WorldWideScience

Sample records for gel combustion method

  1. Bulk synthesis of nanocrystalline urania powders by citrate gel-combustion method

    International Nuclear Information System (INIS)

    Sanjay Kumar, D.; Ananthasivan, K.; Venkata Krishnan, R.; Amirthapandian, S.; Dasgupta, Arup

    2016-01-01

    Bulk quantities (60 g) of nanocrystalline (nc) free flowing urania powders with crystallite size ranging from 38 to 252 nm have been synthesized for the first time by the citrate gel combustion method. A systematic study of the influence of the fuel (citric acid) to oxidant (nitrate) ratio (R) on the characteristics of the urania powders has been carried out for the first time. Mixture with an “R” value of 0.25 exhibited a vigorous auto-ignition reaction. This reaction was investigated with Differential Scanning Calorimetry (DSC) and in-situ thermogravimetry coupled with differential thermal analysis and mass spectrometry (TG-DTA-MS). The bulk density, specific surface area, X-ray crystallite size, residual carbon and size distribution of particles of this powder were unique. Microscopic and microstructural investigation of selected samples revealed the presence of nanocrystals with irregular exfoliated morphology; their Electron Energy Loss Spectra testified the covalency of the U–O bond. - Highlights: • Bulk quantities of nanocrystalline urania were prepared for the first time using citrate gel combustion method. • Volume combustion was observed in mixtures with fuel to nitrate ratio (R) 0.25. • The value of R was found to significantly influence the characteristics of the final product. • Typical exfoliated microstructure and nanopores were observed. • Established correlation between particle size distribution and bulk density, X-ray crystallite size and lattice strain. • Relationship between fuel to nitrate (R) mole ratio and physical characteristics of powders were also established.

  2. Structural and optical characterization of nanoparticulate manganese doped zinc silicate phosphors prepared by sol–gel and combustion methods

    Energy Technology Data Exchange (ETDEWEB)

    Mbule, P.S., E-mail: mbuleps@gmail.com [Department of Physics, CSET, University of South Africa, Johannesburg, 1710 (South Africa); Ntwaeaborwa, O.M. [Department of Physics, University of the Free State, P.O. Box 339, Bloemfontein 9300 (South Africa); Mothudi, B.M.; Dhlamini, M.S. [Department of Physics, CSET, University of South Africa, Johannesburg, 1710 (South Africa)

    2016-11-15

    The present study reports the synthesis, crystallographic structure and optical properties of manganese (Mn{sup 2+}) doped zinc silicate (Zn{sub 2}SiO{sub 4}) nanoparticle phosphors prepared by sol–gel and combustion methods. For samples prepared by sol–gel method, the X-ray diffraction results showed phase transformation from amorphous to α-phase Zn{sub 2}SiO{sub 4} due to annealing temperatures at 600 °C to 1100 °C, whereas for combustion samples an admixture of highly crystalline β-phase and hexagonal wurtzite structure of ZnO was observed at annealing temperature of 600 °C. Photoluminescence spectra with Mn{sup 2+} concentrations ranging from 0.015–0.09 mol% were compared for two methods. Emission band assigned to the {sup 4}T{sub 1}({sup 4}G)→{sup 6}A{sub 1}({sup 6}S) electronic transition of Mn{sup 2+} was observed with maximum intensity at ~573 nm for combustion samples and ~532 nm for sol–gel samples upon UV-excitation by a Xenon lamp. Furthermore, the photoluminescence decay curves of annealed Zn{sub 2}SiO{sub 4}:Mn{sup 2+} samples were observed to be bi-exponential. The fast and slow decay components are due to the pair or cluster formation and isolated ions at higher doping concentration, respectively. - Highlights: • Synthesis, crystallographic and optical properties of Zn{sub 2}SiO{sub 4}:Mn{sup 2+} are presented. • XRD shows amorphous diffraction peak and crystallinity improved by increase of annealing temperature. • Crystallite and particle size from XRD and SAXS techniques, respectively, are compared. • Photoluminescence (PL) spectra are compared for sol-gel and combustion method. • The photoluminescence decay curves of annealed Zn{sub 2}SiO{sub 4}:Mn{sup 2+} samples were observed to be bi-exponential.

  3. Direct synthesis of La9.33Si6O26 ultrafine powder via sol-gel self-combustion method

    International Nuclear Information System (INIS)

    Tian Changan; Liu Junliang; Cai Jun; Zeng Yanwei

    2008-01-01

    Single phase La 9.33 Si 6 O 26 ultrafine powder, as a kind of highly activated precursor to prepare medium-to-low temperature electrolyte for solid oxide fuel cells (SOFCs), has been successfully synthesized via a non-aqueous sol-gel and self-combustion approach from the starting materials: lanthanum nitrate (La(NO 3 ) 3 .6H 2 O), citric acid, ethylene glycol (EG), tetraethyl orthosilicate (TEOS) and ammonium nitrate. The details of gel's self-combustion were investigated by DTA-TG and the structural characterization of as-synthesized powder from self-combustion was performed by XRD and SEM. The results show that La 9.33 Si 6 O 26 single phase of apatite-type crystal structure can be directly synthesized by sol-gel self-combustion method without further calcinations on the condition that the molar ratio (R) of NO 3 - to citric acid and ethylene glycol being 6:1. Such powders composed of well-dispersed particles with an average size of 200 nm and a specific surface area of 5.54 m 2 /g. It can be sintered to 90% of its theoretical density at 1500 deg. C for 10 h, about 200 deg. C lower than the sintering temperature for the powder derived from traditional solid reactions. The sintered material has a thermal expansion coefficient of 9.2 x 10 -6 K -1 between room temperature and 800 deg. C

  4. Fundamental electrochemiluminescence characteristics of fluorine-doped tin oxides synthesized by sol-gel combustion.

    Science.gov (United States)

    Moon, B H; Chaoumead, A; Sung, Y M

    2013-10-01

    Fluorine-doped tin oxide (FTO) materials synthesized by sol-gel combustion method were investigated for electrochemical luminescence (ECL) application. Effects of sol-gel combustion conditions on the structures and morphology of the porous FTO (p-FTO) materials were studied. ECL efficiency of p-FTO-based cell was about 251 cd/m2 at 4 V bias, which is higher than the sell using only FTO electrodes (102.8 cd/m2). The highest intensity of the emitting light was obtained at the wavelength of about 610 nm. The porous FTO layer was effective for increasing ECL intensities.

  5. Sol-gel auto-combustion synthesis of hydroxyapatite nanotubes array in porous alumina template

    International Nuclear Information System (INIS)

    Yuan Yuan; Liu Changsheng; Zhang Yuan; Shan Xiaoqian

    2008-01-01

    In this paper, an array of highly ordered hydroxyapatite (HAP) nanotubes was synthesized by sol-gel auto-combustion method with porous anodic aluminum oxide (AAO) template for the first time. Based on thermogravimetry (DTA/TG), Fourier transform infrared (FTIR) and X-ray diffraction (XRD), the dried gel, derived from the sol solution with Ca(NO 3 ) 2 .4H 2 O and PO(CH 3 O) 3 as precursors and ethylene glycol as the polymeric matrix, exhibited a typical self-propagating combustion behavior at low temperature, directly resulting in hexagonal crystalline HAP materials. The resultant HAP arrays fabricated from the above sol-gel in the AAO template were uniformly distributed, highly ordered nanotubes with uniform length and diameter according to the observations of scanning electron microscopy (SEM) and transmission electron microscope (TEM). The electron diffraction (ED), XRD and X-ray photoelectron spectroscopy (XPS) survey proved the formation of HAP phase with polycrystalline structure in the AAO template. Based on these results, a potential mechanism of 'an auto-combustion from dried gel to nanoparticles and a subsequent in situ reaction from nanoparticles to nanotubes' was proposed

  6. Synthesis and sintering of nanocrystalline hydroxyapatite powders by citric acid sol-gel combustion method

    International Nuclear Information System (INIS)

    Han Yingchao; Li Shipu; Wang Xinyu; Chen Xiaoming

    2004-01-01

    The citric acid sol-gel combustion method has been used for the synthesis of nanocrystalline hydroxyapatite (HAP) powder from calcium nitrate, diammonium hydrogen phosphate and citric acid. The phase composition of HAP powder was characterized by X-ray powder diffraction analysis (XRD). The morphology of HAP powder was observed by transmission electron microscope (TEM). The HAP powder has been sintered into microporous ceramic in air at 1200 deg. C with 3 h soaking time. The microstructure and phase composition of the resulting HAP ceramic were characterized by scanning electron microscope (SEM) and XRD, respectively. The physical characterization of open porosity and flexural strength have also been carried out

  7. Bulk synthesis of nanocrystalline urania powders by citrate gel-combustion method

    Science.gov (United States)

    Sanjay Kumar, D.; Ananthasivan, K.; Venkata Krishnan, R.; Amirthapandian, S.; Dasgupta, Arup

    2016-01-01

    Bulk quantities (60 g) of nanocrystalline (nc) free flowing urania powders with crystallite size ranging from 38 to 252 nm have been synthesized for the first time by the citrate gel combustion method. A systematic study of the influence of the fuel (citric acid) to oxidant (nitrate) ratio (R) on the characteristics of the urania powders has been carried out for the first time. Mixture with an "R" value of 0.25 exhibited a vigorous auto-ignition reaction. This reaction was investigated with Differential Scanning Calorimetry (DSC) and in-situ thermogravimetry coupled with differential thermal analysis and mass spectrometry (TG-DTA-MS). The bulk density, specific surface area, X-ray crystallite size, residual carbon and size distribution of particles of this powder were unique. Microscopic and microstructural investigation of selected samples revealed the presence of nanocrystals with irregular exfoliated morphology; their Electron Energy Loss Spectra testified the covalency of the U-O bond.

  8. Effect of preparation conditions on Nickel Zinc Ferrite nanoparticles: A comparison between sol–gel auto combustion and co-precipitation methods

    Directory of Open Access Journals (Sweden)

    Manju Kurian

    2016-09-01

    Full Text Available The experimental conditions used in the preparation of nano crystalline mixed ferrite materials play an important role in the particle size of the product. In the present work a comparison is made on sol–gel auto combustion methods and co-precipitation methods by preparing Nickel Zinc Ferrite (Ni0.5Zn0.5Fe2O4 nano particles. The prepared ferrite samples were calcined at different temperatures and characterized by using standard methods. X-ray diffraction analysis indicated the formation of single phase ferrite nanoparticles for samples calcined at 500 °C. The lattice parameter range of 8.32–8.49 Å confirmed the cubic spinel structure. Average crystallite size estimated from X-ray diffractogram was found to be between 17 and 40 nm. The IR spectra showed two main absorption bands, the high frequency band ν1 around 600 cm−1 and the low frequency band ν2 around 400 cm−1 arising from tetrahedral (A and octahedral (B interstitial sites in the spinel lattice. TEM pictures showed particles in the nanometric range confirming the XRD data. The studies revealed that the sol–gel auto combustion method was superior to the co-precipitation method for producing single phase nano particles with smaller crystallite size.

  9. Low Concentration Fe-Doped Alumina Catalysts Using Sol-Gel and Impregnation Methods: The Synthesis, Characterization and Catalytic Performance during the Combustion of Trichloroethylene

    Directory of Open Access Journals (Sweden)

    Carolina Solis Maldonado

    2014-03-01

    Full Text Available The role of iron in two modes of integration into alumina catalysts was studied at 0.39 wt% Fe and tested in trichloroethylene combustion. One modified alumina was synthesized using the sol-gel method with Fe added in situ during hydrolysis; another modification was performed using calcined alumina, prepared using the sol-gel method and impregnated with Fe. Several characterization techniques were used to study the level of Fe modification in the γ-Al2O3 phase formed and to correlate the catalytic properties during trichloroethylene (TCE combustion. The introduction of Fe in situ during the sol-gel process influenced the crystallite size, and three iron species were generated, namely, magnetite, maghemite and hematite. The impregnated Fe-alumina formed hematite and maghemite, which were highly dispersed on the γ-Al2O3 surface. The X-ray photoelectron spectra (XPS, FT-IR and Mössbauer spectroscopy analyses revealed how Fe interacted with the γ-Al2O3 lattice in both catalysts. The impregnated Fe-catalyst showed the best catalytic performance compared to the catalyst that was Fe-doped in situ by the sol-gel method; both had better catalytic activity than pure alumina. This difference in activity was correlated with the accessibility of the reactants to the hematite iron species on the surface. The chlorine poisoning for all three catalysts was less than 1.8%.

  10. Low Concentration Fe-Doped Alumina Catalysts Using Sol-Gel and Impregnation Methods: The Synthesis, Characterization and Catalytic Performance during the Combustion of Trichloroethylene.

    Science.gov (United States)

    Maldonado, Carolina Solis; De la Rosa, Javier Rivera; Lucio-Ortiz, Carlos J; Hernández-Ramírez, Aracely; Barraza, Felipe F Castillón; Valente, Jaime S

    2014-03-12

    The role of iron in two modes of integration into alumina catalysts was studied at 0.39 wt% Fe and tested in trichloroethylene combustion. One modified alumina was synthesized using the sol-gel method with Fe added in situ during hydrolysis; another modification was performed using calcined alumina, prepared using the sol-gel method and impregnated with Fe. Several characterization techniques were used to study the level of Fe modification in the γ-Al₂O₃ phase formed and to correlate the catalytic properties during trichloroethylene (TCE) combustion. The introduction of Fe in situ during the sol-gel process influenced the crystallite size, and three iron species were generated, namely, magnetite, maghemite and hematite. The impregnated Fe-alumina formed hematite and maghemite, which were highly dispersed on the γ-Al₂O 3 surface. The X-ray photoelectron spectra (XPS), FT-IR and Mössbauer spectroscopy analyses revealed how Fe interacted with the γ-Al₂O₃ lattice in both catalysts. The impregnated Fe-catalyst showed the best catalytic performance compared to the catalyst that was Fe-doped in situ by the sol-gel method; both had better catalytic activity than pure alumina. This difference in activity was correlated with the accessibility of the reactants to the hematite iron species on the surface. The chlorine poisoning for all three catalysts was less than 1.8%.

  11. Nano crystals of Ni doped Zn O semiconductor by Sol-Gel combustion method

    Energy Technology Data Exchange (ETDEWEB)

    Carrero, A.; Sagredo, V. [Universidad de Los Andes, Departamento de Fisica, Laboratorio de Magnetismo, 5101 Merida (Venezuela, Bolivarian Republic of); Larionova, J., E-mail: aneelyc@gmail.com [Universite Montpellier II, 2 Place Eugene Bataillon, 34090 Montpellier (France)

    2016-11-01

    Nanoparticles of the system Zn{sub 0.95}O were prepared by sol-gel self - combustion method and a study of their structural, optical and magnetic properties were conducted. X-ray diffraction study shows a hexagonal wurtzite structure for the nano compound. The formation of the wurtzite structure in Ni doped Zn O was further confirmed by Fourier transform infra-red spectrometry. Transmission electron microscopy revealed an average size of 31 nm for the particles. Optical absorption spectra shows that the band energy of Zn{sub 0.95}Ni{sub 0.}9{sub 5}O powders is about 2.54 eV at room temperature. A study of the magnetic properties of the nano powders of Zn O: Ni, reveals paramagnetic behavior, with interaction ferromagnetic between particles. (Author)

  12. Synthesis and characterization of nickel substituted cobalt ferrite nanoparticles by sol–gel auto-combustion method

    Energy Technology Data Exchange (ETDEWEB)

    Hankare, P.P., E-mail: p_hankarep@rediffmail.com [Solid State Research Laboratory, Department of Chemistry, Shivaji University, Kolhapur, Maharashtra 416 004 (India); Sanadi, K.R., E-mail: sanadikishor@gmail.com [Solid State Research Laboratory, Department of Chemistry, Shivaji University, Kolhapur, Maharashtra 416 004 (India); Garadkar, K.M. [Solid State Research Laboratory, Department of Chemistry, Shivaji University, Kolhapur, Maharashtra 416 004 (India); Patil, D.R. [Material Research Laboratory, Department of Physics, R.L. College, Parola, Jalgaon, Maharashtra 425 111 (India); Mulla, I.S. [Emeritus Scientist-CSIR, Centre for Materials for Electronics and Technology (C-MET), Panchawati, Pune 411 008 (India)

    2013-03-15

    Highlights: ► Co{sub 1−x}Ni{sub x}Fe{sub 2}O{sub 4} Mixed Metal oxides. ► Sol–gel auto-combustion method. ► Cubic spinel symmetry. ► Nanocrystaline material. ► Semiconducting nature. -- Abstract: Nanocrystalline Co{sub 1−x}Ni{sub x}Fe{sub 2}O{sub 4} (where x = 0.0, 0.25, 0.50, 0.75, 1) were successfully synthesized by sol–gel method using citrate–nitrate precursors. X-ray diffraction (XRD) and transmission electron microscopy (TEM) were effectively utilized to investigate the different structural parameters. XRD showed single cubic spinel phase for all the samples. The decrease in lattice parameter and increase in crystallite size of the ferrispinel was observed with increasing nickel content. The surface morphology and elemental composition were studied by Scanning electron microscope (SEM) and Energy Dispersive X-ray analysis (EDAX) respectively. The nanosize of the synthesized material had been identified by TEM investigation and which is lies in between 20–25 nm. The semiconducting nature of the samples was studied by variation of resistivity and thermal emf with temperature.

  13. A novel gel combustion procedure for the preparation of foam and porous pellets of UO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Sanjay Kumar, D. [Fuel Chemistry Division, Materials Chemistry and Metal Fuel Cycle Group, Homi Bhabha National Institute, Indira Gandhi Centre for Atomic Research, Kalpakkam, 603102, Tamil Nadu (India); Ananthasivan, K., E-mail: asivan@igcar.gov.in [Fuel Chemistry Division, Materials Chemistry and Metal Fuel Cycle Group, Homi Bhabha National Institute, Indira Gandhi Centre for Atomic Research, Kalpakkam, 603102, Tamil Nadu (India); Venkata Krishnan, R.; Maji, Dasarath [Fuel Chemistry Division, Materials Chemistry and Metal Fuel Cycle Group, Indira Gandhi Centre for Atomic Research, Kalpakkam, 603102, Tamil Nadu (India); Dasgupta, Arup [Microscopy and Thermo-Physical Property Division, Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Homi Bhabha National Institute, Kalpakkam, 603102, Tamil Nadu (India)

    2017-01-15

    In this study, it has been demonstrated for the first time how sucrose gel-combustion could be used for the preparation of UO{sub 2} foam. Further the citrate gel-combustion was gainfully used for preparing porous pellets of UO{sub 2}. The utility of two-step sintering (1073 K for 30 min and 1473 K for 4 h) for obtaining these porous bodies was demonstrated for the first time. The foams and pellets possessed meso and macro pores. A starting mixture with sucrose to nitrate ratio of 2.4 was found to yield urania foam with adequate crush strength. The porous pellets were found to possess better handling strength, lesser carbon residue and higher overall density than the foam. A citric acid to nitrate ratio 0.25 in the starting mixture, 180 MPa compaction pressure were optimal for obtaining a pellet with 40% porosity. - Highlights: • Urania foam was successfully prepared for the first time by using sucrose-gel precursor method. • Porous urania pellets were successfully prepared for the first time by using citrate gel-combustion method. • The foam comprised both meso and macro pores, possessed good crush strength and porosity. • Citric acid to nitrate ratio of 0.25 and a compaction pressure of 180 MPa were best suited for the preparation of porous pellets.

  14. Effect of oxidizer on grain size and low temperature DC electrical conductivity of tin oxide nanomaterial synthesized by gel combustion method

    International Nuclear Information System (INIS)

    Rajeeva, M. P.; Jayanna, H. S.; Ashok, R. L.; Naveen, C. S.; Bothla, V. Prasad

    2014-01-01

    Nanocrystalline Tin oxide material with different grain size was synthesized using gel combustion method by varying the fuel (C 6 H 8 O 7 ) to oxidizer (HNO 3 ) molar ratio by keeping the amount of fuel as constant. The prepared samples were characterized by using X-Ray Diffraction (XRD), Scanning Electron Microscope (SEM) and Energy Dispersive Analysis X-ray Spectroscopy (EDAX). The effect of fuel to oxidizer molar ratio in the gel combustion method was investigated by inspecting the grain size of nano SnO 2 powder. The grain size was found to be reduced with the amount of oxidizer increases from 0 to 6 moles in the step of 2. The X-ray diffraction patterns of the calcined product showed the formation of high purity tetragonal tin (IV) oxide with the grain size in the range of 12 to 31 nm which was calculated by Scherer's formula. Molar ratio and temperature dependence of DC electrical conductivity of SnO 2 nanomaterial was studied using Keithley source meter. DC electrical conductivity of SnO 2 nanomaterial increases with the temperature from 80K to 300K. From the study it was observed that the DC electrical conductivity of SnO 2 nanomaterial decreases with the grain size at constant temperature

  15. Gel-combustion-synthesized ZnO nanoparticles for visible light ...

    Indian Academy of Sciences (India)

    Zinc oxide nanoparticles (ZnO NPs) synthesized by the gel combustion technique using a bio-fuel, cassava starch (root tubers of Manihot esculenta), have been characterized by various techniques. The X-ray diffractionpattern reveals hexagonal wurtzite structure. The particle size averaged around 45nm with an excellent ...

  16. Sinteractive thoria powders derived through gel-combustion and oxalate deagglomeration - a comparison

    International Nuclear Information System (INIS)

    Ananthasivan, K.; Balakrishnan, S.; Anthonysamy, S.; Ganesan, V.; Vasudeva Rao, P.R.

    2011-01-01

    Thorium dioxide finds extensive application in the nuclear industry. Pellets of thoria are used in PHWRs for flux flattening and in FBRs as a blanket material. The development of advanced methods for the synthesis and sintering of thoria is relevant to these applications. This paper attempts to compare the properties of sinteractive nanocrystalline thoria (pure and doped with Ca 2+ and Mg 2+ ) synthesized in our laboratory through two different techniques, viz. gel-combustion and oxalate de-agglomeration. In all the investigations cited above the precursors obtained by using both the procedures were calcined in air at 1073 K. The thoria powders thus obtained were characterised for their specific surface area (SSA), X-ray crystallite size (XCS), bulk density, particle size distribution and residual carbon content. These powders were pelletised and sintered at 1473, 1673, and 1873 K. The sinterability of these powders was compared by measuring the density of the sintered pellets. A matrix density as high as 96.8 % TD (gel combustion) or 98.6 % TD (de-agglomeration) could be obtained at 1873 K, with the powders doped with 0.5 mole % calcia. (author)

  17. In-vitro bioactivity, biocompatibility and dissolution studies of diopside prepared from biowaste by using sol–gel combustion method

    Energy Technology Data Exchange (ETDEWEB)

    Choudhary, Rajan [Department of Chemistry, School of Advanced Sciences, VIT University, Vellore -632014, Tamil Nadu (India); Vecstaudza, Jana [Rudolfs Cimdins Riga Biomaterials Innovations and Development Centre, Institute of General Chemical Engineering, Faculty of Materials Science and Applied Chemistry, Riga Technical University, Riga (Latvia); Krishnamurithy, G.; Raghavendran, Hanumantha Rao Balaji; Murali, Malliga Raman; Kamarul, Tunku [Tissue Engineering Group (TEG), Department of Orthopaedic Surgery (NOCERAL), Faculty of Medicine, University of Malaya, Kuala Lumpur (Malaysia); Swamiappan, Sasikumar, E-mail: ssasikumar@vit.ac.in [Department of Chemistry, School of Advanced Sciences, VIT University, Vellore -632014, Tamil Nadu (India); Locs, Janis [Rudolfs Cimdins Riga Biomaterials Innovations and Development Centre, Institute of General Chemical Engineering, Faculty of Materials Science and Applied Chemistry, Riga Technical University, Riga (Latvia)

    2016-11-01

    Diopside was synthesized from biowaste (Eggshell) by sol–gel combustion method at low calcination temperature and the influence of two different fuels (urea, L-alanine) on the phase formation temperature, physical and biological properties of the resultant diopside was studied. The synthesized materials were characterized by heating microscopy, FTIR, XRD, BET, SEM and EDAX techniques. BET analysis reveals particles were of submicron size with porosity in the nanometer range. Bone-like apatite deposition ability of diopside scaffolds was examined under static and circulation mode of SBF (Simulated Body Fluid). It was noticed that diopside has the capability to deposit HAP (hydroxyapatite) within the early stages of immersion. ICP-OES analysis indicates release of Ca, Mg, Si ions and removal of P ions from the SBF, but in different quantities from diopside scaffolds. Cytocompatability studies on human bone marrow stromal cells (hBMSCs) revealed good cellular attachment on the surface of diopside scaffolds and formation of extracellular matrix (ECM). This study suggests that the usage of eggshell biowaste as calcium source provides an effective substitute for synthetic starting materials to fabricate bioproducts for biomedical applications. - Highlights: • Low temperature synthesis of diopside by sol–gel combustion route using different fuels • Eggshell as calcium source provides an effective substitute for synthetic starting materials. • Thermochemistry of fuels was the major reason for change in phase formation temperature. • Circulation of SBF plays a key role in determining bioactive nature of bioceramics. • Cellular studies show increased cell proliferation and formation of extracellular matrix.

  18. In-vitro bioactivity, biocompatibility and dissolution studies of diopside prepared from biowaste by using sol–gel combustion method

    International Nuclear Information System (INIS)

    Choudhary, Rajan; Vecstaudza, Jana; Krishnamurithy, G.; Raghavendran, Hanumantha Rao Balaji; Murali, Malliga Raman; Kamarul, Tunku; Swamiappan, Sasikumar; Locs, Janis

    2016-01-01

    Diopside was synthesized from biowaste (Eggshell) by sol–gel combustion method at low calcination temperature and the influence of two different fuels (urea, L-alanine) on the phase formation temperature, physical and biological properties of the resultant diopside was studied. The synthesized materials were characterized by heating microscopy, FTIR, XRD, BET, SEM and EDAX techniques. BET analysis reveals particles were of submicron size with porosity in the nanometer range. Bone-like apatite deposition ability of diopside scaffolds was examined under static and circulation mode of SBF (Simulated Body Fluid). It was noticed that diopside has the capability to deposit HAP (hydroxyapatite) within the early stages of immersion. ICP-OES analysis indicates release of Ca, Mg, Si ions and removal of P ions from the SBF, but in different quantities from diopside scaffolds. Cytocompatability studies on human bone marrow stromal cells (hBMSCs) revealed good cellular attachment on the surface of diopside scaffolds and formation of extracellular matrix (ECM). This study suggests that the usage of eggshell biowaste as calcium source provides an effective substitute for synthetic starting materials to fabricate bioproducts for biomedical applications. - Highlights: • Low temperature synthesis of diopside by sol–gel combustion route using different fuels • Eggshell as calcium source provides an effective substitute for synthetic starting materials. • Thermochemistry of fuels was the major reason for change in phase formation temperature. • Circulation of SBF plays a key role in determining bioactive nature of bioceramics. • Cellular studies show increased cell proliferation and formation of extracellular matrix.

  19. Gel combustion synthesis of yttria stabilized zirconia

    International Nuclear Information System (INIS)

    Vijay, Soja K.; Chandramouli, V.; Anthonysamy, S.

    2013-01-01

    Nano - crystalline 8 mol% yttria stabilized zirconia (YSZ) powders were synthesized by gel combustion technique employing both microwave heating as well as conventional heating method. Three different fuels - citric acid, urea and glycine were used for the synthesis with fuel to oxidant ratio as 1:1. The effect of fuel on the crystal structure, particle size, specific surface area, morphology and sintering density was studied. X-ray powder diffraction (XRD), BET gas adsorption technique, dynamic light scattering, transmission and scanning electron microscopy (TEM and SEM) and micro-Raman spectroscopy were used to characterize the powders. The results obtained for powders obtained using both methods - microwave assisted and hotplate - were compared. The specific surface area of powders in all cases are comparable except in the case of urea as fuel where microwave assisted synthesis yielded powders with lower surface area. The particle size distribution of all samples obtained using microwave method was unimodal, whereas the particle size distribution of samples prepared using hot plate method using urea fuel showed bimodal distribution. The compacts obtained using powders with citric acid and glycine as fuel showed more than 94% theoretical density, whereas the samples obtained using urea showed density below 90% of theoretical density. (author)

  20. Evaluation of solution combustion method in the synthesis of Fe-ZrSiO4 based coral pigment

    International Nuclear Information System (INIS)

    Moosavi, A.; Aghaei, A.

    2008-01-01

    Auto-ignited gel combustion process has been used for producing a red hematite-zircon based pigment. The combustible mixtures contained the metal nitrates and citric acid as oxidizers and fuel, respectively. Sodium silicate (water glass) was used as silica source for producing zircon phase. X-Ray Diffractometry, Electron Microscopy and Simultaneous Thermal Analysis were used for characterization of reactions happened in the resulted dried gel during its heat-treatment. L*a*b* color parameters were measured by the CIE (Commission International de I'Eclairage) colorimetric method. This research has showed that solution combustion was unable 10 produce coral pigment as the end product of combustion without the need for any further heat treatment process

  1. Comparative analysis of synthesis and characterization of La_0_,_9Sr_0_,_1O_3 via sol-gel and combustion reaction

    International Nuclear Information System (INIS)

    Tarrago, D.P.; Haeser, G.S.; Malfatti, C.F.; Sousa, V.C.

    2011-01-01

    Strontium doped lanthanum manganites (LSM) are potential materials for cathode application in solid oxide fuel cells (SOFC) due to their properties and compatibility with yttria stabilized zirconia. In this work a LSM powder obtained by the sol-gel process is compared others previously obtained combustion synthesis using urea or sucrose as fuel. For the synthesis of LSM the nitrates of lanthanum, strontium and manganese were dissolved in citric acid and ethylene glycol forming a gel that was calcinated at 800 deg C. Both methods allowed the synthesis of a single phase powder, according to the X-ray diffraction patterns. Through gas adsorption it was found a specific surface area of 17m²/g, an intermediary value among the combustion synthesized powders. Scanning electron microscopy (SEM) revealed more compact agglomerates in the sol-gel powder, however, the transmission electron microscope (TEM) showed smaller and more uniform particles in this powder. (author)

  2. Preparation of soft-agglomerated nano-sized ceramic powders by sol-gel combustion process

    International Nuclear Information System (INIS)

    Feng, Q.; Ma, X.H.; Yan, Q.Z.; Ge, C.C.

    2009-01-01

    The soft-agglomerated Gd 2 BaCuO 5 (Gd211) nano-powders were synthesized by sol-gel combustion process with binary ligand and the special pretreatment on gel. The mechanism of the formation of weakly agglomerated structure was studied in detail. The results showed that network structure in gelation process was found to be a decisive factor for preventing agglomeration of colloidal particles. The removal of free water, coordinated water, and most of hydroxyl groups during pretreatment further inhibited the formation of hydrogen bonds between adjacent particles. The soft-agglomeration of the particles was confirmed by isolated particles in calcined Gd211 powders and in green compact, a narrow monomodal pore size distribution of the green compact and the low agglomeration coefficient of the calcined Gd211 powder. Extension this process to synthesis of BaCeO 3 , BaTiO 3 and Ce 0.8 Sm 0.2 O 1.9 powders, also led to weakly agglomerated nano-powders. It suggests that this method represents a powerful and facile method for the creation of doped and multi-component nano-sized ceramic powders.

  3. Synthesis, structural investigation and magnetic properties of Zn2+ substituted cobalt ferrite nanoparticles prepared by the sol–gel auto-combustion technique

    International Nuclear Information System (INIS)

    Raut, A.V.; Barkule, R.S.; Shengule, D.R.; Jadhav, K.M.

    2014-01-01

    Structural morphology and magnetic properties of the Co 1−x Zn x Fe 2 O 4 (0.0≤x≥1.0) spinel ferrite system synthesized by the sol–gel auto-combustion technique using nitrates of respective metal ions have been studied. The ratio of metal nitrates to citric acid was taken at 1:3. The as prepared powder of cobalt zinc ferrite was sintered at 600 °C for 12 h after TG/DTA thermal studies. Compositional stoichiometry was confirmed by energy dispersive analysis of the X-ray (EDAX) technique. Single phase cubic spinel structure of Co–Zn nanoparticles was confirmed by XRD data. The average crystallite size (t), lattice constant (a) and other structural parameters of zinc substituted cobalt ferrite nanoparticles were calculated from XRD followed by SEM and FTIR. It is observed that the sol–gel auto-combustion technique has many advantages for the synthesis of technologically applicable Co–Zn ferrite nanoparticles. The present investigation clearly shows the effect of the synthesis method and possible relation between magnetic properties and microstructure of the prepared samples. Increase in nonmagnetic Zn 2+ content in cobalt ferrite nanoparticles is followed by decrease in n B , M s and other magnetic parameters. Squareness ratio for the Co-ferrite was 1.096 at room temperature. - Highlights: • Co–Zn nanoparticles are prepared by sol–gel auto-combustion method. • Structural properties were characterized by XRD, SEM, and FTIR. • Compositional stoichiometry was confirmed by EDAX analysis. • Magnetic parameters were measured by the pulse field hysteresis loop technique

  4. Microstructural changes in NiFe_2O_4 ceramics prepared with powders derived from different fuels in sol-gel auto-combustion technique

    International Nuclear Information System (INIS)

    Chauhan, Lalita; Sreenivas, K.; Bokolia, Renuka

    2016-01-01

    Structural properties of Nickel ferrite (NiFe_2O_4) ceramics prepared from powders derived from sol gel auto-combustion method using different fuels (citric acid, glycine and Dl-alanine) are compared. Changes in the structural properties at different sintering temperatures are investigated. X-ray diffraction (XRD) confirms the formation of single phase material with cubic structure. Ceramics prepared using the different powders obtained from different fuels show that that there are no significant changes in lattice parameters. However increasing sintering temperatures show significant improvement in density and grain size. The DL-alanine fuel is found to be the most effective fuel for producing NIFe_2O_4 powders by the sol-gel auto combustion method and yields highly crystalline powders in the as-burnt stage itself at a low temperature (80 °C). Subsequent use of the powders in ceramic manufacturing produces dense NiFe_2O_4 ceramics with a uniform microstructure and a large grain size.

  5. Microstructural changes in NiFe2O4 ceramics prepared with powders derived from different fuels in sol-gel auto-combustion technique

    Science.gov (United States)

    Chauhan, Lalita; Bokolia, Renuka; Sreenivas, K.

    2016-05-01

    Structural properties of Nickel ferrite (NiFe2O4) ceramics prepared from powders derived from sol gel auto-combustion method using different fuels (citric acid, glycine and Dl-alanine) are compared. Changes in the structural properties at different sintering temperatures are investigated. X-ray diffraction (XRD) confirms the formation of single phase material with cubic structure. Ceramics prepared using the different powders obtained from different fuels show that that there are no significant changes in lattice parameters. However increasing sintering temperatures show significant improvement in density and grain size. The DL-alanine fuel is found to be the most effective fuel for producing NIFe2O4 powders by the sol-gel auto combustion method and yields highly crystalline powders in the as-burnt stage itself at a low temperature (80 °C). Subsequent use of the powders in ceramic manufacturing produces dense NiFe2O4 ceramics with a uniform microstructure and a large grain size.

  6. Annealing temperature dependent structural and magnetic properties of MnFe{sub 2}O{sub 4} nanoparticles grown by sol-gel auto-combustion method

    Energy Technology Data Exchange (ETDEWEB)

    Bhandare, S.V. [Department of Physics, Gulbarga University, Gulbarga 585106 (India); Kumar, R.; Anupama, A.V.; Choudhary, H.K. [Materials Research Centre, Indian Institute of Science, Bangalore 560012 (India); Jali, V.M., E-mail: vmjali@gmail.com [Department of Physics, Gulbarga University, Gulbarga 585106 (India); Sahoo, B., E-mail: bsahoo@mrc.iisc.ernet.in [Materials Research Centre, Indian Institute of Science, Bangalore 560012 (India)

    2017-07-01

    Highlights: • Phase pure MnFe{sub 2}O{sub 4} samples were prepared by sol-gel auto-combustion method. • Annealing MnFe{sub 2}O{sub 4} below ∼500 °C, two spinel phases were observed indicating partial oxidation of Mn{sup 2+} to Mn{sup 3+}. • Oxidation of Mn{sup 2+} to Mn{sup 3+} results in decrease in lattice parameter of the spinel lattice. • Annealing at ≥ 600 °C, MnFe{sub 2}O{sub 4} decomposes into crystalline α-Mn{sub 2}O{sub 3} and α-Fe{sub 2}O{sub 3} along with amorphous-FeO phase. - Abstract: Manganese ferrite (MnFe{sub 2}O{sub 4}) nanoparticles were synthesized by sol-gel auto-combustion method using manganese nitrate and ferric nitrate as precursors and citric acid as a fuel. Scanning electron micrographs show irregularly shaped morphology of the particles. The as-prepared samples were annealed at 400, 500, 600 and 800 °C for 2 h in air. The phase identification and structural characterizations were performed using powder X-ray diffraction technique along with Mössbauer spectroscopy. Magnetization loops and {sup 57}Fe Mössbauer spectra were measured at RT. After annealing the sample at or below ∼ 500 °C, we observed two different spinel phases corresponding to two different lattice parameters. This is originating due to the partial oxidation of Mn{sup 2+} to Mn{sup 3+}. At high annealing temperatures (∼ 600 °C or above) the spinel MnFe{sub 2}O{sub 4} phase decomposes into crystalline α-Mn{sub 2}O{sub 3} and α-Fe{sub 2}O{sub 3} phases, and amorphous FeO phase.

  7. Nanocrystalline (U0.5Ce0.5)O2±x solid solutions through citrate gel-combustion

    Science.gov (United States)

    Maji, D.; Ananthasivan, K.; Venkata Krishnan, R.; Balakrishnan, S.; Amirthapandian, S.; Joseph, Kitheri; Dasgupta, Arup

    2018-04-01

    Nanocrystalline powders of (U0.5Ce0.5)O2±x solid solutions were synthesized in bulk (100-200 g) through the citrate gel combustion. The fuel (citric acid) to oxidant (nitrate) mole ratio (R) was varied from 0.1 to 1.0. Two independent lots of the products obtained through the gel-combustion were calcined at 973 K in air and in a mixture of argon containing 8% H2 respectively. All these powders were characterized for their bulk density, X-ray crystallite size, specific surface area, size distribution of the particles, porosity as well as residual carbon. The morphology and microstructures of these powders were studied by using scanning electron microscopy (SEM) and transmission electron microscopy (TEM) respectively. Nanocrystalline single phase fluorite solid solutions having a typical crystallite size of about (7-15 nm) were obtained. These powders were highly porous comprising cuboidal flaky agglomerates. The combustion mixture with an 'R' value of 0.25 was found to undergo volume combustion and was found to yield a product that was distinctly different. The systematic investigation on synthesis and characterization of nanocrystalline UCeO2 is reported for the first time.

  8. Aqueous clay suspensions stabilized by alginate fluid gels for coal spontaneous combustion prevention and control.

    Science.gov (United States)

    Qin, Botao; Ma, Dong; Li, Fanglei; Li, Yong

    2017-11-01

    We have developed aqueous clay suspensions stabilized by alginate fluid gels (AFG) for coal spontaneous combustion prevention and control. Specially, this study aimed to characterize the effect of AFG on the microstructure, static and dynamic stability, and coal fire inhibition performances of the prepared AFG-stabilized clay suspensions. Compared with aqueous clay suspensions, the AFG-stabilized clay suspensions manifest high static and dynamic stability, which can be ascribed to the formation of a robust three-dimensional gel network by AFG. The coal acceleration oxidation experimental results show that the prepared AFG-stabilized clay suspensions can improve the coal thermal stability and effectively inhibit the coal spontaneous oxidation process by increasing crossing point temperature (CPT) and reducing CO emission. The prepared low-cost and nontoxic AFG-stabilized clay suspensions, exhibiting excellent coal fire extinguishing performances, indicate great application potentials in coal spontaneous combustion prevention and control.

  9. Green synthesis of magnetic chitosan nanocomposites by a new sol–gel auto-combustion method

    Energy Technology Data Exchange (ETDEWEB)

    Ansari, Fatemeh [Institute of Nano Science and Nano Technology, University of Kashan, P.O. Box. 87317–51167, Kashan, Islamic Republic of Iran (Iran, Islamic Republic of); Sobhani, Azam [Department of Chemistry, Kosar University of Bojnord, Bojnord, Islamic Republic of Iran (Iran, Islamic Republic of); Salavati-Niasari, Masoud, E-mail: salavati@kashanu.ac.ir [Institute of Nano Science and Nano Technology, University of Kashan, P.O. Box. 87317–51167, Kashan, Islamic Republic of Iran (Iran, Islamic Republic of)

    2016-07-15

    The Fe{sub 2}O{sub 3}/CuFe{sub 2}O{sub 4}/chitosan nanocomposites have been successfully synthesized via a new sol–gel auto-combustion route. To prepare the nanocomposites, copper ferrite (CuFe{sub 2}O{sub 4}) and iron (II) oxide (Fe{sub 2}O{sub 3}) nanostructures were first prepared utilizing onion as a green reductant for the first time, and characterized by SEM, TEM, XRD, IR and VSM. Then chitosan was added into the nanostructures dispersed in water. Chitosan was used to functionalize and modify the nanostructures and also to improve surface properties. The nanocomposites were also characterized by several techniques including SEM, TEM, XRD, IR and VSM. The effects of amount of onion and chitosan on the morphology and particle size of nanocomposites were evaluated. - Highlights: • Fe{sub 2}O{sub 3}/CuFe{sub 2}O{sub 4}/chitosan nanocomposites were synthesized for the first time. • A simple, low-cost and friendly route was used to synthesize the nanocomposites. • Effects of amount of onion and chitosan were investigated.

  10. Microstructural, optical and dielectric properties of La{sub 0.8}Ba{sub 0.2}FeO{sub 3} nanostructures synthesized by sol-gel combustion method

    Energy Technology Data Exchange (ETDEWEB)

    Ali, S. Asad, E-mail: asadsyyed@gmail.com; Naseem, Swaleha; Khan, Wasi; Naqvi, A. H. [Centre of Excellence in Materials Science (Nanomaterials), Department of Applied Physics, Z.H. College of Engg. & Technology, Aligarh Muslim University, Aligarh 202002 (India); Malik, Aisha [Department of Electrical Engineering, Aligarh Muslim University, Aligarh-202002 (India)

    2015-06-24

    Barium doped lanthanum ferrite (LaFeO{sub 3}) nanoparticles (NPs) were prepared by gel combustion method and calcinated at 700°C. Microstructural studies were carried by XRD and SEM techniques. The results of structural characterization show the formation of all samples in single phase without any impurity. Optical properties were studied by UV- visible technique. The energy band gap was calculated and obtained 3.01 eV. Dielectric properties characterized by LCR meter and have been observed appreciable changes. The observed behavior of the dielectric properties can be attributed on the basis of Koop’s theory based on Maxwell-Wagner two layer models in studied nanoparticles.

  11. Microstructural changes in NiFe{sub 2}O{sub 4} ceramics prepared with powders derived from different fuels in sol-gel auto-combustion technique

    Energy Technology Data Exchange (ETDEWEB)

    Chauhan, Lalita, E-mail: chauhan.lalita5@gmail.com; Sreenivas, K. [Department of Physics & Astrophysics, University of Delhi, Delhi-110007 (India); Bokolia, Renuka

    2016-05-23

    Structural properties of Nickel ferrite (NiFe{sub 2}O{sub 4}) ceramics prepared from powders derived from sol gel auto-combustion method using different fuels (citric acid, glycine and Dl-alanine) are compared. Changes in the structural properties at different sintering temperatures are investigated. X-ray diffraction (XRD) confirms the formation of single phase material with cubic structure. Ceramics prepared using the different powders obtained from different fuels show that that there are no significant changes in lattice parameters. However increasing sintering temperatures show significant improvement in density and grain size. The DL-alanine fuel is found to be the most effective fuel for producing NIFe{sub 2}O{sub 4} powders by the sol-gel auto combustion method and yields highly crystalline powders in the as-burnt stage itself at a low temperature (80 °C). Subsequent use of the powders in ceramic manufacturing produces dense NiFe{sub 2}O{sub 4} ceramics with a uniform microstructure and a large grain size.

  12. Synthesis, structural investigation and magnetic properties of Zn{sup 2+} substituted cobalt ferrite nanoparticles prepared by the sol–gel auto-combustion technique

    Energy Technology Data Exchange (ETDEWEB)

    Raut, A.V., E-mail: nano9993@gmail.com [Vivekanand Arts and Sardar Dalipsingh Commerce and Science College, Aurangabad, 431004 Maharastra (India); Barkule, R.S.; Shengule, D.R. [Vivekanand Arts and Sardar Dalipsingh Commerce and Science College, Aurangabad, 431004 Maharastra (India); Jadhav, K.M., E-mail: drjadhavkm@gmail.com [Department of Physics, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad, 431004 Maharastra (India)

    2014-05-01

    Structural morphology and magnetic properties of the Co{sub 1−x}Zn{sub x}Fe{sub 2}O{sub 4} (0.0≤x≥1.0) spinel ferrite system synthesized by the sol–gel auto-combustion technique using nitrates of respective metal ions have been studied. The ratio of metal nitrates to citric acid was taken at 1:3. The as prepared powder of cobalt zinc ferrite was sintered at 600 °C for 12 h after TG/DTA thermal studies. Compositional stoichiometry was confirmed by energy dispersive analysis of the X-ray (EDAX) technique. Single phase cubic spinel structure of Co–Zn nanoparticles was confirmed by XRD data. The average crystallite size (t), lattice constant (a) and other structural parameters of zinc substituted cobalt ferrite nanoparticles were calculated from XRD followed by SEM and FTIR. It is observed that the sol–gel auto-combustion technique has many advantages for the synthesis of technologically applicable Co–Zn ferrite nanoparticles. The present investigation clearly shows the effect of the synthesis method and possible relation between magnetic properties and microstructure of the prepared samples. Increase in nonmagnetic Zn{sup 2+} content in cobalt ferrite nanoparticles is followed by decrease in n{sub B}, M{sub s} and other magnetic parameters. Squareness ratio for the Co-ferrite was 1.096 at room temperature. - Highlights: • Co–Zn nanoparticles are prepared by sol–gel auto-combustion method. • Structural properties were characterized by XRD, SEM, and FTIR. • Compositional stoichiometry was confirmed by EDAX analysis. • Magnetic parameters were measured by the pulse field hysteresis loop technique.

  13. Synthesis, structure and electromagnetic properties of Mn–Zn ferrite by sol–gel combustion technique

    International Nuclear Information System (INIS)

    Wang, Wenjie; Zang, Chongguang; Jiao, Qingjie

    2014-01-01

    The electromagnetic absorbing behaviors of a thin coating fabricated by mixing Mn–Zn ferrite with epoxy resin (EP) were studied. The spinel ferrites Mn 1−x Zn x Fe 2 O 4 (x=0.2, 0.5 and 0.8) were synthesized with citrate acid as complex agent by sol–gel combustion method. The microstructure and surface morphology of Mn–Zn ferrite powders were characterized by X-ray diffraction (XRD) and scanning electron microscope (SEM). The complex permittivity and complex permeability of the fabricated ferrite/EP composites were investigated in terms of their contributions to the absorbing properties in the low frequency (10 MHz to 1 GHz). The microwave absorption of the prepared ferrite/EP composites could be tailored by matching the dielectric loss and magnetic loss and by controlling the doped metal ratio. The composites with the ferrite composition x=0.2 are found to show higher reflection loss compared with the composites with other compositions. It is proposed that the prepared composites can potentially be applied in electromagnetic microwave absorbing field. - Highlights: • We designed and synthesized Mn 1−x Zn x Fe 2 O 4 (x=0.2, 0.5 and 0.8), with citrate acid as complex agent by the sol–gel combustion method. • Citrate acid as the complex agent overcomes the aggregation of ferrite resulting in high purity and homogeneous particles. • We investigated the electromagnetic absorbing performance of a fabricated thin coating by introducing Mn–Zn ferrite into epoxy resin (EP). • The Mn 0.8 Zn 0.2 Fe 2 O 4 composite coatings could achieve the satisfactory absorbing value of −17 dB at 800 MHz. • The prepared composites can potentially be used for the application in electromagnetic microwave absorbing field

  14. Gel-combustion synthesis of CoSb2O6 and its reduction to powdery Sb2Co alloy

    Directory of Open Access Journals (Sweden)

    MAJA JOVIC

    2009-01-01

    Full Text Available Sb2Co alloy in powdery form was synthesized via reduction with gaseous hydrogen of the oxide CoSb2O6, obtained by the citrate gel-combustion technique. The precursor was an aqueous solution of antimony nitrate, cobalt nitrate and citric acid. The precursor solution with mole ratio Co(II/Sb(V of 1:2 was gelatinized by evaporation of water. The gel was heated in air up to the temperature of self-ignition. The product of gel combustion was a mixture of oxides and it had to be additionally thermally treated in order to be converted to pure CoSb2O6. The reduction of CoSb2O6 by gaseous hydrogen yielded powdery Sb2Co as the sole phase. The process of oxide reduction to alloy was controlled by thermogravimetry, while X-ray diffractometry was used to control the phase compositions of both the oxides and alloys.

  15. Lanthanum-doped mesostructured strontium titanates synthesized via sol–gel combustion route using citric acid as complexing agent

    Energy Technology Data Exchange (ETDEWEB)

    Sukpanish, Polthep [Department of Chemical Technology, Faculty of Science, Chulalongkorn University, Patumwan, Bangkok 10330 (Thailand); Center of Excellence on Petrochemical and Materials Technology (PETROMAT), Chulalongkorn University, Patumwan, Bangkok 10330 (Thailand); Lertpanyapornchai, Boontawee [Program in Petrochemistry, Faculty of Science, Chulalongkorn University, Patumwan, Bangkok 10330 (Thailand); Yokoi, Toshiyuki [Division of Catalytic Chemistry, Chemical Resources Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503 (Japan); Ngamcharussrivichai, Chawalit, E-mail: Chawalit.Ng@chula.ac.th [Department of Chemical Technology, Faculty of Science, Chulalongkorn University, Patumwan, Bangkok 10330 (Thailand); Center of Excellence on Petrochemical and Materials Technology (PETROMAT), Chulalongkorn University, Patumwan, Bangkok 10330 (Thailand)

    2016-09-15

    In the present work, a series of lanthanum-doped mesostructured strontium titanate (LMST) materials with different La/Sr ratios were synthesized via a sol–gel combustion method in the presence of citric acid as a complexing agent and Pluronic P123 as a templating agent. The effects of the amount of doped La and calcination temperature on the physicochemical properties of the LMSTs were examined using various techniques. Powder X-ray diffraction confirmed the substitution of La{sup 3+} into the SrTiO{sub 3} lattice, generating cubic perovskite La{sub x}Sr{sub 1−x}TiO{sub 3}, for the LMST materials calcined at 600 °C. The purity and crystallinity of the desired perovskite phase were enhanced by citric acid addition. The solubility limit of La{sup 3+} substitution at an La/Sr ratio of 0.43 was determined by structural and morphological studies. Increasing the La doping amount decreased the crystallinity and compositional homogeneity, because an La-rich amorphous phase segregated on the surface, but improved the mesoporosity. N{sub 2} physisorption measurements indicated that the LMSTs had a bimodal pore size distribution, of which the larger one was characterized by the crystallite size of mixed oxides, and the specific surface area of 24.9–37.3 m{sup 2} g{sup −1}. The formation of mesopores in the LMST materials synthesized via sol–gel combustion was explained based on a combination of soft- and hard-templating chemistries. - Highlights: • La-doped mesoporous SrTiO{sub 3} (LMST) was prepared first time via sol-gel combustion. • Pluronic P123 triblock copolymer was used as a cheap templating agent. • Citric acid as a complexing agent enhanced the purity and crystallinity of SrTiO{sub 3}. • The textural properties of LMST were improved by increasing the La doping amount. • Mesopore formation was explained by a combined soft- and hard-templating route.

  16. An efficient method for the synthesis of photo catalytically active ZnO nanoparticles by a gel-combustion method for the photo-degradation of Caffeine

    Directory of Open Access Journals (Sweden)

    Rajesha Bedre Jagannatha

    2017-01-01

    Full Text Available In this study, Zinc oxide nanoparticles were synthesized by gel-combustion method using a novel bio-fuel tapioca starch pearls, derived from the tubers of Mannihot esculenta, to investigate the photocatalytic degradation of ccaffeine. The ZnO photocatalyst was characterized by X-ray diffraction (XRD, scanning electron microscopy (SEM, and UV-visible spectroscopy. X-ray diffractometry result for the ZnO nanoparticles exhibit normal crystalline phase features. All observed peaks can be indexed to the pure hexagonal wurtzite crystal structures. There are no other impurities in the diffraction peak. In addition, SEM measurement shows that most of the nanoparticles are spongy and spherical in shape and fairly mono dispersed. A significant degradation of the Caffeine was observed when the catalyst was added into the solution even without the UV light exposure. In addition, the photo degradation increaseds with the photocatalyst loading. Besides the photocatalyst loading, the effect of some parameters on the photo degradation efficiency such as initial concentration and pH were also studied.

  17. Microscopic evolution of dielectric nanoparticles at different calcination temperatures synthesized via sol-gel auto-combustion

    International Nuclear Information System (INIS)

    Adil, Muhammad; Zaid, Hasnah Mohd; Chuan, Lee Kean; Latiff, Noor Rasyada Ahmad; Alta’ee, Ali F.

    2015-01-01

    Dielectric nano powder synthesis is carried by a simple and fast sol-gel auto-combustion method. The transformation of crystalline phases of as-synthesized nano powders is investigated through the detailed transmission electron microscopy (TEM), revealed the crystallographic alterations and morphological information even at lattice scale. From specific area electron diffraction (SAED) pattern, has specified the d-spacing and corresponding planes supported by the observed lattice fringes. The morphological characterization of nanoparticles is performed through field-emission scanning electron microscopy (FESEM), exhibiting the increment in particle size due to agglomeration with the increase in annealing temperature. Furthermore, EDX pattern has been used to verify the formation of nanoparticles by revealing the presence of required elements

  18. Microscopic evolution of dielectric nanoparticles at different calcination temperatures synthesized via sol-gel auto-combustion

    Energy Technology Data Exchange (ETDEWEB)

    Adil, Muhammad, E-mail: muhammadadil86@hotmail.com; Zaid, Hasnah Mohd, E-mail: hasnamz@petronas.com.my; Chuan, Lee Kean, E-mail: lee.kc@petronas.com.my; Latiff, Noor Rasyada Ahmad, E-mail: syasya.latiff@gmail.com [Fundamental and Applied Sciences Department, Universiti Teknologi PETRONAS Bandar Seri Iskandar, 31750 Tronoh, Perak (Malaysia); Alta’ee, Ali F., E-mail: ali-mangi@petronas.com.my [Geoscience and Petroleum Engineering Department, Universiti Teknologi PETRONAS Bandar Seri Iskandar, 31750 Tronoh, Perak (Malaysia)

    2015-07-22

    Dielectric nano powder synthesis is carried by a simple and fast sol-gel auto-combustion method. The transformation of crystalline phases of as-synthesized nano powders is investigated through the detailed transmission electron microscopy (TEM), revealed the crystallographic alterations and morphological information even at lattice scale. From specific area electron diffraction (SAED) pattern, has specified the d-spacing and corresponding planes supported by the observed lattice fringes. The morphological characterization of nanoparticles is performed through field-emission scanning electron microscopy (FESEM), exhibiting the increment in particle size due to agglomeration with the increase in annealing temperature. Furthermore, EDX pattern has been used to verify the formation of nanoparticles by revealing the presence of required elements.

  19. Reduced NOX combustion method

    International Nuclear Information System (INIS)

    Delano, M.A.

    1991-01-01

    This patent describes a method for combusting fuel and oxidant to achieve reduced formation of nitrogen oxides. It comprises: It comprises: heating a combustion zone to a temperature at least equal to 1500 degrees F.; injecting into the heated combustion zone a stream of oxidant at a velocity within the range of from 200 to 1070 feet per second; injecting into the combustion zone, spaced from the oxidant stream, a fuel stream at a velocity such that the ratio of oxidant stream velocity to fuel stream velocity does not exceed 20; aspirating combustion gases into the oxidant stream and thereafter intermixing the aspirated oxidant stream and fuel stream to form a combustible mixture; combusting the combustible mixture to produce combustion gases for the aspiration; and maintaining the fuel stream substantially free from contact with oxidant prior to the intermixture with aspirated oxidant

  20. Investigation of microstructural and optical properties of La0.8Ca0.2FeO3 nanostructure synthesized via gel combustion method

    Science.gov (United States)

    Naseem, Swaleha; Ali, S. Asad; Khan, Wasi; Khan, Shakeel

    2018-05-01

    Ca substituted LaFeO3 orthoferrite nanostructure perovskite has been synthesized by gel combustion method using citric acid as a fuel. The structural and optical properties were investigated by various tools. The structural analysis through Rietveld refinement of the XRD data revealed single phase of orthorhombic structure in R-3c space group of the sample without presence of any other impurity phase. Scanning electron microscopy (SEM) image exhibits non-uniform distribution of the nanoparticles in agglomerated form. The purity of the sample and stoichiometric ratio of the elements were established through energy dispersive x-ray spectroscopy (EDS). FTIR spectroscopy measurement predicts the presence of various band relation of the chemical species of Ca with LaFeO3. Optical properties were explored through UV-visible absorption spectroscopy that showed absorption edge at 347 nm and energy band gap was estimated as 3.47eV using Tauc's relation.

  1. Manifold methods for methane combustion

    Energy Technology Data Exchange (ETDEWEB)

    Yang, B.; Pope, S.B. [Cornell Univ., Ithaca, NY (United States)

    1995-10-01

    Great progresses have been made in combustion research, especially, the computation of laminar flames and the probability density function (PDF) method in turbulent combustion. For one-dimensional laminar flames, by considering the transport mechanism, the detailed chemical kinetic mechanism and the interactions between these two basic processes, today it is a routine matter to calculate flame velocities, extinction, ignition, temperature, and species distributions from the governing equations. Results are in good agreement with those obtained for experiments. However, for turbulent combustion, because of the complexities of turbulent flow, chemical reactions, and the interaction between them, in the foreseeable future, it is impossible to calculate the combustion flow field by directly integrating the basic governing equations. So averaging and modeling are necessary in turbulent combustion studies. Averaging, on one hand, simplifies turbulent combustion calculations, on the other hand, it introduces the infamous closure problems, especially the closure problem with chemical reaction terms. Since in PDF calculations of turbulent combustion, the averages of the chemical reaction terms can be calculated, PDF methods overcome the closure problem with the reaction terms. It has been shown that the PDF method is a most promising method to calculate turbulent combustion. PDF methods have been successfully employed to calculate laboratory turbulent flames: they can predict phenomena such as super equilibrium radical levels, and local extinction. Because of these advantages, PDF methods are becoming used increasingly in industry combustor codes.

  2. Tapioca starch: An efficient fuel in gel-combustion synthesis of photocatalytically and anti-microbially active ZnO nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Ramasami, Alamelu K. [Centre for Nano and Material Sciences, Jain University, Jakkasandra, Kanakapura (T) (India); Raja Naika, H. [Dept. of Biotechnology, University College of Science, Tumkur University, Tumkur (India); Nagabhushana, H. [CNR Rao Centre for Advanced Materials, Tumkur University, Tumkur (India); Ramakrishnappa, T.; Balakrishna, Geetha R. [Centre for Nano and Material Sciences, Jain University, Jakkasandra, Kanakapura (T) (India); Nagaraju, G., E-mail: nagarajugn@rediffmail.com [Centre for Nano and Material Sciences, Jain University, Jakkasandra, Kanakapura (T) (India); Dept. of Chemistry, Siddaganga Institute of Technology, Tumkur (India)

    2015-01-15

    Zinc oxide nanoparticles were synthesized by gel-combustion method using novel bio-fuel tapioca starch pearls, derived from the tubers of Manihotesculenta. The product is characterized using various techniques. The X-ray diffraction pattern correspond to a hexagonal zincite structure. Fourier transform infrared spectrum showed main absorption peaks at 394 and 508 cm{sup −} {sup 1} due to stretching vibration of Zn–O. Ultravoilet–visible spectrum of zinc oxide nanoparticles showed absorption maximum at 373 nm whereas the maximum of the bulk zinc oxide was 377 nm. The morphology of the product was studied using scanning electron microscopy and transmission electron microscopy. The scanning electron microscopic images showed that the products are agglomerated and porous in nature. The transmission electron microscopic images revealed spherical particles of 40–50 nm in diameter. The photocatalytic degradation of methylene blue was examined using zinc oxide nanoparticles and found more efficient in sunlight than ultra-violet light due to reduced band gap. The antibacterial properties of zinc oxide nanoparticles were investigated against four bacterial strains Klebsiella aerogenes, Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aereus, where Pseudomonas aeruginosa and Staphylococcus aereus exhibited significant antibacterial activity in agar well diffusion method when compared to positive control. - Highlights: • ZnO nanoparticles have been prepared from a new bio-fuel, tapioca starch by gel combustion method. • XRD pattern revealed hexagonal zincite crystal structure with crystallite size 33 nm. • ZnO nanoparticles exhibited a band gap of 2.70 eV. • The ZnO nanoparticles exhibited superior degradation in sunlight in comparison with UV light. • The product showed a good anti-bacterial activity against two bacterial strains.

  3. Magnetic Properties and Structural Characteristics of BaFe12O19 Hexaferrites Synthesized by the Zol-Gel Combustion

    Science.gov (United States)

    Zhuravlev, V. A.; Itin, V. I.; Minin, R. V.; Lopushnyak, Yu. M.; Velikanov, D. A.

    2018-03-01

    The phase structure, structural parameters, and basic magnetic characteristics of BaFe12O19 hexaferrites prepared by the zol-gel combustion method with subsequent annealing at a temperature of 850°C for 6 h are investigated. The influence of the organic fuel type on the properties of synthesized materials is analyzed. Values of the saturation magnetization and the anisotropy field are determined. It is established that they depend on the organic fuel type. It is shown that powders synthesized with citric acid used as a fuel have the largest particle sizes and the highest saturation magnetization.

  4. Characterization of SrCo1.5Ti1.5Fe9O19 hexagonal ferrite synthesized by sol-gel combustion and solid state route

    International Nuclear Information System (INIS)

    Vinaykumar, R.; Mazumder, R.; Bera, J.

    2017-01-01

    Co-Ti co-substituted SrM hexagonal ferrite (SrCo 1.5 Ti 1.5 Fe 9 O 19 ) was synthesized by sol-gel combustion and solid state route. The effects of sources of TiO 2 raw materials; titanium tetra-isopropoxide (TTIP) and titanyl nitrate (TN) on the phase formation behavior and properties of the ferrite were studied. The thermal decomposition behavior of the gel was studied using TG-DSC. The phase formation behavior of the ferrite was studied by using X-ray powder diffraction and FTIR analysis. Phase formation was comparatively easier in the TN-based sol-gel process. The morphology of powder and sintered ferrite was investigated using scanning electron microscope. Magnetic properties like magnetization, coercivity, permeability, tan δ µ and dielectric properties were investigated. The ferrite synthesized by sol-gel based chemical route showed higher saturation magnetization, permeability and permittivity compared to the ferrite synthesized by solid state route. - Highlights: • SrCo 1.5 Ti 1.5 Fe 9 O 19 ferrite was successfully prepared by sol–gel combustion process. • Sol-gel synthesis of the ferrite using titanyl nitrate has been reported first time. • Phase formation was easier in the titanyl nitrate based sol-gel process. • Better magneto-dielectric properties were observed in sol-gel processed ferrite.

  5. Stacking gels: A method for maximising output for pulsed-field gel electrophoresis

    Directory of Open Access Journals (Sweden)

    Heng See

    2009-01-01

    Full Text Available Pulsed field gel electrophoresis (PFGE, the gold standard of molecular typing methods, has a major disadvantage of an unusually long electrophoretic time. From the original protocol of 6 days, it was modified to 3 days and subsequently to a single day. We describe the procedure of stacking five to six gels one on top of another in order to increase and maximize the output in a shorter time without compromising the resolution and reproducibility. All the variables that affect pulsed field gels during electrophoresis were taken into consideration. We firstly optimized the parameters to be used and secondly determined whether stacking of five to six gels had any effect on the molecular separation during electrophoresis in comparison with a single gel run. DNA preparation, restriction, electrophoresis, staining and gel documentation was carried out based on previously published methods. Gels were analysed using BioNumerics and dice coefficient and unweighted pair group methods were used to generate dendrograms based on 1.5% tolerance values. Identical band profiles and band resolution-separation were seen in the PFGE patterns with single gel and multiple stacking gels. Cluster analysis further strengthened the fact that results from stacking gels were reproducible and comparable with a single gel run. This method of stacking gels saves time and maximizes the output at the same time. The run time for a single gel was about 28 hours, but with six stacked gels the run time was 54 hours compared with 28 x 6 = 168 hours if they were run separately as single gels thus saving time of 67.86%. Beside the big factor of saving time, stacking gels save resources (electricity, reagents, water, chemicals and working time by increasing the sample throughput in a shorter time without compromising on quality of data. But optimization of working parameters is vital depending on the PFGE system used.

  6. Combustible structural composites and methods of forming combustible structural composites

    Science.gov (United States)

    Daniels, Michael A.; Heaps, Ronald J.; Steffler, Eric D.; Swank, W. David

    2013-04-02

    Combustible structural composites and methods of forming same are disclosed. In an embodiment, a combustible structural composite includes combustible material comprising a fuel metal and a metal oxide. The fuel metal is present in the combustible material at a weight ratio from 1:9 to 1:1 of the fuel metal to the metal oxide. The fuel metal and the metal oxide are capable of exothermically reacting upon application of energy at or above a threshold value to support self-sustaining combustion of the combustible material within the combustible structural composite. Structural-reinforcing fibers are present in the composite at a weight ratio from 1:20 to 10:1 of the structural-reinforcing fibers to the combustible material. Other embodiments and aspects are disclosed.

  7. Thermal properties and water repellency of cotton fabric prepared through sol-gel method

    Directory of Open Access Journals (Sweden)

    Gu Jia-Li

    2016-01-01

    Full Text Available Cotton fabrics were treated by one-step sol-gel method. The pure silica hydrosol and phosphorus-doped hydrosol were prepared with the addition of a hydrophobic hexadecyltrimethoxysilane to decrease the surface energy of cotton fabric. The thermal properties and water repellency of treated cotton fabric were characterized by thermo-gravimetric analysis, micro combustion, limiting oxygen index, and contact angle measurement. The results showed that cotton fabric treated by phosphorus-doped silica hydrosol had excellent flame retardance, and the water repellence was apparently improved with the addition of hexadecyltrimethoxysilane.

  8. Structural, dielectric and magnetic properties of NiFe{sub 2}O{sub 4} prepared via sol–gel auto-combustion method

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Li, E-mail: sunlitut@163.com [Key Lab of Advanced Transducers and Intelligent Control System, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024 (China); College of Physics and Optoelectronics, Taiyuan University of Technology, Taiyuan 030024 (China); Zhang, Ru; Wang, Zhenduo [College of Physics and Optoelectronics, Taiyuan University of Technology, Taiyuan 030024 (China); Ju, Lin [College of Physics and Electrical Engineering, Anyang Normal University, Anyang 455000 (China); Cao, Ensi; Zhang, Yongjia [College of Physics and Optoelectronics, Taiyuan University of Technology, Taiyuan 030024 (China)

    2017-01-01

    Nickelferrite (NiFe{sub 2}O{sub 4})powders were synthesized via sol–gel auto-combustion method and the corresponding temperature dependence of microstructure, dielectric and magnetic properties have been investigated. Results of XRD and SEM indicate that the NiFe{sub 2}O{sub 4} samples exhibit a typical single phase spinel structure and a uniform particle distribution. The dielectric constant and dielectric loss measurements show strong frequency dependence of all the samples. The peak observed in frequency dependence of dielectric loss measurements shifts to higher frequency with the increasing sintering temperature, indicating a Debye-like dielectric relaxation. The remanent magnetization increases with the increasing grain size while the coercivity is just the opposite. The saturation magnetization can achieve 50 emu/g when the sintering temperature is more than 1000 °C, and the lowest coercivity (159.49 Oe) was observed in the NFO sample sintered at 1300 °C for 2 h. - Highlights: • Mr value increases with the increasing grain size while Hc is just the opposite. • Ms achieve 50 emu/g when the sintering temperature is more than 1000 °C. • The lowest Hc value is 159.49 Oe for the NFO sample sintered at 1300 °C.

  9. Glycine as Alternative Fuel in Making Hydrotalcite Compound by Means of Combustion Method

    International Nuclear Information System (INIS)

    Shamsudin, I.K.; Helwani, Z.; Abdullah, A.Z.

    2013-01-01

    Hydrotalcite is anion compound capable of exchanging ions; it has the potential as a catalyst and adsorbent for variety of applications. Hydrotalcite can be prepared through several approaches, depending on the specific need and the characteristics of the compound. In this study, hydrotalcite was prepared through combustion method using glycine as fuel for the first time. Glycine was selected as opposed to urea so that hydrotalcite is safe for use in food processing or health. Hydrotalcite that was successfully obtained via combustion technique using glycine as fuel showed interesting characteristics. The compound demonstrated high thermal endurance and highest alkalinity, which suited the application for bio diesel production from vegetable oil and hydrogenation in the making of fats. However, the surface area was low in comparison with the same compound obtained from co-precipitation and sol-gel techniques. (author)

  10. Mössbauer and XRD studies of NiCuZn ferrites by Sol-Gel auto-combustion

    International Nuclear Information System (INIS)

    Lei Chenglong; Lin Qing; Zhang Hui; He Yun; Huang Haifu

    2013-01-01

    The Ni 0.6 Cu 0.2 Zn 0.2 Ce x Fe 2-x O 4 ferrites (0≤x≤0.85) have been prepared by Sol-Gel auto-combustion method and we have investigated the effect of impurity CeO 2 phase to the microstructure and hyperfine magnetic field in spinel ferrite. The results of XRD patterns confirm the average crystallite size of samples decreases with Ce 3+ substitution increasing and the lattice parameters vary as a function of x content. 57 Fe Mössbauer spectra at room temperature for all samples confirm the [Fe 3+ - O 2- -Fe 3+ ] super exchange interaction decrease due to cerium substitution. For low temperature auto-combustion samples it reveals one normal sextet line and one doublet line x≤0.25, which shows well-resolved ferromagnetic order. Lattice defects are determined and Mössbauer spectrums vary from magnetic sextet to relaxation doublet at x≥0.45 due to a mass of CeO 2 phase. In contrast, the Mössbauer spectra for the samples sintered at 800°C/3h detect the secondary phase α -Fe 2 O 3 where the cation distribution occurs and it collapses to paramagnetic doublet (x≥0.85). Ce 3+ substitution has its maximum limit values of super exchange interaction and high sintering temperature will affect this interaction. (author)

  11. Synthesis, characterization, temperature dependent electrical and magnetic properties of Ca{sub 3}Co{sub 4}O{sub 9} by a starch assisted sol–gel combustion method

    Energy Technology Data Exchange (ETDEWEB)

    Agilandeswari, K.; Ruban Kumar, A., E-mail: arubankumar@vit.ac.in

    2014-09-01

    In this present work we discussed the synthesis of pure Ca{sub 3}Co{sub 4}O{sub 9} ceramic powder by a starch assisted sol–gel combustion method. The products were characterized by powder X-ray diffraction (XRD), thermogravimetric and differential thermal analyses (TGA–DTA), Fourier transformation infrared spectroscopy (FTIR), scanning electron microscope (SEM) and UV–visible diffuse reflectance spectroscopy (DRS). X-ray diffraction pattern confirmed the formation of single phase Ca{sub 3}Co{sub 4}O{sub 9} at a sintering temperature of 1073 K, and it is also confirmed in the thermal analysis. SEM images indicate the presence of diffused microporous sphere like morphology and the grain sizes are in the range of 150–300 nm. Optical properties of Ca{sub 3}Co{sub 4}O{sub 9} ceramic show a band gap at an energy level of 2.10 eV. A maximum electrical resistivity of 0.002 mΩ cm was exhibited by Ca{sub 3}Co{sub 4}O{sub 9} that was decreased to 0.0012 mΩ cm, when the temperature increased from 300 K to 473 K. Dielectric studies were conducted at various temperatures from room temperature to 673 K and the results indicate that the space charge polarization contributes to the conduction mechanism. It also shows that the dielectric relaxation with activation energy is 0.96 eV. The magnetic properties as a function of temperature represent the ferri-paramagnetic phase transition at above 50 K. M–H curve shows the hysteresis loop with saturation magnetization (M{sub s}) and confirms the presence of soft magnetic materials. - Highlights: • Ca{sub 3}Co{sub 4}O{sub 9} has not yet been reported by this starch assisted sol–gel combustion method. • SEM image shows microporous sphere like morphology. • The optical and dielectric properties of Ca{sub 3}Co{sub 4}O{sub 9} sample were studied. • Temperature dependent magnetic property has been studied for Ca{sub 3}Co{sub 4}O{sub 9}. It behaves as a soft magnetic material at 5 K.

