of fine particles with uniform morphology. The magnetic properties of the synthesized NiAl{sub 2}O{sub 4} nano and microstructures were investigated by vibrating sample magnetometer (VSM) and their hysteresis loops were obtained at room temperature. Further, NiAl{sub 2}O{sub 4} prepared by MCM using Sesame (S. indicum L.) plant extract is tested for the catalytic activity toward the oxidation of benzyl alcohol.

  3. Simple measurement of 14C in the environment using gel suspension method

    International Nuclear Information System (INIS)

    Wakabayashi, Genichiro; Oura, Hirotaka; Nagao, Kenjiro; Okai, Tomio; Matoba, Masaru; Kakiuchi, Hideki; Momoshima, Noriyuki; Kawamura, Hidehisa

    1999-01-01

    A gel suspension method using N-lauroyl-L-glutamic-α, γ-dibutylamide as gelling agent and calcium carbonate as sample was studied and it was proved a more simple measurement method of 14 C in environment than the ordinary method. 100, 20 and 7 ml of sample could introduce 3.6, 0.72 and 0.252 g of carbon, respectively. When 100 ml and 20 ml of vial introduced the maximum carbon, the lower limit of detection was about 0.3 dpm/g-C and 0.5 dpm/g-C, respectively. These values showed that this method was able to determine 14 C in the environment. The value of sample has been constant for two years or more. This fact indicated the sample prepared by this method was good for repeat measurement and long-term storage. Many samples prepared by the same calcium carbonate showed almost same values. The concentrations of 14 C in the growth rings of a tree and in rice in the environment were determined and the results agreed with the values in the references. From these above results, this method is more simple measurement method of 14 C in the environment than the ordinary method and can apply to determine 14 C in and around the nuclear installation. (S.Y.)

  4. Hydroxyapatite, fluor-hydroxyapatite and fluorapatite produced via the sol-gel method. Optimisation, characterisation and rheology.

    Science.gov (United States)

    Tredwin, Christopher J; Young, Anne M; Georgiou, George; Shin, Song-Hee; Kim, Hae-Won; Knowles, Jonathan C

    2013-02-01

    Currently, most titanium implant coatings are made using hydroxyapatite and a plasma spraying technique. There are however limitations associated with plasma spraying processes including poor adherence, high porosity and cost. An alternative method utilising the sol-gel technique offers many potential advantages but is currently lacking research data for this application. It was the objective of this study to characterise and optimise the production of Hydroxyapatite (HA), fluorhydroxyapatite (FHA) and fluorapatite (FA) using a sol-gel technique and assess the rheological properties of these materials. HA, FHA and FA were synthesised by a sol-gel method. Calcium nitrate and triethylphosphite were used as precursors under an ethanol-water based solution. Different amounts of ammonium fluoride (NH4F) were incorporated for the preparation of the sol-gel derived FHA and FA. Optimisation of the chemistry and subsequent characterisation of the sol-gel derived materials was carried out using X-ray Diffraction (XRD) and Differential Thermal Analysis (DTA). Rheology of the sol-gels was investigated using a viscometer and contact angle measurement. A protocol was established that allowed synthesis of HA, FHA and FA that were at least 99% phase pure. The more fluoride incorporated into the apatite structure; the lower the crystallisation temperature, the smaller the unit cell size (changes in the a-axis), the higher the viscosity and contact angle of the sol-gel derived apatite. A technique has been developed for the production of HA, FHA and FA by the sol-gel technique. Increasing fluoride substitution in the apatite structure alters the potential coating properties. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.

  5. Study of factors affecting a combustion method for determining carbon in lithium hydride

    International Nuclear Information System (INIS)

    Barringer, R.E.; Thornton, R.E.

    1975-09-01

    An investigation has been made of the factors affecting a combustion method for the determination of low levels (300 to 15,000 micrograms/gram) of carbon in highly reactive lithium hydride. Optimization of the procedure with available equipment yielded recoveries of 90 percent, with a limit of error (0.95) of +-39 percent relative for aliquants containing 35 to 55 micrograms of carbon (500 to 800 micrograms of carbon per gram of lithium hydride sample). Sample preparation, thermal decomposition of the hydride, final ignition of the carbon, and carbon-measurement steps were studied, and a detailed procedure was developed. (auth)

  6. Investigation of sol-gel transition by rheological methods. Part II. Results and discussion.

    Directory of Open Access Journals (Sweden)

    KUDRYAVTSEV Pavel Gennadievich

    2017-10-01

    Full Text Available In this work rheological studies of the gelling process were carried out. We have developed a measuring system for studying the rheology of the gelation process. It consisted of several measuring cells of the Weiler-Rebinder type, system for automatic regulation of the composition of the medium and thermostabilization system. This complex is designed to measure the dependence of the value of the ultimate shear stress as a function of time, from the start of the sol-gel transition to the complete conversion of the sol to the gel. The developed device has a wide range of measured values of critical shear stresses τ0 = (0,05÷50000 Dyne/cm2. Using the developed instrument, it was possible to establish the shape of the initial section of the curve τ0 = f(t and develop a methodology for more accurate determination of gelation time. The developed method proved that the classical method for determining the start time of the sol-gel transition using the point of intersection of the tangent to the linear part of the rheological curve τ0 = f(t, gives significantly distorted results. A new phenomenon has been discovered: the kinetic curves in the coordinates of the Avrami-Erofeev-Bogolyubov equation have an inflection point which separates the kinetic curve into two parts, the initial and the final. It was found that the constant k in the Avrami–Erofeev–Bogolyubov equation does not depend on the temperature and is the same for both the initial and final parts of the kinetic curve. It depends only on the chemical nature of the reacting system. It was found that for the initial section of the kinetic curves, the value of the parameter n in the Avrami-Erofeev-Bogolyubov equation was n = 23,4±2,8 and, unlike the final section of the rheological curve, does not depend on temperature. A large value of this parameter can be interpreted as the average number of directions of growth of a fractal aggregate during its growth. The value of this parameter

  7. Development of gel-filter method for high enrichment of low-molecular weight proteins from serum.

    Directory of Open Access Journals (Sweden)

    Lingsheng Chen

    Full Text Available The human serum proteome has been extensively screened for biomarkers. However, the large dynamic range of protein concentrations in serum and the presence of highly abundant and large molecular weight proteins, make identification and detection changes in the amount of low-molecular weight proteins (LMW, molecular weight ≤ 30kDa difficult. Here, we developed a gel-filter method including four layers of different concentration of tricine SDS-PAGE-based gels to block high-molecular weight proteins and enrich LMW proteins. By utilizing this method, we identified 1,576 proteins (n = 2 from 10 μL serum. Among them, 559 (n = 2 proteins belonged to LMW proteins. Furthermore, this gel-filter method could identify 67.4% and 39.8% more LMW proteins than that in representative methods of glycine SDS-PAGE and optimized-DS, respectively. By utilizing SILAC-AQUA approach with labeled recombinant protein as internal standard, the recovery rate for GST spiked in serum during the treatment of gel-filter, optimized-DS, and ProteoMiner was 33.1 ± 0.01%, 18.7 ± 0.01% and 9.6 ± 0.03%, respectively. These results demonstrate that the gel-filter method offers a rapid, highly reproducible and efficient approach for screening biomarkers from serum through proteomic analyses.

  8. Combustion characteristics and optimal factors determination with Taguchi method for diesel engines port-injecting hydrogen

    International Nuclear Information System (INIS)

    Wu, Horng-Wen; Wu, Zhan-Yi

    2012-01-01

    This study applies the L 9 orthogonal array of the Taguchi method to find out the best hydrogen injection timing, hydrogen-energy-share ratio, and the percentage of exhaust gas circulation (EGR) in a single DI diesel engine. The injection timing is controlled by an electronic control unit (ECU) and the quantity of hydrogen is controlled by hydrogen flow controller. For various engine loads, the authors determine the optimal operating factors for low BSFC (brake specific fuel consumption), NO X , and smoke. Moreover, net heat-release rate involving variable specific heat ratio is computed from the experimental in-cylinder pressure. In-cylinder pressure, net heat-release rate, A/F ratios, COV (coefficient of variations) of IMEP (indicated mean effective pressure), NO X , and smoke using the optimum condition factors are compared with those by original baseline diesel engine. The predictions made using Taguchi's parameter design technique agreed with the confirmation results on 95% confidence interval. At 45% and 60% loads the optimum factor combination compared with the original baseline diesel engine reduces 14.52% for BSFC, 60.5% for NO X and for 42.28% smoke and improves combustion performance such as peak in-cylinder pressure and net heat-release rate. Adding hydrogen and EGR would not generate unstable combustion due to lower COV of IMEP. -- Highlights: ► We use hydrogen injector controlled by ECU and cooled EGR system in a diesel engine. ► Optimal factors by Taguchi method are determined for low BSFC, NO X and smoke. ► The COV of IMEP is lower than 10% so it will not cause the unstable combustion. ► We improve A/F ratio, in-cylinder pressure, and heat-release at optimized engine. ► Decrease is 14.5% for BSFC, 60.5% for NO X , and 42.28% for smoke at optimized engine.

  9. Influence of lanthanum on the optomagnetic properties of zinc ferrite prepared by combustion method

    International Nuclear Information System (INIS)

    Tholkappiyan, R.; Vishista, K.

    2014-01-01

    Pure and lanthanum doped zinc ferrite nanoparticles were synthesized by a combustion method using glycine as fuel. The mechanism of formation of these nanoferrites is discussed briefly. The prepared nanoparticles characterized using powder X-ray diffraction analysis (XRD) revealed the formation of cubic spinel phase with high crystallinity. Average crystallite size, X-ray density and bulk density were found to decrease with an increase in La 3+ concentration. The chemical elements and states on the surface of these ferrites were determined using X-ray photoelectron spectroscopy (XPS). The detailed core level spectra of the photoelectron peaks of Zn 2p, Fe 2p, La 3d and O 1s were analyzed. The magnetic behavior of these nanoparticles was studied using a vibrating sample magnetometer (VSM) and corresponding changes in the saturation magnetization (Ms), coercivity (Hc) and remanent magnetization (Mr) were analyzed. The optical behavior of these ferrite nanoparticles was characterized by UV–Diffuse reflectance studies (UV–DRS). From the UV–DRS studies, the optical band gap was found to be in the range of 1.87–1.97 eV. The combustion method significantly produces large amount of products within a short time. Therefore, this method is potentially suitable for manufacturing industries for preparing the magnetic nanoparticles

  10. Thermal behavior of La2O3/Nio composite prepared by sol-gel method

    International Nuclear Information System (INIS)

    Sakallioglu, M.

    2005-01-01

    The La 2 O 3 /NiO composite was prepared by sol-gel method by using transition metal oxides (La 2 O 3 /NiO). The variation of specific heat capacity Cp with temperature for La2O3/NiO composite was investigated by DSC. The heat capacity curve was taken with a heating rate of 20 degrees/min between 0-100 degrees. The variation of specific heat capacity was found by PKI Muse Standard Analysis Program. The thermal stability of the La 2 O 3 /NiO composite was investigated by thermogravimetric analysis (TG) in air atmosphere at a heating rate of 20 degrees/min. The weight loss of La 2 O 3 /NiO composite was determined by the variation of temperature

  11. Use of hydroxyapatite prepared by sol-gel method for gamma ray and electron beam dosimetry

    International Nuclear Information System (INIS)

    Hajiloo, N.; Ziaie, F.; Hesami, M.

    2011-01-01

    In this research, radiation dosimetry was made through measuring free radicals induced in synthetic hydroxyapatite using EPR spectroscopy. At the first step, the hydroxyapatite nano-powders were synthesized via sol-gel method. The produced powders were passed through a thermal treatment, weighted and packed. Then, the samples were irradiated at different dose rates using 60 Co γ-ray and 10 MeV electron beam radiation at a high dose range. The hydroxyapatite signal intensity of hydroxyapatite samples were measured at room temperature in the air. Subsequently, the variations of the EPR signal intensities were constructed as peak-to-peak signal amplitude and were compared with alanine and bone powder samples. The results showed that the EPR signal intensity of the hydroxyapatite samples are several times higher than alanine and bone powder and are saturated at the higher dose rates in comparison with other species.

  12. Judd-Ofelt Analysis of Dy3+-Activated Aluminosilicate Glasses Prepared by Sol-Gel Method

    Science.gov (United States)

    Sengthong, Buonyavong; Van Tuyen, Ho; An, Nguyen Thi Thai; Van Do, Phan; Hai, Nguyen Thi Quy; Chau, Pham Thi Minh; Quang, Vu Xuan

    2018-04-01

    Aluminosilicate (AS) glasses doped with different Dy3+ concentrations were synthesized via sol-gel method. Absorption, photoluminescence spectra and lifetime of this material have been studied. From analytical results of absorption spectra, the Judd-Ofelt (JO) parameters of prepared samples have been determined. These JO parameters combined with photoluminescence spectra have been used to evaluate transition probabilities ( A R), branching ratios ( β) and the calculated oscillator strengths of AS:Dy3+ glasses. The radiative branching ratio of 4F9/2 → 6H13/2 transition has a minimum value at 62.2% for β R which predicts that this transition in AS:Dy3+ glasses can give rise to lasing action. JO parameters show that the Ω2 increases with the increasing of Dy3+ ion concentration due to the increased polarizability of the average coordination medium and decreased average symmetry.

  13. The effect of Ni and Fe doping on YBCO powder prepared by sol gel method

    Directory of Open Access Journals (Sweden)

    F Saeb

    2009-08-01

    Full Text Available  We fabricated YBa2Cu3-xMxO7- d (M=Ni, Fe bulk samples, with stochiometric amount 0≤x≤0.045 by sol-gel method. The phase analysis and microstructure of specimens were examined by XRD and SEM. The electrical resistivity was measured using standard four probe technique for 77-300K. Investigation of XRD spectrum by MAUD shows Ni and Fe ions substitute in Cu(2 and Cu(1 site, respectively. Transition temperature decreases in 93-87K for Ni-doped samples and 93-92K for Fe-doped series. It seems that the suppression of superconductivity has no direct correlation with the magnetism of ions itself .

  14. Analysis of the thermoluminescent signal in the hydroxyapatite synthesized by the sol-gel method

    International Nuclear Information System (INIS)

    Mendoza A, D.; Gonzalez, P.R.; Lobato, M.; Rubio, E.; Rodriguez L, V.; Custodio, E.

    2004-01-01

    The physical properties of the ceramics are related with the chemical bonds and the crystalline structure, because the elements that constitute it can be united by ionic bonds or partially ionic giving a covalent character, this last causes that the outer layer is full of electrons. This property makes that the ceramic ones become interesting materials for thermoluminescent applications, as it demonstrates through the recent works presented on the hydroxyapatite that is a ceramic biomaterials that has shown an interesting thermoluminescent signal when being exposed to gamma radiation. In this sense, this work presents the thermoluminescent signal analysis induced by the UV and gamma radiation in a particular type of hydroxyapatite synthesized by sol gel method in which the temperature synthesis is varied. The final thermoluminescent sensitivity of materials is correlated with the crystalline degree, which is analysed through X-ray diffraction. (Author)

  15. Hydrogen generation systems and methods utilizing sodium silicide and sodium silica gel materials

    Energy Technology Data Exchange (ETDEWEB)

    Wallace, Andrew P.; Melack, John M.; Lefenfeld, Michael

    2017-12-19

    Systems, devices, and methods combine thermally stable reactant materials and aqueous solutions to generate hydrogen and a non-toxic liquid by-product. The reactant materials can sodium silicide or sodium silica gel. The hydrogen generation devices are used in fuels cells and other industrial applications. One system combines cooling, pumping, water storage, and other devices to sense and control reactions between reactant materials and aqueous solutions to generate hydrogen. Springs and other pressurization mechanisms pressurize and deliver an aqueous solution to the reaction. A check valve and other pressure regulation mechanisms regulate the pressure of the aqueous solution delivered to the reactant fuel material in the reactor based upon characteristics of the pressurization mechanisms and can regulate the pressure of the delivered aqueous solution as a steady decay associated with the pressurization force. The pressure regulation mechanism can also prevent hydrogen gas from deflecting the pressure regulation mechanism.

  16. A sol-gel method for preparing ZnO quantum dots with strong blue emission

    International Nuclear Information System (INIS)

    Chen Zhong; Li Xiaoxia; Du Guoping; Chen Nan; Suen, Andy Y.M.

    2011-01-01

    ZnO quantum dots (QDs) with strong blue emission have been successfully synthesized by sol-gel method, and their crystal structures, sizes, and photoluminescence properties were characterized by X-ray diffractometer, scanning electron microscope, and ultraviolet-visible spectroscopy. It has been found that ZnO QDs had a hexagonal wurtzite crystal structure, and their average diameter was about 16.0-32.2 nm. Both the reaction time and temperature were found to have a strong influence on the average size and photoluminescence properties of ZnO QDs. Longer reaction time and higher reaction temperature resulted in larger average size for ZnO QDs. It has been shown that at reaction temperature 60 deg. C the emission intensity for ZnO QDs increased first with reaction time before 7 h and then decreased after 7 h. For the same reaction time 7 h, ZnO QDs synthesized at 60 deg. C showed the strongest emission intensity. It was found that annealing in nitrogen, vacuum, and air all resulted in an increase of the size of ZnO QDs and a reduction in their photoluminescence. The dependence of the size and properties of ZnO QDs on the reaction parameters as well as the annealing conditions has been discussed. - Highlights: → ZnO quantum dots (QDs) with strong blue emission were prepared by sol-gel method. → ZnO QDs had a pure spectral blue with the chromaticity coordinates (0.166, 0.215). → Optimal reaction time and temperature were 7 h and 60 deg. C, respectively.

  17. Rheological behaviour of white pepper gels - a new method for studying the effect of irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Esteves, M. Paula E-mail: paula.esteves@ineti.pt; Raymundo, Anabela; Sousa, Isabel de; Andrade, M. Eduarda; Empis, Jose

    2002-07-01

    Ground white pepper was treated by gamma radiation at average doses of 5, 10 and 15 kGy and the alterations in the rheological properties of its aqueous suspensions were used to study the radiation effects. Amylose and amylopectin suspensions were used as model systems. Ground pepper gels presented decreased strength expressed by a decrease of G' and G'' values and smaller limiting viscosity ({eta}{sub 0}), as the irradiation dose increased. A similar behaviour was shown by the amylopectin gels. For the amylose gels, in opposition, irradiation induced a higher level of gel structure.

  18. Rheological behaviour of white pepper gels - a new method for studying the effect of irradiation

    International Nuclear Information System (INIS)

    Esteves, M. Paula; Raymundo, Anabela; Sousa, Isabel de; Andrade, M. Eduarda; Empis, Jose

    2002-01-01

    Ground white pepper was treated by gamma radiation at average doses of 5, 10 and 15 kGy and the alterations in the rheological properties of its aqueous suspensions were used to study the radiation effects. Amylose and amylopectin suspensions were used as model systems. Ground pepper gels presented decreased strength expressed by a decrease of G' and G'' values and smaller limiting viscosity (η 0 ), as the irradiation dose increased. A similar behaviour was shown by the amylopectin gels. For the amylose gels, in opposition, irradiation induced a higher level of gel structure

  19. The conditional moment closure method for modeling lean premixed turbulent combustion

    Science.gov (United States)

    Martin, Scott Montgomery

    Natural gas fired lean premixed gas turbines have become the method of choice for new power generation systems due to their high efficiency and low pollutant emissions. As emission regulations for these combustion systems become more stringent, the use of numerical modeling has become an important a priori tool in designing clean and efficient combustors. Here a new turbulent combustion model is developed in an attempt to improve the state of the art. The Conditional Moment Closure (CMC) method is a new theory that has been applied to non-premixed combustion with good success. The application of the CMC method to premixed systems has been proposed, but has not yet been done. The premixed CMC method replaces the species mass fractions as independent variables with the species mass fractions that are conditioned on a reaction progress variable (RPV). Conservation equations for these new variables are then derived and solved. The general idea behind the CMC method is that the behavior of the chemical species is closely coupled to the reaction progress variable. Thus, species conservation equations that are conditioned on the RPV will have terms involving the fluctuating quantities that are much more likely to be negligible. The CMC method accounts for the interaction between scalar dissipation (micromixing) and chemistry, while de-coupling the kinetics from the bulk flow (macromixing). Here the CMC method is combined with a commercial computational fluid dynamics program, which calculates the large-scale fluid motions. The CMC model is validated by comparison to 2-D reacting backward facing step data. Predicted species, temperature and velocity fields are compared to experimental data with good success. The CMC model is also validated against the University of Washington's 3-D jet stirred reactor (JSR) data, which is an idealized lean premixed combustor. The JSR results are encouraging, but not as good as the backward facing step. The largest source of error is from

  20. Solution combustion method for synthesis of nanostructured hydroxyapatite, fluorapatite and chlorapatite

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Junjie; Dong, Xiaochen; Bian, Mengmeng [School of Chemistry and Materials Engineering, Changshu Institute of Technology, Changshu (China); Zhao, Junfeng, E-mail: daidai02304@163.com [School of Chemistry and Materials Engineering, Changshu Institute of Technology, Changshu (China); Jiangsu Laboratory of Advanced Functional Materials, Changshu Institute of Technology, Changshu (China); Zhang, Yao; Sun, Yue [School of Chemistry and Materials Engineering, Changshu Institute of Technology, Changshu (China); Chen, JianHua; Wang, XuHong [School of Chemistry and Materials Engineering, Changshu Institute of Technology, Changshu (China); Jiangsu Laboratory of Advanced Functional Materials, Changshu Institute of Technology, Changshu (China)

    2014-09-30

    Highlights: • We report a synthesis of HA, Fap and Clap vio a modified solution combustion method. The nucleation of β-TCP was inhibited in the abundant-calcium system (Ca/P = 2.3>>1.67) in this study. F{sup −} brushed into the structure of HA and replace the position of OH{sup −} is easier than that of Cl{sup −}. - Abstract: Hydroxyapatite (HAP), fluorapatite (Fap) and chlorapatite (Clap) were prepared by solution combustion method with further annealing at 800 °C. The characterization and structural features of the synthesized powders were evaluated by the powder X-ray diffraction (XRD, Fourier transform infrared spectroscopy (FT-IR), scanning electron microscope (SEM) and transmission electron microscopy (TEM) techniques. Characterization results from XRD and Rietveld analysis revealed that OH{sup −} in the HAP lattice were gradually substituted with the increase of F{sup −} and Cl{sup −} content and totally substituted at the molar concentration of 0.28 and 0.6, respectively. The results from FI-IR have also confirmed the incorporation of substituted anions in the apatite structure.

  1. Risk analysis of a biomass combustion process using MOSAR and FMEA methods.

    Science.gov (United States)

    Thivel, P-X; Bultel, Y; Delpech, F

    2008-02-28

    Thermal and chemical conversion processes that convert in energy the sewage sludge, pasty waste and other pre-processed waste are increasingly common, for economic and ecological reasons. Fluidized bed combustion is currently one of the most promising methods of energy conversion, since it burns biomass very efficiently, and produces only very small quantities of sulphur and nitrogen oxides. The hazards associated with biomass combustion processes are fire, explosion and poisoning from the combustion gases (CO, etc.). The risk analysis presented in this paper uses the MADS-MOSAR methodology, applied to a semi-industrial pilot scheme comprising a fluidization column, a conventional cyclone, two natural gas burners and a continuous supply of biomass. The methodology uses a generic approach, with an initial macroscopic stage where hazard sources are identified, scenarios for undesired events are recognized and ranked using a grid of SeverityxProbability and safety barriers suggested. A microscopic stage then analyzes in detail the major risks identified during the first stage. This analysis may use various different tools, such as HAZOP, FMEA, etc.: our analysis is based on FMEA. Using MOSAR, we were able to identify five subsystems: the reactor (fluidized bed and centrifuge), the fuel and biomass supply lines, the operator and the environment. When we drew up scenarios based on these subsystems, we found that malfunction of the gas supply burners was a common trigger in many scenarios. Our subsequent microscopic analysis, therefore, focused on the burners, looking at the ways they failed, and at the effects and criticality of those failures (FMEA). We were, thus, able to identify a number of critical factors such as the incoming gas lines and the ignition electrode.

  2. Risk analysis of a biomass combustion process using MOSAR and FMEA methods

    International Nuclear Information System (INIS)

    Thivel, P.-X.; Bultel, Y.; Delpech, F.

    2008-01-01

    Thermal and chemical conversion processes that convert in energy the sewage sludge, pasty waste and other pre-processed waste are increasingly common, for economic and ecological reasons. Fluidized bed combustion is currently one of the most promising methods of energy conversion, since it burns biomass very efficiently, and produces only very small quantities of sulphur and nitrogen oxides. The hazards associated with biomass combustion processes are fire, explosion and poisoning from the combustion gases (CO, etc.). The risk analysis presented in this paper uses the MADS-MOSAR methodology, applied to a semi-industrial pilot scheme comprising a fluidization column, a conventional cyclone, two natural gas burners and a continuous supply of biomass. The methodology uses a generic approach, with an initial macroscopic stage where hazard sources are identified, scenarios for undesired events are recognized and ranked using a grid of Severity x Probability and safety barriers suggested. A microscopic stage then analyzes in detail the major risks identified during the first stage. This analysis may use various different tools, such as HAZOP, FMEA, etc.: our analysis is based on FMEA. Using MOSAR, we were able to identify five subsystems: the reactor (fluidized bed and centrifuge), the fuel and biomass supply lines, the operator and the environment. When we drew up scenarios based on these subsystems, we found that malfunction of the gas supply burners was a common trigger in many scenarios. Our subsequent microscopic analysis, therefore, focused on the burners, looking at the ways they failed, and at the effects and criticality of those failures (FMEA). We were, thus, able to identify a number of critical factors such as the incoming gas lines and the ignition electrode

  3. Method for increasing the calorific value of gas produced by the in situ combustion of coal

    Science.gov (United States)

    Shuck, Lowell Z.

    1978-01-01

    The present invention relates to the production of relatively high Btu gas by the in situ combustion of subterranean coal. The coal bed is penetrated with a horizontally-extending borehole and combustion is initiated in the coal bed contiguous to the borehole. The absolute pressure within the resulting combustion zone is then regulated at a desired value near the pore pressure within the coal bed so that selected quantities of water naturally present in the coal will flow into the combustion zone to effect a hydrogen and carbon monoxide-producing steam-carbon reaction with the hot carbon in the combustion zone for increasing the calorific value of the product gas.

  4. Methods for Characterization of the Diesel Combustion and Emission Formation Processes

    Energy Technology Data Exchange (ETDEWEB)

    Lindstroem, Mikael

    2011-07-01

    In this thesis various aspects of the diesel engine fuel injection, combustion and emission formation processes have been evaluated. Several types of evaluation tools and methods have been applied. Fuel spray momentum was used to characterize injection rate and hole-to-hole variations in fuel injectors. Using both instantaneous fuel impulse rates and instantaneous mass flow measurements, spray velocity and nozzle flow parameters were evaluated. Several other hole-to-hole resolved injector characterization methods were used to characterize a set of fuel injectors subjected to long term testing. Fuel injector nozzle hole-to-hole variations were found to have a large influence on engine efficiency and emissions. The degree of hole-to-hole variations for an injector has been shown to correlate well with the performance deterioration of that injector. The formation and atomization of fuel sprays, ignition onset and the development of diffusion flames were studied using an optical engine. Flame temperature evaluations have been made using two different methods. NO-formation depends strongly on flame temperature. By applying a NO-formation evaluation method based on both heat release rate and flame and gas temperature it was possible to achieve a reasonable degree of correlation with measured exhaust emissions for very varying operating conditions. The prediction capability of the NO-formation evaluation method was utilized to evaluate spatially and temporally resolved NO-formation from flame temperature distributions. This made it possible to pinpoint areas with a high degree of NO-formation. It was found that small hot zones in the flames can be responsible for a large part of the total amount of NO that is produced, especially in combustion cases where no EGR is used to lower the flame temperature. By applying optical diagnostics methods the combustion and emission formation phenomena encountered during production engine transients were evaluated. The transient

  5. DEVELOPMENT OF SAMPLING AND ANALYTICAL METHODS FOR THE MEASUREMENT OF NITROUS OXIDE FROM FOSSIL FUEL COMBUSTION SOURCES

    Science.gov (United States)

    The report documents the technical approach and results achieved while developing a grab sampling method and an automated, on-line gas chromatography method suitable to characterize nitrous oxide (N2O) emissions from fossil fuel combustion sources. The two methods developed have...

  6. Preparation and Optoelectrical Properties of p-CuO/n-Si Heterojunction by a Simple Sol-Gel Method

    Science.gov (United States)

    He, Bo; Xu, Jing; Ning, Huanpo; Zhao, Lei; Xing, Huaizhong; Chang, Chien-Cheng; Qin, Yuming; Zhang, Lei

    The Cuprous oxide (CuO) thin film was prepared on texturized Si wafer by a simple sol-gel method to fabricate p-CuO/n-Si heterojunction photoelectric device. The novel sol-gel method is very cheap and convenient. The structural, optical and electrical properties of the CuO film were studied by X-ray diffraction (XRD), Scanning Electron Microscope (SEM), X-ray photoelectron spectroscopy (XPS), UV-Vis spectrophotometer and Hall effect measurement. A good nonlinear rectifying behavior is obtained for the p-CuO/n-Si heterojunction. Under reverse bias, good photoelectric behavior is obtained.

  7. Determination of bacterial endotoxin (pyrogen) in radiopharmaceuticals by the gel clot method. Validation

    International Nuclear Information System (INIS)

    Fukumori, Neuza Taeko Okasaki

    2008-01-01

    Before the Limulus amebocyte lysate (LAL) test, the only available means of pirogenicity testing for parenteral drugs and medical devices was the United States Pharmacopoeia (USP) rabbit pyrogen test. Especially for radiopharmaceuticals, the LAL assay is the elective way to determine bacterial endotoxin. The aim of this work was to validate the gel clot method for some radiopharmaceuticals without measurable interference. The FDA's LALTest guideline defines interference as a condition that causes a significant difference between the endpoints of a positive water control and positive product control series using a standard endotoxin. Experiments were performed in accordance to the USP bacterial endotoxins test in the 131 I- m-iodobenzylguanidine; the radioisotopes Gallium-67 and Thallium-201; the lyophilized reagents DTPA, Phytate, GHA, HSA and Colloidal Tin. The Maximum Valid Dilution (MVD) was calculated for each product based upon the clinical dose of the material and a twofold serial dilution below the MVD was performed in duplicate to detect interferences. The labeled sensitivity of the used LAL reagent was 0.125 EU mL -1 (Endotoxin Units per milliliter). For validation, a dilution series was performed, a twofold dilution of control standard endotoxin (CSE) from 0.5 to 0.03 EU mL -1 , to confirm the labeled sensitivity of the LAL reagent being tested in sterile and non pyrogenic water, in quadruplicate. The same dilution series was performed with the CSE and the product in the 1:100 dilution factor, in three consecutive batches of each radiopharmaceutical. The products 131 I-m-iodobenzylguanidine, Gallium-67, Thallium-201, DTPA, HSA and Colloidal Tin were found compatible with the LAL test at a 1:100 dilution factor. Phytate and GHA showed some interference in the gel clot test. Other techniques to determine endotoxins as the chromogenic (color development) and the turbidimetric test (turbidity development), were also assessed to get valuable quantitative and

  8. Deposition of tin oxide doped with fluorine produced by sol-gel method and deposited by spray-pyrolysis

    International Nuclear Information System (INIS)

    Maia, Paulo Herbert Franca; Lima, Francisco Marcone; Sena, Aline Cosmo de; Silva, Alvaro Neuton; Almeida, Ana Fabiola Leite de; Freire, Francisco Nivaldo Aguiar

    2014-01-01

    Solar energy is one of the most important sources of renewable energy today, but its production is based on silicon cells, expensive and difficult to produce, so the research seek new materials to replace them. This work aims to deposit tin oxide doped with fluorine on the glass substrate using the sol-gel method to provide a working solution and spray pyrolysis technique to perform the deposition. F-SnO2 (FTO) were synthesized by sol-gel method, employing NH_4F and SnCl_2 precursor in an ethanol solution. Before the formation of the gel phase, the entire solution was sprayed, with the aid of a pistol aerographic substrate under heated at 600 °C divided by 50 applications and cooled in the furnace. The substrates had resistances between 10 and 30 S.cm. The energy dispersive x-ray (EDS) revealed the presence of fluorine in the SnO_2 network. (author)

  9. New synthesis parameters of GGG:Nd nanocrystalline powder prepared by sol–gel method: Structural and spectroscopic investigation

    Energy Technology Data Exchange (ETDEWEB)

    Alshikh Mohamad, Yassin, E-mail: yassinm@mail.ru; Atassi, Yomen; Moussa, Zafer

    2015-09-15

    GGG:Nd nanopowder is synthesized by the sol–gel method using formic acid and acetic acid as chelating agents and ethylene glycol as a cross linking agent. TGA–DSC, XRD, photoluminescence spectroscopy and fluorescence life time analysis (τ) are used to characterize the powder. XRD is used to optimize the synthesis parameters. According to XRD, complete phase of GGG nanopowder is formed at 800 °C for 1 min. Fluorescence life time analyses reveal that the optimum crystallization temperature is 1000 °C. - Highlights: • GGG:Nd nanopowder was prepared using formic acid by the sol gel method. • Optimization of sol gel parameters was done. • GGG phase formation was complete at 800 °C for 1 min • According to τ measurements, optimal temperature treatment is at 1000 °C. • Nanopowder prepared with formic acid was better than that formed with acetic acid.

  10. Application of the Advanced Distillation Curve Method to Fuels for Advanced Combustion Engine Gasolines

    KAUST Repository

    Burger, Jessica L.

    2015-07-16

    © This article not subject to U.S. Copyright. Published 2015 by the American Chemical Society. Incremental but fundamental changes are currently being made to fuel composition and combustion strategies to diversify energy feedstocks, decrease pollution, and increase engine efficiency. The increase in parameter space (by having many variables in play simultaneously) makes it difficult at best to propose strategic changes to engine and fuel design by use of conventional build-and-test methodology. To make changes in the most time- and cost-effective manner, it is imperative that new computational tools and surrogate fuels are developed. Currently, sets of fuels are being characterized by industry groups, such as the Coordinating Research Council (CRC) and other entities, so that researchers in different laboratories have access to fuels with consistent properties. In this work, six gasolines (FACE A, C, F, G, I, and J) are characterized by the advanced distillation curve (ADC) method to determine the composition and enthalpy of combustion in various distillate volume fractions. Tracking the composition and enthalpy of distillate fractions provides valuable information for determining structure property relationships, and moreover, it provides the basis for the development of equations of state that can describe the thermodynamic properties of these complex mixtures and lead to development of surrogate fuels composed of major hydrocarbon classes found in target fuels.

  11. Evaluation of biological activities of nanocrystalline zirconia synthesis via combustion method

    International Nuclear Information System (INIS)

    Thakare, V.G.; Omanwar, S.K.; Bhatkar, V.B.; Wadegaokar, P.A.

    2016-01-01

    The objective of the following study was synthesis of nanocrystalline zirconia by modified solution combustion synthesis method and evaluation of its structural and biological properties. The sample was characterized by powder X-ray diffraction (XRD), Field Emission Scanning Electron Microscopy (FESEM) and evaluated for cytotoxicity study using 3T3 mouse fibroblast cells, the antibacterial property are investigated by spread plate method against E. coli bacterial pathogen and studied for degradation using phosphate buffered saline (PBS) solution. The XRD pattern shows that the monoclinic phase of nanocrystalline zirconia was obtained. The FESEM images showed that the prepared sample consists of particles in the range of 45 nm and homogenous particle size distribution. The sample of zirconia has excellent tissue biocompatibility and does not show any toxicity towards normal 3T3 mouse fibroblast cells. It also inhibited the bacterial growth. The sample shows stability at physiological condition and does not show degradation. (author)

  12. Multi-dimensional Analysis Method of Hydrogen Combustion in the Containment of a Nuclear Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jongtae; Hong, Seongwan [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Kim, Gun Hong [Kyungwon E and C Co., Seongnam (Korea, Republic of)

    2014-05-15

    The most severe case is the occurrence of detonation, which induces a few-fold greater pressure load on the containment wall than a deflagration flame. The occurrence of a containment-wise global detonation is prohibited by a national regulation. The compartments located in the flow path such as steam generator compartment, annular compartment, and dome region are likely to have highly-concentrated hydrogen. If it is found that hydrogen concentration in any compartment is far below a detonation criterion during an accident progression, it can be thought that the occurrence of a detonative explosion in a compartment is excluded. However, if it is not, it is necessary to evaluate the characteristics of flame acceleration in the containment. The possibility of a flame transition from a deflagration to a detonation (DDT) can be evaluated from a calculated hydrogen distribution in a compartment by using sigma-lambda criteria. However, this method can provide a very conservative result because the geometric characteristics of a real compartment are not considered well. In order to evaluate the containment integrity from a threat of a hydrogen explosion, it is necessary to establish an integrated evaluation system, which includes a lumped-parameter and detail analysis methods. In this study, a method for the multi-dimensional analysis of hydrogen combustion is proposed to mechanistically evaluate the flame acceleration characteristics with a geometric effect. The geometry of the containment is modeled 3-dimensionally using a CAD tool. To resolve a propagating flame front, an adaptive mesh refinement method is coupled with a combustion analysis solver.

  13. Combustion physics

    Science.gov (United States)

    Jones, A. R.

    1985-11-01

    Over 90% of our energy comes from combustion. By the year 2000 the figure will still be 80%, even allowing for nuclear and alternative energy sources. There are many familiar examples of combustion use, both domestic and industrial. These range from the Bunsen burner to large flares, from small combustion chambers, such as those in car engines, to industrial furnaces for steel manufacture or the generation of megawatts of electricity. There are also fires and explosions. The bountiful energy release from combustion, however, brings its problems, prominent among which are diminishing fuel resources and pollution. Combustion science is directed towards finding ways of improving efficiency and reducing pollution. One may ask, since combustion is a chemical reaction, why physics is involved: the answer is in three parts. First, chemicals cannot react unless they come together. In most flames the fuel and air are initially separate. The chemical reaction in the gas phase is very fast compared with the rate of mixing. Thus, once the fuel and air are mixed the reaction can be considered to occur instantaneously and fluid mechanics limits the rate of burning. Secondly, thermodynamics and heat transfer determine the thermal properties of the combustion products. Heat transfer also plays a role by preheating the reactants and is essential to extracting useful work. Fluid mechanics is relevant if work is to be performed directly, as in a turbine. Finally, physical methods, including electric probes, acoustics, optics, spectroscopy and pyrometry, are used to examine flames. The article is concerned mainly with how physics is used to improve the efficiency of combustion.

  14. Characterization and toxicity studies of bioglass by Sol-gel method for prostate cancer therapy

    International Nuclear Information System (INIS)

    Roberto, Wanderley S.; Veloso, Gabriela A.; Silva, Luciana; Campos, Tarcísio P.R.

    2017-01-01

    One of the most advanced methods for the treatment of prostate cancer in the initial stage is brachytherapy, which uses titanium seeds, incorporated with 125 I, which is radioactive, and which is implanted in the prosthetic volume. In recent studies, we investigated the possibility of applying the Sol-Gel (SG) method for the production of bioactive seeds, incorporated with radioactive Sm in silica glasses for the treatment of cancer. In this project three compositions of the glasses of the SiO 2 -CaO system were synthesized using the SG method. The chemical and physical composition of the seeds were analyzed by X-ray diffraction and Atomic Absorption Analysis. A pilot study of in vivo and in vitro toxicity was conducted in rabbit and PC-3 lineage cells. The results showed that the ceramic matrices in the SiO 2 - CaO - Sm system present no toxicity in the in vivo model presenting no post-implant inflammatory process. None restriction of in vitro cell growth was found. In conclusion, there is no toxicity in seeds and the radiotoxicity will occur only in the period in which the seeds present activity coming from 153 Sm

  15. Hydroxyapatite, fluor-hydroxyapatite and fluorapatite produced via the sol-gel method: bonding to titanium and scanning electron microscopy.

