WorldWideScience

Sample records for gear wheel shaft

  1. Ultrasonic test of highly stressed gear shafts

    Energy Technology Data Exchange (ETDEWEB)

    Schreiner, T. [Siemens AG, Power Generation, KWU, Muelheim (Germany); Heinrich, W. [Siemens AG, Power Generation, KWU, Berlin (Germany); Achtzehn, J. [Siemens AG, Power Generation, ICVW, Erlangen (Germany); Hensley, H. [Siemens Power Generation (Germany)

    1998-12-31

    In the power plant industry, gears are used for increasingly higher turbine capacities. Efficiency enhancements, particularly for the combined gas and steam turbine process, lead to an increase in stresses, even for high-performance gears. Consequently, the requirements for non-destructive material testing are on the increase as well. At Siemens KWU, high-performance gears are used so far only for gas turbines with lower rating (65 MW) to adapt the gas turbine speed (5413 rpm) to the generator speed (3000 rpm/ 50 Hz or 3600 rpm/60 Hz). The gear train consists of a forged and case-hardened wheel shaft and pinion shaft made of material 17 CrNiMo 6, where the wheel shaft can be either a solid or a hollow shaft. Dimensions are typically 2.3 m length and 1 m diameter. As a rule, pinion shafts are solid. The gear design, calling for an additional torsion shaft turning inside the hollow wheel shaft, can absorb more torsional load surges and is more tolerant of deviations during gear train alignment. This design requires two additional forgings (torsion shaft and hub) and an additional bearing 2 refs.

  2. Ultrasonic test of highly stressed gear shafts

    Energy Technology Data Exchange (ETDEWEB)

    Schreiner, T [Siemens AG, Power Generation, KWU, Muelheim (Germany); Heinrich, W [Siemens AG, Power Generation, KWU, Berlin (Germany); Achtzehn, J [Siemens AG, Power Generation, ICVW, Erlangen (Germany); Hensley, H [Siemens Power Generation (Germany)

    1999-12-31

    In the power plant industry, gears are used for increasingly higher turbine capacities. Efficiency enhancements, particularly for the combined gas and steam turbine process, lead to an increase in stresses, even for high-performance gears. Consequently, the requirements for non-destructive material testing are on the increase as well. At Siemens KWU, high-performance gears are used so far only for gas turbines with lower rating (65 MW) to adapt the gas turbine speed (5413 rpm) to the generator speed (3000 rpm/ 50 Hz or 3600 rpm/60 Hz). The gear train consists of a forged and case-hardened wheel shaft and pinion shaft made of material 17 CrNiMo 6, where the wheel shaft can be either a solid or a hollow shaft. Dimensions are typically 2.3 m length and 1 m diameter. As a rule, pinion shafts are solid. The gear design, calling for an additional torsion shaft turning inside the hollow wheel shaft, can absorb more torsional load surges and is more tolerant of deviations during gear train alignment. This design requires two additional forgings (torsion shaft and hub) and an additional bearing 2 refs.

  3. Gear-shaft linkage, especially for nuclear reactor coolant pumps

    International Nuclear Information System (INIS)

    Delaunois, T.; Lefevre, R.

    1990-01-01

    The pump comprises: - inlet and outlet channels for the pumped fluid - a rotating shaft - a gear wheel mounted on the shaft by an axial locking nut which can support the axial hydraulic force - a thermal barrier above the gear wheel. A hydrostatic bearing fitted to the exterior surround of the gear wheel, the gear shaft linkage is made by at least a centering and locating device having a cylindrical span and an axial stop and another independent device which can take up the torque [fr

  4. Electron Beam Welding of Gear Wheels by Splitted Beam

    Directory of Open Access Journals (Sweden)

    Dřímal Daniel

    2014-06-01

    Full Text Available This contribution deals with the issue of electron beam welding of high-accurate gear wheels composed of a spur gearing and fluted shaft joined with a face weld for automotive industry. Both parts made of the high-strength low-alloy steel are welded in the condition after final machining and heat treatment, performed by case hardening, whereas it is required that the run-out in the critical point of weldment after welding, i. e. after the final operation, would be 0.04 mm max..

  5. Torsional Moment Measurement on Bucket Wheel Shaft of Giant Machine

    Directory of Open Access Journals (Sweden)

    Jiří FRIES

    2011-06-01

    Full Text Available Bucket wheel loading at the present time (torsional moment on wheel shaft, peripheral cutting force is determined from electromotor incoming power or reaction force measured on gearbox hinge. Both methods together are weighted by steel construction absorption of driving units and by inertial forces of motor rotating parts. In the article is described direct method of the torsional moment measurement, which eliminates mentioned unfavourable impacts except absorption of steel construction of bucket wheel itself.

  6. OPTIMIZATION OF HEATING OF GEAR WHEEL USING NUMERICAL MODELING

    Directory of Open Access Journals (Sweden)

    Soňa Benešová

    2013-09-01

    Full Text Available Successful heat treating and carburizing of gear wheels for wind turbine gear boxes requires that plastic deformation in the wheel is minimized. Numerical modeling using the DEFORM software was aimed at exploring the effects of the base, on which the gear wheel rests during heating, on the heating process. Homogeneous heating was assumed. It was found that the base heats up more quickly than the workpiece. It is the consequence of the base's shape and volume. As a result, the base expands and slides against the wheel, predominantly at the first heating stage. Later on, it prevents the gear wheel from expanding, causing plastic deformation in the wheel. The findings were used for designing new heating schedules to minimize these undesirable interactions and to reduce the plastic deformation to a negligible magnitude. In addition, this paper presents an example of a practical use of numerical modeling in the DEFORM software.

  7. OPTIMIZATION OF HEATING OF GEAR WHEEL USING NUMERICAL MODELING

    Directory of Open Access Journals (Sweden)

    Sona Benesova

    2013-05-01

    Full Text Available Successful heat treating and carburizing of gear wheels for wind turbine gear boxes requires that plastic deformation in the wheel is minimized. Numerical modeling using the DEFORM software was aimed at exploring the effects of the base, on which the gear wheel rests during heating, on the heating process. Homogeneous heating was assumed. It was found that the base heats up more quickly than the workpiece. It is the consequence of the base's shape and volume. As a result, the base expands and slides against the wheel, predominantly at the first heating stage. Later on, it prevents the gear wheel from expanding, causing plastic deformation in the wheel. The findings were used for designing new heating schedules to minimize these undesirable interactions and to reduce the plastic deformation to a negligible magnitude. In addition, this paper presents an example of a practical use of numerical modeling in the DEFORM software.

  8. Light and Heavy Tactical Wheeled Vehicle Fuel Consumption Evaluations Using Fuel Efficient Gear Oils (FEGO)

    Science.gov (United States)

    2016-05-01

    UNCLASSIFIED LIGHT AND HEAVY TACTICAL WHEELED VEHICLE FUEL CONSUMPTION EVALUATIONS USING FUEL EFFICIENT GEAR OILS (FEGO) FINAL... HEAVY TACTICAL WHEELED VEHICLE FUEL CONSUMPTION EVALUATIONS USING FUEL EFFICIENT GEAR OILS (FEGO) FINAL REPORT TFLRF No. 477 by Adam C...August 2014 – March 2016 4. TITLE AND SUBTITLE LIGHT AND HEAVY TACTICAL WHEELED VEHICLE FUEL CONSUMPTION EVALUATIONS USING FEUL EFFICIENT GEAR OILS

  9. Improved circumferential shaft seal for aircraft gear transmissions

    Science.gov (United States)

    Ludwig, L. P.; Strom, T. N.

    1973-01-01

    Operation under simulated aircraft transmission conditions of speeds to 2850 m/min (9350 ft/min), lubricant temperatures to 394 K (250 F), shaft radial runouts to 0.254 mm (0.010 in.) F.I.R. (full indicator reading), and pressure differentials to 1.03 N/cm2 (1.5 psi) revealed that conventional circumferential seals leaked excessively. Modifying the conventional seal by adding helical grooves to the seal bore reduced leakage rates to within the acceptable level of 10 cm3/hr. The leakage rate of this modified seal was not significantly affected by lubricant flooding or by shaft radial runout.

  10. Finishing aeronautical planetary herringbone gear wheels in container vibrating smoothing machine

    Directory of Open Access Journals (Sweden)

    Jacek MICHALSKI

    2015-12-01

    Full Text Available The paper presents the technological process of abrasive-chemical machining wheel bearing surface of the cylindrical herringbone gears planetary gear in vibrating container smoothing machine according to Isotropic Finishing ISF® technology of the REM Chemicals Inc. company. Gear wheels are made of stainless Pyrowear 53 and subjected to carburizing, hardening, cold working and low tempering. The change in value of deviation indicators for the kinematic accuracy, smoothness and geometric structure of the machined surfaces of the gear teeth after smoothing compared with the contoured grinding were analyzed. The findings are different a characteristic performance on the surface of the tooth side along the outline, especially with a higher value at the head of the tooths. This creates a need for appropriate modification of the lateral surface of the teeth in the process of contoured grinding. The results of the mechanical strength of the samples gear wheel after the smoothing process and evaluating the hydrogen embrittlement are presented.

  11. Simulation of Dynamic Behavior of the Flexible Wheel of the Double Harmonic Gear Transmission

    Directory of Open Access Journals (Sweden)

    Draghiţa Ianici

    2014-06-01

    Full Text Available The paper presents the construction and functioning of a new type the harmonic gear transmission named double harmonic gear transmission, which can be used in the construction drives of industrial robots. In the second part of this paper is presented the dynamic analysis of the double harmonic gear transmission, which is based on the results of the numerical simulations of the flexible wheel in case of its deformation with a mechanical wave generator with disc cam. Investigation of dynamic behavior of the flexible toothed wheel was performed by using the finite element method in SolidWorks Simulation software.

  12. Cross-stream ejection in the inter-wheel region of aircraft landing gears

    Science.gov (United States)

    McCarthy, Philip; Ekmekci, Alis

    2014-11-01

    The reduction of aircraft noise is an important challenge currently faced by aircraft manufacturers. During approach and landing, the landing gears contribute a significant proportion of the aircraft generated noise. It is therefore critical that the key noise sources be identified and understood in order for effective mitigation methods to be developed. For a simplified two-wheel nose landing gear, a strong cross stream flow ejection phenomena has been observed to occur in the inter-wheel region in presence of wheel wells. The location and orientation of these flow ejections causes highly unsteady, three dimensional flow between the wheels that may impinge on other landing gear components, thereby potentially acting as a significant noise generator. The effects of changing the inter-wheel geometry (inter-wheel spacing, the wheel well depth and main strut geometry) upon the cross-stream ejection behaviour has been experimentally investigated using both qualitative flow visualisation and quantitative PIV techniques. A summary of the key results will be presented for the three main geometrical parameters under examination and the application of these findings to real life landing gears will be discussed. Thanks to Messier-Bugatti-Dowty and NSERC for their support for this project.