  12. Systems and methods of storing combustion waste products

    Science.gov (United States)

    Chen, Shen-En; Wang, Peng; Miao, Xiexing; Feng, Qiyan; Zhu, Qianlin

    2016-04-12

    In one aspect, methods of storing one or more combustion waste products are described herein. Combustion waste products stored by a method described herein can include solid combustion waste products such as coal ash and/or gaseous combustion products such as carbon dioxide. In some embodiments, a method of storing carbon dioxide comprises providing a carbon dioxide storage medium comprising porous concrete having a macroporous and microporous pore structure and flowing carbon dioxide captured from a combustion flue gas source into the pore structure of the porous concrete.

  13. Characterization of SrCo{sub 1.5}Ti{sub 1.5}Fe{sub 9}O{sub 19} hexagonal ferrite synthesized by sol-gel combustion and solid state route

    Energy Technology Data Exchange (ETDEWEB)

    Vinaykumar, R., E-mail: vinaykumar.r1984@gmail.com; Mazumder, R., E-mail: ranabrata@nitrkl.ac.in; Bera, J., E-mail: jbera@nitrkl.ac.in

    2017-05-01

    Co-Ti co-substituted SrM hexagonal ferrite (SrCo{sub 1.5}Ti{sub 1.5}Fe{sub 9}O{sub 19}) was synthesized by sol-gel combustion and solid state route. The effects of sources of TiO{sub 2} raw materials; titanium tetra-isopropoxide (TTIP) and titanyl nitrate (TN) on the phase formation behavior and properties of the ferrite were studied. The thermal decomposition behavior of the gel was studied using TG-DSC. The phase formation behavior of the ferrite was studied by using X-ray powder diffraction and FTIR analysis. Phase formation was comparatively easier in the TN-based sol-gel process. The morphology of powder and sintered ferrite was investigated using scanning electron microscope. Magnetic properties like magnetization, coercivity, permeability, tan δ{sub µ} and dielectric properties were investigated. The ferrite synthesized by sol-gel based chemical route showed higher saturation magnetization, permeability and permittivity compared to the ferrite synthesized by solid state route. - Highlights: • SrCo{sub 1.5}Ti{sub 1.5}Fe{sub 9}O{sub 19} ferrite was successfully prepared by sol–gel combustion process. • Sol-gel synthesis of the ferrite using titanyl nitrate has been reported first time. • Phase formation was easier in the titanyl nitrate based sol-gel process. • Better magneto-dielectric properties were observed in sol-gel processed ferrite.

  14. Comparison and Application of Two types of Filling Gel to Prevent Spontaneous Combustion at the Region where Top-Coal Caves above Entry

    Directory of Open Access Journals (Sweden)

    Wang Yuhuai

    2016-01-01

    Full Text Available Two types of gel were developed, by taking fly ash and foaming cement as aggregate, which is usually used as filling material at the region where top-coal caves above coal entry in the Jinggezhuang coal mine, and adding high molecular polymer and bio-gel as additive. Sweating rates of the two types of gel under various matching ratio and temperature were tested. And then sweating ratio and water retention ratio of the two gels were calculated, based on which, the optimized matching ratios, were determined. Viscosity indexes of the two-type gel under different ratios were tested. The optimized filling ratios of the two types of gel were determined according to the two indexes, water retention rate and the viscosity. The filling experiments were implemented and evaluated in site, the Jinggezhuang coal mine. The results show that the fly ash gel has a good achievement on preventing spontaneous combustion at the Region where Top-Coal Caves above entries. It is promising, economically and environmental friendly, and valuable in popularization in coal mines.

  15. Synthesis, structure and electromagnetic properties of Mn-Zn ferrite by sol-gel combustion technique

    Science.gov (United States)

    Wang, Wenjie; Zang, Chongguang; Jiao, Qingjie

    2014-01-01

    The electromagnetic absorbing behaviors of a thin coating fabricated by mixing Mn-Zn ferrite with epoxy resin (EP) were studied. The spinel ferrites Mn1-xZnxFe2O4 (x=0.2, 0.5 and 0.8) were synthesized with citrate acid as complex agent by sol-gel combustion method. The microstructure and surface morphology of Mn-Zn ferrite powders were characterized by X-ray diffraction (XRD) and scanning electron microscope (SEM). The complex permittivity and complex permeability of the fabricated ferrite/EP composites were investigated in terms of their contributions to the absorbing properties in the low frequency (10 MHz to 1 GHz). The microwave absorption of the prepared ferrite/EP composites could be tailored by matching the dielectric loss and magnetic loss and by controlling the doped metal ratio. The composites with the ferrite composition x=0.2 are found to show higher reflection loss compared with the composites with other compositions. It is proposed that the prepared composites can potentially be applied in electromagnetic microwave absorbing field.

  16. gel template method

    Indian Academy of Sciences (India)

    TiO2 nanotubes have been synthesized by sol–gel template method using alumina membrane. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), Raman spectroscopy, UV absorption spectrum and X-ray diffraction techniques have been used to investigate the structure, morphology and optical ...

  17. Method for storing radioactive combustible waste

    Science.gov (United States)

    Godbee, H.W.; Lovelace, R.C.

    1973-10-01

    A method is described for preventing pressure buildup in sealed containers which contain radioactively contaminated combustible waste material by adding an oxide getter material to the container so as to chemically bind sorbed water and combustion product gases. (Official Gazette)

  18. A method for easily customizable gradient gel electrophoresis.

    Science.gov (United States)

    Miller, Andrew J; Roman, Brandon; Norstrom, Eric

    2016-09-15

    Gradient polyacrylamide gel electrophoresis is a powerful tool for the resolution of polypeptides by relative mobility. Here, we present a simplified method for generating polyacrylamide gradient gels for routine analysis without the need for specialized mixing equipment. The method allows for easily customizable gradients which can be optimized for specific polypeptide resolution requirements. Moreover, the method eliminates the possibility of buffer cross contamination in mixing equipment, and the time and resources saved with this method in place of traditional gradient mixing, or the purchase of pre-cast gels, are noteworthy given the frequency with which many labs use gradient gel SDS-PAGE. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Agar/gelatin bilayer gel matrix fabricated by simple thermo-responsive sol-gel transition method.

    Science.gov (United States)

    Wang, Yifeng; Dong, Meng; Guo, Mengmeng; Wang, Xia; Zhou, Jing; Lei, Jian; Guo, Chuanhang; Qin, Chaoran

    2017-08-01

    We present a simple and environmentally-friendly method to generate an agar/gelatin bilayer gel matrix for further biomedical applications. In this method, the thermally responsive sol-gel transitions of agar and gelatin combined with the different transition temperatures are exquisitely employed to fabricate the agar/gelatin bilayer gel matrix and achieve separate loading for various materials (e.g., drugs, fluorescent materials, and nanoparticles). Importantly, the resulting bilayer gel matrix provides two different biopolymer environments (a polysaccharide environment vs a protein environment) with a well-defined border, which allows the loaded materials in different layers to retain their original properties (e.g., magnetism and fluorescence) and reduce mutual interference. In addition, the loaded materials in the bilayer gel matrix exhibit an interesting release behavior under the control of thermal stimuli. Consequently, the resulting agar/gelatin bilayer gel matrix is a promising candidate for biomedical applications in drug delivery, controlled release, fluorescence labeling, and bio-imaging. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Bioactive nanocrystalline wollastonite synthesized by sol–gel ...

    Indian Academy of Sciences (India)

    The sol–gel combustion method was employed to synthesize the nanocrystalline wollastonite by taking the raw eggshell powder as a calcium source and TEOS as a source of silicate. Glycine was used as a reductant or fuel and nitrate ions present in metal nitrate acts as an oxidizer. The phase purity of the wollastonite was ...

  1. Flex-flame burner and combustion method

    Science.gov (United States)

    Soupos, Vasilios; Zelepouga, Serguei; Rue, David M.; Abbasi, Hamid A.

    2010-08-24

    A combustion method and apparatus which produce a hybrid flame for heating metals and metal alloys, which hybrid flame has the characteristic of having an oxidant-lean portion proximate the metal or metal alloy and having an oxidant-rich portion disposed above the oxidant lean portion. This hybrid flame is produced by introducing fuel and primary combustion oxidant into the furnace chamber containing the metal or metal alloy in a substoichiometric ratio to produce a fuel-rich flame and by introducing a secondary combustion oxidant into the furnace chamber above the fuel-rich flame in a manner whereby mixing of the secondary combustion oxidant with the fuel-rich flame is delayed for a portion of the length of the flame.

  2. Mossbauer, Raman and X-ray diffraction studies of superparamagnetic NiFe2O4 nanoparticles prepared by sol-gel auto-combustion method

    International Nuclear Information System (INIS)

    Ahlawat, Anju; Sathe, V.G.; Reddy, V.R.; Gupta, Ajay

    2011-01-01

    Superparamagnetic nickel ferrite single phase nanoparticles with the average crystallite size of ∼9 nm have been synthesized at a low temperature (220 o C) by the sol-gel auto-combustion method. In the present study the as prepared powder was further calcined at different temperatures for 4 h, resulting in nanoparticles of larger size. The nanoparticles exhibited superparamagnetic behavior and changes in cation distribution as revealed by the Mossbauer, Raman and X-ray diffraction studies. The Mossbauer spectra collected at 5 K and under 5 T applied magnetic field showed mixed spinel structure and canted spin order for the nanoparticles, whereas there is collinear spin order with inverse spinel structure for larger particles. The vibrational spectra of the nanoparticles showed a redshift and broadening in the Raman line shape due to confinement effects. - Highlights: → Mossbauer spectra show a canting angle of 48 o for the nanoparticle samples measured at 5 K and 5 T applied magnetic field, the highest canting angle obtained so far in NiFe 2 O 4 nanoparticles. Site inversion in nanoparticles, thus converting it from inverse spinel to mixed spinel structure. → X-ray diffraction results showed a change in sign for the strain of the nanoparticle sample that showed mixed spinel structure. → Our Raman measurements showed a redshift and broadening for nanoparticle samples that is generally interpreted as a signature of quantum confinement.

  3. Method and device for diagnosing and controlling combustion instabilities in internal combustion engines operating in or transitioning to homogeneous charge combustion ignition mode

    Science.gov (United States)

    Wagner, Robert M [Knoxville, TN; Daw, Charles S [Knoxville, TN; Green, Johney B [Knoxville, TN; Edwards, Kevin D [Knoxville, TN

    2008-10-07

    This invention is a method of achieving stable, optimal mixtures of HCCI and SI in practical gasoline internal combustion engines comprising the steps of: characterizing the combustion process based on combustion process measurements, determining the ratio of conventional and HCCI combustion, determining the trajectory (sequence) of states for consecutive combustion processes, and determining subsequent combustion process modifications using said information to steer the engine combustion toward desired behavior.

  4. Bioactive nanocrystalline wollastonite synthesized by sol–gel ...

    Indian Academy of Sciences (India)

    The sol–gel combustion method was employed to synthesize the nanocrystalline wollastonite by taking the raw eggshell powder as a calcium source and TEOS as a source of silicate. Glycine was .... 94·37% CaCO3, hence in order to prepare 1 M Ca2+ ion solu- ... requires an acid or base catalyst hence the pH of the solu-.

  5. Ultra-low pollutant emission combustion method and apparatus

    International Nuclear Information System (INIS)

    Khinkis, M.J.

    1992-01-01

    This patent describes a method for ultra-low pollutant emission combustion of fossil fuel. It comprises: introducing into a primary combustion chamber a first fuel portion of about 1 percent to about 20 percent of a total fuel to be combusted; introducing primary combustion air into the primary combustion chamber; introducing a first portion of water into the primary combustion chamber, having a first water heat capacity equivalent to a primary combustion air heat capacity of one of a primary combustion air amount of about 10 percent to about 60 percent of the first stoichiometirc requirement for complete combustion of the first fuel portion and an excess primary combustion air amount of about 20 percent to about 150 percent of the first stoichiometric requirement for complete combustion of the first fuel portion; burning the first fuel portion with the primary combustion air in the primary combustion chamber at a temperature abut 2000 degrees F to about 2700 degrees F producing initial combustion products; passing the initial combustion products into a secondary combustion chamber; introducing into the secondary combustion chamber a second fuel portion of about 80 percent to about 99 percent of the total fuel to be combusted; introducing secondary combustion air into the secondary combustion chamber in an amount of about 105 percent to about 130 percent of a second stoichiometric requirement for complete combustion of the second fuel portion; introducing a second portion of water into the secondary combustion chamber; burning the second fuel portion and any remaining fuel in the initial combustion products; passing the final combustion products into a dilution chamber; introducing dilution air into the dilution chamber; discharging the ultra-low pollutant emission vitiated air form the dilution chamber

  6. Silica scintillating materials prepared by sol-gel methods

    International Nuclear Information System (INIS)

    Werst, D.W.; Sauer, M.C. Jr.; Cromack, K.R.; Lin, Y.; Tartakovsky, E.A.; Trifunac, A.D.

    1993-01-01

    Silica was investigated as a rad-hard alternative to organic polymer hosts for organic scintillators. Silica sol-gels were prepared by hydrolysis of tetramethoxysilane in alcohol solutions. organic dyes were incorporated into the gels by dissolving in methanol at the sol stage of gel formation. The silica sol-gel matrix is very rad-hard. The radiation stability of silica scintillators prepared by this method is dye-limited. Transient radioluminescence was measured following excitation with 30 ps pulses of 20 MeV electrons

  7. Sol-gel auto-combustion synthesis of SiO{sub 2}-doped NiZn ferrite by using various fuels

    Energy Technology Data Exchange (ETDEWEB)

    Wu, K.H. [Department of Applied Chemistry, Chung Cheng Institute of Technology, NDU, No. 190, Sanyuan 1st Street, Dashi Jen, Tahsi, Taoyuan 335, Taiwan (China)]. E-mail: khwu@ccit.edu.tw; Ting, T.H. [Department of Applied Chemistry, Chung Cheng Institute of Technology, NDU, No. 190, Sanyuan 1st Street, Dashi Jen, Tahsi, Taoyuan 335, Taiwan (China); Li, M.C. [Department of Applied Chemistry, Chung Cheng Institute of Technology, NDU, No. 190, Sanyuan 1st Street, Dashi Jen, Tahsi, Taoyuan 335, Taiwan (China); Ho, W.D. [Chemical Systems Research Division, Chung Shan Institute of Science and Technology, Taoyuan, Taiwan (China)

    2006-03-15

    A nitrate-chelate-silica gel was prepared from metallic nitrates, citric acid and tetraethoxysilane (TEOS) by sol-gel process with different complexing agents such as glycine, hydrazine and citric acid, and it was further used to synthesize Ni{sub 0.5}Zn{sub 0.5}Fe{sub 2}O{sub 4}/20 wt% SiO{sub 2} nanocomposites by auto-combustion. The effect of varying complexing agent on the structural and magnetic properties of the composites was studied by FTIR, {sup 29}Si CP/MAS NMR, XRD, TEM, EPR and SQUID measurements. The complexing agent in the starting solution influenced the magnetic interaction between NiZn ferrite and silica, and then determined on the particle size. Further, the complexing agent type had a direct effect on the EPR parameters ({delta}H {sub PP}, g-factor and T {sub 2}) and SQUID parameters (M {sub s}, M {sub r} and H {sub c}) of the as-synthesized powder.

  8. Equipment for production of hydrogel by sol-gel method

    International Nuclear Information System (INIS)

    Urbanek, V.

    1975-01-01

    The method of uranyl gel preparation is described by the sol-gel process of the internal gelation type. A laboratory-scale equipment with an output of 1.5 kg of gel per hour was built at the Nuclear Research Institute, Rez; the diameter of the microspheres produced may vary between 0.5 and 4.0 mm. The reliability of the equipment was verified by producing several tens of kilograms of uranyl gels and of gels based on other non-nuclear materials. (author)

  9. Studies on Y{sub 2}SiO{sub 5}:Ce phosphors prepared by gel combustion using new fuels

    Energy Technology Data Exchange (ETDEWEB)

    Muresan, L.E., E-mail: laura_muresan2003@yahoo.com [“Raluca Ripan” Institute for Research in Chemistry, Babeş Bolyai University, Fântânele 30, 400294 Cluj-Napoca (Romania); Oprea, B.F.; Cadis, A.I.; Perhaita, I. [“Raluca Ripan” Institute for Research in Chemistry, Babeş Bolyai University, Fântânele 30, 400294 Cluj-Napoca (Romania); Ponta, O. [Faculty of Physics, Babeş Bolyai University, 400084 Cluj-Napoca (Romania)

    2014-12-05

    Highlights: • Y{sub 2}SiO{sub 5}:Ce was prepared by combustion using aspartic or glutamic acid as fuels. • Combustion process occurs differently depending on the fuels amount. • Single phase X2-Y{sub 2}SiO{sub 5} phosphors were obtained in fuel rich conditions. • PL measurements indicate that aspartic acid is a better fuel than glutamic. • Optimal preparative conditions were established for synthesis of Y{sub 2}SiO{sub 5}:Ce. - Abstract: Cerium activated yttrium silicate (Y{sub 2}SiO{sub 5}:Ce) phosphors were prepared by combustion, using yttrium–cerium nitrate as oxidizer, aspartic or glutamic acid as fuel and TEOS as source of silicon. In this study, aspartic and glutamic acid are used for the first time for the synthesis of Y{sub 2}SiO{sub 5}:Ce phosphors. The fuels molar amount was varied from 0.5 mol to 1.5 mol in order to reveal the thermal behavior of intermediary products (gels and ashes) same as the structural and luminescent characteristics of final products (phosphors). According to thermal analysis correlated with FTIR and XPS investigations, the combustion process occurs differently depending on the fuel amount; unreacted nitrate compounds have been identified in fuel lean conditions and carbonate based compounds along with organic residue in rich fuel conditions. The conversion to well crystallized silicates was revealed by changes of FTIR vibration bands and confirmed by XRD measurements. Based on luminescent spectra, aspartic acid is a better fuel than glutamic acid. A positive effect on the luminescence have been observed for samples fired in air due to complete remove of organic residue. The best luminescence was obtained for combustions with 0.75 mol aspartic acid and 1.25 mol glutamic respectively, fired at 1400 °C for 4 h in air atmosphere.

  10. Sol-gel method for encapsulating molecules

    Science.gov (United States)

    Brinker, C. Jeffrey; Ashley, Carol S.; Bhatia, Rimple; Singh, Anup K.

    2002-01-01

    A method for encapsulating organic molecules, and in particular, biomolecules using sol-gel chemistry. A silica sol is prepared from an aqueous alkali metal silicate solution, such as a mixture of silicon dioxide and sodium or potassium oxide in water. The pH is adjusted to a suitably low value to stabilize the sol by minimizing the rate of siloxane condensation, thereby allowing storage stability of the sol prior to gelation. The organic molecules, generally in solution, is then added with the organic molecules being encapsulated in the sol matrix. After aging, either a thin film can be prepared or a gel can be formed with the encapsulated molecules. Depending upon the acid used, pH, and other processing conditions, the gelation time can be from one minute up to several days. In the method of the present invention, no alcohols are generated as by-products during the sol-gel and encapsulation steps. The organic molecules can be added at any desired pH value, where the pH value is generally chosen to achieve the desired reactivity of the organic molecules. The method of the present invention thereby presents a sufficiently mild encapsulation method to retain a significant portion of the activity of the biomolecules, compared with the activity of the biomolecules in free solution.

  11. Effect on the structural, DC resistivity and magnetic properties of Zr and Cu co-SubstitutedNi0.5Zn0.5Fe2O4using sol-gel auto-combustion method

    Science.gov (United States)

    Jalaiah, K.; Vijaya Babu, K.; Chandra mouli, K.; Subba Rao, P. S. V.

    2018-04-01

    The Zr and Cu co-substituted Ni0.5Zn0.5Fe2O4 ferrite nanoparticles have been synthesized by the sol-gel auto combustion method. The XRD patterns confirmed single phase cubic spinel structure for present ferrite systems. The substitution of co-dopants in the spinel structure initially decreases the lattice parameter from x = 0.00 to 0.08 and thereafter increases and the same tendency reflecting in cell volume. The DC resistivity was initially increased later followed the decreasing trend; however the drift mobility of all ferrite samples appears to be in opposite phenomenon to DC resistivity. The saturation magnetization and net magnetic moments of all ferrite samples are decreasing with increasing dopant concentration. The coercive field and Y-K angles are increased with dopant concentration. The initial permeability of all samples is decreased with increasing dopant concentration. The Q-Factor for all samples shows the narrow frequency band with increasing frequency.

  12. Method of making ionic liquid mediated sol-gel sorbents

    Science.gov (United States)

    Malik, Abdul; Shearrow, Anne M.

    2017-01-31

    Ionic liquid (IL)-mediated sol-gel hybrid organic-inorganic materials present enormous potential for effective use in analytical microextraction. One obstacle to materializing this prospect arises from high viscosity of ILs significantly slowing down sol-gel reactions. A method was developed which provides phosphonium-based, pyridinium-based, and imidazolium-based IL-mediated advanced sol-gel organic-inorganic hybrid materials for capillary microextraction. Scanning electron microscopy results demonstrate that ILs can serve as porogenic agents in sol-gel reactions. IL-mediated sol-gel coatings prepared with silanol-terminated polymers provided up to 28 times higher extractions compared to analogous sol-gel coatings prepared without any IL in the sol solution. This study shows that IL-generated porous morphology alone is not enough to provide effective extraction media: careful choice of the organic polymer and the precursor with close sol-gel reactivity must be made to ensure effective chemical bonding of the organic polymer to the created sol-gel material to be able to provide the desired sorbent characteristics.

  13. The PDF method for turbulent combustion

    Science.gov (United States)

    Pope, S. B.

    1991-01-01

    Probability Density Function (PDF) methods provide a means of calculating the properties of turbulent reacting flows. They have been successfully applied to many turbulent flames, including some with finite rate kinetic effects. Here the methods are reviewed with an emphasis on computational issues and their application to turbulent combustion.

  14. Synthesis and characterization of mixtures of cobalt and titanium oxides by mechanical alloyed and Sol-Gel

    International Nuclear Information System (INIS)

    Basurto S, R.; Bonifacio M, J.; Fernandez V, S. M.

    2009-01-01

    The mechanical alloyed techniques continued by combustion and Sol-Gel method, were used for the synthesis of CoTiO 3 . With the first technique was used Co 3 O 4 obtained in a balls mill SPEX in argon atmosphere, using cobalt nitrate and urea, the combustion is realized at 400 and 500 C, the characterization by X-ray diffraction showed the obtaining of the valence oxide mixed of cobalt with crystallite size from 10 to 12.5 nm and the particle size of 60 to 75 nm was obtained by scanning electron microscopy. To prepare the CoTiO 3 , the obtained Co 3 O 4 was mixed with TiO 2 on a relationship in weight (1:1) and with a milling time of 2.5 h and the combustion at 800 C. the mixed oxide of titanium cobalt was also obtained by the Sol-Gel technique starting from cobalt chloride and titanium propoxide in acetic-water acid, the gel is burned to temperature of 300, 500, 700 and 900 C, finding that this last temperature it is that provides the compound with crystalline size from 50 to 75 nm. (Author)

  15. Synthesis and characterization of mixtures of cobalt and titanium oxides by mechanical alloyed and Sol-Gel;Sintesis y caracterizacion de mezclas de oxidos de cobalto y titanio por aleado mecanico y Sol-Gel

    Energy Technology Data Exchange (ETDEWEB)

    Basurto S, R.; Bonifacio M, J.; Fernandez V, S. M., E-mail: rafael.basurto@inin.gob.m [ININ, Departamento de Quimica, Carretera Mexico-Toluca s/n, Ocoyoacac 52750, Estado de Mexico (Mexico)

    2009-07-01

    The mechanical alloyed techniques continued by combustion and Sol-Gel method, were used for the synthesis of CoTiO{sub 3}. With the first technique was used Co{sub 3}O{sub 4} obtained in a balls mill SPEX in argon atmosphere, using cobalt nitrate and urea, the combustion is realized at 400 and 500 C, the characterization by X-ray diffraction showed the obtaining of the valence oxide mixed of cobalt with crystallite size from 10 to 12.5 nm and the particle size of 60 to 75 nm was obtained by scanning electron microscopy. To prepare the CoTiO{sub 3}, the obtained Co{sub 3}O{sub 4} was mixed with TiO{sub 2} on a relationship in weight (1:1) and with a milling time of 2.5 h and the combustion at 800 C. the mixed oxide of titanium cobalt was also obtained by the Sol-Gel technique starting from cobalt chloride and titanium propoxide in acetic-water acid, the gel is burned to temperature of 300, 500, 700 and 900 C, finding that this last temperature it is that provides the compound with crystalline size from 50 to 75 nm. (Author)

  16. Comparison study for the CCME reference method for determination of PHC in soil by using internal and external standard methods and by using silica gel column cleanup and in-situ silica gel cleanup methods

    International Nuclear Information System (INIS)

    Wang, Z.; Fingas, M.; Sigouin, L.; Yang, C.; Hollebone, B.

    2003-01-01

    The assessment, cleanup, and remediation of hydrocarbon contaminated sites is covered in the Reference Method for Canada-Wide Standard for Petroleum Hydrocarbons-Tier 1 Method. It replaces several analytical methods used in the past by some laboratories and jurisdictions in Canada. The authors conducted two comparative evaluations to validate the Tier 1 Analytical Method. The first compared the Internal and External Standard Methods, and the second compared the Silica Gel Column Cleanup Method with the In-situ Silica Gel Cleanup Method. The Canadian Council of Ministers of the Environment (CCME) Tier 1 Method recommends and requires the External Standard Method to determine petroleum hydrocarbons (PHC) in soil samples. The Internal Method is widely used to quantify various organic and inorganic pollutants in environmental samples. The Tier 1 Method offers two options for the same extract cleanup. They are: Option A - In-situ Silica Gel Cleanup, and Option B - Silica Gel Column Cleanup. Linearity, precision, and PHC quantification results were the parameters considered for diesel and motor oil solutions, for diesel spiked soil samples, and for motor oil spiked soil samples. It was concluded that both the External and Internal Standard Methods for gas chromatograph (GC) determination of PHC in soil possess their own advantages. The PHC results obtained using the In-Situ Silica Gel Cleanup Method were lower than those obtained with the Silica Gel Column Cleanup Methods. The more efficient and effective sample cleanup method proved to be the Silica Gel Column Method. 13 refs., 7 tabs., 7 figs

  17. Formulation and method for preparing gels comprising hydrous aluminum oxide

    Science.gov (United States)

    Collins, Jack L.

    2014-06-17

    Formulations useful for preparing hydrous aluminum oxide gels contain a metal salt including aluminum, an organic base, and a complexing agent. Methods for preparing gels containing hydrous aluminum oxide include heating a formulation to a temperature sufficient to induce gel formation, where the formulation contains a metal salt including aluminum, an organic base, and a complexing agent.

  18. Comparison methods between methane and hydrogen combustion for useful transfer in furnaces

    International Nuclear Information System (INIS)

    Ghiea, V.V.

    2009-01-01

    The advantages and disadvantages of hydrogen use by industrial combustion are critically presented. Greenhouse effect due natural water vapors from atmosphere and these produced by hydrogen industrial combustion is critically analyzed, together with problems of gas fuels containing hydrogen as the relative largest component. A comparison method between methane and hydrogen combustion for pressure loss in burner feeding pipe, is conceived. It is deduced the ratio of radiation useful heat transfer characteristics and convection heat transfer coefficients from combustion gases at industrial furnaces and heat recuperators for hydrogen and methane combustion, establishing specific comparison methods. Using criterial equations special processed for convection heat transfer determination, a calculation generalizing formula is established. The proposed comparison methods are general valid for different gaseous fuels. (author)

  19. Sol-gel auto-combustion synthesis and properties of Co2Z-type hexagonal ferrite ultrafine powders

    Science.gov (United States)

    Liu, Junliang; Yang, Min; Wang, Shengyun; Lv, Jingqing; Li, Yuqing; Zhang, Ming

    2018-05-01

    Z-type hexagonal ferrite ultrafine powders with chemical formulations of (BaxSr1-x)3Co2Fe24O41 (x varied from 0.0 to 1.0) have been synthesized by a sol-gel auto-combustion technique. The average particle sizes of the synthesized powders ranged from 2 to 5 μm. The partial substitution of Ba2+ by Sr2+ led to the shrinkage of the crystal lattices and resulted in changes in the magnetic sub-lattices, which tailored the static and dynamic magnetic properties of the as-synthesized powders. As the substitution ratio of Ba2+ by Sr2+, the saturation magnetization of the synthesized powders almost consistently increased from 43.3 to 56.1 emu/g, while the real part of permeability approached to a relatively high value about 2.2 owing to the balance of the saturation magnetization and magnetic anisotropy field.

  20. System and method for reducing combustion dynamics in a combustor

    Science.gov (United States)

    Uhm, Jong Ho; Ziminsky, Willy Steve; Johnson, Thomas Edward; Srinivasan, Shiva; York, William David

    2016-11-29

    A system for reducing combustion dynamics in a combustor includes an end cap that extends radially across the combustor and includes an upstream surface axially separated from a downstream surface. A combustion chamber is downstream of the end cap, and tubes extend from the upstream surface through the downstream surface. Each tube provides fluid communication through the end cap to the combustion chamber. The system further includes means for reducing combustion dynamics in the combustor. A method for reducing combustion dynamics in a combustor includes flowing a working fluid through tubes that extend axially through an end cap that extends radially across the combustor and obstructing at least a portion of the working fluid flowing through a first set of the tubes.

  1. A simple gel electrophoresis method for separating polyhedral gold nanoparticles

    Science.gov (United States)

    Kim, Suhee; Lee, Hye Jin

    2015-07-01

    In this paper, a simple approach to separate differently shaped and sized polyhedral gold nanoparticles (NPs) within colloidal solutions via gel electrophoresis is described. Gel running parameters for separating efficiently gold NPs including gel composition, added surfactant types and applied voltage were investigated. The plasmonic properties and physical structure of the separated NPs extracted from the gel matrix were then investigated using transmission electron microscopy (TEM) and UV-vis spectrophotometry respectively. Data analysis revealed that gel electrophoresis conditions of a 1.5 % agarose gel with 0.1 % sodium dodecyl sulfate (SDS) surfactant under an applied voltage of 100 V resulted in the selective isolation of ~ 50 nm polyhedral shaped gold nanoparticles. Further efforts are underway to apply the method to purify biomolecule-conjugated polyhedral Au NPs that can be readily used for NP-enhanced biosensing platforms.

  2. Gradual combustion - method for nitrogen oxide suppression during brown coal combustion

    Energy Technology Data Exchange (ETDEWEB)

    Kotler, V.P.; Verzakov, V.N.; Lobov, T.V.

    1990-10-01

    Discusses combustion of brown coal in BKZ-500-140-1 boilers and factors that influence emission of nitrogen oxides. Temperature distribution in the furnace was evaluated. Effects of burner position, burner number and burner type as well as air excess ratio on chemical reactions during brown coal combustion, formation of nitrogen oxides and their emission were comparatively evaluated. Analyses showed that by optimum arrangement of burners and selecting the optimum air excess ratio a part of nitrogen oxides formed during the initial phase of combustion was reduced to molecular nitrogen in the second phase. On the basis of evaluations the following recommendations for furnace design are made: use of straight-flow burners characterized by a reduced mixing ratio with secondary air, parallel arrangement of burners which guarantees mixing of the combustion products from the burners with stable and unstable combustion (products of incomplete coal combustion), reducing the air excess ratio to below 1.0. 5 refs.

  3. Nanostructured aluminium oxide powders obtained by aspartic acid-nitrate gel-combustion routes

    Energy Technology Data Exchange (ETDEWEB)

    Gardey Merino, Maria Celeste, E-mail: mcgardey@frm.utn.edu.a [Laboratorio de Investigaciones y Servicios Ambientales Mendoza (LISAMEN) - CCT - CONICET, Avda. Ruiz Leal s/n, Parque Gral. San Martin, (M5502IRA) Ciudad de Mendoza, Prov. de Mendoza (Argentina); Grupo CLIOPE, Universidad Tecnologica Nacional - Facultad Regional Mendoza, Rodriguez 273, (M5502AJE) Ciudad de Mendoza, Prov. de Mendoza (Argentina); Lascalea, Gustavo E. [Laboratorio de Investigaciones y Servicios Ambientales Mendoza (LISAMEN) - CCT - CONICET, Avda. Ruiz Leal s/n, Parque Gral. San Martin, (M5502IRA) Ciudad de Mendoza, Prov. de Mendoza (Argentina); Sanchez, Laura M. [CINSO (Centro de Investigaciones en Solidos), CITEFA - CONICET, J.B. de La Salle 4397, (B1603ALO) Villa Martelli, Prov. de Buenos Aires (Argentina); Vazquez, Patricia G. [Centro de Investigacion y Desarrollo en Ciencias Aplicadas ' Dr. Jorge J. Ronco' (CINDECA), CONICET, Universidad Nacional de La Plata, Calle 47 nro. 257, (B1900AJK) La Plata, Prov. de Buenos Aires (Argentina); Cabanillas, Edgardo D. [CONICET and Centro Atomico Constituyentes, Comision Nacional de Energia Atomica, Gral. Paz 1499, (1650) San Martin, Prov. de Buenos Aires (Argentina); Lamas, Diego G. [CINSO (Centro de Investigaciones en Solidos), CITEFA - CONICET, J.B. de La Salle 4397, (B1603ALO) Villa Martelli, Prov. de Buenos Aires (Argentina)

    2010-04-16

    In this work, two new gel-combustion routes for the synthesis of Al{sub 2}O{sub 3} nanopowders with aspartic acid as fuel are presented. The first route is a conventional stoichiometric process, while the second one is a non-stoichiometric, pH-controlled process. These routes were compared with similar synthesis procedures using glycine as fuel, which are well-known in the literature. The samples were calcined in air at different temperatures, in a range of 600-1200 {sup o}C. They were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy and BET specific surface area. Different phases were obtained depending on the calcination temperature: amorphous, {gamma} (metastable) or {alpha} (stable). The amorphous-to-{gamma} transition was found for calcination temperatures in the range of 700-900 {sup o}C, while the {gamma}-to-{alpha} one was observed for calcination temperatures of 1100-1200 {sup o}C. The retention of the metastable {gamma} phase is probably due to a crystallite size effect. It transforms to the {alpha} phase after the crystallite size increases over a critical size during the calcination process at 1200 {sup o}C. The highest BET specific surface areas were obtained for both nitrate-aspartic acid routes proposed in this work, reaching values of about 50 m{sup 2}/g.

  4. Effects of nano-TiO2 on combustion and desulfurization

    International Nuclear Information System (INIS)

    Zhao, Yi; Wang, Shuqin; Shen, Yanmei; Lu, Xiaojuan

    2013-01-01

    Nanosized titanium oxide powder was prepared via the sol–gel process and characterized by transmission electron microscope. The effects of nano-TiO 2 on combustion characteristics of lignite, desulfurization in combustion and the properties of ashes were investigated. The calorific value of coals and the fusion point of the coal ashes were measured by calorimeter and ash fusion point determination meter; the components of coal ashes and the contents of combustible matters in ash were determined by chemical methods; the pore-size distribution and specific surface area of the coal ash were analyzed by surface area analyzer. A thermogravimetric analyzer was used to investigate the effect of nano-TiO 2 on combustion. The results showed that the calorific value of the coal and the fusion temperature of the coal ash were lowered by adding CaO, while on the other hand adding nano-TiO 2 to coal increased the calorific value and the melting temperature effectively. Meanwhile, the coal combustion efficiency and desulfurization in combustion could be effectively improved by the co-action of TiO 2 . - Highlights: • The burn-off rate of coals was raised and the combustible contents were reduced by adding nano-TiO 2 . • The desulfurization in combustion can be achieved by adding CaO, but the combustion efficiency was inhibited. • Nano-TiO 2 can promote the transfer rate of oxygen from gas phase to the surface of char

  5. Synthesis of nanocrystalline NiO/ZnO heterostructured composite powders by sol-gel auto combustion method and their characterizations

    Science.gov (United States)

    Tangcharoen, Thanit; Klysubun, Wantana; Kongmark, Chanapa

    2018-03-01

    Nanocrystalline NiO/ZnO heterostructured composite powders were prepared by the sol-gel auto combustion method, based on nickel and zinc nitrate precursors and using diethanolamine (DEA) as novel fuel. The composition of different NiO and ZnO ratios, ranging from 100/0, 95/5, 90/10, 80/20, 60/40, 50/50, 40/60, 20/80, 10/90, 5/95 to 0/100, were studied. The structural, chemical bonding, morphological, optical, and fluorescence properties including the local atomic structure of each calcined sample were systematically investigated by means of X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy (SEM), UV-visible diffuse reflectance spectroscopy (UV-DRS), photoluminescence (PL) spectroscopy, and synchrotron X-ray absorption spectroscopy (XAS), respectively. For the ZnO concentration below 20%, both XRD and Raman spectroscopy results revealed only the NiO phase. This conformed to the observation of Zn K-edge and Ni K-edge X-ray absorption near edge structure (XANES). The Zn ions found in the samples of low ZnO concentration exhibited six-fold coordination with oxygen atoms rather than the four-fold coordination found in the wurtzite (WZ) structure of ZnO. In contrast, the Ni ions which are found in the samples of low NiO concentration (≤10%) are coordinated both tetrahedrally and octahedrally by four or six oxygen atoms, respectively, rather than the six-fold coordination which is usually observed for Ni ions in the rock salt (RS) form of NiO. All analytical results obtained from experimental XANES spectra were verified by the theoretical calculation of absorption spectra using the FEFF9.7 code. The UV-DRS results showed that there was an increase in the reflectance efficiency for both infrared and visible light conditions as the content of ZnO increases; meanwhile, the values for the energy gap (Eg) of all composite samples were higher than that of pure NiO and ZnO. In addition, the PL spectra revealed major blue emission bands observed at 490

  6. Porous alumina scaffold produced by sol-gel combined polymeric sponge method

    Science.gov (United States)

    Hasmaliza, M.; Fazliah, M. N.; Shafinaz, R. J.

    2012-09-01

    Sol gel is a novel method used to produce high purity alumina with nanometric scale. In this study, three-dimensional porous alumina scaffold was produced using sol-gel polymeric sponge method. Briefly, sol gel alumina was prepared by evaporation and polymeric sponge cut to designated sizes were immersed in the sol gel followed by sintering at 1250 and 1550°C. In order to study the cell interaction, the porous alumina scaffold was sterilized using autoclave prior to Human Mesenchymal Stem Cells (HMSCs) seeding on the scaffold and the cell proliferation was assessed by alamarBlue® assay. SEM results showed that during the 21 day period, HMSCs were able to attach on the scaffold surface and the interconnecting pores while maintaining its proliferation. These findings suggested the potential use of the porous alumina produced as a scaffold for implantation procedure.

  7. Synthesis of Bi4Si3O12 powders by a sol–gel method

    International Nuclear Information System (INIS)

    Xie Huidong; Jia Caixia; Jiang Yuanru; Wang Xiaochang

    2012-01-01

    Highlights: ► Bi 4 Si 3 O 12 were synthesized by a sol–gel method, using stoichiometric materials. ► The calcining process of the as-dried gel was studied by different analyses. ► Phase separation in the sol–gel process was found during the calcination. - Abstract: Micro-crystals of bismuth orthosilicate (Bi 4 Si 3 O 12 ) were synthesized by a sol–gel method, using stoichiometric Si(OC 2 H 5 ) 4 , Bi(NO 3 ) 3 ·5H 2 O as the precursors and acetic acid as the solvent. The calcining process of the as-dried gel was studied by total gravity/differential scanning calory (TG/DSC), X-ray diffraction (XRD) and infrared (IR) spectra. Experiments showed that single phase of Bi 4 Si 3 O 12 could be obtained by sol–gel method at a calcining temperature of 900 °C. Phase separation in the sol–gel process was found during the calcination.

  8. Periodic equivalence ratio modulation method and apparatus for controlling combustion instability

    Science.gov (United States)

    Richards, George A.; Janus, Michael C.; Griffith, Richard A.

    2000-01-01

    The periodic equivalence ratio modulation (PERM) method and apparatus significantly reduces and/or eliminates unstable conditions within a combustion chamber. The method involves modulating the equivalence ratio for the combustion device, such that the combustion device periodically operates outside of an identified unstable oscillation region. The equivalence ratio is modulated between preselected reference points, according to the shape of the oscillation region and operating parameters of the system. Preferably, the equivalence ratio is modulated from a first stable condition to a second stable condition, and, alternatively, the equivalence ratio is modulated from a stable condition to an unstable condition. The method is further applicable to multi-nozzle combustor designs, whereby individual nozzles are alternately modulated from stable to unstable conditions. Periodic equivalence ratio modulation (PERM) is accomplished by active control involving periodic, low frequency fuel modulation, whereby low frequency fuel pulses are injected into the main fuel delivery. Importantly, the fuel pulses are injected at a rate so as not to affect the desired time-average equivalence ratio for the combustion device.

  9. Multiscale methods in turbulent combustion: strategies and computational challenges

    International Nuclear Information System (INIS)

    Echekki, Tarek

    2009-01-01

    A principal challenge in modeling turbulent combustion flows is associated with their complex, multiscale nature. Traditional paradigms in the modeling of these flows have attempted to address this nature through different strategies, including exploiting the separation of turbulence and combustion scales and a reduced description of the composition space. The resulting moment-based methods often yield reasonable predictions of flow and reactive scalars' statistics under certain conditions. However, these methods must constantly evolve to address combustion at different regimes, modes or with dominant chemistries. In recent years, alternative multiscale strategies have emerged, which although in part inspired by the traditional approaches, also draw upon basic tools from computational science, applied mathematics and the increasing availability of powerful computational resources. This review presents a general overview of different strategies adopted for multiscale solutions of turbulent combustion flows. Within these strategies, some specific models are discussed or outlined to illustrate their capabilities and underlying assumptions. These strategies may be classified under four different classes, including (i) closure models for atomistic processes, (ii) multigrid and multiresolution strategies, (iii) flame-embedding strategies and (iv) hybrid large-eddy simulation-low-dimensional strategies. A combination of these strategies and models can potentially represent a robust alternative strategy to moment-based models; but a significant challenge remains in the development of computational frameworks for these approaches as well as their underlying theories. (topical review)

  10. FC and ZFC magnetic properties of ferro-spinels (MFe2O4) prepared by solution-combustion method

    Science.gov (United States)

    Aravind, G.; Kumar, R. Vijaya; Nathaniyal, V.; Rambabu, T.; Ravinder, D.

    2017-07-01

    Magnetic ferro-spinels MFe2O4 (M= Co and Ni) prepared by citrate-gel solution combustion method using metal nitrates with low sintering temperature (500°C). From the XRD and TEM studies confirm that a nano crystalline nature of the prepared samples. Field Cooled (FC) and Zero Field Cooled (ZFC) magnetic studies of the prepared ferro-spinels are measured by using vibrating sample magnetometer (VSM). The resultant magnetization of the prepared samples as a function of an applied magnetic field 10 T was measured at two different temperatures 5 K and 310 K. Field Cooled (FC) and Zero Field Cooled (ZFC) magnetization measurements under an applied field of 100 Oe and 1000 Oe in the temperature range of 5-375 K were carried out, which shows the blocking temperature of these two samples at around 350 K.

  11. A sol-gel method to synthesize indium tin oxide nanoparticles

    Institute of Scientific and Technical Information of China (English)

    Xiuhua Li; Xiujuan xu; Xin Yin; Chunzhong Li; Jianrong Zhang

    2011-01-01

    Transparent conductive indium tin oxide (ITO) nanoparticles were synthesized by a novel sol-gel method.Granulated indium and tin were dissolved in HNO3 and partially complexed with citric acid.A sol-gel process was induced when tertiary butyl alcohol was added dropwise to the above solution.ITO nanoparticles with an average crystallite size of 18.5 nm and surface area of 32.6 m2/g were obtained after the gel was heat-treated at 700 C.The ITO nanoparticles showed good sinterability,the starting sintering temperature decreased sharply to 900 C,and the 1400 C sintered pellet had a density of 98.1 % of theoretical density (TD).

  12. System and method for reducing combustion dynamics in a combustor

    Science.gov (United States)

    Uhm, Jong Ho; Johnson, Thomas Edward; Zuo, Baifang; York, William David

    2013-08-20

    A system for reducing combustion dynamics in a combustor includes an end cap having an upstream surface axially separated from a downstream surface, and tube bundles extend through the end cap. A diluent supply in fluid communication with the end cap provides diluent flow to the end cap. Diluent distributors circumferentially arranged inside at least one tube bundle extend downstream from the downstream surface and provide fluid communication for the diluent flow through the end cap. A method for reducing combustion dynamics in a combustor includes flowing fuel through tube bundles that extend axially through an end cap, flowing a diluent through diluent distributors into a combustion chamber, wherein the diluent distributors are circumferentially arranged inside at least one tube bundle and each diluent distributor extends downstream from the end cap, and forming a diluent barrier in the combustion chamber between at least one pair of adjacent tube bundles.

  13. Structural, impedance and Mössbauer studies of magnesium ferrite synthesized via sol–gel auto-combustion process

    Directory of Open Access Journals (Sweden)

    Shahid Khan Durrani

    2017-12-01

    Full Text Available Crystalline magnesium ferrite (MgFe2O4 spinel oxide powder was synthesized by nitrate–citrate sol–gel auto-combustion process with stoichiometric composition of metal nitrate salts, urea and citric acid. The study was focused on the modification of synthesis conditions and effect of these modified conditions on the structural and electrical properties of synthesized MgFe2O4 ceramic materials. Phase composition, crystallinity, structure and surface morphology were studied by X-ray diffraction, FTIR and SEM. Pure single phase MgFe2O4 spinel ferrite was obtained after calcination at 850 °C. Rietveld refinement of XRD result confirmed the single cubic phase spinel oxide with the lattice constant of a = 8.3931 Å and Fd3m symmetry. UV–visible absorption study of calcined powder revealed an optical band gap of 2.17 eV. SEM images of sintered specimens (1050–1450 °C showed that the grain size increased with the increase in sintering temperature. From the impedance results of the sintered MgFe2O4 specimens, it was found that the resistance of grain, grain boundary and electrode effect decreased with an increase in sintering temperature and associated grain growth. In the intermediate frequency region lowering of impedance and dielectric values was observed due to the decrease in grain boundary areas. Mössbauer studies indicated that magnesium ferrite had a mixed spinel structure in calcined and sintered samples, however, the well refined single phase MgFe2O4 was observed due to well developed high crystalline structure at 1350 °C and 1450 °C. Keywords: Sol–gel auto-combustion, Magnesium ferrite, X-ray diffraction, SEM, Mössbauer spectroscopy, Impedance spectroscopy

  14. System and method for engine combustion

    Science.gov (United States)

    Sczomak, David P.; Gallon, Robert J.; Solomon, Arun S.

    2018-03-13

    A combustion system for use with one or more cylinder bores of an internal combustion engine includes at least one cylinder head defining first and second intake ports in fluid communication with the one or more cylinder bores. A flap is adjustably connected to the at least one cylinder head. The flap includes a first flap portion cooperating with the first intake port extending from an arm and a second flap portion cooperating with the second intake port extending from the arm and disposed adjacent the first flap portion. A controller in electrical communication with an actuator monitors the condition of the engine and actuates the flap to position the first and second flap portions between first and second positions to create a first combustion condition and a second combustion condition.

  15. Fabrication of the flexible nanogenerator from BTO nanopowders on graphene coated PMMA substrates by sol-gel method

    Energy Technology Data Exchange (ETDEWEB)

    Sankar Ganesh, R. [Department of Physics and Nanotechnology, SRM University, Kattankullathur, Chennai, 603203, Tamil Nadu (India); Research Institute of Electronics, Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu, Shizuoka, 432-8011 (Japan); Sharma, Sanjeev K., E-mail: sksharma@dongguk.edu [Department of Semiconductor Science, Dongguk University-Seoul, Jung-gu, Seoul, 04620 (Korea, Republic of); Abinnas, N. [Department of Physics and Nanotechnology, SRM University, Kattankullathur, Chennai, 603203, Tamil Nadu (India); Durgadevi, E. [Research Institute of Electronics, Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu, Shizuoka, 432-8011 (Japan); Raji, P. [Department of Physics, Mepco Schlenk Engineering College, Sivakasi, 626 005, Tamil Nadu (India); Ponnusamy, S., E-mail: suruponnus@gmail.com [Department of Physics and Nanotechnology, SRM University, Kattankullathur, Chennai, 603203, Tamil Nadu (India); Muthamizhchelvan, C. [Department of Physics and Nanotechnology, SRM University, Kattankullathur, Chennai, 603203, Tamil Nadu (India); Hayakawa, Y. [Research Institute of Electronics, Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu, Shizuoka, 432-8011 (Japan); Kim, Deuk Young [Department of Semiconductor Science, Dongguk University-Seoul, Jung-gu, Seoul, 04620 (Korea, Republic of)

    2017-05-01

    Nanostructured bismuth titanate (Bi{sub 4}Ti{sub 3}O{sub 12}) or BTO powders were synthesized by the combustion method. The crystalline phase of BTO nanopowders was evaluated from X-ray diffraction (XRD) and further confirmed by selected area electron diffraction (SAED) pattern. The SEM and TEM micrographic images clearly showed the nanosheets like morphology of BTO nanopowder. The EDS spectrum of BTO nanopowder showed the elemental peaks of O, Bi and Ti at 0.53 keV, 2.41 keV and 4.49 keV, respectively. FTIR band peaks were observed at 815 and 595 cm{sup -1} corresponding to the stretching vibrations of Bi-O and Ti-O. The red shift in optical absorption of BTO was observed and the bandgap decreased from 3.18 to 3.08 eV as the calcined temperature increased from 600 to 800 °C. The sandwich structure, called the nanogenerator, Graphene/BTO-PDMS/Graphene (G/BTO/G), was fabricated on graphene coated polymethyl methacrylate (PMMA) substrates, which produced a peak voltage (10 mV) by applying the pressure from human's finger. The switching mechanism of BTO nanosheets was observed to be dependent on the polarity and intrinsic dipole formation. - Highlights: • Bi{sub 4}Ti{sub 3}O{sub 12} (BTO) nanosheets synthesized from a simple combustion method. • SEM & TEM images confirmed the nanosheets structure with a hexagonal shape. • XRD and SAED pattern of BTO nanosheets confirmed the orthorhombic crystal structure. • Flexible G/BTO/G nanogenerator fabricated by sol-gel method. • Peak voltage was observed to be 10 mV by applying pressure from human's finger.

  16. Structural and dielectric studies of Zr and Co co-substituted Ni0.5Zn0.5Fe2O4 using sol-gel auto combustion method

    Science.gov (United States)

    Jalaiah, K.; Vijaya Babu, K.; Rajashekhar Babu, K.; Chandra Mouli, K.

    2018-06-01

    Zr and Co substituted Ni0.5Zn0.5 ZrxCuxFe2-2xO4 with x values varies from the 0.0 to 0.4 in steps of 0.08 wt% ferrites synthesized by using sol-gel auto combustion method. The XRD patterns give evidence for formation of the single phase cubic spinel. The lattice constant was initially decreased from 8.3995 Å to 8.3941 Å with dopant concentration for x = 0.00-0.08 thereafter the lattice parameter steeply increased up to 8.4129 Å fox x = 0.4 with increasing dopant concentration. The estimated crystallite size and measured particle sizes are in comparable nano size. The grain size initially increased 2.3137-3.0430 μm, later it decreased to 2.2952 μm with increasing dopant concentration. The prepared samples porosity shows the opposite trend to grain size. The FT-IR spectrum for prepared samples shows the Fd3m (O7h). The wavenumber for tetrahedral site increased from 579 cm-1 to 593 cm-1 with increasing dopant concentration and the wavenumber of octahedral site are initially decreased from 414 cm-1 to 400 cm-1 for x = 0.00 to x = 0.08 later increased to 422 cm-1 with increasing dopant concentration. The dielectric constant increased from 8.85 to 34.5127 with dopant increasing concentration. The corresponding loss factor was fallows the similar trend as dielectric constant. The AC conductivity increased with increasing dopant concentration from 3.0261 × 10-7 S/m to 4.4169 × 10-6 S/m.

  17. Recovery of DNA from agarose gel by trap method | Xia | African ...

    African Journals Online (AJOL)

    Recovery of DNA from agarose gel electrophoresis is a basic operation during molecular cloning. Circular or linear DNA fragments which vary from 1.5 to 6.5 kb and correspond to 1 kb marker can be recovered from 0.8 to 1.0% agarose gel smoothly with a simple and rapid trap method. The recovery efficiency could be ...

  18. A Theoretical Evaluation of Secondary Atomization Effects on Engine Performance for Aluminum Gel Propellants

    Science.gov (United States)

    Mueller, D. C.; Turns, S. R.

    1994-01-01

    A one-dimensional model of a gel-fueled rocket combustion chamber has been developed. This model includes the processes of liquid hydrocarbon burnout, secondary atomization. aluminum ignition, and aluminum combustion. Also included is a model of radiative heat transfer from the solid combustion products to the chamber walls. Calculations indicate that only modest secondary atomization is required to significantly reduce propellant burnout distances, aluminum oxide residual size and radiation heat wall losses. Radiation losses equal to approximately 2-13 percent of the energy released during combustion were estimated. A two-dimensional, two-phase nozzle code was employed to estimate radiation and nozzle two-phase flow effects on overall engine performance. Radiation losses yielded a 1 percent decrease in engine I(sub sp). Results also indicate that secondary atomization may have less effect on two-phase losses than it does on propellant burnout distance and no effect if oxide particle coagulation and shear induced droplet breakup govern oxide particle size. Engine I(sub sp) was found to decrease from 337.4 to 293.7 seconds as gel aluminum mass loading was varied from 0-70 wt percent. Engine I(sub sp) efficiencies, accounting for radiation and two-phase flow effects, on the order of 0.946 were calculated for a 60 wt percent gel, assuming a fragmentation ratio of 5.

  19. Tetragonal-cubic phase boundary in nanocrystalline ZrO2-Y2O3 solid solutions synthesized by gel-combustion

    International Nuclear Information System (INIS)

    Fabregas, Ismael O.; Craievich, Aldo F.; Fantini, Marcia C.A.; Millen, Ricardo P.; Temperini, Marcia L.A.; Lamas, Diego G.

    2011-01-01

    Research highlights: → Gel-combustion synthesis yields compositionally homogeneous, single-phased ZrO 2 -Y 2 O 3 nanopowders, that exhibit the presence at room temperature of three different phases depending on Y 2 O 3 content, namely two tetragonal forms (t' and t'') and the cubic phase. → Phase identification can be achieved by synchrotron XPD (SXPD) and Raman spectroscopy since the tetragonal forms and the cubic phase can be distinguished by these techniques. → The crystallographic features of ZrO 2 -Y 2 O 3 nanopowders were determined by SXPD. They are similar to those reported by Yashima and coworkers for compositionally homogeneous materials containing larger (micro)crystals. However, the lattice parameters are slightly different and the axial ratios c/a of our t' samples are smaller than those reported by these authors. → Compositional t'/t'' and t''/cubic phase boundaries are located at (9 ± 1) and (10.5 ± 0.5) mol% Y 2 O 3 , respectively. → For the whole series of nanocrystalline ZrO 2 -Y 2 O 3 solid solutions studied in the present work, no evidences of the presence of a mixture of phases - as reported by Yashima and coworkers for microcrystalline solid solutions - were detected. - Abstract: By means of synchrotron X-ray powder diffraction (SXPD) and Raman spectroscopy, we have detected, in a series of nanocrystalline and compositionally homogeneous ZrO 2 -Y 2 O 3 solid solutions, the presence at room temperature of three different phases depending on Y 2 O 3 content, namely two tetragonal forms and the cubic phase. The studied materials, with average crystallite sizes within the range 7-10 nm, were synthesized by a nitrate-citrate gel-combustion process. The crystal structure of these phases was also investigated by SXPD. The results presented here indicate that the studied nanocrystalline ZrO 2 -Y 2 O 3 solid solutions exhibit the same phases reported in the literature for compositionally homogeneous materials containing larger (micro

  20. Structural and optical properties of chromium doped zinc oxide nanoparticles synthesized by sol-gel method

    Energy Technology Data Exchange (ETDEWEB)

    Naqvi, Syed Mohd. Adnan, E-mail: adiaks2004@yahoo.co.in [Department of Fundamental and Applied Sciences, Universiti Teknologi Petronas, Bandar Seri Iskandar, Perak (Malaysia); Irshad, Kashif, E-mail: alig.kashif@gmail.com [Department of Mechanical Engineering, Universiti Teknologi Petronas, Bandar Seri Iskandar, Perak (Malaysia); Soleimani, Hassan, E-mail: hassan.soleimani@petronas.com.my, E-mail: noorhana-yahya@petronas.com.my; Yahya, Noorhana, E-mail: hassan.soleimani@petronas.com.my, E-mail: noorhana-yahya@petronas.com.my

    2014-10-24

    Nanosized Cr-doped ZnO nano particles were synthesized by facile sol-gel auto combustion method. The structural and optical properties of Cr-doped ZnO nanoparticles have been investigated by XRD and UV-Vis spectroscopy at room temperature for 0% to 8% concentration. X-ray diffraction analysis reveals that the Cr-doped ZnO crystallizes in a single phase polycrystalline nature with wurtzite lattice. With every % of doping, the peaks are shifting scarcely and doping of Cr is possible up to 7%. After that, the last peak vanishes, that signifies its structure is transmuted from 8% doping. The average crystallite size decreases with increase in Cr concentration (i.e. 28.9 nm for 0% to 25.8 nm for 8%). The UV-Vis spectra of the nanoparticles betoken an incrementation in the band gap energy from 3.401, 3.415, 3.431, 3.437,3.453, 3.514,3.521, 3.530 and 3.538 eV respectively, for 0,1, 2, 3, 4, 5, 6, 7 and 8 % doping concentration.

  1. Structural and optical properties of chromium doped zinc oxide nanoparticles synthesized by sol-gel method

    International Nuclear Information System (INIS)

    Naqvi, Syed Mohd. Adnan; Irshad, Kashif; Soleimani, Hassan; Yahya, Noorhana

    2014-01-01

    Nanosized Cr-doped ZnO nano particles were synthesized by facile sol-gel auto combustion method. The structural and optical properties of Cr-doped ZnO nanoparticles have been investigated by XRD and UV-Vis spectroscopy at room temperature for 0% to 8% concentration. X-ray diffraction analysis reveals that the Cr-doped ZnO crystallizes in a single phase polycrystalline nature with wurtzite lattice. With every % of doping, the peaks are shifting scarcely and doping of Cr is possible up to 7%. After that, the last peak vanishes, that signifies its structure is transmuted from 8% doping. The average crystallite size decreases with increase in Cr concentration (i.e. 28.9 nm for 0% to 25.8 nm for 8%). The UV-Vis spectra of the nanoparticles betoken an incrementation in the band gap energy from 3.401, 3.415, 3.431, 3.437,3.453, 3.514,3.521, 3.530 and 3.538 eV respectively, for 0,1, 2, 3, 4, 5, 6, 7 and 8 % doping concentration

  2. Gel Electrophoresis and Fluorescamine Methods for the Detection of ...

    African Journals Online (AJOL)

    For the fluorescamine method, clarification was achieved by isoelectric precipitation and precipitation with acid to obtain pH 4.6 and 6% TCA soluble extracts respectively. Non-clarified samples were used for gel electrophoresis. Both methods confirmed that raw milk and milk processed at 85/15s were the most proteolysed, ...

  3. Analysis of charge transport in gels containing polyoxometallates using methods of different sensitivity to migration.

    Science.gov (United States)

    Caban, Karolina; Lewera, Adam; Zukowska, Grazyna Z; Kulesza, Pawel J; Stojek, Zbigniew; Jeffrey, Kenneth R

    2006-08-04

    Two methods have been used for examination of transport of charge in gels soaked with DMF and containing dissolved polyoxometallates. The first method is based on the analysis of both Cottrellian and steady-state currents and therefore is capable of giving the concentration of the electroactive redox centres and their transport (diffusion-type) coefficient. The second method provides the real diffusion coefficients, i.e. transport coefficients free of migrational influence, for both the substrate and the product of the electrode reaction. Several gels based on poly(methyl methacrylate), with charged (addition of 1-acrylamido-2-methyl-2-propanesulphonic acid to the polymerization mixture) and uncharged chains, have been used in the investigation. The ratio obtained for the diffusion coefficient (second method) and transport coefficient (first method) was smaller for the gels containing charged polymer chains than for the gels with uncharged chains. In part these changes could be explained by the contribution of migration to the transport of polyoxomatallates in the gels. However, the impact of the changes in the polymer-channel capacity at the electrode surface while the electrode process proceeds was also considered. These structural changes should affect differently the methods based on different time domains.

  4. Transparent Hydrophobic Coating by Sol Gel Method

    International Nuclear Information System (INIS)

    Mohd Hamzah Harun; Nik Ghazali Nik Salleh; Mahathir Mohamed; Mohd Sofian Alias

    2016-01-01

    Transparent hydrophobic coating of inorganic based tetra orthosilicate (TEOS) was prepared by sol gel method by varying fluoroalkylsilane (FAS) content which works as hydrophobic agent. Surface contact angle, transmittance degree and surface morphology were characterized for each sample. All samples show good transparency which was confirmed by UV visible spectroscopy. The hydrophobicity obtained increases with FAS content indicates that FAS is best candidate to induce hydrophobicity for inorganic coating. (author)

  5. Combustion instability control in the model of combustion chamber

    International Nuclear Information System (INIS)

    Akhmadullin, A N; Ahmethanov, E N; Iovleva, O V; Mitrofanov, G A

    2013-01-01

    An experimental study of the influence of external periodic perturbations on the instability of the combustion chamber in a pulsating combustion. As an external periodic disturbances were used sound waves emitted by the electrodynamics. The purpose of the study was to determine the possibility of using the method of external periodic perturbation to control the combustion instability. The study was conducted on a specially created model of the combustion chamber with a swirl burner in the frequency range from 100 to 1400 Hz. The study found that the method of external periodic perturbations may be used to control combustion instability. Depending on the frequency of the external periodic perturbation is observed as an increase and decrease in the amplitude of the oscillations in the combustion chamber. These effects are due to the mechanisms of synchronous and asynchronous action. External periodic disturbance generated in the path feeding the gaseous fuel, showing the high efficiency of the method of management in terms of energy costs. Power required to initiate periodic disturbances (50 W) is significantly smaller than the thermal capacity of the combustion chamber (100 kW)

  6. New visible and selective DNA staining method in gels with tetrazolium salts.

    Science.gov (United States)

    Paredes, Aaron J; Naranjo-Palma, Tatiana; Alfaro-Valdés, Hilda M; Barriga, Andrés; Babul, Jorge; Wilson, Christian A M

    2017-01-15

    DNA staining in gels has historically been carried out using silver staining and fluorescent dyes like ethidium bromide and SYBR Green I (SGI). Using fluorescent dyes allows recovery of the analyte, but requires instruments such as a transilluminator or fluorimeter to visualize the DNA. Here we described a new and simple method that allows DNA visualization to the naked eye by generating a colored precipitate. It works by soaking the acrylamide or agarose DNA gel in SGI and nitro blue tetrazolium (NBT) solution that, when exposed to sunlight, produces a purple insoluble formazan precipitate that remains in the gel after exposure to light. A calibration curve made with a DNA standard established a detection limit of approximately 180 pg/band at 500 bp. Selectivity of this assay was determined using different biomolecules, demonstrating a high selectivity for DNA. Integrity and functionality of the DNA recovered from gels was determined by enzymatic cutting with a restriction enzyme and by transforming competent cells after the different staining methods, respectively. Our method showed the best performance among the dyes employed. Based on its specificity, low cost and its adequacy for field work, this new methodology has enormous potential benefits to research and industry. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Thermal stability of octadecylsilane hybrid silicas prepared by grafting and sol-gel methods

    International Nuclear Information System (INIS)

    Brambilla, Rodrigo; Santos, Joao H.Z. dos; Miranda, Marcia S.L.; Frost, Ray L.

    2008-01-01

    Hybrid silicas bearing octadecylsilane groups were prepared by grafting and sol-gel (SG) methods. The effect of the preparative route on the thermal stability was evaluated by means of thermal gravimetric analysis (TGA), infrared emission spectroscopy (IRES) and, complementary, by 13 C solid-state nuclear magnetic resonance ( 13 C NMR) and matrix assisted laser deionization time of flight mass spectroscopy (MALDI-TOF-MS). Silicas prepared by the grafting route seem to be slightly more stable than those produced by the sol-gel method. This behavior seems to be associated to the preparative route, since grafting affords a liquid-like conformation, while in the case of sol-gel a highly organized crystalline chain conformation was observed

  8. Release of Inorganic Elements during Wood Combustion. Release to the Gas Phase of Inorganic Elements during: Wood Combustion. Part 1: Development and Evaluation of Quantification Methods

    DEFF Research Database (Denmark)

    van Lith, Simone Cornelia; Alonso-Ramírez, Violeta; Jensen, Peter Arendt

    2006-01-01

    During wood combustion, inorganic elements such as alkali metals, sulfur, chlorine, and some heavy metals are partly released to the gas phase, which may cause problems in combustion facilities because of deposit formation and corrosion. Furthermore, it may cause harmful emissions of gases......) in this reactor, whereas methods B and C involved initial pyrolysis and combustion, respectively, of a large fuel sample (~5 kg) in a bench-scale fixed-bed reactor at 500 C. The methods were evaluated by comparing the data on the release of Cl, S, K, Na, Zn, and Pb from fiber board obtained by the three methods...

  9. Standard Test Method for Gel Time of Carbon Fiber-Epoxy Prepreg

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    1999-01-01

    1.1 This test method covers the determination of gel time of carbon fiber-epoxy tape and sheet. The test method is suitable for the measurement of gel time of resin systems having either high or low viscosity. 1.2 The values stated in SI units are to be regarded as standard. The values in parentheses are for reference only. 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

  10. Superconducting YBa2Cu3O7-x fibers from the thermoplastic gel method

    International Nuclear Information System (INIS)

    Uchikawa, F.; Mackenzie, J.D.

    1989-01-01

    The successful fabrication of ceramic superconducting YBa 2 Cu 3 O 7-x fibers has been investigated. A new method was proposed for synthesis of the fibers through a solution route. The thermoplastic gels were synthesized using Y, Ba, Cu, ethoxides, and diethylenetriamine. The fibers were drawn from the reheated gels. The fibers were characterized by x-ray diffraction, SEM, and shrinkage ratio measurements. The fired and then annealed fiber is shown to have a superconducting transition temperature of 91 K (onset) and zero resistance temperature of 84 K. With regard to the fired fibers, it is found that the surface area increased and superconducting transition temperature decreased with increasing organic content in the initial gel. The usefulness of this method is shown and the structure of the synthesized gel is discussed

  11. Method and apparatus for active control of combustion rate through modulation of heat transfer from the combustion chamber wall

    Science.gov (United States)

    Roberts, Jr., Charles E.; Chadwell, Christopher J.

    2004-09-21

    The flame propagation rate resulting from a combustion event in the combustion chamber of an internal combustion engine is controlled by modulation of the heat transfer from the combustion flame to the combustion chamber walls. In one embodiment, heat transfer from the combustion flame to the combustion chamber walls is mechanically modulated by a movable member that is inserted into, or withdrawn from, the combustion chamber thereby changing the shape of the combustion chamber and the combustion chamber wall surface area. In another embodiment, heat transfer from the combustion flame to the combustion chamber walls is modulated by cooling the surface of a portion of the combustion chamber wall that is in close proximity to the area of the combustion chamber where flame speed control is desired.

  12. Development of gel-filter method for high enrichment of low-molecular weight proteins from serum.

    Directory of Open Access Journals (Sweden)

    Lingsheng Chen

    Full Text Available The human serum proteome has been extensively screened for biomarkers. However, the large dynamic range of protein concentrations in serum and the presence of highly abundant and large molecular weight proteins, make identification and detection changes in the amount of low-molecular weight proteins (LMW, molecular weight ≤ 30kDa difficult. Here, we developed a gel-filter method including four layers of different concentration of tricine SDS-PAGE-based gels to block high-molecular weight proteins and enrich LMW proteins. By utilizing this method, we identified 1,576 proteins (n = 2 from 10 μL serum. Among them, 559 (n = 2 proteins belonged to LMW proteins. Furthermore, this gel-filter method could identify 67.4% and 39.8% more LMW proteins than that in representative methods of glycine SDS-PAGE and optimized-DS, respectively. By utilizing SILAC-AQUA approach with labeled recombinant protein as internal standard, the recovery rate for GST spiked in serum during the treatment of gel-filter, optimized-DS, and ProteoMiner was 33.1 ± 0.01%, 18.7 ± 0.01% and 9.6 ± 0.03%, respectively. These results demonstrate that the gel-filter method offers a rapid, highly reproducible and efficient approach for screening biomarkers from serum through proteomic analyses.

  13. Fibrinopeptide A radioimmunoassay by the gel adsorption method

    International Nuclear Information System (INIS)

    Borlinghaus, P.

    1981-01-01

    The aim of these studies was to test the fibrinopeptide-A radioinmunoassay by the gel adsorption method for its clinical application, its validity and its accuracy concerning clinical questions. Fibrinopeptide-A levels (individual values) and the kinetics of fibrinopeptide-A liberation in vitro (FPA-formation curves) were therefore determined for 'normal persons' and patients with various illnesses. (orig./MG) [de

  14. Structural, magnetic and gas sensing properties of nanosized copper ferrite powder synthesized by sol gel combustion technique

    Energy Technology Data Exchange (ETDEWEB)

    Sumangala, T.P.; Mahender, C. [Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Bombay, Powai, Mumbai 400076 (India); Barnabe, A. [Université de Toulouse, Institut Carnot CIRIMAT – UMR CNRS-UPS-INP 5085, Université Paul Sabatier, Toulouse 31062 (France); Venkataramani, N. [Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Bombay, Powai, Mumbai 400076 (India); Prasad, Shiva, E-mail: shiva.pd@gmail.com [Department of Physics, Indian Institute of Technology Bombay, Powai, Mumbai 400076 (India)

    2016-11-15

    Stoichiometric nano sized copper ferrite particles were synthesized by sol gel combustion technique. They were then calcined at various temperatures ranging from 300–800 °C and were either furnace cooled or quenched in liquid nitrogen. A high magnetisation value of 48.2 emu/g signifying the cubic phase of copper ferrite, was obtained for sample quenched to liquid nitrogen temperature from 800 °C. The ethanol sensing response of the samples was studied and a maximum of 86% response was obtained for 500 ppm ethanol in the case of a furnace cooled sample calcined at 800 °C. The chemical sensing is seen to be correlated with the c/a ratio and is best in the case of tetragonal copper ferrite. - Highlights: • One of the first study on ethanol sensing of cubic copper ferrite. • In-situ High temperature XRD done shows phase transition from cubic to tetragonal. • A non-monotonic increase in magnetization was seen with calcination temperature. • A response of 86% was obtained towards 500 ppm ethanol. • Tried to correlate sensing response and ion content in spinel structure.

  15. A method for determining the completeness of fuel combustion

    Energy Technology Data Exchange (ETDEWEB)

    Tavger, M.D.; Chepkin, V.M.; Gruzdev, V.N.; Talantov, A.V.

    1982-01-01

    The current of conductivity (ionization) of gaseous combustion products, which forms with feeding of electric voltage to a special probe, is proposed for determining the completeness of fuel combustion. Here, the charged particles are formed from substances which form in the intermediate stages of the combustion reaction. The volume of charged particles is proportional to the volume of the intermediate substances, whose presence attests to the incompleteness of the combustion reaction. The fullness of fuel combustion is determined from a formula which includes the stoichiometric coefficient, a gas constant, the energy of activation, the characteristics of the chemical activity of the intermediate substances, the coefficient of air excess, the temperature of the combustion products and the conductivity current.

  16. 3D MR gel dosimetry with lung equivalent gel

    International Nuclear Information System (INIS)

    Scherer, J.; Solleder, M.; Schiessl, I.; Bogner, L.; Herbst, M.

    1998-01-01

    The MR gel dosimetry is used to verify complex 3D treatment plans. Till now this method served only for dose evaluation in homogeneous phantoms. On the way to build a heterogeneous anthropomorphic gel phantom, a lung equivalent gel with the density 0.4 g/cm 3 was developed. First experiments show a 1.55 times higher dose reponse in the low density gel (LD gel). The comparison of a dose distribution in a gel/LD gel/gel slab phantom with Monte Carlo calculations shows good agreement within 5%. More over the accuray of the measuring device magnetic resonance imager was studied in respect to the now exclusive digital image processing with the software MRD (MR dosimetry). Because of the dimensions of the Fricke gel phantom an artefact correction, based on the data from the unirradiated phantom proved to be essential. (orig.) [de

  17. Production methods for decreasing nitrous oxide effluents during solid fuel combustion

    Energy Technology Data Exchange (ETDEWEB)

    Kotler, V.R.