    Science.gov (United States)

    Tredwin, Christopher J; Georgiou, George; Kim, Hae-Won; Knowles, Jonathan C

    2013-05-01

    Hydroxyapatite (HA), fluor-hydroxyapatite (FHA) with varying levels of fluoride ion substitution and fluorapatite (FA) production has been characterised and optimised by the sol-gel method and the dissolution and biological properties of these materials were investigated. It was the objective of this study to investigate the potential bond strength and interaction of these materials with titanium. HA, FHA and FA were synthesised by a sol-gel method. Calcium nitrate and triethyl phosphite were used as precursors under an ethanol-water based solution. Different amounts of ammonium fluoride (NH4F) were incorporated for the preparation of the FHA and FA sol-gels. Using a spin coating technique the sol-gels were coated onto commercially pure titanium disks and crystallised at various temperatures. Using scanning electron microscopy (SEM) and elemental analysis, the surface characteristics, coating thickness and interaction of the Ti substrate and coating were investigated. The bond strengths of the coating to the Ti were investigated using an Instron Universal Load Testing Machine. Statistical analysis was performed with a two-way analysis of variance and post hoc testing with a Bonferroni correction. (1) Coating speed inversely influenced the coating thickness. (2) Increasing fluoride ion substitution and heating temperature significantly increased bond strength and (3) increasing fluoride ion substitution increased the coating thickness. FHA and FA synthesised using the sol-gel technique may offer a superior alternative to coating titanium implants with HA and plasma spraying. HA, FHA and FA materials synthesised by the sol-gel method may also have a use as bone grafting materials. Copyright © 2013 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  16. Innovative Calibration Method for System Level Simulation Models of Internal Combustion Engines

    Directory of Open Access Journals (Sweden)

    Ivo Prah

    2016-09-01

    Full Text Available The paper outlines a procedure for the computer-controlled calibration of the combined zero-dimensional (0D and one-dimensional (1D thermodynamic simulation model of a turbocharged internal combustion engine (ICE. The main purpose of the calibration is to determine input parameters of the simulation model in such a way as to achieve the smallest difference between the results of the measurements and the results of the numerical simulations with minimum consumption of the computing time. An innovative calibration methodology is based on a novel interaction between optimization methods and physically based methods of the selected ICE sub-systems. Therein physically based methods were used for steering the division of the integral ICE to several sub-models and for determining parameters of selected components considering their governing equations. Innovative multistage interaction between optimization methods and physically based methods allows, unlike the use of well-established methods that rely only on the optimization techniques, for successful calibration of a large number of input parameters with low time consumption. Therefore, the proposed method is suitable for efficient calibration of simulation models of advanced ICEs.

  17. Benchmarking sample preparation/digestion protocols reveals tube-gel being a fast and repeatable method for quantitative proteomics.

    Science.gov (United States)

    Muller, Leslie; Fornecker, Luc; Van Dorsselaer, Alain; Cianférani, Sarah; Carapito, Christine

    2016-12-01

    Sample preparation, typically by in-solution or in-gel approaches, has a strong influence on the accuracy and robustness of quantitative proteomics workflows. The major benefit of in-gel procedures is their compatibility with detergents (such as SDS) for protein solubilization. However, SDS-PAGE is a time-consuming approach. Tube-gel (TG) preparation circumvents this drawback as it involves directly trapping the sample in a polyacrylamide gel matrix without electrophoresis. We report here the first global label-free quantitative comparison between TG, stacking gel (SG), and basic liquid digestion (LD). A series of UPS1 standard mixtures (at 0.5, 1, 2.5, 5, 10, and 25 fmol) were spiked in a complex yeast lysate background. TG preparation allowed more yeast proteins to be identified than did the SG and LD approaches, with mean numbers of 1979, 1788, and 1323 proteins identified, respectively. Furthermore, the TG method proved equivalent to SG and superior to LD in terms of the repeatability of the subsequent experiments, with mean CV for yeast protein label-free quantifications of 7, 9, and 10%. Finally, known variant UPS1 proteins were successfully detected in the TG-prepared sample within a complex background with high sensitivity. All the data from this study are accessible on ProteomeXchange (PXD003841). © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. A novel method of estimating dose responses for polymer gels using texture analysis of scanning electron microscopy images.

    Directory of Open Access Journals (Sweden)

    Cheng-Ting Shih

    Full Text Available Polymer gels are regarded as a potential dosimeter for independent validation of absorbed doses in clinical radiotherapy. Several imaging modalities have been used to convert radiation-induced polymerization to absorbed doses from a macro-scale viewpoint. This study developed a novel dose conversion mechanism by texture analysis of scanning electron microscopy (SEM images. The modified N-isopropyl-acrylamide (NIPAM gels were prepared under normoxic conditions, and were administered radiation doses from 5 to 20 Gy. After freeze drying, the gel samples were sliced for SEM scanning with 50×, 500×, and 3500× magnifications. Four texture indices were calculated based on the gray level co-occurrence matrix (GLCM. The results showed that entropy and homogeneity were more suitable than contrast and energy as dose indices for higher linearity and sensitivity of the dose response curves. After parameter optimization, an R (2 value of 0.993 can be achieved for homogeneity using 500× magnified SEM images with 27 pixel offsets and no outlier exclusion. For dose verification, the percentage errors between the prescribed dose and the measured dose for 5, 10, 15, and 20 Gy were -7.60%, 5.80%, 2.53%, and -0.95%, respectively. We conclude that texture analysis can be applied to the SEM images of gel dosimeters to accurately convert micro-scale structural features to absorbed doses. The proposed method may extend the feasibility of applying gel dosimeters in the fields of diagnostic radiology and radiation protection.

  19. The structural studies of aluminosilicate gels and thin films synthesized by the sol-gel method using different Al2O3 and SiO2 precursors

    Directory of Open Access Journals (Sweden)

    Adamczyk Anna

    2015-12-01

    Full Text Available Aluminosilicate materials were obtained by sol-gel method, using different Al2O3 and SiO2 precursors in order to prepare sols based on water and organic solvents. As SiO2 precursors, Aerosil 200TM and tetraethoxysilane TEOS: Si(OC2H54 were applied, while DisperalTM and aluminium secondary butoxide ATSB: Al(OC4H93 were used for Al2O3 ones. Bulk samples were obtained by heating gels at 500 °C, 850 °C and at 1150 °C in air, while thin films were synthesized on carbon, steel and alundum (representing porous ceramics substrates by the dip coating method. Thin films were annealed in air (steel and alundum and in argon (carbon at different temperatures, depending on the substrate type. The samples were synthesized as gels and coatings of the composition corresponding the that of 3Al2O3·2SiO2 mullite because of the specific valuable properties of this material. The structure of the annealed bulk samples and coatings was studied by FT-IR spectroscopy and XRD method (in standard and GID configurations. Additionally, the electron microscopy (SEM together with EDS microanalysis were applied to describe the morphology and the chemical composition of thin films. The analysis of FT-IR spectra and X-ray diffraction patterns of bulk samples revealed the presence of γ-Al2O3 and δ-Al2O3 phases, together with the small amount of SiO2 in the particulate samples. This observation was confirmed by the bands due to vibrations of Al–O bonds occurring in γ-Al2O3 and δ-Al2O3 structures, in the range of 400 to 900 cm−1. The same phases (γ-Al2O3 and δ-Al2O were observed in the deposited coatings, but the presence of particulate ones strongly depended on the type of Al2O3 and SiO2 precursor and on the heat treatment temperature. All thin films contained considerable amounts of amorphous phase.

  20. Porous MnO2 prepared by sol-gel method for electrochemical supercapacitor

    Science.gov (United States)

    Bazzi, K.; Kumar, A.; Jayakumar, O. D.; Nazri, G. A.; Naik, V. M.; Naik, R.

    2015-03-01

    MnO2 has attracted great attention as material for electrochemical pseudocapacitor due to its high theoretical specific faradic capacitance (~ 1370 F .g-1) , environmental friendliness and wide potential window in both aqueous and nonaqueous electrolytes. However, the MnO2 has a low surface area which depresses its electrochemical performance. The amorphous α-MnO2 composite was synthesized by sol gel method in the presence of the tri-block copolymer P123. Our aim is to investigate the role of P123 on the electrochemical performance of MnO2. The samples with and without P123 were prepared and characterized by x-ray diffraction (XRD), SEM, TEM and Brunauer-Emmett-Teller (BET) method. The electrochemical performances of the amorphous MnO2 composites as the electrode materials for supercapacitors were evaluated by cyclic voltammetry and AC impedance measurements in a 1M Na2SO4 solution. The results show that the sample prepared without P123 exhibited a relatively low specific capacitance of 28F .g-1, whereas the porous MnO2 prepared with P123 exhibited 117 F .g-1at 5 mV/s. The results of crystalline MnO2 composites will also be presented. The authors acknowledge the support from the Richard J. Barber Foundation for Interdisciplinary Research.

  1. Doped indium nitride thin film by sol-gel spin coating method

    Science.gov (United States)

    Lee, Hui San; Ng, Sha Shiong; Yam, Fong Kwong

    2017-12-01

    In this study, magnesium doped indium nitride (InN:Mg) thin films grown on silicon (100) substrate were prepared via sol-gel spin coating method followed by nitridation process. A custom-made tube furnace was used to perform the nitridation process. Through this method, the low dissociation temperature issue of InN:Mg thin films can be solved. The deposited InN:Mg thin films were investigated using various techniques. The X-rays diffraction results revealed that two intense diffraction peaks correspond to wurtzite structure InN (100), and InN (101) were observed at 29° and 33.1° respectively. Field emission scanning electron microscopy images showed that the surface of the films exhibits densely packed grains. The elemental composition of the deposited thin films was analyzed using energy dispersive X-rays spectroscopy. The detected atomic percentages for In, N, and Mg were 43.22 %, 3.28 %, and 0.61 % respectively. The Raman spectra showed two Raman- and infrared-active modes of E2 (High) and A1 (LO) of the wurtzite InN. The band gap obtained from the Tauc plot showed around 1.74 eV. Lastly, the average surface roughness measured by AFM was around 0.133 µm.

  2. Synthesis of the lithium metatitanate, Li2TiO3, by the modified combustion method

    International Nuclear Information System (INIS)

    Cruz, D.; Bulbulian, S.; Pfeiffer, H.

    2005-01-01

    A modified combustion method to obtain Li 2 TiO 3 it was used, a compound to be used in fusion reactors like tritium generator material. To obtain Li 2 TiO 3 were proven different molar ratios of lithium hydroxide (LiOH), titanium oxide (TiO 2 ) and urea (CO(NH 2 ) 2 ), as well as different heating temperatures (550, 650 and 750 C). The characterization of the products it was carried out using X-ray diffraction, Scanning electron microscopy and Thermal gravimetric analysis. The sample prepared with a molar ratio Li: Ti: urea = 2.75: 1: 3 was the one that presented as only product the Li 2 TiO 3 . The particle size and the morphology found in the Li 2 TiO 3 , showed similar particle size and morphology to the TiO 2 used as precursor. (Author)

  3. Optimization and analysis of large chemical kinetic mechanisms using the solution mapping method - Combustion of methane

    Science.gov (United States)

    Frenklach, Michael; Wang, Hai; Rabinowitz, Martin J.

    1992-01-01

    A method of systematic optimization, solution mapping, as applied to a large-scale dynamic model is presented. The basis of the technique is parameterization of model responses in terms of model parameters by simple algebraic expressions. These expressions are obtained by computer experiments arranged in a factorial design. The developed parameterized responses are then used in a joint multiparameter multidata-set optimization. A brief review of the mathematical background of the technique is given. The concept of active parameters is discussed. The technique is applied to determine an optimum set of parameters for a methane combustion mechanism. Five independent responses - comprising ignition delay times, pre-ignition methyl radical concentration profiles, and laminar premixed flame velocities - were optimized with respect to thirteen reaction rate parameters. The numerical predictions of the optimized model are compared to those computed with several recent literature mechanisms. The utility of the solution mapping technique in situations where the optimum is not unique is also demonstrated.

  4. Solution combustion method for synthesis of nanostructured hydroxyapatite, fluorapatite and chlorapatite

    Science.gov (United States)

    Zhao, Junjie; Dong, Xiaochen; Bian, Mengmeng; Zhao, Junfeng; Zhang, Yao; Sun, Yue; Chen, JianHua; Wang, XuHong

    2014-09-01

    Hydroxyapatite (HAP), fluorapatite (Fap) and chlorapatite (Clap) were prepared by solution combustion method with further annealing at 800 °C. The characterization and structural features of the synthesized powders were evaluated by the powder X-ray diffraction (XRD, Fourier transform infrared spectroscopy (FT-IR), scanning electron microscope (SEM) and transmission electron microscopy (TEM) techniques. Characterization results from XRD and Rietveld analysis revealed that OH- in the HAP lattice were gradually substituted with the increase of F- and Cl- content and totally substituted at the molar concentration of 0.28 and 0.6, respectively. The results from FI-IR have also confirmed the incorporation of substituted anions in the apatite structure.

  5. Development of durable self-cleaning coatings using organic–inorganic hybrid sol–gel method

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Divya [School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore); Wu, Xinghua [School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore); Energy Research Institute at NTU - ERI@N, 1 CleanTech Loop, #06-04, CleanTech One, Singapore 637141 (Singapore); Fu, Qitao [School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore); Ho, Jeffrey Weng Chye [School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore); Energy Research Institute at NTU - ERI@N, 1 CleanTech Loop, #06-04, CleanTech One, Singapore 637141 (Singapore); Kanhere, Pushkar D. [Energy Research Institute at NTU - ERI@N, 1 CleanTech Loop, #06-04, CleanTech One, Singapore 637141 (Singapore); Li, Lin [School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore); Chen, Zhong, E-mail: ASZChen@ntu.edu.sg [School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore); Energy Research Institute at NTU - ERI@N, 1 CleanTech Loop, #06-04, CleanTech One, Singapore 637141 (Singapore)

    2015-07-30

    Highlights: • A facile method to produce sol–gel based self-cleaning coatings is described. • Effect of filler size and content is evaluated via contact angle, sliding angle, and surface morphology. • Coating with 15 wt.% nano-sized silica fillers exhibits the best self-cleaning performance. • The coatings are resistant to UV radiation and retain the functionality after the abrasion test. • A self-cleaning test and scheme to quantify the self-cleaning efficiency are described in this work. - Abstract: Self-cleaning coatings with excellent water-repellence and good mechanical properties are in high demand. However, producing such coatings with resistance to mechanical abrasion and environmental weathering remains a key challenge. Mechanically robust coatings based on tetraethylorthosilicate (TEOS) and glycidoxypropyltriethoxysilane (Glymo) have been prepared using a sol–gel method. Emphasis is given to the addition of Glymo, an epoxy silane which creates an organic matrix that blends with the inorganic Si−O−Si matrix formed from the TEOS. The combination of the blended matrix produced coatings with good adhesion to substrates and improved mechanical properties. Fluoroalkylsilane (FAS) and silica fillers were introduced to increase the hydrophobicity of the coating. It was found that the water contact angle (CA) of these coatings increases from 115° to 164° upon decreasing filler size from 1–5 μm to 10–20 nm. The sliding angle (SA) for coatings with 15 wt.% loading of 10–20 nm silica is around 2°. UV weathering does not show significant effect on the properties of the coatings. Mechanical properties and performances including hardness, Young's modulus, coating adhesion and abrasion resistance were systematically analyzed. In the current work, a simple self-cleaning test, which measures the extent of dirt accumulation and subsequent removal by water spray, was performed. The coatings with 15 wt.% loading of 10–20 nm silica particles

  6. Morphology evolution of ZrB2 nanoparticles synthesized by sol-gel method

    International Nuclear Information System (INIS)

    Zhang Yun; Li Ruixing; Jiang Yanshan; Zhao Bin; Duan Huiping; Li Junping; Feng Zhihai

    2011-01-01

    Zirconium diboride (ZrB 2 ) nanoparticles were synthesized by sol-gel method using zirconium n-propoxide (Zr(OPr) 4 ), boric acid (H 3 BO 3 ), sucrose (C 12 H 22 O 11 ), and acetic acid (AcOH). Clearly, it was a non-aqueous solution system at the very beginning of the reactions. Here, AcOH was used as both chemical modifier and solvent to control Zr(OPr) 4 hydrolysis. Actually, AcOH could dominate the hydrolysis by self-produced water of the chemical propulsion, rather than the help of outer water. C 12 H 22 O 11 was selected, since it can be completely decomposed to carbon. Thus, carbon might be accounted precisely for the carbothermal reduction reaction. Furthermore, we investigated the influence of the gelation temperature on the morphology of ZrB 2 particles. Increasing the gelation temperature, the particle shapes changed from sphere-like particles at 65 deg. C to a particle chain at 75 deg. C, and then form rod-like particles at 85 deg. C. An in-depth HRTEM observation revealed that the nanoparticles of ZrB 2 were gradually fused together to evolve into a particle chain, finally into a rod-like shape. These crystalline nature of ZrB 2 related to the gelation temperature obeyed the 'oriented attachment mechanism' of crystallography. - Graphical Abstract: Increasing the gelation temperature, the particle shapes changed from sphere-like particles at 65 deg. C to a particle chain at 75 deg. C, and then form rod-like particles at 85 deg. C. Highlights: → ZrB 2 nanoparticles were synthesized by sol-gel method in an non-aqueous solution system. → AcOH was used as both chemical modifier and solvent to control Zr(OPr) 4 hydrolysis. → C 12 H 22 O 11 was selected since it can be completely decomposed to carbon. → Increasing the gelation temperature, the particles changed from sphere-like to rod-like ones. → Crystalline nature of ZrB 2 obeyed the 'oriented attachment mechanism' of crystallography.

  7. Modelling of Non-Premixed Turbulent Combustion of Hydrogen using Conditional Moment Closure Method

    International Nuclear Information System (INIS)

    Noor, M M; Hairuddin, A Aziz; Wandel, Andrew P; Yusaf, T F

    2012-01-01

    Most of the electricity generation and energy for transport is still generated by the conversion of chemical to mechanical energy by burning the fuels in the combustion chamber. Regulation for pollution and the demand for more fuel economy had driven worldwide researcher to focus on combustion efficiency. In order to reduce experimental cost, accurate modelling and simulation is very critical step. Taylor series expansion was utilised to reduce the error term for the discretization. FORTRAN code was used to execute the discretized partial differential equation. Hydrogen combustion was simulated using Conditional Moment Closure (CMC) model. Combustion of hydrogen with oxygen was successfully simulated and reported in this paper.

  8. COMPARATIVE ANALYSIS OF BLOOD GROUPING IN HEALTHY BLOOD DONOR USING GEL CARD TECHNIQUE AND TUBE METHOD

    Directory of Open Access Journals (Sweden)

    Muhammad Usman

    2016-12-01

    Full Text Available Blood grouping is a vital test in pre-transfusion testing. Both tube and gel agglutination assays are used for ABO grouping. The main object of this study was to compare ABO grouping and D typing on tube and gel agglutination assay in order to assess the efficacy of each technique. A total of 100 healthy blood donors irrespective of age and sex were included in this study. Results showed that there is no significant difference between these two techniques. However, in 10 samples it was detected that the reaction strength in serum ABO grouping by gel agglutination assay is varied by only one grade when compared to tube agglutination assay. Due to numerous positive effects of gel assay it is more beneficial to implement this technique in the setups where blood banks bear heavy routine work load.

  9. Synthesis of yttrium silicate luminescent materials by sol-gel method

    International Nuclear Information System (INIS)

    Arkhipov, D.V.; Vasina, O.Yu.; Popovich, N.V.; Galaktionov, S.S.; Soshchin, N.P.

    1996-01-01

    Several yttrium-silicate composition with Y 2 O 3 content within 44-56% have been synthesized. it is ascertained that employment of sol-gel technique permits preparation of luminescent materials on yttrium silicate basis, which compare favourably with bath-produced specimens. The influence of phase composition of sol-gel phosphors on basic performance indices: intensity and luminescence spectrum, has been analyzed

  10. Determination of mercury in ash and soil samples by oxygen flask combustion method-Cold vapor atomic fluorescence spectrometry (CVAFS)

    International Nuclear Information System (INIS)

    Geng Wenhua; Nakajima, Tsunenori; Takanashi, Hirokazu; Ohki, Akira

    2008-01-01

    A simple method was developed for the determination of mercury (Hg) in coal fly ash (CFA), waste incineration ash (WIA), and soil by use of oxygen flask combustion (OFC) followed by cold vapor atomic fluorescence spectrometry (CVAFS). A KMnO 4 solution was used as an absorbent in the OFC method, and the sample containing a combustion agent and an ash or soil sample was combusted by the OFC method. By use of Hg-free graphite as the combustion agent, the determination of Hg in ash and soil was successfully carried out; the Hg-free graphite was prepared by use of a mild pyrolysis procedure at 500 deg. C. For six certified reference materials (three CFA samples and three soil samples), the values of Hg obtained by this method were in good agreement with the certified or reference values. In addition, real samples including nine CFAs collected from some coal-fired power plants, five WIAs collected from waste incineration plants, and two soils were analyzed by the present method, and the data were compared to those from microwave-acid digestion (MW-AD) method

  11. A new method to quantify fluidized bed agglomeration in the combustion of biomass fuels

    Energy Technology Data Exchange (ETDEWEB)

    Oehman, M. [Umeaa Univ. (Sweden). Dept. of Chemistry

    1997-12-31

    The present licentiate thesis is a summary and discussion of four papers, dealing with the development, evaluation and use of a new method to quantify bed agglomeration tendencies for biomass fuels. An increased utilization of biomass related fuels has many environmental benefits, but also requires careful studies of potential new problems associated with these fuels such as bed agglomeration/defluidization during combustion and gasification in fluidized beds. From a thorough literature survey, no suitable methods to determine bed agglomeration tendencies of different fuels, fuel combinations or fuels with additives appeared to be available. It therefore seemed of considerable interest to develop a new method for the quantification of fluidized bed agglomeration tendencies for different fuels. A bench scale fluidized bed reactor (5 kW), specially designed to obtain a homogeneous isothermal bed temperature, is used. The method is based on controlled increase of the bed temperature by applying external heat to the primary air and to the bed section walls. The initial agglomeration temperature is determined by on- or off-line principal component analysis of the variations in measured bed temperatures and differential pressures. Samples of ash and bed material for evaluation of agglomeration mechanisms may also be collected throughout the operation. To determine potential effects of all the process related variables on the determined fuel specific bed agglomeration temperature, an extensive sensitivity analysis was performed according to a statistical experimental design. The results showed that the process variables had only relatively small effects on the agglomeration temperature, which could be determined to 899 deg C with a reproducibility of {+-} 5 deg C (STD). The inaccuracy was determined to be {+-} 30 deg C (STD). The method was also used to study the mechanism of both bed agglomeration using two biomass fuels and prevention of bed agglomeration by co-combustion

  12. Biodiesel production using alkali earth metal oxides catalysts synthesized by sol-gel method

    Directory of Open Access Journals (Sweden)

    Majid Mohadesi

    2014-03-01

    Full Text Available Biodiesel fuel is considered as an alternative to diesel fuel. This fuel is produced through transesterification reactions of vegetable oils or animal fat by alcohols in the presence of different catalysts. Recent studies on this process have shown that, basic heterogeneous catalysts have a higher performance than other catalysts. In this study different alkali earth metal oxides (CaO, MgO and BaO doped SiO2 were used as catalyst for the biodiesel production process. These catalysts were synthesis by using the sol-gel method. A transesterification reaction was studied after 8h by mixing corn oil, methanol (methanol to oil molar ratio of 16:1, and 6 wt. % catalyst (based on oil at 60oC and 600rpm. Catalyst loading was studied for different catalysts ranging in amounts from 40, 60 to 80%. The purity and yield of the produced biodiesel for 60% CaO/SiO2 was higher than other catalysts and at 97.3% and 82.1%, respectively.

  13. Synthesis and Characterization of ZNO/MN Nanocomposite by using Sol-Gel Method

    Science.gov (United States)

    Ningsih, S. K. W.; Bahrizal, B.; Nasra, E.; Nizar, U. K.; Farisya, R.

    2018-04-01

    Zink oxide doped Mn nanocomposites were synthesized by simple sol-gel method at low temperature by using combination of aquadest with methanol as the solvent and ethylene glycol as the additive. Zink acetate dehydrate and manganese chloride tetrahydrate were used as the precursors. Composition dopants were 1,3,5,and 7%. The crystals were formed by drying at 110°C for 1 hour, after which they were heated at ± 500°C for 2 hours. The as-prepared ZnO/Mn nanocomposites were characterized by X-ray diffraction (XRD) and UV Diffuse Reflectance Spectrometer (UVDRS). The XRD patterns of the ZnO nanocrystals showed that they are mostly hexagonal wurtzite with specific peaks at 2θ = 31, 34, 36, 47, 56, 63, 66 dan 69. The sizes of the ZnO doped Mn particles produced with 1%, 3%, 5% and 7% were18-95; 17-87; 18-96 19-98 nm, respectively. UVDRS analysis showed that the band gap of the ZnO were 2,60; 2,90; 2,99 dan 3,01 eV for 1%, 3%, 5% and 7% Mn respectively.

  14. Structural and multiferroic properties of barium substituted bismuth ferrite nanocrystallites prepared by sol–gel method

    International Nuclear Information System (INIS)

    Anju; Agarwal, Ashish; Aghamkar, Praveen; Lal, Bhajan

    2017-01-01

    Nanocrystalline Bi 1-x Ba x FeO 3 (0≤x≤0.3) multiferroics were efficiently obtained by sol–gel method after sintering at 800 °C for one hour. The Ba substitution in BiFeO 3 (BFO) strongly modifies its structural and multiferroic properties. XRD studies revealed the structural transition from distorted rhombohedral (R3c) to pseudo-cubic (Pm3m) crystal symmetry. The magnetization increases appreciably for x=0.1, which is due to spin canting of magnetic moments at the nanoparticle surfaces and decreases afterward. From the temperature dependent magnetization studies, it is found that magnetic transition temperature (T N ) is 620 K for x=0 and 640 K for x=0.1. Besides, the maximum polarisation value decreases with increasing Ba content. SEM micrographs revealed the formation of cubic nanocrystallites with increased porosity on Ba substitution. FTIR analysis of the samples also supports the structural change towards increased crystal symmetry. - Highlights: • XRD studies revealed the structural transition from distorted rhombohedral (R3c) to pseudo-cubic (Pm3m) crystal symmetry. • The magnetization increases appreciably for x=0.1 and decreases afterward for higher Ba content. • Magnetic transition temperature (T N ) is found to be 620 K for x=0 and 640 K for x=0.1. • Maximum polarisation value is highest for x=0.1.

  15. Vapour-phase method in the synthesis of polymer-ibuprofen sodium-silica gel composites.

    Science.gov (United States)

    Kierys, Agnieszka; Krasucka, Patrycja; Grochowicz, Marta

    2017-11-01

    The study discusses the synthesis of polymer-silica composites comprising water soluble drug (ibuprofen sodium, IBS). The polymers selected for this study were poly(TRIM) and poly(HEMA- co -TRIM) produced in the form of permanently porous beads via the suspension-emulsion polymerization method. The acid and base set ternary composites were prepared by the saturation of the solid dispersions of drug (poly(TRIM)-IBS and/or poly(HEMA- co -TRIM)-IBS) with TEOS, and followed by their exposition to the vapour mixture of water and ammonia, or water and hydrochloric acid, at autogenous pressure. The conducted analyses reveal that the internal structure and total porosity of the resulting composites strongly depend on the catalyst which was used for silica precursor gelation. The parameters characterizing the porosity of both of the acid set composites are much lower than the parameters of the base set composites. Moreover, the basic catalyst supplied in the vapour phase does not affect the ibuprofen sodium molecules, whereas the acid one causes transformation of the ibuprofen sodium into the sodium chloride and a derivative of propanoic acid, which is poorly water soluble. The release profiles of ibuprofen sodium from composites demonstrate that there are differences in the rate and efficiency of drug desorption from them. They are mainly affected by the chemical character of the polymeric carrier but are also associated with the restricted swelling of the composites in the buffer solution after precipitation of silica gel.

  16. Synthesis of hydroxyapatite nanoparticles from egg shells by sol-gel method

    Science.gov (United States)

    Azis, Y.; Adrian, M.; Alfarisi, C. D.; Khairat; Sri, R. M.

    2018-04-01

    Hydroxyapatite, [Ca10(PO4)6(OH)2, (HAp)] is widely used in medical fields especially as a bone and teeth substitute. Hydroxyapatite nanoparticles have been succesfully synthesized from egg shells as a source of calcium by using sol-gel method. The egg shells were calcined, hydrated (slaking) and undergone carbonation to form Precipitated Calcium Carbonate (PCC).Then the PCC was added (NH4)2HPO4 to form HAp with variation the mole ratio Ca and P (1.57; 1.67 and 1.77), aging time (24, 48, and 72 hr) and under basic condition pH (9, 10 and 11). The formation of hydroxyapatite biomaterial was characterized using XRD, FTIR, SEM-EDX. The XRD patterns showed that the products were hydroxyapatite crystals. The best result was obtained at 24 hr aging time, pH 9 with hexagonal structure of hydroxyapatite. Particle size of HAp was 35-54 nm and the morphology of hydroxyapatite observed using SEM, it showed that the uniformity crystal of hydroxyapatite.

  17. Model creation of moving redox reaction boundary in agarose gel electrophoresis by traditional potassium permanganate method.

    Science.gov (United States)

    Xie, Hai-Yang; Liu, Qian; Li, Jia-Hao; Fan, Liu-Yin; Cao, Cheng-Xi

    2013-02-21

    A novel moving redox reaction boundary (MRRB) model was developed for studying electrophoretic behaviors of analytes involving redox reaction on the principle of moving reaction boundary (MRB). Traditional potassium permanganate method was used to create the boundary model in agarose gel electrophoresis because of the rapid reaction rate associated with MnO(4)(-) ions and Fe(2+) ions. MRB velocity equation was proposed to describe the general functional relationship between velocity of moving redox reaction boundary (V(MRRB)) and concentration of reactant, and can be extrapolated to similar MRB techniques. Parameters affecting the redox reaction boundary were investigated in detail. Under the selected conditions, good linear relationship between boundary movement distance and time were obtained. The potential application of MRRB in electromigration redox reaction titration was performed in two different concentration levels. The precision of the V(MRRB) was studied and the relative standard deviations were below 8.1%, illustrating the good repeatability achieved in this experiment. The proposed MRRB model enriches the MRB theory and also provides a feasible realization of manual control of redox reaction process in electrophoretic analysis.

  18. Vapour-phase method in the synthesis of polymer-ibuprofen sodium-silica gel composites

    Directory of Open Access Journals (Sweden)

    Agnieszka Kierys

    2017-11-01

    Full Text Available The study discusses the synthesis of polymer-silica composites comprising water soluble drug (ibuprofen sodium, IBS. The polymers selected for this study were poly(TRIM and poly(HEMA-co-TRIM produced in the form of permanently porous beads via the suspension-emulsion polymerization method. The acid and base set ternary composites were prepared by the saturation of the solid dispersions of drug (poly(TRIM-IBS and/or poly(HEMA-co-TRIM-IBS with TEOS, and followed by their exposition to the vapour mixture of water and ammonia, or water and hydrochloric acid, at autogenous pressure. The conducted analyses reveal that the internal structure and total porosity of the resulting composites strongly depend on the catalyst which was used for silica precursor gelation. The parameters characterizing the porosity of both of the acid set composites are much lower than the parameters of the base set composites. Moreover, the basic catalyst supplied in the vapour phase does not affect the ibuprofen sodium molecules, whereas the acid one causes transformation of the ibuprofen sodium into the sodium chloride and a derivative of propanoic acid, which is poorly water soluble. The release profiles of ibuprofen sodium from composites demonstrate that there are differences in the rate and efficiency of drug desorption from them. They are mainly affected by the chemical character of the polymeric carrier but are also associated with the restricted swelling of the composites in the buffer solution after precipitation of silica gel.

  19. Fabrication and Optical Characterization of Zinc Oxide Nanoparticles Prepared via a Simple Sol-gel Method

    Directory of Open Access Journals (Sweden)

    K. Hedayati

    2015-10-01

    Full Text Available In this research zinc oxide (ZnO nano-crystalline powders were prepared by sol-gel method using zinc acetate. The ZnO nanoparticles were characterized by X-ray diffraction (XRD, scanning electron microscopy (SEM, ultraviolet-visible (UV-Vis, Fourier transform infra-red (FT-IR and energy dispersive X-ray (EDX spectroscopy. The structure of nanoparticles was studied using XRD pattern. The crystallite size of ZnO nanoparticles was calculated by Debye–Scherrer formula. Morphology of nano-crystals was observed and investigated using the SEM. The grain size of zinc oxide nanoparticles were in suitable agreement with the crystalline size calculated by XRD results. The optical properties of particles were studied with UV-Vis an FTIR absorption spectrum. The Raman spectrum measurements were carried out using a micro-laser Raman spectrometer forms the ZnO nanoparticles. At the end studied the effect of calcined temperature on the photoluminescence (PL emission of ZnO nanoparticles.

  20. Fabrication and characterization of Zinc Oxide (ZnO) nanoparticle by sol-gel method

    International Nuclear Information System (INIS)

    Siswanto; Akwalia, Putri Riski; Rochman, Nurul T.

    2017-01-01

    Currently, nanomaterial is an interestingfield of study. This is due to its chemical and physical properties that are superior to that of large-sized materials. One nanomaterial widely studied is zinc oxide (ZnO). In this study, a synthesis of ZnO nanoparticles made by Sol-Gel method was conducted. The process parameters used are variations in pH, in increasing order, of 7; 8; 9; 10; 11; and 12. There are two principal reactions to produce a compound oxide, namely hydrolysis and condensation. NaOH is an agent for the hydrolysis of (CH 3 COO) 2 Zn resultingin Zn (OH) 2 . Subsequently, condensation produces ZnO. Calcination was carried out at a temperature of 80 ° C for 1 hour. The ccharacterization of the samples showed that the condition of pH 12 produced the best sample with a size of 73.8 nm and ZnO percentage of 100%. Although pH 7 produced a particle size of 1.3 nm, the percentage of ZnO formed was only 42.9%. The calcination process was performed to remove CH 3 COONa. However, the process can lead to aggregation of ZnO particles to each other, which increases the particle size. (paper)

  1. Synthesis and characterization of Cr2O3 nanoparticles through sol-gel proteic method

    International Nuclear Information System (INIS)

    Medeiros, Angela Maria de Lemos

    2007-01-01

    In the last years, nanoparticles have becoming important to several researchers. This research reside in the fact that new and uncommon physical and chemical properties, absent in the same material in macro and microscopic size, are observed in this new scale. The subject of this study is obtaining chromium oxide nanoparticles (Cr 2 O 3 ) by sol–gel proteic process using gelatin as an organic precursor. This process appears as a new alternative for the synthesis of oxides for great applications with high efficiency and low cost. The interest in that material is due to the several applications such as green pigments, coverings of materials for thermal protection and mainly as catalyst of countless products originating from of the industry of the petroleum, among others. This new route, using chromium salt as chromium source, produces nanoparticles with average particle size between 20 and 60nm. These values were obtained for different crystallographic direction by means of X-Ray Diffraction (XRD) technique and the structure refinement by Rietveld method were applied in several samples prepared at different temperatures. Other techniques have been used in order to complement the XRD results. (author)

  2. Structural and multiferroic properties of barium substituted bismuth ferrite nanocrystallites prepared by sol–gel method

    Energy Technology Data Exchange (ETDEWEB)

    Anju [Materials Science Lab, Department of Physics, Chaudhary Devi Lal University, Sirsa 125055 (India); Agarwal, Ashish [Department of Applied Physics, Guru Jambheshwar University of Science & Technology, Hisar 125001 (India); Aghamkar, Praveen, E-mail: praveenaghamkar@gmail.com [Materials Science Lab, Department of Physics, Chaudhary Devi Lal University, Sirsa 125055 (India); Lal, Bhajan [Department of Applied Sciences, Goverment Polytechnic for Women, Sirsa 125055 (India)

    2017-03-15

    Nanocrystalline Bi{sub 1-x}Ba{sub x}FeO{sub 3} (0≤x≤0.3) multiferroics were efficiently obtained by sol–gel method after sintering at 800 °C for one hour. The Ba substitution in BiFeO{sub 3} (BFO) strongly modifies its structural and multiferroic properties. XRD studies revealed the structural transition from distorted rhombohedral (R3c) to pseudo-cubic (Pm3m) crystal symmetry. The magnetization increases appreciably for x=0.1, which is due to spin canting of magnetic moments at the nanoparticle surfaces and decreases afterward. From the temperature dependent magnetization studies, it is found that magnetic transition temperature (T{sub N}) is 620 K for x=0 and 640 K for x=0.1. Besides, the maximum polarisation value decreases with increasing Ba content. SEM micrographs revealed the formation of cubic nanocrystallites with increased porosity on Ba substitution. FTIR analysis of the samples also supports the structural change towards increased crystal symmetry. - Highlights: • XRD studies revealed the structural transition from distorted rhombohedral (R3c) to pseudo-cubic (Pm3m) crystal symmetry. • The magnetization increases appreciably for x=0.1 and decreases afterward for higher Ba content. • Magnetic transition temperature (T{sub N}) is found to be 620 K for x=0 and 640 K for x=0.1. • Maximum polarisation value is highest for x=0.1.

  3. Wafer scale lead zirconate titanate film preparation by sol-gel method using stress balance layer

    International Nuclear Information System (INIS)

    Lu Jian; Kobayashi, Takeshi; Yi Zhang; Maeda, Ryutaro; Mihara, Takashi

    2006-01-01

    In this paper, platinum/titanium (Pt/Ti) film was introduced as a residual stress balance layer into wafer scale thick lead zirconate titanate (PZT) film fabrication by sol-gel method. The stress developing in PZT film's bottom electrode as well as in PZT film itself during deposition were analyzed; the wafer curvatures, PZT crystallizations and PZT electric properties before and after using Pt/Ti stress balance layer were studied and compared. It was found that this layer is effective to balance the residual stress in PZT film's bottom electrode induced by thermal expansion coefficient mismatch and Ti diffusion, thus can notably reduce the curvature of 4-in. wafer from - 40.5 μm to - 12.9 μm after PZT film deposition. This stress balance layer was also found effective to avoid the PZT film cracking even when annealed by rapid thermal annealing with heating-rate up to 10.5 deg. C/s. According to X-ray diffraction analysis and electric properties characterization, crack-free uniform 1-μm-thick PZT film with preferred pervoskite (001) orientation, excellent dielectric constant, as high as 1310, and excellent remanent polarization, as high as 39.8 μC/cm 2 , can be obtained on 4-in. wafer

  4. A novel field measurement method for determining fine particle and gas emissions from residential wood combustion

    Science.gov (United States)

    Tissari, Jarkko; Hytönen, Kati; Lyyränen, Jussi; Jokiniemi, Jorma

    Emission data from residential wood combustion are usually obtained on test stands in the laboratory but these measurements do not correspond to the operational conditions in the field because of the technological boundary conditions (e.g. testing protocol, environmental and draught conditions). The field measurements take into account the habitual practice of the operators and provide the more reliable results needed for emission inventories. In this study, a workable and compact method for measuring emissions from residential wood combustion in winter conditions was developed. The emissions for fine particle, gaseous and PAH compounds as well as particle composition in real operational conditions were measured from seven different appliances. The measurement technique worked well and was evidently suitable for winter conditions. It was easy and fast to use, and no construction scaffold was needed. The dilution of the sample with the combination of a porous tube diluter and an ejector diluter was well suited to field measurement. The results indicate that the emissions of total volatile organic carbon (TVOC) (17 g kg -1 (of dry wood burned)), carbon monoxide (CO) (120 g kg -1) and fine particle mass (PM 1) (2.7 g kg -1) from the sauna stove were higher than in the other measured appliances. In the masonry heaters, baking oven and stove, the emissions were 2.9-9 g kg -1 TVOC, 28-68 g kg -1 CO and 0.6-1.6 g kg -1 PM 1. The emission of 12 PAHs (PAH 12) from the sauna stove was 164 mg kg -1 and consisted mainly of PAHs with four benzene rings in their structure. PAH 12 emission from other appliances was, on average, 21 mg kg -1 and was dominated by 2-ring PAHs. These results indicate that despite the non-optimal operational practices in the field, the emissions did not differ markedly from the laboratory measurements.

  5. Synthesis and studies of Y-Ba-Cu-O high temperature superconductor prepared by sol-gel method

    International Nuclear Information System (INIS)

    Grigoryan, S.G.; Manukyan, A.L.; Hayrapetyan, A.G.; Arzumanyan, A.M.; Rashidyan, L.H.; Mkrtichyan, N.Y.; Mkrtchyan, A.A.; Kurginyan, K.A.; Trozyan, A.H.; Vardanyan, R.S.