  13. Study of Effect of Quenching Deformation Influenced by 17CrNiMo6 Gear Shaft of Carburization

    Science.gov (United States)

    Pang, Zirui; Yu, Shenjun; Xu, Jinwu

    The 17CrNiMo6 steel is mainly used for the gear shaft of large modulus in many fields of heavy industry such as mining, transit, hoist, forging and so on[1]. The size of addendum circle and common normal line is changed a lot beyond the tolerance because of the long time of carburizing process and the out-of-step structural stress and thermal stress during the quenching process. And thus the posterior grinding efficiency and quality are influenced. In the paper comparison and analysis of the deformation affected by solid and hollow gear shafts were done and the methods of simulation and practice were both used. The results are as follows: the deformation of gear shaft was small before and after carburizing while that of gear shaft was large before and after quenching because of different cooling velocity, structure and hardness of each position. And the deformation of hollow was much smaller than that of solid. Therefore, if the hollow gear shaft is used, the waste of material will be decreased, and finishing cost will be reduced, and thus the technology of heat treatment will be optimized.

  14. 3000-HP Roller Gear Transmission Development Program. Volume 3. Roller Gear Manufacture

    Science.gov (United States)

    1975-07-01

    power is fed through the ramp roller clutch type free- wheel units to spur gears which mesh with the combining spur gear whose centerline is common...when the engine tends to turn faster than the main rotor shaft. It is in the free- wheel mode when the main rotor shaft tends to turn faster than the...gears are cut progrind at this time. Check face runout on each end of largo gears. Not to exceed .002" TIR 30 EBW one end 40 EBW opposite end

  15. Comparison of single and consecutive dual frequency induction surface hardening of gear wheels

    Science.gov (United States)

    Barglik, J.; Ducki, K.; Kukla, D.; Mizera, J.; Mrówka-Nowotnik, G.; Sieniawski, J.; Smalcerz, A.

    2018-05-01

    Mathematical modelling of single and consecutive dual - frequency induction surface hardening systems are presented and compared. The both models are solved by the 3D FEM-based professional software supported by a number of own numerical procedures. The methodology is illustrated with some examples of surface induction hardening of a gear wheel made of steel 41Cr4. The computations are in a good accordance with experiments provided on the laboratory stand.

  16. Vorticity amplification and its effects on flow separation from simplified landing gear wheels

    Science.gov (United States)

    McCarthy, Philip; Feltham, Graham; Ekmekci, Alis

    2015-11-01

    In the presence of weak streams of inbound vorticity, the stagnation region of bluff bodies have been shown to support mechanisms for the collection and amplification of said vorticity into large-scale, discrete vortex structures. For extremely low aspect ratio cylinders, such as those which represent simplified aircraft landing gear wheels, these discrete vortex structures tilt around the sides of the geometry, orientating their axes in the streamwise direction. Once the oncoming vorticity is collected and amplified into discrete vortices, they are shed from the stagnation region and this cycle repeats itself periodically. The present work investigates the effect of the vortex tilting and subsequent shedding on the behaviour of the outboard side flow separation region present on simplified landing gear wheels. Experiments were conducted in a recirculating-type water tunnel on a two-wheel landing gear model, with the upstream vorticity source being a 100 µm platinum wire. Hydrogen bubble visualisations were first used for qualitative understanding of the flow, accompanied by 2D-PIV for vortex identification and tracking of the growth and movement of the observed structures. Finally, the side separation bubble has been characterised using 3D velocity measurements (using V3V). The authors would like to thank Bombardier, Messier-Bugatti-Dowty and NSERC for their support for this project.

  17. Physical and Constructive (Limiting) Criterions of Gear Wheels Wear

    Science.gov (United States)

    Fedorov, S. V.

    2018-01-01

    We suggest using a generalized model of friction - the model of elastic-plastic deformation of the body element, which is located on the surface of the friction pairs. This model is based on our new engineering approach to the problem of friction-triboergodynamics. Friction is examined as transformative and dissipative process. Structural-energetic interpretation of friction as a process of elasto-plastic deformation and fracture contact volumes is proposed. The model of Hertzian (heavy-loaded) friction contact evolution is considered. The least wear particle principle is formulated. It is mechanical (nano) quantum. Mechanical quantum represents the least structural form of solid material body in conditions of friction. It is dynamic oscillator of dissipative friction structure and it can be examined as the elementary nanostructure of metal’s solid body. At friction in state of most complete evolution of elementary tribosystem (tribocontact) all mechanical quanta (subtribosystems) with the exception of one, elasticity and reversibly transform energy of outer impact (mechanic movement). In these terms only one mechanical quantum is the lost - standard of wear. From this position we can consider the physical criterion of wear and the constructive (limiting) criterion of gear teeth and other practical examples of tribosystems efficiency with new tribology notion - mechanical (nano) quantum.

  18. Hydromechanical transmission with three simple planetary assemblies, one sun gear being mounted on the output shaft and the other two on a common shaft connected to an input-driven hydraulic module

    Science.gov (United States)

    Orshansky, Jr., deceased, Elias; Weseloh, William E.

    1978-01-01

    A power transmission having three simple planetary assemblies, each having its own carrier and its own planet, sun, and ring gears. A speed-varying module is connected in driving relation to the input shaft and in driving relationship to the sun gears of the first two planetary assemblies, these two sun gears being connected together on a common shaft. The speed-varying means may comprise a pair of hydraulic units hydraulically interconnected so that one serves as a pump while the other serves as a motor and vice versa, one of the units having a variable stroke and being connected in driving relation to the input shaft, the other unit, which may have a fixed stroke, being connected in driving relation to the sun gears. The input shaft is also connected to drive the second ring gear and, furthermore is clutchable to the carrier of the third planetary assembly. A brake grounds the first carrier in the first range and in reverse and causes drive to be delivered to the output through the first ring gear in a hydrostatic mode. The carrier of the second planetary assembly drives the ring gear of the third planetary assembly, which is clutchable to the output shaft, and the sun gear of the third planetary assembly is mounted rigidly to the output shaft.

  19. Coupled vibration study of the blade of the flexible wind wheel with the low-speed shafting

    International Nuclear Information System (INIS)

    Su, L Y; Zhao, R Z; Liu, H; Meng, Z R

    2013-01-01

    Movement and deformation of flexible wind wheel has a profound effect on dynamics of the low-speed shafting in Megawatt wind turbine. The paper is based on the power production1.2 MW wind turbine, vibration characteristics of elastic wind wheel with the low-speed shafting were studied. In order to obtain the finite element model, the author created a physical model of this coupled system and used the minimum energy principle to simplify the model. While its single blade simplified as cantilever. Using modal superposition method for solving the coupled system model. Structural mechanics equations were used to solve the simple blade finite element model. Analyzing the natural frequency of the coupled system and the stress diagram, the results indicate that in the coupling system, low frequency vibration occurs in the low-speed shaft bearing, while the high-frequency vibration happens on wind turbine blades. In the low-frequency vibration process, blades vibration and low-speed shaft vibration there is a strong correlation. Contrast inherent frequency of the wind wheel with natural frequency of a single blade, the results show that the frequency of the wind wheel slightly less than it in the single blade

  20. DESIGN FOR A BI-PLANETARY GEAR TRAIN

    Directory of Open Access Journals (Sweden)

    Józef DREWNIAK

    2016-06-01

    Full Text Available The article presents the design for a bi-planetary gear train. The project description is supplemented with calculations of kinematics, statics and meshing efficiency of the gear wheels included in the gear train. Excluded are calculations of strength and geometry of gears, shaft and rolling bearing, since they are similar to classical calculations for planetary gears. An assembly drawing in 2D and assembly drawings in 3D of the designed bi-planetary gear train are also shown. This gear train will form the main element of the research in hand.

  1. Diagnostics of power transmissions system with tooth gear

    Directory of Open Access Journals (Sweden)

    Grzegorz WOJNAR

    2008-01-01

    Full Text Available This paper presents results of laboratory tests that were aimed at detecting early stages of various faults in toothed wheels by measurement and analysis of transverse vibration speed of the transmission gear shafts. In experimental investigation, cracking of the root tooth and chipping of the tooth were detected. The laser vibrometer Ometron VH300+ was used for non-contact measurement of shaft transversal vibration speed. Gear vibrations were recorded in selected points of gear housing and gear shafts at different speeds and gear loads. Results were analyzed and compared but in this paper is presented only selected examples. This paper shows that on the basis of the transverse vibration speed of transmission gear shafts, it is possible to detect defects at an earlier stage than on the basis of the housing vibration accelerations. In the case of measuring gear shaft vibration velocity, the way of the signal generated by the defect of a gear wheel (or bearing is shortened as well as the influence of composed transmittance of the bearing-gear housing system is eliminated. WV time-frequency analysis and complex continuous wavelet transformations were used for detection. The authors introduced a measure of local tooth damage, which was proportional to the size of damage. The results of research presented in this paperconfirmed that the defect's measure is very sensitive to the development of teeth faults.

  2. Hybrid Gear

    Science.gov (United States)

    Handschuh, Robert F. (Inventor); Roberts, Gary D. (Inventor)

    2016-01-01

    A hybrid gear consisting of metallic outer rim with gear teeth and metallic hub in combination with a composite lay up between the shaft interface (hub) and gear tooth rim is described. The composite lay-up lightens the gear member while having similar torque carrying capability and it attenuates the impact loading driven noise/vibration that is typical in gear systems. The gear has the same operational capability with respect to shaft speed, torque, and temperature as an all-metallic gear as used in aerospace gear design.

  3. Classification of fault diagnosis in a gear wheel by used probabilistic neural network, fast Fourier transform and principal component analysis

    Directory of Open Access Journals (Sweden)

    Piotr CZECH

    2007-01-01

    Full Text Available This paper presents the results of an experimental application of artificial neural network as a classifier of the degree of cracking of a tooth root in a gear wheel. The neural classifier was based on the artificial neural network of Probabilistic Neural Network type (PNN. The input data for the classifier was in a form of matrix composedof statistical measures, obtained from fast Fourier transform (FFT and principal component analysis (PCA. The identified model of toothed gear transmission, operating in a circulating power system, served for generation of the teaching and testing set applied for the experiment.

  4. DIAGNOSIS OF THE WINDING MACHINE IN THE OLD SHAFT WITH SKIP IN LONEA MINING PLANT

    Directory of Open Access Journals (Sweden)

    Răzvan Bogdan ITU

    2017-05-01

    Full Text Available To study the operation of the winding machine in the Old Shaft with Skip in Lonea Mining Plant, the dynamic analysis of the driving wheel (Koepe wheel was performed, by resistive electric tensometry methods, acceleration measurements, and vibromechanical analysis on the bearings of Koepe driving wheels, on functioning cycles and vibromechanical analysis of the reduction gear. The paper presents aspects regarding vibromechanical measurements and resistive electric tensometry methods in the winding machine..

  5. DIAGNOSIS OF THE WINDING MACHINE IN THE OLD SHAFT WITH SKIP IN LONEA MINING PLANT

    OpenAIRE

    Răzvan Bogdan ITU; Vilhelm ITU

    2017-01-01

    To study the operation of the winding machine in the Old Shaft with Skip in Lonea Mining Plant, the dynamic analysis of the driving wheel (Koepe wheel) was performed, by resistive electric tensometry methods, acceleration measurements, and vibromechanical analysis on the bearings of Koepe driving wheels, on functioning cycles and vibromechanical analysis of the reduction gear. The paper presents aspects regarding vibromechanical measurements and resistive electric tensometry me...

