WorldWideScience

Sample records for geesthacht-2 research reactor

  1. Proceedings of the international topical seminar on management of ageing of research reactors, Geesthacht/Hamburg, May 8-12, 1995

    International Nuclear Information System (INIS)

    Alcala-Ruiz, F.; Krull, W.

    1995-01-01

    The GKSS Research Centre Geesthacht GmbH and the International Atomic Energy Agency (IAEA) held a joint seminar on 'Management of Ageing of Research Reactors' from May 8-12, 1995, at Geesthacht/Hamburg. More than 100 participants from 36 countries and two international organizations were present. During the seminar 52 papers have been presented discussing the large variety of ageing effects from physical ageing to design ageing and staff ageing and the measures taken to identify and to overcome the ageing effects. (orig.) [de

  2. Continuous backfitting measures for the FRG-1 and FRG-2 research reactors

    International Nuclear Information System (INIS)

    Blom, K.H.; Falck, K.; Krull, W.

    1990-01-01

    The GKSS-Research Centre Geesthacht GmbH has been operating the research reactors FRG-1 and FRG-2 with power levels of 5 MW and 15 MW for 31 and 26 years respectively. Safe operation at full power levels over so many years with an average utilization between 180 d to 250 d per year is possible only with great efforts in modernization and upgrading of the research reactors. Emphasis has been placed on backfitting since around 1975. At that time within the Federal Republic of Germany many new guidelines, rules, ordinances, and standards in the field of (power) reactor safety were published. Much work has been done on the modernization of the FRG-1 and FRG-2 research reactors therefore within the last ten years. Work done within the last two years and presently underway includes: measures against water leakage through the concrete and along the beam tubes; repair of both cooling towers; modernization of the ventilation system; measures for fire protection; activities in water chemistry and water quality; installation of a double tubing for parts of the primary piping of the FRG-1; replacement of instrumentation, process control systems (operation and monitoring system) and alarm system; renewal of the emergency power supply; installation of internal lightning protection; installation of a cold neutron source; enrichment reduction for FRG-1. These efforts will continue to allow safe operation of our research reactors over their whole operational life

  3. Quality assurance measures at the Geesthacht research reactor FRG-1

    International Nuclear Information System (INIS)

    Voss, J.; Krull, W.; Schmidt, K.

    1995-01-01

    The major part of the quality system for the FRG is already in practical use; other parts require extensive preparations and therefore transition periods of different lengths before they can be introduced. GKSS is aware that beside the other upgrading and refurbishment activities, these duality assurance measures will be very important in ensuring the operation of the FRG-1 research reactor over the coming 15 years or more. (orig.)

  4. Experiences with interpretation and application of the German Atomic Energy Act for the German research reactors in Geesthacht FRG-1 and FRG-2

    International Nuclear Information System (INIS)

    Krull, W.

    1980-01-01

    The German research reactors FRG-1 and FRG-2 have passed different types of licensing procedures in the past years. It is reported about the experiences we have got in the interpretation and application of section 7 of the German Atomic Energy Act. Following these experiences an estimation is done for the licensing procedure for the reduction of the uranium enrichment. (orig.) [de

  5. Ageing management of the BR2 research reactor

    International Nuclear Information System (INIS)

    Verpoortem, J. R.; Van Dyck, S.

    2014-01-01

    At the Belgian nuclear research centre (SCK.CEN) several test reactors are operated. Among these, Belgian Reactor 2 (BR2) is the largest Material Test Reactor (MTR). This water-cooled, beryllium moderated reactor with a maximum thermal power of 100 MW became operational in 1962. Except for two major refurbishment campaigns of one year each, this reactor has been operated continuously over the past 50 years, with a frequency of 5-12 cycles per year. At present, BR2 is used for different research activities, the production of medical isotopes, the production of n-doped silicon and various training and education activities. (Author)

  6. Consequences arising for research reactor operation from the planned amendment of the German atomic energy act (AtG) and atomic energy policy. Germany soon to be a third-world country in nuclear research?

    International Nuclear Information System (INIS)

    Krull, W.

    1999-01-01

    In the opinion of Dr. Wilfried Krull from Geesthacht, the Chairman of the German Research Reactor Trades Union, there is a great danger of the Federal Republic of Germany falling to the level of a third-world country as far as nuclear research is concerned. He says that it is a matter of urgency for binding exceptions from the general restrictions applicable to nuclear power stations to be incorporated into the opt-out amendment to nuclear law tabled by Juergen Trittin, the Minister for Environmental Affairs. He says that prohibition of reprocessing of spent fuel elements constitutes a violation of the surrender treaties concluded with the USA as part of non-proliferation. Furthermore, he states that a ban on reprocessing of spent nuclear fuel from research and training reactors is counterproductive. He says that there would be a particular danger if the limitation of research reactors to a rating of one megawatt, which Trittin has in the first instance planned in an initial draft law, were to be implemented in the form of a regulation. At that point, he claims, Germany would, as far as nuclear medicine (including cancer therapy) and modern technical inspection procedures (non-destructive, of materials) are concerned, become an importing country. (orig.) [de

  7. Findings from working for the IAEA initiative on research reactor ageing and ageing management

    International Nuclear Information System (INIS)

    Roegler, H.-J.

    2010-01-01

    1995 the last sharing and compiling the existing knowledge about of the Research Reactor (RR) Ageing and the respective Fighting took place during a well attended conference at Geesthacht, Germany, documented in a bulky conference report. In 2008, the International Atomic Energy Agency has initiated another collecting and evaluating in order to make the recent experience in that field available to the entire RR Community. In this respect, RR operators, plant and system fabricators, and authorities as well as independent experts have been approached worldwide for providing contributions and fortunately about every second member of the RR Community replied. The paper is going to inform on the experience gained by the contacts and communication, the replies as well as the non-replies, underlying motives as problems, and mainly, some statistical evaluation of the findings. The respective IAEA data base being accessible to all members of the RR Community will be briefly characterised in structures and contents. (author)

  8. Advanced development and operating experience with a canned motor pump under pressurized water reactor conditions

    International Nuclear Information System (INIS)

    Dittmer, H.; Reymann, A.; Seibig, B.; Reinecker, H.

    1988-01-01

    At the research reactor FRG-2, Geesthacht, an irradiation device is in operation for testing defective light-water-reactor (LWR) test fuel rods under pressurized water reactor conditions (320 0 C, 160 bar). The requirements to the canned motor pump for cooling water circulation: medium: Demineralized water, operating temperature 320 0 C, operating pressure 155 bar, radiation field of the reactor, integration in the irradiation capsule, helium leak rate -6 mbar.dm 3 .s -1 , minimum working life 3000 hours, were high and caused difficulties in the acquisition of this component. First test runs with supplied pumps showed that the desired working life could not be achieved. The results of the development steps, the test runs, and the performance in service show that for our range of applications, the best combination of materials for the radial bearings is silicon-infiltrated SiC (8% free Si) against the same material. These bearings allowed a good working life for the pump to be achieved. (orig./GL) [de

  9. Upgrading of the research reactors FRG-1 and FRG-2

    International Nuclear Information System (INIS)

    Krull, W.

    1981-01-01

    In 1972 for the research reactor FRG-2 we applied for a license to increase the power from 15 MW to 21 MW. During this procedure a public laying out of the safety report and an upgrading procedure for both research reactors - FRG-1 (5 MW) and FRG-2 - were required by the licensing authorities. After discussing the legal background for licensing procedures in the Federal Republic of Germany the upgrading for both research reactors is described. The present status and future licensing aspects for changes of our research reactors are discussed, too. (orig.) [de

  10. IGORR 2: Proceedings of the 2. meeting of the International Group On Research Reactors

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1992-07-01

    The International group on Research Reactors was formed to facilitate the sharing of knowledge and experience among those institutions and individuals who are actively working to design, build, and promote new research reactors or to make significant upgrades to existing facilities. Sessions during this second meeting were devoted to research reactor reports (GRENOBLE reactor, FRM-II, HIFAR, PIK, reactors at JAERI, MAPLE, ANS, NIST, MURR, TRIGA, BR-2, SIRIUS 2); other neutron sources; and two workshops were dealing with research and development results and needs and reports on progress in needed of R and D areas identified at IGORR 1.

  11. IGORR 2: Proceedings of the 2. meeting of the International Group On Research Reactors

    International Nuclear Information System (INIS)

    1992-01-01

    The International group on Research Reactors was formed to facilitate the sharing of knowledge and experience among those institutions and individuals who are actively working to design, build, and promote new research reactors or to make significant upgrades to existing facilities. Sessions during this second meeting were devoted to research reactor reports (GRENOBLE reactor, FRM-II, HIFAR, PIK, reactors at JAERI, MAPLE, ANS, NIST, MURR, TRIGA, BR-2, SIRIUS 2); other neutron sources; and two workshops were dealing with research and development results and needs and reports on progress in needed of R and D areas identified at IGORR 1

  12. Material test reactor fuel research at the BR2 reactor

    Energy Technology Data Exchange (ETDEWEB)

    Dyck, Steven Van; Koonen, Edgar; Berghe, Sven van den [Institute for Nuclear Materials Science, SCK-CEN, Boeretang, Mol (Belgium)

    2012-03-15

    The construction of new, high performance material test reactor or the conversion of such reactors' core from high enriched uranium (HEU) to low enriched uranium (LEU) based fuel requires several fuel qualification steps. For the conversion of high performance reactors, high density dispersion or monolithic fuel types are being developed. The Uranium-Molybdenum fuel system has been selected as reference system for the qualification of LEU fuels. For reactors with lower performance characteristics, or as medium enriched fuel for high performance reactors, uranium silicide dispersion fuel is applied. However, on the longer term, the U-Mo based fuel types may offer a more efficient fuel alternative and-or an easier back-end solution with respect to the silicide based fuels. At the BR2 reactor of the Belgian nuclear research center, SCK-CEN in Mol, several types of fuel testing opportunities are present to contribute to such qualification process. A generic validation test for a selected fuel system is the irradiation of flat plates with representative dimensions for a fuel element. By flexible positioning and core loading, bounding irradiation conditions for fuel elements can be performed in a standard device in the BR2. For fuel element designs with curved plates, the element fabrication method compatibility of the fuel type can be addressed by incorporating a set of prototype fuel plates in a mixed driver fuel element of the BR2 reactor. These generic types of tests are performed directly in the primary coolant flow conditions of the BR2 reactor. The experiment control and interpretation is supported by detailed neutronic and thermal-hydraulic modeling of the experiments. Finally, the BR2 reactor offers the flexibility for irradiation of full size prototype fuel elements, as 200mm diameter irradiation channels are available. These channels allow the accommodation of various types of prototype fuel elements, eventually using a dedicated cooling loop to provide the

  13. SIRIUS 2: A versatile medium power research reactor

    International Nuclear Information System (INIS)

    Rousselle, P.

    1992-01-01

    Most of the Research Reactors in the world have been critical in the Sixties and operated for twenty to thirty years. Some of them have been completely shut down, modified, or simply refurbished; the total number of RR in operation has decreased but there is still an important need for medium power research reactors in order: - to sustain a power program with fuel and material testing for NPP or fusion reactors; - to produce radioisotopes for industrial or medical purposes, doped silicon, NAA or neutron radiography; - to investigate further the condensed matter, with cold neutrons routed through neutron guides to improved equipment; - to develop new technologies and applications such as medical alphatherapy. Hence, taking advantage of nearly hundred reactor x years operation and backed up by the CEA experience, TECHNICATOME assisted by FRAMATOME has designed a new versatile multipurpose Research Reactor (20-30 Mw) SIRIUS 2 taking into account: - more stringent safety rules; - the lifetime; - the flexibility enabling a wide range of experiments and, - the future dismantling of the facility according to the ALARA criteria

  14. Safeguarding research reactors

    International Nuclear Information System (INIS)

    Powers, J.A.

    1983-03-01

    The report is organized in four sections, including the introduction. The second section contains a discussion of the characteristics and attributes of research reactors important to safeguards. In this section, research reactors are described according to their power level, if greater than 25 thermal megawatts, or according to each fuel type. This descriptive discussion includes both reactor and reactor fuel information of a generic nature, according to the following categories. 1. Research reactors with more than 25 megawatts thermal power, 2. Plate fuelled reactors, 3. Assembly fuelled reactors. 4. Research reactors fuelled with individual rods. 5. Disk fuelled reactors, and 6. Research reactors fuelled with aqueous homogeneous fuel. The third section consists of a brief discussion of general IAEA safeguards as they apply to research reactors. This section is based on IAEA safeguards implementation documents and technical reports that are used to establish Agency-State agreements and facility attachments. The fourth and last section describes inspection activities at research reactors necessary to meet Agency objectives. The scope of the activities extends to both pre and post inspection as well as the on-site inspection and includes the examination of records and reports relative to reactor operation and to receipts, shipments and certain internal transfers, periodic verification of fresh fuel, spent fuel and core fuel, activities related to containment and surveillance, and other selected activities, depending on the reactor

  15. Keeping research reactors relevant: A pro-active approach for SLOWPOKE-2

    International Nuclear Information System (INIS)

    Cosby, L.R.; Bennett, L.G.I.; Nielsen, K.; Weir, R.

    2010-01-01

    The SLOWPOKE is a small, inherently safe, pool-type research reactor that was engineered and marketed by Atomic Energy of Canada Limited (AECL) in the 1970s and 80s. The original reactor, SLOWPOKE-1, was moved from Chalk River to the University of Toronto in 1970 and was operated until upgraded to the SLOWPOKE-2 reactor in 1973. In all, eight reactors in the two versions were produced and five are still in operation today, three having been decommissioned. All of the remaining reactors are designated as SLOWPOKE-2 reactors. These research reactors are prone to two major issues: aging components and lack of relevance to a younger audience. In order to combat these problems, one SLOWPOKE -2 facility has embraced a strategy that involves modernizing their reactor in order to keep the reactor up to date and relevant. In 2001, this facility replaced its aging analogue reactor control system with a digital control system. The system was successfully commissioned and has provided a renewed platform for student learning and research. The digital control system provides a better interface and allows flexibility in data storage and retrieval that was never possible with the analogue control system. This facility has started work on another upgrade to the digital control and instrumentation system that will be installed in 2010. The upgrade includes new computer hardware, updated software and a web-based simulation and training system that will allow licensed operators, students and researchers to use an online simulation tool for training, education and research. The tool consists of: 1) A dynamic simulation for reactor kinetics (e.g., core flux, power, core temperatures, etc). This tool is useful for operator training and student education; 2) Dynamic mapping of the reactor and pool container gamma and neutron fluxes as well as the vertical neutron beam tube flux. This research planning tool is used for various researchers who wish to do irradiations (e.g., neutron

  16. Application of MCNPX 2.7.D for reactor core management at the research reactor BR2

    International Nuclear Information System (INIS)

    Kalcheva, Silva; Koonen, Edgar

    2011-01-01

    The paper discusses application of the Monte Carlo burn up code MCNPX 2.7.D for whole core criticality and depletion analysis of the Material Testing Research Reactor BR2 at SCK-CEN in Mol, Belgium. Two different approaches in the use of MCNPX 2.7.D are presented. The first methodology couples the evolution of fuel depletion, evaluated by MCNPX 2.7.D in an infinite lattice with a steady-state 3-D power distribution in the full core model. The second method represents fully automatic whole core depletion and criticality calculations in the detailed 3-D heterogeneous geometry model of the BR2 reactor. The accuracy of the method and computational time as function of the number of used unique burn up materials in the model are being studied. The depletion capabilities of MCNPX 2.7.D are compared vs. the developed at the BR2 reactor department MCNPX & ORIGEN-S combined method. Testing of MCNPX 2.7.D on the criticality measurements at the BR2 reactor is presented. (author)

  17. IAEA safety standards for research reactors

    International Nuclear Information System (INIS)

    Abou Yehia, H.

    2007-01-01

    The general structure of the IAEA Safety Standards and the process for their development and revision are briefly presented and discussed together with the progress achieved in the development of Safety Standards for research reactor. These documents provide the safety requirements and the key technical recommendations to achieve enhanced safety. They are intended for use by all organizations involved in safety of research reactors and developed in a way that allows them to be incorporated into national laws and regulations. The author reviews the safety standards for research reactors and details their specificities. There are 4 published safety standards: 1) Safety assessment of research reactors and preparation of the safety analysis report (35-G1), 2) Safety in the utilization and modification of research reactors (35-G2), 3) Commissioning of research reactors (NS-G-4.1), and 4) Maintenance, periodic testing and inspection of research reactors (NS-G-4.2). There 5 draft safety standards: 1) Operational limits and conditions and operating procedures for research reactors (DS261), 2) The operating organization and the recruitment, training and qualification of personnel for research reactors (DS325), 3) Radiation protection and radioactive waste management in the design and operation of research reactors (DS340), 4) Core management and fuel handling at research reactors (DS350), and 5) Grading the application of safety requirements for research reactors (DS351). There are 2 planned safety standards, one concerning the ageing management for research reactor and the second deals with the control and instrumentation of research reactors

  18. Research reactors

    International Nuclear Information System (INIS)

    Merchie, Francois

    2015-10-01

    This article proposes an overview of research reactors, i.e. nuclear reactors of less than 100 MW. Generally, these reactors are used as neutron generators for basic research in matter sciences and for technological research as a support to power reactors. The author proposes an overview of the general design of research reactors in terms of core size, of number of fissions, of neutron flow, of neutron space distribution. He outlines that this design is a compromise between a compact enough core, a sufficient experiment volume, and high enough power densities without affecting neutron performance or its experimental use. The author evokes the safety framework (same regulations as for power reactors, more constraining measures after Fukushima, international bodies). He presents the main characteristics and operation of the two families which represent almost all research reactors; firstly, heavy water reactors (photos, drawings and figures illustrate different examples); and secondly light water moderated and cooled reactors with a distinction between open core pool reactors like Melusine and Triton, pool reactors with containment, experimental fast breeder reactors (Rapsodie, the Russian BOR 60, the Chinese CEFR). The author describes the main uses of research reactors: basic research, applied and technological research, safety tests, production of radio-isotopes for medicine and industry, analysis of elements present under the form of traces at very low concentrations, non destructive testing, doping of silicon mono-crystalline ingots. The author then discusses the relationship between research reactors and non proliferation, and finally evokes perspectives (decrease of the number of research reactors in the world, the Jules Horowitz project)

  19. Research reactors

    International Nuclear Information System (INIS)

    Kowarski, L.

    1955-01-01

    It brings together the techniques data which are involved in the discussion about the utility for a research institute to acquire an atomic reactor for research purposes. This type of decision are often taken by non-specialist people who can need a brief presentation of a research reactor and its possibilities in term of research before asking advises to experts. In a first part, it draws up a list of the different research programs which can be studied by getting a research reactor. First of all is the reactor behaviour and kinetics studies (reproducibility factor, exploration of neutron density, effect of reactor structure, effect of material irradiation...). Physical studies includes study of the behaviour of the control system, studies of neutron resonance phenomena and study of the fission process for example. Chemical studies involves the study of manipulation and control of hot material, characterisation of nuclear species produced in the reactor and chemical effects of irradiation on chemical properties and reactions. Biology and medicine research involves studies of irradiation on man and animals, genetics research, food or medical tools sterilization and neutron beams effect on tumour for example. A large number of other subjects can be studied in a reactor research as reactor construction material research, fabrication of radioactive sources for radiographic techniques or applied research as in agriculture or electronic. The second part discussed the technological considerations when choosing the reactor type. The technological factors, which are considered for its choice, are the power of the reactor, the nature of the fuel which is used, the type of moderator (water, heavy water, graphite or BeO) and the reflector, the type of coolants, the protection shield and the control systems. In the third part, it described the characteristics (place of installation, type of combustible and comments) and performance (power, neutron flux ) of already existing

  20. Necessity of research reactors

    International Nuclear Information System (INIS)

    Ito, Tetsuo

    2016-01-01

    Currently, only three educational research reactors at two universities exist in Japan: KUR, KUCA of Kyoto University and UTR-KINKI of Kinki University. UTR-KINKI is a light-water moderated, graphite reflected, heterogeneous enriched uranium thermal reactor, which began operation as a private university No. 1 reactor in 1961. It is a low power nuclear reactor for education and research with a maximum heat output of 1 W. Using this nuclear reactor, researches, practical training, experiments for training nuclear human resources, and nuclear knowledge dissemination activities are carried out. As of October 2016, research and practical training accompanied by operation are not carried out because it is stopped. The following five items can be cited as challenges faced by research reactors: (1) response to new regulatory standards and stagnation of research and education, (2) strengthening of nuclear material protection and nuclear fuel concentration reduction, (3) countermeasures against aging and next research reactor, (4) outflow and shortage of nuclear human resources, and (5) expansion of research reactor maintenance cost. This paper would like to make the following recommendations so that we can make contribution to the world in the field of nuclear power. (1) Communication between regulatory authorities and business operators regarding new regulatory standards compliance. (2) Response to various problems including spent fuel measures for long-term stable utilization of research reactors. (3) Personal exchanges among nuclear experts. (4) Expansion of nuclear related departments at universities to train nuclear human resources. (5) Training of world-class nuclear human resources, and succession and development of research and technologies. (A.O.)

  1. Homogeneous SLOWPOKE reactors for replacing SLOWPOKE-2 research reactors and the production of radioisotopes

    International Nuclear Information System (INIS)

    Bonin, H.W.; Hilborn, J.W.; Carlin, G.E.; Gagnon, R.; Busatta, P.

    2014-01-01

    Inspired from the inherently safe SLOWPOKE-2 research reactor, the Homogeneous SLOWPOKE reactor was conceived with a double goal: replacing the heterogeneous SLOWPOKE-2 reactors when they reach end-of-core life to continue their missions of neutron activation analysis and neutron radiography at universities, and to produce radioisotopes such as 99 Mo for medical applications. A homogeneous reactor core allows a much simpler extraction of radioisotopes (such as 99 Mo) for applications in industry and nuclear medicine. The 20 kW Homogeneous SLOWPOKE reactor was modelled using both the deterministic WIMS-AECL and the probabilistic MCNP 5 reactor simulation codes. The homogeneous fuel mixture was a dilute aqueous solution of Uranyl Sulfate (UO 2 SO 4 ) with 994.2 g of 235 U (enrichment at 20%) providing an excess reactivity at operating temperature (40 o C) of 3.8 mk for a molality determined as 1.46 mol kg -1 for a Zircaloy-2 reactor vessel. Because this reactor is intended to replace the core of SLOWPOKE-2 reactors, the Homogeneous SLOWPOKE reactor core had a height about twice its diameter. The reactor could be controlled by mechanical absorber rods in the beryllium reflector, chemical control in the core, or a combination of both. The safety of the Homogeneous SLOWPOKE reactor was analysed for both normal operation and transient conditions. Thermal-hydraulics calculations used COMSOL Multiphysics and the results showed that natural convection was sufficient to ensure adequate reactor cooling in all situations. The most severe transient simulated resulted from a 5.87 mk step positive reactivity insertion to the reactor in operation at critical and at steady state at 20 o C. Peak temperature and power were determined as 83 o C and 546 kW, respectively, reached 5.1 s after the reactivity insertion. However, the power fell rapidly to values below 20 kW some 35 s after the peak and remained below that value thereafter. Both the temperature and void coefficients are

  2. Homogeneous SLOWPOKE reactors for replacing SLOWPOKE-2 research reactors and the production of radioisotopes

    Energy Technology Data Exchange (ETDEWEB)

    Bonin, H.W., E-mail: bonin-h@rmc.ca [Royal Military College of Canada, Kingston, Ontario (Canada); Hilborn, J.W. [Canadian Nuclear Laboratories, Chalk River, Ontario (Canada); Carlin, G.E. [Ontario Power Generation, Toronto, Ontario (Canada); Gagnon, R.; Busatta, P. [Canadian Forces (Canada)

    2014-07-01

    Inspired from the inherently safe SLOWPOKE-2 research reactor, the Homogeneous SLOWPOKE reactor was conceived with a double goal: replacing the heterogeneous SLOWPOKE-2 reactors when they reach end-of-core life to continue their missions of neutron activation analysis and neutron radiography at universities, and to produce radioisotopes such as {sup 99}Mo for medical applications. A homogeneous reactor core allows a much simpler extraction of radioisotopes (such as {sup 99}Mo) for applications in industry and nuclear medicine. The 20 kW Homogeneous SLOWPOKE reactor was modelled using both the deterministic WIMS-AECL and the probabilistic MCNP 5 reactor simulation codes. The homogeneous fuel mixture was a dilute aqueous solution of Uranyl Sulfate (UO{sub 2}SO{sub 4}) with 994.2 g of {sup 235}U (enrichment at 20%) providing an excess reactivity at operating temperature (40 {sup o}C) of 3.8 mk for a molality determined as 1.46 mol kg{sup -1} for a Zircaloy-2 reactor vessel. Because this reactor is intended to replace the core of SLOWPOKE-2 reactors, the Homogeneous SLOWPOKE reactor core had a height about twice its diameter. The reactor could be controlled by mechanical absorber rods in the beryllium reflector, chemical control in the core, or a combination of both. The safety of the Homogeneous SLOWPOKE reactor was analysed for both normal operation and transient conditions. Thermal-hydraulics calculations used COMSOL Multiphysics and the results showed that natural convection was sufficient to ensure adequate reactor cooling in all situations. The most severe transient simulated resulted from a 5.87 mk step positive reactivity insertion to the reactor in operation at critical and at steady state at 20 {sup o}C. Peak temperature and power were determined as 83 {sup o}C and 546 kW, respectively, reached 5.1 s after the reactivity insertion. However, the power fell rapidly to values below 20 kW some 35 s after the peak and remained below that value thereafter. Both the

  3. Research reactor DHRUVA

    International Nuclear Information System (INIS)

    Veeraraghaven, N.

    1990-01-01

    DHRUVA, a 100 MWt research reactor located at the Bhabha Atomic Research Centre, Bombay, attained first criticality during August, 1985. The reactor is fuelled with natural uranium and is cooled, moderated and reflected by heavy water. Maximum thermal neutron flux obtained in the reactor is 1.8 X 10 14 n/cm 2 /sec. Some of the salient design features of the reactor are discussed in this paper. Some important features of the reactor coolant system, regulation and protection systems and experimental facilities are presented. A short account of the engineered safety features is provided. Some of the problems that were faced during commissioning and the initial phase of power operation are also dealt upon

  4. Research reactors - an overview

    International Nuclear Information System (INIS)

    West, C.D.

    1997-01-01

    A broad overview of different types of research and type reactors is provided in this paper. Reactor designs and operating conditions are briefly described for four reactors. The reactor types described include swimming pool reactors, the High Flux Isotope Reactor, the Mark I TRIGA reactor, and the Advanced Neutron Source reactor. Emphasis in the descriptions is placed on safety-related features of the reactors. 7 refs., 7 figs., 2 tabs

  5. Reactor Materials Research

    International Nuclear Information System (INIS)

    Van Walle, E.

    2001-01-01

    The activities of the Reactor Materials Research Department of the Belgian Nuclear Research Centre SCK-CEN in 2000 are summarised. The programmes within the department are focussed on studies concerning (1) fusion, in particular mechanical testing; (2) Irradiation Assisted Stress Corrosion Cracking (IASCC); (3) nuclear fuel; and (4) Reactor Pressure Vessel Steel (RPVS)

  6. Reactor Materials Research

    Energy Technology Data Exchange (ETDEWEB)

    Van Walle, E

    2001-04-01

    The activities of the Reactor Materials Research Department of the Belgian Nuclear Research Centre SCK-CEN in 2000 are summarised. The programmes within the department are focussed on studies concerning (1) fusion, in particular mechanical testing; (2) Irradiation Assisted Stress Corrosion Cracking (IASCC); (3) nuclear fuel; and (4) Reactor Pressure Vessel Steel (RPVS)

  7. Nuclear research reactors

    International Nuclear Information System (INIS)

    1985-01-01

    It's presented data about nuclear research reactors in the world, retrieved from the Sien (Nuclear and Energetic Information System) data bank. The information are organized in table forms as follows: research reactors by countries; research reactors by type; research reactors by fuel and research reactors by purpose. (E.G.) [pt

  8. Possibilities of optimizing non-nuclear simulation of pressurized water reactor transients

    International Nuclear Information System (INIS)

    Silva Filho, E.

    1985-01-01

    The GKSS-Forschungszentrum Geesthacht GmbH has instituted the concept of a scaled test facility (volume scale factor of 1/100) of a typical PWR of the 1 300 MWe class for the purpose of studying small breaks Loss-of-Coolant Accidents (LOCA) and transients. Having in mind the goal of an optimization of this concept has been choosen a station blackout with and without reactor shutdown and a small break LOCA in a primary loop piping to investigate the thermohydraulic behaviour of the test facility in comparison to the reactor plant. The computer code RELAP 5/MOD 1 has been utilized to compare the test facility behaviour with the reactor plant one. Recommendations are given for minimization of distortions between test facility and reactor plant. (orig./HP) [de

  9. Utilization of the SLOWPOKE-2 research reactor

    International Nuclear Information System (INIS)

    Lalor, G.C.

    2001-01-01

    SLOWPOKEs are typically low power research reactors that have a limited number of applications. However, a significant range of NAA can be performed with such reactors. This paper describes a SLOWPOKE-based NAA program that is performing a valuable series of studies in Jamaica, including geological mapping and pollution assessment. (author)

  10. Research reactors in Argentina

    International Nuclear Information System (INIS)

    Carlos Ruben Calabrese

    1999-01-01

    Argentine Nuclear Development started in early fifties. In 1957, it was decided to built the first a research reactor. RA-1 reactor (120 kw, today licensed to work at 40 kW) started operation in January 1958. Originally RA-1 was an Argonaut (American design) reactor. In early sixties, the RA-1 core was changed. Fuel rods (20% enrichment) was introduced instead the old Argonaut core design. For that reason, a critical facility named RA-0 was built. After that, the RA-3 project started, to build a multipurpose 5 MW nuclear reactor MTR pool type, to produce radioisotopes and research. For that reason and to define the characteristics of the RA-3 core, another critical facility was built, RA-2. Initially RA-3 was a 90 % enriched fuel reactor, and started operation in 1967. When Atucha I NPP project started, a German design Power Reactor, a small homogeneous reactor was donated by the German Government to Argentina (1969). This was RA-4 reactor (20% enrichment, 1W). In 1982, RA-6 pool reactor achieved criticality. This is a 500 kW reactor with 90% enriched MTR fuel elements. In 1990, RA-3 started to operate fueled by 20% enriched fuel. In 1997, the RA-8 (multipurpose critical facility located at Pilcaniyeu) started to operate. RA-3 reactor is the most important CNEA reactor for Argentine Research Reactors development. It is the first in a succession of Argentine MTR reactors built by CNEA (and INVAP SE ) in Argentina and other countries: RA-6 (500 kW, Bariloche-Argentina), RP-10 (10MW, Peru), NUR (500 kW, Algeria), MPR (22 MW, Egypt). The experience of Argentinian industry permits to compete with foreign developed countries as supplier of research reactors. Today, CNEA has six research reactors whose activities have a range from education and promotion of nuclear activity, to radioisotope production. For more than forty years, Argentine Research Reactors are working. The experience of Argentine is important, and argentine firms are able to compete in the design and

  11. Joint Assessment of ETRR-2 Research Reactor Operations Program, Capabilities, and Facilities

    International Nuclear Information System (INIS)

    Bissani, M; O'Kelly, D S

    2006-01-01

    A joint assessment meeting was conducted at the Egyptian Atomic Energy Agency (EAEA) followed by a tour of Egyptian Second Research Reactor (ETRR-2) on March 22 and 23, 2006. The purpose of the visit was to evaluate the capabilities of the new research reactor and its operations under Action Sheet 4 between the U.S. DOE and the EAEA, ''Research Reactor Operation'', and Action Sheet 6, ''Technical assistance in The Production of Radioisotopes''. Preliminary Recommendations of the joint assessment are as follows: (1) ETRR-2 utilization should be increased by encouraging frequent and sustained operations. This can be accomplished in part by (a) Improving the supply-chain management for fresh reactor fuel and alleviating the perception that the existing fuel inventory should be conserved due to unreliable fuel supply; and (b) Promulgating a policy for sample irradiation priority that encourages the use of the reactor and does not leave the decision of when to operate entirely at the discretion of reactor operations staff. (2) Each experimental facility in operation or built for a single purpose should be reevaluated to focus on those that most meet the goals of the EAEA strategic business plan. Temporary or long-term elimination of some experimental programs might be necessary to provide more focused utilization. There may be instances of emerging reactor applications for which no experimental facility is yet designed or envisioned. In some cases, an experimental facility may have a more beneficial use than the purpose for which it was originally designed. For example, (a) An effective Boron Neutron Capture Therapy (BNCT) program requires nearby high quality medical facilities. These facilities are not available and are unlikely to be constructed near the Inshas site. Further, the BNCT facility is not correctly designed for advanced research and therapy programs using epithermal neutrons. (b) The ETRR-2 is frequently operated to provide color-enhanced gemstones but is

  12. Joint Assessment of ETRR-2 Research Reactor Operations Program, Capabilities, and Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Bissani, M; O' Kelly, D S

    2006-05-08

    A joint assessment meeting was conducted at the Egyptian Atomic Energy Agency (EAEA) followed by a tour of Egyptian Second Research Reactor (ETRR-2) on March 22 and 23, 2006. The purpose of the visit was to evaluate the capabilities of the new research reactor and its operations under Action Sheet 4 between the U.S. DOE and the EAEA, ''Research Reactor Operation'', and Action Sheet 6, ''Technical assistance in The Production of Radioisotopes''. Preliminary Recommendations of the joint assessment are as follows: (1) ETRR-2 utilization should be increased by encouraging frequent and sustained operations. This can be accomplished in part by (a) Improving the supply-chain management for fresh reactor fuel and alleviating the perception that the existing fuel inventory should be conserved due to unreliable fuel supply; and (b) Promulgating a policy for sample irradiation priority that encourages the use of the reactor and does not leave the decision of when to operate entirely at the discretion of reactor operations staff. (2) Each experimental facility in operation or built for a single purpose should be reevaluated to focus on those that most meet the goals of the EAEA strategic business plan. Temporary or long-term elimination of some experimental programs might be necessary to provide more focused utilization. There may be instances of emerging reactor applications for which no experimental facility is yet designed or envisioned. In some cases, an experimental facility may have a more beneficial use than the purpose for which it was originally designed. For example, (a) An effective Boron Neutron Capture Therapy (BNCT) program requires nearby high quality medical facilities. These facilities are not available and are unlikely to be constructed near the Inshas site. Further, the BNCT facility is not correctly designed for advanced research and therapy programs using epithermal neutrons. (b) The ETRR-2 is frequently operated to

  13. Conversion planning for the two FRGs of the GKSS-Research Centre

    International Nuclear Information System (INIS)

    Roegler, H.-J.

    1984-01-01

    The German Research Centre GKSS at Geesthacht operates two research reactors, the FRG-1 with 5 MW power and the FRG-2 with 15 MW power. Both plants use the same fuel element for a number of reasons. Such a case is the background of the following report. The conversion planning for both plants has to be taken into account these reasons and to result in a common fuel element again. Moreover, the efforts for the conversion and the related licensing steps will be linked to some other improvements of the performance of the FRGs the operator planned long ago such as (1) upgrading of the FRG-2 to 21 MW and improvement of fuel economy (2) reduction of core size of FRG-1 to improve the effectiveness of the beam tubes. The report deals with all the nuclear and thermal hydraulic investigations carried out for these tasks at INTERATOM including the harmonizing with the operators. (author)

  14. Planning the Decommissioning of Research Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Podlaha, J., E-mail: pod@ujv.cz [Nuclear Research Institute Rez, 25068 Rez (Czech Republic)

    2013-08-15

    In the Czech Republic, three research nuclear reactors are in operation. According to the valid legislation, preliminary decommissioning plans have been prepared for all research reactors in the Czech Republic. The decommissioning plans shall be updated at least every 5 years. Decommissioning funds have been established and financial resources are regularly deposited. Current situation in planning of decommissioning of research reactors in the Czech Republic, especially planning of decommissioning of the LVR-15 research reactor is described in this paper. There appeared new circumstances having wide impact on the decommissioning planning of the LVR-15 research reactor: (1) Shipment of spent fuel to the Russian Federation for reprocessing and (2) preparation of processing of radioactive waste from reconstruction of the VVR-S research reactor (now LVR-15 research reactor). The experience from spent fuel shipment to the Russian Federation and from the process of radiological characterization and processing of radioactive waste from reconstruction of the VVR-S research reactor (now the LVR-15 research reactor) and the impact on the decommissioning planning is described in this paper. (author)

  15. Research reactor`s role in Korea

    Energy Technology Data Exchange (ETDEWEB)

    Choi, C-O [Korea Atomic Energy Research Inst., Taejon (Korea, Republic of)

    1996-12-31

    After a TRIGA MARK-II was constructed in 1962, new research activity of a general nature, utilizing neutrons, prevailed in Korea. Radioisotopes produced from the MARK-II played a good role in the 1960`s in educating people as to what could be achieved by a neutron source. Because the research reactor had implanted neutron science in the country, another TRIGA MARK-III had to be constructed within 10 years after importing the first reactor, due to increased neutron demand from the nuclear community. With the sudden growth of nuclear power, however, the emphasis of research changed. For a while research activities were almost all oriented to nuclear power plant technology. However, the specifics of nuclear power plant technology created a need for a more highly capable research reactor like HANARO 30MWt. HANARO will perform well with irradiation testing and other nuclear programs in the future, including: production of key radioisotopes, doping of silicon by transmutation, neutron activation analysis, neutron beam experiments, cold neutron source. 3 tabs., 2 figs.

  16. Mimic of OSU research reactor

    International Nuclear Information System (INIS)

    Lu, Hong; Miller, D.W.

    1991-01-01

    The Ohio State University research reactor (OSURR) is undergoing improvements in its research and educational capabilities. A computer-based digital data acquisition system, including a reactor system mimic, will be installed as part of these improvements. The system will monitor the reactor system parameters available to the reactor operator either in digital parameters available to the reactor operator either in digital or analog form. The system includes two computers. All the signals are sent to computer 1, which processes the data and sends the data through a serial port to computer 2 with a video graphics array VGA monitor, which is utilized to display the mimic system of the reactor

  17. International topical meeting. Research Reactor Fuel Management (RRFM) and meeting of the International Group on Reactor Research (IGORR)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    Nuclear research and test reactors have been in operation for over 60 years, over 270 research reactors are currently operating in more than 50 countries. This meeting is dedicated to different aspects of research reactor fuels: new fuels for new reactors, the conversion to low enriched uranium fuels, spent fuel management and computational tools for core simulation. About 80 contributions are reported in this document, they are organized into 7 sessions: 1) international topics and overview on new projects and fuel, 2) new projects and upgrades, 3) fuel development, 4) optimisation and research reactor utilisation, 5) innovative methods in research reactors physics, 6) safety, operation and research reactor conversion, 7) fuel back-end management, and a poster session. Experience from Australian, Romanian, Libyan, Syrian, Vietnamese, South-African and Ghana research reactors are reported among other things. The Russian program for research reactor spent fuel management is described and the status of the American-driven program for the conversion to low enriched uranium fuels is presented. (A.C.)

  18. Research reactor FR2 - 20 years chemical and radiochemical measurements

    International Nuclear Information System (INIS)

    Feuerstein, H.; Graebner, H.; Oschinski, J.; Hoffmann, W.; Beyer, J.

    1986-09-01

    The FR2 has been a D 2 O cooled and moderated research reactor with a thermal output of 44 MW. It was in operation from 1961 to 1981. Because of the operating conditions of the reactor, only a small number of routine measurements were performed. For these however special techniques had to be developed. During the 20 years of operation a number of special events occured or have been observed, sometimes with very amazing results, e.g. the 'aceton effect'. This report describes the chemical and radiochemical conditions of the reactor systems, as well as the results of the surveilance work. Not described are measurements for the many experiments. The last chapter gives in a short form a description of the most unusual events and observations. (orig.) [de

  19. Utilization of research reactors - A global perspective

    International Nuclear Information System (INIS)

    Muranaka, R.G.

    1988-01-01

    This paper presents 1) a worldwide picture of research reactors, operable, shutdown, under construction and planned, 2) statistics on utilization of research reactors including TRIGA reactors, and 3) some results of a survey conducted during 1988 on the utilization of research reactors in developing Member States in the Asia-Pacific Region

  20. The Oak Ridge Research Reactor: safety analysis: Volume 2, supplement 2

    International Nuclear Information System (INIS)

    Hurt, S.S.

    1986-11-01

    The Oak Ridge Research Reactor Safety Analysis was last updated via ORNL-4169, Vol. 2, Supplement 1, in May of 1978. Since that date, several changes have been effected through the change-memo system described below. While these changes have involved the cooling system, the electrical system, and the reactor instrumentation and controls, they have not, for the most part, presented new or unreviewed safety questions. However, some of the changes have been based on questions or recommendations stemming from safety reviews or from reactor events at other sites. This paper discusses those changes which were judged to be safety related and which include revisions to the syphon-break system and changes related to seismic considerations which were very recently completed. The maximum hypothetical accident postulated in the original safety analysis requires dynamic containment and filtered flow for compliance with 10CFR100 limits at the site boundary

  1. Reactor Materials Research

    Energy Technology Data Exchange (ETDEWEB)

    Van Walle, E

    2002-04-01

    The activities of SCK-CEN's Reactor Materials Research Department for 2001 are summarised. The objectives of the department are: (1) to evaluate the integrity and behaviour of structural materials used in nuclear power industry; (2) to conduct research to unravel and understand the parameters that determine the material behaviour under or after irradiation; (3) to contribute to the interpretation, the modelling of the material behaviour and to develop and assess strategies for optimum life management of nuclear power plant components. The programmes within the department are focussed on studies concerning (1) Irradiation Assisted Stress Corrosion Cracking (IASCC); (2) nuclear fuel; and (3) Reactor Pressure Vessel Steel.

  2. Reactor Materials Research

    International Nuclear Information System (INIS)

    Van Walle, E.

    2002-01-01

    The activities of SCK-CEN's Reactor Materials Research Department for 2001 are summarised. The objectives of the department are: (1) to evaluate the integrity and behaviour of structural materials used in nuclear power industry; (2) to conduct research to unravel and understand the parameters that determine the material behaviour under or after irradiation; (3) to contribute to the interpretation, the modelling of the material behaviour and to develop and assess strategies for optimum life management of nuclear power plant components. The programmes within the department are focussed on studies concerning (1) Irradiation Assisted Stress Corrosion Cracking (IASCC); (2) nuclear fuel; and (3) Reactor Pressure Vessel Steel

  3. New about research reactors

    International Nuclear Information System (INIS)

    Egorenkov, P.M.

    2001-01-01

    The multi-purpose research reactor MAPLE (Canada) and concept of new reactor MAPLE-CNF as will substitute the known Canadian research reactor NRU are described. New reactor will be used as contributor for investigations into materials, neutron beams and further developments for the CANDU type reactor. The Budapest research reactor (BRR) and its application after the last reconstruction are considered also [ru

  4. The Effect Of Beryllium Interaction With Fast Neutrons On the Reactivity Of ETRR-2 Research Reactor

    International Nuclear Information System (INIS)

    Aziz, M.; El Messiry, A.M.

    2000-01-01

    The effect of beryllium interactions with fast neutrons is studied for Etrr 2 research reactors. Isotope build up inside beryllium blocks is calculated under different irradiation times. a new model for the Etrr 2 research reactor is designed using MCNP code to calculate the reactivity and flux change of the reactor due to beryllium poison

  5. Multipurpose research reactors

    International Nuclear Information System (INIS)

    1988-01-01

    The international symposium on the utilization of multipurpose research reactors and related international co-operation was organized by the IAEA to provide for information exchange on current uses of research reactors and international co-operative projects. The symposium was attended by about 140 participants from 36 countries and two international organizations. There were 49 oral presentations of papers and 24 poster presentations. The presentations were divided into 7 sessions devoted to the following topics: neutron beam research and applications of neutron scattering (6 papers and 1 poster), reactor engineering (6 papers and 5 posters), irradiation testing of fuel and material for fission and fusion reactors (6 papers and 10 posters), research reactor utilization programmes (13 papers and 4 posters), neutron capture therapy (4 papers), neutron activation analysis (3 papers and 4 posters), application of small reactors in research and training (11 papers). A separate abstract was prepared for each of these papers. Refs, figs and tabs

  6. Research reactor support

    International Nuclear Information System (INIS)

    2005-01-01

    Research reactors (RRs) have been used in a wide range of applications including nuclear power development, basic physics research, education and training, medical isotope production, geology, industry and other fields. However, many research reactors are fuelled with High Enriched Uranium (HEU), are underutilized and aging, and have significant quantities of spent fuel. HEU inventories (fresh and spent) pose security risks Unavailability of a high-density-reprocessable fuel hinders conversion and limits back-end options and represents a survival dilemma for many RRs. Improvement of interim spent fuel storage is required at some RRs. Many RRs are under-utilized and/or inadequately funded and need to find users for their services, or permanently shut down and eventually decommission. Reluctance to decommission affect both cost and safety (loss of experienced staff ) and many shut down but not decommissioned RR with fresh and/or spent fuel at the sites invoke serious concern. The IAEA's research reactor support helps to ensure that research reactors can be operated efficiently with fuels and targets of lower proliferation and security concern and that operators have appropriate technology and options to manage RR fuel cycle issues, especially on long term interim storage of spent research reactor fuel. Availability of a high-density-reprocessable fuel would expand and improve back end options. The International Atomic Energy Agency provides assistance to Member States to convert research reactors from High Enriched Uranium fuel and targets (for medical isotope production) to qualified Low Enriched Uranium fuel and targets while maintaining reactor performance levels. The assistance includes provision of handbooks and training in the performance of core conversion studies, advice for the procurement of LEU fuel, and expert services for LEU fuel acceptance. The IAEA further provides technical and administrative support for countries considering repatriation of its

  7. Commissioning of research reactors. Safety guide

    International Nuclear Information System (INIS)

    2006-01-01

    The objective of this Safety Guide is to provide recommendations on meeting the requirements for the commissioning of research reactors on the basis of international best practices. Specifically, it provides recommendations on fulfilling the requirements established in paras 6.44 and 7.42-7.50 of International Atomic Energy Agency, Safety of Research Reactors, IAEA Safety Standards Series No. NS-R-4, IAEA, Vienna (2005) and guidance and specific and consequential recommendations relating to the recommendations presented in paras 615-621 of International Atomic Energy Agency, Safety in the Utilization and Modification of Research Reactors, Safety Series No. 35-G2, IAEA, Vienna (1994) and paras 228-229 of International Atomic Energy Agency, Safety Assessment of Research Reactors and Preparation of the Safety Analysis Report, Safety Series No. 35-G1, IAEA, Vienna (1994). This Safety Guide is intended for use by all organizations involved in commissioning for a research reactor, including the operating organization, the regulatory body and other organizations involved in the research reactor project

  8. A review of the probabilistic safety assessment application to the TR-2 research reactor

    International Nuclear Information System (INIS)

    Goektepe, G.; Adalioglu, U.; Anac, H.; Sevdik, B.; Menteseoglu, S.

    2001-01-01

    A review of the Probabilistic Safety Assessment (PSA) to the TR-2 Research Reactor is presented. The level 1 PSA application involved: selection of accident initiators, mitigating functions and system definitions, event tree constructions and quantification, fault tree constructions and quantification, human reliability, component failure data base development, dependent failure analysis. Each of the steps of the analysis given above is reviewed briefly with highlights from the selected results. PSA application is found to be a practical tool for research reactor safety due to intense involvement of human interactions in an experimental facility. Insights gained from the application of PSA methodology to the TR-2 research reactor led to a significant safety review of the system

  9. Nuclear data usage for research reactors

    International Nuclear Information System (INIS)

    Nakano, Yoshihiro; Soyama, Kazuhiko; Amano, Toshio

    1996-01-01

    In the department of research reactor, many neutronics calculations have been performed to construct, to operate and to modify research reactors of JAERI with several kinds of nuclear data libraries. This paper presents latest two neutronic analyses on research reactors. First one is design work of a low enriched uranium (LEU) fuel for JRR-4 (Japan Research Reactor No.4). The other is design of a uranium silicon dispersion type (silicide) fuel of JRR-3M (Japan Research Reactor No.3 Modified). Before starting the design work, to estimate the accuracy of computer code and calculation method, experimental data are calculated with several nuclear data libraries. From both cases of calculations, it is confirmed that JENDL-3.2 gives about 1 %Δk/k higher excess reactivity than JENDL-3.1. (author)

  10. Backfitting of research reactors

    International Nuclear Information System (INIS)

    Delrue, R.; Noesen, T.

    1985-01-01

    The backfitting of research reactors covers a variety of activities. 1. Instrumentation and control: Control systems have developed rapidly and many reactor operators wish to replace obsolete equipment by new systems. 2. Pool liners: Some pools are lined internally with ceramic tiles. These may become pervious with time necessitating replacement, e.g. by a new stainless steel liner. 3. Heat removal system: Deficiencies can occur in one or more of the cooling system components. Upgrading may require modifications of the system such as addition of primary loops, introduction of deactivation tanks, pump replacement. Recent experience in such work has shown that renewal, backfitting and upgrading of an existing reactor is economically attractive since the related costs and delivery times are substantially lower than those required to install a new research reactor

  11. The IAEA programme on research reactor safety

    International Nuclear Information System (INIS)

    Abou Yehia, H.

    2007-01-01

    According to the research reactor database of IAEA (RRDB), 250 reactors are operating worldwide, 248 have been shut down and 170 have been decommissioned. Among the 248 reactors that do not run, some will resume their activities, others will be dismantled and the rest do not face a clear future. The analysis of reported incidents shows that the ageing process is a major cause of failures, more than two thirds of operating reactors are over 30 years old. It also appears that the lack of adequate regulations or safety standards for research reactors is an important issue concerning reactor safety particularly when reactors are facing re-starting or upgrading or modifications. The IAEA has launched a 4-axis program: 1) to set basic safety regulations and standards for research reactors, 2) to provide IAEA members with an efficient help for the application of these safety regulations to their reactors, 3) to foster international exchange of information on research reactor safety, and 4) to provide IAEA members with a help concerning safety issues linked to malicious acts or sabotage on research reactors

  12. Research reactor standards and their impact on the TRIGA reactor community

    International Nuclear Information System (INIS)

    Richards, W.J.

    1980-01-01

    The American Nuclear Society has established a standards committee devoted to writing standards for research reactors. This committee was formed in 1971 and has since that time written over 15 standards that cover all aspects of research reactor operation. The committee has representation from virtually every group concerned with research reactors and their operation. This organization includes University reactors, National laboratory reactors, Nuclear Regulatory commission, Department of Energy and private nuclear companies and insurers. Since its beginning the committee has developed standards in the following areas: Standard for the development of technical specifications for research reactors; Quality control for plate-type uranium-aluminium fuel elements; Records and reports for research reactors; Selection and training of personnel for research reactors; Review of experiments for research reactors; Research reactor site evaluation; Quality assurance program requirements for research reactors; Decommissioning of research reactors; Radiological control at research reactor facilities; Design objectives for and monitoring of systems controlling research reactor effluents; Physical security for research reactor facilities; Criteria for the reactor safety systems of research reactors; Emergency planning for research reactors; Fire protection program requirements for research reactors; Standard for administrative controls for research reactors. Besides writing the above standards, the committee is very active in using communications with the nuclear regulatory commission on proposed rules or positions which will affect the research reactor community

  13. Research reactor fuel - an update

    International Nuclear Information System (INIS)

    Finlay, M.R.; Ripley, M.I.

    2003-01-01

    In the two years since the last ANA conference there have been marked changes in the research reactor fuel scene. A new low-enriched uranium (LEU) fuel, 'monolithic' uranium molybdenum, has shown such promise in initial trials that it may be suitable to meet the objectives of the Joint Declaration signed by Presidents Bush and Putin to commit to converting all US and Russian research reactors to LEU by 2012. Development of more conventional aluminium dispersion UMo LEU fuel has continued in the meantime and is entering the final qualification stage of multiple full sized element irradiations. Despite this progress, the original 2005 timetable for UMo fuel qualification has slipped and research reactors, including the RRR, may not convert from silicide to UMo fuel before 2007. The operators of the Swedish R2 reactor have been forced to pursue the direct route of qualifying a UMo lead test assembly (LTA) in order to meet spent fuel disposal requirements of the Swedish law. The LTA has recently been fabricated and is expected to be loaded shortly into the R2 reactor. We present an update of our previous ANA paper and details of the qualification process for UMo fuel

  14. Strengthening IAEA Safeguards for Research Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Reid, Bruce D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Anzelon, George A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Budlong-Sylvester, Kory [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-09-01

    During their December 10-11, 2013, workshop in Grenoble France, which focused on the history and future of safeguarding research reactors, the United States, France and the United Kingdom (UK) agreed to conduct a joint study exploring ways to strengthen the IAEA’s safeguards approach for declared research reactors. This decision was prompted by concerns about: 1) historical cases of non-compliance involving misuse (including the use of non-nuclear materials for production of neutron generators for weapons) and diversion that were discovered, in many cases, long after the violations took place and as part of broader pattern of undeclared activities in half a dozen countries; 2) the fact that, under the Safeguards Criteria, the IAEA inspects some reactors (e.g., those with power levels under 25 MWt) less than once per year; 3) the long-standing precedent of States using heavy water research reactors (HWRR) to produce plutonium for weapons programs; 4) the use of HEU fuel in some research reactors; and 5) various technical characteristics common to some types of research reactors that could provide an opportunity for potential proliferators to misuse the facility or divert material with low probability of detection by the IAEA. In some research reactors it is difficult to detect diversion or undeclared irradiation. In addition, infrastructure associated with research reactors could pose a safeguards challenge. To strengthen the effectiveness of safeguards at the State level, this paper advocates that the IAEA consider ways to focus additional attention and broaden its safeguards toolbox for research reactors. This increase in focus on the research reactors could begin with the recognition that the research reactor (of any size) could be a common path element on a large number of technically plausible pathways that must be considered when performing acquisition pathway analysis (APA) for developing a State Level Approach (SLA) and Annual Implementation Plan (AIP). To

  15. Multi purpose research reactor

    International Nuclear Information System (INIS)

    Raina, V.K.; Sasidharan, K.; Sengupta, Samiran; Singh, Tej

    2006-01-01

    At present Dhruva and Cirus reactors provide the majority of research reactor based facilities to cater to the various needs of a vast pool of researchers in the field of material sciences, physics, chemistry, bio sciences, research and development work for nuclear power plants and production of radio isotopes. With a view to further consolidate and expand the scope of research and development in nuclear and allied sciences, a new 20 MWt multi purpose research reactor is being designed. This paper describes some of the design features and safety aspects of this reactor

  16. Research reactor job analysis - A project description

    International Nuclear Information System (INIS)

    Yoder, John; Bessler, Nancy J.

    1988-01-01

    Addressing the need of the improved training in nuclear industry, nuclear utilities established training program guidelines based on Performance-Based Training (PBT) concepts. The comparison of commercial nuclear power facilities with research and test reactors owned by the U.S. Department of Energy (DOE), made in an independent review of personnel selection, training, and qualification requirements for DOE-owned reactors pointed out that the complexity of the most critical tasks in research reactors is less than that in power reactors. The U.S. Department of Energy (DOE) started a project by commissioning Oak Ridge Associated Universities (ORAU) to conduct a job analysis survey of representative research reactor facilities. The output of the project consists of two publications: Volume 1 - Research Reactor Job Analysis: Overview, which contains an Introduction, Project Description, Project Methodology,, and. An Overview of Performance-Based Training (PBT); and Volume 2 - Research Reactor Job Analysis: Implementation, which contains Guidelines for Application of Preliminary Task Lists and Preliminary Task Lists for Reactor Operators and Supervisory Reactor Operators

  17. Overview of the Dalat Nuclear Research Reactor

    International Nuclear Information System (INIS)

    Nguyen Nhi Dien; Nguyen Thai Sinh; Luong Ba Vien

    2016-01-01

    The present reactor called Dalat Nuclear Research Reactor (DNRR) has been reconstructed from the former TRIGA Mark II reactor which was designed by General Atomic (GA, San Diego, California, USA), started building in early 1960s, put into operation in 1963 and operated until 1968 at nominal power of 250 kW. In 1975, all fuel elements of the reactor were unloaded and shipped back to the USA. The DNRR is a 500-kW pool-type research reactor using light water as both moderator and coolant. The reactor is used as a neutron source for the purposes of: (1) radioactive isotope production; (2) neutron activation analysis; and (3) research and training

  18. Reactor safety research program. A description of current and planned reactor safety research sponsored by the Nuclear Regulatory Commission's Division of Reactor Safety Research

    International Nuclear Information System (INIS)

    1975-06-01

    The reactor safety research program, sponsored by the Nuclear Regulatory Commission's Division of Reactor Safety Research, is described in terms of its program objectives, current status, and future plans. Elements of safety research work applicable to water reactors, fast reactors, and gas cooled reactors are presented together with brief descriptions of current and planned test facilities. (U.S.)

  19. Quality assurance in the project of RECH-2 research reactor

    International Nuclear Information System (INIS)

    Goycolea Donoso, C.; Nino de Zepeda Schele, A.

    1989-01-01

    The implantation of a Quality Assurance Program for the design, supply, construction, installation, and testing of the RECH-2 research reactor, is described in this paper. The obtained results, demonstrate that a Quality Assurance Program constitutes a suitable mean to assure that the installation complies with the safety and reliability requirements. (author)

  20. CER. Research reactors in France

    International Nuclear Information System (INIS)

    Estrade, Jerome

    2012-01-01

    Networking and the establishment of coalitions between research reactors are important to guarantee a high technical quality of the facility, to assure well educated and trained personnel, to harmonize the codes of standards and the know-ledge of the personnel as well as to enhance research reactor utilization. In addition to the European co-operation, country-specific working groups have been established for many years, such as the French research reactor Club d'Exploitants des Reacteurs (CER). It is the association of French research reactors representing all types of research reactors from zero power up to high flux reactors. CER was founded in 1990 and today a number of 14 research reactors meet twice a year for an exchange of experience. (orig.)

  1. IAEA/CRP for decommissioning techniques for research reactors

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Won Zin; Won, H. J.; Kim, K. N.; Lee, K. W.; Jung, C. H

    2001-03-01

    The following were studied through the project entitled 'IAEA/CRP for decommissioning techniques for research reactors 1. Decontamination technology development for TRIGA radioactive soil waste - Electrokinetic soil decontamination experimental results and its mathematical simulation 2. The 2nd IAEA/CRP for decommissioning techniques for research reactors - Meeting results and program 3. Hosting the 2001 IAEA/RCA D and D training course for research reactors and small nuclear facilities.

  2. IAEA/CRP for decommissioning techniques for research reactors

    International Nuclear Information System (INIS)

    Oh, Won Zin; Won, H. J.; Kim, K. N.; Lee, K. W.; Jung, C. H.

    2001-03-01

    The following were studied through the project entitled 'IAEA/CRP for decommissioning techniques for research reactors 1. Decontamination technology development for TRIGA radioactive soil waste - Electrokinetic soil decontamination experimental results and its mathematical simulation 2. The 2nd IAEA/CRP for decommissioning techniques for research reactors - Meeting results and program 3. Hosting the 2001 IAEA/RCA D and D training course for research reactors and small nuclear facilities

  3. Physics and safety of advanced research reactors

    International Nuclear Information System (INIS)

    Boening, K.; Hardt, P. von der

    1987-01-01

    Advanced research reactor concepts are presently being developed in order to meet the neutron-based research needs of the nineties. Among these research reactors, which are characterized by an average power density of 1-10 MW per liter, highest priority is now generally given to the 'beam tube reactors'. These provide very high values of the thermal neutron flux (10 14 -10 16 cm -2 s -1 ) in a large volume outside of the reactor core, which can be used for sample irradiations and, in particular, for neutron scattering experiments. The paper first discusses the 'inverse flux trap concept' and the main physical aspects of the design and optimization of beam tube reactors. After that two examples of advanced research reactor projects are described which may be considered as two opposite extremes with respect to the physical optimization principle just mentioned. The present situation concerning cross section libraries and neutronic computer codes is more or less satisfactory. The safety analyses of advanced research reactors can largely be updated from those of current new designs, partially taking advantage of the immense volume of work done for power reactors. The paper indicates a few areas where generic problems for advanced research reactor safety are to be solved. (orig.)

  4. Computerized reactor monitor and control for research reactors

    International Nuclear Information System (INIS)

    Buerger, L.; Vegh, E.

    1981-09-01

    The computerized process control system developed in the Central Research Institute for Physics, Budapest, Hungary, is described together with its special applications at research reactors. The nuclear power of the Hungarian research reactor is controlled by this computerized system, too, while in Lybia many interesting reactor-hpysical calculations are built into the computerized monitor system. (author)

  5. Nuclear reactor instrumentation at research reactor renewal

    International Nuclear Information System (INIS)

    Baers, B.; Pellionisz, P.

    1981-10-01

    The paper overviews the state-of-the-art of research reactor renewals. As a case study the instrumentation reconstruction of the Finnish 250 kW TRIGA reactor is described, with particular emphasis on the nuclear control instrumentation and equipment which has been developed and manufactured by the Central Research Institute for Physics, Budapest. Beside the presentation of the nuclear instrument family developed primarily for research reactor reconstructions, the quality assurance policy conducted during the manufacturing process is also discussed. (author)

  6. Strategic planning for research reactors. Guidance for reactor managers

    International Nuclear Information System (INIS)

    2001-04-01

    The purpose of this publication is to provide guidance on how to develop a strategic plan for a research reactor. The IAEA is convinced of the need for research reactors to have strategic plans and is issuing a series of publications to help owners and operators in this regard. One of these covers the applications of research reactors. That report brings together all of the current uses of research reactors and enables a reactor owner or operator to evaluate which applications might be possible with a particular facility. An analysis of research reactor capabilities is an early phase in the strategic planning process. The current document provides the rationale for a strategic plan, outlines the methodology of developing such a plan and then gives a model that may be followed. While there are many purposes for research reactor strategic plans, this report emphasizes the use of strategic planning in order to increase utilization. A number of examples are given in order to clearly illustrate this function

  7. Ageing of research reactors

    International Nuclear Information System (INIS)

    Ciocanescu, M.