    2004-01-01

    The method of preparation of Y-Ba-Cu-O high temperature superconducting materials by sol-gel processing technique both for powders and thin films are described. All these methods are based on using yttrium alkoxides as precursors, which are not ready available reagents, besides the majority of these methods use copper alkoxides, which show low solubility in organic solvents, moreover they are very sensitive to hydrolysis in air. The new method of preparation of Y-Ba-Cu-O ceramic materials by sol-gel processing technique based on new and convenient precursors stable in air, having high compatibility with each other is offered. Basic scientific and technological issues related to the synthesis of bulk materials, their structure and electrical conductivity are discussed

  6. Study of hafnium (IV) oxide nanoparticles synthesized by polymerized complex and polymer precursor derived sol-gel methods

    KAUST Repository

    Ramos-Gonzá lez, R.; Garcí a-Cerda, L. A.; Alshareef, Husam N.; Gnade, Bruce E.; Quevedo-Ló pez, Manuel Angel Quevedo

    2010-01-01

    This work reports the preparation and characterization of hafnium (IV) oxide (HfO2) nanoparticles grown by derived sol-gel routes that involves the formation of an organic polymeric network. A comparison between polymerized complex (PC) and polymer precursor (PP) methods is presented. For the PC method, citric acid (CA) and ethylene glycol (EG) are used as the chelating and polymerizable reagents, respectively. In the case of PP method, poly(acrylic acid) (PAA) is used as the chelating reagent. In both cases, different precursor gels were prepared and the hafnium (IV) chloride (HfCl4) molar ratio was varied from 0.1 to 1.0 for the PC method and from 0.05 to 0.5 for the PP method. In order to obtain the nanoparticles, the precursors were heat treated at 500 and 800 °C. The thermal characterization of the precursor gels was carried out by thermogravimetric analysis (TGA) and the structural and morphological characterization by X-ray diffraction (XRD) and transmission electron microscopy (TEM). The XRD patterns of the samples obtained by both methods shows the formation of HfO2 at 500 °C with monoclinic crystalline phase. The PC method exhibited also the cubic phase. Finally, the HfO2 nanoparticles size (4 to 11 nm) was determined by TEM and XRD patterns. © (2010) Trans Tech Publications.

  7. Study of hafnium (IV) oxide nanoparticles synthesized by polymerized complex and polymer precursor derived sol-gel methods

    KAUST Repository

    Ramos-González, R.

    2010-03-01

    This work reports the preparation and characterization of hafnium (IV) oxide (HfO2) nanoparticles grown by derived sol-gel routes that involves the formation of an organic polymeric network. A comparison between polymerized complex (PC) and polymer precursor (PP) methods is presented. For the PC method, citric acid (CA) and ethylene glycol (EG) are used as the chelating and polymerizable reagents, respectively. In the case of PP method, poly(acrylic acid) (PAA) is used as the chelating reagent. In both cases, different precursor gels were prepared and the hafnium (IV) chloride (HfCl4) molar ratio was varied from 0.1 to 1.0 for the PC method and from 0.05 to 0.5 for the PP method. In order to obtain the nanoparticles, the precursors were heat treated at 500 and 800 °C. The thermal characterization of the precursor gels was carried out by thermogravimetric analysis (TGA) and the structural and morphological characterization by X-ray diffraction (XRD) and transmission electron microscopy (TEM). The XRD patterns of the samples obtained by both methods shows the formation of HfO2 at 500 °C with monoclinic crystalline phase. The PC method exhibited also the cubic phase. Finally, the HfO2 nanoparticles size (4 to 11 nm) was determined by TEM and XRD patterns. © (2010) Trans Tech Publications.

  8. Modelling of EAF off-gas post combustion in dedusting systems using CFD methods

    Energy Technology Data Exchange (ETDEWEB)

    Tang, X.; Kirschen, M.; Pfeifer, H. [Inst. for Industrial Furnaces and Heat Engineering in Metallurgy, RWTH Aachen, Aachen (Germany); Abel, M. [VAI-Fuchs GmbH, Willstaett (Germany)

    2003-04-01

    To comply with the increasingly strict environmental regulations, the poisonous off-gas species, e.g. carbon monoxide (CO), produced in the electric arc furnace (EAF) must be treated in the dedusting system. In this work, gas flow patterns of the off-gas post combustion in three different dedusting system units were simulated with a computational fluid dynamics (CFD) code: (1) post combustion in a horizontal off-gas duct, (2) post combustion in a water cooled post combustion chamber without additional energy supply (no gas or air/oxygen injectors) and (3) post combustion in a post combustion chamber with additional energy input (gas, air injectors and ignition burner, case study of VAI-Fuchs GmbH). All computational results are illustrated with gas velocity, temperature distribution and chemical species concentration fields for the above three cases. In case 1, the effect of different false air volume flow rates at the gap between EAF elbow and exhaust gas duct on the external post combustion of the off-gas was investigated. For case 2, the computed temperature and chemical composition (CO, CO{sub 2} and O{sub 2}) of the off-gas at the post chamber exit are in good agreement with additional measurements. Various operating conditions for case 3 have been studied, including different EAF off-gas temperatures and compositions, i. e. CO content, in order to optimize oxygen and burner gas flow rates. Residence time distributions in the external post combustion chambers have been calculated for cases 2 and 3. Derived temperature fields of the water cooled walls yield valuable information on thermally stressed parts of post combustion units. The results obtained in this work may also gain insight to future investigation of combustion of volatile organic components (VOC) or formation of nitrogen oxide (NO{sub x}) and permit the optimization of the operation and design of the off-gas dedusting system units. (orig.)

  9. Determination of bacterial endotoxin (pyrogen) in radiopharmaceuticals by the gel clot method. Validation; Determinacao de endotoxina bacteriana (pirogenio) em radiofarmacos pelo metodo de formacao de gel. Validacao

    Energy Technology Data Exchange (ETDEWEB)

    Fukumori, Neuza Taeko Okasaki

    2008-07-01

    Before the Limulus amebocyte lysate (LAL) test, the only available means of pirogenicity testing for parenteral drugs and medical devices was the United States Pharmacopoeia (USP) rabbit pyrogen test. Especially for radiopharmaceuticals, the LAL assay is the elective way to determine bacterial endotoxin. The aim of this work was to validate the gel clot method for some radiopharmaceuticals without measurable interference. The FDA's LALTest guideline defines interference as a condition that causes a significant difference between the endpoints of a positive water control and positive product control series using a standard endotoxin. Experiments were performed in accordance to the USP bacterial endotoxins test in the {sup 131}I- m-iodobenzylguanidine; the radioisotopes Gallium-67 and Thallium-201; the lyophilized reagents DTPA, Phytate, GHA, HSA and Colloidal Tin. The Maximum Valid Dilution (MVD) was calculated for each product based upon the clinical dose of the material and a twofold serial dilution below the MVD was performed in duplicate to detect interferences. The labeled sensitivity of the used LAL reagent was 0.125 EU mL{sup -1} (Endotoxin Units per milliliter). For validation, a dilution series was performed, a twofold dilution of control standard endotoxin (CSE) from 0.5 to 0.03 EU mL{sup -1}, to confirm the labeled sensitivity of the LAL reagent being tested in sterile and non pyrogenic water, in quadruplicate. The same dilution series was performed with the CSE and the product in the 1:100 dilution factor, in three consecutive batches of each radiopharmaceutical. The products {sup 131}I-m-iodobenzylguanidine, Gallium-67, Thallium-201, DTPA, HSA and Colloidal Tin were found compatible with the LAL test at a 1:100 dilution factor. Phytate and GHA showed some interference in the gel clot test. Other techniques to determine endotoxins as the chromogenic (color development) and the turbidimetric test (turbidity development), were also assessed to get valuable

  10. Production of Monodisperse Cerium Oxide Microspheres with Diameters near 100 µm by Internal Gelation Sol-Gel Methods

    Energy Technology Data Exchange (ETDEWEB)

    Katalenich, Jeffrey A.; Kitchen, Brian B.; Pierson, Bruce

    2018-05-01

    Internal gelation sol-gel methods have used a variety of sphere forming methods in the past to produce metal oxide microspheres, but typically with poor control over the size uniformity at diameters near 100 µm. This work describes efforts to make and measure internal gelation, sol-gel microspheres with very uniform diameters in the 100 – 200 µm size range using a two-fluid nozzle. A custom apparatus was used to form aqueous droplets of sol-gel feed solutions in silicone oil and heat them to cause gelation of the spheres. Gelled spheres were washed, dried, and sintered prior to mounting on glass slides for optical imaging and analysis. Microsphere diameters and shape factors were determined as a function of silicone oil flow rate in a two-fluid nozzle and the size of a needle dispensing the aqueous sol-gel solution. Nine batches of microspheres were analyzed and had diameters ranging from 65.5 ± 2.4 µm for the smallest needle and fastest silicone oil flow rate to 211 ± 4.7 µm for the largest needle and slowest silicone oil flow rate. Standard deviations for measured diameters were less than 8% for all samples and most were less than 4%. Microspheres had excellent circularity with measured shape factors of 0.9 – 1. However, processing of optical images was complicated by shadow effects in the photoresist layer on glass slides and by overlapping microspheres. Based on calculated flow parameters, microspheres were produced in a simple dripping mode in the two-fluid nozzle. Using flow rates consistent with a simple dripping mode in a two-fluid nozzle configuration allows for very uniform oxide microspheres to be produced using the internal-gelation sol-gel method.

  11. Preparation and studies of Co(II) and Co(III)-substituted barium ferrite prepared by sol-gel method

    International Nuclear Information System (INIS)

    Teh, Geok Bee; Nagalingam, Saravanan; Jefferson, David A.

    2007-01-01

    The sol-gel preparative method was employed to synthesise Co(II) and Co(III)-substituted barium ferrite. This method was attempted to achieve higher homogeneity of the final product. Samples of substituted ferrites were characterised by various experimental techniques including high resolution transmission electron microscopy, X-ray diffraction analysis, magnetometry and thermal gravimetric analysis. The microstructural changes induced by such substitution are also discussed

  12. Preparation and studies of Co(II) and Co(III)-substituted barium ferrite prepared by sol-gel method

    Energy Technology Data Exchange (ETDEWEB)

    Teh, Geok Bee [Department of Bioscience and Chemistry, Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, 53300 Kuala Lumpur (Malaysia)]. E-mail: tehgb@mail.utar.edu.my; Nagalingam, Saravanan [Department of Bioscience and Chemistry, Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, 53300 Kuala Lumpur (Malaysia); Jefferson, David A. [Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW (United Kingdom)

    2007-01-15

    The sol-gel preparative method was employed to synthesise Co(II) and Co(III)-substituted barium ferrite. This method was attempted to achieve higher homogeneity of the final product. Samples of substituted ferrites were characterised by various experimental techniques including high resolution transmission electron microscopy, X-ray diffraction analysis, magnetometry and thermal gravimetric analysis. The microstructural changes induced by such substitution are also discussed.

  13. Method for the typing of Clostridium difficile based on polyacrylamide gel electrophoresis of [35S]methionine-labeled proteins

    International Nuclear Information System (INIS)

    Tabaqchali, S.; O'Farrell, S.; Holland, D.; Silman, R.

    1986-01-01

    A typing method for Clostridium difficile based on the incorporation of [ 35 S]methionine into cellular proteins, their separation by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and their visualization by autoradiography is described. On analysis of the radiolabeled-protein profiles, nine distinct groups were observed (A to E and W to Z). The method, which is simple, reproducible, and readily expandable, has been applied in epidemiological studies to demonstrate cross-infection and hospital acquisition of C. difficile

  14. Method for the typing of Clostridium difficile based on polyacrylamide gel electrophoresis of (/sup 35/S)methionine-labeled proteins

    Energy Technology Data Exchange (ETDEWEB)

    Tabaqchali, S.; O' Farrell, S.; Holland, D.; Silman, R.

    1986-01-01

    A typing method for Clostridium difficile based on the incorporation of (/sup 35/S)methionine into cellular proteins, their separation by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and their visualization by autoradiography is described. On analysis of the radiolabeled-protein profiles, nine distinct groups were observed (A to E and W to Z). The method, which is simple, reproducible, and readily expandable, has been applied in epidemiological studies to demonstrate cross-infection and hospital acquisition of C. difficile.

  15. Synthesis by the Pechini method and reaction combustion for the preparation of TiO2: a comparative analysis

    International Nuclear Information System (INIS)

    Almeida, E.P.; Ribeiro, P.C.; Freitas, N.L.; Lira, H.L.; Costa, A.C.F.M. da; Kiminami, R.H.G.A.

    2009-01-01

    The aim of this work is to prepare TiO 2 powder by Pechini and combustion reaction methods. A comparative analysis between the structural and morphological results obtained by the two methods was investigated. The powders were characterized by X-ray diffractions (XRD), infrared analysis, nitrogen adsorption (BET) and particle size distribution. The results from XRD show that the powders prepared by Pechini method and by combustion reaction using aniline as fuel, present anatase as major phase and traces of rutile phase. The values of crystallite size and surface area from BET were: 30 e 44 nm; 6.2 e 4.4 m 2 /g, for the powders prepared by Pechini and combustion reaction, respectively. The values of particle size were: 21.9 e 5.3 μm, for the powders prepared by Pechini and combustion reaction, respectively. The Pechini method was more suitable to obtain powders with irregular agglomerates, in the block shape with particles bonded softly and small crystallite size. (author)

  16. A multivariate quadrature based moment method for LES based modeling of supersonic combustion

    Science.gov (United States)

    Donde, Pratik; Koo, Heeseok; Raman, Venkat

    2012-07-01

    The transported probability density function (PDF) approach is a powerful technique for large eddy simulation (LES) based modeling of scramjet combustors. In this approach, a high-dimensional transport equation for the joint composition-enthalpy PDF needs to be solved. Quadrature based approaches provide deterministic Eulerian methods for solving the joint-PDF transport equation. In this work, it is first demonstrated that the numerical errors associated with LES require special care in the development of PDF solution algorithms. The direct quadrature method of moments (DQMOM) is one quadrature-based approach developed for supersonic combustion modeling. This approach is shown to generate inconsistent evolution of the scalar moments. Further, gradient-based source terms that appear in the DQMOM transport equations are severely underpredicted in LES leading to artificial mixing of fuel and oxidizer. To overcome these numerical issues, a semi-discrete quadrature method of moments (SeQMOM) is formulated. The performance of the new technique is compared with the DQMOM approach in canonical flow configurations as well as a three-dimensional supersonic cavity stabilized flame configuration. The SeQMOM approach is shown to predict subfilter statistics accurately compared to the DQMOM approach.

  17. Ni_0_,_5Zn_0_,_5Fe_2O_3 ferrite synthesized by combustion and Pechini method for use in nanomedicine: methods evaluation

    International Nuclear Information System (INIS)

    Albuquerque, I.L.T. de; Nascimento, A.L.C.; Costa, A.C.F.M.

    2016-01-01

    The objective of this work was to synthesize the Ni0.5Zn0.5Fe2O3 ferrite by combustion reaction and Pechini method, and to evaluate structural characteristics and magnetic behavior for its use in nanomedicine. The synthesized ferrite was characterized by DRX, BET, TG and magnetic properties. According to the results of XRD, the Ni_0_,_5Zn_0_,_5Fe_2O_3 ferrite synthesized by both methods presented nano crystallite sizes, high crystallinity, surface area, stable at high temperatures and with high saturation magnetization, being higher in the ferrite synthesized by combustion reaction. Both methods produced materials that could be used in nanomedicine

  18. Improvement of fire-tube boilers calculation methods by the numerical modeling of combustion processes and heat transfer in the combustion chamber

    Science.gov (United States)

    Komarov, I. I.; Rostova, D. M.; Vegera, A. N.

    2017-11-01

    This paper presents the results of study on determination of degree and nature of influence of operating conditions of burner units and flare geometric parameters on the heat transfer in a combustion chamber of the fire-tube boilers. Change in values of the outlet gas temperature, the radiant and convective specific heat flow rate with appropriate modification of an expansion angle and a flare length was determined using Ansys CFX software package. Difference between values of total heat flow and bulk temperature of gases at the flue tube outlet calculated using the known methods for thermal calculation and defined during the mathematical simulation was determined. Shortcomings of used calculation methods based on the results of a study conducted were identified and areas for their improvement were outlined.

  19. Advanced Optical Diagnostic Methods for Describing Fuel Injection and Combustion Flowfield Phenomena

    Science.gov (United States)

    Locke, Randy J.; Hicks, Yolanda R.; Anderson, Robert C.

    2004-01-01

    Over the past decade advanced optical diagnostic techniques have evolved and matured to a point where they are now widely applied in the interrogation of high pressure combusting flows. At NASA Glenn Research Center (GRC), imaging techniques have been used successfully in on-going work to develop the next generation of commercial aircraft gas turbine combustors. This work has centered on providing a means by which researchers and designers can obtain direct visual observation and measurements of the fuel injection/mixing/combustion processes and combustor flowfield in two- and three-dimensional views at actual operational conditions. Obtaining a thorough understanding of the chemical and physical processes at the extreme operating conditions of the next generation of combustors is critical to reducing emissions and increasing fuel efficiency. To accomplish this and other tasks, the diagnostic team at GRC has designed and constructed optically accessible, high pressurer high temperature flame tubes and sectar rigs capable of optically probing the 20-60 atm flowfields of these aero-combustors. Among the techniques employed at GRC are planar laser-induced fluorescence (PLIF) for imaging molecular species as well as liquid and gaseous fuel; planar light scattering (PLS) for imaging fuel sprays and droplets; and spontaneous Raman scattering for species and temperature measurement. Using these techniques, optical measurements never before possible have been made in the actual environments of liquid fueled gas turbines. 2-D mapping of such parameters as species (e.g. OH-, NO and kerosene-based jet fuel) distribution, injector spray angle, and fuel/air distribution are just some of the measurements that are now routinely made. Optical imaging has also provided prompt feedback to researchers regarding the effects of changes in the fuel injector configuration on both combustor performance and flowfield character. Several injector design modifications and improvements have

  20. Microcontroller based instrumentation for the fuel pin preparation facility by sol-gel method

    International Nuclear Information System (INIS)

    Suhasini, B.; Prabhakar Rao, J.; Srinivas, K.C.

    2009-01-01

    The fuel pin preparation facility by Sol-Gel route has been set up at Chemistry Group at Indira Gandhi Centre for Atomic Research, Kalpakkam. Sol-Gel, a solution-gelation process involves conversion of solutions of nitrates of uranium-plutonium (at 0 deg C) into gel microspheres. To measure the exact quantities of the above solutions and to ensure their temperatures, a variety of sensors have been used at various stages in the plant. To monitor and acquire the data of process parameters used in the production and for an automated operation of the plant, a PC (master)-microcontroller (slave) based instrumentation has been developed along with acquisition software and a GU interface developed in Visual Basic. (author)

  1. Standardization of the Fricke gel dosimetry method and tridimensional dose evaluation using the magnetic resonance imaging technique

    International Nuclear Information System (INIS)

    Cavinato, Christianne Cobello

    2009-01-01

    This study standardized the method for obtaining the Fricke gel solution developed at IPEN. The results for different gel qualities used in the preparation of solutions and the influence of the gelatin concentration in the response of dosimetric solutions were compared. Type tests such as: dose response dependence, minimum and maximum detection limits, response reproducibility, among others, were carried out using different radiation types and the Optical Absorption (OA) spectrophotometry and Magnetic Resonance (MR) techniques. The useful dose ranges for Co 60 gamma radiation and 6 MeV photons are 0,4 to 30,0 Gy and 0,5 to 100,0 Gy , using OA and MR techniques, respectively. A study of ferric ions diffusion in solution was performed to determine the optimum time interval between irradiation and samples evaluation; until 2,5 hours after irradiation to obtain sharp MR images. A spherical simulator consisting of Fricke gel solution prepared with 5% by weight 270 Bloom gelatine (national quality) was developed to be used to three-dimensional dose assessment using the Magnetic Resonance Imaging (MRI) technique. The Fricke gel solution prepared with 270 Bloom gelatine, that, in addition to low cost, can be easily acquired on the national market, presents satisfactory results on the ease of handling, sensitivity, response reproducibility and consistency. The results confirm their applicability in the three-dimensional dosimetry using MRI technique. (author)

  2. Catalytic activity of acid and base with different concentration on sol-gel kinetics of silica by ultrasonic method.

    Science.gov (United States)

    Das, R K; Das, M

    2015-09-01

    The effects of both acid (acetic acid) and base (ammonia) catalysts in varying on the sol-gel synthesis of SiO2 nanoparticles using tetra ethyl ortho silicate (TEOS) as a precursor was determined by ultrasonic method. The ultrasonic velocity was received by pulsar receiver. The ultrasonic velocity in the sol and the parameter ΔT (time difference between the original pulse and first back wall echo of the sol) was varied with time of gelation. The graphs of ln[ln1/ΔT] vs ln(t), indicate two region - nonlinear region and a linear region. The time corresponds to the point at which the non-linear region change to linear region is considered as gel time for the respective solutions. Gelation time is found to be dependent on the concentration and types of catalyst and is found from the graphs based on Avrami equation. The rate of condensation is found to be faster for base catalyst. The gelation process was also characterized by viscosity measurement. Normal sol-gel process was also carried out along with the ultrasonic one to compare the effectiveness of ultrasonic. The silica gel was calcined and the powdered sample was characterized with scanning electron microscopy, energy dispersive spectra, X-ray diffractogram, and FTIR spectroscopy. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Photocatalytic degradation of methylene blue dye by zinc oxide nanoparticles obtained from precipitation and sol-gel methods.

    Science.gov (United States)

    Balcha, Abebe; Yadav, Om Prakash; Dey, Tania

    2016-12-01

    Zinc oxide (ZnO) nanoparticles were synthesized by precipitation and sol-gel methods. The aim of this study was to understand how different synthetic methods can affect the photocatalytic activity of ZnO nanoparticles. As-synthesized ZnO nanoparticles were characterized by X-ray diffraction (XRD) and UV-Visible spectroscopic techniques. XRD patterns of ZnO powders synthesized by precipitation and sol-gel methods revealed their hexagonal wurtzite structure with crystallite sizes of 30 and 28 nm, respectively. Their photocatalytic activities were evaluated by photocatalytic degradation of methylene blue, a common water pollutant, under UV radiation. The effects of operational parameters such as photocatalyst load and initial concentration of the dye on photocatalytic degradation of methylene blue were investigated. While the degradation of dye decreased over the studied dye concentration range of 20 to 100 mg/L, an optimum photocatalyst load of 250 mg/L was needed to achieve dye degradation as high as 81 and 92.5 % for ZnO prepared by precipitation and sol-gel methods, respectively. Assuming pseudo first-order reaction kinetics, this corresponded to rate constants of 8.4 × 10 -3 and 12.4 × 10 -3  min -1 , respectively. Hence, sol-gel method is preferred over precipitation method in order to achieve higher photocatalytic activity of ZnO nanostructures. Photocatalytic activity is further augmented by better choice of capping ligand for colloidal stabilization, starch being more effective than polyethylene glycol (PEG).

  4. Method of making metal oxide ceramic powders by using a combustible amino acid compound

    Science.gov (United States)

    Pederson, Larry R.; Chick, Lawrence A.; Exarhos, Gregory J.

    1992-01-01

    This invention is directed to the formation of homogeneous, aqueous precursor mixtures of at least one substantially soluble metal salt and a substantially soluble, combustible co-reactant compound, typically an amino acid. This produces, upon evaporation, a substantially homogeneous intermediate material having a total solids level which would support combustion. The homogeneous intermediate material essentially comprises highly dispersed or solvated metal constituents and the co-reactant compound. The intermediate material is quite flammable. A metal oxide powder results on ignition of the intermediate product which combusts same to produce the product powder.

  5. Numerical Methods and Turbulence Modeling for LES of Piston Engines: Impact on Flow Motion and Combustion

    Directory of Open Access Journals (Sweden)

    Misdariis A.

    2013-11-01

    Full Text Available In this article, Large Eddy Simulations (LES of Spark Ignition (SI engines are performed to evaluate the impact of the numerical set-upon the predictedflow motion and combustion process. Due to the high complexity and computational cost of such simulations, the classical set-up commonly includes “low” order numerical schemes (typically first or second-order accurate in time and space as well as simple turbulence models (such as the well known constant coefficient Smagorinsky model (Smagorinsky J. (1963 Mon. Weather Rev. 91, 99-164. The scope of this paper is to evaluate the feasibility and the potential benefits of using high precision methods for engine simulations, relying on higher order numerical methods and state-of-the-art Sub-Grid-Scale (SGS models. For this purpose, two high order convection schemes from the Two-step Taylor Galerkin (TTG family (Colin and Rudgyard (2000 J. Comput. Phys. 162, 338-371 and several SGS turbulence models, namely Dynamic Smagorinsky (Germano et al. (1991 Phys. Fluids 3, 1760-1765 and sigma (Baya Toda et al. (2010 Proc. Summer Program 2010, Stanford, Center for Turbulence Research, NASA Ames/Stanford Univ., pp. 193-202 are considered to improve the accuracy of the classically used Lax-Wendroff (LW (Lax and Wendroff (1964 Commun. Pure Appl. Math. 17, 381-398 - Smagorinsky set-up. This evaluation is performed considering two different engine configurations from IFP Energies nouvelles. The first one is the naturally aspirated four-valve spark-ignited F7P engine which benefits from an exhaustive experimental and numerical characterization. The second one, called Ecosural, is a highly supercharged spark-ignited engine. Unique realizations of engine cycles have been simulated for each set-up starting from the same initial conditions and the comparison is made with experimental and previous numerical results for the F7P configuration. For the Ecosural engine, experimental results are not available yet and only

  6. Characterization of nanocrystalline ZnO:Al films by sol-gel spin coating method

    Energy Technology Data Exchange (ETDEWEB)

    Gareso, P. L., E-mail: pgareso@gmail.com; Rauf, N., E-mail: pgareso@gmail.com; Juarlin, E., E-mail: pgareso@gmail.com [Department of Physics, Faculty of Mathematics and Natural Sciences, Hasanuddin University, Makassar 90245 (Indonesia); Sugianto,; Maddu, A. [Department of Physics, Faculty of Mathematics and Natural Sciences, Bogor Institute of Culture, IPB Bogor (Indonesia)

    2014-09-25

    Nanocrystalline ZnO films doped with aluminium by sol-gel spin coating method have been investigated using optical transmittance UV-Vis and X-ray diffraction (X-RD) measurements. ZnO films were prepared using zinc acetate dehydrate (Zn(CH{sub 3}COO){sub 2}@@‡2H{sub 2}O), ethanol, and diethanolamine (DEA) as a starting material, solvent, and stabilizer, respectively. For doped films, AlCl{sub 3} was added to the mixture. The ZnO:Al films were deposited on a transparent conductive oxide (TCO) substrate using spin coating technique at room temperature with a rate of 3000 rpm in 30 sec. The deposited films were annealed at various temperatures from 400°C to 600°C during 60 minutes. The transmittance UV-Vis measurement results showed that after annealing at 400°C, the energy band gap profile of nanocrystalline ZnO:Al film was a blue shift. This indicated that the band gap of ZnO:Al increased after annealing due to the increase of crystalline size. As the annealing temperature increased the bandgap energy was a constant. In addition to this, there was a small oscillation occurring after annealing compared to the as–grown samples. In the case of X-RD measurements, the crystalinity of the films were amorphous before annealing, and after annealing the crystalinity became enhance. Also, X-RD results showed that structure of nanocrystalline ZnO:Al films were hexagonal polycrystalline with lattice parameters are a = 3.290 Å and c = 5.2531 Å.

  7. Kinetics of the high-temperature combustion reactions of dibutylether using composite computational methods

    KAUST Repository

    Rachidi, Mariam El

    2015-01-01

    This paper investigates the high-temperature combustion kinetics of n-dibutyl ether (n-DBE), including unimolecular decomposition, H-abstraction by H, H-migration, and C{single bond}C/C{single bond}O β-scission reactions of the DBE radicals. The energetics of H-abstraction by OH radicals is also studied. All rates are determined computationally using the CBS-QB3 and G4 composite methods in conjunction with conventional transition state theory. The B3LYP/6-311++G(2df,2pd) method is used to optimize the geometries and calculate the frequencies of all reactive species and transition states for use in ChemRate. Some of the rates calculated in this study vary markedly from those obtained for similar reactions of alcohols or alkanes, particularly those pertaining to unimolecular decomposition and β-scission at the α-β C{single bond}C bond. These variations show that analogies to alkanes and alcohols are, in some cases, inappropriate means of estimating the reaction rates of ethers. This emphasizes the need to establish valid rates through computation or experimentation. Such studies are especially important given that ethers exhibit promising biofuel and fuel additive characteristics. © 2014.

  8. A method for generating reduced-order combustion mechanisms that satisfy the differential entropy inequality

    Science.gov (United States)

    Ream, Allen E.; Slattery, John C.; Cizmas, Paul G. A.

    2018-04-01

    This paper presents a new method for determining the Arrhenius parameters of a reduced chemical mechanism such that it satisfies the second law of thermodynamics. The strategy is to approximate the progress of each reaction in the reduced mechanism from the species production rates of a detailed mechanism by using a linear least squares method. A series of non-linear least squares curve fittings are then carried out to find the optimal Arrhenius parameters for each reaction. At this step, the molar rates of production are written such that they comply with a theorem that provides the sufficient conditions for satisfying the second law of thermodynamics. This methodology was used to modify the Arrhenius parameters for the Westbrook and Dryer two-step mechanism and the Peters and Williams three-step mechanism for methane combustion. Both optimized mechanisms showed good agreement with the detailed mechanism for species mole fractions and production rates of most major species. Both optimized mechanisms showed significant improvement over previous mechanisms in minor species production rate prediction. Both optimized mechanisms produced no violations of the second law of thermodynamics.

  9. Methods to evaluate cytotoxicity and immunosuppression of combustible tobacco product preparations.

    Science.gov (United States)

    Arimilli, Subhashini; Damratoski, Brad E; G L, Prasad

    2015-01-10

    Among other pathophysiological changes, chronic exposure to cigarette smoke causes inflammation and immune suppression, which have been linked to increased susceptibility of smokers to microbial infections and tumor incidence. Ex vivo suppression of receptor-mediated immune responses in human peripheral blood mononuclear cells (PBMCs) treated with smoke constituents is an attractive approach to study mechanisms and evaluate the likely long-term effects of exposure to tobacco products. Here, we optimized methods to perform ex vivo assays using PBMCs stimulated by bacterial lipopolysaccharide, a Toll-like receptor-4 ligand. The effects of whole smoke-conditioned medium (WS-CM), a combustible tobacco product preparation (TPP), and nicotine were investigated on cytokine secretion and target cell killing by PBMCs in the ex vivo assays. We show that secreted cytokines IFN-γ, TNF, IL-10, IL-6, and IL-8 and intracellular cytokines IFN-γ, TNF-α, and MIP-1α were suppressed in WS-CM-exposed PBMCs. The cytolytic function of effector PBMCs, as determined by a K562 target cell killing assay was also reduced by exposure to WS-CM; nicotine was minimally effective in these assays. In summary, we present a set of improved assays to evaluate the effects of TPPs in ex vivo assays, and these methods could be readily adapted for testing other products of interest.

  10. Synthesis of potassium sodium niobate nanostructures by hydrothermal combining with the sol-gel method

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Xianghe; Wang, Wen, E-mail: wangwen@hit.edu.cn; Ke, Hua; Rao, Jiancun; Zhou, Yu

    2016-10-15

    Graphical abstract: We prepared novel metastable perovskite K{sub 0.52}Na{sub 0.48}NbO{sub 3} microstructures with a morphotropic phase boundary (MPB) between rhombohedral and tetragonal via hydrothermal method with SDS surfactant-assist. - Highlights: • KNbO{sub 3}-type orthorhombic K{sub 1−x}Na{sub x}NbO{sub 3} nanowires were prepared by hydrothermal method. • Metastable K{sub 0.52}Na{sub 0.48}NbO{sub 3} microfingers have a morphotropic phase boundary. • Sodium dodecyl sulfate could improve the crystallinity of K{sub 0.52}Na{sub 0.48}NbO{sub 3} powders. • The Curie temperature of rhombohedral-tetragonal KNN was 555 °C. - Abstract: In this paper the K{sub 1−x}Na{sub x}NbO{sub 3}(KNN) nanostructures were synthesized by hydrothermal method using KNN gel powders as precursors. KNbO{sub 3}-type orthorhombic KNN nanowires and perovskite KNN microfingers with a morphotropic phase boundary (MPB) between rhombohedral and tetragonal characterized by X-ray diffraction and Raman spectroscopy were obtained at 190 °C and 220 °C, respectively. KNbO{sub 3}-type orthorhombic KNN nanowires had rectangular shape and the growth direction of these nanowires was [0 0 1]. The rhombohedral-tetragonal KNN microfingers were metastable, and changed the rhombohedral-tetragonal phase into the orthorhombic phase via thermal treatment at 600 °C then cooled down to room temperature. Sodium dodecyl sulfate (SDS) as surfactant was added to the hydrothermal reaction. It was found that SDS could improve the crystallinity of the rhombohedral-tetragonal K{sub 0.52}Na{sub 0.48}NbO{sub 3} and reduce the impurity effectively. The tetragonal-cubic phase transition temperature (Tc) of the rhombohedral-tetragonal powders appeared at 555 °C.

  11. Data Visualization and Feature Selection Methods in Gel-based Proteomics

    DEFF Research Database (Denmark)

    Silva, Tomé Santos; Richard, Nadege; Dias, Jorge P.

    2014-01-01

    -based proteomics, summarizing the current state of research within this field. Particular focus is given on discussing the usefulness of available multivariate analysis tools both for data visualization and feature selection purposes. Visual examples are given using a real gel-based proteomic dataset as basis....

  12. Preparation of nanocrystalline Mg4Nb2O9 by citrate gel method

    Indian Academy of Sciences (India)

    Unknown

    using potassium niobate precursor. The purpose ... ficult to maintain reaction conditions. This citrate ... of metal ions by poly functional carboxyl acids such as citric acid or ... on a water bath at 100°C a gel was formed after evaporation of water.

  13. Experimental investigations of relaxation times of gel electrolytes during polymerization by MR methods

    Czech Academy of Sciences Publication Activity Database

    Kořínek, Radim; Vondrák, J.; Bartušek, Karel; Sedlaříková, M.

    2013-01-01

    Roč. 17, č. 8 (2013), s. 2109-2114 ISSN 1432-8488 R&D Projects: GA MŠk ED0017/01/01 Institutional support: RVO:68081731 Keywords : Gel electrolyte * Relaxation times * Polarization * Nuclear magnetic resonance Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 2.234, year: 2013

  14. Nanocrystalline Ni-Zn ferrites prepared by sol-gel method

    Czech Academy of Sciences Publication Activity Database

    Popovici, M.; Savii, C.; Nižňanský, Daniel; Šubrt, Jan; Boháček, Jaroslav; Becherescu, D.; Caizer, C.; Enache, C.; Ionescu, C.

    2003-01-01

    Roč. 5, č. 1 (2003), s. 251-256 ISSN 1454-4164 R&D Projects: GA MŠk LN00A028 Institutional research plan: CEZ:AV0Z4032918 Keywords : nanostructures * sol-gel processing * XRD Subject RIV: CA - Inorganic Chemistry Impact factor: 0.996, year: 2003

  15. Synthesis of nanocrystalline TiO2 by tartarate gel method

    Indian Academy of Sciences (India)

    Unknown

    mixture of tartaric acid and TiOCl2 solution forms a gel on heating on a water bath which decomposes at higher temperatures, > 423 K. During calcination process, a black fluffy mass (foam-like) is formed which occupies large volumes of the furnace. As the temperature increases, the black mass turns to white in colour with ...

  16. Production of cerium dioxide microspheres by an internal gelation sol–gel method

    Energy Technology Data Exchange (ETDEWEB)

    Katalenich, Jeffrey A.

    2017-03-27

    An internal gelation sol-gel technique was used to prepare cerium dioxide microspheres with uniform diameters near 100 µm. In this process, chilled aqueous solutions containing cerium, hexamethylenetetramine (HMTA), and urea are transformed into a solid gel by heat addition and are subsequently washed, dried, and sintered to produce pure cerium dioxide. Cerous nitrate and ceric ammonium nitrate solutions were compared for their usefulness in microsphere production. Gelation experiments were performed with both cerous nitrate and ceric ammonium nitrate to determine desirable concentrations of cerium, HMTA, and urea in feed solutions as well as the necessary quantity of ammonium hydroxide added to cerium solutions. Analysis of the pH before and after sample gelation was found to provide a quantitative metric for optimal parameter selection along with subjective evaluations of gel qualities. The time necessary for chilled solutions to gel upon inserting into a hot water bath was determined for samples with a variety of parameters and also used to determine desirable formulations for microsphere production. A technique for choosing the optimal mixture of ceric ammonium nitrate, HMTA, and urea was determined using gelation experiments and used to produce microspheres by dispersion of the feed solution into heated silicone oil. Gelled spheres were washed to remove excess reactants and reaction products before being dried and sintered. X-ray diffraction of air-dried microspheres, sintered microspheres, and commercial CeO2 powders indicated that air-dried and sintered spheres were pure CeO2.

  17. Synthesis and characterization of high surface area nanosilica from rice husk ash by surfactant-free sol-gel method

    Czech Academy of Sciences Publication Activity Database

    Hassan, A F.; Abdelghny, A.M.; Elhadidy, Hassan; Youssef, A.M.

    2014-01-01

    Roč. 69, č. 3 (2014), 465-472 ISSN 0928-0707 R&D Projects: GA MŠk(CZ) ED1.1.00/02.0068; GA MŠk(CZ) EE2.3.20.0214 Institutional support: RVO:68081723 Keywords : Nanosilica * Rice husk * Sol-gel method * N-2 adsorption Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 1.532, year: 2014

  18. Thermoluminescence study of aluminium oxide doped germanium prepared by combustion synthesis method

    Directory of Open Access Journals (Sweden)

    Saharin Nurul Syazlin Binti

    2017-01-01

    Full Text Available The present paper reports the optimum concentration of germanium (Ge dopant in aluminium oxide (AhO3 samples prepared by combustion synthesis (CS method for thermoluminescence (TL studies. The samples were prepared at various Ge concentration i.e. 1 to 5% mol. The phase formation of un-doped and Ge-doped Al2O3 samples was determined using X-ray Diffraction (XRD. The sharp peaks present in the XRD pattern confirms the crystallinity of the samples. The samples were then exposed to 50 Gy Cobalt-60 sources (Gamma cell 220. TL glow curves were measured and recorded using a Harshaw Model 3500 TLD reader. Comparison of TL peaks were observed to obtain the best composition of Ge dopants. A simple glow curves TL peak at around 175̊C for all composition samples was observed. It was also found that the composition of aluminium oxide doped with 3.0% of germanium exhibits the highest thermoluminescence (TL intensity which is 349747.04 (a.u.

  19. Fault Diagnosis of Internal Combustion Engine Valve Clearance Using the Impact Commencement Detection Method

    Science.gov (United States)

    Jiang, Zhinong; Wang, Zijia; Zhang, Jinjie

    2017-01-01

    Internal combustion engines (ICEs) are widely used in many important fields. The valve train clearance of an ICE usually exceeds the normal value due to wear or faulty adjustment. This work aims at diagnosing the valve clearance fault based on the vibration signals measured on the engine cylinder heads. The non-stationarity of the ICE operating condition makes it difficult to obtain the nominal baseline, which is always an awkward problem for fault diagnosis. This paper overcomes the problem by inspecting the timing of valve closing impacts, of which the referenced baseline can be obtained by referencing design parameters rather than extraction during healthy conditions. To accurately detect the timing of valve closing impact from vibration signals, we carry out a new method to detect and extract the commencement of the impacts. The results of experiments conducted on a twelve-cylinder ICE test rig show that the approach is capable of extracting the commencement of valve closing impact accurately and using only one feature can give a superior monitoring of valve clearance. With the help of this technique, the valve clearance fault becomes detectable even without the comparison to the baseline, and the changing trend of the clearance could be trackable. PMID:29244722

  20. Fault Diagnosis of Internal Combustion Engine Valve Clearance Using the Impact Commencement Detection Method.

    Science.gov (United States)

    Jiang, Zhinong; Mao, Zhiwei; Wang, Zijia; Zhang, Jinjie

    2017-12-15

    Internal combustion engines (ICEs) are widely used in many important fields. The valve train clearance of an ICE usually exceeds the normal value due to wear or faulty adjustment. This work aims at diagnosing the valve clearance fault based on the vibration signals measured on the engine cylinder heads. The non-stationarity of the ICE operating condition makes it difficult to obtain the nominal baseline, which is always an awkward problem for fault diagnosis. This paper overcomes the problem by inspecting the timing of valve closing impacts, of which the referenced baseline can be obtained by referencing design parameters rather than extraction during healthy conditions. To accurately detect the timing of valve closing impact from vibration signals, we carry out a new method to detect and extract the commencement of the impacts. The results of experiments conducted on a twelve-cylinder ICE test rig show that the approach is capable of extracting the commencement of valve closing impact accurately and using only one feature can give a superior monitoring of valve clearance. With the help of this technique, the valve clearance fault becomes detectable even without the comparison to the baseline, and the changing trend of the clearance could be trackable.

  1. Determination of hexamethylene tetramine in the process solution of sol-gel method for nuclear fuel fabrication

    International Nuclear Information System (INIS)

    Ganatra, V.R.; Sawant, R.M.; Chaudhuri, N.K.; Vaidya, V.N.