  6. Surface topography of cylindrical gear wheels after smoothing in abrasive mass, honing and shot peening

    International Nuclear Information System (INIS)

    Michalski, J; Pawlus, P; Zelasko, W

    2011-01-01

    The present paper presents the analysis of surface topography of gear teeth as the result of final machining processes. Teeth of multiple cylindrical gears shaped by grinding were smoothed in abrasive mass, honed or shot peened. The measurement of gears were made using coordinate measuring machine and 3D surface topography stylus instrument. The following deviations were studied; pitch deviation, total pitches deviations, variation of teeth thickness and deviation of gear radial run-out. Changes in teeth surface topography during machining process were determined. 3D surface topography parameters, surface directionality as well as areal autocorrelation and power spectral density functions were taken into consideration. As the results of the analysis, the best surface topography with regard to gear operational properties was recommended.

  7. Residual stress determination by neutron diffraction in a car gear-shaft made of 20NiCrMo2 alloyed case hardening steel

    Czech Academy of Sciences Publication Activity Database

    Rogante, M.; Mazzanti, M.; Mikula, Pavol; Vrána, Miroslav

    2012-01-01

    Roč. 50, č. 4 (2012), s. 213-220 ISSN 0023-432X R&D Projects: GA ČR(CZ) GAP204/12/1360 Institutional support: RVO:61389005 Keywords : 20NiCrMo2 steel * gear-shaft * caser hardening * residual stress * neutron diffraction Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 0.687, year: 2012

  8. The Monitoring System of the Operating State of the Gear Wheels of the Torque Multiplier of the Desalination Plant Steam Generator

    Science.gov (United States)

    Danilin, A. I.; Neverov, V. V.; Danilin, S. A.; Shimanov, A. A.; Tsapkova, A. B.

    2018-01-01

    The article describes a noncontact operational control method based on the processing of a microwave signal reflected from the controlled teeth of the wheel. In this paper describes the influence of wear patterns on the characteristic information parameters of the analyzed signals. The block diagram in section 3 shows the experimental system for monitoring the operating state of the gear wheels of the steam compressor torque multiplier. The design of the primary converter is briefly described.

  9. Gearing.

    Science.gov (United States)

    1985-12-01

    trichloroethyl phosphite and a phosphate ester containing a pentachlorphenyl radical. Most of the Asperity heights phosphorous compounds in gear oils...108) found that phosphorous compounds chemisorption. These boundary films can be thinner than ( 1 0 u ts n 0.025 pm (I in ) or several microinches thick...Pinion 1 .. dibutylxanthic acid disulfide. Ŗ %- Lead soaps have been used in lubricants for many 02 years. They resist the wiping and sliding action in

  10. Modern gear production

    CERN Document Server

    Watson, H J

    1970-01-01

    Modern Gear Production focuses on the processes and methods in gear making. The book first gives information on the history of gear making and types of gears. Topics such as the classification of gears based on the disposition of their shafts; shafts lying in the same plane with axes intersecting; and shafts lying in parallel planes but with axes inclined to one another are then discussed. The text describes gear groups, tooth forms, and gear materials. Heat treatment of steels, casehardening, nitriding, induction hardening, sulfinuzing, and flame hardening are explained. The book takes a look

  11. Prediction of potential failures in hydraulic gear pumps

    Directory of Open Access Journals (Sweden)

    E. Lisowski

    2010-07-01

    Full Text Available Hydraulic gear pumps are used in many machines and devices. In hydraulic systems of machines gear pumps are main component ofsupply unit or perform auxiliary function. Gear pumps opposite to vane pumps are less complicated. They consists of such components as:housing, gear wheels, bearings, shaft, seal for rotation motion which are not very sensitive for damage and that is why they are using veryoften. However, gear pumps are break down from time to time. Usually damage of pump cause shutting down of machines and devices.One of the way for identifying potential failures and foreseeing their effects is a quality method. On the basis of these methods apreventing action might be undertaken before failure appear. In this paper potential failures and damages of a gear pump were presented bythe usage of matrix FMEA analysis.

  12. The application of optical measurements for the determination of accuracy of gear wheels casts manufactured in the RT/RP process

    Directory of Open Access Journals (Sweden)

    G. Budzik

    2010-01-01

    Full Text Available The article discusses the possibilities of using optical measurements for defining the geometric accuracy of gear wheels casts manufactured in the rapid prototyping process. The tested gear wheel prototype was cast using an aluminum alloy. The casting mould was made by means of the three-dimensional print method (3DP with the use of a Z510 Spectrum device. The aim of the tests was to determine the geometric accuracy of the cast made by the ZCast technology in the rapid prototyping process. The tests were conducted with the use of the coordinate optical measuring method and a GOM measuring device. The prototype measurements were made in the scanning mode. The results of the measurements, saved in the STL format with the use of the scanning device software, were compared with the gear wheel 3D-CAD nominal model. The measurements enabled the determination of the real accuracy of prototypes manufactured in casting moulds by means of the ZCast technology. The selection of the measuring method was also analyzed in terms of measurement accuracy and the RP technology precision.

  13. Design and Analysis of Drive Shaft using Kevlar/Epoxy and Glass/Epoxy as a Composite Material

    Science.gov (United States)

    Karthikeyan, P.; Gobinath, R.; Kumar, L. Ajith; Jenish, D. Xavier

    2017-05-01

    In automobile industry drive shaft is one of the most important components to transmit power form the engine to rear wheel through the differential gear. Generally steel drive shaft is used in automobile industry, nowadays they are more interested to replace steel drive shaft with that of composite drive shaft. The overall objective of this paper is to analyze the composite drive shaft using to find out the best replacement for conventional steel drive shaft. The uses of advanced composite materials such as Kevlar, Graphite, Carbon and Glass with proper resins ware resulted in remarkable achievements in automobile industry because of its greater specific strength and specific modulus, improved fatigue and corrosion resistances and reduction in energy requirements due to reduction in weight as compared to steel shaft. This paper is to presents, the modeling and analysis of drive shaft using Kevlar/Epoxy and Glass/Epoxy as a composite material and to find best replacement for conventional steel drive shafts with an Kevlar/epoxy or Glass/Epoxy resin composite drive shaft. Modeling is done using CATIA software and Analysis is carried out by using ANSYS 10.0 software for easy understanding. The composite drive shaft reduces the weight by 81.67 % for Kevlar/Epoxy and 72.66% for Glass/Epoxy when compared with conventional steel drive shaft.

  14. Experimental Research on Vibrations of Double Harmonic Gear Transmission

    Directory of Open Access Journals (Sweden)

    Sava Ianici

    2017-11-01

    Full Text Available Gears transmission can be important sources of vibration in the mechanical system structures and can have a significant share in the overall vibration level. The current trend of significant increase in powers and speeds transmitted by modern mechanical systems, along with the size reduction, may cause a worsening of the behaviour of transmissions with gears in terms of vibration, especially when the optimization criteria were not respected in the design, execution and installation phase. This paper presents a study of vibrations that occur in a double harmonic gear transmission (DHGT, based on experimental research. The experimental researches revealed that in a double harmonic gear transmission the vibrations are initiated and develop in the multipara harmonics engagement of the teeth and in the kinematic couplings materialized between the wave generator and the flexible toothed wheel. These vibrations are later transmitted by means of the shafts and bearings to the transmission housing, respectively, through the walls of it, propagating in the air.

  15. Topology of modified helical gears and Tooth Contact Analysis (TCA) program

    Science.gov (United States)

    Litvin, Faydor L.; Zhang, Jiao

    1989-01-01

    The contents of this report covers: (1) development of optimal geometries for crowned helical gears; (2) a method for their generation; (3) tooth contact analysis (TCA) computer programs for the analysis of meshing and bearing contact of the crowned helical gears; and (4) modelling and simulation of gear shaft deflection. The developed method for synthesis was used to determine the optimal geometry for a crowned helical pinion surface and was directed to localize the bearing contact and guarantee favorable shape and a low level of transmission errors. Two new methods for generation of the crowned helical pinion surface are proposed. One is based on the application of a tool with a surface of revolution that slightly deviates from a regular cone surface. The tool can be used as a grinding wheel or as a shaver. The other is based on a crowning pinion tooth surface with predesigned transmission errors. The pinion tooth surface can be generated by a computer-controlled automatic grinding machine. The TCA program simulates the meshing and bearing contact of the misaligned gears. The transmission errors are also determined. The gear shaft deformation was modelled and investigated. It was found that the deflection of gear shafts has the same effect as gear misalignment.

  16. Cloud-based shaft torque estimation for electric vehicle equipped with integrated motor-transmission system

    Science.gov (United States)

    Zhu, Xiaoyuan; Zhang, Hui; Yang, Bo; Zhang, Guichen

    2018-01-01

    In order to improve oscillation damping control performance as well as gear shift quality of electric vehicle equipped with integrated motor-transmission system, a cloud-based shaft torque estimation scheme is proposed in this paper by using measurable motor and wheel speed signals transmitted by wireless network. It can help reduce computational burden of onboard controllers and also relief network bandwidth requirement of individual vehicle. Considering possible delays during signal wireless transmission, delay-dependent full-order observer design is proposed to estimate the shaft torque in cloud server. With these random delays modeled by using homogenous Markov chain, robust H∞ performance is adopted to minimize the effect of wireless network-induced delays, signal measurement noise as well as system modeling uncertainties on shaft torque estimation error. Observer parameters are derived by solving linear matrix inequalities, and simulation results using acceleration test and tip-in, tip-out test demonstrate the effectiveness of proposed shaft torque observer design.

  17. The Design of a Four Square Gear Tester for Noise and Vibration Measurements.

    Science.gov (United States)

    1986-12-01

    c z 60 Components Ghs 0 50 - Pinion Component 4tc x 40 Wheel Side 3tc ~30 L. I*3BandH 103 x1033 x10 3 4 x10 3 Frequency, 11z 80’A Wegtn C~4 70 t c...the time varying tooth loads in the basic gear geometry and machining errors such as tooth profile error, pitch circle runout , and tooth spacing...must be compatible to the levels accepted by the couplings, bearings, and gear mounts. 3) The shafts must possess a very low runout ( runout is the

  18. Worm gear efficiency model considering misalignment in electric power steering systems

    Directory of Open Access Journals (Sweden)

    S. H. Kim

    2018-05-01

    Full Text Available This study proposes a worm gear efficiency model considering misalignment in electric power steering systems. A worm gear is used in Column type Electric Power Steering (C-EPS systems and an Anti-Rattle Spring (ARS is employed in C-EPS systems in order to prevent rattling when the vehicle goes on a bumpy road. This ARS plays a role of preventing rattling by applying preload to one end of the worm shaft but it also generates undesirable friction by causing misalignment of the worm shaft. In order to propose the worm gear efficiency model considering misalignment, geometrical and tribological analyses were performed in this study. For geometrical analysis, normal load on gear teeth was calculated using output torque, pitch diameter of worm wheel, lead angle and normal pressure angle and this normal load was converted to normal pressure at the contact point. Contact points between the tooth flanks of the worm and worm wheel were obtained by mathematically analyzing the geometry, and Hertz's theory was employed in order to calculate contact area at the contact point. Finally, misalignment by an ARS was also considered into the geometry. Friction coefficients between the tooth flanks were also researched in this study. A pin-on-disk type tribometer was set up to measure friction coefficients and friction coefficients at all conditions were measured by the tribometer. In order to validate the worm gear efficiency model, a worm gear was prepared and the efficiency of the worm gear was predicted by the model. As the final procedure of the study, a worm gear efficiency measurement system was set and the efficiency of the worm gear was measured and the results were compared with the predicted results. The efficiency considering misalignment gives more accurate results than the efficiency without misalignment.