    1981-01-01

    The atmosphere can be protected from toxic NO /SUB x/ effluents during fuel combustion in boilers by reducing the amount of NO /SUB x/ during combustion or by cleaning the smoky gases after they leave the boiler. The second method results from the need to process a large amount of smoky gases with a relatively low concentration of nitrous oxide which is chemically resistant and which is not highly soluble in water. The problem is complicated by the SO /SUB x/ , O/sub 2/ and solid particles in the smoky gaes. The method for cleaning smoky gases is complicated and requires mator capital investments and operating expenses. Laboratory tests in the F. E. Dzerzhinskiy Heat Engineering Institute showed that thermal NO /SUB x/ is formed at combustion temperatures above 1550/sup 0/C, and that the concentration of O/sub 2/ has a significant impact on NO /SUB x/ formation, while temperature has much less effect. On the basis of laboratory and industrial tests, the Institute recommended a method to reduce NO /SUB x/ effluents from large boilers: for Kansk-Achinski coals -- low-temperature combustion. The temperature in the combustion nucleus is maintained at 1290/sup 0/C by using a set of measures individual dust systems with direct intection, grinder-blowers, fuel drying and recirculation of about 20% of the smoky gases with the primary air, tangential direct flow burners in several rows along the top). The effectiveness of this system has been checked on a PK-10Sh boiler at the Krasnoyarsk Thermal Power Plant No. 1 and a BK3-210-140 boiler at the Vladivostok Thermal Power Plant No. 2. Further reduction of NO /SUB x/ (by about 20%) requires redistribution of the secondary air along the row of burners. These measures are suggested for use on the P-67 boiler of the 800 MW unit of the Berezovsk State Regional Power Station No. 1. A brief summary of the design and operating measures are provided.

  18. Dye-Sensitized Solar Cells with Optimal Gel Electrolyte Using the Taguchi Design Method

    Directory of Open Access Journals (Sweden)

    Jenn-Kai Tsai

    2013-01-01

    Full Text Available The Taguchi method was adopted to determine the optimal gel electrolyte used in dye-sensitized solar cells (DSSCs. Since electrolyte is a very important factor in fabrication of high performance and long-term stability DSSCs, to find the optimal composition of gel electrolyte is desired. In this paper, the common ingredients used in the liquid electrolyte were chosen. The ingredients then mixed with cheap ionic liquids and poly(vinylidenefluoride-co-hexafluoropropylene (PVDF-HFP were added to form colloidal electrolyte (gel. The optimal composition of each materials in the gel electrolyte determined by Taguchi method consists of 0.03 M I2, 0.15 M KI, 0.6 M LiI, 0.5 M 4-tertbutylpyridine (TBP, and 10% PVDF-HFP dissolved in the acetonitrile and 3-methoxypropionitrile (MPN solution with volume ratio of 2 : 1. The short circuit current density of 14.11 mA/cm2, the conversion efficiency (η of 5.52%, and the lifetime of over 110 days were observed for the dye-sensitized solar cell assembled with optimal gel electrolyte. The lifetime increases 10 times when compared with the conventional dye-sensitized solar cell assembled with liquid electrolyte.

  19. Blood grouping based on PCR methods and agarose gel electrophoresis.

    Science.gov (United States)

    Sell, Ana Maria; Visentainer, Jeane Eliete Laguila

    2015-01-01

    The study of erythrocyte antigens continues to be an intense field of research, particularly after the development of molecular testing methods. More than 300 specificities have been described by the International Society for Blood Transfusion as belonging to 33 blood group systems. The polymerase chain reaction (PCR) is a central tool for red blood cells (RBC) genotyping. PCR and agarose gel electrophoresis are low cost, easy, and versatile in vitro methods for amplifying defined target DNA (RBC polymorphic region). Multiplex-PCR, AS-PCR (Specific Allele Polymerase Chain Reaction), and RFLP-PCR (Restriction Fragment Length Polymorphism-Polymerase Chain Reaction) techniques are usually to identify RBC polymorphisms. Furthermore, it is an easy methodology to implement. This chapter describes the PCR methodology and agarose gel electrophoresis to identify the polymorphisms of the Kell, Duffy, Kidd, and MNS blood group systems.

  20. Synthesis, exploration of energy storage and electrochemical sensing properties of hematite nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Ramasami, Alamelu K. [Centre for Nano and Material Sciences, Jain University, Bangalore 562112 (India); Department of Physics, Advanced Batteries Lab, National University of Singapore, 117542 (Singapore); Ravishankar, T.N.; Sureshkumar, K. [Centre for Nano and Material Sciences, Jain University, Bangalore 562112 (India); Reddy, M.V.; Chowdari, B.V.R. [Department of Physics, Advanced Batteries Lab, National University of Singapore, 117542 (Singapore); Ramakrishnappa, T. [Centre for Nano and Material Sciences, Jain University, Bangalore 562112 (India); Balakrishna, Geetha R., E-mail: br.geetha@jainuniversity.ac.in [Centre for Nano and Material Sciences, Jain University, Bangalore 562112 (India)

    2016-06-25

    Gel-combustion, solution combustion and molten salt methods were used to synthesize hematite nanoparicles. Two weight ratios of precursor (Ferric nitrate) to fuel (Cassava Starch) (1:0.5, 1:1) were used in gel-combustion technique. Ferric nitrate as a precursor and ethylenediamine tetraacetic acid as fuel (in stoichiometric proportions) were used in the solution combustion method. Ferric oxalate was the precursor in molten salt method. The structural parameters of the hematite nanoparticles were studied by X-ray diffraction. The optical properties, including band gap studies were done by UV–Visible spectroscopy. The morphological studies were carried out by Scanning Electron Microscope. The energy storage capacity of the molten salt method-hematite nanoparticles surpassed (920 mAhg{sup −1}) the others while the equal-weight- ratio-hematite nanoparticles synthesized by gel-combustion method exhibited better dopamine sensor properties. - Highlights: • Hematite nanoparticles were synthesized by gel, solution combustion and molten salt methods. • Gel-combustion involved the use of natural fuel extracted from the root tubers of Manihot esculenta. • Two ratios of fuel to precursors were attempted in gel combustion method. • The product formed from the equal weight ratio of fuel to precursor was a very good electrochemical dopamine sensor. • The product formed by molten salt method exhibited good battery behaviour (Li-ion battery).

  1. Synthesis, exploration of energy storage and electrochemical sensing properties of hematite nanoparticles

    International Nuclear Information System (INIS)

    Ramasami, Alamelu K.; Ravishankar, T.N.; Sureshkumar, K.; Reddy, M.V.; Chowdari, B.V.R.; Ramakrishnappa, T.; Balakrishna, Geetha R.

    2016-01-01

    Gel-combustion, solution combustion and molten salt methods were used to synthesize hematite nanoparicles. Two weight ratios of precursor (Ferric nitrate) to fuel (Cassava Starch) (1:0.5, 1:1) were used in gel-combustion technique. Ferric nitrate as a precursor and ethylenediamine tetraacetic acid as fuel (in stoichiometric proportions) were used in the solution combustion method. Ferric oxalate was the precursor in molten salt method. The structural parameters of the hematite nanoparticles were studied by X-ray diffraction. The optical properties, including band gap studies were done by UV–Visible spectroscopy. The morphological studies were carried out by Scanning Electron Microscope. The energy storage capacity of the molten salt method-hematite nanoparticles surpassed (920 mAhg"−"1) the others while the equal-weight- ratio-hematite nanoparticles synthesized by gel-combustion method exhibited better dopamine sensor properties. - Highlights: • Hematite nanoparticles were synthesized by gel, solution combustion and molten salt methods. • Gel-combustion involved the use of natural fuel extracted from the root tubers of Manihot esculenta. • Two ratios of fuel to precursors were attempted in gel combustion method. • The product formed from the equal weight ratio of fuel to precursor was a very good electrochemical dopamine sensor. • The product formed by molten salt method exhibited good battery behaviour (Li-ion battery).

  2. A simple immunoblotting method after separation of proteins in agarose gel

    DEFF Research Database (Denmark)

    Koch, C; Skjødt, K; Laursen, I

    1985-01-01

    A simple and sensitive method for immunoblotting of proteins after separation in agarose gels is described. It involves transfer of proteins onto nitrocellulose paper simply by diffusion through pressure, a transfer which only takes about 10 min. By this method we have demonstrated the existence ...

  3. Aqueous sulfomethylated melamine gel-forming compositions and methods of use

    Energy Technology Data Exchange (ETDEWEB)

    Meltz, C.N.; Guetzmacher, G.D.; Chang, P.W.

    1989-04-18

    A method is described for the selective modification of the permeability of the strata of a subterranean bydrocarbon-containing reservoir consisting of introducing into a well in, communication with the reservoir; an aqueous gel-forming composition, comprising a 1.0-60.0 weight percent sulfomethylated melamine polymer solution. The solution is prepared with a 1.0 molar equivalent of a malemine, reacted with 3.0-6.7 molar equivalents of formaldehyde or a 2-6 carbon atom containing dialdehyde; 0.25-1.25 molar equivalents of an alkali metal or ammonium salt of surfurous acid; and 0.01-1.5 molar equivalents of a gel-modifying agent.

  4. A Novel Method for Detection of Glycoproteins on Sodium Dodecyl Sulphate Polyacrylamide Gel Using Radio-Iodinated Tyrosine

    DEFF Research Database (Denmark)

    Nalla, Amarnadh; Draz, Hossam M.; Dole, Anita

    2009-01-01

    The aim of this study is to develop a novel method for detection of glycoproteins on polyacrylamide gel. In this method, radio-iodinated-tyrosine (125I-tyrosine) was conjugated to glycoprotein by schiff's base mechanism on the sodium dodecyl sulfate- polyacrylamide gel. Ovalbumin and Concanavalin...... of glycoproteins using 125I-tyrosine selectively detected ovalbumin. Present results showed that MPD enhanced glycoprotein detection method can be used as a sensitive tool for the detection of glycoproteins on polyacrylamide gel...

  5. Simple analytical technique for liquid scintillation counting of environmental carbon-14 using gel suspension method

    International Nuclear Information System (INIS)

    Okai, Tomio; Wakabayashi, Genichiro; Nagao, Kenjiro; Matoba, Masaru; Ohura, Hirotaka; Momoshima, Noriyuki; Kawamura, Hidehisa

    2000-01-01

    A simple analytical technique for liquid scintillation counting of environmental 14 C was developed. Commercially available gelling agent, N-lauroyl-L -glutamic -α,γ-dibutylamide, was used for the gel-formation of the samples (gel suspension method) and for the subsequent liquid scintillation counting of 14 C in the form of CaCO 3 . Our procedure for sample preparation is much simpler than that of the conventional methods and requires no special equipment. Self absorption, stability and reproducibility of gel suspension samples were investigated in order to evaluate the characteristics of the gel suspension method for 14 C activity measurement. The self absorption factor is about 70% and slightly decrease as CaCO 3 weight increase. This is considered to be mainly due to the absorption of β-rays and scintillation light by the CaCO 3 sample itself. No change of the counting rate for the gel suspension sample was observed for more than 2 years after the sample preparation. Four samples were used for checking the reproducibility of the sample preparation method. The same values were obtained for the counting rate of 24 C activity within the counting error. No change of the counting rate was observed for the 're-gelated' sample. These results show that the gel suspension method is appropriate for the 14 C activity measurement by the liquid scintillation counting method and useful for a long-term preservation of the sample for repeated measurement. The above analytical technique was applied to actual environmental samples in Fukuoka prefecture, Japan. Results obtained were comparable with those by other researchers and appear to be reasonable. Therefore, the newly developed technique is useful for the routine monitoring of environmental 14 C. (author)

  6. Fabrication of Y{sub 2}Ti{sub 2}O{sub 7}:Yb{sup 3+},Ho{sup 3+} nanoparticles by a gel-combustion approach and upconverting luminescent properties

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Zhongsheng, E-mail: zhshcheng@ecit.cn [State Key Laboratory Breeding Base of Nuclear Resources and Environment, East China Institute of Technology, Nanchang, Jiangxi 330013 (China); Wang, Min; Wang, Haiqing; Le, Zhanggao; Huang, Guolin; Zou, Lixia; Liu, Zhirong [State Key Laboratory Breeding Base of Nuclear Resources and Environment, East China Institute of Technology, Nanchang, Jiangxi 330013 (China); Wang, Dianyuan; Wang, Qingkai [College of Science, Jiujiang University, Jiujiang, Jiangxi 332005 (China); Gong, Weiping [Electronic Science Department, Huizhou University, Huizhou, Guangdong 516001 (China)

    2014-09-01

    Highlights: • Co-doped (Y{sub 0.99−x}Ho{sub 0.01}Yb{sub x}){sub 2}Ti{sub 2}O{sub 7} nanophosphors were fabricated by gel-combustion method. • The effect of calcination and Yb{sup 3+} doping on upconverting spectra of nanophosphors was studied. • The dependence of upconverting intensity on the excitation power was examined. - Abstract: Yb{sup 3+}, Ho{sup 3+} co-doped pyrochlore-structured (Y{sub 0.99−x}Ho{sub 0.01}Yb{sub x}){sub 2}Ti{sub 2}O{sub 7} (x = 0, 2.5, 5.0, 7.5, 10.0 and 12.5 mol%) nanoparticles (NPs) were successfully fabricated via a gel-combustion approach. The products as-obtained were characterized by various techniques, i.e. X-ray diffraction, transmission electron microscope, Fourier transformed infrared spectra and upconverting spectra. The results indicate that the bright green (∼540 nm) and red (∼660 nm) emissions are observed in Y{sub 2}Ti{sub 2}O{sub 7}:Ho{sup 3+},Yb{sup 3+} NPs under the 980 nm excitation, which is ascribed to the radiative transitions ({sup 5}F{sub 4},{sup 5}S{sub 2}) → {sup 5}I{sub 8} and {sup 5}F{sub 5} → {sup 5}I{sub 8} of Ho{sup 3+} ions, respectively. It is also found that the calcining temperature and Yb{sup 3+} ion doping level have a great influence on the upconverting spectra of (Y{sub 0.99−x}Ho{sub 0.01}Yb{sub x}){sub 2}Ti{sub 2}O{sub 7} NPs. The emission intensities increase initially and then fall down from 800 to 1000 °C. The optimum doping level of Yb{sup 3+} ions is 7.5 mol%, and the intensity of upconverting emissions for (Y{sub 0.915}Ho{sub 0.01}Yb{sub 0.075}){sub 2}Ti{sub 2}O{sub 7} NPs is enhanced by the fold of 32 compared to the Yb{sup 3+}-free samples. The dependence of upconverting intensity on the excitation power reveals the contribution of two photons to both the green and red upconverting process under lower excitation power, and the possible upconverting mechanisms have been proposed accordingly.

  7. Ignition and combustion characteristics of metallized propellants, phase 2

    Science.gov (United States)

    Mueller, D. C.; Turns, S. R.

    1994-01-01

    Experimental and analytical investigations focusing on aluminum/hydrocarbon gel droplet secondary atomization and its effects on gel-fueled rocket engine performance are being conducted. A single laser sheet sizing/velocimetry diagnostic technique, which should eliminate sizing bias in the data collection process, has been designed and constructed to overcome limitations of the two-color forward-scatter technique used in previous work. Calibration of this system is in progress and the data acquisition/validation code is being written. Narrow-band measurements of radiant emission, discussed in previous reports, will be used to determine if aluminum ignition has occurred in a gel droplet. A one-dimensional model of a gel-fueled rocket combustion chamber, described in earlier reports, has been exercised in conjunction with a two-dimensional, two-phase nozzle code to predict the performance of an aluminum/hydrocarbon fueled engine. Estimated secondary atomization effects on propellant burnout distance, condensed particle radiation losses to the chamber walls, and nozzle two phase flow losses are also investigated. Calculations indicate that only modest secondary atomization is required to significantly reduce propellant burnout distances, aluminum oxide residual size, and radiation heat losses. Radiation losses equal to approximately 2-13 percent of the energy released during combustion were estimated, depending on secondary atomization intensity. A two-dimensional, two-phase nozzle code was employed to estimate radiation and nozzle two phase flow effects on overall engine performance. Radiation losses yielded a one percent decrease in engine Isp. Results also indicate that secondary atomization may have less effect on two-phase losses than it does on propellant burnout distance and no effect if oxide particle coagulation and shear induced droplet breakup govern oxide particle size. Engine Isp was found to decrease from 337.4 to 293.7 seconds as gel aluminum mass

  8. Gel-aided sample preparation (GASP)--a simplified method for gel-assisted proteomic sample generation from protein extracts and intact cells.

    Science.gov (United States)

    Fischer, Roman; Kessler, Benedikt M

    2015-04-01

    We describe a "gel-assisted" proteomic sample preparation method for MS analysis. Solubilized protein extracts or intact cells are copolymerized with acrylamide, facilitating denaturation, reduction, quantitative cysteine alkylation, and matrix formation. Gel-aided sample preparation has been optimized to be highly flexible, scalable, and to allow reproducible sample generation from 50 cells to milligrams of protein extracts. This methodology is fast, sensitive, easy-to-use on a wide range of sample types, and accessible to nonspecialists. © 2014 The Authors. PROTEOMICS published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Reproducibility of measurement of the environmental carbon-14 samples prepared by the gel suspension method

    International Nuclear Information System (INIS)

    Ohura, Hirotaka; Wakabayashi, Genichiro; Nakamura, Kouji; Okai, Tomio; Matoba, Masaru; Kakiuchi, Hideki; Momoshima, Noriyuki; Kawamura, Hidehisa.

    1997-01-01

    Simple liquid scintillation counting technique for the assay of 14 C in the environment was developed. This technique was done by using gel suspension method, in which sample preparation is very simple and requires no special equipments. The reproducibility of this technique was considered and it was shown that the gel suspension method had enough reproducibility to monitor the environmental 14 C. (author)

  10. Synthesis of Li2MO3 (M = Ti or Zr) by the combustion method

    International Nuclear Information System (INIS)

    Cruza, D.; Bulbuliana, S.; Cruza, D.; Pfeifferc, H.

    2006-01-01

    The advantages and disadvantages of the combustion method to prepare Li 2 TiO 3 and Li 2 ZrO 3 ceramics were studied. Firstly, the ceramic powders were prepared by the combustion process using LiOH, MO 2 (where M=Ti or Zr) and urea in different molar ratios (from 2:1:3 to 3:1:3) at different temperatures for 5 minutes. Li 2 TiO 3 and Li 2 ZrO 3 were also obtained by the solid-state method, and the results were compared with those obtained by the combustion process. The powders were characterized by X-ray diffraction and scanning electron microscopy. It was found that the combustion process reduces the synthesis time of Li 2 TiO 3 (1 minute at 750 C), but it does not have any advantage on producing Li 2 ZrO 3 , due to thermodynamic factors. On the other hand, the combustion process produces carbon contaminants in the solids. It was necessary to add excess of lithium hydroxide, in order to compensate the quantity of Li sublimated during the production of the ceramics. Finally, it seems that both reactions follow the same mechanism, which is determined by the lithium diffusion into the metal oxides. (authors)

  11. Chemical analysis of solid residue from liquid and solid fuel combustion: Method development and validation

    Energy Technology Data Exchange (ETDEWEB)

    Trkmic, M. [University of Zagreb, Faculty of Mechanical Engineering and Naval Architecturek Zagreb (Croatia); Curkovic, L. [University of Zagreb, Faculty of Chemical Engineering and Technology, Zagreb (Croatia); Asperger, D. [HEP-Proizvodnja, Thermal Power Plant Department, Zagreb (Croatia)

    2012-06-15

    This paper deals with the development and validation of methods for identifying the composition of solid residue after liquid and solid fuel combustion in thermal power plant furnaces. The methods were developed for energy dispersive X-ray fluorescence (EDXRF) spectrometer analysis. Due to the fuels used, the different composition and the location of creation of solid residue, it was necessary to develop two methods. The first method is used for identifying solid residue composition after fuel oil combustion (Method 1), while the second method is used for identifying solid residue composition after the combustion of solid fuels, i. e. coal (Method 2). Method calibration was performed on sets of 12 (Method 1) and 6 (Method 2) certified reference materials (CRM). CRMs and analysis test samples were prepared in pellet form using hydraulic press. For the purpose of method validation the linearity, accuracy, precision and specificity were determined, and the measurement uncertainty of methods for each analyte separately was assessed. The methods were applied in the analysis of real furnace residue samples. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  12. Characterization of selenium doped silica glasses synthesized by sol-gel method

    International Nuclear Information System (INIS)

    Kobayashi, R.A.; Toffoli, S.M.

    2012-01-01

    Selenium is a rare element in nature. It is used in the food, pharmaceutical, and glass industries. In commercial glasses, selenium is the element responsible for most of the pink or light red color, but its effect is primarily dependent on the oxidation state of the element in the glassy matrix. Besides, selenium is highly volatile, and as high as 80 wt% may be lost in the furnace during the industrial glass elaboration. The sol– gel method yields synthesized materials of high purity and homogeneity, and uses low processing temperatures. Samples of silica glass were obtained by sol-gel method, incorporating precursors of selenium, with the main objective of reducing selenium losses during its heating. The results of optical absorption, XRD and thermal analysis (TGA, DSC) of the glasses are presented and discussed. (author)

  13. Preparation and characterization of bismuth ruthenate pyrochlore via solid state reaction and sol-gel methods

    Directory of Open Access Journals (Sweden)

    Mayuree Sansernnivet

    2010-01-01

    Full Text Available Bismuth ruthenate pyrochlores, potential cathode materials for intermediate temperature solid oxide fuel cells(ITSOFCs, were prepared via solid-state and sol-gel method. Effects of the preparation routes and conditions on the phase and microstructures of the materials were investigated in this study using XRD and SEM. The study showed that the preparation method and the adding sequence of the starting meterials have a significant effect on the crystal phase and the particle size obtained. Sol-gel synthesis could yield a material with only pyrochlore structure, i.e. Bi2Ru2O7, while the solid state method yielded powder with a small amount of the secondary RuO2 phase. The sol-gel synthesis resulted in materialswith a finer particle size (~0.3-1.0 μm compared to powder synthesized via the solid state reaction method.

  14. Investigation of sol-gel transition by rheological methods. Part I. Experimental methods.

    Directory of Open Access Journals (Sweden)

    KUDRYAVTSEV Pavel Gennadievich

    2017-08-01

    Full Text Available In this work rheological studies of the gelling process were carried out. We have developed a measuring system for studying the rheology of the gelation process. It consisted of several measuring cells of the Weiler-Rebinder type, system for automatic regulation of the composition of the medium and hermostabilization system. This complex is designed to measure the dependence of the value of the ultimate shear stress as a function of time, from the start of the sol-gel transition to the complete conversion of the sol to the gel. The developed device has a wide range of measured values of critical shear stresses τ0 = (0,05÷50000 Dyne/cm2. Using the developed instrument, it was possible to establish the shape of the initial section of the curve τ0 = f(t and develop a methodology for more accurate determination of gelation time. The developed method proved that the classical method for determining the start time of the sol-gel transition using the point of intersection of the tangent to the linear part of the rheological curve τ0 = f(t,gives significantly distorted results. A new phenomenon has been discovered: the kinetic curves in the coordinates of the Avrami-Erofeev-Bogolyubov equation have an inflection point which separates the kinetic curve into two parts, the initial and the final. It was found that the constant k in the Avrami–Erofeev–Bogolyubov quation does not depend on the temperature and is the same for both the initial and final parts of the kinetic curve. It depends only on the chemical nature of the reacting system. It was found that for the initial section of the kinetic curves, the value of the parameter n in the Avrami-Erofeev-Bogolyubov equation was n = 23,4±2,8 and, unlike the final section of the rheological curve, does not depend on temperature. A large value of this parameter can be interpreted as the average number of directions of growth of a fractal aggregate during its growth. The value of this parameter depends

  15. Introduction to Analytical Methods for Internal Combustion Engine Cam Mechanisms

    CERN Document Server

    Williams, J J

    2013-01-01

    Modern design methods of Automotive Cam Design require the computation of a range of parameters. This book provides a logical sequence of steps for the derivation of the relevant equations from first principles, for the more widely used cam mechanisms. Although originally derived for use in high performance engines, this work is equally applicable to the design of mass produced automotive and other internal combustion engines.   Introduction to Analytical Methods for Internal Combustion Engine Cam Mechanisms provides the equations necessary for the design of cam lift curves with an associated smooth acceleration curve. The equations are derived for the kinematics and kinetics of all the mechanisms considered, together with those for cam curvature and oil entrainment velocity. This permits the cam shape, all loads, and contact stresses to be evaluated, and the relevant tribology to be assessed. The effects of asymmetry on the manufacture of cams for finger follower and offset translating curved followers is ...

  16. Tetragonal-cubic phase boundary in nanocrystalline ZrO{sub 2}-Y{sub 2}O{sub 3} solid solutions synthesized by gel-combustion

    Energy Technology Data Exchange (ETDEWEB)

    Fabregas, Ismael O. [CINSO (Centro de Investigaciones en Solidos), CITEFA-CONICET, J.B. de La Salle 4397, 1603 Villa Martelli, Pcia. de Buenos Aires (Argentina); Craievich, Aldo F.; Fantini, Marcia C.A. [Instituto de Fisica, Universidade de Sao Paulo, Travessa R da Rua do Matao, No. 187, Cidade Universitaria, 05508-900 Sao Paulo (Brazil); Millen, Ricardo P.; Temperini, Marcia L.A. [Instituto de Quimica, Universidade de Sao Paulo, Avenida Prof. Lineu Prestes 748, Cidade Universitaria, 05508-900 Sao Paulo (Brazil); Lamas, Diego G., E-mail: dlamas@uncoma.edu.ar [CINSO (Centro de Investigaciones en Solidos), CITEFA-CONICET, J.B. de La Salle 4397, 1603 Villa Martelli, Pcia. de Buenos Aires (Argentina); Laboratorio de Caracterizacion de Materiales, Facultad de Ingenieria, Universidad Nacional del Comahue, Buenos Aires 1400, (8300) Neuquen Capital, Prov. de Neuquen (Argentina)

    2011-04-21

    Research highlights: > Gel-combustion synthesis yields compositionally homogeneous, single-phased ZrO{sub 2}-Y{sub 2}O{sub 3} nanopowders, that exhibit the presence at room temperature of three different phases depending on Y{sub 2}O{sub 3} content, namely two tetragonal forms (t' and t'') and the cubic phase. > Phase identification can be achieved by synchrotron XPD (SXPD) and Raman spectroscopy since the tetragonal forms and the cubic phase can be distinguished by these techniques. > The crystallographic features of ZrO{sub 2}-Y{sub 2}O{sub 3} nanopowders were determined by SXPD. They are similar to those reported by Yashima and coworkers for compositionally homogeneous materials containing larger (micro)crystals. However, the lattice parameters are slightly different and the axial ratios c/a of our t' samples are smaller than those reported by these authors. > Compositional t'/t'' and t''/cubic phase boundaries are located at (9 {+-} 1) and (10.5 {+-} 0.5) mol% Y{sub 2}O{sub 3}, respectively. > For the whole series of nanocrystalline ZrO{sub 2}-Y{sub 2}O{sub 3} solid solutions studied in the present work, no evidences of the presence of a mixture of phases - as reported by Yashima and coworkers for microcrystalline solid solutions - were detected. - Abstract: By means of synchrotron X-ray powder diffraction (SXPD) and Raman spectroscopy, we have detected, in a series of nanocrystalline and compositionally homogeneous ZrO{sub 2}-Y{sub 2}O{sub 3} solid solutions, the presence at room temperature of three different phases depending on Y{sub 2}O{sub 3} content, namely two tetragonal forms and the cubic phase. The studied materials, with average crystallite sizes within the range 7-10 nm, were synthesized by a nitrate-citrate gel-combustion process. The crystal structure of these phases was also investigated by SXPD. The results presented here indicate that the studied nanocrystalline ZrO{sub 2}-Y{sub 2}O{sub 3} solid

  17. Effect of Precursor Concentration of MgO nanostructure by using Sol-Gel Method

    Directory of Open Access Journals (Sweden)

    V.T. Srisuvetha

    2017-04-01

    Full Text Available MgO thin flims have been prepared on substrates by a novel and simple sol-gel method using magnesium nitrate and collusion as starting material.The MgO nano catalyst with good sensor crystallization were obtained after annealing at 100°C Magnesium oxide was prepared by sol-gel method. The method involves the hydrolysis of magnesium alkoxide in the presence of acid or basic catalysts followed by a Oxalic acid reaction. The synthesized solids were characterized by IR spectroscopy X-ray diffraction electron microscopy. Ultraviolet visible absorbance measurement photoluminescence and Raman scattering spectra. X-ray diffraction (XRD characterization showed the formation of smaller particles after sol gel irradiation the structure and morphology of the MgO particles were analyzed byXRD. These articles were used for FTIR spectroscopic measurement and spectra were collected. In EDS we calculated the peak intensity the SEM the images of metal oxide.UV (Ultra Violet refers to adsorption spectroscopy optical properties of assorption, band gap energy.This means if use light in the visible and adjacent ranges.

  18. Vanadium oxide thin films and fibers obtained by acetylacetonate sol–gel method

    Energy Technology Data Exchange (ETDEWEB)

    Berezina, O.; Kirienko, D. [Department of Physical Engineering, Petrozavodsk State University, 185910 Petrozavodsk (Russian Federation); Pergament, A., E-mail: aperg@psu.karelia.ru [Department of Physical Engineering, Petrozavodsk State University, 185910 Petrozavodsk (Russian Federation); Stefanovich, G.; Velichko, A. [Department of Physical Engineering, Petrozavodsk State University, 185910 Petrozavodsk (Russian Federation); Zlomanov, V. [Department of Chemistry, Moscow State University, 119991 Moscow (Russian Federation)

    2015-01-01

    Vanadium oxide films and fibers have been fabricated by the acetylacetonate sol–gel method followed by annealing in wet nitrogen. The samples are characterized by X-ray diffraction and electrical conductivity measurements. The effects of a sol aging, the precursor decomposition and the gas atmosphere composition on the annealing process, structure and properties of the films are discussed. The two-stage temperature regime of annealing of amorphous films in wet nitrogen for formation of the well crystallized VO{sub 2} phase is chosen: 1) 25–550 °C and 2) 550–600 °C. The obtained films demonstrate the metal–insulator transition and electrical switching. Also, the effect of the polyvinylpyrrolidone additive concentration and electrospinning parameters on qualitative (absence of defects and gel drops) and quantitative (length and diameter) characteristics of vanadium oxide fibers is studied. - Highlights: • Vanadium oxide thin films and fibers are synthesized by sol–gel method. • The effect of annealing, atmosphere, time and electrospinning parameters is studied. • Produced VO{sub 2} structures exhibit metal–insulator transition and electrical switching.

  19. Facile combustion synthesis of novel CaZrO 3

    Indian Academy of Sciences (India)

    Abstract. A facile sol–gel combustion route was reported for the direct preparation of CaZrO3:Eu3+ and CaZrO3:Eu3+, Gd3+. The obtained deposits were characterized by XRD, TGA-DSC, SEM, EDS, PL measurements and microscope fluorescence. When the Gd3+ ions were introduced in this compound, the emissions of ...

  20. Transdermal delivery of paeonol using cubic gel and microemulsion gel

    Science.gov (United States)

    Luo, Maofu; Shen, Qi; Chen, Jinjin

    2011-01-01

    Background The aim of this study was to develop new systems for transdermal delivery of paeonol, in particular microemulsion gel and cubic gel formulations. Methods Various microemulsion vehicles were prepared using isopropyl myristate as an oil phase, polyoxyethylated castor oil (Cremophor® EL) as a surfactant, and polyethylene glycol 400 as a cosurfactant. In the optimum microemulsion gel formulation, carbomer 940 was selected as the gel matrix, and consisted of 1% paeonol, 4% isopropyl myristate, 28% Cremophor EL/polyethylene glycol 400 (1:1), and 67% water. The cubic gel was prepared containing 3% paeonol, 30% water, and 67% glyceryl monooleate. Results A skin permeability test using excised rat skins indicated that both the cubic gel and microemulsion gel formulations had higher permeability than did the paeonol solution. An in vivo pharmacokinetic study done in rats showed that the relative bioavailability of the cubic gel and microemulsion gel was enhanced by about 1.51-fold and 1.28-fold, respectively, compared with orally administered paeonol suspension. Conclusion Both the cubic gel and microemulsion gel formulations are promising delivery systems to enhance the skin permeability of paeonol, in particular the cubic gel. PMID:21904450

  1. Synthesis of lithium silicates by the modified method of combustion. XRD and IR

    International Nuclear Information System (INIS)

    Cruz, D.; Bulbulian, S.

    2002-01-01

    The combustion method is fixed in exothermic reactions for producing ceramic compounds. The precursor solutions are mixtures of metal nitrates and the fuels. This method was modified using non-oxidant compounds as lithium hydroxide and silicide acid and urea as fuel. The precursors were heated during 5 minutes at temperatures between 250 C and 550 C allowing so the mixture combustion. The obtained ceramics were characterized by X-ray diffraction and IR spectroscopy. The sample pollution with carbonates was evaluated and it was found that the presence of these diminish according as increase the calcination temperature. (Author)

  2. A Review of Photocatalysts Prepared by Sol-Gel Method for VOCs Removal

    Directory of Open Access Journals (Sweden)

    Ting Ke Tseng

    2010-05-01

    Full Text Available The sol-gel process is a wet-chemical technique (chemical solution deposition, which has been widely used in the fields of materials science, ceramic engineering, and especially in the preparation of photocatalysts. Volatile organic compounds (VOCs are prevalent components of indoor air pollution. Among the approaches to remove VOCs from indoor air, photocatalytic oxidation (PCO is regarded as a promising method. This paper is a review of the status of research on the sol-gel method for photocatalyst preparation and for the PCO purification of VOCs. The review and discussion will focus on the preparation and coating of various photocatalysts, operational parameters, and will provide an overview of general PCO models described in the literature.

  3. Preparation of oxide glasses from metal alkoxides by sol-gel method

    Science.gov (United States)

    Kamiya, K.; Yoko, T.; Sakka, S.

    1987-01-01

    An investigation is carried out on the types of siloxane polymers produced in the course of the hydrolysis of silicon tetraethoxide, as well as the preparation of oxide glasses from metal alkoxides by the sol-gel method.

  4. Low dielectric loss in nano-Li-ferrite spinels prepared by sol–gel ...

    Indian Academy of Sciences (India)

    ... Refresher Courses · Symposia · Live Streaming. Home; Journals; Bulletin of Materials Science; Volume 39; Issue 1. Low dielectric loss in nano-Li-ferrite spinels prepared by sol–gel auto-combustion technique. Mamata Maisnam Nandeibam Nilima Maisnam Victory Sumitra Phanjoubam. Volume 39 Issue 1 February 2016 ...

  5. Development of plasma melting technology for treatment of low level radioactive waste. Pt. 9. Treatment method for combustible wastes

    International Nuclear Information System (INIS)

    Yasui, Shinji; Adachi, Kazuo; Amakawa, Masashi

    1996-01-01

    This paper describes the incineration method for the miscellaneous solid waste containing the low level radioactive combustibles (wood, PE, PVC) in a plasma furnace. The maximum weights of the respective combustibles to be fed into the plasma furnace and the incineration conditions for continuous feeding of the respective combustibles were examined experimentally. As a result, a experimental equation which expresses the maximum weights of the respective combustibles to be fed in reference to the residence time in the plasma furnace was obtained by using apparent reaction rate constants. Furthermore, a calculation method for the feeding intervals in reference to the weights of the combustibles fed each time was obtained for the continuous feeding in the plasma furnace, and the method was found to be consistent with experimental results. (author)

  6. Hydroxyapatite, fluor-hydroxyapatite and fluorapatite produced via the sol-gel method. Optimisation, characterisation and rheology.

    Science.gov (United States)

    Tredwin, Christopher J; Young, Anne M; Georgiou, George; Shin, Song-Hee; Kim, Hae-Won; Knowles, Jonathan C

    2013-02-01

    Currently, most titanium implant coatings are made using hydroxyapatite and a plasma spraying technique. There are however limitations associated with plasma spraying processes including poor adherence, high porosity and cost. An alternative method utilising the sol-gel technique offers many potential advantages but is currently lacking research data for this application. It was the objective of this study to characterise and optimise the production of Hydroxyapatite (HA), fluorhydroxyapatite (FHA) and fluorapatite (FA) using a sol-gel technique and assess the rheological properties of these materials. HA, FHA and FA were synthesised by a sol-gel method. Calcium nitrate and triethylphosphite were used as precursors under an ethanol-water based solution. Different amounts of ammonium fluoride (NH4F) were incorporated for the preparation of the sol-gel derived FHA and FA. Optimisation of the chemistry and subsequent characterisation of the sol-gel derived materials was carried out using X-ray Diffraction (XRD) and Differential Thermal Analysis (DTA). Rheology of the sol-gels was investigated using a viscometer and contact angle measurement. A protocol was established that allowed synthesis of HA, FHA and FA that were at least 99% phase pure. The more fluoride incorporated into the apatite structure; the lower the crystallisation temperature, the smaller the unit cell size (changes in the a-axis), the higher the viscosity and contact angle of the sol-gel derived apatite. A technique has been developed for the production of HA, FHA and FA by the sol-gel technique. Increasing fluoride substitution in the apatite structure alters the potential coating properties. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.

  7. Dosimetry using radiosensitive gels in radiotherapy: significance and methods

    International Nuclear Information System (INIS)

    Gibon, D.; Bourel, P.; Castelain, B.; Marchandise, X.; Rousseau, J.

    2001-01-01

    The goal of conformal radiotherapy is to concentrate the dose in a well-defined volume by avoiding the neighbouring healthy structures. This technique requires powerful treatment planning software and a rigorous control of estimated dosimetry. The usual dosimetric tools are not adapted to visualize and validate complex 3D treatment. Dosimetry by radiosensitive gel permits visualization and measurement of the three-dimensional dose distribution. The objective of this work is to report on current work in this field and, based on our results and our experience, to draw prospects for an optimal use of this technique. Further developments will relate to the realization of new radiosensitive gels satisfying, as well as possible, cost requirements, easy realization and use, magnetic resonance imagery (MRI) sensitivity, tissue equivalence, and stability. Other developments focus on scanning methods, especially in MRI to measure T1 and T2. (author)

  8. A direct method to visualise the aryl acylamidase activity on cholinesterases in polyacrylamide gels

    Directory of Open Access Journals (Sweden)

    Boopathy Rathanam

    2000-12-01

    Full Text Available Abstract Background In vertebrates, two types of cholinesterases exist, acetylcholinesterase and butyrylcholinesterase. The function of acetylcholinesterase is to hydrolyse acetylcholine, thereby terminating the neurotransmission at cholinergic synapse, while the precise physiological function of butyrylcholinesterase has not been identified. The presence of cholinesterases in tissues that are not cholinergically innervated indicate that cholinesterases may have functions unrelated to neurotransmission. Furthermore, cholinesterases display a genuine aryl acylamidase activity apart from their predominant acylcholine hydrolase activity. The physiological significance of this aryl acylamidase activity is also not known. The study on the aryl acylamidase has been, in part hampered by the lack of a specific method to visualise this activity. We have developed a method to visualise the aryl acylamidase activity on cholinesterase in polyacrylamide gels. Results The o-nitroaniline liberated from o-nitroacetanilide by the action of aryl acylamidase activity on cholinesterases, in the presence of nitrous acid formed a diazonium compound. This compound gave an azo dye complex with N-(1-napthyl-ethylenediamine, which appeared as purple bands in polyacrylamide gels. Treating the stained gels with trichloroacetic acid followed by Tris-HCl buffer helped in fixation of the stain in the gels. By using specific inhibitors for acetylcholinesterase and butyrylcholinesterase, respectively, differential staining for the aryl acylamidase activities on butyrylcholinesterase and acetylcholinesterase in a sample containing both these enzymes has been demonstrated. A linear relationship between the intensity of colour developed and activity of the enzyme was obtained. Conclusions A novel method to visualise the aryl acylamidase activity on cholinesterases in polyacrylamide gels has been developed.

  9. Application of spectroscopy and positron annihilation methods in studies of the gel-glasses materials

    International Nuclear Information System (INIS)

    Legendziewicz, J.; Guzik, M.; Glinski, J.; Jerie, K.; Baranowski, A.; Kochel, A.

    2008-01-01

    The results of optical spectroscopy (absorption and emission) and positron annihilation investigations of glasses are presented and discussed. The alcoholic sol-gel method was adapted for the incorporation of Ln(III) into silica gel network and the resulting gels were prepared with chlorides of selected lanthanides (cerium, praseodymium, europium, ytterbium) and with or without some addition of ethylene glycol. During the sol-gel process, a new type of compound with general formula of C 12 H 24 Cl 3 O 12 Pr 2 , 3(Cl) was crystallized. Its crystal structure was determined by X-ray diffraction studies what helps understanding the silica network structure. Measurements of absorption, emission and emission excitation spectra were carried out at 4 and 293 K. The optical properties of gels were compared with the spectroscopic data of C 12 H 24 Cl 3 O 12 Pr 2 , 3(Cl) single crystal. The experimental results of positron annihilation investigations were correlated with those from optical spectroscopy

  10. Internal combustion engine and method for control

    Science.gov (United States)

    Brennan, Daniel G

    2013-05-21

    In one exemplary embodiment of the invention an internal combustion engine includes a piston disposed in a cylinder, a valve configured to control flow of air into the cylinder and an actuator coupled to the valve to control a position of the valve. The internal combustion engine also includes a controller coupled to the actuator, wherein the controller is configured to close the valve when an uncontrolled condition for the internal engine is determined.

  11. Combustion water purification techniques influence on OBT analysing using liquid scintillation counting method

    International Nuclear Information System (INIS)

    Varlam, C.; Vagner, I.; Faurescu, I.; Faurescu, D.

    2015-01-01

    In order to determine organically bound tritium (OBT) from environmental samples, these must be converted into water, measurable by liquid scintillation counting (LSC). For this purpose we conducted some experiments to determine OBT level of a grass sample collected from an uncontaminated area. The studied grass sample was combusted in a Parr bomb. However usual interfering phenomena were identified: color or chemical quench, chemiluminescence, overlap over tritium spectrum because of other radionuclides presence as impurities ( 14 C from organically compounds, 36 Cl as chloride and free chlorine, 40 K as potassium cations) and emulsion separation. So the purification of the combustion water before scintillation counting appeared to be essential. 5 purification methods were tested: distillation with chemical treatment (Na 2 O 2 and KMnO 4 ), lyophilization, chemical treatment (Na 2 O 2 and KMnO 4 ) followed by lyophilization, azeotropic distillation with toluene and treatment with a volcanic tuff followed by lyophilization. After the purification step each sample was measured and the OBT measured concentration, together with physico-chemical analysis of the water analyzed, revealed that the most efficient method applied for purification of the combustion water was the method using chemical treatment followed by lyophilization

  12. Ducted combustion chamber for direct injection engines and method

    Science.gov (United States)

    Mueller, Charles

    2015-03-03

    An internal combustion engine includes an engine block having a cylinder bore and a cylinder head having a flame deck surface disposed at one end of the cylinder bore. A piston connected to a rotatable crankshaft and configured to reciprocate within the cylinder bore has a piston crown portion facing the flame deck surface such that a combustion chamber is defined within the cylinder bore and between the piston crown and the flame deck surface. A fuel injector having a nozzle tip disposed in fluid communication with the combustion chamber has at least one nozzle opening configured to inject a fuel jet into the combustion chamber along a fuel jet centerline. At least one duct defined in the combustion chamber between the piston crown and the flame deck surface has a generally rectangular cross section and extends in a radial direction relative to the cylinder bore substantially along the fuel jet centerline.

  13. Toward the modeling of combustion reactions through discrete element method (DEM) simulations

    Science.gov (United States)

    Reis, Martina Costa; Alobaid, Falah; Wang, Yongqi

    2018-03-01

    In this work, the process of combustion of coal particles under turbulent regime in a high-temperature reaction chamber is modeled through 3D discrete element method (DEM) simulations. By assuming the occurrence of interfacial transport phenomena between the gas and solid phases, one investigates the influence of the physicochemical properties of particles on the rates of heterogeneous chemical reactions, as well as the influence of eddies present in the gas phase on the mass transport of reactants toward the coal particles surface. Moreover, by considering a simplistic chemical mechanism for the combustion process, thermochemical and kinetic parameters obtained from the simulations are employed to discuss some phenomenological aspects of the combustion process. In particular, the observed changes in the mass and volume of coal particles during the gasification and combustion steps are discussed by emphasizing the changes in the chemical structure of the coal. In addition to illustrate how DEM simulations can be used in the modeling of consecutive and parallel chemical reactions, this work also shows how heterogeneous and homogeneous chemical reactions become a source of mass and energy for the gas phase.

  14. Superconductive ceramics obtained with sol gel method

    International Nuclear Information System (INIS)

    Arcangeli, A.; Mosci, A.; Nardi, A.; Vatteroni, R.; Zondini, C.

    1988-01-01

    Several sol gel routes have been considered, studied and developed to produce large quantities of granulates which can be processed to obtain ceramics having good superconducting characteristics. In the considered process a mixture of commercial nitrates is atomized, at room temperature, in a solution 1:1 of Primene JMT and Benzene and a pale blue gel of the starting elements is suddently formed. The granulates obtained are free flowing, very reactive and well suited for pressing. For their intrinsic characteristics they could be very good precursors for the production of large quantities of superconductive ceramics in different forms. The precipitated gel is dried, calcinated, pressed in the form of cylindrical pellets which are sintered up to 960 degrees C. No griding or different thermal treatments are needed. The sintered material has low electric resistence, shows a clear Meissner effect and has a transition temperature of between 91 and 95 K

  15. THERMALLY STABLE NANOCRYSTALLINE TIO2 PHOTOCATALYSTS SYNTHESIZED VIA SOL-GEL METHODS MODIFIED WITH IONIC LIQUID AND SURFACTANT MOLECULES

    Science.gov (United States)

    Recently, sol-gel methods employing ionic liquids (ILs) have shown significant implications for the synthesis of well-defined nanostructured inorganic materials. Herein, we synthesized nanocrystalline TiO2 particles via an alkoxide sol-gel method employing a water-immi...

  16. Preparation of silica by sol-gel method using formamide

    Directory of Open Access Journals (Sweden)

    R.F.S. Lenza

    2001-07-01

    Full Text Available In this work we obtained microporous and mesoporous silica gels by sol-gel processing. Tetraethylortosilicate (TEOS was used as precursor. Nitric acid and hydrofluoric acid were used as catalysts. In order to study the affect of formamide as drying additive, we used a molar ratio alkoxide/formamide of 1/1. The performance of formamide in obtaining crack-free gels was evaluated through monolithicity measurements. The structural evolution occurring in the interconnected network of the gels during thermal treatment was monitored by Fourier transform infrared spectroscopy (FTIR, shrinkage and density measurements and nitrogen gas sorption. We noted that in the presence of formamide, the Si-O-Si bonds are stronger and belong to a more cross-linked structure. The samples obtained in the presence of formamide have larger pore volume and its pore structure is in the range of mesoporosity. The samples obtained without additive are microporous. Formamide allowed the preparation of crack-free silica gels stabilized at high temperatures.

  17. Analysis of sperm antigens by sodium dodecyl sulfate gel/protein blot radioimmunobinding method

    International Nuclear Information System (INIS)

    Lee, C.Y.G.; Huang, Y.S.; Hu, P.C.; Gomel, V.; Menge, A.C.

    1982-01-01

    A radioimmunobinding method based on the blotting of renatured proteins from sodium dodecyl sulfate gels on to nitrocellulose filter papers was developed to analyze the sperm antigens that elicit serum anti-sperm antibodies. In rabbits, serum anti-sperm antibodies were raised by immunization with homologous epididymal spermatozoa mixed with complete Freund's adjuvant. The raised antisera from either male or female rabbits were shown to react with three major sperm protein bands on sodium dodecyl sulfate gels with the corresponding molecular weights of about 70,000 +/- 5000, 14,000, and 13,000, respectively. In humans, the monoclonal antibodies against human sperm were raised by a hybridoma technique. Out of six independent hybrid cell lines that were generated, three of them were shown to secrete immunoglobulins that react with the same two protein bands on sodium dodecyl sulfate gels, which have the approximate molecular weight of 10,000. The same procedure was also used to analyze human serum samples that were shown to contain anti-sperm antibodies by the known techniques. Unique sperm antigens that elicit anti-sperm antibodies in humans were identified and correlated. The results of this study suggest that sodium dodecyl sulfate gel/protein blot radioimmunobinding method may be a sensitive and useful tool for the study of sperm antigens that elicit autoimmune responses and their association with human infertility

  18. Synthesis by the Pechini method and reaction combustion for the preparation of TiO2: a comparative analysis

    International Nuclear Information System (INIS)

    Almeida, E.P.; Ribeiro, P.C.; Freitas, N.L.; Lira, H.L.; Costa, A.C.F.M. da; Kiminami, R.H.G.A.

    2009-01-01

    The aim of this work is to prepare TiO 2 powder by Pechini and combustion reaction methods. A comparative analysis between the structural and morphological results obtained by the two methods was investigated. The powders were characterized by X-ray diffractions (XRD), infrared analysis, nitrogen adsorption (BET) and particle size distribution. The results from XRD show that the powders prepared by Pechini method and by combustion reaction using aniline as fuel, present anatase as major phase and traces of rutile phase. The values of crystallite size and surface area from BET were: 30 e 44 nm; 6.2 e 4.4 m 2 /g, for the powders prepared by Pechini and combustion reaction, respectively. The values of particle size were: 21.9 e 5.3 μm, for the powders prepared by Pechini and combustion reaction, respectively. The Pechini method was more suitable to obtain powders with irregular agglomerates, in the block shape with particles bonded softly and small crystallite size. (author)

  19. Dissolution testing of intermediary products in uranium dioxide production by the sol-gel method

    International Nuclear Information System (INIS)

    Melichar, F.; Landspersky, H.; Urbanek, V.

    1979-01-01

    A method was developed of dissolving polyuranates and uranium dioxides in sulphuric acid and in carbonate solutions for testing intermediate products in the sol-gel process preparation of uranium dioxide. A detailed granulometric analysis of spherical particle dispersion was included as part of the tests. Two different production methods were used for the two types of studied materials. The test results show that the test method is suitable for determining temperature sensitivity of the materials to dissolution reaction. The geometrical distribution of impurities in the spherical particles can be determined from the dissolution kinetics. The method allows the determination of the effect of carbon from impurities on the process of uranium dioxide leaching and is thus applicable for testing materials prepared by the sol-gel method. (Z.M.)

  20. Nanosized LaCo0.6Fe0.4O3 perovskites synthesized by citrate sol gel auto combustion method

    Directory of Open Access Journals (Sweden)

    Unikoth Megha

    2014-06-01

    Full Text Available LaCo0.6 Fe0.4 O3 (LCFO nanopowder was synthesized from constituent metal nitrates, citric acid and ethylene glycol by citrate sol gel autocombustion method and calcined at different temperatures. The powders were characterized by X-ray diffraction (XRD, scanning electron microscopy (SEM, energy dispersive X-ray analysis (EDAX and Fourier transform infrared spectra (FTIR, whereas dielectric properties were investigated with LCR-meter. The FTIR spectra, taken for the xerogel and the sample calcined at 1000 °C, confirm that the organic groups were removed during calcination and oxide structure was formed. The XRD result shows that LCFO has rhombhohedral crystal structure with R-3C space group and forms single phase after calcination at 600 °C. The activation energy of crystallite growth, determined from the Arrhenius plot, was 17±2 kJ/mol. Surface feature studies of the powders were obtained from SEM. At 1000 °C, dense microstructure with well-shaped grain boundaries was obtained and the average grain size was around 400 nm. EDAX confirms the elemental composition. Finally, from the dielectric studies, it was found that the dielectric constant (εr as well as dielectric loss tangent (tan δ decreases with increase in frequency.

  1. A rapid and efficient two-step gel electrophoresis method for the purification of major rye grass pollen allergens.

    Science.gov (United States)

    Levy, D; Davies, J; O'Hehir, R; Suphioglu, C

    2001-06-01

    Purified proteins are mandatory for molecular, immunological and cellular studies. However, purification of proteins from complex mixtures requires specialised chromatography methods (i.e., gel filtration, ion exchange, etc.) using fast protein liquid chromatography (FPLC) or high-performance liquid chromatography (HPLC) systems. Such systems are expensive and certain proteins require two or more different steps for sufficient purity and generally result in low recovery. The aim of this study was to develop a rapid, inexpensive and efficient gel-electrophoresis-based protein purification method using basic and readily available laboratory equipment. We have used crude rye grass pollen extract to purify the major allergens Lol p 1 and Lol p 5 as the model protein candidates. Total proteins were resolved on large primary gel and Coomassie Brilliant Blue (CBB)-stained Lol p 1/5 allergens were excised and purified on a secondary "mini"-gel. Purified proteins were extracted from unstained separating gels and subjected to sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and immunoblot analyses. Silver-stained SDS-PAGE gels resolved pure proteins (i.e., 875 microg of Lol p 1 recovered from a 8 mg crude starting material) while immunoblot analysis confirmed immunological reactivity of the purified proteins. Such a purification method is rapid, inexpensive, and efficient in generating proteins of sufficient purity for use in monoclonal antibody (mAb) production, protein sequencing and general molecular, immunological, and cellular studies.

  2. Methods for Characterization of the Diesel Combustion and Emission Formation Processes

    Energy Technology Data Exchange (ETDEWEB)

    Lindstroem, Mikael

    2011-07-01

    In this thesis various aspects of the diesel engine fuel injection, combustion and emission formation processes have been evaluated. Several types of evaluation tools and methods have been applied. Fuel spray momentum was used to characterize injection rate and hole-to-hole variations in fuel injectors. Using both instantaneous fuel impulse rates and instantaneous mass flow measurements, spray velocity and nozzle flow parameters were evaluated. Several other hole-to-hole resolved injector characterization methods were used to characterize a set of fuel injectors subjected to long term testing. Fuel injector nozzle hole-to-hole variations were found to have a large influence on engine efficiency and emissions. The degree of hole-to-hole variations for an injector has been shown to correlate well with the performance deterioration of that injector. The formation and atomization of fuel sprays, ignition onset and the development of diffusion flames were studied using an optical engine. Flame temperature evaluations have been made using two different methods. NO-formation depends strongly on flame temperature. By applying a NO-formation evaluation method based on both heat release rate and flame and gas temperature it was possible to achieve a reasonable degree of correlation with measured exhaust emissions for very varying operating conditions. The prediction capability of the NO-formation evaluation method was utilized to evaluate spatially and temporally resolved NO-formation from flame temperature distributions. This made it possible to pinpoint areas with a high degree of NO-formation. It was found that small hot zones in the flames can be responsible for a large part of the total amount of NO that is produced, especially in combustion cases where no EGR is used to lower the flame temperature. By applying optical diagnostics methods the combustion and emission formation phenomena encountered during production engine transients were evaluated. The transient

  3. Method and device for the combustion of pulverised coal

    Energy Technology Data Exchange (ETDEWEB)

    Schoppe, F

    1977-01-13

    Until now, high combustion space loadings in pulverised coal firing were only obtained with melting combustion, where the ash is fluid. The disadvantage of this is that part of the heating surface is covered by liquid slack, and this type of combustion cannot operate in 'on-off operation', as the slack solidifies when the boiler is switched off. According to the invention, however, pulverised coal, which is reluctant to react, can be burnt at high combustion space loadings of over 2000 Mcal/cu. metre. hour. atm. with dry ash extraction, so that its use is possible for the combustion in central heating plants in detached houses and blocks of flats, with 'on-off operation'. For this purpose, the pulverised coal is heated under excess pressure in an atmosphere with a maximum of 10% of oxygen with a speed of heating of 1000/sup 0/C/sec up to 100 to 150/sup 0/C above its ignition temperature, and can be blown into the combustion air. Tangentially to the flame jet, a cold gas flow is guided so that burning particles thrown out at the sides are cooled below the ash melting temperature, before they reach the walls. The burning flame jet is accelerated, by using the excess pressure, via an injector, into a zone at less than the ash melting temperature, so that dry ash extraction is guaranteed.

  4. Combustion water purification techniques influence on OBT analysing using liquid scintillation counting method

    Energy Technology Data Exchange (ETDEWEB)

    Varlam, C.; Vagner, I.; Faurescu, I.; Faurescu, D. [National Institute for Cryogenics and Isotopic Technologies, Valcea (Romania)

    2015-03-15

    In order to determine organically bound tritium (OBT) from environmental samples, these must be converted into water, measurable by liquid scintillation counting (LSC). For this purpose we conducted some experiments to determine OBT level of a grass sample collected from an uncontaminated area. The studied grass sample was combusted in a Parr bomb. However usual interfering phenomena were identified: color or chemical quench, chemiluminescence, overlap over tritium spectrum because of other radionuclides presence as impurities ({sup 14}C from organically compounds, {sup 36}Cl as chloride and free chlorine, {sup 40}K as potassium cations) and emulsion separation. So the purification of the combustion water before scintillation counting appeared to be essential. 5 purification methods were tested: distillation with chemical treatment (Na{sub 2}O{sub 2} and KMnO{sub 4}), lyophilization, chemical treatment (Na{sub 2}O{sub 2} and KMnO{sub 4}) followed by lyophilization, azeotropic distillation with toluene and treatment with a volcanic tuff followed by lyophilization. After the purification step each sample was measured and the OBT measured concentration, together with physico-chemical analysis of the water analyzed, revealed that the most efficient method applied for purification of the combustion water was the method using chemical treatment followed by lyophilization.

  5. Method for conducting underground reverse combustion

    Energy Technology Data Exchange (ETDEWEB)

    Craig, Jr, F F; Neil, J D; Parrish, D R; Scott, P H

    1965-05-25

    This is a procedure for conducting a reverse-combustion operation in a formation penetrated by an injection well and a producing well which have objectionable fluids between them. The procedure consists of shutting-in the injection well and injecting a sufficient quantity of oxygen-containing gas into the deposit by the producing well to force these undesirable fluids away from the vicinity of the wells. Next, the deposit is ignited in the vicinity of the producing well. In this manner, the producing well is opened to production. At substantially the same time, an oxygen-containing gas is injected into the deposit through the injection well, so that the resulting combustion-front travels countercurrently to the path of the gas. (4 claims)

  6. Fabrication of YBa2Cu3O7-δ superconducting fibers by the sol-gel method

    International Nuclear Information System (INIS)

    Umeda, Tetsu; Kozuka, Hiromitsu; Sakka, Sumio

    1988-01-01

    High-T c superconducting oxide fibers were fabricated by the sol-gel method. An aqueous solution of metal acetates was concentrated to form a viscous sol, from which gel fibers were spun. The gel fibers, 5 to 1,000 μm in diameter, were converted to ceramic fibers by heating to 900 degree C. The fired fibers (T c (onset) of 94 K and T c (end) of 62.2 K) were rough and had porous microstructures

  7. Coal-water slurry fuel internal combustion engine and method for operating same

    Science.gov (United States)

    McMillian, Michael H.

    1992-01-01

    An internal combustion engine fueled with a coal-water slurry is described. About 90 percent of the coal-water slurry charge utilized in the power cycle of the engine is directly injected into the main combustion chamber where it is ignited by a hot stream of combustion gases discharged from a pilot combustion chamber of a size less than about 10 percent of the total clearance volume of main combustion chamber with the piston at top dead center. The stream of hot combustion gases is provided by injecting less than about 10 percent of the total coal-water slurry charge into the pilot combustion chamber and using a portion of the air from the main combustion chamber that has been heated by the walls defining the pilot combustion chamber as the ignition source for the coal-water slurry injected into the pilot combustion chamber.

  8. Method and Apparatus for Thermal Spraying of Metal Coatings Using Pulsejet Resonant Pulsed Combustion

    Science.gov (United States)

    Paxson, Daniel E. (Inventor)

    2014-01-01

    An apparatus and method for thermal spraying a metal coating on a substrate is accomplished with a modified pulsejet and optionally an ejector to assist in preventing oxidation. Metal such as Aluminum or Magnesium may be used. A pulsejet is first initiated by applying fuel, air, and a spark. Metal is inserted continuously in a high volume of metal into a combustion chamber of the pulsejet. The combustion is thereafter controlled resonantly at high frequency and the metal is heated to a molten state. The metal is then transported from the combustion chamber into a tailpipe of said pulsejet and is expelled therefrom at high velocity and deposited on a target substrate.

  9. A colourimetric method for the determination of the degree of chemical cross-linking in aspartic acid-based polymer gels

    Directory of Open Access Journals (Sweden)

    B. Gyarmati

    2015-02-01

    Full Text Available A 2,4,6-trinitrobenzenesulphonic acid (TNBS-based assay is developed to determine the degree of chemical cross-linking in aspartic acid-based polymer gels. The conventional colourimetric method for the quantitative determination of amine groups is difficult to use in polymer networks; thus, an improved method is developed to analyse polymer gels swollen in dimethyl sulfoxide (DMSO. Reaction products of the derivatizing reaction are examined by NMR. The chemical stability of the reagent is increased in DMSO, and the method shows satisfactory linearity and accuracy. The degree of chemical cross-linking in the investigated gels is close to its theoretical maximum, but the conversion of the pendant amine groups to cross-linking points is strongly dependent on the feed composition of the gels.

  10. Gas response properties of citrate gel synthesized nanocrystalline MgFe2O4: Effect of sintering temperature

    International Nuclear Information System (INIS)

    Patil, J.Y.; Mulla, I.S.; Suryavanshi, S.S.

    2013-01-01

    Graphical abstract: Display Omitted Highlights: ► Synthesis of nanocrystalline MgFe 2 O 4 by economical citrate gel combustion method. ► Structural, morphological, and gas response properties of MgFe 2 O 4 . ► Enhancement in selectivity of MgFe 2 O 4 towards LPG with sintering temperature. ► Use of MgFe 2 O 4 to detect different gases at different operating temperatures. -- Abstract: Spinel type MgFe 2 O 4 material was synthesized by citrate gel combustion method. The effect of sintering temperature on structural, morphological, and gas response properties was studied. The powder X-ray diffraction pattern and transmission electron microscope study confirms nanocrystalline spinel structure of the synthesized powder. The material was tested for response properties to various reducing gases like liquid petroleum gas (LPG), acetone, ethanol, and ammonia. The results demonstrated n-type semiconducting behavior of MgFe 2 O 4 material. It was revealed that MgFe 2 O 4 sintered at 973 K was most sensitive to LPG at 648 K and to acetone at 498 K. However MgFe 2 O 4 sintered at 1173 K exhibited higher response and selectivity to LPG with marginal increase in the operating temperature. Furthermore, the sensor exhibited a fast response and a good recovery. It was observed that the particles size, porosity, and surface activity of the sensor material is affected by the sintering temperature.

  11. Enhancement of the electrochemical performance in LiFePO4 cathode materials synthesized by using the sol-gel method

    Directory of Open Access Journals (Sweden)

    Kyong-Soo Hong

    2010-11-01

    Full Text Available LiFePO4 powders were synthesized by using the sol-gel and the solid-state reaction methods. The chemical states of Fe ions were studied by using XPS, and their electrochemical properties according to the oxidation states of Fe ions were compared. The average oxidation state of Fe ions in LiFePO4 powders synthesized by using the solid-state reaction method was found to be Fe3+, on the other hand, that of Fe ions synthesized by using the sol-gel method was found to be Fe2+. The obtained discharge capacities were 50 mAh/g and 120 mAh/g at a rate 0.1 C in LiFePO4 synthesized by using the solid-state reaction and sol-gel methods, respectively. Relatively a good cycling stability was observed in sol-gel prepared powder.

  12. Obtaining ZnO nanocrystalline through methods of combustion and precipitation

    International Nuclear Information System (INIS)

    Garcia, A.P.; Guaglianoni, W.C.; Cunha, M.A.; Basegio, T.M.; Bergmann, C.P.

    2012-01-01

    Zinc oxide is important technological applications in rubber and industrial paints. The chemical properties and microstructure of ZnO powder depends on the synthesis method employed. In this work, it was obtained nanosized ZnO using different synthesis processes, such as solution combustion and precipitation, varying the concentrations of reactants and the working temperature. The obtained powders were characterized by SEM, BET, XRD, crystallite size determination and thermal analysis (TGA and DTA). It was possible to obtain nanosized ZnO with the methods used. (author)

  13. Method for the combustion of a gas, in fixed bed, with an oxidized solid and associated installation

    OpenAIRE

    Abanades García, Juan Carlos; Fernández García, José Ramón

    2014-01-01

    [EN] The present invention pertains to the field of the generation of energy from combustible gases, incorporating the capture of carbon dioxide for use or permanent storage and, specifically relates to cyclical methods of gas combustion with oxidized solids (chemical looping processes), in fixed bed, for solving the problem of controlling temperature in the combustion of gaseous fuels in fixed beds of metal oxides operating at high pressures, and also the associated installation.

  14. Radiative transfer modelling in combusting systems using discrete ordinates method on three-dimensional unstructured grids; Modelisation des transferts radiatifs en combustion par methode aux ordonnees discretes sur des maillages non structures tridimensionnels

    Energy Technology Data Exchange (ETDEWEB)

    Joseph, D.

    2004-04-01

    The prediction of pollutant species such as soots and NO{sub x} emissions and lifetime of the walls in a combustion chamber is strongly dependant on heat transfer by radiation at high temperatures. This work deals with the development of a code based on the Discrete Ordinates Method (DOM) aiming at providing radiative source terms and wall fluxes with a good compromise between cpu time and accuracy. Radiative heat transfers are calculated using the unstructured grids defined by the Computational Fluid Dynamics (CFD) codes. The spectral properties of the combustion gases are taken into account by a statistical narrow bands correlated-k model (SNB-ck). Various types of angular quadrature are tested and three different spatial differencing schemes were integrated and compared. The validation tests show the limit at strong optical thicknesses of the finite volume approximation used the Discrete Ordinates Method. The first calculations performed on LES solutions are presented, it provides instantaneous radiative source terms and wall heat fluxes. Those results represent a first step towards radiation/combustion coupling. (author)

  15. Preliminary assessment of combustion modes for internal combustion wave rotors

    Science.gov (United States)

    Nalim, M. Razi

    1995-01-01

    Combustion within the channels of a wave rotor is examined as a means of obtaining pressure gain during heat addition in a gas turbine engine. Several modes of combustion are considered and the factors that determine the applicability of three modes are evaluated in detail; premixed autoignition/detonation, premixed deflagration, and non-premixed compression ignition. The last two will require strong turbulence for completion of combustion in a reasonable time in the wave rotor. The compression/autoignition modes will require inlet temperatures in excess of 1500 R for reliable ignition with most hydrocarbon fuels; otherwise, a supplementary ignition method must be provided. Examples of combustion mode selection are presented for two core engine applications that had been previously designed with equivalent 4-port wave rotor topping cycles using external combustion.

  16. Combustion Model and Control Parameter Optimization Methods for Single Cylinder Diesel Engine

    Directory of Open Access Journals (Sweden)

    Bambang Wahono

    2014-01-01

    Full Text Available This research presents a method to construct a combustion model and a method to optimize some control parameters of diesel engine in order to develop a model-based control system. The construction purpose of the model is to appropriately manage some control parameters to obtain the values of fuel consumption and emission as the engine output objectives. Stepwise method considering multicollinearity was applied to construct combustion model with the polynomial model. Using the experimental data of a single cylinder diesel engine, the model of power, BSFC, NOx, and soot on multiple injection diesel engines was built. The proposed method succesfully developed the model that describes control parameters in relation to the engine outputs. Although many control devices can be mounted to diesel engine, optimization technique is required to utilize this method in finding optimal engine operating conditions efficiently beside the existing development of individual emission control methods. Particle swarm optimization (PSO was used to calculate control parameters to optimize fuel consumption and emission based on the model. The proposed method is able to calculate control parameters efficiently to optimize evaluation item based on the model. Finally, the model which added PSO then was compiled in a microcontroller.

  17. Pulsating combustion - Combustion characteristics and reduction of emissions

    Energy Technology Data Exchange (ETDEWEB)

    Lindholm, Annika

    1999-11-01

    In the search for high efficiency combustion systems pulsating combustion has been identified as one of the technologies that potentially can meet the objectives of clean combustion and good fuel economy. Pulsating combustion offers low emissions of pollutants, high heat transfer and efficient combustion. Although it is an old technology, the interest in pulsating combustion has been renewed in recent years, due to its unique features. Various applications of pulsating combustion can be found, mainly as drying and heating devices, of which the latter also have had commercial success. It is, however, in the design process of a pulse combustor, difficult to predict the operating frequency, the heat release etc., due to the lack of a well founded theory of the phenomenon. Research concerning control over the combustion process is essential for developing high efficiency pulse combustors with low emissions. Natural gas fired Helmholtz type pulse combustors have been the experimental objects of this study. In order to investigate the interaction between the fluid dynamics and the chemistry in pulse combustors, laser based measuring techniques as well as other conventional measuring techniques have been used. The experimental results shows the possibilities to control the combustion characteristics of pulsating combustion. It is shown that the time scales in the large vortices created at the inlet to the combustion chamber are very important for the operation of the pulse combustor. By increasing/decreasing the time scale for the large scale mixing the timing of the heat release is changed and the operating characteristics of the pulse combustor changes. Three different means for NO{sub x} reduction in Helmholtz type pulse combustors have been investigated. These include exhaust gas recirculation, alteration of air/fuel ratio and changed inlet geometry in the combustion chamber. All used methods achieved less than 10 ppm NO{sub x} emitted (referred to stoichiometric

  18. Determination of mercury in ash and soil samples by oxygen flask combustion method-Cold vapor atomic fluorescence spectrometry (CVAFS)

    International Nuclear Information System (INIS)

    Geng Wenhua; Nakajima, Tsunenori; Takanashi, Hirokazu; Ohki, Akira

    2008-01-01

    A simple method was developed for the determination of mercury (Hg) in coal fly ash (CFA), waste incineration ash (WIA), and soil by use of oxygen flask combustion (OFC) followed by cold vapor atomic fluorescence spectrometry (CVAFS). A KMnO 4 solution was used as an absorbent in the OFC method, and the sample containing a combustion agent and an ash or soil sample was combusted by the OFC method. By use of Hg-free graphite as the combustion agent, the determination of Hg in ash and soil was successfully carried out; the Hg-free graphite was prepared by use of a mild pyrolysis procedure at 500 deg. C. For six certified reference materials (three CFA samples and three soil samples), the values of Hg obtained by this method were in good agreement with the certified or reference values. In addition, real samples including nine CFAs collected from some coal-fired power plants, five WIAs collected from waste incineration plants, and two soils were analyzed by the present method, and the data were compared to those from microwave-acid digestion (MW-AD) method

  19. The conditional moment closure method for modeling lean premixed turbulent combustion

    Science.gov (United States)

    Martin, Scott Montgomery

    Natural gas fired lean premixed gas turbines have become the method of choice for new power generation systems due to their high efficiency and low pollutant emissions. As emission regulations for these combustion systems become more stringent, the use of numerical modeling has become an important a priori tool in designing clean and efficient combustors. Here a new turbulent combustion model is developed in an attempt to improve the state of the art. The Conditional Moment Closure (CMC) method is a new theory that has been applied to non-premixed combustion with good success. The application of the CMC method to premixed systems has been proposed, but has not yet been done. The premixed CMC method replaces the species mass fractions as independent variables with the species mass fractions that are conditioned on a reaction progress variable (RPV). Conservation equations for these new variables are then derived and solved. The general idea behind the CMC method is that the behavior of the chemical species is closely coupled to the reaction progress variable. Thus, species conservation equations that are conditioned on the RPV will have terms involving the fluctuating quantities that are much more likely to be negligible. The CMC method accounts for the interaction between scalar dissipation (micromixing) and chemistry, while de-coupling the kinetics from the bulk flow (macromixing). Here the CMC method is combined with a commercial computational fluid dynamics program, which calculates the large-scale fluid motions. The CMC model is validated by comparison to 2-D reacting backward facing step data. Predicted species, temperature and velocity fields are compared to experimental data with good success. The CMC model is also validated against the University of Washington's 3-D jet stirred reactor (JSR) data, which is an idealized lean premixed combustor. The JSR results are encouraging, but not as good as the backward facing step. The largest source of error is from

  20. Using X-ray methods to evaluate the combustion sulfur minerals and graphitic carbon in coals and ashes

    International Nuclear Information System (INIS)

    Wertz, D.L.; Collins, L.W.

    1988-01-01

    Coals are complex mixtures of vastly different materials whose combustion kinetics may well exhibit symbiotic effects. Although the sulfur oxide gases produced during the combustion of coals may have a variety of sources, they are frequently caused by the thermal degradation of inorganic minerals to produce ''acid rain''. Since many of the minerals involved either as reactants or products in coal combustion produce well defined x-ray power diffraction (XRPD) patterns, the fate of these minerals may be followed by measuring the XRPD patterns of combustion products. Coal 1368P, a coal with an unusually high pyrite (FeS/sub 2/) fraction, has been the subject materials in our investigations of the fate of the inorganic minerals during combustion. These studies include measuring the fate of pyrite and of graphitic carbon in coal 1368P under varying combustion conditions. The results discussed in this paper were obtained by standard XRPD methods

  1. Carrageenan :the difference between PNG and KCL gel precipitation method as Lactobacillus acidophilus encapsulation material

    Science.gov (United States)

    Setijawati, D.; Nursyam, H.; Salis, H.