    1998-01-01

    Hexamethylene tetramine (HMTA) was determined in the presence of large quantities of urea, formaldehyde and ammonium hydroxide by potentiometric titration with perchloric acid solution using an autotitrator coupled to a personal computer. This analysis is required for the process control of the sol-gel method in the production of ceramic metal oxide (e.g., oxides and mixed oxides of Th, U and Pu) microspheres using the internal gelation route. Feed solution used for preparation of microspheres contains large quantities of urea. The washings of gel microspheres produced after the internal gelation process contain urea, formaldehyde, urea-formaldehyde complex and ammonium hydroxide. The presence of these constituents in the feed solution and washings seriously interfere in the commonly used methods for the determination of HMTA. Using this method the relative standard deviation was found to be 0.27% in eleven determinations of a typical feed solution (3.0M HMTA) when the aliquots contained 75 to 125 mg of HMTA. Time required for each titration was 5-7 minutes. Feed and effluent solutions of sol-gel process were analysed. (author)

  2. Membranas híbridas basadas en estireno-metacrilato-sílice y ácido fosfowolfrámico obtenidas por sol-gel para pilas de combustible de intercambio protónico (PEMFC

    Directory of Open Access Journals (Sweden)

    Mosa, J.

    2007-10-01

    Full Text Available Contrary to internal combustion engines, proton-exchange membrane fuel cells (PEMFC used in transportation operate with zero emissions of environmental pollutants. The increase of the operation temperature in PEMFC above 100°C is a great concern for the application of this type of cells in electric vehicles. Hybrid organic-inorganic membranes with nanosized interfaces can combine the main properties of their components to meet this objective. Styrene-methacrylate-silica membranes doped with phosphotungstic acid (PWA were prepared through acid catalyzed sol-gel process and free-radical copolymerization. Additionally, sulfonation processes of aromatic rings to produce attached SO3H groups were applied to increase the proton conductivity. The effect of sulfonation degree and PWA doping on the membrane properties such as chemical and thermal stability, water uptake, ion exchange capacity, and proton conductivity were investigated. The measurement of conductivity shows a general increase with rising temperatures and with the increasing of SO3H groups density, reaching a maximum value of 3.2 10-3 S/cm at 130ºC and 100%HR.

    Comparadas con los motores de combustión interna, las pilas de combustible de intercambio de protones (PEMFC son capaces de operar sin emisiones de agentes contaminantes. El aumento de la temperatura de operación de la pila de combustible por encima de 100ºC es uno de los grandes objetivos en este campo ya que facilitaría el desarrollo comercial de los vehículos eléctricos impulsados por pilas de combustible. Las membranas híbridas orgánico-inorgánicas nanoestructuradas combinan las propiedades necesarias para este tipo de aplicación. Se obtuvieron membranas híbridas dopadas con ácido fosfowolfrámico (PWA por copolimerización radicálica a partir de alquilalcóxidos y monómeros de estireno y metacrilato, y por reacción sol-gel vía catálisis ácida. La conductividad protónica se logra realizando un proceso

  3. Preparation of nickel and Ni_3Sn nanoparticles via extension of conventional citric acid and ethylene diamine tetraacetic acid mediated sol–gel method

    International Nuclear Information System (INIS)

    Li, Pingyun; Deng, Guodong; Guo, Xiaode; Liu, Hongying; Jiang, Wei; Li, Fengsheng

    2016-01-01

    This work aims to extend the application field of sol–gel process from conventional oxides, carbides, sulfides to metallic nanocrystalline materials. Metallic ions were coordinated with chelating agents of citric acid (CA) and ethylene diamine tetraacetic acid (EDTA) in aqueous solution. Then the solutions were dried at 383 K, resulting in the formation of sol and gel. Heating treatments of dried gels were then carried out with protection of N_2 atmosphere. Ni and Ni_3Sn alloy nanoparticles were obtained by this sol–gel method in the range of 623–823 K. The as-prepared Ni and Ni_3Sn alloy nanoparticles have average grain sizes of 15 and 30 nm, and have face-centred-cubic (fcc) crystalline phase. Our results provide new insight into the application of conventional sol–gel method. - Graphical abstract: Sol–gel method is conventionally applied to prepare oxides, carbides, and sulfides. In this work, the application field of sol–gel method is extended to metallic nanoparticles. By using citric acid (CA) and ethylene diamine tetraacetic acid (EDTA) mediated sol–gel method, metallic Ni (a and c) and Ni_3Sn (b and d) alloy nanoparticles can be prepared when the heating treatments are performed under N_2 protecting atmosphere. The Ni and Ni_3Sn nanoparticles have face-centered-cubic (fcc) crystalline phase and ultrafine grain sizes. Diffraction peaks of (110) superstructure reflection plane of Ni_3Sn nanoparticles can also be observed in Figure b, which can be considered as direct evidence of formation of alloy crystalline phase by performing this sol–gel method. - Highlights: • Ni and Ni_3Sn alloy nanoparticles have been prepared by sol–gel processes. • Citric acid and ethylene diamine tetraacetic acid were applied as chelating agent. • Diffraction peak of superstructure reflection plane of Ni_3Sn was detected by XRD. • A novel strategy for preparation of alloy nanoparticles has been presented.

  4. Determination of bacterial endotoxin (pyrogen) in radiopharmaceuticals by the gel clot method. Validation; Determinacao de endotoxina bacteriana (pirogenio) em radiofarmacos pelo metodo de formacao de gel. Validacao

    Energy Technology Data Exchange (ETDEWEB)

    Fukumori, Neuza Taeko Okasaki

    2008-07-01

    Before the Limulus amebocyte lysate (LAL) test, the only available means of pirogenicity testing for parenteral drugs and medical devices was the United States Pharmacopoeia (USP) rabbit pyrogen test. Especially for radiopharmaceuticals, the LAL assay is the elective way to determine bacterial endotoxin. The aim of this work was to validate the gel clot method for some radiopharmaceuticals without measurable interference. The FDA's LALTest guideline defines interference as a condition that causes a significant difference between the endpoints of a positive water control and positive product control series using a standard endotoxin. Experiments were performed in accordance to the USP bacterial endotoxins test in the {sup 131}I- m-iodobenzylguanidine; the radioisotopes Gallium-67 and Thallium-201; the lyophilized reagents DTPA, Phytate, GHA, HSA and Colloidal Tin. The Maximum Valid Dilution (MVD) was calculated for each product based upon the clinical dose of the material and a twofold serial dilution below the MVD was performed in duplicate to detect interferences. The labeled sensitivity of the used LAL reagent was 0.125 EU mL{sup -1} (Endotoxin Units per milliliter). For validation, a dilution series was performed, a twofold dilution of control standard endotoxin (CSE) from 0.5 to 0.03 EU mL{sup -1}, to confirm the labeled sensitivity of the LAL reagent being tested in sterile and non pyrogenic water, in quadruplicate. The same dilution series was performed with the CSE and the product in the 1:100 dilution factor, in three consecutive batches of each radiopharmaceutical. The products {sup 131}I-m-iodobenzylguanidine, Gallium-67, Thallium-201, DTPA, HSA and Colloidal Tin were found compatible with the LAL test at a 1:100 dilution factor. Phytate and GHA showed some interference in the gel clot test. Other techniques to determine endotoxins as the chromogenic (color development) and the turbidimetric test (turbidity development), were also assessed to get

  5. ELECTRON MICROSCOPIC INVESTIGATION OF YTTRIUM ALUMINUM GARNET POWDERS Y3AL5O12, SYNTHESIZED BY SOL–GEL METHOD

    OpenAIRE

    A. E. Baranchikov; V. A. Maslov; S. V. Shcherbakov; V. A. Usachyov; N. E. Kononenko; P. P. Fedorov; K. V. Dukelskiy

    2015-01-01

    Subject of Study. The paper presents results of characterization for neodymium doped yttrium aluminum garnet nanopowders - YAG:Nd3+ by the method of scanning electronic microscopy. Method. Synthesis of YAG:Nd3+ was carried out by sol-gel method from nitrate or acetate - nitrate solutions with addition of some organic compounds and ammonia as well. Such substances were used as the source ones: oxides of neodymium and yttrium with the content of the basic substance equal to 99.999 %; organic co...

  6. Mechanical and thermal expansion properties of β-eucryptite prepared by sol-gel methods and hot pressing

    International Nuclear Information System (INIS)

    Xia, L.; Wen, G.W.; Qin, C.L.; Wang, X.Y.; Song, L.

    2011-01-01

    Research highlights: → Dense LAS glass-ceramics were fabricated by sol-gel and hot pressing technique. → The LAS glass-ceramics have relative good mechanical properties. → The negative thermal expansion behavior of LAS glass-ceramics was investigated. -- Abstract: The microstructures, mechanical properties and thermal expansion behavior of monolithic lithium aluminosilicate glass-ceramics, prepared by sol-gel method and hot pressing, were investigated by using X-ray diffraction, scanning and transmission electron microscopies, three-point bend tests and dilatometry. β-eucryptite appeared as main phase in the monolithic lithium aluminosilicate glass-ceramics. The glass ceramics exhibited high relative densities and the average flexural strength and fracture toughness values were 154 MPa and 2.46 MPa m 1/2 , respectively. The lithium aluminosilicate glass-ceramics hot pressed 1300 and 1350 o C demonstrated negative coefficient of thermal expansion, which was affected by amount and type of crystalline phases.

  7. Modeling of glucose release from native and modified wheat starch gels during in vitro gastrointestinal digestion using artificial intelligence methods.

    Science.gov (United States)

    Yousefi, A R; Razavi, Seyed M A

    2017-04-01

    Estimation of the amounts of glucose release (AGR) during gastrointestinal digestion can be useful to identify food of potential use in the diet of individuals with diabetes. In this work, adaptive neuro-fuzzy inference system (ANFIS), genetic algorithm-artificial neural network (GA-ANN) and group method of data handling (GMDH) models were applied to estimate the AGR from native (NWS), cross-linked (CLWS) and hydroxypropylated wheat starch (HPWS) gels during digestion under simulated gastrointestinal conditions. The GA-ANN and ANFIS were fed with 3 inputs of digestion time (1-120min), gel volume (7.5 and 15ml) and concentration (8 and 12%, w/w) for prediction of the AGR. The developed ANFIS predictions were close to the experimental data (r=0.977-0.996 and RMSE=0.225-0.619). The optimized GA-ANN, which included 6-7 hidden neurons, predicted the AGR with a good precision (r=0.984-0.993 and RMSE=0.338-0.588). Also, a three layers GMDH model with 3 neurons accurately predicted the AGR (r=0.979-0.986 and RMSE=0.339-0.443). Sensitivity analysis data demonstrated that the gel concentration was the most sensitive factor for prediction of the AGR. The results dedicated that the AGR will be accurately predictable through such soft computing methods providing less computational cost and time. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Synthesis of nanoparticles of magnetite by sol-gel and precipitation methods: study of chemical composition and structure

    International Nuclear Information System (INIS)

    Picasso, Gino; Vega, Jaime; Uzuriaga, Rosario; Ruiz, Gean Pieer

    2012-01-01

    In this work, nanoparticles based on magnetite have been prepared by sol-gel and precipitation methods. In the first case two variants have been applied: by growing of sol starting from nitrate precursor and ethylene glycol as solvent and to control the reduction process and force hydrolysis and steric control prepared from ferrum sulfate precursor and sodium citrate. In the second case the starting material was sulfate precursor, ammonium hydroxide as precipitaing agent and ethylene glycol as surfactant. The samples have been characterized by X-ray diffraction technique (XRD), adsorption-desorption of N 2 (BET equation model) and Moessbauer spectroscopy. XRD patterns of all samples showed typical peaks of magnetite which were detected in the following positions: 30,06 o , 35,42 o , 62,55 o . Average specific surface quantified by BET method was ranging from 40 to 50 m 2 /g with isotherm type IV corresponding to mesoporous surface. Moessbauer spectra of sample prepared from sol-gel (gel growing) carried out at home temperature detected the presence of 2 sextets consisting in 2 type of sites: first one due to octahedral positions (Fe 2+ , Fe 3+ ) and the second one due to tetrahedral positions (Fe 3+ ). Grain size of magnetite samples, evaluated by Scherrer equation and specific surface area, was ranging from 2 to 20 nm. (author).

  9. Efficient method of protein extraction from Theobroma cacao L. roots for two-dimensional gel electrophoresis and mass spectrometry analyses.

    Science.gov (United States)

    Bertolde, F Z; Almeida, A-A F; Silva, F A C; Oliveira, T M; Pirovani, C P

    2014-07-04

    Theobroma cacao is a woody and recalcitrant plant with a very high level of interfering compounds. Standard protocols for protein extraction were proposed for various types of samples, but the presence of interfering compounds in many samples prevented the isolation of proteins suitable for two-dimensional gel electrophoresis (2-DE). An efficient method to extract root proteins for 2-DE was established to overcome these problems. The main features of this protocol are: i) precipitation with trichloroacetic acid/acetone overnight to prepare the acetone dry powder (ADP), ii) several additional steps of sonication in the ADP preparation and extractions with dense sodium dodecyl sulfate and phenol, and iii) adding two stages of phenol extractions. Proteins were extracted from roots using this new protocol (Method B) and a protocol described in the literature for T. cacao leaves and meristems (Method A). Using these methods, we obtained a protein yield of about 0.7 and 2.5 mg per 1.0 g lyophilized root, and a total of 60 and 400 spots could be separated, respectively. Through Method B, it was possible to isolate high-quality protein and a high yield of roots from T. cacao for high-quality 2-DE gels. To demonstrate the quality of the extracted proteins from roots of T. cacao using Method B, several protein spots were cut from the 2-DE gels, analyzed by tandem mass spectrometry, and identified. Method B was further tested on Citrus roots, with a protein yield of about 2.7 mg per 1.0 g lyophilized root and 800 detected spots.

  10. Processing of non-oxide ceramics from sol-gel methods

    Science.gov (United States)

    Landingham, Richard; Reibold, Robert A.; Satcher, Joe

    2014-12-12

    A general procedure applied to a variety of sol-gel precursors and solvent systems for preparing and controlling homogeneous dispersions of very small particles within each other. Fine homogenous dispersions processed at elevated temperatures and controlled atmospheres make a ceramic powder to be consolidated into a component by standard commercial means: sinter, hot press, hot isostatic pressing (HIP), hot/cold extrusion, spark plasma sinter (SPS), etc.

  11. Performance of the sol-gel method for the preparation of optical fibers

    Czech Academy of Sciences Publication Activity Database

    Matějec, Vlastimil; Hayer, Miloš; Mrázek, Jan; Kašík, Ivan; Podrazký, Ondřej; Pospíšilová, Marie

    2007-01-01

    Roč. 52, č. 10 (2007), s. 991-998 ISSN 0035-3930. [Physical Chemistry Conference ROMPHYSCHEM /12./. Bucharest, 06.09.2006-08.09.2006] R&D Projects: GA ČR GA102/05/0956 Institutional research plan: CEZ:AV0Z20670512 Keywords : sol-gel processing * optical fibres * chemical sensors Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 0.262, year: 2007

  12. [Study on the method of two dimensional polycrylamide gel electrophoresis on rat condylar chondrocyte].

    Science.gov (United States)

    Wu, Tuo-jiang; Li, Huang; Ma, Qiao-lin; Wang, Wen-mei

    2010-08-01

    To investigate the protein profile by two dimensional polycrylamide gel electrophoresis on the rat condylar chondrocyte in vitro. The third-passage chondrocytes were harvested from the mandibular condyles of 2-day-old rats in this study. The protein profile of the rat mandibular condylar chondrocytes was examined by two dimensional polycrylamide gel electrophoresis (2-DE-PAGE). The 2-DE gel maps on different pH gradients were obtained. The result of modified coomassi blue-sliver staining and sliver staining was compared using Pdquest 7.1 image analysis software. The results showed that the good protein profile of the condylar chondrocytes was obtained by standard Bio-Rad manual. The protein was mainly in the field from pH4 to pH7. The 1203±86 protein points were examined on 2-DE gel map by modified coomassi blue-sliver staining, and 1769±97 protein points was examined by sliver staining. The silver staining map showed more distinctly but higher background than modified coomassi blue-sliver staining. The protein profile of the condylar chondrocytes enriches the proteomic database and gives evidence to further proteomic research. The 2-DE map obtained by modified coomassi blue-sliver staining is more suitable for MALDI-TOF mass identification. Supported by National Natural Science Foundation of China (Grant No. C30700963), China Postdoctoral Science Foundation(Grant No.20090461088), Jiangsu Provincial Postdoctoral Science Foundation (Grant No.0802003C) and Nanjing City's Science and Technology Foundation (Grant No.200905011).

  13. Sol–gel method to fabricate CaP scaffolds by robocasting for tissue engineering

    Science.gov (United States)

    Fu, Qiang; Saiz, Eduardo; Tomsia, Antoni P.

    2012-01-01

    Highly porous calcium phosphate (CaP) scaffolds for bone-tissue engineering were fabricated by combining a robocasting process with a sol–gel synthesis that mixed Calcium Nitrate Tetrahydrate and Triethyl Phosphite precursors in an aqueous medium. The resulting gels were used to print scaffolds by robocasting without the use of binder to increase the viscosity of the paste. X-ray diffraction analysis confirmed that the process yielded hydroxyapatite and β-tricalcium phosphate biphasic composite powders. Thus, the scaffold composition after crystallization of the amorphous structure could be easily modified by varying the initial Ca/P ratio during synthesis. The compressive strengths of the scaffolds are ~6 MPa, which is in the range of human cancellous bone (2–12 MPa). These highly porous scaffolds (~73 vol% porosity) are composed of macro-pores of ~260 μm in size; such porosity is expected to enable bone ingrowth into the scaffold for bone repair applications. The chemistry, porosity, and surface topography of such scaffolds can also be modified by the process parameters to favor bone formation. The studied sol–gel process can be used to coat these scaffolds by dip-coating, which induces a significant enhancement of mechanical properties. This can adjust scaffold properties such as composition and surface morphology, which consequently may improve their performances. PMID:22311079

  14. Thermal Scanning Conductometry (TSC) as a General Method for Studying and Controlling the Phase Behavior of Conductive Physical Gels.

    Science.gov (United States)

    Bielejewski, Michal

    2018-01-23

    The thermal scanning conductometry protocol is a new approach in studying ionic gels based on low molecular weight gelators. The method is designed to follow the dynamically changing state of the ionogels, and to deliver more information and details about the subtle change of conductive properties with an increase or decrease in the temperature. Moreover, the method allows the performance of long term (i.e. days, weeks) measurements at a constant temperature to investigate the stability and durability of the system and the aging effects. The main advantage of the TSC method over classical conductometry is the ability to perform measurements during the gelation process, which was impossible with the classical method due to temperature stabilization, which usually takes a long time before the individual measurement. It is a well-known fact that to obtain the physical gel phase, the cooling stage must be fast; moreover, depending on the cooling rate, different microstructures can be achieved. The TSC method can be performed with any cooling/heating rate that can be assured by the external temperature system. In our case, we can achieve linear temperature change rates between 0.1 and approximately 10 °C/min. The thermal scanning conductometry is designed to work in cycles, continuously changing between heating and cooling stages. Such an approach allows study of the reproducibility of the thermally reversible gel-sol phase transition. Moreover, it allows the performance of different experimental protocols on the same sample, which can be refreshed to initial state (if necessary) without removal from the measuring cell. Therefore, the measurements can be performed faster, in a more efficient way, and with much higher reproducibility and accuracy. Additionally, the TSC method can be also used as a tool to manufacture the ionogels with targeted properties, like microstructure, with an instant characterization of conductive properties.

  15. TITRATION METHOD OF AB0 ANTIBODIES WITH THE USE OF MODERN GEL TECHNOLOGY IN AB0-INCOMPATIBLE TRANSPLANTATION

    Directory of Open Access Journals (Sweden)

    A. K. Porunova

    2014-01-01

    Full Text Available It is shown that developed method of titrating AB0 antibodies allows defi ning the titer of the investigational antibodies more precisely on 1–3 dilution of serum compared to the prototype method (titration method of antibodiesin saline medium on the plane. It is more obvious as it excludes hardly interpretable results due to the possibility of conducting visual assessment of agglutination reaction in the gel card thick column and requires less time foranalysis. The results can be saved for comparison with the results of further research. That is not possible under prototype titration method. Aim: our aim is to create a laboratory technique that can accurately, reliably and clearly produce titration of AB0 system antibodies, including in patients with low initial concentration of agglutinins in the blood; a technique more economical in terms of spending serum and that takes less time.Materials and methods: those modes were empirically chosen which allow titration of AB0 system agglutinins using gel technology based micro typing; to titer group antibodies 1640 serum assays of recipients in AB0-incompatibletransplantation were analyzed.The result of the use of specially developed method in organ transplantation from incompatible blood donors consists in enhancing accuracy, sensitivity of natural, complete and incomplete AB0 system immune antibodies titration, in its clarity, using of blood micro-doses for earlier detection of sensitizing of the patient, which is especially important in Pediatrics. Conclusion: the developed procedure of AB0-antibodies’ titration using modern gel technology makes possible a more precise monitoring of the titer of antibodies that is necessary to predict the graft rejection risk, to select the Protocol of preoperative preparation and postoperative management of patients, to assess the effectiveness of therapy in patients for whom it is diffi cult to fi nd a compatible blood type donor, and for whom today AB

  16. Influence of preparation methods of microwave, sol-gel, and hydrothermal on structural and optical properties of lanthania nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Goharshadi, Elaheh K.; Mahvelati, Tahereh; Yazdanbakhsh, Mohammad [Ferdowsi Univ., Mashhad (Iran, Islamic Republic of). Dept. of Chemistry

    2016-01-15

    In this work, the nearly pure hexagonal phase of lanthania nanoparticles (NPs) was successfully synthesized using three methods: microwave, sol-gel, and hydrothermal. The samples were characterized using nine techniques including powder X-ray powder diffraction, thermogravimetry, transmission electron microscopy, scanning electron microscopy, field emission microscopy, energy-dispersive X-ray spectroscopy, Fourier transform infrared spectroscopy, far infrared spectroscopy, and ultraviolet-visible absorption spectroscopy. This study showed that the method of synthesizing lanthania NPs can affect the size, which in turn has impact on structural, morphological, and optical properties.

  17. Magnetic and dielectric properties of Fe3BO6 nanoplates prepared through self-combustion method

    Directory of Open Access Journals (Sweden)

    Kalpana Kumari

    2017-12-01

    Full Text Available In the present investigation, a facile synthesis method is explored involving a self-combustion of a solid precursor mixture of iron oxide Fe2O3 and boric acid (H3BO3 using camphor (C10H16O as fuel in ambient air in order to form a single phase Fe3BO6 crystallites. X-ray diffraction (XRD, Field emission electron microscopy (FESEM, magnetic, and dielectric properties of as prepared sample are studied. From XRD pattern, a single phase compound is observed with an orthorhombic crystal structure (Pnma space group, with average crystallite size of 42nm. A reasonably uniform size distribution of the plates and self-assemblies is retained in the sample. A magnetic transition is observed in dielectric permittivity (at ∼445K and power loss (at ∼435K when plotted against temperature. A weak peak occurs near 330K due to the charge reordering in the sample. For temperatures above the transition temperature, a sharp increase of the dielectric loss is observed which occurs due to the presence of thermally activated charge carriers. A canted antiferromagnetic Fe3+ ordering in a Fe3BO6 lattice with a localized charge surface layer is an apparent source of exhibiting a ferroelectric feature in this unique example of a centrosymmetric compound. An induced spin current over the Fe sites thus could give rise to a polarization hysteresis loop. Due to the presence of both ferromagnetic as well as polarization ordering, Fe3BO6 behaves like a single phase multiferroic ceramics.

  18. Experimental determination of the diffusion coefficient in two-dimensions in ferrous sulphate gels using the finite element method

    International Nuclear Information System (INIS)

    Baldock, C.; Harris, P.J.; Piercy, A.R.; Healy, B.

    2001-01-01

    A novel two-dimensional finite element method for modelling the diffusion which occurs in Fricke or ferrous sulphate type radiation dosimetry gels is presented. In most of the previous work, the diffusion coefficient has been estimated using simple one-dimensional models. This work presents a two-dimensional model which enables the diffusion coefficient to be determined in a much wider range of experimental situations. The model includes the provision for the determination of a drift parameter. To demonstrate the technique comparative diffusion measurements between ferrous sulphate radiation dosimetry gels, with and without xylenol orange chelating agent and carbohydrate additives have been undertaken. Diffusion coefficients of 9.7±0.4, 13.3±0.6 and 9.5±0.8 10-3 cm 2 per h -1 were determined for ferrous sulphate radiation dosimetry gels with and without xylenol orange and with xylenol orange and sucrose additives respectively. Copyright (2001) Australasian College of Physical Scientists and Engineers in Medicine

  19. Luminescent Eosin Y–SiO{sub 2} hybrid nano and microrods prepared by sol–gel template method

    Energy Technology Data Exchange (ETDEWEB)

    Secu, M., E-mail: msecu@infim.ro [National Institute for Materials Physics, P.O. Box MG-7, Bucharest–Magurele, 077125 (Romania); Secu, C.E.; Sima, M.; Negrea, R.F.; Bartha, C. [National Institute for Materials Physics, P.O. Box MG-7, Bucharest–Magurele, 077125 (Romania); Dinescu, M.; Damian, V. [National Institute for Laser, Plasma and Radiation, P.O. Box MG-36, Bucharest–Magurele 077125 (Romania)

    2013-11-15

    Sol–gel chemistry within the pores of a polycarbonate template membrane was used for the preparation of Eosin Y–SiO{sub 2} hybrid nano- and microrods, using tetraethylorthosilicate [TEOS, Si(OC{sub 2}H{sub 5}){sub 4}] as the precursor in the presence of trifluoroacetic acid (TFA) catalyst. The ethanolic solution of Eosin-Y was added to the silica sol to trap dye molecules inside the SiO{sub 2} gel network during the gelation. Structural and morphological characterization using scanning electron microscopy (SEM) and luminescence microscopy have shown the formation of rods with 200 nm and 1.2 μm diameter and about 30 μm length, exhibiting luminescence properties. Spectroscopic characterization has shown that the luminescence is due to Eosin-Y molecule in the xerogel porous network, surrounded by a solvation shell given mainly by the water. -- Highlights: • Sol–gel template method was used to prepare Eosin Y–SiO{sub 2} hybrid rods-type structures. • Morphological characterization has shown nano- and microrods with luminescent properties. • Luminescence is due to Eosin-Y molecule surrounded by a solvation shell given by water.

  20. Luminescent Eosin Y–SiO2 hybrid nano and microrods prepared by sol–gel template method

    International Nuclear Information System (INIS)

    Secu, M.; Secu, C.E.; Sima, M.; Negrea, R.F.; Bartha, C.; Dinescu, M.; Damian, V.

    2013-01-01

    Sol–gel chemistry within the pores of a polycarbonate template membrane was used for the preparation of Eosin Y–SiO 2 hybrid nano- and microrods, using tetraethylorthosilicate [TEOS, Si(OC 2 H 5 ) 4 ] as the precursor in the presence of trifluoroacetic acid (TFA) catalyst. The ethanolic solution of Eosin-Y was added to the silica sol to trap dye molecules inside the SiO 2 gel network during the gelation. Structural and morphological characterization using scanning electron microscopy (SEM) and luminescence microscopy have shown the formation of rods with 200 nm and 1.2 μm diameter and about 30 μm length, exhibiting luminescence properties. Spectroscopic characterization has shown that the luminescence is due to Eosin-Y molecule in the xerogel porous network, surrounded by a solvation shell given mainly by the water. -- Highlights: • Sol–gel template method was used to prepare Eosin Y–SiO 2 hybrid rods-type structures. • Morphological characterization has shown nano- and microrods with luminescent properties. • Luminescence is due to Eosin-Y molecule surrounded by a solvation shell given by water

  1. Adapting capillary gel electrophoresis as a sensitive, high-throughput method to accelerate characterization of nucleic acid metabolic enzymes.

    Science.gov (United States)

    Greenough, Lucia; Schermerhorn, Kelly M; Mazzola, Laurie; Bybee, Joanna; Rivizzigno, Danielle; Cantin, Elizabeth; Slatko, Barton E; Gardner, Andrew F

    2016-01-29

    Detailed biochemical characterization of nucleic acid enzymes is fundamental to understanding nucleic acid metabolism, genome replication and repair. We report the development of a rapid, high-throughput fluorescence capillary gel electrophoresis method as an alternative to traditional polyacrylamide gel electrophoresis to characterize nucleic acid metabolic enzymes. The principles of assay design described here can be applied to nearly any enzyme system that acts on a fluorescently labeled oligonucleotide substrate. Herein, we describe several assays using this core capillary gel electrophoresis methodology to accelerate study of nucleic acid enzymes. First, assays were designed to examine DNA polymerase activities including nucleotide incorporation kinetics, strand displacement synthesis and 3'-5' exonuclease activity. Next, DNA repair activities of DNA ligase, flap endonuclease and RNase H2 were monitored. In addition, a multicolor assay that uses four different fluorescently labeled substrates in a single reaction was implemented to characterize GAN nuclease specificity. Finally, a dual-color fluorescence assay to monitor coupled enzyme reactions during Okazaki fragment maturation is described. These assays serve as a template to guide further technical development for enzyme characterization or nucleoside and non-nucleoside inhibitor screening in a high-throughput manner. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  2. Radiative transfer modelling in combusting systems using discrete ordinates method on three-dimensional unstructured grids; Modelisation des transferts radiatifs en combustion par methode aux ordonnees discretes sur des maillages non structures tridimensionnels

    Energy Technology Data Exchange (ETDEWEB)

    Joseph, D.

    2004-04-01

    The prediction of pollutant species such as soots and NO{sub x} emissions and lifetime of the walls in a combustion chamber is strongly dependant on heat transfer by radiation at high temperatures. This work deals with the development of a code based on the Discrete Ordinates Method (DOM) aiming at providing radiative source terms and wall fluxes with a good compromise between cpu time and accuracy. Radiative heat transfers are calculated using the unstructured grids defined by the Computational Fluid Dynamics (CFD) codes. The spectral properties of the combustion gases are taken into account by a statistical narrow bands correlated-k model (SNB-ck). Various types of angular quadrature are tested and three different spatial differencing schemes were integrated and compared. The validation tests show the limit at strong optical thicknesses of the finite volume approximation used the Discrete Ordinates Method. The first calculations performed on LES solutions are presented, it provides instantaneous radiative source terms and wall heat fluxes. Those results represent a first step towards radiation/combustion coupling. (author)

  3. Determination of microamounts of carbon in various metals and alloys by the combustion-nonaqueous titrimetric method

    Energy Technology Data Exchange (ETDEWEB)

    Yoshimori, T; Koike, A [Science Univ. of Tokyo (Japan). Faculty of Engineering; Katoh, N

    1977-12-01

    Microamounts of carbon (7 -- 600 ppm) in ferrous and non-ferrous metals and alloys were determined by the combustion-nonaqueous titrimetric method. The carbon dioxide liberated by the combustion of a sample was absorbed with dimethylformamide (DMF) containing monoethanolamine and then the absorbent was titrated with the standard benzene-methanol solution of tetra-n-butylammonium hydroxide (0.007-0.002 M). The end point of the titration was located either visibly by using thymolphthalein as an indicator or potentiometrically by using a couple of platinum and calomel (containing DMF) electrodes. Pure benzoic acid was used as the standard substance for the standardization. Many improvements were given on both the combustion apparatus and the procedure. Microamounts of carbon in various samples were determined by the proposed method. They are : plain carbon and high purity ferritic stainless steels (0.05 -- 0.002% C), Inconel X-750 (0.027% C), copper alloys (20 -- 30 ppm C), tantalum powder (40 ppm C) and high purity metallic uranium (7 ppm C). All results were quite satisfactory and indicate that the proposed method was adaptable for the determination of carbon less than 100 ppm in various samples without use of any standard samples or calibration curves.

  4. Effect of Gold Nanoparticles on Prostate Dose Distribution under Ir-192 Internal and 18 MV External Radiotherapy Procedures Using Gel Dosimetry and Monte Carlo Method

    Directory of Open Access Journals (Sweden)

    Khosravi H.

    2015-03-01

    Full Text Available Background: Gel polymers are considered as new dosimeters for determining radiotherapy dose distribution in three dimensions. Objective: The ability of a new formulation of MAGIC-f polymer gel was assessed by experimental measurement and Monte Carlo (MC method for studying the effect of gold nanoparticles (GNPs in prostate dose distributions under the internal Ir-192 and external 18MV radiotherapy practices. Method: A Plexiglas phantom was made representing human pelvis. The GNP shaving 15 nm in diameter and 0.1 mM concentration were synthesized using chemical reduction method. Then, a new formulation of MAGIC-f gel was synthesized. The fabricated gel was poured in the tubes located at the prostate (with and without the GNPs and bladder locations of the phantom. The phantom was irradiated to an Ir-192 source and 18 MV beam of a Varian linac separately based on common radiotherapy procedures used for prostate cancer. After 24 hours, the irradiated gels were read using a Siemens 1.5 Tesla MRI scanner. The absolute doses at the reference points and isodose curves resulted from the experimental measurement of the gels and MC simulations following the internal and external radiotherapy practices were compared. Results: The mean absorbed doses measured with the gel in the presence of the GNPs in prostate were 15% and 8 % higher than the corresponding values without the GNPs under the internal and external radiation therapies, respectively. MC simulations also indicated a dose increase of 14 % and 7 % due to presence of the GNPs, for the same experimental internal and external radiotherapy practices, respectively. Conclusion: There was a good agreement between the dose enhancement factors (DEFs estimated with MC simulations and experiment gel measurements due to the GNPs. The results indicated that the polymer gel dosimetry method as developed and used in this study, can be recommended as a reliable method for investigating the DEF of GNPs in internal

  5. Enhancement of the electrochemical performance in LiFePO4 cathode materials synthesized by using the sol-gel method

    Directory of Open Access Journals (Sweden)

    Kyong-Soo Hong

    2010-11-01

    Full Text Available LiFePO4 powders were synthesized by using the sol-gel and the solid-state reaction methods. The chemical states of Fe ions were studied by using XPS, and their electrochemical properties according to the oxidation states of Fe ions were compared. The average oxidation state of Fe ions in LiFePO4 powders synthesized by using the solid-state reaction method was found to be Fe3+, on the other hand, that of Fe ions synthesized by using the sol-gel method was found to be Fe2+. The obtained discharge capacities were 50 mAh/g and 120 mAh/g at a rate 0.1 C in LiFePO4 synthesized by using the solid-state reaction and sol-gel methods, respectively. Relatively a good cycling stability was observed in sol-gel prepared powder.

  6. Effect of Gold Nanoparticles on Prostate Dose Distribution under Ir-192 Internal and 18 MV External Radiotherapy Procedures Using Gel Dosimetry and Monte Carlo Method.

    Science.gov (United States)

    Khosravi, H; Hashemi, B; Mahdavi, S R; Hejazi, P

    2015-03-01

    Gel polymers are considered as new dosimeters for determining radiotherapy dose distribution in three dimensions. The ability of a new formulation of MAGIC-f polymer gel was assessed by experimental measurement and Monte Carlo (MC) method for studying the effect of gold nanoparticles (GNPs) in prostate dose distributions under the internal Ir-192 and external 18MV radiotherapy practices. A Plexiglas phantom was made representing human pelvis. The GNP shaving 15 nm in diameter and 0.1 mM concentration were synthesized using chemical reduction method. Then, a new formulation of MAGIC-f gel was synthesized. The fabricated gel was poured in the tubes located at the prostate (with and without the GNPs) and bladder locations of the phantom. The phantom was irradiated to an Ir-192 source and 18 MV beam of a Varian linac separately based on common radiotherapy procedures used for prostate cancer. After 24 hours, the irradiated gels were read using a Siemens 1.5 Tesla MRI scanner. The absolute doses at the reference points and isodose curves resulted from the experimental measurement of the gels and MC simulations following the internal and external radiotherapy practices were compared. The mean absorbed doses measured with the gel in the presence of the GNPs in prostate were 15% and 8 % higher than the corresponding values without the GNPs under the internal and external radiation therapies, respectively. MC simulations also indicated a dose increase of 14 % and 7 % due to presence of the GNPs, for the same experimental internal and external radiotherapy practices, respectively. There was a good agreement between the dose enhancement factors (DEFs) estimated with MC simulations and experiment gel measurements due to the GNPs. The results indicated that the polymer gel dosimetry method as developed and used in this study, can be recommended as a reliable method for investigating the DEF of GNPs in internal and external radiotherapy practices.

  7. Electroluminescence of zinc oxide thin-films prepared via polymeric precursor and via sol-gel methods

    International Nuclear Information System (INIS)

    Lima, S.A.M.; Cremona, M.; Davolos, M.R.; Legnani, C.; Quirino, W.G.

    2007-01-01

    Zinc oxide (ZnO) is an electroluminescent (EL) material that can emit light in different regions of electromagnetic spectrum when electrically excited. Since ZnO is chemically stable, inexpensive and environmentally friendly material, its EL property can be useful to construct solid-state lamps for illumination or as UV emitter. We present here two wet chemical methods to prepare ZnO thin-films: the Pechini method and the sol-gel method, with both methods resulting in crystalline and transparent films with transmittance >85% at 550 nm. These films were used to make thin-film electroluminescent devices (TFELD) using two different insulator layers: lithium fluoride (LiF) or silica (SiO 2 ). All the devices exhibit at least two wide emission bands in the visible range centered at 420 nm and at 380 nm attributed to the electronic defects in the ZnO optical band gap. Besides these two bands, the device using SiO 2 and ZnO film obtained via sol-gel exhibits an additional band in the UV range centered at 350 nm which can be attributed to excitonic emission. These emission bands of ZnO can transfer their energy when a proper dopant is present. For the devices produced the voltage-current characteristics were measured in a specific range of applied voltage

  8. Quantum dot based on tin/titanium mixed oxide doped with europium synthesized by protein sol-gel method

    International Nuclear Information System (INIS)

    Paganini, Paula P.; Felinto, Maria Claudia F.C.; Brito, Hermi F.