  19. Analysis of gear reducer housing using the finite element method

    Science.gov (United States)

    Miklos, I. Zs; Miklos, C. C.; Alic, C. I.; Raţiu, S.

    2018-01-01

    The housing is an important component in the construction of gear reducers, having the role of fixing the relative position of the shafts and toothed wheels. At the same time, the housing takes over, via the bearings, the shaft loads resulting when the toothed wheel is engaging another toothed mechanism (i.e. power transmission through belts or chains), and conveys them to the foundation on which it is anchored. In this regard, in order to ensure the most accurate gearing, a high stiffness of the housing is required. In this paper, we present the computer-aided 3D modelling of the housing (in cast version) of a single stage cylindrical gear reducer, using the Autodesk Inventor Professional software, on the principle of constructive sizing. For the housing resistance calculation, we carried out an analysis using the Autodesk Simulation Mechanical software to apply the finite element method, based on the actual loads, as well as a comparative study of the stress and strain distribution, for several tightening values of the retaining bolts that secure the cover and the foundation housing.

  20. Failure analysis of axle shaft of a fork lift

    Directory of Open Access Journals (Sweden)

    Souvik Das

    2015-04-01

    Full Text Available An axle shaft of fork lift failed at operation within 296 h of service. The shaft transmits torque from discrepancy to wheel through planetary gear arrangement. A section of fractured axle shaft made of induction-hardened steel was analyzed to determine the root cause of the failure. Optical microscopies as well as field emission gun scanning electron microscopy (FEG-SEM along with energy dispersive spectroscopy (EDS were carried out to characterize the microstructure. Hardness profile throughout the cross-section was evaluated by micro-hardness measurements. Chemical analysis indicated that the shaft was made of 42CrMo4 steel grade as per specification. Microstructural analysis and micro-hardness profile revealed that the shaft was improperly heat treated resulting in a brittle case, where crack was found to initiate from the case in a brittle mode in contrast to ductile mode within the core. This behaviour was related to differences in microstructure, which was observed to be martensitic within the case with a micro-hardness equivalent to 735 HV, and a mixture of non-homogeneous structure of pearlite and ferrite within the core with a hardness of 210 HV. The analysis suggests that the fracture initiated from the martensitic case as brittle mode due to improper heat treatment process (high hardness. Moreover the inclusions along the hot working direction i.e. in the longitudinal axis made the component more susceptible to failure.

  1. Gears and gear drives

    CERN Document Server

    Jelaska, Damir T

    2012-01-01

    Understanding how gears are formed and how they interact or 'mesh' with each other is essential when designing equipment that uses gears or gear trains. The way in which gear teeth are formed and how they mesh is determined by their geometry and kinematics, which is the topic of this book.  Gears and Gear Drives provides the reader with comprehensive coverage of gears and gear drives. Spur, helical, bevel, worm and planetary gears are all covered, with consideration given to their classification, geometry, kinematics, accuracy control, load capacity and manufacturing. Cylindric

  2. Offset Compound Gear Drive

    Science.gov (United States)

    Stevens, Mark A.; Handschuh, Robert F.; Lewicki, David G.

    2010-01-01

    The Offset Compound Gear Drive is an in-line, discrete, two-speed device utilizing a special offset compound gear that has both an internal tooth configuration on the input end and external tooth configuration on the output end, thus allowing it to mesh in series, simultaneously, with both a smaller external tooth input gear and a larger internal tooth output gear. This unique geometry and offset axis permits the compound gear to mesh with the smaller diameter input gear and the larger diameter output gear, both of which are on the same central, or primary, centerline. This configuration results in a compact in-line reduction gear set consisting of fewer gears and bearings than a conventional planetary gear train. Switching between the two output ratios is accomplished through a main control clutch and sprag. Power flow to the above is transmitted through concentric power paths. Low-speed operation is accomplished in two meshes. For the purpose of illustrating the low-speed output operation, the following example pitch diameters are given. A 5.0 pitch diameter (PD) input gear to 7.50 PD (internal tooth) intermediate gear (0.667 reduction mesh), and a 7.50 PD (external tooth) intermediate gear to a 10.00 PD output gear (0.750 reduction mesh). Note that it is not required that the intermediate gears on the offset axis be of the same diameter. For this example, the resultant low-speed ratio is 2:1 (output speed = 0.500; product of stage one 0.667 reduction and stage two 0.750 stage reduction). The design is not restricted to the example pitch diameters, or output ratio. From the output gear, power is transmitted through a hollow drive shaft, which, in turn, drives a sprag during which time the main clutch is disengaged.

  3. Shaft Boring Machine: A method of mechanized vertical shaft excavation

    International Nuclear Information System (INIS)

    Goodell, T.M.

    1991-01-01

    The Shaft Boring Machine (SBM) is a vertical application of proven rock boring technology. The machine applies a rotating cutter wheel with disk cutters for shaft excavation. The wheel is thrust against the rock by hydraulic cylinders and slews about the shaft bottom as it rotates. Cuttings are removed by a clam shell device similar to conventional shaft mucking and the muck is hoisted by buckets. The entire machine moves down (and up) the shaft through the use of a system of grippers thrust against the shaft wall. These grippers and their associated cylinders also provide the means to maintain verticality and stability of the machine. The machine applies the same principles as tunnel boring machines but in a vertical mode. Other shaft construction activities such as rock bolting, utility installation and shaft concrete lining can be accomplished concurrent with shaft boring. The method is comparable in cost to conventional sinking to a depth of about 460 meters (1500 feet) beyond which the SBM has a clear host advantage. The SBM has a greater advantage in productivity in that it can excavate significantly faster than drill and blast methods

  4. Shaft adjuster

    Science.gov (United States)

    Harry, Herbert H.

    1989-01-01

    Apparatus and method for the adjustment and alignment of shafts in high power devices. A plurality of adjacent rotatable angled cylinders are positioned between a base and the shaft to be aligned which when rotated introduce an axial offset. The apparatus is electrically conductive and constructed of a structurally rigid material. The angled cylinders allow the shaft such as the center conductor in a pulse line machine to be offset in any desired alignment position within the range of the apparatus.

  5. Theory of gearing kinematics, geometry, and synthesis

    CERN Document Server

    Radzevich, Stephen P

    2012-01-01

    The first book of its kind, Theory of Gearing: Kinematics, Geometry, and Synthesis systematically develops a scientific theory of gearing that makes it possible to synthesize novel gears with the desired performance. Written by a leading gearing expert who holds more than 200 patents, it presents a modern methodology for gear design. The proposed theory is based on a key postulate: all the design parameters for an optimal gear pair for a particular application can be derived from (a) a given configuration of the rotation vectors of the driving and driven shafts and (b) the power transmitted by

  6. Offset Compound Gear Inline Two-Speed Drive

    Science.gov (United States)

    Stevens, Mark A. (Inventor); Handschuh, Robert F. (Inventor); Lewicki, David G. (Inventor)

    2014-01-01

    A two-speed transmission having an input shaft and an output shaft, the transmission being capable of transitioning between fixed ratios, the high-range ratio being direct 1:1 and the low-range ratio being about 2:1. The transmission is a simple lightweight, yet robust, configuration utilizing only two gear meshes, being comprised of an input gear, a cluster gear, and an output gear. The transmission is controlled with a clutch and a sprag and with the input and output shafts turning in the same direction.

  7. Reduction of belt CVT gear noise by gear train modification. Optimize vibration characteristics of gear train; Belt CVT no gear noise teigen gijutsu. Gear train shindo tokusei no saitekika

    Energy Technology Data Exchange (ETDEWEB)

    Arimatsu, M; Kawakami, T [Nissan Motor Co. Ltd., Tokyo (Japan)

    1997-10-01

    With the reduction of vehicle noise, the requirements for an efficient method to reduce transmission gear noise have become stronger yearly. So far efforts to reduce gear noise have generally focused on ways of improving the gears themselves. In addition to these traditional methods, it proved very beneficial to us to optimize the gear train structure. Nissan has just released the new Belt CVT for 2.0L Front wheel drive vehicles. We have been analyzing vibration of the gear train by using a finite element model since the early development stage, and we could achieve the quiet gears effectively. 2 refs., 9 figs.

  8. Shaft Position Influence on Technical Characteristics of Universal Two-Stages Helical Speed Reducers

    OpenAIRE

    Мilan Rackov; Zeljko Kanovic; Sinisa Kuzmanovic; Ruzica Trbojevic

    2005-01-01

    Purchasers of speed reducers decide on buying those reducers, that can the most approximately satisfy their demands with much smaller costs. Amount of used material, ie. mass and dimensions of gear unit influences on gear units price. Mass and dimensions of gear unit, besides output torque, gear unit ratio and efficiency, are the most important parameters of technical characteristics of gear units and their quality. Centre distance and position of shafts have significant influence on output t...

  9. Linear dynamic coupling in geared rotor systems

    Science.gov (United States)

    David, J. W.; Mitchell, L. D.

    1986-01-01

    The effects of high frequency oscillations caused by the gear mesh, on components of a geared system that can be modeled as rigid discs are analyzed using linear dynamic coupling terms. The coupled, nonlinear equations of motion for a disc attached to a rotating shaft are presented. The results of a trial problem analysis show that the inclusion of the linear dynamic coupling terms can produce significant changes in the predicted response of geared rotor systems, and that the produced sideband responses are greater than the unbalanced response. The method is useful in designing gear drives for heavy-lift helicopters, industrial speed reducers, naval propulsion systems, and heavy off-road equipment.

  10. The design and analysis of single flank transmission error testor for loaded gears

    Science.gov (United States)

    Houser, D. R.; Bassett, D. E.

    1985-01-01

    Due to geometrical imperfections in gears and finite tooth stiffnesses, the motion transmitted from an input gear shaft to an output gear shaft will not have conjugate action. In order to strengthen the understanding of transmission error and to verify mathematical models of gear transmission error, a test stand that will measure the transmission error of a gear pair at operating loads, but at reduced speeds would be desirable. This document describes the design and development of a loaded transmission error tester. For a gear box with a gear ratio of one, few tooth meshing combinations will occur during a single test. In order to observe the effects of different tooth mesh combinations and to increase the ability to load test gear pairs with higher gear ratios, the system was designed around a gear box with a gear ratio of two.

  11. 46 CFR 97.37-33 - Instructions for changing steering gear.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Instructions for changing steering gear. 97.37-33... steering gear. (a) Instructions in at least 1/2 inch letters and figures shall be posted in the steering... gear. Each clutch, gear, wheel, lever, valve, or switch which is used during the changeover shall be...