    2001-01-01

    Historically, many of the research institutions were centred on a research reactor facility as main technological asset and major source of neutrons for research. Important achievements were made in time in these research institutions for development of nuclear materials technology and nuclear safety for nuclear energy. At present, ageing of nuclear research facilities among these research reactors and ageing of staff are considerable factors of reduction of competence in research centres. The safe way of mitigation of this trend deals with ageing management by so called, for power reactors, Plant Life Management and new investments in staff as investments in research, or in future resources of competence. A programmatic approach of ageing of research reactors in correlation with their actual and future utilisation, will be used as a basis for safety evaluation and future spending. (author)

  8. The AFR. An approved network of research reactors

    Energy Technology Data Exchange (ETDEWEB)

    Hampel, Gabriele [Mainz Univ. (Germany). Arbeitsgemeinschaft fuer Betriebs- und Sicherheitsfragen an Forschungsreaktoren (AFR)

    2012-10-15

    AFR (Arbeitsgemeinschaft fuer Betriebs- und Sicherheitsfragen an Forschungsreaktoren) is the German acronym for 'Association for Research Reactor Operation and Safety Issues' which was founded in 1959. Reactor managers of European research reactors mainly from the German linguistic area meet regularly for their mutual benefit to exchange experience and knowledge in all areas of operating, managing and utilization of research reactors. In the last 2 years joint meetings were held together with the French association of research reactors CER (Club d'Exploitants des Reacteurs). In this contribution the AFR, its members, work and aims as well as the French partner CER are presented. (orig.)

  9. Reactor Safety Research: Semiannual report, January-June 1986: Reactor Safety Research Program

    International Nuclear Information System (INIS)

    1987-05-01

    Sandia National Laboratories is conducting, under USNRC sponsorship, phenomenological research related to the safety of commercial nuclear power reactors. The research includes experiments to simulate the phenomenology of accident conditions and the development of analytical models, verified by experiment, which can be used to predict reactor and safety systems performance behavior under abnormal conditions. The objective of this work is to provide NRC requisite data bases and analytical methods to (1) identify and define safety issues, (2) understand the progression of risk-significant accident sequences, and (3) conduct safety assessments. The collective NRC-sponsored effort at Sandia National Laboratories is directed at enhancing the technology base supporting licensing decisions

  10. Siting of research reactors

    International Nuclear Information System (INIS)

    1987-01-01

    The purpose of this document is to develop criteria for siting and the site-related design basis for research reactors. The concepts presented in this document are intended as recommendations for new reactors and are not suggested for backfitting purposes for facilities already in existence. In siting research reactors serious consideration is given to minimizing the effects of the site on the reactor and the reactor on the site and the potential impact of the reactor on the environment. In this document guidance is first provided on the evaluation of the radiological impact of the installation under normal reactor operation and accident conditions. A classification of research reactors in groups is then proposed, together with a different approach for each group, to take into account the relevant safety problems associated with facilities of different characteristics. Guidance is also provided for both extreme natural events and for man-induced external events which could affect the safe operation of the reactor. Extreme natural events include earthquakes, flooding for river or coastal sites and extreme meteorological phenomena. The feasibility of emergency planning is finally considered for each group of reactors

  11. Digital control of research reactors

    International Nuclear Information System (INIS)

    Crump, J.C. III.; Richards, W.J.; Heidel, C.C.

    1991-01-01

    Research reactors provide an important service for the nuclear industry. Developments and innovations used for research reactors can be later applied to larger power reactors. Their relatively inexpensive cost allows research reactors to be an excellent testing ground for the reactors of tomorrow. One area of current interest is digital control of research reactor systems. Digital control systems offer the benefits of implementation and superior system response over their analog counterparts. At McClellan Air Force Base in Sacramento, California, the Stationary Neutron Radiography System (SNRS) uses a 1,000-kW TRIGA reactor for neutron radiography and other nuclear research missions. The neutron radiography beams generated by the reactor are used to detect corrosion in aircraft structures. While the use of the reactor to inspect intact F-111 wings is in itself noteworthy, there is another area in which the facility has applied new technology: the instrumentation and control system (ICS). The ICS developed by General Atomics (GA) contains several new and significant items: (a) the ability to servocontrol on three rods, (b) the ability to produce a square wave, and (c) the use of a software configurator to tune parameters affected by the actual reactor core dynamics. These items will probably be present in most, if not all, future research reactors. They were developed with increased control and overall usefulness of the reactor in mind

  12. Impact of proposed research reactor standards on reactor operation

    Energy Technology Data Exchange (ETDEWEB)

    Ringle, J C; Johnson, A G; Anderson, T V [Oregon State University (United States)

    1974-07-01

    A Standards Committee on Operation of Research Reactors, (ANS-15), sponsored by the American Nuclear Society, was organized in June 1971. Its purpose is to develop, prepare, and maintain standards for the design, construction, operation, maintenance, and decommissioning of nuclear reactors intended for research and training. Of the 15 original members, six were directly associated with operating TRIGA facilities. This committee developed a standard for the Development of Technical Specifications for Research Reactors (ANS-15.1), the revised draft of which was submitted to ANSI for review in May of 1973. The Committee then identified 10 other critical areas for standards development. Nine of these, along with ANS-15.1, are of direct interest to TRIGA owners and operators. The Committee was divided into subcommittees to work on these areas. These nine areas involve proposed standards for research reactors concerning: 1. Records and Reports (ANS-15.3) 2. Selection and Training of Personnel (ANS-15.4) 3. Effluent Monitoring (ANS-15.5) 4. Review of Experiments (ANS-15.6) 5. Siting (ANS-15.7) 6. Quality Assurance Program Guidance and Requirements (ANS-15.8) 7. Restrictions on Radioactive Effluents (ANS-15.9) 8. Decommissioning (ANS-15.10) 9. Radiological Control and Safety (ANS-15.11). The present status of each of these standards will be presented, along with their potential impact on TRIGA reactor operation. (author)

  13. Impact of proposed research reactor standards on reactor operation

    International Nuclear Information System (INIS)

    Ringle, J.C.; Johnson, A.G.; Anderson, T.V.

    1974-01-01

    A Standards Committee on Operation of Research Reactors, (ANS-15), sponsored by the American Nuclear Society, was organized in June 1971. Its purpose is to develop, prepare, and maintain standards for the design, construction, operation, maintenance, and decommissioning of nuclear reactors intended for research and training. Of the 15 original members, six were directly associated with operating TRIGA facilities. This committee developed a standard for the Development of Technical Specifications for Research Reactors (ANS-15.1), the revised draft of which was submitted to ANSI for review in May of 1973. The Committee then identified 10 other critical areas for standards development. Nine of these, along with ANS-15.1, are of direct interest to TRIGA owners and operators. The Committee was divided into subcommittees to work on these areas. These nine areas involve proposed standards for research reactors concerning: 1. Records and Reports (ANS-15.3) 2. Selection and Training of Personnel (ANS-15.4) 3. Effluent Monitoring (ANS-15.5) 4. Review of Experiments (ANS-15.6) 5. Siting (ANS-15.7) 6. Quality Assurance Program Guidance and Requirements (ANS-15.8) 7. Restrictions on Radioactive Effluents (ANS-15.9) 8. Decommissioning (ANS-15.10) 9. Radiological Control and Safety (ANS-15.11). The present status of each of these standards will be presented, along with their potential impact on TRIGA reactor operation. (author)

  14. Research reactor de-fueling and fuel shipment

    International Nuclear Information System (INIS)

    Ice, R.D.; Jawdeh, E.; Strydom, J.

    1998-01-01

    Planning for the Georgia Institute of Technology Research Reactor operations during the 1996 Summer Olympic Games began in early 1995. Before any details could be outlined, several preliminary administrative decisions had to be agreed upon by state, city, and university officials. The two major administrative decisions involving the reactor were (1) the security level and requirements and (2) the fuel status of the reactor. The Georgia Tech Research Reactor (GTRR) was a heavy-water moderated and cooled reactor, fueled with high-enriched uranium. The reactor was first licensed in 1964 with an engineered lifetime of thirty years. The reactor was intended for use in research applications and as a teaching facility for nuclear engineering students and reactor operators. Approximately one year prior to the olympics, the Georgia Tech administration decided that the GTRR fuel would be removed. In addition, a heightened, beyond regulatory requirements, security system was to be implemented. This report describes the scheduling, operations, and procedures

  15. Research reactors and materials testing

    International Nuclear Information System (INIS)

    Vidal, H.

    1986-01-01

    Research reactors can be classified in three main groups according to the moderator which is used. Their technical characteristics are given and the three most recent research and materials testing reactors are described: OSIRIS, ORPHEE and the high-flux reactor of Grenoble. The utilization of research reactors is reviewed in four fields of activity: training, fundamental or applied research and production (eg. radioisotopes) [fr

  16. Directory of Nuclear Research Reactors 1994

    International Nuclear Information System (INIS)

    1995-08-01

    The Directory of Nuclear Research Reactors is an output of the Agency's computerized Research Reactor Data Base (RRDB). It contains administrative, technical and utilization information on research reactors known to the Agency at the end of December 1994. The data base converted from mainframe to PC is written in Clipper 5.0 and the publication generation system uses Excel 4. The information was collected by the Agency through questionnaires sent to research reactor owners. All data on research reactors, training reactors, test reactors, prototype reactors and critical assemblies are stored in the RRDB. This system contains all the information and data previously published in the Agency's publication, Directory of Nuclear Research Reactor, as well as updated information

  17. Physical security at research reactors

    International Nuclear Information System (INIS)

    Clark, R.A.

    1977-01-01

    Of the 84 non-power research facilities licensed under 10 CFR Part 50, 73 are active (two test reactors, 68 research reactors and three critical facilities) and are required by 10 CFR Part 73.40 to provide physical protection against theft of SNM and against industrial sabotage. Each licensee has developed a security plan required by 10 CFR Part 50.34(c) to demonstrate the means of compliance with the applicable requirements of 10 CFR Part 73. In 1974, the Commission provided interim guidance for the organization and content of security plans for (a) test reactors, (b) medium power research and training reactors, and (c) low power research and training reactors. Eleven TRIGA reactors, with power levels greater than 250 kW and all other research and training reactors with power levels greater than 100 kW and less than or equal to 5,000 kW are designated as medium power research and training reactors. Thirteen TRIGA reactors with authorized power levels less than 250 kW are considered to be low power research and training reactors. Additional guidance for complying with the requirements of 73.50 and 73.60, if applicable, is provided in the Commission's Regulatory Guides. The Commission's Office of Inspection and Enforcement inspects each licensed facility to assure that an approved security plan is properly implemented with appropriate procedures and physical protection systems

  18. Management of research reactor ageing

    International Nuclear Information System (INIS)

    1995-03-01

    As of December 1993, about one quarter of the operating research reactors were over 30 years old. The long life of research reactors has raised some concern amongst research reactor operators, regulators and, to some extent, the general public. The International Atomic Energy Agency commenced activities on the topic of research reactor ageing by appointing an internal working group in 1988 and convening a Consultants Meeting in 1989. The subject was also discussed at an international symposium and a regional seminar held in 1989 and 1992 respectively. A draft document incorporating information and experience exchanged at the above meetings was reviewed by a Technical Committee Meeting held in Vienna in 1992. The present TECDOC is the outcome of this meeting and contains recommendations, guidelines and information on the management of research reactor ageing, which should be used in conjunction with related publications of the IAEA Research Reactor Safety Programme, which are referenced throughout the text. This TECDOC will be of interest to operators and regulators involved with the safe operation of any type of research reactor to (a) understand the behaviour and influence of ageing mechanisms on the reactor structures, systems and components; (b) detect and assess the effect of ageing; (c) establish preventive and corrective measures to mitigate these effects; and (d) make decisions aimed at the safe and continued operation of a research reactor. 32 refs, tabs

  19. Management of research reactor ageing

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-03-01

    As of December 1993, about one quarter of the operating research reactors were over 30 years old. The long life of research reactors has raised some concern amongst research reactor operators, regulators and, to some extent, the general public. The International Atomic Energy Agency commenced activities on the topic of research reactor ageing by appointing an internal working group in 1988 and convening a Consultants Meeting in 1989. The subject was also discussed at an international symposium and a regional seminar held in 1989 and 1992 respectively. A draft document incorporating information and experience exchanged at the above meetings was reviewed by a Technical Committee Meeting held in Vienna in 1992. The present TECDOC is the outcome of this meeting and contains recommendations, guidelines and information on the management of research reactor ageing, which should be used in conjunction with related publications of the IAEA Research Reactor Safety Programme, which are referenced throughout the text. This TECDOC will be of interest to operators and regulators involved with the safe operation of any type of research reactor to (a) understand the behaviour and influence of ageing mechanisms on the reactor structures, systems and components; (b) detect and assess the effect of ageing; (c) establish preventive and corrective measures to mitigate these effects; and (d) make decisions aimed at the safe and continued operation of a research reactor. 32 refs, tabs.

  20. Research and materials irradiation reactors

    International Nuclear Information System (INIS)

    Ballagny, A.; Guigon, B.

    2004-01-01

    Devoted to the fundamental and applied research on materials irradiation, research reactors are nuclear installations where high neutrons flux are maintained. After a general presentation of the research reactors in the world and more specifically in France, this document presents the heavy water cooled reactors and the water cooled reactors. The third part explains the technical characteristics, thermal power, neutron flux, operating and details the Osiris, the RHF (high flux reactor), the Orphee and the Jules Horowitz reactors. The last part deals with the possible utilizations. (A.L.B.)

  1. The research reactors their contribution to the reactors physics

    International Nuclear Information System (INIS)

    Barral, J.C.; Zaetta, A.; Johner, J.; Mathoniere, G.

    2000-01-01

    The 19 october 2000, the french society of nuclear energy organized a day on the research reactors. This associated report of the technical session, reactors physics, is presented in two parts. The first part deals with the annual meeting and groups general papers on the pressurized water reactors, the fast neutrons reactors and the fusion reactors industry. The second part presents more technical papers about the research programs, critical models, irradiation reactors (OSIRIS and Jules Horowitz) and computing tools. (A.L.B.)

  2. Improvement of research reactor sustainability

    International Nuclear Information System (INIS)

    Ciocanescu, M.; Paunoiu, C.; Toma, C.; Preda, M.; Ionila, M.

    2010-01-01

    The Research Reactors as is well known have numerous applications in a wide range of science technology, nuclear power development, medicine, to enumerate only the most important. The requirements of clients and stack-holders are fluctuating for the reasons out of control of Research Reactor Operating Organization, which may ensure with priority the safety of facility and nuclear installation. Sustainability of Research Reactor encompasses several aspects which finally are concentrated on safety of Research Reactor and economical aspects concerning operational expenses and income from external resources. Ensuring sustainability is a continuous, permanent activity and also it requests a strategic approach. The TRIGA - 14 MW Research Reactor detains a 30 years experience of safe utilization with good performance indicators. In the last 4 years the reactor benefited of a large investment project for modernization, thus ensuring the previous performances and opening new perspectives for power increase and for new applications. The previous core conversion from LEU to HEU fuel accomplished in 2006 ensures the utilization of reactor based on new qualified European supplier of TRIGA LEU fuel. Due to reduction of number of performed research reactors, the 14 MW TRIGA modernized reactor will play a significant role for the following two decades. (author)

  3. analysis and implementation of reactor protection system circuits - case study Egypt's 2 nd research reactor-

    International Nuclear Information System (INIS)

    Elnokity, O.E.M.

    2006-01-01

    this work presents a way to design and implement the trip unit of a reactor protection system (RPS) using a field programmable gate arrays (FPGA). instead of the traditional embedded microprocessor based interface design method, a proposed tailor made FPGA based circuit is built to substitute the trip unit (TU), which is used in Egypt's 2 nd research reactor ETRR-2. the existing embedded system is built around the STD32 field computer bus which is used in industrial and process control applications. it is modular, rugged, reliable, and easy-to-use and is able to support a large mix of I/O cards and to easily change its configuration in the future. therefore, the same bus is still used in the proposed design. the state machine of this bus is designed based around its timing diagrams and implemented in VHDL to interface the designed TU circuit

  4. Research reactors; Les piles de recherche

    Energy Technology Data Exchange (ETDEWEB)

    Kowarski, L. [Commissariat a l' Energie Atomique, Paris (France). Centre d' Etudes Nucleaires]|[Organisation europeenne pour la Recherche Nucleaire, Geneve (Switzerland)

    1955-07-01

    It brings together the techniques data which are involved in the discussion about the utility for a research institute to acquire an atomic reactor for research purposes. This type of decision are often taken by non-specialist people who can need a brief presentation of a research reactor and its possibilities in term of research before asking advises to experts. In a first part, it draws up a list of the different research programs which can be studied by getting a research reactor. First of all is the reactor behaviour and kinetics studies (reproducibility factor, exploration of neutron density, effect of reactor structure, effect of material irradiation...). Physical studies includes study of the behaviour of the control system, studies of neutron resonance phenomena and study of the fission process for example. Chemical studies involves the study of manipulation and control of hot material, characterisation of nuclear species produced in the reactor and chemical effects of irradiation on chemical properties and reactions. Biology and medicine research involves studies of irradiation on man and animals, genetics research, food or medical tools sterilization and neutron beams effect on tumour for example. A large number of other subjects can be studied in a reactor research as reactor construction material research, fabrication of radioactive sources for radiographic techniques or applied research as in agriculture or electronic. The second part discussed the technological considerations when choosing the reactor type. The technological factors, which are considered for its choice, are the power of the reactor, the nature of the fuel which is used, the type of moderator (water, heavy water, graphite or BeO) and the reflector, the type of coolants, the protection shield and the control systems. In the third part, it described the characteristics (place of installation, type of combustible and comments) and performance (power, neutron flux ) of already existing

  5. Research reactors; Les piles de recherche

    Energy Technology Data Exchange (ETDEWEB)

    Kowarski, L [Commissariat a l' Energie Atomique, Paris (France). Centre d' Etudes Nucleaires; [Organisation europeenne pour la Recherche Nucleaire, Geneve (Switzerland)

    1955-07-01

    It brings together the techniques data which are involved in the discussion about the utility for a research institute to acquire an atomic reactor for research purposes. This type of decision are often taken by non-specialist people who can need a brief presentation of a research reactor and its possibilities in term of research before asking advises to experts. In a first part, it draws up a list of the different research programs which can be studied by getting a research reactor. First of all is the reactor behaviour and kinetics studies (reproducibility factor, exploration of neutron density, effect of reactor structure, effect of material irradiation...). Physical studies includes study of the behaviour of the control system, studies of neutron resonance phenomena and study of the fission process for example. Chemical studies involves the study of manipulation and control of hot material, characterisation of nuclear species produced in the reactor and chemical effects of irradiation on chemical properties and reactions. Biology and medicine research involves studies of irradiation on man and animals, genetics research, food or medical tools sterilization and neutron beams effect on tumour for example. A large number of other subjects can be studied in a reactor research as reactor construction material research, fabrication of radioactive sources for radiographic techniques or applied research as in agriculture or electronic. The second part discussed the technological considerations when choosing the reactor type. The technological factors, which are considered for its choice, are the power of the reactor, the nature of the fuel which is used, the type of moderator (water, heavy water, graphite or BeO) and the reflector, the type of coolants, the protection shield and the control systems. In the third part, it described the characteristics (place of installation, type of combustible and comments) and performance (power, neutron flux ) of already existing

  6. COOLOD-N2: a computer code, for the analyses of steady-state thermal-hydraulics in research reactors

    International Nuclear Information System (INIS)

    Kaminaga, Masanori

    1994-03-01

    The COOLOD-N2 code provides a capability for the analyses of the steady-state thermal-hydraulics of research reactors. This code is revised version of the COOLOD-N code, and is applicable not only for research reactors in which plate-type fuel is adopted, but also for research reactors in which rod-type fuel is adopted. In the code, subroutines to calculate temperature distribution in rod-type fuel have been newly added to the COOLOD-N code. The COOLOD-N2 code can calculate fuel temperatures under both forced convection cooling mode and natural convection cooling mode as well as COOLOD-N code. In the COOLOD-N2 code, a 'Heat Transfer package' is used for calculating heat transfer coefficient, DNB heat flux etc. The 'Heat Transfer package' is subroutine program and is especially developed for research reactors in which plate-type fuel is adopted. In case of rod-type fuel, DNB heat flux is calculated by both the 'Heat Transfer package' and Lund DNB heat flux correlation which is popular for TRIGA reactor. The COOLOD-N2 code also has a capability of calculating ONB temperature, the heat flux at onset of flow instability as well as DNB heat flux. (author)

  7. Nuclear research reactors in Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Cota, Anna Paula Leite; Mesquita, Amir Zacarias, E-mail: aplc@cdtn.b, E-mail: amir@cdtn.b [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2011-07-01

    The rising concerns about global warming and energy security have spurred a revival of interest in nuclear energy, giving birth to a 'nuclear power renaissance' in several countries in the world. Particularly in Brazil, in the recent years, the nuclear power renaissance can be seen in the actions that comprise its nuclear program, summarily the increase of the investments in nuclear research institutes and the government target to design and build the Brazilian Multipurpose research Reactor (BMR). In the last 50 years, Brazilian research reactors have been used for training, for producing radioisotopes to meet demands in industry and nuclear medicine, for miscellaneous irradiation services and for academic research. Moreover, the research reactors are used as laboratories to develop technologies in power reactors, which are evaluated today at around 450 worldwide. In this application, those reactors become more viable in relation to power reactors by the lowest cost, by the operation at low temperatures and, furthermore, by lower demand for nuclear fuel. In Brazil, four research reactors were installed: the IEA-R1 and the MB-01 reactors, both at the Instituto de Pesquisas Energeticas Nucleares (IPEN, Sao Paulo); the Argonauta, at the Instituto de Engenharia Nuclear (IEN, Rio de Janeiro) and the IPR-R1 TRIGA reactor, at the Centro de Desenvolvimento da Tecnologia Nuclear (CDTN, Belo Horizonte). The present paper intends to enumerate the characteristics of these reactors, their utilization and current academic research. Therefore, through this paper, we intend to collaborate on the BMR project. (author)

  8. Nuclear research reactors in Brazil

    International Nuclear Information System (INIS)

    Cota, Anna Paula Leite; Mesquita, Amir Zacarias

    2011-01-01

    The rising concerns about global warming and energy security have spurred a revival of interest in nuclear energy, giving birth to a 'nuclear power renaissance' in several countries in the world. Particularly in Brazil, in the recent years, the nuclear power renaissance can be seen in the actions that comprise its nuclear program, summarily the increase of the investments in nuclear research institutes and the government target to design and build the Brazilian Multipurpose research Reactor (BMR). In the last 50 years, Brazilian research reactors have been used for training, for producing radioisotopes to meet demands in industry and nuclear medicine, for miscellaneous irradiation services and for academic research. Moreover, the research reactors are used as laboratories to develop technologies in power reactors, which are evaluated today at around 450 worldwide. In this application, those reactors become more viable in relation to power reactors by the lowest cost, by the operation at low temperatures and, furthermore, by lower demand for nuclear fuel. In Brazil, four research reactors were installed: the IEA-R1 and the MB-01 reactors, both at the Instituto de Pesquisas Energeticas Nucleares (IPEN, Sao Paulo); the Argonauta, at the Instituto de Engenharia Nuclear (IEN, Rio de Janeiro) and the IPR-R1 TRIGA reactor, at the Centro de Desenvolvimento da Tecnologia Nuclear (CDTN, Belo Horizonte). The present paper intends to enumerate the characteristics of these reactors, their utilization and current academic research. Therefore, through this paper, we intend to collaborate on the BMR project. (author)

  9. Industrial structure at research reactor suppliers

    International Nuclear Information System (INIS)

    Roegler, H.-J.; Bogusch, E.; Friebe, T.

    2001-01-01

    Due to the recent joining of the forces of Framatome S. A. from France and the Nuclear Division of Siemens AG Power Generation (KWU) from Germany to a Joint Venture named Framatome Advanced Nuclear Power S.A.S., the issue of the necessary and of the optimal industrial structure for nuclear projects as a research reactor is, was discussed internally often and intensively. That discussion took place also in the other technical fields such as Services for NPPs but also in the field of interest here, i. e. Research Reactors. In summarizing the statements of this presentation one can about state that: Research Reactors are easier to build than NPPs, but not standardised; Research Reactors need a wide spectrum of skills and experiences; to design and build Research Reactors needs an experienced team especially in terms of management and interfaces; Research Reactors need background from built reference plants more than from operating plants; Research Reactors need knowledge of suitable experienced subsuppliers. Two more essential conclusions as industry involved in constructing and upgrading research reactors are: Research Reactors by far are more than a suitable core that generates a high neutron flux; every institution that designs and builds a Research Reactor lacks quality or causes safety problems, damages the reputation of the entire community

  10. Decontamination and decommissioning project of the TRIGA Mark-2 and 3 research reactors

    Energy Technology Data Exchange (ETDEWEB)

    Jung, K J; Baik, S T; Chung, U S; Jung, K H; Park, S K; Lee, B J; Kim, J K; Yang, S H

    2000-01-01

    During the review on the decommissioning plan and environmental impact assessment report by the KINS, the number of the inquired items were two hundred and fifty one, and the answers were made and sent until September 10, 1999, as the screened review results were reported to Ministry of Science and Technology(MOST) in December 14, 1999, all the reviews on the licence were over. Radioactive liquid wastes of 400 tons generated during the operation of the research reactors including reactor vessels are stored in the facility of the research reactor 1 and 2. Those liquid wastes have the low-level-radioactivity which can be discharged to the surroundings, but was wholly treated to be vaporized naturally by means of the increased numbers of the natural vaporization disposal facilities with the annual capacity of 200 tons for the purpose of the minimized environmental contamination.

  11. Advanced fuel in the Budapest research reactor

    International Nuclear Information System (INIS)

    Hargitai, T.; Vidovsky, I.

    1997-01-01

    The Budapest Research Reactor, the first nuclear facility of Hungary, started to operate in 1959. The main goal of the reactor is to serve neutron research, but applications as neutron radiography, radioisotope production, pressure vessel surveillance test, etc. are important as well. The Budapest Research Reactor is a tank type reactor, moderated and cooled by light water. After a reconstruction and upgrading in 1967 the VVR-SM type fuel elements were used in it. These fuel elements provided a thermal power of 5 MW in the period 1967-1986 and 10 MW after the reconstruction from 1992. In the late eighties the Russian vendor changed the fuel elements slightly, i.e. the main parameters of the fuel remained unchanged, however a higher uranium content was reached. This new fuel is called VVR-M2. The geometry of VVR-SM and VVR-M2 are identical, allowing the use to load old and new fuel assemblies together to the active core. The first new type fuel assemblies were loaded to the Budapest Research Reactor in 1996. The present paper describes the operational experience with the new type of fuel elements in Hungary. (author)

  12. The 33 years of research reactors in JAERI

    International Nuclear Information System (INIS)

    1990-11-01

    The development and utilization of atomic energy in Japan began with the installation of JRR-1 reactor which attained the criticality in August, 1957, thus the third fire was lighted for the first time in Japan. JRR-2 was constructed as a full scale versatile research reactor, which attained the criticality in October, 1960, and since 1962, it has accomplished the role of the reactor for joint utilization. JRR-3 is the first reactor made in Japan by concentrating Japanese technologies in it, to develop and improve Japanese atomic energy technology. It attained the criticality in September, 1962, and has been used as a versatile research reactor. In 1960, Research Reactor Management Department was founded. JRR-4 was constructed as the research reactor for shielding for developing a nuclear-powered ship, which attained the criticality in January, 1965. The first hot laboratory in Japan for carrying out the post-irradiation test on the fuel and materials irradiated in these research reactors was installed in 1961. The JRR-1 was stopped in September, 1968, and is used as the commemorative exhibition hall. The JRR-3 was reconstructed, and attained the criticality in March, 1990, using 20 % enriched uranium fuel. The course of the research reactors for 33 years is reported. (K.I.)

  13. Research reactor's role in Korea

    International Nuclear Information System (INIS)

    Choi, C-O.

    1995-01-01

    After a TRIGA MARK-II was constructed in 1962, new research activity of a general nature, utilizing neutrons, prevailed in Korea. Radioisotopes produced from the MARK-II played a good role in the 1960's in educating people as to what could be achieved by a neutron source. Because the research reactor had implanted neutron science in the country, another TRIGA MARK-III had to be constructed within 10 years after importing the first reactor, due to increased neutron demand from the nuclear community. With the sudden growth of nuclear power, however, the emphasis of research changed. For a while research activities were almost all oriented to nuclear power plant technology. However, the specifics of nuclear power plant technology created a need for a more highly capable research reactor like HANARO 30MWt. HANARO will perform well with irradiation testing and other nuclear programs in the future, including: production of key radioisotopes, doping of silicon by transmutation, neutron activation analysis, neutron beam experiments, cold neutron source. 3 tabs., 2 figs

  14. German research reactor back-end provisions

    International Nuclear Information System (INIS)

    Koester, Siegfried; Gruber, Gerhard

    2002-01-01

    Germany has several types of Research Reactors in operation. These reactors use fuel containing uranium of U.S. origin. Basically all the fuel which will be spent until May 2006 will be returned to the U.S. under existing contracts with the U.S. Department of Energy. The contracts are based on the U.S. FRR SNF (Foreign Research Reactor Spent Nuclear Fuel) Program which started in May 1996 and which will last for 10 years. In 1990, the German Federal Government started a program to long-term store (approx. 40 years) and finally dispose of spent fuel in Germany after the so-called U.S. fuel return window will be closed. In order to long-term store the fuel, a special container was designed which covers all different types of spent fuel from the Research Reactors. The container called 'CASTOR MTR 2' is basically licensed and is already in use for the spent fuel of Russian origin from the 'Research Reactor Rossendorf' in the eastern part of Germany. All that fuel is expected to be stored in the existing intermediate storage facility, the so-called BZA (Brennelemente Zwischenlager Ahaus). BZA already accomodates spent fuel from the former THTR-300 high temperature reactor. A final repository does not yet exist in Germany. Alternative provisions to close the back-end of the Research Reactor fuel cycle are reprocessing at COGEMA (France) or in Russian facilities, perspectively. Waste return in a form to be agreed will be mandatory, at least in France. (author)

  15. Australian research reactor studies

    International Nuclear Information System (INIS)

    McCulloch, D.B.

    1978-01-01

    The Australian AEC has two research reactors at the Lucas Heights Research Establishment, a 10 HW DIDO class materials testing reactor, HIFAR, and a smaller 100kW reactor MOATA, which was recently upgraded from 10kW power level. Because of the HIFAR being some 20 years old, major renewal and repair programmes are necessary to keep it operational. To enable meeting projected increases in demand for radioisotopes, plans for a new reactor to replace the HIFAR have been made and the design criteria are described in the paper. (author)

  16. Experience in utilizing research reactors in Yugoslavia

    Energy Technology Data Exchange (ETDEWEB)

    Pop-Jordanov, J.; Raisic, N. [Boris Kidric Institute of Nuclear Sciences VINCA, Belgrade (Yugoslavia); Copic, M.; Gabrovsek, Z. [Jozef Stefan Institute Ljubljana (Yugoslavia)

    1972-07-01

    The nuclear institutes in Yugoslavia possess three research reactors. Since 1958, two heavy-water reactors have been in operation at the 'Boris Kidric' Institute, a zero-power reactor RB and a 6. 5-MW reactor RA. At the Jozef Stefan Institute, a 250-kW TRIGA Mark II reactor has been operating since 1966. All reactors are equipped with the necessary experimental facilities. The main activities based on these reactors are: (1) fundamental research in solid-state and nuclear physics; (2) R and D activities related to nuclear power program; and (3) radioisotope production. In fundamental physics, inelastic neutron scattering and diffraction phenomena are studied by means of the neutron beam tubes and applied to investigations of the structures of solids and liquids. Valuable results are also obtained in n - γ reaction studies. Experiments connected with the fuel -element development program, owing to the characteristics of the existing reactors, are limited to determination of the fuel element parameters, to studies on the purity of uranium, and to a small number of capsule irradiations. All three reactors are also used for the verification of different methods applied in the analysis of power reactors, particularly concerning neutron flux distributions, the optimization of reactor core configurations and the shielding effects. An appreciable irradiation space in the reactors is reserved for isotope production. Fruitful international co-operation has been established in all these activities, on the basis of either bilateral or multilateral arrangements. The paper gives a critical analysis of the utilization of research reactors in a developing country such as Yugoslavia. The investments in and the operational costs of research reactors are compared with the benefits obtained in different areas of reactor application. The impact on the general scientific, technological and educational level in the country is also considered. In particular, an attempt is made ro

  17. Experience in utilizing research reactors in Yugoslavia

    International Nuclear Information System (INIS)

    Pop-Jordanov, J.; Raisic, N.; Copic, M.; Gabrovsek, Z.

    1972-01-01

    The nuclear institutes in Yugoslavia possess three research reactors. Since 1958, two heavy-water reactors have been in operation at the 'Boris Kidric' Institute, a zero-power reactor RB and a 6. 5-MW reactor RA. At the Jozef Stefan Institute, a 250-kW TRIGA Mark II reactor has been operating since 1966. All reactors are equipped with the necessary experimental facilities. The main activities based on these reactors are: (1) fundamental research in solid-state and nuclear physics; (2) R and D activities related to nuclear power program; and (3) radioisotope production. In fundamental physics, inelastic neutron scattering and diffraction phenomena are studied by means of the neutron beam tubes and applied to investigations of the structures of solids and liquids. Valuable results are also obtained in n - γ reaction studies. Experiments connected with the fuel -element development program, owing to the characteristics of the existing reactors, are limited to determination of the fuel element parameters, to studies on the purity of uranium, and to a small number of capsule irradiations. All three reactors are also used for the verification of different methods applied in the analysis of power reactors, particularly concerning neutron flux distributions, the optimization of reactor core configurations and the shielding effects. An appreciable irradiation space in the reactors is reserved for isotope production. Fruitful international co-operation has been established in all these activities, on the basis of either bilateral or multilateral arrangements. The paper gives a critical analysis of the utilization of research reactors in a developing country such as Yugoslavia. The investments in and the operational costs of research reactors are compared with the benefits obtained in different areas of reactor application. The impact on the general scientific, technological and educational level in the country is also considered. In particular, an attempt is made ro

  18. 2012 review of French research reactors

    International Nuclear Information System (INIS)

    Estrade, Jerome

    2013-01-01

    Proposed by the French Reactor Operators' Club (CER), the meeting and discussion forum for operators of French research reactors, this report first gives a brief presentation of these reactors and of their scope of application, and a summary of highlights in 2012 for each of them. Then, it proposes more detailed presentations and reviews of characteristics, activities, highlights, objectives and results for the different types of reactors: neutron beam reactors (Orphee, High flux reactor-Laue-Langevin Institute or HFR-ILL), technological irradiation reactors (Osiris and Phenix), training reactors (Isis and Azur), reactors for safety research purposes (Cabri and Phebus), reactors for neutronic studies (Caliban, Prospero, Eole, Minerve and Masurca), and new research reactors (the RES facility and the Jules Horowitz reactor or JHR)

  19. The CEA research reactors

    International Nuclear Information System (INIS)

    Schwartz, J.P.

    1993-01-01

    Two main research reactors, specifically designed, PEGASE reactor and Laue-Langevin high flux reactor, are presented. The PEGASE reactor was designed at the end of the 50s for the study of the gas cooled reactor fuel element behaviour under irradiation; the HFR reactor, was designed in the late 60s to serve as a high yield and high level neutron source. Historical backgrounds, core and fuel characteristics and design, flux characteristics, etc., are presented. 5 figs

  20. Replacement research reactor for Australia

    International Nuclear Information System (INIS)

    Miller, Ross

    1998-01-01

    In 1992, the Australian Government commissioned a review into the need for a replacement research reactor. That review concluded that in about years, if certain conditions were met, the Government could make a decision in favour of a replacement reactor. A major milestone was achieved when, on 3 September 1997, the Australian Government announced the construction of a replacement research reactor at the site of Australia's existing research reactor HIFAR, subject to the satisfactory outcome of an environmental assessment process. The reactor will be have the dual purpose of providing a first class facility for neutron beam research as well as providing irradiation facilities for both medical isotope production and commercial irradiations. The project is scheduled for completion before the end of 2005. (author)

  1. Current status and prospects of research reactors

    International Nuclear Information System (INIS)

    Gabaraev, A.B.; Cherepnin, Yu.S.; Tretyakov, I.T.; Khmelshikov, V.V.; Dollezhal, N.A.

    2009-01-01

    Full text: The first nuclear research reactors (RR) appeared in the 1940s. Their initial purpose was to provide knowledge of the main processes associated with neutron-induced nuclear reactions. Later, the rang of problems addressed expanded substantially. Besides fundamental research in the properties of matter, such reactors are successfully used for dealing with problems in the fields of materials science, nuclear engineering, medicine, isotope production, education, etc. Over the whole period of RR fleet growth, more than six hundred nuclear research facilities were built in 70 countries of the world. As of the end of 2008, the number of Russian research reactors in service was about 20% of the globally operating RR fleet. This paper discusses the current status of the world's RR fleet and describes the capabilities of the experimental reactor facilities existing in Russia. In the 21st century, research reactors will remain in demand to solve scientific and technological problems for innovative development of society. The emerging renaissance of nuclear power, the expanding RR uses for production of isotopes and other applications, the increase in the number of countries willing to use nuclear technologies in energy production, industry and science - all contribute to a rebirth of interest in research reactors. One of the ways to improve the experimental capabilities lies in radical upgrading of the reactor facilities with qualitative changes in the main neutronic characteristics of the core. The associated design approaches are illustrated with the example of the IBR-2M reactor at the JNRI in Dubna. The imperative need restricting the spread of nuclear threat leads us to give up using highly enriched uranium in most research reactors. Development of RR fuel with reduced enrichment in uranium has been one of the priority objectives of NIKIET for many years. This paper presents the latest results obtained along these lines, as applied to pool-type research

  2. Neutron beam facilities at the Australian Replacement Research Reactor

    International Nuclear Information System (INIS)

    Kennedy, Shane; Robinson, Robert; Hunter, Brett

    2001-01-01

    Australia is building a research reactor to replace the HIFAR reactor at Lucas Heights by the end of 2005. Like HIFAR, the Replacement Research Reactor will be multipurpose with capabilities for both neutron beam research and radioisotope production. It will be a pool-type reactor with thermal neutron flux (unperturbed) of 4 x 10 14 n/cm 2 /sec and a liquid D 2 cold neutron source. Cold and thermal neutron beams for neutron beam research will be provided at the reactor face and in a large neutron guide hall. Supermirror neutron guides will transport cold and thermal neutrons to the guide hall. The reactor and the associated infrastructure, with the exception of the neutron beam instruments, is to be built by INVAP S.E. under contract. The neutron beam instruments will be developed by ANSTO, in consultation with the Australian user community. This status report includes a review the planned scientific capabilities, a description of the facility and a summary of progress to date. (author)

  3. Research reactors: design, safety requirements and applications

    International Nuclear Information System (INIS)

    Hassan, Abobaker Mohammed Rahmtalla

    2014-09-01

    There are two types of reactors: research reactors or power reactors. The difference between the research reactor and energy reactor is that the research reactor has working temperature and fuel less than the power reactor. The research reactors cooling uses light or heavy water and also research reactors need reflector of graphite or beryllium to reduce the loss of neutrons from the reactor core. Research reactors are used for research training as well as testing of materials and the production of radioisotopes for medical uses and for industrial application. The difference is also that the research reactor smaller in terms of capacity than that of power plant. Research reactors produce radioactive isotopes are not used for energy production, the power plant generates electrical energy. In the world there are more than 284 reactor research in 56 countries, operates as source of neutron for scientific research. Among the incidents related to nuclear reactors leak radiation partial reactor which took place in three mile island nuclear near pennsylvania in 1979, due to result of the loss of control of the fission reaction, which led to the explosion emitting hug amounts of radiation. However, there was control of radiation inside the building, and so no occurred then, another accident that lead to radiation leakage similar in nuclear power plant Chernobyl in Russia in 1986, has led to deaths of 4000 people and exposing hundreds of thousands to radiation, and can continue to be effect of harmful radiation to affect future generations. (author)

  4. New research possibilities at the Budapest research reactor

    International Nuclear Information System (INIS)

    Hargitai, T.; Vidovszky, I.

    2001-01-01

    The Budapest Research Reactor is the first nuclear facility of Hungary. It was commissioned in 1959, reconstructed and upgraded in 1967 and 1986-92. The main purpose of the reactor is to serve neutron research. The reactor was extended by a liquid hydrogen type cold neutron source in 2000. The research possibilities are much improved by the CNS both in neutron scattering and neutron activation. (author)

  5. Jordan Research and Training Reactor (JRTR) Utilization Facilities

    International Nuclear Information System (INIS)

    Xoubi, N.

    2013-01-01

    Jordan Research and Training Reactor (JRTR) is a 5 MW light water open pool multipurpose reactor that serves as the focal point for Jordan National Nuclear Centre, and is designed to be utilized in three main areas: Education and training, nuclear research, and radioisotopes production and other commercial and industrial services. The reactor core is composed of 18 fuel assemblies, MTR plate type 19.75% enriched uranium silicide (U 3 Si 2 ) in aluminium matrix, and is reflected on all sides by beryllium and graphite. The reactor power is upgradable to 10 MW with a maximum thermal flux of 1.45×10 14 cm -2 s -1 , and is controlled by a Hafnium control absorber rod and B 4 C shutdown rod. The reactor is designed to include laboratories and classrooms that will support the establishment of a nuclear reactor school for educating and training students in disciplines like nuclear engineering, reactor physics, radiochemistry, nuclear technology, radiation protection, and other related scientific fields where classroom instruction and laboratory experiments will be related in a very practical and realistic manner to the actual operation of the reactor. JRTR is designed to support advanced nuclear research as well as commercial and industrial services, which can be preformed utilizing any of its 35 experimental facilities. (author)

  6. Proceedings of the Seminar on Research Result of Research Reactor Technology Centre 2003

    International Nuclear Information System (INIS)

    Endiah Puji Hastuti; Setiyanto; Taswanda Taryo; Mohammad Dhandhang Purwadi; Pinem, Surian; Tarigan, Alim; Hasibuan, Djaruddin; Kadarusmanto; Amir Hamzah

    2004-05-01

    The Proceeding of the Seminar on Research Result of Research Reactor Technology Centre 2003 held by P2TRR has been reported researcher are expected to use the reports as references to research activities in Science and Technology, especially in field of Nuclear Reactor. There are 27 papers which have separated index. (PPIN)

  7. Radionuclide release from research reactor spent fuel

    Energy Technology Data Exchange (ETDEWEB)

    Curtius, H., E-mail: h.curtius@fz-juelich.de [Forschungszentrum Juelich, Institut fuer Energieforschung, IEF-6 Sicherheitsforschung und Reaktortechnik, Geb. 05.3, D-52425 Juelich (Germany); Kaiser, G.; Mueller, E.; Bosbach, D. [Forschungszentrum Juelich, Institut fuer Energieforschung, IEF-6 Sicherheitsforschung und Reaktortechnik, Geb. 05.3, D-52425 Juelich (Germany)

    2011-09-01

    Numerous investigations with respect to LWR fuel under non oxidizing repository relevant conditions were performed. The results obtained indicate slow corrosion rates for the UO{sub 2} fuel matrix. Special fuel-types (mostly dispersed fuels, high enriched in {sup 235}U, cladded with aluminium) are used in German research reactors, whereas in German nuclear power plants, UO{sub 2}-fuel (LWR fuel, enrichment in {sup 235}U up to 5%, zircaloy as cladding) is used. Irradiated research reactor fuels contribute less than 1% to the total waste volume. In Germany, the state is responsible for fuel operation and for fuel back-end options. The institute for energy research (IEF-6) at the Research Center Juelich performs investigation with irradiated research reactor spent fuels under repository relevant conditions. In the study, the corrosion of research reactor spent fuel has been investigated in MgCl{sub 2}-rich salt brine and the radionuclide release fractions have been determined. Leaching experiments in brine with two different research reactor fuel-types were performed in a hot cell facility in order to determine the corrosion behaviour and the radionuclide release fractions. The corrosion of two dispersed research reactor fuel-types (UAl{sub x}-Al and U{sub 3}Si{sub 2}-Al) was studied in 400 mL MgCl{sub 2}-rich salt brine in the presence of Fe{sup 2+} under static and initially anoxic conditions. Within these experimental parameters, both fuel types corroded in the experimental time period of 3.5 years completely, and secondary alteration phases were formed. After complete corrosion of the used research reactor fuel samples, the inventories of Cs and Sr were quantitatively detected in solution. Solution concentrations of Am and Eu were lower than the solubility of Am(OH){sub 3}(s) and Eu(OH){sub 3}(s) solid phases respectively, and may be controlled by sorption processes. Pu concentrations may be controlled by Pu(IV) polymer species, but the presence of Pu(V) and Pu

  8. A study of UO2 wafer fuel for very high-power research reactors

    International Nuclear Information System (INIS)

    Hsieh, T.C.; Jankus, V.Z.; Rest, J.; Billone, M.C.

    1983-01-01

    The Reduced Enrichment Research and Test Reactor Program is aimed at reducing fuel enrichment to 2 caramel fuel is one of the most promising new types of reduced-enrichment fuel for use in research reactors with very high power density. Parametric studies have been carried out to determine the maximum specific power attainable without significant fission-gas release for UO 2 wafers ranging from 0.75 to 1.50 mm in thickness. The results indicate that (1) all the fuel designs considered in this study are predicted not to fail under full power operation up to a burnup, of 1.9x10 21 fis/cm 3 ; (2) for all fuel designs, failure is predicted at approximately the same fuel centerline temperature for a given burnup; (3) the thinner the wafer, the wider the margin for fuel specific power between normal operation and increased-power operation leading to fuel failure; (4) increasing the coolant pressure in the reactor core could improve fuel performance by maintaining the fuel at a higher power level without failure for a given burnup; and (5) for a given power level, fuel failure will occur earlier at a higher cladding surface temperature and/or under power-cycling conditions. (author)

  9. Seismic research on graphite reactor core

    International Nuclear Information System (INIS)

    Lai Shigang; Sun Libin; Zhang Zhengming

    2013-01-01

    Background: Reactors with graphite core structure include production reactor, water-cooled graphite reactor, gas-cooled reactor, high-temperature gas-cooled reactor and so on. Multi-body graphite core structure has nonlinear response under seismic excitation, which is different from the response of general civil structure, metal connection structure or bolted structure. Purpose: In order to provide references for the designing and construction of HTR-PM. This paper reviews the history of reactor seismic research evaluation from certain countries, and summarizes the research methods and research results. Methods: By comparing the methods adopted in different gas-cooled reactor cores, inspiration for our own HTR seismic research was achieved. Results and Conclusions: In this paper, the research ideas of graphite core seismic during the process of designing, constructing and operating HTR-10 are expounded. Also the project progress of HTR-PM and the research on side reflection with the theory of similarity is introduced. (authors)

  10. Utilization of nuclear research reactors

    International Nuclear Information System (INIS)

    1980-01-01

    Full text: Report on an IAEA interregional training course, Budapest, Hungary, 5-30 November 1979. The course was attended by 19 participants from 16 Member States. Among the 28 training courses which the International Atomic Energy Agency organized within its 1979 programme of technical assistance was the Interregional Training Course on the Utilization of Nuclear Research Reactors. This course was held at the Nuclear Training Reactor (a low-power pool-type reactor) of the Technical University, Budapest, Hungary, from 5 to 30 November 1979 and it was complemented by a one-week Study Tour to the Nuclear Research Centre in Rossendorf near Dresden, German Democratic Republic. The training course was very successful, with 19 participants attending from 16 Member States - Bangladesh, Bolivia, Czechoslovakia, Ecuador, Egypt, India, Iraq, Korean Democratic People's Republic, Morocco, Peru, Philippines, Spain, Thailand, Turkey, Vietnam and Yugoslavia. Selected invited lecturers were recruited from the USA and Finland, as well as local scientists from Hungarian institutions. During the past two decades or so, many research reactors have been put into operation around the world, and the demand for well qualified personnel to run and fully utilize these facilities has increased accordingly. Several developing countries have already acquired small- and medium-size research reactors mainly for isotope production, research in various fields, and training, while others are presently at different stages of planning and installation. Through different sources of information, such as requests to the IAEA for fellowship awards and experts, it became apparent that many research reactors and their associated facilities are not being utilized to their full potential in many of the developing countries. One reason for this is the lack of a sufficient number of trained professionals who are well acquainted with all the capabilities that a research reactor can offer, both in research and

  11. Safe dismantling of the SVAFO research reactors R2 and R2-0 in Sweden

    International Nuclear Information System (INIS)

    ARNOLD, Hans-Uwe; BROY, Yvonne; Dirk Schneider

    2017-01-01

    The R2 and R2-0 reactors were part of the Swedish government's research program on nuclear power from the early 1960's. Both reactors were shut down in 2005 following a decision by former operator Studsvik Nuclear AB. The decommissioning of the R2 and R2-0 reactors is divided into three phases. The first phase - awarded to AREVA - involved dismantling of the reactors and associated systems in the reactor pool, treatment of the disassembled components as well as draining, cleaning and emptying the pool. In the second phase, the pool structure itself will be dismantled, while removal of remaining reactor systems, treatment and disposal of materials and clean-up will be carried out in the third stage. The entire work is planned to be completed before the end of this decade. The paper describes the several steps of phase 1 - starting with the team building, followed by the dismantling operations and covers challenges encountered and lessons learned as well. The reactors consist of 5.400 kg aluminum, 6.000 kg stainless steel restraint structures as well as, connection elements of the mostly flanged components (1.000 kg). The most demanding - from a radiological point of view - was the R2-0 reactor that was limited to ∼ 1 m"3 construction volumes but with an extremely heterogeneous activation profile. Based on the calculated radiological entrance data and later sampling, nuclide vectors for both reactors depending on the real placement of the single component and on the material (aluminum and stainless steel) were created. Finally, for the highest activated component from R2 reactor, 85 Sv/h were measured. The dismantling principles - adopted on a safety point of view - were the following: The always protected base area of the ponds served as a flexible buffer area for waste components and packaging. Specific protections were also installed on the walls to protect them from mechanical stress which may occur during dismantling work. A specific work platform was

  12. Safety assessments relating to the use of new fuels in research reactors: application to the case of FRM 2 reactor fuel

    International Nuclear Information System (INIS)

    Abou Yehia, H.; Bars, G.; Tran Dai

    2001-01-01

    After giving a brief reminder of the procedure applied in France for the licensing of the use of a new fuel type or design in a research reactor, we outline the main safety aspects associated with such a modification. Finally, by way of an example, we focus on the safety assessment relating to the IRIS irradiation device used in SILOE reactor, in particular for the qualification of the fuel dedicated to FRM II reactor of the Technical University of Munich. This qualification was carried out on a U 3 Si 2 fuel plate enriched to about 90 % in weight of 235 U and containing 1.5 g of uranium per cm 3 . The evaluation performed by the IPSN for GRS did not call into question the choice of U 3 Si 2 fuel plates for the FRM-II reactor. (authors)

  13. Development of Vibration Diagnostic System in Research Reactors

    International Nuclear Information System (INIS)

    EL-Kafas, A. A.

    1999-01-01

    Early failure detection and diagnosis system are an important group with increasing interest with the operating support system. Already existing system to monitor integrity of primary system components are vibration and acoustic monitoring system (2,3). The development of vibration diagnostic system for MARIA reactor (30 MW)-the second research reactor in Poland -was made. The new system is applied for the Egypt research reactor (ETRR-1). This paper represents the result obtained during the operation of this activity that carried out at MARIA and ETRR-1 reactors

  14. Shipment of Taiwanese research reactor spent nuclear fuel (Phase 2): Environmental assessment

    International Nuclear Information System (INIS)

    1988-06-01

    The proposed action is to transport approximately 1100 spent fuel rods from a foreign research reactor in Taiwan by sea to Hampton Roads, Virginia, and then overland by truck to the receiving basin for offsite fuels at the Savannah River Plant (SRP) for reprocessing to recover uranium and plutonium. The analysis of the impacts of the proposed action have been evaluated and shown to have negligible impact on the local environments. The calculations have been completed using the RADTRAN III code. PWR spent fuel was analyzed as a benchmark to link the calculations in this analysis to those in earlier environmental documentation. Cumulative total, maximum annual, and per shipment risks were calculated. The results indicate that the PWR spent fuel shipment risks are somewhat lower than those previously estimated. The cumulative and maximum annual normal, or incident-free, risks associated with the shipment of Taiwanese research reactor spent fuel is a factor of 10 lower than that for PWR fuel, and the cumulative and maximum annual accident radiological risks are a factor of about 2.2 lower than that for PWR spent fuel. As a result, the port risks are about a factor of 10 larger than the risk of overland transport. All of the risks calculated are small. The PWR risk values are similar to those judged by the NRC to be small enough not to warrant increased stringency in regulations. The Taiwanese research reactor spent fuel shipment risk values are smaller yet. 51 refs., 22 tabs

  15. Report on the operation in 1973 of the FR 2 research reactor

    International Nuclear Information System (INIS)

    Moeller, I.; Steiger, W.

    1975-04-01

    Also in 1973, the heavy-water moderated research and testing reactor FR 2 was operated to schedule at 44 MW nominal power. Again, the availability of the plant was slightly improved. Experimental utilization through instrumented irradiation capsules strongly increased as compared to the previous year. Up to 16 capsule test rigs at a time were inserted in the reactor. As to the beam tube experiments, up to 13 experiments covering a total of 18 test rigs were conducted simultaneously at the 12 reasonably usable beam holes. At the beginning of the year all of the positions available were occupied by 5 loop experiments. Isotope production reached its highest value with a total of 2,372 irradiated capsules (1.3% more than the year before). Some remarkable figures characterized the year 1973: On August 16, 1973 ten years of full power operation at a nominal power of 12 and 44 MW, respectively, had been reached. On July 24, 1973 the 50,000th isotope irradiation was performed in the reactor and on December 26, 1973 a total energy release of 100,000 MWd was recorded. Moreover, the 125,000th visitor of the reactor was welcomed on December 6, 1973. (orig./UA) [de

  16. IDAS-RR: an incident data base system for research reactors

    International Nuclear Information System (INIS)

    Matsumoto, Kiyoshi; Kohsaka, Atsuo; Kaminaga, Masanori; Murayama, Youji; Ohnishi, Nobuaki; Maniwa, Masaki.

    1990-03-01

    An Incident Data Base System for Research Reactors, IDAS-RR, has been developed. IDAS-RR has information about abnormal incidents (failures, transients, accidents, etc.) of research reactors in the world. Data reference, input, editing and other functions of IDAS-RR are menu driven. The routine processing and data base management functions are performed by the system software and hardware. PC-9801 equipment was selected as the hardware because of its portability and popularity. IDAS-RR provides effective reference information for the following activities. 1) Analysis of abnormal incident of research reactors, 2) Detail analysis of research reactor behavior in the abnormal incident for building the knowledge base of the reactor emergency diagnostic system for research reactor, 3) Planning counter-measure for emergency situation in the research reactor. This report is a user's manual of IDAS-RR. (author)

  17. Nuclear Capacity Building through Research Reactors

    International Nuclear Information System (INIS)

    2017-01-01

    Four Instruments: •The IAEA has recently developed a specific scheme of services for Nuclear Capacity Building in support of the Member States cooperating research reactors (RR) willing to use RRs as a primary facility to develop nuclear competences as a supporting step to embark into a national nuclear programme. •The scheme is composed of four complementary instruments, each of them being targeted to specific objective and audience: Distance Training: Internet Reactor Laboratory (IRL); Basic Training: Regional Research Reactor Schools; Intermediate Training: East European Research Reactor Initiative (EERRI); Group Fellowship Course Advanced Training: International Centres based on Research Reactors (ICERR)

  18. Proceedings of first SWCR-KURRI academic seminar on research reactors and related research topics

    International Nuclear Information System (INIS)

    Kimura, Itsuro; Cong, Zhebao

    1986-01-01

    These are the proceedings of an academic seminar on research reactors and related research topics held at the Southwest Centre for Reactor Engineering Research and Design in Chengdu, Sichuan, People's Republic of China in September 24-26 in 1985. Included are the chairmen's addresses and 10 papers presented at the seminar in English. The titles of these papers are: (1) Nuclear Safety and Safeguards, (2) General Review of Thorium Research in Japanese Universities, (3) Comprehensive Utilization and Economic Analysis of the High Flux Engineering Test Reactor, (4) Present States of Applied Health Physics in Japan, (5) Neutron Radiography with Kyoto University Reactor, (6) Topics of Experimental Works with Kyoto University Reactor, (7) Integral Check of Nuclear Data for Reactor Structural Materials, (8) The Reactor Core, Physical Experiments and the Operation Safety Regulation of the Zero Energy Thermal Reactor for PWR Nuclear Power Plant, (9) HFETR Core Physical Parameters at Power, (10) Physical Consideration for Loads of Operated Ten Cycles in HFETR. (author)

  19. Relative neutronic performance of proposed high-density dispersion fuels in water-moderated and D2O-reflected research reactors

    International Nuclear Information System (INIS)

    Bretscher, M.M.; Matos, J.E.; Snelgrove, J.L.

    1996-01-01

    This paper provides an overview of the neutronic performance of an idealized research reactor using several high density LEU fuels that are being developed by the RERTR program. High-density LEU dispersion fuels are needed for new and existing high-performance research reactors and to extend the lifetime of fuel elements in other research reactors. This paper discusses the anticipated neutronic behavior of proposed advanced fuels containing dispersions of U 3 Si 2 , UN, U 2 Mo and several uranium alloys with Mo, or Zr and Nb. These advanced fuels are ranked based on the results of equilibrium depletion calculations for a simplified reactor model having a small H 2 O-cooled core and a D 2 O reflector. Plans have been developed to fabricate and irradiate several uranium alloy dispersion fuels in order to test their stability and compatibility with the matrix material and to establish practical loading limits

  20. Relative neutronic performance of proposed high-density dispersion fuels in water-moderated and D2O-reflected research reactors

    International Nuclear Information System (INIS)

    Bretscher, M.M.; Matos, J.E.; Snelgrove, J.L.

    1996-01-01

    This paper provides an overview of the neutronic performance of an idealized research reactor using several high density Leu fuels that are being developed by the Rarita program. High-density Leu dispersion fuels are needed for new and existing high-performance research reactors and to extend the lifetime of fuel elements in other research reactors. This paper discusses the anticipated neutronic behavior of proposed advanced fuels containing dispersions of U 3 Si 2 , UN, U 2 Mo and several uranium alloys with Mo, or Zr and Nb. These advanced fuels are ranked based on the results of equilibrium depletion calculations for a simplified reactor model having a small H 2 O-cooled core and a D 2 O reflector. Plans have been developed to fabricate and irradiate several uranium alloy dispersion fuels in order to test their stability and compatibility with the matrix material and to establish practical loading limits. (author)

  1. Status of Dalat research reactor and progress of new reactor plan in Vietnam

    International Nuclear Information System (INIS)

    Dien, Nguyen Nhi; Vien, Luong Ba

    2005-01-01

    The Dalat Nuclear Research Reactor (DNRR) is a 500-kW pool-type reactor loaded with the Soviet WWR-M2 Fuel Assemblies (FA), moderated and cooled by light water. The reactor was reconstructed from the USA 250-kW TRIGA Mark-II reactor built in early 1960s. The first criticality of the renovated reactor was achieved on 1 st November 1983, and then on 20 March 1984 the reactor was officially inaugurated and its activities restarted. During the last twenty years, the DNRR has played an important role as a large national research facility to implement researches and applications, and its utilization has been broadened in various fields of human life. However, due to the limitation of the neutron flux and power level, the out-of date design of the experimental facilities and the ageing of the reactor facilities, it cannot meet the increasing user's demands even in the existing utilization areas. In addition, the utilization demands of the Research Reactor (RR) will be increased along with the development of the nation's economy growth. In this aspect, it is necessary to have in Vietnam a new high performance multipurpose RR with a sufficient neutron flux and power level. According to the last draft of a national strategy for atomic energy development submitted to the Government for consideration and approval, it is expected that a new high power RR would be put into operation before 2020. The operation and utilization status of the DNRR is presented and some preliminary results of the national research project on new reactor plan for Vietnam are discussed in this paper

  2. The heavy water accountancy for research reactors in JAERI

    International Nuclear Information System (INIS)

    Yoshijima, Tetsuo; Tanaka, Sumitoshi; Nemoto, Denjirou

    1998-11-01

    The three research reactors have been operated by the Department of Research Reactor and used about 41 tons heavy water as coolant, moderator and reflector of research reactors. The JRR-2 is a tank type research reactor of 10MW in thermal power and its is used as moderator, coolant and reflector about 16 tons heavy water. The JRR-3M is a light water cooled and moderated pool type research reactor with a thermal power of 20MW and its is used as reflector about 7.3 tons heavy water. In the JRR-4, which is a light water cooled swimming pool type research reactor with the maximum thermal power of 3.5MW, about 1 ton heavy water is used to supply fully thermalized neutrons with a neutron beam experiment of facility. The heavy water was imported from U.S.A., CANADA and Norway. Parts of heavy water is internationally controlled materials, therefore management of heavy water is necessary for materials accountancy. This report described the change of heavy water inventories in each research reactors, law and regulations for accounting of heavy water in JAERI. (author)

  3. Safety of research reactors (Design and Operation)

    International Nuclear Information System (INIS)

    Dirar, H. M.