    2018-04-01

    The study on the effects of using of materials and methods in the preparation of the microcapsules Lactobacillus acidophilus towards the viability has been done. The research method used is experimental laboratory design. Variable research was kind of material (A) as the first factor with sub factor (A1 = Eucheuma cottonii) (A2 = Eucheuma spinosum) (A3 = mixture of Eucheuma cottonii and Eucheuma spinosum 1:1 ratio), while the second factor is a method of extraction to produce caragenan (B) with sub factor (B1 = Philipine Natural Grade modification) (B2 = KCl gel Press Precipitation). Analysis of different influences uses Analysis Of Varians followed by Fisher’s test. Analysis of data uses Mini tab 16. The results shows that the kind of extraction factors and methods gave significantly different effects on the viability of Lactobacillus acidophilus. The highest mean of Viablity obtained in the treatment of materials with a mixture of Eucheuma cottonii and Eucheuma spinosum and used KCl Gel Press method is equal to 7.14 log (CFU / mL). It is ssuggested using of kappa-iota carrageenanmixture asencapsulation material with KCl Gel Press method on Lactobacillus acidophilus microencapsulation process because it treatment gavethe highest average of Lactobacillus acidophilus viability.

  2. High-gravity combustion synthesis and in situ melt infiltration: A new method for preparing cemented carbides

    International Nuclear Information System (INIS)

    Liu, Guanghua; Li, Jiangtao; Yang, Zengchao; Guo, Shibin; Chen, Yixiang

    2013-01-01

    A new method of high-gravity combustion synthesis and in situ melt infiltration is reported for preparing cemented carbides, where hot nickel melt is in situ synthesized from a highly exothermic combustion reaction and then infiltrated into tungsten carbide powder compacts. The as-prepared sample showed a homogeneous microstructure, and its relative density, hardness and flexural strength were 94.4%, 84 HRA and 1.49 GPa, respectively. Compared with conventional powder metallurgy approaches, high-gravity combustion synthesis offers a fast and furnace-free way to produce cemented carbides

  3. Quantitative evaluation of an image registration method for a NIPAM gel dosimeter

    International Nuclear Information System (INIS)

    Chang, Yuan-Jen; Yao, Chun-Hsu; Wu, Jay; Hsieh, Bor-Tsung; Tsang, Yuk-Wah; Chen, Chin-Hsing

    2015-01-01

    One of the problems in obtaining quality results is image registration when a gel dosimeter is used in conjunction with optical computed tomography (CT). This study proposes a passive alignment mechanism to obtain a precisely measured dose map. A holder plate with two pin–hole pairs is placed on the gel container cap. These two pin–hole pairs attach the gel container to the vertical shaft and can be precisely aligned with the rotation center of the vertical shaft at any time. Accordingly, a better reconstructed image quality is obtained. After obtaining a precisely measured dose map, the scale invariant feature transform (SIFT)-flow algorithm is utilized as an image registration method to align the treatment plan software (TPS) image with the measured dose map image. The results show that the gamma pass rate for the single-field irradiation increases from 83.39% to 94.03% when the algorithm is applied. And the gamma pass rate for the five-field irradiation treatment plan increases from 87.36% to 94.34%. The translation, scaling, and rotation occurring in the dose map image constructed using an optical CT scanner are also aligned with those in the TPS image using the SIFT-flow algorithm. Accordingly, improved gamma comparison results and a higher gamma pass rate are obtained. - Highlights: • A passive alignment method for obtaining a precisely measured dose map is developed. • The SIFT-flow algorithm is adopted as an image registration method for the gel dosimeter. • The SIFT-flow algorithm increases the gamma pass rate from 83.39% to 94.03% for the single-field irradiation. • The SIFT-flow algorithm increases the gamma pass rate from 87.36% to 94.34% for the five-field irradiation. • The translation, scaling, and rotation in the measured dose map image are aligned with those in the TPS image using the SIFT-flow algorithm

  4. Quantitative evaluation of an image registration method for a NIPAM gel dosimeter

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Yuan-Jen [Department of Management Information Systems, Central Taiwan University of Science and Technology, No. 666, Buzih Rd., Beitun District, Taichung City, Taiwan (R.O.C.) (China); Institute of Biomedical Engineering and Materials Science, Central Taiwan University of Science and Technology, No. 666, Buzih Rd., Beitun District, Taichung City, Taiwan (R.O.C.) (China); Yao, Chun-Hsu [School of Chinese Medicine, China Medical University, Taichung, Taiwan (R.O.C.) (China); Department of Biomedical Imaging and Radiological Science, China Medical University, Taichung, Taiwan (R.O.C.) (China); Department of Biomedical Informatics, Asia University, Taichung, Taiwan (R.O.C.) (China); Wu, Jay [Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei, Taiwan (R.O.C.) (China); Hsieh, Bor-Tsung [Department of Biomedical Imaging and Radiological Sciences, Central Taiwan University of Science and Technology, Taichung, Taiwan (R.O.C.) (China); Tsang, Yuk-Wah [Department of Radiation Oncology, Ditmanson Medical Foundation Chiayi Christian Hospital, Chiayi, Taiwan (R.O.C.) (China); Chen, Chin-Hsing [Department of Management Information Systems, Central Taiwan University of Science and Technology, No. 666, Buzih Rd., Beitun District, Taichung City, Taiwan (R.O.C.) (China)

    2015-06-01

    One of the problems in obtaining quality results is image registration when a gel dosimeter is used in conjunction with optical computed tomography (CT). This study proposes a passive alignment mechanism to obtain a precisely measured dose map. A holder plate with two pin–hole pairs is placed on the gel container cap. These two pin–hole pairs attach the gel container to the vertical shaft and can be precisely aligned with the rotation center of the vertical shaft at any time. Accordingly, a better reconstructed image quality is obtained. After obtaining a precisely measured dose map, the scale invariant feature transform (SIFT)-flow algorithm is utilized as an image registration method to align the treatment plan software (TPS) image with the measured dose map image. The results show that the gamma pass rate for the single-field irradiation increases from 83.39% to 94.03% when the algorithm is applied. And the gamma pass rate for the five-field irradiation treatment plan increases from 87.36% to 94.34%. The translation, scaling, and rotation occurring in the dose map image constructed using an optical CT scanner are also aligned with those in the TPS image using the SIFT-flow algorithm. Accordingly, improved gamma comparison results and a higher gamma pass rate are obtained. - Highlights: • A passive alignment method for obtaining a precisely measured dose map is developed. • The SIFT-flow algorithm is adopted as an image registration method for the gel dosimeter. • The SIFT-flow algorithm increases the gamma pass rate from 83.39% to 94.03% for the single-field irradiation. • The SIFT-flow algorithm increases the gamma pass rate from 87.36% to 94.34% for the five-field irradiation. • The translation, scaling, and rotation in the measured dose map image are aligned with those in the TPS image using the SIFT-flow algorithm.

  5. Preparation of continuous alumina gel fibres by aqueous sol–gel ...

    Indian Academy of Sciences (India)

    Abstract. Continuous alumina gel fibres were prepared by sol–gel method. The spinning sol was prepared by mixing aluminum nitrate, lactic acid and polyvinylpyrrolidone with a mass ratio of 10:3:1·5. Thermogravimetry– differential scanning calorimetry (TG–DSC), Fourier transform infrared (FTIR) spectra, X-ray diffraction ...

  6. Staged combustion - main method for suppressing nitrogen oxides in pulverized-coal fired boilers

    Energy Technology Data Exchange (ETDEWEB)

    Kotler, V.R. (Vsesoyuznyi Teplotekhnicheskii Institut (USSR))

    1989-08-01

    Describes principles behind staged combustion, which is based on organizing furnace operations so that only part of the air from the fuel is taken into the furnace. The remaining air, which is needed for combustion, is fed as a tertiary blast jet into the intermediate flame zone. Following inflammation and combustion of the volatile matter, the oxygen concentration in the flame drops sharply causing a retardation of the oxidation reactions forming NO and an intensification of the reactions causing the nitrogen-containing radicals NH{sub i} and CN to be converted into N{sub 2}. When the reducing agents CO, H{sub 2} and CH{sub 4} are present in certain flame zones, even the nitrogen oxide is reduced to N{sub 2}. The NO concentrations in the flame are reduced until the jet of tertiary air is introduced. Discusses with reference to practice in the USA and Western Europe how to achieve maximum effect of this method for different types of boiler and presents the results of observations of the introduction of staged combustion to the BKZ-210-140 boiler burning Kuznetsk gassy coal. 5 refs.

  7. Use of Thermoanalytic Methods in the Evaluation of Combusted Materials

    Directory of Open Access Journals (Sweden)

    František Krepelka

    2006-12-01

    Full Text Available The paper describes possibilities of using thermoanalytic methods for the evaluation and comparison of materials designed for a direct combustion. Differential thermal analysis (DTA and thermogravimetric analysis (TGA were both used in the evaluation. The paper includes a description of methods of data processing from analyses for the purposes of comparison of used materials regarding their heating values. The following materials were analysed in the experiments: wooden coal of objectional grain size, fly ash from heating plant exhaust funnels, dendromass waste: spruce sawdust, micro-briquettes of spruce sawdust and fly-ash combined.

  8. Metal-silica sol-gel materials

    Science.gov (United States)

    Stiegman, Albert E. (Inventor)

    2002-01-01

    The present invention relates to a single phase metal-silica sol-gel glass formed by the co-condensation of a transition metal with silicon atoms where the metal atoms are uniformly distributed within the sol-gel glass as individual metal centers. Any transition metal may be used in the sol-gel glasses. The present invention also relates to sensor materials where the sensor material is formed using the single phase metal-silica sol-gel glasses. The sensor materials may be in the form of a thin film or may be attached to an optical fiber. The present invention also relates to a method of sensing chemicals using the chemical sensors by monitoring the chromatic change of the metal-silica sol-gel glass when the chemical binds to the sensor. The present invention also relates to oxidation catalysts where a metal-silica sol-gel glass catalyzes the reaction. The present invention also relates to a method of performing oxidation reactions using the metal-silica sol-gel glasses. The present invention also relates to organopolymer metal-silica sol-gel composites where the pores of the metal-silica sol-gel glasses are filled with an organic polymer polymerized by the sol-gel glass.

  9. Development of methods to measure hemoglobin adducts by gel electrophoresis - Preliminary results

    International Nuclear Information System (INIS)

    Sun, J.D.; McBride, S.M.

    1988-01-01

    Chemical adducts formed on blood hemoglobin may be a useful biomarker for assessing human exposures to these compounds. This paper reports preliminary results in the development of methods to measure such adducts that may be generally applicable for a wide variety of chemicals. Male F344/N rats were intraperitoneally injected with 14 C-BaP dissolved in corn oil. Twenty-four hours later, the rats were sacrificed. Blood samples were collected and globin was isolated. Globin protein was then cleaved into peptide fragments using cyanogen bromide and the fragments separated using 2-dimensional gel electrophoresis. The results showed that the adducted 14 C-globin fragments migrated to different areas of the gel than did unadducted fragments. Further research is being conducted to develop methods that will allow quantitation of separated adducted globin fragments from human blood samples without the use of a radiolabel. (author)

  10. Solution combustion method for synthesis of nanostructured hydroxyapatite, fluorapatite and chlorapatite

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Junjie; Dong, Xiaochen; Bian, Mengmeng [School of Chemistry and Materials Engineering, Changshu Institute of Technology, Changshu (China); Zhao, Junfeng, E-mail: daidai02304@163.com [School of Chemistry and Materials Engineering, Changshu Institute of Technology, Changshu (China); Jiangsu Laboratory of Advanced Functional Materials, Changshu Institute of Technology, Changshu (China); Zhang, Yao; Sun, Yue [School of Chemistry and Materials Engineering, Changshu Institute of Technology, Changshu (China); Chen, JianHua; Wang, XuHong [School of Chemistry and Materials Engineering, Changshu Institute of Technology, Changshu (China); Jiangsu Laboratory of Advanced Functional Materials, Changshu Institute of Technology, Changshu (China)

    2014-09-30

    Highlights: • We report a synthesis of HA, Fap and Clap vio a modified solution combustion method. The nucleation of β-TCP was inhibited in the abundant-calcium system (Ca/P = 2.3>>1.67) in this study. F{sup −} brushed into the structure of HA and replace the position of OH{sup −} is easier than that of Cl{sup −}. - Abstract: Hydroxyapatite (HAP), fluorapatite (Fap) and chlorapatite (Clap) were prepared by solution combustion method with further annealing at 800 °C. The characterization and structural features of the synthesized powders were evaluated by the powder X-ray diffraction (XRD, Fourier transform infrared spectroscopy (FT-IR), scanning electron microscope (SEM) and transmission electron microscopy (TEM) techniques. Characterization results from XRD and Rietveld analysis revealed that OH{sup −} in the HAP lattice were gradually substituted with the increase of F{sup −} and Cl{sup −} content and totally substituted at the molar concentration of 0.28 and 0.6, respectively. The results from FI-IR have also confirmed the incorporation of substituted anions in the apatite structure.

  11. A predictive model of natural gas mixture combustion in internal combustion engines

    Directory of Open Access Journals (Sweden)

    Henry Espinoza

    2007-05-01

    Full Text Available This study shows the development of a predictive natural gas mixture combustion model for conventional com-bustion (ignition engines. The model was based on resolving two areas; one having unburned combustion mixture and another having combustion products. Energy and matter conservation equations were solved for each crankshaft turn angle for each area. Nonlinear differential equations for each phase’s energy (considering compression, combustion and expansion were solved by applying the fourth-order Runge-Kutta method. The model also enabled studying different natural gas components’ composition and evaluating combustion in the presence of dry and humid air. Validation results are shown with experimental data, demonstrating the software’s precision and accuracy in the results so produced. The results showed cylinder pressure, unburned and burned mixture temperature, burned mass fraction and combustion reaction heat for the engine being modelled using a natural gas mixture.

  12. Phenomenological modeling of combustion and NOx emissions using detailed tabulated chemistry methods in diesel engines

    OpenAIRE

    Rezaei, R.; Dinkelacker, F.; Tilch, B.; Delebinski, T.; Brauer, M.

    2016-01-01

    Enhancing the predictive quality of engine models, while maintaining an affordable computational cost, is of great importance. In this study, a phenomenological combustion and a tabulated NOx model, focusing on efficient modeling and improvement of computational effort, is presented. The proposed approach employs physical and chemical sub-models for local processes such as injection, spray formation, ignition, combustion, and NOx formation, being based on detailed tabulated chemistry methods....

  13. Axisymmetric vortex method for low-Mach number, diffusion-controlled combustion

    CERN Document Server

    Lakkis, I

    2003-01-01

    A grid-free, Lagrangian method for the accurate simulation of low-Mach number, variable-density, diffusion-controlled reacting flow is presented. A fast-chemistry model in which the conversion rate of reactants to products is limited by the local mixing rate is assumed in order to reduce the combustion problem to the solution of a convection-diffusion-generation equation with volumetric expansion and vorticity generation at the reaction fronts. The solutions of the continuity and vorticity equations, and the equations governing the transport of species and energy, are obtained using a formulation in which particles transport conserved quantities by convection and diffusion. The dynamic impact of exothermic combustion is captured through accurate integration of source terms in the vorticity transport equations at the location of the particles, and the extra velocity field associated with volumetric expansion at low Mach number computed to enforced mass conservation. The formulation is obtained for an axisymmet...

  14. LES and RANS modeling of pulverized coal combustion in swirl burner for air and oxy-combustion technologies

    International Nuclear Information System (INIS)

    Warzecha, Piotr; Boguslawski, Andrzej

    2014-01-01

    Combustion of pulverized coal in oxy-combustion technology is one of the effective ways to reduce the emission of greenhouse gases into the atmosphere. The process of transition from conventional combustion in air to the oxy-combustion technology, however, requires a thorough investigations of the phenomena occurring during the combustion process, that can be greatly supported by numerical modeling. The paper presents the results of numerical simulations of pulverized coal combustion process in swirl burner using RANS (Reynolds-averaged Navier–Stokes equations) and LES (large Eddy simulation) methods for turbulent flow. Numerical simulations have been performed for the oxyfuel test facility located at the Institute of Heat and Mass Transfer at RWTH Aachen University. Detailed analysis of the flow field inside the combustion chamber for cold flow and for the flow with combustion using different numerical methods for turbulent flows have been done. Comparison of the air and oxy-coal combustion process for pulverized coal shows significant differences in temperature, especially close to the burner exit. Additionally the influence of the combustion model on the results has been shown for oxy-combustion test case. - Highlights: • Oxy-coal combustion has been modeled for test facility operating at low oxygen ratio. • Coal combustion process has been modeled with simplified combustion models. • Comparison of oxy and air combustion process of pulverized coal has been done. • RANS (Reynolds-averaged Navier–Stokes equations) and LES (large Eddy simulation) results for pulverized coal combustion process have been compared

  15. Quenching Combustible Dust Mixtures Using Electric Particulate Suspensions (EPS): A New Testing Method For Microgravity

    Science.gov (United States)

    Colver, Gerald M.; Greene, Nathanael; Shoemaker, David; Xu, Hua

    2003-01-01

    The Electric Particulate Suspension (EPS) is a combustion ignition system being developed at Iowa State University for evaluating quenching effects of powders in microgravity (quenching distance, ignition energy, flammability limits). Because of the high cloud uniformity possible and its simplicity, the EPS method has potential for "benchmark" design of quenching flames that would provide NASA and the scientific community with a new fire standard. Microgravity is expected to increase suspension uniformity even further and extend combustion testing to higher concentrations (rich fuel limit) than is possible at normal gravity. Two new combustion parameters are being investigated with this new method: (1) the particle velocity distribution and (2) particle-oxidant slip velocity. Both walls and (inert) particles can be tested as quenching media. The EPS method supports combustion modeling by providing accurate measurement of flame-quenching distance as a parameter in laminar flame theory as it closely relates to characteristic flame thickness and flame structure. Because of its design simplicity, EPS is suitable for testing on the International Space Station (ISS). Laser scans showing stratification effects at 1-g have been studied for different materials, aluminum, glass, and copper. PTV/PIV and a leak hole sampling rig give particle velocity distribution with particle slip velocity evaluated using LDA. Sample quenching and ignition energy curves are given for aluminum powder. Testing is planned for the KC-135 and NASA s two second drop tower. Only 1-g ground-based data have been reported to date.

  16. Evaluation of Antioxidant and Cytotoxicity Activities of Copper Ferrite (CuFe2O4 and Zinc Ferrite (ZnFe2O4 Nanoparticles Synthesized by Sol-Gel Self-Combustion Method

    Directory of Open Access Journals (Sweden)

    Samikannu Kanagesan

    2016-08-01

    Full Text Available Spinel copper ferrite (CuFe2O4 and zinc ferrite (ZnFe2O4 nanoparticles were synthesized using a sol-gel self-combustion technique. The structural, functional, morphological and magnetic properties of the samples were investigated by Fourier transform infrared spectroscopy (FTIR, X-ray diffraction (XRD, Transmission electron microscopy (TEM and vibrating sample magnetometry (VSM. XRD patterns conform to the copper ferrite and zinc ferrite formation, and the average particle sizes were calculated by using a transmission electron microscope, the measured particle sizes being 56 nm for CuFe2O4 and 68 nm for ZnFe2O4. Both spinel ferrite nanoparticles exhibit ferromagnetic behavior with saturation magnetization of 31 emug−1 for copper ferrite (50.63 Am2/Kg and 28.8 Am2/Kg for zinc ferrite. Both synthesized ferrite nanoparticles were equally effective in scavenging 2,2-diphenyl-1-picrylhydrazyl hydrate (DPPH free radicals. ZnFe2O4 and CuFe2O4 nanoparticles showed 30.57% ± 1.0% and 28.69% ± 1.14% scavenging activity at 125 µg/mL concentrations. In vitro cytotoxicity study revealed higher concentrations (>125 µg/mL of ZnFe2O4 and CuFe2O4 with increased toxicity against MCF-7 cells, but were found to be non-toxic at lower concentrations suggesting their biocompatibility.

  17. Characterization of Mg-containing hydroxyapatites synthesized by combustion method

    Science.gov (United States)

    Kaygili, Omer; Keser, Serhat; Bulut, Niyazi; Ates, Tankut

    2018-05-01

    In the present paper, Mg-substituted hydroxyapatites with the morphology, composed of the stacked plate- and rod-like structures, were prepared at the temperature of 600 °C by combustion method using glycerine as a fuel. A significant decrease in the crystallite size values calculated for both Scherrer and Williamson-Hall methods is found. The crystallinity, lattice parameter of a, stress and anisotropic energy density values decreased by adding of Mg, whereas the lattice strain increased. The amount of HAp phase decreases with increasing amount of Mg and the β-tricalcium phosphate content increases. Mg incorporation the apatitic structure was detected. Depending on the increase in Mg content, Ca-deficiency was observed.

  18. The Brief Introduction of Different Laser Diagnostics Methods Used in Aeroengine Combustion Research

    Directory of Open Access Journals (Sweden)

    Fei Xing

    2016-01-01

    Full Text Available Combustion test diagnosis has always been one of the most important technologies for the development of aerospace engineering. The traditional methods of measurement have been unable to meet the requirements of accurate capture of the flow field in the development process of the aeroengine combustor. Therefore, the development of high-precision measurement and diagnostic techniques to meet the needs of the aeroengine combustor design is imperative. Laser diagnostics techniques developed quickly in the past several years. They are used to measure the parameters of the combustion flow field such as velocity, temperature, and components concentration with high space and time resolution and brought no disturbance. Planar laser-induced fluorescence, coherent anti-Stokes Raman scattering, tunable diode laser absorption spectroscopy, and Raman scattering were introduced systemically in this paper. After analysis of their own advantages and disadvantages, the authors considered validated Raman scattering system and Tunable Diode Laser Absorption Tomography are more suitable for research activities on aeroengine combustion systems.

  19. Novel method based on Fricke gel dosimeters for dose verification in IMRT techniques

    International Nuclear Information System (INIS)

    Aon, E.; Brunetto, M.; Sansogne, R.; Castellano, G.; Valente, M.

    2008-01-01

    Modern radiotherapy is becoming increasingly complex. Conformal and intensity modulated (IMRT) techniques are nowadays available for achieving better tumour control. However, accurate methods for 3D dose verification for these modern irradiation techniques have not been adequately established yet. Fricke gel dosimeters consist, essentially, in a ferrous sulphate (Fricke) solution fixed to a gel matrix, which enables spatial resolution. A suitable radiochromic marker (xylenol orange) is added to the solution in order to produce radiochromic changes within the visible spectrum range, due to the chemical internal conversion (oxidation) of ferrous ions to ferric ions. In addition, xylenol orange has proved to slow down the internal diffusion effect of ferric ions. These dosimeters suitably shaped in form of thin layers and optically analyzed by means of visible light transmission imaging have recently been proposed as a method for 3D absorbed dose distribution determinations in radiotherapy, and tested in several IMRT applications employing a homogeneous plane (visible light) illuminator and a CCD camera with a monochromatic filter for sample analysis by means of transmittance images. In this work, the performance of an alternative read-out method is characterized, consisting on visible light images, acquired before and after irradiation by means of a commercially available flatbed-like scanner. Registered images are suitably converted to matrices and analyzed by means of dedicated 'in-house' software. The integral developed method allows performing 1D (profiles), 2D (surfaces) and 3D (volumes) dose mapping. In addition, quantitative comparisons have been performed by means of the Gamma composite criteria. Dose distribution comparisons between Fricke gel dosimeters and traditional standard dosimetric techniques for IMRT irradiations show an overall good agreement, supporting the suitability of the method. The agreement, quantified by the gamma index (that seldom

  20. Sol-Gel Manufactured Energetic Materials

    Science.gov (United States)

    Simpson, Randall L.; Lee, Ronald S.; Tillotson, Thomas M.; Hrubesh, Lawrence W.; Swansiger, Rosalind W.; Fox, Glenn A.

    2005-05-17

    Sol-gel chemistry is used for the preparation of energetic materials (explosives, propellants and pyrotechnics) with improved homogeneity, and/or which can be cast to near-net shape, and/or made into precision molding powders. The sol-gel method is a synthetic chemical process where reactive monomers are mixed into a solution, polymerization occurs leading to a highly cross-linked three dimensional solid network resulting in a gel. The energetic materials can be incorporated during the formation of the solution or during the gel stage of the process. The composition, pore, and primary particle sizes, gel time, surface areas, and density may be tailored and controlled by the solution chemistry. The gel is then dried using supercritical extraction to produce a highly porous low density aerogel or by controlled slow evaporation to produce a xerogel. Applying stress during the extraction phase can result in high density materials. Thus, the sol-gel method can be used for precision detonator explosive manufacturing as well as producing precision explosives, propellants, and pyrotechnics, along with high power composite energetic materials.

  1. Sol-gel preparation of uranium oxide spheres

    International Nuclear Information System (INIS)

    Dolezal, J.; Urbanek, V.

    1978-01-01

    Information is presented on problems of preparing nuclear fuel by the sol-gel method. Basic data on different process types are given. A more detailed description of the method of preparation of spherical particles of uranium oxide gel developed and used at the Nuclear Research Institute at Rez is given. Advantages and disadvantages of sol-gel materials are discussed in comparison with fuel materials prepared by classical precipitation methods. The feasibility of the sol-gel methods for preparing other materials is shortly mentioned and their application outlined. (author)

  2. Combustion physics

    Science.gov (United States)

    Jones, A. R.

    1985-11-01

    Over 90% of our energy comes from combustion. By the year 2000 the figure will still be 80%, even allowing for nuclear and alternative energy sources. There are many familiar examples of combustion use, both domestic and industrial. These range from the Bunsen burner to large flares, from small combustion chambers, such as those in car engines, to industrial furnaces for steel manufacture or the generation of megawatts of electricity. There are also fires and explosions. The bountiful energy release from combustion, however, brings its problems, prominent among which are diminishing fuel resources and pollution. Combustion science is directed towards finding ways of improving efficiency and reducing pollution. One may ask, since combustion is a chemical reaction, why physics is involved: the answer is in three parts. First, chemicals cannot react unless they come together. In most flames the fuel and air are initially separate. The chemical reaction in the gas phase is very fast compared with the rate of mixing. Thus, once the fuel and air are mixed the reaction can be considered to occur instantaneously and fluid mechanics limits the rate of burning. Secondly, thermodynamics and heat transfer determine the thermal properties of the combustion products. Heat transfer also plays a role by preheating the reactants and is essential to extracting useful work. Fluid mechanics is relevant if work is to be performed directly, as in a turbine. Finally, physical methods, including electric probes, acoustics, optics, spectroscopy and pyrometry, are used to examine flames. The article is concerned mainly with how physics is used to improve the efficiency of combustion.

  3. Photocatalytic degradation of methylene blue dye by zinc oxide nanoparticles obtained from precipitation and sol-gel methods.

    Science.gov (United States)

    Balcha, Abebe; Yadav, Om Prakash; Dey, Tania

    2016-12-01

    Zinc oxide (ZnO) nanoparticles were synthesized by precipitation and sol-gel methods. The aim of this study was to understand how different synthetic methods can affect the photocatalytic activity of ZnO nanoparticles. As-synthesized ZnO nanoparticles were characterized by X-ray diffraction (XRD) and UV-Visible spectroscopic techniques. XRD patterns of ZnO powders synthesized by precipitation and sol-gel methods revealed their hexagonal wurtzite structure with crystallite sizes of 30 and 28 nm, respectively. Their photocatalytic activities were evaluated by photocatalytic degradation of methylene blue, a common water pollutant, under UV radiation. The effects of operational parameters such as photocatalyst load and initial concentration of the dye on photocatalytic degradation of methylene blue were investigated. While the degradation of dye decreased over the studied dye concentration range of 20 to 100 mg/L, an optimum photocatalyst load of 250 mg/L was needed to achieve dye degradation as high as 81 and 92.5 % for ZnO prepared by precipitation and sol-gel methods, respectively. Assuming pseudo first-order reaction kinetics, this corresponded to rate constants of 8.4 × 10 -3 and 12.4 × 10 -3  min -1 , respectively. Hence, sol-gel method is preferred over precipitation method in order to achieve higher photocatalytic activity of ZnO nanostructures. Photocatalytic activity is further augmented by better choice of capping ligand for colloidal stabilization, starch being more effective than polyethylene glycol (PEG).

  4. Technological methods of reducing the emissions of nitrogen oxides during the combustion of solid fuel

    Energy Technology Data Exchange (ETDEWEB)

    Kotler, V.R.

    1981-01-01

    For protecting the atmosphere from emissions of toxic NO /SUB x/ during combustion of fuel in boilers the amount of NO /SUB x/ can be reduced in the process of combustion, or the flue gases (FG) from the boiler can be cleaned. The latter method is bound up with the necessity for treatment of a large quantity of FG with a comparatively low concentration in them of nitrogen oxides, chemically stable and poorly soluble in water. The problem is complicated by the presence in the FG of SO /SUB x/, O/sub 2/, and solid particles. The method of purifying the FG is complicated and requires large capital investment and operating expenses. By laboratory studies in the All-Union Institute of Heat Engineering im. F.E. Dzerzhinskiy (VTI) it was established that thermal NO /SUB x/ is formed at a combustion temperature greater than or equal to 1550 /sup 0/C and that the 0/sub 2/ concentration and considerably less the temperature strongly affect NO /SUB x/ formation. On the basis of laboratory studies and industrial tests in the VTI, methods of reducing NO /SUB x/ emissions by large-scale boilers are recommended.

  5. Simple sol-gel synthesis and characterization of new CoTiO3/CoFe2O4 nanocomposite by using liquid glucose, maltose and starch as fuel, capping and reducing agents.

    Science.gov (United States)

    Ansari, Fatemeh; Sobhani, Azam; Salavati-Niasari, Masoud

    2018-03-15

    The sol-gel auto-combustion technique is an effective method for the synthesis of the composites. In this research for the first time, CoTiO 3 /CoFe 2 O 4 nanocomposites are successfully synthesized via a new sol-gel auto-combustion technique. The glucose, maltose and starch are used as fuel, capping and reducing agents, also the optimal reducing agent is chosen. The effects of quantity of reducing agent, molar ratio of Ti:Co, calcination temperature and time on the morphology, particle size, magnetic property, purity and phase of the nanocomposites are investigated. XRD patterns show formation of CoTiO 3 /CoFe 2 O 4 spherical nanoparticles with nearly evenly distribution, when the molar ratio of Co/Ti is 1:1. EDS analysis confirm results of XRD. The magnetic behavior of the nanocomposites is studied by VSM. The nanocomposites exhibit a high coercivity at room temperature. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Improving calibration accuracy in gel dosimetry

    International Nuclear Information System (INIS)

    Oldham, M.; McJury, M.; Webb, S.; Baustert, I.B.; Leach, M.O.

    1998-01-01

    A new method of calibrating gel dosimeters (applicable to both Fricke and polyacrylamide gels) is presented which has intrinsically higher accuracy than current methods, and requires less gel. Two test-tubes of gel (inner diameter 2.5 cm, length 20 cm) are irradiated separately with a 10x10cm 2 field end-on in a water bath, such that the characteristic depth-dose curve is recorded in the gel. The calibration is then determined by fitting the depth-dose measured in water, against the measured change in relaxivity with depth in the gel. Increased accuracy is achieved in this simple depth-dose geometry by averaging the relaxivity at each depth. A large number of calibration data points, each with relatively high accuracy, are obtained. Calibration data over the full range of dose (1.6-10 Gy) is obtained by irradiating one test-tube to 10 Gy at dose maximum (D max ), and the other to 4.5 Gy at D max . The new calibration method is compared with a 'standard method' where five identical test-tubes of gel were irradiated to different known doses between 2 and 10 Gy. The percentage uncertainties in the slope and intercept of the calibration fit are found to be lower with the new method by a factor of about 4 and 10 respectively, when compared with the standard method and with published values. The gel was found to respond linearly within the error bars up to doses of 7 Gy, with a slope of 0.233±0.001 s -1 Gy -1 and an intercept of 1.106±0.005 Gy. For higher doses, nonlinear behaviour was observed. (author)

  7. An effective placental cotyledons proteins extraction method for 2D gel electrophoresis.

    Science.gov (United States)

    Tan, Niu J; Daim, Leona D J; Jamil, Amilia A M; Mohtarrudin, Norhafizah; Thilakavathy, Karuppiah

    2017-03-01

    Effective protein extraction is essential especially in producing a well-resolved proteome on 2D gels. A well-resolved placental cotyledon proteome, with good reproducibility, have allowed researchers to study the proteins underlying the physiology and pathophysiology of pregnancy. The aim of this study is to determine the best protein extraction protocol for the extraction of protein from placental cotyledons tissues for a two-dimensional gel electrophoresis (2D-GE). Based on widely used protein extraction strategies, 12 different extraction methodologies were carefully selected, which included one chemical extraction, two mechanical extraction coupled protein precipitations, and nine chemical extraction coupled protein precipitations. Extracted proteins were resolved in a one-dimensional gel electrophoresis and 2D-GE; then, it was compared with set criteria: extraction efficacy, protein resolution, reproducibility, and recovery efficiency. Our results revealed that a better profile was obtained by chemical extraction in comparison to mechanical extraction. We further compared chemical extraction coupled protein precipitation methodologies, where the DNase/lithium chloride-dense sucrose homogenization coupled dichloromethane-methanol precipitation (DNase/LiCl-DSH-D/MPE) method showed good protein extraction efficiency. This, however, was carried out with the best protein resolution and proteome reproducibility on 2D-gels. DNase/LiCl-DSH-D/MPE was efficient in the extraction of proteins from placental cotyledons tissues. In addition, this methodology could hypothetically allow the protein extraction of any tissue that contains highly abundant lipid and glycogen. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Preparation of catalysts based on Cu-Mn for combustion of n-hexane

    International Nuclear Information System (INIS)

    Picasso, Gino; Belleza, Freddy; Zavala, Cesar; Lopez, Alcides; Sun Kou, Rosario

    2014-01-01

    Catalysts based on Cu-Mn mixed oxides (with molar ratio Cu/Mn in the range of 0,33 to 3) have been prepared by sol-gel method of self-combustion for removal of n-hexane. Two combustion agents, citric acid and ethylenglycol, were applied to study their influence in the final catalyst. Additionally, simple oxides have been synthesized using the same procedure for comparison reasons. The catalysts were characterized by X-ray diffraction (XRD) and sorption of N_2 (BET method). All samples depicted surfaces, preferentially assigned to mesoporosity whose values ranged from 4 to 50 m"2/g. All XRD difractograms of mixed samples showed the presence of a good crystalinity indepently of composition, with the formation of spinel-hopcalite phase meanwhile Mn and Cu simple oxide showed peaks attributed to Mn_O_3, Mn_3O_4 and CuO, respectively. Curves of activity, measured as number of VOC molecules converted per hour and per gram of catalyst, considering the specific surface, showed that mixed oxides with more Mn content were the best, additionally, the sample prepared from citric acid was more active than the corresponding values to simple oxides, probably due to the better specific surface and the better spinel-hopcalite structure obtained. (author)

  9. Methods and systems to thermally protect fuel nozzles in combustion systems

    Science.gov (United States)

    Helmick, David Andrew; Johnson, Thomas Edward; York, William David; Lacy, Benjamin Paul

    2013-12-17

    A method of assembling a gas turbine engine is provided. The method includes coupling a combustor in flow communication with a compressor such that the combustor receives at least some of the air discharged by the compressor. A fuel nozzle assembly is coupled to the combustor and includes at least one fuel nozzle that includes a plurality of interior surfaces, wherein a thermal barrier coating is applied across at least one of the plurality of interior surfaces to facilitate shielding the interior surfaces from combustion gases.

  10. Ni_0_,_5Zn_0_,_5Fe_2O_3 ferrite synthesized by combustion and Pechini method for use in nanomedicine: methods evaluation

    International Nuclear Information System (INIS)

    Albuquerque, I.L.T. de; Nascimento, A.L.C.; Costa, A.C.F.M.

    2016-01-01

    The objective of this work was to synthesize the Ni0.5Zn0.5Fe2O3 ferrite by combustion reaction and Pechini method, and to evaluate structural characteristics and magnetic behavior for its use in nanomedicine. The synthesized ferrite was characterized by DRX, BET, TG and magnetic properties. According to the results of XRD, the Ni_0_,_5Zn_0_,_5Fe_2O_3 ferrite synthesized by both methods presented nano crystallite sizes, high crystallinity, surface area, stable at high temperatures and with high saturation magnetization, being higher in the ferrite synthesized by combustion reaction. Both methods produced materials that could be used in nanomedicine

  11. Determination of hexamethylene tetramine in the process solution of sol-gel method for nuclear fuel fabrication

    International Nuclear Information System (INIS)

    Ganatra, V.R.; Sawant, R.M.; Chaudhuri, N.K.; Vaidya, V.N.

    1998-01-01

    Hexamethylene tetramine (HMTA) was determined in the presence of large quantities of urea, formaldehyde and ammonium hydroxide by potentiometric titration with perchloric acid solution using an autotitrator coupled to a personal computer. This analysis is required for the process control of the sol-gel method in the production of ceramic metal oxide (e.g., oxides and mixed oxides of Th, U and Pu) microspheres using the internal gelation route. Feed solution used for preparation of microspheres contains large quantities of urea. The washings of gel microspheres produced after the internal gelation process contain urea, formaldehyde, urea-formaldehyde complex and ammonium hydroxide. The presence of these constituents in the feed solution and washings seriously interfere in the commonly used methods for the determination of HMTA. Using this method the relative standard deviation was found to be 0.27% in eleven determinations of a typical feed solution (3.0M HMTA) when the aliquots contained 75 to 125 mg of HMTA. Time required for each titration was 5-7 minutes. Feed and effluent solutions of sol-gel process were analysed. (author)

  12. Path planning during combustion mode switch

    Science.gov (United States)

    Jiang, Li; Ravi, Nikhil

    2015-12-29

    Systems and methods are provided for transitioning between a first combustion mode and a second combustion mode in an internal combustion engine. A current operating point of the engine is identified and a target operating point for the internal combustion engine in the second combustion mode is also determined. A predefined optimized transition operating point is selected from memory. While operating in the first combustion mode, one or more engine actuator settings are adjusted to cause the operating point of the internal combustion engine to approach the selected optimized transition operating point. When the engine is operating at the selected optimized transition operating point, the combustion mode is switched from the first combustion mode to the second combustion mode. While operating in the second combustion mode, one or more engine actuator settings are adjusted to cause the operating point of the internal combustion to approach the target operating point.

  13. Combustion characteristics and air pollutant formation during oxy-fuel co-combustion of microalgae and lignite.

    Science.gov (United States)

    Gao, Yuan; Tahmasebi, Arash; Dou, Jinxiao; Yu, Jianglong

    2016-05-01

    Oxy-fuel combustion of solid fuels is seen as one of the key technologies for carbon capture to reduce greenhouse gas emissions. The combustion characteristics of lignite coal, Chlorella vulgaris microalgae, and their blends under O2/N2 and O2/CO2 conditions were studied using a Thermogravimetric Analyzer-Mass Spectroscopy (TG-MS). During co-combustion of blends, three distinct peaks were observed and were attributed to C. vulgaris volatiles combustion, combustion of lignite, and combustion of microalgae char. Activation energy during combustion was calculated using iso-conventional method. Increasing the microalgae content in the blend resulted in an increase in activation energy for the blends combustion. The emissions of S- and N-species during blend fuel combustion were also investigated. The addition of microalgae to lignite during air combustion resulted in lower CO2, CO, and NO2 yields but enhanced NO, COS, and SO2 formation. During oxy-fuel co-combustion, the addition of microalgae to lignite enhanced the formation of gaseous species. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Method for operating a spark-ignition, direct-injection internal combustion engine

    Science.gov (United States)

    Narayanaswamy, Kushal; Koch, Calvin K.; Najt, Paul M.; Szekely, Jr., Gerald A.; Toner, Joel G.

    2015-06-02

    A spark-ignition, direct-injection internal combustion engine is coupled to an exhaust aftertreatment system including a three-way catalytic converter upstream of an NH3-SCR catalyst. A method for operating the engine includes operating the engine in a fuel cutoff mode and coincidentally executing a second fuel injection control scheme upon detecting an engine load that permits operation in the fuel cutoff mode.

  15. Synthesis and studies of Y-Ba-Cu-O high temperature superconductor prepared by sol-gel method

    International Nuclear Information System (INIS)

    Grigoryan, S.G.; Manukyan, A.L.; Hayrapetyan, A.G.; Arzumanyan, A.M.; Rashidyan, L.H.; Mkrtichyan, N.Y.; Mkrtchyan, A.A.; Kurginyan, K.A.; Trozyan, A.H.; Vardanyan, R.S.

    2004-01-01

    The method of preparation of Y-Ba-Cu-O high temperature superconducting materials by sol-gel processing technique both for powders and thin films are described. All these methods are based on using yttrium alkoxides as precursors, which are not ready available reagents, besides the majority of these methods use copper alkoxides, which show low solubility in organic solvents, moreover they are very sensitive to hydrolysis in air. The new method of preparation of Y-Ba-Cu-O ceramic materials by sol-gel processing technique based on new and convenient precursors stable in air, having high compatibility with each other is offered. Basic scientific and technological issues related to the synthesis of bulk materials, their structure and electrical conductivity are discussed

  16. Experimental study on the influence of oxygen content in the combustion air on the combustion characteristics

    International Nuclear Information System (INIS)

    Bělohradský, Petr; Skryja, Pavel; Hudák, Igor

    2014-01-01

    This study was focused on the experimental investigation of the very promising combustion technology called as the oxygen-enhanced combustion (OEC), which uses the oxidant containing higher proportion of oxygen than in the atmospheric air, i.e. more than 21%. The work investigated and compared the characteristics of two OEC methods, namely the premix enrichment and air-oxy/fuel combustion, when the overall oxygen concentration was varied from 21% to 46%. The combustion tests were performed with the experimental two-gas-staged burner of low-NO x type at the burner thermal input of 750 kW for two combustion regimes – one-staged and two-staged combustion. The oxygen concentration in the flue gas was maintained in the neighborhood of 3% vol. (on dry basis). The aim of tests was to assess the impact of the oxidant composition, type of OEC method and fuel-staging on the characteristic combustion parameters in detail. The investigated parameters included the concentration of nitrogen oxides (NO x ) in the flue gas, flue gas temperature, heat flux to the combustion chamber wall, and lastly the stability, shape and dimensions of flame. It was observed that NO x emission is significantly lower when the air-oxy/fuel method is used compared to the premix enrichment method. Moreover, when the fuel was staged, NO x emission was below 120 mg/Nm 3 at all investigated oxygen flow rates. Increasing oxygen concentration resulted in higher heating intensity due to higher concentrations of CO 2 and H 2 O. The available heat at 46% O 2 was higher by 20% compared with that at 21% O 2 . - Highlights: • Premix-enrichment and air-oxy/fuel combustion methods were experimentally studied. • NO x increased sharply as oxygen concentration increased during PE tests. • NO x was below 120 mg/Nm 3 for all investigated oxygen flow rates in AO tests. • Radiative heat transfer was enhanced ca. 20% as O 2 concentration was increased. • OEC flames were observed stable, more luminous and

  17. Future combustion methods for biomethane powered tractor engines

    International Nuclear Information System (INIS)

    Prehn, Sascha; Harndorf, Horst; Wichmann, Volker; Beberdick, Wolfgang

    2016-01-01

    Biomethane represents an alternative to fossil fuels (petrol, diesel), not only in the on-road sector. Methane-based fuels come in focus of farmers in the agriculture sector, due to cost constraints, increasing regulation of pollutant emissions and reduction of carbondioxid. To represent a monovalent gas operation, a functional model is derived from a series diesel engine for agricultural use. On the test engine, systematic studies on the combustion process are carried out by cylinder pressure indication and exhaust-emission measurement. Combustion under stoichiometric conditions (with or without exhaust gas recirculation) as well as the conversion of fuel from excess air is observed. The study shows that with a natural-gas engine, a complex post-treatment system of exhaust gas (DOC + DPF + SCR) that is typically for diesel engines can be dispensed with. The exhaust gas limits in force since 2014 and a limitation of methane on 0,5 g/kWh can be met with a stoichiometric combustion concept and a three way catalytic converter optimized for the methane oxidation.

  18. Research on pre-staining gel electrophoresis

    International Nuclear Information System (INIS)

    Zhong Ruibo; Liu Yushuang; Zhang Ping; Liu Jingran; Zhao Guofen; Zhang Feng

    2014-01-01

    Background: Gel electrophoresis is a powerful biochemical separation technique. Most biological molecules are completely transparent in the visible region of light, so it is necessary to use staining to show the results after gel electrophoresis, and the general steps of conventional staining methods are time-consuming. Purpose: We try to develop a novel approach to simplify the gel electrophoresis: Pre-Staining Gel Electrophoresis (PSGE), which can make the gel electrophoresis results monitored in real time. Methods: Pre-stain the protein samples with Coomassie Brilliant Blue (CBB) for 30 min before loading the sample into the gel well. Results and Conclusion: PSGE can be successfully used to analyze the binding efficiency of Bovine Serum Albumin (BSA) and amphiphilic polymer via chemical coupling and physical absorption, and the double PSGE also shows a great potential in bio-analytical chemistry. (authors)

  19. Recycling of LiCo0.59Mn0.26Ni0.15O2 cathodic material from spent Li-ion batteries by the method of the citrate gel combustion

    Directory of Open Access Journals (Sweden)

    Senćanski Jelena V.

    2017-01-01

    Full Text Available The Li-ion batteries are the main power source for the high technology devices, such as mobile phones and electric vehicles. Because of that, the number of spent Li-ion batteries significantly increases. Today, the number of active mobile phones crossed 7.19 billion. It is estimated that the mass of the spent lithium ion batteries in China will exceed 500,000 t by 2020. The trouble is in the ingredients of these batteries. They contain Li, Co, Mn, Ni, Cu, Al and toxic and flammable electrolytes which have a harmful affection to the environment. Because of that, the recycling procedure attracts raising attention of researches. Several commercial spent Li-ion batteries were recycled by the relatively fast, economic and simple procedure. The three ways of separating the cathode material from Al collector were examined after the manual dismantling of the components of batteries with the Li(Co–Mn–NiO2 as cathode material. These were: 1. dissolution of the Al collector in the alkali medium, 2. peeling off with N-methylpyrrolidone and 3. thermal decomposition of the adhesive at 700°C. The procedure with the highest yield was the one with the dissolution in alkali medium. The chemical analysis of the single batteries'' components (the crust, Al/Cu collector, cathode material were done by the atomic absorption spectrometry. The components, before the analysis, were dissolved. The re-synthesis of the cathode material by the method of the citrate gel combustion was done after the separating the cathode material and dissolving it in the nitric acid. The obtained product was, after annealing, characterized by the methods of X-ray diffraction and Raman spectroscopy. The recycled product was LiCo0.59Mn0.26Ni0.15O2 stoichiometry, with the hexagonal layered structure α-NaFeO2 type. The functionalization of the resynthesized material was examined in the 1 M solution LiClO4 in the propylene carbonate, by galvanostatic charging, with the current density of 0

  20. Cells on Gels: Cell Behavior at the Air-Gel Interface

    Science.gov (United States)

    O'Bryan, Christopher; Hormel, Tristan; Bhattacharjee, Tapomoy; Sawyer, W.; Angelini, Thomas

    Numerous different types of cells are often grown at air-liquid interfaces. For example, a common way to create cell spheroids is to disperse cells in a droplet of liquid media that hangs from the lid of a culture dish - the ``hanging drop'' method. Some types of epithelial cells form monolayers at the bottom of hanging drops, instead of spheroids. Corneal epithelial cells stratify and exhibit a tissue-like phenotype when attached to liquid permeable culture surfaces positioned at the air-liquid media interface (air-lifted culture). These widely used culture methods make experimentation challenging - imaging through hanging drops and air-lifted culture dishes is prohibitive. However, similar results may be achieved by culturing cells on hydrogel surfaces at the air-gel interface. In this talk we will describe a method for culturing cells at air-gel interfaces. We seed human corneal epithelial cells (hTCEpi) onto the surfaces of hydrogel networks and jammed microgels, exposed to air. Preliminary observations of cell behavior at the air-gel interface will be presented.

  1. Method of improving heterogeneous oil reservoir polymer flooding effect by positively-charged gel profile control

    Science.gov (United States)

    Zhao, Ling; Xia, Huifen

    2018-01-01

    The project of polymer flooding has achieved great success in Daqing oilfield, and the main oil reservoir recovery can be improved by more than 15%. But, for some strong oil reservoir heterogeneity carrying out polymer flooding, polymer solution will be inefficient and invalid loop problem in the high permeability layer, then cause the larger polymer volume, and a significant reduction in the polymer flooding efficiency. Aiming at this problem, it is studied the method that improves heterogeneous oil reservoir polymer flooding effect by positively-charged gel profile control. The research results show that the polymer physical and chemical reaction of positively-charged gel with the residual polymer in high permeability layer can generate three-dimensional network of polymer, plugging high permeable layer, and increase injection pressure gradient, then improve the effect of polymer flooding development. Under the condition of the same dosage, positively-charged gel profile control can improve the polymer flooding recovery factor by 2.3∼3.8 percentage points. Under the condition of the same polymer flooding recovery factor increase value, after positively-charged gel profile control, it can reduce the polymer volume by 50 %. Applying mechanism of positively-charged gel profile control technology is feasible, cost savings, simple construction, and no environmental pollution, therefore has good application prospect.

  2. Hydroxyapatite, fluor-hydroxyapatite and fluorapatite produced via the sol-gel method: bonding to titanium and scanning electron microscopy.

    Science.gov (United States)

    Tredwin, Christopher J; Georgiou, George; Kim, Hae-Won; Knowles, Jonathan C

    2013-05-01

    Hydroxyapatite (HA), fluor-hydroxyapatite (FHA) with varying levels of fluoride ion substitution and fluorapatite (FA) production has been characterised and optimised by the sol-gel method and the dissolution and biological properties of these materials were investigated. It was the objective of this study to investigate the potential bond strength and interaction of these materials with titanium. HA, FHA and FA were synthesised by a sol-gel method. Calcium nitrate and triethyl phosphite were used as precursors under an ethanol-water based solution. Different amounts of ammonium fluoride (NH4F) were incorporated for the preparation of the FHA and FA sol-gels. Using a spin coating technique the sol-gels were coated onto commercially pure titanium disks and crystallised at various temperatures. Using scanning electron microscopy (SEM) and elemental analysis, the surface characteristics, coating thickness and interaction of the Ti substrate and coating were investigated. The bond strengths of the coating to the Ti were investigated using an Instron Universal Load Testing Machine. Statistical analysis was performed with a two-way analysis of variance and post hoc testing with a Bonferroni correction. (1) Coating speed inversely influenced the coating thickness. (2) Increasing fluoride ion substitution and heating temperature significantly increased bond strength and (3) increasing fluoride ion substitution increased the coating thickness. FHA and FA synthesised using the sol-gel technique may offer a superior alternative to coating titanium implants with HA and plasma spraying. HA, FHA and FA materials synthesised by the sol-gel method may also have a use as bone grafting materials. Copyright © 2013 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  3. Preparation of nickel and Ni_3Sn nanoparticles via extension of conventional citric acid and ethylene diamine tetraacetic acid mediated sol–gel method

    International Nuclear Information System (INIS)

    Li, Pingyun; Deng, Guodong; Guo, Xiaode; Liu, Hongying; Jiang, Wei; Li, Fengsheng

    2016-01-01

    This work aims to extend the application field of sol–gel process from conventional oxides, carbides, sulfides to metallic nanocrystalline materials. Metallic ions were coordinated with chelating agents of citric acid (CA) and ethylene diamine tetraacetic acid (EDTA) in aqueous solution. Then the solutions were dried at 383 K, resulting in the formation of sol and gel. Heating treatments of dried gels were then carried out with protection of N_2 atmosphere. Ni and Ni_3Sn alloy nanoparticles were obtained by this sol–gel method in the range of 623–823 K. The as-prepared Ni and Ni_3Sn alloy nanoparticles have average grain sizes of 15 and 30 nm, and have face-centred-cubic (fcc) crystalline phase. Our results provide new insight into the application of conventional sol–gel method. - Graphical abstract: Sol–gel method is conventionally applied to prepare oxides, carbides, and sulfides. In this work, the application field of sol–gel method is extended to metallic nanoparticles. By using citric acid (CA) and ethylene diamine tetraacetic acid (EDTA) mediated sol–gel method, metallic Ni (a and c) and Ni_3Sn (b and d) alloy nanoparticles can be prepared when the heating treatments are performed under N_2 protecting atmosphere. The Ni and Ni_3Sn nanoparticles have face-centered-cubic (fcc) crystalline phase and ultrafine grain sizes. Diffraction peaks of (110) superstructure reflection plane of Ni_3Sn nanoparticles can also be observed in Figure b, which can be considered as direct evidence of formation of alloy crystalline phase by performing this sol–gel method. - Highlights: • Ni and Ni_3Sn alloy nanoparticles have been prepared by sol–gel processes. • Citric acid and ethylene diamine tetraacetic acid were applied as chelating agent. • Diffraction peak of superstructure reflection plane of Ni_3Sn was detected by XRD. • A novel strategy for preparation of alloy nanoparticles has been presented.

  4. Monolithic lithium-based aerogels via dispersed inorganic sol-gel method

    International Nuclear Information System (INIS)

    Xiao Shufang; Zhou Bin; Du Ai; Xu Xiang; Yang Xiaoyun; Shen Jun; Wu Guangming; Zhang Zhihua; Wan Huijun

    2008-01-01

    Monolithic lithium-based aerogels were prepared by poly acrylic acid (PAA) and propylene oxide (PO) via the dispersed inorganic sol-gel method and drying with CO 2 supercritical fluid dry process. The density of the prepared sample is about 150 g/m 3 . The microstructure of the lithium-based aerogels was characterized by TEM, IR, XPS and BET. The results show that the material mainly contains Li, C and O element s. BET surface area is up to 18.9 m 2 /g. (authors)

  5. Characterizations of maghemite thin films prepared by a sol-gel method

    Energy Technology Data Exchange (ETDEWEB)

    Lau, L. N., E-mail: lau7798@gmail.com; Ibrahim, N. B., E-mail: baayah@ukm.edu.my [School of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor. Malaysia (Malaysia)

    2015-09-25

    Iron is one of the abundant elements of Mother Nature and its compound, iron oxide is an interesting material to study since its discovery in the form of magnetite. It can exist in many phases such as hematite and maghemite, this unique nature has put it as a potential candidate in various applications. The aim of this work is to study the influence of different precursor concentrations on the microstructural and magnetic properties of iron oxide thin film. All samples were prepared via the sol-gel method followed by a spin coating technique on quartz substrates. Iron oxide films were confirmed as maghemite phase from X-ray diffraction patterns. The film morphology was examined by a field emission scanning electron microscope and it showed non-systematic value of average grain size and film thickness throughout the study. Hysteresis loop further confirmed that maghemite is a magnetic material when it was characterized by a vibrating sample magnetometer. The coercivity did not show any correlation with molarity. Nevertheless, it increased as the precursor concentration of the film increased due to the domain behaviour. In conclusion, maghemite thin films were successfully synthesized by the sol-gel method with different precursor concentrations in this work.

  6. Combustion Chamber Fluid Dynamics and Hypergolic Gel Propellant Chemistry Simulations for Selectable Thrust Rocket Engines

    National Research Council Canada - National Science Library

    Nusca, Michael J; Chen, Chiung-Chu; McQuaid, Michael J

    2007-01-01

    .... Computational fluid dynamics is employed to model the chemically reacting flow within a system's combustion chamber, and computational chemistry is employed to characterize propellant physical and reactive properties...

  7. Meso-Decorated Switching-Knot Gels

    Science.gov (United States)

    Gong, Jin; Sawamura, Kensuke; Makino, Masato; Kabir, M. H.; Furukawa, Hidemitsu

    Gels are a new material having three-dimensional network structures of macromolecules. They possess excellent properties as swellability, high permeability and biocompatibility, and have been applied in various fields of daily life, food, medicine, architecture, and chemistry .In this study, we tried to prepare new multi-functional and high-strength gels by using Meso-Decoration (Meso-Deco), one new method of structure design at intermediate mesoscale. High-performance rigid-rod aromatic polymorphic crystals. The strengthening of gels can be realized by meso-decorating the gels' structure using high-performance polymorphic crystals. New gels with good mechanical properties, novel optical properties and thermal properties are expected to be developed.

  8. Preparation, microstructure and properties of yttrium aluminum garnet fibers prepared by sol-gel method

    Energy Technology Data Exchange (ETDEWEB)

    Li Chengshun [Key Laboratory for Liquid Structure and Heredity of Materials of Ministry of Education, Shandong University, Jinan 250061 (China); Zhang Yujun [Key Laboratory for Liquid Structure and Heredity of Materials of Ministry of Education, Shandong University, Jinan 250061 (China)], E-mail: yujunzhangcn@sdu.edu.cn; Gong Hongyu; Zhang Jingde; Nie Lifang [Key Laboratory for Liquid Structure and Heredity of Materials of Ministry of Education, Shandong University, Jinan 250061 (China)

    2009-01-15

    Yttrium aluminum garnet (YAG) fiber was prepared by sol-gel method using water as the solvent. The spinnable YAG sol was synthesized using Al powder, Y(CH{sub 3}COOH){sub 3}.4H{sub 2}O and HCl as precursors, polyethylene oxide as viscosity adjusting agent. Gel fibers with diameter of 5-10 {mu}m were prepared from the YAG sol by using centrifugal spinning technique. YAG crystalline fibers were obtained by drying gel fibers and heat-treating at selected temperature. TG/DTA analysis showed an exotherm at 906 deg. C attributed to formation of YAG phase and weight loss of 45% at 1000 deg. C. XRD and FT-IR analysis showed that phase-pure YAG can be formed at 900 deg. C, and no other intermediate was observed. The grain size of YAG fibers increased from 25 to 220 nm and tensile strength decreased rapidly from 970 to 380 MPa when the sintering temperature increased from 900 to 1550 deg. C.

  9. Membranas híbridas basadas en estireno-metacrilato-sílice y ácido fosfowolfrámico obtenidas por sol-gel para pilas de combustible de intercambio protónico (PEMFC

    Directory of Open Access Journals (Sweden)

    Mosa, J.

    2007-10-01

    Full Text Available Contrary to internal combustion engines, proton-exchange membrane fuel cells (PEMFC used in transportation operate with zero emissions of environmental pollutants. The increase of the operation temperature in PEMFC above 100°C is a great concern for the application of this type of cells in electric vehicles. Hybrid organic-inorganic membranes with nanosized interfaces can combine the main properties of their components to meet this objective. Styrene-methacrylate-silica membranes doped with phosphotungstic acid (PWA were prepared through acid catalyzed sol-gel process and free-radical copolymerization. Additionally, sulfonation processes of aromatic rings to produce attached SO3H groups were applied to increase the proton conductivity. The effect of sulfonation degree and PWA doping on the membrane properties such as chemical and thermal stability, water uptake, ion exchange capacity, and proton conductivity were investigated. The measurement of conductivity shows a general increase with rising temperatures and with the increasing of SO3H groups density, reaching a maximum value of 3.2 10-3 S/cm at 130ºC and 100%HR.

    Comparadas con los motores de combustión interna, las pilas de combustible de intercambio de protones (PEMFC son capaces de operar sin emisiones de agentes contaminantes. El aumento de la temperatura de operación de la pila de combustible por encima de 100ºC es uno de los grandes objetivos en este campo ya que facilitaría el desarrollo comercial de los vehículos eléctricos impulsados por pilas de combustible. Las membranas híbridas orgánico-inorgánicas nanoestructuradas combinan las propiedades necesarias para este tipo de aplicación. Se obtuvieron membranas híbridas dopadas con ácido fosfowolfrámico (PWA por copolimerización radicálica a partir de alquilalcóxidos y monómeros de estireno y metacrilato, y por reacción sol-gel vía catálisis ácida. La conductividad protónica se logra realizando un proceso

  10. Quantitative evaluation of an image registration method for a NIPAM gel dosimeter

    Science.gov (United States)

    Chang, Yuan-Jen; Yao, Chun-Hsu; Wu, Jay; Hsieh, Bor-Tsung; Tsang, Yuk-Wah; Chen, Chin-Hsing

    2015-06-01

    One of the problems in obtaining quality results is image registration when a gel dosimeter is used in conjunction with optical computed tomography (CT). This study proposes a passive alignment mechanism to obtain a precisely measured dose map. A holder plate with two pin-hole pairs is placed on the gel container cap. These two pin-hole pairs attach the gel container to the vertical shaft and can be precisely aligned with the rotation center of the vertical shaft at any time. Accordingly, a better reconstructed image quality is obtained. After obtaining a precisely measured dose map, the scale invariant feature transform (SIFT)-flow algorithm is utilized as an image registration method to align the treatment plan software (TPS) image with the measured dose map image. The results show that the gamma pass rate for the single-field irradiation increases from 83.39% to 94.03% when the algorithm is applied. And the gamma pass rate for the five-field irradiation treatment plan increases from 87.36% to 94.34%. The translation, scaling, and rotation occurring in the dose map image constructed using an optical CT scanner are also aligned with those in the TPS image using the SIFT-flow algorithm. Accordingly, improved gamma comparison results and a higher gamma pass rate are obtained.

  11. Gas response properties of citrate gel synthesized nanocrystalline MgFe{sub 2}O{sub 4}: Effect of sintering temperature

    Energy Technology Data Exchange (ETDEWEB)

    Patil, J.Y. [School of Physical Sciences, Solapur University Solapur-413255 (India); Mulla, I.S. [Emeritus Scientist (CSIR), Centre for Materials for Electronic Technology(C-MET) Pune-411 008 (India); Suryavanshi, S.S., E-mail: sssuryavanshi@rediffmail.com [School of Physical Sciences, Solapur University Solapur-413255 (India)

    2013-02-15

    Graphical abstract: Display Omitted Highlights: ► Synthesis of nanocrystalline MgFe{sub 2}O{sub 4} by economical citrate gel combustion method. ► Structural, morphological, and gas response properties of MgFe{sub 2}O{sub 4}. ► Enhancement in selectivity of MgFe{sub 2}O{sub 4} towards LPG with sintering temperature. ► Use of MgFe{sub 2}O{sub 4} to detect different gases at different operating temperatures. -- Abstract: Spinel type MgFe{sub 2}O{sub 4} material was synthesized by citrate gel combustion method. The effect of sintering temperature on structural, morphological, and gas response properties was studied. The powder X-ray diffraction pattern and transmission electron microscope study confirms nanocrystalline spinel structure of the synthesized powder. The material was tested for response properties to various reducing gases like liquid petroleum gas (LPG), acetone, ethanol, and ammonia. The results demonstrated n-type semiconducting behavior of MgFe{sub 2}O{sub 4} material. It was revealed that MgFe{sub 2}O{sub 4} sintered at 973 K was most sensitive to LPG at 648 K and to acetone at 498 K. However MgFe{sub 2}O{sub 4} sintered at 1173 K exhibited higher response and selectivity to LPG with marginal increase in the operating temperature. Furthermore, the sensor exhibited a fast response and a good recovery. It was observed that the particles size, porosity, and surface activity of the sensor material is affected by the sintering temperature.

  12. Non-Destructive Methods for Determining Burn-Up in Nuclear Fuel; Methodes Non Destructives d'Evaluation du Taux de Combustion dans le Combustible Nucleaire; Metody opredeleniya vygoraniya v yadernom toplive bez razrusheniya obraztsa; Metodos No Destructivos para Determinai el Grado de Combustion de los Elementos Combustibles Nucleares

    Energy Technology Data Exchange (ETDEWEB)

    McGonnagle, W. J. [Illinois Institute of Technology, Chicago, IL (United States)

    1966-02-15

    is of secondary importance and the cooling time is unimportant. Also, there is more precise nuclear data for the stable fission products. Of the stable isotopes produced during the fission process, zirconium, molybdenum, ruthenium, and neodymium appear to be the most useful. The proposed non-destructive methods using stable isotopes will be discussed. (author) [French] Il est a la fois utile et souhaitable d'utiliser des methodes non destructives pour proceder a la mesure quantitative du taux de combustion des elements combustibles d'un reacteur nucleaire. L'ideal serait de pouvoir analyser le combustible a l'aide d'une methode ne necessitant pas de renseignements particuliers sur les spectres des neutrons, le schema d'irradiation ou le temps de refroidissement. Les isotopes radioactifs et les isotopes stables resultant du processus de fission qui sont presents dans un element combustible irradie caracterisent son irradiation. Malheureusement, que l'analyse soit effectuee au moyen de methodes destructives ou non destructives, les resultats obtenus varient en fonction du spectre de neutrons, du schema d'irradiation et du temps de refroidissement. Deplus, l'absence de donnees nucleaires precises, comme les valeurs des section efficaces, influe sur tous les calculs qui peuvent etre effectues. L'analyse non destructive est egalement genee par la presence de champs de rayonnements intenses qui augmentent le bruit de fond. Il est difficile d'etablir des normes utiles et realistes. Bien que, dans l'etat actuel de la technique, les methodes non destructives n'aient pas toute la precision et l'exactitude voulues, elles presentent neanmoins un grand interet' notamment dans les cas ou il faut obtenir rapidement et economiquement une valeur approximative du taux de combustion. Plusieurs methodes non destructives d'evaluation du taux de combustion sont actuellement appliquees, a l'etude ou en projet. Plusieurs types de spectrometres sont utilises pour la mesure du rayonnement

  13. Study of hafnium (IV) oxide nanoparticles synthesized by polymerized complex and polymer precursor derived sol-gel methods

    KAUST Repository

    Ramos-Gonzá lez, R.; Garcí a-Cerda, L. A.; Alshareef, Husam N.; Gnade, Bruce E.; Quevedo-Ló pez, Manuel Angel Quevedo

    2010-01-01

    This work reports the preparation and characterization of hafnium (IV) oxide (HfO2) nanoparticles grown by derived sol-gel routes that involves the formation of an organic polymeric network. A comparison between polymerized complex (PC) and polymer precursor (PP) methods is presented. For the PC method, citric acid (CA) and ethylene glycol (EG) are used as the chelating and polymerizable reagents, respectively. In the case of PP method, poly(acrylic acid) (PAA) is used as the chelating reagent. In both cases, different precursor gels were prepared and the hafnium (IV) chloride (HfCl4) molar ratio was varied from 0.1 to 1.0 for the PC method and from 0.05 to 0.5 for the PP method. In order to obtain the nanoparticles, the precursors were heat treated at 500 and 800 °C. The thermal characterization of the precursor gels was carried out by thermogravimetric analysis (TGA) and the structural and morphological characterization by X-ray diffraction (XRD) and transmission electron microscopy (TEM). The XRD patterns of the samples obtained by both methods shows the formation of HfO2 at 500 °C with monoclinic crystalline phase. The PC method exhibited also the cubic phase. Finally, the HfO2 nanoparticles size (4 to 11 nm) was determined by TEM and XRD patterns. © (2010) Trans Tech Publications.

  14. Study of hafnium (IV) oxide nanoparticles synthesized by polymerized complex and polymer precursor derived sol-gel methods

    KAUST Repository

    Ramos-González, R.

    2010-03-01

    This work reports the preparation and characterization of hafnium (IV) oxide (HfO2) nanoparticles grown by derived sol-gel routes that involves the formation of an organic polymeric network. A comparison between polymerized complex (PC) and polymer precursor (PP) methods is presented. For the PC method, citric acid (CA) and ethylene glycol (EG) are used as the chelating and polymerizable reagents, respectively. In the case of PP method, poly(acrylic acid) (PAA) is used as the chelating reagent. In both cases, different precursor gels were prepared and the hafnium (IV) chloride (HfCl4) molar ratio was varied from 0.1 to 1.0 for the PC method and from 0.05 to 0.5 for the PP method. In order to obtain the nanoparticles, the precursors were heat treated at 500 and 800 °C. The thermal characterization of the precursor gels was carried out by thermogravimetric analysis (TGA) and the structural and morphological characterization by X-ray diffraction (XRD) and transmission electron microscopy (TEM). The XRD patterns of the samples obtained by both methods shows the formation of HfO2 at 500 °C with monoclinic crystalline phase. The PC method exhibited also the cubic phase. Finally, the HfO2 nanoparticles size (4 to 11 nm) was determined by TEM and XRD patterns. © (2010) Trans Tech Publications.

  15. New synthesis parameters of GGG:Nd nanocrystalline powder prepared by sol–gel method: Structural and spectroscopic investigation

    Energy Technology Data Exchange (ETDEWEB)

    Alshikh Mohamad, Yassin, E-mail: yassinm@mail.ru; Atassi, Yomen; Moussa, Zafer

    2015-09-15

    GGG:Nd nanopowder is synthesized by the sol–gel method using formic acid and acetic acid as chelating agents and ethylene glycol as a cross linking agent. TGA–DSC, XRD, photoluminescence spectroscopy and fluorescence life time analysis (τ) are used to characterize the powder. XRD is used to optimize the synthesis parameters. According to XRD, complete phase of GGG nanopowder is formed at 800 °C for 1 min. Fluorescence life time analyses reveal that the optimum crystallization temperature is 1000 °C. - Highlights: • GGG:Nd nanopowder was prepared using formic acid by the sol gel method. • Optimization of sol gel parameters was done. • GGG phase formation was complete at 800 °C for 1 min • According to τ measurements, optimal temperature treatment is at 1000 °C. • Nanopowder prepared with formic acid was better than that formed with acetic acid.

  16. On-chip detection of gel transition temperature using a novel micro-thermomechanical method.

    Directory of Open Access Journals (Sweden)

    Tsenguun Byambadorj

    Full Text Available We present a new thermomechanical method and a platform to measure the phase transition temperature at microscale. A thin film metal sensor on a membrane simultaneously measures both temperature and mechanical strain of the sample during heating and cooling cycles. This thermomechanical principle of operation is described in detail. Physical hydrogel samples are prepared as a disc-shaped gels (200 μm thick and 1 mm diameter and placed between an on-chip heater and sensor devices. The sol-gel transition temperature of gelatin solution at various concentrations, used as a model physical hydrogel, shows less than 3% deviation from in-depth rheological results. The developed thermomechanical methodology is promising for precise characterization of phase transition temperature of thermogels at microscale.

  17. High transparent shape memory gel

    Science.gov (United States)

    Gong, Jin; Arai, Masanori; Kabir, M. H.; Makino, Masato; Furukawa, Hidemitsu

    2014-03-01

    Gels are a new material having three-dimensional network structures of macromolecules. They possess excellent properties as swellability, high permeability and biocompatibility, and have been applied in various fields of daily life, food, medicine, architecture, and chemistry. In this study, we tried to prepare new multi-functional and high-strength gels by using Meso-Decoration (Meso-Deco), one new method of structure design at intermediate mesoscale. High-performance rigid-rod aromatic polymorphic crystals, and the functional groups of thermoreversible Diels-Alder reaction were introduced into soft gels as crosslinkable pendent chains. The functionalization and strengthening of gels can be realized by meso-decorating the gels' structure using high-performance polymorphic crystals and thermoreversible pendent chains. New gels with good mechanical properties, novel optical properties and thermal properties are expected to be developed.

  18. A method and instruments to identify the torque, the power and the efficiency of an internal combustion engine of a wheeled vehicle

    Science.gov (United States)

    Egorov, A. V.; Kozlov, K. E.; Belogusev, V. N.

    2018-01-01

    In this paper, we propose a new method and instruments to identify the torque, the power, and the efficiency of internal combustion engines in transient conditions. This method, in contrast to the commonly used non-demounting methods based on inertia and strain gauge dynamometers, allows controlling the main performance parameters of internal combustion engines in transient conditions without inaccuracy connected with the torque loss due to its transfer to the driving wheels, on which the torque is measured with existing methods. In addition, the proposed method is easy to create, and it does not use strain measurement instruments, the application of which does not allow identifying the variable values of the measured parameters with high measurement rate; and therefore the use of them leads to the impossibility of taking into account the actual parameters when engineering the wheeled vehicles. Thus the use of this method can greatly improve the measurement accuracy and reduce costs and laboriousness during testing of internal combustion engines. The results of experiments showed the applicability of the proposed method for identification of the internal combustion engines performance parameters. In this paper, it was determined the most preferred transmission ratio when using the proposed method.

  19. Sillica Gel-Amine from Geothermal Sludge

    Science.gov (United States)

    Muljani, S.; Pujiastuti, C.; Wicaksono, P.; Lutfianingrum, R.

    2018-01-01

    Silica Gel-Amine (SGA) has been made from geothermal sludge by grafting amine method. Sodium silicate solution is prepared by extracted geothermal sludge powder using sodium hidroxide solution then acidification in the range of pH 5 - 9 by using tartaric acid 1N. The grafting process uses 1 ml of ammonia solution and 10 ml of toluene at a rate of 0.1 ml min-1 accompanied by a reflux process. The amine grafting is done in two methods. The first method is grafting amine in silicate solution and the second method is grafting amine in washed gel. Product SGA was confirmed by FTIR, TGA-DTG and BET characterization. The results show that the pH affects the amount of amine that is grafted onto silica gel. Differences in grafting method affect the size of the pore and surface area. SGA product prepared by grafting washed gel at pH 8 have pore diameter of 12.06 nm, surface area of 173.44 m2g-1, and mass of decomposed amine compound 0.4 mg. In the presence of amine groups on the silica gel surface, these adsorbents may be able to selectively adsorb CO2 gas from natural gas.

  20. PCR amplification on microarrays of gel immobilized oligonucleotides

    Science.gov (United States)

    Strizhkov, Boris; Tillib, Sergei; Mikhailovich, Vladimir; Mirzabekov, Andrei

    2003-11-04

    The invention relates two general methods for performing PCR amplification, combined with the detection and analysis of the PCR products on a microchip. In the first method, the amplification occurs both outside and within a plurality of gel pads on a microchip, with at least one oligonucleotide primer immobilized in a gel pad. In the second method, PCR amplification also takes place within gel pads on a microchip, but the pads are surrounded by a hydrophobic liquid such as that which separates the individual gel pads into environments which resemble micro-miniaturized test tubes.