  12. Shaft Position Influence on Technical Characteristics of Universal Two-Stages Helical Speed Reducers

    Directory of Open Access Journals (Sweden)

    Мilan Rackov

    2005-10-01

    Full Text Available Purchasers of speed reducers decide on buying those reducers, that can the most approximately satisfy their demands with much smaller costs. Amount of used material, ie. mass and dimensions of gear unit influences on gear units price. Mass and dimensions of gear unit, besides output torque, gear unit ratio and efficiency, are the most important parameters of technical characteristics of gear units and their quality. Centre distance and position of shafts have significant influence on output torque, gear unit ratio and mass of gear unit through overall dimension of gear unit housing. Thus these characteristics are dependent on each other. This paper deals with analyzing of centre distance and shaft position influence on output torque and ratio of universal two stages gear units.

  13. Application of Face-Gear Drives in Helicopter Transmissions

    Science.gov (United States)

    Litvin, F. L.; Wang, J.-C.; Bossler, R. B., Jr.; Chen, Y.-J. D.; Heath, G.; Lewicki, D. G.

    1992-01-01

    The use of face gears in helicopter transmissions was explored. A light-weight, split torque transmission design utilizing face gears was described. Face-gear design and geometry were investigated. Topics included tooth generation, limiting inner and outer radii, tooth contact analysis, contact ratio, gear eccentricity, and structural stiffness. Design charts were developed to determine minimum and maximum face-gear inner and outer radii. Analytical study of transmission error showed face-gear drives were relatively insensitive to gear misalignment, but tooth contact was affected by misalignment. A method of localizing bearing contact to compensate for misalignment was explored. The proper choice of shaft support stiffness enabled good load sharing in the split torque transmission design. Face-gear experimental studies were also included and the feasibility of face gears in high-speed, high-load applications such as helicopter transmissions was demonstrated.

  14. Modelación de las cargas de reacción en los apoyos de los árboles de la Transmisión por tornillo sinfín. // Reaction loads models in shafts supports of worm gear transmissions.

    Directory of Open Access Journals (Sweden)

    G. Rivero Llerena

    2006-05-01

    Full Text Available El análisis y cálculo de las cargas que se generan en los apoyos de los árboles de los conjuntos mecánicos rotatorios, resultaun proceso complejo pero imprescindible en la tarea de selección de los rodamientos, por ello en el presente trabajo sepropone el uso de las NTIC como herramientas efectivas de diseño y modelación para la solución de este problema. En estainvestigación se trata el caso de la transmisión por tornillo sinfín por su importancia en los accionamientos industriales y enotros campos, se ha formalizado en tres modelos, el análisis de las cargas de operación y de reacción que se producendurante el funcionamiento. Se presentan los resultados que puede brindar el software de cálculo creado, usando el paquetede información que contiene la modelación realizada para obtener una respuesta ágil y exacta de las cargas de reacciónresultantes en los apoyos de árboles.Palabras claves: Sinfín, rodamiento, modelación.______________________________________________________________________________Abstract.The analysis and calculation of the loads generated in the shafts supports of the rotational machines, is a complex butindispensable process in the task of selection rolling bearings. The present paper exposes the use of the NTIC like effectivetools of design and modelling in order to solve this problem. The worm gear transmission case is studied in thisinvestigation because their importance in the industrial machinery and other fields, the analysis of the operation andreaction loads has been formalized in three models. Also it is presented the results of software for calculation, using theinformation package that contains the three models for obtaining an agile and exact answer of the resulting reaction loads inthe shafts supports.Key words: Worm gear, bearing, modelling.

  15. Analisa Kekuatan Spiral Bevel Gear Dengan Variasi Sudut Spiral Menggunakan Metode Elemen Hingga

    OpenAIRE

    Deta Rachmat Andika; Agus Sigit Pramono

    2017-01-01

    Seiring perkembangan zaman,  teknologi roda gigi dituntut untuk mampu mentransmisikan daya yang besar dengan efisiensi yang besar pula. Pada jenis intersecting shaft gear, tipe roda gigi payung spiral (spiral bevel gear)  merupakan perkembangan dari roda gigi payung bergigi lurus (straight bevel gear). Kelebihan dari spiral bevel gear antara  lain adalah kemampuan transmisi daya dan efisiensi yang lebih besar pada geometri yang sama serta tidak terlalu berisik. Akan tetapi spiral bevel gear j...

  16. Phenomena of Foamed Concrete under Rolling of Aircraft Wheels

    Science.gov (United States)

    Jiang, Chun-shui; Yao, Hong-yu; Xiao, Xian-bo; Kong, Xiang-jun; Shi, Ya-jie

    2014-04-01

    Engineered Material Arresting System (EMAS) is an effective technique to reduce hazards associated with aircraft overrunning runway. In order to ascertain phenomena of the foamed concrete used for EMAS under rolling of aircraft wheel, a specially designed experimental setup was built which employed Boeing 737 aircraft wheels bearing actual vertical loads to roll through the foamed concrete. A number of experiments were conducted upon this setup. It is discovered that the wheel rolls the concrete in a pure rolling manner and crushes the concrete downwards, instead of crushing it forward, as long as the concrete is not higher than the wheel axle. The concrete is compressed into powder in-situ by the wheel and then is brought to bottom of the wheel. The powder under the wheel is loose and thus is not able to sustain wheel braking. It is also found that after being rolled by the wheel the concrete exhibits either of two states, i.e. either 'crushed through' whole thickness of the concrete or 'crushed halfway', depending on combination of strength of the concrete, thickness of the concrete, vertical load the wheel carries, tire dimension and tire pressure. A new EMAS design concept is developed that if an EMAS design results in the 'crushed through' state for the main gears while the 'crushed halfway' state for the nose gear, the arresting bed would be optimal to accommodate the large difference in strength between the nose gear and the main gear of an aircraft.

  17. Generating Cycloidal Gears for 3D Printing

    OpenAIRE

    Daniels, Sunny

    2016-01-01

    (Shortened version of abstract in article itself) This article describes an algorithm for producing, for any desired resolution and any desired numbers of wheel and pinion teeth, polygonal approximations to the shapes of a pair of cycloidal gears that mesh correctly. An Octave implementation of the algorithm, mostly written in 2014, is included. The Octave implementation contains a (crude, but evidently adequate, at least for reasonable numbers of wheel and pinion teeth) solution of the probl...

  18. A fully omnidirectional wheeled assembly for robotic vehicles

    International Nuclear Information System (INIS)

    Killough, S.M.; Pin, F.G.

    1990-01-01

    A large number of wheeled or tracked platform mechanisms have been studied and developed to provide their mobility capability to teleoperated and autonomous robot vehicles. This paper presents an original wheeled platform based on an orthogonal wheel assembly that provides a full (three-degrees-of-freedom) omnidirectionality of the platform without wheel slippage and with the capability for simultaneous motions in rotation and translation (including sideways movements). A schematic of the basic wheel assembly is shown. The motion of the assembly is unconstrained (freewheeling) in the direction parallel to the main assembly shaft, while it is constrained in the direction perpendicular to the shaft, being driven in this direction by rotation of the shaft. A prototype platform was constructed to demonstrate the feasibility of this new concept

  19. Bevel gear driver and method having torque limit selection

    Science.gov (United States)

    Cook, Joseph S., Jr.

    1994-08-01

    This invention comprises a torque drive mechanism utilizing axially translatable, mutually engageable transmission members having mating crown gears, driven and driving members with a three-element drive train being biased together by resilient means or by a fluid actuator system, the apparatus being operable to transmit a precisely controlled degree of torque to a driven member. The apparatus is applicable for use in hand tools and as a replacement for impact torque drivers, torque wrenches, motorized screw drivers, or the like, wherein the applied torque must be precisely controlled or limited. The bevel torque drive includes a drive gear which is axially displaceable and rotatable within cylindrical driver housing, a rotatable intermediate gear, and an output gear. Key rotationally secures displaceable gear with respect to input shaft but permits axial movement therebetween. A thrust bearing is preferably connected to the lower end of shaft for support to reduce play and friction between shaft and a transmission joint disc during rotation of the gear train. Coaxially mounted coiled spring is footed against displaceable gear for biasing the displaceable gear toward and into engagement with the intermediate gear for driving intermediate gear and output gear. Torque control is achieved by the use of straight or spiral beveled gears which are of configurations adapted to withdraw from mutual engagement upon the torque exceeding a predetermined limit. The novel, advantageous features of the invention include the configuration of the mating, crown gear sets and the axially translatable, slidable drive gear. The mechanism is capable of transmitting a high degree of torque within a narrow, compact transmission housing. The compact size and narrow, elongated configuration of the housing is particularly applicable for use in hand tools and in multiple torque driver mechanisms in which it is necessary to drive multiple fasteners which are located in close proximity. Prior

  20. Multi-stage internal gear/turbine fuel pump

    Energy Technology Data Exchange (ETDEWEB)

    Maier, Eugen; Raney, Michael Raymond

    2004-07-06

    A multi-stage internal gear/turbine fuel pump for a vehicle includes a housing having an inlet and an outlet and a motor disposed in the housing. The multi-stage internal gear/turbine fuel pump also includes a shaft extending axially and disposed in the housing. The multi-stage internal gear/turbine fuel pump further includes a plurality of pumping modules disposed axially along the shaft. One of the pumping modules is a turbine pumping module and another of the pumping modules is a gerotor pumping module for rotation by the motor to pump fuel from the inlet to the outlet.

  1. Development and Simulation of a Type of Four-Shaft ECVT for a Hybrid Electric Vehicle

    Directory of Open Access Journals (Sweden)

    Yong Zhang

    2016-02-01

    Full Text Available In hybrid electric vehicles with power-split configurations, the engine can be decoupled from the wheel and operated with improved fuel economy, while the entire efficiency of the powertrain is affected by the circular electric power flow. Two planetary gear (2-PG sets with adding brakes/clutches, namely a type of four shaft elelctric continuously variable transmission (ECVT can provide multi-mode operation for the powertrain and extend the efficient area. First, a conventional 2-PG AT (Automatic Transmission architecture is investigated. By analyzing and comparing the connection and operating modes based on the kinematic relationship and lever analogy, a feasible four-shaft ECVT architecture with two brakes and two simplified versions are picked. To make a trade-off between fuel economy and configuration complexity, an instantaneous optimal control strategy based on the equivalent consumption minimization strategy (ECMS concept is then developed and employed as the unified optimization method in the simulations of three different configurations. Finally, the simulation results show that the simplified versions are suboptimal sets and the fuel economy is sacrificed by the limits of different modes. From the viewpoint of concept design, a multi-mode power-split configuration is more suitable for hybrid electric vehicles. This research applied a systematic methodology from concept design to energy management optimization, which can provide the guidelines for researchers to select a suitable multi-mode power-split hybrid powertrain.

  2. Grinding Method and Error Analysis of Eccentric Shaft Parts

    Science.gov (United States)

    Wang, Zhiming; Han, Qiushi; Li, Qiguang; Peng, Baoying; Li, Weihua

    2017-12-01

    RV reducer and various mechanical transmission parts are widely used in eccentric shaft parts, The demand of precision grinding technology for eccentric shaft parts now, In this paper, the model of X-C linkage relation of eccentric shaft grinding is studied; By inversion method, the contour curve of the wheel envelope is deduced, and the distance from the center of eccentric circle is constant. The simulation software of eccentric shaft grinding is developed, the correctness of the model is proved, the influence of the X-axis feed error, the C-axis feed error and the wheel radius error on the grinding process is analyzed, and the corresponding error calculation model is proposed. The simulation analysis is carried out to provide the basis for the contour error compensation.