    2012-06-01

    The primary objective of this thesis is to conduct a comprehensive up-to-date literature review on the current status of safety of research reactor both in design and operation providing the future trends in safety of research reactors. Data and technical information of variety selected historical research reactors were thoroughly reviewed and evaluated, furthermore illustrations of the material of fuel, control rods, shielding, moderators and coolants used were discussed. Insight study of some historical research reactors was carried with considering sample cases such as Chicago Pile-1, F-1 reactor, Chalk River Laboratories,. The National Research Experimental Reactor and others. The current status of research reactors and their geographical distribution, reactor category and utilization is also covered. Examples of some recent advanced reactors were studied like safety barriers of HANARO of Korea including safety doors of the hall and building entrance and finger print identification which prevent the reactor from sabotage. On the basis of the results of this research, it is apparent that a high quality of safety of nuclear reactors can be attained by achieving enough robust construction, designing components of high levels of efficiency, replacing the compounds of the reactor in order to avoid corrosion and degradation with age, coupled with experienced scientists and technical staffs to operate nuclear research facilities.(Author)

  4. PARR-2: reactor description and experiments

    International Nuclear Information System (INIS)

    Wyne, M.F.; Meghji, J.H.

    1990-12-01

    PARR-2 is a miniature neutron source reactor (MNSR) research reactor has been designed at the rate of 27 kW. Reactor assembly comprises of peaking characteristics with a self limiting flux. In this report reactor description with its assembly and instrumentation control system has been explained. The reactor engineering and physics experiments which can be performed on this reactor are explained in this report. PARR-2 is fueled with HEU fuel pins which are about 90% enriched in U-235. Specific requirements for the safety of the reactor, its building and the personnel, normal instrumentation as required in an industrial environment is sufficient. (A.B.)

  5. IAEA activities on research reactor safety

    International Nuclear Information System (INIS)

    Alcala-Ruiz, F.

    1995-01-01

    Since its inception in 1957, the International Atomic Energy Agency (IAEA) has included activities in its programme to address aspects of research reactors such as safety, utilization and fuel cycle considerations. These activities were based on statutory functions and responsibilities, and on the current situation of research reactors in operation around the world; they responded to IAEA Member States' general or specific demands. At present, the IAEA activities on research reactors cover the above aspects and respond to specific and current issues, amongst which safety-related are of major concern to Member States. The present IAEA Research Reactor Safety Programme (RRSP) is a response to the current situation of about 300 research reactors in operation in 59 countries around the world. (orig.)

  6. COOLOD, Steady-State Thermal Hydraulics of Research Reactors

    International Nuclear Information System (INIS)

    Kaminaga, Masanori

    1997-01-01

    1 - Description of program or function: The COOLOD-N2 code provides a capability for the analyses of the steady-state thermal-hydraulics of research reactors. This code is a revised version of the COOLOD-N code, and is applicable not only for research reactors in which plate-type fuel is adopted, but also for research reactors in which rod-type fuel is adopted. In the code, subroutines to calculate temperature distribution in rod-type fuel have been newly added to the COOLOD-N code. The COOLOD-N2 code can calculate fuel temperatures under both forced convection cooling mode and natural convection cooling mode. A 'Heat Transfer package' is used for calculating heat transfer coefficient, DNB heat flux etc. The 'Heat Transfer package' is a subroutine program and is especially developed for research reactors in which plate-type fuel is adopted. In case of rod-type fuel, DNB heat flux is calculated by both the 'Heat Transfer package' and Lund DNB heat flux correlation which is popular for TRIGA reactor. The COOLOD-N2 code also has a capability of calculating ONB temperature, the heat flux at onset of flow instability as well as DNB heat flux. 2 - Method of solution: The 'Heat Transfer Package' is a subprogram for calculating heat transfer coefficients, ONB temperature, heat flux at onset of flow instability and DNB heat flux. The 'Heat transfer package' was especially developed for research reactors which are operated under low pressure and low temperature conditions using plate-type fuel, just like the JRR-3M. Heat transfer correlations adopted in the 'Heat Transfer Package' were obtained or estimated based on the heat transfer experiments in which thermal-hydraulic features of the upgraded JRR-3 core were properly reflected. The 'Heat Transfer Package' is applicable to upward and downward flow

  7. Safety status of Russian research reactors

    International Nuclear Information System (INIS)

    Morozov, S.I.

    2001-01-01

    Gosatomnadzor of Russia is conducting the safety regulation and inspection activity related to nuclear and radiation safety at nuclear research facilities, including research reactors, critical assemblies and sub-critical assemblies. It implies implementing three major activities: 1) establishing the laws and safety standards in the field of research reactors nuclear and radiation safety; 2) research reactors licensing; and 3) inspections (or license conditions tracking and inspection). The database on nuclear research facilities has recently been updated based on the actual status of all facilities. It turned out that many facilities have been shutdown, whether temporary or permanently, waiting for the final decision on their decommissioning. Compared to previous years the situation has been inevitably changing. Now we have 99 nuclear research facilities in total under Gosatomnadzor of Russia supervision (compared to 113 in previous years). Their distribution by types and operating organizations is presented. The licensing and conduct of inspection processes are briefly outlined with emphasis being made on specific issues related to major incidents that happened in 2000, spent fuel management, occupational exposure, effluents and emissions, emergency preparedness and physical protection. Finally, a summary of problems at current Russian research facilities is outlined. (author)

  8. Design of a multipurpose research reactor

    International Nuclear Information System (INIS)

    Sanchez Rios, A.A.

    1990-01-01

    The availability of a research reactor is essential in any endeavor to improve the execution of a nuclear programme, since it is a very versatile tool which can make a decisive contribution to a country's scientific and technological development. Because of their design, however, many existing research reactors are poorly adapted to certain uses. In some nuclear research centres, especially in the advanced countries, changes have been made in the original designs or new research prototypes have been designed for specific purposes. These modifications have proven very costly and therefore beyond the reach of developing countries. For this reason, what the research institutes in such countries need is a single sufficiently versatile nuclear plant capable of meeting the requirements of a nuclear research programme at a reasonable cost. This is precisely what a multipurpose reactor does. The Mexican National Nuclear Research Institute (ININ) plans to design and build a multipurpose research reactor capable at the same time of being used for the development of reactor design skills and for testing nuclear materials and fuels, for radioisotopes production, for nuclear power studies and basic scientific research, for specialized training, and so on. For this design work on the ININ Multipurpose Research Reactor, collaborative relations have been established with various international organizations possessing experience in nuclear reactor design: Atomehnergoeksport of the USSR: Atomic Energy of Canada Limited (AECL); General Atomics (GA) of the USA; and Japan Atomic Energy Research Institute

  9. Improving nuclear safety at international research reactors: The Integrated Research Reactor Safety Enhancement Program (IRRSEP)

    International Nuclear Information System (INIS)

    Huizenga, David; Newton, Douglas; Connery, Joyce

    2002-01-01

    Nuclear energy continues to play a major role in the world's energy economy. Research and test reactors are an important component of a nation's nuclear power infrastructure as they provide training, experiments and operating experience vital to developing and sustaining the industry. Indeed, nations with aspirations for nuclear power development usually begin their programs with a research reactor program. Research reactors also are vital to international science and technology development. It is important to keep them safe from both accident and sabotage, not only because of our obligation to prevent human and environmental consequence but also to prevent corresponding damage to science and industry. For example, an incident at a research reactor could cause a political and public backlash that would do irreparable harm to national nuclear programs. Following the accidents at Three Mile Island and Chernobyl, considerable efforts and resources were committed to improving the safety posture of the world's nuclear power plants. Unsafe operation of research reactors will have an amplifying effect throughout a country or region's entire nuclear programs due to political, economic and nuclear infrastructure consequences. (author)

  10. IAEA programme on research reactor safety

    International Nuclear Information System (INIS)

    Alcala, F.; Di Meglio, A.F.

    1995-01-01

    This paper describes the IAEA programme on research reactor safety and includes the safety related areas of conversions to the use of low enriched uranium (LEU) fuel. The program is based on the IAEA statutory responsibilities as they apply to the requirements of over 320 research reactors operating around the world. The programme covers four major areas: (a) the development of safety documents; (b) safety missions to research reactor facilities; (c) support of research programmes on research reactor safety; (d) support of Technical Cooperation projects on research reactor safety issues. The demand for these activities by the IAEA member states has increased substantially in recent years especially in developing countries with increasing emphasis being placed on LEU conversion matters. In response to this demand, the IAEA has undertaken an extensive programme for each of the four areas above. (author)

  11. IAEA activities in the field of research reactors safety

    International Nuclear Information System (INIS)

    Ciuculescu, C.; Boado Magan, H.J.

    2004-01-01

    IAEA activities in the field of research reactor safety are included in the programme of the Division of Nuclear Installations Safety. Following the objectives of the Division, the results of the IAEA missions and the recommendations from International Advisory Groups, the IAEA has conducted in recent years a certain number of activities aiming to enhance the safety of research reactors. The following activities will be presented: (a) the new Requirements for the Safety of Research Reactors, main features and differences with previous standards (SS-35-S1 and SS-35-S2) and the grading approach for implementation; (b) new documents being developed (safety guides, safety reports and TECDOC's); (c) activities related to the Incident Reporting System for Research Reactor (IRSRR); (d) the new features implemented for the INSARR missions; (e) the Code of Conduct on the Safety of Research Reactors adopted by the Board of Governors on 8 March 2004, following the General Conference Resolution GC(45)/RES/10; and (f) the survey on the safety of research reactors published on the IAEA website on February 2003 and the results obtained. (author)

  12. Development of Safety Review Guidance for Research and Training Reactors

    International Nuclear Information System (INIS)

    Oh, Kju-Myeng; Shin, Dae-Soo; Ahn, Sang-Kyu; Lee, Hoon-Joo

    2007-01-01

    The KINS already issued the safety review guidance for pressurized LWRs. But the safety review guidance for research and training reactors were not developed. So, the technical standard including safety review guidance for domestic research and training reactors has been applied mutates mutandis to those of nuclear power plants. It is often difficult for the staff to effectively perform the safety review of applications for the permit by the licensee, based on peculiar safety review guidance. The NRC and NSC provide the safety review guidance for test and research reactors and European countries refer to IAEA safety requirements and guides. The safety review guide (SRG) of research and training reactors was developed considering descriptions of the NUREG- 1537 Part 2, previous experiences of safety review and domestic regulations for related facilities. This study provided the safety review guidance for research and training reactors and surveyed the difference of major acceptance criteria or characteristics between the SRG of pressurized light water reactor and research and training reactors

  13. Safety analysis for research reactors

    International Nuclear Information System (INIS)

    2008-01-01

    The aim of safety analysis for research reactors is to establish and confirm the design basis for items important to safety using appropriate analytical tools. The design, manufacture, construction and commissioning should be integrated with the safety analysis to ensure that the design intent has been incorporated into the as-built reactor. Safety analysis assesses the performance of the reactor against a broad range of operating conditions, postulated initiating events and other circumstances, in order to obtain a complete understanding of how the reactor is expected to perform in these situations. Safety analysis demonstrates that the reactor can be kept within the safety operating regimes established by the designer and approved by the regulatory body. This analysis can also be used as appropriate in the development of operating procedures, periodic testing and inspection programmes, proposals for modifications and experiments and emergency planning. The IAEA Safety Requirements publication on the Safety of Research Reactors states that the scope of safety analysis is required to include analysis of event sequences and evaluation of the consequences of the postulated initiating events and comparison of the results of the analysis with radiological acceptance criteria and design limits. This Safety Report elaborates on the requirements established in IAEA Safety Standards Series No. NS-R-4 on the Safety of Research Reactors, and the guidance given in IAEA Safety Series No. 35-G1, Safety Assessment of Research Reactors and Preparation of the Safety Analysis Report, providing detailed discussion and examples of related topics. Guidance is given in this report for carrying out safety analyses of research reactors, based on current international good practices. The report covers all the various steps required for a safety analysis; that is, selection of initiating events and acceptance criteria, rules and conventions, types of safety analysis, selection of

  14. Current tendencies and perspectives of development research reactors of Russia

    International Nuclear Information System (INIS)

    Gabaraev, B.A.; Kchmelschikov, V.V.

    2004-01-01

    Full text: During more than fifty years many Research Reactors were constructed under Russian projects, and that is a considerable contribution to the world reactor building. The designs of Research Reactors, constructed under Russian projects, appeared to be so successful, that permitted to raise capacity and widen the range of their application. The majority of Russian Research Reactors being middle-aged are far from having their designed resources exhausted and are kept on the intensive run still. In 2000 'Strategy of nuclear power development in Russia in the first half of XXI century' was elaborated and approved. The national nuclear power requirements and possible ways of its development determined in this document demanded to analyze the state of the research reactors base. The analysis results are presented in this report. The main conclusion consists in the following statement: on the one hand quantity and experimental potentialities of domestic Research Reactors are sufficient for the solution of reactor materials science tasks, and on the other hand the reconstruction and modernization appears to be the most preferable way of research reactors development for the near-term outlook. At present time the modernization and reconstruction works and works on extension of operational life of high-powered multipurpose MIR-M1, SM-3, IRV-1M, BOR-60, IVV-2M and others are conducted. There is support for the development of Research Reactors, intended for carrying out the fundamental investigations on the neutron beams. Toward this end the Government of Russia gives financial and professional support with a view to complete the reactor PIK construction in PINPh and the reactor IBR-2 modernization in JINR. In future prospect Research Reactors branch in Russia is to acquire the following trends: - limited number of existent scientific centers, based on the construction sites, with high flux materials testing research reactors, equipped with experimental facilities

  15. European Research Reactor Conference (RRFM) 2015: Conference Proceedings

    International Nuclear Information System (INIS)

    2015-01-01

    In 2015 the European Research Reactor Conference, RRFM, took place in Bucharest, Romania. The conference programme resolved around a series of plenary sessions dedicated to the latest global developments with regards to research reactor technology and management. Parallel sessions focused on all areas of the fuel cycle of research reactors, their utilisation, operation and management as well as new research reactor projects and Innovative methods in reactor physics and thermo-hydraulics. The European Research Reactor Conference also gave special attention to safety and security of research reactors

  16. European Research Reactor Conference (RRFM) 2016: Conference Proceedings

    International Nuclear Information System (INIS)

    2016-01-01

    The 2016 European Research Reactor Conference, RRFM, took place in Berlin, Germany. The conference programme resolved around a series of plenary sessions dedicated to the latest global developments with regards to research reactor technology and management. Parallel sessions focused on all areas of the fuel cycle of research reactors, their utilisation, operation and management as well as new research reactor projects and Innovative methods in reactor physics and thermo-hydraulics. The European Research Reactor Conference also gave special attention to safety and security of research reactors.

  17. Materials science research for sodium cooled fast reactors

    Indian Academy of Sciences (India)

    The paper gives an insight into basic as well as applied research being carried out at the Indira Gandhi Centre for Atomic Research for the development of advanced materials for sodium cooled fast reactors towards extending the life of reactors to nearly 100 years and the burnup of fuel to 2,00,000 MWd/t with an objective ...

  18. Experimental and theoretical burnup investigations on model arrangements with solid burnable poisons

    International Nuclear Information System (INIS)

    Ahlf, J.; Anders, D.; Greim, L.; Knoth, J.; Kolb, M.; Mittelstaedt, B.; Mueller, A.; Schwenke, H.

    1975-01-01

    It is the scope of the two experiments here to improve the methods for computation and measurement as well as the experimental technique appropriate to predict the burnable poison rod burn-up with sufficient accuracy. In the first experiment two nine-rod bundles in a 3 x 3 arrangement are irradiated during several irradiation periods in the research reactor Geesthacht. Each bundle consists of eight outer rods containing fuel and one inner rod containing poison (B 10 or Cd 113). The burn-up of the fuel and the burnable poison is measured by non-destructive methods after each irradiation period and then compared with results of a burn-up calculation. In the second experiment two poison rods with different cadmium concentrations and one rod containing boron are irradiated during several irradiation periods in the research reactor Geesthacht. The burn-up is determined after each irradiation period by reactivity measurements and its result compared to computed effective absorption cross-sections of the rods by aid of a calibration curve. For both experiments the experimental and theoretical results for the poison burn-up are found to be within the error limits of the measurements. (orig.) [de

  19. Experimental and theoretical investigations on solid burnable poison burnup of model arrangements

    International Nuclear Information System (INIS)

    Ahlf, J.; Anders, D.; Greim, L.; Knoth, J.; Kolb, M.; Mittelstaedt, B.; Mueller, A.; Schwenke, H.

    1975-01-01

    It is the scope of the two experiments reported here to improve the methods for computation and measurement as well as the experimental technique appropriate to predict the burnable poison rod burn-up with sufficient accuracy. In the first experiment two nine-rod bundles in a 3 x 3 arrangement are irradiated during several irradiation periods in the research reactor Geesthacht. Each bundle consists of eight outer rods containing fuel and one inner rod containing poison (B 10 or Cd 113). The burn-up of the fuel and the burnable poison is measured by non-destructive methods after each irradiation period and then compared with results of a burn-up calculation. In the second experiment two poison rods with different cadmium concentrations and one rod containing boron are irradiated during several irradiation periods in the research reactor Geesthacht. The burn-up is determined after each irradiation period by reactivity measurements and its result compared to computed effective absorption cross-sections of the rods by aid of a calibration curve. For both experiments the experimental and theoretical results for the poison burn-up are found to be within the error limits of the measurements. (orig.) [de

  20. The role of research reactor and its future

    International Nuclear Information System (INIS)

    Nakagome, Yoshihiro

    2005-01-01

    About a half century passed since the start of operation of research reactors. Many research reactors were stopped their operation or decommissioned. With the practical use of nuclear energy, the meaning of research reactor has been buried in oblivion in the developed countries. Furthermore, under the nuclear weapons nonproliferation policy, the use of high enriched uranium fuel in research reactors is obliged to change to the use of low enriched uranium fuel. In such severe situation, this paper refers to the role of the research reactor once more through the operation experience of university-owned research reactor KUR (Kyoto University Reactor, Japan) and describes that research reactor is indispensable for the preparation to the second coming nuclear age. (author)

  1. FRG compact core - one year experience

    International Nuclear Information System (INIS)

    Knop, W.; Schreiner, P.

    2001-01-01

    The GKSS research centre Geesthacht GmbH operates the MTR-type swimming pool reactor FRG-1 (5 MW) for more than 40 years. The FRG-1 has been upgraded and refurbished many times to follow the changing demands of safe operation and today's needs of high neutron flux for scientific research. High neutron fluxes with highest availability is the permanent demand of the science on the operation of a neutron source. (orig.)

  2. Present status of research reactor decommissioning programme in Indonesia

    International Nuclear Information System (INIS)

    Suripto, A.; Mulyanto, N.

    2002-01-01

    At present Indonesia has 3 research reactors, namely the 30 MW MTR-type multipurpose reactor at Serpong Site, two TRIGA-type research reactors, the first one being 1 MW located at Bandung Site and the second one a small reactor of 100 kW at Yogyakarta Site. The TRIGA Reactor at the Bandung Site reached its first criticality at 250 kW in 1964, and then was operated at 1000 kW since 1971. In October 2000 the reactor power was successfully upgraded to 2 MW. This reactor has already been operated for 38 years. There is not yet any decision for the decommissioning of this reactor. However it will surely be an object for the near future decommissioning programme and hence anticipation for the above situation becomes necessary. The regulation on decommissioning of research reactor is already issued by the independent regulatory body (BAPETEN) according to which the decommissioning permit has to be applied by the BATAN. For Indonesia, an early decommissioning strategy for research reactor dictates a restricted re-use of the site for other nuclear installation. This is based on high land price, limited availability of radwaste repository site, and other cost analysis. Spent graphite reflector from the Bandung TRIGA reactor is recommended for a direct disposal after conditioning, without any volume reduction treatment. Development of human resources, technological capability as well as information flow from and exchange with advanced countries are important factors for the future development of research reactor decommissioning programme in Indonesia. (author)

  3. The market for research reactors

    International Nuclear Information System (INIS)

    Roegler, H.J.

    1986-01-01

    The assay deals with some basic questions if there is an international market for research reactors at all, which influencing factors affect this market, and if research reactors have any effects on the future market for nuclear engineering. (UA) [de

  4. Quality assurance in the manufacture of metallic uranium fuel for research reactors

    International Nuclear Information System (INIS)

    Shah, B.K.; Kumar, Arbind; Nanekar, P.P.; Vaidya, P.R.

    2009-01-01

    Two Research Reactors viz. CIRUS and DHRUVA are operating at Trombay since 1960 and 1985 respectively. Cirus is a 40 MWth reactor using heavy water as moderator and light water as coolant. Dhruva is a 100 MWth reactor using heavy water as moderator and coolant. The maximum neutron flux of these reactors are 6.7 x 10 13 n/cm 2 /s (Cirus) and 1.8 x 10 14 n/cm 2 /s (Dhruva). Both these reactors are used for basic research, R and D in reactor technology, isotope production and operator training. Fuel material for these reactors is natural uranium metallic rods claded in finned aluminium (99.5%) tubes. This presentation will discuss various issues related to fabrication quality assurance and reactor behavior of metallic uranium fuel used in research reactors

  5. Guidelines for the review research reactor safety. Reference document for IAEA Integrated Safety Assessment of Research Reactors (INSARR)

    International Nuclear Information System (INIS)

    1997-01-01

    In 1992, the IAEA published new safety standards for research reactors as part of the set of publications considered by its Research Reactor Safety Programme (RRSP). This set also includes publications giving guidance for all safety aspects related to the lifetime of a research reactor. In addition, the IAEA has also revised the Safety Standards for radiation protection. Consequently, it was considered advisable to revise the Integrated Safety Assessment of Research Reactors (INSARR) procedures to incorporate the new requirements and guidance as well as to extend the scope of the safety reviews to currently operating research reactors. The present report is the result of this revision. The purpose of this report is to give guidance on the preparation, execution, reporting and follow-up of safety review mission to research reactors as conducted by the IAEA under its INSARR missions safety service. However, it will also be of assistance to operators and regulators in conducting: (a) ad hoc safety assessments of research reactors to address individual issues such as ageing or safety culture; and (b) other types of safety reviews such as internal and peer reviews and regulatory inspections

  6. Thai research reactor

    International Nuclear Information System (INIS)

    Aramrattana, M.

    1987-01-01

    The Office of Atomic Energy for Peace (OAEP) was established in 1962, as a reactor center, by the virtue of the Atomic Energy for Peace Act, under operational policy and authority of the Thai Atomic Energy for Peace Commission (TAEPC); and under administration of Ministry of Science, Technology and Energy. It owns and operates the only Thai Research Reactor (TRR-1/M1). The TRR-1/M1 is a mixed reactor system constituting of the old MTR type swimming pool, irradiation facilities and cooling system; and TRIGA Mark III core and control instrumentation. The general performance of TRR-1/M1 is summarized in Table I. The safe operation of TRR-1/M1 is regulated by Reactor Safety Committee (RSC), established under TAEPC, and Health Physics Group of OAEP. The RCS has responsibility and duty to review of and make recommendations on Reactor Standing Orders, Reactor Operation Procedures, Reactor Core Loading and Requests for Reactor Experiments. In addition,there also exist of Emergency Procedures which is administered by OAEP. The Reactor Operation Procedures constitute of reactor operating procedures, system operating procedures and reactor maintenance procedures. At the level of reactor routine operating procedures, there is a set of Specifications on Safety and Operation Limits and Code of Practice from which reactor shift supervisor and operators must follow in order to assure the safe operation of TRR-1/M1. Table II is the summary of such specifications. The OAEP is now upgrading certain major components of the TRR-1/M1 such as the cooling system, the ventilation system and monitoring equipment to ensure their adequately safe and reliable performance under normal and emergency conditions. Furthermore, the International Atomic Energy Agency has been providing assistance in areas of operation and maintenance and safety analysis. (author)

  7. Design and construction of multi research reactor

    International Nuclear Information System (INIS)

    1985-05-01

    This is the report about design and construction of multi research reactor, which introduces the purpose and necessity of the project, business contents, plan of progress of project and budget for the project. There are three appendixes about status of research reactor in other country, a characteristic of research reactor, three charts about evaluation, process and budget for the multi research reactor and three drawings for the project.

  8. Nuclear safety requirements for operation licensing of Egyptian research reactors

    International Nuclear Information System (INIS)

    Ahmed, E.E.M.; Rahman, F.A.

    2000-01-01

    From the view of responsibility for health and nuclear safety, this work creates a framework for the application of nuclear regulatory rules to ensure safe operation for the sake of obtaining or maintaining operation licensing for nuclear research reactors. It has been performed according to the recommendations of the IAEA for research reactor safety regulations which clearly states that the scope of the application should include all research reactors being designed, constructed, commissioned, operated, modified or decommissioned. From that concept, the present work establishes a model structure and a computer logic program for a regulatory licensing system (RLS code). It applies both the regulatory inspection and enforcement regulatory rules on the different licensing process stages. The present established RLS code is then applied to the Egyptian Research Reactors, namely; the first ET-RR-1, which was constructed and still operating since 1961, and the second MPR research reactor (ET-RR-2) which is now in the preliminary operation stage. The results showed that for the ET-RR-1 reactor, all operational activities, including maintenance, in-service inspection, renewal, modification and experiments should meet the appropriate regulatory compliance action program. Also, the results showed that for the new MPR research reactor (ET-RR-2), all commissioning and operational stages should also meet the regulatory inspection and enforcement action program of the operational licensing safety requirements. (author)

  9. Safety re-assessment of AECL test and research reactors

    International Nuclear Information System (INIS)

    Winfield, D.J.

    1990-01-01

    Atomic Energy of Canada Limited currently has four operating engineering test/research reactors of various sizes and ages; a new isotope-production reactor Maple-X10, under construction at Chalk River Nuclear Laboratories (CRNL), and a heating demonstration reactor, SDR, undergoing high-power commissioning at Whiteshell Nuclear Research Establishment (WNRE). The company is also performing design studies of small reactors for hot water and electricity production. The older reactors are ZED-2, PTR, NRX, and NRU; these range in age from 42 years (NRX) to 29 years (ZED-2). Since 1984, limited-scope safety re-assessments have been underway on three of these reactors (ZED-2, NRX AND NRU). ZED-2 and PTR are operated by the Reactor Physics Branch; all other reactors are operated by the respective site Reactor Operations Branches. For the older reactors the original safety reports produced were entirely deterministic in nature and based on the design-basis accident concept. The limited scope safety re-assessments for these older reactors, carried out over the past 5 years, have comprised both quantitative probabilistic safety-assessment techniques, such as event tree and fault analysis, and/or qualitative techniques, such as failure mode and effect analysis. The technique used for an individual assessment was dependent upon the specific scope required. This paper discusses the types of analyses carried out, specific insights/recommendations resulting from the analysis, and the plan for future analysis. In addition, during the last four years safety assessments have been carried out on the new isotope-, heat-, and electricity-producing reactors, as part of the safety design review, commissioning and licensing activities

  10. Keeping research reactors relevant: a pro-active approach for SLOWPOKE-2 at RMC

    International Nuclear Information System (INIS)

    Cosby, L.; Nielsen, K.; Bennett, L.G.I.

    2011-01-01

    In 2001, the Royal Military College of Canada replaced its aging analogue SLOWPOKE-2 reactor control system with a digital control system. The system was successfully commissioned and has provided a renewed platform for student learning and research. An upgrade to the digital control and instrumentation system has been completed and will be installed in October 2010. The upgrade includes new computer hardware, updated software and a simulation and training system that will enhance training, education and research by licensed operators, students and researchers.

  11. Guidelines for the Review of Research Reactor Safety: Revised Edition. Reference Document for IAEA Integrated Safety Assessment of Research Reactors (INSARR)

    International Nuclear Information System (INIS)

    2013-01-01

    The Integrated Safety Assessment of Research Reactors (INSARR) is an IAEA safety review service available to Member States with the objective of supporting them in ensuring and enhancing the safety of their research reactors. This service consists of performing a comprehensive peer review and an assessment of the safety of the respective research reactor. The reviews are based on IAEA safety standards and on the provisions of the Code of Conduct on the Safety of Research Reactors. The INSARR can benefit both the operating organizations and the regulatory bodies of the requesting Member States, and can include new research reactors under design or operating research reactors, including those which are under a Project and Supply Agreement with the IAEA. The first IAEA safety evaluation of a research reactor operated by a Member State was completed in October 1959 and involved the Swiss 20 MW DIORIT research reactor. Since then, and in accordance with its programme on research reactor safety, the IAEA has conducted safety review missions in its Member States to enhance the safety of their research reactor facilities through the application of the Code of Conduct on the Safety of Research Reactors and the relevant IAEA safety standards. About 320 missions in 51 Member States were undertaken between 1972 and 2012. The INSARR missions and other limited scope safety review missions are conducted following the guidelines presented in this publication, which is a revision of Guidelines for the Review of Research Reactor Safety (IAEA Services Series No. 1), published in December 1997. This publication details those IAEA safety standards and guidance publications relevant to the safety of research reactors that have been revised or published since 1997. The purpose of this publication is to give guidance on the preparation, implementation, reporting and follow-up of safety review missions. It is also intended to be of assistance to operators and regulators in conducting

  12. Investigation of the basic reactor physics characteristics of the Dalat Nuclear Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Huy, Ngo Quang [Centre for Nuclear Technique Application, Ho Chi Minh City (Viet Nam); Thong, Ha Van; Khang, Ngo Phu [Nuclear Research Inst., Da Lat (Viet Nam)

    1994-10-01

    The Dalat nuclear research reactor was reconstructed from TRIGA MARK II reactor, built in 1963 with nominal power of 250 KW, and reached its planned nominal power of 500 kW for the first time in Feb. 1984. The Dalat reactor has some characteristics distinct from the former TRIGA reactor. Investigation of its characteristics is carried out by the determination of the reactor physics parameters. This paper represents the experimental results obtained for the effective fraction of the delayed photoneutrons, the extraneous neutron source left after the reactor is shut down, the lowest power levels of reactor critical states, the relative axial and radial distributions of thermal neutrons, the safe positive reactivity inserted into the reactor at deep subcritical state, the reactivity temperature coefficient of water, the temperature on the surface of the fuel elements, etc. (author). 10 refs., 10 figs., 2 tabs.

  13. Safety of research reactors - A regulator's perspective

    International Nuclear Information System (INIS)

    Rahman, M.S.

    2001-01-01

    Due to historical reasons research reactors have received less regulatory attention in the world than nuclear power plants. This has given rise to several safety issues which, if not addressed immediately, may result in an undesirable situation. However, in Pakistan, research reactors and power reactors have received due attention from the regulatory authority. The Pakistan Research Reactor-1 has been under regulatory surveillance since 1965, the year of its commissioning. The second reactor has also undergone all the safety reviews and checks mandated by the licensing procedures. A brief description of the regulatory framework, the several safety reviews carried out have been briefly described in this paper. Significant activities of the regulatory authority have also been described in verifying the safety of research reactors in Pakistan along with the future activities. The views of the Pakistani regulatory authority on the specific issues identified by the IAEA have been presented along with specific recommendations to the IAEA. We are of the opinion that there are more Member States operating nuclear research reactors than nuclear power plants. Therefore, there should be more emphasis on the research reactor safety, which somehow has not been the case. In several recommendations made to the IAEA on the specific safety issues the emphasis has been, in general, to have a similar documentation and approach for maintaining and verifying operational safety at research reactors as is currently available for nuclear power reactors and may be planned for nuclear fuel cycle facilities. (author)

  14. Nuclear reactor safety research in Idaho

    International Nuclear Information System (INIS)

    Zeile, H.J.

    1983-01-01

    Detailed information about the performance of nuclear reactor systems, and especially about the nuclear fuel, is vital in determining the consequences of a reactor accident. Fission products released from the fuel during accidents are the ultimate safety concern to the general public living in the vicinity of a nuclear reactor plant. Safety research conducted at the Idaho National Engineering Laboratory (INEL) in support of the U.S. Nuclear Regulatory Commission (NRC) has provided the NRC with detailed data relating to most of the postulated nuclear reactor accidents. Engineers and scientists at the INEL are now in the process of gathering data related to the most severe nuclear reactor accident - the core melt accident. This paper describes the focus of the nuclear reactor safety research at the INEL. The key results expected from the severe core damage safety research program are discussed

  15. Back-end of the research reactor fuel cycle

    International Nuclear Information System (INIS)

    Gruber, Gehard J.

    1996-01-01

    This paper outlines the status of topics and issues related to: (1) Research Reactor Spent Nuclear Fuel Return to the U.S., including policy, shipments and ports of entry, management sites, fees, storage technologies, contracts, actual shipment, and legal process, (2) UKAEA: MTR Spent Nuclear Fuel Reprocessing, (3) COGEMA: MTR Spent Nuclear Fuel Reprocessing, and (4) Intermediate Storage + Direct Disposal for Research Reactors. (author)

  16. The future role of research reactors

    International Nuclear Information System (INIS)

    Glaeser, W.

    2001-01-01

    The decline of neutron source capacity in the next decades urges for the planning and construction of new neutron sources for basic and applied research with neutrons. Modern safety precautions of research reactors make them competitive with other ways of neutron production using non-chain reactions for many applications. Research reactors consequently optimized offer a very broad range of possible applications in basic and applied research. Research reactors at universities also in the future have to play an important role in education and training in basic and applied nuclear science. (orig.)

  17. Progress report concerning safety research for nuclear reactor facilities

    International Nuclear Information System (INIS)

    1978-01-01

    Examination and evaluation of safety research results for nuclear reactor facilities have been performed, as more than a year has elapsed since the plan had been initiated in April, 1976, by the special sub-committee for the safety of nuclear reactor facilities. The research is carried out by being divided roughly into 7 items, and seems to be steadily proceeding, though it does not yet reach the target. The above 7 items include researches for (1) criticality accident, (2) loss of coolant accident, (3) safety for light water reactor fuel, (4) construction safety for reactor facilities, (5) reduction of release of radioactive material, (6) safety evaluation based on the probability theory for reactor facilities, and (7) aseismatic measures for reactor facilities. With discussions on the progress and the results of the research this time, research on the behaviour on fuel in abnormal transients including in-core and out-core experiments has been added to the third item, deleting the power-cooling mismatch experiment in Nuclear Safety Research Reactor of JAERI. Also it has been decided to add two research to the seventh item, namely measured data collection, classification and analysis, and probability assessment of failures due to an earthquake. For these 7 items, the report describes the concrete contents of research to be performed in fiscal years of 1977 and 1978, by discussing on most rational and suitable contents conceivable at present. (Wakatsuki, Y.)

  18. The utility of different reactor types for the research

    International Nuclear Information System (INIS)

    Stiennon, G.

    1983-01-01

    The report presents a general view of the use of the different belgian research reactor i.e. venus reactor, BR-1 reactor, BR-2 reactor and BR-3 reactor. Particular attention is given to the programmes which is in the interest of international collaboration. In order to reach an efficient utilization of such reactors they require a specialized personnel groups to deal with the irradiation devices and radioactive materials and post irradiation examinations, creating a complete material testing station. (A.J.)

  19. Operation and utilization of Indonesia Research Reactors

    International Nuclear Information System (INIS)

    Kuntoro, Iman; Sujalmo, Saiful; Tarigan, Alim

    2004-01-01

    For supporting the R and D in nuclear science and technology and its application, BATAN own and operate three research reactors namely, TRIGA-2000, KARTINI and RSG-GAS having thermal power of 2 MW, 100 kW and 30 MW respectively. The main features, operation and utilization progress of the reactors are described in this report. (author)

  20. The evolution of Canadian research reactors, 1942 to 1992

    International Nuclear Information System (INIS)

    Lidstone, R.F.

    1993-01-01

    This report reviews the evolution of Canadian research reactor design over the past fifty years. Canadian research reactors have played a central role in the development of CANDU power reactors and the creation of an international business based on the production of medical and industrial radioisotopes. A focus on neutronic efficiency, which stemmed from the incentive for direct use of Canada's abundant uranium resources, has resulted in several generations of multipurpose reactors with a common heritage of neutronic efficiency. Each successive nuclear design has been engineered with the best available resources to extrapolate slightly from the current technology base to meet specific program requirements and to incorporate the flexibility needed to accommodate evolving priorities. (Author) 19 refs., 2 tabs., 2 figs

  1. IRSN research programs concerning reactor safety

    International Nuclear Information System (INIS)

    Bardelay, J.

    2005-01-01

    This paper is made up of 3 parts. The first part briefly presents the missions of IRSN (French research institute on nuclear safety), the second part reviews the research works currently led by IRSN in the following fields : -) the assessment of safety computer codes, -) thermohydraulics, -) reactor ageing, -) reactivity accidents, -) loss of coolant, -) reactor pool dewatering, -) core meltdown, -) vapor explosion, and -) fission product release. In the third part, IRSN is shown to give a major importance to experimental programs led on research or test reactors for collecting valid data because of the complexity of the physical processes that are involved. IRSN plans to develop a research program concerning the safety of high or very high temperature reactors. (A.C.)

  2. Annual report of department of research reactor, 1992

    International Nuclear Information System (INIS)

    1993-12-01

    The department of research Reactor is responsible for the operation, maintenance, utilization and related R and D works of the research reactors including JRR-2, JRR-3M (new JRR-3) and JRR-4. This report describes the activities of our department in fiscal year of 1992 and it also includes some of the technical topics on the works mentioned above. As for the research reactors, we carried out the operation, maintenance, irradiation utilization, neutron beam experiments, technical management including fuels and water chemistry, radiation monitoring as well as related R and D works. The international cooperations between the developing countries and our department were also made concerning the operation, utilization and safety analysis for nuclear facilities. (author)

  3. The replacement research reactor

    International Nuclear Information System (INIS)

    Cameron, R.

    1999-01-01

    As a consequences of the government decision in September 1997. ANSTO established a replacement research reactor project to manage the procurement of the replacement reactor through the necessary approval, tendering and contract management stages This paper provides an update of the status of the project including the completion of the Environmental Impact Statement. Prequalification and Public Works Committee processes. The aims of the project, management organisation, reactor type and expected capabilities are also described

  4. Ageing investigation and upgrading of components/systems of Kartini research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Syarip,; Setiawan, Widi [Yogyakarta Nuclear Research Centre, Yogyakarta (Indonesia)

    1998-10-01

    Kartini research reactor has been operated in good condition and has demonstrated successful operation for the past 18 years, utilized for: reactor kinetic and control studies, instrumentation tests, neutronic and thermohydraulic studies, routine neutron activation analysis, reactor safety studies, training for research reactor operators and supervisors, and reactor physics experiments. Several components of Kartini reactor use components from the abandoned IRT-2000 Project at Serpong and from Bandung Reactor Centre such as: reactor tank, reactor core, heat exchanger, motor blower for ventilation system, fuel elements, etc. To maintain a good operating performance and also for aging investigation purposes, the component failure data collection has been done. The method used is based on the Manual on Reliability Data Collection For Research Reactor PSAs, IAEA TECDOC 636, and analyzed by using Data Entry System (DES) computer code. Analysis result shows that the components/systems failure rate of Kartini reactor is around 1,5.10{sup -4} up to 2,8.10{sup -4} per hour, these values are within the ranges of the values indicated in IAEA TECDOC 478. Whereas from the analysis of irradiation history shows that the neutron fluence of fuel element with highest burn-up (2,05 gram U-235 in average) is around 1.04.10{sup 16} n Cm{sup -2} and this value is still far below its limiting value. Some reactor components/systems have been replaced and upgraded such as heat exchanger, instrumentation and control system (ICS), etc. The new reactor ICS was installed in 1994 which is designed as a distributed structure by using microprocessor based systems and bus system technology. The characteristic and operating performance of the new reactor ICS, as well as the operation history and improvement of the Kartini research reactor is presented. (J.P.N.)

  5. Introduction to Safety Analysis Approach for Research Reactors

    International Nuclear Information System (INIS)

    Park, Suki

    2016-01-01

    The research reactors have a wide variety in terms of thermal powers, coolants, moderators, reflectors, fuels, reactor tanks and pools, flow direction in the core, and the operating pressure and temperature of the cooling system. Around 110 research reactors have a thermal power greater than 1 MW. This paper introduces a general approach to safety analysis for research reactors and deals with the experience of safety analysis on a 10 MW research reactor with an open-pool and open-tank reactor and a downward flow in the reactor core during normal operation. The general approach to safety analysis for research reactors is described and the design features of a typical open-pool and open-tank type reactor are discussed. The representative events expected in research reactors are investigated. The reactor responses and the thermal hydraulic behavior to the events are presented and discussed. From the minimum CHFR and the maximum fuel temperature calculated, it is ensured that the fuel is not damaged in the step insertion of reactivity by 1.8 mk and the failure of all primary pumps for the reactor with a 10 MW thermal power and downward core flow

  6. New research reactor proposed for Australia

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    A new research reactor has been proposed for construction within the next ten years, to replace the HIFAR reactor which operating capabilities have been over taken by later designs. This paper outlines the main research applications of the new reactor design and briefly examines issues related to its cost, economic benefits, safety and location

  7. Safety features of TR-2 reactor

    International Nuclear Information System (INIS)

    Tuerker, T.

    2001-01-01

    TR-2 is a swimming pool type research reactor with 5 MW thermal power and uses standard MTR plate type fuel elements. Each standard fuel element consist of 23 fuel plates with a meat + cladding thickness of 0.127 cm, coolant channel clearance is 0.21 cm. Originally TR-2 is designed for %93 enriched U-Al. Alloy fuel meat.This work is based on the preparation of the Final Safety Analyses Report (FSAR) of the TR-2 reactor. The main aspect is to investigate the behaviour of TR-2 reactor under the accident and abnormal operating conditions, which cowers the accident spectrum unique for the TR-2 reactor. This presentation covers some selected transient analyses which are important for the safety aspects of the TR-2 reactor like reactivity induced startup accidents, pump coast down (Loss of Flow Accident, LOFA) and other accidents which are charecteristic to the TR-2

  8. Research reactor modernization and refurbishment

    International Nuclear Information System (INIS)

    2009-08-01

    Many recent, high profile research reactor unplanned shutdowns can be directly linked to different challenges which have evolved over time. The concept of ageing management is certainly nothing new to nuclear facilities, however, these events are highlighting the direct impact unplanned shutdowns at research reactors have on various stakeholders who depend on research reactor goods and services. Provided the demand for these goods and services remains strong, large capital projects are anticipated to continue in order to sustain future operation of many research reactors. It is within this context that the IAEA organized a Technical Workshop to launch a broader Agency activity on research reactor modernization and refurbishment (M and R). The workshop was hosted by the operating organization of the HOR Research Reactor in Delft, the Netherlands, in October 2006. Forty participants from twenty-three countries participated in the meeting: with representation from Africa, Asia Pacific, Eastern Europe, North America, South America and Western Europe. The specific objectives of this workshop were to present facility reports on completed, existing and planned M and R projects, including the project objectives, scope and main characteristics; and to specifically report on: - the project impact (planned or actual) on the primary and key supporting motivation for the M and R project; - the project impact (planned or actual) on the design basis, safety, and/or regulatory-related reports; - the project impact (planned or actual) on facility utilization; - significant lessons learned during or following the completion of M and R work. Contributions from this workshop were reviewed by experts during a consultancy meeting held in Vienna in December 2007. The experts selected final contributions for inclusion in this report. Requests were also distributed to some authors for additional detail as well as new authors for known projects not submitted during the initial 2006 workshop

  9. Light water reactor safety research project

    International Nuclear Information System (INIS)

    Markoczy, G.; Aksan, S.N.; Behringer, K.; Prodan, M.; Stierli, F.; Ullrich, G.

    1980-07-01

    The research and development activities for the safety of Light Water Power Reactors carried out 1979 at the Swiss Federal Institute for Reactor Research are described. Considerations concerning the necessity, objectives and size of the Safety Research Project are presented, followed by a detailed discussion of the activities in the five tasks of the program, covering fracture mechanics and nondestructive testing, thermal-hydraulics, reactor noise analysis and pressure vessel steel surveillance. (Auth.)

  10. Utilization of MVP for research on fast reactor

    International Nuclear Information System (INIS)

    Yokoyama, Kenji

    2001-01-01

    Utilization of the continuous energy Monte-Carlo code, MVP, for research on fast reactor in Power Reactor and Nuclear Fuel Development Corporation(PNC) is described. In this report, three types of utilization are reviewed; (1) a comparison of the eigenvalues calculated by MVP with the results by the deterministic methods, (2) an improvement of U-238 reaction rate evaluation in JUPITER experimental Analysis and (3) an evaluation of heterogeneity effects for Am reaction rates of the moderated subassemblies. Since the results of MVP can be used as references, MVP is very useful code in research on fast reactor. It is one of indispensable tools in order to verify the models in the deterministic methods. Furthermore, it can be used so as to investigate the new concept reactors, such as a reactor aiming to transmute minor actinides(MA). On the other hand, a problem of the variance reduction remains. Especially, a small reactivity cannot be estimated by MVP because of large variances. The development of a Monte-Carlo method for a small reactivity calculation will promote the utilization of MVP for research on fast reactor. (author)

  11. Decontamination of soil from the research reactor site

    International Nuclear Information System (INIS)

    Won, H. Z.; Kim, K. N.; Choi, W. K.; Jeong, J. H.; Oh, W. J.

    2002-01-01

    The two research reactors (TRIGA MARK II and III) in Korea are to be decommissioned in the near future. When the reactors are completely dismantled, the site may remain contaminated due to the long period of operation. We assume that the site is radioactively contaminated by Co-60. Soils gathered from the research reactor site were artificially contaminated with Co 2+ ion. The desorption characteristics of Co 2+ ion from the soil surface by citric acid solution were investigated. Decontamination performances of citric acid and EDTA on soil stored in the radioactive waste drums was examined. The feasibility test of recycling the citric acid was also performed. We concluded that the radioactive waste volume could be reduced significantly by soil washing with a citric acid solution

  12. Demolition of the FRJ-1 research reactor (MERLIN)

    International Nuclear Information System (INIS)

    Stahn, B.; Matela, K.; Zehbe, C.; Poeppinghaus, J.; Cremer, J.

    2003-01-01

    FRJ-2 (MERLIN), the swimming pool reactor cooled and moderated by light water, was built at the then Juelich Nuclear Research Establishment (KFA) between 1958 and 1962. In the period between 1964 and 1985, it was used for. The reactor was decommissioned in 1985. Since 1996, most of the demolition work has been carried out under the leadership of a project team. The complete secondary cooling system was removed by late 1998. After the cooling loops and experimental installations had been taken out, the reactor vessel internals were removed in 2000 after the water had been drained from the reactor vessel. After the competent authority had granted a license, demolition of the reactor block, the central part of the research reactor, was begun in October 2001. In a first step, the reactor operating floor and the reactor attachment structures were removed by the GNS/SNT consortium charged with overall planning and execution of the job. This phase gave rise to approx. The reactor block proper is dismantled in a number of steps. A variety of proven cutting techniques are used for this purpose. Demolition of the reactor block is to be completed in the first half of 2003. (orig.) [de

  13. Reactor materials research as an effective instrument of nuclear reactor perfection

    International Nuclear Information System (INIS)

    Baryshnikov, M.

    2006-01-01

    The work is devoted to reactor materiology, as to the practical tool of nuclear reactor development. The work is illustrated with concrete examples from activity experience of the appropriate division of the Russian Research Centre Kurchatov Institute - Institute of Reactor Materials Research and Radiation Nanotechnologies. Besides the description of some modern potentials of the mentioned institute is given. (author)

  14. Experience in using a research reactor for the training of power reactor operators

    International Nuclear Information System (INIS)

    Blotcky, A.J.; Arsenaut, L.J.

    1972-01-01

    A research reactor facility such as the one at the Omaha Veterans Administration Hospital would have much to offer in the way of training reactor operators. Although most of the candidates for the course had either received previous training in the Westinghouse Reactor Operator Training Program, had operated nuclear submarine reactors or had operated power reactors, they were not offered the opportunity to perform the extensive manipulations of a reactor that a small research facility will allow. In addition the AEC recommends 10 research reactor startups per student as a prerequisite for a cold operator?s license and these can easily be obtained during the training period

  15. Utilization of research reactors

    International Nuclear Information System (INIS)

    1962-01-01

    About 200 research reactors are now in operation in different parts of the world, and at least 70 such facilities, which are in advanced stages of planning and construction, should be critical within the next two or three years. In the process of this development a multitude of problems are being encountered in formulating and carrying out programs for the proper utilization of these facilities, especially in countries which have just begun or are starting their atomic energy work. An opportunity for scientific personnel from different Member States to discuss research reactor problems was given at an international symposium on the Programing and Utilization of Research Reactors organized by the Agency almost immediately after the General Conference session. Two hundred scientists from 35 countries, as well as from the European Nuclear Energy Agency and EURATOM, attended the meeting which was held in Vienna from 16 to 21 October 1961

  16. On the research activities in reactor and neutron physics using the first egyptian research reactor

    International Nuclear Information System (INIS)

    Hassan, A.M.

    2000-01-01

    A review on the most important research activities in reactor and neutron physics using the first Egyptian Research Reactor (ET-RR-1) is given. An out look on: neutron cross-sections, neutron flux, neutron capture gamma-ray spectroscopy, neutron activation analysis, neutron diffraction and radiation shielding experiments, is presented

  17. United States Domestic Research Reactor Infrastructure TRIGA Reactor Fuel Support

    International Nuclear Information System (INIS)

    Morrell, Douglas

    2011-01-01

    The United State Domestic Research Reactor Infrastructure Program at the Idaho National Laboratory manages and provides project management, technical, quality engineering, quality inspection and nuclear material support for the United States Department of Energy sponsored University Reactor Fuels Program. This program provides fresh, unirradiated nuclear fuel to Domestic University Research Reactor Facilities and is responsible for the return of the DOE-owned, irradiated nuclear fuel over the life of the program. This presentation will introduce the program management team, the universities supported by the program, the status of the program and focus on the return process of irradiated nuclear fuel for long term storage at DOE managed receipt facilities. It will include lessons learned from research reactor facilities that have successfully shipped spent fuel elements to DOE receipt facilities.

  18. Power Quality Problems Mitigation using Dynamic Voltage Restorer in Egypt Thermal Research Reactor (ETRR-2)

    International Nuclear Information System (INIS)

    Kandil, T.; Ayad, N.M.; Abdel Haleam, A.; Mahmoud, M.

    2013-01-01

    Egypt thermal research reactor (ETRR-2) was subjected to several Power Quality Problems such as voltage sags/swells, harmonics distortion, and short interruption. ETRR-2 encompasses a wide range of loads which are very sensitive to voltage variations and this leads to several unplanned shutdowns of the reactor due to trigger of the Reactor Protection System (RPS). The Dynamic Voltage Restorer (DVR) has recently been introduced to protect sensitive loads from voltage sags and other voltage disturbances. It is considered as one of the most efficient and effective solution. Its appeal includes smaller size and fast dynamic response to the disturbance. This paper describes a proposal of a DVR to improve power quality in ETRR-2 electrical distribution systems . The control of the compensation voltage is based on d-q-o algorithm. Simulation is carried out by Matlab/Simulink to verify the performance of the proposed method

  19. Loss-of-Flow and Loss-of-Pressure Simulations of the BR2 Research Reactor with HEU and LEU Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Licht, J. [Argonne National Lab. (ANL), Argonne, IL (United States); Bergeron, A. [Argonne National Lab. (ANL), Argonne, IL (United States); Dionne, B. [Argonne National Lab. (ANL), Argonne, IL (United States); Sikik, E. [Belgian Nuclear Research Center (SCK-CEN), Mol (Belgium); Van den Branden, G. [Belgian Nuclear Research Center (SCK-CEN), Mol (Belgium); Koonen, E. [Belgian Nuclear Research Center (SCK-CEN), Mol (Belgium)

    2016-01-01

    Belgian Reactor 2 (BR2) is a research and test reactor located in Mol, Belgium and is primarily used for radioisotope production and materials testing. The Materials Management and Minimization (M3) Reactor Conversion Program of the National Nuclear Security Administration (NNSA) is supporting the conversion of the BR2 reactor from Highly Enriched Uranium (HEU) fuel to Low Enriched Uranium (LEU) fuel. The reactor core of BR2 is located inside a pressure vessel that contains 79 channels in a hyperboloid configuration. The core configuration is highly variable as each channel can contain a fuel assembly, a control or regulating rod, an experimental device, or a beryllium or aluminum plug. Because of this variability, a representative core configuration, based on current reactor use, has been defined for the fuel conversion analyses. The code RELAP5/Mod 3.3 was used to perform the transient thermal-hydraulic safety analyses of the BR2 reactor to support reactor conversion. The input model has been modernized relative to that historically used at BR2 taking into account the best modeling practices developed by Argonne National Laboratory (ANL) and BR2 engineers.

  20. Kartini Research Reactor prospective studies for neutron scattering application

    International Nuclear Information System (INIS)

    Widarto

    1999-01-01

    The Kartini Research Reactor (KRR) is located in Yogyakarta Nuclear Research Center, Yogyakarta - Indonesia. The reactor is operated for 100 kW thermal power used for research, experiments and training of nuclear technology. There are 4 beam ports and 1 column thermal are available at the reactor. Those beam ports have thermal neutron flux around 10 7 n/cm 2 s each other and used for sub critical assembly, neutron radiography studies and Neutron Activation Analysis (NAA). Design of neutron collimator has been done for piercing radial beam port and the calculation result of collimated neutron flux is around 10 9 n/cm 2 s. This paper describes experiment facilities and parameters of the Kartini research reactor, and further more the prospective studies for neutron scattering application. The purpose of this paper is to optimize in utilization of the beam ports facilities and enhance the manpower specialty. The special characteristic of the beam ports and preliminary studies, pre activities regarding with neutron scattering studies for KKR is presented. (author)

  1. Caramel fuel for research reactors

    International Nuclear Information System (INIS)

    Bussy, P.

    1979-11-01

    This fuel for research reactors is made of UO 2 pellets in a zircaloy cladding to replace 93% enriched uranium. It is a cold fuel, non contaminating and non proliferating, enrichment is only 7 to 8%. Irradiation tests were performed until burn-up of 50000 MWD/t [fr

  2. Research reactor safety - an overview of crucial aspects

    International Nuclear Information System (INIS)

    Laverie, M.

    1998-01-01

    Chronology of the commissioning orders of the French research reactors illustrates the importance of the time factor. When looking at older reactors, one must, on one hand, demonstrate, not only the absence of risks tied to the reactor's ageing, but, on the other hand, adapt the reactor's original technical designs to today's safety practices and standards. The evolution of reactor safety requirements over the last twenty years sometimes makes this adaptation difficult. The design of the next research reactors, after a one to two decades pause in construction, will require to set up new safety assessment bases that will have to take into account the nuclear power plant safety evolution. As a general statement, research reactor safety approaches will require the incorporation of specific design rules for research reactors: experience feedback for one of a kind design, frequent modifications required by research programmes, special operational requirements with operators/researchers interfaces. (author)

  3. Meeting on reactor safety research

    International Nuclear Information System (INIS)

    1982-09-01

    The meeting 'Reactor Safety Research' organized for the second time by the GRS by order of the BMFT gave a review of research activities on the safety of light water reactors in the Federal Repulbic of Germany, international co-operation in this field and latest results of this research institution. The central fields of interest were subjects of man/machine-interaction, operational reliability accident sequences, and risk. (orig.) [de

  4. Nuclear research reactors in the world. June 1988 ed.

    International Nuclear Information System (INIS)

    1988-01-01

    This is the third edition of Reference Data Series No. 3, Nuclear Research Reactors in the World, which replaces the Agency's publications Power and Research Reactors in Member States and Research Reactors in Member States. This booklet contains general information, as of the end of June 1988, on research reactors in operation, under construction, planned, and shut down. The information is collected by the Agency through questionnaires sent to the Member States through the designated national correspondents. All data on research reactors, training reactors, test reactors, prototype reactors and critical assemblies are stored in the IAEA Research Reactor Data Base (RRDB) system. This system contains all the information and data previously published in the Agency's publication Power and Research Reactors in Member States as well as additional information. 12 figs, 19 tabs

  5. Current status of the world's research reactors

    International Nuclear Information System (INIS)

    Dodd, B.

    1999-01-01

    Data from the IAEA's Research Reactor Database (RRDB) provides information with respect to the status of the world's research reactors. Some summary data are given. Recent initiatives by the IAEA regarding communications and information flow with respect to research reactors are discussed. Future plans and perspectives are also introduced. (author)

  6. Research reactor records in the INIS database

    International Nuclear Information System (INIS)

    Marinkovic, N.

    2001-01-01

    This report presents a statistical analysis of more than 13,000 records of publications concerned with research and technology in the field of research and experimental reactors which are included in the INIS Bibliographic Database for the period from 1970 to 2001. The main objectives of this bibliometric study were: to make an inventory of research reactor related records in the INIS Database; to provide statistics and scientific indicators for the INIS users, namely science managers, researchers, engineers, operators, scientific editors and publishers, decision-makers in the field of research reactors related subjects; to extract other useful information from the INIS Bibliographic Database about articles published in research reactors research and technology. (author)

  7. Basic research using the 250 kW research reactor of the Jozef Stefan Institute

    International Nuclear Information System (INIS)

    Dimic, V.

    1984-01-01

    The 250 kW TRIGA Mark II reactor is a light water reactor with solid fuel elements in which the zirconium hydride moderator is homogeneously distributed between enriched uranium. The reactor therefore has a large prompt negative temperature coefficient of reactivity; the fuel also has a very high retention of radioactive fission products. The experimental facilities include a rotary specimen rack, a central in-core radiation thimble, a pneumatic transfer system and pulsing capability. Other experimental facilities include two radial and two tangential beam tubes, a graphite thermal column and a graphite thermalizing column. At the steady state power of 250 kW the peak flux is 1x10 13 n/cm 2 in the central test position. In addition, pulsing to about 2000 MW is usually provided giving peak fluxes of about 2x10 16 n/cm 2 sec. All TRIGA reactors produce a core-average thermal neutron flux of about 10 7 n.v. per watt. Only with very large accelerators can such high fluxes be achieved. The types of research could be summarized as follows: thermal neutron scattering, neutron radiography, neutron and nuclear physics, activation analysis, radiochemistry, biology and medicine, and teaching and training. Typical applied research with a 250 kW reactor has been conducted in medicine, in biology, archaeology, metallurgy and materials science, engineering and criminology. It is well known that research reactors have been used routinely to produce isotopes for industry and medicine. We can conclude that the 250 kW TRIGA reactor is a useful and wide ranging source of radiation for basic and applied research. The operation cost for this instrument is relatively low. (author)

  8. Effective utilization and management of research reactors

    Energy Technology Data Exchange (ETDEWEB)

    Muranaka, R [International Atomic Energy Agency, Vienna (Austria). Div. of Research and Isotopes

    1984-06-01

    The problem of utilizing a research reactor effectively is closely related to its management and therefore should not be considered separately. Too often, attention has been focused on specific techniques and methods rather than on the overall programme of utilization, with the result that skills and equipment have been acquired without any active continuing programme of applications and services. The seminar reported here provided a forum for reactor managers, users, and operators to discuss their experience. At the invitation of the Government of Malaysia, it was held at the Asia Pacific Development Centre, Kuala Lumpur, from 7 to 11 November 1983. It was attended by about 50 participants from 19 Member States; it is hoped that a report on the seminar, including papers presented, can be published and thus reach a wider audience. Thirty-one lectures and contributions were presented at a total of seven sessions: Research reactor management; Radiation exposure and safety; Research reactor utilization (two sessions); PUSPATI Research Reactor Project Development; Core conversion to low-enriched uranium, and safeguards; Research reactor technology. In addition, a panel discussed the causes and resolutions of the under-utilization of research reactors.

  9. Effective utilization and management of research reactors

    International Nuclear Information System (INIS)

    Muranaka, R.

    1984-01-01

    The problem of utilizing a research reactor effectively is closely related to its management and therefore should not be considered separately. Too often, attention has been focused on specific techniques and methods rather than on the overall programme of utilization, with the result that skills and equipment have been acquired without any active continuing programme of applications and services. The seminar reported here provided a forum for reactor managers, users, and operators to discuss their experience. At the invitation of the Government of Malaysia, it was held at the Asia Pacific Development Centre, Kuala Lumpur, from 7 to 11 November 1983. It was attended by about 50 participants from 19 Member States; it is hoped that a report on the seminar, including papers presented, can be published and thus reach a wider audience. Thirty-one lectures and contributions were presented at a total of seven sessions: Research reactor management; Radiation exposure and safety; Research reactor utilization (two sessions); PUSPATI Research Reactor Project Development; Core conversion to low-enriched uranium, and safeguards; Research reactor technology. In addition, a panel discussed the causes and resolutions of the under-utilization of research reactors

  10. A Preliminary Analysis of Reactor Performance Test (LOEP) for a Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyeonil; Park, Su-Ki [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    The final phase of commissioning is reactor performance test, which is to prove the integrated performance and safety of the research reactor at full power with fuel loaded such as neutron power calibration, Control Absorber Rod/Second Shutdown Rod drop time, InC function test, Criticality, Rod worth, Core heat removal with natural mechanism, and so forth. The last test will be safety-related one to assure the result of the safety analysis of the research reactor is marginal enough to be sure about the nuclear safety by showing the reactor satisfies the acceptance criteria of the safety functions such as for reactivity control, maintenance of auxiliaries, reactor pool water inventory control, core heat removal, and confinement isolation. After all, the fuel integrity will be ensured by verifying there is no meaningful change in the radiation levels. To confirm the performance of safety equipment, loss of normal electric power (LOEP), possibly categorized as Anticipated Operational Occurrence (AOO), is selected as a key experiment to figure out how safe the research reactor is before turning over the research reactor to the owner. This paper presents a preliminary analysis of the reactor performance test (LOEP) for a research reactor. The results showed how different the transient between conservative estimate and best estimate will look. Preliminary analyses have shown all probable thermal-hydraulic transient behavior of importance as to opening of flap valve, minimum critical heat flux ratio, the change of flow direction, and important values of thermal-hydraulic parameters.

  11. Present status and future prospect of research reactors

    International Nuclear Information System (INIS)

    Takemi, Hirokatsu

    1996-01-01

    The present status of research reactors more than MW class reactor in JAERI and the Kyoto University and the small reactors in the Musashi Institute of Technology, the Rikkyo University, the Tokyo University, the Kinki University and other countries are explained in the paper. The present status of researches are reported by the topics in each field. The future researches of the beam reactor and the irradiation reactor are reviewed. On various kinds of use of research reactor and demands of neutron field of a high order, new type research reactors under investigation are explained. Recently, the reactors are used in many fields such as the basic science: the basic physics, the material science, the nuclear physics, and the nuclear chemistry and the applied science; the earth and environmental science, the biology and the medical science. (S.Y.)