    2011-01-01

    Special luminescence biomarkers have been developed to find more sensitive fluoroimmunoassay methods. A new generation of these biomarkers is the semiconductors nanocrystals, known as quantum dots, doped with lanthanides. The use of lanthanides ions as luminescent markers has many advantages, for example a security method, low cost, high specificity and also the luminescence can be promptly measured with high sensibility and accuracy. The protein sol-gel is a modification of conventional method, in which the coconut water replacing the alkoxides normally used. The advantage is that, the proteins present in coconut water bind chemically with metal salts forming a polymer chain. This work presents nanoparticles based on tin/titanium mixed oxide doped with 3% of europium synthesized by protein sol-gel method. The nanoparticles were burned at 300 deg C, 500 deg C, 800 deg C and 1100 deg C. The samples were analyzed and characterized by thermal analysis, X-ray powder diffraction (XRD), infrared spectroscopy (IR) and scanning electron microscopy (SEM). The synthesis was effective and the nanoparticles showed nanometric size and structural differences with the annealing. To be used in the fluoroimmunoassays tests, these particles need to be functionalized before be connect with biological molecules and after this process, these nanoparticles going to be submitted at gamma radiation for sterilization. (author)

  9. Quantum dot based on tin/titanium mixed oxide doped with europium synthesized by protein sol-gel method

    Energy Technology Data Exchange (ETDEWEB)

    Paganini, Paula P.; Felinto, Maria Claudia F.C., E-mail: paulapaganini@usp.b, E-mail: mfelinto@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Brito, Hermi F., E-mail: hefbrito@iq.usp.b [Universidade de Sao Paulo (IQ/USP), Sao Paulo, SP (Brazil). Inst. de Quimica. Lab. de Elementos do Bloco f

    2011-07-01

    Special luminescence biomarkers have been developed to find more sensitive fluoroimmunoassay methods. A new generation of these biomarkers is the semiconductors nanocrystals, known as quantum dots, doped with lanthanides. The use of lanthanides ions as luminescent markers has many advantages, for example a security method, low cost, high specificity and also the luminescence can be promptly measured with high sensibility and accuracy. The protein sol-gel is a modification of conventional method, in which the coconut water replacing the alkoxides normally used. The advantage is that, the proteins present in coconut water bind chemically with metal salts forming a polymer chain. This work presents nanoparticles based on tin/titanium mixed oxide doped with 3% of europium synthesized by protein sol-gel method. The nanoparticles were burned at 300 deg C, 500 deg C, 800 deg C and 1100 deg C. The samples were analyzed and characterized by thermal analysis, X-ray powder diffraction (XRD), infrared spectroscopy (IR) and scanning electron microscopy (SEM). The synthesis was effective and the nanoparticles showed nanometric size and structural differences with the annealing. To be used in the fluoroimmunoassays tests, these particles need to be functionalized before be connect with biological molecules and after this process, these nanoparticles going to be submitted at gamma radiation for sterilization. (author)

  10. Study of alumosilicate porcelains: Sol-gel preparation, characterization and erosion evaluated by gravimetric method

    International Nuclear Information System (INIS)

    Bogdanoviciene, Irma; Jankeviciute, Audrone; Pinkas, Jiri; Beganskiene, Aldona; Kareiva, Aivaras

    2008-01-01

    In this paper, the sol-gel synthesis and characteristic properties of kalsilite-type alumosilicates (KAlSiO 4 and K 0.5 Na 0.5 AlSiO 4 ) are reported. The polycrystalline powders were characterized by thermal analysis (TG/DTA), powder X-ray diffraction analysis (XRD) and scanning electron microscopy (SEM). Single-phase kalsilite oxides have been obtained after annealing precursor gels for 5 h in the temperature range of 750-850 deg. C. It was demonstrated that crystallinity of the samples slightly depends on the temperature of annealing. From the results obtained, it could be concluded that the KAlSiO 4 solids are composed of the volumetric plate-like grains with no regular size (from 5 μm to 30 μm at 750 deg. C and around 5-50 μm at 850 deg. C). Larger crystallites for mixed potassium-sodium kalsilite have formed (from 10 μm to 80 μm at 750 deg. C and >100 μm at 850 deg. C) in comparison with potassium kalsilite samples). The erosion of obtained dental porcelain samples stored in saliva, beer and Coca-Cola was compared

  11. Effect of urea on the photoactivity of titania powder prepared by sol-gel method

    International Nuclear Information System (INIS)

    Cheng Ping; Deng Changsheng; Gu Mingyuan; Dai Xiaming

    2008-01-01

    The synthesis of nanocrystalline titania powders from the hydrolysis of Ti(OBu n ) 4 in the presence of urea was investigated. DRS results showed that a redshift occurred in the absorption edge of titania with increasing the content of urea. XRD results indicated that urea showed a retarding effect on the transformation of titania from anatase to rutile. Moreover, the addition of urea resulted in a higher Brunauer-Emmett-Teller (BET) surface area as well as a larger average pore size of TiO 2 nanoparticles. The average pore size of urea/TiO 2 gels calcined at 500 deg. C increased with the increase of urea content, while the specific surface area increased with the amount of urea to reach a maximum at 10% and then decreased with further increase of the amount of urea. The maximal specific surface area of 64.4 m 2 g -1 was obtained for 10% urea/TiO 2 gels calcined at 500 deg. C, which showed an average particle size of 15 nm and pore size distribution in the range of mesopores centered at 5.8 nm. The photocatalytic experiments exhibited that titania nanoparticles prepared in the presence of urea could effectively photodegrade methyl orange under visible light irradiation due to the redshift of the absorption edge. The maximum photoactivity was achieved when the content of urea was 10%, which was attributed to the higher specific surface area

  12. Synthesis and characterization of CdO nano particles by the sol-gel method

    Science.gov (United States)

    Vadgama, V. S.; Vyas, R. P.; Jogiya, B. V.; Joshi, M. J.

    2017-05-01

    Cadmium Oxide (CdO) is an inorganic compound and one of the main precursors to other cadmium compounds. It finds applications in cadmium plating, storage batteries, in transparent conducting film, etc. Here, an attempt is made to synthesize CdO nano particles by sol-gel technique. The gel was prepared using cadmium nitrate tetra hydrate (Cd(NO3)2.4H2O) and aqueous ammonium hydroxide (NH4OH) as a precursor. The synthesized powder is further characterized by techniques like Powder X-ray diffraction (XRD), Transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR) and Thermal gravimetric analysis (TGA). Powder XRD analysis suggested the nano-crystalline nature of the sample with the cubic crystal system. Nano scaled particles of spherical morphology with the size ranging from 50-100 nm are observed from TEM images. While, FT-IR study is used to confirm the presence of different functional groups. Thermo-gravimetric analysis suggests the highly thermally stable nature of the samples. The results are discussed.

  13. Structural studies on iron-tellurite glasses prepared by sol-gel method

    Energy Technology Data Exchange (ETDEWEB)

    Rada, S., E-mail: Simona.Rada@phys.utcluj.r [Department of Physics, Technical University of Cluj-Napoca, Bibliotecii, No. 10, 400020 Cluj-Napoca (Romania); Dehelean, A. [Department of Physics, Technical University of Cluj-Napoca, Bibliotecii, No. 10, 400020 Cluj-Napoca (Romania); Nat. Inst. for R and D of Isotopic and Molec. Technologies, Cluj-Napoca (Romania); Stan, M. [Nat. Inst. for R and D of Isotopic and Molec. Technologies, Cluj-Napoca (Romania); Chelcea, R. [Department of Physics, Technical University of Cluj-Napoca, Bibliotecii, No. 10, 400020 Cluj-Napoca (Romania); Nat. Inst. for R and D of Isotopic and Molec. Technologies, Cluj-Napoca (Romania); Culea, E. [Department of Physics, Technical University of Cluj-Napoca, Bibliotecii, No. 10, 400020 Cluj-Napoca (Romania)

    2011-01-05

    Research highlights: {yields} Iron-tellurite glasses obtained using the sol-gel synthesis. - Abstract: In this study, we report structural properties of the iron-tellurite glasses obtained using the sol-gel synthesis. The samples were characterized by X-ray diffraction, FTIR, UV-vis and EPR spectroscopy. Our results indicate dominant presence of iron ions in the trivalent state and the existence some Fe{sup 2+} ions. The analysis of the IR spectra indicates a gradual transformation of iron ions from tetrahedral into octahedral sites when the concentration of Fe(NO{sub 3}){sub 3} is increased beyond 0.64 mol%. EPR studies show that the increase of Fe(NO{sub 3}){sub 3} content in the host matrix induces the growth of the number of effective g values. This can be explained considering that the orbitals of O{sup 2-} ion with a large spin-orbit interaction constant will interact with the 3d orbital of Fe{sup 3+} ion bonded to this O{sup 2-} ion, thus leading to appearance of an orbital angular momentum which contributes to the magnetic moment of Fe{sup 3+} ion. A strong dipolar interaction, which is more predominant in a glass with higher content of Fe(NO{sub 3}){sub 3}, causing a localized magnetic field along the site of the Fe{sup 3+} ions and the increase the effective g values.

  14. A colourimetric method for the determination of the degree of chemical cross-linking in aspartic acid-based polymer gels

    Directory of Open Access Journals (Sweden)

    B. Gyarmati

    2015-02-01

    Full Text Available A 2,4,6-trinitrobenzenesulphonic acid (TNBS-based assay is developed to determine the degree of chemical cross-linking in aspartic acid-based polymer gels. The conventional colourimetric method for the quantitative determination of amine groups is difficult to use in polymer networks; thus, an improved method is developed to analyse polymer gels swollen in dimethyl sulfoxide (DMSO. Reaction products of the derivatizing reaction are examined by NMR. The chemical stability of the reagent is increased in DMSO, and the method shows satisfactory linearity and accuracy. The degree of chemical cross-linking in the investigated gels is close to its theoretical maximum, but the conversion of the pendant amine groups to cross-linking points is strongly dependent on the feed composition of the gels.

  15. Synthesis, Structural and Optical Properties of Co Doped TiO2 Nanocrystals by Sol-Gel Method

    OpenAIRE

    Sridevi , D.V ,; Ramesh , V; Sakthivel , T; Geetha , K ,; Ratchagar , V ,; Jagannathan , K ,; Rajarajan , K ,; Ramachadran , K ,

    2017-01-01

    International audience; A TiO2 nanoparticle doped with cobalt was synthesized by sol-gel technique employed at room temperature with appropriate reactants. In the present case, we used titanium tetra isoprotoxide (TTIP) and 2–propanol as a common starting material and the obtained products were calcined at 450˚C450˚450˚C. From the Powder XRD data the particle size was calculated by Scherrer method. The FE-SEM analysis shows the morphology of cobalt doped TiO2 nanoparticles. The various functi...

  16. Preparation of nickel oxide thin films at different annealing temperature by sol-gel spin coating method

    Energy Technology Data Exchange (ETDEWEB)

    Abdullah, M. A. R., E-mail: ameerridhwan89@gmail.com; Mamat, M. H., E-mail: hafiz-030@yahoo.com; Ismail, A. S., E-mail: kyrin-samaxi@yahoo.com [NANO-ElecTronic Centre (NET), Faculty of Electrical Engineering, Universiti Teknologi MARA (UiTM), 40450 Shah Alam, Selangor (Malaysia); Malek, M. F., E-mail: firz-solarzelle@yahoo.com [NANO-SciTech Centre (NST), Institute of Science (IOS), Universiti Teknologi MARA - UiTM, 40450 Shah Alam, Selangor (Malaysia); Alrokayan, Salman A. H., E-mail: dr.salman@alrokayan.com; Khan, Haseeb A., E-mail: khan-haseeb@yahoo.com [Chair of Targeting and Treatment of Cancer Using Nanoparticles, Deanship of Scientific Research, King Saud University (KSU), Riyadh 11451 (Saudi Arabia); Rusop, M., E-mail: rusop@salam.uitm.my [NANO-ElecTronic Centre (NET), Faculty of Electrical Engineering, Universiti Teknologi MARA (UiTM), 40450 Shah Alam, Selangor (Malaysia); NANO-SciTech Centre (NST), Institute of Science (IOS), Universiti Teknologi MARA - UiTM, 40450 Shah Alam, Selangor (Malaysia)

    2016-07-06

    Preparation of NiO thin films at different annealing temperature by sol-gel method was conducted to synthesize the quality of the surface thin films. The effects of annealing temperature on the surface topology were systematically investigated. Our studies confirmed that the surface roughness of the thin films was increased whenever annealing temperature was increase. NiO thin films morphology structure analysis was confirmed by field emission scanning electron microscope. Surface roughness of the thin films was investigated by atomic force microscopy.

  17. Preparation of Nd-doped gadolinium-gallium garnet laser ceramic powder by sol-gel method

    Institute of Scientific and Technical Information of China (English)

    YAO Yan-ping; LIU Jing-he

    2006-01-01

    Preparation of Nd3+:Gd3Ga5O12 polycrystalline material by sol-gel method was preparated in this paper.The structure and the pattern of the sample were analyzed by thermogravimetric analysis and differential thermal analysis(TG-DTA),Infrared spectrum,XRD,TEM and electron spectrum,which indicated that the powder with good characteristics of 70-100 nm can be obtained by sintering at 1 000℃.It was shown that the chemical composition of the sample was agreed with experimental requirements by electron spectrum analysis.

  18. A neutral glyoxal gel electrophoresis method for the detection and semi-quantitation of DNA single-strand breaks.

    Science.gov (United States)

    Pachkowski, Brian; Nakamura, Jun

    2013-01-01

    Single-strand breaks are among the most prevalent lesions found in DNA. Traditional electrophoretic methods (e.g., the Comet assay) used for investigating these lesions rely on alkaline conditions to denature DNA prior to electrophoresis. However, the presence of alkali-labile sites in DNA can result in the introduction of additional single-strand breaks upon alkali treatment during DNA sample processing. Herein, we describe a neutral glyoxal gel electrophoresis assay which is based on alkali-free DNA denaturation and is suitable for qualitative and semi-quantitative analyses of single-strand breaks in DNA isolated from different organisms.

  19. Synthesis and characterization of uniform silica nanoparticles on nickel substrate by spin coating and sol-gel method

    Science.gov (United States)

    Ngoc Thi Le, Hien; Jeong, Hae Kyung

    2014-01-01

    Spin coating and sol-gel methods are proposed for the preparation of silica nanoparticles on a nickel substrate using silicon tetrachloride, 2-methoxyethanol, and four different types of alkaline solutions. The effects of the type of alkaline solution, concentration of silica solution, and speed of spin coating on the properties of silica nanoparticles are investigated systematically. Uniform spherical shape of silica nanoparticles on Ni with the smallest size are obtained with sodium carbonate among the alkaline solutions after stirring at 70 °C for 6 h and spin-coating at 7000 rpm. Physical and electrochemical properties of the silica particles are investigated.

  20. Preparation of nickel oxide thin films at different annealing temperature by sol-gel spin coating method

    International Nuclear Information System (INIS)

    Abdullah, M. A. R.; Mamat, M. H.; Ismail, A. S.; Malek, M. F.; Alrokayan, Salman A. H.; Khan, Haseeb A.; Rusop, M.

    2016-01-01

    Preparation of NiO thin films at different annealing temperature by sol-gel method was conducted to synthesize the quality of the surface thin films. The effects of annealing temperature on the surface topology were systematically investigated. Our studies confirmed that the surface roughness of the thin films was increased whenever annealing temperature was increase. NiO thin films morphology structure analysis was confirmed by field emission scanning electron microscope. Surface roughness of the thin films was investigated by atomic force microscopy.

  1. Fabrication of silica ceramic membrane via sol-gel dip-coating method at different nitric acid amount

    Science.gov (United States)

    Kahlib, N. A. Z.; Daud, F. D. M.; Mel, M.; Hairin, A. L. N.; Azhar, A. Z. A.; Hassan, N. A.

    2018-01-01

    Fabrication of silica ceramics via the sol-gel method has offered more advantages over other methods in the fabrication of ceramic membrane, such as simple operation, high purity homogeneous, well defined-structure and complex shapes of end products. This work presents the fabrication of silica ceramic membrane via sol-gel dip-coating methods by varying nitric acid amount. The nitric acid plays an important role as catalyst in fabrication reaction which involved hydrolysis and condensation process. The tubular ceramic support, used as the substrate, was dipped into the sol of Tetrethylorthosilicate (TEOS), distilled water and ethanol with the addition of nitric acid. The fabricated silica membrane was then characterized by (Field Emission Scanning Electron Microscope) FESEM and (Fourier transform infrared spectroscopy) FTIR to determine structural and chemical properties at different amount of acids. From the XRD analysis, the fabricated silica ceramic membrane showed the existence of silicate hydrate in the final product. FESEM images indicated that the silica ceramic membrane has been deposited on the tubular ceramic support as a substrate and penetrate into the pore walls. The intensity peak of FTIR decreased with increasing of amount of acids. Hence, the 8 ml of acid has demonstrated the appropriate amount of catalyst in fabricating good physical and chemical characteristic of silica ceramic membrane.

  2. Combined distiller waste utilisation and combustion gases desulphurisation method. The case study of soda-ash industry

    Energy Technology Data Exchange (ETDEWEB)

    Kasikowski, Tomasz; Buczkowski, Roman; Cichosz, Marcin; Lemanowska, Eliza [Faculty of Chemistry, Nicolas Copernicus University, ul. Gagarina 7, 87-100 Torun (Poland)

    2007-09-15

    In this paper, a concept of technology that can be helpful for lowering the negative influence of the synthetic (based on the Solvay process) soda ash plant on the natural environment is presented. We describe the desulphurisation of combustion gases from the factory's power plant, which is based on their absorption in the overflow of distiller waste. The excess of lime milk, which is added in the process of ammonia regeneration from filter liquor, results in a strong alkalinity of distiller waste. The high pH of distiller waste favours absorption of acidic combustion gases. The laboratory-scale tests showed about 80% efficiency of the desulphurisation process. The suspension samples we obtained consist mainly of CaCO{sub 3}. We suggest using the obtained solid phase as an adsorbent-insert in Fluidised Bed Combustion technology (FBC). Based on raw material prices, production costs, and average sell prices of the product, economic analysis of innovation was executed. Profits from employing the method presented come mainly from reduction of environmental fees. The sensitivity analysis of cost showed that the application of the desulphurisation process causes cost reduction in soda-ash production accounting for EUR 150 thousand per year (excluding depreciation) in Poland, and EUR 11,700 thousand per year (excluding depreciation) in Sweden. It has been found that the latter value is similar to the positive environmental impact of this innovation expressed in monetary units (EUR 10,350 thousand per year, excluding depreciation). (author)

  3. The ChlorOut concept. A method to reduce alkali-related problems during combustion

    Energy Technology Data Exchange (ETDEWEB)

    Kassman, Haakan [ChlorOut AB c/o Vattenfall AB, Nykoeping (Sweden); Wollner, Lothar [Boehringer Ingelheim Pharma GmbH und Co. KG, Ingelheim am Rhein (Germany); Berg, Magnus [ChlorOut AB c/o Vattenfall AB, Stockholm (Sweden)

    2013-06-01

    Combustion of biomass with a high content of alkali and chlorine (Cl) can result in operational problems including deposit formation and superheater corrosion. The strategies applied to reduce such problems include co-combustion and the use of additives. Ammonium sulphate is a part of the ChlorOut concept which is applied in a range of commercial boilers. This concept is based on dosing of sulphate-containing additives to the flue gases and a unique measurement device for on-line measurement of gaseous alkali chlorides called IACM (in-situ alkali chloride monitor). The focus of the present paper is on evaluation of long-term experiences from two full-scale boilers. The operational problems with deposit formation and superheater corrosion decreased in these boilers after installing the ChlorOut concept. (orig.)

  4. Simulation of hydrogen release and combustion in large scale geometries: models and methods

    International Nuclear Information System (INIS)

    Beccantini, A.; Dabbene, F.; Kudriakov, S.; Magnaud, J.P.; Paillere, H.; Studer, E.

    2003-01-01

    The simulation of H2 distribution and combustion in confined geometries such as nuclear reactor containments is a challenging task from the point of view of numerical simulation, as it involves quite disparate length and time scales, which need to resolved appropriately and efficiently. Cea is involved in the development and validation of codes to model such problems, for external clients such as IRSN (TONUS code), Technicatome (NAUTILUS code) or for its own safety studies. This paper provides an overview of the physical and numerical models developed for such applications, as well as some insight into the current research topics which are being pursued. Examples of H2 mixing and combustion simulations are given. (authors)

  5. Prediction method of unburnt carbon for coal fired utility boiler using image processing technique of combustion flame

    International Nuclear Information System (INIS)

    Shimoda, M.; Sugano, A.; Kimura, T.; Watanabe, Y.; Ishiyama, K.

    1990-01-01

    This paper reports on a method predicting unburnt carbon in a coal fired utility boiler developed using an image processing technique. The method consists of an image processing unit and a furnace model unit. temperature distribution of combustion flames can be obtained through the former unit. The later calculates dynamics of the carbon reduction from the burner stages to the furnace outlet using coal feed rate, air flow rate, chemical and ash content of coal. An experimental study shows that the prediction error of the unburnt carbon can be reduced to 10%

  6. Physical and morphological properties of alumina powders synthesized through sol-gel method

    International Nuclear Information System (INIS)

    Julie Andrianny Murshidi; Choo Thye Foo; Che Seman Mahmood; Meor Yusof Meor Sulaiman

    2006-01-01

    Aluminum oxide powders were prepared by the hydrolysis of aluminum isopropoxide catalysed by hydrochloric acid and in the presence of Sodium Lauryl Sulphate C 1 2H 2 5NaO 4 S as a surface stabilizing agent. After ageing for 24 hours the gel-like products were filtered and calcined at 1200 degree C. The effect of initial concentration of the aluminum precursor, aluminum isopropoxide (0.2 M, 0.1 M, 0.05 M and 0.03 M) and ageing temperature of 28 degree C, 50 degree C, 70 degree C, 85 degree C and 95 degree C on particle size of the powder were studied using Particle Size Analyzer. Shape and morphology of the particles were characterized by using Scanning Electron Microscope (SEM). (Author)

  7. Growth and characterization of magnesium chloride and lanthanum chloride doped strontium tartrate crystals - gel method

    International Nuclear Information System (INIS)

    Kalaiarasi, S.; Jaikumar, D.

    2014-01-01

    Growth of single crystals of doped strontium tartrate by controlled diffusion of strontium chloride into the silica gel charged with tartaric acid at room temperature is narrated. In this study, we synthesized magnesium chloride (5% and 10%) doped strontium tartrate crystals and Lanthanum chloride (5%, 10% and 15%) doped strontium tartrate crystals are grown. The crystal structure of the compound crystals was confirmed by single crystal X-ray diffraction. The Fourier transform infrared spectrum of pure and doped crystals are recorded and analyzed. The UV-Vis-NIR spectrum analysis reveals that the optical study of the grown crystals. The second harmonic generation efficiency was measured by using Kurtz powder technique with Nd:YAG laser of wavelength 1064 nm. (author)

  8. Synthesis and Characterization of Nanostructure Tio2/Anthraquenone (AQ Prepared by Sol-Gel Method

    Directory of Open Access Journals (Sweden)

    Fadhela M. Hussein

    2017-11-01

    Full Text Available sol–gel technique conducted to synthesize nano titanium dioxide with anthraquenone (AQ relatively in acidic pH. Nanoparticles were characterized using techniques like, Scanning Electrion Microscope (SEM, Atomic Force Microscope (AFM, UV-Visible Spectrioscopy, X-ray diffraction (XRD, Fourier transform infrared (FT-IR, SEM picture display that the TiO2/AQ is spherical in style, the band gap of TiO2/AQ nanoparticle is (3.05eV, BET and BJH analysis provides Pore volume and specific Surface area and the kinetic studie Suggest that the reaction is pseudo first order and the rate of reaction was reduce with rising initial concentration for p-Nitrotolune.

  9. Future combustion methods for biomethane powered tractor engines; Zukuenftige Brennverfahren fuer biomethanbetriebene Traktormotoren

    Energy Technology Data Exchange (ETDEWEB)

    Prehn, Sascha; Harndorf, Horst [Rostock Univ. (Germany). Lehrstuhl fuer Kolbenmaschinen und Verbrennungsmotoren; Wichmann, Volker [Rostock Univ. (Germany). Maschinenlabor; Beberdick, Wolfgang

    2016-08-01

    Biomethane represents an alternative to fossil fuels (petrol, diesel), not only in the on-road sector. Methane-based fuels come in focus of farmers in the agriculture sector, due to cost constraints, increasing regulation of pollutant emissions and reduction of carbondioxid. To represent a monovalent gas operation, a functional model is derived from a series diesel engine for agricultural use. On the test engine, systematic studies on the combustion process are carried out by cylinder pressure indication and exhaust-emission measurement. Combustion under stoichiometric conditions (with or without exhaust gas recirculation) as well as the conversion of fuel from excess air is observed. The study shows that with a natural-gas engine, a complex post-treatment system of exhaust gas (DOC + DPF + SCR) that is typically for diesel engines can be dispensed with. The exhaust gas limits in force since 2014 and a limitation of methane on 0,5 g/kWh can be met with a stoichiometric combustion concept and a three way catalytic converter optimized for the methane oxidation.

  10. A Computing Method to Determine the Performance of an Ionic Liquid Gel Soft Actuator.

    Science.gov (United States)

    He, Bin; Zhang, Chenghong; Zhou, Yanmin; Wang, Zhipeng

    2018-01-01

    A new type of soft actuator material-an ionic liquid gel (ILG) that consists of BMIMBF 4 , HEMA, DEAP, and ZrO 2 -is polymerized into a gel state under ultraviolet (UV) light irradiation. In this paper, we first propose that the ILG conforms to the assumptions of hyperelastic theory and that the Mooney-Rivlin model can be used to study the properties of the ILG. Under the five-parameter and nine-parameter Mooney-Rivlin models, the formulas for the calculation of the uniaxial tensile stress, plane uniform tensile stress, and 3D directional stress are deduced. The five-parameter and nine-parameter Mooney-Rivlin models of the ILG with a ZrO 2 content of 3 wt% were obtained by uniaxial tensile testing, and the parameters are denoted as c 10 , c 01 , c 20 , c 11 , and c 02 and c 10 , c 01 , c 20 , c 11 , c 02 , c 30 , c 21 , c 12 , and c 03 , respectively. Through the analysis and comparison of the uniaxial tensile stress between the calculated and experimental data, the error between the stress data calculated from the five-parameter Mooney-Rivlin model and the experimental data is less than 0.51%, and the error between the stress data calculated from the nine-parameter Mooney-Rivlin model and the experimental data is no more than 8.87%. Hence, our work presents a feasible and credible formula for the calculation of the stress of the ILG. This work opens a new path to assess the performance of a soft actuator composed of an ILG and will contribute to the optimized design of soft robots.

  11. An improved method for detecting genetic variation in DNA using denaturing gradient gel electrophoresis

    International Nuclear Information System (INIS)

    Takahashi, Norio; Hiyama, Keiko; Kodaira, Mieko; Satoh, Chiyoko.

    1990-05-01

    We have examined the feasibility of denaturing gradient gel electrophoresis (DGGE) of RNA:DNA duplexes to detect variations in genomic and cloned DNAs. The result has demonstrated that use of RNA:DNA duplexes makes DGGE much more practical for screening a large number of samples than use of DNA:DNA heteroduplexes, because preparation of RNA probes is easier than that of DNA probes. Three different 32 P-labeled RNA probes were produced. Genomic or cloned DNAs were digested with restriction enzymes and hybridized to labeled RNA probes, and resulting RNA:DNA duplexes were examined by DGGE. The presence of a mismatch(es) was detected as a difference in the mobility of bands on the gel. The experimental conditions were determined using DNA segments from cloned normal and three thalassemic human β-globin genes. The results from experiments on the cloned DNAs suggest that DGGE of RNA:DNA duplexes will detect nucleotide substitutions and deletions in DNA. In the course of these studies, a polymorphism due to a single-base substitution at position 666 of IVS2 (IVS2-666) of the human β-globin gene was directly identified using genomic DNA samples. A study of 59 unrelated Japanese from Hiroshima was undertaken in which the frequency of the allele with C at IVS2-666 was 0.48 and that of the allele with T was 0.52. This approach was found to be very effective for detecting heritable variation and should be a powerful tool for detecting fresh mutations in DNA, which occur outside the known restriction sites. (author)

  12. 3D MR gel dosimetry with lung equivalent gel

    International Nuclear Information System (INIS)

    Scherer, J.; Solleder, M.; Schiessl, I.; Bogner, L.; Herbst, M.

    1998-01-01

    The MR gel dosimetry is used to verify complex 3D treatment plans. Till now this method served only for dose evaluation in homogeneous phantoms. On the way to build a heterogeneous anthropomorphic gel phantom, a lung equivalent gel with the density 0.4 g/cm 3 was developed. First experiments show a 1.55 times higher dose reponse in the low density gel (LD gel). The comparison of a dose distribution in a gel/LD gel/gel slab phantom with Monte Carlo calculations shows good agreement within 5%. More over the accuray of the measuring device magnetic resonance imager was studied in respect to the now exclusive digital image processing with the software MRD (MR dosimetry). Because of the dimensions of the Fricke gel phantom an artefact correction, based on the data from the unirradiated phantom proved to be essential. (orig.) [de

  13. ZnO-SiO{sub 2} based nanocomposites prepared by a modified sol-gel method

    Energy Technology Data Exchange (ETDEWEB)

    Grigorie, Alexandra Carmen [Politehnica University Timisoara, Faculty of Industrial Chemistry and Environmental Engineering, 6 V. Parvan Blv., RO-300223, Timisoara (Romania); Muntean, Cornelia, E-mail: cornelia.muntean@upt.ro [Politehnica University Timisoara, Faculty of Industrial Chemistry and Environmental Engineering, 6 V. Parvan Blv., RO-300223, Timisoara (Romania); Politehnica University Timisoara, Research Institute for Renewable Energy, 2 Piata Victoriei, RO-300006, Timisoara (Romania); Vlase, Titus [West University of Timisoara, 4 V. Parvan Blv., RO-300223, Timisoara (Romania); Locovei, Cosmin [Politehnica University Timisoara, Research Institute for Renewable Energy, 2 Piata Victoriei, RO-300006, Timisoara (Romania); Politehnica University Timisoara, Faculty of Mechanical Engineering, 1 Mihai Viteazul Blv., RO-300222, Timisoara (Romania); Stefanescu, Mircea [Politehnica University Timisoara, Faculty of Industrial Chemistry and Environmental Engineering, 6 V. Parvan Blv., RO-300223, Timisoara (Romania)

    2017-01-15

    This paper presents a study on nanocomposites formation in ZnO-SiO{sub 2} systems with different ZnO:SiO{sub 2} molar ratios (1:4, 1:1, and 4:1), prepared employing a sol-gel method modified by an original procedure. The evolution of ZnO-SiO{sub 2} systems depending on the composition and temperature was studied by thermal analysis, Fourier transform infrared spectroscopy, X-ray diffractometry and transmission electron microscopy. Zn(II) carboxylate was synthesized in situ in hybrid silica gels by redox reaction between zinc nitrate and 1,3-propanediol. Its thermal decomposition at low temperatures led to ZnO dispersed in the pores of silica matrix. Only for the 4:1 system, at 400 and 600 °C, ZnO nanocrystallites (average size ∼9 nm) embedded in the amorphous silica matrix were obtained, the other systems being amorphous. Whatever the mixture composition is, above 600 °C, ZnO reacts with SiO{sub 2} to form zinc silicate. At 800 °C, for both 1:4 and 1:1 systems, poor crystallized β-Zn{sub 2}SiO{sub 4} and α-Zn{sub 2}SiO{sub 4} phases embedded in silica matrix were formed. Increasing the temperature, at 1000 °C, only for 1:1 system, β-Zn{sub 2}SiO{sub 4} phase turned into single phase α-Zn{sub 2}SiO{sub 4} (average crystallites size 28.3 nm). For 4:1 composition, at 800 and 1000 °C, systems consisting of ZnO and α-Zn{sub 2}SiO{sub 4} nanocrystallites dispersed in silica were obtained. - Highlights: • By modified sol-gel method, ZnO/SiO{sub 2} and Zn{sub 2}SiO{sub 4}/SiO{sub 2} nanocomposites were obtained. • ZnO dispersed in silica matrix results from zinc carboxylate thermal decomposition. • Zinc carboxylate was synthesized in situ in hybrid silica gels via redox reaction. • Evolution of ZnO in SiO{sub 2} matrix depends on temperature and system composition.

  14. Nanostructured Mesoporous Titanium Dioxide Thin Film Prepared by Sol-Gel Method for Dye-Sensitized Solar Cell

    Directory of Open Access Journals (Sweden)

    Yu-Chang Liu

    2011-01-01

    Full Text Available Titanium dioxide (TiO2 paste was prepared by sol-gel and hydrothermal method with various precursors. Nanostructured mesoporous TiO2 thin-film back electrode was fabricated from the nanoparticle colloidal paste, and its performance was compared with that made of commercial P25 TiO2. The best performance was demonstrated by the DSSC having a 16 μm-thick TTIP-TiO2 back electrode, which gave a solar energy conversion efficiency of 6.03%. The ability of stong adhesion on ITO conducting glass substrate and the high surface area are considered important characteristics of TiO2 thin film. The results show that a thin film with good adhesion can be made from the prepared colloidal paste as a result of alleviating the possibility of electron transfer loss. One can control the colloidal particle size from sol-gel method. Therefore, by optimizing the preparation conditions, TiO2 paste with nanoparticle and narrow diameter distribution was obtained.

  15. Epitaxial growth of Er, Ti doped LiNbO3 films prepared by sol-gel method

    International Nuclear Information System (INIS)

    Takahashi, Makoto; Yoshiga, Tsuyoshi; Kajitani, Naofumi; Takeda, Yuki; Sato, Shoji; Wakita, Koichi; Ohnishi, Naoyuki; Hotta, Kazutoshi; Kurachi, Masato

    2006-01-01

    Erbium (Er 3+ ) doped lithium niobate (LiNbO 3 ) thick films were deposited on z-cut congruent LiNbO 3 (LN) substrate by the sol-gel method from the 0.20 mol/dm 3 precursor solution containing various Er 3+ concentration and 0.10 mol/dm 3 poly(vinyl alcohol) (PVA), and their crystal characteristics were evaluated. The Er 3+ concentration in the LN film was controlled by the Er 3+ concentration in the starting solution. The orientation relationships between Er doped LN films and substrates were determined by X-ray diffraction, Raman spectroscopy, and transmission electron microscopy, and (006) oriented Er doped LN epitaxial layers with parallel epitaxial relationships could be grown on the z-cut LN wafer. Moreover, it was made clear from the electron beam diffraction measurements that the film came to be polycrystalline, when the Er concentration was over 3 mol%. The refractive index of Er-doped LN films decreased with increasing Er concentration. 1.5 mol% Ti: 1.0 mol% Er LN films, which acted as a waveguide, were prepared by our so-gel method. It showed the 1530 nm emission by 980 nm excitation, which was considered to be due to the Er 3+ corresponding to the 4 I 13/2 → 4 I 15/2 transition. (author)

  16. Electrical stability of Al-doped ZnO transparent electrode prepared by sol-gel method

    Energy Technology Data Exchange (ETDEWEB)

    Tabassum, Samia, E-mail: shawon14@gmail.com; Yamasue, Eiji; Okumura, Hideyuki; Ishihara, Keiichi N.

    2016-07-30

    Highlights: • Al-doped ZnO thin film was deposited by sol-gel method in different annealing temperature and duration. • We examined the environmental stability in ambient and damp heat condition. • We investigated chemical state of thin film. • Better stability was observed in the film annealed at high temperature (600 °C) along with longer duration (120 min). • An ultrathin aluminum oxide layer formation was predicted by XPS measurement which protects further oxidation and improves stability. - Abstract: Al-doped zinc oxide (AZO) thin films have been considered as a promising alternative to tin doped indium oxide (ITO), which is currently used in various optoelectronic applications. However, the environmental stability of AZO film is not satisfactory, in that the resistivity is significantly increases in air. Here, we investigate the resistivity stability of AZO thin films prepared by sol-gel method using various annealing temperatures and durations. The degradation of resistivity property was observed for AZO films stored in ambient or damp heat environment, where the degradation rate was influenced by annealing temperature. A significant improvement of electrical stability was attained in AZO films that were prepared at high annealing temperature. The films, which showed the highest and the lowest increasing rate of resistivity, were further characterized in detail to shed light on the possible mechanisms explaining the improved stability through crystallinity, surface morphology and elemental state of the thin film.

  17. Electrical stability of Al-doped ZnO transparent electrode prepared by sol-gel method

    International Nuclear Information System (INIS)

    Tabassum, Samia; Yamasue, Eiji; Okumura, Hideyuki; Ishihara, Keiichi N.

    2016-01-01

    Highlights: • Al-doped ZnO thin film was deposited by sol-gel method in different annealing temperature and duration. • We examined the environmental stability in ambient and damp heat condition. • We investigated chemical state of thin film. • Better stability was observed in the film annealed at high temperature (600 °C) along with longer duration (120 min). • An ultrathin aluminum oxide layer formation was predicted by XPS measurement which protects further oxidation and improves stability. - Abstract: Al-doped zinc oxide (AZO) thin films have been considered as a promising alternative to tin doped indium oxide (ITO), which is currently used in various optoelectronic applications. However, the environmental stability of AZO film is not satisfactory, in that the resistivity is significantly increases in air. Here, we investigate the resistivity stability of AZO thin films prepared by sol-gel method using various annealing temperatures and durations. The degradation of resistivity property was observed for AZO films stored in ambient or damp heat environment, where the degradation rate was influenced by annealing temperature. A significant improvement of electrical stability was attained in AZO films that were prepared at high annealing temperature. The films, which showed the highest and the lowest increasing rate of resistivity, were further characterized in detail to shed light on the possible mechanisms explaining the improved stability through crystallinity, surface morphology and elemental state of the thin film.

  18. Investigation of the visible light photocatalytic activity of BiVO4 prepared by sol gel method assisted by ultrasonication.

    Science.gov (United States)

    Deebasree, J P; Maheskumar, V; Vidhya, B

    2018-07-01

    Visible light induced photocatalyst BiVO 4 with monoclinic scheelite structure has been synthesised via sol gel method assisted by ultrasonication. The prepared samples were characterised using X-ray diffraction (XRD), scanning electron microscope (SEM), UV-Vis diffused reflectance spectroscopy (DRS) techniques. The photocatalytic efficiency was evaluated by decolourisation of MB under visible light irradiation. The effect of ultrasound output power on the properties of BiVO 4 during and after preparation by sol-gel method has been compared with normal agitated sample (As prepared). The power of ultrasonic vibration has been varied and an ideal output power which yields better catalytic efficiency is determined. BiVO 4 sonicated with 80 W during preparation 80 W (D) exhibited relatively high surface area, better surface morphology and better catalytic efficiency compared to other samples which were sonicated with 100, 160 and 200 W. The results signify that the photodegradation rate of BiVO 4 80 W (D) sample is high up to 96% in 90 min compared to other samples. Change in morphology leading to better catalytic efficiency was obtained just by exposing the sample to ultrasonic radiation without addition of any surfactant. The recovery test showed that the sample was stable for four consecutive cycles. Using radical test, a reasonable mechanism for photodegradation has been proposed. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Preparation of Raspberry-like Superhydrophobic SiO2 Particles by Sol-gel Method and Its Potential Applications

    Directory of Open Access Journals (Sweden)

    Xu Gui-Long

    2011-12-01

    Full Text Available Raspberry‐like SiO2 particles with a nano‐micro‐binary structure were prepared by a simple sol‐gel method using tetraethoxysilane (TEOS and methyltriethoxysilane (MTES as precursors. The chemical components and morphology of the SiO2 particles were characterized by Fourier transform infrared spectroscopy (FT‐IR and a Transmission electron microscope (TEM. The surface topography and wetting behaviour of the raspberry‐like SiO2 surface were observed with a Scanning electron microscope (SEM and studied by the water/oil contact angle (CA, respectively. The thermal stability of the prepared SiO2 particles was characterized by TGA analysis. The results show that the highly dispersed SiO2 particles initially prepared by the sol‐gel method turn into raspberry‐like particles with during the aging process. The raspberry‐like SiO2 particles show superhydrophobicity and superoleophilicity across a wide range of pH values. The SiO2 particles were thermally stable up to 475°C, while above this temperature the hydrophobicity decreases and finally becomes superhydrophobic when the temperature reaches 600°C. The raspberry‐like SiO2 particles which were prepared have potential applications in the fields of superhydrophobic surfaces, water‐oil separation, anti‐corrosion and fluid transportation.

  20. Comparative investigation of the gel chromatography column scanning method for quality control of /sup 99/sup(m)Tc-methylenediphosphonate

    Energy Technology Data Exchange (ETDEWEB)

    Darte, L

    1981-04-01

    Gel chromatography column scanning (GCS) is the method of choice for quality control of sup(99m)Tc-MDP preparations. Using this method all the labelled components are obtained rapidly in one simple test procedure. The influence of various parameters such as gel type, column size, prehistory of column, equilibration, eluent, elution volume and flow rate upon the results have been investigated. Test results for sup(99 m)Tc-MDP have been compared for several different GCS systems, a few TLC systems and column chromatography with fraction collection. The GCS technique, optimized for testing sup(99m)Tc-MDP preparations has been applied in a few experiments in which very good reproducibility is required: Labelling kinetics and stability when stored at room temperature or in a refrigerator and influence of the sup(99m)Te/(sup(99m)Tc + /sup 99/Tc) atomic ratio and of the amount of radioactivity on the sup(99m)Tc-MDP labelling yield, covering parameter ranges of clinical interest, have been studied.

  1. Synthesis of hierarchical porous materials with ZSM-5 structures via template-free sol–gel method

    Directory of Open Access Journals (Sweden)

    Wei Han et al

    2007-01-01

    Full Text Available Interests are focused on preparation of hierarchical porous materials with zeolite structures by using soft or rigid templates in order to solve diffusion and mass transfer limitations resulting from the small pore sizes of zeolites. Here we develop a convenient template-free sol–gel method to synthesize hierarchical porous materials with ZSM-5 structures. This method involves hydrothermal recrystallization of the xerogel converted from uniform ZSM-5 sol by a vacuum drying process. By utilizing this method we can manipulate the size of zeolite nanocrystals as building units of porous structures based on controlling temperature of recrystallization, consequently obtain hierarchical porous materials with different intercrystalline pore sizes and ZSM-5 structures.