  3. MODELING THE DOUBLE WORM-FACE GEARS

    Directory of Open Access Journals (Sweden)

    BOLOŞ Codruţa

    2015-06-01

    Full Text Available The worm-face gear family, invented 60 years ago, contains in its structure several variants which have the following defining elements: tapered worm, reverse tapered worm and cylindrical worm. This type of gear can be realized with a single wheel and also in engagement with the second embodiment of the front worm wheels. This paper presents the matrix - vectorial mathematical model of the double worm-face gear with cylindrical worm and a graphical modeling which is based on the specific geometrical characteristics accomplished by means of the Autodesk Inventor 3D modeling program. The applicability of the study, considering the solutions which it suggests, aims to create opportunities for the use of modern rapid prototyping and analysis of stress FEM technique.

  4. The theory and practice of worm gear drives

    CERN Document Server

    Dudás, Ilés

    2005-01-01

    Worm gears are special gears that resemble screws, and can be used to drive other gears. Worm gears, enable two non-touching shafts in a machine to mesh (join) together. This publication, unique in that it combines both theoretical and practical design aspects, including the latest results of research and development, provides detailed treatment of the theory and production of worm drives, as well as the overarching subject of production geometry of helicoidal surfaces.Included are mathematical models for a number of practical applications; a description of dressing equipment r

  5. Hardness and microstructure analysis of damaged gear caused by adhesive wear

    Science.gov (United States)

    Mahendra, Rizky Budi; Nugroho, Sri; Ismail, Rifky

    2018-03-01

    This study was a result from research on repairing project of damaged elevator gear box. The objective of this research is to analyze the failure part on elevator gearbox at flourmill factory. The equipment was damaged after one year installed and running on factory. Severe wear was occurred on high speed helical gear. These helical gear was one of main part of elevator gearbox in flour mill manufacture. Visually, plastic deformation didn't occurred and not visible on the failure helical gear shaft. Some test would be performed to check the chemical composition, microstructure and hardness of failure helical gear. The material of failure helical gear shaft was a medium carbon steel alloy. The microstructure was showed a martensitic phase formed on the surface to the center area of gear shaft. Otherwise, the depth of hardness layer slight formed on surface and lack depth of hardness layer was a main trigger of severe wear. It was not enough to resist wear due to friction caused by rolling and sliding on surface between high speed gear and low speed gear. Enhancement of hardness layer on surface and depth of hardness layer will make the component has more long life time. Furthermore, to perform next research is needed to analyze the reliability of enhanced hardness on layer and depth of hardness layer on helical gear shaft.

  6. Characteristics of Reduction Gear in Electric Agricultural Vehicle

    Science.gov (United States)

    Choi, W. S.; Pratama, P. S.; Supeno, D.; Jeong, S. W.; Byun, J. Y.; Woo, J. H.; Lee, E. S.; Park, C. S.

    2018-03-01

    In electric agricultural machine a reduction gear is needed to convert the high speed rotation motion generated by DC motor to lower speed rotation motion used by the vehicle. The reduction gear consists of several spur gears. Spur gears are the most easily visualized gears that transmit motion between two parallel shafts and easy to produce. The modelling and simulation of spur gears in DC motor reduction gear is important to predict the actual motion behaviour. A pair of spur gear tooth in action is generally subjected to two types of cyclic stress: contact stress and bending stress. The stress may not attain their maximum values at the same point of contact fatigue. These types of failure can be minimized by analysis of the problem during the design stage and creating proper tooth surface profile with proper manufacturing methods. To improve its life expectation in this study modal and stress analysis of reduction gear is simulated using ANSYS workbench based on finite element method (FEM). The modal analysis was done to understand reduction gear deformation behaviour when vibration occurs. FEM static stress analysis is also simulated on reduction gear to simulate the gear teeth bending stress and contact stress behaviour.

  7. Sizing Optimization and Strength Analysis for Spread-type Gear Reducers

    Directory of Open Access Journals (Sweden)

    Wei-Hsuan Hsu

    2014-08-01

    Full Text Available A reducer is now developed towards the trend of customization service and cost-saving. In this study, a sizing program for the reducer has been developed in order to replace the manual sizing process. We aim at the total center distance of the gear reducer for optimization to reduce gear volume and weight. Also, we checked constrains such as, tooth root bending, tooth contact strength, gear shaft endangered cross-section, bearing life, gear shaft deflection, and torsion angle deformation, etc., to obtain reliable drive strength. Comparisons of sizes and weights before and after optimization confirm that the purpose for reducing production cost is achieved.

  8. System design for shaft safety and productivity

    Energy Technology Data Exchange (ETDEWEB)

    Owen, D.; Parsons, R.; Ward, R.

    1988-03-01

    The aim of this paper is to describe the process of designing a system to improve safety and productivity in shafts. The objectives and constraints for the design were set out in official reports following a shaft accident at Markham Colliery in 1973. The problems to be solved were: to enable the shaftsmen to transfer the existing statutory code of signals efficiently from, or on top of, a conveyance anywhere in the shaft to the winding engineman and banksman at the surface: to detect the existence of slack rope or to detect that conditions have arisen that slack rope could be created and transmit this information to where action can be taken; and to allow conversations between winding engineman, banksman and shaftsman making allowances for the high level of acoustic noise in shafts. The approach adopted for slack rope monitoring was to monitor the tension in the cage suspension gear, thus measuring a first order effect. The three problems have a common element: information must be transferred through the shaft. This particular problem was solved with guided radio, using the winding rope as the transmission medium. The radio signal is coupled into the winding rope by means of fixed toroid encircling it at the cage and fixed magnetic antennas at the surface. The design of a digital transmission system for signalling and tension data is discussed. The 'top down' modular approach used in the design enabled full advantage to be taken of the opportunities for building a more reliable, safer and flexible system presented by technologies new to the shaft environment. The resultant system, the Safecom Shaft Signalling Communication and Winder Safety Monitoring System type S100, is in regular use at over 20 installations. 3 refs., 4 figs., 1 tab.

  9. Modelling of teeth of a gear transmission for modern manufacturing technologies

    Science.gov (United States)

    Monica, Z.; Banaś, W.; Ćwikla, G.; Topolska, S.

    2017-08-01

    The technological process of manufacturing of gear wheels is influenced by many factors. It is designated depending on the type of material from which the gear is to be produced, its heat treatment parameters, the required accuracy, the geometrical form and the modifications of the tooth. Therefor the parameters selection process is not easy and moreover it is unambiguous. Another important stage of the technological process is the selection of appropriate tools to properly machine teeth in the operations of both roughing and finishing. In the presented work the focus is put first of all on modern production methods of gears using technologically advanced instruments in comparison with conventional tools. Conventional processing tools such as gear hobbing cutters or Fellows gear-shaper cutters are used from the beginning of the machines for the production of gear wheels. With the development of technology and the creation of CNC machines designated for machining of gears wheel it was also developed the manufacturing technology as well as the design knowledge concerning the technological tools. Leading manufacturers of cutting tools extended the range of tools designated for machining of gears on the so-called hobbing cutters with inserted cemented carbide tips. The same have be introduced to Fellows gear-shaper cutters. The results of tests show that is advantaged to use hobbing cutters with inserted cemented carbide tips for milling gear wheels with a high number of teeth, where the time gains are very high, in relation to the use of conventional milling cutters.

  10. Dynamics of High-Speed Precision Geared Rotor Systems

    Directory of Open Access Journals (Sweden)

    Lim Teik C.

    2014-07-01

    Full Text Available Gears are one of the most widely applied precision machine elements in power transmission systems employed in automotive, aerospace, marine, rail and industrial applications because of their reliability, precision, efficiency and versatility. Fundamentally, gears provide a very practical mechanism to transmit motion and mechanical power between two rotating shafts. However, their performance and accuracy are often hampered by tooth failure, vibrations and whine noise. This is most acute in high-speed, high power density geared rotor systems, which is the primary scope of this paper. The present study focuses on the development of a gear pair mathematical model for use to analyze the dynamics of power transmission systems. The theory includes the gear mesh representation derived from results of the quasi-static tooth contact analysis. This proposed gear mesh theory comprising of transmission error, mesh point, mesh stiffness and line-of-action nonlinear, time-varying parameters can be easily incorporated into a variety of transmission system models ranging from the lumped parameter type to detailed finite element representation. The gear dynamic analysis performed led to the discovery of the out-of-phase gear pair torsion modes that are responsible for much of the mechanical problems seen in gearing applications. The paper concludes with a discussion on effectual design approaches to minimize the influence of gear dynamics and to mitigate gear failure in practical power transmission systems.

  11. Vehicle transmission gear 2009; Getriebe in Fahrzeugen 2009

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-07-01

    Within the VDI Conference 'Vehicle Transmission Gears' at 30th June to 1st May, 2009 in Friedrichshafen (Federal Republic of Germany), the following lectures were held: (1) Production site Germany - Home in trend (B.O. Braun); (2) Luk CVT Technology - Efficiency, comfort, dynamics (A. Teubert); (3) The new BMW eight-speed automatic gear (J. Kretschmer); (4) Influence of transmission concept and design on simulated fuel consumption in official customer driving cycles (A. Schmidt); (5) GETRAG PowerShift {sup registered} - Extended driving functionalities due to controllable double clutch (A. Pawlenka); (6) New efficient transmission strategy in automatic transmission in the city bus (H. Nolzen); (7) Electronic controllers for gears: decision about design concepts und applied technologies on the basis of the place of installation in vehicles (P. Bertelshofer); (8) Coupled systems based on magnetorheological fluids (D. Gueth); (9) Investigation of setting losses of diaphragm springs in dry-running couplings according to given conditions (P. Merkel); (10) Influence of material properties and heat balance on the tribologic behaviour of dry-running friction couplings (C. Spaeth); (11) A contribution to massively transformed components of gears for the reduction of consumption and resources saving (G. Quintenz); (12) An economic production of transmission shafts by means of near netshape transformation also in the area of commercial vehicles (E. Rauschnabel); (13) Potentials and transformation of design and process optimization in the serial production using hypoid interlocking as an example (A. Dietrich); (14) Development of automated manual transmission (Se-il Song); (15) Integration of new functions to GETRAG PowerShift {sup registered} Transmissions of transversal, transaxle powertrains (I. Steinberg); (16) Automatedmanual transmission - The forgotten concept for the future? (B.-R. Hoehn); (17) A new back-torque limiter for high power motorcycles

  12. Vibration and Operational Characteristics of a Composite-Steel (Hybrid) Gear

    Science.gov (United States)

    Handschuh, Robert F.; LaBerge, Kelsen E.; DeLuca, Samuel; Pelagalli, Ryan

    2014-01-01

    Hybrid gears have been tested consisting of metallic gear teeth and shafting connected by composite web. Both free vibration and dynamic operation tests were completed at the NASA Glenn Spur Gear Fatigue Test Facility, comparing these hybrid gears to their steel counterparts. The free vibration tests indicated that the natural frequency of the hybrid gear was approximately 800 Hz lower than the steel test gear. The dynamic vibration tests were conducted at five different rotational speeds and three levels of torque in a four square test configuration. The hybrid gears were tested both as fabricated (machined, composite layup, then composite cure) and after regrinding the gear teeth to the required aerospace tolerance. The dynamic vibration tests indicated that the level of vibration for either type of gearing was sensitive to the level of load and rotational speed.