  12. Proceedings of the sixth Asian symposium on research reactors

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-08-01

    The symposium consisted of 16 sessions with 58 submitted papers. Major fields were: (1) status and future plan of research and testing reactors, (2) operating experiences, (3) design and modification of the facility, and reactor fuels, (4) irradiation studies, (5) irradiation facilities, (6) reactor characteristics and instrumentation, and (7) neutron beam utilization. Panel discussion on the 'New Trends on Application of Research and Test Reactors' was also held at the last of the symposium. About 180 people participated from China, Korea, Indonesia, Thailand, Bangladesh, Vietnam, Chinese Taipei, Belgium, France, USA, Japan and IAEA. The 58 of the presented papers are indexed individually. (J.P.N.)

  13. Proceedings of the sixth Asian symposium on research reactors

    International Nuclear Information System (INIS)

    1999-08-01

    The symposium consisted of 16 sessions with 58 submitted papers. Major fields were: 1) status and future plan of research and testing reactors, 2) operating experiences, 3) design and modification of the facility, and reactor fuels, 4) irradiation studies, 5) irradiation facilities, 6) reactor characteristics and instrumentation, and 7) neutron beam utilization. Panel discussion on the 'New Trends on Application of Research and Test Reactors' was also held at the last of the symposium. About 180 people participated from China, Korea, Indonesia, Thailand, Bangladesh, Vietnam, Chinese Taipei, Belgium, France, USA, Japan and IAEA. The 58 of the presented papers are indexed individually. (J.P.N.)

  14. Current trends in and prospects for development of Russian research reactors

    International Nuclear Information System (INIS)

    Arkhangelsky, N.V.; Cherepnin, Yu.S.; Gabaraev, B.A.; Khmelshchikov, V.V.; Tretiyakov, I.T.

    2004-01-01

    Over more than fifty years, many research reactors were built to Russian designs both at home and abroad, which is a considerable contribution to the world reactor engineering. Russian research reactors proved to be successful to an extent that it was found possible to raise capacity and to extend the range of their application. Though having a fairly long operating record, the majority of Russian research reactors are far from the end of their service life and are still in active use. In 2000, the 'Strategy of nuclear power development in Russia in the first half of the 21 st century' was elaborated and approved. The requirements of national nuclear power and the possible ways of its development identified in this document called for assessing the existing research capabilities. The findings of such assessment are presented in this report. The main conclusion lies in the following. On the one hand, the number and experimental capabilities of domestic research reactors are sufficient for coping with the objectives of research in, and on the other hand, retrofitting and upgrading appear to be the most expedient way of managing the operation of research reactors in the near term. Activities are under way to upgrade and extend the service life of multipurpose reactors, such as MIR-M1, SM-3, IRV-1M, BOR-60, IVV-2M, and others. The Federal Agency of the Russian Federation for Atomic Energy (Rosatom) supports the development of reactors intended for fundamental research with the use of neutron beams. To this end, Rosatom renders financial and professional support with a view to complete the PIK reactor construction at PIYaF and the IBR-2 reactor upgrades at JINR. In a longer term, the development of research reactors in Russia is expected to have the following pattern: - a small number of high-flux testing reactors with up-to-date experimental facilities located on the sites of the existing research centers; - PIK reactor, catering to domestic and foreign needs for beam

  15. Research reactor safety - an overview of crucial aspects

    Energy Technology Data Exchange (ETDEWEB)

    Laverie, M. [Atomic Energy Commission, Saclay, F-91191 Gif sur Yvette (France)

    1998-07-01

    Chronology of the commissioning orders of the French research reactors illustrates the importance of the time factor. When looking at older reactors, one must, on one hand, demonstrate, not only the absence of risks tied to the reactor's ageing, but, on the other hand, adapt the reactor's original technical designs to today's safety practices and standards. The evolution of reactor safety requirements over the last twenty years sometimes makes this adaptation difficult. The design of the next research reactors, after a one to two decades pause in construction, will require to set up new safety assessment bases that will have to take into account the nuclear power plant safety evolution. As a general statement, research reactor safety approaches will require the incorporation of specific design rules for research reactors: experience feedback for one of a kind design, frequent modifications required by research programmes, special operational requirements with operators/researchers interfaces. (author)

  16. New research reactor for Australia

    International Nuclear Information System (INIS)

    Miller, R.

    1992-01-01

    HIFAR, Australia's major research reactor was commissioned in 1958 to test materials for an envisaged indigenous nuclear power industry. HIFAR is a Dido type reactor which is operated at 10 MW. With the decision in the early 1970's not to proceed to nuclear power, HIFAR was adapted to other uses and has served Australia well as a base for national nuclear competence; as a national facility for neutron scattering/beam research; as a source of radioisotopes for medical diagnosis and treatment; and as a source of export revenue from the neutron transmutation doping of silicon for the semiconductor industry. However, all of HIFAR's capabilities are becoming less than optimum by world and regional standards. Neutron beam facilities have been overtaken on the world scene by research reactors with increased neutron fluxes, cold sources, and improved beams and neutron guides. Radioisotope production capabilities, while adequate to meet Australia's needs, cannot be easily expanded to tap the growing world market in radiopharmaceuticals. Similarly, neutron transmutation doped silicon production, and export income from it, is limited at a time when the world market for this material is expanding. ANSTO has therefore embarked on a program to replace HIFAR with a new multi-purpose national facility for nuclear research and technology in the form of a reactor: a) for neutron beam research, - with a peak thermal flux of the order of three times higher than that from HIFAR, - with a cold neutron source, guides and beam hall, b) that has radioisotope production facilities that are as good as, or better than, those in HIFAR, c) that maximizes the potential for commercial irradiations to offset facility operating costs, d) that maximizes flexibility to accommodate variations in user requirements during the life of the facility. ANSTO's case for the new research reactor received significant support earlier this month with the tabling in Parliament of a report by the Australian Science

  17. TRIGA research reactors with higher power density

    International Nuclear Information System (INIS)

    Whittemore, W.L.

    1994-01-01

    The recent trend in new or upgraded research reactors is to higher power densities (hence higher neutron flux levels) but not necessarily to higher power levels. The TRIGA LEU fuel with burnable poison is available in small diameter fuel rods capable of high power per rod (≅48 kW/rod) with acceptable peak fuel temperatures. The performance of a 10-MW research reactor with a compact core of hexagonal TRIGA fuel clusters has been calculated in detail. With its light water coolant, beryllium and D 2 O reflector regions, this reactor can provide in-core experiments with thermal fluxes in excess of 3 x 10 14 n/cm 2 ·s and fast fluxes (>0.1 MeV) of 2 x 10 14 n/cm 2 ·s. The core centerline thermal neutron flux in the D 2 O reflector is about 2 x 10 14 n/cm 2 ·s and the average core power density is about 230 kW/liter. Using other TRIGA fuel developed for 25-MW test reactors but arranged in hexagonal arrays, power densities in excess of 300 kW/liter are readily available. A core with TRIGA fuel operating at 15-MW and generating such a power density is capable of producing thermal neutron fluxes in a D 2 O reflector of 3 x 10 14 n/cm 2 ·s. A beryllium-filled central region of the core can further enhance the core leakage and hence the neutron flux in the reflector. (author)

  18. An overview-probabilistic safety analysis for research reactors

    International Nuclear Information System (INIS)

    Liu Jinlin; Peng Changhong

    2015-01-01

    For long-term application, Probabilistic Safety Analysis (PSA) has proved to be a valuable tool for improving the safety and reliability of power reactors. In China, 'Nuclear safety and radioactive pollution prevention 'Twelfth Five Year Plan' and the 2020 vision' raises clearly that: to develop probabilistic safety analysis and aging evaluation for research reactors. Comparing with the power reactors, it reveals some specific features in research reactors: lower operating power, lower coolant temperature and pressure, etc. However, the core configurations may be changed very often and human actions play an important safety role in research reactors due to its specific experimental requirement. As a result, there is a necessary to conduct the PSA analysis of research reactors. This paper discusses the special characteristics related to the structure and operation and the methods to develop the PSA of research reactors, including initiating event analysis, event tree analysis, fault tree analysis, dependent failure analysis, human reliability analysis and quantification as well as the experimental and external event evaluation through the investigation of various research reactors and their PSAs home and abroad, to provide the current situation and features of research reactors PSAs. (author)

  19. Training and research reactor facility longevity extension program

    International Nuclear Information System (INIS)

    Carriveau, G.W.

    1991-01-01

    Since 1943, over 550 training and research reactors have been in operation. According to statistics from the International Atomic Energy Agency, ∼325 training and research reactors are currently in service. This total includes a wide variety of designs covering a range of power and research capabilities located virtually around the world. A program has been established at General Atomics (GA) that is dedicated to the support of extended longevity of training and research reactor facilities. Aspects of this program include the following: (1) new instrumentation and control systems; (2) improved and upgraded nuclear monitoring and control channels; (3) facility testing, repair and upgrade services that include (a) pool or tank integrity, (b) cooling system, and (c) water purification system; (4) fuel element testing procedures and replacement; (5) control rod drive rebuilding and upgrades; (6) control and monitoring system calibration and repair service; (7) training services, including reactor operations, maintenance, instrumentation calibration, and repair; and (8) expanded or new uses such as neutron radiography and autoradiography, isotope production, nuclear medicine, activation analysis, and material properties modification

  20. Supply of enriched uranium for research reactors

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, H. [NUKEM GmbH, Alzenau (Germany)

    1997-08-01

    Since the RERTR-meeting In Newport/USA in 1990 the author delivered a series of papers in connection with the fuel cycle for research reactors dealing with its front-end. In these papers the author underlined the need for unified specifications for enriched uranium metal suitable for the production of fuel elements and made proposals with regard to the re-use of in Europe reprocessed highly enriched uranium. With regard to the fuel cycle of research reactors the research reactor community was since 1989 more concentrating on the problems of its back-end since the USA stopped the acceptance of spent research reactor fuel on December 31, 1988. Now, since it is apparent that these back-end problem have been solved by AEA`s ability to reprocess and the preparedness of the USA to again accept physically spent research reactor fuel the author is focusing with this paper again on the front-end of the fuel cycle on the question whether there is at all a safe supply of low and high enriched uranium for research reactors in the future.

  1. Supply of enriched uranium for research reactors

    International Nuclear Information System (INIS)

    Mueller, H.

    1997-01-01

    Since the RERTR-meeting In Newport/USA in 1990 the author delivered a series of papers in connection with the fuel cycle for research reactors dealing with its front-end. In these papers the author underlined the need for unified specifications for enriched uranium metal suitable for the production of fuel elements and made proposals with regard to the re-use of in Europe reprocessed highly enriched uranium. With regard to the fuel cycle of research reactors the research reactor community was since 1989 more concentrating on the problems of its back-end since the USA stopped the acceptance of spent research reactor fuel on December 31, 1988. Now, since it is apparent that these back-end problem have been solved by AEA's ability to reprocess and the preparedness of the USA to again accept physically spent research reactor fuel the author is focusing with this paper again on the front-end of the fuel cycle on the question whether there is at all a safe supply of low and high enriched uranium for research reactors in the future

  2. Achievement and development of neutron beam utilization in research reactors

    International Nuclear Information System (INIS)

    Isshiki, Masahiko

    1996-01-01

    Especially regarding the neutron beam experiment in Japan, the basic research has been developed by utilizing the JRR-2 of Japan Atomic Energy Research Institute and the KUR of Kyoto University over long years. Now, the JRR-3M of JAERI was revived as a high performance, general purpose reactor, and bears important roles as the neutron beam experiment center in Japan. Thanks to one of the most powerful reactor neutron sources in the world and the cold neutron source, the environment of research was greatly improved, and the excellent results of researches began to be reported. The discovery of neutrons by Chadwick and the history of the related researches are described. As neutron sources, radioisotopes, accelerators and nuclear reactors are properly used corresponding to purposes. As the utilization of research reactors for neutron sources, the utilization for irradiation and neutron beam experiment are carried out. The outline of the research reactor JRR-3M is explained. The state of utilization in neutron scattering experiment, neutron radiography, prompt γ-ray analysis and the medical irradiation of neutrons is reported. (K.I.)

  3. Research nuclear reactor RA - Annual report 1992

    International Nuclear Information System (INIS)

    Sotic, O.

    1992-12-01

    Research reactor RA Annual report for year 1992 is divided into two main parts to cover: (1) operation and maintenance and (2) activities related to radiation protection. First part includes 8 annexes describing reactor operation, activities of services for maintenance of reactor components and instrumentation, financial report and staffing. Second annex B is a paper by Z. Vukadin 'Recurrence formulas for evaluating expansion series of depletion functions' published in 'Kerntechnik' 56, (1991) No.6 (INIS record no. 23024136. Second part of the report is devoted to radiation protection issues and contains 4 annexes with data about radiation control of the working environment and reactor environment, description of decontamination activities, collection of radioactive wastes, and meteorology data [sr

  4. Semiconductor research with reactor neutrons

    International Nuclear Information System (INIS)

    Kimura, Itsuro

    1992-01-01

    Reactor neutrons play an important role for characterization of semiconductor materials as same as other advanced materials. On the other hand reactor neutrons bring about not only malignant irradiation effects called radiation damage, but also useful effects such as neutron transmutation doping and defect formation for opto-electronics. Research works on semiconductor materials with the reactor neutrons of the Kyoto University Reactor (KUR) are briefly reviewed. In this review, a stress is laid on the present author's works. (author)

  5. Proposed nuclear weapons nonproliferation policy concerning foreign research reactor spent nuclear fuel: Appendix B, foreign research reactor spent nuclear fuel characteristics and transportation casks. Volume 2

    International Nuclear Information System (INIS)

    1995-03-01

    This is Appendix B of a draft Environmental Impact Statement (EIS) on a Proposed Nuclear Weapons Nonproliferation Policy Concerning Foreign Research Reactor Spent Nuclear Fuel. It discusses relevant characterization and other information of foreign research reactor spent nuclear fuel that could be managed under the proposed action. It also discusses regulations for the transport of radioactive materials and the design of spent fuel casks

  6. Research reactors in Austria - Present situation

    International Nuclear Information System (INIS)

    Boeck, H.; Musilek, A.; Villa, M.

    2005-01-01

    In the past decades Austria operated three research reactors, the 10 MW ASTRA reactor at Seibersdorf, the 250 kW TRIGA reactor at the Atominstitut and the 1 kW Argonaut reactor at the Technical University in Graz. Since the shut down of the ASTRA on July 31th, 1999 and its immediate decommissioning reactor and the shut down of the Argonaut reactor in Graz on August 31st, 2004 only one reactor remains operational for keeping nuclear competence in Austria which is the 250 kW TRIGA Mark II reactor. (author)

  7. Growing dimensions. Spent fuel management at research reactors

    International Nuclear Information System (INIS)

    Ritchie, I.G.

    1998-01-01

    More than 550 nuclear research reactors are operating or shout down around the world. At many of these reactors, spent fuel from their operations is stored, pending decisions on its final disposition. In recent years, problems associated with this spent fuel storage have loomed larger in the international nuclear community. In efforts to determine the overall scope of problems and to develop a database on the subject, the IAEA has surveyed research reactor operators in its Member States. Information for the Research Reactor Spent Fuel Database (RRSFDB) so far has been obtained from a limited but representative number of research reactors. It supplements data already on hand in the Agency's more established Research Reactor Database (RRDB). Drawing upon these database resources, this article presents an overall picture of spent fuel management and storage at the world's research reactors, in the context of associated national and international programmes in the field

  8. BR2 Reactor: Irradiation of fuels

    International Nuclear Information System (INIS)

    Verwimp, A.

    2005-01-01

    Safe, reliable and economical operation of reactor fuels, both UO 2 and MOX types, requires in-pile testing and qualification up to high target burn-up levels. In-pile testing of advanced fuels for improved performance is also mandatory. The objectives of research performed at SCK-CEN are to perform Neutron irradiation of LWR (Light Water Reactor) fuels in the BR2 reactor under relevant operating and monitoring conditions, as specified by the experimenter's requirements and to improve the on-line measurements on the fuel rods themselves

  9. Proceedings of the first symposium on utilization of research reactors and JMTR

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    The first symposium on utilization of research reactors (JRR-2, JRR-3M, JRR-4) and Japan Materials Testing Reactor (JMTR) in JAERI was held from September 29th to 30th, 1997 at Sannomaru Hotel, Mito. The purpose of this symposium is to announce contribution to progress of scientific technology as well as to promote future utilization of the research reactors and JMTR. During the symposium, 16 reports were presented on nuclear fuel and material, neutron beam experiment, medical irradiation, radioisotope production and neutron activation analysis. The present status of the research reactors and JMTR were also reported. The special lecture titled `JRR-2 and Medical Irradiation` was given by Mr. Nakamura, former editorial writer of Yomiuri. Finally, panel discussion was carried on `The Role of Research Reactors and JMTR in Scientific Technology for the future` actively by the participants and experts in every field of research reactor utilization. 250 people participated in this symposium from universities, national research institutes, private corporations and JAERI. This proceedings briefly summarizes 16 reports, the content of panel discussion and so forth. (J.P.N.)

  10. Proceedings of the international symposium on research reactor safety operations and modifications

    International Nuclear Information System (INIS)

    1990-03-01

    The International Symposium on Research Reactor Safety, Operations and Modifications was organized by the International Atomic Energy Agency in cooperation with Atomic Energy of Canada Limited-Research Company. The main objectives of this Symposium were: (1) to exchange information and to discuss current perspectives and concerns relating to all aspects to research reactor safety, operations, and modifications; and, (2) to present views and to discuss future initiatives and directions for research reactor design, operations, utilization, and safety. The symposium topics included: research reactor programmes and experience; research reactor design safety and analysis; research reactor modifications and decommissioning; research reactor licensing; and new research reactors. These topics were covered during eight oral sessions and three poster sessions. These Proceedings include the full text of the 93 papers presented. The subject of Symposium was quite wide-ranging in that it covered essentially all aspects of research reactor safety, operations, and modifications. This was considered to be appropriate and timely given the 326 research reactors currently in operation in some 56 countries; given the degree of their utilization which ranges from pure and applied research to radioisotopes production to basic training and manpower development; and given that many of these reactors are undergoing extensive modifications, core conversions, power upratings, and are becoming the subject of safety reassessment and regulatory reviews. Although the Symposium covered many topics, the majority of papers and discussions tended to focus mainly on research reactor safety. This was seen as a clear sign of the continuing recognition of the fundamental importance of identifying and addressing, particularly through international cooperation, issues and concerns associated with research reactor safety

  11. Diagnostic measurement on research reactors

    International Nuclear Information System (INIS)

    Dach, K.; Zbytovsky, A.

    A comparison is made of noise experiments on zero power and power reactors. The general characteristics of noise experiments on power reactors is their ''passivity'', i.e., the experiment does not require any interruption of the normal operating regime of the reactor system. On zero power research reactors where the fission reaction constitutes the dominant noise source such conditions have to be created in the study of noise components as to make the investigated noise dominant and the noise of the fission reaction the background. The simultaneous use of both methods makes it possible to determine the spectral composition of reactivity fluctuations, which facilitates the identification of noise sources. The conditions are described of the recordability of noise components. The possibilities are listed provided for research work in Czechoslovakia and the possibility is studied of setting up an expert team to organize the respective experimental programme on an international scale. Power reactors manufactured in the GDR are considered as the suitable experimental base. (J.P.)

  12. Summary of IEA-R1 research a reactor licensing related to its power increase from 2 to 10 MW

    International Nuclear Information System (INIS)

    1989-04-01

    This work is a summary of IEA-R1 research reactor licensing related to its power increase from 2 to 10 MW. It reports also safety requirements, fuel elements, and reactor control modifications inherent to power increase. (A.C.A.S.)

  13. The Canadian research reactor spent fuel situation

    International Nuclear Information System (INIS)

    Ernst, P.C.

    1996-01-01

    This paper summarizes the present research reactor spent fuel situation in Canada. The research reactors currently operating are listed along with the types of fuel that they utilize. Other shut down research reactors contributing to the storage volume are included for completeness. The spent fuel storage facilities associated with these reactors and the methods used to determine criticality safety are described. Finally the current inventory of spent fuel and where it is stored is presented along with concerns for future storage. (author). 3 figs

  14. Reactor operations Brookhaven medical research reactor, Brookhaven high flux beam reactor informal monthly report

    International Nuclear Information System (INIS)

    Hauptman, H.M.; Petro, J.N.; Jacobi, O.

    1995-04-01

    This document is the April 1995 summary report on reactor operations at the Brookhaven Medical Research Reactor and the Brookhaven High Flux Beam Reactor. Ongoing experiments/irradiations in each are listed, and other significant operations functions are also noted. The HFBR surveillance testing schedule is also listed

  15. Twenty years of health physics research reactor operation

    International Nuclear Information System (INIS)

    Sims, C.S.; Gilley, L.W.

    1983-01-01

    The Health Physics Research Reactor at the Oak Ridge National Laboratory has been in regular use for more than two decades. Safe operation of this fast reactor over this extended period indicates that (1) fundamental design, (2) operational procedures, (3) operator training and performance, (4) maintenance activites, and (5) management have all been eminently satisfactory. The reactor and its uses are described, the operational history and significant events are reviewed, and operational improvements and maintenance are discussed

  16. Education and Training on ISIS Research Reactor

    International Nuclear Information System (INIS)

    Foulon, F.; Badeau, G.; Lescop, B.; Wohleber, X.

    2013-01-01

    In the frame of academic and vocational programs the National Institute for Nuclear Science and Technology uses the ISIS research reactor as a major tool to ensure a practical and comprehensive understanding of the nuclear reactor physics, principles and operation. A large set of training courses have been developed on ISIS, optimising both the content of the courses and the pedagogical approach. Programs with duration ranging from 3 hours (introduction to reactor operation) to 24 hours (full program for the future operators of research reactors) are carried out on ISIS reactor. The reactor is operated about 350 hours/year for education and training, about 40 % of the courses being carried out in English. Thus, every year about 400 trainees attend training courses on ISIS reactor. We present here the ISIS research reactor and the practical courses that have been developed on ISIS reactor. Emphasis is given to the pedagogical method which is used to focus on the operational and safety aspects, both in normal and incidental operation. We will present the curricula of the academic and vocational courses in which the practical courses are integrated, the courses being targeted to a wide public, including operators of research reactors, engineers involved in the design and operation of nuclear reactors as well as staff of the regulatory body. We address the very positive impact of the courses on the development of the competences and skills of participants. Finally, we describe the Internet Reactor Laboratories (IRL) that are under development and will consist in broadcasting the training courses via internet to remote facilities or institutions

  17. Education and Training on ISIS Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Foulon, F.; Badeau, G.; Lescop, B.; Wohleber, X. [French Atomic Energy and Alternative Energies Commission, Paris (France)

    2013-07-01

    In the frame of academic and vocational programs the National Institute for Nuclear Science and Technology uses the ISIS research reactor as a major tool to ensure a practical and comprehensive understanding of the nuclear reactor physics, principles and operation. A large set of training courses have been developed on ISIS, optimising both the content of the courses and the pedagogical approach. Programs with duration ranging from 3 hours (introduction to reactor operation) to 24 hours (full program for the future operators of research reactors) are carried out on ISIS reactor. The reactor is operated about 350 hours/year for education and training, about 40 % of the courses being carried out in English. Thus, every year about 400 trainees attend training courses on ISIS reactor. We present here the ISIS research reactor and the practical courses that have been developed on ISIS reactor. Emphasis is given to the pedagogical method which is used to focus on the operational and safety aspects, both in normal and incidental operation. We will present the curricula of the academic and vocational courses in which the practical courses are integrated, the courses being targeted to a wide public, including operators of research reactors, engineers involved in the design and operation of nuclear reactors as well as staff of the regulatory body. We address the very positive impact of the courses on the development of the competences and skills of participants. Finally, we describe the Internet Reactor Laboratories (IRL) that are under development and will consist in broadcasting the training courses via internet to remote facilities or institutions.

  18. The first university research reactor in India

    International Nuclear Information System (INIS)

    Murty, G.S.

    1999-01-01

    As the first university research reactor in India, the low power, pool type with fixed core and low enriched uranium fuel research reactor is under construction in the Andhra university campus, Andhra Pradesh, India. The reactor is expected to be commissioned during 2001-2002. The mission of the reactor is to play the research center as a regional research facility catering to the needs of academic institutions and industrial organizations of this region of the country. Further, to encourage interdisplinary and multidisplinary research activities, to supply radioisotope and labelled compounds to the user institutions and to create awareness towards the peaceful uses of atomic energy. This report describes its objectives, status and future plans in brief. (H. Itami)

  19. The first university research reactor in India

    Energy Technology Data Exchange (ETDEWEB)

    Murty, G.S. [Co-ordinator, Low Power Research Reactor, Andhra Univ., Visakapatnam (India)

    1999-08-01

    As the first university research reactor in India, the low power, pool type with fixed core and low enriched uranium fuel research reactor is under construction in the Andhra university campus, Andhra Pradesh, India. The reactor is expected to be commissioned during 2001-2002. The mission of the reactor is to play the research center as a regional research facility catering to the needs of academic institutions and industrial organizations of this region of the country. Further, to encourage interdisplinary and multidisplinary research activities, to supply radioisotope and labelled compounds to the user institutions and to create awareness towards the peaceful uses of atomic energy. This report describes its objectives, status and future plans in brief. (H. Itami)

  20. Transient behaviour study program of research reactors fuel elements at the Hydra Pulse Reactor

    International Nuclear Information System (INIS)

    Khvostionov, V.E.; Egorenkov, P.M.; Malankin, P.V.

    2004-01-01

    Program on behavior study of research reactor Fuel Elements (FE) under transient regimes initiated by excessive reactivity insertion is being presented. Program would be realized at HYDRA pulse reactor at Russian Research Center 'Kurchatov Institute' (RRC 'K1'). HYDRA uses aqueous solution of uranyl sulfate (UO 2 SO 4 ) as a fuel. Up to 30 MJ of energy can be released inside the core during the single pulse, effective power pulse width varying from 2 to 10 ms. Reactor facility allows to investigate behaviour of FE consisting of different types of fuel composition, being developed according to Russian RERTR. First part of program is aimed at transient behaviour studying of FE MR, IRT-3M, WWR-M5 types containing meats based on dioxide uranium in aluminum matrix. Mentioned FEs use 90% and 36% enriched uranium. (author)

  1. Development of a new control software package for Pakistan Research Reactor-2

    International Nuclear Information System (INIS)

    Qazi, M.K.

    1993-05-01

    The development of a new control software package for Pakistan Research Reactor-2 is presented. The software operates in different modes which comprises of surveillance, pre-operational self tests, operator, supervisor and robotic control. The control logic critically damp the system minimizing power overshoots. The software, handles multiple abnormal conditions, provides an elaborate access control and maintains startup/shutdown record. The report describes the functional details and covers the operational aspects of the new control software. (author)

  2. Proceedings of the FNCA 2004 workshop on the utilization of research reactors (Contract research)

    International Nuclear Information System (INIS)

    2006-07-01

    The FNCA 2004 Workshop on the Utilization of Research Reactors, which is the twelfth workshop on the theme of research reactor utilization, was held in Bangkok, Thailand from January 13 to 21, 2005. This workshop was executed based on the agreement in the fifth Coordinator's Meeting of Forum for Nuclear Cooperation in Asia (FNCA) held in Tokyo, March 2004. The workshop consisted of three groups under the themes of the following fields; 1) Neutron Activation Analysis, 2) Research Reactor Technology and 3) Tc-99m Generator Technology. The total number of participants for the workshop was 59 people from 8 countries; China, Indonesia, Korea, Malaysia, the Philippines, Thailand, Vietnam and Japan. This report consists of 6 papers for Neutron Activation Analysis, 5 papers for Research Reactor Technology, 5 Papers for Tc-99m Generator Technology and a summary report. The 15 of the presented papers are indexed individually. (J.P.N.)

  3. Increased burnup of fuel elements

    International Nuclear Information System (INIS)

    Ahlf, J.

    1983-01-01

    The specialists' group for fuel elements of the Kerntechnische Gesellschaft e.V. held a meeting on ''Increased Burnup of Fuel Elements'' on 9th and 10th of November 1982 at the GKSS Research Center Geesthacht. Most papers dealt with the problems of burnup increase of fuel elements for light water reactors with respect to fuel manufacturing, power plant operation and reprocessing. Review papers were given on the burnup limits for high temperature gas cooled reactors and sodium fast breeder reactors. The meeting ended with a presentation of the technical equipment of the hot laboratory of the GKSS and the programs which are in progress there. (orig.) [de

  4. Cost aspects of the research reactor fuel cycle

    International Nuclear Information System (INIS)

    2010-01-01

    Research reactors have made valuable contributions to the development of nuclear power, basic science, materials development, radioisotope production for medicine and industry, and education and training. In doing so, they have provided an invaluable service to humanity. Research reactors are expected to make important contributions in the coming decades to further development of the peaceful uses of nuclear technology, in particular for advanced nuclear fission reactors and fuel cycles, fusion, high energy physics, basic research, materials science, nuclear medicine, and biological sciences. However, in the context of decreased public sector support, research reactors are increasingly faced with financial constraints. It is therefore of great importance that their operations are based on a sound understanding of the costs of the complete research reactor fuel cycle, and that they are managed according to sound financial and economic principles. This publication is targeted at individuals and organizations involved with research reactor operations, with the aim of providing both information and an analytical framework for assessing and determining the cost structure of fuel cycle related activities. Efficient management of fuel cycle expenditures is an important component in developing strategies for sustainable future operation of a research reactor. The elements of the fuel cycle are presented with a description of how they can affect the cost efficient operation of a research reactor. A systematic review of fuel cycle choices is particularly important when a new reactor is being planned or when an existing reactor is facing major changes in its fuel cycle structure, for example because of conversion of the core from high enriched uranium (HEU) to low enriched uranium (LEU) fuel, or the changes in spent fuel management provision. Review and optimization of fuel cycle issues is also recommended for existing research reactors, even in cases where research reactor

  5. Developments in the regulation of research reactors

    International Nuclear Information System (INIS)

    Loy, J.

    2003-01-01

    The International Atomic Energy Agency (IAEA) has data on over 670 research reactors in the world. Fewer than half of them are operational and a significant number are in a shutdown but not decommissioned state. The International Nuclear Safety Advisory Group (INSAG) has expressed concerns about the safety of many research reactors and this has resulted in a process to draw up an international Code of Conduct on the Safety of Research Reactors. The IAEA is also reviewing its safety standards applying to research reactors. On the home front, regulation of the construction of the Replacement Research Reactor continues. During the construction phase, regulation has centred around the consideration of Requests for Approval (RFA) for the manufacture and installation of systems, structures and components important for safety. Quality control of construction of systems, structures and components is the central issue. The process for regulation of commissioning is under consideration

  6. Sodium fast reactor safety and licensing research plan - Volume II

    International Nuclear Information System (INIS)

    Ludewig, H.; Powers, D.A.; Hewson, John C.; LaChance, Jeffrey L.; Wright, A.; Phillips, J.; Zeyen, R.; Clement, B.; Garner, Frank; Walters, Leon; Wright, Steve; Ott, Larry J.; Suo-Anttila, Ahti Jorma; Denning, Richard; Ohshima, Hiroyuki; Ohno, S.; Miyhara, S.; Yacout, Abdellatif; Farmer, M.; Wade, D.; Grandy, C.; Schmidt, R.; Cahalen, J.; Olivier, Tara Jean; Budnitz, R.; Tobita, Yoshiharu; Serre, Frederic; Natesan, Ken; Carbajo, Juan J.; Jeong, Hae-Yong; Wigeland, Roald; Corradini, Michael; Thomas, Justin; Wei, Tom; Sofu, Tanju; Flanagan, George F.; Bari, R.; Porter D.

    2012-01-01

    Expert panels comprised of subject matter experts identified at the U.S. National Laboratories (SNL, ANL, INL, ORNL, LBL, and BNL), universities (University of Wisconsin and Ohio State University), international agencies (IRSN, CEA, JAEA, KAERI, and JRC-IE) and private consultation companies (Radiation Effects Consulting) were assembled to perform a gap analysis for sodium fast reactor licensing. Expert-opinion elicitation was performed to qualitatively assess the current state of sodium fast reactor technologies. Five independent gap analyses were performed resulting in the following topical reports: (1) Accident Initiators and Sequences (i.e., Initiators/Sequences Technology Gap Analysis), (2) Sodium Technology Phenomena (i.e., Advanced Burner Reactor Sodium Technology Gap Analysis), (3) Fuels and Materials (i.e., Sodium Fast Reactor Fuels and Materials: Research Needs), (4) Source Term Characterization (i.e., Advanced Sodium Fast Reactor Accident Source Terms: Research Needs), and (5) Computer Codes and Models (i.e., Sodium Fast Reactor Gaps Analysis of Computer Codes and Models for Accident Analysis and Reactor Safety). Volume II of the Sodium Research Plan consolidates the five gap analysis reports produced by each expert panel, wherein the importance of the identified phenomena and necessities of further experimental research and code development were addressed. The findings from these five reports comprised the basis for the analysis in Sodium Fast Reactor Research Plan Volume I.

  7. Sodium fast reactor safety and licensing research plan. Volume II.

    Energy Technology Data Exchange (ETDEWEB)

    Ludewig, H. (Brokhaven National Laboratory, Upton, NY); Powers, D. A.; Hewson, John C.; LaChance, Jeffrey L.; Wright, A. (Argonne National Laboratory, Argonne, IL); Phillips, J.; Zeyen, R. (Institute for Energy Petten, Saint-Paul-lez-Durance, France); Clement, B. (IRSN/DPAM.SEMIC Bt 702, Saint-Paul-lez-Durance, France); Garner, Frank (Radiation Effects Consulting, Richland, WA); Walters, Leon (Advanced Reactor Concepts, Los Alamos, NM); Wright, Steve; Ott, Larry J. (Oak Ridge National Laboratory, Oak Ridge, TN); Suo-Anttila, Ahti Jorma; Denning, Richard (Ohio State University, Columbus, OH); Ohshima, Hiroyuki (Japan Atomic Energy Agency, Ibaraki, Japan); Ohno, S. (Japan Atomic Energy Agency, Ibaraki, Japan); Miyhara, S. (Japan Atomic Energy Agency, Ibaraki, Japan); Yacout, Abdellatif (Argonne National Laboratory, Argonne, IL); Farmer, M. (Argonne National Laboratory, Argonne, IL); Wade, D. (Argonne National Laboratory, Argonne, IL); Grandy, C. (Argonne National Laboratory, Argonne, IL); Schmidt, R.; Cahalen, J. (Argonne National Laboratory, Argonne, IL); Olivier, Tara Jean; Budnitz, R. (Lawrence Berkeley National Laboratory, Berkeley, CA); Tobita, Yoshiharu (Japan Atomic Energy Agency, Ibaraki, Japan); Serre, Frederic (Centre d' %C3%94etudes nucl%C3%94eaires de Cadarache, Cea, France); Natesan, Ken (Argonne National Laboratory, Argonne, IL); Carbajo, Juan J. (Oak Ridge National Laboratory, Oak Ridge, TN); Jeong, Hae-Yong (Korea Atomic Energy Research Institute, Daejeon, Korea); Wigeland, Roald (Idaho National Laboratory, Idaho Falls, ID); Corradini, Michael (University of Wisconsin-Madison, Madison, WI); Thomas, Justin (Argonne National Laboratory, Argonne, IL); Wei, Tom (Argonne National Laboratory, Argonne, IL); Sofu, Tanju (Argonne National Laboratory, Argonne, IL); Flanagan, George F. (Oak Ridge National Laboratory, Oak Ridge, TN); Bari, R. (Brokhaven National Laboratory, Upton, NY); Porter D. (Idaho National Laboratory, Idaho Falls, ID); Lambert, J. (Argonne National Laboratory, Argonne, IL); Hayes, S. (Idaho National Laboratory, Idaho Falls, ID); Sackett, J. (Idaho National Laboratory, Idaho Falls, ID); Denman, Matthew R.

    2012-05-01

    Expert panels comprised of subject matter experts identified at the U.S. National Laboratories (SNL, ANL, INL, ORNL, LBL, and BNL), universities (University of Wisconsin and Ohio State University), international agencies (IRSN, CEA, JAEA, KAERI, and JRC-IE) and private consultation companies (Radiation Effects Consulting) were assembled to perform a gap analysis for sodium fast reactor licensing. Expert-opinion elicitation was performed to qualitatively assess the current state of sodium fast reactor technologies. Five independent gap analyses were performed resulting in the following topical reports: (1) Accident Initiators and Sequences (i.e., Initiators/Sequences Technology Gap Analysis), (2) Sodium Technology Phenomena (i.e., Advanced Burner Reactor Sodium Technology Gap Analysis), (3) Fuels and Materials (i.e., Sodium Fast Reactor Fuels and Materials: Research Needs), (4) Source Term Characterization (i.e., Advanced Sodium Fast Reactor Accident Source Terms: Research Needs), and (5) Computer Codes and Models (i.e., Sodium Fast Reactor Gaps Analysis of Computer Codes and Models for Accident Analysis and Reactor Safety). Volume II of the Sodium Research Plan consolidates the five gap analysis reports produced by each expert panel, wherein the importance of the identified phenomena and necessities of further experimental research and code development were addressed. The findings from these five reports comprised the basis for the analysis in Sodium Fast Reactor Research Plan Volume I.

  8. Research reactor collaboration in the Asia-Pacific region

    International Nuclear Information System (INIS)

    Jun, Byung Jin

    2006-01-01

    The number of research reactors over the world has been decreasing since its peak in the middle of the 1970s, and it is predicted to decrease more rapidly than before in the future. International collaboration on research reactors is an effective way for their continued safe service to human welfare in various technical areas. The number of new research reactors under construction or planned for in the Asia-Pacific region is the greatest in the world. Among the regional collaboration activities on research reactors, safety has been the most important subject followed by neutron activation analysis, radioisotope production and neutron beam applications. It is understood that more regional collaboration on basic technologies important for the safety, management and utilization of the research reactors is demanding. The new project proposal of the Forum for Nuclear Cooperation in Asia on 'Research Reactor Technology for Effective Utilization' is understood to meet the demands. Meanwhile, there is a consensus on the need for research reactor resource sharing in the region. As a result of the review on the international collaboration activities in the region, the author suggests a linkage between the above new project and IAEA/RCA project considering a possible sharing of research reactor resources in the region. (author)

  9. History, Development and Future of TRIGA Research Reactors

    International Nuclear Information System (INIS)

    2016-01-01

    Due to its particular fuel design and resulting enhanced inherent safety features, TRIGA reactors (Training, Research, Isotopes, General Atomics) constitute a ‘class of their own’ among the large variety of research reactors built world-wide. This publication summarizes in a single document the information on the past and present of TRIGA research reactors and presents an outlook in view of potential issues to be solved by TRIGA operating organizations in the near future. It covers the historical development and basic TRIGA characteristics, followed by utilization, fuel conversion and ageing management of TRIGA research reactors. It continues with issues and challenges, introduction to the global TRIGA research reactor network and concludes with future perspectives. The publication is complemented with a CD-ROM to illustrate the historical developments of TRIGA research reactors through individual facility examples and experiences

  10. Research reactors: a tool for science and medicine

    International Nuclear Information System (INIS)

    Ordonez, Juan

    2001-01-01

    The types and uses of research reactors are reviewed. After an analysis of the world situation, the demand of new research reactors of about 20 MW is foreseen. The experience and competitiveness of INVAP S.E. as designer and constructor of research reactors is outlined and the general specifications of the reactors designed by INVAP for Egypt and Australia are given

  11. Neutronics conceptual design of the innovative research reactor core using uranium molybdenum fuel

    International Nuclear Information System (INIS)

    Tukiran S; Surian Pinem; Tagor MS; Lily S; Jati Susilo

    2012-01-01

    The multipurpose of research reactor utilization make many countries build the new research reactor. Trend of this reactor for this moment is multipurpose reactor type with a compact core to get high neutron flux at the low or medium level of power. The research newest. Reactor in Indonesia right now is already 25 year old. Therefore, it is needed to design a new research reactor, called innovative research reactor (IRR) and then as an alternative to replace the old research reactor. The aim of this research is to get the optimal configuration of equilibrium core with the acceptance criteria are minimum thermal neutron flux is 2.5E14 n/cm 2 s at the power level of 20 MW (minimum), length of cycle of more than 40 days, and the most efficient of using fuel in the core. Neutronics design has been performed for new fuel of U-9Mo-AI with various fuel density and reflector. Design calculation has been performed using WIMSD-5B and BATAN-FUEL computer codes. The calculation result of the conceptual design shows four core configurations namely 5x5, 5x7, 6x5 and 6x6. The optimalization result for equilibrium core of innovative research reactor is the 5x5 configuration with 450 gU fuel loading, berilium reflector, maximum thermal neutron flux at reflector is 3.33E14 n/cm 2 sand length of cycle is 57 days is the most optimal of IRR. (author)

  12. Reactor safety research. The CEC contribution

    International Nuclear Information System (INIS)

    Krischer, W.

    1990-01-01

    The involvement of the EC Commission in the reactor safety research dates back almost to the implementation of the EURATOM Treaty and has thus lasted for thirty years. The need for close collaboration and for general consensus on some crucial problems of concern to the public, has made the role of international organizations and, as far as Europe is concerned, the role of the European Community particularly important. The areas in which the CEC has been active during the last five years are widespread. This is partly due to the fact that, after TMI and Chernobyl, the effort and the interest of the different countries in reactor safety was considerable. Reactor Safety Research represents the proceedings of a seminar held by the Commission at the end of its research programme 1984-88 on reactor safety. As such it gives a comprehensive overview of the recent activities and main results achieved in the CEC Joint Research Centre and in national laboratories throughout Europe on the basis of shared cost actions. In a concluding chapter the book reports on the opinions, expressed during a panel by a group of major exponents, on the needs for future research. The main topics addressed are, with particular reference to Light Water Reactors (LWRS): reliability and risk evaluation, inspection of steel components, primary circuit components end-of-life prediction, and abnormal behaviour of reactor cooling systems. As far as LMFBRs are concerned, the topics covered are: severe accident modelling, material properties and structural behaviour studies. There are 67 pages, all of which are indexed separately. Reactor Safety Research will be of particular interest to reliability and safety engineers, nuclear engineers and technicians, and mechanical and structural engineers. (author)

  13. Reactor safety research and safety technology. Pt. 2

    International Nuclear Information System (INIS)

    Theenhaus, R.; Wolters, J.

    1987-01-01

    The state of HTR safety research work reached permits a comprehensive and reliable answer to be given to questions which have been raised by the reactor accident at Chernobyl, regarding HTR safety. Together with the probability safety analyses, the way to a safety concept suitable for an HTR is cleared; instructions are given for design optimisation with regard to safety technique and economy. The consequences of a graphite fire, the neutron physics design and the consequenes of the lack of a safety containment are briefly described. (DG) [de

  14. Safety of Research Reactors. Safety Requirements

    International Nuclear Information System (INIS)

    2010-01-01

    The main objective of this Safety Requirements publication is to provide a basis for safety and a basis for safety assessment for all stages in the lifetime of a research reactor. Another objective is to establish requirements on aspects relating to regulatory control, the management of safety, site evaluation, design, operation and decommissioning. Technical and administrative requirements for the safety of research reactors are established in accordance with these objectives. This Safety Requirements publication is intended for use by organizations engaged in the site evaluation, design, manufacturing, construction, operation and decommissioning of research reactors as well as by regulatory bodies

  15. IRT-type research reactor physical calculation methodology

    International Nuclear Information System (INIS)

    Carrera, W.; Castaneda, S.; Garcia, F.; Garcia, L.; Reyes, O.

    1990-01-01

    In the present paper an established physical calculation procedure for the research reactor of the Nuclear Research Center (CIN) is described. The results obtained by the method are compared with the ones reported during the physical start up of a reactor with similar characteristics to the CIN reactor. 11 refs

  16. RMB. The new Brazilian multipurpose research reactor

    International Nuclear Information System (INIS)

    Perrotta, Jose Augusto; Soares, Adalberto Jose

    2015-01-01

    Brazil has four research reactors (RR) in operation: IEA-R1, a 5 MW pool type RR; IPR-R1, a 100 kW TRIGA type RR; ARGONAUTA, a 500 W Argonaut type RR, and IPEN/MB-01, a 100 W critical facility. The first three were constructed in the 50's and 60's, for teaching, training, and nuclear research, and for many years they were the basic infrastructure for the Brazilian nuclear developing program. The last, IPEN/MB-01, is the result of a national project developed specifically for qualification of reactor physics codes. Considering the relative low power of Brazilian research reactors, with exception of IEAR1, none of the other reactors are feasible for radioisotope production, and even IEA-R1 has a limited capacity. As a consequence, since long ago, 100% of the Mo-99 needed to attend Brazilian nuclear medicine services has been imported. Because of the high dependence on external supply, the international Moly-99 supply crisis that occurred in 2008/2009 affected significantly Brazilian nuclear medicine services, and as presented in previous IAEA events, in 2010 Brazilian government formalized the decision to build a new research reactor. The new reactor named RMB (Brazilian Multipurpose Reactor) will be a 30 MW open pool type reactor, using low enriched uranium fuel. The facility will be part of a new nuclear research centre, to be built about 100 kilometres from Sao Paulo city, in the southern part of Brazil. The new nuclear research centre will have several facilities, to use thermal and cold neutron beams; to produce radioisotopes; to perform neutron activation analysis; and to perform irradiations tests of materials and fuels of interest for the Brazilian nuclear program. An additional facility will be used to store, for at least 100 years, all the fuel used in the reactor. The paper describes the main characteristics of the new centre, emphasising the research reactor and giving a brief description of the laboratories that will be constructed, It also presents the

  17. RMB. The new Brazilian multipurpose research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Perrotta, Jose Augusto; Soares, Adalberto Jose [Comissao Nacional de Energia Nuclear (CNEN) (Brazil)

    2015-01-15

    Brazil has four research reactors (RR) in operation: IEA-R1, a 5 MW pool type RR; IPR-R1, a 100 kW TRIGA type RR; ARGONAUTA, a 500 W Argonaut type RR, and IPEN/MB-01, a 100 W critical facility. The first three were constructed in the 50's and 60's, for teaching, training, and nuclear research, and for many years they were the basic infrastructure for the Brazilian nuclear developing program. The last, IPEN/MB-01, is the result of a national project developed specifically for qualification of reactor physics codes. Considering the relative low power of Brazilian research reactors, with exception of IEAR1, none of the other reactors are feasible for radioisotope production, and even IEA-R1 has a limited capacity. As a consequence, since long ago, 100% of the Mo-99 needed to attend Brazilian nuclear medicine services has been imported. Because of the high dependence on external supply, the international Moly-99 supply crisis that occurred in 2008/2009 affected significantly Brazilian nuclear medicine services, and as presented in previous IAEA events, in 2010 Brazilian government formalized the decision to build a new research reactor. The new reactor named RMB (Brazilian Multipurpose Reactor) will be a 30 MW open pool type reactor, using low enriched uranium fuel. The facility will be part of a new nuclear research centre, to be built about 100 kilometres from Sao Paulo city, in the southern part of Brazil. The new nuclear research centre will have several facilities, to use thermal and cold neutron beams; to produce radioisotopes; to perform neutron activation analysis; and to perform irradiations tests of materials and fuels of interest for the Brazilian nuclear program. An additional facility will be used to store, for at least 100 years, all the fuel used in the reactor. The paper describes the main characteristics of the new centre, emphasising the research reactor and giving a brief description of the laboratories that will be constructed, It also

  18. RMB: the new Brazilian Multipurpose Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Perrotta, Jose Augusto, E-mail: perrotta@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2016-07-01

    Full text: The Brazilian research reactors have a limited capacity for radioisotopes production, leading to a high dependence on external supply for radioisotopes used in nuclear medicine. In order to overcome this condition and due to the old age of these research reactors, the Brazilian Nuclear Energy Commission decided, in 2008, to construct a new research reactor. The new reactor named RMB (Brazilian Multipurpose Reactor) will be part of a new nuclear research center, to be built on a site about 100 kilometers from São Paulo city, in the southern part of Brazil. The new nuclear research center will have a 30 MW open pool type research reactor using low enriched uranium fuel, and several associated laboratories in order to produce radioisotopes for medical and industrial use, to use neutron beams in scientific and technological research; to perform neutron activation analysis; and to perform materials and fuels irradiation tests. Regarding the neutron beams use, the RMB design provides thermal and cold neutron beams. From one side of the reactor, the neutron guides will extend to an experimental hall of instruments named Neutron Guide Hall where it will be installed the scattering instruments. In the initial stage of the reactor operation, the intent is to implement two neutron guides for thermal neutrons and another two for cold neutrons. The 2015 SBPMAT symposium has presented the technical overview of the RMB project and its main buildings, structures and components. At this year symposium, the RMB presentation updates some technical information and the development status of the project, discussing the negative results of the Brazilian political and economic crisis to the project development and its future perspectives. (author)

  19. Present status of research reactor and future prospects

    International Nuclear Information System (INIS)

    Nakajima, Ken

    2013-01-01

    Research reactors have been playing an important role in the research and development of the various fields, such as physics, chemistry, biology, engineering, agriculture, medicine, etc. as well as human resource development. However, the most of them are older than 40 years, and the ageing management is an important issue. In Japan, only two research reactors are operational after the Great East Japan Earthquake in 2011. JAEA's reactors suffered from the quake and they are under inspections. Kyoto University Research Reactor, one of the operational reactors, has been widely used for research and human resource development, and the additional safety measures against the station blackout were installed. Besides the affect of the quake, the disposal or treatment of spent fuel becomes an inevitable problem for research reactors. The way of spent fuel disposal or treatment should be determined with the nation-wide and/or international coalition. (author)

  20. TRIGA 14 MW Research Reactor Status and Utilization

    International Nuclear Information System (INIS)

    Barbos, D.; Ciocanescu, M.; Paunoiu, C.

    2016-01-01

    Institute for Nuclear Research is the owner of the largest family TRIGA research reactor, TRIGA14 MW research reactor. TRIGA14 MW reactor was designed to be operated with HEU nuclear fuel but now the reactor core was fully converted to LEU nuclear fuel. The full conversion of the core was a necessary step to ensure the continuous operation of the reactor. The core conversion took place gradually, using fuel manufactured in different batches by two qualified suppliers based on the same well qualified technology for TRIGA fuel, including some variability which might lead to a peculiar behaviour under specific conditions of reactor utilization. After the completion of the conversion a modernization program for the reactor systems was initiated in order to achieve two main objectives: safe operation of the reactor and reactor utilization in a competitive environment to satisfy the current and future demands and requirements. The 14 MW TRIGA research reactor operated by the Institute for Nuclear Research in Pitesti, Romania, is a relatively new reactor, commissioned 37 years ago. It is expected to operate for another 15-20 years, sustaining new fuel and testing of materials for future generations of power reactors, supporting radioisotopes production through the development of more efficient new technologies, sustaining research or enhanced safety, extended burn up and verification of new developments concerning nuclear power plants life extension, to sustain neutron application in physics research, thus becoming a centre for instruction and training in the near future. A main objective of the TRIGA14MW research reactor is the testing of nuclear fuel and nuclear material. The TRIGA 14 MW reactor is used for medical and industrial radioisotopes production ( 131 I, 125 I, 192 Ir etc.) and a method for 99 Mo- 99 Tc production from fission is under development. For nuclear materials properties investigation, neutron radiography methods have been developed in the INR. The

  1. Application of research reactors for radiation education

    International Nuclear Information System (INIS)

    Ito, Yasuo; Harasawa, Susumu; Hayashi, Shu A.; Tomura, Kenji; Matsuura, Tatsuo; Nakanishi, Tomoko M.; Yamamoto, Yusuke

    1999-01-01

    Nuclear research Reactors are, as well as being necessary for research purposes, indispensable educational tools for a country whose electric power resources are strongly dependent on nuclear energy. Both large and small research reactors are available, but small ones are highly useful from the viewpoint of radiation education. This paper oders a brief review of how small research reactors can, and must, be used for radiation education for high school students, college and graduate students, as well as for the public. (author)

  2. Application of research reactors for radiation education

    Energy Technology Data Exchange (ETDEWEB)

    Ito, Yasuo [Tokyo Univ. (Japan). Research Center for Nuclear Science and Technology; Harasawa, Susumu; Hayashi, Shu A.; Tomura, Kenji; Matsuura, Tatsuo; Nakanishi, Tomoko M.; Yamamoto, Yusuke

    1999-09-01

    Nuclear research Reactors are, as well as being necessary for research purposes, indispensable educational tools for a country whose electric power resources are strongly dependent on nuclear energy. Both large and small research reactors are available, but small ones are highly useful from the viewpoint of radiation education. This paper oders a brief review of how small research reactors can, and must, be used for radiation education for high school students, college and graduate students, as well as for the public. (author)

  3. Power Trip Set-points of Reactor Protection System for New Research Reactor

    International Nuclear Information System (INIS)

    Lee, Byeonghee; Yang, Soohyung

    2013-01-01

    This paper deals with the trip set-point related to the reactor power considering the reactivity induced accident (RIA) of new research reactor. The possible scenarios of reactivity induced accidents were simulated and the effects of trip set-point on the critical heat flux ratio (CHFR) were calculated. The proper trip set-points which meet the acceptance criterion and guarantee sufficient margins from normal operation were then determined. The three different trip set-points related to the reactor power are determined based on the RIA of new research reactor during FP condition, over 0.1%FP and under 0.1%FP. Under various reactivity insertion rates, the CHFR are calculated and checked whether they meet the acceptance criterion. For RIA at FP condition, the acceptance criterion can be satisfied even if high power set-point is only used for reactor trip. Since the design of the reactor is still progressing and need a safety margin for possible design changes, 18 MW is recommended as a high power set-point. For RIA at 0.1%FP, high power setpoint of 18 MW and high log rate of 10%pp/s works well and acceptance criterion is satisfied. For under 0.1% FP operations, the application of high log rate is necessary for satisfying the acceptance criterion. Considering possible decrease of CHFR margin due to design changes, the high log rate is suggested to be 8%pp/s. Suggested trip set-points have been identified based on preliminary design data for new research reactor; therefore, these trip set-points will be re-established by considering design progress of the reactor. The reactor protection system (RPS) of new research reactor is designed for safe shutdown of the reactor and preventing the release of radioactive material to environment. The trip set point of RPS is essential for reactor safety, therefore should be determined to mitigate the consequences from accidents. At the same time, the trip set-point should secure margins from normal operational condition to avoid

  4. Safety requirements in the design of research reactors: A Canadian perspective

    International Nuclear Information System (INIS)

    Lee, A.G.; Langman, V.J.

    2000-01-01

    In Canada, the formal development of safety requirements for the design of research reactors in general began under an inter-organizational Small Reactor Criteria Committee. This committee developed safety and licensing criteria for use by several small reactor projects in their licensing discussions with the Atomic Energy Control Board. The small reactor projects or facilities represented included the MAPLE-X10 reactor, the proposed SES-10 heating reactor and its prototype, the SDR reactor at the Whiteshell Laboratories, the Korea Multipurpose Research Reactor (a.k.a., HANARO) in Korea, the SCORE project, and the McMaster University Nuclear Reactor. The top level set of criteria which form a safety philosophy and serve as a framework for more detailed developments was presented at an IAEA Conference in 1989. AECL continued this work to develop safety principles and design criteria for new small reactors. The first major application of this work has been to the design, safety analysis and licensing of the MAPLE 1 and 2 reactors for the MDS Nordion Medical Isotope Reactor Project. This paper provides an overview of the safety principles and design criteria. Examples of an implementation of these safety principles and design criteria are drawn from the work to design the MAPLE 1 and 2 reactors. (author)

  5. The national standards program for research reactors

    International Nuclear Information System (INIS)

    Whittemore, W.L.

    1977-01-01

    In 1970 a standards committee called ANS-15 was established by the American Nuclear Society (ANS) to prepare appropriate standards for research reactors. In addition, ANS acts as Secretariat for a national standards committee N17 which is responsible to the American National Standards Institute (ANSI) for the national consensus efforts for standards related to research reactors. To date ANS-15 has completed or is working on 14 standards covering all aspects of the operation of research reactors. Of the 11 research reactor standards submitted to the ANSI N17 Committee since its inception, six have been issued as National standards, and the remaining are still in the process of review. (author)

  6. Contributions of research Reactors in science and technology

    International Nuclear Information System (INIS)

    Butt, N.M.; Bashir, J.

    1992-12-01

    In the present paper, after defining a research reactor, its basic constituents, types of reactors, their distribution in the world, some typical examples of their uses are given. Particular emphasis in placed on the contribution of PARR-I (Pakistan Research Reactor-I), the 5 MW Swimming Pool Research reactor which first became critical at the Pakistan Institute of Nuclear Science and Technology (PINSTECH) in Dec. 1965 and attained its full power in June 1966. This is still the major research facility at PINSTECH for research and development. (author)

  7. Research and development into power reactor fuel performance

    International Nuclear Information System (INIS)

    Notley, M.J.F.

    1983-07-01

    The nuclear fuel in a power reactor must perform reliably during normal operation, and the consequences of abnormal events must be researched and assessed. The present highly reliable operation of the natural UO 2 in the CANDU power reactors has reduced the need for further work in this area; however a core of expertise must be retained for purposes such as training of new staff, retaining the capability of reacting to unforeseen circumstances, and participating in the commercial development of new ideas. The assessment of fuel performance during accidents requires research into many aspects of materials, fuel and fission product behaviour, and the consolidation of that knowledge into computer codes used to evaluate the consequences of any particular accident. This work is growing in scope, much is known from out-reactor work at temperatures up to about 1500 degreesC, but the need for in-reactor verification and investigation of higher-temperature accidents has necessitated the construction of a major new in-reactor test loop and the initiation of the associated out-reactor support programs. Since many of the programs on normal and accident-related performance are generic in nature, they will be applicable to advanced fuel cycles. Work will therefore be gradually transferred from the present, committed power reactor system to support the next generation of thorium-based reactor cycles

  8. Consideration of BORAX-type reactivity accidents applied to research reactors

    International Nuclear Information System (INIS)

    Couturier, Jean; Meignen, Renaud; Bourgois, Thierry; Biaut, Guillaume; Mireau, Jean-Pierre; Natta, Marc

    2011-01-01

    Most of the research reactors discussed in this document are pool-type reactors in which the reactor vessel and some of the reactor coolant systems are located in a pool of water. These reactors generally use fuel in plate assemblies formed by a compact layer of uranium (or U 3 Si 2 ) and aluminium particles, sandwiched between two thin layers of aluminium serving as cladding. The fuel melting process begins at 660 deg. C when the aluminium melts, while the uranium (or U 3 Si 2 ) particles may remain solid. The accident that occurred in the American SL-1 reactor in 1961, together with tests carried out in the United States as of 1954 in the BORAX-1 reactor and then, in 1962, in the SPERT-1 reactor, showed that a sudden substantial addition of reactivity in this type of reactor could lead to explosive mechanisms caused by degradation, or even fast meltdown, of part of the reactor core. This is what is known as a 'BORAX-type' accident. The aim of this document is first to briefly recall the circumstances of the SL-1 reactor accident, the lessons learned, how this operational feedback has been factored into the design of various research reactors around the world and, second, to describe the approach taken by France with regard to this type of accident and how, led by IRSN, this approach has evolved in the last decade. (authors)

  9. Experience and prospects for developing research reactors of different types

    International Nuclear Information System (INIS)

    Kuatbekov, R.P.; Tretyakov, I.T.; Romanov, N.V.; Lukasevich, I.B.

    2015-01-01

    NIKIET has a 60-year experience in the development of research reactors. Altogether, there have been more than 25 NIKIET-designed plants of different types built in Russia and 20 more in other countries, including pool-type water-cooled and water moderated research reactors, tank-type and pressure-tube research reactors, pressurized high-flux, heavy-water, pulsed and other research reactors. Most of the research reactors were designed as multipurpose plants for operation at research centers in a broad range of applications. Besides, unique research reactors were developed for specific application fields. Apart from the experience in the development of research reactor designs and the participation in the reactor construction, a unique amount of knowledge has been gained on the operation of research reactors. This makes it possible to use highly reliable technical solutions in the designs of new research reactors to ensure increased safety, greater economic efficiency and maintainability of the reactor systems. A multipurpose pool-type research reactor of a new generation is planned to be built at the Center for Nuclear Energy Science & Technology (CNEST) in the Socialist Republic of Vietnam to be used to support a spectrum of research activities, training of skilled personnel for Vietnam nuclear industry and efficient production of isotopes. It is exactly the applications a research reactor is designed for that defines the reactor type, design and capacity, and the selection of fuel and components subject to all requirements of industry regulations. The design of the new research reactor has a great potential in terms of upgrading and installation of extra experimental devices. (author)

  10. Transmutation of technetium into stable ruthenium in high flux conceptual research reactor

    International Nuclear Information System (INIS)

    Amrani, N.; Boucenna, A.

    2007-01-01

    The effectiveness of transmutation for the long lived fission product technetium-99 in high flux research reactor, considering its large capture cross section in thermal and epithermal region is evaluated. The calculation of Ruthenium concentration evolution under irradiation was performed using Chain Solver 2.20 code. The approximation used for the transmutation calculation is the assumption that the influence of change in irradiated materials structures on the reactor operator mode characteristics is insignificant. The results on Technetium transmutation in high flux research reactor suggested an effective use of this kind of research reactors. The evaluation brings a new concept of multi-recycle Technetium transmutation using HFR T RAN (High Flux Research Reactor for Transmutation)

  11. Making better use of research reactors

    International Nuclear Information System (INIS)

    1964-01-01

    Some 250 research reactors are in operation in the world today, and there are problems in putting them to the most fruitful use. The difficulties - of trained manpower, of auxiliary equipment, of satisfactory research programmes, of co-ordination, between the various disciplines - are common to all users. But as is only to be expected, they press more heavily on the newly-established centres, particularly those in the developing countries which are lacking in long experience in research and usually severely limited as to technical manpower and money. The IAEA has been turning its attention to this question for the past three or four years - ever since, in fact, its early assistance missions and other field operations brought it into close contact with the operations of numerous Member States. The task of providing assistance and advice in this matter is growing. Many centres have been building research reactors under bilateral arrangements; with the completion of their projects this form of aid usually ends, and they look to IAEA for help in operating the reactors. Although some critics consider that difficulties have been caused by premature construction of research reactors, before well-founded programmes of nuclear research had been developed in the countries concerned, several valid motives have led to the establishment of some of these centres at an early stage. A research reactor often provides an effective stimulant for scientific research in the country. It is a remarkably versatile tool for workers in many fields of science and technology. There have been instances where the establishment of a research reactor has had a great impact on the scientific education of a country and has led to a salutary reappraisal and reforms. A reactor is sometimes considered to be a particularly effective means of retaining in the country men trained in the nuclear field. This particular problem is common to most countries. In fact, it is a feature of the present age that

  12. Safety-related parameters for the MAPLE research reactor and a comparison with the IAEA generic 10-MW research reactor

    International Nuclear Information System (INIS)

    Carlson, P.A.; Lee, A.G.; Smith, H.J.; Ellis, R.J.