  2. Non-Destructive Methods for Determining Burn-Up in Nuclear Fuel; Methodes Non Destructives d'Evaluation du Taux de Combustion dans le Combustible Nucleaire; Metody opredeleniya vygoraniya v yadernom toplive bez razrusheniya obraztsa; Metodos No Destructivos para Determinai el Grado de Combustion de los Elementos Combustibles Nucleares

    Energy Technology Data Exchange (ETDEWEB)

    McGonnagle, W. J. [Illinois Institute of Technology, Chicago, IL (United States)

    1966-02-15

    is of secondary importance and the cooling time is unimportant. Also, there is more precise nuclear data for the stable fission products. Of the stable isotopes produced during the fission process, zirconium, molybdenum, ruthenium, and neodymium appear to be the most useful. The proposed non-destructive methods using stable isotopes will be discussed. (author) [French] Il est a la fois utile et souhaitable d'utiliser des methodes non destructives pour proceder a la mesure quantitative du taux de combustion des elements combustibles d'un reacteur nucleaire. L'ideal serait de pouvoir analyser le combustible a l'aide d'une methode ne necessitant pas de renseignements particuliers sur les spectres des neutrons, le schema d'irradiation ou le temps de refroidissement. Les isotopes radioactifs et les isotopes stables resultant du processus de fission qui sont presents dans un element combustible irradie caracterisent son irradiation. Malheureusement, que l'analyse soit effectuee au moyen de methodes destructives ou non destructives, les resultats obtenus varient en fonction du spectre de neutrons, du schema d'irradiation et du temps de refroidissement. Deplus, l'absence de donnees nucleaires precises, comme les valeurs des section efficaces, influe sur tous les calculs qui peuvent etre effectues. L'analyse non destructive est egalement genee par la presence de champs de rayonnements intenses qui augmentent le bruit de fond. Il est difficile d'etablir des normes utiles et realistes. Bien que, dans l'etat actuel de la technique, les methodes non destructives n'aient pas toute la precision et l'exactitude voulues, elles presentent neanmoins un grand interet' notamment dans les cas ou il faut obtenir rapidement et economiquement une valeur approximative du taux de combustion. Plusieurs methodes non destructives d'evaluation du taux de combustion sont actuellement appliquees, a l'etude ou en projet. Plusieurs types de spectrometres sont utilises pour la mesure du rayonnement

  3. Effects of nano-TiO2 on combustion and desulfurization

    International Nuclear Information System (INIS)

    Zhao, Yi; Wang, Shuqin; Shen, Yanmei; Lu, Xiaojuan

    2013-01-01

    Nanosized titanium oxide powder was prepared via the sol–gel process and characterized by transmission electron microscope. The effects of nano-TiO 2 on combustion characteristics of lignite, desulfurization in combustion and the properties of ashes were investigated. The calorific value of coals and the fusion point of the coal ashes were measured by calorimeter and ash fusion point determination meter; the components of coal ashes and the contents of combustible matters in ash were determined by chemical methods; the pore-size distribution and specific surface area of the coal ash were analyzed by surface area analyzer. A thermogravimetric analyzer was used to investigate the effect of nano-TiO 2 on combustion. The results showed that the calorific value of the coal and the fusion temperature of the coal ash were lowered by adding CaO, while on the other hand adding nano-TiO 2 to coal increased the calorific value and the melting temperature effectively. Meanwhile, the coal combustion efficiency and desulfurization in combustion could be effectively improved by the co-action of TiO 2 . - Highlights: • The burn-off rate of coals was raised and the combustible contents were reduced by adding nano-TiO 2 . • The desulfurization in combustion can be achieved by adding CaO, but the combustion efficiency was inhibited. • Nano-TiO 2 can promote the transfer rate of oxygen from gas phase to the surface of char

  4. In vitro characterization of polyvinyl alcohol assisted hydroxyapatite derived by sol–gel method

    Energy Technology Data Exchange (ETDEWEB)

    Kaygili, Omer, E-mail: okaygili@firat.edu.tr [Department of Physics, Faculty of Science, Firat University, 23119 Elazig (Turkey); Keser, Serhat [Department of Chemistry, Faculty of Science, Firat University, 23119 Elazig (Turkey); Al Orainy, R.H. [Physics Department, Sciences of Faculty for Girls, King Abdulaziz University, Jeddah (Saudi Arabia); Ates, Tankut [Department of Physics, Faculty of Science, Firat University, 23119 Elazig (Turkey); Yakuphanoglu, Fahrettin [Department of Physics, Faculty of Science, Firat University, 23119 Elazig (Turkey); Physics Department, Sciences of Faculty for Girls, King Abdulaziz University, Jeddah (Saudi Arabia)

    2014-02-01

    The synthesis and characterization of sol–gel derived hydroxyapatite (HAp) were investigated with the effects of the addition of polyvinyl alcohol (PVA) to the structural and material in vitro behavior. All samples were soaked in simulated body fluid (SBF) for 14 and 28 days. The characterization of bioceramics before and after immersing in SBF was carried out by X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, differential thermal analysis (DTA), thermogravimetric analysis (TGA) and scanning electron microscopy (SEM) techniques. After the simulated body fluid period, the crystal structure and phase of HAp samples did not change significantly. The characteristic bands of hydroxyl, phosphate and carbonate groups were detected. HAp exhibited a thermal stability of room temperature to 1000 °C. The surface morphologies of the samples show an evident change with the soaking period in SBF. - Highlights: • The soaking period in SBF affects the surface morphology. • The Ca/P molar ratios change with the immersion time. • The as-prepared samples thermally stable from ∼ 25 to 1000 °C.

  5. Zinc oxide films impurified with Ti and prepared by the Sol-gel method

    International Nuclear Information System (INIS)

    Tirado G, S.; Cazares R, J.M.; Maldonado, A.

    2006-01-01

    Titanium-doped zinc oxide thin films have been prepared on silicon substrate using the Sol-Gel technique. The structural, morphology, electrical and optical properties of such thin films were studied as a function of titanium concentration (0.5, 1 and 1.5 %) and the thin films thickness. Zinc acetate dihydrate and titanium (VI)-oxy acetylacetonate were used as precursor materials, using 2-methoxyethanol and monoethanolamine as via. The X-ray diffraction spectra show polycrystalline films in all the cases. It can see for all the thin films a preferential growth along the (002) planes where the titanium concentration and also the thin films thickness play an important rule. No structural changes are observed at all. The surface morphology studied shows as the grain size decreases when thin thickness is increases. For titanium concentration of 0.5, 1 and 1.5 % values the grains size increase also. The thin films thickness for titanium concentration of 1.5 % was 500 nm (4v), 400 nm (3v), 180 nm (2v) and 130 nm (1v), values obtained from cross-section micrographs. Highly resistive samples are obtained for substrate soda-lime even showing high transmittance. Better physical properties are required for gas sensors or semitransparent electrodes and other possible applications. (Author)

  6. In vitro characterization of polyvinyl alcohol assisted hydroxyapatite derived by sol–gel method

    International Nuclear Information System (INIS)

    Kaygili, Omer; Keser, Serhat; Al Orainy, R.H.; Ates, Tankut; Yakuphanoglu, Fahrettin

    2014-01-01

    The synthesis and characterization of sol–gel derived hydroxyapatite (HAp) were investigated with the effects of the addition of polyvinyl alcohol (PVA) to the structural and material in vitro behavior. All samples were soaked in simulated body fluid (SBF) for 14 and 28 days. The characterization of bioceramics before and after immersing in SBF was carried out by X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, differential thermal analysis (DTA), thermogravimetric analysis (TGA) and scanning electron microscopy (SEM) techniques. After the simulated body fluid period, the crystal structure and phase of HAp samples did not change significantly. The characteristic bands of hydroxyl, phosphate and carbonate groups were detected. HAp exhibited a thermal stability of room temperature to 1000 °C. The surface morphologies of the samples show an evident change with the soaking period in SBF. - Highlights: • The soaking period in SBF affects the surface morphology. • The Ca/P molar ratios change with the immersion time. • The as-prepared samples thermally stable from ∼ 25 to 1000 °C

  7. Phase Composition of Samarium Niobate and Tantalate Thin Films Prepared by Sol-Gel Method

    Science.gov (United States)

    Bruncková, H.; Medvecký, Ľ.; Múdra, E.; Kovalčiková, A.; Ďurišin, J.; Šebek, M.; Girman, V.

    2017-12-01

    Samarium niobate SmNbO4 (SNO) and tantalate SmTaO4 (STO) thin films ( 100 nm) were prepared by sol-gel/spin-coating process on alumina substrates with PZT interlayer and annealing at 1000°C. The precursors of films were synthesized using Nb or Ta tartrate complexes. The improvement of the crystallinity of monoclinic M'-SmTaO4 phase via heating was observed through the coexistence of small amounts of tetragonal T-SmTa7O19 phase in STO precursor at 1000°C. The XRD results of SNO and STO films confirmed monoclinic M-SmNbO4 and M'-SmTaO4 phases, respectively, with traces of orthorhombic O-SmNbO4 (in SNO). In STO film, the single monoclinic M'-SmTaO4 phase was revealed. The surface morphology and topography of thin films were investigated by SEM and AFM analysis. STO film was smoother with roughness 3.2 nm in comparison with SNO (6.3 nm). In the microstructure of SNO film, small spherical ( 50 nm) and larger cuboidal particles ( 100 nm) of the SmNbO4 phase were observed. In STO, compact clusters composed of fine spherical SmTaO4 particles ( 20-50 nm) were found. Effect of samarium can contribute to the formation different polymorphs of these films for the application to environmental electrolytic thin film devices.

  8. Topical gel formulation and stability assessment of platelet lysate based on turbidimetric method

    Directory of Open Access Journals (Sweden)

    Soliman Mohammadi Samani

    2015-06-01

    Full Text Available Platelet-rich growth factors have attracted attentions of scientists and clinical practitioners who are involved in wound healing and regenerative medicine extensively, according to their unprecedented potential of promoting and catalyzing healing process. Platelet-rich growth factors are cost-benefit, available and more stable than recombinant human growth factors. These appealing characteristics have converted PRGF to one of the popular candidates for treatment of variety of wounds. According to these valuable properties, we decided to formulate and assess the effect of different excipients on the stability of such valuable protein based formulations. Different excipients have been chosen according to their effective ness on the stability of proteins and their application in other similar formulations. The stabilizing effect of excipients was evaluated by measuring heat-induced aggregation of growth factors by turbidimetric assay. Glycerol, glycine and dextrose were chosen as stabilizing excipients for these formulations. The results show that dextrose has more stabilizing effect on prevention of heat induced aggregation of the platelet lysate growth factors than glycerol and glycine. All of the formulations also contained antioxidant, chelating agents, preservative and carbopol934 in order to form appropriate gel.

  9. Effect of rare earth dopants on structural and mechanical properties of nanoceria synthesized by combustion method

    International Nuclear Information System (INIS)

    Akbari-Fakhrabadi, A.; Meruane, V.; Jamshidijam, M.; Gracia-Pinilla, M.A.; Mangalaraja, R.V.

    2016-01-01

    Structural characteristics of combustion synthesized, calcined and densified pure and doped nanoceria with tri-valent cations of Er, Y, Gd, Sm and Nd were analyzed by X-ray diffraction (XRD) and high resolution transmission electron microscopy (HRTEM). The results showed that the as-synthesized and calcined nanopowders were mesoporous and calculated lattice parameters were close to theoretical ion-packing model. The effect of dopants on elastic modulus, microhardness and fracture toughness of sintered pure and doped ceria were investigated. It was observed that tri-valent cation dopants increased the hardness of the ceria, whereas the fracture toughness and elastic modulus were decreased.

  10. Synthesis and characterization of the Pt/SiO2 nanocomposite by the sol-gel method

    Directory of Open Access Journals (Sweden)

    A. Salabat

    2011-01-01

    Full Text Available The silica supported platinum nanoparticles was synthesized by using the sol-gel method. The possibility of using diamminedinitro platinum (II as Pt precursor and effect of metal precursor concentration on the final Pt nanoparticle size was investigated. A stable silica sol was prepared via hydrolysis of tetraethyl orthosilicate (TEOS as a metal alcoxide and condensation reaction. Subsequently, diamminedinitro platinum (II was added to sol to form the Pt/silica sol. After drying and calcination of the sol, the Pt/SiO2 nanocpmposite has been obtained. Crystallographic information and crystalline size of the synthesized Pt/SiO2 were determined by X-ray diffraction (XRD method. Morphology of the nanoparticles and hydrogen-bonding interaction between silanol groups and amine ligands were characterized by SEM and Fourier transform infrared (FTIR spectra, respectively. Transmission Electron Microscopy (TEM was employed in evaluating the distribution and size of the platinum nanoparticles in the silica.

  11. Properties of fluorine and tin co-doped ZnO thin films deposited by sol–gel method

    International Nuclear Information System (INIS)

    Pan, Zhanchang; Zhang, Pengwei; Tian, Xinlong; Cheng, Guo; Xie, Yinghao; Zhang, Huangchu; Zeng, Xiangfu; Xiao, Chumin; Hu, Guanghui; Wei, Zhigang

    2013-01-01

    Highlights: •F and Sn co-doped ZnO thin films were synthesized by sol–gel method. •The effects of different F doping concentrations were investigated. •The co-doped nanocrystals exhibit good crystal quality. •The origin of the photoluminescence emissions was discussed. •The films showed high transmittance and low resistivity. -- Abstract: Highly transparent and conducting fluorine (F) and tin (Sn) co-doped ZnO (FTZO) thin films were deposited on glass substrates by the sol–gel processing. The structure and morphology of the films are characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and high resolution transmission electron microscopy (HRTEM) with various F doping concentrations. SEM images showed that the hexagonal ZnO crystals were well-arranged on the glass substrates and the HRTEM images indicated that the individual nanocrystals are highly oriented and exhibited a perfect lattice structure. Owing to its high carrier concentration and mobility, as well as good crystal quality, a minimum resistivity of 1 × 10 −3 Ω cm was obtained from the FTZO thin film with 3% F doping, and the average optical transmittance in the entire visible wavelength region was higher than 90%. The X-ray photoelectron spectroscopy (XPS) study confirmed the substitution of Zn 2+ by Sn ions and Room temperature photoluminescence (PL) observed for pure and FTZO thin films suggested the films exhibit a good crystallinity with a very low defect concentration

  12. Zr doping dependence of structural and magnetic properties of cobalt ferrite synthesized by sol-gel based Pechini method

    Science.gov (United States)

    Motavallian, Pourya; Abasht, Behzad; Abdollah-Pour, Hassan

    2018-04-01

    Nanocrystalline CoZrxFe2-xO4 (0 ≤ x ≤ 0.3 in a step of 0.05) powders were synthesized by Pechini sol-gel method. The dry gel was grinded and calcined at 700 °C in a static air atmosphere for 1 h. Some tests such as thermo gravimetric analysis (TGA) combined with differential analysis (DTA), fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM) and vibrating sample magnetometer (VSM) were carried out to investigate the thermal behaviour, structural bonds identification, crystallographic properties, morphology and magnetic properties of the obtained powders. X-ray diffraction revealed a single-phase cubic spinel structure for all samples, where the crystallite size decreases; the lattice parameter simultaneously increases with substitution of Zr. The results of FE-SEM showed that the particle size is in the 20-70 nm range. The magnetic properties such as saturation magnetization (Ms), remanent magnetization (Mr) and coercivity (Hc) were measured from the hysteresis loops. The greatest amount of saturation magnetization for CoZr0.05Fe1.95O4 sample was 67.9 emu·g-1.

  13. The use of silica gel prepared by sol-gel method and polyurethane foam as microbial carriers in the continuous degradation of phenol.

    Science.gov (United States)

    Brányik, T; Kuncová, G; Páca, J

    2000-08-01

    A mixed microbial culture was immobilized by entrapment into silica gel (SG) and entrapment/ adsorption on polyurethane foam (PU) and ceramic foam. The phenol degradation performance of the SG biocatalyst was studied in a packed-bed reactor (PBR), packed-bed reactor with ceramic foam (PBRC) and fluidized-bed reactor (FBR). In continuous experiments the maximum degradation rate of phenol (q(s)max) decreased in the order: PBRC (598 mg l(-1) h(-1)) > PBR (PU, 471 mg l(-1)h(-1)) > PBR(SG, 394 mg l(-1) h(-1)) > FBR (PU, 161 mg l(-1) h(-1)) > FBR (SG, 91 mg l(-1) h(-1)). The long-term use of the SG biocatalyst in continuous phenol degradation resulted in the formation of a 100-200 microm thick layer with a high cell density on the surface of the gel particles. The abrasion of the surface layer in the FBR contributed to the poor degradation performance of this reactor configuration. Coating the ceramic foam with a layer of cells immobilized in colloidal SiO2 enhanced the phenol degradation efficiency during the first 3 days of the PBRC operation, in comparison with untreated ceramic packing.

  14. QSPR study of the retention/release property of odorant molecules in pectin gels using statistical methods

    Directory of Open Access Journals (Sweden)

    Assia Belhassan

    2017-11-01

    Full Text Available The ACD/ChemSketch, MarvinSketch, and ChemOffice programmes were used to calculate several molecular descriptors of 51 odorant molecules (15 alcohols, 11 aldehydes, 9 ketones and 16 esters. The best descriptors were selected to establish the Quantitative Structure-Property Relationship (QSPR of the retention/release property of odorant molecules in pectin gels using Principal Components Analysis (PCA, Multiple Linear Regression (MLR, Multiple Non-linear Regression (MNLR and Artificial Neural Network (ANN methods We propose a quantitative model based on these analyses. PCA has been used to select descriptors that exhibit high correlation with the retention/release property. The MLR method yielded correlation coefficients of 0.960 and 0.958 for PG-0.4 (pectin concentration: 0.4% w/w and PG-0.8 (pectin concentration: 0.8% w/w media, respectively. Internal and external validations were used to determine the statistical quality of the QSPR of the two MLR models. The MNLR method, considering the relevant descriptors obtained from the MLR, yielded correlation coefficients of 0.978 and 0.975 for PG-0.4 and PG-0.8 media, respectively. The applicability domain of MLR models was investigated using simple and leverage approaches to detect outliers and outside compounds. The effects of different descriptors on the retention/release property are described, and these descriptors were used to study and design new compounds with higher and lower values of the property than the existing ones. Keywords: Odorant Molecules, Retention/Release, Pectin Gels, Quantitative Structure Property Relationship, Multiple Linear Regression, Artificial Neural Network

  15. An ecofriendly green liquid chromatographic method for simultaneous determination of nicotinamide and clindamycin phosphate in pharmaceutical gel for acne treatment

    Directory of Open Access Journals (Sweden)

    Fawzia Ibrahim

    2017-07-01

    Full Text Available A new green micellar liquid chromatographic method was developed and validated for the quantitative estimation of nicotinamide (NICO and clindamycin phosphate (CLD in bulk and pharmaceutical gel formulation. The analytes are well resolved in less than 6.0 minutes using micellar mobile phase consisting of 0.10M sodium dodecyl sulfate (SDS, 0.3% triethylamine, and 10% 2-propanol in 0.02M orthophosphoric acid at pH 3.0, running through an Eclipse XDB-C8 column (150 mm×4.6 mm, 5 μm particle size with flow rate 1.0 mL/min. The effluent was monitored with diode array detection at 210 nm. The retention times of NICO and CLD were 3.8 minutes and 5.6 minutes, respectively. The method was validated according to the International Conference on Harmonisation (ICH guidelines in terms of linearity, limit of detection, limit of quantification, accuracy, precision, robustness, and specificity to prove its reliability. Linear correlation was achieved by plotting the peak area of each drug against its concentration. It was found to be rectilinear in the ranges of 1.0–40.0 μg/mL and 0.5–15.0 μg/mL with limits of detection of 0.06 μg/mL and 0.03 μg/mL and limits of quantification of 0.19 μg/mL and 0.09 μg/mL for NICO and CLD, respectively. The method was successfully implemented for the simultaneous determination of the analytes in their bulk powder and combined gel formulation with high % recoveries. The ease of sample treatment facilitates and greatly expedites the treatment with reduced cost and improved accuracy of the procedure.

  16. {sup 90}Y microspheres prepared by sol-gel method, promising medical material for radioembolization of liver malignancies

    Energy Technology Data Exchange (ETDEWEB)

    Łada, Wiesława, E-mail: w.lada@ichtj.waw.pl [Institute of Nuclear Chemistry and Technology, 03-195 Warsaw, Dorodna 16 (Poland); Iller, Edward [National Centre for Nuclear Research, Radioisotope Centre POLATOM, 05-400 Otwock, Andrzej Sołtan 7 (Poland); Wawszczak, Danuta [Institute of Nuclear Chemistry and Technology, 03-195 Warsaw, Dorodna 16 (Poland); Konior, Marcin, E-mail: marcin.konior@polatom.pl [National Centre for Nuclear Research, Radioisotope Centre POLATOM, 05-400 Otwock, Andrzej Sołtan 7 (Poland); Dziel, Tomasz [National Centre for Nuclear Research, Radioisotope Centre POLATOM, 05-400 Otwock, Andrzej Sołtan 7 (Poland)

    2016-10-01

    A new technology for the production of radiopharmaceutical {sup 90}Y microspheres in the form of spherical yttrium oxide grains obtained by sol-gel method has been described. The authors present and discuss the results of investigations performed in the development of new production technology of yttrium microspheres and determination of their physic-chemical properties. The final product has the structure of spherical yttrium oxide grains with a diameter 25–100 μm, is stable and free from contaminants. Irradiation of 20 mg samples of grains with diameter of 20–50 μm in the thermal neutron flux of 1.7 × 10{sup 14} cm{sup −2} s{sup −1} at the core of MARIA research nuclear reactor allowed to obtain microspheres labelled with the {sup 90}Y isotope on the way of the nuclear reaction {sup 89}Y(n, γ){sup 90}Y. Specific activity of irradiated microspheres has been determined by application of absolute triple to double coincidence ratio method (TDCR) and has been evaluated at 190 MBq/mg Y. {sup 90}Y microspheres prepared by the proposed technique can be regarded as a promising medical material for radioembolization of liver malignancies. - Highlights: • Sol-gel methods for preparation of spherical yttrium trioxide grains have been proposed. • Determination condition for irradiation {sup 89}Y{sub 2}O{sub 3} grains in nuclear reactor • Evaluation of specific activity of {sup 90}Y microspheres • Estimation of {sup 90}Y microspheres as promising medical material for radioembolization.

  17. ELECTRON MICROSCOPIC INVESTIGATION OF YTTRIUM ALUMINUM GARNET POWDERS Y3AL5O12, SYNTHESIZED BY SOL–GEL METHOD

    Directory of Open Access Journals (Sweden)

    A. E. Baranchikov

    2015-09-01

    Full Text Available Subject of Study. The paper presents results of characterization for neodymium doped yttrium aluminum garnet nanopowders - YAG:Nd3+ by the method of scanning electronic microscopy. Method. Synthesis of YAG:Nd3+ was carried out by sol-gel method from nitrate or acetate - nitrate solutions with addition of some organic compounds and ammonia as well. Such substances were used as the source ones: oxides of neodymium and yttrium with the content of the basic substance equal to 99.999 %; organic compounds: citric acid with the content of the basic substance not less than 99.0 %; ethylene glycol (99.5%; the ammonium lauryl sulfate (99.0 %; urea (99.0 % of Alfa Aesar, Fluka, Aldrich companies. Oxides of yttrium and neodymium (5 at. % were dissolved in 50% acetic acid, nitrate aluminum was added with a view to the resulting product Y2,85Nd0,15Al5,0O12, the solution was stirred and heated to 60С before reaching its transparency and uniformity. The weight of the portion corresponding to the stoichiometry YAG was 2.0 g. 50 % aqueous solutions of organic substances or 5% NH4OH in a weight ratio of 1:1 to the weight of the garnet were added in aqueous solutions, placed into glass cups. The solutions were thoroughly mixed first using a conventional stirrer, then on ultrasonic installation with simultaneous 60 С heating for 2 hours. Drying of solutions to the consistency of a powder or a thick gel was carried out at 110 С. Then the samples were placed into platinum cups and annealed in a tube furnace at 950 - 1050 С for the period from 0.5 to 2 hours. Additional annealing of the powders in the air at 950 - 1060С were carried out for the purpose of powders clarifying for residual amorphous carbon removal. Main Results. The synthesized powder precursors and powders after annealing were examined using a polarizing microscope to identify anisotropic crystalline phases. X-ray analysis of the synthesized samples was carried out on a DRON - 4 and UDR - 63

  18. Electrical and magnetic properties of spherical SmFeO{sub 3} synthesized by aspartic acid assisted combustion method

    Energy Technology Data Exchange (ETDEWEB)

    Yuvaraj, Subramanian [Solid State Ionics and Energy Devices Laboratory, Department of Physics, Bharathiar University, Coimbatore 641 046 (India); Layek, Samar [Department of Physics, Indian Institute of Technology, Kanpur 208016 (India); Vidyavathy, S. Manisha [Department of Ceramic Technology, Anna University, Chennai 600 025 (India); Yuvaraj, Selvaraj [Solid State Ionics and Energy Devices Laboratory, Department of Physics, Bharathiar University, Coimbatore 641 046 (India); Meyrick, Danielle [School of Engineering and Information Technology, Murdoch University, South St. Murdoch, WA 6150 (Australia); Selvan, R. Kalai, E-mail: selvankram@buc.edu.in [Solid State Ionics and Energy Devices Laboratory, Department of Physics, Bharathiar University, Coimbatore 641 046 (India)

    2015-12-15

    Highlights: • SmFeO{sub 3} is synthesized by simple combustion method using aspartic acid as the fuel. • The particles are spherical in shape with the size ranges between 150 and 300 nm. • Cole–Cole plot infers the bulk conduction mechanism. • Room temperature VSM analysis reveal the weak ferromagnetic behaviour of SmFeO{sub 3}. • Mössbauer analysis elucidates the +3 oxidation state of Fe atoms. - Abstract: Samarium orthoferrite (SmFeO{sub 3}) is synthesized by a simple combustion method using aspartic acid as fuel. Phase purity and functional groups are analyzed via X-ray diffraction (XRD) and Fourier transform infrared (FT-IR) analysis, which confirms the single phase formation of orthorhombic SmFeO{sub 3}. Approximately spherical particles with size range 150–300 nm is revealed by scanning electron microscope (SEM). The conductivity of the material is identified by the single semicircle obtained in the solid state impedance spectra at elevated temperatures. The calculated electrical conductivity increases with increasing temperature, inferring the semiconducting nature of SmFeO{sub 3}. A magnetic study at room temperature revealed weak ferromagnetic behaviour in SmFeO{sub 3} due to Dzyaloshinsky–Moriya antisymmetric exchange interaction mechanism. Mössbauer analysis confirmed the +3 oxidation state of iron and magnetic ordering of the sample at room temperature.

  19. Influence of Experimental Parameters Using the Dip-Coating Method on the Barrier Performance of Hybrid Sol-Gel Coatings in Strong Alkaline Environments

    Directory of Open Access Journals (Sweden)

    Rita B. Figueira

    2015-04-01

    Full Text Available Previous studies have shown that the barrier effect and the performance of organic-inorganic hybrid (OIH sol-gel coatings are highly dependent on the coating deposition method as well as on the processing conditions. However, studies on how the coating deposition method influences the barrier properties in alkaline environments are scarce. The aim of this experimental research was to study the influence of experimental parameters using the dip-coating method on the barrier performance of an OIH sol-gel coating in contact with simulated concrete pore solutions (SCPS. The influence of residence time (Rt, a curing step between each dip step and the number of layers of sol-gel OIH films deposited on hot-dip galvanized steel to prevent corrosion in highly alkaline environments was studied. The barrier performance of these OIH sol-gel coatings, named U(400, was assessed in the first instants of contact with SCPS, using electrochemical impedance spectroscopy and potentiodynamic methods. The durability and stability of the OIH coatings in SCPS was monitored during eight days by macrocell current density. The morphological characterization of the surface was performed by Scanning Electronic Microscopy before and after exposure to SCPS. Glow Discharge Optical Emission Spectroscopy was used to investigate the thickness of the U(400 sol-gel coatings as a function of the number of layers deposited with and without Rt in the coatings thickness.

  20. PRODUCTION, DIELECTRIC PROPERTY AND MICROWAVE ABSORPTION PROPERTY OF SiC(Fe SOLID SOLUTION POWDER BY SOL-GEL METHOD

    Directory of Open Access Journals (Sweden)

    XIAOLEI SU

    2014-03-01

    Full Text Available SiC(Fe solid solution powders were synthesized by sol–gel method under different reaction time, using methyltriethoxysilane as the silicon and carbon source and analytic ferric chloride as the dopant, respectively. The synthesized powders have been characterized by XRD, SEM and Raman spectra. Results show that the lattice constant decreases with increasing reaction time. The electric permittivities of SiC samples were determined in the frequency range of 8.2 ~ 12.4 GHz. Results show that the permittivity of SiC decreases with increasing reaction time. The SiC(Fe solid solution powder with reaction time of 4 h with 2 mm thickness exhibit the best microwave absorption property in X-band range (8.2 - 12.4 GHz. The microwave absorption mechanism has been discussed.

  1. Analysis on the factors affecting the preparation of TIO2-ADUN composite sol by sol-gel method

    International Nuclear Information System (INIS)

    Wang Hui; Yin Rongcai; Liu Jinhong

    2010-01-01

    With C 2 H 2 O 5 and water as solvent and TBT as precursor and HNO 3 as the activator and valorize, the process for preparing TiO 2 -ADUN composite Sol method was studied. The influence of different reaction conditions on Sol-Gel time was analyzed in this study. The optimal reaction condition are: reaction temperature 20-25 degree C; pH value of reaction mixture 2-5; HNO 3 value of reaction mixture 0.3-0.5 ml; molar rations of alcohol to TBT 10, of water to TBT 2-3, respectively. A concentrated ADUN solution with Ti Sol , urea, water as additive is dispersed into uniform which are prepared by external mlii. (authors)

  2. Synthesis of Fe Ni Alloy Nano materials by Proteic Sol-Gel Method: Crystallographic, Morphological, and Magnetic Properties

    International Nuclear Information System (INIS)

    Santos, C.M.D.; Martins, A.F.N.; Sasaki, J.M.; Costa, B. C.; Ribeiro, T.S.; Braga, T.P.; Soares, J.M.

    2016-01-01

    Proteic Sol-Gel method was used for the synthesis of Fe Ni alloy at different temperature conditions and flow reduction. The solids were characterized by XRD, H_2-TPR, SEM, TEM, Moessbauer spectroscopy, and VSM. It was observed by X-ray diffraction pure Fe Ni alloy in the samples reduced at 600 degree (40 ml/min H_2 flow) and 700 degree (25 ml/min H_2 flow). The Fe Ni alloy presented stability against the oxidizing atmosphere up to 250 degree. The morphology exhibited agglomerates relatively spherical and particles in the range of 10-40 nm. Moessbauer spectroscopy showed the presence of disordered ferromagnetic Fe Ni alloy, and magnetic hysteresis loop revealed a typical behavior of soft magnetic material.

  3. Facile synthesis of Ca-doped manganite nanoparticles by a nonaqueous sol-gel method and their magnetic properties

    International Nuclear Information System (INIS)

    Zhou, S.M.; Zhao, S.Y.; He, L.F.; Guo, Y.Q.; Shi, L.

    2010-01-01

    Perovskite manganite La 1-x Ca x MnO 3 (x=1/3, 1/2 and 2/3) nanoparticles with the average particle size of about 20 nm have been synthesized by a facile nonaqueous sol-gel method using methanol as a solvent and characterized by X-ray diffraction, transmission electron microscopy and superconducting quantum interference device magnetometer. Magnetic measurements reveal that although their bulk counterparts have quite different magnetic ground states, the three-nanosized samples exhibit similar ferromagnetic behaviors below about 270 K. This result implies that with the particle size reduced to nanoscale, the ferromagnetism for x=1/3 is weaken, while it is enhanced, accompanied by the suppression of the charge ordering, for x=1/2 and 2/3. Moreover, the exchange bias phenomena are observed in the two latter nanoparticles, which is of special interest for potential applications.

  4. Synthesis, Structural and Optical Properties of Co Doped TiO2 Nanocrystals by Sol-Gel Method

    Directory of Open Access Journals (Sweden)

    D.V. Sridevi

    2017-06-01

    Full Text Available A TiO2 nanoparticle doped with cobalt was synthesized by sol-gel technique employed at room temperature with appropriate reactants. In the present case, we used titanium tetra isoprotoxide (TTIP and 2–propanol as a common starting material and the obtained products were calcined at 450˚ C. From the Powder XRD data the particle size was calculated by Scherrer method. The FE-SEM analysis shows the morphology of cobalt doped TiO2 nanoparticles. The various functional groups of the samples were identified by Fourier transform spectroscopy (FT-IR. The UV-Vis-NIR spectra of cobalt doped TiO2 material shows two absorption peaks in the visible region related to d-d transitions of Co2+ in TiO2 lattice. Compared to un-doped TiO2 nanoparticles, the cobalt doped material show a red shift in the band gap.

  5. α Fe2O3 films grown by the spin-on sol-gel deposition method

    International Nuclear Information System (INIS)

    Avila G, A.; Carbajal F, G.; Tiburcio S, A.; Barrera C, E.; Andrade I, E.

    2003-01-01

    α-Fe 2 O 3 polycrystalline films with grains larger than 31 nm were grown by the spin-on sol-gel deposition method. The particular sol used was prepared starting from two distinct precursor reagents. Both precursors leaded to similar films. Order within the films was altered by adding tin to the samples. Transmittance measurements confirmed that the hematite phase is obtained by annealing the samples above 400 C and yielded an optical gap of about 2.2 eV, but additional transitions at 2.7 eV were also observed. From RBS measurements it was found that tin inclusion decreases iron content as expected, but also increases oxygen concentration within the films. This last observation was associated to the disorder rise when introducing tin atoms. (Author)

  6. Synthesis of FeNi Alloy Nanomaterials by Proteic Sol-Gel Method: Crystallographic, Morphological, and Magnetic Properties

    Directory of Open Access Journals (Sweden)

    Cássio Morilla dos Santos

    2016-01-01

    Full Text Available Proteic Sol-Gel method was used for the synthesis of FeNi alloy at different temperature conditions and flow reduction. The solids were characterized by XRD, H2-TPR, SEM, TEM, Mössbauer spectroscopy, and VSM. It was observed by X-ray diffraction pure FeNi alloy in the samples reduced at 600°C (40 mL/min H2 flow and 700°C (25 mL/min H2 flow. The FeNi alloy presented stability against the oxidizing atmosphere up to 250°C. The morphology exhibited agglomerates relatively spherical and particles in the range of 10–40 nm. Mössbauer spectroscopy showed the presence of disordered ferromagnetic FeNi alloy, and magnetic hysteresis loop revealed a typical behavior of soft magnetic material.

  7. Structural and electrical characteristics of ZrO2-TiO2 thin films by sol-gel method

    International Nuclear Information System (INIS)

    Hsu, Cheng-Hsing; Tseng, Ching-Fang; Lai, Chun-Hung; Tung, Hsin-Han; Lin, Shih-Yao

    2010-01-01

    In this paper, we investigated electrical properties and microstructures of ZrTiO 4 (ZrO 2 -TiO 2 ) thin films prepared by the sol-gel method on ITO substrates at different annealing temperatures. All films exhibited ZrTiO 4 (1 1 1) and (1 0 1) orientations perpendicular to the substrate surface, and the grain size increased with increase in the annealing temperature. A low leakage current density of 2.06 x 10 -6 A/cm 2 was obtained for the prepared films. Considering the primary memory switching behavior of ZrTiO 4 , ReRAM based on ZrTiO 4 shows promise for future nonvolatile memory applications.

  8. Synthesis and characterization of LiFePO4/C cathode materials by sol-gel method.

    Science.gov (United States)

    Liu, Shuxin; Yin, Hengbo; Wang, Haibin; Wang, Hong

    2014-09-01

    The carbon coated LiFePO4 cathode materials (LiFePO4/C) were successfully synthesized by sol-gel method with glucose, citric acid and PEG-4000 as dispersant and carbon source, respectively. The microstructure and grain size of LiFePO4/C composite were characterized by X-ray diffraction, Raman spectroscopy, transmission electron microscopy. The results showed that the carbon source and calcination temperature had important effect on the graphitization degree of carbon; the carbon decomposed by citric acid had higher graphitization degree; with calcination temperature rising, the graphitization degree of carbon increased and the particles size increased. The graphitization degree and grain size were very important for improving the electrochemical performance of LiFePO4 cathode materials, according to the experimental results, the sample LFP-700 (LFP-C) which was synthesized with citric acid as dispersant at 700 degree C had lower polarization and larger discharge capacity.

  9. New infrared-assisted method for sol-gel derived ZnO:Ag thin films: Structural and bacterial inhibition properties.

    Science.gov (United States)

    González-Penguelly, Brenely; Morales-Ramírez, Ángel de Jesús; Rodríguez-Rosales, Miriam Guadalupe; Rodríguez-Nava, Celestino Odín; Carrera-Jota, María Luz

    2017-09-01

    A new sol-gel method, based on crystallization with Infrared heating, was developed to obtain ZnO:Ag thin films. The common sol, with zinc acetate as precursor and silver nitrate as doping source (1, 3 and 5 % molar), isopropanol and distilled water as solvents and monoethanolamine as stabilizer agent; was modified with Pluronic F127 and diethylene glycol as rheological agents, and with urea as fuel to produce enough energy to the combustion and to promote the crystallization process. Later, Corning glass-substrates were dipped into the sol at a constant speed of 3mms -1 . To provide the necessary energy for obtaining the hexagonal ZnO structure of the coatings during the drying and consolidation process, instead of using the common furnace heat-treatment, the films were heated by means of an infrared (IR) ceramic lamp (800W) for 15, 30, 45, 60 and 180 minutes, and the effect of this annealing method was analyzed. The structural properties were examined by means of X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FT-IR), whereas morphology was studied by scanning electron microscopy (SEM) and atomic force microscopy (AFM). The examination revealed a homogeneous distribution of particles with the characteristic pores of pluronic F127, and the coating roughness had an average value of 100nm by AFM. To evaluate the effect on the number of dipping cycles and the IR-treatment on the thickness, ellipsometry results for 1, 3 and 5 deposits were analyzed and showed increments of 780, 945 and 1082nm, respectively. Finally, to test of the antibacterial activity, instead of the common one-microorganism approach, environmental microorganisms that grow with expose of the broth to the ambient conditions were employed (microbial consortium), which is a real environmental condition. The biological test was carried out by kinetic growth inhibition (optical density) of heterotrophic bacteria in culture liquid media under conditions of light, light-dark and

  10. Characterization and hydrogen gas sensing properties of TiO{sub 2} thin films prepared by sol-gel method

    Energy Technology Data Exchange (ETDEWEB)

    Haidry, Azhar Ali [Department of Experimental Physics, Faculty of Mathematics, Physics and Informatics, Comenius University, Bratislava (Slovakia); Puskelova, Jarmila [Department of Inorganic Chemistry, Faculty of Natural Sciences, Comenius University, Bratislava (Slovakia); Plecenik, Tomas; Durina, Pavol; Gregus, Jan; Truchly, Martin; Roch, Tomas; Zahoran, Miroslav [Department of Experimental Physics, Faculty of Mathematics, Physics and Informatics, Comenius University, Bratislava (Slovakia); Vargova, Melinda [Department of Inorganic Chemistry, Faculty of Natural Sciences, Comenius University, Bratislava (Slovakia); Kus, Peter; Plecenik, Andrej [Department of Experimental Physics, Faculty of Mathematics, Physics and Informatics, Comenius University, Bratislava (Slovakia); Plesch, Gustav, E-mail: plesch@fns.uniba.sk [Department of Inorganic Chemistry, Faculty of Natural Sciences, Comenius University, Bratislava (Slovakia)

    2012-10-15

    Highlights: Black-Right-Pointing-Pointer Preparation and characterization of hydrogen sensing TiO{sub 2} thin films by sol-gel method. Black-Right-Pointing-Pointer The annealing effect on the structure, electrical, optical and sensing properties was studied. Black-Right-Pointing-Pointer The best sensitivity show the films composed of rutile with grain size of {approx}100 nm. - Abstract: Thin films of titanium dioxide with thickness of about 150 nm were deposited by spin coating method on a sapphire substrate from a sol-gel and annealed at various temperatures (from 600 Degree-Sign C to 1000 Degree-Sign C). Structural, optical and hydrogen gas sensing properties of the films were investigated. The annealing temperatures from 600 to 800 Degree-Sign C led to anatase phase with grain size in the range of 14-28 nm. Further increase of the annealing temperature resulted in transformation to rutile phase with larger grain size of about 100-120 nm. The optical band gap tended to decrease with increasing annealing temperature. The estimated values of activation energy for charge transport were in the range of 0.6-1.0 eV for films annealed at temperatures from 600 Degree-Sign C to 800 Degree-Sign C and 0.37-0.38 eV for films annealed at 900 Degree-Sign C and 1000 Degree-Sign C. The films annealed at 900 Degree-Sign C and 1000 Degree-Sign C showed better hydrogen sensitivity, what can be at least partially caused by their higher surface roughness.