  1. 49 CFR Appendix H to Part 173 - Method of Testing for Sustained Combustibility

    Science.gov (United States)

    2010-10-01

    ... standard manner sustains combustion. 2. Principle of the method A metal block with a concave depression... consisting of a block of aluminum alloy or other corrosion-resistant metal of high thermal conductivity is... is 2.2 mm (see Figure 32.5.2.1); (b) Thermometer, mercury in glass, for horizontal operation, with a...

  2. Preparation and Optoelectrical Properties of p-CuO/n-Si Heterojunction by a Simple Sol-Gel Method

    Science.gov (United States)

    He, Bo; Xu, Jing; Ning, Huanpo; Zhao, Lei; Xing, Huaizhong; Chang, Chien-Cheng; Qin, Yuming; Zhang, Lei

    The Cuprous oxide (CuO) thin film was prepared on texturized Si wafer by a simple sol-gel method to fabricate p-CuO/n-Si heterojunction photoelectric device. The novel sol-gel method is very cheap and convenient. The structural, optical and electrical properties of the CuO film were studied by X-ray diffraction (XRD), Scanning Electron Microscope (SEM), X-ray photoelectron spectroscopy (XPS), UV-Vis spectrophotometer and Hall effect measurement. A good nonlinear rectifying behavior is obtained for the p-CuO/n-Si heterojunction. Under reverse bias, good photoelectric behavior is obtained.

  3. [A simple method for the rapid detection of bacterial hyaluronidase in K hyaluronate-containing gel].

    Science.gov (United States)

    Balke, E; Weiss, R

    1984-08-01

    For detection of hyaluronidase activities we investigated several groups of bacteria. The bacteria were inoculated on a 1,5% agarose gel in Petri plates of 4 cm diameter or gel discs of 7 mm diameter, containing 0,1% of K-hyaluronate as well as nutritient medium, and were incubated for 2-20 h at 37 degrees C in a moist chamber. Subsequently some ml of a 10% solution of cetylpyridiniumchloride were poured on the gel to precipitate the polymere hyaluronate. If the hyaluronate was depolymerized by hyaluronidase, a translucent area was visible around the colonies. We found out, that a gel layer of 1 mm was sufficient to detect the small amounts of hyaluronidase, which were produced by bacteria within an incubation time of 2 h. These results were confirmed by incubation for 20 h and in some cases 36 h. The hyaluronidase production by different anaerobic Clostridium strains was always proved after a 20 h growth period. The bacteria were inoculated with the whole loop of a self made platin sowing wire loop. By this method quantitative differences of hyaluronidase activities between different strains of bacteria could be detected.

  4. Novel approaches in advanced combustion characterization of fuels for advanced pressurized combustion

    Energy Technology Data Exchange (ETDEWEB)

    Aho, M.; Haemaelaeinen, J. [VTT Energy (Finland); Joutsenoja, T. [Tampere Univ. of Technology (Finland)

    1996-12-01

    This project is a part of the EU Joule 2 (extension) programme. The objective of the research of Technical Research Centre of Finland (VTT) is to produce experimental results of the effects of pressure and other important parameters on the combustion of pulverized coals and their char derivates. The results can be utilized in modelling of pressurized combustion and in planning pilot-scale reactors. The coals to be studied are Polish hvb coal, French lignite (Gardanne), German anthracite (Niederberg) and German (Goettelbom) hvb coal. The samples are combusted in an electrically heated, pressurized entrained flow reactor (PEFR), where the experimental conditions are controlled with a high precision. The particle size of the fuel can vary between 100 and 300 {mu}m. The studied things are combustion rates, temperatures and sizes of burning single coal and char particles. The latter measurements are performed with a method developed by Tampere University of Technology, Finland. In some of the experiments, mass loss and elemental composition of the char residue are studied in more details as the function of time to find out the combustion mechanism. Combustion rate of pulverized (140-180 {mu}m) Gardanne lignite and Niederberg anthracite were measured and compared with the data obtained earlier with Polish hvb coal at various pressures, gas temperatures, oxygen partial pressures and partial pressures of carbon dioxide in the second working period. In addition, particle temperatures were measured with anthracite. The experimental results were treated with multivariable partial least squares (PLS) method to find regression equation between the measured things and the experimental variables. (author)

  5. Determination of microamounts of carbon in various metals and alloys by the combustion-nonaqueous titrimetric method

    Energy Technology Data Exchange (ETDEWEB)

    Yoshimori, T; Koike, A [Science Univ. of Tokyo (Japan). Faculty of Engineering; Katoh, N

    1977-12-01

    Microamounts of carbon (7 -- 600 ppm) in ferrous and non-ferrous metals and alloys were determined by the combustion-nonaqueous titrimetric method. The carbon dioxide liberated by the combustion of a sample was absorbed with dimethylformamide (DMF) containing monoethanolamine and then the absorbent was titrated with the standard benzene-methanol solution of tetra-n-butylammonium hydroxide (0.007-0.002 M). The end point of the titration was located either visibly by using thymolphthalein as an indicator or potentiometrically by using a couple of platinum and calomel (containing DMF) electrodes. Pure benzoic acid was used as the standard substance for the standardization. Many improvements were given on both the combustion apparatus and the procedure. Microamounts of carbon in various samples were determined by the proposed method. They are : plain carbon and high purity ferritic stainless steels (0.05 -- 0.002% C), Inconel X-750 (0.027% C), copper alloys (20 -- 30 ppm C), tantalum powder (40 ppm C) and high purity metallic uranium (7 ppm C). All results were quite satisfactory and indicate that the proposed method was adaptable for the determination of carbon less than 100 ppm in various samples without use of any standard samples or calibration curves.

  6. Comparison of a gel column blood typing method and a point-of-care cartridge for dog erythrocyte antigen 1.1.

    Science.gov (United States)

    Blois, Shauna L; Richardson, Danielle M; Abrams-Ogg, Anthony C G

    2013-01-01

    Blood typing for the presence of Dog Erythrocyte Antigen (DEA) 1.1 is recommended in all donor and recipient dogs prior to transfusion of blood products. The objective of this study was to determine if a point-of-care DEA 1.1 blood typing cartridge could be used in place of the gel column typing method. Detection of DEA 1.1 was performed using a laboratory-based gel column method and a point-of-care cartridge. A convenience sample of 30 healthy blood donors, 13 dogs with immune-mediated hemolytic anemia (IMHA) (3 of which had concurrent immune-mediated thrombocytopenia [IMT]), and 44 dogs with other diseases was included in the study. Agreement was observed between the tests for normal dogs and dogs with nonimmune-mediated disease in 74/74 cases. Two dogs in the IMHA group had indeterminate gel column blood typing results; 1 dog in this group had a negative gel column test result but a positive cartridge test result. There was good agreement between the 2 methods for normal dogs and dogs with nonimmune-mediated disease. Blood typing methods in dogs with IMHA should be further investigated. © Veterinary Emergency and Critical Care Society 2013.

  7. Optimal processing for gel electrophoresis images: Applying Monte Carlo Tree Search in GelApp.

    Science.gov (United States)

    Nguyen, Phi-Vu; Ghezal, Ali; Hsueh, Ya-Chih; Boudier, Thomas; Gan, Samuel Ken-En; Lee, Hwee Kuan

    2016-08-01

    In biomedical research, gel band size estimation in electrophoresis analysis is a routine process. To facilitate and automate this process, numerous software have been released, notably the GelApp mobile app. However, the band detection accuracy is limited due to a band detection algorithm that cannot adapt to the variations in input images. To address this, we used the Monte Carlo Tree Search with Upper Confidence Bound (MCTS-UCB) method to efficiently search for optimal image processing pipelines for the band detection task, thereby improving the segmentation algorithm. Incorporating this into GelApp, we report a significant enhancement of gel band detection accuracy by 55.9 ± 2.0% for protein polyacrylamide gels, and 35.9 ± 2.5% for DNA SYBR green agarose gels. This implementation is a proof-of-concept in demonstrating MCTS-UCB as a strategy to optimize general image segmentation. The improved version of GelApp-GelApp 2.0-is freely available on both Google Play Store (for Android platform), and Apple App Store (for iOS platform). © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Hydrogen permeation through steel coated with erbium oxide by sol-gel method

    International Nuclear Information System (INIS)

    Yao Zhenyu; Suzuki, Akihiro; Levchuk, Denis; Chikada, Takumi; Tanaka, Teruya; Muroga, Takeo; Terai, Takayuki

    2009-01-01

    Er 2 O 3 coating is formed on austenitic stainless steel 316ss by sol-gel method. The results showed good crystallization of coating by baking in high purity flowing-argon at 973 K, and indicated that a little oxygen in baking atmosphere is necessary to crystallization of coating. The best baking temperature could be thought as 973 K, to get good crystallization of coating and avoid strong oxidation of steel substrate. The deuterium permeation test was performed for coated and bare 316ss, to evaluate the property of Er 2 O 3 sol-gel coating as a potential tritium permeation barrier. In this study, the deuterium permeability of coated 316ss is about 1-2 orders of magnitude lower than that of bare 316ss, and is about 2-3 orders of magnitude than the referred data of bare Eurofer97 and F82H martensitic steel.

  9. Production of Monodisperse Cerium Oxide Microspheres with Diameters near 100 µm by Internal Gelation Sol-Gel Methods

    Energy Technology Data Exchange (ETDEWEB)

    Katalenich, Jeffrey A.; Kitchen, Brian B.; Pierson, Bruce

    2018-05-01

    Internal gelation sol-gel methods have used a variety of sphere forming methods in the past to produce metal oxide microspheres, but typically with poor control over the size uniformity at diameters near 100 µm. This work describes efforts to make and measure internal gelation, sol-gel microspheres with very uniform diameters in the 100 – 200 µm size range using a two-fluid nozzle. A custom apparatus was used to form aqueous droplets of sol-gel feed solutions in silicone oil and heat them to cause gelation of the spheres. Gelled spheres were washed, dried, and sintered prior to mounting on glass slides for optical imaging and analysis. Microsphere diameters and shape factors were determined as a function of silicone oil flow rate in a two-fluid nozzle and the size of a needle dispensing the aqueous sol-gel solution. Nine batches of microspheres were analyzed and had diameters ranging from 65.5 ± 2.4 µm for the smallest needle and fastest silicone oil flow rate to 211 ± 4.7 µm for the largest needle and slowest silicone oil flow rate. Standard deviations for measured diameters were less than 8% for all samples and most were less than 4%. Microspheres had excellent circularity with measured shape factors of 0.9 – 1. However, processing of optical images was complicated by shadow effects in the photoresist layer on glass slides and by overlapping microspheres. Based on calculated flow parameters, microspheres were produced in a simple dripping mode in the two-fluid nozzle. Using flow rates consistent with a simple dripping mode in a two-fluid nozzle configuration allows for very uniform oxide microspheres to be produced using the internal-gelation sol-gel method.

  10. DEVELOPMENT OF SAMPLING AND ANALYTICAL METHODS FOR THE MEASUREMENT OF NITROUS OXIDE FROM FOSSIL FUEL COMBUSTION SOURCES

    Science.gov (United States)

    The report documents the technical approach and results achieved while developing a grab sampling method and an automated, on-line gas chromatography method suitable to characterize nitrous oxide (N2O) emissions from fossil fuel combustion sources. The two methods developed have...

  11. COMBUSTION SIMULATION IN A SPARK IGNITION ENGINE CYLINDER: EFFECTS OF AIR-FUEL RATIO ON THE COMBUSTION DURATION

    Directory of Open Access Journals (Sweden)

    Nureddin Dinler

    2010-01-01

    Full Text Available Combustion is an important subject of internal combustion engine studies. To reduce the air pollution from internal combustion engines and to increase the engine performance, it is required to increase combustion efficiency. In this study, effects of air/fuel ratio were investigated numerically. An axisymmetrical internal combustion engine was modeled in order to simulate in-cylinder engine flow and combustion. Two dimensional transient continuity, momentum, turbulence, energy, and combustion equations were solved. The k-e turbulence model was employed. The fuel mass fraction transport equation was used for modeling of the combustion. For this purpose a computational fluid dynamics code was developed by using the finite volume method with FORTRAN programming code. The moving mesh was utilized to simulate the piston motion. The developed code simulates four strokes of engine continuously. In the case of laminar flow combustion, Arrhenius type combustion equations were employed. In the case of turbulent flow combustion, eddy break-up model was employed. Results were given for rich, stoichiometric, and lean mixtures in contour graphs. Contour graphs showed that lean mixture (l = 1.1 has longer combustion duration.

  12. Deposition of tin oxide doped with fluorine produced by sol-gel method and deposited by spray-pyrolysis

    International Nuclear Information System (INIS)

    Maia, Paulo Herbert Franca; Lima, Francisco Marcone; Sena, Aline Cosmo de; Silva, Alvaro Neuton; Almeida, Ana Fabiola Leite de; Freire, Francisco Nivaldo Aguiar

    2014-01-01

    Solar energy is one of the most important sources of renewable energy today, but its production is based on silicon cells, expensive and difficult to produce, so the research seek new materials to replace them. This work aims to deposit tin oxide doped with fluorine on the glass substrate using the sol-gel method to provide a working solution and spray pyrolysis technique to perform the deposition. F-SnO2 (FTO) were synthesized by sol-gel method, employing NH_4F and SnCl_2 precursor in an ethanol solution. Before the formation of the gel phase, the entire solution was sprayed, with the aid of a pistol aerographic substrate under heated at 600 °C divided by 50 applications and cooled in the furnace. The substrates had resistances between 10 and 30 S.cm. The energy dispersive x-ray (EDS) revealed the presence of fluorine in the SnO_2 network. (author)

  13. Synthesis of yttrium silicate luminescent materials by sol-gel method

    International Nuclear Information System (INIS)

    Arkhipov, D.V.; Vasina, O.Yu.; Popovich, N.V.; Galaktionov, S.S.; Soshchin, N.P.

    1996-01-01

    Several yttrium-silicate composition with Y 2 O 3 content within 44-56% have been synthesized. it is ascertained that employment of sol-gel technique permits preparation of luminescent materials on yttrium silicate basis, which compare favourably with bath-produced specimens. The influence of phase composition of sol-gel phosphors on basic performance indices: intensity and luminescence spectrum, has been analyzed

  14. Colloid molecular weight estimation by gel chromatography/acrylamide gel electrophoresis

    International Nuclear Information System (INIS)

    Liberatore, F.A.; Dearborn, C.; Nigam, S.; Poon, C.; Camin, L.; Liteplo, M.

    1984-01-01

    Size or molecular weight (MW) estimation of radiolabeled collides in aqueous solutions has long been a problem. The authors have prepared several minimicroaggregated albumin colloids (mμAA) by heat denaturation of stannous-containing HSA solutions at pH 7.0, 7.5, and 8.5). The resulting colloids were labeled with Tc-99m and compared with Au-198 colloid and Tc-99m-antimony sulfide colloid (Tc-99m-Sb/sub 2/S3) by gel chromatography and gel electrophoresis. Tc-99mm-mμAA aggregated at pH 7.0 and the Au-198 colloid appeared in the external void volume of a BioRad A5.0 agarose column indicating an apparent MW of > 5 x 10/sup 6/ daltons. The pH7.5 Tc-99m-mμAA, migrated within the filtration range of the column as did a small fraction of Tc-99m-Sb/sub 2/S/sub 3/, suggesting that the MW is between 6 x 10/sup 4/ - 5 x 10/sup 6/ daltons. The Tc-99m-mμAA, aggregated at pH 8.5, had an apparent MW on gel filtration similar to that of untreated albumin, MW 6.6 x 10-/sup 4/ daltons. The mobilities of the colloids, on acrylamide disc gel electrophoresis, were consistent with the results on gel chromatography. The largest colloids, Au-198 colloid and pH 7.0 Tc-99m-mμAA, barely entered the separating gel; intermediate sized colloids, a small fraction of Tc-99m-Sb/sub 2/S/sub 3/ and pH 7.5 Tc-99m-mμAA migrated farther into the separating gel; while pH 8.5 Tc-99m-mμAA had mobility approaching that of untreated albumin. Lymphoscintigraphy studies using these colloids in animals showed the predicted, particle size-related differences in migration and clearance. The authors conclude that gel chromatography and gel electrophoresis are useful methods for estimating the apparent size of the colloidal particles

  15. Further developments and applications of layer gel dosimetry

    International Nuclear Information System (INIS)

    Gambarini, G; Carrara, M; Colli, V; Gay, S; Tomatis, S

    2004-01-01

    The method used to perform dosimetry with Fricke-xylenol orange-infused gels in form of layers remains the most reliable method for in-phantom dose profiling and imaging in high fluxes of thermal and epithermal neutrons. Gel-dosimeters in form of layers really give the possibility not only of obtaining spatial dose distributions but also of achieving measurements of each dose contribution in neutron fields. These advantages arise from the layer-geometry thanks to which neutron transport is not sensibly altered, even if the elemental gel composition is changed adding particular isotopes (for example 10 B), as necessary to perform the separation of dose contributions. The gel matrix composition and the experimental procedures, adopted for both dosimeter preparation and analysis, have been already described in previous works. In the present work, the improvements of the method employed for gel analysis, dose imaging and gel applications are illustrated

  16. Optical characterization of Er-implanted ZnO films formed by sol-gel method

    International Nuclear Information System (INIS)

    Fukudome, T.; Kaminaka, A.; Isshiki, H.; Saito, R.; Yugo, S.; Kimura, T.

    2003-01-01

    In this paper, we report on the 1.54 μm photoluminescence (PL) of Er-implanted ZnO thin films formed by a sol-gel method on Si substrates. In spite of the polycrystalline structure of the sol-gel ZnO thin films, they showed strong PL emissions due to the near band edge recombination at 375 nm as well as the Er-related luminescence at 1.54 μm. The Er-related luminescence showed no decrease (quench) in the intensity up to the Er concentration of 1.5 x 10 21 cm -3 . The PL intensity of Er-implanted ZnO at 1.54 μm was found to be as strong as Er-doped PS (porous Si) at 20 K, and the intensity reduced to 1/3 at room temperature

  17. Current and future possibilities of sol-gel process

    International Nuclear Information System (INIS)

    Sakka, Sumio

    2004-01-01

    The sol-gel method is characterized by the low temperature processing. Since this method starts from solutions, the product is essentially nanomaterials. So far, various kinds of microstructures, including dense, porous, hybrid, amorphous and crystalline microstructures have been realized. Accordingly, sol-gel materials cover a wide range of functions, such as optical, electronic, mechanical, chemical and bio-functions. Future perspectives of the sol-gel method are described in the article. (author)

  18. EXPERIMENTAL INSTALLATION FOR AN ASSESSMENT OF METHODS OF WATER SUPPLY IN AN INTERNAL COMBUSTION ENGINE

    Directory of Open Access Journals (Sweden)

    A. V. Bizhaev

    2015-01-01

    Full Text Available The water additive to fuel became one of effective ways of the solution of the main problems of the piston internal combustion engines (ICE as it reduces thermal factor of the engine, toxic emissions of exhaust products, and also increases efficiency by some operating modes. The way of fuel and air mix with water feeding in the combustion chamber has a great influence on process of combustion. Experimental installation for obtaining comparative characteristics of the main methods of water supply in the ICE combustion chamber was created. It was defined that there are two ways of water supply in the combustion chamber. At the first way water feed is carried out in the form of a water fuel emulsion which moves to the combustion chamber through a nozzle by means of the fuel pump with a high pressure. At the second way water arrives with air through the spraying element - the carburetor or a nozzle. This way is very simple in difference of emulsion feeding. The easiest way is nozzles application. It was established that the emulsion as the non-uniform highly dispersed fluid can be divide into components. Therefore it is necessary to use during the feeding system operation special emulsifiers with air for the uniformity water getting to the cylinder. The system for each nozzle opening at some point was offered. System of feedback with sensors of exhaust gases temperature in a final collector for adjustment of duration of injection was worked out. It was showed that at the developed experimental stand it is possible to carry out tests at various power modes. As result it will be possible to estimate both ways of fuel and air mix with water feeding.

  19. Structure of mineral gels

    International Nuclear Information System (INIS)

    Miranda Salvado, I.M.; Margaca, F.M.A.; Teixeira, J.

    1999-01-01

    Small Angle Neutron Scattering (SANS) measurements have been performed to investigate the nanoscale structure of materials of the systems xTiO 2 -(1-x)SiO 2 and xZrO 2 -(1-x)SiO 2 with x ≤ 10 mol % at different processing stages. The materials were prepared by sol-gel using the alkoxides method, in strong acidic conditions. Samples were studied as xerogels heat-treated at 120 and 850 deg. C and as wet gels at gel point and after aging. All samples showed identical microstructure at gel point, extended linear chains ∼10 nm long. The aged gel has a mass fractal structure with fractal dimension of 1.7 - 1.9. The 120 deg. C heat-treated xerogels show homogeneous oxide regions with mass fractal structure. For the 850 deg. C heat-treated xerogel the oxide regions average size has reduced and it has densified as compared to 120 deg. C heat-treated sample. (author)

  20. Sol-gel processing with inorganic metal salt precursors

    Science.gov (United States)

    Hu, Zhong-Cheng

    2004-10-19

    Methods for sol-gel processing that generally involve mixing together an inorganic metal salt, water, and a water miscible alcohol or other organic solvent, at room temperature with a macromolecular dispersant material, such as hydroxypropyl cellulose (HPC) added. The resulting homogenous solution is incubated at a desired temperature and time to result in a desired product. The methods enable production of high quality sols and gels at lower temperatures than standard methods. The methods enable production of nanosize sols from inorganic metal salts. The methods offer sol-gel processing from inorganic metal salts.

  1. Use of combustible wastes as fuel

    Energy Technology Data Exchange (ETDEWEB)

    Kotler, V.R.; Salamov, A.A.

    1983-01-01

    Achievements of science and technology in creating and using units for combustion of wastes with recovery of heat of the escaping gases has been systematized and generalized. Scales and outlooks are examined for the use of general, industrial and agricultural waste as fuel, composition of the waste, questions of planning and operating units for combustion of solid refuse, settling of waste water and industrial and agricultural waste. Questions are covered for preparing them for combustion use in special units with recovery of heat and at ES, aspects of environmental protection during combustion of waste, cost indicators of the employed methods of recovering the combustible waste.

  2. Improved methods for the fluorographic detection of weak β-emitting radioisotopes in agarose and acrylamide gel electrophoresis media

    International Nuclear Information System (INIS)

    Pulleyblank, D.E.; Booth, G.M.

    1981-01-01

    The use of acetic acid as a solvent for diphenyloxazole (PPO) in fluorographic procedures has been investigated. It is demonstrated to be superior to both dimethyl sulfoxide and methanol with respect to its suitability in both agarose and acrylamide gel electrophoresis systems. In addition, a method has been developed for impregnating fragile gels such as those used for immunodiffusion with PPO in preparation for fluorography. (Auth.)

  3. Multi-stage combustion using nitrogen-enriched air

    Science.gov (United States)

    Fischer, Larry E.; Anderson, Brian L.

    2004-09-14

    Multi-stage combustion technology combined with nitrogen-enriched air technology for controlling the combustion temperature and products to extend the maintenance and lifetime cycles of materials in contact with combustion products and to reduce pollutants while maintaining relatively high combustion and thermal cycle efficiencies. The first stage of combustion operates fuel rich where most of the heat of combustion is released by burning it with nitrogen-enriched air. Part of the energy in the combustion gases is used to perform work or to provide heat. The cooled combustion gases are reheated by additional stages of combustion until the last stage is at or near stoichiometric conditions. Additional energy is extracted from each stage to result in relatively high thermal cycle efficiency. The air is enriched with nitrogen using air separation technologies such as diffusion, permeable membrane, absorption, and cryogenics. The combustion method is applicable to many types of combustion equipment, including: boilers, burners, turbines, internal combustion engines, and many types of fuel including hydrogen and carbon-based fuels including methane and coal.

  4. Sol-gel derived sorbents

    Science.gov (United States)

    Sigman, Michael E.; Dindal, Amy B.

    2003-11-11

    Described is a method for producing copolymerized sol-gel derived sorbent particles for the production of copolymerized sol-gel derived sorbent material. The method for producing copolymerized sol-gel derived sorbent particles comprises adding a basic solution to an aqueous metal alkoxide mixture for a pH.ltoreq.8 to hydrolyze the metal alkoxides. Then, allowing the mixture to react at room temperature for a precalculated period of time for the mixture to undergo an increased in viscosity to obtain a desired pore size and surface area. The copolymerized mixture is then added to an immiscible, nonpolar solvent that has been heated to a sufficient temperature wherein the copolymerized mixture forms a solid upon the addition. The solid is recovered from the mixture, and is ready for use in an active sampling trap or activated for use in a passive sampling trap.

  5. Fabrication of mesoporous silica nanoparticles by sol gel method followed various hydrothermal temperature

    Science.gov (United States)

    Purwaningsih, Hariyati; Pratiwi, Vania Mitha; Purwana, Siti Annisa Bani; Nurdiansyah, Haniffudin; Rahmawati, Yenny; Susanti, Diah

    2018-04-01

    Rice husk is an agricultural waste that is potentially used as natural silica resources. Natural silica claimed to be safe in handling, cheap and can be generate from cheap resource. In this study mesoporous silica was synthesized using sodium silicate extracted from rice husk ash. This research's aim are to study the optimization of silica extraction from rice husk, characterizing mesoporous silica from sol-gel method and surfactant templating from rice husk and the effect of hydrothermal temperature on mesoporous silica nanoparticle (MSNp) formation. In this research, rice husk was extracted with sol-gel method and was followed by hydrothermal treatment; several of hydrothermal temperatures were 85°C, 100°C, 115°C, 130°C and 145° for 24 hours. X-ray diffraction analysis was identified of α-SiO2 phase and NaCl compound impurities. Scherer's analysis method for crystallite size have resulted 6.27-40.3 nm. FTIR results of silica from extraction and MSNp indicated Si-O-Si bonds on the sample. SEM result showed the morphology of the sample that has spherical shape and smooth surface. TEM result showed particle size ranged between 69,69-84,42 nm. BET showed that the pore size classified as mesoporous with pore diameter size is 19,29 nm.

  6. Optical Tomography in Combustion

    DEFF Research Database (Denmark)

    Evseev, Vadim

    spectral measurements at several line-of-sights with a view to applications for tomographic measurements on full-scale industrial combustion systems. The system was successfully applied on industrial scale for simultaneous fast exhaust gas temperature measurements in the three optical ports of the exhaust......D project, it was also important to investigate the spectral properties of major combustion species such as carbon dioxide and carbon monoxide in the infrared range at high temperatures to provide the theoretical background for the development of the optical tomography methods. The new software....... JQSRT 113 (2012) 2222, 10.1016/j.jqsrt.2012.07.015] included in the PhD thesis as an attachment. The knowledge and experience gained in the PhD project is the first important step towards introducing the advanced optical tomography methods of combustion diagnostics developed in the project to future...

  7. Properties of form-stable paraffin/silicon dioxide/expanded graphite phase change composites prepared by sol–gel method

    International Nuclear Information System (INIS)

    Li, Min; Wu, Zhishen; Tan, Jinmiao

    2012-01-01

    Highlights: ► Paraffin/SiO 2 /EG composite PCM was prepared with sol–gel method. ► The thermal conductivity of SiO 2 /paraffin/EG is 94.7% higher than paraffin. ► The latent heat of paraffin/SiO 2 /EG composite is 104.4 J/g. -- Abstract: A form-stable paraffin/silicon dioxide (SiO 2 )/expanded graphite (EG) composite phase change material (PCM) was prepared by sol–gel method. Silica gel acts as the supporting material and EG is used to increase the thermal conductivity. The mass fractions of silicon oxide and graphite are 20.8% and 7.2%, respectively. The composite PCM was characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM) and Fourier transformation infrared spectroscopy (FTIR) method. Thermal properties and thermal stability of the composite PCM were studied using differential scanning calorimetry (DSC). The result shows that paraffin was well dispersed in the network of silica gel and there is no chemical reaction between them. The phase change temperature of the paraffin/SiO 2 composite and the paraffin/SiO 2 /EG composite are 27.53 °C and 27.72 °C, respectively. The latent heat of the paraffin/SiO 2 composite and the paraffin/SiO 2 /EG composite are 112.8 J/g and 104.4 J/g, respectively. The thermal conductivity of the SiO 2 /paraffin composite and the SiO 2 /paraffin/EG composite are 28.2% and 94.7% higher than that of paraffin.

  8. Combustion

    CERN Document Server

    Glassman, Irvin

    2008-01-01

    Combustion Engineering, a topic generally taught at the upper undergraduate and graduate level in most mechanical engineering programs, and many chemical engineering programs, is the study of rapid energy and mass transfer usually through the common physical phenomena of flame oxidation. It covers the physics and chemistry of this process and the engineering applications-from the generation of power such as the internal combustion automobile engine to the gas turbine engine. Renewed concerns about energy efficiency and fuel costs, along with continued concerns over toxic and particulate emissions have kept the interest in this vital area of engineering high and brought about new developments in both fundamental knowledge of flame and combustion physics as well as new technologies for flame and fuel control. *New chapter on new combustion concepts and technologies, including discussion on nanotechnology as related to combustion, as well as microgravity combustion, microcombustion, and catalytic combustion-all ...

  9. Modelling of EAF off-gas post combustion in dedusting systems using CFD methods

    Energy Technology Data Exchange (ETDEWEB)

    Tang, X.; Kirschen, M.; Pfeifer, H. [Inst. for Industrial Furnaces and Heat Engineering in Metallurgy, RWTH Aachen, Aachen (Germany); Abel, M. [VAI-Fuchs GmbH, Willstaett (Germany)

    2003-04-01

    To comply with the increasingly strict environmental regulations, the poisonous off-gas species, e.g. carbon monoxide (CO), produced in the electric arc furnace (EAF) must be treated in the dedusting system. In this work, gas flow patterns of the off-gas post combustion in three different dedusting system units were simulated with a computational fluid dynamics (CFD) code: (1) post combustion in a horizontal off-gas duct, (2) post combustion in a water cooled post combustion chamber without additional energy supply (no gas or air/oxygen injectors) and (3) post combustion in a post combustion chamber with additional energy input (gas, air injectors and ignition burner, case study of VAI-Fuchs GmbH). All computational results are illustrated with gas velocity, temperature distribution and chemical species concentration fields for the above three cases. In case 1, the effect of different false air volume flow rates at the gap between EAF elbow and exhaust gas duct on the external post combustion of the off-gas was investigated. For case 2, the computed temperature and chemical composition (CO, CO{sub 2} and O{sub 2}) of the off-gas at the post chamber exit are in good agreement with additional measurements. Various operating conditions for case 3 have been studied, including different EAF off-gas temperatures and compositions, i. e. CO content, in order to optimize oxygen and burner gas flow rates. Residence time distributions in the external post combustion chambers have been calculated for cases 2 and 3. Derived temperature fields of the water cooled walls yield valuable information on thermally stressed parts of post combustion units. The results obtained in this work may also gain insight to future investigation of combustion of volatile organic components (VOC) or formation of nitrogen oxide (NO{sub x}) and permit the optimization of the operation and design of the off-gas dedusting system units. (orig.)

  10. Some of Physical Properties of Nanostructured (Mg1-xCoxFe2O4 Ferrites Prepared by Sol-Gel Method

    Directory of Open Access Journals (Sweden)

    Muhammad Abdul Ammer Alsherefi

    2018-01-01

    Full Text Available Sol-gel auto combustion technique was used to prepare nanoparticles of magnesium-cobalt ferrites with the chemical formula Mg1-xCoxFe2O4 for  (x=0, 0.2, 0.4, 0.6, 0.8, 1, where x added as weight  percentages, and sintering  at temperature (1100 oC. The X-ray patterns of prepared powder has confirmed the structure of cubic spinel structure (fcc. The prepared samples were composed of nearly spherical nano particles .An average particle size of  magnesium-cobalt ferrite  were  calculated  using  Debye Scherer’s relation is equal 53.12 nm. The surface structure of the samples was investigated by Scanning Electron Microscope(SEM. The electromagnetic properties for prepared samples were investigated using Vector Network Analyzer (VNA in X-band microwave region.

  11. Implementation of MRI gel dosimetry in radiation therapy

    International Nuclear Information System (INIS)

    Baeck, S.Aa.J.

    1998-12-01

    Gel dosimetry was used together with magnetic resonance imaging (MRI) to measure three-dimensional absorbed dose distributions in radiation therapy. Two different dosimeters were studied: ferrous- and monomer gel, based on the principles of radiation-induced oxidation and polymerisation, respectively. Single clinical electron and photon beams were evaluated and gel dose distributions were mainly within 2% of conventional detector results. The ferrous-gel was also used for clinical proton beams. A decrease in signal per absorbed dose was found close to the end of the range of the protons (15-20%). This effect was explained as a linear energy transfer dependence, further supported with Monte Carlo simulations. A method for analysing and comparing data from treatment planning system (TPS) and gel measurements was developed. The method enables a new pixel by pixel evaluation, isodose comparison and dose volume histogram verification. Two standard clinical radiation therapy procedures were examined using the developed TPS verification method. The treatment regimes included several beams of different radiation qualities. The TPS calculated data were in very good agreement with the dose distribution measured by the ferrous-gel. However, in a beam abutment region, larger dose difference was found. Beam adjustment errors and a minor TPS underestimation of the lateral scatter contribution outside the primary electron beam may explain the discrepancy. The overall uncertainty in the ferrous-gel dose determination was considerably reduced using an optimised MRI acquisition protocol and a new MRI scanner. The relative dose uncertainty was found to be better than 3.3% for all dose levels (95% confidence level). Using the method developed for comparing measured gel data with calculated treatment plans, the gel dosimetry method was proven to be a useful tool for radiation treatment planning verification

  12. Implementation of MRI gel dosimetry in radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Baeck, S.Aa.J

    1998-12-01

    Gel dosimetry was used together with magnetic resonance imaging (MRI) to measure three-dimensional absorbed dose distributions in radiation therapy. Two different dosimeters were studied: ferrous- and monomer gel, based on the principles of radiation-induced oxidation and polymerisation, respectively. Single clinical electron and photon beams were evaluated and gel dose distributions were mainly within 2% of conventional detector results. The ferrous-gel was also used for clinical proton beams. A decrease in signal per absorbed dose was found close to the end of the range of the protons (15-20%). This effect was explained as a linear energy transfer dependence, further supported with Monte Carlo simulations. A method for analysing and comparing data from treatment planning system (TPS) and gel measurements was developed. The method enables a new pixel by pixel evaluation, isodose comparison and dose volume histogram verification. Two standard clinical radiation therapy procedures were examined using the developed TPS verification method. The treatment regimes included several beams of different radiation qualities. The TPS calculated data were in very good agreement with the dose distribution measured by the ferrous-gel. However, in a beam abutment region, larger dose difference was found. Beam adjustment errors and a minor TPS underestimation of the lateral scatter contribution outside the primary electron beam may explain the discrepancy. The overall uncertainty in the ferrous-gel dose determination was considerably reduced using an optimised MRI acquisition protocol and a new MRI scanner. The relative dose uncertainty was found to be better than 3.3% for all dose levels (95% confidence level). Using the method developed for comparing measured gel data with calculated treatment plans, the gel dosimetry method was proven to be a useful tool for radiation treatment planning verification 103 refs, 20 figs, 6 tabs

  13. Yield stress determination of a physical gel

    DEFF Research Database (Denmark)

    Hvidt, Søren

    2013-01-01

    Pluronic F127 solutions form gels in water with high elastic moduli. Pluronic gels can, however, only withstand small deformations and stresses. Different steady shear and oscillatory methods traditionally used to determine yield stress values are compared. The results show that the yield stresses...... values of these gels depend on test type and measurement time, and no absolute yield stress value can be determined for these physical gels....

  14. Magnetic studies of cobalt doped barium hexaferrite nanoparticles prepared by modified sol-gel method

    International Nuclear Information System (INIS)

    Shalini, M. Govindaraj; Sahoo, Subasa C.

    2016-01-01

    M-type barium hexaferrite (BaFe_1_2O_1_9) and cobalt doped barium hexaferrite (BaFe_1_1CoO_1_9) nanopowders were synthesized by modified sol-gel auto-combustion technique and were annealed at 900°C in air for 4 hours. The annealed powders were studied in the present work and X-ray diffraction studies showed pure phase formation after annealing. The average grain size in the nanopowder sample was decreased after doping. Magnetization value of 60 emu/g was observed at 300 K for the barium hexaferrite and was reduced to 54 emu/g after doping. The coercivity of 5586 Oe was observed at 300 K for the undoped sample and was found to be decreased in the doped sample. As the measurement temperature was decreased from 300 K to 60 K, magnetization value was increased in both the samples compared to those at 300 K. The coercivity of the undoped sample was found to decrease whereas it was increased for the doped sample at 60 K. The observed magnetic properties may be understood on the basis of modified exchange interaction and anisotropy in the doped sample compared to that of pure barium hexaferrite.

  15. Combustion

    CERN Document Server

    Glassman, Irvin

    1997-01-01

    This Third Edition of Glassman's classic text clearly defines the role of chemistry, physics, and fluid mechanics as applied to the complex topic of combustion. Glassman's insightful introductory text emphasizes underlying physical and chemical principles, and encompasses engine technology, fire safety, materials synthesis, detonation phenomena, hydrocarbon fuel oxidation mechanisms, and environmental considerations. Combustion has been rewritten to integrate the text, figures, and appendixes, detailing available combustion codes, making it not only an excellent introductory text but also an important reference source for professionals in the field. Key Features * Explains complex combustion phenomena with physical insight rather than extensive mathematics * Clarifies postulates in the text using extensive computational results in figures * Lists modern combustion programs indicating usage and availability * Relates combustion concepts to practical applications.

  16. Ozonation and sol-gel method to obtain Cu/Cu O nanoparticles from cyanidation wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Soria A, M. J.; Puente S, D. M.; Carrillo P, F. R. [Universidad Autonoma de Coahuila, Facultad de Metalurgia, Carretera 57 Km 4.5, 25710 Monclova, Coahuila (Mexico); Garcia C, L. A. [Centro de Investigacion en Quimica Aplicada, Blvd. Enrique Reyna No. 140, Col. Los Pinos, 25253 Saltillo, Coahuila (Mexico); Velazquez S, J., E-mail: frrcarrillo@yahoo.com.mx [University of Texas at San Antonio, Department of Physics and Astronomy, San Antonio TX 78249 (United States)

    2015-07-01

    The extraction process of gold and silver by cyanidation generates large amounts of effluent which also contain contaminants such as cyanide and significant metal values such as copper. This paper presents the results of the removal and recovery of copper from ozonation treatment of a residual aqueous cyanide. The residual solution was treated by ozonation-precipitation to obtain a precipitate of copper. From this, copper nano composites obtained by Pechini modified sol-gel method were obtained. The compounds obtained were characterized by X-ray diffraction, showing a dependence of the type of compounds formed over time of ozonation and heat treatment of the gel. The particle size was measured by scanning electron microscopy and calculated by the Scherrer equation, being between 50 and 120 nm. (Author)

  17. Structural study of some gadolinium glass ceramics obtained by sol-gel method

    International Nuclear Information System (INIS)

    Coroiu, Ilioara; Simiti, Vida I.; Bratu, I.; Borodi, Gh.; Darabont, Al.

    2004-01-01

    Increased interest in silicate systems containing different rare earth oxides has resulted from their important applications in various fields of technology including laser, optical fiber and optical waveguides in telecommunication applications, microelectronics and catalysis. Glass-ceramics of 0.95 SiO 2 -0.05 Na 2 O composition containing up to 15% molar Gd 2 O 3 were obtained by the sol-gel method. We chose the sol-gel method because this offers the advantage of a good chemical homogeneity and a better control of physical and chemical properties in comparison with traditional methods used to obtain glasses and ceramics. The obtained samples were pressed at 200 kgf/cm 2 as disks with a diameter of Φ=22 mm and a thickness of around 1 mm. Then, they were heat-treated at 250 deg C, 500 deg C and 1000 deg C for about 48 hours. The structural study was made using X-ray diffraction, scanning electron microscopy (SEM) and IR spectroscopy. The X-ray diffraction patterns show that addition of Gd 2 O 3 exerts an important influence on the crystallization process of the studied samples. The crystalline phase decreases with increasing the Gd 2 O 3 concentration. SEM data support this assertion. IR spectra point out also that the increasing of the gadolinium oxide content and the thermal treatment temperature produce the strengthening of the glass ceramic network. Thus, the gadolinium ions play the role of network modifier of the glass ceramic structure. (authors)

  18. Stabilized aqueous gels and uses thereof

    Energy Technology Data Exchange (ETDEWEB)

    Swanson, B.L.

    1978-08-29

    New improved aqueous gels, and methods of using same in contacting subterranean formations, are provided. The gels are prepared by gelling an aqueous brine having incorporated therein a water-soluble cellulose ether such as a carboxymethylcellulose (CMC), and are rendered more stable to decomposition by incorporating a sulfoalkylated tannin stabilizing agent, such as a sulfomethylated quebracho (SMQ), in the gel during the preparation thereof.

  19. Decrease of noxious emissions in the residual fuel oil combustion; Disminucion de emisiones nocivas en la combustion de aceite combustible residual

    Energy Technology Data Exchange (ETDEWEB)

    Mandoki W, Jorge [Econergia S. de R. L. de C. V. Mexico, D. F. (Mexico)

    1994-12-31

    The residual fuel oil combustion emits noxious substances such as carbonaceous particulate, nitrogen oxides, and sulfur trioxide at unacceptable levels. Water emulsified in the fuel substantially reduces such emissions, achieving besides, in most of the cases, a net saving in the fuel consumption. The beneficial effects are shown in burning the residual fuel oil as a water emulsion, as well as the method to produce an adequate emulsion. The emulsified fuel technology offers a low cost option to reduce air pollution. The fuel oil quality has been declining during the last decades due to: 1. Increase in the production of crude heavy oils, generally with higher content of asphaltens and sulfur. 2. Less availability of vacuum distillation residues due to its conversion into greater value products. 3. More intensive conversion processes such as catalytic cracking, visbreaking, etc. that increase the asphaltenes concentration in the bottoms, causing instability problems. 4. The increase in the vanadium and other metals content as the concentration of asphaltenes increases. The use of emulsified fuel oil provides an efficient and economical method to substantially reduce the noxious emissions to the atmosphere. The emulsion contains water particles in a diameter between 2 and 20 microns, uniformly distributed in the fuel oil, generally in a proportion generally of 5 to 10%; besides, it contains a tensioactive agent to assure a stable emulsion capable of withstanding the shearing forces of the pumping and distribution systems. When the atomized oil drops get into the combustion chamber, the emulsified water flashes into high pressure steam, originating a violent secondary atomization. The effect of this secondary atomization is the rupture of the oil drops of various hundred microns, producing drops of 5 to 15 microns in diameter. Since the necessary time for combustion is an exponential function of the drop diameter, a very substantial improvement in the combustion is

  20. Apparatus and method for solid fuel chemical looping combustion

    Science.gov (United States)

    Siriwardane, Ranjani V; Weber, Justin M

    2015-04-14

    The disclosure provides an apparatus and method utilizing fuel reactor comprised of a fuel section, an oxygen carrier section, and a porous divider separating the fuel section and the oxygen carrier section. The porous divider allows fluid communication between the fuel section and the oxygen carrier section while preventing the migration of solids of a particular size. Maintaining particle segregation between the oxygen carrier section and the fuel section during solid fuel gasification and combustion processes allows gases generated in either section to participate in necessary reactions while greatly mitigating issues associated with mixture of the oxygen carrier with char or ash products. The apparatus and method may be utilized with an oxygen uncoupling oxygen carrier such as CuO, Mn.sub.3O.sub.4, or Co.sub.3O.sub.4, or utilized with a CO/H.sub.2 reducing oxygen carrier such as Fe.sub.2O.sub.3.

  1. DNA DAMAGE QUANTITATION BY ALKALINE GEL ELECTROPHORESIS.

    Energy Technology Data Exchange (ETDEWEB)

    SUTHERLAND,B.M.; BENNETT,P.V.; SUTHERLAND, J.C.

    2004-03-24

    Physical and chemical agents in the environment, those used in clinical applications, or encountered during recreational exposures to sunlight, induce damages in DNA. Understanding the biological impact of these agents requires quantitation of the levels of such damages in laboratory test systems as well as in field or clinical samples. Alkaline gel electrophoresis provides a sensitive (down to {approx} a few lesions/5Mb), rapid method of direct quantitation of a wide variety of DNA damages in nanogram quantities of non-radioactive DNAs from laboratory, field, or clinical specimens, including higher plants and animals. This method stems from velocity sedimentation studies of DNA populations, and from the simple methods of agarose gel electrophoresis. Our laboratories have developed quantitative agarose gel methods, analytical descriptions of DNA migration during electrophoresis on agarose gels (1-6), and electronic imaging for accurate determinations of DNA mass (7-9). Although all these components improve sensitivity and throughput of large numbers of samples (7,8,10), a simple version using only standard molecular biology equipment allows routine analysis of DNA damages at moderate frequencies. We present here a description of the methods, as well as a brief description of the underlying principles, required for a simplified approach to quantitation of DNA damages by alkaline gel electrophoresis.

  2. Determination of 60 Co by means of Neutron Activation Analysis in the sorption of Co in synthesized porous oxides by the combustion method

    International Nuclear Information System (INIS)

    Lugo, V.; Bulbulian, S.; Urena, F.

    2005-01-01

    Recently inorganic materials are investigating as sorbent of radioactive pollutants present in water. The inorganic oxides belong to this group of materials. A quick method exists for the obtaining of inorganic oxides, denominated combustion method that could be used to produce porous oxides successfully with good properties for the sorption of radioactive ions. In this investigation, iron oxides, magnesium and zinc were synthesized obtained by the combustion method, comparing them with those synthesized by the calcination method, using two different synthesis temperatures. The obtained solids were characterized by scanning electron microscopy (Sem), by X-ray diffraction (XRD) and by semiquantitative elemental analysis (EDS). After the characterization, the crystalline oxides synthesized by both methods, to temperature of 800 C, were evaluated as sorbents in the removal of Co 2+ ions, through experiments in batch, and using neutron activation analysis, determining the sorption percentage, with this it was concluded that the magnesium oxide produced by combustion it is more effective in the removal of Co 2+ ions than that synthesized by calcination. It was determined the surface area of the magnesium oxides, obtaining a surface area greater for the synthesized oxide by combustion method. (Author)

  3. Study of mechanically activated coal combustion

    Directory of Open Access Journals (Sweden)

    Burdukov Anatolij P.

    2009-01-01

    Full Text Available Combustion and air gasification of mechanically activated micro-ground coals in the flux have been studied. Influence of mechanically activated methods at coals grinding on their chemical activeness at combustion and gasification has been determined. Intense mechanical activation of coals increases their chemical activeness that enables development of new highly boosted processing methods for coals with various levels of metamorphism.

  4. Comparison of Different Protein Extraction Methods for Gel-Based Proteomic Analysis of Ganoderma spp.

    Science.gov (United States)

    Al-Obaidi, Jameel R; Saidi, Noor Baity; Usuldin, Siti Rokhiyah Ahmad; Hussin, Siti Nahdatul Isnaini Said; Yusoff, Noornabeela Md; Idris, Abu Seman

    2016-04-01

    Ganoderma species are a group of fungi that have the ability to degrade lignin polymers and cause severe diseases such as stem and root rot and can infect economically important plants and perennial crops such as oil palm, especially in tropical countries such as Malaysia. Unfortunately, very little is known about the complex interplay between oil palm and Ganoderma in the pathogenesis of the diseases. Proteomic technologies are simple yet powerful tools in comparing protein profile and have been widely used to study plant-fungus interaction. A critical step to perform a good proteome research is to establish a method that gives the best quality and a wide coverage of total proteins. Despite the availability of various protein extraction protocols from pathogenic fungi in the literature, no single extraction method was found suitable for all types of pathogenic fungi. To develop an optimized protein extraction protocol for 2-DE gel analysis of Ganoderma spp., three previously reported protein extraction protocols were compared: trichloroacetic acid, sucrose and phenol/ammonium acetate in methanol. The third method was found to give the most reproducible gels and highest protein concentration. Using the later method, a total of 10 protein spots (5 from each species) were successfully identified. Hence, the results from this study propose phenol/ammonium acetate in methanol as the most effective protein extraction method for 2-DE proteomic studies of Ganoderma spp.

  5. Reaction and diffusion in turbulent combustion

    Energy Technology Data Exchange (ETDEWEB)

    Pope, S.B. [Mechanical and Aerospace Engineering, Ithaca, NY (United States)

    1993-12-01

    The motivation for this project is the need to obtain a better quantitative understanding of the technologically-important phenomenon of turbulent combustion. In nearly all applications in which fuel is burned-for example, fossil-fuel power plants, furnaces, gas-turbines and internal-combustion engines-the combustion takes place in a turbulent flow. Designers continually demand more quantitative information about this phenomenon-in the form of turbulent combustion models-so that they can design equipment with increased efficiency and decreased environmental impact. For some time the PI has been developing a class of turbulent combustion models known as PDF methods. These methods have the important virtue that both convection and reaction can be treated without turbulence-modelling assumptions. However, a mixing model is required to account for the effects of molecular diffusion. Currently, the available mixing models are known to have some significant defects. The major motivation of the project is to seek a better understanding of molecular diffusion in turbulent reactive flows, and hence to develop a better mixing model.

  6. Magnetic properties of Co{sub 1−x}Zn{sub x}Fe{sub 2}O{sub 4} spinel ferrite nanoparticles synthesized by starch-assisted sol–gel autocombustion method and its ball milling

    Energy Technology Data Exchange (ETDEWEB)

    Yadav, Raghvendra Singh, E-mail: yadav@fch.vutbr.cz [Materials Research Centre, Brno University of Technology, Purkyňova 464/118, 61200 Brno (Czech Republic); Havlica, Jaromir [Materials Research Centre, Brno University of Technology, Purkyňova 464/118, 61200 Brno (Czech Republic); Hnatko, Miroslav; Šajgalík, Pavol [Institute of Inorganic Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, SK-845 36 Bratislava (Slovakia); Alexander, Cigáň [Institute of Measurement Science, Slovak Academy of Sciences, Dúbravská cesta 9, SK-841 04 Bratislava (Slovakia); Palou, Martin; Bartoníčková, Eva; Boháč, Martin; Frajkorová, Františka; Masilko, Jiri; Zmrzlý, Martin; Kalina, Lukas; Hajdúchová, Miroslava; Enev, Vojtěch [Materials Research Centre, Brno University of Technology, Purkyňova 464/118, 61200 Brno (Czech Republic)

    2015-03-15

    In this article, Co{sub 1−x}Zn{sub x}Fe{sub 2}O{sub 4} (x=0.0 and 0.5) spinel ferrite nanoparticles were achieved at 800 °C by starch-assisted sol–gel autocombustion method. To further reduce the particle size, these synthesized ferrite nanoparticles were ball-milled for 2 h. X-ray diffraction patterns demonstrated single phase formation of Co{sub 1−x}Zn{sub x}Fe{sub 2}O{sub 4} (x=0.0 and 0.5) spinel ferrite nanoparticles. FE-SEM analysis indicated the nanosized spherical particles formation with spherical morphology. The change in Raman modes and relative intensity were observed due to ball milling and consequently decrease of particle size and cationic redistribution. An X-ray Photoelectron Spectroscopy (XPS) result indicated that Co{sup 2+}, Zn{sup 2+} and Fe{sup 3+} exist in octahedral and tetrahedral sites. The cationic redistribution of Zn{sup 2+} and consequently Fe{sup 3+} occurred between octahedral and tetrahedral sites after ball-milling. The change in saturation magnetization (M{sub s}) and coercivity (H{sub c}) with decrease of nanocrystalline size and distribution of cations in spinel ferrite were observed. - Highlights: • Co{sub 1−x}Zn{sub x}Fe{sub 2}O{sub 4} spinel ferrite nanoparticles. • Starch-assisted sol–gel auto-combustion method. • Effect of ball-milling on particle size and cation distribution. • Magnetic property dependent on cations and particle size.

  7. Preparation and Characterization of Nano-structured Ceramic Powders Synthesized by Emulsion Combustion Method

    International Nuclear Information System (INIS)

    Takatori, Kazumasa; Tani, Takao; Watanabe, Naoyoshi; Kamiya, Nobuo

    1999-01-01

    The emulsion combustion method (ECM), a novel powder production process, was originally developed to synthesize nano-structured metal-oxide powders. Metal ions in the aqueous droplets were rapidly oxidized by the combustion of the surrounding flammable liquid. The ECM achieved a small reaction field and a short reaction period to fabricate the submicron-sized hollow ceramic particles with extremely thin wall and chemically homogeneous ceramic powder. Alumina, zirconia, zirconia-ceria solid solutions and barium titanate were synthesized by the ECM process. Alumina and zirconia powders were characterized to be metastable in crystalline phase and hollow structure. The wall thickness of alumina was about 10 nm. The zirconia-ceria powders were found to be single-phase solid solutions for a wide composition range. These powders were characterized as equiaxed-shape, submicron-sized chemically homogeneous materials. The powder formation mechanism was investigated through the synthesis of barium titanate powder with different metal sources

  8. Influence of Experimental Parameters Using the Dip-Coating Method on the Barrier Performance of Hybrid Sol-Gel Coatings in Strong Alkaline Environments

    Directory of Open Access Journals (Sweden)

    Rita B. Figueira

    2015-04-01

    Full Text Available Previous studies have shown that the barrier effect and the performance of organic-inorganic hybrid (OIH sol-gel coatings are highly dependent on the coating deposition method as well as on the processing conditions. However, studies on how the coating deposition method influences the barrier properties in alkaline environments are scarce. The aim of this experimental research was to study the influence of experimental parameters using the dip-coating method on the barrier performance of an OIH sol-gel coating in contact with simulated concrete pore solutions (SCPS. The influence of residence time (Rt, a curing step between each dip step and the number of layers of sol-gel OIH films deposited on hot-dip galvanized steel to prevent corrosion in highly alkaline environments was studied. The barrier performance of these OIH sol-gel coatings, named U(400, was assessed in the first instants of contact with SCPS, using electrochemical impedance spectroscopy and potentiodynamic methods. The durability and stability of the OIH coatings in SCPS was monitored during eight days by macrocell current density. The morphological characterization of the surface was performed by Scanning Electronic Microscopy before and after exposure to SCPS. Glow Discharge Optical Emission Spectroscopy was used to investigate the thickness of the U(400 sol-gel coatings as a function of the number of layers deposited with and without Rt in the coatings thickness.

  9. Combustion engineering

    CERN Document Server

    Ragland, Kenneth W

    2011-01-01

    Introduction to Combustion Engineering The Nature of Combustion Combustion Emissions Global Climate Change Sustainability World Energy Production Structure of the Book   Section I: Basic Concepts Fuels Gaseous Fuels Liquid Fuels Solid Fuels Problems Thermodynamics of Combustion Review of First Law Concepts Properties of Mixtures Combustion StoichiometryChemical EnergyChemical EquilibriumAdiabatic Flame TemperatureChemical Kinetics of CombustionElementary ReactionsChain ReactionsGlobal ReactionsNitric Oxide KineticsReactions at a Solid SurfaceProblemsReferences  Section II: Combustion of Gaseous and Vaporized FuelsFlamesLaminar Premixed FlamesLaminar Flame TheoryTurbulent Premixed FlamesExplosion LimitsDiffusion FlamesGas-Fired Furnaces and BoilersEnergy Balance and EfficiencyFuel SubstitutionResidential Gas BurnersIndustrial Gas BurnersUtility Gas BurnersLow Swirl Gas BurnersPremixed-Charge Engine CombustionIntroduction to the Spark Ignition EngineEngine EfficiencyOne-Zone Model of Combustion in a Piston-...

  10. Experimental study of improvement on combustion control of fluidized bed combustion chamber; Ryudosho shokyakuro no nenshosei no kaizen ni tsuite

    Energy Technology Data Exchange (ETDEWEB)

    Izumiya, T.; Baba, K.; Koshida, H.; Uetani, J.; Furuta, M.

    1998-10-29

    Nippon Steel Corporation has carried out an experimental study using the Yawata waste incinerator plant in order to improve combustion control of a fluidized bed combustion chamber. For controlling the forming of dioxin, combustion control is very important in addition to conventional methods. In this paper, we report two studies about improvements on combustion control. In the first study, we verified improvement on combustion control by modifying gas flow at the freeboard. The operational results of the experiments were studied using the numerical model of the combustion chamber. The modification of gas flow at freeboard was confirmed to be effective to obtain a compact design of fluidized bed combustion chamber for municipal waste. In the second, study we improved combustion control for sewage combustion with municipal waste. In burning municipal waste and sewage, it is especially required to take combustion control into careful consideration. In this experiment, we developed a new device for supplying sewage for the appropriate controlling combustion, and verified its effectiveness to combustion control and an effective reduction of dioxin. (author)

  11. Synthesis, characterization of nickel aluminate nanoparticles by microwave combustion method and their catalytic properties

    Energy Technology Data Exchange (ETDEWEB)

    Ragupathi, C. [Catalysis and Nanomaterials Research Laboratory, Department of Chemistry, Loyola College (Autonomous), Chennai 600034 (India); Vijaya, J. Judith, E-mail: jjvijayaloyola@yahoo.co.in [Catalysis and Nanomaterials Research Laboratory, Department of Chemistry, Loyola College (Autonomous), Chennai 600034 (India); Kennedy, L. John [Materials Division, School of Advanced Sciences, Vellore Institute of Technology (VIT) University, Chennai Campus, Chennai 600127 (India)

    2014-05-01

    Highlights: • Simple route for the preparation of nickel aluminate. • NiAl{sub 2}O{sub 4} microwave absorbent was invented by a simple method. • High specific surface area was obtained at low temperature. • Evaluation of magnetic, optical and catalytic properties. - Abstract: Microwave combustion method (MCM) is a direct method to synthesize NiAl{sub 2}O{sub 4} nanoparticles and for the first time we report the using of Sesame (Sesame indicum L.) plant extract in the present study. Solutions of metal nitrates and plant extract as a gelling agent are subsequently combusted using microwave. The structure and morphology of NiAl{sub 2}O{sub 4} nanoparticles are investigated by X-ray diffraction (XRD), Fourier transforms infrared spectra (FT-IR), high resolution scanning electron microscopy (HR-SEM), energy dispersive X-ray analysis (EDX), high resolution transmission electron microscopy (HR-TEM), diffuse reflectance spectroscopy (DRS) and photoluminescence (PL) spectroscopy, Brunauer–Emmett–Teller (BET) analysis and vibrating sample magnetometer (VSM). XRD pattern confirmed the formation of cubic phase NiAl{sub 2}O{sub 4}. The formation of NiAl{sub 2}O{sub 4} is also confirmed by FT-IR. The formation of NiAl{sub 2}O{sub 4} nanoparticles is confirmed by HR-SEM and HR-TEM. Furthermore, the microwave combustion leads to the formation of fine particles with uniform morphology. The magnetic properties of the synthesized NiAl{sub 2}O{sub 4} nano and microstructures were investigated by vibrating sample magnetometer (VSM) and their hysteresis loops were obtained at room temperature. Further, NiAl{sub 2}O{sub 4} prepared by MCM using Sesame (S. indicum L.) plant extract is tested for the catalytic activity toward the oxidation of benzyl alcohol.

  12. Modelling of Non-Premixed Turbulent Combustion of Hydrogen using Conditional Moment Closure Method

    International Nuclear Information System (INIS)

    Noor, M M; Hairuddin, A Aziz; Wandel, Andrew P; Yusaf, T F

    2012-01-01

    Most of the electricity generation and energy for transport is still generated by the conversion of chemical to mechanical energy by burning the fuels in the combustion chamber. Regulation for pollution and the demand for more fuel economy had driven worldwide researcher to focus on combustion efficiency. In order to reduce experimental cost, accurate modelling and simulation is very critical step. Taylor series expansion was utilised to reduce the error term for the discretization. FORTRAN code was used to execute the discretized partial differential equation. Hydrogen combustion was simulated using Conditional Moment Closure (CMC) model. Combustion of hydrogen with oxygen was successfully simulated and reported in this paper.

  13. Applications of sol gel ceramic coatings

    International Nuclear Information System (INIS)

    Barrow, D.

    1996-01-01

    The sol gel method is a chemical technique in which polycrystalline ceramic films are fabricated from a solution of organometallic precursors. The technique is attractive for many industrial applications because it is a simple (films are processed in air), flexible (can be used to coat complex geometries) and cost effective (does not require expensive equipment) process. In addition, dense, high quality coatings can be achieved at much lower temperatures than is generally required for sintering bulk ceramics. In this paper the conventional sol gel method and the new datec process are reviewed and potential applications of sol gel coatings in automotive, aerospace, petrochemical, nuclear and electronic industries are discussed. (orig.)

  14. The rheodynamics and combustion of coal-water mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Burdukov, A.P.; Popov, V.I.; Tomilov, V.G.; Fedosenko, V.D. [Russian Academy of Science, Novosibirsk (Russian Federation). Inst. of Thermophysics (Siberian Branch, Russian Academy of Science)

    2002-05-01

    Investigation methods for characteristics of movement along the tubes, combustion dynamics and gasification of separate drops were developed for the coal-water mixtures (CWM). The following parameters were determined on the basis of laser heating: thermometric, pyrometric and concentration dynamics of single-drop combustion, complete combustion times, duration of temperature phases of combustion, as well as the moment and temperature of ignition. Information on the combustion mass velocity and gasification products was also obtained using laser heating. 6 refs., 13 figs., 1 tab.

  15. Gel electrophoresis of inorganic cations

    International Nuclear Information System (INIS)

    Schoenhofer, F.; Grass, F.

    1978-01-01

    In order to be able to separate the largest possible amounts of substance, polyacryl amide gel (PAA) and silica gel are used as carrier for the electrophoresis. Milligramme quantities can easily be separated on PAA gel plates. Electrophoretic ion focussing considerably improves it. Separations of Sr/Y and lanthanoids were carried out. The behaviour of the readily soluble complexing agent acids on silica gel thin layers was minutely investigated and an interpretation of the focussing effect was derived. The conditions for separating radionuclides were optimized. A further improved separation can be achieved by a time sequence combination of normal electrophoresis and ion focussing. Selective isolation methods are advantageous to determine radionuclide traces in environmental samples. The selective adsorption on preformed deposits was transferred to electrophoresis. After pre-investigations on silica gel layers, strontium and barium could also be retained on PAA gel and radium on strontium sulphate in PAA, whereas the disturbing calcium can easily pass through. Cesium can also be retained by prussian blue in the electrophoresis. (orig.) [de

  16. Highly increased detection of silver stained protein bands in polyacrylamide gels with thermo-optical methods

    Science.gov (United States)

    Mazza, Giulia; Posnicek, Thomas; Brandl, Martin

    2016-11-01

    Sodium dodecyl sulfate polyacrylamide gel electrophoresis is a well-known technique to separate proteins by their molecular weight. After electrophoresis, the gels are commonly stained for protein band analysis with silver stain; this allows the detection of protein loads to about 1 ng. To increase the detection sensitivity of the protein bands down in the subnanogram level, a sensor has been developed based on the thermal lens effect to scan and quantify protein loads which would remain undetected using the standard imaging systems. The thermal lens sensor is equipped with a 450 nm diode pump laser modulated at 1 Hz and a HeNe probe laser mounted in collinear geometry. The sensor could detect protein bands of 0.05 ng when the gel was soaked in methanol/water and 0.1 ng in water. The limit of detection ranged from 8 to 20 pg, depending on the soaking medium and the staining efficiency. Thus, the detection of silver stain by thermal lens effect results 10 to 20 times more sensitive than the standard colorimetric method.

  17. Synthesis of hybrid chitosan/calcium aluminosilicate using a sol-gel method for optical applications

    Energy Technology Data Exchange (ETDEWEB)

    Elnahrawy, Amany Mohamed [Department of Solid State, Physics Division, National Research Center (NRC), Giza 12622, Cairo (Egypt); Kim, Yong Soo, E-mail: yskim2@ulsan.ac.kr [Department of Physics and Energy Harvest-Storage Research Center (EHSRC), University of Ulsan, Ulsan 44610 (Korea, Republic of); Ali, Ahmed I., E-mail: Ahmed_ali_2010@helwan.edu.eg [Department of Physics and Energy Harvest-Storage Research Center (EHSRC), University of Ulsan, Ulsan 44610 (Korea, Republic of); Basic Science Department, Faculty of Industrial Education & Technology, Helwan University, Cairo 11281 (Egypt)

    2016-08-15

    Hybrid chitosan (CS)/calcium aluminosilicate nanocomposites thin films and membranes were prepared using a sol–gel method with three different concentrations of Al{sub 2}O{sub 3} (5, 7 and 10 mol. %). The prepared nanocomposites were characterized by transmission electron microscopy, X-ray diffraction and Fourier Transform Infrared spectroscopy. The optical properties of the prepared samples were analyzed by UV/Vis spectrophotometry and photoluminescence (PL) spectroscopy. The optical parameters revealed an increase in both the refractive index and band gap of the nanocomposites with increasing Al concentration. In addition, the PL spectra revealed a blue shift that was consistent with an increase in the optical band gap. These results suggest that CS/calcium aluminosilicate in two different forms can be a good candidate for optical sensors applications. - Highlights: • We show a large specific surface area of hybrid CS/calcium aluminosilicate thin films and membranes using sol-gel method. • Inorganic SiO{sub 2}-based phase are perfectly embedded onto chitosan matrix has a reliable stability. • CS/calcium aluminosilicate could be usable for optical sensors, planar waveguide, and bio-sensing.

  18. Explorative data analysis of two-dimensional electrophoresis gels

    DEFF Research Database (Denmark)

    Schultz, J.; Gottlieb, D.M.; Petersen, Marianne Kjerstine

    2004-01-01

    of gels is presented. First, an approach is demonstrated in which no prior knowledge of the separated proteins is used. Alignment of the gels followed by a simple transformation of data makes it possible to analyze the gels in an automated explorative manner by principal component analysis, to determine......Methods for classification of two-dimensional (2-DE) electrophoresis gels based on multivariate data analysis are demonstrated. Two-dimensional gels of ten wheat varieties are analyzed and it is demonstrated how to classify the wheat varieties in two qualities and a method for initial screening...... if the gels should be further analyzed. A more detailed approach is done by analyzing spot volume lists by principal components analysis and partial least square regression. The use of spot volume data offers a mean to investigate the spot pattern and link the classified protein patterns to distinct spots...

  19. Optimized Benzalkonium Chloride Gel: A Potential Vaginal Microbicides

    Institute of Scientific and Technical Information of China (English)

    Xun-cheng DING; Wei-hua LI; Jie-fei LI; Qiang-yi WANG

    2007-01-01

    Objective To develop an optimized BZK gel with good pharmaceutical effect and less toxicity to vaginal mucosa.Methods Four methods as below were used to research the spermicidal activity of BZK gel: 1)in vitro spermicidal test; 2) in vivo spermicidal test in rabbits; 3) anti-fertility test in rabbits; 4)contraceptive test in rabbits. Mucosal irritation test was used in rats to evaluate the safety of optimized BZK gel. Microbiological assessments were used to research anti-STI pathogens (including treponema pallidum, neisseria gonorrhoeae, trichomona vaginalis, candida albicans,ureaplama urealyticum, herpes simplex virus type-2, chlamydiae trachomatis) effect of optimized BZK gel.Results In vitro spermicidal test, EC50 of BZK gel was 0.029 mg/ml, a little higher than that of N-9 (0.019 mg/ml). The MIC of BZK gel was 0.25 mg/ml, similar to that of N-9 (0.20 mg/ml).The vaginal mucosal irritation test in rats showed that 0.429% BZK gel showed only minimal vaginal irritation, and did not damage the vaginal epithelium or cause local inflammation in rats. Microbiological assessments showed that optimized BZK gel could inhibit or inactivate common STI pathogens even after 3-fold or 5-fold dilution.Conclusion Optimized BZK gel was an effective microbicides.

  20. Antimicrobial activity of thin solid films of silver doped hydroxyapatite prepared by sol-gel method.

    Science.gov (United States)

    Iconaru, Simona Liliana; Chapon, Patrick; Le Coustumer, Philippe; Predoi, Daniela

    2014-01-01

    In this work, the preparation and characterization of silver doped hydroxyapatite thin films were reported and their antimicrobial activity was characterized. Silver doped hydroxyapatite (Ag:HAp) thin films coatings substrate was prepared on commercially pure Si disks by sol-gel method. The silver doped hydroxyapatite thin films were characterized by various techniques such as Scanning electron microscopy (SEM) with energy Dispersive X-ray attachment (X-EDS), Fourier transform infrared spectroscopy (FT-IR), and glow discharge optical emission spectroscopy (GDOES). These techniques have permitted the structural and chemical characterisation of the silver doped hydroxyapatite thin films. The antimicrobial effect of the Ag:HAp thin films on Escherichia coli and Staphylococcus aureus bacteria was then investigated. This is the first study on the antimicrobial effect of Ag:HAp thin films obtained by sol-gel method. The results of this study have shown that the Ag:HAp thin films with x(Ag) = 0.5 are effective against E. coli and S. aureus after 24 h.

  1. Antimicrobial Activity of Thin Solid Films of Silver Doped Hydroxyapatite Prepared by Sol-Gel Method

    Directory of Open Access Journals (Sweden)

    Simona Liliana Iconaru

    2014-01-01

    Full Text Available In this work, the preparation and characterization of silver doped hydroxyapatite thin films were reported and their antimicrobial activity was characterized. Silver doped hydroxyapatite (Ag:HAp thin films coatings substrate was prepared on commercially pure Si disks by sol-gel method. The silver doped hydroxyapatite thin films were characterized by various techniques such as Scanning electron microscopy (SEM with energy Dispersive X-ray attachment (X-EDS, Fourier transform infrared spectroscopy (FT-IR, and glow discharge optical emission spectroscopy (GDOES. These techniques have permitted the structural and chemical characterisation of the silver doped hydroxyapatite thin films. The antimicrobial effect of the Ag:HAp thin films on Escherichia coli and Staphylococcus aureus bacteria was then investigated. This is the first study on the antimicrobial effect of Ag:HAp thin films obtained by sol-gel method. The results of this study have shown that the Ag:HAp thin films with xAg=0.5 are effective against E. coli and S. aureus after 24 h.

  2. Antimicrobial Activity of Thin Solid Films of Silver Doped Hydroxyapatite Prepared by Sol-Gel Method

    Science.gov (United States)

    Iconaru, Simona Liliana; Chapon, Patrick; Le Coustumer, Philippe; Predoi, Daniela

    2014-01-01

    In this work, the preparation and characterization of silver doped hydroxyapatite thin films were reported and their antimicrobial activity was characterized. Silver doped hydroxyapatite (Ag:HAp) thin films coatings substrate was prepared on commercially pure Si disks by sol-gel method. The silver doped hydroxyapatite thin films were characterized by various techniques such as Scanning electron microscopy (SEM) with energy Dispersive X-ray attachment (X-EDS), Fourier transform infrared spectroscopy (FT-IR), and glow discharge optical emission spectroscopy (GDOES). These techniques have permitted the structural and chemical characterisation of the silver doped hydroxyapatite thin films. The antimicrobial effect of the Ag:HAp thin films on Escherichia coli and Staphylococcus aureus bacteria was then investigated. This is the first study on the antimicrobial effect of Ag:HAp thin films obtained by sol-gel method. The results of this study have shown that the Ag:HAp thin films with x Ag = 0.5 are effective against E. coli and S. aureus after 24 h. PMID:24523630

  3. Interactive wood combustion for botanical tree models

    KAUST Repository

    Pirk, Sören

    2017-11-22

    We present a novel method for the combustion of botanical tree models. Tree models are represented as connected particles for the branching structure and a polygonal surface mesh for the combustion. Each particle stores biological and physical attributes that drive the kinetic behavior of a plant and the exothermic reaction of the combustion. Coupled with realistic physics for rods, the particles enable dynamic branch motions. We model material properties, such as moisture and charring behavior, and associate them with individual particles. The combustion is efficiently processed in the surface domain of the tree model on a polygonal mesh. A user can dynamically interact with the model by initiating fires and by inducing stress on branches. The flames realistically propagate through the tree model by consuming the available resources. Our method runs at interactive rates and supports multiple tree instances in parallel. We demonstrate the effectiveness of our approach through numerous examples and evaluate its plausibility against the combustion of real wood samples.

  4. Purification of Peptide Components including Melittin from Bee Venom using gel filtration chromatography and propionic acid/urea polyacrylamide gel electrophoresis

    Directory of Open Access Journals (Sweden)

    Young Chon Choi

    2006-06-01

    Full Text Available Objectives : This study was conducted to carry out Purification of Melittin and other peptide components from Bee Venom using gel filtration chromatography and propionic acid/urea polyacrylamide gel electrophoresis Methods : Melittin and other peptide components were separated from bee venom by using gel filtration chromatography on Sephadex G-50 column in 0.05M ammonium acetate buffer. Results : Melittin and other peptide components were separated from bee venom by using gel filtration chromatography on Sephadex G-50 column in 0.05M ammonium acetate buffer. The fractions obtained from gel filtration chromatography was analyzed by using SDS-PAGE and propionic acid/urea polyacrylamide gel electrophoresis. The melittin obtained from the gel filtration contained residual amount of phospholipase A2 and a protein with molecular weight of 6,000. The contaminating proteins were removed by the second gel filtration chromatography. Conclusion : Gel filtration chromatography and propionic acid/urea polyacrylamide gel electrophoresis are useful to separate peptide components including melittin from bee venom.