    1989-07-01

    A summary is presented of some of the principle safety-related physics parameters for the MAPLE Research Reactor, and a comparison with the IAEA Generic 10-MW Reactor is given. This provides a means to assess the operating conditions and fuelling requirements for safe operation of the MAPLE Research Reactor under accepted standards

  13. Bulletin of the Research Laboratory for Nuclear Reactors

    International Nuclear Information System (INIS)

    Aritomi, Masanori

    2008-01-01

    The bulletin consists of two parts. The first part includes General Research Report. The Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology has three engineering divisions such as Energy Engineering, Mass Transmutation Engineering, and System and Safety Engineering. In this part, 17 reports of Energy Engineering division, 8 reports of Mass transmutation Engineering division, 11 reports of System and Safety Engineering division are described as their activities. In addition, 3 reports of Cooperative Researches are also summarized. The second part is Special Issue about COE-INES RESEARCH REPORT 2007. In this part, 3 reports of Innovative Reactor Group, 2 reports of Innovative Nuclear Energy Utilization System Group, 3 reports of Innovative Transmutation/Separation Group, 2 reports of Relationship between Nuclear and Society Group, 1 report of RA Students in the COE-INES Captainship Educational Program are described as results to their researches. (J.P.N.)

  14. Research and development of a super fast reactor (12). Considerations for the reactor characteristics

    International Nuclear Information System (INIS)

    Goto, Shoji; Ishiwatari, Yuki; Oka, Yoshiaki

    2008-01-01

    A research program aimed at developing the Super Fast Reactor (Super FR) has been entrusted by the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan since December 2005. It includes the following three projects. (A) Development of the Super Fast Reactor concept. (B)Thermal-hydraulic experiments. (C) Materials development. Tokyo Electric Power Company (TEPCO) has joined this program and works on part (A) together with the University of Tokyo. From the utility's viewpoint, it is important to consider the most desirable characteristics for Super FR to have. Four issues were identified in project (A), (1) Fuel design, (2) Reactor core design, (3) Safety, and (4) Plant characteristics of Super FR. This report describes the desired characteristics of Super FR with respect to item (1) fuel design and item (2) Reactor core design, as compared with a boiling water reactor (BWR) plant. The other two issues will be discussed in this project, and will also be considered in the design process of Super FR. (author)

  15. Neutrons down-under: Australia's research reactor review

    International Nuclear Information System (INIS)

    Murray, Allan

    1995-01-01

    Australian research reactor review commenced in September 1992, the Review had the following Terms of Reference: Whether, on review of the benefits and costs for scientific, commercial, industrial and national interest reasons, Australia has a need for a new reactor; a review of the present reactor, HIFAR, to include: an assessment of national and commercial benefits and costs of operations, its likely remaining useful life and its eventual closure and decommissioning; if Australia has a need for a new nuclear research reactor, the Review will consider: possible locations for a new reactor, its environmental impact at alternative locations, recommend a preferred location, and evaluate matters associated with regulation of the facility and organisational arrangements for reactor-based research. From the Review findings the following recommendations were stated: keep HIFAR going; commission a PRA to ascertain HIFAR's remaining life and refurbishment possibilities; identify and establish a HLW repository; accept that neither HIFAR nor a new reactor can be completely commercial; any decision on a new neutron source must rest primarily on benefits to science and Australia's national interest; make a decision on a new neutron source in about five years' time (1998). Design Proposals for a New Reactor are specified

  16. Enhancements to the SLOWPOKE-2 nuclear research reactor at the Royal Military College of Canada

    Energy Technology Data Exchange (ETDEWEB)

    Hungler, P.C.; Andrews, M.T.; Weir, R.D.; Nielson, K.S.; Chan, P.K.; Bennett, L.G.I., E-mail: paul.hungler@rmc.ca [Royal Military College of Canada, Kingston, Ontario (Canada)

    2014-07-01

    In 1985 a Safe Low Power C(K)ritical Experiment (SLOWPOKE) nuclear research reactor was installed at the Royal Military College of Canada (RMCC). The reactor at nominally 20 kW thermal was named SLOWPOKE-2 and the core was designed to have a total of 198 fuel pins with Low Enriched Uranium (LEU) fuel (19.89% U-235). Installation of the reactor was intended to provide an education tool for members of the Canadian Armed Forces (CAF) and an affordable neutron source for the application of neutron activation analysis (NAA) and radioisotope production. Today, the SLOWPOKE-2 at RMCC continues to be a key education tool for undergraduate and post-graduate students and successfully conducts NAA and isotope production as per its original design intent. RMCC has significantly upgraded the facility and instruments to develop capabilities such as delayed neutron and gamma counting (DNGC) and neutron imaging, including 2D thermal neutron radiography and 3D thermal neutron tomography. These unique nuclear capabilities have been applied to relevant issues in the CAF. The analog control system originally installed in 1985 has been removed and replaced in 2001 by the SLOWPOKE Integrated Reactor Control and Instrumentation System (SIRCIS) which is a digital controller. This control system continues to evolve with SIRCIS V2 currently in operation. The continual enhancement of the facility, instruments and systems at the SLOWPOKE-2 at RMCC will be discussed, including an update on RMCC's refueling plan. (author)

  17. Enhancements to the SLOWPOKE-2 nuclear research reactor at the Royal Military College of Canada

    International Nuclear Information System (INIS)

    Hungler, P.C.; Andrews, M.T.; Weir, R.D.; Nielson, K.S.; Chan, P.K.; Bennett, L.G.I.

    2014-01-01

    In 1985 a Safe Low Power C(K)ritical Experiment (SLOWPOKE) nuclear research reactor was installed at the Royal Military College of Canada (RMCC). The reactor at nominally 20 kW thermal was named SLOWPOKE-2 and the core was designed to have a total of 198 fuel pins with Low Enriched Uranium (LEU) fuel (19.89% U-235). Installation of the reactor was intended to provide an education tool for members of the Canadian Armed Forces (CAF) and an affordable neutron source for the application of neutron activation analysis (NAA) and radioisotope production. Today, the SLOWPOKE-2 at RMCC continues to be a key education tool for undergraduate and post-graduate students and successfully conducts NAA and isotope production as per its original design intent. RMCC has significantly upgraded the facility and instruments to develop capabilities such as delayed neutron and gamma counting (DNGC) and neutron imaging, including 2D thermal neutron radiography and 3D thermal neutron tomography. These unique nuclear capabilities have been applied to relevant issues in the CAF. The analog control system originally installed in 1985 has been removed and replaced in 2001 by the SLOWPOKE Integrated Reactor Control and Instrumentation System (SIRCIS) which is a digital controller. This control system continues to evolve with SIRCIS V2 currently in operation. The continual enhancement of the facility, instruments and systems at the SLOWPOKE-2 at RMCC will be discussed, including an update on RMCC's refueling plan. (author)

  18. Status and some safety philosophies of the China advanced research reactor CARR

    International Nuclear Information System (INIS)

    Luzheng Yuan

    2001-01-01

    The existing two research reactors, HWRR (heavy water research reactor) and SPR (swimming pool reactor), have been operated by China Institute of Atomic Energy (CIAE) since, respectively, 1958 and 1964, and are both in extending service and facing the aging problem. It is expected that they will be out of service successively in the beginning decade of the 21 st century. A new, high performance and multipurpose research reactor called China advanced research reactor (CARR) will replace these two reactors. This new reactor adopts the concept of inverse neutron trap compact core structure with light water as coolant and heavy water as the outer reflector. Its design goal is as follows: under the nuclear power of 60MW, the maximum unperturbed thermal neutron flux in peripheral D 2 O reflector not less than 8 x 10 14 n/cm 2 . s while in central experimental channel, if the central cell to be replaced by an experimental channel, the corresponding value not less than 1 x 10 15 n/cm 2 . s. The main applications for this research reactor will cover RI production, neutron scattering experiments, NAA and its applications, neutron photography, NTD for monocrystaline silicon and applications on reactor engineering technology. By the end of 1999, the preliminary design of CARR was completed, then the draft of preliminary safety analysis report (PSAR) was submitted to the relevant authority at the end of 2000 for being reviewed. Now, the CARR project has entered the detail design phase and safety reviewing procedure for obtaining the construction permit from the relevant licensing authority. This paper will only briefly introduce some aspects of safety philosophy of CARR design and PSAR. (orig.)

  19. Safety considerations for research reactors in extended shutdown

    International Nuclear Information System (INIS)

    2004-01-01

    According to the IAEA Research Reactor Database, in the last 20 years, 367 research reactors have been shut down. Of these, 109 have undergone decommissioning and the rest are in extended shutdown with no clear definition about their future. Still other research reactors are infrequently operated with no meaningful utilization programme. These two situations present concerns related to safety such as loss of corporate memory, personnel qualification, maintenance of components and systems and preparation and maintenance of documentation. There are many reasons to shut down a reactor; these may include: - the need to carry out modifications in the reactor systems; - the need for refurbishment to extend the lifetime of the reactor; - the need to repair reactor structures, systems, or components; - the need to remedy technical problems; - regulatory or public concerns; - local conflicts or wars; - political convenience; - the lack of resources. While any one of these reasons may lead to shutdown of a reactor, each will present unique problems to the reactor management. The large variations from one research reactor to the next also will contribute to the uniqueness of the problems. Any option that the reactor management adopts will affect the future of the facility. Options may include dealing with the cause of the shutdown and returning to normal operation, extending the shutdown period waiting a future decision, or decommissioning. Such options are carefully and properly analysed to ensure that the solution selected is the best in terms of reactor type and size, period of shutdown and legal, economic and social considerations. This publication provides information in support of the IAEA safety standards for research reactors

  20. Usage of burnable poison on research reactors

    International Nuclear Information System (INIS)

    Villarino, Eduardo Anibal

    2002-01-01

    The fuel assemblies with burnable poison are widely used on power reactors, but there are not commonly used on research reactors. This paper shows a neutronic analysis of the advantages and disadvantages of the burnable poison usage on research reactors. This paper analyses both burnable poison design used on research reactors: Boron on the lateral wall and Cadmium wires. Both designs include a parametric study on the design parameters like the amount and geometry of the burnable poison. This paper presents the design flexibility using burnable poisons, it does not find an optimal or final design, which it will strongly depend on the core characteristics and fuel management strategy. (author)

  1. Establishing a Radiation Protection Programme for a Research Reactor

    International Nuclear Information System (INIS)

    Abdallah, M. M.

    2014-04-01

    The nature and intensity of radiation from the operation of a research reactor depend on the type of reactor, its design features and its operational history. The protection of workers from the harmful effect of radiation must therefore be of paramount importance to any operating organization of a research reactor. This project report attempts to establish an operational radiation protection programme for a research reactor using the Ghana Research Reactor-1 as a case study. (au)

  2. Calculation of photon dose for Dalat research reactor in case of loss of reactor tank water

    International Nuclear Information System (INIS)

    Le Vinh Vinh; Huynh Ton Nghiem; Nguyen Kien Cuong

    2007-01-01

    Photon sources of actinides and fission products were estimated by ORIGEN2 code with the modified cross-section library for Dalat research reactor (DRR) using new cross-section generated by WIMS-ANL code. Photon sources of reactor tank water calculated from the experimental data. MCNP4C2 with available non-analog Monte Carlo model and ANSI/ANL-6.1.1-1977 flux-to-dose factors were used for dose estimation. The agreement between calculation results and those of measurements showed that the methods and models used to get photon sources and dose were acceptable. In case the reactor water totally leaks out from the reactor tank, the calculated dose is very high at the top of reactor tank while still low in control room. In the reactor hall, the operation staffs can access for emergency works but with time limits. (author)

  3. Study on the decommissioning of research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Suh, Doo Hwan; Jun, Kwan Sik; Choi, Yoon Dong; Lee, Tae Yung; Kwon, Sang Woon; Lee, Jong Il [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1995-01-01

    Currently, KAERI operates TRIGA Mark-II and TRIGA Mark-III research reactors as a general purpose research and training facility. As these are, however, situated at Seoul office site of KAERI which is scheduled to be transferred to KEPCO as well as 30 MW HANARO research reactor which is expected to reach the first criticality in 1995 is under construction at head site of KAERI, decommissioning of TRIGA reactors has become an important topic. The objective of this study is to prepare and present TRIGA facility decontamination and decommissioning plan. Estimation of the radioactive inventory in TRIGA research reactor was carried out by the use of computational method. In addition, summarized in particular were the methodologies associated with decontamination, segmenting processes for activated metallic components, disposition of wastes. Particular consideration in this study was focused available technology applicable to decommissioning of TRIGA research reactor. State-of-the-art summaries of the available technology for decommissioning presented here will serve a useful document for preparations for decommissioning in the future. 6 figs, 41 tabs, 30 refs. (Author).

  4. Ageing Management for Research Reactors. Specific Safety Guide

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-10-15

    This Safety Guide was developed under the IAEA programme for safety standards for research reactors, which covers all the important areas of research reactor safety. It supplements and elaborates upon the safety requirements for ageing management of research reactors that are established in paras 6.68-6.70 and 7.109 of the IAEA Safety Requirements publication, Safety of Research Reactors. The safety of a research reactor requires that provisions be made in its design to facilitate ageing management. Throughout the lifetime of a research reactor, including its decommissioning, ageing management of its structures, systems and components (SSCs) important to safety is required, to ensure continued adequacy of the safety level, reliable operation of the reactor, and compliance with the operational limits and conditions. Managing the safety aspects of research reactor ageing requires implementation of an effective programme for the monitoring, prediction, and timely detection and mitigation of degradation of SSCs important to safety, and for maintaining their integrity and functional capability throughout their service lives. Ageing management is defined as engineering, operation, and maintenance strategy and actions to control within acceptable limits the ageing degradation of SSCs. Ageing management includes activities such as repair, refurbishment and replacement of SSCs, which are similar to other activities carried out at a research reactor in maintenance and testing or when a modification project takes place. However, it is important to recognize that effective management of ageing requires the use of a methodology that will detect and evaluate ageing degradation as a consequence of the service conditions, and involves the application of countermeasures for prevention and mitigation of ageing degradation. The objective of this Safety Guide is to provide recommendations on managing ageing of SSCs important to safety at research reactors on the basis of international

  5. Ageing Management for Research Reactors. Specific Safety Guide

    International Nuclear Information System (INIS)

    2010-01-01

    This Safety Guide was developed under the IAEA programme for safety standards for research reactors, which covers all the important areas of research reactor safety. It supplements and elaborates upon the safety requirements for ageing management of research reactors that are established in paras 6.68-6.70 and 7.109 of the IAEA Safety Requirements publication, Safety of Research Reactors. The safety of a research reactor requires that provisions be made in its design to facilitate ageing management. Throughout the lifetime of a research reactor, including its decommissioning, ageing management of its structures, systems and components (SSCs) important to safety is required, to ensure continued adequacy of the safety level, reliable operation of the reactor, and compliance with the operational limits and conditions. Managing the safety aspects of research reactor ageing requires implementation of an effective programme for the monitoring, prediction, and timely detection and mitigation of degradation of SSCs important to safety, and for maintaining their integrity and functional capability throughout their service lives. Ageing management is defined as engineering, operation, and maintenance strategy and actions to control within acceptable limits the ageing degradation of SSCs. Ageing management includes activities such as repair, refurbishment and replacement of SSCs, which are similar to other activities carried out at a research reactor in maintenance and testing or when a modification project takes place. However, it is important to recognize that effective management of ageing requires the use of a methodology that will detect and evaluate ageing degradation as a consequence of the service conditions, and involves the application of countermeasures for prevention and mitigation of ageing degradation. The objective of this Safety Guide is to provide recommendations on managing ageing of SSCs important to safety at research reactors on the basis of international

  6. Some considerations for assurance of reactor safety from experiences in research reactors

    International Nuclear Information System (INIS)

    Okamoto, Sunao; Nishihara, Hideaki; Shibata, Toshikazu

    1981-01-01

    For the purpose of assuring reactor safety and strengthening research in the related fields, a multi-disciplinary group was formed among university researchers, including social scientists, with a special allocation of the Grant-in-Aid from the Ministry of Education, Science and Culture. An excerpt from the first year's report (1979 -- 1980) is edited here, which contains an interpretation of Murphy's reliability engineering law, a scope of reactor diagnostic studies to be pursued at universities, and safety measures already implemented or suggested to be implemented in university research reactors. (author)

  7. Integrated Management System, Configuration and Document Control for Research Reactors

    International Nuclear Information System (INIS)

    Steynberg, B.J.; Bruyn, J.F. du

    2017-01-01

    . Document control helps ensure that: 1. Important facility documents are properly stored; 2. Revisions to documents are controlled, tracked, and completed in a timely manner; 3. Revised documents are formally distributed to designated users; and 4. Information concerning pending revisions is made available. Configuration and document management within an integrated management system are essential requirements for the safe operation, utilisation and modification of any research reactor. (author)

  8. The modification of the Rossendorf Research Reactor

    International Nuclear Information System (INIS)

    Gehre, G.; Hieronymus, W.; Kampf, T.; Ringel, V.; Robbander, W.

    1990-01-01

    The Rossendorf Research Reactor is of the WWR-SM type. It is a heterogeneous water moderated and cooled tank reactor with a thermal power of 10 MW, which was in operation from 1957 to 1986. It was shut down in 1987 for comprehensive modifications to increase its safety and to improve the efficiency of irradiation and experimentals. The modifications will be implemented in two steps. The first one to be finished in 1989 comprises: 1) the replacement of the reactor tank and its components, the reactor cooling system, the ventilation system and the electric power installation; 2) the construction of a new reactor control room and of filtering equipment; 3) the renewal of process instrumentation and control engineering equipment for reactor operation, equipment for radiation protection monitoring, and reactor operation and safety documentation. The second step, to be implemented in the nineties, is to comprise: 1) the enlargement of the capacity for storage of spent fuel; 2) the modernization of reactor operations by computer-aided control; 3) the installation of an automated measuring systems for accident and environmental monitoring. Two objects of the modification, the replacement of the reactor tank and the design of a new and safer one as well as the increase of the redundancy of the core emergency cooling system are described in detail. For the tank replacement the exposure data are also given. Furthermore, the licensing procedures based on national ordinances and standards as well as on international standards and recommendations and the mutual responsibilities and activities of the licensing authority and of the reactor manager are presented. Finally, the present state of the modifications and the schedule up to the reactor recommissioning and test operation at full power is outlined

  9. IGORR 1: Proceedings of the 1. meeting of the International Group On Research Reactors

    Energy Technology Data Exchange (ETDEWEB)

    West, C D [comp.

    1990-05-01

    Descriptions of the ongoing projects presented at this Meeting were concerned with: New Research Reactor FRM-II at Munich; MITR-II reactor; The Advanced. Neutron Source (ANS) Project; The high Flux Reactor Petten, Status and Prospects; The High Flux Beam Reactor Instrumentation Upgrade; BER-II Upgrade; The BR2 Materials Testing Reactor Past, Ongoing and Under-Study Upgrades; The ORPHEE, Reactor Current Status and Proposed Enhancement of Experimental Variabilities; Construction of the Upgraded JRR-3; Status of the University of Missouri-Columbia Research Reactor Upgrade; the Reactor and Cold Neutron Facility at NIST; Upgrade of Materials Irradiation Facilities in HFIR; Backfitting of the FRG Reactors; University Research Reactors in the United States; and Organization of the ITER Project - Sharing of Informational Procurements. Topics of interest were: Thermal-hydraulic tests and correlations, Corrosion tests and analytical models , Multidimensional kinetic analysis for small cores, Fuel plates fabrication, Fuel plates stability, Fuel irradiation, Burnable poison irradiation, Structural materials irradiation, Neutron guides irradiation, Cold Source materials irradiation, Cold Source LN{sub 2} test, Source LH2-H{sub 2}O reaction (H or D), Instrumentation upgrading and digital control system, Man-machine interface.

  10. IGORR 1: Proceedings of the 1. meeting of the International Group On Research Reactors

    International Nuclear Information System (INIS)

    West, C.D.

    1990-05-01

    Descriptions of the ongoing projects presented at this Meeting were concerned with: New Research Reactor FRM-II at Munich; MITR-II reactor; The Advanced. Neutron Source (ANS) Project; The high Flux Reactor Petten, Status and Prospects; The High Flux Beam Reactor Instrumentation Upgrade; BER-II Upgrade; The BR2 Materials Testing Reactor Past, Ongoing and Under-Study Upgrades; The ORPHEE, Reactor Current Status and Proposed Enhancement of Experimental Variabilities; Construction of the Upgraded JRR-3; Status of the University of Missouri-Columbia Research Reactor Upgrade; the Reactor and Cold Neutron Facility at NIST; Upgrade of Materials Irradiation Facilities in HFIR; Backfitting of the FRG Reactors; University Research Reactors in the United States; and Organization of the ITER Project - Sharing of Informational Procurements. Topics of interest were: Thermal-hydraulic tests and correlations, Corrosion tests and analytical models , Multidimensional kinetic analysis for small cores, Fuel plates fabrication, Fuel plates stability, Fuel irradiation, Burnable poison irradiation, Structural materials irradiation, Neutron guides irradiation, Cold Source materials irradiation, Cold Source LN 2 test, Source LH2-H 2 O reaction (H or D), Instrumentation upgrading and digital control system, Man-machine interface

  11. Probabilistic safety assessment for research reactors

    International Nuclear Information System (INIS)

    1986-12-01

    Increasing interest in using Probabilistic Safety Assessment (PSA) methods for research reactor safety is being observed in many countries throughout the world. This is mainly because of the great ability of this approach in achieving safe and reliable operation of research reactors. There is also a need to assist developing countries to apply Probabilistic Safety Assessment to existing nuclear facilities which are simpler and therefore less complicated to analyse than a large Nuclear Power Plant. It may be important, therefore, to develop PSA for research reactors. This might also help to better understand the safety characteristics of the reactor and to base any backfitting on a cost-benefit analysis which would ensure that only necessary changes are made. This document touches on all the key aspects of PSA but placed greater emphasis on so-called systems analysis aspects rather than the in-plant or ex-plant consequences

  12. Safety evaluation of the Dalat research reactor operation

    International Nuclear Information System (INIS)

    Long, V.H.; Lam, P.V.; An, T.K.

    1989-01-01

    After an introduction presenting the essential characteristics of the Dalat Nuclear Research Reactor, the document presents i) The safety assurance condition of the reactor, ii) Its safety behaviour after 5 years of operation, iii) Safety research being realized on the reactor. Following is questionnaire of safety evaluation and a list of attachments, which concern the reactor

  13. From high enriched to low enriched uranium fuel in research reactors

    Energy Technology Data Exchange (ETDEWEB)

    Van Den Berghe, S.; Leenaers, A.; Koonen, E.; Moons, F.; Sannen, L. [Nuclear Materials Science Institute, SCK.CEN, Boeretang 200, B-2400 Mol (Belgium)

    2010-07-01

    Since the 1970's, global efforts have been going on to replace the high-enriched (>90% {sup 235}U), low-density UAlx research reactor fuel with high-density, low enriched (<20% {sup 235}U) replacements. This search is driven by the attempt to reduce the civil use of high-enriched material because of proliferation risks and terrorist threats. American initiatives, such as the Global Threat Reduction Initiative (GTRI) and the Reduced Enrichment for Research and Test Reactors (RERTR) program have triggered the development of reliable low-enriched fuel types for these reactors, which can replace the high enriched ones without loss of performance. Most success has presently been obtained with U{sub 3}Si{sub 2} dispersion fuel, which is currently used in many research reactors in the world. However, efforts to search for a replacement with even higher density, which will also allow the conversion of some high flux research reactors that currently cannot change to U{sub 3}Si{sub 2} (eg. BR2 in Belgium), have continued and are for the moment mainly directed towards the U(Mo) alloy fuel (7-10 w% Mo). This paper provides an overview of the past efforts and presents the current status of the U(Mo) development. (authors)

  14. From high enriched to low enriched uranium fuel in research reactors

    International Nuclear Information System (INIS)

    Van Den Berghe, S.; Leenaers, A.; Koonen, E.; Moons, F.; Sannen, L.

    2010-01-01

    Since the 1970's, global efforts have been going on to replace the high-enriched (>90% 235 U), low-density UAlx research reactor fuel with high-density, low enriched ( 235 U) replacements. This search is driven by the attempt to reduce the civil use of high-enriched material because of proliferation risks and terrorist threats. American initiatives, such as the Global Threat Reduction Initiative (GTRI) and the Reduced Enrichment for Research and Test Reactors (RERTR) program have triggered the development of reliable low-enriched fuel types for these reactors, which can replace the high enriched ones without loss of performance. Most success has presently been obtained with U 3 Si 2 dispersion fuel, which is currently used in many research reactors in the world. However, efforts to search for a replacement with even higher density, which will also allow the conversion of some high flux research reactors that currently cannot change to U 3 Si 2 (eg. BR2 in Belgium), have continued and are for the moment mainly directed towards the U(Mo) alloy fuel (7-10 w% Mo). This paper provides an overview of the past efforts and presents the current status of the U(Mo) development. (authors)

  15. Enhancement of research reactor utilization in the developing countries

    International Nuclear Information System (INIS)

    Bashir, J.; Butt, N.M.

    1994-06-01

    As the research reactor represents a significant capital investment on the part of any institution and in addition there are recurring annual operating costs, therefore, the subject of its effective utilization has always been of interest. World wide there are about three hundred research reactors. Of these, 92 are located in the developing countries. Together, these reactors represent quite significant research potential. In the present paper, reasons of under utilization, procedures necessary to measure the productivity, ways and means of enhancing the utilization of research reactors are described. In the end, use of two research reactors at PINSTECH are described to illustrate some of the ways in which a successful utilization of a research reactor can made in the developing country. (author) 9 figs

  16. Research reactor utilization in chemistry programmes

    International Nuclear Information System (INIS)

    Bautista, E.

    1983-01-01

    The establishment and roles of the Philippines Atomic Energy Commission in promoting and regulating the use of atomic energy are explained. The research reactor, PRR-1 is being converted to TRIGA to meet the increasing demands of high-flux. The activities of PAEC in chemistry research programs utilizing reactor are discussed in detail. The current and future plans of Research and Development programs are also included. (A.J.)

  17. Advanced Research Reactor Fuel Development

    Energy Technology Data Exchange (ETDEWEB)

    Kim, C. K.; Park, H. D.; Kim, K. H. (and others)

    2006-04-15

    RERTR program for non-proliferation has propelled to develop high-density U-Mo dispersion fuels, reprocessable and available as nuclear fuel for high performance research reactors in the world. As the centrifugal atomization technology, invented in KAERI, is optimum to fabricate high-density U-Mo fuel powders, it has a great possibility to be applied in commercialization if the atomized fuel shows an acceptable in-reactor performance in irradiation test for qualification. In addition, if rod-type U-Mo dispersion fuel is developed for qualification, it is a great possibility to export the HANARO technology and the U-Mo dispersion fuel to the research reactors supplied in foreign countries in future. In this project, reprocessable rod-type U-Mo test fuel was fabricated, and irradiated in HANARO. New U-Mo fuel to suppress the interaction between U-Mo and Al matrix was designed and evaluated for in-reactor irradiation test. The fabrication process of new U-Mo fuel developed, and the irradiation test fuel was fabricated. In-reactor irradiation data for practical use of U-Mo fuel was collected and evaluated. Application plan of atomized U-Mo powder to the commercialization of U-Mo fuel was investigated.

  18. The first university research reactor in India

    International Nuclear Information System (INIS)

    Murthy, G.S.

    1999-01-01

    At low power research reactor is being set up in Andhra University to cater to the needs of researchers and isotope users by the Department of Atomic Energy in collaboration with Andhra University. This reactor is expected to be commissioned by 2001-02. Departments like Chemistry, Earth Sciences, Physics, Life Sciences, Pharmacy, Medicine and Engineering would be the beneficiaries of the availability of this reactor. In this paper, details of the envisaged research programme and training activities are discussed. (author)

  19. Proceedings of the European Research Reactor Conference - RRFM 2013 Transactions

    International Nuclear Information System (INIS)

    2013-01-01

    In 2013 RRFM, the European Research Reactor Conference is jointly organised by ENS and Atomexpo LLC. This time the Research Reactor community meet in St. Petersburg, Russia. The conference programme will revolve around a series of Plenary Sessions dedicated to the latest global developments with regards to research reactor technology and management. Parallel sessions will focus on all areas of the Fuel Cycle of Research Reactors, their Utilisation, Operation and Management as well as specific research projects and innovative methods in research reactor analysis and design. In 2013 the European Research Reactor Conference will for the first time give special attention to complementary safety assessments of Research Reactors, following the Fukushima-Dai-Ichi NPP's Accident. (authors)

  20. Review of Operation and Maintenance Support Systems for Research Reactors

    International Nuclear Information System (INIS)

    Jin, Kyungho; Heo, Gyunyoung; Park, Jaekwan

    2014-01-01

    Operation support systems do not directly control the plant but it can aid decision making itself by obtaining and analyzing large amounts of data. Recently, the demand of research reactor is growing and the need for operation support systems is increasing, but it has not been applied for research reactors. This study analyzes operation and maintenance support systems of NPPs and suggests appropriate systems for research reactors based on analysis. In this paper, operation support systems for research reactors are suggested by comparing with those of power reactors. Currently, research reactors do not cover special systems in order to improve safety and operability in comparison with power reactors. Therefore we expect to improve worth to use by introducing appropriate systems for research reactors. In further research, we will develop an appropriate system such as applications or tools that can be applied to the research reactor

  1. Fast breeder reactor research

    International Nuclear Information System (INIS)

    1975-01-01

    reactors of the future, the body of research aimed at developing liquid metal cooled fast reactors, national plans for work in 1976 on developing fast reactors - these were some of the topics discussed in connection with the national programmes. The development of power reactors involves a wide range of problems in the fields of nuclear and reactor physics, the thermophysics, chemistry, physics and technology of the cooling system, structural materials and nuclear fuel, the fabrication of reliable fuel elements and operating equipment, reactor monitoring and control, spent fuel reprocessing, the economics of constructing fast power reactors, nuclear safety, etc. The IWGFR, as at previous meetings, therefore paid great attention to the matter of holding international specialists' meetings. The working group recommended that the IAEA should organize the following IWGFR meetings in 1976: (1) In-Service Inspection and Monitoring (Bensberg, FRG, March 1976). (2) Cavitation in Sodium and Studies of Analogy with Water as Compared to Sodium (Cadarache, France, April 1976). (3) High Temperature Structural Design Technology (United States, May 1976) (4) Aerosol Formation, Vapour Deposits and Sodium Vapour Trapping (France, September-December 1976). The Group welcomed the IAEA's proposal to hold specialists' meetings on 'Fast Reactor Instrumentation' and 'Fuel Reprocessing and Recycling Techniques' within the framework of the Agency's programme of working groups in 1976. After discussing questions of co-ordinating and organizing international conferences on fast reactors, the IWGFR agreed to send representatives to the joint meeting of the American Nuclear Society and the American Institute of Metallurgical Engineers on 'Liquid Metal Technology', to be held at Champion, Pennsylvania, U.S.A. from 3-6 May 1976, and recommended that the IAEA should organize an international symposium on the 'Design, Construction and Operating Experience of Demonstration Fast Power Reactors' at Bologna

  2. Testing of research reactor fuel in the high flux reactor (Petten)

    International Nuclear Information System (INIS)

    Guidez, J.; Markgraf, J.W.; Sordon, G.; Wijtsma, F.J.; Thijssen, P.J.M.; Hendriks, J.A.

    1999-01-01

    The two types of fuel most frequently used by the main research reactors are metallic: highly enriched uranium (>90%) and silicide low enriched uranium ( 3 . However, a need exists for research on new reactor fuel. This would permit some plants to convert without losses in flux or in cycle length and would allow new reactor projects to achieve higher possibilities especially in fluxes. In these cases research is made either on silicide with higher density, or on other types of fuel (UMo, etc.). In all cases when new fuel is proposed, there is a need, for safety reasons, to test it, especially regarding the mechanical evolution due to burn-up (swelling, etc.). Initially, such tests are often made with separate plates, but lately, using entire elements. Destructive examinations are often necessary. For this type of test, the High Flux Reactor, located in Petten (The Netherlands) has many specific advantages: a large core, providing a variety of interesting positions with high fluence rate; a downward coolant flow simplifies the engineering of the device; there exists easy access with all handling possibilities to the hot-cells; the high number of operating days (>280 days/year), together with the high flux, gives a possibility to reach quickly the high burn-up needs; an experienced engineering department capable of translating specific requirements to tailor-made experimental devices; a well equipped hot-cell laboratory on site to perform all necessary measurements (swelling, γ-scanning, profilometry) and all destructive examinations. In conclusion, the HFR reactor readily permits experimental research on specific fuels used for research reactors with all the necessary facilities on the Petten site. (author)

  3. Research reactor utilization. Summary reports of three study group meetings: Irradiation techniques at research reactors, held in Istanbul 15-19 November 1965; Research reactor operation and maintenance problems, held in Caracas 6-10 December 1965; and Research reactor utilization in the Far East, held in Lucas Heights 28 February - 4 March 1966

    International Nuclear Information System (INIS)

    1967-01-01

    The three sections of this book, which are summary reports of three Study Group meetings of the IAEA: Irradiation techniques at research reactors, Istanbul, 15-19 November 1965; Research reactor operation and maintenance problems, Caracas, 6-10 December 1965; and Research reactor utilization in the Far East, Lucas Heights, Australia, 28 February - 4 March 1966. These meetings were the latest in a series designed to promote efficient utilization of research reactors, to disseminate information on advances in techniques, to discuss common problems in reactor operations, and to outline some advanced areas of reactor-based research. (author)

  4. Factors affecting nuclear research reactor utilization across countries

    International Nuclear Information System (INIS)

    Hien, P.D.

    2000-01-01

    In view of the worldwide declining trend of research reactor utilization and the fact that many reactors in developing countries are under-utilised, a question naturally arises as to whether the investment in a research reactor is justifiable. Statistical analyses were applied to reveal relationships between the status of reactor utilization and socio-economic conditions among countries, that may provide a guidance for reactor planning and cost benefit assessment. The reactor power has significant regression relationships with size indicators such as GNP, electricity consumption and R and D expenditure. Concerning the effectiveness of investment in research reactors, the number of reactor operation days per year only weakly correlates with electricity consumption and R and D expenditure, implying that there are controlling factors specific of each group of countries. In the case of less developed countries, the low customer demands on reactor operation may be associated with the failure in achieving quality assurance for the reactor products and services, inadequate investment in the infrastructure for reactor exploitation, the shortage of R and D funding and well trained manpower and the lack of measures to get the scientific community involved in the application of nuclear techniques. (author)

  5. The current status of Kartini research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Tjiptono, Tri Wulan; Syarip,

    1998-10-01

    The Kartini reactor reached the first criticality on January 25, 1979. In the first three years, the reactor power is limited up to 50 kW thermal power and on July 1, 1982 has been increased to 100 kW. It has been used as experiments facility by researcher of Atomic Energy National Agency and students of the Universities. Three beam tubes used as experiments facilities, the first, is used as a neutron source for H{sub 2}O-Natural Uranium Subcritical Assembly, the second, is developed for neutron radiography facility and the third, is used for gamma radiography facility. The other facilities are rotary rack and two pneumatic transfer systems, one for delayed neutron counting system and the other for the new Neutron Activation Analysis (NAA) facility. The rotary rack used for isotope production for NAA purpose (for long time irradiation), the delayed neutron counting system used for analysis the Uranium contents of the ores and the new NAA is provided for short live elements analysis. In the last three years the Reactor Division has a joint use program with the Nuclear Component and Engineering Center in research reactor instrumentation and control development. (author)

  6. The Jules Horowitz Reactor project, a driver for revival of the research reactor community

    International Nuclear Information System (INIS)

    Pere, P.; Cavailler, C.; Pascal, C.

    2010-01-01

    The first concrete of the nuclear island for the Jules Horowitz Reactor (JHR) was poured at the end of July 2009 and construction is ongoing. The JHR is the largest new platform for irradiation experiments supporting Generation II and III reactors, Generation IV technologies, and radioisotope production. This facility, composed of a unique grouping of workshops, hot cells and hot laboratories together with a first-rate MTR research reactor, will ensure that the process, from preparations for irradiation experiments through post-irradiation non-destructive examination, is completed expediently, efficiently and, of course, safely. In addition to the performance requirements to be met in terms of neutron fluxes on the samples (5x10 14 n.cm -2 /sec -1 E>1 MeV in core and 3,6x10 14 n.cm -2 /sec -1 E<0.625 eV in the reflector) and the JHR's considerable irradiation capabilities (more than 20 experiments and one-tenth of irradiation area for simultaneous radioisotope production), the JHR is the first MTR to be built since the end of the 1960s, making this an especially challenging project. The presentation will provide an overview of the reactor, hot cells and laboratories and an outline of the key milestones in the project schedule, including initial criticality in early 2014 and radioisotope production in 2015. This will be followed by a description of the project organization set up by the CEA as owner and future operator and AREVA TA as prime contractor and supplier of critical systems, and a discussion of project challenges, especially those dealing with the following items:accommodation of a broad experimental domain; involvement by international partners making in-kind contributions to the project; ? development of components critical to safety and performance; the revival of engineering of research reactors and experimental devices involving France's historical players in the field of research reactors, and; tools to carry out the project, including computer codes

  7. The replacement research reactor

    International Nuclear Information System (INIS)

    Cameron, R.; Horlock, K.

    2001-01-01

    The contract for the design, construction and commissioning of the Replacement Research Reactor was signed in July 2000. This was followed by the completion of the detailed design and an application for a construction licence was made in May 2001. This paper will describe the main elements of the design and their relation to the proposed applications of the reactor. The future stages in the project leading to full operation are also described

  8. Research reactors spent fuel management in the Nuclear Research Institute Rez

    International Nuclear Information System (INIS)

    Rychecky, J.

    2001-01-01

    In Czech Republic 3 research and testing nuclear reactors are operated at present time, with the biggest one being the Nuclear Research Institute (NRI) reactor LVR-15, operated with maximum power 10 MW. This reactor serves as a radiation source for material testing, producing of ionizing radiation sources, theoretical studies, and, most recently, for boron neutron capture therapy. Another NRI reactor LR-0 is a reactor of zero power used mainly for the studies of WWER 1000 spent fuel criticality. For training of students the reactor called VRABEC (VR-1), operated also with very low power, serves since 1990 at the Faculty of Nuclear Engineering, of Czech Technical University. The similar testing type reactor (SR-0), already decommissioned, was also used since 1974 to 1989 in Skoda, Nuclear Machinery, Plzen. This contribution summarizes the present state of the spent fuel (SF) management of these nuclear reactors. As the SF management is different for very low or zero power reactors and power reactors, the first type will be only briefly discussed, and then the main attention will be devoted to SF management of the NRI experimental reactor LVR-15

  9. Research reactors spent fuel management in the Nuclear Research Institute Rez

    Energy Technology Data Exchange (ETDEWEB)

    Rychecky, J. [Nuclear Research Institute, 25068 Rez (Czech Republic)

    2001-07-01

    In Czech Republic 3 research and testing nuclear reactors are operated at present time, with the biggest one being the Nuclear Research Institute (NRI) reactor LVR-15, operated with maximum power 10 MW. This reactor serves as a radiation source for material testing, producing of ionizing radiation sources, theoretical studies, and, most recently, for boron neutron capture therapy. Another NRI reactor LR-0 is a reactor of zero power used mainly for the studies of WWER 1000 spent fuel criticality. For training of students the reactor called VRABEC (VR-1), operated also with very low power, serves since 1990 at the Faculty of Nuclear Engineering, of Czech Technical University. The similar testing type reactor (SR-0), already decommissioned, was also used since 1974 to 1989 in Skoda, Nuclear Machinery, Plzen. This contribution summarizes the present state of the spent fuel (SF) management of these nuclear reactors. As the SF management is different for very low or zero power reactors and power reactors, the first type will be only briefly discussed, and then the main attention will be devoted to SF management of the NRI experimental reactor LVR-15.

  10. MAPLE research reactor beam-tube performance

    International Nuclear Information System (INIS)

    Lee, A.G.; Lidstone, R.F.; Gillespie, G.E.

    1989-05-01

    Atomic Energy of Canada Limited (AECL) has been developing the MAPLE (Multipurpose Applied Physics Lattice Experimental) reactor concept as a medium-flux neutron source to meet contemporary research reactor applications. This paper gives a brief description of the MAPLE reactor and presents some results of computer simulations used to analyze the neutronic performance. The computer simulations were performed to identify how the MAPLE reactor may be adapted to beam-tube applications such as neutron radiography

  11. Re-evaluation of the criticality experiments of the ''Otto Hahn Nuclear Ship'' reactor

    Energy Technology Data Exchange (ETDEWEB)

    Lengar, I.; Snoj, L.; Rogan, P.; Ravnik, M. [Jozef Stefan Institute, Ljubljana (Slovenia)

    2008-11-15

    Several series of experiments with a FDR reactor (advanced pressurized light water reactor) were performed in 1972 in the Geesthacht critical facility ANEX. The experiments were performed to test the core prior to its usage for the propulsion of the first German nuclear merchant ship ''Otto-Hahn''. In the present paper a calculational re-evaluation of the experiments is described with the use of the up-to date computer codes (Monte-Carlo code MCNP5) and nuclear data (ENDF/B-VI release 6). It is focused on the determination of uncertainties in the benchmark model of the experimental set-up, originating mainly from the limited set of information still available about the experiments. Effects of the identified uncertainties on the multiplication factor were studied. The sensitivity studies include parametric variation of material composition and geometry. The combined total uncertainty being found 0.0050 in k{sub eff}, the experiments are qualified as criticality safety benchmark experiments. (orig.)

  12. BR2 reactor neutron beams

    International Nuclear Information System (INIS)

    Neve de Mevergnies, M.

    1977-01-01

    The use of reactor neutron beams is becoming increasingly more widespread for the study of some properties of condensed matter. It is mainly due to the unique properties of the ''thermal'' neutrons as regards wavelength, energy, magnetic moment and overall favorable ratio of scattering to absorption cross-sections. Besides these fundamental reasons, the impetus for using neutrons is also due to the existence of powerful research reactors (such as BR2) built mainly for nuclear engineering programs, but where a number of intense neutron beams are available at marginal cost. A brief introduction to the production of suitable neutron beams from a reactor is given. (author)

  13. Regulatory Framework for Controlling the Research Reactor Decommissioning Project

    International Nuclear Information System (INIS)

    Melani, Ai; Chang, Soon Heung

    2009-01-01

    Decommissioning is one of important stages in construction and operation of research reactors. Currently, there are three research reactors operating in Indonesia. These reactors are operated by the National Nuclear Energy Agency (BATAN). The age of the three research reactors varies from 22 to 45 years since the reactors reached their first criticality. Regulatory control of the three reactors is conducted by the Nuclear Energy Regulatory Agency (BAPETEN). Controlling the reactors is carried out based on the Act No. 10/1997 on Nuclear Energy, Government Regulations and BAPETEN Chairman Decrees concerning the nuclear safety, security and safeguards. Nevertheless, BAPETEN still lack of the regulation, especially for controlling the decommissioning project. Therefore, in the near future BAPETEN has to prepare the regulations for decommissioning, particularly to anticipate the decommissioning of the oldest research reactors, which probably will be done in the next ten years. In this papers author give a list of regulations should be prepared by BAPETEN for the decommissioning stage of research reactor in Indonesia based on the international regulatory practice

  14. Research on reactor physics data

    International Nuclear Information System (INIS)

    1961-01-01

    In the early years of nuclear reactor research, each national program tended to develop its own reactor physics information. The Government of Norway proposed to the Agency the undertaking of a joint program in reactor physics utilizing the facilities and staff of its zero power reactor NORA then under construction. Following the approval by the Board of Governors in February, the Agency invited Member States to submit the names and qualifications of scientists they wished to suggest for the project. All the results and information gained through the program, which is expected to last about three years, will be placed at the disposal of the Agency's Member States

  15. Applications of Research Reactors

    International Nuclear Information System (INIS)

    2014-01-01

    One of the IAEA's statutory objectives is to 'seek to accelerate and enlarge the contribution of atomic energy to peace, health and prosperity throughout the world.' One way this objective is achieved is through the publication of a range of technical series. Two of these are the IAEA Nuclear Energy Series and the IAEA Safety Standards Series. According to Article III.A.6 of the IAEA Statute, the safety standards establish 'standards of safety for protection of health and minimization of danger to life and property'. The safety standards include the Safety Fundamentals, Safety Requirements and Safety Guides. These standards are written primarily in a regulatory style, and are binding on the IAEA for its own programmes. The principal users are the regulatory bodies in Member States and other national authorities. The IAEA Nuclear Energy Series comprises reports designed to encourage and assist R and D on, and application of, nuclear energy for peaceful uses. This includes practical examples to be used by owners and operators of utilities in Member States, implementing organizations, academia, and government officials, among others. This information is presented in guides, reports on technology status and advances, and best practices for peaceful uses of nuclear energy based on inputs from international experts. The IAEA Nuclear Energy Series complements the IAEA Safety Standards Series. The purpose of the earlier publication, The Application of Research Reactors, IAEA-TECDOC-1234, was to present descriptions of the typical forms of research reactor use. The necessary criteria to enable an application to be performed were outlined for each one, and, in many cases, the minimum as well as the desirable requirements were given. This revision of the publication over a decade later maintains the original purpose and now specifically takes into account the changes in service requirements demanded by the relevant stakeholders. In particular, the significant improvements in

  16. Research report on the users' needs for next research reactor

    International Nuclear Information System (INIS)

    Takahashi, Hiroyuki; Tamura, Itaru; Hosoya, Toshiaki; Horiguchi, Hironori

    2015-03-01

    JRR-3 has been operated for more than 25 years for that it is time to investigate the role of a next research reactor. A task force under the Committee for Promotion of JRR-3 Neutron Beam Application has been organized by Department of Research Reactor and Tandem Accelerator to survey neutron beam application trends in the future. This is a report on the survey results and users' requirements for the next research reactor have been summarized in this report carried by the task force. (author)

  17. Reactor safety research in Sweden

    International Nuclear Information System (INIS)

    Pershagen, B.

    1980-02-01

    Objectives, means and results of Swedish light water reactor safety research during the 1970s are reviewed. The expenditure is about 40 Million Swkr per year excluding industry. Large efforts have been devoted to experimental studies of loss of coolant accidents. Large scale containment response tests for simulated pipe breaks were carried out at the Marviken facility. At Studsvik a method for testing fuel during fast power changes has been developed. Stress corrosion, crack growth and the effect of irradiation on the strength ductility of Zircaloy tube was studied. A method for determining the fracture toughness of pressure vessel steel was developed and it was shown that the fracture toughness was lower than earlier assumed. The release of fission products to reactor water was studied and so was the release, transport and removal of airborne radioactive matter for Swedish BWRs and PWRs. Test methods for iodine filter systems were developed. A system for continuous monitoring of radioactive noble gas stack release was developed for the Ringhals plant. Attention was drawn to the importance of the human factor for reactor safety. Probabilistic methods for risk analysis were applied to the Barsebaeck 2 and Forsmark 3 boiling water reactors. Procedures and working conditions for operator personnel were investigated. (GBn)

  18. IAEA Activities supporting education and training at research reactors

    International Nuclear Information System (INIS)

    Peld, N.D.; Ridikas, D.

    2013-01-01

    Full-text: Through the provision of neutrons for experiments and their historical association with universities, research reactors have played a prominent role in nuclear education and training of students, scientists and radiation workers. Today education and training remains the foremost application of research reactors, involving close to 160 facilities out of 246 operational. As part of its mandate to facilitate and expand the contribution of atomic energy to peace, health and prosperity throughout the world, the IAEA administers a number of activities intended to promote nuclear research and enable access to nuclear technology for peaceful purposes, one of which is the support of various education and training measures involving research reactors. In the last 5 years, education and training has formed one pillar for the creation of research reactor coalitions and networks to pool their resources and offer joint programmes, such as the on-going Group Fellowship Training Course. Conducted mainly through the Eastern European Research Reactor Initiative, this programme is a periodic sic week course for young scientists and engineers on nuclear techniques and administration jointly conducted at several member research reactor institutes. Organization of similar courses is under consideration in Latin America and the Asia-Pacific Region, also with support from the IAEA. Additionally, four research reactor institutes have begun offering practical education courses through virtual reactor experiments and operation known as the Internet Reactor Laboratory. Through little more than an internet connection and projection screens, university science departments can be connected regionally or bilaterally with the control room o a research reactor for various training activities. Finally, two publications are being prepared, namely Hands-On Training Courses Using Research Reactors and Accelerators, and Compendium on Education and training Based on Research Reactors. These

  19. Safety challenges encountered during the operating life of the almost 40 year old research reactor BR2

    International Nuclear Information System (INIS)

    Koonen, E.; Joppen, F.; Gubel, P.

    2001-01-01

    The BR2 reactor is one of the major MTR-type research reactors in the world. Its operation started in the early 1960's. Two major refurbishment operations have been carried out since then. Several safety reassessments were carried out over the years in order to keep the safety level in line with modern standards and to enhance operational safety. This paper gives an overview of the safety challenges encountered over the years and how those were met. (author)

  20. Safety in the Utilization and Modification of Research Reactors. Specific Safety Guide

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-07-15

    This Safety Guide is a revision of Safety Series No. 35-G2 on safety in the utilization and modification of research reactors. It provides recommendations on meeting the requirements for the categorization, safety assessment and approval of research reactor experiments and modification projects. Specific safety considerations in different phases of utilization and modification projects are covered, including the pre-implementation, implementation and post-implementation phases. Guidance is also provided on the operational safety of experiments, including in the handling, dismantling, post-irradiation examination and disposal of experimental devices. Examples of the application of the safety categorization process for experiments and modification projects and of the content of the safety analysis report for an experiment are also provided. Contents: 1. Introduction; 2. Management system for the utilization and modification of a research reactor; 3. Categorization, safety assessment and approval of an experiment or modification; 4. Safety considerations for the design of an experiment or modification; 5. Pre-implementation phase of a modification or utilization project; 6. Implementation phase of a modification or utilization project; 7. Post-implementation phase of a utilization or modification project; 8. Operational safety of experiments at a research reactor; 9. Safety considerations in the handling, dismantling, post-irradiation examination and disposal of experimental devices; 10. Safety aspects of out-of-reactor-core installations; Annex I: Example of a checklist for the categorization of an experiment or modification at a research reactor; Annex II: Example of the content of the safety analysis report for an experiment at a research reactor; Annex III: Examples of reasons for a modification at a research reactor.

  1. Safety in the Utilization and Modification of Research Reactors. Specific Safety Guide

    International Nuclear Information System (INIS)

    2012-01-01

    This Safety Guide is a revision of Safety Series No. 35-G2 on safety in the utilization and modification of research reactors. It provides recommendations on meeting the requirements for the categorization, safety assessment and approval of research reactor experiments and modification projects. Specific safety considerations in different phases of utilization and modification projects are covered, including the pre-implementation, implementation and post-implementation phases. Guidance is also provided on the operational safety of experiments, including in the handling, dismantling, post-irradiation examination and disposal of experimental devices. Examples of the application of the safety categorization process for experiments and modification projects and of the content of the safety analysis report for an experiment are also provided. Contents: 1. Introduction; 2. Management system for the utilization and modification of a research reactor; 3. Categorization, safety assessment and approval of an experiment or modification; 4. Safety considerations for the design of an experiment or modification; 5. Pre-implementation phase of a modification or utilization project; 6. Implementation phase of a modification or utilization project; 7. Post-implementation phase of a utilization or modification project; 8. Operational safety of experiments at a research reactor; 9. Safety considerations in the handling, dismantling, post-irradiation examination and disposal of experimental devices; 10. Safety aspects of out-of-reactor-core installations; Annex I: Example of a checklist for the categorization of an experiment or modification at a research reactor; Annex II: Example of the content of the safety analysis report for an experiment at a research reactor; Annex III: Examples of reasons for a modification at a research reactor.

  2. Generic component reliability data for research reactors PSA. Final report of the CRP on data acquisition for research reactor PSA. Working material

    International Nuclear Information System (INIS)

    1993-01-01

    The scope of this document is to provide the final reference generic component reliability database information for a variety of research reactor types. As noted in Section 2.1 and Table 3a, many years of component data are represented in the database so that it is expected that the report should provide representative data valid for a number of years. The database provides component failure rates on a time and/or a demand related basis according to the operational modes of the components. At the current time an update of the database is not planned. As a result of the implementation of data collection systems in the research reactors represented in these studies, updating of data from individual facilities could be made available from the contributing research reactor facilities themselves. As noted in Section 1.2, the report does not include detailed discussion of information regarding component classification and reliability parameter definitions. The report does provide some insights and discussion regarding the practicalities of the data collection process and some guidelines for database usage. 9 refs, tabs

  3. Generic component reliability data for research reactors PSA. Final report of the CRP on data acquisition for research reactor PSA. Working material

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    The scope of this document is to provide the final reference generic component reliability database information for a variety of research reactor types. As noted in Section 2.1 and Table 3a, many years of component data are represented in the database so that it is expected that the report should provide representative data valid for a number of years. The database provides component failure rates on a time and/or a demand related basis according to the operational modes of the components. At the current time an update of the database is not planned. As a result of the implementation of data collection systems in the research reactors represented in these studies, updating of data from individual facilities could be made available from the contributing research reactor facilities themselves. As noted in Section 1.2, the report does not include detailed discussion of information regarding component classification and reliability parameter definitions. The report does provide some insights and discussion regarding the practicalities of the data collection process and some guidelines for database usage. 9 refs, tabs.

  4. The applications of research reactors. Report of an advisory group meeting

    International Nuclear Information System (INIS)

    2001-08-01

    fuel and experiments in loops running through the reactor core is highly specialized, and usually only performed by national laboratory level facilities. The presentation of the uses of research reactors in this document follows the progression outlined above. For each application the specific requirements are generally discussed under the headings: flux/power level, reactor facilities, external equipment, personnel and funding. However, there is some flexibility in these topics as appropriate for each application. For the purposes of this document, unless specifically referenced in the text, low power research reactors should be regarded as those less than 250 kW and high power research reactors are those above 2 MW. Naturally, intermediate power reactors are in between

  5. Digital, remote control system for a 2-MW research reactor

    International Nuclear Information System (INIS)

    Battle, R.E.; Corbett, G.K.

    1988-01-01

    A fault-tolerant programmable logic controller (PLC) and operator workstations have been programmed to replace the hard-wired relay control system in the 2-MW Bulk Shielding Reactor (BSR) at Oak Ridge National Laboratory. In addition to the PLC and remote and local operator workstations, auxiliary systems for remote operation include a video system, an intercom system, and a fiber optic communication system. The remote control station, located at the High Flux Isotope Reactor 2.5 km from the BSR, has the capability of rector startup and power control. The system was designed with reliability and fail-safe features as important considerations. 4 refs., 3 figs

  6. Research on economics and CO2 emission of magnetic and inertial fusion reactors

    International Nuclear Information System (INIS)

    Mori, Kenjiro; Yamazaki, Kozo; Oishi, Tetsutarou; Arimoto, Hideki; Shoji, Tatsuo

    2011-01-01

    An economical and environment-friendly fusion reactor system is needed for the realization of attractive power plants. Comparative system studies have been done for magnetic fusion energy (MFE) reactors, and been extended to include inertial fusion energy (IFE) reactors by Physics Engineering Cost (PEC) system code. In this study, we have evaluated both tokamak reactor (TR) and IFE reactor (IR). We clarify new scaling formulas for cost of electricity (COE) and CO 2 emission rate with respect to key design parameters. By the scaling formulas, it is clarified that the plant availability and operation year dependences are especially dominant for COE. On the other hand, the parameter dependences of CO 2 emission rate is rather weak than that of COE. This is because CO 2 emission percentage from manufacturing the fusion island is lower than COE percentage from that. Furthermore, the parameters dependences for IR are rather weak than those for TR. Because the CO 2 emission rate from manufacturing the laser system to be exchanged is very large in comparison with CO 2 emission rate from TR blanket exchanges. (author)

  7. Operation and utilizations of Dalat nuclear research reactor

    International Nuclear Information System (INIS)

    Hien, P.Z.

    1988-01-01

    The reconstructed Dalat nuclear research reactor was commissioned in March 1984 and up to September 1988 more than 6200 hours of operation at nominal power have been recorded. The major utilizations of the reactor include radioisotope production, activation analysis, nuclear data research and training. A brief review of the utilizations of the reactor is presented. Some aspects of reactor safety are also discussed. (author)

  8. Management and storage of nuclear fuel from Belgian research reactors

    International Nuclear Information System (INIS)

    Gubel, P.

    1996-01-01

    Experiences and problems with the storage of irradiated fuel at research reactors in Belgium are described. In particular, interim storage problems exist for spent fuel elements at the BR2 and the shut down BR3 reactors in Mol. (author). 1 ref

  9. Performance of small reactors at universities for teaching, research, training and service (TRTS): thirty five years' experience with the Dalhousie University SLOWPOKE-2 reactor

    Energy Technology Data Exchange (ETDEWEB)

    Chatt, A., E-mail: a.chatt@dal.ca [Dalhousie Univ., Trace Analysis Research Centre, Dept. of Chemistry, Halifax, Nova Scotia (Canada)

    2013-07-01

    The Dalhousie University SLOWPOKE-2 Reactor (DUSR) facility, operated during 1976-2011, was the only research reactor in Atlantic Canada as well as the only one associated with a chemistry department in a Canadian university. The most outstanding features of the facility included: a rapid (100 ms) cyclic pneumatic sample transfer system, a permanently installed Cd-site, and a Compton-suppression gamma-ray spectrometer. The usage encompassed fundamental as well as applied studies in various fields using neutron activation analysis (NAA). The facility was used for training undergraduate/graduate students, postdoctoral fellows, technicians, and visiting scientists, and for cooperative projects with other universities, research organizations and industries. (author)

  10. Status of research reactor spent fuel world-wide

    International Nuclear Information System (INIS)

    Ritchie, I.G.

    2004-01-01

    Results compiled in the research reactor spent fuel database are used to assess the status of research reactor spent fuel world-wide. Fuel assemblies, their types, enrichment, origin of enrichment and geological distribution among the industrialised and developed countries of the world are discussed. Fuel management practices in wet and dry storage facilities and the concerns of reactor operators about long-term storage of their spent fuel are presented and some of the activities carried out by the International Atomic Energy Agency to address the issues associated with research reactor spent fuel are outlined. (author)

  11. Proceedings of the FNCA 2006 workshop on the utilization of research reactors (Contract research)

    International Nuclear Information System (INIS)

    2007-09-01

    The FNCA 2006 Workshop on the Utilization of Research Reactors was held in Manila, Philippines from August 28 to September 1, 2006. This workshop was executed based on the agreement in the seventh Coordinator's Meeting of Forum for Nuclear Cooperation in Asia (FNCA) held in Tokyo, Mach 2006. The workshop consisted of three groups under the themes of the following fields; 1) Neutron Activation Analysis, 2) Research Reactor Technology and 3) Tc-99m Generator Technology. The total number of participants for the workshop was 45 people from 9 countries; China, Indonesia, Korea, Malaysia, the Philippines, Thailand, Vietnam, Bangladesh and Japan. This report consists of 10 papers for Neutron Activation Analysis, 7 papers for Tc-99m Generator Technology, 9 papers for Research Reactor Technology and a summary report. (author)

  12. Proceedings of the FNCA 2003 workshop on the utilization of research reactors (Contract research)

    International Nuclear Information System (INIS)

    2006-03-01

    The FNCA 2003 Workshop on the Utilization of Research Reactors, which is the twelfth workshop on the theme of research reactor utilization, was held in Dalat, Vietnam and Jakarta and Serpong, Indonesia from January 12 to 16, 2004. This workshop was executed based on the agreement in the fourth Coordinator's Meeting of Forum for Nuclear Cooperation in Asia (FNCA) held in Tokyo, March 2003. The workshop consisted of four groups under the theme of the following fields; 1) Neutron Activation Analysis, 2) Research Reactors, 3) Tc-99m Generator Technology and 4) Neutron Scattering. The total number of participants for the workshop was 93 people from 8 countries; China, Indonesia, Korea, Malaysia, the Philippines, Thailand, Vietnam and Japan. The 30 of the presented papers are indexed individually. (J.P.N.)

  13. Future plans on the Kyoto University Research Reactor (KUR)

    International Nuclear Information System (INIS)

    Shibata, Seiichi

    2000-01-01

    The Research Reactor Institute (RRI), Kyoto University, for aiming at performing the 'Experiments using a reactor and its related research', was established in Showa 38 (1963) as a cooperative research institute for universities and so on in allover Japan. Operation using KUR of one of main facilities in RRI was started by 1 MW of its rated output in 1964, and converted to 5 MW in 1968, after which through development , addition and modification of various research apparatus it has been proposed to the cooperative application researches with universities and so on in allover Japan, hitherto. Among these periods, its research organization is improved to six departments containing twenty divisions and two attached research facilities to progress some investigations on future plans at RRI for response to new researching trends. Here were described on present state of research on use of low concentrated uranium fuels at research reactor, and future plans on neutron factory and hybrid reactor. The former aims at establishment of a new research facility capable of alternating to KUR for future academic research on research reactor containing high quality and high degree application of neutron field and safety management and feature upgrading of nuclear energy. And, the latter aims at development on an accelerator drive uncritical reactor combined an accelerator neutron source and an uncritical reactor. (G.K.)