  13. Power Consumption Optimization in Tooth Gears Processing

    Science.gov (United States)

    Kanatnikov, N.; Harlamov, G.; Kanatnikova, P.; Pashmentova, A.

    2018-01-01

    The paper reviews the issue of optimization of technological process of tooth gears production of the power consumption criteria. The authors dwell on the indices used for cutting process estimation by the consumed energy criteria and their applicability in the analysis of the toothed wheel production process. The inventors proposed a method for optimization of power consumptions based on the spatial modeling of cutting pattern. The article is aimed at solving the problem of effective source management in order to achieve economical and ecological effect during the mechanical processing of toothed gears. The research was supported by Russian Science Foundation (project No. 17-79-10316).

  14. Circumferential shaft seal

    Science.gov (United States)

    Ludwig, L. P. (Inventor)

    1981-01-01

    A circumferential shaft seal comprising two sealing rings held to a rotating shaft by means of a surrounding elastomeric band is disclosed. The rings are segmented and are of a rigid sealing material such as carbon or a polyimide and graphite fiber composite.

  15. Rotary shaft seal

    International Nuclear Information System (INIS)

    Langebrake, C.O.

    1984-01-01

    The invention is a novel rotary shaft seal assembly which provides positive-contact sealing when the shaft is not rotated and which operates with its sealing surfaces separated by a film of compressed ambient gas whose width is independent of the speed of shaft rotation. In a preferred embodiment, the assembly includes a disc affixed to the shaft for rotation therewith. Axially movable, non-rotatable plates respectively supported by sealing bellows are positioned on either side of the disc to be in sealing engagement therewith. Each plate carries piezoelectric transducer elements which are electrically energized at startup to produce films of compressed ambient gas between the confronting surfaces of the plates and the disc. Following shutdown of the shaft, the transducer elements are de-energized. A control circuit responds to incipient rubbing between the plate and either disc by altering the electrical input to the transducer elements to eliminate rubbing

  16. Gear Design Effects on the Performance of High Speed Helical Gear Trains as Used in Aerospace Drive Systems

    Science.gov (United States)

    Handschuh, R.; Kilmain, C.; Ehinger, R.; Sinusas, E.

    2013-01-01

    The performance of high-speed helical gear trains is of particular importance for tiltrotor aircraft drive systems. These drive systems are used to provide speed reduction / torque multiplication from the gas turbine output shaft and provide the necessary offset between these parallel shafts in the aircraft. Four different design configurations have been tested in the NASA Glenn Research Center, High Speed Helical Gear Train Test Facility. The design configurations included the current aircraft design, current design with isotropic superfinished gear surfaces, double helical design (inward and outward pumping), increased pitch (finer teeth), and an increased helix angle. All designs were tested at multiple input shaft speeds (up to 15,000 rpm) and applied power (up to 5,000 hp). Also two lubrication, system-related, variables were tested: oil inlet temperature (160 to 250 degF) and lubricating jet pressure (60 to 80 psig). Experimental data recorded from these tests included power loss of the helical system under study, the temperature increase of the lubricant from inlet to outlet of the drive system and fling off temperatures (radially and axially). Also, all gear systems were tested with and without shrouds around the gears. The empirical data resulting from this study will be useful to the design of future helical gear train systems anticipated for next generation rotorcraft drive systems.

  17. Elevator wheel

    Energy Technology Data Exchange (ETDEWEB)

    Zhornik, V.I.; Cherkov, Ye.M.; Simonov, A.A.

    1982-01-01

    An elevator wheel is suggested for unloading a sunken product from a bath of a heavy-average separator including discs of a bucket with inner walls, and covering sheets hinged to the buckets. In order to improve the degree of dehydration of the removed product, the inner wall of each bucket is made of sheets installed in steps with gaps of one in relation to the other.

  18. Word wheels

    CERN Document Server

    Clark, Kathryn

    2013-01-01

    Targeting the specific problems learners have with language structure, these multi-sensory exercises appeal to all age groups including adults. Exercises use sight, sound and touch and are also suitable for English as an Additional Lanaguage and Basic Skills students.Word Wheels includes off-the-shelf resources including lesson plans and photocopiable worksheets, an interactive CD with practice exercises, and support material for the busy teacher or non-specialist staff, as well as homework activities.

  19. A study on the automated design system for gear

    Energy Technology Data Exchange (ETDEWEB)

    Cho, H. Y.; Nam, G. J.; Oh, B. K. [Chungbuk National Univ., Cheongju (Korea, Republic of)

    2001-07-01

    A computer aided design system for spur, helical, bevel and worm gears by using AutoCAD system and its AutoLISP computer language was newly developed in this study. Two methods are available for a designer to draw a gear. The first method needs the gear design parameters such as pressure, module, number of tooth, shaft angle, velocity, materials, etc. When the gear design parameters are inputted, a gear is drawn in AutoCAD system and maximum allowable power and shaft diameter are calculated additionally. The second method calculates all dimensions and gear design parameters to draw a gear when the information such as transmission, reduction ratio, rpm, materials and pressure are inputted. The system includes four programs. Each program is composed of a data input module, a database module, a strength calculation module, a drawing module, a text module and a drawing edit module. In conclusion, the CAD system would be widely used in companies to find the geometric data and manufacturing course.

  20. A study on the automated design system for gear

    International Nuclear Information System (INIS)

    Cho, H. Y.; Nam, G. J.; Oh, B. K.

    2001-01-01

    A computer aided design system for spur, helical, bevel and worm gears by using AutoCAD system and its AutoLISP computer language was newly developed in this study. Two methods are available for a designer to draw a gear. The first method needs the gear design parameters such as pressure, module, number of tooth, shaft angle, velocity, materials, etc. When the gear design parameters are inputted, a gear is drawn in AutoCAD system and maximum allowable power and shaft diameter are calculated additionally. The second method calculates all dimensions and gear design parameters to draw a gear when the information such as transmission, reduction ratio, rpm, materials and pressure are inputted. The system includes four programs. Each program is composed of a data input module, a database module, a strength calculation module, a drawing module, a text module and a drawing edit module. In conclusion, the CAD system would be widely used in companies to find the geometric data and manufacturing course

  1. Improved circumferential shaft seal

    Science.gov (United States)

    Ludwig, L. P.; Strom, T. N.

    1974-01-01

    Comparative tests of modified and unmodified carbon ring seals showed that addition of helical grooves to conventional segmented carbon ring seals reduced leakage significantly. Modified seal was insensitive to shaft runout and to flooding by lubricant.

  2. A Star-Wheel Stair-Climbing Wheelchair

    Institute of Scientific and Technical Information of China (English)

    ZHANG Li; WU Bo; JIN Ai-min; JIANG Shi-hong; ZHENG Yu-fei; ZHANG Shuai

    2014-01-01

    In order to achieve a wheelchair climb stairs function, this paper designs a star-wheel stair-climbing mechanism. Through the effect of the lock coupling, the star-wheel stair-climbing mechanism is formed to be fixed axis gear train or planetary gear train achieving flat-walking and stair-climbing functions. Crossing obstacle analysis obtains the maximum height and minimum width of obstacle which the wheelchair can cross. Stress-strain analysis in Solidworks simulation is performed to verify material strength.

  3. Kinematic geometry of gearing

    CERN Document Server

    Dooner, David B

    2012-01-01

    Building on the first edition published in 1995 this new edition of Kinematic Geometry of Gearing has been extensively revised and updated with new and original material. This includes the methodology for general tooth forms, radius of torsure', cylinder of osculation, and cylindroid of torsure; the author has also completely reworked the '3 laws of gearing', the first law re-written to better parallel the existing 'Law of Gearing" as pioneered by Leonard Euler, expanded from Euler's original law to encompass non-circular gears and hypoid gears, the 2nd law of gearing describing a unique relat

  4. Dynamics of simple gearing model with flexible planetary pins

    Czech Academy of Sciences Publication Activity Database

    Půst, Ladislav; Pešek, Luděk; Radolfová, Alena

    2016-01-01

    Roč. 821, č. 2016 (2016), s. 284-281 ISSN 1660-9336 R&D Projects: GA TA ČR TA04011656 Institutional support: RVO:61388998 Keywords : lanetary gearings set * vibrations * rig wheel excitation * driving aggregate Subject RIV: BI - Acoustics

  5. Hydrostatic self-locking bevel differential gear; Hydrostatisch selbstsperrendes Kegelraddifferentialgetriebe

    Energy Technology Data Exchange (ETDEWEB)

    Kalmbach, K.

    2001-07-01

    The product range of the rail vehicle industry comprises the construction of railroad material for long-distance and short-distance transport. This includes, for example, locomotives and cars, subway, light railway and tramway cars as well as rail vehicle equipment. The development of the industry is determined by the demand for transport services and government actions for the extension of railways and procurement of suitable vehicle types. In contrast to road vehicles, differential gears are only used in a negligible percentage of rail vehicles. Primarily in the short-distance rail transport sector, the demand for differential gears is growing due to increased drive power, smaller wheel diameters, lower vehicle mass with higher load capacity, the introduction of low-floor technology as well as the requirement of employing ever more quiet vehicles. In hydrostatic self-locking differential gears, oil is supplied to the gears within the differential gearbox. They only rotate relative to each other when the differential gear performs a compensation movement. In this case, oil is transported in the tooth space to the meshing of the gears, where it is displaced due to the meshing and must drain through tight gaps. The pressure generated by this process acts against the compensation movement of the gear, and the drive torque is transmitted to the wheel that has the higher friction. The achievable locking torque is linearly dependent on the differential speed of the drive wheel. This locking effect is achieved without wear-prone components and works automatically without active external intervention. The design space required corresponds to that of conventional differential gears, as the locking effect is integrated in the existing design. (orig.)

  6. Gear bearing drive

    Science.gov (United States)

    Mavroidis, Constantinos (Inventor); Vranish, John M. (Inventor); Weinberg, Brian (Inventor)

    2011-01-01

    A gear bearing drive provides a compact mechanism that operates as an actuator providing torque and as a joint providing support. The drive includes a gear arrangement integrating an external rotor DC motor within a sun gear. Locking surfaces maintain the components of the drive in alignment and provide support for axial loads and moments. The gear bearing drive has a variety of applications, including as a joint in robotic arms and prosthetic limbs.

  7. Shaft siting decision

    International Nuclear Information System (INIS)

    1987-08-01

    This study identifies and establishes relative guidelines to be used for siting of repository shafts. Weights were determined for the significant factors that impact the selection of shaft locations for a nuclear waste repository in salt. The study identified a total of 45 factors. A panel of experienced mining people utilized the Kepner-Tregoe (K-T) Decision Analysis Process to perform a structured evaluation of each significant shaft siting factor. The evaluation determined that 22 of the factors were absolute constraints and that the other 23 factors were desirable characteristics. The group established the relative weights for each of the 23 desirable characteristics by using a paired comparison method. 8 refs., 2 figs., 5 tabs

  8. High pressure shaft seal

    International Nuclear Information System (INIS)

    Martinson, A.R.; Rogers, V.D.