  5. A spot-matching method using cumulative frequency matrix in 2D gel images

    Science.gov (United States)

    Han, Chan-Myeong; Park, Joon-Ho; Chang, Chu-Seok; Ryoo, Myung-Chun

    2014-01-01

    A new method for spot matching in two-dimensional gel electrophoresis images using a cumulative frequency matrix is proposed. The method improves on the weak points of the previous method called ‘spot matching by topological patterns of neighbour spots’. It accumulates the frequencies of neighbour spot pairs produced through the entire matching process and determines spot pairs one by one in order of higher frequency. Spot matching by frequencies of neighbour spot pairs shows a fairly better performance. However, it can give researchers a hint for whether the matching results can be trustworthy or not, which can save researchers a lot of effort for verification of the results. PMID:26019609

  6. Nitrogen enriched combustion of a natural gas internal combustion engine to reduce NO.sub.x emissions

    Science.gov (United States)

    Biruduganti, Munidhar S.; Gupta, Sreenath Borra; Sekar, R. Raj; McConnell, Steven S.

    2008-11-25

    A method and system for reducing nitrous oxide emissions from an internal combustion engine. An input gas stream of natural gas includes a nitrogen gas enrichment which reduces nitrous oxide emissions. In addition ignition timing for gas combustion is advanced to improve FCE while maintaining lower nitrous oxide emissions.

  7. Combustion

    CERN Document Server

    Glassman, Irvin

    1987-01-01

    Combustion, Second Edition focuses on the underlying principles of combustion and covers topics ranging from chemical thermodynamics and flame temperatures to chemical kinetics, detonation, ignition, and oxidation characteristics of fuels. Diffusion flames, flame phenomena in premixed combustible gases, and combustion of nonvolatile fuels are also discussed. This book consists of nine chapters and begins by introducing the reader to heats of reaction and formation, free energy and the equilibrium constants, and flame temperature calculations. The next chapter explores the rates of reactio

  8. Effect of Gold Nanoparticles on Prostate Dose Distribution under Ir-192 Internal and 18 MV External Radiotherapy Procedures Using Gel Dosimetry and Monte Carlo Method

    Directory of Open Access Journals (Sweden)

    Khosravi H.

    2015-03-01

    Full Text Available Background: Gel polymers are considered as new dosimeters for determining radiotherapy dose distribution in three dimensions. Objective: The ability of a new formulation of MAGIC-f polymer gel was assessed by experimental measurement and Monte Carlo (MC method for studying the effect of gold nanoparticles (GNPs in prostate dose distributions under the internal Ir-192 and external 18MV radiotherapy practices. Method: A Plexiglas phantom was made representing human pelvis. The GNP shaving 15 nm in diameter and 0.1 mM concentration were synthesized using chemical reduction method. Then, a new formulation of MAGIC-f gel was synthesized. The fabricated gel was poured in the tubes located at the prostate (with and without the GNPs and bladder locations of the phantom. The phantom was irradiated to an Ir-192 source and 18 MV beam of a Varian linac separately based on common radiotherapy procedures used for prostate cancer. After 24 hours, the irradiated gels were read using a Siemens 1.5 Tesla MRI scanner. The absolute doses at the reference points and isodose curves resulted from the experimental measurement of the gels and MC simulations following the internal and external radiotherapy practices were compared. Results: The mean absorbed doses measured with the gel in the presence of the GNPs in prostate were 15% and 8 % higher than the corresponding values without the GNPs under the internal and external radiation therapies, respectively. MC simulations also indicated a dose increase of 14 % and 7 % due to presence of the GNPs, for the same experimental internal and external radiotherapy practices, respectively. Conclusion: There was a good agreement between the dose enhancement factors (DEFs estimated with MC simulations and experiment gel measurements due to the GNPs. The results indicated that the polymer gel dosimetry method as developed and used in this study, can be recommended as a reliable method for investigating the DEF of GNPs in internal

  9. Assessment of Literature Related to Combustion Appliance Venting Systems

    Energy Technology Data Exchange (ETDEWEB)

    Rapp, Vi H. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Singer, Brett C. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Stratton, Chris [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Wray, Craig P. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2012-06-01

    In many residential building retrofit programs, air tightening to increase energy efficiency is constrained by concerns about related impacts on the safety of naturally vented combustion appliances. Tighter housing units more readily depressurize when exhaust equipment is operated, making combustion appliances more prone to backdraft or spillage. Several test methods purportedly assess the potential for depressurization-induced backdrafting and spillage, but these tests are not robustly reliable and repeatable predictors of venting performance, in part because they do not fully capture weather effects on venting performance. The purpose of this literature review is to investigate combustion safety diagnostics in existing codes, standards, and guidelines related to combustion appliances. This review summarizes existing combustion safety test methods, evaluations of these test methods, and also discusses research related to wind effects and the simulation of vent system performance. Current codes and standards related to combustion appliance installation provide little information on assessing backdrafting or spillage potential. A substantial amount of research has been conducted to assess combustion appliance backdrafting and spillage test methods, but primarily focuses on comparing short-term (stress) induced tests and monitoring results. Monitoring, typically performed over one week, indicated that combinations of environmental and house operation characteristics most conducive to combustion spillage were rare. Research, to an extent, has assessed existing combustion safety diagnostics for house depressurization, but the objectives of the diagnostics, both stress and monitoring, are not clearly defined. More research is also needed to quantify the frequency of test “failure” occurrence throughout the building stock and assess the statistical effects of weather (especially wind) on house depressurization and in turn on combustion appliance venting

  10. Benchmarking sample preparation/digestion protocols reveals tube-gel being a fast and repeatable method for quantitative proteomics.

    Science.gov (United States)

    Muller, Leslie; Fornecker, Luc; Van Dorsselaer, Alain; Cianférani, Sarah; Carapito, Christine

    2016-12-01

    Sample preparation, typically by in-solution or in-gel approaches, has a strong influence on the accuracy and robustness of quantitative proteomics workflows. The major benefit of in-gel procedures is their compatibility with detergents (such as SDS) for protein solubilization. However, SDS-PAGE is a time-consuming approach. Tube-gel (TG) preparation circumvents this drawback as it involves directly trapping the sample in a polyacrylamide gel matrix without electrophoresis. We report here the first global label-free quantitative comparison between TG, stacking gel (SG), and basic liquid digestion (LD). A series of UPS1 standard mixtures (at 0.5, 1, 2.5, 5, 10, and 25 fmol) were spiked in a complex yeast lysate background. TG preparation allowed more yeast proteins to be identified than did the SG and LD approaches, with mean numbers of 1979, 1788, and 1323 proteins identified, respectively. Furthermore, the TG method proved equivalent to SG and superior to LD in terms of the repeatability of the subsequent experiments, with mean CV for yeast protein label-free quantifications of 7, 9, and 10%. Finally, known variant UPS1 proteins were successfully detected in the TG-prepared sample within a complex background with high sensitivity. All the data from this study are accessible on ProteomeXchange (PXD003841). © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Thermogravimetric analysis of biowastes during combustion

    International Nuclear Information System (INIS)

    Otero, M.; Sanchez, M.E.; Gomez, X.; Moran, A.

    2010-01-01

    The combustion of sewage sludge (SS), animal manure (AM) and the organic fraction of municipal solid waste (OFMSW) was assessed and compared with that of a semianthracite coal (SC) and of a PET waste by thermogravimetric (TG) analysis. Differences were found in the TG curves obtained for the combustion of these materials accordingly to their respective proximate analysis. Non-isothermal thermogravimetric data were used to assess the kinetics of the combustion of these biowastes. The present paper reports on the application of the Vyazovkin model-free isoconversional method for the evaluation of the activation energy necessary for the combustion of these biowastes. The activation energy related to SS combustion (129.1 kJ/mol) was similar to that corresponding to AM (132.5 kJ/mol) while the OFMSW showed a higher value (159.3 kJ/mol). These values are quite higher than the one determined in the same way for the combustion of SC (49.2 kJ/mol) but lower than that for the combustion of a PET waste (165.6 kJ/mol).

  12. Influence of lanthanum on the optomagnetic properties of zinc ferrite prepared by combustion method

    International Nuclear Information System (INIS)

    Tholkappiyan, R.; Vishista, K.

    2014-01-01

    Pure and lanthanum doped zinc ferrite nanoparticles were synthesized by a combustion method using glycine as fuel. The mechanism of formation of these nanoferrites is discussed briefly. The prepared nanoparticles characterized using powder X-ray diffraction analysis (XRD) revealed the formation of cubic spinel phase with high crystallinity. Average crystallite size, X-ray density and bulk density were found to decrease with an increase in La 3+ concentration. The chemical elements and states on the surface of these ferrites were determined using X-ray photoelectron spectroscopy (XPS). The detailed core level spectra of the photoelectron peaks of Zn 2p, Fe 2p, La 3d and O 1s were analyzed. The magnetic behavior of these nanoparticles was studied using a vibrating sample magnetometer (VSM) and corresponding changes in the saturation magnetization (Ms), coercivity (Hc) and remanent magnetization (Mr) were analyzed. The optical behavior of these ferrite nanoparticles was characterized by UV–Diffuse reflectance studies (UV–DRS). From the UV–DRS studies, the optical band gap was found to be in the range of 1.87–1.97 eV. The combustion method significantly produces large amount of products within a short time. Therefore, this method is potentially suitable for manufacturing industries for preparing the magnetic nanoparticles

  13. Large eddy simulation and combustion instabilities; Simulation des grandes echelles et instabilites de combustion

    Energy Technology Data Exchange (ETDEWEB)

    Lartigue, G.

    2004-11-15

    The new european laws on pollutants emission impose more and more constraints to motorists. This is particularly true for gas turbines manufacturers, that must design motors operating with very fuel-lean mixtures. Doing so, pollutants formation is significantly reduced but the problem of combustion stability arises. Actually, combustion regimes that have a large excess of air are naturally more sensitive to combustion instabilities. Numerical predictions of these instabilities is thus a key issue for many industrial involved in energy production. This thesis work tries to show that recent numerical tools are now able to predict these combustion instabilities. Particularly, the Large Eddy Simulation method, when implemented in a compressible CFD code, is able to take into account the main processes involved in combustion instabilities, such as acoustics and flame/vortex interaction. This work describes a new formulation of a Large Eddy Simulation numerical code that enables to take into account very precisely thermodynamics and chemistry, that are essential in combustion phenomena. A validation of this work will be presented in a complex geometry (the PRECCINSTA burner). Our numerical results will be successfully compared with experimental data gathered at DLR Stuttgart (Germany). Moreover, a detailed analysis of the acoustics in this configuration will be presented, as well as its interaction with the combustion. For this acoustics analysis, another CERFACS code has been extensively used, the Helmholtz solver AVSP. (author)

  14. Pouring and running a protein gel by reusing commercial cassettes.

    Science.gov (United States)

    Hwang, Alexander C; Grey, Paris H; Cuddy, Katrina; Oppenheimer, David G

    2012-02-12

    The evaluation of proteins using sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) analysis is a common technique used by biochemistry and molecular biology researchers. For laboratories that perform daily analyses of proteins, the cost of commercially available polyacrylamide gels (~$10/gel) can be considerable over time. To mitigate this cost, some researchers prepare their own polyacrylamide gels. Traditional methods of pouring these gels typically utilize specialized equipment and glass gel plates that can be expensive and preclude pouring many gels and storing them for future use. Furthermore, handling of glass plates during cleaning or gel pouring can result in accidental breakage creating a safety hazard, which may preclude their use in undergraduate laboratory classes. Our protocol demonstrates how to pour multiple protein gels simultaneously by recycling Invitrogen Nupage Novex minigel cassettes, and inexpensive materials purchased at a home improvement store. This economical and streamlined method includes a way to store the gels at 4°C for a few weeks. By re-using the plastic gel cassettes from commercially available gels, labs that run frequent protein gels can save significant costs and help the environment. In addition, plastic gel cassettes are extremely resistant to breakage, which makes them ideal for undergraduate laboratory classrooms.

  15. Studies on the synthesis of nanocrystalline Y{sub 2}O{sub 3} and ThO{sub 2} through volume combustion and their sintering

    Energy Technology Data Exchange (ETDEWEB)

    Sanjay Kumar, D. [Fuel Chemistry Division, Chemistry Group, Indira Gandhi Centre for Atomic Research, Kalpakkam, 603102, Tamil Nadu (India); Ananthasivan, K., E-mail: asivan@igcar.gov.in [Fuel Chemistry Division, Chemistry Group, Indira Gandhi Centre for Atomic Research, Kalpakkam, 603102, Tamil Nadu (India); Venkata Krishnan, R. [Fuel Chemistry Division, Chemistry Group, Indira Gandhi Centre for Atomic Research, Kalpakkam, 603102, Tamil Nadu (India); Amirthapandian, S. [Material Physics Division, Materials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam, 603102, Tamil Nadu (India); Dasgupta, Arup [Microscopy and Thermo-Physical Property Division, Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam, 603102, Tamil Nadu (India)

    2016-10-15

    Volume combustion was observed in the auto-ignition of the citrate gels containing the nitrates of yttrium/thorium for the first time in mixture with a fuel (citric acid) to oxidant (Y{sup 3+} or Th{sup 4+} nitrate) ratio close to that demanded by the stoichiometry. These nanocrystalline powders were characterized for their bulk density, specific surface area, particle size distribution, carbon residue and X-ray crystallite size and were sintered by both the conventional and the two-step method. The maximum relative sintered density of Y{sub 2}O{sub 3} was 98.9% TD. The sintered density of thoria (97.8% TD) is the highest among the values reported so far, for nanocrystalline ThO{sub 2}. Characterization of the pellets and powders by using scanning electron microscopy and transmission electron microscopy reaffirmed nanocrystallinity and that the sintered pellets comprised faceted sintered grains. The two-step sintering was found to restrict “runaway” sintering. - Highlights: • Scaled-up synthesis of nanocrystalline Y{sub 2}O{sub 3} and ThO{sub 2} using citrate gel-combustion method. • VCR was observed at a fuel to nitrate ratio (R) of 0.125 and 0.17 in mixtures containing Th(NO{sub 3}){sub 4} and Y(NO{sub 3}){sub 3} respectively. • The calcined powders were compacted and sintered by using a novel two-step sintering method. • Sintered densities as high as 97.8% T.D. (ThO{sub 2}, T{sub H} = 0.48) and 98.9% T.D. (Y{sub 2}O{sub 3}, T{sub H} = 0.61) were obtained.

  16. Combustion of Sewage Sludge as Alternative Fuel for Cement Industry

    Institute of Scientific and Technical Information of China (English)

    LI Fuzhou; ZHANG Wei

    2011-01-01

    The combustion of sewage sludge and coal was studied by thermogravimetric analysis.Both differential scanning calorimetric analysis and derivative thermogravimetric profiles showed differences between combustion of sewage sludge and coal, and non-isothermal kinetics analysis method was applied to evaluate the combustion process. Based on Coats-Redfem integral method, some reaction models were tested,the mechanism and kinetics of the combustion reaction were discussed. The results show that the combustion of sewage sludge is mainly in the Iow temperature stage, meanwhile the ignition temperature and Arrhenius activation energy are lower than that of coal. The combustion of sewage sludge has the advantage over coal in some aspects, thus sewage sludge can partly replace coal used as cement industry fuel.

  17. Porous oxides synthesized by the combustion method

    International Nuclear Information System (INIS)

    Lugo L, V.

    2005-01-01

    The result of this work, seeks to be a contribution for the treatment of radioactive wastes, with base to the sorption properties that present those porous oxides, synthesized by a method that allows to increase the sorption capacity. The main objective of the present investigation has been the modification of the structural characteristics of the oxides of Fe, Mg and Zn to increase its capacity of sorption of 60 Co in particular. It was studied the effect of the synthesis method by combustion in the inorganic oxides; the obtained solids were characterized using the following techniques: X-ray diffraction (XRD), scanning electron microscopy (SEM), semiquantitative elementary analysis by Dispersive energy spectroscopy (EDS) and determination of surface area by the Brunauner-Emmett-Teller method (BET). Also was carried out batch type experiments for the sorption of Co 2+ , with the purpose of studying the sorption capacity of each one of the prepared oxides. In accordance with that previously exposed, the working plan that was carried out in this investigation is summarized in the following stages: 1. Preparation of inorganic oxides by two different methods, studying the effect of the temperature in the synthesis process. 2. Characterization of the inorganic oxides by XRD, by means of which those were chosen the solids with better properties. 3. Characterization of the inorganic oxides by SEM and EDS where it was studied the morphology of the synthesized materials and the semiquantitative elemental composition. 4. Realization of a sorption experiment type Batch with non radioactive Co 2+ to simulate the sorption of 60 Co and determination of the sorption capacity by means of neutron activation of the non radioactive cobalt. 5. Determination of the surface area by the (BET) technique of the inorganic oxides with better sorption properties. (Author)

  18. Simulation of low temperature combustion mechanism of different combustion-supporting agents in close-coupled DOC and DPF system.

    Science.gov (United States)

    Jiao, Penghao; Li, Zhijun; Li, Qiang; Zhang, Wen; He, Li; Wu, Yue

    2018-07-01

    In the coupled Diesel Oxidation Catalyst (DOC) and Diesel Particular Filter (DPF) system, soot cannot be completely removed by only using the passive regeneration. And DPF active regeneration is necessary. The research method in this paper is to spray different kinds of combustion-supporting agents to the DOC in the front of the DPF. Therefore, the low temperature combustion mechanism of different kinds of combustion-supporting agents in DOC was studied, in order to grasp the law of combustion in DOC, and the influence of follow-up emission on DPF removal of soot. During the study, CH 4 H 2 mixture and diesel (n-heptane + toluene) were used as combustion-supporting agents respectively. The simplified mechanisms of two kinds of gas mixtures used as the combustion-supporting agents in DPF have been constructed and testified in the paper. In this paper, the combustion and emission conditions of the two combustion-supporting agents were analyzed so as to meet the practical requirements of different working conditions. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  19. System and method for reducing combustion dynamics and NO.sub.x in a combustor

    Science.gov (United States)

    Uhm, Jong H.; Johnson, Thomas Edward

    2015-11-20

    A system for reducing combustion dynamics and NO.sub.x in a combustor includes a tube bundle that extends radially across at least a portion of the combustor, wherein the tube bundle comprises an upstream surface axially separated from a downstream surface. A shroud circumferentially surrounds the upstream and downstream surfaces. A plurality of tubes extends through the tube bundle from the upstream surface through the downstream surface, wherein the downstream surface is stepped to produce tubes having different lengths through the tube bundle. A method for reducing combustion dynamics and NO.sub.x in a combustor includes flowing a working fluid through a plurality of tubes radially arranged between an upstream surface and a downstream surface of an end cap that extends radially across at least a portion of the combustor, wherein the downstream surface is stepped.

  20. Synthesis of antimony-doped tin oxide (ATO) nanoparticles by the nitrate-citrate combustion method

    International Nuclear Information System (INIS)

    Zhang Jianrong; Gao Lian

    2004-01-01

    Antimony-doped tin oxide (ATO) nanoparticles having rutile structure have been synthesized by the combustion method using citric acid (CA) as fuel and nitrate as an oxidant, the metal sources were granulated tin and Sb 2 O 3 . The influence of citric acid (fuel) to metal ratio on the average crystallite size, specific surface area and morphology of the nanoparticles has been investigated. X-ray diffraction showed the tin ions were reduced to elemental tin during combustion reaction. The average ATO crystallite size increased with the increase of citric acid (fuel). Powder morphology and the comparison of crystallite size and grain size shows that the degree of agglomeration of the powder decreased with an increase of the ratio. The highest specific surface area was 37.5 m 2 /g when the citric acid to tin ratio was about 6

  1. Investigation of sol-gel transition by rheological methods. Part II. Results and discussion.

    Directory of Open Access Journals (Sweden)

    KUDRYAVTSEV Pavel Gennadievich

    2017-10-01

    Full Text Available In this work rheological studies of the gelling process were carried out. We have developed a measuring system for studying the rheology of the gelation process. It consisted of several measuring cells of the Weiler-Rebinder type, system for automatic regulation of the composition of the medium and thermostabilization system. This complex is designed to measure the dependence of the value of the ultimate shear stress as a function of time, from the start of the sol-gel transition to the complete conversion of the sol to the gel. The developed device has a wide range of measured values of critical shear stresses τ0 = (0,05÷50000 Dyne/cm2. Using the developed instrument, it was possible to establish the shape of the initial section of the curve τ0 = f(t and develop a methodology for more accurate determination of gelation time. The developed method proved that the classical method for determining the start time of the sol-gel transition using the point of intersection of the tangent to the linear part of the rheological curve τ0 = f(t, gives significantly distorted results. A new phenomenon has been discovered: the kinetic curves in the coordinates of the Avrami-Erofeev-Bogolyubov equation have an inflection point which separates the kinetic curve into two parts, the initial and the final. It was found that the constant k in the Avrami–Erofeev–Bogolyubov equation does not depend on the temperature and is the same for both the initial and final parts of the kinetic curve. It depends only on the chemical nature of the reacting system. It was found that for the initial section of the kinetic curves, the value of the parameter n in the Avrami-Erofeev-Bogolyubov equation was n = 23,4±2,8 and, unlike the final section of the rheological curve, does not depend on temperature. A large value of this parameter can be interpreted as the average number of directions of growth of a fractal aggregate during its growth. The value of this parameter

  2. Reducing emissions from diesel combustion

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    This paper contains information dealing with engine design to reduce emissions and improve or maintain fuel economy. Topics include: Observation of High Pressure Fuel Spray with Laser Light Sheet Method; Determination of Engine Cylinder Pressures from Crankshaft Speed Fluctuations; Combustion Similarity for Different Size Diesel Engines: Theoretical Prediction and Experimental Results; Prediction of Diesel Engine Particulate Emission During Transient Cycles; Characteristics and Combustibility of Particulate Matter; Dual-Fuel Diesel Engine Using Butane; Measurement of Flame Temperature Distribution in D.I. Diesel Engine with High Pressure Fuel Injection: and Combustion in a Small DI Diesel Engine at Starting

  3. Method of reduction of diagnostic parameters during observation on the example of a combustion engine

    Directory of Open Access Journals (Sweden)

    Orczyk Malgorzata

    2017-01-01

    Full Text Available The article presents a method of selecting diagnostic parameters which map the process of damaging the object. This method consists in calculating, during the observation, the correlation coefficient between the intensity of damage and the individual diagnostic parameters; and discarding of those parameters whose correlation coefficient values are outside of the narrowest confidence interval of the correlation coefficient. The characteristic feature of this method is that the parameters are reduced during the diagnostic experiment. The essence of the proposed method is illustrated by the vibration diagnosis of an internal combustion engine.

  4. Numerical Studies on Controlling Gaseous Fuel Combustion by Managing the Combustion Process of Diesel Pilot Dose in a Dual-Fuel Engine

    Directory of Open Access Journals (Sweden)

    Mikulski Maciej

    2015-06-01

    Full Text Available Protection of the environment and counteracting global warming require finding alternative sources of energy. One of the methods of generating energy from environmentally friendly sources is increasing the share of gaseous fuels in the total energy balance. The use of these fuels in compression-ignition (CI engines is difficult due to their relatively high autoignition temperature. One solution for using these fuels in CI engines is operating in a dualfuel mode, where the air and gas mixture is ignited with a liquid fuel dose. In this method, a series of relatively complex chemical processes occur in the engine's combustion chamber, related to the combustion of individual fuel fractions that interact with one another. Analysis of combustion of specific fuels in this type of fuel injection to the engine is difficult due to the fact that combustion of both fuel fractions takes place simultaneously. Simulation experiments can be used to analyse the impact of diesel fuel combustion on gaseous fuel combustion. In this paper, we discuss the results of simulation tests of combustion, based on the proprietary multiphase model of a dual-fuel engine. The results obtained from the simulation allow for analysis of the combustion process of individual fuels separately, which expands the knowledge obtained from experimental tests on the engine.

  5. Methods for characterizing convective cryoprobe heat transfer in ultrasound gel phantoms.

    Science.gov (United States)

    Etheridge, Michael L; Choi, Jeunghwan; Ramadhyani, Satish; Bischof, John C

    2013-02-01

    While cryosurgery has proven capable in treating of a variety of conditions, it has met with some resistance among physicians, in part due to shortcomings in the ability to predict treatment outcomes. Here we attempt to address several key issues related to predictive modeling by demonstrating methods for accurately characterizing heat transfer from cryoprobes, report temperature dependent thermal properties for ultrasound gel (a convenient tissue phantom) down to cryogenic temperatures, and demonstrate the ability of convective exchange heat transfer boundary conditions to accurately describe freezing in the case of single and multiple interacting cryoprobe(s). Temperature dependent changes in the specific heat and thermal conductivity for ultrasound gel are reported down to -150 °C for the first time here and these data were used to accurately describe freezing in ultrasound gel in subsequent modeling. Freezing around a single and two interacting cryoprobe(s) was characterized in the ultrasound gel phantom by mapping the temperature in and around the "iceball" with carefully placed thermocouple arrays. These experimental data were fit with finite-element modeling in COMSOL Multiphysics, which was used to investigate the sensitivity and effectiveness of convective boundary conditions in describing heat transfer from the cryoprobes. Heat transfer at the probe tip was described in terms of a convective coefficient and the cryogen temperature. While model accuracy depended strongly on spatial (i.e., along the exchange surface) variation in the convective coefficient, it was much less sensitive to spatial and transient variations in the cryogen temperature parameter. The optimized fit, convective exchange conditions for the single-probe case also provided close agreement with the experimental data for the case of two interacting cryoprobes, suggesting that this basic characterization and modeling approach can be extended to accurately describe more complicated

  6. High-resolution slab gel isoelectric focusing: methods for quantitative electrophoretic transfer and immunodetection of proteins as applied to the study of the multiple isoelectric forms of ornithine decarboxylase.

    Science.gov (United States)

    Reddy, S G; Cochran, B J; Worth, L L; Knutson, V P; Haddox, M K

    1994-04-01

    A high-resolution isoelectric focusing vertical slab gel method which can resolve proteins which differ by a single charge was developed and this method was applied to the study of the multiple isoelectric forms of ornithine decarboxylase. Separation of proteins at this high level of resolution was achieved by increasing the ampholyte concentration in the gels to 6%. Various lots of ampholytes, from the same or different commercial sources, differed significantly in their protein binding capacity. Ampholytes bound to proteins interfered both with the electrophoretic transfer of proteins from the gel to immunoblotting membranes and with the ability of antibodies to interact with proteins on the immunoblotting membranes. Increasing the amount of protein loaded into a gel lane also decreased the efficiency of the electrophoretic transfer and immunodetection. To overcome these problems, both gel washing and gel electrophoretic transfer protocols for disrupting the ampholyte-protein binding and enabling a quantitative electrophoretic transfer of proteins were developed. Two gel washing procedures, with either thiocyanate or borate buffers, and a two-step electrophoretic transfer method are described. The choice of which method to use to optimally disrupt the ampholyte-protein binding was found to vary with each lot of ampholytes employed.

  7. Comparative study of nano copper aluminate spinel prepared by sol–gel and modified sol–gel techniques: Structural, electrical, optical and catalytic studies

    International Nuclear Information System (INIS)

    Kumar, R. Thinesh; Suresh, P.; Selvam, N. Clament Sagaya; Kennedy, L. John; Vijaya, J. Judith

    2012-01-01

    Highlights: ► A modified sol–gel method for the preparation of nano CuAl 2 O 4 spinel using ethylenediamine was studied. ► Role of ethylenediamine in enhancing the structural, electrical, optical and catalytic properties of copper aluminate is highlighted. ► Effect of preparation method on the activity and selectivity of the samples on the oxidation of benzyl alcohol by CuAl 2 O 4 is studied. - Abstract: The effect of ethylenediamine addition in the sol–gel method for the preparation of nano CuAl 2 O 4 spinel for the enhancement in their structural, electrical, optical and catalytic properties was investigated. The samples were prepared by two different methods: sol–gel and modified sol–gel technique using ethylenediamine. X-ray diffraction (XRD), Fourier transform infrared spectra (FT-IR), scanning electron microscopy (SEM), high resolution-transmission electron microscopy (HR-TEM), energy dispersive X-ray analysis (EDX), nitrogen adsorption/desorption isotherms, temperature dependent conductance measurements, thermoelectric power (TEP) measurements and UV–visible diffuse reflectance (UV–vis-DRS) spectra were used to characterize the samples prepared. CuAl 2 O 4 prepared by modified sol–gel technique was found to possess a higher surface area, lower crystallite size, lower activation energy and high porosity than the one prepared by sol–gel method which in turn lead to the improved performance of it towards the selective oxidation of benzyl alcohol to benzaldehyde. Effect of solvent on the catalytic oxidation of benzyl alcohol by the nano CuAl 2 O 4 prepared by modified sol–gel technique was also investigated.

  8. Electroluminescence of zinc oxide thin-films prepared via polymeric precursor and via sol-gel methods

    International Nuclear Information System (INIS)

    Lima, S.A.M.; Cremona, M.; Davolos, M.R.; Legnani, C.; Quirino, W.G.

    2007-01-01

    Zinc oxide (ZnO) is an electroluminescent (EL) material that can emit light in different regions of electromagnetic spectrum when electrically excited. Since ZnO is chemically stable, inexpensive and environmentally friendly material, its EL property can be useful to construct solid-state lamps for illumination or as UV emitter. We present here two wet chemical methods to prepare ZnO thin-films: the Pechini method and the sol-gel method, with both methods resulting in crystalline and transparent films with transmittance >85% at 550 nm. These films were used to make thin-film electroluminescent devices (TFELD) using two different insulator layers: lithium fluoride (LiF) or silica (SiO 2 ). All the devices exhibit at least two wide emission bands in the visible range centered at 420 nm and at 380 nm attributed to the electronic defects in the ZnO optical band gap. Besides these two bands, the device using SiO 2 and ZnO film obtained via sol-gel exhibits an additional band in the UV range centered at 350 nm which can be attributed to excitonic emission. These emission bands of ZnO can transfer their energy when a proper dopant is present. For the devices produced the voltage-current characteristics were measured in a specific range of applied voltage

  9. Interactive wood combustion for botanical tree models

    KAUST Repository

    Pirk, Sö ren; Jarząbek, Michał; Hadrich, Torsten; Michels, Dominik L.; Palubicki, Wojciech

    2017-01-01

    We present a novel method for the combustion of botanical tree models. Tree models are represented as connected particles for the branching structure and a polygonal surface mesh for the combustion. Each particle stores biological and physical

  10. Risk analysis of a biomass combustion process using MOSAR and FMEA methods.

    Science.gov (United States)

    Thivel, P-X; Bultel, Y; Delpech, F

    2008-02-28

    Thermal and chemical conversion processes that convert in energy the sewage sludge, pasty waste and other pre-processed waste are increasingly common, for economic and ecological reasons. Fluidized bed combustion is currently one of the most promising methods of energy conversion, since it burns biomass very efficiently, and produces only very small quantities of sulphur and nitrogen oxides. The hazards associated with biomass combustion processes are fire, explosion and poisoning from the combustion gases (CO, etc.). The risk analysis presented in this paper uses the MADS-MOSAR methodology, applied to a semi-industrial pilot scheme comprising a fluidization column, a conventional cyclone, two natural gas burners and a continuous supply of biomass. The methodology uses a generic approach, with an initial macroscopic stage where hazard sources are identified, scenarios for undesired events are recognized and ranked using a grid of SeverityxProbability and safety barriers suggested. A microscopic stage then analyzes in detail the major risks identified during the first stage. This analysis may use various different tools, such as HAZOP, FMEA, etc.: our analysis is based on FMEA. Using MOSAR, we were able to identify five subsystems: the reactor (fluidized bed and centrifuge), the fuel and biomass supply lines, the operator and the environment. When we drew up scenarios based on these subsystems, we found that malfunction of the gas supply burners was a common trigger in many scenarios. Our subsequent microscopic analysis, therefore, focused on the burners, looking at the ways they failed, and at the effects and criticality of those failures (FMEA). We were, thus, able to identify a number of critical factors such as the incoming gas lines and the ignition electrode.

  11. Risk analysis of a biomass combustion process using MOSAR and FMEA methods

    International Nuclear Information System (INIS)

    Thivel, P.-X.; Bultel, Y.; Delpech, F.

    2008-01-01

    Thermal and chemical conversion processes that convert in energy the sewage sludge, pasty waste and other pre-processed waste are increasingly common, for economic and ecological reasons. Fluidized bed combustion is currently one of the most promising methods of energy conversion, since it burns biomass very efficiently, and produces only very small quantities of sulphur and nitrogen oxides. The hazards associated with biomass combustion processes are fire, explosion and poisoning from the combustion gases (CO, etc.). The risk analysis presented in this paper uses the MADS-MOSAR methodology, applied to a semi-industrial pilot scheme comprising a fluidization column, a conventional cyclone, two natural gas burners and a continuous supply of biomass. The methodology uses a generic approach, with an initial macroscopic stage where hazard sources are identified, scenarios for undesired events are recognized and ranked using a grid of Severity x Probability and safety barriers suggested. A microscopic stage then analyzes in detail the major risks identified during the first stage. This analysis may use various different tools, such as HAZOP, FMEA, etc.: our analysis is based on FMEA. Using MOSAR, we were able to identify five subsystems: the reactor (fluidized bed and centrifuge), the fuel and biomass supply lines, the operator and the environment. When we drew up scenarios based on these subsystems, we found that malfunction of the gas supply burners was a common trigger in many scenarios. Our subsequent microscopic analysis, therefore, focused on the burners, looking at the ways they failed, and at the effects and criticality of those failures (FMEA). We were, thus, able to identify a number of critical factors such as the incoming gas lines and the ignition electrode

  12. 16 CFR 1209.7 - Test procedures for smoldering combustion.

    Science.gov (United States)

    2010-01-01

    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Test procedures for smoldering combustion. 1209.7 Section 1209.7 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION CONSUMER PRODUCT SAFETY... for smoldering combustion. This section provides the test method for determining smoldering combustion...

  13. Simple measurement of 14C in the environment using a gel suspension method

    International Nuclear Information System (INIS)

    Wakabayashi, G.; Ohura, H.; Okai, T.; Matoba, M.

    1999-01-01

    A simple analytical method for environmental 14 C with a low background liquid scintillation counter was developed. A new gelling agent, N-lauroyl-L-glutamic-α,γ-dibutylamide was used, for the liquid scintillation counting of 14 C as CaCO 3 (gel suspension method). Our procedure for sample preparation was much simpler than that of conventional methods and required no special equipment. The samples prepared with the standard sample of CaCO 3 were measured to evaluate the self absorption of the sample, the optimum condition of counting and the detection limit. Our results indicated that the newly developed technique could be efficiently applied for the monitoring of environmental 14 C. (author)

  14. Simplified sample preparation method for protein identification by matrix-assisted laser desorption/ionization mass spectrometry: in-gel digestion on the probe surface

    DEFF Research Database (Denmark)

    Stensballe, A; Jensen, Ole Nørregaard

    2001-01-01

    /ionization-time of flight mass spectrometry (MALDI-TOF-MS) is used as the first protein screening method in many laboratories because of its inherent simplicity, mass accuracy, sensitivity and relatively high sample throughput. We present a simplified sample preparation method for MALDI-MS that enables in-gel digestion...... for protein identification similar to that obtained by the traditional protocols for in-gel digestion and MALDI peptide mass mapping of human proteins, i.e. approximately 60%. The overall performance of the novel on-probe digestion method is comparable with that of the standard in-gel sample preparation...... protocol while being less labour intensive and more cost-effective due to minimal consumption of reagents, enzymes and consumables. Preliminary data obtained on a MALDI quadrupole-TOF tandem mass spectrometer demonstrated the utility of the on-probe digestion protocol for peptide mass mapping and peptide...

  15. Mechanisms and kinetics of granulated sewage sludge combustion.

    Science.gov (United States)

    Kijo-Kleczkowska, Agnieszka; Środa, Katarzyna; Kosowska-Golachowska, Monika; Musiał, Tomasz; Wolski, Krzysztof

    2015-12-01

    This paper investigates sewage sludge disposal methods with particular emphasis on combustion as the priority disposal method. Sewage sludge incineration is an attractive option because it minimizes odour, significantly reduces the volume of the starting material and thermally destroys organic and toxic components of the off pads. Additionally, it is possible that ashes could be used. Currently, as many as 11 plants use sewage sludge as fuel in Poland; thus, this technology must be further developed in Poland while considering the benefits of co-combustion with other fuels. This paper presents the results of experimental studies aimed at determining the mechanisms (defining the fuel combustion region by studying the effects of process parameters, including the size of the fuel sample, temperature in the combustion chamber and air velocity, on combustion) and kinetics (measurement of fuel temperature and mass changes) of fuel combustion in an air stream under different thermal conditions and flow rates. The combustion of the sludge samples during air flow between temperatures of 800 and 900°C is a kinetic-diffusion process. This process determines the sample size, temperature of its environment, and air velocity. The adopted process parameters, the time and ignition temperature of the fuel by volatiles, combustion time of the volatiles, time to reach the maximum temperature of the fuel surface, maximum temperature of the fuel surface, char combustion time, and the total process time, had significant impacts. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Structure of gels layers with cells

    Science.gov (United States)

    Pokusaev, B. G.; Karlov, S. P.; Vyazmin, A. V.; Nekrasov, D. A.; Zakharov, N. S.; Khramtsov, D. P.; Skladnev, D. A.; Tyupa, D. V.

    2017-11-01

    The structure of two-layer agarose gels containing yeast cells is investigated experimentally by spectrometry, to shed a light on the theoretical foundations for the development of bioreactors by the method of 3D bioprinting. Due to division, cells overcome the layer of the dispersion phase separating successively applied layers of the agarose gel. However a gel layer of 100 μm thick with a high concentration of silver nanoparticles completely excludes the infiltration of yeast cells through it. A special sort of agarose is suggested where the concentration of silver nanoparticles formed by cells from salt of silver can serve as an indicator of the state of the yeast cells in the volume of the gel.

  17. Effect of Gold Nanoparticles on Prostate Dose Distribution under Ir-192 Internal and 18 MV External Radiotherapy Procedures Using Gel Dosimetry and Monte Carlo Method.

    Science.gov (United States)

    Khosravi, H; Hashemi, B; Mahdavi, S R; Hejazi, P

    2015-03-01

    Gel polymers are considered as new dosimeters for determining radiotherapy dose distribution in three dimensions. The ability of a new formulation of MAGIC-f polymer gel was assessed by experimental measurement and Monte Carlo (MC) method for studying the effect of gold nanoparticles (GNPs) in prostate dose distributions under the internal Ir-192 and external 18MV radiotherapy practices. A Plexiglas phantom was made representing human pelvis. The GNP shaving 15 nm in diameter and 0.1 mM concentration were synthesized using chemical reduction method. Then, a new formulation of MAGIC-f gel was synthesized. The fabricated gel was poured in the tubes located at the prostate (with and without the GNPs) and bladder locations of the phantom. The phantom was irradiated to an Ir-192 source and 18 MV beam of a Varian linac separately based on common radiotherapy procedures used for prostate cancer. After 24 hours, the irradiated gels were read using a Siemens 1.5 Tesla MRI scanner. The absolute doses at the reference points and isodose curves resulted from the experimental measurement of the gels and MC simulations following the internal and external radiotherapy practices were compared. The mean absorbed doses measured with the gel in the presence of the GNPs in prostate were 15% and 8 % higher than the corresponding values without the GNPs under the internal and external radiation therapies, respectively. MC simulations also indicated a dose increase of 14 % and 7 % due to presence of the GNPs, for the same experimental internal and external radiotherapy practices, respectively. There was a good agreement between the dose enhancement factors (DEFs) estimated with MC simulations and experiment gel measurements due to the GNPs. The results indicated that the polymer gel dosimetry method as developed and used in this study, can be recommended as a reliable method for investigating the DEF of GNPs in internal and external radiotherapy practices.

  18. Sulfur equilibrium desulfurization of sulfur containing products of combustion

    International Nuclear Information System (INIS)

    Woodroffe, J.A.; Abichandani, J.S.

    1990-01-01

    This patent describes the method for the combustion of a carbon- and sulfur-containing fuel for substantially reducing emission of gaseous sulfur compounds formed during combustion of the fuel in a combustion zone. The zone having one or more fuel inlets and one or more oxidizer inlets, and having a combustion products outlet spaced therefrom, and having one or more inorganic sorbent inlets downstream of the fuel inlet(s) and oxidizer inlet(s) and upstream of the combustion products outlet

  19. Research on Marine Boiler's Pressurized Combustion and Heat Transfer

    Institute of Scientific and Technical Information of China (English)

    Pingjian MING; Renqiu JIANG; Yanjun LI; Baozhi SUN

    2005-01-01

    The effect of pressure on combustion and heat transfer is analyzed. The research is based on the basic combustion and heat transfer theorem. A correction for the heat calculation method for pressurized furnace is made on the basis of the normal pressure case. The correction takes the effect of pressurizing into account. The results show that the correction is reasonable and the method is applicable to combustion and heat transfer of the marine supercharged boiler.

  20. Western Blot of Stained Proteins from Dried Polyacrylamide Gels

    Science.gov (United States)

    Gruber, Claudia; Stan-Lotter, Helga

    1996-01-01

    Western blotting of proteins is customarily performed following their separation on polyacrylamide gels, either prior to staining (1) or, as recently reported, following staining (2). We describe here Western blotting with stained gels, which had been dried and some of which had been stored for years. This procedure permits immunological analysis of proteins, to which antisera may have become available only later, or where the application of newly developed sensitive detection methods is desired. Once rehydration of the gels is achieved, proteins can be-transferred to blotting membranes by any appropriate protocol. Proteins stained with Coomassie Blue have to be detected with a non-chromogenic method, such as the film-based enhanced chemiluminescence (ECL)2) procedure (3). Silver stained proteins, which transfer in the colorless form, may be visualized by any detection method, although, because of the usually very low amounts of proteins, detection by ECL is preferable. Blotting of stained proteins from rehydrated gels is as rapid and as quantitative as from freshly prepared gels, in contrast to blotting from wet stained gels, which requires extensive washing and results in low transfer efficiency (2). Together with a photographic record of the gel pattern, unambiguous identification of immunoreactive proteins from complex mixtures is possible. Some further applications of this work are discussed.

  1. Staged combustion with piston engine and turbine engine supercharger

    Science.gov (United States)

    Fischer, Larry E [Los Gatos, CA; Anderson, Brian L [Lodi, CA; O'Brien, Kevin C [San Ramon, CA

    2011-11-01

    A combustion engine method and system provides increased fuel efficiency and reduces polluting exhaust emissions by burning fuel in a two-stage combustion system. Fuel is combusted in a piston engine in a first stage producing piston engine exhaust gases. Fuel contained in the piston engine exhaust gases is combusted in a second stage turbine engine. Turbine engine exhaust gases are used to supercharge the piston engine.

  2. Luminescent Eosin Y–SiO2 hybrid nano and microrods prepared by sol–gel template method

    International Nuclear Information System (INIS)

    Secu, M.; Secu, C.E.; Sima, M.; Negrea, R.F.; Bartha, C.; Dinescu, M.; Damian, V.

    2013-01-01

    Sol–gel chemistry within the pores of a polycarbonate template membrane was used for the preparation of Eosin Y–SiO 2 hybrid nano- and microrods, using tetraethylorthosilicate [TEOS, Si(OC 2 H 5 ) 4 ] as the precursor in the presence of trifluoroacetic acid (TFA) catalyst. The ethanolic solution of Eosin-Y was added to the silica sol to trap dye molecules inside the SiO 2 gel network during the gelation. Structural and morphological characterization using scanning electron microscopy (SEM) and luminescence microscopy have shown the formation of rods with 200 nm and 1.2 μm diameter and about 30 μm length, exhibiting luminescence properties. Spectroscopic characterization has shown that the luminescence is due to Eosin-Y molecule in the xerogel porous network, surrounded by a solvation shell given mainly by the water. -- Highlights: • Sol–gel template method was used to prepare Eosin Y–SiO 2 hybrid rods-type structures. • Morphological characterization has shown nano- and microrods with luminescent properties. • Luminescence is due to Eosin-Y molecule surrounded by a solvation shell given by water

  3. Spray-combustion synthesis: efficient solution route to high-performance oxide transistors.

    Science.gov (United States)

    Yu, Xinge; Smith, Jeremy; Zhou, Nanjia; Zeng, Li; Guo, Peijun; Xia, Yu; Alvarez, Ana; Aghion, Stefano; Lin, Hui; Yu, Junsheng; Chang, Robert P H; Bedzyk, Michael J; Ferragut, Rafael; Marks, Tobin J; Facchetti, Antonio

    2015-03-17

    Metal-oxide (MO) semiconductors have emerged as enabling materials for next generation thin-film electronics owing to their high carrier mobilities, even in the amorphous state, large-area uniformity, low cost, and optical transparency, which are applicable to flat-panel displays, flexible circuitry, and photovoltaic cells. Impressive progress in solution-processed MO electronics has been achieved using methodologies such as sol gel, deep-UV irradiation, preformed nanostructures, and combustion synthesis. Nevertheless, because of incomplete lattice condensation and film densification, high-quality solution-processed MO films having technologically relevant thicknesses achievable in a single step have yet to be shown. Here, we report a low-temperature, thickness-controlled coating process to create high-performance, solution-processed MO electronics: spray-combustion synthesis (SCS). We also report for the first time, to our knowledge, indium-gallium-zinc-oxide (IGZO) transistors having densification, nanoporosity, electron mobility, trap densities, bias stability, and film transport approaching those of sputtered films and compatible with conventional fabrication (FAB) operations.

  4. A safe and efficient method to retrieve mesenchymal stem cells from three-dimensional fibrin gels.

    Science.gov (United States)

    Carrion, Bita; Janson, Isaac A; Kong, Yen P; Putnam, Andrew J

    2014-03-01

    Mesenchymal stem cells (MSCs) display multipotent characteristics that make them ideal for potential therapeutic applications. MSCs are typically cultured as monolayers on tissue culture plastic, but there is increasing evidence suggesting that they may lose their multipotency over time in vitro and eventually cease to retain any resemblance to in vivo resident MSCs. Three-dimensional (3D) culture systems that more closely recapitulate the physiological environment of MSCs and other cell types are increasingly explored for their capacity to support and maintain the cell phenotypes. In much of our own work, we have utilized fibrin, a natural protein-based material that serves as the provisional extracellular matrix during wound healing. Fibrin has proven to be useful in numerous tissue engineering applications and has been used clinically as a hemostatic material. Its rapid self-assembly driven by thrombin-mediated alteration of fibrinogen makes fibrin an attractive 3D substrate, in which cells can adhere, spread, proliferate, and undergo complex morphogenetic programs. However, there is a significant need for simple cost-effective methods to safely retrieve cells encapsulated within fibrin hydrogels to perform additional analyses or use the cells for therapy. Here, we present a safe and efficient protocol for the isolation of MSCs from 3D fibrin gels. The key ingredient of our successful extraction method is nattokinase, a serine protease of the subtilisin family that has a strong fibrinolytic activity. Our data show that MSCs recovered from 3D fibrin gels using nattokinase are not only viable but also retain their proliferative and multilineage potentials. Demonstrated for MSCs, this method can be readily adapted to retrieve any other cell type from 3D fibrin gel constructs for various applications, including expansion, bioassays, and in vivo implantation.

  5. Ultrasound-assisted sol-gel synthesis of ZrO2.

    Science.gov (United States)

    Guel, Marlene Lariza Andrade; Jiménez, Lourdes Díaz; Hernández, Dora Alicia Cortés

    2017-03-01

    Synthesis of tetragonal ZrO 2 by both conventional sol-gel and ultrasound-assisted sol-gel methods and using a non-ionic surfactant Tween-20, was performed. A porous microstructure composed of nanometric particles was observed. Tetragonal ZrO 2 was obtained using a low heat treatment temperature of powders, 500°C by both methods. A higher crystallinity and a shorter reaction time were observed when ultrasound was used in the sol-gel method due to the cavitation phenomenon. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Fabrication of a Combustion-Reacted High-Performance ZnO Electron Transport Layer with Silver Nanowire Electrodes for Organic Solar Cells.

    Science.gov (United States)

    Park, Minkyu; Lee, Sang-Hoon; Kim, Donghyuk; Kang, Juhoon; Lee, Jung-Yong; Han, Seung Min

    2018-02-28

    Herein, a new methodology for solution-processed ZnO fabrication on Ag nanowire network electrode via combustion reaction is reported, where the amount of heat emitted during combustion was minimized by controlling the reaction temperature to avoid damaging the underlying Ag nanowires. The degree of participation of acetylacetones, which are volatile fuels in the combustion reaction, was found to vary with the reaction temperature, as revealed by thermogravimetric and compositional analyses. An optimized processing temperature of 180 °C was chosen to successfully fabricate a combustion-reacted ZnO and Ag nanowire hybrid electrode with a sheet resistance of 30 Ω/sq and transmittance of 87%. A combustion-reacted ZnO on Ag nanowire hybrid structure was demonstrated as an efficient transparent electrode and electron transport layer for the PTB7-Th-based polymer solar cells. The superior electrical conductivity of combustion-reacted ZnO, compared to that of conventional sol-gel ZnO, increased the external quantum efficiency over the entire absorption range, whereas a unique light scattering effect due to the presence of nanopores in the combustion-derived ZnO further enhanced the external quantum efficiency in the 450-550 nm wavelength range. A power conversion efficiency of 8.48% was demonstrated for the PTB7-Th-based polymer solar cell with the use of a combustion-reacted ZnO/Ag NW hybrid transparent electrode.

  7. Chemical Method to Improve CO{sub 2} Flooding Sweep Efficiency for Oil Recovery Using SPI-CO{sub 2} Gels

    Energy Technology Data Exchange (ETDEWEB)

    Burns, Lyle D.

    2009-04-14

    The problem in CO{sub 2} flooding lies with its higher mobility causing low conformance or sweep efficiency. This is an issue in oilfield applications where an injected fluid or gas used to mobilize and produce the oil in a marginal field has substantially higher mobility (function of viscosity and density and relative permeability) relative to the crude oil promoting fingering and early breakthrough. Conformance is particularly critical in CO{sub 2} oilfield floods where the end result is less oil recovered and substantially higher costs related to the CO{sub 2}. The SPI-CO{sub 2} (here after called “SPI”) gel system is a unique silicate based gel system that offers a technically effective solution to the conformance problem with CO{sub 2} floods. This SPI gel system remains a low viscosity fluid until an external initiator (CO{sub 2}) triggers gelation. This is a clear improvement over current technologies where the gels set up as a function of time, regardless of where it is placed in the reservoir. In those current systems, the internal initiator is included in the injected fluid for water shut off applications. In this new research effort, the CO{sub 2} is an external initiator contacted after SPI gel solution placement. This concept ensures in the proper water wet reservoir environment that the SPI gel sets up in the precise high permeability path followed by the CO{sub 2}, therefore improving sweep efficiency to a greater degree than conventional systems. In addition, the final SPI product in commercial quantities is expected to be low cost over the competing systems. This Phase I research effort provided “proof of concept” that SPI gels possess strength and may be formed in a sand pack reducing the permeability to brine and CO{sub 2} flow. This SPI technology is a natural extension of prior R & D and the Phase I effort that together show a high potential for success in a Phase II follow-on project. Carbon dioxide (CO{sub 2}) is a major by-product of

  8. An Improved 2-Dimensional Gel Electrophoresis Method for Resolving Human Erythrocyte Membrane Proteins.

    Science.gov (United States)

    Kumar, Manoj; Singh, Rajendra; Meena, Anil; Patidar, Bhagwan S; Prasad, Rajendra; Chhabra, Sunil K; Bansal, Surendra K

    2017-01-01

    The 2-dimensional gel electrophoresis (2-DE) technique is widely used for the analysis of complex protein mixtures extracted from biological samples. It is one of the most commonly used analytical techniques in proteomics to study qualitative and quantitative protein changes between different states of a cell or an organism (eg, healthy and diseased), conditionally expressed proteins, posttranslational modifications, and so on. The 2-DE technique is used for its unparalleled ability to separate thousands of proteins simultaneously. The resolution of the proteins by 2-DE largely depends on the quality of sample prepared during protein extraction which increases results in terms of reproducibility and minimizes protein modifications that may result in artifactual spots on 2-DE gels. The buffer used for the extraction and solubilization of proteins influences the quality and reproducibility of the resolution of proteins on 2-DE gel. The purification by cleanup kit is another powerful process to prevent horizontal streaking which occurs during isoelectric focusing due to the presence of contaminants such as salts, lipids, nucleic acids, and detergents. Erythrocyte membrane proteins serve as prototypes for multifunctional proteins in various erythroid and nonerythroid cells. In this study, we therefore optimized the selected major conditions of 2-DE for resolving various proteins of human erythrocyte membrane. The modification included the optimization of conditions for sample preparation, cleanup of protein sample, isoelectric focusing, equilibration, and storage of immobilized pH gradient strips, which were further carefully examined to achieve optimum conditions for improving the quality of protein spots on 2-DE gels. The present improved 2-DE analysis method enabled better detection of protein spots with higher quality and reproducibility. Therefore, the conditions established in this study may be used for the 2-DE analysis of erythrocyte membrane proteins for

  9. Combustion Stratification for Naphtha from CI Combustion to PPC

    KAUST Repository

    Vallinayagam, R.

    2017-03-28

    This study demonstrates the combustion stratification from conventional compression ignition (CI) combustion to partially premixed combustion (PPC). Experiments are performed in an optical CI engine at a speed of 1200 rpm for diesel and naphtha (RON = 46). The motored pressure at TDC is maintained at 35 bar and fuelMEP is kept constant at 5.1 bar to account for the difference in fuel properties between naphtha and diesel. Single injection strategy is employed and the fuel is injected at a pressure of 800 bar. Photron FASTCAM SA4 that captures in-cylinder combustion at the rate of 10000 frames per second is employed. The captured high speed video is processed to study the combustion homogeneity based on an algorithm reported in previous studies. Starting from late fuel injection timings, combustion stratification is investigated by advancing the fuel injection timings. For late start of injection (SOI), a direct link between SOI and combustion phasing is noticed. At early SOI, combustion phasing depends on both intake air temperature and SOI. In order to match the combustion phasing (CA50) of diesel, the intake air temperature is increased to 90°C for naphtha. The combustion stratification from CI to PPC is also investigated for various level of dilution by displacing oxygen with nitrogen in the intake. The start of combustion (SOC) was delayed with the increase in dilution and to compensate for this, the intake air temperature is increased. The mixture homogeneity is enhanced for higher dilution due to longer ignition delay. The results show that high speed image is initially blue and then turned yellow, indicating soot formation and oxidation. The luminosity of combustion images decreases with early SOI and increased dilution. The images are processed to generate the level of stratification based on the image intensity. The level of stratification is same for diesel and naphtha at various SOI. When O concentration in the intake is decreased to 17.7% and 14

  10. Solution combustion method for synthesis of nanostructured hydroxyapatite, fluorapatite and chlorapatite

    Science.gov (United States)

    Zhao, Junjie; Dong, Xiaochen; Bian, Mengmeng; Zhao, Junfeng; Zhang, Yao; Sun, Yue; Chen, JianHua; Wang, XuHong

    2014-09-01

    Hydroxyapatite (HAP), fluorapatite (Fap) and chlorapatite (Clap) were prepared by solution combustion method with further annealing at 800 °C. The characterization and structural features of the synthesized powders were evaluated by the powder X-ray diffraction (XRD, Fourier transform infrared spectroscopy (FT-IR), scanning electron microscope (SEM) and transmission electron microscopy (TEM) techniques. Characterization results from XRD and Rietveld analysis revealed that OH- in the HAP lattice were gradually substituted with the increase of F- and Cl- content and totally substituted at the molar concentration of 0.28 and 0.6, respectively. The results from FI-IR have also confirmed the incorporation of substituted anions in the apatite structure.

  11. Extended lattice Boltzmann scheme for droplet combustion.

    Science.gov (United States)

    Ashna, Mostafa; Rahimian, Mohammad Hassan; Fakhari, Abbas

    2017-05-01

    The available lattice Boltzmann (LB) models for combustion or phase change are focused on either single-phase flow combustion or two-phase flow with evaporation assuming a constant density for both liquid and gas phases. To pave the way towards simulation of spray combustion, we propose a two-phase LB method for modeling combustion of liquid fuel droplets. We develop an LB scheme to model phase change and combustion by taking into account the density variation in the gas phase and accounting for the chemical reaction based on the Cahn-Hilliard free-energy approach. Evaporation of liquid fuel is modeled by adding a source term, which is due to the divergence of the velocity field being nontrivial, in the continuity equation. The low-Mach-number approximation in the governing Navier-Stokes and energy equations is used to incorporate source terms due to heat release from chemical reactions, density variation, and nonluminous radiative heat loss. Additionally, the conservation equation for chemical species is formulated by including a source term due to chemical reaction. To validate the model, we consider the combustion of n-heptane and n-butanol droplets in stagnant air using overall single-step reactions. The diameter history and flame standoff ratio obtained from the proposed LB method are found to be in good agreement with available numerical and experimental data. The present LB scheme is believed to be a promising approach for modeling spray combustion.

  12. Nanostructured Mesoporous Titanium Dioxide Thin Film Prepared by Sol-Gel Method for Dye-Sensitized Solar Cell

    Directory of Open Access Journals (Sweden)

    Yu-Chang Liu

    2011-01-01

    Full Text Available Titanium dioxide (TiO2 paste was prepared by sol-gel and hydrothermal method with various precursors. Nanostructured mesoporous TiO2 thin-film back electrode was fabricated from the nanoparticle colloidal paste, and its performance was compared with that made of commercial P25 TiO2. The best performance was demonstrated by the DSSC having a 16 μm-thick TTIP-TiO2 back electrode, which gave a solar energy conversion efficiency of 6.03%. The ability of stong adhesion on ITO conducting glass substrate and the high surface area are considered important characteristics of TiO2 thin film. The results show that a thin film with good adhesion can be made from the prepared colloidal paste as a result of alleviating the possibility of electron transfer loss. One can control the colloidal particle size from sol-gel method. Therefore, by optimizing the preparation conditions, TiO2 paste with nanoparticle and narrow diameter distribution was obtained.

  13. Combustion in a High-Speed Compression-Ignition Engine

    Science.gov (United States)

    Rothrock, A M

    1933-01-01

    An investigation conducted to determine the factors which control the combustion in a high-speed compression-ignition engine is presented. Indicator cards were taken with the Farnboro indicator and analyzed according to the tangent method devised by Schweitzer. The analysis show that in a quiescent combustion chamber increasing the time lag of auto-ignition increases the maximum rate of combustion. Increasing the maximum rate of combustion increases the tendency for detonation to occur. The results show that by increasing the air temperature during injection the start of combustion can be forced to take place during injection and so prevent detonation from occurring. It is shown that the rate of fuel injection does not in itself control the rate of combustion.

  14. Ophthalmic gels: Past, present and future.

    Science.gov (United States)

    Al-Kinani, Ali A; Zidan, Ghada; Elsaid, Naba; Seyfoddin, Ali; Alani, Adam W G; Alany, Raid G

    2018-02-15

    Aqueous gels formulated using hydrophilic polymers (hydrogels) along with those based on stimuli responsive polymers (in situ gelling or gel forming systems) continue to attract increasing interest for various eye health-related applications. They allow the incorporation of a variety of ophthalmic pharmaceuticals to achieve therapeutic levels of drugs and bioactives at target ocular sites. The integration of sophisticated drug delivery technologies such as nanotechnology-based ones with intelligent and environment responsive systems can extend current treatment duration to provide more clinically relevant time courses (weeks and months instead of hours and days) which will inevitably reduce dose frequency, increase patient compliance and improve clinical outcomes. Novel applications and design of contact lenses and intracanalicular delivery devices along with the move towards integrating gels into various drug delivery devices like intraocular pumps, injections and implants has the potential to reduce comorbidities caused by glaucoma, corneal keratopathy, cataract, diabetic retinopathies and age-related macular degeneration. This review describes ophthalmic gelling systems with emphasis on mechanism of gel formation and application in ophthalmology. It provides a critical appraisal of the techniques and methods used in the characterization of ophthalmic preformed gels and in situ gelling systems along with a thorough insight into the safety and biocompatibility of these systems. Newly developed ophthalmic gels, hydrogels, preformed gels and in situ gelling systems including the latest in the area of stimuli responsive gels, molecularly imprinted gels, nanogels, 3D printed hydrogels; 3D printed devices comprising ophthalmic gels are covered. Finally, new applications of gels in the production of artificial corneas, corneal wound healing and hydrogel contact lenses are described. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Combustion stratification study of partially premixed combustion using Fourier transform analysis of OH* chemiluminescence images

    KAUST Repository

    Izadi Najafabadi, Mohammad

    2017-11-06

    A relatively high level of stratification (qualitatively: lack of homogeneity) is one of the main advantages of partially premixed combustion over the homogeneous charge compression ignition concept. Stratification can smooth the heat release rate and improve the controllability of combustion. In order to compare stratification levels of different partially premixed combustion strategies or other combustion concepts, an objective and meaningful definition of “stratification level” is required. Such a definition is currently lacking; qualitative/quantitative definitions in the literature cannot properly distinguish various levels of stratification. The main purpose of this study is to objectively define combustion stratification (not to be confused with fuel stratification) based on high-speed OH* chemiluminescence imaging, which is assumed to provide spatial information regarding heat release. Stratification essentially being equivalent to spatial structure, we base our definition on two-dimensional Fourier transforms of photographs of OH* chemiluminescence. A light-duty optical diesel engine has been used to perform the OH* bandpass imaging on. Four experimental points are evaluated, with injection timings in the homogeneous regime as well as in the stratified partially premixed combustion regime. Two-dimensional Fourier transforms translate these chemiluminescence images into a range of spatial frequencies. The frequency information is used to define combustion stratification, using a novel normalization procedure. The results indicate that this new definition, based on Fourier analysis of OH* bandpass images, overcomes the drawbacks of previous definitions used in the literature and is a promising method to compare the level of combustion stratification between different experiments.

  16. Numerical simulations of turbulent jet ignition and combustion

    Science.gov (United States)

    Validi, Abdoulahad; Irannejad, Abolfazl; Jaberi, Farhad

    2013-11-01

    The ignition and combustion of a homogeneous lean hydrogen-air mixture by a turbulent jet flow of hot combustion products injected into a colder gas mixture are studied by a high fidelity numerical model. Turbulent jet ignition can be considered as an efficient method for starting and controlling the reaction in homogeneously charged combustion systems used in advanced internal combustion and gas turbine engines. In this work, we study in details the physics of turbulent jet ignition in a fundamental flow configuration. The flow and combustion are modeled with the hybrid large eddy simulation/filtered mass density function (LES/FMDF) approach, in which the filtered form the compressible Navier-Stokes equations are solved with a high-order finite difference scheme for the turbulent velocity and the FMDF transport equations are solved with a Lagrangian stochastic method to obtain the scalar (temperature and species mass fractions) field. The hydrogen oxidation is described by a detailed reaction mechanism with 37 elementary reactions and 9 species.

  17. Simplified riboprobe purification using translucent straws as gel tubes.

    Science.gov (United States)

    Kol, S; Ben-Shlomo, I; Adashi, E Y; Rohan, R M

    1996-01-01

    Gel purification of radioactive riboprobes enhances the quality of the ribonuclease protection assay. A simple and effective method for riboprobe purification is described. The method uses acrylamide gels in plastic tubes to achieve electrophoretic separation of the RNA polymerase products.

  18. Fast Processing of Sol-Gel TCO

    NARCIS (Netherlands)

    Deelen, J. van; Rem, M.; Arfsten, N.; Buskens, P.P.

    2016-01-01

    TCOs are usually deposited using sputtering or chemical vapor deposition, which have a yield of typically 50-75%. The sol gel method does not need low pressure and can be done with a high precursor yield in the range of 90 – 100%. Sol gel enables also the TCO function as a planarization or

  19. Quantifying emissions from spontaneous combustion

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-09-01

    Spontaneous combustion can be a significant problem in the coal industry, not only due to the obvious safety hazard and the potential loss of valuable assets, but also with respect to the release of gaseous pollutants, especially CO2, from uncontrolled coal fires. This report reviews methodologies for measuring emissions from spontaneous combustion and discusses methods for quantifying, estimating and accounting for the purpose of preparing emission inventories.

  20. Efficient method of protein extraction from Theobroma cacao L. roots for two-dimensional gel electrophoresis and mass spectrometry analyses.

    Science.gov (United States)

    Bertolde, F Z; Almeida, A-A F; Silva, F A C; Oliveira, T M; Pirovani, C P

    2014-07-04

    Theobroma cacao is a woody and recalcitrant plant with a very high level of interfering compounds. Standard protocols for protein extraction were proposed for various types of samples, but the presence of interfering compounds in many samples prevented the isolation of proteins suitable for two-dimensional gel electrophoresis (2-DE). An efficient method to extract root proteins for 2-DE was established to overcome these problems. The main features of this protocol are: i) precipitation with trichloroacetic acid/acetone overnight to prepare the acetone dry powder (ADP), ii) several additional steps of sonication in the ADP preparation and extractions with dense sodium dodecyl sulfate and phenol, and iii) adding two stages of phenol extractions. Proteins were extracted from roots using this new protocol (Method B) and a protocol described in the literature for T. cacao leaves and meristems (Method A). Using these methods, we obtained a protein yield of about 0.7 and 2.5 mg per 1.0 g lyophilized root, and a total of 60 and 400 spots could be separated, respectively. Through Method B, it was possible to isolate high-quality protein and a high yield of roots from T. cacao for high-quality 2-DE gels. To demonstrate the quality of the extracted proteins from roots of T. cacao using Method B, several protein spots were cut from the 2-DE gels, analyzed by tandem mass spectrometry, and identified. Method B was further tested on Citrus roots, with a protein yield of about 2.7 mg per 1.0 g lyophilized root and 800 detected spots.

  1. Preparation and characterization of strontium-fluorapatite nanopowders by sol-gel method

    Science.gov (United States)

    Kamaei, Maryam; Fathi, Mohammad Hossein

    2018-01-01

    Biomaterials based on calcium orthophosphate are especially attractive for use in medicine, for bone and teeth implants due to their biological properties, such as biocompatibility and bioactivity. Among them, hydroxyapatite (HAP; Ca10(PO4)6(OH)2) is used particularly because of its similarities to the inorganic component of bone. Hydroxyapatite has been widely used for biomedical applications. Despite desirable properties such as bioactivity, biocompatibility, solubility and adsorption, synthetic HA is limited in application due to poor thermostability and poor mechanical properties. Properties of HA can be tailored over a wide range by incorporating different ions into HA lattice. Use of the sol-gel technique is technically simple, cost effective and beneficial for fabrication biomaterials. This research aimed to prepare and characterize Sr-doped FA nanopowders (Sr-FA). Sr-FA with different Sr contents was prepared by sol-gel method. The designated degree of substitution of Ca by Sr in the mixture was determined by the x value in the general formula of (Ca10-x Srx(PO4)6F2), where x=0,0.5,1. X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) techniques were utilized to characterize the obtained nano powders. Results showed that Sr ions entered into the fluorapatite lattice and occupied Ca sites. The incorporation of Sr ions into the fluorapatite resulted in the increase of the lattice parameters.

  2. Improvement of fire-tube boilers calculation methods by the numerical modeling of combustion processes and heat transfer in the combustion chamber

    Science.gov (United States)

    Komarov, I. I.; Rostova, D. M.; Vegera, A. N.

    2017-11-01

    This paper presents the results of study on determination of degree and nature of influence of operating conditions of burner units and flare geometric parameters on the heat transfer in a combustion chamber of the fire-tube boilers. Change in values of the outlet gas temperature, the radiant and convective specific heat flow rate with appropriate modification of an expansion angle and a flare length was determined using Ansys CFX software package. Difference between values of total heat flow and bulk temperature of gases at the flue tube outlet calculated using the known methods for thermal calculation and defined during the mathematical simulation was determined. Shortcomings of used calculation methods based on the results of a study conducted were identified and areas for their improvement were outlined.

  3. Fluoride Rinses, Gels and Foams

    DEFF Research Database (Denmark)

    Twetman, Svante; Keller, Mette K

    2016-01-01

    AIM: The aim of this conference paper was to systematically review the quality of evidence and summarize the findings of clinical trials published after 2002 using fluoride mouth rinses, fluoride gels or foams for the prevention of dental caries. METHODS: Relevant papers were selected after...... (6 on fluoride mouth rinse, 10 on fluoride gel and 3 on fluoride foam); 6 had a low risk of bias while 2 had a moderate risk. All fluoride measures appeared to be beneficial in preventing crown caries and reversing root caries, but the quality of evidence was graded as low for fluoride mouth rinse......, moderate for fluoride gel and very low for acidulated fluoride foam. No conclusions could be drawn on the cost-effectiveness. CONCLUSIONS: This review, covering the recent decade, has further substantiated the evidence for a caries-preventive effect of fluoride mouth rinse, fluoride gel and foam...

  4. Gel chromatography of sup(99m)Tc-labelled compounds

    International Nuclear Information System (INIS)

    Vilcek, S.; Machan, V.; Kalincak, M.

    1976-01-01

    The present state of gel chromatography of sup(99m)Tc-labelled compounds is reviewed. Examples are given of gel chromatography for preparing labelled compounds and for quality control analysis and the development of new types of sup(99m)Tc-labelled compounds. The factors which influence the gel chromatography of these compounds are discussed, i.e., the nature of the elution agent, the duration of the contact of the gel and the preparation the gel type, the nature of the labelled compound. The GCS method (gel chromatography scanning) is briefly described. The advantages of gel chromatography as compared with other chromatographic techniques for sup(99m)Tc-labelled compounds are summarized. (author)

  5. Synthesis of uranium and thorium dioxides by Complex Sol-Gel Processes (CSGP). Synthesis of uranium oxides by Complex Sol-Gel Processes (CSGP)

    International Nuclear Information System (INIS)

    Deptula, A.; Brykala, M.; Lada, W.; Olczak, T.; Wawszczak, D.; Chmielewski, A.G.; Modolo, G.; Daniels, H.

    2010-01-01

    In the Institute of Nuclear Chemistry and Technology (INCT), a new method of synthesis of uranium and thorium dioxides by original variant of sol-gel method - Complex Sol-Gel Process (CSGP), has been elaborated. The main modification step is the formation of nitrate-ascorbate sols from components alkalized by aqueous ammonia. Those sols were gelled into: - irregularly agglomerates by evaporation of water; - medium sized microspheres (diameter <150) by IChTJ variant of sol-gel processes by water extraction from drops of emulsion sols in 2-ethylhexanol-1 by this solvent. Uranium dioxide was obtained by a reduction of gels with hydrogen at temperatures >700 deg. C, while thorium dioxide by a simple calcination in the air atmosphere. (authors)

  6. IEA combustion agreement : a collaborative task on alternative fuels in combustion

    International Nuclear Information System (INIS)

    Larmi, M.

    2009-01-01

    The focus of the alternative fuels in combustion task of the International Energy Agency is on high efficiency engine combustion, furnace combustion, and combustion chemistry. The objectives of the task are to develop optimum combustion for dedicated fuels by fully utilizing the physical and chemical properties of synthetic and renewable fuels; a significant reduction in carbon dioxide, NOx and particulate matter emissions; determine the minimum emission levels for dedicated fuels; and meet future emission standards of engines without or with minimum after-treatment. This presentation discussed the alternative fuels task and addressed issues such as synthetic fuel properties and benefits. The anticipated future roadmap was presented along with a list of the synthetic and renewable engine fuels to be studied, such as neat oxygenates like alcohols and ethers, biogas/methane and gas combustion, fuel blends, dual fuel combustion, high cetane number diesel fuels like synthetic Fischer-Tropsch diesel fuel and hydrogenated vegetable oil, and low CN number fuels. Implementation examples were also discussed, such as fuel spray studies in optical spray bombs; combustion research in optical engines and combustion chambers; studies on reaction kinetics of combustion and emission formation; studies on fuel properties and ignition behaviour; combustion studies on research engines; combustion optimization; implementing the optimum combustion in research engines; and emission measurements. Overall milestone examples and the overall schedule of participating countries were also presented. figs.

  7. Mitigating the effect of siloxanes on internal combustion engines using landfill gasses

    Science.gov (United States)

    Besmann, Theodore M

    2014-01-21

    A waste gas combustion method that includes providing a combustible fuel source, in which the combustible fuel source is composed of at least methane and siloxane gas. A sodium source or magnesium source is mixed with the combustible fuel source. Combustion of the siloxane gas of the combustible fuel source produces a silicon containing product. The sodium source or magnesium source reacts with the silicon containing product to provide a sodium containing glass or sodium containing silicate, or a magnesium containing silicate. By producing the sodium containing glass or sodium containing silicate, or the magnesium containing silicate, or magnesium source for precipitating particulate silica instead of hard coating, the method may reduce or eliminate the formation of silica deposits within the combustion chamber and the exhaust components of the internal combustion engine.