  14. Research reactor status for future nuclear research in Europe

    Energy Technology Data Exchange (ETDEWEB)

    Raymond, Patrick; Bignan, Gilles; Guidez, Joel [Commissariat a l' Energie Atomique - CEA (France)

    2010-07-01

    During the 1950's and 60's, the European countries built several research reactors, partially to support their emerging nuclear-powered electricity programs. Now, over forty years later, the use and operation of these reactors have both widened and grown more specialized. The irradiation reactors test materials and fuels for power reactors, produce radio-isotopes for medicine, neutro-graphies, doping silicon, and other materials. The neutron beam reactors are crucial to science of matter and provide vital support to the development of nano-technologies. Other reactors are used for other specialized services such as teaching, safety tests, neutron physics measurements... The modifications to the operating uses and the ageing of the nuclear facilities have led to increasing closures year after year. Since last ENC, for example, we have seen, only in France, the closure of the training reactor Ulysse in 2007, the closure of the safety test dedicated reactor Phebus in 2008 and recently the Phenix reactor, last fast breeder in operation in the European Community, has been shut down after a set of 'end of life' technological and physical tests. For other research reactors, safety re-evaluations have had to take place, to enable extension of reactor life. However, in the current context of streamlining and reorganization, new European tools have emerged to optimally meet the changing demands for research. However the operation market of these reactors seems now increasing in all fields. For the neutron beams reactors (FRMII, ORPHEE, ILL, ISIS,..) the experimental needs are increasing years after years, especially for nano sciences and bio sciences new needs. The measurement of residual stress on manufactured materials is also more and more utilised. All these reactors have increasing utilizations, and their future seems promising. A new project project based on a neutron spallation is under definition in Sweden (ESSS: European Spallation Source

  15. Research reactor status for future nuclear research in Europe

    International Nuclear Information System (INIS)

    Raymond, Patrick; Bignan, Gilles; Guidez, Joel

    2010-01-01

    During the 1950's and 60's, the European countries built several research reactors, partially to support their emerging nuclear-powered electricity programs. Now, over forty years later, the use and operation of these reactors have both widened and grown more specialized. The irradiation reactors test materials and fuels for power reactors, produce radio-isotopes for medicine, neutro-graphies, doping silicon, and other materials. The neutron beam reactors are crucial to science of matter and provide vital support to the development of nano-technologies. Other reactors are used for other specialized services such as teaching, safety tests, neutron physics measurements... The modifications to the operating uses and the ageing of the nuclear facilities have led to increasing closures year after year. Since last ENC, for example, we have seen, only in France, the closure of the training reactor Ulysse in 2007, the closure of the safety test dedicated reactor Phebus in 2008 and recently the Phenix reactor, last fast breeder in operation in the European Community, has been shut down after a set of 'end of life' technological and physical tests. For other research reactors, safety re-evaluations have had to take place, to enable extension of reactor life. However, in the current context of streamlining and reorganization, new European tools have emerged to optimally meet the changing demands for research. However the operation market of these reactors seems now increasing in all fields. For the neutron beams reactors (FRMII, ORPHEE, ILL, ISIS,..) the experimental needs are increasing years after years, especially for nano sciences and bio sciences new needs. The measurement of residual stress on manufactured materials is also more and more utilised. All these reactors have increasing utilizations, and their future seems promising. A new project project based on a neutron spallation is under definition in Sweden (ESSS: European Spallation Source Scandinavia). The nuclear

  16. International collaboration between nuclear research centres and the role of research reactors

    International Nuclear Information System (INIS)

    Dodd, B.

    2001-01-01

    A research reactor is a core facility in many nuclear research centres (NRCs) of Member States and it is logical that it should be the focus of any international collaboration between such centres. There are several large and sophisticated research reactors in operation in both developed and developing Member States, such as Belgium, China, Egypt, France, Hungary, Indonesia, India, Japan, ROK, Netherlands, South Africa and the USA. There are also several new, large reactors under construction or being planned such as those in Australia, Canada, China, France, Germany, and Thailand. It is felt that the utilization of these reactors can be enhanced by international co-operation to achieve common goals in research and applications. (author)

  17. Simulation of a pool type research reactor

    International Nuclear Information System (INIS)

    Oliveira, Andre Felipe da Silva de; Moreira, Maria de Lourdes

    2011-01-01

    Computational fluid dynamic is used to simulate natural circulation condition after a research reactor shutdown. A benchmark problem was used to test the viability of usage such code to simulate the reactor model. A model which contains the core, the pool, the reflector tank, the circulation pipes and chimney was simulated. The reactor core contained in the full scale model was represented by a porous media. The parameters of porous media were obtained from a separate CFD analysis of the full core model. Results demonstrate that such studies can be carried out for research and test of reactors design. (author)

  18. Application of JAERI research reactors to education

    International Nuclear Information System (INIS)

    Ogawa, Shigeru; Morozumi, Minoru

    1987-01-01

    At the dawning of the atomic age in Japan, training on reactor operation and reactor engineering experiments has been started in 1958 using JRR-1 (a 50 kW water boiler type reactor with liquid fuel), which was the first research reactor in Japan. The role of the training has been transferred to JRR-4 (a 3500 kW swimming pool type reactor with ETR type fuel) since 1969 due to the decommission of JRR-1. The training courses which have been held are: JRR-1 Short-Term Course for Operation (1958 ∼ 1963) General Course (1961 ∼ ) Reactor Engineering Course (1976 ∼ ) Training Course in Nuclear Technology (International course)(1986 ∼ ). And individual training concerning research reactors for the participants of scientist exchange program sponsored by Science and Technology Agency and of bilateral agreement have been initiated in 1985. The graduates of these courses work as staff members in various fields in nuclear industry. (author)

  19. Applied research and service activities at the University of Missouri Research Reactor Facility (MURR)

    International Nuclear Information System (INIS)

    Alger, D.M.

    1987-01-01

    The University Of Missouri operates MURR to provide an intense source of neutron and gamma radiation for research and applications by experimenters from its four campuses and by experimenters from other universities, government and industry. The 10 MW reactor, which has been operating an average of 155 hours per week for the past eight years, produces thermal neutron fluxes up to 6-7x10 14 n/cm 2 -s in the central flux trap and beamport source fluxes of up to 1.2x10 14 n/cm 2 -s. The mission of the reactor facility, to promote research, education and service, is the same as the overall mission of the university and therefore, applied research and service supported by industrial firms have been welcomed. The university recognized after a few years of reactor operation that in order to build utilization, it would be necessary to develop in-house research programs including people, equipment and activity so that potential users could more easily and quickly obtain the results needed. Nine research areas have been developed to create a broadly based program to support the level of activity needed to justify the cost of operating the facility. Applied research and service generate financial support for about one-half of the annual budget. The applied and service programs provide strong motivation for university/industry association in addition to the income generated. (author)

  20. Status report of Indonesian research reactor

    International Nuclear Information System (INIS)

    Arbie, B.; Supadi, S.

    1992-01-01

    A general description of three Indonesian research reactor, its irradiation facilities and its future prospect are described. Since 1965 Triga Mark II 250 KW Bandung, has been in operation and in 1972 the design powers were increased to 1000 KW. Using core grid form Triga 250 KW BATAN has designed and constructed Kartini Reactor in Yogyakarta which started its operation in 1979. Both of this Triga type reactors have served a wide spectrum of utilization such as training manpower in nuclear engineering, radiochemistry, isotope production and beam research in solid state physics. Each of this reactor have strong cooperation with Bandung Institute of Technology at Bandung and Gajah Mada University at Yogyakarta which has a faculty of Nuclear Engineering. Since 1976 the idea to have high flux reactor has been foreseen appropriate to Indonesian intention to prepare infrastructure for nuclear industry for both energy and non-energy related activities. The idea come to realization with the first criticality of RSG-GAS (Multipurpose Reactor G.A. Siwabessy) in July 1987 at PUSPIPTEK Serpong area. It is expected that by early 1992 the reactor will reached its full power of 30 MW and by end 1992 its expected that irradiation facilities will be utilized in the future for nuclear scientific and engineering work. (author)

  1. Technical and safe development features of modern research reactor

    International Nuclear Information System (INIS)

    Wang Jiaying; Dong Duo

    1998-01-01

    The development trend of research reactor in the world, and development situation in China are introduced. Up to now, some research reactors have serviced for long time and equipment have aged, not to be satisfied for requirement of science and technology development. New research reactors must been developed. The technical features and safe features of new type research reactor in China, for example: multi-pile utilization, compact core of high flux, high automation level of control, reactor two independent shutdown systems, great coefficient of negative temperature, passive safety systems, reliable residual heat removal system are studied

  2. Training and Certification of Research Reactor Personnel

    International Nuclear Information System (INIS)

    Zarina Masood

    2011-01-01

    The safe operation of a research reactor requires that reactor personnel be fully trained and certified by the relevant authorities. Reactor operators at PUSPATI TRIGA Reactor underwent extensive training and are certified, ever since the reactor first started its operation in 1982. With the emphasis on enhancing reactor safety in recent years, reactor operator training and certification have also evolved. This paper discusses the changes that have to be implemented and the challenges encountered in developing a new training programme to be in line with the national standards. (author)

  3. Opportunities for physics research at Australia's replacement research reactor

    International Nuclear Information System (INIS)

    Robinson, R.A.

    2003-01-01

    Full text: The 20-MW Australian Replacement Research Reactor represents possibly the greatest single research infrastructure investment in Australia's history. Construction of the facility has commenced, following award of the construction contract in July 2000, and the construction licence in April 2002. The project includes a large state-of-the-art liquid deuterium cold-neutron source and supermirror guides feeding a large modern guide hall, in which most of the instruments are placed. Alongside the guide hall, there is good provision of laboratory, office and space for support activities. While the facility has 'space' for up to 18 instruments, the project has funding for an initial set of 8 instruments, which will be ready when the reactor is fully operational in January 2006. Instrument performance will be competitive with the best research-reactor facilities anywhere, and our goal is to be in the top 3 such facilities worldwide. Staff to lead the design effort and man these instruments have been hired on the international market from leading overseas facilities, and from within Australia, and 6 out of 8 instruments have been specified and costed. At present the instrumentation project carries ∼15% contingency. An extensive dialogue has taken place with the domestic user community and our international peers, via various means including a series of workshops over the last 2 years covering all 8 instruments, emerging areas of application like biology and the earth sciences, and computing infrastructure for the instruments. In December 2002, ANSTO formed the Bragg Institute, with the intent of nurturing strong external partnerships, and covering all aspects of neutron and X-ray scattering, including research using synchrotron radiation. I will discuss the present status and predicted performance of the neutron-beam facilities at the Replacement Reactor, synergies with the synchrotron in Victoria, in-house x-ray facilities that we intend to install in the Bragg

  4. Decommissioning of the Neuherberg Research Reactor (FRN)

    International Nuclear Information System (INIS)

    Demmeler, M.; Rau, G.; Strube, D.

    1982-01-01

    The Neuherberg Research Reactor is of type TRIGA MARK III with 1 MW steady state power and pulsable up to 2000 MW. During more than ten years of operation 12000 MWh and 6000 reactor pulses had been performed. In spite of its good technical condition and of permanent safe operation without any failures, the decommissioning of the Neuherberg research reactor was decided by the GSF board of directors to save costs for maintaining and personnel. As the mode of decommissioning the safe enclosure was chosen which means that the fuel elements will be transferred back to the USA. All other radioactive reactor components will be enclosed in the reactor block. Procedures for licensing of the decommissioning, dismantling procedures and time tables are presented

  5. Conceptual design of multipurpose compact research reactor

    International Nuclear Information System (INIS)

    Nagata, Hiroshi; Kusunoki, Tsuyoshi; Hori, Naohiko; Kaminaga, Masanori

    2012-01-01

    Conceptual design of the high-performance and low-cost multipurpose compact research reactor which will be expected to construct in the nuclear power plant introduction countries, started from 2010 in JAEA and nuclear-related companies in Japan. The aims of this conceptual design are to achieve highly safe reactor, economical design, high availability factor and advanced irradiation utilization. One of the basic reactor concept was determined as swimming pool type, thermal power of 10MW and water cooled and moderated reactor with plate type fuel element same as the JMTR. It is expected that the research reactors are used for human resource development, progress of the science and technology, expansion of industry use, lifetime extension of LWRs and so on. (author)

  6. Preservation of the first research nuclear reactor in Korea

    International Nuclear Information System (INIS)

    2008-06-01

    This book describes preservation of the first research nuclear reactor in Korea and necessity of building memorial hall, sale of the Institute of Atomic Energy Research in Seoul and dismantlement of the first and the second nuclear reactor, preservation of the first research nuclear reactor and activity about memorial hall of the atomic energy reactor, assignment and leaving the report, and the list of related data.

  7. Research reactor programmes at the IAEA

    International Nuclear Information System (INIS)

    Reijonen, H.

    1978-01-01

    The activities performed according to the Agency programs for research reactors in the fields of information collection and dissemination, meetings organization, publications of the proceedings and execution of technical assistance are discussed in the paper emphasizing the services that are provided for developing countries. It is intended that the programme on research reactors should be flexible and respond to the actual needs of the countries receiving assistance

  8. RA Research reactor, Annual report 1988

    International Nuclear Information System (INIS)

    Sotic, O.

    1988-12-01

    Annual report concerning the project 'RA research nuclear reactor' for 1989, financed by the Serbian ministry of science is divided into two parts. First part is concerned with RA reactor operation and maintenance, which is the task of the Division for reactor engineering of the Institute for multidisciplinary studies and RA reactor engineering. Second part deals with radiation protection activities at the RA reactor which is the responsibility of the Institute for radiation protection. Scientific council of the Institute for multidisciplinary studies and RA reactor engineering has stated that this report describes adequately the activity and tasks fulfilled at the RA reactor in 1989. The scope and the quality of the work done were considered successful both concerning the maintenance and reconstruction, as well as radiation protection activities [sr

  9. Basic research on high-uranium density fuels for research and test reactors

    International Nuclear Information System (INIS)

    Ugajin, M.; Itoh, A.; Akabori, M.

    1992-01-01

    High-uranium density fuels, uranium silicides (U 3 Si 2 , U 3 Si) and U 6 Me-type uranium alloys (Me = Fe, Mn, Ni), were prepared and examined metallurgically as low-enriched uranium (LEU) fuels for research and test reactors. Miniature aluminum-dispersion plate-type fuel (miniplate) and aluminum-clad disk-type fuel specimens were fabricated and subjected to the neutron irradiation in JMTR (Japan Materials Testing Reactor). Fuel-aluminum compatibility tests were conducted to elucidate the extent of reaction and to identify reaction products. The relative stability of the fuels in an aluminum matrix was established at 350degC or above. Experiments were also performed to predict the chemical form of the solid fission-products in the uranium silicide (U 3 Si 2 ) simulating a high burnup anticipated for reactor service. (author)

  10. Lenin nuclear reactor research institute in the tenth five-year plan

    International Nuclear Information System (INIS)

    Tsykanov, V.A.; Kulov, E.V.

    1980-01-01

    Main tasks and research results of Lenin Nuclear Reactor Reseach Institute in the 10-th Five-Year Plan are considered. Main research achievements are noted in nuclear power, radiation material testing, accumulation of transuranium elements and investigation of their physicochemical properties at VK-50, BOR-60, SM-2, RBT-6 and MIR reactor plants and in material testing laboratories

  11. Strategic Planning for Research Reactors

    International Nuclear Information System (INIS)

    2017-01-01

    This publication is a revision of IAEA-TECDOC-1212 which primarily focused on enhancing the utilization of existing research reactors. This updated version also provides guidance on how to develop and implement a strategic plan for a new research reactor project and will be of particular interest for organizations which are preparing a feasibility study to establish such a new facility. This publication will enable managers to determine more accurately the actual and potential capabilities of an existing reactor, or the intended purpose and type of a new facility. At the same time, management will be able to match these capabilities to stakeholders/users’ needs and establish the strategy of meeting such needs. In addition, several annexes are presented, including some examples as clarification to the main text and ready-to-use templates as assistance to the team drafting a strategic plan.

  12. Nuclear research reactors in the world. May 1987 ed.

    International Nuclear Information System (INIS)

    1987-01-01

    This is the second edition of Reference Data Series No.3, Nuclear Research Reactors in the World, which replaces the Agency's publications Power and Research Reactors in Member States and Research Reactors in Member States. This booklet contains general information, as of the end of May 1987, on research reactors in operation, under construction, planned, and shut down. The information is collected by the Agency through questionnaires sent to the Member States through the designated national correspondents. 11 figs, 19 tabs

  13. Self Assessment for the Safety of Research Reactor in Indonesia

    International Nuclear Information System (INIS)

    Melani, Ai; Chang, Soon Heung

    2008-01-01

    At the present Indonesia has no nuclear power plant in operation yet, although it is expected that the first nuclear power plant will be operated and commercially available in around the year of 2016 to 2017 in Muria Peninsula. National Nuclear Energy Agency (BATAN) has three research reactor; which are: Reactor Triga Mark II at Bandung, Reactor Kartini at Yogyakarta and Reactor Serbaguna (Multi Purpose Reactor) at Serpong. The Code of Conduct on the Safety of Research Reactors establishes 'best practice' guidelines for the licensing, construction and operation of research reactors. In this paper the author use the requirement in code of conduct to review the safety of research reactor in Indonesia

  14. Development of Pneumatic Transfer Irradiation Facility (PTS no.2) for Neutron Activation Analysis at HANARO Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Y. S.; Moon, J. H.; Kim, S. H.; Sun, G. M.; Baek, S. Y.; Kim, H. R.; Kim, Y. J

    2008-03-15

    A pneumatic transfer irradiation system (PTS) is one of the most important facilities used during neutron irradiation of a target material for instrumental neutron activation analysis (INAA) in a research reactor. In particular, a fast pneumatic transfer system is essential for the measurement of a short half-life nuclide and a delayed neutron counting system. The pneumatic transfer irradiation system (PTS no.2) involving a manual system and an automatic system for delayed neutron activation analysis (DNAA) were reconstructed with new designs of a functional improvement at the HANARO research reactor in 2006. In this technical report, the conception, design, operation and control of PTS no.2 was described. Also the experimental results and the characteristic parameters measured by a mock-up test, a functional operation test and an irradiation test of these systems, such as the transfer time of irradiation capsule, automatic operation control by personal computer, delayed neutron counting system, the different neutron flux, the temperature of the irradiation position with an irradiation time, the radiation dose rate when the rabbit is returned, etc. are reported to provide a user information as well as a reactor's management and safety.

  15. Standards for safe operation of research reactors

    International Nuclear Information System (INIS)

    1996-01-01

    The safety of research reactors is based on many factors such as suitable choice of location, design and construction according to the international standards, it also depends on well trained and qualified operational staff. These standards determine the responsibilities of all who are concerned with the research reactors safe operation, and who are responsible of all related activities in all the administrative and technical stages in a way that insures the safe operation of the reactor

  16. Preparation fo nuclear research reactors operators

    International Nuclear Information System (INIS)

    Roedel, G.

    1986-01-01

    The experience obtained with the training of operators of nuclear research reactors is presented. The main tool used in the experiments is the IPR-R1 reactor, a TRIGA MARK I type, owned by Nuclear Technology Development Centre (CDTN) of NUCLEBRAS. The structures of the Research Reactors Operators Training Course and of the Radiological Protection Course, as well as the Operators Qualifying and Requalifying Program, all of them prepared at CDTN are also presented. Mention is made of the application of similar experiments to other groups, such as students coming from Nuclear Sciences and Techniques Course of the Federal University of Minas Gerais. (Author) [pt

  17. Preparation of nuclear research reactors operators

    International Nuclear Information System (INIS)

    Roedel, G.

    1986-01-01

    The experience obtained with the training of operators of nuclear research reactors is presented. The main tool used in the experiments is the IPR-R1 reactor, a TRIGA MARK I type, owned by Nuclear Technology Development Centre (CDTN) of NUCLEBRAS. The structures of the Research Reactors Operators Training Course and of the Radiological Protection Course, as well as the Operators Qualifying and Requalifying Program, all of them prepared at CDTN, are also presented. Mention is made of the application of similar experiments to other groups, such as students coming from Nuclear Sciences and Techniques Course of the Federal University of Minas Gerais. (Author) [pt

  18. Future directions of small research reactors

    International Nuclear Information System (INIS)

    Blotcky, A.J.; Rack, E.P.

    1986-01-01

    In prognosticating future perspectives, it is important to realize that the current number of small reactors throughout the world is not overly large and will undoubtedly decrease or at best remain constant in future generations. To survive and remain productive, small reactor facilities must concentrate on work that is unique and that cannot be performed as well by other instruments. Wherever possible, these facilities should develop some form of collaboration with universities and medical center investigators. Future development will continue and will flourish in neutron activation analysis and its applications for a diversity of fields. Fundamental research such as hot atom chemistry will continue to use neutrons from small research reactors. Finally, training of power reactor operators can be an important source of revenue for the small facility in addition to performing an important service to the nuclear power industry

  19. Research on neutron radiography in Research Reactor Institute, Kyoto University and activities related to it

    International Nuclear Information System (INIS)

    Fujine, Shigenori; Yoneda, Kenji

    1994-01-01

    The research on neutron radiography in Research Reactor Institute, Kyoto University was begun in 1974 using the E-2 experimental hole which was designed for neutron irradiation. It was reconstructed for the excellent performance as neutron radiography facility by fixing aluminum plugs, a collimator and so on. The research activities thereafter are briefly described. In 1989, the cold neutron facility was installed in the graphite thermal neutron facility, and the experiment on cold neutron radiography became feasible. The reactor in Kyoto University is of the thermal output of 5 MW, and is put to the joint utilization by universities and research institutes in whole Japan. The experimental items carried out so far are enumerated. At present, the main subjects of research are the development of the standard for establishing image evaluation method, the analysis of gas-liquid two-phase flow, the construction of the data base for the literatures and images of neutron radiography, the application of cold neutron radiography, the development of the imaging method using fast neutrons and so on. The thermal neutron radiography and the cold neutron radiography facilities of Kyoto University research reactor are described. The research and activities at Kyoto University research reactor and the investigation of problems are reported. (K.I.) 56 refs

  20. Manual for the operation of research reactors

    International Nuclear Information System (INIS)

    1965-01-01

    The great majority of the research reactors in newly established centres are light-water cooled and are often also light-water moderated. Consequently, the IAEA has decided to publish in its Technical Reports Series a manual dealing with the technical and practical problems associated with the safe and efficient operation of this type of reactor. Even though this manual is limited to light-water reactors in its direct application and presents the practices and experience at one specific reactor centre, it may also be useful for other reactor types because of the general relevance of the problems discussed and the long experience upon which it is based. It has, naturally, no regulatory character but it is hoped that it will be found helpful by staff occupied in all phases of the practical operation of research reactors, and also by those responsible for planning their experimental use. 23 refs, tabs

  1. The IAEA collaborating centre for neutron activation based methodologies of research reactors

    International Nuclear Information System (INIS)

    Bode, P.

    2010-01-01

    The Reactor Institute Delft of the Delft University of Technology houses the Netherlands' only academic nuclear research reactor, with associated instrumentation and laboratories, for scientific education and research with ionizing radiation. The Institute's swimming pool type research reactor reached first criticality in 1963 and is currently operated at 2MW thermal powers on a 100 h/week basis. The reactor is equipped with neutron mirror guides serving ultra modern neutron beam physics instruments and with a very bright positron facility. Fully automated gamma-ray spectrometry systems are used by the laboratory for neutron activation analysis, providing large scale services under an ISO/IEC 17025:2005 compliant management system, being (since 1993) the first accredited laboratory of its kind in the world. Already for several years, this laboratory is sustainable by rendering these services to both the public and the private sector. The prime user of the Institute's fac ilities is the scientific Research Department of Radiation, Radionuclide and Reactors of the Faculty of Applied Sciences, housed inside the building. All reactor facilities are also made available for use by or for services to, external clients (industry, government, private sector, other (international research institutes and universities). The Reactor Institute Delft was inaugurated in May 2009 as a new lAEA Collaborating Centre for Neutron Activation Based Methodologies of Research Reactors. The collaboration involves education, research and development in (I) Production of reactor-produced, no-carrier added radioisotopes of high specific activity via neutron activation; (II) Neutron activation analysis with emphasis on automation as well as analysis of large samples, and radiotracer techniques and as a cross-cutting activity, (IIl) Quality assurance and management in research and application of research reactor based techniques and in research reactor operations. This c ollaboration will

  2. Basic research using the 250 KW research reactor triga in Ljubljana, Yugoslavia

    International Nuclear Information System (INIS)

    Dimic, V.

    1983-01-01

    The 25 KW Triga Mark II reactor of J. 'Stefan Institute' was commissioned on May 1966. During the last two years, it has been operated for about 4200 hr/year. According to experience gained with the reactor, most of the cost of reactor operation will be earned through isotope production for local hospitals and industries, performing low cost applied experiments and organizing training courses. The rest was provided through the Research Communities of the Republic of Slovenia. The reactor has been operated for 15 years without major problems and many basic research programmes have been performed. The research is being conducted in the following mainfields: solid state physics, neutron dosimetry, neutron radiography and autoradiography, reactor physics, examination of nuclear fuel using gamma scanning, irradiation of semiconducting materials and neutron activation analysis. (A.J)

  3. Research reactor developments in Australia

    International Nuclear Information System (INIS)

    Godfrey, Robert

    1998-01-01

    The Australian Nuclear Science and Technology Organization (ANSTO) operates the 10 MW research reactor, HIFAR, at the Lucas Heights site approximately 30 kilometres south of Sydney. Although recent reviews and inspections have confirmed that HIFAR operates safely by an adequate margin and has minimal impact, it was concluded that the reactor design and age places limitations on its operation and utilization, and that HIFAR is approaching the end of its economic life. In September 1997, a decision was made by the Australian Government to found ANSTO for the construction of a replacement research on the existing Lucas Heights site, subject to the requisite environmental assessment process. A draft EIS has been prepared and is currently undergoing public review. A design specification is in preparation, and a research reactor vendor pre-qualification process has been initiated. Spent fuel shipments have been made to Dounreay and to the Savannah River Site, and discussions are continuing regarding the disposition of the existing spent fuel and that arising form HIFAR's remaining operation. (author)

  4. Management of operational events in research reactor

    International Nuclear Information System (INIS)

    Zhong Heping; Yang Shuchun; Peng Xueming

    2001-01-01

    The author describes the tracing management process post-operational event in a research reactor based on nuclear safety code, under the background of the research reactor in Nuclear Power Institute of China. It presorts the definite measures to the event tracing and it up its management factors

  5. Reliability studies in research reactors

    International Nuclear Information System (INIS)

    Albuquerque, Tob Rodrigues de

    2013-01-01

    Fault trees and event trees are widely used in industry to model and to evaluate the reliability of safety systems. Detailed analyzes in nuclear installations require the combination of these two techniques. This study uses the methods of FT (Fault Tree) and ET (Event Tree) to accomplish the PSA (Probabilistic Safety Assessment) in research reactors. According to IAEA (lnternational Atomic Energy Agency), the PSA is divided into Level 1, Level 2 and Level 3. At the Level 1, conceptually, the security systems perform to prevent the occurrence of accidents, At the Level 2, once accidents happened, this Level seeks to minimize consequences, known as stage management of accident, and at Level 3 accident impacts are determined. This study focuses on analyzing the Level 1, and searching through the acquisition of knowledge, the consolidation of methodologies for future reliability studies. The Greek Research Reactor, GRR-1, is a case example. The LOCA (Loss of Coolant Accident) was chosen as the initiating event and from it, using ET, possible accidental sequences were developed, which could lead damage to the core. Moreover, for each of affected systems, probabilities of each event top of FT were developed and evaluated in possible accidental sequences. Also, the estimates of importance measures for basic events are presented in this work. The studies of this research were conducted using a commercial computational tool SAPHIRE. Additionally, achieved results thus were considered satisfactory for the performance or the failure of analyzed systems. (author)

  6. Cost estimation for decommissioning of research reactors

    International Nuclear Information System (INIS)

    Grossi, Pablo Andrade; Tello, Cledola Cassia Oliveira de; Segabinaze, Roberto de Oliveira; Daniska, Vladimir

    2013-01-01

    In the case of research reactors, the limited data that is available tends to provide only overall decommissioning costs, without any breakdown of the main cost elements. In order to address this subject, it is important to collect and analyse all available data of decommissioning costs for the research reactors. The IAEA has started the DACCORD Project focused on data analysis and costing of research reactors decommissioning. Data collection is organized in accordance with the International Structure for Decommissioning Costing (ISDC), developed jointly by the IAEA, the OECD Nuclear Energy Agency and the European Commission. The specific aims of the project include the development of representative and comparative data and datasets for preliminary costing for decommissioning. This paper will focus on presenting a technique to consider several representative input data in accordance with the ISDC structure and using the CERREX (Cost Estimation for Research Reactors in Excel) software developed by IAEA. (author)

  7. The present situations and perspectives on utilization of research reactors in Thailand

    Science.gov (United States)

    Chongkum, Somporn

    2002-01-01

    The Thai Research Reactor 1/Modification 1, a TRIGA Mark III reactor, went critical on November 7, 1977. It has been playing a central role in the development of both Office of Atomic Energy for Peace (OAEP) and nuclear application in Thailand. It has a maximum power of 2 MW (thermal) at steady state and a pulsing capacity of 2000 MW. The highest thermal neutron flux at a central thimber is 1×10 13 n/cm 2/s, which is extensively utilized for radioisotope production, neutron activation analysis and neutron beam experiments, i.e. neutron scattering, prompt gamma analysis and neutron radiography. Following the nuclear technological development, the OAEP is in the process of establishing the Ongkharak Nuclear Research Center (ONRC). The center is being built in Nakhon Nayok province, 60 km northeast of Bangkok. The centerpiece of the ONRC is a multipurpose 10 MW TRIGA research reactor. Facilities are included for the production of radioisotopes for medicine, industry and agriculture, neutron transmutation doping of silicon, and neutron capture therapy. The neutron beam facilities will also be utilized for applied research and technology development as well as training in reactor operations, performance of experiments and reactor physics. This paper describes a recent program of utilization as well as a new research reactor for enlarging the perspectives of its utilization in the future.

  8. Safety upgrades to the NRU research reactor

    International Nuclear Information System (INIS)

    DeAbreu, B.; Mark, J.M.; Mutterback, E.J.

    1998-01-01

    The NRU (National Research Universal) Reactor is a 135 MW thermal research facility located at Chalk River Laboratories, and is owned and operated by Atomic Energy of Canada Limited. One of the largest and most versatile research reactors in the world, it serves as the R and D workhorse for Canada's CANDU business while at the same time filling the role as one of the world's major producers of medical radioisotopes. AECL plans to extend operation of the NRU reactor to approximately the year 2005 when a new replacement, the Irradiation Research Facility (IRF) will be available. To achieve this, AECL has undertaken a program of safety reassessment and upgrades to enhance the level of safety consistent with modem requirements. An engineering assessment/inspection of critical systems, equipment and components was completed and seven major safety upgrades are being designed and installed. These upgrades will significantly reduce the reactor's vulnerability to common mode failures and external hazards, with particular emphasis on seismic protection. The scheduled completion date for the project is 1999 December at a cost approximately twice the annual operating cost. All work on the NRU upgrade project is planned and integrated into the regular operating cycles of the reactor; no major outages are anticipated. This paper describes the safety upgrades and discusses the technical and managerial challenges involved in extending the operating life of the NRU reactor. (author)

  9. On-line Monitoring of Instrumentation in Research Reactors

    International Nuclear Information System (INIS)

    2017-12-01

    This publication is the result of a benchmarking effort undertaken under the IAEA coordinated research project on improved instrumentation and control (I&C) maintenance techniques for research reactors. It lays the foundation for implementation of on-line monitoring (OLM) techniques and establishment of the validity of those for improved maintenance practices in research reactors for a number of applications such as change to condition based calibration, performance monitoring of process instrumentation systems, detection of process anomalies and to distinguish between process problems/effects and instrumentation/sensor issues. The techniques and guidance embodied in this publication will serve the research reactor community in providing the technical foundation for implementation of OLM techniques. It is intended to be used by Member States to implement I&C maintenance and to improve performance of research reactors.

  10. Nuclear instrumentation for research reactors

    International Nuclear Information System (INIS)

    Hofer, Carlos G.; Pita, Antonio; Verrastro, Claudio A.; Maino, Eduardo J.

    1997-01-01

    The nuclear instrumentation for research reactors in Argentina was developed in 70'. A gradual modernization of all the nuclear instrumentation is planned. It includes start-up and power range instrumentation, as well as field monitors, clamp, scram and rod movement control logic. The new instrumentation is linked to a computer network, based on real time operating system for data acquisition, display and logging. This paper describes the modules and whole system aspects. (author). 2 refs

  11. The present status and the prospect of China research reactors

    International Nuclear Information System (INIS)

    Yongmao, Z.; Yizheng, C.

    1990-01-01

    A total of 100 reactor operation years' experience of research reactors has now been obtained in China. The type and principal parameters of China research reactors and their operating status are briefly introduced in this paper. Chinese research reactors have been playing an important role in nuclear power and nuclear weapon development, industrial and agricultural production, medicine, basic and applied science research and environmental protection, etc. The utilization scale, benefits and achievements will be given. There is a good safety record in the operation of these reactors. A general safety review is discussed. The important incidents and accidents happening during a hundred reactor operating years are described and analyzed. China has the capability of developing any type of research reactor. The prospective projects are briefly introduced

  12. Reactor Safety Research: Semiannual report, July-December 1986

    Energy Technology Data Exchange (ETDEWEB)

    1987-11-01

    Sandia National Laboratories is conducting, under USNRC sponsorship, phenomenological research related to the safety of commercial nuclear power reactors. The research includes experiments to simulate the phenomenology of the accident conditions and the development of analytical models, verified by experiment, which can be used to predict reactor and safety systems performance and behavior under abnormal conditions. The objective of this work is to provide NRC requisite data bases and analytical methods to (1) identify and define safety issues, (2) understand the progression of risk-significant accident sequences, and (3) conduct safety assessments. The collective NRC-sponsored effort at Sandia National Laboratories is directed at enhancing the tehcnology base supporting licensing decisions.

  13. Reactor Safety Research: Semiannual report, July-December 1986

    International Nuclear Information System (INIS)

    1987-11-01

    Sandia National Laboratories is conducting, under USNRC sponsorship, phenomenological research related to the safety of commercial nuclear power reactors. The research includes experiments to simulate the phenomenology of the accident conditions and the development of analytical models, verified by experiment, which can be used to predict reactor and safety systems performance and behavior under abnormal conditions. The objective of this work is to provide NRC requisite data bases and analytical methods to (1) identify and define safety issues, (2) understand the progression of risk-significant accident sequences, and (3) conduct safety assessments. The collective NRC-sponsored effort at Sandia National Laboratories is directed at enhancing the tehcnology base supporting licensing decisions

  14. Experimental determination of fuel surface temperature in the Dalat Nuclear Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Khang, Ngo Phu; Huy, Ngo Quang; An, Tran Khac; Lam, Pham Van [Nuclear Research Inst., Da Lat (Viet Nam)

    1994-10-01

    Measured fuel surface temperatures, obtained at various locations of the core of the Dalat Nuclear Research Reactor under normal operating conditions, are presented, and some thermal characteristics of the reactor are discussed. (author). 2 refs., 11 figs., 2 tabs.

  15. The Jules Horowitz reactor project, a driver for revival of the research reactor community

    Energy Technology Data Exchange (ETDEWEB)

    Pere, P.; Cavailler, C.; Pascal, C. [AREVA TA, CEA Cadarache - Etablissement d' AREVA TA - Chantier RJH - MOE - BV2 - BP no. 9 - 13115 Saint Paul lez Durance (France); CS 50497 - 1100, rue JR Gauthier de la Lauziere, 13593 Aix en Provence cedex 3 (France)

    2010-07-01

    The first concrete of the nuclear island for the Jules Horowitz Reactor (JHR) was poured at the end of July 2009 and construction is ongoing. The JHR is the largest new platform for irradiation experiments supporting Generation II and III reactors, Generation IV technologies, and radioisotope production. This facility, composed of a unique grouping of workshops, hot cells and hot laboratories together with a first -rate MTR research reactor, will ensure that the process, from preparations for irradiation experiments through post-irradiation non-destructive examination, is completed expediently, efficiently and, of course, safely. In addition to the performance requirements to be met in terms of neutron fluxes on the samples (5x10{sup 14} n.cm{sup -2}/sec{sup -1} E> 1 MeV in core and 3,6x10{sup 14} n.cm{sup -2}/sec{sup -1} E<0.625 eV in the reflector) and the JHR's considerable irradiation capabilities (more than 20 experiments and one-tenth of irradiation area for simultaneous radioisotope production), the JHR is the first MTR to be built since the end of the 1960's, making this an especially challenging project. The presentation will provide an overview of the reactor, hot cells and laboratories and an outline of the key milestones in the project schedule, including initial criticality in early 2014 and radioisotope production in 2015. This will be followed by a description of the project organization set up by the CEA as owner and future operator and AREVA TA as prime contractor and supplier of critical systems, and a discussion of project challenges, especially those dealing with the following items: - accommodation of a broad experimental domain, - involvement by international partners making in-kind contributions to the project, - development of components critical to safety and performance, - the revival of engineering of research reactors and experimental devices involving France's historical players in the field of research reactors, and

  16. GKSS annual report 1990

    International Nuclear Information System (INIS)

    1991-01-01

    The GKSS-Forschungszentrum at Geesthacht, as one of the larger research institutions in the Federal Republic of Germany, contributes through its R and D studies to the objectives of the Federal Government's research and technology policies. The program for 1990 was divided according to the following main research topics: Materials research; environmental research, climate research; environmental technology; under-water technology; reactor safety research. The first three topics are areas of study suitable for long-term work and for extension if possible. All studies on reactor safety research have been concluded in the last few years, except for one project. The annual report contains a summary of the R and D studies carried out in the reporting year, as well as a survey of the company's organization and situation. These sections are preceded by articles on selected research studies. (BBR) [de

  17. Generic component reliability data for research reactor PSA

    International Nuclear Information System (INIS)

    1997-02-01

    The purpose of this document is to provide reference generic component-reliability information for a variety of research reactor types. As noted in Section 2 and Table IV, component data accumulated over many years is in the database. It is expected that the report should provide representative data which will remain valid for a number of years. The database provides component failure rates on a time and/or demand related basis according to the operational modes of the components. No update of the database is presently planned. As a result of the implementation of data collection systems in the research reactors represented in these studies, updating of data from individual facilities could be made available by the contributing research reactor facilities themselves. As noted in Section 1.1, the report does not include a detailed discussion of information regarding component classification and reliability parameter definitions. The report does provide some insights and discussions regarding the practicalities of the data collection process and some guidelines for database usage. 9 refs, 7 tabs

  18. Performance of a multipurpose research electrochemical reactor

    International Nuclear Information System (INIS)

    Henquin, E.R.; Bisang, J.M.

    2011-01-01

    Highlights: → For this reactor configuration the current distribution is uniform. → For this reactor configuration with bipolar connection the leakage current is small. → The mass-transfer conditions are closely uniform along the electrode. → The fluidodynamic behaviour can be represented by the dispersion model. → This reactor represents a suitable device for laboratory trials. - Abstract: This paper reports on a multipurpose research electrochemical reactor with an innovative design feature, which is based on a filter press arrangement with inclined segmented electrodes and under a modular assembly. Under bipolar connection, the fraction of leakage current is lower than 4%, depending on the bipolar Wagner number, and the current distribution is closely uniform. When a turbulence promoter is used, the local mass-transfer coefficient shows a variation of ±10% with respect to its mean value. The fluidodynamics of the reactor responds to the dispersion model with a Peclet number higher than 10. It is concluded that this reactor is convenient for laboratory research.

  19. Reactor aging research. United States Nuclear Regulatory Commission

    International Nuclear Information System (INIS)

    Vassilaros, M.G.

    1998-01-01

    The reactor ageing research activities in USA described, are focused on the research of reactor vessel integrity, including regulatory issues and technical aspects. Current emphasis are described for fracture analysis, embrittlement research, inspection capabilities, validation od annealing rule, revision of regulatory guide

  20. Study on secondary shutdown systems in Tehran research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Jalali, H.R.; Fadaei, A.H., E-mail: Fadaei_amir@aut.ac.ir; Gharib, M.

    2015-09-15

    Highlights: • A study was undertaken to summarize the techniques for secondary shutdown systems (SSS). • Neutronic calculation performed for proposed systems as SSS. • Dumping the heavy water stored in the reflector vessel is capable to shut down reactor. • Neutronic and transient calculation was done for validating the selected SSS. • All calculation shown that this system has advantages in safety and neutron economy. - Abstract: One important safety aspect of any research reactor is the ability to shut down the reactor. Usually, research reactors, currently in operation, have a single shutdown system based on the simultaneous insertion of the all control rods into the reactor core through gravity. Nevertheless, the International Atomic Energy Agency currently recommends use of two shutdown systems which are fully independent from each other to guarantee secure shutdown when one of them fails. This work presents an investigative study into secondary shutdown systems, which will be an important safety component in the research reactor and will provide another alternative way to shut down the reactor emergently. As part of this project, a study was undertaken to summarize the techniques that are currently used at world-wide research reactors for recognizing available techniques to consider in research reactors. Removal of the reflector, removal of the fuels, change in critical shape of reactor core and insertion of neutron absorber between the core and reflector are selected as possible techniques in mentioned function. In the next step, a comparison is performed for these methods from neutronic aspects. Then, chosen method is studied from the transient behavior point of view. Tehran research reactor which is a 5 MW open-pool reactor selected as a case study and all calculations are carried out for it. It has 5 control rods which serve the purpose of both reactivity control and shutdown of reactor under abnormal condition. Results indicated that heavy

  1. Decommissioning of the research reactors at the Russian Research Centre Kurchatov Institute

    International Nuclear Information System (INIS)

    Ponomarev-Stepnoy, N.N.; Ryantsev, E.P.; Kolyadin, V.I.; Kucharkin, N.E.; Melkov, E.S.; Gorlinsky, Yu.E.; Kyznetsova, T.I.; Bulkin, B.K.

    2002-01-01

    The Kurchatov Institute is the largest research center of Russia in the field of nuclear science and engineering. It comprises more than 10 research institutes and scientific-technological complexes carrying out research work in the field of safe development of atomic engineering, controlled thermonuclear fusion, and plasma physics, nuclear physics and elementary particle physics, research reactors, radiation materials technology, solid state physics and superconductivity, molecular and chemical physics, and also perspective know-how's, information science and ecology. This report is basically devoted to the decommissioning of the research reactor installations, in particular to the reactor MR because of the volume and complexity of actions involved. (author)

  2. IGORR-IV -- Proceedings of the fourth meeting of the International Group on Research Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Rosenbalm, K.F. [comp.

    1995-12-31

    The International Group on Research Reactors was formed to facilitate the sharing of knowledge and experience among those institutions and individuals who are actively working to design, build, and promote new research reactors or to make significant upgrades to existing facilities. Twenty-nine papers were presented in five sessions and written versions of the papers or hard copies of the vugraphs used are published in these proceedings. The five sessions were: (1) Operating Research Reactors and Facility Upgrades; (2) Research Reactors in Design and Construction; (3) ANS Closeout Activities; (4) and (5) Research, Development, and Analysis Results.

  3. IGORR-IV - Proceedings of the fourth meeting of the International Group on Research Reactors

    International Nuclear Information System (INIS)

    Rosenbalm, K.F.

    1995-01-01

    The International Group on Research Reactors was formed to facilitate the sharing of knowledge and experience among those institutions and individuals who are actively working to design, build, and promote new research reactors or to make significant upgrades to existing facilities. Twenty-nine papers were presented in five sessions and written versions of the papers or hard copies of the vugraphs used are published in these proceedings. The five sessions were: (1) Operating Research Reactors and Facility Upgrades; (2) Research Reactors in Design and Construction; (3) ANS Closeout Activities; (4) and (5) Research, Development, and Analysis Results

  4. Supply of enriched uranium for research reactors

    International Nuclear Information System (INIS)

    Mueller, Hans; Laucht, Juergen

    1996-01-01

    Since the RERTR meeting in 1990 at Newport/USA, NUKEM recommended that the research reactor community agree upon a worldwide unified technical specification for low enriched uranium (LEU) and high enriched uranium (HEU) since there existed numerous specifications both from suppliers/fabricators and research reactors. The target recommended by NUKEM is to arrive at a worldwide unified standard specification in order to facilitate supplies of LEU and HEU to fabricators for fabrication of research reactor fuel elements. In our paper presented at the RERTR meeting at Paris in September 1995, we pointed out that LEU and HEU supplied by the U.S. Department of Energy (DOE) in the past was never 'virgin' material, i.e., it was mixed with reprocessed uranium. Our recommendation was to include this fact in the proposed unified specification. Since the RERTR meeting in 1995 progress on a unified standard specification has been made and we would like to provide more specific information about that in this paper. Furthermore, we will deal with the question whether there is a secure supply of LEU for converted research reactors. We list current and potential suppliers of LEU, noting however, that the DOE has for a number of years been unable to supply any LEU due to production problems. The future availability of LEU of U.S. origin is, of course, essential for those research reactor operators which have converted their reactors from HEU to LEU and which are intending to return spent fuel of U.S. origin to the U.S.A. (author)

  5. Australia's replacement research reactor project

    International Nuclear Information System (INIS)

    Harris, K.J.

    1999-01-01

    HIFAR, a 10 MW tank type DIDO Class reactor has operated at the Lucas Heights Science and Technology Centre for 43 years. HIFAR and the 10 kW Argonaut reactor 'Moata' which is in the Care and Maintenance phase of decommissioning are Australia's only nuclear reactors. The initial purpose for HIFAR was for materials testing to support a nuclear power program. Changing community attitude through the 1970's and a Government decision not to proceed with a planned nuclear power reactor resulted in a reduction of materials testing activities and a greater emphasis being placed on neutron beam research and the production of radioisotopes, particularly for medical purposes. HIFAR is not fully capable of satisfying the expected increase in demand for medical radiopharmaceuticals beyond the next 5 years and the radial configuration of the beam tubes severely restricts the scope and efficiency of neutron beam research. In 1997 the Australian Government decided that a replacement research reactor should be built by the Australian Nuclear Science and Technology Organisation at Lucas Heights subject to favourable results of an Environmental Impact Study. The Ei identified no reasons on the grounds of safety, health, hazard or risk to prevent construction on the preferred site and it was decided in May 1999 that there were no environmental reasons why construction of the facility should not proceed. In recent years ANSTO has been reviewing the operation of HIFAR and observing international developments in reactor technology. Limitations in the flexibility and efficiency achievable in operation of a tank type reactor and the higher intrinsic safety sought in fundamental design resulted in an early decision that the replacement reactor must be a pool type having cleaner and higher intensity tangential neutron beams of wider energy range than those available from HIFAR. ANSTO has chosen to use it's own resources supported by specialised external knowledge and experience to identify

  6. Decontamination and decommissioning project status of the TRIGA mark-2±3 research reactors

    International Nuclear Information System (INIS)

    Jung, K. J.; Baek, S. T.; Jung, W. S.; Park, S. K.; Jung, K. H.

    1999-01-01

    TRIGA Mark-II, the first research reactor in Korea, has operated since 1962, and the second one, TRIGA Mark-III since 1972. Both of them had their operation phased out in 1995 due to their lives and operation of the new research reactor, HANARO at the Korea Atomic Energy Research Institute (KAERI) in Taejeon. Decontamination and decommissioning (D and D) project of the TRIGA Mark-II and Mark-III was started in January 1997 and will be completed in December 2002. In the first year of the project, work was performed in preparation of the decommissioning plan, start of the environmental impact assessment and setup licensing procedure and documentation for the project with cooperation of Korea Institute of Nuclear Safety (KINS). In 1998, Hyundai Engineering Company (HEC) is the main contractor to do design and licensing documentation for the D and D of both reactors. British Nuclear Fuels plc (BNFL) is technical assisting partner of HEC. The decommissioning plan document was submitted to the Ministry of Science and Technology (MOST) for the decommissioning license in December 1998, and it expecting to be issued a license at the end of September 1999. The goal of this project is to release the reactor site and buildings as an unrestricted area. This paper summarizes current status and future plan for the D and D project

  7. Activities on safety for the cross-cutting issue of research reactors in the IAEA

    International Nuclear Information System (INIS)

    Perrotta, J.A.; Boado Magan, H.J.

    2003-01-01

    IAEA activities in the field of research reactor safety are included in the programme of the Division of Nuclear Installations Safety and implemented by the Engineering Safety Section through its Research Reactor Safety Unit. Following the objectives of the Division, the results of the IAEA missions and the recommendations from International Advisory Groups, the IAEA has conducted in recent years a certain number of activities aiming to enhance the safety of research reactors. The following activities are discussed in this paper: (a) the new Requirements for the Safety of Research Reactors, main features and differences with previous standards (SS-35-S1 and SS-35-S2) and the grading approach for implementation; (b) new documents being developed (safety guides, safety reports and TECDOCs); (c) activities related to the Incident Reporting System for Research Reactor (IRSRR); (d) the new features implemented for the (Integrated Safety Assessment of Research Reactors) INSARR missions; (e) the Code of Conduct on the Safety of Research Reactors developed, following the General Conference Resolution GC(45)/RES/10; and (f) the survey on the safety of research reactors conducted in the year 2002 and the results obtained. (author)

  8. Decommissioning of the Salaspils Research Reactor

    Directory of Open Access Journals (Sweden)

    Abramenkovs Andris

    2011-01-01

    Full Text Available In May 1995, the Latvian government decided to shut down the Salaspils Research Reactor and to dispense with nuclear energy in the future. The reactor has been out of operation since July 1998. A conceptual study on the decommissioning of the Salaspils Research Reactor was drawn up by Noell-KRC-Energie- und Umwelttechnik GmbH in 1998-1999. On October 26th, 1999, the Latvian government decided to start the direct dismantling to “green-field” in 2001. The upgrading of the decommissioning and dismantling plan was carried out from 2003-2004, resulting in a change of the primary goal of decommissioning. Collecting and conditioning of “historical” radioactive wastes from different storages outside and inside the reactor hall became the primary goal. All radioactive materials (more than 96 tons were conditioned for disposal in concrete containers at the radioactive wastes depository “Radons” at the Baldone site. Protective and radiation measurement equipment of the personnel was upgraded significantly. All non-radioactive equipment and materials outside the reactor buildings were released for clearance and dismantled for reuse or conventional disposal. Contaminated materials from the reactor hall were collected and removed for clearance measurements on a weekly basis.

  9. Status report of Indonesian research reactors

    International Nuclear Information System (INIS)

    Arbie, B.; Supadi, S.

    1995-01-01

    A general description of the three Indonesia research reactors, their irradiation facilities and future prospect are given. The 250 kW Triga Mark II in Bandung has been in operation since 1965 and in 1972 its designed power was increased to 1000 kW. The core grid from the previous 250 kW Triga Mark II was then used by Batan for designing and constructing the Kartini reactor in Yogyakarta. This reactor commenced its operation in 1979. Both Triga reactors have served a wide spectrum of utilization such as for manpower training in nuclear engineering, radiochemistry, isotope production, and beam research in solid state physics. The Triga reactor management in Bandung has a strong cooperation with the Bandung Institute of Technology and the one in Yogyakarta with the Gadjah Mada University which has a Nuclear Engineering Department at its Faculty of Engineering. In 1976 there emerged an idea to have a high flux reactor appropriate for Indonesia's intention to prepare an infrastructure for both nuclear energy and non-energy industry era. Such an idea was then realized with the achievement of the first criticality of the RSG-GAS reactor at the Serpong area. It is now expected that by early 1992 the reactor will reach its full 30 MW power level and by the end of 1992 the irradiation facilities be utilizable fully for future scientific and engineering work. As a part of the national LEU fuel development program a study has been underway since early 1989 to convert the RSG-GAS reactor core from using oxide fuel to using higher loading silicide fuel. (author)

  10. BR2 Reactor: Introduction

    International Nuclear Information System (INIS)

    Moons, F.

    2007-01-01

    The irradiations in the BR2 reactor are in collaboration with or at the request of third parties such as the European Commission, the IAEA, research centres and utilities, reactor vendors or fuel manufacturers. The reactor also contributes significantly to the production of radioisotopes for medical and industrial applications, to neutron silicon doping for the semiconductor industry and to scientific irradiations for universities. Along the ongoing programmes on fuel and materials development, several new irradiation devices are in use or in design. Amongst others a loop providing enhanced cooling for novel materials testing reactor fuel, a device for high temperature gas cooled fuel as well as a rig for the irradiation of metallurgical samples in a Pb-Bi environment. A full scale 3-D heterogeneous model of BR2 is available. The model describes the real hyperbolic arrangement of the reactor and includes the detailed 3-D space dependent distribution of the isotopic fuel depletion in the fuel elements. The model is validated on the reactivity measurements of several tens of BR2 operation cycles. The accurate calculations of the axial and radial distributions of the poisoning of the beryllium matrix by 3 He, 6 Li and 3T are verified on the measured reactivity losses used to predict the reactivity behavior for the coming decades. The model calculates the main functionals in reactor physics like: conventional thermal and equivalent fission neutron fluxes, number of displacements per atom, fission rate, thermal power characteristics as heat flux and linear power density, neutron/gamma heating, determination of the fission energy deposited in fuel plates/rods, neutron multiplication factor and fuel burn-up. For each reactor irradiation project, a detailed geometry model of the experimental device and of its neighborhood is developed. Neutron fluxes are predicted within approximately 10 percent in comparison with the dosimetry measurements. Fission rate, heat flux and

  11. Strategy for Sustainable Utilization of IRT-Sofia Research Reactor

    International Nuclear Information System (INIS)

    Mitev, M.; Apostolov, T.; Ilieva, K.; Belousov, S.; Nonova, T.

    2013-01-01

    The Research Reactor IRT-2000 in Sofia is in process of reconstruction into a low-power reactor of 200 kW under the decision of the Council of Ministers of Republic of Bulgaria from 2001. The reactor will be utilized for development and preservation of nuclear science, skills, and knowledge; implementation of applied methods and research; education of students and training of graduated physicists and engineers in the field of nuclear science and nuclear energy; development of radiation therapy facility. Nuclear energy has a strategic place within the structure of the country’s energy system. In that aspect, the research reactor as a material base, and its scientific and technical personnel, represent a solid basis for the development of nuclear energy in our country. The acquired scientific experience and qualification in reactor operation are a precondition for the equal in rights participation of the country in the international cooperation and the approaching to the European structures, and assurance of the national interests. Therefore, the operation and use of the research reactor brings significant economic benefits for the country. For education of students in nuclear energy, reactor physics experiments for measurements of static and kinetic reactor parameters will be carried out on the research reactor. The research reactor as a national base will support training and applied research, keep up the good practice and the preparation of specialists who are able to monitor radioactivity sources, to develop new methods for detection of low quantities of radioactive isotopes which are hard to find, for deactivation and personal protection. The reactor will be used for production of isotopes needed for medical therapy and diagnostics; it will be the neutron source in element activation analysis having a number of applications in industrial production, medicine, chemistry, criminology, etc. The reactor operation will increase the public understanding, confidence

  12. GKSS annual report 1987

    International Nuclear Information System (INIS)

    1988-01-01

    GKSS-Forschungszentrum Geesthacht GmbH, one of the national research centers, carries out R and D work on conservation of resources and environment, improvement of working conditions and on increase of economic competitiveness. The activities fall into the fields energy research and technology, basic technologies, marine research and techniques, health-environment-biotechnology. The annual report contains selected research work in summaries, the report on R and D work in reactor safety, materials research, environmental and climate research as well as environmental, and underwater techniques, describes the research institutes, cooperation with external partners, the organization, the budget, personnel, publications, including patent applications, and lectures. (HK) [de

  13. Research reactor spent fuel management in Argentina

    International Nuclear Information System (INIS)

    Audero, M.A.; Bevilacqua, A.M.; Mehlich, A.M.; Novara, O.

    2002-01-01

    The research reactor spent fuel (RRSF) management strategy will be presented as well as the interim storage experience. Currently, low-enriched uranium RRSF is in wet interim storage either at reactor site or away from reactor site in a centralized storage facility. High-enriched uranium RRSF from the centralized storage facility has been sent to the USA in the framework of the Foreign Research Reactor Spent Nuclear Fuel Acceptance Program. The strategy for the management of the RRSF could implement the encapsulation for interim dry storage. As an alternative to encapsulation for dry storage some conditioning processes are being studied which include decladding, isotopic dilution, oxidation and immobilization. The immobilized material will be suitable for final disposal. (author)

  14. Environmental impact assessment of Ar-41 released by the normal operation of TRIGA-Mark 2 research reactor

    International Nuclear Information System (INIS)

    Qassoud, D.; Soufi, I.; Ziagos, J.; Demir, Z

    2007-01-01

    Full text: In accordance with the international regulation of nuclear safety and radiological protection of the environment applicable to the basic nuclear installations, category in which the Triga-Mark 2 research reactor is considered, an assesment of the impact in to the environment of the Ar-41 radioelement is accomplished. This radioelement is released by the normal operation of this reactor. The assessment is based on the characteristics of a Moroccan site (where the reactor is installed). It is carried out using CEA Gaussian models and mathematical models developed in LLNL. Considering the assumptions of impact assessments of the radioactivity in the atmosphere, the most important exposure is relatively corresponding to 1 Km from the reactor. This exposure is approximately 0,07% of the lawful limit. Beyond this locality, the exposure becomes lower than 0,02% of this limit. Beyond 5 Km, it becomes lower than ten nono-Sivert. In the basis of the site radiological baseline, the environmental impact of Ar-41 released in normal operation of the reactor is negligible in the studied case. [fr

  15. Safety aspects on dependability management for a TRIGA research reactor in Romania

    International Nuclear Information System (INIS)

    Vieru, Gheorghe

    2002-01-01

    Safety on the management for a nuclear research reactor involves a 'good dependability management' of the activities, such as: reliability, availability, maintainability and maintenance support. In order to evaluate the safety management aspects intended to be applied at a research reactor management, the performance dependability indicators and their impact over the availability and reactor safety have to be established. The document ISO 9000-4/IEC 300-1 'Dependability Management' (1995), describes five internationally agreed indicators of the reactor equipment dependability, each of them can be used for corrective maintenance or for preventive maintenance, such as: I 1 - equipment Maintenance Frequency; I 2 - equipment Maintenance Effort; I-3 - equipment Maintenance Downtime Factor; I 4 - equipment Maintenance Contribution to the System Function Downtime Factor; I 5 - equipment Maintenance Contribution to the reactor Capability Loss Factor. The paper presents an evaluation of those 5 mentioned indicators with referring only at the primary circuit of the INR's TRIGA research reactor and conclusion. The analyzed period was stated between 1994-1999. It is to be noted that this type of analyze is performed for the first time for a research reactor. (author)

  16. Sustainability management for operating organizations of research reactors

    Energy Technology Data Exchange (ETDEWEB)

    Kibrit, Eduardo; Aquino, Afonso Rodrigues de, E-mail: ekibrit@ipen.br, E-mail: araquino@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNE-SP), Sao Paulo, SP (Brazil)

    2017-07-01

    Sustainable development is development that meets the needs of the present without compromising the ability of future generations to meet their own needs. In a country like Brazil, where nuclear activity is geared towards peaceful purposes, any operating organization of research reactor should emphasize its commitment to social, environmental, economic and institutional aspects. Social aspects include research and development, production and supply of radiopharmaceuticals, radiation safety and special training for the nuclear sector. Environmental aspects include control of the surroundings and knowledge directed towards environment preservation. Economic aspects include import substitution and diversification of production. Institutional aspects include technology, innovation and knowledge. These aspects, if considered in the management system of an operating organization of research reactor, will help with its long-term maintenance and success in an increasingly competitive market scenario. About this, we propose a sustainability management system approach for operating organizations of research reactors. A bibliographical review on the theme is made. A methodology for identifying indicators for measuring sustainability in nuclear research reactors processes is also described. Finally, we propose a methodology for sustainability perception assessment to be applied at operating organizations of research reactors. (author)

  17. Sustainability management for operating organizations of research reactors

    International Nuclear Information System (INIS)

    Kibrit, Eduardo; Aquino, Afonso Rodrigues de

    2017-01-01

    Sustainable development is development that meets the needs of the present without compromising the ability of future generations to meet their own needs. In a country like Brazil, where nuclear activity is geared towards peaceful purposes, any operating organization of research reactor should emphasize its commitment to social, environmental, economic and institutional aspects. Social aspects include research and development, production and supply of radiopharmaceuticals, radiation safety and special training for the nuclear sector. Environmental aspects include control of the surroundings and knowledge directed towards environment preservation. Economic aspects include import substitution and diversification of production. Institutional aspects include technology, innovation and knowledge. These aspects, if considered in the management system of an operating organization of research reactor, will help with its long-term maintenance and success in an increasingly competitive market scenario. About this, we propose a sustainability management system approach for operating organizations of research reactors. A bibliographical review on the theme is made. A methodology for identifying indicators for measuring sustainability in nuclear research reactors processes is also described. Finally, we propose a methodology for sustainability perception assessment to be applied at operating organizations of research reactors. (author)

  18. Adoption of ASME Code Section XI for ISI to Research Reactors

    International Nuclear Information System (INIS)

    Tawfik, Y.E.; El-sesy, I.A.; Shaban, H.I.; Ibrahim, M.M.