  11. Reddish orange long afterglow phosphor Ca2SnO4:Sm3+prepared by sol-gel method

    International Nuclear Information System (INIS)

    Ju Zhenghua; Zhang Shuihe; Gao Xiuping; Tang Xiaoliang; Liu Weisheng

    2011-01-01

    Highlights: → A promising reddish orange emissive long afterglow phosphor Ca 2 SnO 4 :Sm 3+ prepared by sol-gel method was firstly reported. → The optics properties of Ca 2 SnO 4 :Sm 3+ were discussed. → Very useful tool, thermoluminscent technique was chosen to investigate the traps in the material. The results of thermoluminscent spectra indicating that the depth and number of traps are critical factors in determining their performance. → Furthermore, the phosphorescence mechanism was discussed successfully. → This work provides a potential approach to develop reddish orange light emitting long afterglow phosphor. - Abstract: A reddish orange light emissive long afterglow phosphor, Ca 2 SnO 4 :Sm 3+ was prepared by sol-gel method at lower temperature. The synthesized phosphors were characterized by X-ray diffraction, scanning electron micrograph images, photoluminescence spectra, afterglow decay curves and thermoluminescence spectra. Three emission peaks locate at 565 nm, 609 nm and 655 nm corresponding to CIE chromaticity coordinates of x = 0.53 and y = 0.47, which indicates the reddish orange light emitting. The fluorescent intensity and the afterglow characteristic depends on the concentration of Sm 3+ and the optimized concentration is 1.5 mol%. The afterglow decay curves are well fitted with triple-exponential decay models. The thermoluminescence glow curves show that the Sm 3+ induces suitable trap depth and result in the long afterglow phenomenon, and the corresponding increase or decrease in afterglow is associated with trap concentration, nearly no change in trap depth. The 1.5 mol% Sm 3+ -doped Ca 2 SnO 4 sample has the biggest trap concentration and exhibit the best afterglow characteristic, its' afterglow time is about 1 h. The phosphorescence mechanism of this long afterglow phosphor was discussed.

  12. System and method for conditioning intake air to an internal combustion engine

    Science.gov (United States)

    Sellnau, Mark C.

    2015-08-04

    A system for conditioning the intake air to an internal combustion engine includes a means to boost the pressure of the intake air to the engine and a liquid cooled charge air cooler disposed between the output of the boost means and the charge air intake of the engine. Valves in the coolant system can be actuated so as to define a first configuration in which engine cooling is performed by coolant circulating in a first coolant loop at one temperature, and charge air cooling is performed by coolant flowing in a second coolant loop at a lower temperature. The valves can be actuated so as to define a second configuration in which coolant that has flowed through the engine can be routed through the charge air cooler. The temperature of intake air to the engine can be controlled over a wide range of engine operation.

  13. Method to remove NO/sub x/ from combustion exhaust gases. [German patent

    Energy Technology Data Exchange (ETDEWEB)

    Mizuno, M.; Iwata, T.

    1975-11-13

    The invention to remove NO/sub x/ from combustion exhaust gases is proposed by means of an example and a drawing. The exhaust gas is washed with an aqueous 30% ammonium sulfite solution (pH = 6.1 - 6-6.5, d = 50 to 55/sup 0/C) and then reduced with waste ammonia in the catalyst bed at 200 to 450/sup 0/C. The total SO/sub 2/ is removed in the prewash procedure and the NH/sub 3/ required for the reduction is transferred from the washing solution to the exhaust gas. The washing solution is regenerated with coke gas containing NH/sub 3/ (150 to 500 ppM NH/sub 3/). Iron ore, tinder, hammer scale, iron-contained dust, copper oxide, chromium oxide, cobalt oxide, and vanadium oxide are suitable as catalyst for the reduction process.

  14. Simplified sample preparation method for protein identification by matrix-assisted laser desorption/ionization mass spectrometry: in-gel digestion on the probe surface

    DEFF Research Database (Denmark)

    Stensballe, A; Jensen, Ole Nørregaard

    2001-01-01

    /ionization-time of flight mass spectrometry (MALDI-TOF-MS) is used as the first protein screening method in many laboratories because of its inherent simplicity, mass accuracy, sensitivity and relatively high sample throughput. We present a simplified sample preparation method for MALDI-MS that enables in-gel digestion...... for protein identification similar to that obtained by the traditional protocols for in-gel digestion and MALDI peptide mass mapping of human proteins, i.e. approximately 60%. The overall performance of the novel on-probe digestion method is comparable with that of the standard in-gel sample preparation...... protocol while being less labour intensive and more cost-effective due to minimal consumption of reagents, enzymes and consumables. Preliminary data obtained on a MALDI quadrupole-TOF tandem mass spectrometer demonstrated the utility of the on-probe digestion protocol for peptide mass mapping and peptide...

  15. Effect of cobalt sources on properties of co-b catalysts synthesized by sol-gel method

    Energy Technology Data Exchange (ETDEWEB)

    Figen, Aysel Kantürk; Co ú kuner, Bilge; Özdemir, Özgül Dere [Department of Chemical Engineering, Yildiz Technical University Istanbul (Turkey); Burçin Pi ú kin, Mehmet [Department of Bioengineering, Y Õ ld Õ z Technical University, Istanbul (Turkey)

    2013-07-01

    In this studying, Co-B catalysts were prepared by sol-gel method via kinds of cobalt source for clarifying the effect of these for characteristic properties of Co-B catalysts. Co sources, cobalt(II)chloride (CoCl{sub 2} .6H{sub 2}O), cobalt(II)sulfate (CoSO{sub 4} .7H{sub 2}O) and cobalt(II)nitrate (Co(NO{sub 3}){sub 2} .6H{sub 2}O), were used as a metal source with boron oxide (B{sub 2}O{sub 3} ) while citric acid (C{sub 6}H{sub 8}O{sub 7} ) used as organic ligand to forming sol-gel structure. The crystalline structures of Co-B catalysts were determined by X-ray diffraction. The N{sub 2} sorption technique was used for analyzing catalysts surface area. The variety of Co-B catalysts morphological properties were investigated via scanning electron microscope. By the effect of cobalt sources the Co-B catalyst’s properties were altered that clarified from analysis results. The amorphous Co-B catalyst produced from CoCl{sub 2}.6H{sub 2} O as metal source had the largest porous surface area with 122.7 m 2 .g -1 . Investigation of hydrolysis were performed under variety of temperatures (22, 40 and 60 o C), NaOH concentrations (1-15 wt. %) and NaBH 4 /Co-B catalyst ratio (2-40 wt./wt.) ratios in order to investigate the activation of Co-B catalyst. The maximum hydrogen generation rate 0.84L H 2 .min -1 .g -1 was obtained under 40 °C, 10 wt. % NaOH and 9.52wt./wt. NaBH{sub 4}/Co-B catalyst ratio. Yet the kinetic investigations, the reaction order was found that zero order with 0.9954 coefficient of correlation and 51.83 kJ/mol activation energy. Key words: Sol-gel, Co-B Catalyst, Boron.

  16. Path planning during combustion mode switch

    Science.gov (United States)

    Jiang, Li; Ravi, Nikhil

    2015-12-29

    Systems and methods are provided for transitioning between a first combustion mode and a second combustion mode in an internal combustion engine. A current operating point of the engine is identified and a target operating point for the internal combustion engine in the second combustion mode is also determined. A predefined optimized transition operating point is selected from memory. While operating in the first combustion mode, one or more engine actuator settings are adjusted to cause the operating point of the internal combustion engine to approach the selected optimized transition operating point. When the engine is operating at the selected optimized transition operating point, the combustion mode is switched from the first combustion mode to the second combustion mode. While operating in the second combustion mode, one or more engine actuator settings are adjusted to cause the operating point of the internal combustion to approach the target operating point.

  17. Assessing Mucoadhesion in Polymer Gels: The Effect of Method Type and Instrument Variables

    Directory of Open Access Journals (Sweden)

    Jéssica Bassi da Silva

    2018-03-01

    Full Text Available The process of mucoadhesion has been widely studied using a wide variety of methods, which are influenced by instrumental variables and experiment design, making the comparison between the results of different studies difficult. The aim of this work was to standardize the conditions of the detachment test and the rheological methods of mucoadhesion assessment for semisolids, and introduce a texture profile analysis (TPA method. A factorial design was developed to suggest standard conditions for performing the detachment force method. To evaluate the method, binary polymeric systems were prepared containing poloxamer 407 and Carbopol 971P®, Carbopol 974P®, or Noveon® Polycarbophil. The mucoadhesion of systems was evaluated, and the reproducibility of these measurements investigated. This detachment force method was demonstrated to be reproduceable, and gave different adhesion when mucin disk or ex vivo oral mucosa was used. The factorial design demonstrated that all evaluated parameters had an effect on measurements of mucoadhesive force, but the same was not observed for the work of adhesion. It was suggested that the work of adhesion is a more appropriate metric for evaluating mucoadhesion. Oscillatory rheology was more capable of investigating adhesive interactions than flow rheology. TPA method was demonstrated to be reproducible and can evaluate the adhesiveness interaction parameter. This investigation demonstrates the need for standardized methods to evaluate mucoadhesion and makes suggestions for a standard study design.

  18. Effect of vanadium on the obtaining of the titanium dioxide by Sol-Gel Method; Efeito do vanadio na obtencao de dioxido de titanio pelo Metodo Sol-Gel

    Energy Technology Data Exchange (ETDEWEB)

    Granado, S.R.; Silva, D.W.; Lopes, S.A.; Cavalheiro, A.A., E-mail: sandrogranado02@gmail.com [Universidade Estadual de Mato Grosso do Sul (CPTREN/UEMS), Navirai, MS (Brazil). Centro de Pesquisas Tecnologicas em Recursos Naturais

    2011-07-01

    The obtaining of transition metal modified titanium dioxide (TiO{sub 2}) can be a promising path to promote changes in crystal structure of anatase phase in order to displace the band gap toward frequencies near to visible region. The insertion of the heterovalent ions such as vanadium can be shift the titanium coordination number in the anatase matrix, leading to important changes in the photonic characteristics of the material. In Sol-Gel method, the presence of the non alkoxide precursors can affects the stability of the solution and the gelifying process, with consequences on the characteristics of the material. In this work, it was investigated the effect of 5mol% of vanadium by thermal analysis of the dried gel and XRD and adsorption isotherm in the samples obtained at different temperatures. The decomposition steps of the precursor were associated to phase formation in the material, leading to conclusion that the presence of vanadium affects the stability of anatase phase. (author)

  19. Photothermal Microneedle Etching: Improved Three-Dimensional Microfabrication Method for Agarose Gel for Topographical Control of Cultured Cell Communities

    Science.gov (United States)

    Moriguchi, Hiroyuki; Yasuda, Kenji

    2006-08-01

    We have developed a new three-dimensional (3D) microfabrication method for agarose gel, photothermal microneedle etching (PTMNE), by means of an improved photothermal spot heating using a focused 1064 nm laser beam for melting a portion of the agarose layer at the tip of the microneedle, where a photoabsorbent chromium layer is coated to be heated. The advantage of this method is that it allows the 3D control of the melting topography within the thick agarose layer with a 2 μm resolution, whereas conventional photothermal etching can enable only two-dimensional (2D) control on the surface of the chip. By this method, we can form the spheroid clusters of particular cells from isolated single cells without any physical contact with other cells in other chambers, which is important for measuring the community effect of the cell group from isolated single cells. When we set single cancer cells in microchambers of 100 μm in diameter, formed in a 50-μm-thick agarose layer, we observed that they grew, divided, and formed spheroid clusters of cells in each microchamber. The result indicates the potential of this method to be a fundamental technique in the research of multicellular spherical clusters of cells for checking the community effect of cells in 3D structures, such as the permeabilities of chemicals and substrates into the cluster, which is complementary to conventional 2D dish cultivation and can contribute to the cell-based screening of drugs.

  20. Investigations on electrical conductivity and dielectric properties of Na doped ZnO synthesized from sol gel method

    Energy Technology Data Exchange (ETDEWEB)

    Tabib, Asma; Sdiri, Nasr [Laboratoire de Physico-Chimie des Matériaux Minéraux et leurs Applications, Centre National de Recherches en Sciences des Matériaux, B.P. 95 Hammam-Lif, 2050 (Tunisia); Elhouichet, Habib, E-mail: habib.elhouichet@fst.rnu.tn [Laboratoire de Physico-Chimie des Matériaux Minéraux et leurs Applications, Centre National de Recherches en Sciences des Matériaux, B.P. 95 Hammam-Lif, 2050 (Tunisia); Département de Physique, Faculté des Sciences de Tunis, University Tunis El Manar, Tunis 2092 (Tunisia); Férid, Mokhtar [Laboratoire de Physico-Chimie des Matériaux Minéraux et leurs Applications, Centre National de Recherches en Sciences des Matériaux, B.P. 95 Hammam-Lif, 2050 (Tunisia)

    2015-02-15

    Highlights: • ZnO nanoparticles doped with Na were prepared from sol-gel method. • Electric conductivity and dielectric properties were investigated. • The ZnO conductivity is estimated to be of p-type for critical Na doping of 1.5% at. - Abstract: Na doped ZnO nanoparticles (NPs) were elaborated by sol gel technique. The X-ray diffraction patterns show that the peaks are indexed to the hexagonal structure without any trace of an extra phase. Electric and dielectric properties were investigated using complex impedance spectroscopy. The impedance spectra were analyzed in terms of equivalent circuits involving resistors, capacitors and constant phase elements (CPE). The contribution of grain boundary resistance to the total resistance of the system is remarkable. The AC conductivity increases with temperature following the Arrhenius law, with single apparent activation energy for conduction process. The frequency dependence of the electric conductivity follows a simple power law behavior, in according to relation σ{sub AC}(ω) = σ(0) + A ω{sup s}, where s is smaller than 1. The analysis of dc conductivity indicates that the conduction is ionic in nature. The study of its variation, at fixed temperature, with Na content shows sharp decrease which is explained by the formation of Na{sub Zn} acceptor. It was found that the dc conductivity reaches its minimum value for critical Na concentration of 1.5% at which the conductivity is estimated to be of p-type. Impedance and modulus study reveals the temperature dependent non-Debye type relaxation phenomenon. Dielectric studies revealed a promising dielectric properties (relatively high ε′ at low frequencies and low loss at high frequencies). In the low-frequency region, the values of M′ tends to zero suggesting negligible or absent electrode polarization phenomenon. The frequency dependent maxima in the imaginary modulus are found to obey to Arrhenius law.

  1. Some of Physical Properties of Nanostructured (Mg1-xCoxFe2O4 Ferrites Prepared by Sol-Gel Method

    Directory of Open Access Journals (Sweden)

    Muhammad Abdul Ammer Alsherefi

    2018-01-01

    Full Text Available Sol-gel auto combustion technique was used to prepare nanoparticles of magnesium-cobalt ferrites with the chemical formula Mg1-xCoxFe2O4 for  (x=0, 0.2, 0.4, 0.6, 0.8, 1, where x added as weight  percentages, and sintering  at temperature (1100 oC. The X-ray patterns of prepared powder has confirmed the structure of cubic spinel structure (fcc. The prepared samples were composed of nearly spherical nano particles .An average particle size of  magnesium-cobalt ferrite  were  calculated  using  Debye Scherer’s relation is equal 53.12 nm. The surface structure of the samples was investigated by Scanning Electron Microscope(SEM. The electromagnetic properties for prepared samples were investigated using Vector Network Analyzer (VNA in X-band microwave region.

  2. Transdermal delivery of paeonol using cubic gel and microemulsion gel

    Science.gov (United States)

    Luo, Maofu; Shen, Qi; Chen, Jinjin

    2011-01-01

    Background The aim of this study was to develop new systems for transdermal delivery of paeonol, in particular microemulsion gel and cubic gel formulations. Methods Various microemulsion vehicles were prepared using isopropyl myristate as an oil phase, polyoxyethylated castor oil (Cremophor® EL) as a surfactant, and polyethylene glycol 400 as a cosurfactant. In the optimum microemulsion gel formulation, carbomer 940 was selected as the gel matrix, and consisted of 1% paeonol, 4% isopropyl myristate, 28% Cremophor EL/polyethylene glycol 400 (1:1), and 67% water. The cubic gel was prepared containing 3% paeonol, 30% water, and 67% glyceryl monooleate. Results A skin permeability test using excised rat skins indicated that both the cubic gel and microemulsion gel formulations had higher permeability than did the paeonol solution. An in vivo pharmacokinetic study done in rats showed that the relative bioavailability of the cubic gel and microemulsion gel was enhanced by about 1.51-fold and 1.28-fold, respectively, compared with orally administered paeonol suspension. Conclusion Both the cubic gel and microemulsion gel formulations are promising delivery systems to enhance the skin permeability of paeonol, in particular the cubic gel. PMID:21904450

  3. Effectiveness of silica based sol-gel microencapsulation method for odorants and flavors leading to sustainable environment.

    Science.gov (United States)

    Ashraf, Muhammad Aqeel; Khan, Aysha Masood; Ahmad, Mushtaq; Sarfraz, Maliha

    2015-01-01

    Microencapsulation has become a hot topic in chemical research. Technology mainly used for control release and protection purposes. The sol-gel micro encapsulation approach for fragrance and aroma in porous silica-based materials leads to sustainable odorant and flavored materials with novel and unique beneficial properties. Sol-gel encapsulation of silica based micro particles considered economically cheap as capital investment in manufacturing is very low and environmentally friendly. Amorphous sol-gel SiO2 is non-toxic and safe, whereas the sol-gel entrapment of delicate chemicals in its inner pores results in pronounced chemical and physical stabilization of the entrapped active agents, thereby broadening the practical utilization of chemically unstable essential oils (EOs). Reviewing progress in the fabrication of diverse odorant and flavored sol-gels, shows us how different synthetic strategies are appropriate for practical application with important health and environmental benefits.

  4. Effectiveness of silica based Sol-gel microencapsulation Method for odorants and flavours leading to sustainable Environment

    Directory of Open Access Journals (Sweden)

    Muhammad Aqeel eAshraf

    2015-08-01

    Full Text Available Microencapsulation has become a hot topic in chemical research. Technology mainly used for control release and protection purposes. The sol–gel micro encapsulation approach for fragrance and aroma in porous silica-based materials leads to sustainable odorant and flavored materials with novel and unique beneficial properties. Sol-gel encapsulation of silica based micro particles considered economically cheap as capital investment in manufacturing is very low and environmentally friendly. Amorphous sol–gel SiO2 is non-toxic and safe, whereas the sol–gel entrapment of delicate chemicals in its inner pores results in pronounced chemical and physical stabilization of the entrapped actives, thereby broadening the practical utilization of chemically unstable essential oils. Reviewing progress in the fabrication of diverse odorant and flavoured sol-gels, shows us how different synthetic strategies are appropriate for practical application with important health and environmental benefits.

  5. Effectiveness of silica based sol-gel microencapsulation method for odorants and flavors leading to sustainable environment

    Science.gov (United States)

    Ashraf, Muhammad Aqeel; Khan, Aysha Masood; Ahmad, Mushtaq; Sarfraz, Maliha

    2015-01-01

    Microencapsulation has become a hot topic in chemical research. Technology mainly used for control release and protection purposes. The sol-gel micro encapsulation approach for fragrance and aroma in porous silica-based materials leads to sustainable odorant and flavored materials with novel and unique beneficial properties. Sol-gel encapsulation of silica based micro particles considered economically cheap as capital investment in manufacturing is very low and environmentally friendly. Amorphous sol-gel SiO2 is non-toxic and safe, whereas the sol-gel entrapment of delicate chemicals in its inner pores results in pronounced chemical and physical stabilization of the entrapped active agents, thereby broadening the practical utilization of chemically unstable essential oils (EOs). Reviewing progress in the fabrication of diverse odorant and flavored sol-gels, shows us how different synthetic strategies are appropriate for practical application with important health and environmental benefits. PMID:26322304

  6. An optical method for measuring exhaust gas pressure from an internal combustion engine at high speed.

    Science.gov (United States)

    Leach, Felix C P; Davy, Martin H; Siskin, Dmitrij; Pechstedt, Ralf; Richardson, David

    2017-12-01

    Measurement of exhaust gas pressure at high speed in an engine is important for engine efficiency, computational fluid dynamics analysis, and turbocharger matching. Currently used piezoresistive sensors are bulky, require cooling, and have limited lifetimes. A new sensor system uses an interferometric technique to measure pressure by measuring the size of an optical cavity, which varies with pressure due to movement of a diaphragm. This pressure measurement system has been used in gas turbine engines where the temperatures and pressures have no significant transients but has never been applied to an internal combustion engine before, an environment where both temperature and pressure can change rapidly. This sensor has been compared with a piezoresistive sensor representing the current state-of-the-art at three engine operating points corresponding to both light load and full load. The results show that the new sensor can match the measurements from the piezoresistive sensor except when there are fast temperature swings, so the latter part of the pressure during exhaust blowdown is only tracked with an offset. A modified sensor designed to compensate for these temperature effects is also tested. The new sensor has shown significant potential as a compact, durable sensor, which does not require external cooling.

  7. Mössbauer and magnetic studies of nanocrystalline zinc ferrites synthesized by microwave combustion method

    Energy Technology Data Exchange (ETDEWEB)

    Mahmoud, Mohamed, E-mail: mamdouh-2000-2000@yahoo.com [Assiut University, Department of Physics (Egypt); Hassan, Azza Mohamed [Asuite University, Physics Department, Faculty of Sciences (Egypt); Ahmed, Mamdouh Abdel aal [Al Azhar University, Physics Department, Faculty of Science (Egypt); Zhu, Kaixin; Ganeshraja, Ayyakannu Sundaram; Wang, Junhu, E-mail: Wangjh@dicp.ac.cn [Chinese Academy Sciences, Mössbauer Effect Data Center & Laboratory of Catalysts and New Materials for Aerospace, Dalian Institute of Chemical Physics (China)

    2016-12-15

    Zinc ferrite nano-crystals were synthesized by a microwave assisted combustion route with varying the urea to metal nitrates (U/N) molar ratio The process takes only a few minutes to obtain Zinc ferrite powders. The Effect of U/N ratio on the obtained phases, particle size, magnetization and structural properties has been investigated. The specimens were characterized by XRD, Mössbauer and VSM techniques. The sample prepared with urea/metal nitrate ratio of 1/1 was a poorly crystalline phase with very small crystallite size. A second phase is also detected in the sample. The crystallite size increases while the second phase decrease with increasing the urea ratio. The saturation magnetization and coercivity of the as prepared nano-particles changed with the change of the U/N ratio. The powder with the highest U/N ratio showed the presence of an unusually high saturation magnetization of 16 emu/g at room temperature. The crystallinity of the as prepared powder was developed by annealing the samples at 700 {sup ∘}C and 900 {sup ∘}C. Both the saturation magnetization (Ms) and the remnant magnetization (Mr) were found to be highly dependent upon the annealing temperature. Mössbauer studies show magnetic ordering in the powder even at room temperature. The Mössbauer and the magnetic parameters of this fraction are different from the standard values for bulk zinc ferrite.

  8. Method of Black Liquor Combustion to Remove Silicon from Wheat Straw Pulping

    Directory of Open Access Journals (Sweden)

    Yongjian Xu

    2015-02-01

    Full Text Available The effects of aluminium sulphate and sodium aluminate on physical and chemical properties of wheat straw pulp black liquor were studied. Results showed that the expansion rate was enhanced by increasing the aluminum salt content; furthermore, the effect of sodium aluminate was better than that of aluminum sulfate. The maximum desilication rate of 92.31% was reached with the addition of 3% sodium aluminate. A rheometer showed that aluminum salt had little impact on the viscosity of thick black liquor, so even at a high temperature it could be conveyed by pumps in paper mill at 110 °C. The effect of aluminium salt on the silicon removal rate during black liquor combustion was also studied. The experimental results showed that both aluminium sulphate and sodium aluminate helped to remove silicon. The desilication rate of sodium aluminate reached 62.33%, higher than that of aluminum sulphate. SEM-EDX illustrated that the aluminum and silicon ions were formed into insoluble precipitates. It was optimal to use 3% sodium aluminate as desilication agent.

  9. An optical method for measuring exhaust gas pressure from an internal combustion engine at high speed

    Science.gov (United States)

    Leach, Felix C. P.; Davy, Martin H.; Siskin, Dmitrij; Pechstedt, Ralf; Richardson, David

    2017-12-01

    Measurement of exhaust gas pressure at high speed in an engine is important for engine efficiency, computational fluid dynamics analysis, and turbocharger matching. Currently used piezoresistive sensors are bulky, require cooling, and have limited lifetimes. A new sensor system uses an interferometric technique to measure pressure by measuring the size of an optical cavity, which varies with pressure due to movement of a diaphragm. This pressure measurement system has been used in gas turbine engines where the temperatures and pressures have no significant transients but has never been applied to an internal combustion engine before, an environment where both temperature and pressure can change rapidly. This sensor has been compared with a piezoresistive sensor representing the current state-of-the-art at three engine operating points corresponding to both light load and full load. The results show that the new sensor can match the measurements from the piezoresistive sensor except when there are fast temperature swings, so the latter part of the pressure during exhaust blowdown is only tracked with an offset. A modified sensor designed to compensate for these temperature effects is also tested. The new sensor has shown significant potential as a compact, durable sensor, which does not require external cooling.

  10. Effect of glutinous rice flour and dried egg white in fabrication of porous cordierite by gel casting method

    Directory of Open Access Journals (Sweden)

    A. Kamil Fakhruddin

    Full Text Available Abstract In this study, cordierite was produced using MgO, SiO2 and Al2O3 as raw materials through glass route method. The raw materials were mixed for 6 h and the mixture was melted at 1550 °C and then water quenched. The glass produced was milled for 5 h to obtain fine powder, which was used to prepare porous cordierite through gel casting method. The effect of addition of different natural binders, glutinous rice flour (GRF and dried egg white (DEW, on porous cordierite was investigated. GRF and DEW were added to the slurry during mixing. The synthesized cordierite powder was analyzed by X-ray diffraction. Porous cordierite was characterized through Archimedes method, morphological analysis, and compression test. The porosity level varied from 60.6% to 78.7% depending on the amount of natural binder added. Compression test results showed that the compressive strength of porous cordierite increased with increasing amount of natural binder added.

  11. Magnetic properties of Co{sub 1−x}Zn{sub x}Fe{sub 2}O{sub 4} spinel ferrite nanoparticles synthesized by starch-assisted sol–gel autocombustion method and its ball milling

    Energy Technology Data Exchange (ETDEWEB)

    Yadav, Raghvendra Singh, E-mail: yadav@fch.vutbr.cz [Materials Research Centre, Brno University of Technology, Purkyňova 464/118, 61200 Brno (Czech Republic); Havlica, Jaromir [Materials Research Centre, Brno University of Technology, Purkyňova 464/118, 61200 Brno (Czech Republic); Hnatko, Miroslav; Šajgalík, Pavol [Institute of Inorganic Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, SK-845 36 Bratislava (Slovakia); Alexander, Cigáň [Institute of Measurement Science, Slovak Academy of Sciences, Dúbravská cesta 9, SK-841 04 Bratislava (Slovakia); Palou, Martin; Bartoníčková, Eva; Boháč, Martin; Frajkorová, Františka; Masilko, Jiri; Zmrzlý, Martin; Kalina, Lukas; Hajdúchová, Miroslava; Enev, Vojtěch [Materials Research Centre, Brno University of Technology, Purkyňova 464/118, 61200 Brno (Czech Republic)

    2015-03-15

    In this article, Co{sub 1−x}Zn{sub x}Fe{sub 2}O{sub 4} (x=0.0 and 0.5) spinel ferrite nanoparticles were achieved at 800 °C by starch-assisted sol–gel autocombustion method. To further reduce the particle size, these synthesized ferrite nanoparticles were ball-milled for 2 h. X-ray diffraction patterns demonstrated single phase formation of Co{sub 1−x}Zn{sub x}Fe{sub 2}O{sub 4} (x=0.0 and 0.5) spinel ferrite nanoparticles. FE-SEM analysis indicated the nanosized spherical particles formation with spherical morphology. The change in Raman modes and relative intensity were observed due to ball milling and consequently decrease of particle size and cationic redistribution. An X-ray Photoelectron Spectroscopy (XPS) result indicated that Co{sup 2+}, Zn{sup 2+} and Fe{sup 3+} exist in octahedral and tetrahedral sites. The cationic redistribution of Zn{sup 2+} and consequently Fe{sup 3+} occurred between octahedral and tetrahedral sites after ball-milling. The change in saturation magnetization (M{sub s}) and coercivity (H{sub c}) with decrease of nanocrystalline size and distribution of cations in spinel ferrite were observed. - Highlights: • Co{sub 1−x}Zn{sub x}Fe{sub 2}O{sub 4} spinel ferrite nanoparticles. • Starch-assisted sol–gel auto-combustion method. • Effect of ball-milling on particle size and cation distribution. • Magnetic property dependent on cations and particle size.

  12. A method for the inline measurement of milk gel firmness using an optical sensor.

    Science.gov (United States)

    Arango, O; Castillo, M

    2018-05-01

    At present, selection of cutting time during cheesemaking is made based on subjective methods, which has effects on product homogeneity and has prevented complete automation of cheesemaking. In this work, a new method for inline monitoring of curd firmness is presented. The method consisted of developing a model that correlates the backscatter ratio of near infrared light during milk coagulation with the rheological storage modulus. The model was developed through a factorial design with 2 factors: protein concentration (3.4 and 5.1%) and coagulation temperature (30 and 40°C). Each treatment was replicated 3 times; the model was calibrated with the first replicate and validated using the remaining 2 replicates. The coagulation process was simultaneously monitored using an optical sensor and small-amplitude oscillatory rheology. The model was calibrated and successfully validated at the different protein concentrations and coagulation temperatures studied, predicting the evolution of storage modulus during milk coagulation with coefficient of determination values >0.998 and standard error of prediction values <3.4 Pa. The results demonstrated that the proposed method allows inline monitoring of curd firming in cheesemaking and cutting the curd at a proper firmness to each type of cheese. Copyright © 2018 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  13. A simple, quantitative method using alginate gel to determine rat colonic tumor volume in vivo.

    Science.gov (United States)

    Irving, Amy A; Young, Lindsay B; Pleiman, Jennifer K; Konrath, Michael J; Marzella, Blake; Nonte, Michael; Cacciatore, Justin; Ford, Madeline R; Clipson, Linda; Amos-Landgraf, James M; Dove, William F

    2014-04-01

    Many studies of the response of colonic tumors to therapeutics use tumor multiplicity as the endpoint to determine the effectiveness of the agent. These studies can be greatly enhanced by accurate measurements of tumor volume. Here we present a quantitative method to easily and accurately determine colonic tumor volume. This approach uses a biocompatible alginate to create a negative mold of a tumor-bearing colon; this mold is then used to make positive casts of dental stone that replicate the shape of each original tumor. The weight of the dental stone cast correlates highly with the weight of the dissected tumors. After refinement of the technique, overall error in tumor volume was 16.9% ± 7.9% and includes error from both the alginate and dental stone procedures. Because this technique is limited to molding of tumors in the colon, we utilized the Apc(Pirc/+) rat, which has a propensity for developing colonic tumors that reflect the location of the majority of human intestinal tumors. We have successfully used the described method to determine tumor volumes ranging from 4 to 196 mm³. Alginate molding combined with dental stone casting is a facile method for determining tumor volume in vivo without costly equipment or knowledge of analytic software. This broadly accessible method creates the opportunity to objectively study colonic tumors over time in living animals in conjunction with other experiments and without transferring animals from the facility where they are maintained.

  14. A method and instruments to identify the torque, the power and the efficiency of an internal combustion engine of a wheeled vehicle

    Science.gov (United States)

    Egorov, A. V.; Kozlov, K. E.; Belogusev, V. N.

    2018-01-01

    In this paper, we propose a new method and instruments to identify the torque, the power, and the efficiency of internal combustion engines in transient conditions. This method, in contrast to the commonly used non-demounting methods based on inertia and strain gauge dynamometers, allows controlling the main performance parameters of internal combustion engines in transient conditions without inaccuracy connected with the torque loss due to its transfer to the driving wheels, on which the torque is measured with existing methods. In addition, the proposed method is easy to create, and it does not use strain measurement instruments, the application of which does not allow identifying the variable values of the measured parameters with high measurement rate; and therefore the use of them leads to the impossibility of taking into account the actual parameters when engineering the wheeled vehicles. Thus the use of this method can greatly improve the measurement accuracy and reduce costs and laboriousness during testing of internal combustion engines. The results of experiments showed the applicability of the proposed method for identification of the internal combustion engines performance parameters. In this paper, it was determined the most preferred transmission ratio when using the proposed method.

  15. Investigation on structural and electrical properties of Fe doped ZnO nanoparticles synthesized by solution combustion method

    International Nuclear Information System (INIS)

    Ram, Mast; Bala, Kanchan; Sharma, Hakikat; Kumar, Arun; Negi, N. S.

    2016-01-01

    In the present study, nanoparticles of Fe doped zinc oxide (ZnO) [Zn_1_-_xFe_xO where x=0.0, 0.01, 0.02, 0.03 and 0.05] were prepared by cost effective solution combustion method. The powder X-ray diffractometry confirms the formation of single phase wurtzite structure. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used to investigate the micrsostructure of Fe-doped ZnO nanoparticles. The DC electrical conductivity was found to increase with temperature and measurement was carried out in the temperature range of 300-473K. DC electrical conductivity increases with temperature and decreases with Fe doping concentration.

  16. Photoluminescence in Sm3+ doped Ba2P2O7 phosphor prepared by solution combustion method

    Science.gov (United States)

    Ghawade, Sonal P.; Deshmukh, Kavita A.; Dhoble, S. J.; Deshmukh, Abhay D.

    2018-05-01

    In this paper, Sm3+ doped Ba2P2O7 phosphors were synthesized via a Solution combustion method. The crystal structure of the phosphor was characterized by XRD. Orange-red emission was observed from these phosphors under near-ultraviolet (UV) excitation at 404 nm. The luminescence properties of the obtained phosphors were characterized by different techniques. The Ba2P2O7:Sm3+ phosphor can be efficiently excited by near-UV and blue light, and their emission spectrum consists of three emission peaks, at 564, 602, and 646 nm, respectively. Based on the results, the as prepared Ba2P2O7:Sm3+ phosphors are promising orange-red-emitting phosphors exhibit great potential may be applicable as a spectral convertor in c-Si solar cell to enhance the efficiency of solar cell in future.

  17. Thermoluminescence property of nano scale Al{sub 2}O{sub 3}: C by combustion method

    Energy Technology Data Exchange (ETDEWEB)

    Bharthasaradhi, R.; Nehru, L. C. [Department of Medical Physics, School of Physics, Bharathidasan University, Tiruchirappalli-620 024, Tamilnadu (India)

    2016-05-23

    In this study, thermoluminescence dosimetry material of carbon doped aluminium oxide by combustion method using Aluminium nitrate and Glycine. The Structure of the prepared Sample was carried out by XRD. The sample was nano crystalline in nature. Having hexagonal structure with unit cell parameters a=4.75Å, C=12.99Å. The surface morphology of the prepared nanopowder was carried out through (SEM). The morphology of the prepared sample is platelet structure and functional group analysis carried out through FT-IR Spectrum. The prepared sample was irradiated through γ-ray CO{sup 60} (100 Gy) was used as γ-ray source. The thermoluminescence glow curve of the irradiated sample showed an isolated peak at around 200°C. The result suggest the prepared nanopowder is suitable for medical radiation dosimetry.

  18. Preparation of new crystal forms via photochemical, mechanochemical and sol-gel methods

    OpenAIRE

    D’Agostino, Simone

    2012-01-01

    This work of thesis involves various aspects of crystal engineering. Chapter 1 focuses on crystals containing crown ether complexes. Aspects such as the possibility of preparing these materials by non-solution methods, i.e. by direct reaction of the solid components, thermal behavior and also isomorphism and interconversion between hydrates are taken into account. In chapter 2 a study is presented aimed to understanding the relationship between hydrogen bonding capability and shape of the...

  19. Room temperature ferromagnetism in Eu-doped ZnO nanoparticulate powders prepared by combustion reaction method

    International Nuclear Information System (INIS)

    Franco, A.; Pessoni, H.V.S.; Soares, M.P.

    2014-01-01

    Nanoparticulate powders of Eu-doped ZnO with 1.0, 1.5, 2.0 and 3.0 at% Eu were synthesized by combustion reaction method using zinc nitrate, europium nitrate and urea as fuel without subsequent heat treatments. X-ray diffraction patterns (XRD) of all samples showed broad peaks consistent with the ZnO wurtzite structure. The absence of extra reflections in the diffraction patterns ensures the phase purity, except for x=0.03 that exhibits small reflection corresponding to Eu 2 O 3 phase. The average crystallite size determined from the most prominent (1 0 1) peak of the diffraction using Scherrer's equation was in good agreement with those determined by transmission electron microscopy (TEM); being ∼26 nm. The magnetic properties measurements were performed using a vibrating sample magnetometer (VSM) in magnetic fields up to 2.0 kOe at room temperature. The hysteresis loops, typical of magnetic behaviors, indicating that the presence of an ordered magnetic structure can exist in the Eu-doped ZnO wurtzite structure at room temperature. The room temperature ferromagnetism behavior increases with the Eu 3+ doping concentration. All samples exhibited the same Curie temperature (T C ) around ∼726 K, except for x=0.01; T C ∼643 K. High resolution transmission electron microscopy (HRTEM) images revealed defects/strain in the lattice and grain boundaries of Eu-doped ZnO nanoparticulate powders. The origin of room temperature ferromagnetism in Eu-doped ZnO nanoparticulate powders was discussed in terms of these defects, which increase with the Eu 3+ doping concentration. - Highlights: • Room-temperature ferromagnetism. • Structural and magnetic properties of nanoparticulate powders of Zn 1−x Eu x O. • Combustion reaction method

  20. Optical Degradation of Colloidal Eu-Complex Embedded in Silica Glass Film Using Reprecipitation and Sol-Gel Methods.

    Science.gov (United States)

    Fukuda, Takeshi; Kurabayashi, Tomokazu; Yamaki, Tatsuki

    2016-04-01

    A reprecipitation method has been investigated for fabricating colloidal nanoparticles using Eu-complex. Herein, we investigated optical degradation characteristics of (1,10-phenanthroline)tris [4,4,4-trifluoro-1-(2-thienyl)-1,3-butanedionato]europium(III) colloidal nanoparticles, which were embedded into a silica glass film fabricated by a conventional sol-gel process. At first, we tried several types of good solvents for the reprecipitation method, and dimethyl sulfoxide (DMSO) is found to be a suitable solvent for realizing the small diameter and the high long-term stability against the ultraviolet irradiation even though the boing point of DMSO is higher than that of water used as a poor solvent. By optimizing the good solvent and the concentration of Eu-complex, the relative photoluminescence intensity of 0.96 was achieved even though the ultraviolet light was continuously irradiated for 90 min. In addition, the average diameter of 106 nm was achieved when DMSO was used as a good solvent, resulting in the high transmittance at a visible wavelength region. Therefore, we can achieve the transparent emissive thin film with a center wavelength of 612 nm, and the optical degradation was drastically reduced by forming nanoparticles.

  1. Combustion engineering

    CERN Document Server

    Ragland, Kenneth W

    2011-01-01

    Introduction to Combustion Engineering The Nature of Combustion Combustion Emissions Global Climate Change Sustainability World Energy Production Structure of the Book   Section I: Basic Concepts Fuels Gaseous Fuels Liquid Fuels Solid Fuels Problems Thermodynamics of Combustion Review of First Law Concepts Properties of Mixtures Combustion StoichiometryChemical EnergyChemical EquilibriumAdiabatic Flame TemperatureChemical Kinetics of CombustionElementary ReactionsChain ReactionsGlobal ReactionsNitric Oxide KineticsReactions at a Solid SurfaceProblemsReferences  Section II: Combustion of Gaseous and Vaporized FuelsFlamesLaminar Premixed FlamesLaminar Flame TheoryTurbulent Premixed FlamesExplosion LimitsDiffusion FlamesGas-Fired Furnaces and BoilersEnergy Balance and EfficiencyFuel SubstitutionResidential Gas BurnersIndustrial Gas BurnersUtility Gas BurnersLow Swirl Gas BurnersPremixed-Charge Engine CombustionIntroduction to the Spark Ignition EngineEngine EfficiencyOne-Zone Model of Combustion in a Piston-...