  8. MUCOADHESIVE GEL WITH IMMOBILIZED LYSOZYME: PREPARATION AND PROPERTIES

    Directory of Open Access Journals (Sweden)

    Dekina S. S.

    2015-08-01

    Full Text Available The study of non-covalent immobilized lysozyme, as well as physico-chemical and biochemical properties of obtained mucoadhesive gel was the aim of the research. Lysozyme activity was determined by bacteriolytic method (Micrococcus lysodeikticus cells acetone powder was a substrate. Lysozyme immobilization was conducted by the method of entrapment in gel. Enzyme carrier interaction was studied by viscometric, spectrophotometric and spectrofluorimetric methods. Mucoadhesive gel with immobilized lysozyme, possessing antiinflammatory and antimicrobial activities, was prepared. Due to immobilization, protein-polymer complex with the original enzymatic activity was formed. The product is characterized by high mucoadhesive properties, quantitative retaining of protein and bacteriolytic activity, prolonged release of the enzyme, improved biochemical characteristics (extended pH-activity profile, stability in acidic medium and during storage for 2 years, and it is perspective for further studies. The proposed method for lysozyme immobilization in the carboxymethyl cellulose sodium salt gel allows to obtain a stable, highly efficient product, with high adhesive properties for attachment to the mucous membranes, that is promising for use in biomedicine.

  9. Kinetics of swelling of polyelectrolyte gels: Fixed degree of ionization

    Science.gov (United States)

    Sen, Swati; Kundagrami, Arindam

    2015-12-01

    The swelling kinetics of uncharged and charged polymer (polyelectrolyte) gels in salt-free conditions is studied in one dimension by solving the constitutive equation of motion (Newton's law for the elementary gel volume) of the displacement variable by two theoretical methods: one in which the classical definition of stress is used with the bulk modulus taken as a parameter, and the other in which a phenomenological expression of the osmotic stress as a function of polymer density and degree of ionization is taken as an input to the dynamics. The time-evolution profiles for spatially varying polymer density and stress, along with the location of the gel-solvent interface, are obtained from the two methods. We show that both the polymer density (volume fraction) and stress inside the gel follow expected behaviours of being maximum for the uniformly shrunken gel, and relaxing slowly to the lowest values as the gel approaches equilibrium. We further show that, by comparing the temporal profiles of the gel-solvent interface and other variables between the two methods, one may attempt to assign an effective bulk modulus to the polyelectrolyte gel as a function of the degree of ionization and other parameters of the gel such as hydrophobicity, cross-link density, and the temperature. The major result we get is that the effective bulk modulus of a polyelectrolyte gel increases monotonically with its degree of ionization. In the process of identifying the parameters for a monotonic swelling, we calculated using a well-known expression of the free energy the equilibrium results of two-phase co-existence and the critical point of a polyelectrolyte gel with a fixed degree of ionization.

  10. Spectroscopy, Kinetics, and Dynamics of Combustion Radicals

    Energy Technology Data Exchange (ETDEWEB)

    Nesbitt, David J. [Research/Professor

    2013-08-06

    Spectroscopy, kinetics and dynamics of jet cooled hydrocarbon transients relevant to the DOE combustion mission have been explored, exploiting i) high resolution IR lasers, ii) slit discharge sources for formation of jet cooled radicals, and iii) high sensitivity detection with direct laser absorption methods and near the quantum shot noise limit. What makes this combination powerful is that such transients can be made under high concentrations and pressures characteristic of actual combustion conditions, and yet with the resulting species rapidly cooled (T ≈10-15K) in the slit supersonic expansion. Combined with the power of IR laser absorption methods, this provides novel access to spectral detection and study of many critical combustion species.

  11. Effect of vanadium on the obtaining of the titanium dioxide by Sol-Gel Method

    International Nuclear Information System (INIS)

    Granado, S.R.; Silva, D.W.; Lopes, S.A.; Cavalheiro, A.A.

    2011-01-01

    The obtaining of transition metal modified titanium dioxide (TiO 2 ) can be a promising path to promote changes in crystal structure of anatase phase in order to displace the band gap toward frequencies near to visible region. The insertion of the heterovalent ions such as vanadium can be shift the titanium coordination number in the anatase matrix, leading to important changes in the photonic characteristics of the material. In Sol-Gel method, the presence of the non alkoxide precursors can affects the stability of the solution and the gelifying process, with consequences on the characteristics of the material. In this work, it was investigated the effect of 5mol% of vanadium by thermal analysis of the dried gel and XRD and adsorption isotherm in the samples obtained at different temperatures. The decomposition steps of the precursor were associated to phase formation in the material, leading to conclusion that the presence of vanadium affects the stability of anatase phase. (author)

  12. New decontamination techniques: chemical gels, electropolishing and abrasives

    International Nuclear Information System (INIS)

    Brunel, G.; Gauchon, J.P.; Kervegant, Y.; Josso, F.

    1991-01-01

    The decommissioning of nuclear installations requires decontamination techniques that are efficient, simple to apply and producing a small amount of wastes, which are easy to process. With a view to this, three decontamination methods, which appear to be particularly suited to decommissioning, have been studied. These three methods are: - spraying of gels carrying chemical decontaminating agents, - electropolishing with a swab device, - abrasives blasting. After parametric tests on non-radioactive and active samples, the industrial application of these methods in the dismantling of installations was studied. These industrial applications concern: - decontamination of pieces coming from the German BWR ISAR by immersion and gel spraying, - decontamination, mainly by gel spraying, and dismantling of the BRENNILIS bituminisation plant, - decontamination of part of the cooling circuit of the graphite gas reactor G2 by gel spraying, - decontamination of a component of the FBR SuperPhenix, using dry abrasives blasting. During the first three applications, generated secondary wastes volume and form were determined. 33 tabs., 16 figs., 12 refs

  13. Internal combustion engine using premixed combustion of stratified charges

    Science.gov (United States)

    Marriott, Craig D [Rochester Hills, MI; Reitz, Rolf D [Madison, WI

    2003-12-30

    During a combustion cycle, a first stoichiometrically lean fuel charge is injected well prior to top dead center, preferably during the intake stroke. This first fuel charge is substantially mixed with the combustion chamber air during subsequent motion of the piston towards top dead center. A subsequent fuel charge is then injected prior to top dead center to create a stratified, locally richer mixture (but still leaner than stoichiometric) within the combustion chamber. The locally rich region within the combustion chamber has sufficient fuel density to autoignite, and its self-ignition serves to activate ignition for the lean mixture existing within the remainder of the combustion chamber. Because the mixture within the combustion chamber is overall premixed and relatively lean, NO.sub.x and soot production are significantly diminished.

  14. Sol-Gel Glasses

    Science.gov (United States)

    Mukherjee, S. P.

    1985-01-01

    Multicomponent homogeneous, ultrapure noncrystalline gels/gel derived glasses are promising batch materials for the containerless glass melting experiments in microgravity. Hence, ultrapure, homogeneous gel precursors could be used to: (1) investigate the effect of the container induced nucleation on the glass forming ability of marginally glass forming compositions; and (2) investigate the influence of gravity on the phase separation and coarsening behavior of gel derived glasses in the liquid-liquid immiscibility zone of the nonsilicate systems having a high density phase. The structure and crystallization behavior of gels in the SiO2-GeO2 as a function of gel chemistry and thermal treatment were investigated. As are the chemical principles involved in the distribution of a second network former in silica gel matrix being investigated. The procedures for synthesizing noncrystalline gels/gel-monoliths in the SiO2-GeO2, GeO2-PbO systems were developed. Preliminary investigations on the levitation and thermal treatment of germania silicate gel-monoliths in the Pressure Facility Acoustic Levitator were done.

  15. Combustion Stratification for Naphtha from CI Combustion to PPC

    KAUST Repository

    Vallinayagam, R.; Vedharaj, S.; An, Yanzhao; Dawood, Alaaeldin; Izadi Najafabadi, Mohammad; Somers, Bart; Johansson, Bengt

    2017-01-01

    This study demonstrates the combustion stratification from conventional compression ignition (CI) combustion to partially premixed combustion (PPC). Experiments are performed in an optical CI engine at a speed of 1200 rpm for diesel and naphtha (RON

  16. Fuel and combustion stratification study of Partially Premixed Combustion

    OpenAIRE

    Izadi Najafabadi, M.; Dam, N.; Somers, B.; Johansson, B.

    2016-01-01

    Relatively high levels of stratification is one of the main advantages of Partially Premixed Combustion (PPC) over the Homogeneous Charge Compression Ignition (HCCI) concept. Fuel stratification smoothens heat release and improves controllability of this kind of combustion. However, the lack of a clear definition of “fuel and combustion stratifications” is obvious in literature. Hence, it is difficult to compare stratification levels of different PPC strategies or other combustion concepts. T...

  17. Development of flameless combustion; Desarrollo de la combustion sin flama

    Energy Technology Data Exchange (ETDEWEB)

    Flores Sauceda, M. Leonardo; Cervantes de Gortari, Jaime Gonzalo [Universidad Nacional Autonoma de Mexico, Mexico, D.F. (Mexico)]. E-mail: 8344afc@prodigy.net.mx; jgonzalo@servidor.unam.mx

    2010-11-15

    The paper intends contribute to global warming mitigation joint effort that develops technologies to capture the CO{sub 2} produced by fossil fuels combustion and to reduce emission of other greenhouse gases like the NO{sub x}. After reviewing existing combustion bibliography is pointed out that (a) touches only partial aspects of the collective system composed by Combustion-Heat transfer process-Environment, whose interactions are our primary interest and (b) most specialists think there is not yet a clearly winning technology for CO{sub 2} capture and storage. In this paper the study of combustion is focused as integrated in the aforementioned collective system where application of flameless combustion, using oxidant preheated in heat regenerators and fluent gas recirculation into combustion chamber plus appropriated heat and mass balances, simultaneously results in energy saving and environmental impact reduction. [Spanish] El trabajo pretende contribuir al esfuerzo conjunto de mitigacion del calentamiento global que aporta tecnologias para capturar el CO{sub 2} producido por la combustion de combustibles fosiles y para disminuir la emision de otros gases invernadero como NOx. De revision bibliografica sobre combustion se concluye que (a) trata aspectos parciales del sistema compuesto por combustion-proceso de trasferencia de calor-ambiente, cuyas interacciones son nuestro principal interes (b) la mayoria de especialistas considera no hay todavia una tecnologia claramente superior a las demas para captura y almacenaje de CO{sub 2}. Se estudia la combustion como parte integrante del mencionado sistema conjunto, donde la aplicacion de combustion sin flama, empleando oxidante precalentado mediante regeneradores de calor y recirculacion de gases efluentes ademas de los balances de masa y energia adecuados, permite tener simultaneamente ahorros energeticos e impacto ambiental reducido.

  18. Tunable diode laser spectroscopy as a technique for combustion diagnostics

    International Nuclear Information System (INIS)

    Bolshov, M.A.; Kuritsyn, Yu.A.; Romanovskii, Yu.V.

    2015-01-01

    Tunable diode laser absorption spectroscopy (TDLAS) has become a proven method of rapid gas diagnostics. In the present review an overview of the state of the art of TDL-based sensors and their applications for measurements of temperature, pressure, and species concentrations of gas components in harsh environments is given. In particular, the contemporary tunable diode laser systems, various methods of absorption detection (direct absorption measurements, wavelength modulation based phase sensitive detection), and relevant algorithms for data processing that improve accuracy and accelerate the diagnostics cycle are discussed in detail. The paper demonstrates how the recent developments of these methods and algorithms made it possible to extend the functionality of TDLAS in the tomographic imaging of combustion processes. Some prominent examples of applications of TDL-based sensors in a wide range of practical combustion aggregates, including scramjet engines and facilities, internal combustion engines, pulse detonation combustors, and coal gasifiers, are given in the final part of the review. - Highlights: • Overview of modern TDL-based sensors for combustion • TDL systems, methods of absorption detection and algorithms of data processing • Prominent examples of TDLAS diagnostics of the combustion facilities • Extension of the TDLAS on the tomographic imaging of combustion processes

  19. Co-combustion of Fossil Fuels and Waste

    DEFF Research Database (Denmark)

    Wu, Hao

    The Ph.D. thesis deals with the alternative and high efficiency methods of using waste-derived fuels in heat and power production. The focus is on the following subjects: 1) co-combustion of coal and solid recovered fuel (SRF) under pulverized fuel combustion conditions; 2) dust-firing of straw...

  20. Protein electrophoretic migration data from custom and commercial gradient gels

    Directory of Open Access Journals (Sweden)

    Andrew J. Miller

    2016-12-01

    Full Text Available This paper presents data related to the article “A method for easily customizable gradient gel electrophoresis” (A.J. Miller, B. Roman, E.M. Norstrom, 2016 [1]. Data is presented on the rate of electrophoretic migration of proteins in both hand-poured and commercially acquired acrylamide gradient gels. For each gel, migration of 9 polypeptides of various masses was measured upon completion of gel electrophoresis. Data are presented on the migration of proteins within separate lanes of the same gel as well as migration rates from multiple gels.

  1. Production of continuous mullite fiber via sol-gel processing

    Science.gov (United States)

    Tucker, Dennis S.; Sparks, J. Scott; Esker, David C.

    1990-01-01

    The development of a continuous ceramic fiber which could be used in rocket engine and rocket boosters applications was investigated at the Marshall Space Flight Center. Methods of ceramic fiber production such as melt spinning, chemical vapor deposition, and precursor polymeric fiber decomposition are discussed and compared with sol-gel processing. The production of ceramics via the sol-gel method consists of two steps, hydrolysis and polycondensation, to form the preceramic, followed by consolidation into the glass or ceramic structure. The advantages of the sol-gel method include better homogeneity and purity, lower preparation temperature, and the ability to form unique compositions. The disadvantages are the high cost of raw materials, large shrinkage during drying and firing which can lead to cracks, and long processing times. Preparation procedures for aluminosilicate sol-gel and for continuous mullite fibers are described.

  2. A novel method of estimating dose responses for polymer gels using texture analysis of scanning electron microscopy images.

    Directory of Open Access Journals (Sweden)

    Cheng-Ting Shih

    Full Text Available Polymer gels are regarded as a potential dosimeter for independent validation of absorbed doses in clinical radiotherapy. Several imaging modalities have been used to convert radiation-induced polymerization to absorbed doses from a macro-scale viewpoint. This study developed a novel dose conversion mechanism by texture analysis of scanning electron microscopy (SEM images. The modified N-isopropyl-acrylamide (NIPAM gels were prepared under normoxic conditions, and were administered radiation doses from 5 to 20 Gy. After freeze drying, the gel samples were sliced for SEM scanning with 50×, 500×, and 3500× magnifications. Four texture indices were calculated based on the gray level co-occurrence matrix (GLCM. The results showed that entropy and homogeneity were more suitable than contrast and energy as dose indices for higher linearity and sensitivity of the dose response curves. After parameter optimization, an R (2 value of 0.993 can be achieved for homogeneity using 500× magnified SEM images with 27 pixel offsets and no outlier exclusion. For dose verification, the percentage errors between the prescribed dose and the measured dose for 5, 10, 15, and 20 Gy were -7.60%, 5.80%, 2.53%, and -0.95%, respectively. We conclude that texture analysis can be applied to the SEM images of gel dosimeters to accurately convert micro-scale structural features to absorbed doses. The proposed method may extend the feasibility of applying gel dosimeters in the fields of diagnostic radiology and radiation protection.

  3. Synthesis of nanoparticles of magnetite by sol-gel and precipitation methods: study of chemical composition and structure

    International Nuclear Information System (INIS)

    Picasso, Gino; Vega, Jaime; Uzuriaga, Rosario; Ruiz, Gean Pieer

    2012-01-01

    In this work, nanoparticles based on magnetite have been prepared by sol-gel and precipitation methods. In the first case two variants have been applied: by growing of sol starting from nitrate precursor and ethylene glycol as solvent and to control the reduction process and force hydrolysis and steric control prepared from ferrum sulfate precursor and sodium citrate. In the second case the starting material was sulfate precursor, ammonium hydroxide as precipitaing agent and ethylene glycol as surfactant. The samples have been characterized by X-ray diffraction technique (XRD), adsorption-desorption of N 2 (BET equation model) and Moessbauer spectroscopy. XRD patterns of all samples showed typical peaks of magnetite which were detected in the following positions: 30,06 o , 35,42 o , 62,55 o . Average specific surface quantified by BET method was ranging from 40 to 50 m 2 /g with isotherm type IV corresponding to mesoporous surface. Moessbauer spectra of sample prepared from sol-gel (gel growing) carried out at home temperature detected the presence of 2 sextets consisting in 2 type of sites: first one due to octahedral positions (Fe 2+ , Fe 3+ ) and the second one due to tetrahedral positions (Fe 3+ ). Grain size of magnetite samples, evaluated by Scherrer equation and specific surface area, was ranging from 2 to 20 nm. (author).

  4. Automatic and quantitative measurement of collagen gel contraction using model-guided segmentation

    Science.gov (United States)

    Chen, Hsin-Chen; Yang, Tai-Hua; Thoreson, Andrew R.; Zhao, Chunfeng; Amadio, Peter C.; Sun, Yung-Nien; Su, Fong-Chin; An, Kai-Nan

    2013-08-01

    Quantitative measurement of collagen gel contraction plays a critical role in the field of tissue engineering because it provides spatial-temporal assessment (e.g., changes of gel area and diameter during the contraction process) reflecting the cell behavior and tissue material properties. So far the assessment of collagen gels relies on manual segmentation, which is time-consuming and suffers from serious intra- and inter-observer variability. In this study, we propose an automatic method combining various image processing techniques to resolve these problems. The proposed method first detects the maximal feasible contraction range of circular references (e.g., culture dish) and avoids the interference of irrelevant objects in the given image. Then, a three-step color conversion strategy is applied to normalize and enhance the contrast between the gel and background. We subsequently introduce a deformable circular model which utilizes regional intensity contrast and circular shape constraint to locate the gel boundary. An adaptive weighting scheme was employed to coordinate the model behavior, so that the proposed system can overcome variations of gel boundary appearances at different contraction stages. Two measurements of collagen gels (i.e., area and diameter) can readily be obtained based on the segmentation results. Experimental results, including 120 gel images for accuracy validation, showed high agreement between the proposed method and manual segmentation with an average dice similarity coefficient larger than 0.95. The results also demonstrated obvious improvement in gel contours obtained by the proposed method over two popular, generic segmentation methods.

  5. Measures for a quality combustion (combustion chamber exit and downstream); Mesures pour une combustion de qualite (sortie de chambre de combustion et en aval)

    Energy Technology Data Exchange (ETDEWEB)

    Epinat, G. [APAVE Lyonnaise, 69 (France)

    1996-12-31

    After a review of the different pollutants related to the various types of stationary and mobile combustion processes (stoichiometric, reducing and oxidizing combustion), measures and analyses than may be used to ensure the quality and efficiency of combustion processes are reviewed: opacimeters, UV analyzers, etc. The regulation and control equipment for combustion systems are then listed, according to the generator capacity level

  6. Production of nanocrystalline metal powders via combustion reaction synthesis

    Science.gov (United States)

    Frye, John G.; Weil, Kenneth Scott; Lavender, Curt A.; Kim, Jin Yong

    2017-10-31

    Nanocrystalline metal powders comprising tungsten, molybdenum, rhenium and/or niobium can be synthesized using a combustion reaction. Methods for synthesizing the nanocrystalline metal powders are characterized by forming a combustion synthesis solution by dissolving in water an oxidizer, a fuel, and a base-soluble, ammonium precursor of tungsten, molybdenum, rhenium, or niobium in amounts that yield a stoichiometric burn when combusted. The combustion synthesis solution is then heated to a temperature sufficient to substantially remove water and to initiate a self-sustaining combustion reaction. The resulting powder can be subsequently reduced to metal form by heating in a reducing gas environment.

  7. Facile and rapid auto-combustion synthesis of nano-porous γ-Al2O3 by application of hexamethylenetetramine in fuel composition

    Science.gov (United States)

    Salem, Shiva; Salem, Amin; Parni, Mohammad Hosein; Jafarizad, Abbas

    2018-06-01

    In this article, urea, glycine and hexamethylenetetramine were blended in accordance with the mixture design algorithm to prepare γ-Al2O3 by auto-combustion technique. Aluminum nitrate was then mixed with the stoichiometric contents of prepared fuel solutions to obtain gel systems. The gels exhibited a typical self-propagating combustion behavior at low temperature, directly resulting amorphous materials. The precursors were calcined at various temperatures ranging from 700 to 900 °C. The treated powders were evaluated by determining the methylene blue (MB) adsorption efficiency. The production condition to obtain γ-Al2O3 with maximum surface area depends on fuel composition and calcination temperature. The alumina powder fabricated by this procedure was uniformly distributed and contains nano-sized secondary particles with diameter about 10-30 nm in which the average pore size is 3.2 nm induced large surface area, 240 m2g-1. The employment of hexamethylenetetramine provides a potential for synthesis of γ-Al2O3 at lower temperature, 700 °C, with maximum MB removal efficiency.

  8. Rheological behaviour of white pepper gels - a new method for studying the effect of irradiation

    International Nuclear Information System (INIS)

    Esteves, M. Paula; Raymundo, Anabela; Sousa, Isabel de; Andrade, M. Eduarda; Empis, Jose

    2002-01-01

    Ground white pepper was treated by gamma radiation at average doses of 5, 10 and 15 kGy and the alterations in the rheological properties of its aqueous suspensions were used to study the radiation effects. Amylose and amylopectin suspensions were used as model systems. Ground pepper gels presented decreased strength expressed by a decrease of G' and G'' values and smaller limiting viscosity (η 0 ), as the irradiation dose increased. A similar behaviour was shown by the amylopectin gels. For the amylose gels, in opposition, irradiation induced a higher level of gel structure

  9. Hyper alginate gel microbead formation by molecular diffusion at the hydrogel/droplet interface.

    Science.gov (United States)

    Hirama, Hirotada; Kambe, Taisuke; Aketagawa, Kyouhei; Ota, Taku; Moriguchi, Hiroyuki; Torii, Toru

    2013-01-15

    We report a simple method for forming monodispersed, uniformly shaped gel microbeads with precisely controlled sizes. The basis of our method is the placement of monodispersed sodium alginate droplets, formed by a microfluidic device, on an agarose slab gel containing a high-osmotic-pressure gelation agent (CaCl(2) aq.): (1) the droplets are cross-linked (gelated) due to the diffusion of the gelation agent from the agarose slab gel to the sodium alginate droplets and (2) the droplets simultaneously shrink to a fraction of their original size (slab gel. We verified the mass transfer mechanism between the droplet and the agarose slab gel. This method circumvents the limitations of gel microbead formation, such as the need to prepare microchannels of various sizes, microchannel clogging, and the deformation of the produced gel microbeads.

  10. Nanocrystalline Ni-Zn ferrites prepared by sol-gel method

    Czech Academy of Sciences Publication Activity Database

    Popovici, M.; Savii, C.; Nižňanský, Daniel; Šubrt, Jan; Boháček, Jaroslav; Becherescu, D.; Caizer, C.; Enache, C.; Ionescu, C.

    2003-01-01

    Roč. 5, č. 1 (2003), s. 251-256 ISSN 1454-4164 R&D Projects: GA MŠk LN00A028 Institutional research plan: CEZ:AV0Z4032918 Keywords : nanostructures * sol-gel processing * XRD Subject RIV: CA - Inorganic Chemistry Impact factor: 0.996, year: 2003

  11. Standardization of the Fricke gel dosimetry method and tridimensional dose evaluation using the magnetic resonance imaging technique

    International Nuclear Information System (INIS)

    Cavinato, Christianne Cobello

    2009-01-01

    This study standardized the method for obtaining the Fricke gel solution developed at IPEN. The results for different gel qualities used in the preparation of solutions and the influence of the gelatin concentration in the response of dosimetric solutions were compared. Type tests such as: dose response dependence, minimum and maximum detection limits, response reproducibility, among others, were carried out using different radiation types and the Optical Absorption (OA) spectrophotometry and Magnetic Resonance (MR) techniques. The useful dose ranges for Co 60 gamma radiation and 6 MeV photons are 0,4 to 30,0 Gy and 0,5 to 100,0 Gy , using OA and MR techniques, respectively. A study of ferric ions diffusion in solution was performed to determine the optimum time interval between irradiation and samples evaluation; until 2,5 hours after irradiation to obtain sharp MR images. A spherical simulator consisting of Fricke gel solution prepared with 5% by weight 270 Bloom gelatine (national quality) was developed to be used to three-dimensional dose assessment using the Magnetic Resonance Imaging (MRI) technique. The Fricke gel solution prepared with 270 Bloom gelatine, that, in addition to low cost, can be easily acquired on the national market, presents satisfactory results on the ease of handling, sensitivity, response reproducibility and consistency. The results confirm their applicability in the three-dimensional dosimetry using MRI technique. (author)

  12. Method for increasing the calorific value of gas produced by the in situ combustion of coal

    Science.gov (United States)

    Shuck, Lowell Z.

    1978-01-01

    The present invention relates to the production of relatively high Btu gas by the in situ combustion of subterranean coal. The coal bed is penetrated with a horizontally-extending borehole and combustion is initiated in the coal bed contiguous to the borehole. The absolute pressure within the resulting combustion zone is then regulated at a desired value near the pore pressure within the coal bed so that selected quantities of water naturally present in the coal will flow into the combustion zone to effect a hydrogen and carbon monoxide-producing steam-carbon reaction with the hot carbon in the combustion zone for increasing the calorific value of the product gas.

  13. Numerical modeling of sodium fire – Part II: Pool combustion and combined spray and pool combustion

    International Nuclear Information System (INIS)

    Sathiah, Pratap; Roelofs, Ferry

    2014-01-01

    Highlights: • A CFD based method is proposed for the simulation of sodium pool combustion. • A sodium evaporation based model is proposed to model sodium pool evaporation. • The proposed method is validated against sodium pool experiments of Newman and Payne. • The results obtained using the proposed method are in good agreement with the experiments. - Abstract: The risk of sodium-air reaction has received considerable attention after the sodium-fire accident in Monju reactor. The fires resulting from the sodium-air reaction can be detrimental to the safety of a sodium fast reactor. Therefore, predicting the consequences of a sodium fire is important from a safety point of view. A computational method based on CFD is proposed here to simulate sodium pool fire and understand its characteristics. The method solves the Favre-averaged Navier-Stokes equation and uses a non-premixed mixture fraction based combustion model. The mass transfer of sodium vapor from the pool surface to the flame is obtained using a sodium evaporation model. The proposed method is then validated against well-known sodium pool experiments of Newman and Payne. The flame temperature and location predicted by the model are in good agreement with experiments. Furthermore, the trends of the mean burning rate with initial pool temperature and oxygen concentration are captured well. Additionally, parametric studies have been performed to understand the effects of pool diameter and initial air temperature on the mean burning rate. Furthermore, the sodium spray and sodium pool combustion models are combined to simulate simultaneous spray and pool combustion. Simulations were performed to demonstrate that the combined code could be applied to simulate this. Once sufficiently validated, the present code can be used for safety evaluation of a sodium fast reactor

  14. Numerical modeling of sodium fire – Part II: Pool combustion and combined spray and pool combustion

    Energy Technology Data Exchange (ETDEWEB)

    Sathiah, Pratap, E-mail: pratap.sathiah78@gmail.com [Shell Global Solutions Ltd., Brabazon House, Concord Business Park, Threapwood Road, Manchester M220RR (United Kingdom); Roelofs, Ferry, E-mail: roelofs@nrg.eu [Nuclear Research and Consultancy Group (NRG), Westerduinweg 3, 1755ZG Petten (Netherlands)

    2014-10-15

    Highlights: • A CFD based method is proposed for the simulation of sodium pool combustion. • A sodium evaporation based model is proposed to model sodium pool evaporation. • The proposed method is validated against sodium pool experiments of Newman and Payne. • The results obtained using the proposed method are in good agreement with the experiments. - Abstract: The risk of sodium-air reaction has received considerable attention after the sodium-fire accident in Monju reactor. The fires resulting from the sodium-air reaction can be detrimental to the safety of a sodium fast reactor. Therefore, predicting the consequences of a sodium fire is important from a safety point of view. A computational method based on CFD is proposed here to simulate sodium pool fire and understand its characteristics. The method solves the Favre-averaged Navier-Stokes equation and uses a non-premixed mixture fraction based combustion model. The mass transfer of sodium vapor from the pool surface to the flame is obtained using a sodium evaporation model. The proposed method is then validated against well-known sodium pool experiments of Newman and Payne. The flame temperature and location predicted by the model are in good agreement with experiments. Furthermore, the trends of the mean burning rate with initial pool temperature and oxygen concentration are captured well. Additionally, parametric studies have been performed to understand the effects of pool diameter and initial air temperature on the mean burning rate. Furthermore, the sodium spray and sodium pool combustion models are combined to simulate simultaneous spray and pool combustion. Simulations were performed to demonstrate that the combined code could be applied to simulate this. Once sufficiently validated, the present code can be used for safety evaluation of a sodium fast reactor.

  15. Development and evaluation of exemestane-loaded lyotropic liquid crystalline gel formulations

    OpenAIRE

    Musa, Muhammad Nuh; David, Sheba Rani; Zulkipli, Ihsan Nazurah; Mahadi, Abdul Hanif; Chakravarthi, Srikumar; Rajabalaya, Rajan

    2017-01-01

    Introduction: The use of liquid crystalline (LC) gel formulations for drug delivery has considerably improved the current delivery methods in terms of bioavailability and efficacy. The purpose of this study was to develop and evaluate LC gel formulations to deliver the anti-cancer drug exemestane through transdermal route. Methods: Two LC gel formulations were prepared by phase separation coacervation method using glyceryl monooleate (GMO), Tween 80 and Pluronic® F127 (F127). The formulations...

  16. Apparatus and method for temperature mapping a turbine component in a high temperature combustion environment

    Science.gov (United States)

    Baleine, Erwan; Sheldon, Danny M

    2014-06-10

    Method and system for calibrating a thermal radiance map of a turbine component in a combustion environment. At least one spot (18) of material is disposed on a surface of the component. An infrared (IR) imager (14) is arranged so that the spot is within a field of view of the imager to acquire imaging data of the spot. A processor (30) is configured to process the imaging data to generate a sequence of images as a temperature of the combustion environment is increased. A monitor (42, 44) may be coupled to the processor to monitor the sequence of images of to determine an occurrence of a physical change of the spot as the temperature is increased. A calibration module (46) may be configured to assign a first temperature value to the surface of the turbine component when the occurrence of the physical change of the spot is determined.

  17. ZnO-SiO{sub 2} based nanocomposites prepared by a modified sol-gel method

    Energy Technology Data Exchange (ETDEWEB)

    Grigorie, Alexandra Carmen [Politehnica University Timisoara, Faculty of Industrial Chemistry and Environmental Engineering, 6 V. Parvan Blv., RO-300223, Timisoara (Romania); Muntean, Cornelia, E-mail: cornelia.muntean@upt.ro [Politehnica University Timisoara, Faculty of Industrial Chemistry and Environmental Engineering, 6 V. Parvan Blv., RO-300223, Timisoara (Romania); Politehnica University Timisoara, Research Institute for Renewable Energy, 2 Piata Victoriei, RO-300006, Timisoara (Romania); Vlase, Titus [West University of Timisoara, 4 V. Parvan Blv., RO-300223, Timisoara (Romania); Locovei, Cosmin [Politehnica University Timisoara, Research Institute for Renewable Energy, 2 Piata Victoriei, RO-300006, Timisoara (Romania); Politehnica University Timisoara, Faculty of Mechanical Engineering, 1 Mihai Viteazul Blv., RO-300222, Timisoara (Romania); Stefanescu, Mircea [Politehnica University Timisoara, Faculty of Industrial Chemistry and Environmental Engineering, 6 V. Parvan Blv., RO-300223, Timisoara (Romania)

    2017-01-15

    This paper presents a study on nanocomposites formation in ZnO-SiO{sub 2} systems with different ZnO:SiO{sub 2} molar ratios (1:4, 1:1, and 4:1), prepared employing a sol-gel method modified by an original procedure. The evolution of ZnO-SiO{sub 2} systems depending on the composition and temperature was studied by thermal analysis, Fourier transform infrared spectroscopy, X-ray diffractometry and transmission electron microscopy. Zn(II) carboxylate was synthesized in situ in hybrid silica gels by redox reaction between zinc nitrate and 1,3-propanediol. Its thermal decomposition at low temperatures led to ZnO dispersed in the pores of silica matrix. Only for the 4:1 system, at 400 and 600 °C, ZnO nanocrystallites (average size ∼9 nm) embedded in the amorphous silica matrix were obtained, the other systems being amorphous. Whatever the mixture composition is, above 600 °C, ZnO reacts with SiO{sub 2} to form zinc silicate. At 800 °C, for both 1:4 and 1:1 systems, poor crystallized β-Zn{sub 2}SiO{sub 4} and α-Zn{sub 2}SiO{sub 4} phases embedded in silica matrix were formed. Increasing the temperature, at 1000 °C, only for 1:1 system, β-Zn{sub 2}SiO{sub 4} phase turned into single phase α-Zn{sub 2}SiO{sub 4} (average crystallites size 28.3 nm). For 4:1 composition, at 800 and 1000 °C, systems consisting of ZnO and α-Zn{sub 2}SiO{sub 4} nanocrystallites dispersed in silica were obtained. - Highlights: • By modified sol-gel method, ZnO/SiO{sub 2} and Zn{sub 2}SiO{sub 4}/SiO{sub 2} nanocomposites were obtained. • ZnO dispersed in silica matrix results from zinc carboxylate thermal decomposition. • Zinc carboxylate was synthesized in situ in hybrid silica gels via redox reaction. • Evolution of ZnO in SiO{sub 2} matrix depends on temperature and system composition.

  18. Preparation and studies of Co(II) and Co(III)-substituted barium ferrite prepared by sol-gel method

    Energy Technology Data Exchange (ETDEWEB)

    Teh, Geok Bee [Department of Bioscience and Chemistry, Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, 53300 Kuala Lumpur (Malaysia)]. E-mail: tehgb@mail.utar.edu.my; Nagalingam, Saravanan [Department of Bioscience and Chemistry, Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, 53300 Kuala Lumpur (Malaysia); Jefferson, David A. [Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW (United Kingdom)

    2007-01-15

    The sol-gel preparative method was employed to synthesise Co(II) and Co(III)-substituted barium ferrite. This method was attempted to achieve higher homogeneity of the final product. Samples of substituted ferrites were characterised by various experimental techniques including high resolution transmission electron microscopy, X-ray diffraction analysis, magnetometry and thermal gravimetric analysis. The microstructural changes induced by such substitution are also discussed.

  19. Preparation and studies of Co(II) and Co(III)-substituted barium ferrite prepared by sol-gel method

    International Nuclear Information System (INIS)

    Teh, Geok Bee; Nagalingam, Saravanan; Jefferson, David A.

    2007-01-01

    The sol-gel preparative method was employed to synthesise Co(II) and Co(III)-substituted barium ferrite. This method was attempted to achieve higher homogeneity of the final product. Samples of substituted ferrites were characterised by various experimental techniques including high resolution transmission electron microscopy, X-ray diffraction analysis, magnetometry and thermal gravimetric analysis. The microstructural changes induced by such substitution are also discussed

  20. Decomposition of water into highly combustible hydroxyl gas used in ...

    African Journals Online (AJOL)

    The method proposed involves the decomposition of water into highly combustible hydroxyl gas via electrolysis, which is used in internal combustion engines of electrical generators for electricity generation. The by-product obtained from combustion of this gas is water vapour and oxygen to replenish the atmosphere.

  1. Combustion stratification for naphtha from CI combustion to PPC

    NARCIS (Netherlands)

    Vallinayagam, R.; Vedharaj, S.; An, Y.; Dawood, A.; Izadi Najafabadi, M.; Somers, L.M.T.; Johansson, B.H.

    2017-01-01

    This study demonstrated the change in combustion homogeneity from conventional diesel combustion via partially premixed combustion towards HCCI. Experiments are performed in an optical diesel engine at a speed of 1200 rpm with diesel fuel. Single injection strategy is employed and the fuel is

  2. Low NOx combustion technologies for high-temperature natural gas combustion

    International Nuclear Information System (INIS)

    Flamme, Michael

    1999-01-01

    Because of the high process temperature which is required for some processes like glass melting and the high temperature to which the combustion air is preheated, NOx emission are extremely high. Even at these high temperatures, NOx emissions could be reduced drastically by using advanced combustion techniques such as staged combustion or flame-less oxidation, as experimental work has shown. In the case of oxy-fuel combustion, the NOx emission are also very high if conventional burners are used. The new combustion techniques achieve similar NOx reductions. (author)

  3. Analysis of glycoprotein-derived oligosaccharides in glycoproteins detected on two-dimensional gel by capillary electrophoresis using on-line concentration method.

    Science.gov (United States)

    Kamoda, Satoru; Nakanishi, Yasuharu; Kinoshita, Mitsuhiro; Ishikawa, Rika; Kakehi, Kazuaki

    2006-02-17

    Capillary electrophoresis (CE) is an effective tool to analyze carbohydrate mixture derived from glycoproteins with high resolution. However, CE has a disadvantage that a few nanoliters of a sample solution are injected to a narrow capillary. Therefore, we have to prepare a sample solution of high concentration for CE analysis. In the present study, we applied head column field-amplified sample stacking method to the analysis of N-linked oligosaccharides derived from glycoprotein separated by two-dimensional gel electrophoresis. Model studies demonstrated that we achieved 60-360 times concentration effect on the analysis of carbohydrate chains labeled with 3-aminobenzoic acid (3-AA). The method was applied to the analysis of N-linked oligosaccharides from glycoproteins separated and detected on PAGE gel. Heterogeneity of alpha1-acid glycoprotein (AGP), i.e. glycoforms, was examined by 2D-PAGE and N-linked oligosaccharides were released by in-gel digestion with PNGase F. The released oligosaccharides were derivatized with 3-AA and analyzed by CE. The results showed that glycoforms having lower pI values contained a larger amount of tetra- and tri-antennary oligosaccharides. In contrast, glycoforms having higher pI values contained bi-antennary oligosaccharides abundantly. The result clearly indicated that the spot of a glycoprotein glycoform detected by Coomassie brilliant blue staining on 2D-PAGE gel is sufficient for quantitative profiling of oligosaccharides.

  4. Experimental determination of the diffusion coefficient in two-dimensions in ferrous sulphate gels using the finite element method

    International Nuclear Information System (INIS)

    Baldock, C.; Harris, P.J.; Piercy, A.R.; Healy, B.

    2001-01-01

    A novel two-dimensional finite element method for modelling the diffusion which occurs in Fricke or ferrous sulphate type radiation dosimetry gels is presented. In most of the previous work, the diffusion coefficient has been estimated using simple one-dimensional models. This work presents a two-dimensional model which enables the diffusion coefficient to be determined in a much wider range of experimental situations. The model includes the provision for the determination of a drift parameter. To demonstrate the technique comparative diffusion measurements between ferrous sulphate radiation dosimetry gels, with and without xylenol orange chelating agent and carbohydrate additives have been undertaken. Diffusion coefficients of 9.7±0.4, 13.3±0.6 and 9.5±0.8 10-3 cm 2 per h -1 were determined for ferrous sulphate radiation dosimetry gels with and without xylenol orange and with xylenol orange and sucrose additives respectively. Copyright (2001) Australasian College of Physical Scientists and Engineers in Medicine

  5. Effect of combustion characteristics on wall radiative heat flux in a 100 MWe oxy-coal combustion plant

    Energy Technology Data Exchange (ETDEWEB)

    Park, S.; Ryu, C. [Sungkyunkwan Univ., Suwon (Korea, Republic of). School of Mechanical Engineering; Chae, T.Y. [Sungkyunkwan Univ., Suwon (Korea, Republic of). School of Mechanical Engineering; Korea Institute of Industrial Technology, Cheonan (Korea, Republic of). Energy System R and D Group; Yang, W. [Korea Institute of Industrial Technology, Cheonan (Korea, Republic of). Energy System R and D Group; Kim, Y.; Lee, S.; Seo, S. [Korea Electric Power Research Institute (KEPRI), Daejeon (Korea, Republic of). Power Generation Lab.

    2013-07-01

    Oxy-coal combustion exhibits different reaction, flow and heat transfer characteristics from air-coal combustion due to different properties of oxidizer and flue gas composition. This study investigated the wall radiative heat flux (WRHF) of air- and oxy-coal combustion in a simple hexahedral furnace and in a 100 MWe single-wall-fired boiler using computational modeling. The hexahedral furnace had similar operation conditions with the boiler, but the coal combustion was ignored by prescribing the gas properties after complete combustion at the inlet. The concentrations of O{sub 2} in the oxidizers ranging between 26 and 30% and different flue gas recirculation (FGR) methods were considered in the furnace. In the hexahedral furnace, the oxy-coal case with 28% of O{sub 2} and wet FGR had a similar value of T{sub af} with the air-coal combustion case, but its WRHF was 12% higher. The mixed FGR case with about 27% O{sub 2} in the oxidizer exhibited the WRHF similar to the air-coal case. During the actual combustion in the 100 MWe boiler using mixed FGR, the reduced volumetric flow rates in the oxy-coal cases lowered the swirl strength of the burners. This stretched the flames and moved the high temperature region farther to the downstream. Due to this reason, the case with 30% O{sub 2} in the oxidizers achieved a WRHF close to that of air-coal combustion, although its adiabatic flame temperature (T{sub af}) and WHRF predicted in the simplified hexahedral furnace was 103 K and 10% higher, respectively. Therefore, the combustion characteristics and temperature distribution significantly influences the WRHF, which should be assessed to determine the ideal operating conditions of oxy- coal combustion. The choice of the weighted sum of gray gases model (WSGGM) was not critical in the large coal-fired boiler.

  6. Sol-Gel Production; Proceedings of the First International Conference on Application and Commercialization of Sol-Gel Processing Held in Saarbruecken, Germany on 24-25 May 1993

    National Research Council Canada - National Science Library

    Schmidt, Helmut

    1998-01-01

    ...; Sol-Gel Coatings on Large Glass Substrates for Multilayer Interference Systems; A SiO2-ZrO2 Gel Film doped with Organic Pigments Made by the Sol-Gel Method for Contrast Enhancement of Color Picture Tubes...

  7. Comparison of a New and Rapid Method: Brucella Coombs Gel Test With Other Diagnostic Tests.

    Science.gov (United States)

    Kalem, Fatma; Ergün, Ayşe Gül; Durmaz, Süleyman; Doğan, Metin; Ertuğrul, Ömür; Gündem, Seval

    2016-09-01

    The aim of this study was to detect reliability of Brucella Coombs gel test (BCGT) by comparing with with ELISA (IgG + IgM), Standard agglutination test, and Brucella immunocapture agglutination methods in serological diagnosis of brucellosis. Brucella Coombs gel test (BCGT), Brucella ELISA (IgG + IgM), Standard agglutination test, and Brucella immunocapture agglutination tests of 78 patients with presumptive diagnosis of brucellosis which were sent to Microbiology Laboratory of Konya Numune Hospital from various regions of Konya were studied. Of 78 patients with ELISA IgG and IgM, STA, BICA and BCGT; 26, 21, 10, 12 and 12 were positive. When compared with BICA, the sensitivity and specifity of BCGT were 100% and 100%, respectively. According to results BCGT can be used as a diagnostic test in routine laboratories after more comprehensive studies in control groups and patients. © 2016 Wiley Periodicals, Inc.

  8. Tracking of Nuclear Cable Insulation Polymer Structural Changes using the Gel Fraction and Uptake Factor Method

    Energy Technology Data Exchange (ETDEWEB)

    Correa, Miguel; Huang, Qian; Fifield, Leonard S.

    2018-04-11

    Cross-linked polyethylene (XLPE) cable insulation samples were exposed to heat and gamma radiation at a series of temperatures, dose rates, and exposure times to evaluate the effects of these variables on material degradation. The samples were tested using the solvent incubation method to collect gel fraction and uptake factor data in order to assess the crosslinking and chain scission occurring in polymer samples with aging. Consistent with previous reports, gel fraction values were observed to increase and uptake factor values to decrease with radiation and thermal exposure. The trends seen were also more prominent as exposure time increased, suggesting this to be a viable method of tracking structural changes in the XLPE-insulated cable material over extended periods. For the conditions explored, the cable insulation material evaluated did not indicate signs of anomalous aging such as inverse temperature effect in which radiation-induced aging is more severe at lower temperature. Ongoing aging under identical radiation conditions and at lower temperature will further inform conclusions regarding the importance of inverse temperature effects for this material under these conditions.

  9. Mixing and combustion enhancement of Turbocharged Solid Propellant Ramjet

    Science.gov (United States)

    Liu, Shichang; Li, Jiang; Zhu, Gen; Wang, Wei; Liu, Yang

    2018-02-01

    Turbocharged Solid Propellant Ramjet is a new concept engine that combines the advantages of both solid rocket ramjet and Air Turbo Rocket, with a wide operation envelope and high performance. There are three streams of the air, turbine-driving gas and augment gas to mix and combust in the afterburner, and the coaxial intake mode of the afterburner is disadvantageous to the mixing and combustion. Therefore, it is necessary to carry out mixing and combustion enhancement research. In this study, the numerical model of Turbocharged Solid Propellant Ramjet three-dimensional combustion flow field is established, and the numerical simulation of the mixing and combustion enhancement scheme is conducted from the aspects of head region intake mode to injection method in afterburner. The results show that by driving the compressed air to deflect inward and the turbine-driving gas to maintain strong rotation, radial and tangential momentum exchange of the two streams can be enhanced, thereby improving the efficiency of mixing and combustion in the afterburner. The method of injecting augment gas in the transverse direction and making sure the injection location is as close as possible to the head region is beneficial to improve the combustion efficiency. The outer combustion flow field of the afterburner is an oxidizer-rich environment, while the inner is a fuel-rich environment. To improve the efficiency of mixing and combustion, it is necessary to control the injection velocity of the augment gas to keep it in the oxygen-rich zone of the outer region. The numerical simulation for different flight conditions shows that the optimal mixing and combustion enhancement scheme can obtain high combustion efficiency and have excellent applicability in a wide working range.

  10. Fabrication of yttrium-doped barium zirconate thin films with sub-micrometer thickness by a sol–gel spin coating method

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Hanlin; Su, Pei-Chen, E-mail: peichensu@ntu.edu.sg

    2015-06-01

    A modified sol–gel process was developed for the fabrication of sub-micrometer scale yttrium-doped barium zirconate (BZY) thin film at much lower processing temperatures. The film was fabricated by direct spin-coating of the sol on a Si{sub 3}N{sub 4} passivated Si substrate, followed by low temperature thermal annealing at 1000 °C, and single BZY phase without barium carbonate residue was obtained. A 200 nm-thick thin film without obvious through-film cracks was fabricated with optimized process parameters of sol concentration and heating rate. The stoichiometry of the BZY thin film was well-controlled and no Ba evaporation was observed due to the low processing temperature. The combination of sol–gel and spin coating method can be a promising alternative to vacuum-based thin film deposition techniques for the fabrication of sub-micrometer scale BZY thin film. - Highlights: • A sol–gel spin coating method was developed for the fabrication of BZY thin films. • The processing temperature was much lower compared to powder-based sintering. • Sub-micrometer scale BZY thin film with well-controlled stoichiometry was obtained.

  11. Rheological behaviour of white pepper gels - a new method for studying the effect of irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Esteves, M. Paula E-mail: paula.esteves@ineti.pt; Raymundo, Anabela; Sousa, Isabel de; Andrade, M. Eduarda; Empis, Jose

    2002-07-01

    Ground white pepper was treated by gamma radiation at average doses of 5, 10 and 15 kGy and the alterations in the rheological properties of its aqueous suspensions were used to study the radiation effects. Amylose and amylopectin suspensions were used as model systems. Ground pepper gels presented decreased strength expressed by a decrease of G' and G'' values and smaller limiting viscosity ({eta}{sub 0}), as the irradiation dose increased. A similar behaviour was shown by the amylopectin gels. For the amylose gels, in opposition, irradiation induced a higher level of gel structure.

  12. Fabrication of carbon microcapsules containing silicon nanoparticles-carbon nanotubes nanocomposite by sol-gel method for anode in lithium ion battery

    International Nuclear Information System (INIS)

    Bae, Joonwon

    2011-01-01

    Carbon microcapsules containing silicon nanoparticles (Si NPs)-carbon nanotubes (CNTs) nanocomposite (Si-CNT-C) have been fabricated by a surfactant mediated sol-gel method followed by a carbonization process. Silicon nanoparticles-carbon nanotubes (Si-CNT) nanohybrids were produced by a wet-type beadsmill method. To obtain Si-CNT nanocomposites with spherical morphologies, a silica precursor (tetraethylorthosilicate, TEOS) and polymer (PMMA) mixture was employed as a structure-directing medium. Thus the Si-CNT/Silica-Polymer microspheres were prepared by an acid catalyzed sol-gel method. Then a carbon precursor such as polypyrrole (PPy) was incorporated onto the surfaces of pre-existing Si-CNT/silica-polymer to generate Si-CNT/Silica-Polymer-PPy microspheres. Subsequent thermal treatment of the precursor followed by wet etching of silica produced Si-CNT-C microcapsules. The intermediate silica/polymer must disappear during the carbonization and etching process resulting in the formation of an internal free space. The carbon precursor polymer should transform to carbon shell to encapsulate remaining Si-CNT nanocomposites. Therefore, hollow carbon microcapsules containing Si-CNT nanocomposites could be obtained (Si-CNT-C). The successful fabrication was confirmed by scanning electron microscopy (SEM) and X-ray diffraction (XRD). These final materials were employed for anode performance improvement in lithium ion battery. The cyclic performances of these Si-CNT-C microcapsules were measured with a lithium battery half cell tests. - Graphical Abstract: Carbon microcapsules containing silicon nanoparticles (Si NPs)-carbon nanotubes (CNTs) nanocomposite (Si-CNT-C) have been fabricated by a surfactant mediated sol-gel method. Highlights: → Polymeric microcapsules containing Si-CNT transformed to carbon microcapsules. → Accommodate volume changes of Si NPs during Li ion charge/discharge. → Sizes of microcapsules were controlled by experimental parameters.

  13. GelTouch

    DEFF Research Database (Denmark)

    Miruchna, Viktor; Walter, Robert; Lindlbauer, David

    2015-01-01

    We present GelTouch, a gel-based layer that can selectively transition between soft and stiff to provide tactile multi-touch feedback. It is flexible, transparent when not activated, and contains no mechanical, electromagnetic, or hydraulic components, resulting in a compact form factor (a 2mm thin...... touchscreen layer for our prototype). The activated areas can be morphed freely and continuously, without being limited to fixed, predefined shapes. GelTouch consists of a poly(N-isopropylacrylamide) gel layer which alters its viscoelasticity when activated by applying heat (>32 C). We present three different...

  14. Nanocrystals-based Macroporous Materials Synthesized by Freeze-drying Combustion

    International Nuclear Information System (INIS)

    Yan, Ruiqiang; Chen, Yu; Lin, Ye; Chen, Fanglin

    2016-01-01

    We present a novel freeze-drying combustion method for synthesis of macroporous powders with nano-network, using Sm 0.2 Ce 0.8 O 1.9 (SDC) as an example. The metal nitrate salt solution mixed with glycine is frozen to form homogeneous nitrate/glycine mixture and then freeze-dried through sublimation of ice crystals. Upon combustion of the freeze-dried mixture, SDC powders with macroporous microstructure consisting of 10–20 nm nanocrystals, high surface area and excellent sinterability are achieved. High resolution transmission electron microscopy (HRTEM) analysis indicates that nanodomains due to aggregation/segregation of dopants in the SDC powders obtained from freeze-drying combustion are much smaller than those in the SDC powders synthesized by the conventional nitrate solution combustion approach, demonstrating better elemental homogeneity and improved conductivity. Using low cost precursors and simple processing conditions, freeze-drying combustion can be a versatile method to synthesize nanocrystalline powders with excellent composition homogeneity for broad applications.

  15. Innovative Calibration Method for System Level Simulation Models of Internal Combustion Engines

    Directory of Open Access Journals (Sweden)

    Ivo Prah

    2016-09-01

    Full Text Available The paper outlines a procedure for the computer-controlled calibration of the combined zero-dimensional (0D and one-dimensional (1D thermodynamic simulation model of a turbocharged internal combustion engine (ICE. The main purpose of the calibration is to determine input parameters of the simulation model in such a way as to achieve the smallest difference between the results of the measurements and the results of the numerical simulations with minimum consumption of the computing time. An innovative calibration methodology is based on a novel interaction between optimization methods and physically based methods of the selected ICE sub-systems. Therein physically based methods were used for steering the division of the integral ICE to several sub-models and for determining parameters of selected components considering their governing equations. Innovative multistage interaction between optimization methods and physically based methods allows, unlike the use of well-established methods that rely only on the optimization techniques, for successful calibration of a large number of input parameters with low time consumption. Therefore, the proposed method is suitable for efficient calibration of simulation models of advanced ICEs.

  16. Rationale, design and methods of the ESPRIT study: Energy, Sexual desire and body PropoRtions wIth AndroGel, Testosterone 1% gel therapy, in hypogonadal men.

    Science.gov (United States)

    Behre, Hermann M; Heinemann, Lothar; Morales, Alvaro; Pexman-Fieth, Claire

    2008-06-01

    Hypogonadism is associated with a range of disease states that have significant effects on morbidity and mortality, and also affect quality of life. The ESPRIT study (Energy, Sexual desire and body PropoRtions wIth AndroGel, Testosterone 1% gel therapy) is a 6-month, multinational, open label, observational study in hypogonadal men being treated with transdermal AndroGel in usual daily clinical practice; 1,700-2,400 patients will be enrolled in Canada, Germany, Central and Eastern Europe, Russia and the Middle East. The main objective will be to evaluate the effect of AndroGel on symptoms of hypogonadism and quality of life as assessed by the Aging Males' Symptoms scale. Further objectives include evaluating the effect and time to onset of improvement in erectile dysfunction and libido/sexual desire (International Index of Erectile Function), fatigue (Multi-dimensional Fatigue Index) and body composition (waist circumference, body mass index). Subgroup analyses will be performed: or = 50 years; absence versus presence of metabolic syndrome. The safety of AndroGel will also be assessed. The study population will consist of newly diagnosed hypogonadal men (age > or = 18 years), in whom testosterone deficiency has been confirmed by clinical features and biochemical tests according to international guidelines, who are currently being prescribed AndroGel (testosterone 1% gel, starting dose 50 mg testosterone per day).

  17. Method of making metal oxide ceramic powders by using a combustible amino acid compound

    Science.gov (United States)

    Pederson, Larry R.; Chick, Lawrence A.; Exarhos, Gregory J.

    1992-01-01

    This invention is directed to the formation of homogeneous, aqueous precursor mixtures of at least one substantially soluble metal salt and a substantially soluble, combustible co-reactant compound, typically an amino acid. This produces, upon evaporation, a substantially homogeneous intermediate material having a total solids level which would support combustion. The homogeneous intermediate material essentially comprises highly dispersed or solvated metal constituents and the co-reactant compound. The intermediate material is quite flammable. A metal oxide powder results on ignition of the intermediate product which combusts same to produce the product powder.

  18. Efficacy and compatibility with mass spectrometry of methods for elution of proteins from sodium dodecyl sulfate-polyacrylamide gels and polyvinyldifluoride membranes

    DEFF Research Database (Denmark)

    Jørgensen, C.S.; Jagd, M.; Sørensen, B.K.

    2004-01-01

    projects. As a result of this, methods for postelectrophoretic protein characterization are of Great interest as exemplified by in situ protease digestion combined with mass spectrometry (MS), which is the method of choice for identification of proteins. In this study we have developed and compared methods...... for recovering intact proteins from polyacrylamide gels and electroblotting membranes to define efficient methods compatible with MS. These methods complement in situ digestion protocols and allow determination of the molecular mass of whole proteins separated by SDS-PAGE. Passive elution of proteins from SDS......-PAGE gels was efficient only in the presence of SDS, whereas electroelution was achieved using butTers without SDS. Surface-enhanced laser desorption/ionization MS (SELDI-MS) analysis of proteins eluted in the presence of SIDS was possible using ion exchange ProteinChip arrays for concentration of sample...

  19. The gel electrophoresis markup language (GelML) from the Proteomics Standards Initiative.

    Science.gov (United States)

    Gibson, Frank; Hoogland, Christine; Martinez-Bartolomé, Salvador; Medina-Aunon, J Alberto; Albar, Juan Pablo; Babnigg, Gyorgy; Wipat, Anil; Hermjakob, Henning; Almeida, Jonas S; Stanislaus, Romesh; Paton, Norman W; Jones, Andrew R

    2010-09-01

    The Human Proteome Organisation's Proteomics Standards Initiative has developed the GelML (gel electrophoresis markup language) data exchange format for representing gel electrophoresis experiments performed in proteomics investigations. The format closely follows the reporting guidelines for gel electrophoresis, which are part of the Minimum Information About a Proteomics Experiment (MIAPE) set of modules. GelML supports the capture of metadata (such as experimental protocols) and data (such as gel images) resulting from gel electrophoresis so that laboratories can be compliant with the MIAPE Gel Electrophoresis guidelines, while allowing such data sets to be exchanged or downloaded from public repositories. The format is sufficiently flexible to capture data from a broad range of experimental processes, and complements other PSI formats for MS data and the results of protein and peptide identifications to capture entire gel-based proteome workflows. GelML has resulted from the open standardisation process of PSI consisting of both public consultation and anonymous review of the specifications.

  20. Porous oxides synthesized by the combustion method; Oxidos porosos sintetizados por el metodo de combustion

    Energy Technology Data Exchange (ETDEWEB)

    Lugo L, V

    2005-07-01

    The result of this work, seeks to be a contribution for the treatment of radioactive wastes, with base to the sorption properties that present those porous oxides, synthesized by a method that allows to increase the sorption capacity. The main objective of the present investigation has been the modification of the structural characteristics of the oxides of Fe, Mg and Zn to increase its capacity of sorption of {sup 60} Co in particular. It was studied the effect of the synthesis method by combustion in the inorganic oxides; the obtained solids were characterized using the following techniques: X-ray diffraction (XRD), scanning electron microscopy (SEM), semiquantitative elementary analysis by Dispersive energy spectroscopy (EDS) and determination of surface area by the Brunauner-Emmett-Teller method (BET). Also was carried out batch type experiments for the sorption of Co{sup 2+}, with the purpose of studying the sorption capacity of each one of the prepared oxides. In accordance with that previously exposed, the working plan that was carried out in this investigation is summarized in the following stages: 1. Preparation of inorganic oxides by two different methods, studying the effect of the temperature in the synthesis process. 2. Characterization of the inorganic oxides by XRD, by means of which those were chosen the solids with better properties. 3. Characterization of the inorganic oxides by SEM and EDS where it was studied the morphology of the synthesized materials and the semiquantitative elemental composition. 4. Realization of a sorption experiment type Batch with non radioactive Co{sup 2+} to simulate the sorption of {sup 60} Co and determination of the sorption capacity by means of neutron activation of the non radioactive cobalt. 5. Determination of the surface area by the (BET) technique of the inorganic oxides with better sorption properties. (Author)

  1. Rotary combustion device

    NARCIS (Netherlands)

    2008-01-01

    Rotary combustion device (1) with rotary combustion chamber (4). Specific measures are taken to provide ignition of a combustible mixture. It is proposed that a hollow tube be provided coaxially with the axis of rotation (6), so that a small part of the mixture is guided into the combustion chamber.

  2. Effect of Preparation Methods on Al2O3 Supported CuO-CeO2-ZrO2 Catalysts for CO Oxidation

    Directory of Open Access Journals (Sweden)

    Gaurav Rattan

    2012-12-01

    Full Text Available To examine the effect of preparation methods, four catalyst samples having same composition (CuCe5.17Zr3.83Ox/g-Al2O3 (15wt% were prepared by four different methods for CO oxidation. The catalysts were prepared by co-impregnation, citric acid sol-gel, urea nitrate combustion and urea gelation co-precipitation methods, and characterized by BET, XRD, TGA/DSC and SEM. The The air oxidation of CO was carried out in a tubular fixed bed reactor under the following operating conditions: catalyst weight - 100 mg, temperature - ambient to 250 oC, pressure - atmospheric, 2.5% CO in air, total feed rate - 60 ml/min.  It was observed that the catalytic activity greatly influenced by the preparation methods. The highest activity of the catalyst prepared by the sol gel method appeared to be associated with its largest BET surface area. All the four catalysts were active for CO oxidation and did not show deactivation of catalytic activity for 50 hours of continuous runs. The ranking order of the preparation methods of the catalyst is as follows: sol-gel > co-impregnation > urea gelation > urea nitrate combustion. Copyright © 2012 by BCREC UNDIP. All rights reservedReceived: 14th June 2012, Revised: 8th September 2012, Accepted: 19th September 2012[How to Cite: G. Rattan, R. Prasad, R.C.Katyal. (2012. Effect of Preparation Methods on Al2O3 Supported CuO-CeO2-ZrO2 Catalysts for CO Oxidation. Bulletin of Chemical Reaction Engineering & Catalysis, 7(2: 112-123. doi:10.9767/bcrec.7.2.3646.112-123] [How to Link / DOI: http://dx.doi.org/10.9767/bcrec.7.2.3646.112-123 ] | View in 

  3. Sol-gel growth of vanadium dioxide

    International Nuclear Information System (INIS)

    Speck, K.R.

    1990-01-01

    This thesis examines the chemical reactivity of vanadium (IV) tetrakis(t-butoxide) as a precursor for the sol-gel synthesis of vanadium dioxide. Hydrolysis and condensation of the alkoxide was studied by FTIR spectroscopy. Chemical modification of the vanadium tetraalkoxide by alcohol interchange was studied using 51 V NMR and FTIR. Vanadium dioxide thin films and powders were made from vanadium tetrakis(t-butoxide) by standard sol-gel techniques. Post-deposition heating under nitrogen was necessary to transform amorphous gels into vanadium dioxide. Crystallization of films and powders was studied by FTIR, DSC, TGA, and XRD. Gel-derived vanadium dioxide films undergo a reversible semiconductor-to-metal phase transition near 68C, exhibiting characteristic resistive and spectral changes. The electrical resistance decreased by two to three orders of magnitude and the infrared transmission sharply dropped as the material was cycled through this thermally induced phase transition. The sol-gel method was also used to make doped vanadium dioxide films. Films were doped with tungsten and molybdenum ions to effectively lower the temperature at which the transition occurs

  4. Microcontroller based instrumentation for the fuel pin preparation facility by sol-gel method

    International Nuclear Information System (INIS)

    Suhasini, B.; Prabhakar Rao, J.; Srinivas, K.C.

    2009-01-01

    The fuel pin preparation facility by Sol-Gel route has been set up at Chemistry Group at Indira Gandhi Centre for Atomic Research, Kalpakkam. Sol-Gel, a solution-gelation process involves conversion of solutions of nitrates of uranium-plutonium (at 0 deg C) into gel microspheres. To measure the exact quantities of the above solutions and to ensure their temperatures, a variety of sensors have been used at various stages in the plant. To monitor and acquire the data of process parameters used in the production and for an automated operation of the plant, a PC (master)-microcontroller (slave) based instrumentation has been developed along with acquisition software and a GU interface developed in Visual Basic. (author)

  5. Evaluation of biological activities of nanocrystalline zirconia synthesis via combustion method

    International Nuclear Information System (INIS)

    Thakare, V.G.; Omanwar, S.K.; Bhatkar, V.B.; Wadegaokar, P.A.

    2016-01-01

    The objective of the following study was synthesis of nanocrystalline zirconia by modified solution combustion synthesis method and evaluation of its structural and biological properties. The sample was characterized by powder X-ray diffraction (XRD), Field Emission Scanning Electron Microscopy (FESEM) and evaluated for cytotoxicity study using 3T3 mouse fibroblast cells, the antibacterial property are investigated by spread plate method against E. coli bacterial pathogen and studied for degradation using phosphate buffered saline (PBS) solution. The XRD pattern shows that the monoclinic phase of nanocrystalline zirconia was obtained. The FESEM images showed that the prepared sample consists of particles in the range of 45 nm and homogenous particle size distribution. The sample of zirconia has excellent tissue biocompatibility and does not show any toxicity towards normal 3T3 mouse fibroblast cells. It also inhibited the bacterial growth. The sample shows stability at physiological condition and does not show degradation. (author)

  6. Combustion characteristics and optimal factors determination with Taguchi method for diesel engines port-injecting hydrogen

    International Nuclear Information System (INIS)

    Wu, Horng-Wen; Wu, Zhan-Yi

    2012-01-01

    This study applies the L 9 orthogonal array of the Taguchi method to find out the best hydrogen injection timing, hydrogen-energy-share ratio, and the percentage of exhaust gas circulation (EGR) in a single DI diesel engine. The injection timing is controlled by an electronic control unit (ECU) and the quantity of hydrogen is controlled by hydrogen flow controller. For various engine loads, the authors determine the optimal operating factors for low BSFC (brake specific fuel consumption), NO X , and smoke. Moreover, net heat-release rate involving variable specific heat ratio is computed from the experimental in-cylinder pressure. In-cylinder pressure, net heat-release rate, A/F ratios, COV (coefficient of variations) of IMEP (indicated mean effective pressure), NO X , and smoke using the optimum condition factors are compared with those by original baseline diesel engine. The predictions made using Taguchi's parameter design technique agreed with the confirmation results on 95% confidence interval. At 45% and 60% loads the optimum factor combination compared with the original baseline diesel engine reduces 14.52% for BSFC, 60.5% for NO X and for 42.28% smoke and improves combustion performance such as peak in-cylinder pressure and net heat-release rate. Adding hydrogen and EGR would not generate unstable combustion due to lower COV of IMEP. -- Highlights: ► We use hydrogen injector controlled by ECU and cooled EGR system in a diesel engine. ► Optimal factors by Taguchi method are determined for low BSFC, NO X and smoke. ► The COV of IMEP is lower than 10% so it will not cause the unstable combustion. ► We improve A/F ratio, in-cylinder pressure, and heat-release at optimized engine. ► Decrease is 14.5% for BSFC, 60.5% for NO X , and 42.28% for smoke at optimized engine.

  7. Dynamic estimator for determining operating conditions in an internal combustion engine

    Science.gov (United States)

    Hellstrom, Erik; Stefanopoulou, Anna; Jiang, Li; Larimore, Jacob

    2016-01-05

    Methods and systems are provided for estimating engine performance information for a combustion cycle of an internal combustion engine. Estimated performance information for a previous combustion cycle is retrieved from memory. The estimated performance information includes an estimated value of at least one engine performance variable. Actuator settings applied to engine actuators are also received. The performance information for the current combustion cycle is then estimated based, at least in part, on the estimated performance information for the previous combustion cycle and the actuator settings applied during the previous combustion cycle. The estimated performance information for the current combustion cycle is then stored to the memory to be used in estimating performance information for a subsequent combustion cycle.

  8. Synthesis and characterization of nanosized MgxMn1−xFe2O4 ferrites by both sol-gel and thermal decomposition methods

    International Nuclear Information System (INIS)

    De-León-Prado, Laura Elena; Cortés-Hernández, Dora Alicia; Almanza-Robles, José Manuel; Escobedo-Bocardo, José Concepción; Sánchez, Javier; Reyes-Rdz, Pamela Yajaira; Jasso-Terán, Rosario Argentina; Hurtado-López, Gilberto Francisco

    2017-01-01

    This work reports the synthesis of Mg x Mn 1−x Fe 2 O 4 (x=0–1) nanoparticles by both sol-gel and thermal decomposition methods. In order to determine the effect of synthesis conditions on the crystal structure and magnetic properties of the ferrites, the synthesis was carried out varying some parameters, including composition. By both methods it was possible to obtain ferrites having a single crystalline phase with cubic inverse spinel structure and a behavior near to that of superparamagnetic materials. Saturation magnetization values were higher for materials synthesized by sol-gel. Furthermore, in both cases particles have a spherical-like morphology and nanometric sizes (11–15 nm). Therefore, these materials can be used as thermoseeds for the treatment of cancer by magnetic hyperthermia. - Highlights: • Mg–Mn ferrites were synthesized by sol-gel and thermal decomposition methods. • Materials showed a single cubic inverse spinel crystalline structure. • Ferrites have a soft ferrimagnetic behavior close to superparamagnetic materials.

  9. Determination of {sup 60} Co by means of Neutron Activation Analysis in the sorption of Co in synthesized porous oxides by the combustion method; Determinacion de {sup 60} Co por medio de AAN en la sorcion de Co en oxidos porosos sintetizados por metodo de combustion

    Energy Technology Data Exchange (ETDEWEB)

    Lugo, V.; Bulbulian, S.; Urena, F. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)]. e-mail: violelugo@yahoo.es

    2005-07-01

    Recently inorganic materials are investigating as sorbent of radioactive pollutants present in water. The inorganic oxides belong to this group of materials. A quick method exists for the obtaining of inorganic oxides, denominated combustion method that could be used to produce porous oxides successfully with good properties for the sorption of radioactive ions. In this investigation, iron oxides, magnesium and zinc were synthesized obtained by the combustion method, comparing them with those synthesized by the calcination method, using two different synthesis temperatures. The obtained solids were characterized by scanning electron microscopy (Sem), by X-ray diffraction (XRD) and by semiquantitative elemental analysis (EDS). After the characterization, the crystalline oxides synthesized by both methods, to temperature of 800 C, were evaluated as sorbents in the removal of Co{sup 2+} ions, through experiments in batch, and using neutron activation analysis, determining the sorption percentage, with this it was concluded that the magnesium oxide produced by combustion it is more effective in the removal of Co{sup 2+} ions than that synthesized by calcination. It was determined the surface area of the magnesium oxides, obtaining a surface area greater for the synthesized oxide by combustion method. (Author)

  10. Ionic liquid based multifunctional double network gel

    Science.gov (United States)

    Ahmed, Kumkum; Higashihara, Tomoya; Arafune, Hiroyuki; Kamijo, Toshio; Morinaga, Takashi; Sato, Takaya; Furukawa, Hidemitsu

    2015-04-01

    Gels are a promising class of soft and wet materials with diverse application in tissue engineering and bio-medical purpose. In order to accelerate the development of gels, it is required to synthesize multi-functional gels of high mechanical strength, ultra low surface friction and suitable elastic modulus with a variety of methods and new materials. Among many types of gel ionic gel made from ionic liquids (ILs) could be used for diverse applications in electrochemical devices and in the field of tribology. IL, a promising materials for lubrication, is a salt with a melting point lower than 100 °C. As a lubricant, ILs are characterized by an extremely low vapor pressure, high thermal stability and high ion conductivity. In this work a novel approach of making double network DN ionic gel using IL has been made utilizing photo polymerization process. A hydrophobic monomer Methyl methacrylate (MMA) has been used as a first network and a hydrophobic IL monomer, N,N-diethyl-N-(2-mthacryloylethyl)-N-methylammonium bistrifluoromethylsulfonyl)imide (DEMM-TFSI) has been used as a second network using photo initiator benzophenon and crosslinker triethylene glycol dimethacrylate (TEGDMA). The resulting DN ionic gel shows transparency, flexibility, high thermal stability, good mechanical toughness and low friction coefficient value which can be a potential candidate as a gel slider in different mechanical devices and can open a new area in the field of gel tribology.

  11. Fabrication of optical chemical ammonia sensors using anodized alumina supports and sol-gel method.

    Science.gov (United States)

    Markovics, Akos; Kovács, Barna

    2013-05-15

    In this comparative study, the fabrication and the sensing properties of various reflectometric optical ammonia gas sensors are described. In the first set of experiments the role of the support material was investigated on four different sensor membranes. Two of them were prepared by the adsorption of bromocresol green indicator on anodized aluminum plates. The applied anodizing voltages were 12 V and 24 V, which resulted in different dynamic ranges and response times for gaseous ammonia. The sol-gel method was used for the preparation of the other batch of sensors. These layers were coated on anodized aluminum plates (24 V) and on standard microscope cover glasses. In spite of the identical sensing chemistry, slightly different response times were measured merely because of the aluminum surface porosity. Gas molecules can remain entrapped in the pores, which results in delayed recovery time. On the other hand, the porous oxide film provides excellent adhesion, making the anodized aluminum an attractive support for the sol-gel layer. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Solvent cleanup using base-treated silica gel solid adsorbent

    International Nuclear Information System (INIS)

    Tallent, O.K.; Mailen, J.C.; Pannell, K.D.

    1984-06-01

    A solvent cleanup method using silica gel columns treated with either sodium hydroxide (NaOH) or lithium hydroxide (LiOH) has been investigated. Its effectiveness compares favorably with that of traditional wash methods. After treatment with NaOH solution, the gels adsorb HNO 3 , dibutyl phosphate (DBP), UO 2 2+ , Pu 4+ , various metal-ion fission products, and other species from the solvent. Adsorption mechanisms include neutralization, hydrolysis, polymerization, and precipitation, depending on the species adsorbed. Sodium dibutyl phosphate, which partially distributes to the solvent from the gels, can be stripped with water; the stripping coefficient ranges from 280 to 540. Adsorption rates are diffusion controlled such that temperature effects are relatively small. Recycle of the gels is achieved either by an aqueous elution and recycle sequence or by a thermal treatment method, which may be preferable. Potential advantages of this solvent cleanup method are that (1) some operational problems are avoided and (2) the amount of NaNO 3 waste generated per metric ton of nuclear fuel reprocessed would be reduced significantly. 19 references, 6 figures, 12 tables

  13. Fabrication of silica ceramic membrane via sol-gel dip-coating method at different nitric acid amount

    Science.gov (United States)

    Kahlib, N. A. Z.; Daud, F. D. M.; Mel, M.; Hairin, A. L. N.; Azhar, A. Z. A.; Hassan, N. A.