    2002-01-01

    ETRR-2 (Second Egyptian thermal research reactor) is a multi-purpose, pool- type reactor with an open water surface and variable core arrangement. The core power is 22 MWth, cooled and moderated by light water and with beryllium reflectors. It contains plate- type fuel elements (MTR type, 19.7% enriched uranium) with aluminum clad. The ETRR-2 reactor consist of 57 systems and around 200 subsystems. These systems contain many mechanical components such as tanks, pipes, valves, pumps, heat exchangers, cooling tower, air compressors, and supports. In this present work, a trial was made to adopt the general requirements of ASME code, section XI to ETRR-2 research reactor. ASME (American Society of Mechanical Engineers) boiler and pressure vessel Code, section XI, provides requirements for in-service inspection (ISI) and in-service testing (IST) of components and systems, and repair/replacement activities in a nuclear power plant. Also, IAEA (International Atomic Energy Authority) has published some recommendations for ISI for research reactors similar to that rules and requirements specified in ASME. The complete ISI program requires several steps that have to be performed in sequence. These steps are described in many logic flow charts (LFC's). These logic flow charts include; the general LFC's for all steps required to complete ISI program, the LFC's for examination requirements, the LFC's for flaw evaluation modules, and the LFC's for acceptability of welds for class 1 components. This program includes, also, the inspection program for welded parts of the reactor components during its lifetime. This inspection program is applied for each system and subsystem of ETRR-2 reactor. It includes the examination area type, the component type, the part to be examined, the weld type, the examination method, the inspection program schedule, and the detailed figures of the welded components. (authors)

  19. Dynamic simulation platform to verify the performance of the reactor regulating system for a research reactor

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2015-07-01

    Digital instrumentation and controls system technique is being introduced in new constructed research reactor or life extension of older research reactor. Digital systems are easy to change and optimize but the validated process for them is required. Also, to reduce project risk or cost, we have to make it sure that configuration and control functions is right before the commissioning phase on research reactor. For this purpose, simulators have been widely used in developing control systems in automotive and aerospace industries. In these literatures, however, very few of these can be found regarding test on the control system of research reactor with simulator. Therefore, this paper proposes a simulation platform to verify the performance of RRS (Reactor Regulating System) for research reactor. This simulation platform consists of the reactor simulation model and the interface module. This simulation platform is applied to I and C upgrade project of TRIGA reactor, and many problems of RRS configuration were found and solved. And it proved that the dynamic performance testing based on simulator enables significant time saving and improves economics and quality for RRS in the system test phase. (authors)

  20. Research for enhancing reactor safety

    International Nuclear Information System (INIS)

    1989-05-01

    Recent research for enhanced reactor safety covers extensive and numerous experiments and computed modelling activities designed to verify and to improve existing design requirements. The lectures presented at the meeting report GRS research results and the current status of reactor safety research in France. The GRS experts present results concerning expert systems and their perspectives in safety engineering, large-scale experiments and their significance in the development and verification of computer codes for thermohydraulic modelling of safety-related incidents, the advanced system code ATHLET for analysis of thermohydraulic processes of incidents, the analysis simulator which is a tool for fast evaluation of accident management measures, and investigations into event sequences and the required preventive emergency measures within the German Risk Study. (DG) [de

  1. Training of research reactor personnel

    International Nuclear Information System (INIS)

    Cherruau, F.

    1980-01-01

    Research reactor personnel operate the reactor and carry out the experiments. These two types of work entail different activities, and therefore different skills and competence, the number of relevant staff being basically a function of the size, complexity and versatility of the reactor. Training problems are often reactor-specific, but the present paper considers them from three different viewpoints: the training or retraining of new staff or of personnel already employed at an existing facility, and training of personnel responsible for the start-up and operation of a new reactor, according to whether local infrastructure and experience already exist or whether they have to be built up from scratch. On-the-spot experience seems to be an essential basis for sound training, but requires teaching abilities and aids often difficult to bring together, and the availability of instructors that does not always fit in smoothly with current operational and experimental tasks. (author)

  2. On the utilization of neutron beams of research reactors in research and applications

    International Nuclear Information System (INIS)

    FAYEK, M.K.

    2000-01-01

    Nuclear research reactors are the most widely available neutron sources, and they are capable of producing very high fluxes of neutrons having a considerable range of energies, from a few MeV to 10 MeV. Therefore, these neutrons can be used in many fields of basic research and for applications in physics, chemistry, medicine, biology, etc. Experiments with research reactors over the last 50 years have laid the foundations of today's nuclear technology. In addition, research reactors continue to be utilized as facilities for testing materials and in training manpower for nuclear programs, because basic training on a research reactor provides an essential understanding of the nuclear process, and personnel become accustomed to work under the special conditions resulting from irradiation and contamination risks

  3. An improved slow neutron spectrometer at nuclear research reactor et-r r-1. Vol. 2

    Energy Technology Data Exchange (ETDEWEB)

    Abu El-Ela, M A [Reactor and Neutron Physics, Nuclear Research Center, AEA, Cairo (Egypt)

    1996-03-01

    An improved slow neutron selector has been aligned at channel number 6 of the nuclear research reactor ET-R R-1 Inshas. The flight path is 4 meter. The collimator-rotor-collimator system has the dimensions 0.3 x 2.5 x 70 cm with the rotor diameter 16 cm and 3 slits of 0.3 x 2.5 cm cross section. The rotor rotation rate varies between 600 r.p.m. the counting system has one of the best modern high electronic advanced technology time analyzer with minimum dwell time 2 sec, 8192 channels and a double detector inputs of TTL and NEG NIM standard pulses. The analyzer external triggering signals are of TTL standard type. A special design {sup 3} He detector for time of flight spectrometry has been used in the SNS. The reactor bare thermal neutron spectrum has been successfully measured, to show good agreement with the previous data. 6 figs.

  4. A model for nuclear research reactor dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Barati, Ramin, E-mail: Barati.ramin@aut.ac.ir; Setayeshi, Saeed, E-mail: setayesh@aut.ac.ir

    2013-09-15

    Highlights: • A thirty-fourth order model is used to simulate the dynamics of a research reactor. • We consider delayed neutrons fraction as a function of time. • Variable fuel and temperature reactivity coefficients are used. • WIMS, BORGES and CITVAP codes are used for initial condition calculations. • Results are in agreement with experimental data rather than common codes. -- Abstract: In this paper, a useful thirty-fourth order model is presented to simulate the kinetics and dynamics of a research reactor core. The model considers relevant physical phenomena that govern the core such as reactor kinetics, reactivity feedbacks due to coolant and fuel temperatures (Doppler effects) with variable reactivity coefficients, xenon, samarium, boron concentration, fuel burn up and thermal hydraulics. WIMS and CITVAP codes are used to extract neutron cross sections and calculate the initial neuron flux respectively. The purpose is to present a model with results similar to reality as much as possible with reducing common simplifications in reactor modeling to be used in different analyses such as reactor control, functional reliability and safety. The model predictions are qualified by comparing with experimental data, detailed simulations of reactivity insertion transients, and steady state for Tehran research reactor reported in the literature and satisfactory results have been obtained.

  5. An Integrated Management System (IMS) for JM-1 SLOWPOKE-2 research reactor in Jamaica: experiences in documentation

    International Nuclear Information System (INIS)

    Warner, T.

    2014-01-01

    Since the first criticality in March 1984, the Jamaica SLOWPOKE-2 research reactor at the University of the West Indies, Mona located in the department of the International Centre for Environmental and Nuclear Sciences (ICENS) has operated for approximately 52% of the lifetime of the existing core configuration. The 20kW pool type research reactor has been primarily used for neutron activation analysis in environmental, agricultural, geochemical, health-related studies and mineral exploration in Jamaica. The involvement of the JM-1 reactor for research and teaching activities has segued into commercial applications which, coupled with the current core conversion programme from HEU to LEU, has demanded the implementation of management systems to satisfy regulatory requirements and assure compliance with internationally defined quality standards. At ICENS, documentation related to the Quality Management System aspect of an Integrated Management System (IMS) is well underway. The quality system will incorporate operational and nuclear safety, training, maintenance, design, utilization, occupational health and safety, quality service, and environmental management for its Nuclear Analytical Laboratory, NAL. The IMS is being designed to meet the requirements of the IAEA GS-R-3 with additional controls from international standards including: ISO/IEC 17025:2005, ISO 9001:2008, ISO 14001:2004 and OHSAS 18001:2007. This paper reports on the experiences of the documentation process in a low power reactor facility characterized by limited human resource, where innovative mechanisms of system automation and modeling are included to increase productivity and efficiency. (author)

  6. An Integrated Management System (IMS) for JM-1 SLOWPOKE-2 research reactor in Jamaica: experiences in documentation

    Energy Technology Data Exchange (ETDEWEB)

    Warner, T., E-mail: traceyann.warner02@uwimona.edu.jm [Univ. of West Indies, Mona (Jamaica)

    2014-07-01

    Since the first criticality in March 1984, the Jamaica SLOWPOKE-2 research reactor at the University of the West Indies, Mona located in the department of the International Centre for Environmental and Nuclear Sciences (ICENS) has operated for approximately 52% of the lifetime of the existing core configuration. The 20kW pool type research reactor has been primarily used for neutron activation analysis in environmental, agricultural, geochemical, health-related studies and mineral exploration in Jamaica. The involvement of the JM-1 reactor for research and teaching activities has segued into commercial applications which, coupled with the current core conversion programme from HEU to LEU, has demanded the implementation of management systems to satisfy regulatory requirements and assure compliance with internationally defined quality standards. At ICENS, documentation related to the Quality Management System aspect of an Integrated Management System (IMS) is well underway. The quality system will incorporate operational and nuclear safety, training, maintenance, design, utilization, occupational health and safety, quality service, and environmental management for its Nuclear Analytical Laboratory, NAL. The IMS is being designed to meet the requirements of the IAEA GS-R-3 with additional controls from international standards including: ISO/IEC 17025:2005, ISO 9001:2008, ISO 14001:2004 and OHSAS 18001:2007. This paper reports on the experiences of the documentation process in a low power reactor facility characterized by limited human resource, where innovative mechanisms of system automation and modeling are included to increase productivity and efficiency. (author)

  7. Procedures for the medical application of research reactors (Appendix)

    International Nuclear Information System (INIS)

    Nishihara, H.; Kanda, K.

    2004-01-01

    The Kyoto University Reactor (KUR) is one of the four research reactors in Japan that are currently licensed for medical application, in addition to other research purposes. Taking the KUR as an example, legal and other procedures for using research reactors for boron neutron capture therapy (BNCT) are described, which are practiced in accordance with the 'Provisional Guideline Pertaining to Medical Irradiation by Accelerators and/or Reactors, other than defined by the Medical Service Act' of the Science Council of Japan

  8. The use of medium enriched uranium fuel for research reactors

    International Nuclear Information System (INIS)

    1979-01-01

    The evaluation described in the present paper concerns the use of medium enriched uranium fuel for our research reactors. The underlying assumptions set up for the evaluation are as follows: (1) At first, the use of alternative fuel should not affect, even to a small extent, research and development programs in nuclear energy utilization, which were described in the previous paper. Hence the use of lower enrichment fuel should not cause any reduction in reactor performances. (2) The fuel cycle cost for operating research reactors with alternative fuel, excepting R and D cost for such fuel, should not increase beyond an acceptable limit. (3) The use of alternative fuel should be satisfactory with respect to non-proliferation purposes, to the almost same degree as the use of 20% enriched uranium fuel

  9. Refurbishment of Pakistan research reactor (PARR-1) for stainless steel lining of the reactor pool

    International Nuclear Information System (INIS)

    Salahuddin, A.; Israr, M.; Hussain, M.

    2002-01-01

    Pakistan Research Reactor-1 (PARR-1) is a pool-type research reactor. Reactor aging has resulted in the increase of water seepage from the concrete walls of the reactor pool. To stop the seepage, it was decided to augment the existing pool walls with an inner lining of stainless steel. This could be achieved only if the pool walls could be accessed unhindered and without excessive radiation doses. For this purpose a partial decommissioning was done by removing all active core components including standard/control fuel elements, reflector elements, beam tubes, thermal shield, core support structure, grid plate and the pool's ceramic tiles, etc. An overall decommissioning program was devised which included procedures specific to each item. This led to the development of a fuel transport cask for transportation, and an interim fuel storage bay for temporary storage of fuel elements (until final disposal). The safety of workers and the environment was ensured by the use of specially designed remote handling tools, appropriate shielding and pre-planned exposure reduction procedures based on the ALARA principle. During the implementation of this program, liquid and solid wastes generated were legally disposed of. It is felt that the experience gained during the refurbishment of PARR-1 to install the stainless steel liner will prove useful and better planning and execution for the future decommissioning of PARR-1, in particular, and for other research reactors like PARR-2 (27 kW MNSR), in general. Furthermore, due to the worldwide activities on decommissioning, especially those communicated through the IAEA CRP on 'Decommissioning Techniques for Research Reactors', the importance of early planning has been well recognized. This has made possible the implementation of some early steps like better record keeping, rehiring of trained manpower, and creation of interim and final waste storage. (author)

  10. Experts' discussion on reactor safety research

    International Nuclear Information System (INIS)

    1980-01-01

    The experts' discussion on reactor safety research deals with risk analysis, political realization, man and technics, as well as with the international state of affairs. Inspite of a controversy on individual issues and on the proportion of governmental and industrial involvment in reactor safety research, the continuation and intensification of corresponding research work is said to be necessary. Several participants demanded to consider possible 'conventional accidents' as well as a stronger financial commitment by the industry in this sector. The ratio 'man and technics' being an interface decisive for the proper functioning or failure of complex technical systems requires even more research work to be done. (GL) [de

  11. Gas cooled fast reactor research and development program

    International Nuclear Information System (INIS)

    Markoczy, G.; Hudina, M.; Richmond, R.; Wydler, P.; Stratton, R.W.; Burgsmueller, P.

    1980-03-01

    The research and development work in the field of core thermal-hydraulics, steam generator research and development, experimental and analytical physics and carbide fuel development carried out 1979 for the Gas Cooled Fast Breeder Reactor at the Swiss Federal Institute for Reactor Research is described. (Auth.)

  12. Manual on reliability data collection for research reactor PSAs

    Energy Technology Data Exchange (ETDEWEB)

    1992-01-01

    The IAEA has been actively promoting performance of probabilistic safety assessment (PSA) studies for research reactors. From 1986 to 1988 the IAEA undertook a Coordinated Research Programme (CRP) on PSA for research reactors which helped promote use of PSA and foster a broad exchange of information. Although the basic methodological approach in performing a research reactor PSA is understood, some unresolved issues, data availability being among them, still exist. To address the issue on the international level, the IAEA initiated a new CRP on ``Data Acquisition for Research Reactors PSA Studies``. The aim of the CRP is to develop a data collection system and generate research reactor specific reliability data for use in PSAs. The achieve this aim a set of precise definitions should be adopted. A set of definitions developed specifically for research reactors and covering classification of equipment and failure terms, reliability parameters, failure modes and other terms necessary for data collection and processing is presented in this document which is based on discussions during the first meeting of the CRP held in Vienna in October 1989 and during the second meeting held in Beijing, China, in October 1990. Refs and figs.

  13. Manual on reliability data collection for research reactor PSAs

    International Nuclear Information System (INIS)

    1992-01-01

    The IAEA has been actively promoting performance of probabilistic safety assessment (PSA) studies for research reactors. From 1986 to 1988 the IAEA undertook a Coordinated Research Programme (CRP) on PSA for research reactors which helped promote use of PSA and foster a broad exchange of information. Although the basic methodological approach in performing a research reactor PSA is understood, some unresolved issues, data availability being among them, still exist. To address the issue on the international level, the IAEA initiated a new CRP on ''Data Acquisition for Research Reactors PSA Studies''. The aim of the CRP is to develop a data collection system and generate research reactor specific reliability data for use in PSAs. The achieve this aim a set of precise definitions should be adopted. A set of definitions developed specifically for research reactors and covering classification of equipment and failure terms, reliability parameters, failure modes and other terms necessary for data collection and processing is presented in this document which is based on discussions during the first meeting of the CRP held in Vienna in October 1989 and during the second meeting held in Beijing, China, in October 1990. Refs and figs

  14. Refurbishment and safety upgradation of research reactor Cirus

    International Nuclear Information System (INIS)

    Marik, S.K.; Rao, D.V.H.; Bhatnagar, A.; Pant, R.C.; Tikku, A.C.; Sankar, S.

    2006-01-01

    Cirus, a 40 MW t, vertical tank type research reactor, having wide range of research facilities, was commissioned in the year 1960. This research reactor, situated at Mumbai, India has been operated and utilized extensively for isotope production, material testing and neutron beam research for nearly four decades. With a view to assess the residual life of the reactor, detailed ageing studies were carried out during the early 1990s. Based on these studies, refurbishment of Cirus for its life extension was taken up. During refurbishment, additional safety features were incorporated in various systems to qualify them for the current safety standards. This paper gives the details of the operating experiences, utilization of the reactor along with methodologies followed for carrying out detailed ageing studies, refurbishment and safety upgradation for its life extension

  15. Science Hall of Atomic Energy in Research Reactor Institute, Kyoto University

    International Nuclear Information System (INIS)

    Hayashi, Takeo

    1979-01-01

    The Science Hall of Atomic Energy was built as a subsidiary facility of the Research Reactor Institute, Kyoto University. The purpose of this facility is to accept outside demands concerning the application of the research reactor. The building is a two story building, and has the floor area of 901.47 m 2 . There are an exhibition room, a library, and a big lecture room. In the exhibition room, models of the Kyoto University Research Reactor and the Kyoto University Critical Assembly are placed. Various pictures concerning the application of the reactor are on the wall. In the library, people from outside of the Institute can use various books on science. Books for boys and girls are also stocked and used for public use. At the lecture room, various kinds of meeting can be held. (Kato, T.)

  16. Multipurpose epithermal neutron beam on new research station at MARIA research reactor in Swierk-Poland

    Energy Technology Data Exchange (ETDEWEB)

    Gryzinski, M.A.; Maciak, M. [National Centre for Nuclear Research, Andrzeja Soltana 7, 05-400 Otwock-Swierk (Poland)

    2015-07-01

    MARIA reactor is an open-pool research reactor what gives the chance to install uranium fission converter on the periphery of the core. It could be installed far enough not to induce reactivity of the core but close enough to produce high flux of fast neutrons. Special design of the converter is now under construction. It is planned to set the research stand based on such uranium converter in the near future: in 2015 MARIA reactor infrastructure should be ready (preparation started in 2013), in 2016 the neutron beam starts and in 2017 opening the stand for material and biological research or for medical training concerning BNCT. Unused for many years, horizontal channel number H2 at MARIA research rector in Poland, is going to be prepared as a part of unique stand. The characteristics of the neutron beam will be significant advantage of the facility. High flux of neutrons at the level of 2x10{sup 9} cm{sup -2}s{sup -1} will be obtainable by uranium neutron converter located 90 cm far from the reactor core fuel elements (still inside reactor core basket between so called core reflectors). Due to reaction of core neutrons with converter U{sub 3}Si{sub 2} material it will produce high flux of fast neutrons. After conversion neutrons will be collimated and moderated in the channel by special set of filters and moderators. At the end of H2 channel i.e. at the entrance to the research room neutron energy will be in the epithermal energy range with neutron intensity at least at the level required for BNCT (2x10{sup 9} cm{sup -2}s{sup -1}). For other purposes density of the neutron flux could be smaller. The possibility to change type and amount of installed filters/moderators which enables getting different properties of the beam (neutron energy spectrum, neutron-gamma ratio and beam profile and shape) is taken into account. H2 channel is located in separate room which is adjacent to two other empty rooms under the preparation for research laboratories (200 m2). It is

  17. Future plans for the Imperial College CONSORT research reactor

    International Nuclear Information System (INIS)

    Franklin, S.J.

    1999-01-01

    The Imperial College (IC) research reactor was designed jointly by GEC and the IC Mechanical Engineering Department. It first went critical on 9 April 1965 and has been operating successfully for over 33 years. The reactor provides a service to both academia and industry for neutron activation analysis, reactor and applied nuclear physics training, neutron detector calibration, isotope production and irradiations. The reactor has strategic importance for the UK, as it is now the only remaining research reactor in the country. It is therefore important to put in place refurbishment programmes and to maintain and upgrade the safety case. This paper describes the current facilities, applications and users of the research reactor and outlines both the recent and the planned developments. (author)

  18. Research reactor spent fuel in Ukraine

    International Nuclear Information System (INIS)

    Trofimenko, A.P.

    1996-01-01

    This paper describes the research reactors in Ukraine, their spent fuel facilities and spent fuel management problems. Nuclear sciences, technology and industry are highly developed in Ukraine. There are 5 NPPs in the country with 14 operating reactors which have total power capacity of 12,800 MW

  19. Research and development of super light water reactors and super fast reactors in Japan

    International Nuclear Information System (INIS)

    Oka, Y.; Morooka, S.; Yamakawa, M.; Ishiwatari, Y.; Ikejiri, S.; Katsumura, Y.; Muroya, Y.; Terai, T.; Sasaki, K.; Mori, H.; Hamamoto, Y.; Okumura, K.; Kugo, T.; Nakatsuka, T.; Ezato, K.; Akasaka, N.; Hotta, A.

    2011-01-01

    Super Light Water Reactors (Super LWR) and Super Fast Reactors (Super FR) are the supercritical- pressure light water cooled reactors (SCWR) that are developed by the research group of University of Tokyo since 1989 and now jointly under development with the researchers of Waseda University, University of Tokyo and other organizations in Japan. The principle of the reactor concept development, the results of the past Super LWR and Super FR R&D as well as the R&D program of the Super FR second phase project are described. (author)

  20. Monte Carlo modelling of TRIGA research reactor

    Science.gov (United States)

    El Bakkari, B.; Nacir, B.; El Bardouni, T.; El Younoussi, C.; Merroun, O.; Htet, A.; Boulaich, Y.; Zoubair, M.; Boukhal, H.; Chakir, M.

    2010-10-01

    The Moroccan 2 MW TRIGA MARK II research reactor at Centre des Etudes Nucléaires de la Maâmora (CENM) achieved initial criticality on May 2, 2007. The reactor is designed to effectively implement the various fields of basic nuclear research, manpower training, and production of radioisotopes for their use in agriculture, industry, and medicine. This study deals with the neutronic analysis of the 2-MW TRIGA MARK II research reactor at CENM and validation of the results by comparisons with the experimental, operational, and available final safety analysis report (FSAR) values. The study was prepared in collaboration between the Laboratory of Radiation and Nuclear Systems (ERSN-LMR) from Faculty of Sciences of Tetuan (Morocco) and CENM. The 3-D continuous energy Monte Carlo code MCNP (version 5) was used to develop a versatile and accurate full model of the TRIGA core. The model represents in detailed all components of the core with literally no physical approximation. Continuous energy cross-section data from the more recent nuclear data evaluations (ENDF/B-VI.8, ENDF/B-VII.0, JEFF-3.1, and JENDL-3.3) as well as S( α, β) thermal neutron scattering functions distributed with the MCNP code were used. The cross-section libraries were generated by using the NJOY99 system updated to its more recent patch file "up259". The consistency and accuracy of both the Monte Carlo simulation and neutron transport physics were established by benchmarking the TRIGA experiments. Core excess reactivity, total and integral control rods worth as well as power peaking factors were used in the validation process. Results of calculations are analysed and discussed.

  1. Materials research with neutron beams from a research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Root, J.; Banks, D. [Canadian Neutron Beam Centre, Chalk River Laboratories, Chalk River, Ontario (Canada)

    2015-03-15

    Because of the unique ways that neutrons interact with matter, neutron beams from a research reactor can reveal knowledge about materials that cannot be obtained as easily with other scientific methods. Neutron beams are suitable for imaging methods (radiography or tomography), for scattering methods (diffraction, spectroscopy, and reflectometry) and for other possibilities. Neutron-beam methods are applied by students and researchers from academia, industry and government to support their materials research programs in several disciplines: physics, chemistry, materials science and life science. The arising knowledge about materials has been applied to advance technologies that appear in everyday life: transportation, communication, energy, environment and health. This paper illustrates the broad spectrum of materials research with neutron beams, by presenting examples from the Canadian Neutron Beam Centre at the NRU research reactor in Chalk River. (author)

  2. A strategy for resolving the research reactor dilemma in the US

    International Nuclear Information System (INIS)

    Kerr, H.T.

    1991-01-01

    The steadily declining number of operating research reactors in the US has been characterized as a growing dilemma that could significantly limit future opportunities for research and educational programs. An overview is presented describing the existing inventory of research reactors in the US Projections are given of potential research and other uses for the reactors. The factors which have contributed to the declining population of research reactors are discussed, and a strategy is proposed to identify and preserve those research reactor facilities needed to fulfill future national needs. The proposed strategy will focus on establishment of user-oriented research reactor centers that are affiliated with reactors at universities, national laboratories, and defense sites in the US and, where appropriate, in foreign countries

  3. Reactor protection systems for the Replacement Research Reactor, ANSTO

    International Nuclear Information System (INIS)

    Morris, C.R.

    2003-01-01

    The 20-MW Replacement Research Reactor Project which is currently under construction at ANSTO will have a combination of a state of the art triplicated computer based reactor protection system, and a fully independent, and diverse, triplicated analogue reactor protection system, that has been in use in the nuclear industry, for many decades. The First Reactor Protection System (FRPS) consists of a Triconex triplicated modular redundant system that has recently been approved by the USNRC for use in the USA?s power reactor program. The Second Reactor Protection System is a hardwired analogue system supplied by Foxboro, the Spec 200 system, which is also Class1E qualified. The FRPS is used to drop the control rods when its safety parameter setpoints have been reached. The SRPS is used to drain the reflector tank and since this operation would result in a reactor poison out due to the time it would take to refill the tank the FRPS trip setpoints are more limiting. The FRPS and SRPS have limited hardwired indications on the control panels in the main control room (MCR) and emergency control centre (ECC), however all FRPS and SRPS parameters are capable of being displayed on the reactor control and monitoring system (RCMS) video display units. The RCMS is a Foxboro Series I/A control system which is used for plant control and monitoring and as a protection system for the cold neutron source. This paper will provide technical information on both systems, their trip logics, their interconnections with each other, and their integration into the reactor control and monitoring system and control panels. (author)

  4. Rationalization and future planning for AECL's research reactor capability

    International Nuclear Information System (INIS)

    Slater, J.B.

    1990-01-01

    AECL's research reactor capability has played a crucial role in the development of Canada's nuclear program. All essential concepts for the CANDU reactors were developed and tested in the NRX and NRU reactors, and in parallel, important contributions to basic physics were made. The technical feasibility of advanced fuel cycles and of the organic-cooled option for CANDU reactors were also demonstrated in the two reactors and the WR-1 reactor. In addition, an important and growing radio-isotope production industry was established and marketed on a world-wide basis. In 1984, however, it was recognized that a review and rationalization of the research reactor capability was required. The commercial success of the CANDU reactor system had reduced the scope and size of the required development program. Limited research and development funding and competition from other research facilities and programs, required that the scope be reduced to a support basis essential to maintain strategic capability. Currently, AECL, is part-way through this rationalization program and completion should be attained during 1992/93 when the MAPLE reactor is operational and decisions on NRX decommissioning will be made. A companion paper describes some of the unique operational and maintenance problems which have resulted from this program and the solutions which have been developed. Future planning must recognize the age of the NRU reactor (currently 32 years) and the need to plan for eventual replacement. Strategy is being developed and supporting studies include a full technical assessment of the NRU reactor and the required age-related upgrading program, evaluation of the performance characteristics and costs of potential future replacement reactors, particularly the advanced MAPLE concept, and opportunities for international co-operation in developing mutually supportive research programs

  5. Current research work at the TRIGA reactor in Ljubljana

    International Nuclear Information System (INIS)

    Najzer, M.; Dimic, V.

    1978-01-01

    The research programmes at this TRIGA reactor cover quite broad and different research fields. They can be grouped in the following topics: reactor dynamics and operation, neutron activation analysis, solid state physics research, reactor dosimetry, radiography and fuel burn-up determination. In this presentation a short overview is given of those investigations which are not described in detail in separate papers

  6. Achievements and future directions in the reactors physics and nuclear safety research

    International Nuclear Information System (INIS)

    Dumitrache, Ion

    2001-01-01

    A historical overlook is presented with respect to inception and development of reactor physics research and on the job training in Romania. First these activities were carried out at the Institute for Atomic Physics and Institute for Power Reactors (IRNE) in Bucharest and afterward at the Institute for Nuclear Technologies, later on transformed in the Institute of Nuclear Research at Pitesti. CYBER Computer installed at Pitesti allowed formation in as early as 1971 reactor specialists who worked out computer programs for neutron physics calculations. These specialists were able to assimilate the characteristic of CANDU 6 type reactor as well as the AECL methodology of simulating processes of CANDU reactor physics. At present four programs are under way. These are: 1. The nuclear reactor physics; 2. The nuclear facility safety; 3. Safety analyses for the transport and radioactive waste disposal; 4. Analyses for radiation shielding and biological protection. There are presented results of the work associated to the CANDU type reactor: 1. Adapting and improving the code system for neutron and thermohydraulic calculation for CANDU type reactor, as supplied by AECL; 2. The IRNE manual for CANDU reactor neutron designing; 3. Final sizing of shim rods of Cernavoda NPP Unit 2; 4. Tests and measurements of reactor physics at the Cernavoda NPP Unit 1 commissioning; 5. Simulation and independent analysis of thermosiphoning carried out at Cernavoda NPP Unit 1 commissioning; 6. Static and dynamical response of the detectors in the CANDU reactor core and their time evolution following the burnup in the neutron flux and their ageing effects; 7. PSA studies at Unit 1; 8. Safety analyses for the radioactive waste disposal at Saligny repository. Also, reported are the results of the work associated to the TRIGA reactor, as follows: 1. Flux measurements and neutron computations necessary in the reactor commissioning; 2. Cleaning up controversial issues relating to neutron flux

  7. Reactor BR2

    Energy Technology Data Exchange (ETDEWEB)

    Gubel, P

    2000-07-01

    The BR2 reactor is still SCK-CEN's most important nuclear facility. After an extensive refurbishment to compensate for the ageing of the installation, the reactor was restarted in April 1997. Various aspects concerning the operation of the BR2 Reactor, the utilisation of the CALLISTO loop and the irradiation programme, the BR2 R and D programme and the production of isotopes and of NTD-silicon are discussed. Progress and achievements in 1999 are reported.

  8. Reactor BR2

    International Nuclear Information System (INIS)

    Gubel, P.

    2000-01-01

    The BR2 reactor is still SCK-CEN's most important nuclear facility. After an extensive refurbishment to compensate for the ageing of the installation, the reactor was restarted in April 1997. Various aspects concerning the operation of the BR2 Reactor, the utilisation of the CALLISTO loop and the irradiation programme, the BR2 R and D programme and the production of isotopes and of NTD-silicon are discussed. Progress and achievements in 1999 are reported

  9. MIT research reactor. Power uprate and utilization

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Lin-Wen [Nuclear Reactor Laboratory, Massachusetts Inst. of Technology, Cambridge, MA (United States)

    2012-03-15

    The MIT Research Reactor (MITR) is a university research reactor located on MIT campus. and has a long history in supporting research and education. Recent accomplishments include a 20% power rate to 6 MW and expanding advanced materials fuel testing program. Another important ongoing initiative is the conversion to high density low enrichment uranium (LEU) monolithic U-Mo fuel, which will consist of a new fuel element design and power increase to 7 MW. (author)

  10. Recent upgrades and new scientific infrastructure of MARIA research reactor, Otwock-Swierk, Poland

    International Nuclear Information System (INIS)

    2015-01-01

    The MARIA reactor is open-pool type, water and beryllium moderated. It has two independent primary cooling systems: fuel and pool cooling system. Each fuel assembly is cooled down separately in pressurized channels with individual performances characterization. The fuel assemblies consist of five layers of bent plates or six concentric tubes. Currently it is one of the most powerful research reactors in Europe with operation availability at least up to 2030. Its nominal thermal power is 30 MW. It is characterized by high neutron flux density: up to 3x10 14 n cm -2 s -1 in case of thermal neutrons, and up to 2x10 13 n cm -2 s -1 in case of fast neutrons. The reactor is operated for ca. 4000 h per year. The reactor facility is equipped with fully equipped three hot cells with shielding up to 10 15 Bq. Adjacent to the reactor facility, the radio-pharmaceutics plant (POLATOM) and Material Research Laboratory are located. They are equipped with a number of hot cells with instrumentation. The transport system of radioactive materials from reactor facility to Material Research Laboratory is available. During 2014 the MARIA reactor has been operated with three different types of fuel the same time: previous 36% enriched fuel, and two types of new LEU fuels. In the meantime, molybdenum irradiation programme has been developed. Maria is a multifunctional research tool, with a notable application in production of radioisotopes, radio-pharmaceutics manufacturing (ca. 600 TBq/y), 99 Mo for medical scintigraphy (ca. 6000 TBq/y), neutron transmutation doping of silicon single crystals, wide scientific research based on neutron beams utilization. From the beginning MARIA reactor was intended for loop and fuel testing research activities. Currently it is used mostly as material testing and irradiation facility and for that reason it has wide experimental capabilities. There are eight horizontal irradiation channels from among whom six of them are equipped with instrumentation for

  11. The experiences of research reactor accident to safety improvement

    International Nuclear Information System (INIS)

    Wiranto, S.

    1999-01-01

    The safety of reactor operation is the main factor in order that the nuclear technology development program can be held according the expected target. Several experience with research reactor incidents must be learned and understood by the nuclear program personnel, especially for operators and supervisors of RSG-GA. Siwabessy. From the incident experience of research reactor in the world, which mentioned in the book 'Experience with research reactor incidents' by IAEA, 1995, was concluded that the main cause of research reactor accidents is understandless about the safety culture by the nuclear installation personnel. With learn, understand and compare between this experiences and the condition of RSG GA Siwabessy is expended the operators and supervisors more attention about the safety culture, so that RSG GA Siwabessy can be operated successfull, safely according the expected target

  12. Irradiation effects on Zr-2.5Nb in power reactors

    Energy Technology Data Exchange (ETDEWEB)

    Song, C., E-mail: Carol.Song@cnl.ca [Canadian Nuclear Laboratories, Chalk River, Ontario (Canada)

    2016-06-15

    Zirconium alloys are widely used as structural materials in nuclear applications because of their attractive properties such as a low absorption cross-section for thermal neutrons, excellent corrosion resistance in water, and good mechanical properties at reactor operating temperatures. Zr-2.5Nb is one of the most commonly used zirconium alloys and has been used for pressure tube materials in CANDU (Canada Deuterium Uranium) and RBMK (Reaktor Bolshoy Moshchnosti Kanalnyy, 'High Power Channel-type Reactor') reactors for over 40 years. In a recent report from the Electric Power Research Institute, Zr-2.5Nb was identified as one of the candidate materials for use in normal structural applications in light-water reactors owing to its increased resistance to irradiation-induced degradation as compared with currently used materials. Historically, the largest program of in-reactor tests on zirconium alloys was performed by Atomic Energy of Canada Limited. Over many years of in-reactor testing and CANDU operating experience with Zr- 2.5Nb, extensive research has been conducted on the irradiation effects on its microstructures, mechanical properties, deformation behaviours, fracture toughness, delayed hydride cracking, and corrosion. Most of the results on Zr-2.5Nb obtained from CANDU experience could be used to predict the material performance under light water reactors. This paper reviews the irradiation effects on Zr-2.5Nb in power reactors (including heavy-water and light-water reactors) and summarizes the current state of knowledge. (author)

  13. Commercial products and services of research reactors. Proceedings of a technical meeting held in Vienna 28 June - 2 July 2010

    International Nuclear Information System (INIS)

    2013-07-01

    Although the number of operational research reactors is steadily decreasing, more than half of those that remain are greatly underutilized and, in most cases, underfunded. To continue to play a key role in the development of peaceful uses of nuclear technology, the remaining research reactors will need to provide useful products and services to private, national and regional customers, in some cases with adequate revenue generation for reliable, safe and secure facility management and operation. In the light of declining governmental financial support and the need for improved physical security and conversion to low enriched uranium (LEU) fuel, many research reactors have been challenged to generate income to offset increasing operational and maintenance costs. The renewed interest in nuclear power (and therefore in nuclear education and training), the global expansion of diagnostic and therapeutic nuclear medicine, and the extensive use of semiconductors in electronics and in other areas have created new opportunities for research reactors, prominent among them, markets for products and services in regions and countries without such facilities. It is clear that such initiatives towards greater self-reliance will need to address such aspects as market surveys, marketing and business plans, and cost of delivery services. It will also be important to better inform present and future potential end users of research reactor services of the capabilities and products that can be provided. This publication is a compilation of material from an IAEA technical meeting on 'Commercial Products and Services of Research Reactors', held in Vienna, Austria, from 28 June to 2 July 2010. The overall objective of the meeting was to exchange information on good practices and to provide concrete examples, in technical presentations and brainstorming discussions, to promote and facilitate the development of commercial applications of research reactors. The meeting also aimed to enhance

  14. Storage experience in Hungary with fuel from research reactors

    International Nuclear Information System (INIS)

    Gado, J.; Hargitai, T.

    1996-01-01

    In Hungary several critical assemblies, a training reactor and a research reactor have been in operation. The fuel used in the research and training reactors are of Soviet origin. Though spent fuel storage experience is fairly good, medium and long term storage solutions are needed. (author)

  15. The research reactor TRIGA Mainz

    International Nuclear Information System (INIS)

    Hampel, G.; Eberhardt, K.; Trautmann, N.

    2006-01-01

    The TRIGA Mark II reactor at the Institut fuer Kernchemie became first critical on August 3 rd , 1965. It can be operated in the steady state mode with a maximum power of 100 kWth and in the pulse mode with a peak power of 250 MWth. A survey of the research programmes performed at the TRIGA Mainz is given covering applications in basic research as well as applied science in nuclear chemistry and nuclear physics. Furthermore, the reactor is used for neutron activation analysis and for education and training of scientists, teachers, students and technical personal. Important projects for the future of the TRIGA Mainz are the UCN (ultra cold neutrons) experiment, fast chemical separation, medical applications and the use of the NAA as well as the use of the reactor facility for the training of students in the fields of nuclear chemistry, nuclear physics and radiation protection. Taking into account the past and future operation schedule and the typically low burn-up of TRIGA fuel elements (∝4 g U-235/a), the reactor can be operated for at least the next decade taking into account the fresh fuel elements on stock and without changing spent fuels. (orig.)

  16. Use of research reactors in Soviet atomic centres

    International Nuclear Information System (INIS)

    1964-01-01

    The manner of controlling and directing research reactors in the USSR was described in October at the IAEA seminar for atomic energy administrators by Dr. U. V. Archangelski, Department Chief, State Committee for Utilization of Atomic Energy, USSR. He also enumerated the research reactors in operation. In addition to the portions of the paper which are quoted below, he gave details of the scientific work being carried out in these reactors.

  17. Initial decommissioning planning for the Budapest research reactor

    Directory of Open Access Journals (Sweden)

    Toth Gabor

    2011-01-01

    Full Text Available The Budapest Research Reactor is the first nuclear research facility in Hungary. The reactor is to remain in operation for at least another 13 years. At the same time, the development of a decommissioning plan is a mandatory requirement under national legislation. The present paper describes the current status of decommissioning planning which is aimed at a timely preparation for the forthcoming decommissioning of the reactor.

  18. Water cooled reactor technology: Safety research abstracts no. 1

    International Nuclear Information System (INIS)

    1990-01-01

    The Commission of the European Communities, the International Atomic Energy Agency and the Nuclear Energy Agency of the OECD publish these Nuclear Safety Research Abstracts within the framework of their efforts to enhance the safety of nuclear power plants and to promote the exchange of research information. The abstracts are of nuclear safety related research projects for: pressurized light water cooled and moderated reactors (PWRs); boiling light water cooled and moderated reactors (BWRs); light water cooled and graphite moderated reactors (LWGRs); pressurized heavy water cooled and moderated reactors (PHWRs); gas cooled graphite moderated reactors (GCRs). Abstracts of nuclear safety research projects for fast breeder reactors are published independently by the Nuclear Energy Agency of the OECD and are not included in this joint publication. The intention of the collaborating international organizations is to publish such a document biannually. Work has been undertaken to develop a common computerized system with on-line access to the stored information

  19. Handling of spent fuel from research reactors in Japan

    International Nuclear Information System (INIS)

    Kanda, K.

    1997-01-01

    In Japan eleven research reactors are in operation. After the 19th International Meeting on Reduced Enrichment for Research Reactors and Test Reactors (RERTR) on October 6-10, 1996, Seoul, Korea, the Five Agency Committee on Highly Enriched Uranium, which consists of Science and Technology Agency, the Ministry of Education, Science and Culture, the Ministry of Foreign Affairs, Japan Atomic Energy Research Institute (JAERI) and Kyoto University Research Reactor Institute (KURRI) met on November 7,1996, to discuss the handling of spent fuel from research reactors in Japan. Advantages and disadvantages to return spent fuel to the USA in comparison to Europe were discussed. So far, a number of spent fuel elements in JAERI and KURRI are to be returned to the US. The first shipment to the US is planned for 60 HEU elements from JMTR in 1997. The shipment from KURRI is planned to start in 1999. (author)

  20. The rehabilitation/upgrading of Philippine Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Renato, T Banaga [Philippines Nuclear Research Inst., Quezon (Philippines)

    1998-10-01

    The Philippine Research Reactor (PRR-1) is the only research reactor in the Philippines. It was acquired through the Bilateral Agreement with the United States of America. The General Electric (G.E.) supplied PRR-1 first become operational in 1963 and used MTR plate type fuel. The original one-megawatt G.E. reactor was shutdown and converted into a 3 MW TRIGA PULSING REACTOR in 1984. The conversion includes the upgrading of the cooling system, replacement of new reactor coolant pumps, heat exchanger, cooling tower, replacement of new nuclear instrumentation and standard TRIGA console, TRIGA fuel supplied by General Atomic (G.A.). Philippine Nuclear Research Institute (PNRI) provided the old reactor, did the detailed design of the new cooling system, provided the new non-nuclear instrumentation and electrical power supply system and performed all construction, installation and modification work on site. The TRIGA conversion fuel is contained in a shrouded 4-rod cluster which fit into the original grid plate. The new fuel is a E{sub 1}-U-Z{sub 1}-H{sub 1.6} TRIGA fuel, has a 20% wt Uranium loading with 19.7% U-235 enrichment and about 0.5 wt % Erbium. The Start-up, calibration and Demonstration of Pulsing and Full Power Operation were completed during a three week start-up phase which were performed last March 1968. A few days after, a leak in the pool liner was discovered. The reactor was shutdown again for repair and up to present the reactor is still in the process of rehabilitation. This paper will describe the rehabilitation/upgrading done on the PRR-1 since 1988 up to present. (author)

  1. The rehabilitation/upgrading of Philippine Research Reactor

    International Nuclear Information System (INIS)

    Renato T, Banaga

    1998-01-01

    The Philippine Research Reactor (PRR-1) is the only research reactor in the Philippines. It was acquired through the Bilateral Agreement with the United States of America. The General Electric (G.E.) supplied PRR-1 first become operational in 1963 and used MTR plate type fuel. The original one-megawatt G.E. reactor was shutdown and converted into a 3 MW TRIGA PULSING REACTOR in 1984. The conversion includes the upgrading of the cooling system, replacement of new reactor coolant pumps, heat exchanger, cooling tower, replacement of new nuclear instrumentation and standard TRIGA console, TRIGA fuel supplied by General Atomic (G.A.). Philippine Nuclear Research Institute (PNRI) provided the old reactor, did the detailed design of the new cooling system, provided the new non-nuclear instrumentation and electrical power supply system and performed all construction, installation and modification work on site. The TRIGA conversion fuel is contained in a shrouded 4-rod cluster which fit into the original grid plate. The new fuel is a E 1 -U-Z 1 -H 1.6 TRIGA fuel, has a 20% wt Uranium loading with 19.7% U-235 enrichment and about 0.5 wt % Erbium. The Start-up, calibration and Demonstration of Pulsing and Full Power Operation were completed during a three week start-up phase which were performed last March 1968. A few days after, a leak in the pool liner was discovered. The reactor was shutdown again for repair and up to present the reactor is still in the process of rehabilitation. This paper will describe the rehabilitation/upgrading done on the PRR-1 since 1988 up to present. (author)

  2. The current status of nuclear research reactor in Thailand

    Energy Technology Data Exchange (ETDEWEB)

    Sittichai, C; Kanyukt, R; Pongpat, P [Office of Atomic Energy for Peace, Bangkok (Thailand)

    1998-10-01

    Since 1962, the Thai Research Reactor has been serving for various kinds of activities i.e. the production of radioisotopes for medical uses and research and development on nuclear science and technology, for more than three decades. The existing reactor site should be abandoned and relocated to the new suitable site, according to Thai cabinet`s resolution on the 27 December 1989. The decommissioning project for the present reactor as well as the establishment of new nuclear research center were planned. This paper discussed the OAEP concept for the decommissioning programme and the general description of the new research reactor and some related information were also reported. (author)

  3. Conceptual Study for development of a low power research reactor

    International Nuclear Information System (INIS)

    Park, C.; Kim, H. S.; Park, J. H.; Chae, H. T.; Lee, B. C.

    2013-01-01

    Even though the nuclear society is again facing with difficult situations after Fukusima accident, some countries still continues to consider nuclear power as one option of national energy sources and to introduce nuclear energy. As a research reactor has been regarded as a step-stone to establish infrastructures for the nuclear power development program, some countries that have plan to introduce the nuclear power energy are considering to construct a research reactor. Particularly, a low power research reactor whose main purpose is basic researches on the nuclear technology and education/training would be of interest to developing countries when taking the economy and level of science and technology into consideration. And many low power research reactors at operation are obsolescent and their numbers are decreasing. Hence, some concepts on a low power research reactor are being studied for the future needs. This paper presents the conceptual study on the basic requirements and the preliminary design features of a low power research reactor

  4. Proceedings of the FNCA 2005 workshop on the utilization of research reactors (Contract research)

    International Nuclear Information System (INIS)

    2007-02-01

    The FNCA 2005 Workshop on the Utilization of Research Reactors, which is the twelfth workshop on the theme of research reactor utilization, was held in Kuala Lumpur, Malaysia from August 8 to 12, 2005. This workshop was executed based on the agreement in the sixth Coordinator's Meeting of Forum for Nuclear Cooperation in Asia (FNCA) held in Tokyo, March 2005. The workshop consisted of three groups under the themes of the following fields; 1) Neutron Activation Analysis, 2) Research Reactor Technology and 3) Tc-99m Generator Technology. The total number of participants for the workshop was 49 people from 8 countries; China, Indonesia, Korea, Malaysia, the Philippines, Thailand, Vietnam and Japan. 17 reports by NAA, 11 reports by RRT, and 15 reports by TCG were presented. This report consists of 5 Papers of those reports from Tc-99m Generator Technology and a summary report. All of these 5 papers are indexed individually. (J.P.N.)

  5. SSC RIAR is the largest centre of research reactors

    International Nuclear Information System (INIS)

    Kalygin, V.V.

    1997-01-01

    The State Scientific Centre (SSC) ''Research Institute of Atomic Reactors'' (RIAR) is situated 100 km to the south-east from Moscow, in Dimitrovgrad, the Volga Region of the Russian Federation. SSC RIAR is the largest centre of research reactors in Russia. At present there are 5 types of reactor facilities in operation, including two NPP. One of the main tasks the Centre is the investigations on safety increase for power reactors. Broad international connections are available at the Institute. On the basis of the SSC RIAR during 3 years work has been done on the development of the branch training centre (TC) for the training of operation personnel of research and pilot reactors in Russia. (author). 3 tabs

  6. SSC RIAR is the largest centre of research reactors

    Energy Technology Data Exchange (ETDEWEB)

    Kalygin, V V [State Scientific Centre, Research Inst. of Atomic Reactors (Russian Federation)

    1997-10-01

    The State Scientific Centre (SSC) ``Research Institute of Atomic Reactors`` (RIAR) is situated 100 km to the south-east from Moscow, in Dimitrovgrad, the Volga Region of the Russian Federation. SSC RIAR is the largest centre of research reactors in Russia. At present there are 5 types of reactor facilities in operation, including two NPP. One of the main tasks the Centre is the investigations on safety increase for power reactors. Broad international connections are available at the Institute. On the basis of the SSC RIAR during 3 years work has been done on the development of the branch training centre (TC) for the training of operation personnel of research and pilot reactors in Russia. (author). 3 tabs.

  7. Virtual environments simulation in research reactor

    Science.gov (United States)

    Muhamad, Shalina Bt. Sheik; Bahrin, Muhammad Hannan Bin

    2017-01-01

    Virtual reality based simulations are interactive and engaging. It has the useful potential in improving safety training. Virtual reality technology can be used to train workers who are unfamiliar with the physical layout of an area. In this study, a simulation program based on the virtual environment at research reactor was developed. The platform used for virtual simulation is 3DVia software for which it's rendering capabilities, physics for movement and collision and interactive navigation features have been taken advantage of. A real research reactor was virtually modelled and simulated with the model of avatars adopted to simulate walking. Collision detection algorithms were developed for various parts of the 3D building and avatars to restrain the avatars to certain regions of the virtual environment. A user can control the avatar to move around inside the virtual environment. Thus, this work can assist in the training of personnel, as in evaluating the radiological safety of the research reactor facility.

  8. Research reactors for the social safety and prosperous neutron use

    International Nuclear Information System (INIS)

    Ito, Yasuo

    2000-01-01

    The present status of nuclear reactors in Japan and the world was briefly described in this report. Aiming to construct a background of stable future society dependent on nuclear energy, the necessity to establish an organization for research reactors in Japan was pointed out. There are a total of 468 reactors in the world, but only 248 of them are running at present and most of them are superannuated. In Japan, 15 research reactors are running and 8 of them are under collaborative utilization, but not a few of them have various problems. In the education of atomic energy, a reactor is dispensable for understanding its working principle through practice learning. Furthermore, a research reactor has important roles for development of power reactor in addition to various basic studies such as activation analysis, fission track, biological irradiation, neutron scattering, etc. Application of a reactor has been also progressing in industrial and medical fields. However, operation of the reactors has become more and more difficult in Japan because of a large running cost and a lack of residential consensus for nuclear reactor. Here, the author proposed an establishment of organization of research reactor in order to promote utilization of a reactor in the field of education, rearing of professionals and science and engineering. (M.N.)

  9. FRG-1: new millenium - new compact core

    International Nuclear Information System (INIS)

    Schreiner, P.; Knop, W.

    2001-01-01

    The GKSS research center Geesthacht GmbH operates the MTR-type swimming pool research reactor FRG-1 (5 MW) for more than 40 years. The FRG-1 has been converted in February 1991 from HEU (93 %) to LEU (20 %) in one step and at that time the core size was reduced from 49 to 26 fuel elements. Consequently the thermal neutron flux in beam tube positions could be increased by more than a factor of two. It is the strong intention of GKSS to continue the operation of the FRG-1 research reactor for at least an additional 15 years with high availability and utilization. The reactor has been operated during the last years for approximately 250 full power days per year. To prepare the FRG-1 for an efficient future use, the core size has been reduced in a second step from 26 fuel elements to 12 fuel elements. (author)

  10. Safe operation and maintenance of research reactor

    International Nuclear Information System (INIS)

    Munsorn, S.

    1999-01-01

    The first Thai Research Reactor (TRR-1) was established in 1961 at the Office of Atomic Energy for Peace (OAEP), Bangkok. The reactor was light water moderated and cooled, using HEU plate-type with U 3 O 8 - Al fuel meat and swimming pool type. The reactor went first critical on October 27, 1962 and had been licensed to operate at 1 MW (thermal). On June 30, 1975 the reactor was shutdown for modification and the core and control system was disassemble and replaced by that of TRIGA Mark III type while the pool cooling system, irradiation facilities and other were kept. Thus the name TRR-1/M1' has been designed due to this modification the fuel has been changed from HEU plate type to Uranium Zirconium Hydride (UZrH) Low Enrichment Uranium (LEU) which include 4 Fuel Follower Control Rods and 1 Air Follower Control Rod. The TRR-1/M1 went critical on November 7, 1977 and the purpose of the operation are training, isotope production and research. Nowadays the TRR-1/M1 has been operated with core loading No.12 which released power of 1,056 MWD. (as of October 1998). The TRR-1/M1 has been operated at the power of 1.2 MW, three days a week with 34 hours per week, Shut-down on Monday for weekly maintenance and Tuesday for special experiment. The everage energy released is about 40.8 MW-hour per week. Every year, the TRR-1/M1 is shut-down about 2 months between February to March for yearly maintenance. (author)

  11. Safe operation and maintenance of research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Munsorn, S. [Reactor Operation Division, Office of Atomic Energy for Peace, Chatuchak, Bangkok (Thailand)

    1999-10-01

    The first Thai Research Reactor (TRR-1) was established in 1961 at the Office of Atomic Energy for Peace (OAEP), Bangkok. The reactor was light water moderated and cooled, using HEU plate-type with U{sub 3}O{sub 8}- Al fuel meat and swimming pool type. The reactor went first critical on October 27, 1962 and had been licensed to operate at 1 MW (thermal). On June 30, 1975 the reactor was shutdown for modification and the core and control system was disassemble and replaced by that of TRIGA Mark III type while the pool cooling system, irradiation facilities and other were kept. Thus the name TRR-1/M1' has been designed due to this modification the fuel has been changed from HEU plate type to Uranium Zirconium Hydride (UZrH) Low Enrichment Uranium (LEU) which include 4 Fuel Follower Control Rods and 1 Air Follower Control Rod. The TRR-1/M1 went critical on November 7, 1977 and the purpose of the operation are training, isotope production and research. Nowadays the TRR-1/M1 has been operated with core loading No.12 which released power of 1,056 MWD. (as of October 1998). The TRR-1/M1 has been operated at the power of 1.2 MW, three days a week with 34 hours per week, Shut-down on Monday for weekly maintenance and Tuesday for special experiment. The everage energy released is about 40.8 MW-hour per week. Every year, the TRR-1/M1 is shut-down about 2 months between February to March for yearly maintenance. (author)

  12. The emphasis is on reactor safety research

    International Nuclear Information System (INIS)

    Anon.

    1982-01-01

    For the second time the Association for Reactor Safety mbH (GRS), Koeln, organised on behalf of the BMFT the conference 'Reactor safety research'. About 400 visitors took part. The public who were interested were given a review of the activities which are being undertaken by the BMFT in the programme 'Research and safety of light-water reactors'. The series of conference papers initiated by the BMFT is to be developed into a permanent information source which will be of interest to those working on nuclear questions such as official quarters, industry and high schools, and experts who have to give judgements. The most important statements by various research groups in industry, high schools and also associations of experts, are summarised. (orig.) [de

  13. RB research reactor safety report

    International Nuclear Information System (INIS)

    Sotic, O.; Pesic, M.; Vranic, S.

    1979-04-01

    This new version of the safety report is a revision of the safety report written in 1962 when the RB reactor started operation after reconstruction. The new safety report was needed because reactor systems and components have been improved and the administrative procedures were changed. the most important improvements and changes were concerned with the use of highly enriched fuel (80% enriched), construction of reactor converter outside the reactor vessel, improved control system by two measuring start-up channels, construction of system for heavy water leak detection, new inter phone connection between control room and other reactor rooms. This report includes description of reactor building with installations, rector vessel, reactor core, heavy water system, control system, safety system, dosimetry and alarm systems, experimental channels, neutron converter, reactor operation. Safety aspects contain analyses of accident reasons, method for preventing reactivity insertions, analyses of maximum hypothetical accidents for cores with natural uranium, 2% enriched and 80% enriched fuel elements. Influence of seismic events on the reactor safety and well as coupling between reactor and the converter are parts of this document

  14. Research reactor core conversion programmes, Department of Research and Isotopes, International Atomic Energy Agency

    International Nuclear Information System (INIS)

    Muranaka, R.G.

    1985-01-01

    In order to put the problem of core conversion into perspective, statistical information on research reactors on a global scale is presented (from IAEA Research reactor Data Base). This paper describes the research reactor core conversion program of the Department of Research and Isotopes. Technical committee Meetings were held on the subject of research reactor core conversion since 1978, and results of these meetings are published in TECDOC-233, TECDOC-324, TECDOC-304. Additional publications are being prepared, several missions of experts have visited countries to discuss and help to plan core conversion programs; training courses and seminars were organised; IAEA has supported attendance of participants from developing countries to RERTR Meetings

  15. Intelligible seminar on fusion reactors. (12) Next step toward the realization of fusion reactors. Future vision of fusion energy research and development

    International Nuclear Information System (INIS)

    Okano, Kunihiko; Kurihara, Kenichi; Tobita, Kenji

    2006-01-01

    In the last session of this seminar the progress of research and development for the realization of fusion reactors and future vision of fusion energy research and development are summarized. The some problems to be solved when the commercial fusion reactors would be realized, (1) production of deuterium as the fuel, (2) why need the thermonuclear reactors, (3) environmental problems, and (4) ITER project, are described. (H. Mase)

  16. Utilization of MCNP code in the research and design for China advanced research reactor

    International Nuclear Information System (INIS)

    Shen Feng

    2006-01-01

    MCNP, which is the internationalized neutronics code, is used for nuclear research and design in China Advanced Research Reactor (CARR). MCNP is an important neutronics code in the research and design for CARR since many calculation tasks could be undertaken by it. Many nuclear parameters on reactor core, the design and optimization research for many reactor utilizations, much verification for other nuclear calculation code and so on are conducted with help of MCNP. (author)

  17. Overview of remote technologies applied to research reactor fuel

    International Nuclear Information System (INIS)

    Oerdoegh, M.; Takats, F.

    1999-01-01

    This paper gives a brief overview of the remote technologies applied to research reactor fuels. Due to many reasons, the remote technology utilization to research reactor fuel is not so widespread as it is for power reactor fuels, however, the advantages of the application of such techniques are obvious. (author)

  18. Substantiation of the TVR-M reactor parameter selection and specific features of the research program

    International Nuclear Information System (INIS)

    Abov, Yu.G.; Kiselev, G.V.; Shvedov, O.V.

    1986-01-01

    Comparative analysis of characteristics of the T-VR-M(ITEP, USSR), GRHF(France) and PIK(LNPI USSR) high-flux heavy water cooled and moderated research reactors is given. The TVR-M reactor design concepts are mainly based on a 35-year experience in operating of the first Soviet heavy water research TVR reactor. As a result of the reactor reconstruction its thermal power will increase up to 25 MW neutron flux in experimental channels will increase 10 fold and reach 5.6x10 14 neutron/cm 2 xc. The TVR-M reactor has the quality value the ratio of maximum thermal neutron flux value the reflector to reactor power in practically the same as for the GRHF reactor (2.24x10 13 (neutron/cm 2 xc)/MW) which allows one to place it among the best research reactors in the world. Maximum fuel burnup of the order of 50% and minimum fuel loading are forseen for the TVR-M reactor which provides for operation cost minimum as compared to the GRHF and PIK reactors. The TVR-M reactor practically does not yield to the PIK and GRMF reactors in experimental channel quantity and exceeds the in the number of vertical channels. The TVR-M reactor experimental capabilities allow one to reduce measuring time and provide for conducting the experiments at a qualitatively new level. At the same time capabilities of radioactive nuclide production in qualitative and quantitative senses are increased

  19. Irradiation techniques at BR2 reactor

    International Nuclear Information System (INIS)

    Hebel, W.

    1978-01-01

    Since 1963 the material testing reactor BR2 at Mol is operated for the realisation of numerous research programs and experiments on the behavior of materials under nuclear radiation and in particular under intensive neutron exposure. During this period special irradiation techniques and experimental devices were developed according to the desiderata of the different experiments and to the irradiation possibilities offered at BR2. The design and the operating characteristics of quite a number of those irradiation rigs of proven reliability may be used or can be made available for new irradiation experiments. A brief description is given of some typical irradiation devices designed and constructed by CEN/SCK, Technology and Energy Dpt. They are compiled according to their main use for the different research and development programs realized at BR2. Their eventual application however for different objectives could be possible. A final chapter summarizes the principal irradiation conditions offered by BR2 reactor. (author)

  20. Safety of Research Reactors. Specific Safety Requirements (French Edition)

    International Nuclear Information System (INIS)

    2017-01-01

    This Safety Requirements publication establishes requirements for all main areas of safety for research reactors, with particular emphasis on requirements for design and operation. It explains the safety objectives and concepts that form the basis for safety and safety assessment for all stages in the lifetime of a research reactor. Technical and administrative requirements for the safety of new research reactors are established in accordance with these objectives and concepts, and they are to be applied to the extent practicable for existing research reactors. The safety requirements established in this publication for the management of safety and regulatory supervision apply to site evaluation, design, manufacturing, construction, commissioning, operation (including utilization and modification), and planning for decommissioning of research reactors (including critical assemblies and subcritical assemblies). The publication is intended for use by regulatory bodies and other organizations with responsibilities in these areas and in safety analysis, verification and review, and the provision of technical support.

  1. Research reactor of the future: The advanced neutron source

    International Nuclear Information System (INIS)

    Appleton, B.; West, C.

    1994-01-01

    Agents for cancer detection and treatment, stronger materials, better electronic gadgets, and other consumer and industrial products - these are assured benefits of a research reactor project proposed for Oak Ridge. Just as American companies have again assumed world leadership in producing semiconductor chips as well as cars and trucks, the United States is poised to retake the lead in neutron science by building and operating the $2.9 billion Advanced Neutron Source (ANS) research reactor by the start of the next century. In 1985, the neutron community, led by ORNL researchers, proposed a pioneering project, later called the ANS. Scheduled to begin operation in 2003, the ANS is seen not only as a replacement for the aging HFIR and HFBR but also as the best laboratory in the world for conducting neutron-based research

  2. Examination of U3Si2-Al fuel elements from the Oak Ridge Research Reactor

    International Nuclear Information System (INIS)

    Copeland, G.L.; Snelgrove, J.L.; Hofman, G.L.

    1986-01-01

    The results of postirradiation examination of low-enriched U 3 Si 2 fuel elements from the Oak Ridge Research Reactor are presented. The elements replaced standard high-enriched elements and were handled routinely except that the burnup of half the elements was extended beyond normal limits up to about 98% peak. The elements were manufactured by commercial fuel suppliers. The performance was completely satisfactory for all the elements

  3. Wireless sensors for predictive maintenance of rotating equipment in research reactors

    International Nuclear Information System (INIS)

    Hashemian, H.M.