  2. Experimental study of the synthesis and characterisation of silica nanoparticles via the sol-gel method

    International Nuclear Information System (INIS)

    Tabatabaei, S; Shukohfar, A; Aghababazadeh, R; Mirhabibi, A

    2006-01-01

    Silica nano-particles were synthesised by chemical methods from tetraethylorthosilicate (TEOS), ethanol (C 2 H 5 OH) and deionized water in the presence of ammonia as catalyst at room temperature. The morphology and structure of colloidal silica particles formed depend on the molar ratio of reagents. The formation of silica particles has been investigated using different solvents: ethanol and ethanol-glycerol. The nature and morphology of particles was investigated by scanning electron microscopy (SEM), transmission electron microscopy (TEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD)

  3. Comparison of a gel column blood typing method and a point-of-care cartridge for dog erythrocyte antigen 1.1.

    Science.gov (United States)

    Blois, Shauna L; Richardson, Danielle M; Abrams-Ogg, Anthony C G

    2013-01-01

    Blood typing for the presence of Dog Erythrocyte Antigen (DEA) 1.1 is recommended in all donor and recipient dogs prior to transfusion of blood products. The objective of this study was to determine if a point-of-care DEA 1.1 blood typing cartridge could be used in place of the gel column typing method. Detection of DEA 1.1 was performed using a laboratory-based gel column method and a point-of-care cartridge. A convenience sample of 30 healthy blood donors, 13 dogs with immune-mediated hemolytic anemia (IMHA) (3 of which had concurrent immune-mediated thrombocytopenia [IMT]), and 44 dogs with other diseases was included in the study. Agreement was observed between the tests for normal dogs and dogs with nonimmune-mediated disease in 74/74 cases. Two dogs in the IMHA group had indeterminate gel column blood typing results; 1 dog in this group had a negative gel column test result but a positive cartridge test result. There was good agreement between the 2 methods for normal dogs and dogs with nonimmune-mediated disease. Blood typing methods in dogs with IMHA should be further investigated. © Veterinary Emergency and Critical Care Society 2013.

  4. Photoluminescence studies of ZnO thin films on R-plane sapphire substrates grown by sol-gel method

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Min Su [Department of Nano Systems Engineering, Center for Nano Manufacturing, Inje University, Gimhae, Gyungnam 621-749 (Korea, Republic of); Nam, Giwoong; Kim, Soaram [Department of Nano Engineering, Inje University, Gimhae, Gyungnam 621-749 (Korea, Republic of); Kim, Do Yeob [Holcombe Department of Electrical and Computer Engineering, Center for Optical Materials Science and Engineering Technologies, Clemson University, Clemson, SC 29634 (United States); Lee, Dong-Yul [LED R and D team, Samsung Electronics Co. Ltd., Yongin 446-711 (Korea, Republic of); Kim, Jin Soo [Research Center of Advanced Materials Development (RCAMD), Division of Advanced Materials Engineering, Chonbuk National University, Jeonju, Chonbuk 561-756 (Korea, Republic of); Kim, Sung-O [Holcombe Department of Electrical and Computer Engineering, Center for Optical Materials Science and Engineering Technologies, Clemson University, Clemson, SC 29634 (United States); Kim, Jong Su [Department of Physics, Yeungnam University, Gyeongsan, Gyeongsangbuk-do 712-749 (Korea, Republic of); Son, Jeong-Sik [Department of Visual Optics, Kyungwoon University, Gumi, Gyeongsangbuk-do 730-850 (Korea, Republic of); Leem, Jae-Young, E-mail: jyleem@inje.ac.kr [Department of Nano Systems Engineering, Center for Nano Manufacturing, Inje University, Gimhae, Gyungnam 621-749 (Korea, Republic of)

    2012-10-15

    Zinc oxide (ZnO) thin films on R-plane sapphire substrates were grown by the sol-gel spin-coating method. The optical properties of the ZnO thin films were investigated using photoluminescence. In the UV range, the asymmetric near-band-edge emission was observed at 300 K, which consisted of two emissions at 3.338 and 3.279 eV. Eight peaks at 3.418, 3.402, 3.360, 3.288, 3.216, 3.145, 3.074, and 3.004 eV, which respectively correspond to the free exciton (FX), bound exciton, transverse optical (TO) phonon replica of FX recombination, and first-order longitudinal optical phonon replica of FX and the TO (1LO+TO), 2LO+TO, 3LO+TO, 4LO+TO, and 5LO+TO, were obtained at 12 K. From the temperature-dependent PL, it was found that the emission peaks at 3.338 and 3.279 eV corresponded to the FX and TO, respectively. The activation energy of the FX and TO emission peaks was found to be about 39.3 and 28.9 meV, respectively. The values of the fitting parameters of Varshni's empirical equation were {alpha}=4 Multiplication-Sign 10{sup -3} eV/K and {beta}=4.9 Multiplication-Sign 10{sup 3} K, and the S factor of the ZnO thin films was 0.658. With increasing temperature, the exciton radiative lifetime of the FX and TO emissions increased. The temperature-dependent variation of the exciton radiative lifetime for the TO emission was slightly higher than that for the FX emission. - Highlights: Black-Right-Pointing-Pointer ZnO thin films on R-plane sapphire substrates were grown by sol-gel method. Black-Right-Pointing-Pointer Two emission peaks at 3.338 and 3.279 eV were observed at 300 K Black-Right-Pointing-Pointer Activation energies of the two peaks were 39.3 and 28.9 meV,respectively. Black-Right-Pointing-Pointer Exciton radiative lifetime of the two peaks increased with increasing temperature.

  5. Determination of 60 Co by means of Neutron Activation Analysis in the sorption of Co in synthesized porous oxides by the combustion method

    International Nuclear Information System (INIS)

    Lugo, V.; Bulbulian, S.; Urena, F.

    2005-01-01

    Recently inorganic materials are investigating as sorbent of radioactive pollutants present in water. The inorganic oxides belong to this group of materials. A quick method exists for the obtaining of inorganic oxides, denominated combustion method that could be used to produce porous oxides successfully with good properties for the sorption of radioactive ions. In this investigation, iron oxides, magnesium and zinc were synthesized obtained by the combustion method, comparing them with those synthesized by the calcination method, using two different synthesis temperatures. The obtained solids were characterized by scanning electron microscopy (Sem), by X-ray diffraction (XRD) and by semiquantitative elemental analysis (EDS). After the characterization, the crystalline oxides synthesized by both methods, to temperature of 800 C, were evaluated as sorbents in the removal of Co 2+ ions, through experiments in batch, and using neutron activation analysis, determining the sorption percentage, with this it was concluded that the magnesium oxide produced by combustion it is more effective in the removal of Co 2+ ions than that synthesized by calcination. It was determined the surface area of the magnesium oxides, obtaining a surface area greater for the synthesized oxide by combustion method. (Author)

  6. Dosage of fission products in irradiated fuel treatment effluents (radio-chemical method); Dosage des produits de fission dans les effluents du traitement des combustibles irradies (methode radiochimique)

    Energy Technology Data Exchange (ETDEWEB)

    Auchapt, J [Commissariat a l' Energie Atomique, Marcoule (France). Centre d' Etudes Nucleaires

    1966-07-01

    The dosage methods presented here are applicable to relatively long-lived fission products present in the effluents resulting from irradiated fuel treatment processes (Sr - Cs - Ce - Zr - Nb - Ru - I). The methods are based on the same principle: - addition of a carrying-over agent - chemical separation over several purification stages, - determination of the chemical yield by calorimetry - counting of an aliquot liquid portion. (author) [French] Les methodes de dosage presentees concernent les produits de fission a vie relativement longue presents dans les effluents de traitement des combustibles irradies (Sr - Cs - Ce - Zr - Nb - Ru - I). Elles sont toutes basees sur le meme principe: - addition d'entraineur, - separation chimique en plusieurs stades de purification, - determination du rendement chimique par calorimetrie, - comptage d'une aliquote liquide. (auteur)

  7. Ferroelectric properties of PZT/BFO multilayer thin films prepared using the sol-gel method.

    Science.gov (United States)

    Jo, Seo-Hyeon; Lee, Sung-Gap; Lee, Young-Hie

    2012-01-05

    In this study, Pb(Zr0.52Ti0.48)O3/BiFeO3 [PZT/BFO] multilayer thin films were fabricated using the spin-coating method on a Pt(200 nm)/Ti(10 nm)/SiO2(100 nm)/p-Si(100) substrate alternately using BFO and PZT metal alkoxide solutions. The coating-and-heating procedure was repeated several times to form the multilayer thin films. All PZT/BFO multilayer thin films show a void-free, uniform grain structure without the presence of rosette structures. The relative dielectric constant and dielectric loss of the six-coated PZT/BFO [PZT/BFO-6] thin film were approximately 405 and 0.03%, respectively. As the number of coatings increased, the remanent polarization and coercive field increased. The values for the BFO-6 multilayer thin film were 41.3 C/cm2 and 15.1 MV/cm, respectively. The leakage current density of the BFO-6 multilayer thin film at 5 V was 2.52 × 10-7 A/cm2.

  8. Efficacy and compatibility with mass spectrometry of methods for elution of proteins from sodium dodecyl sulfate-polyacrylamide gels and polyvinyldifluoride membranes

    DEFF Research Database (Denmark)

    Jørgensen, C.S.; Jagd, M.; Sørensen, B.K.

    2004-01-01

    projects. As a result of this, methods for postelectrophoretic protein characterization are of Great interest as exemplified by in situ protease digestion combined with mass spectrometry (MS), which is the method of choice for identification of proteins. In this study we have developed and compared methods...... for recovering intact proteins from polyacrylamide gels and electroblotting membranes to define efficient methods compatible with MS. These methods complement in situ digestion protocols and allow determination of the molecular mass of whole proteins separated by SDS-PAGE. Passive elution of proteins from SDS......-PAGE gels was efficient only in the presence of SDS, whereas electroelution was achieved using butTers without SDS. Surface-enhanced laser desorption/ionization MS (SELDI-MS) analysis of proteins eluted in the presence of SIDS was possible using ion exchange ProteinChip arrays for concentration of sample...

  9. Magnetic properties and magnetization reversal mechanism of Nd-Fe-B nanoparticles synthesized by a sol-gel method

    Science.gov (United States)

    Rahimi, Hamed; Ghasemi, Ali; Mozaffarinia, Reza; Tavoosi, Majid

    2017-12-01

    Nd-Fe-B oxide powders with various pH were prepared using chloride and nitrate precursors including NdCl3·6H2O, FeCl3·6H2O, H3BO3, Nd2O3, Fe(NO3)3·9H2O, HNO3, citric acid (CA), ethylene glycol (EG) by Pechini type sol-gel method. The pH of chloride and nitrate base sols were 0 and 2.2, respectively. Mixed oxide powders were obtained by calcination and annealing the gels. These oxides by using a reduction-diffusion process under high vacuum and employing CaH2 as reducing agent at 800 °C were hated to prepare Nd2Fe14B nanoparticles. The role of pH on phase, morphologies, microstructure, and magnetic properties of the powders were investigated. The results show that with a decrease in pH, the average particle size and coercivity of Nd-Fe-B oxide powders were decreased and increased, respectively. Nd2Fe14B nanoparticles were formed successfully after reduction process. The average particle size of reduction treated products were 30 and 65 nm for powders which made of chloride and nitrate base metal salts, respectively. Final powders which made of chloride and nitrate base metal salts had a saturation magnetization of 127.7 emu/g and 122.8 emu/g while the coercivity of samples were 3.32 kOe and 1.82 kOe, respectively. The experimental results in the angular dependence of coercivity indicated that the normalized coercivity of the permanent magnets Hc(θ)/Hc(0) obeys the 1/cosθ law and intermediate between the 1/cosθ law and Stoner-Wohlfarth formula for different Nd2Fe14B magnets which made of nitrate and chloride base metal salts, respectively. Also, the results show that different Nd2Fe14B magnets which made of nitrate and chloride base metal salts had the maximum energy product of 5 and 16 MGOe, respectively. The Henkel plot showed that magnetic phases in synthesized NdFeB magnets which made of chloride and nitrate base metal salts were coupled by exchange and dipolar interactions, respectively. Different average particle size, morphology and microstructure were

  10. Synthesis and characterization of Fe-doped TiO2 photocatalyst by the sol–gel method

    International Nuclear Information System (INIS)

    Luu, Cam Loc; Ho, Si Thoang; Nguyen, Quoc Tuan

    2010-01-01

    Thin layers of pure TiO 2 and TiO 2 doped by different amounts of Fe 2 O 3 have been prepared by the sol–gel method with tetraisopropyl orthotitanate and Fe(NO 3 ) 3 . Physico-chemical properties of catalysts were characterized by BET Adsorption, x-ray Diffraction (XRD), FE-SEM, as well as Raman and UV-Vis spectroscopy. The photocatalytic activity of the obtained materials was investigated in the reaction of complete oxidation of p-xylene in gas phase under the radiation of UV (λ=365 nm) and LED (λ=470 nm) lamps. It has been found that the particle size of all samples was distributed in the range 20–30 nm. The content of the rutile phase in Fe-doped TiO 2 samples varied in the range 6.8 to 41.8% depending on the Fe content. Iron oxide doped into TiO 2 enables the photon absorbing zone of TiO 2 to extend from UV towards visible waves as well as to reduce its band gap energy from 3.2 to 2.67 eV. Photocatalytic activities of the TiO 2 samples modified by Fe 3+ have been found to be higher than those of pure TiO 2 by about 2.5 times

  11. Morphological characterization of tungsten trioxide nano powders synthesized by Sol-Gel modified Pechini's method

    Energy Technology Data Exchange (ETDEWEB)

    Ghasemi, Leila; Jafari, Hassan, E-mail: jafari_h@yahoo.com [Department of Materials Engineering, Faculty of Mechanical Engineering, Shahid Rajaee Teacher Training University, Tehran (Iran, Islamic Republic of)

    2017-11-15

    Sol-gel modified Pechini's method was used to prepare WO{sub 3} nano powders using dicarboxylic acid and polyethylene glycol as the chelating agent and polymeric source, respectively. WO{sub 3} powders were first prepared by calcination of resin precursor at 550 deg C under various initial concentrations of metal ion (12.5-50 mmol), acid (125-500 mmol), a complexing agent (32-262 mmol), and polyethylene glycol (1-16.5 mmol) in the air atmosphere. The products were characterized using X-ray powder diffraction, field emission scanning electron microscopy, and energy dispersive spectroscopy. The results revealed that the WO{sub 3} nano powders prepared with different amounts of chelating agent and polyethylene glycol, crystallized in monoclinic phase. The nano powders were impurity-free due to the presence of the complexing agent and polyethylene glycol as carbon sources. Morphological evolution indicated that the nano powders evolved from rod-like to regular and spherical shapes, depending on complexing agent and polyethylene glycol amounts. Nano powders with an average particle size of approximately 58 nm and a narrow size distribution were obtained. (author)

  12. Fabrication and characterization of Gd2O2SO4:Tb3+ phosphors by sol-gel method

    Science.gov (United States)

    Aritman, I.; Yildirim, S.; Kisa, A.; Guleryuz, L. F.; Yurddaskal, M.; Dikici, T.; Celik, E.

    2017-02-01

    The objective of the innovative approaches of the scintillation materials to be used in the digital portal imaging systems in the radiotherapy applications is to research the GOS material production that has been activated with the rare earth elements (RE), to produce the scintillation detectors that have a rapid imaging process with a lesser radiation and higher image quality from these materials and to apply the radiographic imaging systems. The GOS: Tb3+ showed high emission peak and high x-ray absorption properties which have been determined for application to mammography and dental radiography. In this study, Gd2O2SO4:Tb3+ phosphors were fabricated by the sol-gel method that is a unique technique and not previously applied. Besides, the structural characterization of GOS: Tb3+ has been investigated. The strongest emission peak located at 549 nm under 312 nm UV light excitation was appeared on the GOS: Tb3+ phosphor particles. The characterization processing optimized by using FTIR, DTA-TG, XRD, XPS, SEM and the luminescence spectroscopy.

  13. Electrochemical properties of Li2 FeSiO4 /C nanocomposites prepared by sol-gel and hydrothermal methods

    Science.gov (United States)

    Kumar, Ajay; Jayakumar, O. D.; Naik, Vaman M.; Nazri, Gholam A.; Naik, Ratna

    Li2FeSiO4 is considered as potential cathode material for next generation lithium ion batteries because of its high specific theoretical capacity, low cost, and safety. However, it suffers from poor electronic conductivity and slow lithium ion diffusion in the solid phase. To address these issues, we have studied mesoporous Li2FeSiO4/C composites synthesized by sol-gel (SG) and hydrothermal (HT) methods using tri-block copolymer (P123) as carbon source and structure directing agent. The structure and morphology of the composites were characterized by XRD, SEM and TEM and the surface area and pore size distribution were measured by using N2 adsorption/desorption. Galvanostatic cycling, electrochemical impedance spectroscopy, and cyclic voltammetry were used to evaluate the electrochemical performance of the Li2FeSiO4/C composites. The Li2FeSiO4/C (HT) composites show a superior electrochemical performance compared to Li2FeSiO4/C (SG). At C/30 rate, the discharge capacity of Li2FeSiO4/C (HT) reached ~276 mAh/g in the 1.5-4.6 V window and shows better rate capability and stability at high rates. We attribute the improved electrochemical performance of Li2FeSiO4/C (HT) to its large surface area and reduced particle size. The details of the study will be presented.

  14. Influence of annealing temperature on optical properties of Al doped ZnO nanoparticles via sol-gel methods

    Science.gov (United States)

    Rashid, Affa Rozana Abd; Hazwani, Tuan Nur; Mukhtar, Wan Maisarah; Taib, Nur Athirah Mohd

    2018-06-01

    Zinc oxide (ZnO) thin films have become technologically important materials due to their wide range of electrical and optical properties. The characteristics can be further adjusted by adequate doping processes. The effect of dopant concentration of Al, heating treatment and annealing in reducing atmosphere on the optical properties of the thin films is discussed. Undoped and aluminum-doped zinc oxide (AZO) thin films are prepared by the sol-gel method. Zinc acetate dihydrate, 2-methoxyethanol and monoethanolamine are used as precursor, solvent and stabilizer. In the case of AZO, aluminum nitrate nanohydrate is added to the precursor solution with an atomic percentage equal to 0 %, 1 %, 2 % and 3 % of Al. The multi thin layers are transformed into ZnO upon annealing at 450 °C and 500 °C. The optical properties such as transmittance, absorbance, band gap and refractive index of the thin films have been investigated by using UV-Visible Spectroscopy (UV-Vis). The results show that the effect of aluminium dopant concentration on the optical properties is depend on the post-heat treatment of the films. By doping with Al, the transmittance spectra in visible range increased and widen the band gap of ZnO which might due to Burstein-moss effects.

  15. Synthesis and photocatalytic properties of porous TiO2 films prepared by ODA/sol-gel method

    International Nuclear Information System (INIS)

    Zhang Wenjie; Bai Jiawei

    2012-01-01

    Porous TiO 2 films were deposited on SiO 2 pre-coated glass-slides by sol-gel method using octadecylamine (ODA) as template. The amount of ODA in the sol played an important role on the physicochemical properties and photocatalytic performance of the TiO 2 films. The films prepared at different conditions were all composed of anatase titanium dioxide crystals, and TiO 2 crystalline size got larger with increasing ODA amount. The maximum specific surface area of 41.5 m 2 /g was obtained for TiO 2 powders prepared from titanium sol containing 2.0 g ODA. Methyl orange degradation rate was enhanced along with increasing ODA amount and reached the maximal value at 2.0 g addition of ODA. After 40 min of UV-light irradiation, methyl orange degradation rate reached 30.5% on the porous film, which was about 10% higher than that on the smooth film. Porous TiO 2 film showed almost constant activity with slight decrease from 30.5% to 28.5% after 4 times of recycles.

  16. Morphological characterization of tungsten trioxide nano powders synthesized by Sol-Gel modified Pechini's method

    International Nuclear Information System (INIS)

    Ghasemi, Leila; Jafari, Hassan

    2017-01-01

    Sol-gel modified Pechini's method was used to prepare WO 3 nano powders using dicarboxylic acid and polyethylene glycol as the chelating agent and polymeric source, respectively. WO 3 powders were first prepared by calcination of resin precursor at 550 deg C under various initial concentrations of metal ion (12.5-50 mmol), acid (125-500 mmol), a complexing agent (32-262 mmol), and polyethylene glycol (1-16.5 mmol) in the air atmosphere. The products were characterized using X-ray powder diffraction, field emission scanning electron microscopy, and energy dispersive spectroscopy. The results revealed that the WO 3 nano powders prepared with different amounts of chelating agent and polyethylene glycol, crystallized in monoclinic phase. The nano powders were impurity-free due to the presence of the complexing agent and polyethylene glycol as carbon sources. Morphological evolution indicated that the nano powders evolved from rod-like to regular and spherical shapes, depending on complexing agent and polyethylene glycol amounts. Nano powders with an average particle size of approximately 58 nm and a narrow size distribution were obtained. (author)

  17. Physicochemical properties of manganese oxides obtained via the sol-gel method: The reduction of potassium permanganate by polyvinyl alcohol

    Science.gov (United States)

    Ivanets, A. I.; Prozorovich, V. G.; Krivoshapkina, E. F.; Kuznetsova, T. F.; Krivoshapkin, P. V.; Katsoshvili, L. L.

    2017-08-01

    Experimental data on the sol-gel synthesis of manganese oxides formed during the reduction of potassium permanganate by polyvinyl alcohol in an aqueous medium are presented. The physicochemical properties of the obtained manganese oxide systems that depend on the conditions of the synthesis are studied by means of DTA, XRD, SEM, and the low temperature adsorption-desorption of nitrogen. It is found that the obtained samples have a mesoporous structure and predominantly consist of double potassium-manganese oxide K2Mn4O8 with a tunnel structure and impurities of oxides such as α-MnO2, MnO, α-Mn2O3, and Mn5O8. It is shown that the proposed method of synthesis allows us to regulate the size and volume of mesopores and, to a lesser extent, the texture of the obtained oxides, which can be considered promising sorbents for the selective extraction of strontium and cesium ions from multicomponent aqueous solutions.

  18. Low Temperature Ferromagnetism and Optical Properties of Fe Doped ZnO Nanoparticles Synthesized by Sol-Gel Method

    Directory of Open Access Journals (Sweden)

    B. Sathya

    2017-06-01

    Full Text Available In this present investigation, pure and Fe doped Zinc oxide nanoparticles were successfully synthesized by sol gel method.The structural and optical properties were examined by using X-ray diffraction (XRD, Scanning electron microscope (SEM, Transmission electron microscope (TEM, Ultraviolet spectroscopy and Photoluminescence (PL techniques.The structural characterization of XRD analysis confirmed the phase purity of the samples and crystallite size can be decreased with increasing doping concentrations.SEM image show that nanoparticles in spherical shape. The optical band gap calculated through UV-visible spectroscopy is found to be increasing from 3.48 to 3.57eV. TEM analysis depicted the crystallinity of nanoparticles prepared and chemical composition conformed the EDAX analysis. The PL spectra reveal that, Fe doped ZnO exhibit a decrease in intensity of the band edge emission peak while the intensity of the deep level emission peak increases.The enhancement of low temperature ferromagnetism in ZnO: Fe was achieved.

  19. Optimization of sol-gel technique for coating of metallic substrates by hydroxyapatite using the Taguchi method

    Science.gov (United States)

    Pourbaghi-Masouleh, M.; Asgharzadeh, H.

    2013-08-01

    In this study, the Taguchi method of design of experiment (DOE) was used to optimize the hydroxyapatite (HA) coatings on various metallic substrates deposited by sol-gel dip-coating technique. The experimental design consisted of five factors including substrate material (A), surface preparation of substrate (B), dipping/withdrawal speed (C), number of layers (D), and calcination temperature (E) with three levels of each factor. An orthogonal array of L18 type with mixed levels of the control factors was utilized. The image processing of the micrographs of the coatings was conducted to determine the percentage of coated area ( PCA). Chemical and phase composition of HA coatings were studied by XRD, FT-IR, SEM, and EDS techniques. The analysis of variance (ANOVA) indicated that the PCA of HA coatings was significantly affected by the calcination temperature. The optimum conditions from signal-to-noise ( S/N) ratio analysis were A: pure Ti, B: polishing and etching for 24 h, C: 50 cm min-1, D: 1, and E: 300 °C. In the confirmation experiment using the optimum conditions, the HA coating with high PCA of 98.5 % was obtained.

  20. Characteristics and Laser Performance of Yb3+-Doped Silica Large Mode Area Fibers Prepared by Sol–Gel Method

    Directory of Open Access Journals (Sweden)

    Shikai Wang

    2013-12-01

    Full Text Available Large-size 0.1 Yb2O3–1.0 Al2O3–98.9 SiO2 (mol% core glass was prepared by the sol–gel method. Its optical properties were evaluated. Both large mode area double cladding fiber (LMA DCF with core diameter of 48 µm and large mode area photonic crystal fiber (LMA PCF with core diameter of 90 µm were prepared from this core glass. Transmission loss at 1200 nm is 0.41 dB/m. Refractive index fluctuation is less than 2 × 10−4. Pumped by 976 nm laser diode LD pigtailed with silica fiber (NA 0.22, the slope efficiency of 54% and “light-to-light” conversion efficiency of 51% were realized in large mode area double cladding fiber, and 81 W laser power with a slope efficiency of 70.8% was achieved in the corresponding large mode area photonic crystal fiber.

  1. Preparation and characterization of Sio2CaCl2 nanocomposite by the sol-gel method

    International Nuclear Information System (INIS)

    Tohidi, S. H.; Ziaie, F.; Abdolmaleki, A.

    2009-01-01

    The SiO 2 CaCl 2 hybrid porous materials were prepared by the sol-gel method. This process was conducted by the hydrolysis and condensation of Tetraethyl orthosilicate by replacement of ethanol from alcogel and drying at the ambient temperature to obtain xerogel structure. The alcogel samples were synthesized from Tetraethyl orthosilicate, EtOH, H 2 O, HCl, NH 4 OH and CaCl 2 , while the total molar ratio of the compounds was 1: 9: 4: 8 x 10 -4 , 8 x 10 -3 , respectively. Xerogel containing 30 wt % of CaCl 2 (dry matter) was prepared and characterized by Scanning Electron Microscopy, Transmission Electron Microscopy, Fourier Transmittance Infra Red spectrum, Energy Dispersive X-ray and Thermal Gravimetric Analysis systems. The results obtained from Scanning Electron Microscopy and Energy Dispersive X-ray showed the micrograph of CaCl 2 on the silica and chemical elemental analysis, respectively. On the other hand, The Transmission Electron Microscopy micrograph confirmed average particle size of SiO 2 -CaCl 2 about 50 nm and Fourier Transmittance Infra Red spectrum described the functional groups of the nano composite. The thermal analysis of SiO 2 -CaCl 2 nano composite was performed using Thermal Gravimetric Analysis system and the results showed that the suitable temperature for initial thermal treatment was about 200 d eg C .

  2. Effects of Calcination Temperature on Preparation of Boron-Doped TiO2 by Sol-Gel Method

    Directory of Open Access Journals (Sweden)

    Wenjie Zhang

    2012-01-01

    Full Text Available Boron-doped TiO2 photocatalyst was prepared by a modified sol-gel method. Being calcinated at temperatures from 300°C to 600°C, all the 3% B-TiO2 samples presented anatase TiO2 phase, and TiO2 crystallite sizes were calculated to be 7.6, 10.3, 13.6, and 27.3 nm, respectively. The samples were composed of irregular particles with rough surfaces in the size range within 3 μm. Ti atoms were in an octahedron skeleton and existed mainly in the form of Ti4+, while the Ti-O-B structure was the main boron existing form in the 3% B-TiO2 sample. When calcination temperature increased from 300°C to 600°C, specific surface area decreased sharply from 205.6 m2/g to 31.8 m2/g. The average pore diameter was 10.53 nm with accumulative pore volume of 0.244 mL/g for the 3% B-TiO2 sample calcinated at 400°C, which performed optimal photocatalytic degradation activity. After 90 min of UV-light irradiation, degradation rate of methyl orange was 96.7% on the optimized photocatalyst.

  3. Nanomaterial Host Bands Effect on the Photoluminescence Properties of Ce-Doped YAG Nanophosphor Synthesized by Sol-Gel Method

    Directory of Open Access Journals (Sweden)

    L. Guerbous

    2015-01-01

    Full Text Available Cerium trivalent (Ce3+ doped YAG nano-sized phosphors have been successfully synthesized by sol-gel method using different annealing temperatures. The samples have been characterized by X-ray diffraction (XRD, thermogravimetry (TG, differential scanning calorimetry (DSC analysis, Fourier transform infrared (FTIR spectroscopy, and steady photoluminescence (PL spectroscopy. X-ray diffraction analysis indicates that the pure cubic phase YAG was formed and strongly depends on the cerium content and the annealing temperature. It was found that the grain size ranges from 30 to 58 nm depending on the calcination temperature. The YAG: Ce nanophosphors showed intense, green-yellow emission, corresponding to Ce3+ 5d1→2F5/2, 2F7/2 transitions and its photoluminescence excitation spectrum contains the two Ce3+ 4f1→5d1, 5d2 bands. The crystal filed splitting energy levels positions 5d1 and 5d2 and the emission transitions blue shift with annealing temperatures have been discussed. It was found that the Ce3+ 4f1 ground state position relative to valence band maximum of YAG host nanomaterial decreases with increasing the temperature.

  4. Structural and optical properties of Cu2ZnSnS4 synthesized by ultrasonic assisted sol-gel method

    Science.gov (United States)

    Rajwar, Birendra Kumar; Sharma, Shailendra Kumar

    2018-05-01

    Cu2ZnSnS4 (CZTS) nanocrystals were synthesized by a simple ultrasonic assisted sol-gel method using two different solvents. Structure and purity of the phase formed were investigated using X-ray diffraction (XRD) and Raman measurements. The average crystallite size were estimated by using Scherrer's formula and found to be 2.09 and 7.15 nm. Raman study reveals the kesterite-phase of prepared samples. The influence of solvent in the morphologies of prepared samples was investigated by field emission scanning electron microscopy (FESEM). Ultraviolet-visible-near-infrared absorption measurement was carried out to calculate the optical band gap of samples. Oxidation state of the constitute elements of as-prepared samples were investigated by X-ray photoelectron spectroscopy (XPS) analysis and the results are in good agreement with the literature. The surface area and pore volume were estimated after analysis of nitrogen adsorption-desorption isotherm curves and found to be 16.5 m2/gm and 0.01 cm3/gm respectively.

  5. High Cycling Performance Cathode Material: Interconnected LiFePO4/Carbon Nanoparticles Fabricated by Sol-Gel Method

    Directory of Open Access Journals (Sweden)

    Zhigao Yang

    2014-01-01

    Full Text Available Interconnected LiFePO4/carbon nanoparticles for Li-ion battery cathode have been fabricated by sol-gel method followed by a carbon coating process involving redox reactions. The carbon layers coated on the LiFePO4 nanoparticles not only served as a protection layer but also supplied fast electrons by building a 3D conductive network. As a cooperation, LiFePO4 nanoparticles encapsulated in interconnected conductive carbon layers provided the electrode reactions with fast lithium ions by offering the lithium ions shortening and unobstructed pathways. Field emission scanning electron microscopy (FESEM and X-ray diffraction (XRD tests showed optimized morphology. Electrochemical characterizations including galvanostatic charge/discharge, cyclic voltammetry (CV, and electrochemical impedance spectroscopy (EIS tests, together with impedance parameters calculated, all indicated better electrochemical performance and excellent cycling performance at high rate (with less than 9.5% discharge capacity loss over 2000 cycles, the coulombic efficiency maintained about 100%.

  6. Deposition of GdVO4:Eu3+ nanoparticles on silica nanospheres by a simple sol gel method

    Science.gov (United States)

    Liu, Guixia; Hong, Guangyan; Wang, Jinxian; Dong, Xiangting

    2006-07-01

    The deposition and coating of GdVO4:Eu3+ nanoparticles on spherical silica was carried out using a simple sol-gel method at low temperature. The GdVO4:Eu3+-coated silica composites obtained were characterized by differential thermal analysis (DTA), thermogravimetric (TG) analysis, x-ray diffraction (XRD), Fourier-transform IR spectroscopy (FT-IR), transmission electron microscopy (TEM), x-ray photoelectron spectroscopy (XPS), photoluminescence spectra, and kinetic decay. It is found that the ~5 nm GdVO4:Eu3+ nanoparticles coating the silica spheres are crystal in the as-prepared samples and the crystallinity increases with increasing annealing temperature. The composites obtained are spherical in shape with an average size of 100 nm. The GdVO4:Eu3+ nanoparticles are linked with silica cores by a chemical bond. The photoluminescence spectra of the obtained GdVO4:Eu3+-coated silica composites are similar to those of the bulk GdVO4:Eu3+ phosphors. The strongest peak is near 617 nm, which indicates that Eu3+ is located in the low symmetry site with non-inversion centre.

  7. Structure and optical properties of nanocrystalline NiO thin film synthesized by sol-gel spin-coating method

    Energy Technology Data Exchange (ETDEWEB)

    Al-Ghamdi, A.A. [King Abdulaziz University, Faculty of Science, Physics Department, Jeddah (Saudi Arabia); Mahmoud, Waleed E., E-mail: w_e_mahmoud@yahoo.co [King Abdulaziz University, Faculty of Science, Physics Department, Jeddah (Saudi Arabia); Suez Canal University, Faculty of Science, Physics Department, Ismailia (Egypt); Yaghmour, S.J.; Al-Marzouki, F.M. [King Abdulaziz University, Faculty of Science, Physics Department, Jeddah (Saudi Arabia)

    2009-11-03

    NiO thin film was prepared by sol-gel spin-coating method. This thin film annealed at T = 600 deg. C. The structure of NiO thin film was investigated by means of X-ray diffraction (XRD) technique and scanning electron microscopy (SEM). The optical properties of the deposited film were characterized from the analysis of the experimentally recorded transmittance and reflectance data in the spectral wavelength range of 300-800 nm. The values of some important parameters of the studied films are determined, such as refractive index (n), extinction coefficient (k), optical absorption coefficient (alpha) and band energy gap (E{sub g}). According to the analysis of dispersion curves, it has been found that the dispersion data obeyed the single oscillator of the Wemple-DiDomenico model, from which the dispersion parameters and high-frequency dielectric constant were determined. In such work, from the transmission spectra, the dielectric constant (epsilon{sub i}nfinity), the third-order optical nonlinear susceptibility chi{sup (3)}, volume energy loss function (VELF) and surface energy loss function (SELF) were determined.

  8. Iron-based soft magnetic composites with Mn-Zn ferrite nanoparticles coating obtained by sol-gel method

    Science.gov (United States)

    Wu, Shen; Sun, Aizhi; Xu, Wenhuan; Zhang, Qian; Zhai, Fuqiang; Logan, Philip; Volinsky, Alex A.

    2012-11-01

    This paper focuses on iron-based soft magnetic composites which were synthesized by utilizing Mn-Zn ferrite nanoparticles to coat iron powder. The nanocrystalline iron powders, with an average particle diameter of 20 nm, were obtained via the sol-gel method. Scanning electron microscopy, energy dispersive X-ray spectroscopy and distribution maps show that the iron particle surface is covered with a thin layer of Mn-Zn ferrites. Mn-Zn ferrite uniformly coated the surface of the powder particles, resulting in a reduced imaginary permeability, increased electrical resistivity and a higher operating frequency of the synthesized magnets. Mn-Zn ferrite coated samples have higher permeability and lower magnetic loss when compared with the non-magnetic epoxy resin coated compacts. The real part of permeability increases by 33.5% when compared with the epoxy resin coated samples at 10 kHz. The effects of heat treatment temperature on crystalline phase formation and on the magnetic properties of the Mn-Zn ferrite were investigated via X-ray diffraction and a vibrating sample magnetometer. Ferrites decomposed to FeO and MnO after annealing above 400 °C in nitrogen; thus it is the optimum annealing temperature to attain the desired permeability.

  9. Structural, magnetic and electrical properties of nickel doped Mn-Zn spinel ferrite synthesized by sol-gel method

    Energy Technology Data Exchange (ETDEWEB)

    Jalaiah, K., E-mail: kjalu4u@gmail.com [Department of Physics, Andhra University, Visakhapatnam 530003 (India); Vijaya Babu, K. [Advanced Analytical Laboratory, Andhra University, Visakhapatnam 530003 (India)

    2017-02-01

    Manganese ferrites (MnFe{sub 2}O{sub 4}) have been of great interest for their remarkable and soft-magnetic properties (low coercivity, moderate saturation magnetization) accompanied by good chemical stability and mechanical hardness. X-ray diffraction analysis confirmed the presence of single phase cubic spinel ferrite with space group Fm3m for all prepared samples. Structural parameters such as lattice constant, crystallite size were calculated from the studies of X-ray diffraction. The morphological analysis of all the compounds is studied using scanning electron microscope. The magnetic properties were measured using electron spin resonance (ESR) and vibrating sample magnetometer (VSM). The results obtained showed the formation of manganese ferrites with an average particle size are in good agreement with previous results and displayed good magnetic properties. The dielectric and impedance properties are studied over a frequency range 20 Hz–1 MHz at room temperature. - Highlights: • We prepared Mn{sub 0.85}Zn{sub 0.15}Ni{sub x}Fe{sub 2}O{sub 4} (x=0.03, 0.06, 0.09, 0.12 and 0.15) nano-ferrite materials by using sol-gel method. • All the compounds characterized by XRD, SEM, VSM, ESR and dielectric studies. • We get lower coercivity values. • We get good results from ESR spectra.

  10. Effect of annealing temperature on the tribological behavior of ZnO films prepared by sol-gel method

    International Nuclear Information System (INIS)

    Lin Liyu; Kim, Dae-Eun

    2009-01-01

    The tribological behavior of zinc oxide (ZnO) films grown on glass and silicon (100) substrates by sol-gel method was investigated. Particularly, the as-coated films were post-annealed at different temperatures in air to investigate the effect of annealing temperature. Crystal structural and surface morphology of the films were measured by X-ray diffraction (XRD) and Atomic Force Microscopy (AFM). XRD patterns and AFM images indicated that the crystallinity and grain size of the films were enhanced and increased, respectively, with temperature. The tribological behavior of films was evaluated by sliding the ZnO films against a Si 3 N 4 ball under 0.5 gf normal load using a reciprocating pin-on-plate tribo-tester. The wear tracks of the films were measured by AFM to quantify the wear resistance of the films. The results showed that the wear resistance of the films could be improved by the annealing process. The wear resistance of the films generally increased with annealing temperature. Specifically, the wear resistance of the films was significantly improved when the annealing temperature was higher than 550 deg. C. The increase in the wear resistance is attributed to the increase in hardness and modulus of the film with annealing temperature

  11. Analytical methods relating to mineral matter in coal and ash from coal combustion

    Energy Technology Data Exchange (ETDEWEB)

    Creelman, R.A. [Ultra-Systems Technology Pty. Ltd., Indooroopilly, Qld. (Australia)

    2002-07-01

    The paper begins by describing the minerals that occur in coal, as well as trace elements. The testing methods that are then described include those that are in the main the standard tools for the examination and assessment of minerals in coal and ash. The techniques discussed include optical and beam techniques, X-ray methods and a variety of other useful methods. 12 refs.

  12. Chemical Method to Improve CO{sub 2} Flooding Sweep Efficiency for Oil Recovery Using SPI-CO{sub 2} Gels

    Energy Technology Data Exchange (ETDEWEB)

    Burns, Lyle D.

    2009-04-14

    The problem in CO{sub 2} flooding lies with its higher mobility causing low conformance or sweep efficiency. This is an issue in oilfield applications where an injected fluid or gas used to mobilize and produce the oil in a marginal field has substantially higher mobility (function of viscosity and density and relative permeability) relative to the crude oil promoting fingering and early breakthrough. Conformance is particularly critical in CO{sub 2} oilfield floods where the end result is less oil recovered and substantially higher costs related to the CO{sub 2}. The SPI-CO{sub 2} (here after called “SPI”) gel system is a unique silicate based gel system that offers a technically effective solution to the conformance problem with CO{sub 2} floods. This SPI gel system remains a low viscosity fluid until an external initiator (CO{sub 2}) triggers gelation. This is a clear improvement over current technologies where the gels set up as a function of time, regardless of where it is placed in the reservoir. In those current systems, the internal initiator is included in the injected fluid for water shut off applications. In this new research effort, the CO{sub 2} is an external initiator contacted after SPI gel solution placement. This concept ensures in the proper water wet reservoir environment that the SPI gel sets up in the precise high permeability path followed by the CO{sub 2}, therefore improving sweep efficiency to a greater degree than conventional systems. In addition, the final SPI product in commercial quantities is expected to be low cost over the competing systems. This Phase I research effort provided “proof of concept” that SPI gels possess strength and may be formed in a sand pack reducing the permeability to brine and CO{sub 2} flow. This SPI technology is a natural extension of prior R & D and the Phase I effort that together show a high potential for success in a Phase II follow-on project. Carbon dioxide (CO{sub 2}) is a major by-product of

  13. Analysis of glycoprotein-derived oligosaccharides in glycoproteins detected on two-dimensional gel by capillary electrophoresis using on-line concentration method.

    Science.gov (United States)

    Kamoda, Satoru; Nakanishi, Yasuharu; Kinoshita, Mitsuhiro; Ishikawa, Rika; Kakehi, Kazuaki

    2006-02-17

    Capillary electrophoresis (CE) is an effective tool to ana