    2018-01-01

    Fabrication of silica ceramics via the sol-gel method has offered more advantages over other methods in the fabrication of ceramic membrane, such as simple operation, high purity homogeneous, well defined-structure and complex shapes of end products. This work presents the fabrication of silica ceramic membrane via sol-gel dip-coating methods by varying nitric acid amount. The nitric acid plays an important role as catalyst in fabrication reaction which involved hydrolysis and condensation process. The tubular ceramic support, used as the substrate, was dipped into the sol of Tetrethylorthosilicate (TEOS), distilled water and ethanol with the addition of nitric acid. The fabricated silica membrane was then characterized by (Field Emission Scanning Electron Microscope) FESEM and (Fourier transform infrared spectroscopy) FTIR to determine structural and chemical properties at different amount of acids. From the XRD analysis, the fabricated silica ceramic membrane showed the existence of silicate hydrate in the final product. FESEM images indicated that the silica ceramic membrane has been deposited on the tubular ceramic support as a substrate and penetrate into the pore walls. The intensity peak of FTIR decreased with increasing of amount of acids. Hence, the 8 ml of acid has demonstrated the appropriate amount of catalyst in fabricating good physical and chemical characteristic of silica ceramic membrane.

  14. Management of coal combustion wastes

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2014-02-01

    It has been estimated that 780 Mt of coal combustion products (CCPs) were produced worldwide in 2010. Only about 53.5% were utilised, the rest went to storage or disposal sites. Disposal of coal combustion waste (CCW) on-site at a power plant may involve decades-long accumulation of waste, with hundreds of thousands, if not millions, of tonnes of dry ash or wet ash slurry being stored. In December 2008, a coal combustion waste pond in Kingston, Tennessee, USA burst. Over 4 million cubic metres of ash sludge poured out, burying houses and rivers in tonnes of toxic waste. Clean-up is expected to continue into 2014 and will cost $1.2 billion. The incident drew worldwide attention to the risk of CCW disposal. This caused a number of countries to review CCW management methods and regulations. The report begins by outlining the physical and chemical characteristics of the different type of ashes generated in a coal-fired power plant. The amounts of CCPs produced and regulations on CCW management in selected countries have been compiled. The CCW disposal methods are then discussed. Finally, the potential environmental impacts and human health risks of CCW disposal, together with the methods used to prevent them, are reviewed.

  15. Simple measurement of 14C in the environment using gel suspension method

    International Nuclear Information System (INIS)

    Wakabayashi, Genichiro; Oura, Hirotaka; Nagao, Kenjiro; Okai, Tomio; Matoba, Masaru; Kakiuchi, Hideki; Momoshima, Noriyuki; Kawamura, Hidehisa

    1999-01-01

    A gel suspension method using N-lauroyl-L-glutamic-α, γ-dibutylamide as gelling agent and calcium carbonate as sample was studied and it was proved a more simple measurement method of 14 C in environment than the ordinary method. 100, 20 and 7 ml of sample could introduce 3.6, 0.72 and 0.252 g of carbon, respectively. When 100 ml and 20 ml of vial introduced the maximum carbon, the lower limit of detection was about 0.3 dpm/g-C and 0.5 dpm/g-C, respectively. These values showed that this method was able to determine 14 C in the environment. The value of sample has been constant for two years or more. This fact indicated the sample prepared by this method was good for repeat measurement and long-term storage. Many samples prepared by the same calcium carbonate showed almost same values. The concentrations of 14 C in the growth rings of a tree and in rice in the environment were determined and the results agreed with the values in the references. From these above results, this method is more simple measurement method of 14 C in the environment than the ordinary method and can apply to determine 14 C in and around the nuclear installation. (S.Y.)

  16. Combustion flame-plasma hybrid reactor systems, and chemical reactant sources

    Science.gov (United States)

    Kong, Peter C

    2013-11-26

    Combustion flame-plasma hybrid reactor systems, chemical reactant sources, and related methods are disclosed. In one embodiment, a combustion flame-plasma hybrid reactor system comprising a reaction chamber, a combustion torch positioned to direct a flame into the reaction chamber, and one or more reactant feed assemblies configured to electrically energize at least one electrically conductive solid reactant structure to form a plasma and feed each electrically conductive solid reactant structure into the plasma to form at least one product is disclosed. In an additional embodiment, a chemical reactant source for a combustion flame-plasma hybrid reactor comprising an elongated electrically conductive reactant structure consisting essentially of at least one chemical reactant is disclosed. In further embodiments, methods of forming a chemical reactant source and methods of chemically converting at least one reactant into at least one product are disclosed.

  17. Sol-gel process for the manufacture of high power switches

    Science.gov (United States)

    Landingham, Richard L.; Satcher, Jr, Joe; Reibold, Robert

    2016-09-27

    According to one embodiment, a photoconductive semiconductor switch includes a structure of nanopowder of a high band gap material, where the nanopowder is optically transparent, and where the nanopowder has a physical characteristic of formation from a sol-gel process. According to another embodiment, a method includes mixing a sol-gel precursor compound, a hydroxy benzene and an aldehyde in a solvent thereby creating a mixture, causing the mixture to gel thereby forming a wet gel, drying the wet gel to form a nanopowder, and applying a thermal treatment to form a SiC nanopowder.

  18. Effect of W/O Emulsion Fuel Properties on Spray Combustion

    Science.gov (United States)

    Ida, Tamio; Fuchihata, Manabu; Takeda, Shuuco

    This study proposes a realizable technology for an emulsion combustion method that can reduce environmental loading. This paper discusses the effect on spray combustion for W/O emulsion fuel properties with an added agent, and the ratio between water and emulsifier added to a liquid fuel. The addition of water or emulsifier to a liquid fuel affected the spray combustion by causing micro-explosions in the flame due to geometric changes in the sprayed flame and changes to the temperature distribution. Experimental results revealed that the flame length shortened by almost 40% upon the addition of the water. Furthermore, it was found that water was effective in enhancing combustion due to its promoting micro-explosions. Results also showed that when the emulsifier was added to the spray flame, the additive burned in the flame's wake, producing a bright red flame. The flame length was observed to be long as a result. The micro-explosion phenomenon, caused by emulsifier dosage differences, was observed using time-dependent images at a generated frequency and an explosion scale with a high-speed photography method. Results indicated that the micro-explosion phenomenon in the W/O emulsion combustion method effectively promoted the combustion reaction and suppressed soot formation.

  19. Combustion synthesis and structural characterization of Li–Ti mixed

    Indian Academy of Sciences (India)

    Combustion synthesis and structural characterization of Li–Ti mixed nanoferrites ... were prepared by combustion method at lower temperatures compared to the ... first time at low temperatures, using PEG which acts as a new fuel and oxidant.

  20. Combustion synthesis and structural characterization of Li–Ti mixed ...

    Indian Academy of Sciences (India)

    pared by combustion method at lower temperatures compared to the conventional high temperature sintering for ... Li–Ti mixed ferrites; combustion synthesis; hysteresis. 1. ... Quantum model - VSM 6000) at an applied field of ±10 kOe.

  1. Quantum dot based on tin/titanium mixed oxide doped with europium synthesized by protein sol-gel method

    International Nuclear Information System (INIS)

    Paganini, Paula P.; Felinto, Maria Claudia F.C.; Brito, Hermi F.

    2011-01-01

    Special luminescence biomarkers have been developed to find more sensitive fluoroimmunoassay methods. A new generation of these biomarkers is the semiconductors nanocrystals, known as quantum dots, doped with lanthanides. The use of lanthanides ions as luminescent markers has many advantages, for example a security method, low cost, high specificity and also the luminescence can be promptly measured with high sensibility and accuracy. The protein sol-gel is a modification of conventional method, in which the coconut water replacing the alkoxides normally used. The advantage is that, the proteins present in coconut water bind chemically with metal salts forming a polymer chain. This work presents nanoparticles based on tin/titanium mixed oxide doped with 3% of europium synthesized by protein sol-gel method. The nanoparticles were burned at 300 deg C, 500 deg C, 800 deg C and 1100 deg C. The samples were analyzed and characterized by thermal analysis, X-ray powder diffraction (XRD), infrared spectroscopy (IR) and scanning electron microscopy (SEM). The synthesis was effective and the nanoparticles showed nanometric size and structural differences with the annealing. To be used in the fluoroimmunoassays tests, these particles need to be functionalized before be connect with biological molecules and after this process, these nanoparticles going to be submitted at gamma radiation for sterilization. (author)

  2. Quantum dot based on tin/titanium mixed oxide doped with europium synthesized by protein sol-gel method

    Energy Technology Data Exchange (ETDEWEB)

    Paganini, Paula P.; Felinto, Maria Claudia F.C., E-mail: paulapaganini@usp.b, E-mail: mfelinto@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Brito, Hermi F., E-mail: hefbrito@iq.usp.b [Universidade de Sao Paulo (IQ/USP), Sao Paulo, SP (Brazil). Inst. de Quimica. Lab. de Elementos do Bloco f

    2011-07-01

    Special luminescence biomarkers have been developed to find more sensitive fluoroimmunoassay methods. A new generation of these biomarkers is the semiconductors nanocrystals, known as quantum dots, doped with lanthanides. The use of lanthanides ions as luminescent markers has many advantages, for example a security method, low cost, high specificity and also the luminescence can be promptly measured with high sensibility and accuracy. The protein sol-gel is a modification of conventional method, in which the coconut water replacing the alkoxides normally used. The advantage is that, the proteins present in coconut water bind chemically with metal salts forming a polymer chain. This work presents nanoparticles based on tin/titanium mixed oxide doped with 3% of europium synthesized by protein sol-gel method. The nanoparticles were burned at 300 deg C, 500 deg C, 800 deg C and 1100 deg C. The samples were analyzed and characterized by thermal analysis, X-ray powder diffraction (XRD), infrared spectroscopy (IR) and scanning electron microscopy (SEM). The synthesis was effective and the nanoparticles showed nanometric size and structural differences with the annealing. To be used in the fluoroimmunoassays tests, these particles need to be functionalized before be connect with biological molecules and after this process, these nanoparticles going to be submitted at gamma radiation for sterilization. (author)

  3. The structure of alkali silicate gel by total scattering methods

    KAUST Repository

    Benmore, C.J.; Monteiro, Paulo J.M.

    2010-01-01

    The structure of the alkali silicate gel (ASR) collected from the galleries of Furnas Dam in Brazil was determined by a pair distribution function (PDF) analysis of high energy X-ray diffraction data. Since this method is relatively new to concrete structure analysis a detailed introduction on the PDF method is given for glassy SiO2. The bulk amorphous structure of the dam material is confirmed as no Bragg peaks are observed in the scattered intensity. The real space results show that the local structure of the amorphous material is similar to kanemite (KHSi2O5:3H2O) however the long range layer structure of the crystal is broken up in the amorphous state, so that ordering only persists of the length scale of a few polyhedra. The silicate layer structure is a much more disordered than predicted by molecular dynamics models. The X-ray results are consistent with the molecular dynamics model of Kirkpatrick et al. (2005) [1] which predicts that most of the water resides in pores within the amorphous network rather than in layers. The total scattering data provide a rigorous basis against which other models may also be tested. © 2010.

  4. The structure of alkali silicate gel by total scattering methods

    KAUST Repository

    Benmore, C.J.

    2010-06-01

    The structure of the alkali silicate gel (ASR) collected from the galleries of Furnas Dam in Brazil was determined by a pair distribution function (PDF) analysis of high energy X-ray diffraction data. Since this method is relatively new to concrete structure analysis a detailed introduction on the PDF method is given for glassy SiO2. The bulk amorphous structure of the dam material is confirmed as no Bragg peaks are observed in the scattered intensity. The real space results show that the local structure of the amorphous material is similar to kanemite (KHSi2O5:3H2O) however the long range layer structure of the crystal is broken up in the amorphous state, so that ordering only persists of the length scale of a few polyhedra. The silicate layer structure is a much more disordered than predicted by molecular dynamics models. The X-ray results are consistent with the molecular dynamics model of Kirkpatrick et al. (2005) [1] which predicts that most of the water resides in pores within the amorphous network rather than in layers. The total scattering data provide a rigorous basis against which other models may also be tested. © 2010.

  5. Applying of isoconversional analysis to calorimetric data on the gel melting

    Science.gov (United States)

    Dranca, I.; Lupascu, T.; Povar, I.

    2012-02-01

    The present study is concerned to the thermal stability of gelatin gels that is defined that their resistance to melting or, in other words, to the thermally stimulated transitions from gel to sol. The both sol-gel and gel-sol transitions were followed by regular Mettler-Toledo DSC 823e and stochastically modulated multi-frequency DSC (TOPEM® by Mettler-Toledo). The DSC data have been treated by using an advanced isoconversional method developed by Vyazovkin [1,2]. The method allows revealing a variation in the effective activation energy (Eα) with the extent of conversion (α). It has been discovered that an increase in the concentration of gelatin solutions causes an increase in the energy barrier to melting of non-isothermally prepared gels.

  6. Some Factors Affecting Combustion in an Internal-Combustion Engine

    Science.gov (United States)

    Rothrock, A M; Cohn, Mildred

    1936-01-01

    An investigation of the combustion of gasoline, safety, and diesel fuels was made in the NACA combustion apparatus under conditions of temperature that permitted ignition by spark with direct fuel injection, in spite of the compression ratio of 12.7 employed. The influence of such variables as injection advance angle, jacket temperature, engine speed, and spark position was studied. The most pronounced effect was that an increase in the injection advance angle (beyond a certain minimum value) caused a decrease in the extent and rate of combustion. In almost all cases combustion improved with increased temperature. The results show that at low air temperatures the rates of combustion vary with the volatility of the fuel, but that at high temperatures this relationship does not exist and the rates depend to a greater extent on the chemical nature of the fuel.

  7. Recovery of DNA from agarose gel by trap method

    African Journals Online (AJOL)

    Administrator

    2011-09-05

    Sep 5, 2011 ... gels, which can recover DNA with common laboratory facilities. This way can provide another ... which is difficult for the micro centrifuge. But our DNA could be extracted from n-butanol. ... taken out from the traps to 15 ml centrifuge tubes with a Pasteur pipette. The volume of the buffer extracted was equal to ...

  8. Multi-dimensional Analysis Method of Hydrogen Combustion in the Containment of a Nuclear Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jongtae; Hong, Seongwan [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Kim, Gun Hong [Kyungwon E and C Co., Seongnam (Korea, Republic of)

    2014-05-15

    The most severe case is the occurrence of detonation, which induces a few-fold greater pressure load on the containment wall than a deflagration flame. The occurrence of a containment-wise global detonation is prohibited by a national regulation. The compartments located in the flow path such as steam generator compartment, annular compartment, and dome region are likely to have highly-concentrated hydrogen. If it is found that hydrogen concentration in any compartment is far below a detonation criterion during an accident progression, it can be thought that the occurrence of a detonative explosion in a compartment is excluded. However, if it is not, it is necessary to evaluate the characteristics of flame acceleration in the containment. The possibility of a flame transition from a deflagration to a detonation (DDT) can be evaluated from a calculated hydrogen distribution in a compartment by using sigma-lambda criteria. However, this method can provide a very conservative result because the geometric characteristics of a real compartment are not considered well. In order to evaluate the containment integrity from a threat of a hydrogen explosion, it is necessary to establish an integrated evaluation system, which includes a lumped-parameter and detail analysis methods. In this study, a method for the multi-dimensional analysis of hydrogen combustion is proposed to mechanistically evaluate the flame acceleration characteristics with a geometric effect. The geometry of the containment is modeled 3-dimensionally using a CAD tool. To resolve a propagating flame front, an adaptive mesh refinement method is coupled with a combustion analysis solver.

  9. Meso-decorated self-healing gels: network structure and properties

    Science.gov (United States)

    Gong, Jin; Sawamura, Kensuke; Igarashi, Susumu; Furukawa, Hidemitsu

    2013-04-01

    Gels are a new material having three-dimensional network structures of macromolecules. They possess excellent properties as swellability, high permeability and biocompatibility, and have been applied in various fields of daily life, food, medicine, architecture, and chemistry. In this study, we tried to prepare new multi-functional and high-strength gels by using Meso-Decoration (Meso-Deco), one new method of structure design at intermediate mesoscale. High-performance rigid-rod aromatic polymorphic crystals, and the functional groups of thermoreversible Diels-Alder reaction were introduced into soft gels as crosslinkable pendent chains. The functionalization and strengthening of gels can be realized by meso-decorating the gels' structure using high-performance polymorphic crystals and thermoreversible pendent chains. New gels with good mechanical properties, novel optical properties and thermal properties are expected to be developed.

  10. Modeling of the dynamical combustion of explosives: influence of mechanical properties; Modelisation de la combustion dynamique des explodifs: influence des proprietes mecaniques

    Energy Technology Data Exchange (ETDEWEB)

    Picart, D.; Pertuis, C. [CEA Le Ripault, 37 - Tours (France)

    1996-12-31

    Experimental observations performed during the combustion of solid explosives under pressure have shown an unexpected desensitization of the samples when damaged. A simplified method of combustion simulation inside a pressure cell is proposed in this study. The model used is based on the description of the mechanical behaviour of the solid phase. It allows to retrieve the overall experimental results, and in particular the occurrence of anomalous combustion modes. (J.S.) 8 refs.

  11. Thermal Scanning Conductometry (TSC) as a General Method for Studying and Controlling the Phase Behavior of Conductive Physical Gels.

    Science.gov (United States)

    Bielejewski, Michal

    2018-01-23

    The thermal scanning conductometry protocol is a new approach in studying ionic gels based on low molecular weight gelators. The method is designed to follow the dynamically changing state of the ionogels, and to deliver more information and details about the subtle change of conductive properties with an increase or decrease in the temperature. Moreover, the method allows the performance of long term (i.e. days, weeks) measurements at a constant temperature to investigate the stability and durability of the system and the aging effects. The main advantage of the TSC method over classical conductometry is the ability to perform measurements during the gelation process, which was impossible with the classical method due to temperature stabilization, which usually takes a long time before the individual measurement. It is a well-known fact that to obtain the physical gel phase, the cooling stage must be fast; moreover, depending on the cooling rate, different microstructures can be achieved. The TSC method can be performed with any cooling/heating rate that can be assured by the external temperature system. In our case, we can achieve linear temperature change rates between 0.1 and approximately 10 °C/min. The thermal scanning conductometry is designed to work in cycles, continuously changing between heating and cooling stages. Such an approach allows study of the reproducibility of the thermally reversible gel-sol phase transition. Moreover, it allows the performance of different experimental protocols on the same sample, which can be refreshed to initial state (if necessary) without removal from the measuring cell. Therefore, the measurements can be performed faster, in a more efficient way, and with much higher reproducibility and accuracy. Additionally, the TSC method can be also used as a tool to manufacture the ionogels with targeted properties, like microstructure, with an instant characterization of conductive properties.

  12. Entrapment of subtilisin in ceramic sol-gel coating for antifouling applications.

    Science.gov (United States)

    Regina, Viduthalai Rasheedkhan; Søhoel, Helmer; Lokanathan, Arcot Raghupathi; Bischoff, Claus; Kingshott, Peter; Revsbech, Niels Peter; Meyer, Rikke Louise

    2012-11-01

    Enzymes with antifouling properties are of great interest in developing nontoxic antifouling coatings. A bottleneck in developing enzyme-based antifouling coatings is to immobilize the enzyme in a suitable coating matrix without compromising its activity and stability. Entrapment of enzymes in ceramics using the sol-gel method is known to have several advantages over other immobilization methods. The sol-gel method can be used to make robust coatings, and the aim of this study was to explore if sol-gel technology can be used to develop robust coatings harboring active enzymes for antifouling applications. We successfully entrapped a protease, subtilisin (Savinase, Novozymes), in a ceramic coating using a sol-gel method. The sol-gel formulation, when coated on a stainless steel surface, adhered strongly and cured at room temperature in less than 8 h. The resultant coating was smoother and less hydrophobic than stainless steel. Changes in the coating's surface structure, thickness and chemistry indicate that the coating undergoes gradual erosion in aqueous medium, which results in release of subtilisin. Subtilisin activity in the coating increased initially, and then gradually decreased. After 9 months, 13% of the initial enzyme activity remained. Compared to stainless steel, the sol-gel-coated surfaces with active subtilisin were able to reduce bacterial attachment of both Gram positive and Gram negative bacteria by 2 orders of magnitude. Together, our results demonstrate that the sol-gel method is a promising coating technology for entrapping active enzymes, presenting an interesting avenue for enzyme-based antifouling solutions.

  13. Luminescent Eosin Y–SiO{sub 2} hybrid nano and microrods prepared by sol–gel template method

    Energy Technology Data Exchange (ETDEWEB)

    Secu, M., E-mail: msecu@infim.ro [National Institute for Materials Physics, P.O. Box MG-7, Bucharest–Magurele, 077125 (Romania); Secu, C.E.; Sima, M.; Negrea, R.F.; Bartha, C. [National Institute for Materials Physics, P.O. Box MG-7, Bucharest–Magurele, 077125 (Romania); Dinescu, M.; Damian, V. [National Institute for Laser, Plasma and Radiation, P.O. Box MG-36, Bucharest–Magurele 077125 (Romania)

    2013-11-15

    Sol–gel chemistry within the pores of a polycarbonate template membrane was used for the preparation of Eosin Y–SiO{sub 2} hybrid nano- and microrods, using tetraethylorthosilicate [TEOS, Si(OC{sub 2}H{sub 5}){sub 4}] as the precursor in the presence of trifluoroacetic acid (TFA) catalyst. The ethanolic solution of Eosin-Y was added to the silica sol to trap dye molecules inside the SiO{sub 2} gel network during the gelation. Structural and morphological characterization using scanning electron microscopy (SEM) and luminescence microscopy have shown the formation of rods with 200 nm and 1.2 μm diameter and about 30 μm length, exhibiting luminescence properties. Spectroscopic characterization has shown that the luminescence is due to Eosin-Y molecule in the xerogel porous network, surrounded by a solvation shell given mainly by the water. -- Highlights: • Sol–gel template method was used to prepare Eosin Y–SiO{sub 2} hybrid rods-type structures. • Morphological characterization has shown nano- and microrods with luminescent properties. • Luminescence is due to Eosin-Y molecule surrounded by a solvation shell given by water.

  14. Catalytic activity of acid and base with different concentration on sol-gel kinetics of silica by ultrasonic method.

    Science.gov (United States)

    Das, R K; Das, M

    2015-09-01

    The effects of both acid (acetic acid) and base (ammonia) catalysts in varying on the sol-gel synthesis of SiO2 nanoparticles using tetra ethyl ortho silicate (TEOS) as a precursor was determined by ultrasonic method. The ultrasonic velocity was received by pulsar receiver. The ultrasonic velocity in the sol and the parameter ΔT (time difference between the original pulse and first back wall echo of the sol) was varied with time of gelation. The graphs of ln[ln1/ΔT] vs ln(t), indicate two region - nonlinear region and a linear region. The time corresponds to the point at which the non-linear region change to linear region is considered as gel time for the respective solutions. Gelation time is found to be dependent on the concentration and types of catalyst and is found from the graphs based on Avrami equation. The rate of condensation is found to be faster for base catalyst. The gelation process was also characterized by viscosity measurement. Normal sol-gel process was also carried out along with the ultrasonic one to compare the effectiveness of ultrasonic. The silica gel was calcined and the powdered sample was characterized with scanning electron microscopy, energy dispersive spectra, X-ray diffractogram, and FTIR spectroscopy. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Fast Dissolving Tablets of Aloe Vera Gel | Madan | Tropical Journal ...

    African Journals Online (AJOL)

    Purpose: The objective of this work was to prepare and evaluate fast dissolving tablets of the nutraceutical, freeze dried Aloe vera gel. Methods: Fast dissolving tablets of the nutraceutical, freeze-dried Aloe vera gel, were prepared by dry granulation method. The tablets were evaluated for crushing strength, disintegration ...

  16. Studies in combustion dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Koszykowski, M.L. [Sandia National Laboratories, Livermore, CA (United States)

    1993-12-01

    The goal of this program is to develop a fundamental understanding and a quantitative predictive capability in combustion modeling. A large part of the understanding of the chemistry of combustion processes comes from {open_quotes}chemical kinetic modeling.{close_quotes} However, successful modeling is not an isolated activity. It necessarily involves the integration of methods and results from several diverse disciplines and activities including theoretical chemistry, elementary reaction kinetics, fluid mechanics and computational science. Recently the authors have developed and utilized new tools for parallel processing to implement the first numerical model of a turbulent diffusion flame including a {open_quotes}full{close_quotes} chemical mechanism.

  17. Electrophoresis of DNA in agarose gels, polyacrylamide gels and in free solution

    Science.gov (United States)

    Stellwagen, Nancy C.

    2009-01-01

    This review describes the electrophoresis of curved and normal DNA molecules in agarose gels, polyacrylamide gels and in free solution. These studies were undertaken to clarify why curved DNA molecules migrate anomalously slowly in polyacrylamide gels but not in agarose gels. Two milestone papers are cited, in which Ferguson plots were used to estimate the effective pore size of agarose and polyacrylamide gels. Subsequent studies on the effect of the electric field on agarose and polyacrylamide gel matrices, DNA interactions with the two gel matrices, and the effect of curvature on the free solution mobility of DNA are also described. The combined results suggest that the anomalously slow mobilities observed for curved DNA molecules in polyacrylamide gels are due primarily to preferential interactions of curved DNAs with the polyacrylamide gel matrix; the restrictive pore size of the matrix is of lesser importance. In free solution, DNA mobilities increase with increasing molecular mass until leveling off at a plateau value of (3.17 ± 0.01) × 10-4 cm2/Vs in 40 mM Tris-acetate-EDTA buffer at 20°C. Curved DNA molecules migrate anomalously slowly in free solution as well as in polyacrylamide gels, explaining why the Ferguson plots of curved and normal DNAs containing the same number of base pairs extrapolate to different mobilities at zero gel concentration. PMID:19517510

  18. Numerical simulation of turbulent combustion: Scientific challenges

    Science.gov (United States)

    Ren, ZhuYin; Lu, Zhen; Hou, LingYun; Lu, LiuYan

    2014-08-01

    Predictive simulation of engine combustion is key to understanding the underlying complicated physicochemical processes, improving engine performance, and reducing pollutant emissions. Critical issues as turbulence modeling, turbulence-chemistry interaction, and accommodation of detailed chemical kinetics in complex flows remain challenging and essential for high-fidelity combustion simulation. This paper reviews the current status of the state-of-the-art large eddy simulation (LES)/prob-ability density function (PDF)/detailed chemistry approach that can address the three challenging modelling issues. PDF as a subgrid model for LES is formulated and the hybrid mesh-particle method for LES/PDF simulations is described. Then the development need in micro-mixing models for the PDF simulations of turbulent premixed combustion is identified. Finally the different acceleration methods for detailed chemistry are reviewed and a combined strategy is proposed for further development.

  19. Gaussian process regression based optimal design of combustion systems using flame images

    International Nuclear Information System (INIS)

    Chen, Junghui; Chan, Lester Lik Teck; Cheng, Yi-Cheng

    2013-01-01

    Highlights: • The digital color images of flames are applied to combustion design. • The combustion with modeling stochastic nature is developed using GP. • GP based uncertainty design is made and evaluated through a real combustion system. - Abstract: With the advanced methods of digital image processing and optical sensing, it is possible to have continuous imaging carried out on-line in combustion processes. In this paper, a method that extracts characteristics from the flame images is presented to immediately predict the outlet content of the flue gas. First, from the large number of flame image data, principal component analysis is used to discover the principal components or combinational variables, which describe the important trends and variations in the operation data. Then stochastic modeling of the combustion process is done by a Gaussian process with the aim to capture the stochastic nature of the flame associated with the oxygen content. The designed oxygen combustion content considers the uncertainty presented in the combustion. A reference image can be designed for the actual combustion process to provide an easy and straightforward maintenance of the combustion process

  20. Combustion mode switching with a turbocharged/supercharged engine

    Science.gov (United States)

    Mond, Alan; Jiang, Li

    2015-09-22

    A method for switching between low- and high-dilution combustion modes in an internal combustion engine having an intake passage with an exhaust-driven turbocharger, a crankshaft-driven positive displacement supercharger downstream of the turbocharger and having variable boost controllable with a supercharger bypass valve, and a throttle valve downstream of the supercharger. The current combustion mode and mass air flow are determined. A switch to the target combustion mode is commanded when an operating condition falls within a range of predetermined operating conditions. A target mass air flow to achieve a target air-fuel ratio corresponding to the current operating condition and the target combustion mode is determined. The degree of opening of the supercharger bypass valve and the throttle valve are controlled to achieve the target mass air flow. The amount of residual exhaust gas is manipulated.

  1. Production of cerium dioxide microspheres by an internal gelation sol–gel method

    Energy Technology Data Exchange (ETDEWEB)

    Katalenich, Jeffrey A.

    2017-03-27

    An internal gelation sol-gel technique was used to prepare cerium dioxide microspheres with uniform diameters near 100 µm. In this process, chilled aqueous solutions containing cerium, hexamethylenetetramine (HMTA), and urea are transformed into a solid gel by heat addition and are subsequently washed, dried, and sintered to produce pure cerium dioxide. Cerous nitrate and ceric ammonium nitrate solutions were compared for their usefulness in microsphere production. Gelation experiments were performed with both cerous nitrate and ceric ammonium nitrate to determine desirable concentrations of cerium, HMTA, and urea in feed solutions as well as the necessary quantity of ammonium hydroxide added to cerium solutions. Analysis of the pH before and after sample gelation was found to provide a quantitative metric for optimal parameter selection along with subjective evaluations of gel qualities. The time necessary for chilled solutions to gel upon inserting into a hot water bath was determined for samples with a variety of parameters and also used to determine desirable formulations for microsphere production. A technique for choosing the optimal mixture of ceric ammonium nitrate, HMTA, and urea was determined using gelation experiments and used to produce microspheres by dispersion of the feed solution into heated silicone oil. Gelled spheres were washed to remove excess reactants and reaction products before being dried and sintered. X-ray diffraction of air-dried microspheres, sintered microspheres, and commercial CeO2 powders indicated that air-dried and sintered spheres were pure CeO2.

  2. The Diesel Combustion Collaboratory: Combustion Researchers Collaborating over the Internet

    Energy Technology Data Exchange (ETDEWEB)

    C. M. Pancerella; L. A. Rahn; C. Yang

    2000-02-01

    The Diesel Combustion Collaborator (DCC) is a pilot project to develop and deploy collaborative technologies to combustion researchers distributed throughout the DOE national laboratories, academia, and industry. The result is a problem-solving environment for combustion research. Researchers collaborate over the Internet using DCC tools, which include: a distributed execution management system for running combustion models on widely distributed computers, including supercomputers; web-accessible data archiving capabilities for sharing graphical experimental or modeling data; electronic notebooks and shared workspaces for facilitating collaboration; visualization of combustion data; and video-conferencing and data-conferencing among researchers at remote sites. Security is a key aspect of the collaborative tools. In many cases, the authors have integrated these tools to allow data, including large combustion data sets, to flow seamlessly, for example, from modeling tools to data archives. In this paper the authors describe the work of a larger collaborative effort to design, implement and deploy the DCC.

  3. Designing antimicrobial bioactive glass materials with embedded metal ions synthesized by the sol–gel method

    Energy Technology Data Exchange (ETDEWEB)

    Palza, Humberto, E-mail: hpalza@ing.uchile.cl [Departamento de Ingeniería Química y Biotecnología, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Santiago (Chile); Escobar, Blanca; Bejarano, Julian [Departamento de Ingeniería Química y Biotecnología, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Santiago (Chile); Bravo, Denisse [Departamento de Patología, Facultad de Odontología, Universidad de Chile, Santiago (Chile); Diaz-Dosque, Mario [Departamento de Ciencias Básicas y Comunitarias, Facultad de Odontología, Universidad de Chile, Santiago (Chile); Perez, Javier [Departamento de Ingeniería Química y Biotecnología, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Santiago (Chile)

    2013-10-15

    Bioactive glasses (SiO{sub 2}–P{sub 2}O{sub 5}–CaO) having tailored concentrations of different biocide metal ions (copper or silver) were produced by the sol–gel method. All the particles release phosphorous ions when immersed in water and simulated body fluid (SBF). Moreover, a surface layer of polycrystalline hydroxy-carbonate apatite was formed on the particle surfaces after 10 day immersion in SBF as confirmed by X-ray diffraction and scanning electron microscopy (SEM) showing the bioactive materials. Samples with embedded either copper or silver ions were able to further release the biocide ions with a release rate that depends on the metal embedded and the dissolution medium: water or SBF. This biocide ion release from the samples explains the antimicrobial effect of our active particles against Escherichia coli DH5α ampicillin-resistant (Gram-negative) and Streptococcus mutans (Gram-positive) as determined by the Minimum Bactericidal Concentration (MBC) method. The antimicrobial behavior of the particles depends on the bacteria and the biocide ion used. Noteworthy, although samples with copper are able to release more metal ion than samples with silver, they present higher MBC showing the high effect of silver against these bacteria. - Highlights: • Copper and silver act as antimicrobial additives in bioactive glass materials. • Silver is more toxic than copper ions in these bioactive materials. • Sol–gel method allows the synthesis of antimicrobial bioactive materials.

  4. Designing antimicrobial bioactive glass materials with embedded metal ions synthesized by the sol–gel method

    International Nuclear Information System (INIS)

    Palza, Humberto; Escobar, Blanca; Bejarano, Julian; Bravo, Denisse; Diaz-Dosque, Mario; Perez, Javier

    2013-01-01

    Bioactive glasses (SiO 2 –P 2 O 5 –CaO) having tailored concentrations of different biocide metal ions (copper or silver) were produced by the sol–gel method. All the particles release phosphorous ions when immersed in water and simulated body fluid (SBF). Moreover, a surface layer of polycrystalline hydroxy-carbonate apatite was formed on the particle surfaces after 10 day immersion in SBF as confirmed by X-ray diffraction and scanning electron microscopy (SEM) showing the bioactive materials. Samples with embedded either copper or silver ions were able to further release the biocide ions with a release rate that depends on the metal embedded and the dissolution medium: water or SBF. This biocide ion release from the samples explains the antimicrobial effect of our active particles against Escherichia coli DH5α ampicillin-resistant (Gram-negative) and Streptococcus mutans (Gram-positive) as determined by the Minimum Bactericidal Concentration (MBC) method. The antimicrobial behavior of the particles depends on the bacteria and the biocide ion used. Noteworthy, although samples with copper are able to release more metal ion than samples with silver, they present higher MBC showing the high effect of silver against these bacteria. - Highlights: • Copper and silver act as antimicrobial additives in bioactive glass materials. • Silver is more toxic than copper ions in these bioactive materials. • Sol–gel method allows the synthesis of antimicrobial bioactive materials

  5. Sol-gel synthesis of magnesium oxide-silicon dioxide glass compositions

    Science.gov (United States)

    Bansal, Narottam P.

    1988-01-01

    MgO-SiO2 glasses containing up to 15 mol pct MgO, which could not have been prepared by the conventional glass melting method due to the presence of stable liquid-liquid immiscibility, were synthesized by the sol-gel technique. Clear and transparent gels were obtained from the hydrolysis and polycondensation of silicon tetraethoxide (TEOS) and magnesium nitrate hexahydrate when the water/TEOS mole ratio was four or more. The gelling time decreased with increase in magnesium content, water/TEOS ratio, and reaction temperature. Magnesium nitrate hexahydrate crystallized out of the gels containing 15 and 20 mol pct MgO on slow drying. This problem was partially alleviated by drying the gels quickly at higher temperatures. Monolithic gel samples were prepared using glycerol as the drying control additive. The gels were subjected to various thermal treatments and characterized by several methods. No organic groups could be detected in the glasses after heat treatments to approx. 800 C, but trace amounts of hydroxyl groups were still present. No crystalline phase was found from X-ray diffraction in the gel samples to approx. 890 C. At higher temperatures, alpha quartz precipitated out as the crystalline phase in gels containing up to 10 mol pct MgO. The overall activation energy for gel formation in 10MgO-90SiO2 (mol pct) system for water/TEOS mole ratio of 7.5 was calculated to be 58.7 kJ/mol.

  6. Study of factors affecting a combustion method for determining carbon in lithium hydride

    International Nuclear Information System (INIS)

    Barringer, R.E.; Thornton, R.E.

    1975-09-01

    An investigation has been made of the factors affecting a combustion method for the determination of low levels (300 to 15,000 micrograms/gram) of carbon in highly reactive lithium hydride. Optimization of the procedure with available equipment yielded recoveries of 90 percent, with a limit of error (0.95) of +-39 percent relative for aliquants containing 35 to 55 micrograms of carbon (500 to 800 micrograms of carbon per gram of lithium hydride sample). Sample preparation, thermal decomposition of the hydride, final ignition of the carbon, and carbon-measurement steps were studied, and a detailed procedure was developed. (auth)

  7. TITRATION METHOD OF AB0 ANTIBODIES WITH THE USE OF MODERN GEL TECHNOLOGY IN AB0-INCOMPATIBLE TRANSPLANTATION

    Directory of Open Access Journals (Sweden)

    A. K. Porunova

    2014-01-01

    Full Text Available It is shown that developed method of titrating AB0 antibodies allows defi ning the titer of the investigational antibodies more precisely on 1–3 dilution of serum compared to the prototype method (titration method of antibodiesin saline medium on the plane. It is more obvious as it excludes hardly interpretable results due to the possibility of conducting visual assessment of agglutination reaction in the gel card thick column and requires less time foranalysis. The results can be saved for comparison with the results of further research. That is not possible under prototype titration method. Aim: our aim is to create a laboratory technique that can accurately, reliably and clearly produce titration of AB0 system antibodies, including in patients with low initial concentration of agglutinins in the blood; a technique more economical in terms of spending serum and that takes less time.Materials and methods: those modes were empirically chosen which allow titration of AB0 system agglutinins using gel technology based micro typing; to titer group antibodies 1640 serum assays of recipients in AB0-incompatibletransplantation were analyzed.The result of the use of specially developed method in organ transplantation from incompatible blood donors consists in enhancing accuracy, sensitivity of natural, complete and incomplete AB0 system immune antibodies titration, in its clarity, using of blood micro-doses for earlier detection of sensitizing of the patient, which is especially important in Pediatrics. Conclusion: the developed procedure of AB0-antibodies’ titration using modern gel technology makes possible a more precise monitoring of the titer of antibodies that is necessary to predict the graft rejection risk, to select the Protocol of preoperative preparation and postoperative management of patients, to assess the effectiveness of therapy in patients for whom it is diffi cult to fi nd a compatible blood type donor, and for whom today AB

  8. Cell-Based Fabrication of Organic/Inorganic Composite Gel Material

    Directory of Open Access Journals (Sweden)

    Takayoshi Nakano

    2011-01-01

    Full Text Available Biomaterials containing components similar to the native biological tissue would have benefits as an implantable scaffold material. To obtain such biomimetic materials, cells may be great contributors because of their crucial roles in synthetic organics. In addition, the synthesized organics—especially those derived from osteogenic differentiated cells—become a place where mineral crystals nucleate and grow even in vitro. Therefore to fabricate an organic/inorganic composite material, which is similar to the biological osteoid tissue, bone marrow derived mesenchymal stem cells (BMSCs were cultured in a 3D fibrin gel in this study. BMSCs secreted bone-related proteins that enhanced the biomineralization within the gel when the cells were cultured with an osteogenic differentiation medium. The compositions of both synthesized matrices and precipitated minerals in the obtained materials altered depending on the cell culture period. The mineral obtained in the 3D gel showed low crystalline hydroxyapatite. The composite materials also showed excellent osteoconductivity with new bone formation when implanted in mice tibiae. Thus, we demonstrated the contributions of cells for fabricating implantable organic/inorganic composite gel materials and a method for controlling the material composition in the gel. This cell-based material fabrication method would be a novel method to fabricate organic/inorganic composite biomimetic materials for bone tissue engineering.

  9. Abstracts of International Conference on Sol-Gel Materials' 04

    International Nuclear Information System (INIS)

    2004-01-01

    International Conference on Sol-Gel Materials '04 was an important forum for discussion on problems related to sol-gel processes applied for preparation materials with special physical properties and assignment. The application of sol-gel materials as phosphors, surface coatings, sensors, waveguides, medical implants, joints etc. has been presented. Preparation conditions, methods of physical characterization as well as optimal chemical composition of such materials have been also discussed in detail

  10. Formulation and evaluation of antipsoriatic gel using natural excipients

    OpenAIRE

    Raghupatruni Jhansi Laxmi; R. Karthikeyan; P. Srinivasa Babu; R.V.V. Narendra Babu

    2013-01-01

    Objective: To develop topical gel formulations of Psoralen using natural excipients to minimize the side effects of synthetic drugs. Methods: The Psoralen gel formulations were prepared using different natural gums and polymers. The physicochemical compatibility between Psoralen and other excipients was confirmed by using Fourier transform infrared spectroscopy. All prepared gel formulations were evaluated for drug content uniformity, viscosity, pH, and stability. The release of psoralen f...

  11. Identification and quantification of priority species from coal combustion

    Energy Technology Data Exchange (ETDEWEB)

    Furimsky, E.; Zheng, L.; Hlavacek, T. [Canada Centre for Mineral and Energy Technology, Ottawa, ON (Canada). Energy Research Laboratories

    1996-07-01

    The objective is to quantify and characterize emissions from pulverized coal combustion of seven coals and the circulating fluidized bed combustion of four coals. The species of particular interest are sulphur, nitrogen, chlorine, arsenic, mercury, lead, cadmium, potassium, and sodium. The Facility for Analysis of Chemical Thermodynamics (F{asterisk}A{asterisk}C{asterisk}T) method is used to predict type and amount of priority species. Prediction is made for combustion with and without the presence of limestone. The results show that the combustion technology used influences the amount of priority species emitted. 16 tabs., 3 apps.

  12. Preparation of Nd-doped gadolinium-gallium garnet laser ceramic powder by sol-gel method

    Institute of Scientific and Technical Information of China (English)

    YAO Yan-ping; LIU Jing-he

    2006-01-01

    Preparation of Nd3+:Gd3Ga5O12 polycrystalline material by sol-gel method was preparated in this paper.The structure and the pattern of the sample were analyzed by thermogravimetric analysis and differential thermal analysis(TG-DTA),Infrared spectrum,XRD,TEM and electron spectrum,which indicated that the powder with good characteristics of 70-100 nm can be obtained by sintering at 1 000℃.It was shown that the chemical composition of the sample was agreed with experimental requirements by electron spectrum analysis.

  13. Plasma assisted measurements of alkali metal concentrations in pressurised combustion processes

    Energy Technology Data Exchange (ETDEWEB)

    Hernberg, R; Haeyrinen, V [Tampere Univ. of Technology (Finland)

    1997-10-01

    In this project the continuous alkali measurement method plasma excited alkali resonance line spectroscopy (PEARLS) was developed, tested and demonstrated in pressurised combustion facilities. The PEARLS method has been developed at Tampere University of Technology (TUT). During 1994-1996 the PEARLS method was developed from the laboratory level to an industrial prototype. The alkali measuring instrument has been tested and used for regular measurements in four different pressurised combustion installations ranging up to industrial pilot scale. The installations are: (1) a pressurised entrained flow reactor (PEFR) at VTT Energy in Jyvaeskylae, Finland (2) a pressurised fluidised bed combustion facility, called FRED, at DMT in Essen, Germany. (3) a 10 MW pressurised circulating fluidised bed combustion pilot plant at Foster Wheeler Energia Oy in Karhula, Finland (4) PFBC Research Facility at ABB Carbon in Finspaang, Sweden

  14. Neutron detector using sol-gel absorber

    Science.gov (United States)

    Hiller, John M.; Wallace, Steven A.; Dai, Sheng

    1999-01-01

    An neutron detector composed of fissionable material having ions of lithium, uranium, thorium, plutonium, or neptunium, contained within a glass film fabricated using a sol-gel method combined with a particle detector is disclosed. When the glass film is bombarded with neutrons, the fissionable material emits fission particles and electrons. Prompt emitting activated elements yielding a high energy electron contained within a sol-gel glass film in combination with a particle detector is also disclosed. The emissions resulting from neutron bombardment can then be detected using standard UV and particle detection methods well known in the art, such as microchannel plates, channeltrons, and silicon avalanche photodiodes.

  15. Gel network shampoo formulation and hair health benefits.

    Science.gov (United States)

    Marsh, J M; Brown, M A; Felts, T J; Hutton, H D; Vatter, M L; Whitaker, S; Wireko, F C; Styczynski, P B; Li, C; Henry, I D

    2017-10-01

    The objective of this work was to create a shampoo formula that contains a stable ordered gel network structure that delivers fatty alcohols inside hair. X-ray diffraction (SAXS and WAXS), SEM and DSC have been used to confirm formation of the ordered Lβ gel network with fatty alcohol (cetyl and stearyl alcohols) and an anionic surfactant (SLE1S). Micro-autoradiography and extraction methods using GC-MS were used to confirm penetration of fatty alcohols into hair, and cyclic fatigue testing was used to measure hair strength. In this work, evidence of a stable Lβ ordered gel network structure created from cetyl and stearyl alcohols and anionic surfactant (SLE1S) is presented, and this is confirmed via scanning electron microscopy images showing lamella layers and differential scanning calorimetry (DSC) showing new melting peaks vs the starting fatty alcohols. Hair washed for 16 repeat cycles with this shampoo showed penetration of fatty alcohols from the gel network into hair as confirmed by a differential extraction method with GC-MS and by radiolabelling of stearyl alcohol and showing its presence inside hair cross-sections. The gel network role in delivering fatty alcohol inside hair is demonstrated by comparing with a shampoo with added fatty alcohol not in an ordered gel network structure. The hair containing fatty alcohol was measured via the Dia-stron cyclic fatigue instrument and showed a significantly higher number of cycles to break vs control. The formation of a stable gel network was confirmed in the formulated shampoo, and it was demonstrated that this gel network is important to deliver cetyl and stearyl alcohols into hair. The presence of fatty alcohol inside hair was shown to deliver a hair strength benefit via cyclic fatigue testing. © 2017 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  16. Synthesis of hierarchical porous materials with ZSM-5 structures via template-free sol–gel method

    Directory of Open Access Journals (Sweden)

    Wei Han et al

    2007-01-01

    Full Text Available Interests are focused on preparation of hierarchical porous materials with zeolite structures by using soft or rigid templates in order to solve diffusion and mass transfer limitations resulting from the small pore sizes of zeolites. Here we develop a convenient template-free sol–gel method to synthesize hierarchical porous materials with ZSM-5 structures. This method involves hydrothermal recrystallization of the xerogel converted from uniform ZSM-5 sol by a vacuum drying process. By utilizing this method we can manipulate the size of zeolite nanocrystals as building units of porous structures based on controlling temperature of recrystallization, consequently obtain hierarchical porous materials with different intercrystalline pore sizes and ZSM-5 structures.

  17. A comprehensive study of combustion products generated from pulverized peat combustion in the furnace of BKZ-210-140F steam boiler

    Science.gov (United States)

    Kuzmin, V. A.; Zagrai, I. A.

    2017-11-01

    The experimental and theoretical study of combustion products has been carried out for the conditions of pulverized peat combustion in BKZ-210-140F steam boiler. Sampling has been performed in different parts of the boiler system in order to determine the chemical composition, radiative properties and dispersity of slag and ash particles. The chemical composition of particles was determined using the method of x-ray fluorescence analysis. Shapes and sizes of the particles were determined by means of electron scanning microscopy. The histograms and the particle size distribution functions were computed. The calculation of components of the gaseous phase was based on the combustion characteristics of the original fuel. The software package of calculation of thermal radiation of combustion products from peat combustion was used to simulate emission characteristics (flux densities and emissivity factors). The dependence of emission characteristics on the temperature level and on the wavelength has been defined. On the basis of the analysis of emission characteristics the authors give some recommendations how to determine the temperature of peat combustion products in the furnace of BKZ-210-140F steam boiler. The findings can be used to measure the combustion products temperature, support temperature control in peat combustion and solve the problem of boiler furnace slagging.

  18. Transport Phenomena in Gel

    Directory of Open Access Journals (Sweden)

    Masayuki Tokita

    2016-05-01

    Full Text Available Gel becomes an important class of soft materials since it can be seen in a wide variety of the chemical and the biological systems. The unique properties of gel arise from the structure, namely, the three-dimensional polymer network that is swollen by a huge amount of solvent. Despite the small volume fraction of the polymer network, which is usually only a few percent or less, gel shows the typical properties that belong to solids such as the elasticity. Gel is, therefore, regarded as a dilute solid because its elasticity is much smaller than that of typical solids. Because of the diluted structure, small molecules can pass along the open space of the polymer network. In addition to the viscous resistance of gel fluid, however, the substance experiences resistance due to the polymer network of gel during the transport process. It is, therefore, of importance to study the diffusion of the small molecules in gel as well as the flow of gel fluid itself through the polymer network of gel. It may be natural to assume that the effects of the resistance due to the polymer network of gel depends strongly on the network structure. Therefore, detailed study on the transport processes in and through gel may open a new insight into the relationship between the structure and the transport properties of gel. The two typical transport processes in and through gel, that is, the diffusion of small molecules due to the thermal fluctuations and the flow of gel fluid that is caused by the mechanical pressure gradient will be reviewed.

  19. Fundamental combustion characteristics of lean hydrogen mixtures; Suiso kihaku kongoki no kisoteki nensho tokusei

    Energy Technology Data Exchange (ETDEWEB)

    Barat, D; Kido, H; Nakahara, M; Hashimoto, J [Kyushu University, Fukuoka (Japan)

    1997-10-01

    One of the excellent combustion characteristics of hydrogen-air mixture is that its emission is free of CO2, but the problem of NOx remains, mainly caused by the high combustion temperature. Using leaner mixture and carrying out EGR are supposed to be effective methods to reduce NOx. In this study, to examine the effectiveness of the two methods, fundamental combustion characteristics of nitrogen added lean hydrogen mixtures were investigated by chemical equilibrium calculations and measurements of turbulent combustion characteristics. It is suggested that nitrogen added mixtures can achieve lower NOx combustion than lean mixtures, taking the combustion efficiency into consideration. 7 refs., 7 figs., 1 tab.

  20. А new factor effecting gel strength of pectin polysaccharides

    Directory of Open Access Journals (Sweden)

    S. E. Kholov

    2016-01-01

    Full Text Available Pectin polysaccharides obtained from various raw materials have a different component composition and form gels with water, sugar and acid or calcium. In this study, an experimental approach the gelation properties of different pectin samples, varied from different sources, using new methods of hydrolysis and purification. Samples were obtained by hydrolysis of accelerated extraction of pectin and purified by diaultrfiltration, have a high gel strength. The highest gel strength have been found in series of high methoxyl (HM- pectin samples of apple, peach, orange and low methoxyl (LM- pectin samples of commercial citrus pectin and apple pectin obtained by new method. It is shown that in addition to the basic parameters (the content of galacturonic acid, degree of esterification, molecular weight and hidrodinamic radius macromolecule to affect gel strength pectins aggregation of macromolecules, which is determined by the z-average molecular weight. There were observed a clear pattern of the influence of the molecular weight on hydrodynamic parameters for both HM- and LM- pectin samples on the gel strength. It were shown that a high values of molecular weight, intrinsic viscosity, and radius of gyration of pectin samples can significantly increase gel strength, while the value of Mz oppositely influenced the gel strength. As a result, a systematic analysis of this parameter and its relationship to the average molecular weight found that indeed the ratio Mz/Mw for pectin’s is an crucial to assess the quality of pectin at the study of gel strength for pectin polysaccharides.

  1. New class of combustion processes

    International Nuclear Information System (INIS)

    Merzhanov, A.G.; Borovinskaya, I.P.

    1975-01-01

    A short review is given of the results of work carried out since 1967 on studying the combustion processes caused by the interaction of chemical elements in the condensed phase and leading to the formation of refractory compounds. New phenomena and processes are described which are revealed when investigating the combustion of the systems of this class, viz solid-phase combustion, fast combustion in the condensed phase, filtering combustion, combustion in liquid nitrogen, spinning combustion, self-oscillating combustion, and repeated combustion. A new direction in employment of combustion processes is discussed, viz. a self-propagating high-temperature synthesis of refractory nitrides, carbides, borides, silicides and other compounds

  2. Internal combustion engine for natural gas compressor operation

    Energy Technology Data Exchange (ETDEWEB)

    Hagen, Christopher; Babbitt, Guy

    2016-12-27

    This application concerns systems and methods for compressing natural gas with an internal combustion engine. In a representative embodiment, a method is featured which includes placing a first cylinder of an internal combustion engine in a compressor mode, and compressing a gas within the first cylinder, using the cylinder as a reciprocating compressor. In some embodiments a compression check valve system is used to regulate pressure and flow within cylinders of the engine during a compression process.

  3. Fast Ignition and Sustained Combustion of Ionic Liquids

    Science.gov (United States)

    Joshi, Prakash B. (Inventor); Piper, Lawrence G. (Inventor); Oakes, David B. (Inventor); Sabourin, Justin L. (Inventor); Hicks, Adam J. (Inventor); Green, B. David (Inventor); Tsinberg, Anait (Inventor); Dokhan, Allan (Inventor)

    2016-01-01

    A catalyst free method of igniting an ionic liquid is provided. The method can include mixing a liquid hypergol with a HAN (Hydroxylammonium nitrate)-based ionic liquid to ignite the HAN-based ionic liquid in the absence of a catalyst. The HAN-based ionic liquid and the liquid hypergol can be injected into a combustion chamber. The HAN-based ionic liquid and the liquid hypergol can impinge upon a stagnation plate positioned at top portion of the combustion chamber.

  4. Mechanical and thermal expansion properties of β-eucryptite prepared by sol-gel methods and hot pressing

    International Nuclear Information System (INIS)

    Xia, L.; Wen, G.W.; Qin, C.L.; Wang, X.Y.; Song, L.

    2011-01-01

    Research highlights: → Dense LAS glass-ceramics were fabricated by sol-gel and hot pressing technique. → The LAS glass-ceramics have relative good mechanical properties. → The negative thermal expansion behavior of LAS glass-ceramics was investigated. -- Abstract: The microstructures, mechanical properties and thermal expansion behavior of monolithic lithium aluminosilicate glass-ceramics, prepared by sol-gel method and hot pressing, were investigated by using X-ray diffraction, scanning and transmission electron microscopies, three-point bend tests and dilatometry. β-eucryptite appeared as main phase in the monolithic lithium aluminosilicate glass-ceramics. The glass ceramics exhibited high relative densities and the average flexural strength and fracture toughness values were 154 MPa and 2.46 MPa m 1/2 , respectively. The lithium aluminosilicate glass-ceramics hot pressed 1300 and 1350 o C demonstrated negative coefficient of thermal expansion, which was affected by amount and type of crystalline phases.

  5. Experimental validation for combustion analysis of GOTHIC code in 2-dimensional combustion chamber

    International Nuclear Information System (INIS)

    Lee, J. W.; Yang, S. Y.; Park, K. C.; Jung, S. H.

    2002-01-01

    In this study, the prediction capability of GOTHIC code for hydrogen combustion phenomena was validated with the results of two-dimensional premixed hydrogen combustion experiment executed by Seoul National University. The experimental chamber has about 24 liter free volume (1x0.024x1 m 3 ) and 2-dimensional rectangular shape. The test were preformed with 10% hydrogen/air gas mixture and conducted with combination of two igniter positions (top center, top corner) and two boundary conditions (bottom full open, bottom right half open). Using the lumped parameter and mechanistic combustion model in GOTHIC code, the SNU experiments were simulated under the same conditions. The GOTHIC code prediction of the hydrogen combustion phenomena did not compare well with the experimental results. In case of lumped parameter simulation, the combustion time was predicted appropriately. But any other local information related combustion phenomena could not be obtained. In case of mechanistic combustion analysis, the physical combustion phenomena of gas mixture were not matched experimental ones. In boundary open cases, the GOTHIC predicted very long combustion time and the flame front propagation could not simulate appropriately. Though GOTHIC showed flame propagation phenomenon in adiabatic calculation, the induction time of combustion was still very long compare with experimental results. Also, it was found that the combustion model of GOTHIC code had some weak points in low concentration of hydrogen combustion simulation

  6. Synthesis of nanocrystalline Gd doped ceria by combustion technique

    DEFF Research Database (Denmark)

    Jadhav, L. D.; Chourashiya, M. G.; Subhedar, K. M.

    2009-01-01

    chemical method of combustion where in the combustion of precursors results in the formation of nanoparticles relatively at lower processing temperature. The thermogravimetric study was carried out to understand the ignition temperature and optimize the fuel-to-oxidant ratio. The successful synthesis...

  7. Environmental optimisation of waste combustion

    Energy Technology Data Exchange (ETDEWEB)

    Schuster, Robert [AaF Energikonsult, Stockholm (Sweden); Berge, Niclas; Stroemberg, Birgitta [TPS Termiska Processer AB, Nykoeping (Sweden)

    2000-12-01

    The regulations concerning waste combustion evolve through R and D and a strive to get better and common regulations for the European countries. This study discusses if these rules of today concerning oxygen concentration, minimum temperature and residence time in the furnace and the use of stand-by burners are needed, are possible to monitor, are the optimum from an environmental point of view or could be improved. No evidence from well controlled laboratory experiments validate that 850 deg C in 6 % oxygen content in general is the best lower limit. A lower excess air level increase the temperature, which has a significant effect on the destruction of hydrocarbons, favourably increases the residence time, increases the thermal efficiency and the efficiency of the precipitators. Low oxygen content is also necessary to achieve low NO{sub x}-emissions. The conclusion is that the demands on the accuracy of the measurement devices and methods are too high, if they are to be used inside the furnace to control the combustion process. The big problem is however to find representative locations to measure temperature, oxygen content and residence time in the furnace. Another major problem is that the monitoring of the operation conditions today do not secure a good combustion. It can lead to a false security. The reason is that it is very hard to find boilers without stratifications. These stratifications (stream lines) has each a different history of residence time, mixing time, oxygen and combustible gas levels and temperature, when they reach the convection area. The combustion result is the sum of all these different histories. The hydrocarbons emission is in general not produced at a steady level. Small clouds of unburnt hydrocarbons travels along the stream lines showing up as peaks on a THC measurement device. High amplitude peaks has a tendency to contain higher ratio of heavy hydrocarbons than lower peaks. The good correlation between some easily detected

  8. Effectiveness of silica based sol-gel microencapsulation method for odorants and flavors leading to sustainable environment.

    Science.gov (United States)

    Ashraf, Muhammad Aqeel; Khan, Aysha Masood; Ahmad, Mushtaq; Sarfraz, Maliha

    2015-01-01

    Microencapsulation has become a hot topic in chemical research. Technology mainly used for control release and protection purposes. The sol-gel micro encapsulation approach for fragrance and aroma in porous silica-based materials leads to sustainable odorant and flavored materials with novel and unique beneficial properties. Sol-gel encapsulation of silica based micro particles considered economically cheap as capital investment in manufacturing is very low and environmentally friendly. Amorphous sol-gel SiO2 is non-toxic and safe, whereas the sol-gel entrapment of delicate chemicals in its inner pores results in pronounced chemical and physical stabilization of the entrapped active agents, thereby broadening the practical utilization of chemically unstable essential oils (EOs). Reviewing progress in the fabrication of diverse odorant and flavored sol-gels, shows us how different synthetic strategies are appropriate for practical application with important health and environmental benefits.

  9. Data Visualization and Feature Selection Methods in Gel-based Proteomics

    DEFF Research Database (Denmark)

    Silva, Tomé Santos; Richard, Nadege; Dias, Jorge P.

    2014-01-01

    -based proteomics, summarizing the current state of research within this field. Particular focus is given on discussing the usefulness of available multivariate analysis tools both for data visualization and feature selection purposes. Visual examples are given using a real gel-based proteomic dataset as basis....

  10. Effect of vanadium on the obtaining of the titanium dioxide by Sol-Gel Method; Efeito do vanadio na obtencao de dioxido de titanio pelo Metodo Sol-Gel

    Energy Technology Data Exchange (ETDEWEB)

    Granado, S.R.; Silva, D.W.; Lopes, S.A.; Cavalheiro, A.A., E-mail: sandrogranado02@gmail.com [Universidade Estadual de Mato Grosso do Sul (CPTREN/UEMS), Navirai, MS (Brazil). Centro de Pesquisas Tecnologicas em Recursos Naturais

    2011-07-01

    The obtaining of transition metal modified titanium dioxide (TiO{sub 2}) can be a promising path to promote changes in crystal structure of anatase phase in order to displace the band gap toward frequencies near to visible region. The insertion of the heterovalent ions such as vanadium can be shift the titanium coordination number in the anatase matrix, leading to important changes in the photonic characteristics of the material. In Sol-Gel method, the presence of the non alkoxide precursors can affects the stability of the solution and the gelifying process, with consequences on the characteristics of the material. In this work, it was investigated the effect of 5mol% of vanadium by thermal analysis of the dried gel and XRD and adsorption isotherm in the samples obtained at different temperatures. The decomposition steps of the precursor were associated to phase formation in the material, leading to conclusion that the presence of vanadium affects the stability of anatase phase. (author)

  11. Electrical stability of Al-doped ZnO transparent electrode prepared by sol-gel method

    International Nuclear Information System (INIS)

    Tabassum, Samia; Yamasue, Eiji; Okumura, Hideyuki; Ishihara, Keiichi N.

    2016-01-01

    Highlights: • Al-doped ZnO thin film was deposited by sol-gel method in different annealing temperature and duration. • We examined the environmental stability in ambient and damp heat condition. • We investigated chemical state of thin film. • Better stability was observed in the film annealed at high temperature (600 °C) along with longer duration (120 min). • An ultrathin aluminum oxide layer formation was predicted by XPS measurement which protects further oxidation and improves stability. - Abstract: Al-doped zinc oxide (AZO) thin films have been considered as a promising alternative to tin doped indium oxide (ITO), which is currently used in various optoelectronic applications. However, the environmental stability of AZO film is not satisfactory, in that the resistivity is significantly increases in air. Here, we investigate the resistivity stability of AZO thin films prepared by sol-gel method using various annealing temperatures and durations. The degradation of resistivity property was observed for AZO films stored in ambient or damp heat environment, where the degradation rate was influenced by annealing temperature. A significant improvement of electrical stability was attained in AZO films that were prepared at high annealing temperature. The films, which showed the highest and the lowest increasing rate of resistivity, were further characterized in detail to shed light on the possible mechanisms explaining the improved stability through crystallinity, surface morphology and elemental state of the thin film.

  12. Electrical stability of Al-doped ZnO transparent electrode prepared by sol-gel method

    Energy Technology Data Exchange (ETDEWEB)

    Tabassum, Samia, E-mail: shawon14@gmail.com; Yamasue, Eiji; Okumura, Hideyuki; Ishihara, Keiichi N.

    2016-07-30

    Highlights: • Al-doped ZnO thin film was deposited by sol-gel method in different annealing temperature and duration. • We examined the environmental stability in ambient and damp heat condition. • We investigated chemical state of thin film. • Better stability was observed in the film annealed at high temperature (600 °C) along with longer duration (120 min). • An ultrathin aluminum oxide layer formation was predicted by XPS measurement which protects further oxidation and improves stability. - Abstract: Al-doped zinc oxide (AZO) thin films have been considered as a promising alternative to tin doped indium oxide (ITO), which is currently used in various optoelectronic applications. However, the environmental stability of AZO film is not satisfactory, in that the resistivity is significantly increases in air. Here, we investigate the resistivity stability of AZO thin films prepared by sol-gel method using various annealing temperatures and durations. The degradation of resistivity property was observed for AZO films stored in ambient or damp heat environment, where the degradation rate was influenced by annealing temperature. A significant improvement of electrical stability was attained in AZO films that were prepared at high annealing temperature. The films, which showed the highest and the lowest increasing rate of resistivity, were further characterized in detail to shed light on the possible mechanisms explaining the improved stability through crystallinity, surface morphology and elemental state of the thin film.

  13. The structural studies of aluminosilicate gels and thin films synthesized by the sol-gel method using different Al2O3 and SiO2 precursors

    Directory of Open Access Journals (Sweden)

    Adamczyk Anna

    2015-12-01

    Full Text Available Aluminosilicate materials were obtained by sol-gel method, using different Al2O3 and SiO2 precursors in order to prepare sols based on water and organic solvents. As SiO2 precursors, Aerosil 200TM and tetraethoxysilane TEOS: Si(OC2H54 were applied, while DisperalTM and aluminium secondary butoxide ATSB: Al(OC4H93 were used for Al2O3 ones. Bulk samples were obtained by heating gels at 500 °C, 850 °C and at 1150 °C in air, while thin films were synthesized on carbon, steel and alundum (representing porous ceramics substrates by the dip coating method. Thin films were annealed in air (steel and alundum and in argon (carbon at different temperatures, depending on the substrate type. The samples were synthesized as gels and coatings of the composition corresponding the that of 3Al2O3·2SiO2 mullite because of the specific valuable properties of this material. The structure of the annealed bulk samples and coatings was studied by FT-IR spectroscopy and XRD method (in standard and GID configurations. Additionally, the electron microscopy (SEM together with EDS microanalysis were applied to describe the morphology and the chemical composition of thin films. The analysis of FT-IR spectra and X-ray diffraction patterns of bulk samples revealed the presence of γ-Al2O3 and δ-Al2O3 phases, together with the small amount of SiO2 in the particulate samples. This observation was confirmed by the bands due to vibrations of Al–O bonds occurring in γ-Al2O3 and δ-Al2O3 structures, in the range of 400 to 900 cm−1. The same phases (γ-Al2O3 and δ-Al2O were observed in the deposited coatings, but the presence of particulate ones strongly depended on the type of Al2O3 and SiO2 precursor and on the heat treatment temperature. All thin films contained considerable amounts of amorphous phase.

  14. Evaluation of different flamelet tabulation methods for laminar spray combustion

    Science.gov (United States)

    Luo, Yujuan; Wen, Xu; Wang, Haiou; Luo, Kun; Fan, Jianren

    2018-05-01

    In this work, three different flamelet tabulation methods for spray combustion are evaluated. Major differences among these methods lie in the treatment of the temperature boundary conditions of the flamelet equations. Particularly, in the first tabulation method ("M1"), both the fuel and oxidizer temperature boundary conditions are set to be fixed. In the second tabulation method ("M2"), the fuel temperature boundary condition is varied while the oxidizer temperature boundary condition is fixed. In the third tabulation method ("M3"), both the fuel and oxidizer temperature boundary conditions are varied and set to be equal. The focus of this work is to investigate whether the heat transfer between the droplet phase and gas phase can be represented by the studied tabulation methods through a priori analyses. To this end, spray flames stabilized in a three-dimensional counterflow are first simulated with detailed chemistry. Then, the trajectory variables are calculated from the detailed chemistry solutions. Finally, the tabulated thermo-chemical quantities are compared to the corresponding values from the detailed chemistry solutions. The comparisons show that the gas temperature cannot be predicted by "M1" with only a mixture fraction and reaction progress variable being the trajectory variables. The gas temperature can be correctly predicted by both "M2" and "M3," in which the total enthalpy is introduced as an additional manifold. In "M2," variations of the oxidizer temperature are considered with a temperature modification technique, which is not required in "M3." Interestingly, it is found that the mass fractions of the reactants and major products are not sensitive to the representation of the interphase heat transfer in the flamelet chemtables, and they can be correctly predicted by all tabulation methods. By contrast, the intermediate species CO and H2 in the premixed flame reaction zone are over-predicted by all tabulation methods.

  15. Auto-combustion synthesis and characterization of Mg doped CuAlO{sub 2} nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Agrawal, Shraddha, E-mail: shraddhaa32@gmail.com; Parveen, Azra; Naqvi, A. H. [Centre of Excellence in Materials Science (Nanomaterials), Department of Applied Physics, Z.H. College of Engg.& Technology, Aligarh Muslim University, Aligarh-202002 (India)

    2015-06-24

    The synthesis of pure and Mg doped Copper aluminumoxide CuAlO{sub 2}nanoparticles, a promising p-type TCO (transparent conducting oxide) have been done bysol gel auto combustion method using NaOH as a fuel, calcinated at 600°C. The structural properties were examined by XRD and SEM techniques. The optical absorption spectra of CuAlO{sub 2} sample recorded by UV-VIS spectrophotometer in the range of 200 to 800 nm have been presented. The crystallite size was determined by powder X-ray diffraction technique. The electrical behavior of pure and Mg doped CuAlO{sub 2} has been studied over a wide range of frequencies by using complex impedance spectroscopy.The variation of a.c. conductivity has been studied as function of frequency and temperature. The data taken together conclude that doping causes decreases in the ac conductivity of the nanoparticles as compared with the pure nanoparticles. Mg doping affects the optical properties and band gap.

  16. Turbulent Combustion Modeling Advances, New Trends and Perspectives

    CERN Document Server

    Echekki, Tarek

    2011-01-01

    Turbulent combustion sits at the interface of two important nonlinear, multiscale phenomena: chemistry and turbulence. Its study is extremely timely in view of the need to develop new combustion technologies in order to address challenges associated with climate change, energy source uncertainty, and air pollution. Despite the fact that modeling of turbulent combustion is a subject that has been researched for a number of years, its complexity implies that key issues are still eluding, and a theoretical description that is accurate enough to make turbulent combustion models rigorous and quantitative for industrial use is still lacking. In this book, prominent experts review most of the available approaches in modeling turbulent combustion, with particular focus on the exploding increase in computational resources that has allowed the simulation of increasingly detailed phenomena. The relevant algorithms are presented, the theoretical methods are explained, and various application examples are given. The book ...

  17. Effect of temperature on internal structure of uranyl gels

    International Nuclear Information System (INIS)

    Landspersky, H.; Urbanek, V.

    1983-01-01

    Tempering freshly prepared uranyl gel serves the homogenization of the volume of the individual spheres and the whole volume of the processed material. Tempering is carried out at a temperature of 90 degC in a special countercurrent through-flow column. The tempered gel particles were analyzed for specific surface and porosity using different methods, subjected to phase analysis, and the crystallite mean size was determined. It was found that the quality of the final gel depends on the residence time in the tempering column. Gel recrystallization probably takes place during tempering leading to stress and cracks which in the final stage lead to the disintegration of the xerogel. Maximum permissible gel residence time in the tempering column is 15 mins. (M.D.)

  18. Study of gel grown mixed crystals of Bax Ca ((IO3) 4

    Indian Academy of Sciences (India)

    The growth of mixed crystals of BaCa1–(IO3)4 were carried out with simple gel method. The effect of various parameters such as pH of gel solution, gel concentration, gel setting time, concentration of reactants on the growth was studied. Crystals having different morphologies and habits were obtained. The grown ...

  19. Preparation and characterization of ZnO transparent semiconductor thin films by sol-gel method

    International Nuclear Information System (INIS)

    Tsay, Chien-Yie; Fan, Kai-Shiung; Chen, Sih-Han; Tsai, Chia-Hao

    2010-01-01

    Transparent semiconductor thin films of zinc oxide (ZnO) were deposited onto alkali-free glass substrates by the sol-gel method and spin-coating technique. In this study, authors investigate the influence of the heating rate of the preheating process (4 or 10 o C/min) on the crystallization, surface morphology, and optical properties of sol-gel derived ZnO thin films. The ZnO sol was synthesized by dissolving zinc acetate dehydrate in ethanol, and then adding monoethanolamine. The as-coated films were preheated at 300 o C for 10 min and annealed at 500 o C for 1 h in air ambiance. Experimental results indicate that the heating rate of the preheating process strongly affected the surface morphology and transparency of ZnO thin film. Specifically, a heating rate of 10 o C/min for the preheating process produces a preferred orientation along the (0 0 2) plane and a high transmittance of 92% at a wavelength of 550 nm. Furthermore, this study reports the fabrication of thin-film transistors (TFTs) with a transparent ZnO active channel layer and evaluates their electrical performance.

  20. [Real time diagnostics of instantaneous temperature of combustion and explosion process by modern spectroscopy].

    Science.gov (United States)

    Zhou, Xue-tie; Wang, Jun-de; Li, Yan; Liu, Da-bing

    2003-04-01

    The combustion temperature is one of the important parameters to express flame combustion and explosion characteristics. It will effectively guide the design and manufacture of new model explosives, industrial explosive materials, and weapons. The recent developments and applications of real time diagnostics of instantaneous temperature of combustion and explosion processes by modern spectroscopic methods, such as atomic absorption-emission method, atomic emission two-line spectroscopy, atomic emission multiline spectroscopy, molecular rotation-vibration spectroscopy, coherent anti-stokes Raman scattering (CARS) and plane laser-induced fluorescence (PLIF), were reviewed in this paper. The maximum time resolution of atomic absorption-emission method is 25 microseconds. The time resolution of atomic emission two-line spectroscopy can reach 0.1 microsecond. These two methods can completely suit the need of real time and instantaneous temperature diagnostics of violent explosion and flame combustion. Other methods will also provide new effective research methods for the processes and characteristics of combustion, flame and explosion.