    2011-01-01

    In 2008-2009, the High Flux Isotope Reactor (HFIR) at the Oak Ridge National Laboratory (ORNL) tested the potential of predictive or condition-based maintenance techniques to reduce maintenance costs, minimize the risk of catastrophic failures, and maximize system availability by attaching wireless-based sensors to selected rotating equipment at HFIR. Rotating equipment is an ideal 'test case' for the viability of integrated, online predictive maintenance strategies because motors, bearings, and shafts are ubiquitous in nuclear power plants and because the maintenance methods typically performed on rotating equipment today (such as portable or handheld vibration data collection equipment) are highly labor-intensive. The HFIR project achieved all five of its objectives: (1) to identify rotating machinery of the types used in research reactors and determine their operational characteristics, degradation mechanisms, and failure modes, (2) to establish a predictive maintenance program for rotating equipment in research reactors, (3) to identify wireless sensors that are suitable for predictive maintenance of rotating machinery and test them in a laboratory setting, (4) to establish the requirements and procedures to be followed when implementing wireless sensors for predictive maintenance in research reactors, and (5) to develop a conceptual design for a predictive maintenance system for research reactors based on wireless sensors. The project demonstrated that wireless sensors offer an effective method for monitoring key process conditions continuously and remotely, thereby enhancing the safety, reliability, and efficiency of the aging research reactor fleet.

  4. Fuel elements of research reactors in China

    International Nuclear Information System (INIS)

    Zhou Yongmao; Chen Dianshan; Tan Jiaqiu

    1987-01-01

    This paper describes the current status of design, fabrication of fuel elements for research reactors in China, emphasis is placed on the technology of fuel elements for the High Flux Engineering Test Reactor (HFETR). (author)

  5. Neutronics analysis of Dalat Research Reactor

    International Nuclear Information System (INIS)

    Pham Van Lam; Luong Ba Vien; Le Vinh Vinh; Huynh Ton Nghiem; Nguyen Kien Cuong; Nguyen Manh Hung; Pham Hong Son; Tran Quoc Duong

    2006-01-01

    Many neutronics codes have been used to calculate for Dalat Research Reactor (DRR) from 1983 (the first critical of DRR in December, 1983). The purposes of all calculations are to know exactly many important parameters related to Reactor Physics and Neutron Physics in reactor core. The results from calculation play important role in core and fuel management for DRR. Especially basing on the results we can predict about fuel cycle, fuel burn up distribution and plan for using optimize remain fresh fuel assemblies of DRR. By using system neutronics code including transport codes, diffusion codes and Mote Carlo code, many characteristics of fuel assemblies and other parameters of whole core were received such as main features of VVR-M2 fuel assembly type, multiplication factor, neutron flux distribution, power distribution, burn up distribution, excess reactivity, control rods worth, neutron spectrum, temperature reactivity coefficient ect. In the paper, brief description all computer codes to being used in DRR and the calculation results from the codes above are presented. (author)

  6. Reactors licensing: proposal of an integrated quality and environment regulatory structure for nuclear research reactors in Brazil

    International Nuclear Information System (INIS)

    Serra, Reynaldo Cavalcanti

    2014-01-01

    A new integrated regulatory structure based on quality and integrated issues has been proposed to be implemented on the licensing process of nuclear research reactors in Brazil. The study starts with a literature review about the licensing process in several countries, all of them members of the International Atomic Energy Agency. After this phase it is performed a comparative study with the Brazilian licensing process to identify good practices (positive aspects), the gaps on it and to propose an approach of an integrated quality and environmental management system, in order to contribute with a new licensing process scheme in Brazil. The literature review considered the following research nuclear reactors: Jules-Horowitz and OSIRIS (France), Hanaro (Korea), Maples 1 and 2 (Canada), OPAL (Australia), Pallas (Holand), ETRR-2 (Egypt) and IEA-R1 (Brazil). The current nuclear research reactors licensing process in Brazil is conducted by two regulatory bodies: the Brazilian National Nuclear Energy Commission (CNEN) and the Brazilian Institute of Environment and Renewable Natural Resources (IBAMA). CNEN is responsible by nuclear issues, while IBAMA by environmental one. To support the study it was applied a questionnaire and interviews based on the current regulatory structure to four nuclear research reactors in Brazil. Nowadays, the nuclear research reactor’s licensing process, in Brazil, has six phases and the environmental licensing process has three phases. A correlation study among these phases leads to a proposal of a new quality and environmental integrated licensing structure with four harmonized phases, hence reducing potential delays in this process. (author)

  7. Euratom contributions in Fast Reactor research programmes

    International Nuclear Information System (INIS)

    Fanghänel, Th.; Somers, J.

    2013-01-01

    The Sustainable Nuclear Initiative: • demonstrate long-term sustainability of nuclear energy; • demonstration reactors of Gen IV: •more efficient use of resources; • closed fuel cycle; • reduced proliferation risks; • enhanced safety features. • Systems pursued in Europe: • Sodium-cooled fast reactor SFR; • Lead-cooled fast reactor LFR; • Gas-cooled fast reactor GFR. Sustainable Nuclear Energy Technology Platform SNE-TP promotes research, development and demonstration of the nuclear fission technologies necessary to achieve the SET-Plan goals

  8. Code of Conduct on the Safety of Research Reactors

    International Nuclear Information System (INIS)

    2006-09-01

    The Board of Governors of the International Atomic Energy Agency (IAEA) adopted the Code of Conduct on the Safety of Research Reactors on 8 March 2004. The Board's action was the culmination of several years of work to develop the Code and obtain a consensus on its provisions. The process leading to the Code began in 1998, when the International Nuclear Safety Advisory Group (INSAG) informed the Director General of concerns about the safety of research reactors. In 2000, INSAG recommended that the Secretariat begin developing an international protocol or a similar legal instrument to address those concerns. In September 2000, in resolution GC(44)/RES/14, the General Conference requested the Secretariat ''within its available resources, to continue work on exploring options to strengthen the international nuclear safety arrangements for civil research reactors, taking due account of input from INSAG and the views of other relevant bodies''. A working group convened by the Secretariat pursuant to that request recommended that ''the Agency consider establishing an international action plan for research reactors'' and that the action plan include preparation of a Code of Conduct ''that would clearly establish the desirable attributes for management of research reactor safety''. In September 2001, the Board requested that the Secretariat develop and implement, in conjunction with Member States, an international research reactor safety enhancement plan which included preparation of a Code of Conduct on the Safety of Research Reactors. Subsequently, in resolution GC(45)/RES/10.A, the General Conference endorsed the Board's request. Pursuant to that request, a Code of Conduct on the Safety of Research Reactors was drafted at two meetings of an Open-ended Working Group of Legal and Technical Experts. This draft Code of Conduct was circulated to all Member States for comment. On the basis of the responses received, a revised draft of the Code was prepared by the Secretariat

  9. Use of research reactors for training and teaching nuclear sciences

    International Nuclear Information System (INIS)

    Safieh, J.; Gless, B.

    2002-01-01

    Training activities on reactors are organized by Cea on 2 specially dedicated reactors Ulysse (Saclay) and Siloette (Grenoble) and 2 research reactors Minerve (Cadarache) and Azur (Cadarache, facility managed by Technicatome). About 4000 students have been trained on Ulysse since its commissioning more than 40 years ago. The concept that led to the design of Ulysse was to build a true reactor dedicated to teaching and training activities and that was able to operate with great flexibility and under high conditions of safety, this reactor is inspired from the Argonaut-type reactor. The main specificities of Ulysse are: a nominal power of 100 kW, a maximal thermal neutron flux of 1.4 10 12 n.cm -2 .s -1 , a 90 % enriched fuel, a graphite reflector, the use of water as coolant and moderator, and 6 cadmium plates as control rods. Ulysse allows students to get practical experience on a large range of topics: approach to criticality, effect of the starting neutron source, calibration of control rods, distribution of the neutron flux in the thermal column, temperature coefficient, radiation detectors, neutron activation analysis, and radioprotection. (A.C.)

  10. Proceedings of the 2000 workshop on the utilization of research reactors

    International Nuclear Information System (INIS)

    2001-11-01

    The 2000 Workshop on the Utilization of Research Reactors, which is the ninth Workshop on the theme of research reactor utilization, was held in Taejon, Korea from November 20 to 24. This Workshop was executed based on the agreement in the First Coordinator's Meeting of Forum for Nuclear Cooperation in Asia (FNCA) held in Tokyo, March 2000. The Workshop consists of three groups under themes of the following fields; 1) Neutron Scattering, 2) Neutron Activation Analysis, and 3) Research Reactor Utilization (BNCT). The total number of participants for the Workshop was about 60 people from 8 countries; Australia, China, Indonesia, Korea, Malaysia, The Philippines, Thailand, Vietnam, and Japan. The 37 of the presented papers are indexed individually. (J.P.N.)

  11. Current status of operation, utilization and refurbishment of the Dalat nuclear research reactor

    International Nuclear Information System (INIS)

    Pham Duy Hien.

    1993-01-01

    The reconstructed nuclear research reactor at Dalat, Vietnam has been put into operation since March 1984. Up to present a cumulative operation time of 13,172 hrs at nominal power (500 kW) has been recorded. Production of radioisotopes for medical uses, element analysis by using activation techniques, as well as fundamental and applied research with filtered neutrons are the main activities of reactor utilizations. The problems facing Dalat Nuclear Research Institute are the ageing of the re-used TRIGA-MARK-II reactor components (especially the corrosion of the reactor tank), as well as the obsolescence of many equipment and components of the reactor control and instrumentation system. Refurbishment works are being in process with the technical and financial supports from the Vietnam government and the IAEA. (author). 7 refs, 2 tabs, 10 figs

  12. Application of Emergency Action Levels from Potential Release at Research Reactor HANARO

    International Nuclear Information System (INIS)

    Kim, Jongsoo; Lee, Goan Yub; Lee, Hae Choi; Kim, Bong Suk

    2014-01-01

    Execution of the protective action promptly is possible that Emergency Action Levels (EALs) must be established for a radiological release from nuclear facility. The EALs for electric power reactor are already developed and applied to recognize an emergency situation rapidly. Recently the IAEA published the safety report including the EALs for research reactor. This paper describes the EALs to apply for a potential release pathway at the research reactor HANARO. The results of table 1 and 2 will be higher than actual because the weather condition in real situation is difference. However, the EALs applying the potential stack release, ground release and site can be useful for research reactor HANARO making the emergency declaration. The EALs at the site boundary of the table 3 can be applied to protect the off-site public

  13. Progress of nuclear safety research, (2)

    International Nuclear Information System (INIS)

    Amano, Hiroshi; Nakamura, Hiroei; Nozawa, Masao

    1981-01-01

    The Japan Atomic Energy Research Institute was established in 1956 in conformity with the national policy to extensively conduct the research associated with nuclear energy. Since then, the research on nuclear energy safety has been conducted. In 1978, the Division of Reactor Safety was organized to conduct the large research programs with large scale test facilities. Thereafter, the Divisions of Reactor Safety Evaluation, Environmental Safety Research and Reactor Fuel Examination were organized successevely in the Reactor Safety Research Center. The subjects of research have ranged from the safety of nuclear reactors to that in the recycling of nuclear fuel. In this pamphlet, the activities in JAERI associated with the safety research are reported, which have been carried out in the past two years. Also the international cooperation research program in which JAERI participated is included. This pamphlet consists of two parts and in this Part 2, the environmental safety research is described. The evaluation and analysis of environmental radioactivity, the study on radioactive waste management and the studies on various subjects related to environmental safety are reported. (Kako, I.)

  14. Code on the safety of nuclear research reactors: Design

    International Nuclear Information System (INIS)

    1992-01-01

    The main objective of this publication is to provide a safety basis for the design of a research reactor and for the assessment of the design. Another objective is to cover certain aspects related to regulatory supervision, siting and quality assurance, as far as these are related to activities for the design of a research reactor. These objectives are expressed in terms of requirements and recommendations for the design of research reactors. Emphasis is placed on the safety requirements that shall be met rather than on ways in which they can be met. The requirements and recommendations may form the foundation necessary for a Member State to develop specific regulations and safety criteria for its research reactor programme.

  15. The neutron beam facility at the Australian replacement research reactor

    International Nuclear Information System (INIS)

    Hunter, B.; Kennedy, S.

    1999-01-01

    Full text: The Australian federal government gave ANSTO final approval to build a research reactor to replace HIFAR on August 25th 1999. The replacement reactor is to be a multipurpose reactor with a thermal neutron flux of 3 x 10 14 n.cm -2 .s -1 and having improved capabilities for neutron beam research and for the production of radioisotopes for pharmaceutical, scientific and industrial use. The replacement reactor will commence operation in 2005 and will cater for Australian scientific, industrial and medical needs well into the 21st century. The scientific capabilities of the neutron beams at the replacement reactor are being developed in consultation with representatives from academia, industry and government research laboratories to provide a facility for condensed matter research in physics, chemistry, materials science, life sciences, engineering and earth sciences. Cold, thermal and hot neutron sources are to be installed, and neutron guides will be used to position most of the neutron beam instruments in a neutron guide hall outside the reactor confinement building. Eight instruments are planned for 2005, with a further three to be developed by 2010. A conceptual layout for the neutron beam facility is presented including the location of the planned suite of neutron beam instruments. The reactor and all the associated infrastructure, with the exception of the neutron beam instruments, is to be built by an accredited reactor builder in a turnkey contract. Tenders have been called for December 1999, with selection of contractor planned by June 2000. The neutron beam instruments will be developed by ANSTO and other contracted organisations in consultation with the user community and interested overseas scientists. The facility will be based, as far as possible, around a neutron guide hall that is be served by three thermal and three cold neutron guides. Efficient transportation of thermal and cold neutrons to the guide hall requires the use of modern super

  16. Research reactor core conversion guidebook. V.1: Summary

    International Nuclear Information System (INIS)

    1992-04-01

    In view of the proliferation concerns caused by the use of highly enriched uranium (HEU) and in anticipation that the supply of HEU to research and test reactors will be more restricted in the future, this guidebook has been prepared to assist research reactor operators in addressing the safety and licensing issues for conversion of their reactor cores from the use of HEU fuel to the use of low enriched uranium fuel. This Guidebook, in five volumes, addresses the effects of changes in the safety-related parameters of mixed cores and the converted core. It provides an information base which should enable the appropriate approvals processes for implementation of a specific conversion proposal, whether for a light or for a heavy water moderated research reactor. Refs, figs, bibliographies and tabs

  17. The status of the German AF-program and thoughts toward a nationally and internationally coordinated termination of the program

    International Nuclear Information System (INIS)

    Thamm, G.

    1987-01-01

    The activities under the German AF-Program primarily concentrate at present on the establishment of the fabrication technology for LEU fuel elements on the basis of uranium silicide (U 3 Si 2 ). In the meantime, the technical facilities for the individual process steps have been largely provided and, for the major part, have already been integrated into the future series production line. The conversion studies for the German research reactors planned to be converted from HEU to LEU currently aim at determining the operation- and licensing- specific data (in part already available) required primarily for the licensing applications. Such an application has already been filed for the Geesthacht reactors so that it is highly probable that one research reactor in Germany will be converted to LEU operation in 1988. Since there are only about two years left until the official end of the AF-Program, the procedure for terminating the program is being considered at present. Relevant views developed in the past as well as thoughts towards a coordinated procedure for terminating the international RERTR activities will be presented. (Author)

  18. Status of research reactors in China. Their utilization and safety upgrading

    International Nuclear Information System (INIS)

    Xu Hanming; Jin Huajin

    2000-01-01

    The main research reactors in China basically consist of several old reactors including HWRR, HFETR, SPR, MJTR and MNSR. Except the last one, all the other reactors operate at a high power density and represent themselves as main tools in China for engineering testing, radioactive isotope production, and neutron scattering research. The research and production activities by these reactors are briefed. Main equipment and research topics for neutron scattering are described. The production of radioisotope is summarized. Safety upgrading activities in recent years taken by these old reactors are described, which make the safety feature of each reactor significantly improved and on the whole more close to (even not completely consistent) with the targets set by the modern safety regulation. Since a new multi-purpose research reactor CARR is expected available around the year of 2005, a schedule about the construction of new reactor, reforming or decommissioning of old reactors and smoothly transition of research and production activities from old to new reactor during the coming years has been under careful planning. A suggestion of potential international cooperation items has been preliminarily given. (author)

  19. RA Research nuclear reactor - Annual report 1987

    International Nuclear Information System (INIS)

    1987-12-01

    Annual report concerning the project 'RA research nuclear reactor' for 1987, financed by the Serbian ministry of science is divided into two parts. First part is concerned with RA reactor operation and maintenance, which is the task of the Division for reactor engineering of the Institute for multidisciplinary studies and RA reactor engineering. Second part deals with radiation protection activities at the RA reactor which is the responsibility of the Institute for radiation protection. Scientific council of the Institute for multidisciplinary studies and RA reactor engineering has stated that this report describes adequately the activity and tasks fulfilled at the RA reactor in 1989. The scope and the quality of the work done were considered successful both concerning the maintenance and reconstruction, as well as radiation protection activities [sr

  20. Research nuclear reactor RA - Annual Report 1989

    International Nuclear Information System (INIS)

    Sotic, O.

    1989-12-01

    Annual report concerning the project 'RA research nuclear reactor' for 1989, financed by the Serbian ministry of science is divided into two parts. First part is concerned with RA reactor operation and maintenance, which is the task of the Division for reactor engineering of the Institute for multidisciplinary studies and RA reactor engineering. Second part deals with radiation protection activities at the RA reactor which is the responsibility of the Institute for radiation protection. Scientific council of the Institute for multidisciplinary studies and RA reactor engineering has stated that this report describes adequately the activity and tasks fulfilled at the RA reactor in 1989. The scope and the quality of the work done were considered successful both concerning the maintenance and reconstruction, as well as radiation protection activities [sr

  1. Licensing procedures and safety criteria for research reactors in France

    International Nuclear Information System (INIS)

    Berry, J.L.; Lerouge, B.

    1983-01-01

    From the very beginning of the CEA up to now, a great deal of work has been devoted to the development and utilization of research reactors in France for the needs of fundamental and applied research, production of radioisotopes, and training. In recent years, new reactors were commissioned while others were decommissioned. Moreover some of the existing facilities underwent important modifications to comply with more severe safety criteria, increase the experimental capabilities or qualify new low-enrichment fuels for research reactors (Osiris and Isis). This paper summarizes the recent evolution of the French research reactor capacity, describes the licensing process, the main safety criteria which are taken into consideration, and associated safety research. At the end, a few considerations are given to the consequences of the Osiris core conversion. Safety of research reactors has been studied in detail and many improvements have been brought due to: implementation of a specific experimental program, and adaptation of safety principles and rules elaborated for power reactors. Research reactors in operation in France have been built within a 22 year period. Meanwhile, safety rules have been improved. Old reactors do not comply with all the new rules but modifications are continuously made: after analysis of incidents, when replacement of equipment has to be carried out, when an important modification (fuel conversion for example) is decided upon

  2. Licensing procedures and safety criteria for research reactors in France

    Energy Technology Data Exchange (ETDEWEB)

    Berry, J L; Lerouge, B [Centre d' Etudes Nucleaires de Saclay (France)

    1983-08-01

    From the very beginning of the CEA up to now, a great deal of work has been devoted to the development and utilization of research reactors in France for the needs of fundamental and applied research, production of radioisotopes, and training. In recent years, new reactors were commissioned while others were decommissioned. Moreover some of the existing facilities underwent important modifications to comply with more severe safety criteria, increase the experimental capabilities or qualify new low-enrichment fuels for research reactors (Osiris and Isis). This paper summarizes the recent evolution of the French research reactor capacity, describes the licensing process, the main safety criteria which are taken into consideration, and associated safety research. At the end, a few considerations are given to the consequences of the Osiris core conversion. Safety of research reactors has been studied in detail and many improvements have been brought due to: implementation of a specific experimental program, and adaptation of safety principles and rules elaborated for power reactors. Research reactors in operation in France have been built within a 22 year period. Meanwhile, safety rules have been improved. Old reactors do not comply with all the new rules but modifications are continuously made: after analysis of incidents, when replacement of equipment has to be carried out, when an important modification (fuel conversion for example) is decided upon.

  3. AIREKMOD-RR, Reactivity Transients in Nuclear Research Reactors

    International Nuclear Information System (INIS)

    Baggoura, B.; Mazrou, H.

    2001-01-01

    1 - Description of program or function: AIREMOD-RR is a point kinetics code which can simulate fast transients in nuclear research reactor cores. It can also be used for theoretical reactor dynamics studies. It is used for research reactor kinetic analysis and provides a point neutron kinetic capability. The thermal hydraulic behavior is governed by a one-dimensional heat balance equation. The calculations are restricted to a single equivalent unit cell which consists of fuel, clad and coolant. 2 - Method of solution: For transient reactor kinetic calculations a modified Runge Kutta numerical method is used. The external reactivity insertion, specified as a function of time, is converted in dollar ($) unit. The neutron density, energy release and feedback variables are given at each time step. The two types of reactivity feedback considered are: Doppler effect and moderator effect. A new expression for the reactivity dependence on the feedback variables has been introduced in the present version of the code. The feedback reactivities are fitted in power series expression. 3 - Restrictions on the complexity of the problem: The number of delayed neutron groups and the total number of equations are limited only by computer storage capabilities. - Coolant is always in liquid phase. - Void reactivity feedback is not considered

  4. Research nuclear reactor RA - Annual Report 1994

    International Nuclear Information System (INIS)

    Sotic, O.

    1994-12-01

    Activities related to revitalisation of the RA reactor stared in 1986, were continued in 1991. A number of interventions on the reactor components were finished that are supposed to enable continuous and reliable operation. The last, and at the same time largest action, related to exchange of complete reactor instrumentation is underway, but it is behind the schedule in 1991 because the delivery of components from USSR is late. Production of this instruments is financed by the IAEA according to the contract signed in December 1988 with Russian Atomenergoexport. According to this contract, it has been planned that the RA reactor instrumentation should be delivered to the Vinca Institute by the end of 1990. Only 56% of the instrumentation was delivered until September 1991. Since then any delivery of components to Yugoslavia was stopped because of the temporary embargo imposed by the IAEA. In 1991 most of the existing RA reactor instrumentation was dismantled, only the part needed for basic measurements when reactor is not operated, was maintained. Activities related to improvement of Russian project were continued in 1994. Control and maintenance of the reactor components was done regularly and efficiently. Extensive repair of the secondary coolant loop is almost finished and will be completed in the first part of 1995 according to existing legal procedures and IAEA recommendations. Fuel inspection by the IAEA safeguards inspectors was done on a monthly basis. There have been on the average 47 employees at the RA reactor which is considered sufficient for maintenance and repair conditions. Research reactor RA Annual report for year 1991 is divided into two main parts to cover: (1) operation and maintenance and (2) activities related to radiation protection [sr

  5. Progress in Promoting Research Reactor Coalitions

    International Nuclear Information System (INIS)

    Goldman, Ira; Adelfang, Pablo; Alldred, Kevin; Mote, Nigel

    2008-01-01

    This presentation treats of the IAEA's role in Promoting Research Reactor (RR) coalitions, presents the strategic view, the types of coalitions, the 2007-2008 activities and Results, and the upcoming activities. The RR Coalitions Progress is presented first (Initial discussions, project design, approval of NTI grant request, informal consultations and development of 'national' proposals, Number of 'models' identified, exploratory missions/meetings, initial implementation of several coalitions, IAEA coordination, ideas/proposals/ventures, initial support. Some countries, institutes, or users want access to reactor capabilities without, or in advance of, building a domestic facility. Some countries, institutes, or users need access to alternative capabilities to permit the closure/consolidation of marginal facilities. Cooperative arrangements will result in increased utilization for each participant. The results from the reactor view are as follows: cover increases in order levels or scientific research; cover facility outages (planned or un-planned); delegate 'less profitable' products and services; access capacity for new products and services; reduce transport needs by geographical optimization; reduce investment needs by contracting for complementary capabilities; reduce costs of medical radio-isotope for R and D; share best practices in operations and safety. The results from the stakeholder View are: Better information on what reactors can offer/provide; greater range of services; more proactive product and service support; greater reliability in supplies of products and services. The types of coalitions are of different forms to meet needs, capabilities, objectives of members. In general they start small, evolve, change form, expand as confidence grows. The role of the Scientific consortium is to: distribute excess demand, test new concepts for implementation at high-flux reactors, direct requests for access to most appropriate RR, share best practices

  6. Proceedings of the Conference on research reactors application in Yugoslavia

    International Nuclear Information System (INIS)

    1978-05-01

    The Conference on research reactors operation was organised on the occasion of 20 anniversary of the RB zero power reactor start-up. The presentations showed that research reactors in Yugoslavia, RB, RA and TRIGA had an important role in development of nuclear sciences and technology in Yugoslavia. The reactors were applied in non-destructive testing of materials and fuel elements, development of reactor noise techniques, safety analyses, reactor control methods, neutron activation analysis, neutron radiography, dosimetry, isotope production, etc [sr

  7. Development of Core Design Model for Small-Sized Research Reactor and Establishment of Infrastructure for Reactor Export

    International Nuclear Information System (INIS)

    Kim, M. H.; Win, Naing; Lim, J. Y.

    2007-02-01

    Within 10 years a growing world-wide demand of new research reactor construction is expected because of obsolescence. In Korea, a new research reactor is also required in order to meet domestic demand of utilization. KAERI has been devoted to develop an export-oriented research reactors for these kinds of demand. A next generation research reactor should comply with general requirements for safety, economics, environment-friendliness and non-proliferation as well as high performance requirement of high flux level. A export-tailored reactor should be developed for the demand of developing counties or under-developed countries. A new design concept is to be developed for a long cycle length core which has excellent irradiation facility with high flux

  8. Inherent Safety Feature of Hybrid Low Power Research Reactor during Reactivity Induced Accident

    Energy Technology Data Exchange (ETDEWEB)

    Kim, DongHyun; Yum, Soo Been; Hong, Sung Teak; Lim, In-Cheol [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    Hybrid low power research reactor(H-LPRR) is the new design concept of low power research reactor for critical facility as well as education and training. In the case of typical low power research reactor, the purposes of utilization are the experiments for education of nuclear engineering students, Neutron Activation Analysis(NAA) and radio-isotope production for research purpose. H-LPRR is a light-water cooled and moderated research reactor that uses rod-type LEU UO{sub 2} fuels same as those for commercial power plants. The maximum core thermal power is 70kW and, the core is placed in the bottom of open pool. There are 1 control rod and 2 shutdown rods in the core. It is designed to cool the core by natural convection, retain negative feedback coefficient for entire fuel periods and operate for 20 years without refueling. Inherent safety in H-LPRR is achieved by passive design features such as negative temperature feedback coefficient and core cooling by natural convection during normal and emergency conditions. The purpose of this study is to find out that the inherent safety characteristics of H-LPRR is able to control the power and protect the reactor from the RIA(Reactivity induced accident). RIA analysis was performed to investigate the inherent safety feature of H-LPRR. As a result, it was found that the reactor controls its power without fuel damage in the event and that the reactor remains safe states inherently. Therefore, it is believed that high degree of safety inheres in H-LPRR.

  9. Available Reprocessing and Recycling Services for Research Reactor Spent Nuclear Fuel

    International Nuclear Information System (INIS)

    2017-01-01

    The high enriched uranium (HEU) take back programmes will soon have achieved their goals. When there are no longer HEU inventories at research reactors and no commerce in HEU for research reactors, the primary driver for the take back programmes will cease. However, research reactors will continue to operate in order to meet their various mission objectives. As a result, inventories of low enriched uranium spent nuclear fuel will continue to be created during the research reactors' lifetime and, therefore, there is a need to develop national final disposition routes. This publication is designed to address the issues of available reprocessing and recycling services for research reactor spent fuel and discusses the various back end management aspects of the research reactor fuel cycle.

  10. Annual report on operation, utilization and technical development of research reactors and hot laboratory

    International Nuclear Information System (INIS)

    1990-09-01

    This report describes the activities of the Department of Research Reactor Operation in fiscal year of 1989. It also presents some technical topics on the reactor operation and utilization in details. The Department is responsible for operation of the research reactors, JRR-2 and JRR-4, and the Hot Laboratory. The research reactor JRR-3 was reconstructed to enhance the performance for utilization. The first criticality was achieved on March 22, 1989, and it subsequently went into operation. In connection with the reactor operation, the various research and development activities in the area of fuel management, water chemistry, radiation monitoring and material irradiation have been made. In the Hot Laboratory, post-irradiation examinations of fuels and materials have been carried out along with the development of related techniques. (author)

  11. Operational safety experience at 14 MW research reactor from Institute for Nuclear Research Pitesti

    International Nuclear Information System (INIS)

    Ciocanescu, M.

    2007-01-01

    The main challenges identified in TRIGA Research Reactor operated in Institute for Nuclear Research in Pitesti, Romania, are in fact similar with challenges of many other research reactors in the world, those are: Ageing of work forces and knowledge management; Maintaining an enhanced technical and scientific competences; Ensuring adequate financial and human resources; Enhancing excellence in management; Ensuring confidence of stakeholders and public; Ageing of equipment and systems.To ensure safety availability of TRIGA Research Reactor in INR Pitesti, the financial resources were secured and a large refurbishment programme and modernization was undertaking by management of institute. This programme concern the modernization of reactor control and safety systems, primary cooling system instrumentation, radiation protection and releases monitoring with new spectrometric computerized abilities, ventilation filtering system and cooling towers. The expected life extension of the reactor will be about 15 years

  12. Project Experiences in Research Reactor Ageing Management, Modernization and Refurbishment. Report of a Technical Meeting on Research Reactor Ageing Management, Modernization and Refurbishment

    International Nuclear Information System (INIS)

    2014-08-01

    Research reactors have played an important role in several scientific fields for around 60 years: in the development of nuclear science and technology; in the valuable generation of radioisotopes for various applications; and in the development of human resources and skills. Moreover, research reactors have been effectively utilized to support sustainable development in more than 60 countries worldwide. More than half of all operating research reactors are now over 40 years old, with many exceeding their originally conceived design life. The majority of operating research reactors face challenges due to the negative impacts of component and system ageing, which manifest in a number of forms. This situation was highlighted by a serious medical isotope supply crisis which peaked in mid-2010, when several major producing reactors underwent prolonged shutdowns due to extensive necessary overhauls of various systems. Several facilities have established a proactive systematic approach to managing ageing or mitigating its impact on safety and availability of isotopes. Others have tried to prevent or remedy the drawbacks of ageing on a case by case basis. Overall, a large body of knowledge related to ageing issues exists in many Member States. Collecting and sharing this information within the research reactor community can provide a solid foundation to develop a more systematic approach — that is, an ageing management programme to prevent negative consequences of ageing on the safety, and the operability and lifetime of operating, or even future, reactors. It may also help organizations to manage research reactors that have been in an extended shutdown state by ensuring that any required systems are operated and maintained in a safe manner prior to final decommissioning and disposal of fuel to safe storage facilities. Sharing experiences from projects undertaken to refurbish or replace equipment and systems, satisfy safety and regulatory requirements, improve

  13. Project Experiences in Research Reactor Ageing Management, Modernization and Refurbishment. Report of a Technical Meeting on Research Reactor Ageing Management, Modernization and Refurbishment

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2014-08-15

    Research reactors have played an important role in several scientific fields for around 60 years: in the development of nuclear science and technology; in the valuable generation of radioisotopes for various applications; and in the development of human resources and skills. Moreover, research reactors have been effectively utilized to support sustainable development in more than 60 countries worldwide. More than half of all operating research reactors are now over 40 years old, with many exceeding their originally conceived design life. The majority of operating research reactors face challenges due to the negative impacts of component and system ageing, which manifest in a number of forms. This situation was highlighted by a serious medical isotope supply crisis which peaked in mid-2010, when several major producing reactors underwent prolonged shutdowns due to extensive necessary overhauls of various systems. Several facilities have established a proactive systematic approach to managing ageing or mitigating its impact on safety and availability of isotopes. Others have tried to prevent or remedy the drawbacks of ageing on a case by case basis. Overall, a large body of knowledge related to ageing issues exists in many Member States. Collecting and sharing this information within the research reactor community can provide a solid foundation to develop a more systematic approach — that is, an ageing management programme to prevent negative consequences of ageing on the safety, and the operability and lifetime of operating, or even future, reactors. It may also help organizations to manage research reactors that have been in an extended shutdown state by ensuring that any required systems are operated and maintained in a safe manner prior to final decommissioning and disposal of fuel to safe storage facilities. Sharing experiences from projects undertaken to refurbish or replace equipment and systems, satisfy safety and regulatory requirements, improve

  14. The use and evolution of the CEA research reactors

    International Nuclear Information System (INIS)

    Rossillon, F.; Chauvez, C.

    1964-01-01

    The authors successively examine the different research reactors in use in the French C.E.A. Nuclear Centres. They trace briefly their histories, describing how they have been used up to the present, and how they have been adapted to changes in programme by means of certain modifications. They also describe the reasons which have led to the elaboration of the project for the new reactor Osiris. Zoe, the oldest reactor in the CEA, has been in service in the Centre de Fontenay-aux-Roses since 1948. It is used mainly for measurements of absorption cross-sections in graphite, and for various short irradiations which do not require high fluxes. The reactor EL 2, in service since 1952, was used for the first studies on gas cooling. It has also been widely used for the production of radioisotopes and for a large number of experiments in the fields of physics, metallurgy and physical chemistry. The ageing of certain elements of the reactor has led to the decision to close it down in the near future The reactor EL 3 has been widely used for experiments in physics and in the investigation of fuels. The possibilities of the reactor in fast neutron irradiations will be considerably improved by the adoption of a new type of core (the 'snow crystal' structure). Triton-I, a 2 MW swimming-pool reactor, is used for the most part for fast neutron and gamma irradiations. The modifications being carried out on it at present should result in an increase in the power of the reactor up to 4 or 5 MW. In a neighbouring compartment is housed Triton-II which is of the same general structure, as Triton-I, but whose maximum power is 100 kW. Triton-II is used solely for studies on shielding. Melusine, a 2 MW swimming-pool reactor, has been in use in the Centre d'Etudes Nucleaires de Grenoble since 1959. It has supported a very high programme concerned mainly with solid state physics, fundamental research into refractory fissile materials and special graphites, and the study of the behaviour of

  15. Neutronic studies in the enrichment reduction of research reactor IEAR-1

    International Nuclear Information System (INIS)

    Maiorino, J.R.; Fanaro, L.C.B.; Mai, L.A.; Ferreira, P.S.B.; Garone, J.G.M.

    1987-01-01

    In the present work the codes used by the Reactor Physics Division of IPEN-CNEN-SP in calculations for plate-type reactors are described analyzing research reactor IEAR-1. The IAEA model problem for a plate-type reactor 10 MW with high, medium and low enrichment is solved through different methodologies now in use at the RTF/IPEN-CNEN-SP (HAMMER and HAMMER-TECH-CITATION and LEO4-2DBP-UM) looking into the calculation capability for high to low enrichment conversion within the contract held with the IAEA (BRA-4661). Finally, present reactor configuration calculations are compared with experimental measurements with the aim to validate the calculation method. (Author)

  16. Research reactors: a tool for science and medicine; Reactores de investigacion: herramientas para la ciencia y la medicina

    Energy Technology Data Exchange (ETDEWEB)

    Ordonez, Juan [Investigacion Aplicada SE (INVAP), San Carlos de Bariloche (Argentina)

    2001-07-01

    The types and uses of research reactors are reviewed. After an analysis of the world situation, the demand of new research reactors of about 20 MW is foreseen. The experience and competitiveness of INVAP S.E. as designer and constructor of research reactors is outlined and the general specifications of the reactors designed by INVAP for Egypt and Australia are given.

  17. International symposium on research reactor utilization, safety and management. Book of extended synopses

    International Nuclear Information System (INIS)

    1999-01-01

    The Symposium, considered as an important meeting of the owners and operators of research reactors as well as scientists concerned with problems of research reactors operation, management and safety covered the following topics: global and regional overview of research reactors, research reactors utilisation, research reactors safety, research reactors management, research reactors engineering. IAEA Research Reactors Database (RRDB) contains data concerning 291 operational research reactors, 247 shutdown reactors, 106 decommissioned reactors, 15 under construction and 15 new reactors planned. There is quite an even distribution of operational research reactors among 58 countries. Although about 66% of operational research reactors described in the RRDB are over 30 years old, the number of research reactors under construction or planned appears to have increased in recent years. According to the RRDB, the major applications of research reactors are in the field of neutron activation analysis, isotope production and neutron scattering work. Great concern was shown for several aspects of research reactors safety, especially since the average age of the operating research reactors is almost 30 years. Ageing problems involve more than the degradation of properties of the materials. Issues such as outdated equipment, lack of spare parts, outdating of the control and documentation systems related to the reactor, as well as budgetary limitations, affect the safety of some reactors. There are serious problems related to the spent fuel condition and the ageing of fuel storage facilities, in particular corrosion and leakage. The outstanding issues of concern are life extension of the spent fuel storage facilities and the future of take-back programmes of foreign research reactor fuels that will not be continued. A number of discussions related to safety requirements were focused on licensing and regulatory issues, especially in the case of older research reactors and those

  18. International symposium on research reactor utilization, safety and management. Book of extended synopses

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-11-01

    The Symposium, considered as an important meeting of the owners and operators of research reactors as well as scientists concerned with problems of research reactors operation, management and safety covered the following topics: global and regional overview of research reactors, research reactors utilisation, research reactors safety, research reactors management, research reactors engineering. IAEA Research Reactors Database (RRDB) contains data concerning 291 operational research reactors, 247 shutdown reactors, 106 decommissioned reactors, 15 under construction and 15 new reactors planned. There is quite an even distribution of operational research reactors among 58 countries. Although about 66% of operational research reactors described in the RRDB are over 30 years old, the number of research reactors under construction or planned appears to have increased in recent years. According to the RRDB, the major applications of research reactors are in the field of neutron activation analysis, isotope production and neutron scattering work. Great concern was shown for several aspects of research reactors safety, especially since the average age of the operating research reactors is almost 30 years. Ageing problems involve more than the degradation of properties of the materials. Issues such as outdated equipment, lack of spare parts, outdating of the control and documentation systems related to the reactor, as well as budgetary limitations, affect the safety of some reactors. There are serious problems related to the spent fuel condition and the ageing of fuel storage facilities, in particular corrosion and leakage. The outstanding issues of concern are life extension of the spent fuel storage facilities and the future of take-back programmes of foreign research reactor fuels that will not be continued. A number of discussions related to safety requirements were focused on licensing and regulatory issues, especially in the case of older research reactors and those

  19. Nuclear research reactor 0.5 to 3 MW

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1992-05-15

    This nuclear reactor has been designed for radioisotope production, basic and applied research in reactor physics and nuclear engineering, neutron-beam experimentation, irradiation of various materials and training of scientific and technical personnel. It is located in the 'Production Area' of the Nuclear Technology Center. It is equipped with the necessary facilities for large-scale production of radioisotopes to be used in medicine as well as for other scientific and industrial purposes. In addition, it has a Neutronography Facility and the required equipment to perform Neutron-Activation Analysis. It is an open pool-type reactor, moderated and cooled with light water, fuelled with 20% enriched uranium. Its reflector are graphite and water. It has plate-type fuel elements clad in aluminium. The reactor core is located near the bottom of the demineralized water pool. It includes fuel elements, reflector and sample-holding devices for materials to be irradiated. This kind of configuration, which is widely used in research reactors, provides a high degree of safety since it prevents the core from becoming exposed under any circumstance and does not require any cooling system during reactor shutdown. Power output is between 0.5 to 3 MW{sub TH}, with a minimum thermal neutron flux of approx, 10{sup 13} n/cm{sup 2}{center_dot}sec, at irradiation zone almost with no modifications. Heat extraction is achieved by means of a cooling circuit which comprises two circulation pumps and a plate-type heat exchanger. Final heat dissipation to the atmosphere is performed through another cooling circuit which includes two circulation pumps and a cooling tower. Reactor control is accomplished with five neutron-absorbing rods positioned by means of especially designed elements and governed by the reactor's instrumentation and control system. Should an abnormal situation arise, gravity causes the rods to fall automatically, thus extinguishing the nuclear reaction. The reactor

  20. Nuclear research reactor 0.5 to 3 MW

    International Nuclear Information System (INIS)

    1992-05-01

    This nuclear reactor has been designed for radioisotope production, basic and applied research in reactor physics and nuclear engineering, neutron-beam experimentation, irradiation of various materials and training of scientific and technical personnel. It is located in the 'Production Area' of the Nuclear Technology Center. It is equipped with the necessary facilities for large-scale production of radioisotopes to be used in medicine as well as for other scientific and industrial purposes. In addition, it has a Neutronography Facility and the required equipment to perform Neutron-Activation Analysis. It is an open pool-type reactor, moderated and cooled with light water, fuelled with 20% enriched uranium. Its reflector are graphite and water. It has plate-type fuel elements clad in aluminium. The reactor core is located near the bottom of the demineralized water pool. It includes fuel elements, reflector and sample-holding devices for materials to be irradiated. This kind of configuration, which is widely used in research reactors, provides a high degree of safety since it prevents the core from becoming exposed under any circumstance and does not require any cooling system during reactor shutdown. Power output is between 0.5 to 3 MW TH , with a minimum thermal neutron flux of approx, 10 13 n/cm 2 ·sec, at irradiation zone almost with no modifications. Heat extraction is achieved by means of a cooling circuit which comprises two circulation pumps and a plate-type heat exchanger. Final heat dissipation to the atmosphere is performed through another cooling circuit which includes two circulation pumps and a cooling tower. Reactor control is accomplished with five neutron-absorbing rods positioned by means of especially designed elements and governed by the reactor's instrumentation and control system. Should an abnormal situation arise, gravity causes the rods to fall automatically, thus extinguishing the nuclear reaction. The reactor building has a ventilation

  1. An Overview of Ageing Management and Refurbishment of Research Reactors at Trombay

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, R. C.; Raina, V. K. [Bhabha Atomic Research Centre, Mumbai (India)

    2014-08-15

    Three nuclear research reactors have been in operation at Bhabha Atomic Research Centre, Mumbai, India. India has a rich experience of about 120 research reactor operating years including ageing management. A well structured programme is in force for plant life management, refurbishment and upgrading reactors in operation. Apsara, commissioned in August 1956, was the first research reactor. Apsara is a 1 MW{sub th} swimming pool type of reactor with a movable core loaded with enriched uranium fuel and immersed in demineralized light water pool, which serves as coolant, moderator and reflector besides providing radiation shielding. Apsara was shut down during May 2009 for partial decommissioning and upgrading to a 2 MW reactor with several safety upgrades, e.g. a LEU based reactor core with higher neutron flux, a new reactor building meeting seismic qualification criteria and two independent shutdown devices. Cirus, a 40 MW{sub th} tank type reactor utilizing heavy water as moderator, graphite as reflector, demineralized light water as primary coolant and natural uranium metal as fuel; has been in operation since 1960. After about three decade of operation, the availability factor started declining mainly due to outage of equipment exhibiting signs of ageing. After ageing studies and performance review, refurbishment requirements were identified. A programme for refurbishment was drawn that included safety upgrades like civil repairs to the emergency storage reservoir to meet seismic qualification criteria and a new iodine removal system for better efficiency. The reactor was shut down during 1997 for execution of this refurbishment programme. After completion of refurbishment, the reactor was brought back into operation during 2003. It has completed about seven years of safe operation after refurbishment with a significant increase in availability factor from 70% to about 90%. The reactor was permanently shut down during December 2010. The reactor core was unloaded

  2. Safe decommissioning of the Romanian VVR-S research reactor

    International Nuclear Information System (INIS)

    Garlea, C.; Garlea, I.; Kelerman, C.; Rodna, A.

    2002-01-01

    The VVR-S Romania research reactor was operated between 1957-1997, at 2 MW nominal power, for research and radioisotopical production. The detailed decommissioning plan was developed between 1995-1998, in the frame of the International Atomic Energy Agency Technical assistance project ROM/9/017. The proposed strategy agreed by the counterpart as well as international experts was stage 1. In 1997, an independent analysis performed by European Commission experts, in the frame of PHARE project PH04.1/1994 was dedicated to the 'Study of Soviet Design Research Reactors', had consolidated the development of the project emphasizing technical options of safe management for radioactive wastes and VVR-S spent fuel. The paper presents the main technical aspects as well as those of social impact, which lead to the establishment of strategy for safe management of decommissioning. Technical analysis of the VVR-S reactor and associated radwaste facilities (Radioactive Waste Treatment Plant - Magurele and National Repository Baita-Bihor) proved the possibility of the classical method utilization for dismantling of the facility and treatment-conditioning-disposal of the arrised wastes in safe conditions. The decommissioning plan at stage 2 has been developed based on radiological safety assessment, evaluation of radwaste inventory (removed as well as preserved on site), cost analysis and environmental impact. Technical data were provided by the R and D programme including neutron calculations and experiments, radiological characterizing (for facility and its influence area), seismic analysis and environmental balance during the operation and after shut down of the reactor. A special chapter is dedicated to regulatory issues concerning the development of decommissioning under nuclear safety. Based on the Fundamental Norms of Radiological Safety, the Regulatory Body defined the clearance levels and safety criteria for the process. The development of National Norms for the

  3. Operating manual for the Health Physics Research Reactor

    International Nuclear Information System (INIS)

    1985-11-01

    This manual is intended to serve as a guide in the operation and maintenance of the Health Physics Researh Reactor (HPRR) of the Health Physics Dosimetry Applications Research (DOSAR) Facility. It includes descriptions of the HPRR and of associated equipment such as the reactor positioning devises and the derrick. Procedures for routine operation of the HPRR are given in detail, and checklists for the various steps are provided where applicable. Emergency procedures are similarly covered, and maintenance schedules are outlined. Also, a bibliography of references giving more detailed information on the DOSAR Facility is included. Changes to this manual will be approved by at least two of the following senior staff members: (1) the Operations Division Director, (2) the Reactor Operations Department Head, (3) the Supervisor of Reactor Operations TSF-HPRR Areas. The master copy and the copy of the manual issued to the HPRR Operations Supervisor will always reflect the latest revision. 22 figs

  4. Power Excursion Accident Analysis of Research Water Reactor

    International Nuclear Information System (INIS)

    Khaled, S.M.; Doaa, G.M.

    2009-01-01

    A three-dimensional neutronic code POWEX-K has been developed, and it has been coupled with the sub-channel thermal-hydraulic core analysis code SV based on the Single Mass Velocity Model. This forms the integrated neutronic/thermal hydraulics code system POWEX-K/SV for the accident analysis. The Training and Research Reactors at Budapest University of Technology and Economics (BME-Reactor) has been taken as a reference reactor. The cross-section generation procedure based on WIMS. The code uses an implicit difference approach for both the diffusion equations and thermal-hydraulics modules, with reactivity feedback effects due to coolant and fuel temperatures. The code system was applied to analyzing power excursion accidents initiated by ramp reactivity insertion of 1.2 $. The results show that the reactor is inherently safe in case of such accidents i.e. no core melt is expected even if the safety rods do not fall into the core

  5. Cooling Performance of Natural Circulation for a Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Park, Suki; Chun, J. H.; Yum, S. B. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    This paper deals with the core cooling performance by natural circulation during normal operation and a flow channel blockage event in an open tank-in-pool type research reactor. The cooling performance is predicted by using the RELAP5/ MOD3.3 code. The core decay heat is usually removed by natural circulation to the reactor pool water in open tank-in-pool type research reactors with the thermal power less than several megawatts. Therefore, these reactors have generally no active core cooling system against a loss of normal forced flow. In reactors with the thermal power less than around one megawatt, the reactor core can be cooled down by natural circulation even during normal full power operation. The cooling performance of natural circulation in an open tank-in-pool type research reactor has been investigated during the normal natural circulation and a flow channel blockage event. It is found that the maximum powers without void generation at the hot channel are around 1.16 MW and 820 kW, respectively, for the normal natural circulation and the flow channel blockage event.

  6. Research reactor back-end options - decommissioning: a necessary consideration

    International Nuclear Information System (INIS)

    England, M.R.; Parry, D.R.; Smith, C.

    1998-01-01

    Decommissioning is a challenge, which all radioactive site licensees eventually need to face and research reactors are no exception. BNFL has completed numerous major decommissioning projects at its own operational sites and has undertaken similar works at customers' sites including the decommissioning of the Universities Research Reactor (URR), Risley and the ICI TRIGA 1-Mk I Reactor at Billingham. Based on the execution of such projects BNFL has gained an understanding of the variety of customer requirements and the effectiveness of specific decommissioning techniques for research reactors. This paper addresses factors to be considered when reviewing the way forward following shut down and how these affect the final decisions for fuel management and the extent of decommissioning. Case studies are described from BNFL's recent experience decommissioning both the URR and ICI TRIGA reactors. (author)

  7. Nuclear Research Center IRT reactor dynamics calculation

    International Nuclear Information System (INIS)

    Aleman Fernandez, J.R.

    1990-01-01

    The main features of the code DIRT, for dynamical calculations are described in the paper. With the results obtained by the program, an analysis of the dynamic behaviour of the Research Reactor IRT of the Nuclear Research Center (CIN) is performed. Different transitories were considered such as variation of the system reactivity, coolant inlet temperature variation and also variations of the coolant velocity through the reactor core. 3 refs

  8. A computer control system for a research reactor

    International Nuclear Information System (INIS)

    Crawford, K.C.; Sandquist, G.M.

    1987-01-01

    Most reactor applications until now, have not required computer control of core output. Commercial reactors are generally operated at a constant power output to provide baseline power. However, if commercial reactor cores are to become load following over a wide range, then centralized digital computer control is required to make the entire facility respond as a single unit to continual changes in power demand. Navy and research reactors are much smaller and simpler and are operated at constant power levels as required, without concern for the number of operators required to operate the facility. For navy reactors, centralized digital computer control may provide space savings and reduced personnel requirements. Computer control offers research reactors versatility to efficiently change a system to develop new ideas. The operation of any reactor facility would be enhanced by a controller that does not panic and is continually monitoring all facility parameters. Eventually very sophisticated computer control systems may be developed which will sense operational problems, diagnose the problem, and depending on the severity of the problem, immediately activate safety systems or consult with operators before taking action

  9. Radioisotope research, production, and processing at the University of Missouri Research Reactor

    International Nuclear Information System (INIS)

    Ehrhardt, G.J.; Ketring, A.R.; Ja, Wei; Ma, D.; Zinn, K.; Lanigan, J.

    1995-01-01

    The University of Missouri Research Reactor (MURR) is a 10 MW, light-water-cooled and moderated research reactor which first achieved criticality in 1996 and is currently the highest powered university-owned research reactor in the U.S. For many years a major supplier of reactor-produced isotopes for research and commercial purposes, in the last 15 years MURR has concentrated on development of reactor-produced beta-particle emitters for experimental use in nuclear medicine therapy of cancer and rheumatoid arthritis. MURR has played a major role in the development of bone cancer pain palliation with the agents 153 Sm EDTMP and 186 Re/ 188 Re HEDP, as well as in the use of 186 Re, 177 Lu, 166 Ho, and 105 Rh for radioimmunotherapy and receptor-agent-guided radiotherapy. MURR is also responsible for the development of therapeutic, 90 Y-labeled glass microspheres for the treatment of liver tumors, a product ( 90 Y Therasphere trademark) which is currently an approved drug in Canada. MURR has also pioneered the development of 188 W/ 188 Re and 99 Mo/ 99m Tc gel generators, which make the use of low specific activity 188 W and 99 Mo practical for such isotope generators

  10. Simulation of the Gamma Dose Rate in Loss of Pool Water Accident of the Second Egyptian Research Reactor ETRR-2

    International Nuclear Information System (INIS)

    Amin, E.; Saleh, H.; Ashoub, N.

    2000-01-01

    The Second Egyptian Research Reactor ETRR-2, is a pool type reactor, a sudden loss of pool water resulting of leaving the core region un-covered. The reactor core is surrounded by chimney chambers whose water is isolated from pool water. This accident would lead to significant external dose. A model is developed and is used to calculate the dose rates for key access and traffic plans from indirect line of sight of the core have a maximum dose rate. The model developed uses the discrete ordinate method as implemented in the code DOT 3.5

  11. History, Development and Future of TRIGA Research Reactors. Companion CD-ROM

    International Nuclear Information System (INIS)

    2016-01-01

    Due to its particular fuel design and resulting enhanced inherent safety features, TRIGA reactors (Training, Research, Isotopes, General Atomics) constitute a ‘class of their own’ among the large variety of research reactors built world-wide. This publication summarizes in a single document the information on the past and present of TRIGA research reactors and presents an outlook in view of potential issues to be solved by TRIGA operating organizations in the near future. It covers the historical development and basic TRIGA characteristics, followed by utilization, fuel conversion and ageing management of TRIGA research reactors. It continues with issues and challenges, introduction to the global TRIGA research reactor network and concludes with future perspectives. This CD-ROM illustrates the historical developments of TRIGA research reactors through individual facility examples and experiences

  12. Accident analysis in research reactors

    International Nuclear Information System (INIS)

    Adorni, M.; Bousbia-salah, A.; D'Auria, F.; Hamidouche, T.

    2007-01-01

    With the sustained development in computer technology, the possibilities of code capabilities have been enlarged substantially. Consequently, advanced safety evaluations and design optimizations that were not possible few years ago can now be performed. The challenge today is to revisit the safety features of the existing nuclear plants and particularly research reactors in order to verify that the safety requirements are still met and - when necessary - to introduce some amendments not only to meet the new requirements but also to introduce new equipment from recent development of new technologies. The purpose of the present paper is to provide an overview of the accident analysis technology applied to the research reactor, with emphasis given to the capabilities of computational tools. (author)

  13. Supervisory and managerial aspects on the safe operation of the Egyptian second research reactor

    International Nuclear Information System (INIS)

    Abdelrazek, I.D.; Shokr, A.M.

    2000-01-01

    ETRR-2 is a multipurpose reactor for radioisotopes production, neutron beam experiments, basic and applied research in physics and engineering, fuels and material tests, and for training. The reactor is an open pool type, 22 MW power, with average thermal neutron flux of 1.4x10 14 n/cm 2 sec, cooled and moderated by light water and with beryllium reflectors. Various experimental devices and irradiation facilities are integrated with the reactor. The reactor has been licensed for operation in November 1998. Several principles and regulations have been applied to all the reactor project stages to achieve safety. Moreover, other several principals, regulations, and aspects are enforced by the AEA, National Center for Nuclear Safety and Radiation Control, NCNSRC, and reactor management to achieve safety during reactor operation and utilization. Responsibility on Safety and Supervision Aspects AEA chairman has the ultimate responsibility on the reactor safety during operation and utilization. The primary responsible on the safety is the ETRR-2 supervisor, who is supervising the ETRR-2 site that includes the ETRR-2 reactor, Fuel Manufacturing Plant, and other two projects (under execution): Radioisotopes Production Plant and Dry Fuel Storage Facility. ETRR-2 supervisor is responsible to ensure that: the reactor is operated in accordance with the safety requirements by qualified and trained personnel, updating and enforcement of the reactor mandatory documentation, and the services are adequate for the reactor operation. He is responsible, also, to guarantee that: the reactor manager has enough authority and resources to carry out his function effectively and the reactor is kept operated in agreement with established procedures. A Technical Revision Committee, TRC, is formed to advice the ETRR-2 supervisor on the safety of the reactor and experiments. The committee members are from AEA experts with no direct relation to the reactor and experiments being performed. Members

  14. Proceedings of the 1998 workshop on the utilization of research reactors

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-10-01

    The 1998 Workshop on the Utilization of Research Reactors, which is the seventh Workshop on the theme of research reactor utilization was held in Yogyakarta and Serpong, Indonesia from February 8 to 14. This Workshop was executed based on the agreement in the Ninth International Conference for Nuclear Cooperation in Asia (ICNCA) held in Tokyo, March 1998. The whole Workshop consists of the Workshop on the theme of following three fields, 1) Neutron Scattering, 2) Neutron Activation analysis and 3) Safe Operation and Maintenance of Research Reactor, and the Sub-workshop carried out the experiment of Neutron Activation analysis. The total number of participants for the workshop was about 100 people from 8 countries, i.e. Australia, China, Indonesia, Korea, Malaysia, Thailand, Vietnam and Japan. The 38 papers are indexed individually. (J.P.N.)

  15. Progress of the United States foreign research reactor spent nuclear fuel acceptance program. Reduced enrichment for research and test reactors conference 2002

    International Nuclear Information System (INIS)

    Clapper, Maureen

    2002-01-01

    Foreign Research Reactor Spent nuclear fuel Acceptance Program is actively working with research reactors to accept eligible material before the Acceptance Policy proper expires in 2006. Reactors/governments wishing to participate should contact US immediately if they have not done so already. Program operations are changing to adapt to new challenges. We continue to promote the importance of this Program to senior management in the Department of Energy

  16. Water reactor safety research program. A description of current and planned research

    International Nuclear Information System (INIS)

    1978-07-01

    The U.S. Nuclear Regulatory Commission (NRC) sponsors confirmatory safety research on lightwater reactors in support of the NRC regulatory program. The principal responsibility of the NRC, as implemented through its regulatory program is to ensure that public health, public safety, and the environment are adequately protected. The NRC performs this function by defining conditions for the use of nuclear power and by ensuring through technical review, audit, and follow-up that these conditions are met. The NRC research program provides technical information, independent of the nuclear industry, to aid in discharging these regulatory responsibilities. The objectives of NRC's research program are the following: (1) to maintain a confirmatory research program that supports assurance of public health and safety, and public confidence in the regulatory program, (2) to provide objectively evaluated safety data and analytical methods that meet the needs of regulatory activities, (3) to provide better quantified estimates of the margins of safety for reactor systems, fuel cycle facilities, and transportation systems, (4) to establish a broad and coherent exchange of safety research information with other Federal agencies, industry, and foreign organization. Current and planned research toward these goals is described

  17. Recent upgrades and new scientific infrastructure of MARIA research reactor, Otwock-Swierk, Poland

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2015-07-01

    The MARIA reactor is open-pool type, water and beryllium moderated. It has two independent primary cooling systems: fuel and pool cooling system. Each fuel assembly is cooled down separately in pressurized channels with individual performances characterization. The fuel assemblies consist of five layers of bent plates or six concentric tubes. Currently it is one of the most powerful research reactors in Europe with operation availability at least up to 2030. Its nominal thermal power is 30 MW. It is characterized by high neutron flux density: up to 3x10{sup 14} n cm{sup -2} s{sup -1} in case of thermal neutrons, and up to 2x10{sup 13} n cm{sup -2} s{sup -1} in case of fast neutrons. The reactor is operated for ca. 4000 h per year. The reactor facility is equipped with fully equipped three hot cells with shielding up to 10{sup 15} Bq. Adjacent to the reactor facility, the radio-pharmaceutics plant (POLATOM) and Material Research Laboratory are located. They are equipped with a number of hot cells with instrumentation. The transport system of radioactive materials from reactor facility to Material Research Laboratory is available. During 2014 the MARIA reactor has been operated with three different types of fuel the same time: previous 36% enriched fuel, and two types of new LEU fuels. In the meantime, molybdenum irradiation programme has been developed. Maria is a multifunctional research tool, with a notable application in production of radioisotopes, radio-pharmaceutics manufacturing (ca. 600 TBq/y), {sup 99}Mo for medical scintigraphy (ca. 6000 TBq/y), neutron transmutation doping of silicon single crystals, wide scientific research based on neutron beams utilization. From the beginning MARIA reactor was intended for loop and fuel testing research activities. Currently it is used mostly as material testing and irradiation facility and for that reason it has wide experimental capabilities. There are eight horizontal irradiation channels from among whom six of them

  18. The reactor and cold neutron research facility at NIST

    Energy Technology Data Exchange (ETDEWEB)

    Prask, H J; Rowe, J M [Reactor Radiation Division, National Institute of Standards and Technology, Gaithersburg, MD (United States)

    1992-07-01

    The NIST Reactor (NBSR) is a 20 MW research reactor located at the Gaithersburg, MD site, and has been in operation since 1969. It services 26 thermal neutron facilities which are used for materials science, chemical analysis, nondestructive evaluation, neutron standards work, and irradiations. In 1987 the Department of Commerce and NIST began development of the CNRF - a $30M National Facility for cold neutron research -which will provide fifteen new experimental stations with capabilities currently unavailable in this country. As of May 1992, four of the planned seven guides and a cold port were installed, eight cold neutron experimental stations were operational, and the Call for Proposals for the second cycle of formally-reviewed guest-researcher experiments had been sent out. Some details of the performance of instrumentation are described, along with the proposed design of the new hydrogen cold source which will replace the present D{sub 2}O/H{sub 2}O ice cold source. (author)

  19. The reactor and cold neutron research facility at NIST

    International Nuclear Information System (INIS)

    Prask, H.J.; Rowe, J.M.

    1992-01-01

    The NIST Reactor (NBSR) is a 20 MW research reactor located at the Gaithersburg, MD site, and has been in operation since 1969. It services 26 thermal neutron facilities which are used for materials science, chemical analysis, nondestructive evaluation, neutron standards work, and irradiations. In 1987 the Department of Commerce and NIST began development of the CNRF - a $30M National Facility for cold neutron research -which will provide fifteen new experimental stations with capabilities currently unavailable in this country. As of May 1992, four of the planned seven guides and a cold port were installed, eight cold neutron experimental stations were operational, and the Call for Proposals for the second cycle of formally-reviewed guest-researcher experiments had been sent out. Some details of the performance of instrumentation are described, along with the proposed design of the new hydrogen cold source which will replace the present D 2 O/H 2 O ice cold source. (author)

  20. Optical inspections of research reactor tanks and tank components

    International Nuclear Information System (INIS)

    Boeck, H.; Hammer, J.

    1988-01-01

    By the end of 1987 worldwide there were 326 research reactors in operation, 276 of them operating more than 10 years, and 195 of them operating more than 20 years. The majority of these reactors are swimming-pool type or tank type reactors using aluminium as structural material. Although aluminium has prooven its excellent properties for reactor application in primary system, it is however subjected to various types of corrosion if it gets into contact with other materials such as mild steel in the presence of destilled water. This paper describes various methods of research reactor tank inspections, maintenance and repair possibilities. 9 figs. (Author)