    1980-01-01

    In relation to reactor primary coolant pumps, mechanical seal assembly for a pump shaft is disclosed which features a rotating seal ring mounting system which utilizes a rigid support ring loaded through narrow annular projections in combination with centering non-sealing O-rings which effectively isolate the rotating seal ring from temperature and pressure transients while securely positioning the ring to adjacent parts. A stationary seal ring mounting configuration allows the stationary seal ring freedom of motion to follow shaft axial movement up to 3/4 of an inch and shaft tilt about the pump axis without any change in the hydraulic or pressure loading on the stationary seal ring or its carrier. (author)

  9. Hybrid Gear Preliminary Results-Application of Composites to Dynamic Mechanical Components

    Science.gov (United States)

    Handschuh, Robert F.; Roberts Gary D.; Sinnamon, R.; Stringer, David B.; Dykas, Brian D.; Kohlman, Lee W.

    2012-01-01

    Composite spur gears were fabricated and then tested at NASA Glenn Research Center. The composite material served as the web of the gear between the gear teeth and a metallic hub for mounting to the torque-applying shaft. The composite web was bonded only to the inner and outer hexagonal features that were machined from an initially all-metallic aerospace quality spur gear. The Hybrid Gear was tested against an all-steel gear and against a mating Hybrid Gear. As a result of the composite to metal fabrication process used, the concentricity of the gears were reduced from their initial high-precision value. Regardless of the concentricity error, the hybrid gears operated successfully for over 300 million cycles at 10000 rpm and 490 in.*lbs torque. Although the design was not optimized for weight, the composite gears were found to be 20% lighter than the all-steel gears. Free vibration modes and vibration/noise tests were also conduct to compare the vibration and damping characteristic of the Hybrid Gear to all-steel gears. The initial results indicate that this type of hybrid design may have a dramatic effect on drive system weight without sacrificing strength.

  10. On the automatic generation of FEM models for complex gears - A work-in-progress report

    Science.gov (United States)

    Drago, R. J.

    1982-01-01

    A description is presented of the development and use of a preprocessor to create a NASTRAN finite element model of a complex spur, helical, or spiral bevel gear quickly, inexpensively, and accurately. The preprocessor creates a ready to run NASTRAN input deck including the executive, case control, and bulk data sections. It generates nodes and solid elements to model spur, helical, or spiral bevel gear teeth with integral shafting. Either a complete gear shafting model or a symmetric model is created. The fundamental building block of the gear model is the base layer. The base layer is the mesh configuration of one layer of one tooth segment which is in turn duplicated, translated, and rotated to create the completed model of the gear. Once the base layer is created, the construction of the finite element model is straightforward.

  11. Femoral shaft fractures

    International Nuclear Information System (INIS)

    Bender, C.E.; Campbell, D.C. II

    1985-01-01

    The femur is the longest, largest, and strongest bone in the body. Because of its length, width, and role as primary weight-bearing bone, it must tolerate the extremes of axial loading and angulatory stresses. Massive musculature envelopes the femur. This masculature provides abundant blood supply to the bone, which also allows great potential for healing. Thus, the most significant problem relating to femoral shaft fractures is not healing, but restoration of bone length and alignment so that the femoral shaft will tolerate the functional stresses demanded of it

  12. Face Gear Technology for Aerospace Power Transmission Progresses

    Science.gov (United States)

    2005-01-01

    The use of face gears in an advanced rotorcraft transmission design was first proposed by the McDonnell Douglas Helicopter Company during their contracted effort with the U.S. Army under the Advanced Rotorcraft Transmission (ART) program. Face gears would be used to turn the corner between the horizontal gas turbine engine and the vertical output rotor shaft--a function currently done by spiral bevel gears. This novel gearing arrangement would substantially lower the drive system weight partly because a face gear mesh would be used to split the input power between two output gears. However, the use of face gears and their ability to operate successfully at the speeds and loads required for an aerospace environment was unknown. Therefore a proof-of-concept phase with an existing test stand at the NASA Lewis Research Center was pursued. Hardware was designed that could be tested in Lewis' Spiral Bevel Gear Test Rig. The initial testing indicated that the face gear mesh was a feasible design that could be used at high speeds and load. Surface pitting fatigue was the typical failure mode, and that could lead to tooth fracture. An interim project was conducted to see if slight modifications to the gear tooth geometry or an alternative heat treating process could overcome the surface fatigue problems. From the initial and interim tests, it was apparent that for the surface fatigue problems to be overcome the manufacturing process used for this component would have to be developed to the level used for spiral bevel gears. The current state of the art for face gear manufacturing required using less than optimal gear materials and manufacturing techniques because the surface of the tooth form does not receive final finishing after heat treatment as it does for spiral bevel gears. This resulted in less than desirable surface hardness and manufacturing tolerances. An Advanced Research and Projects Agency (ARPA) Technology Reinvestment Project has been funded to investigate

  13. HOW TO STEER THE TRANSMISSION RATIO OF PLANETARY CONTINUOUSLY ADJUSTABLE GEAR TRAIN

    Directory of Open Access Journals (Sweden)

    A. M. Dankov

    2016-01-01

    Full Text Available The known attempts to create a continuously-adjustable gear train with solid gears have led to development of some so-called adaptive gears. The most structurally simple version of continuously- adjustable gear train is a two-wheel planetary gear. It is an obvious fact that an active regulation of gear ratio for the gear should be based on the presence of con- trolled elements (parameters and a mechanism for their control. In respect of the mentioned gear one of the controlled elements that is a compound central toothed gear has such controlled parameter as a nominal pitch diameter. In this case it can rotate or remain motionless. Other controlled element which is a planetary carrier has its own radius as a controlled parameter and makes a rotary motion with a great speed of a leading element. The purpose of the control mechanism is to ensure radial displacement of central toothed gear and planet gear sectors in the working gear. The paper describes the mechanism modifications and considers two variants for transfer of control action from its source to an object to be controlled. The transfer is ensured by mechanical gears (two variants and hydraulics.

  14. Landing gear noise attenuation

    Science.gov (United States)

    Moe, Jeffrey W. (Inventor); Whitmire, Julia (Inventor); Kwan, Hwa-Wan (Inventor); Abeysinghe, Amal (Inventor)

    2011-01-01

    A landing gear noise attenuator mitigates noise generated by airframe deployable landing gear. The noise attenuator can have a first position when the landing gear is in its deployed or down position, and a second position when the landing gear is in its up or stowed position. The noise attenuator may be an inflatable fairing that does not compromise limited space constraints associated with landing gear retraction and stowage. A truck fairing mounted under a truck beam can have a compliant edge to allow for non-destructive impingement of a deflected fire during certain conditions.

  15. Estimating Gear Teeth Stiffness

    DEFF Research Database (Denmark)

    Pedersen, Niels Leergaard

    2013-01-01

    The estimation of gear stiffness is important for determining the load distribution between the gear teeth when two sets of teeth are in contact. Two factors have a major influence on the stiffness; firstly the boundary condition through the gear rim size included in the stiffness calculation...... and secondly the size of the contact. In the FE calculation the true gear tooth root profile is applied. The meshing stiffness’s of gears are highly non-linear, it is however found that the stiffness of an individual tooth can be expressed in a linear form assuming that the contact length is constant....

  16. Extension of the Consolidation 3 shaft

    Energy Technology Data Exchange (ETDEWEB)

    Bohnenkamp, G [Gesteins- und Tiefbau G.m.b.H., Recklinghausen (Germany, F.R.)

    1978-02-01

    The conversion of a mine shaft into a central winning shaft is described, in particular planning principles, problems to be solved, preliminary work, timber drawing, extension work, shaft deepening, and the installation of shaft internals.

  17. ACCURACY RESEARCH OF THE DIAMETRICAL SIZES FORMING AT GEAR SHAPING BY STEPPED CUTTER

    Directory of Open Access Journals (Sweden)

    N. M. Rasulov

    2015-09-01

    Full Text Available The paper presents research results of forming accuracy for diametrical sizes at gear shaping with stepped cutter and the traditional method. Analysis of static technological dimensional pitch size chain of wheels being cut is performed. It was revealed that the most of transmission errors of the wheels, formed by the traditional gear-shaped cutter are caused by manufacturing and installation error of the cutter and result from the formation of each tooth of the wheel with a certain tool. This is not the case with gear shaping by step cutter since at that, the profiles of all gear teeth are formed by means of tooth profile mostly remote from the tool rotation axis. Analysis of occurrence of setting-up errors typical for the above gear shaping methods has been performed. At gear shaping with stepped cutter there are no setting-up error components. It was revealed that this fact causes the absence of errors in the tool position before its each double motion. The accuracy of diametrical sizes increases. Formation mechanism of tool installation errors and workpiece are also given and their analysis is presented. Findings in the field of gear shaping with stepped cutter comply with results of research carried out by the other authors in the field of traditional gear shaping.

  18. Influence of Shaft Torsional Stiffness on Dynamic Response of Four-Stage Main Transmission System

    Directory of Open Access Journals (Sweden)

    Yuan Chen

    2018-01-01

    Full Text Available Dynamic response analysis has potential for increasing fatigue life of the components in the transmission of a multistage main transmission system. The calculated data can demonstrate the influence of shaft torsional stiffness on dynamic characteristics of the system. Detecting key shafts of the system and analyzing their sensitivity are important for the design of four-stage helicopter gear box. Lumped mass method is applied for dynamic modeling and Fourier method is used to solve differential equation of the system. Results of the analysis indicate that key shafts can be designed carefully to improve the performance of the transmission system.

  19. Torsional analysis of 1 MW gearbox and shaft system in the Avedoere wind turbine

    International Nuclear Information System (INIS)

    Crone, A.

    1993-05-01

    In order to predict undesired high gear noise emission from the Avedoere wind turbine due to critical torsional resonances in the shaft system, the torsional natural frequencies and corresponding mode shapes have been calculated. The analysis has involved a comprehensive, detailed model of the gearbox shaft system. The natural frequencies and mode shapes have also been calculated for the test bed shaft system enabling a calibration of the calculations when comparing with measurements made on the test bed system. The natural torsional frequencies of the test bed shaft system and the wind turbine shaft system, both including the Flender, Peak 4375 gearbox, have been calculated together with the corresponding mode shapes. The sensitivity analysis showed that the natural frequencies of one of the torsional modes may be close to or coinciding with the toothmesh frequency of the output gear stage, in the wind turbine shaft system. The shape of this mode indicates however, that this mode is not very likely to be strongly excited by forces acting in the tooth contact at the mesh frequency. This conclusion also counts for a second mode which was calculated to have a natural frequency close to the toothmesh frequency of the output stage. The analysis also shows that the frequencies of the 1st, the 3rd and the 4th harmonics of the toothmesh frequency of the 2nd gear stage, deviate by less than 15% from several modes of the wind turbine shaft system, which seem likely to be excited by forces acting in the tooth contact of this stage. Amplification of the structure-borne noise from the gearbox at these frequencies may be expected. The amplification at these frequencies is not expected to have any critical influence on the tonal gear noise radiated from the wind turbine. (EG)

  20. Research on Gear Shifting Process without Disengaging Clutch for a Parallel Hybrid Electric Vehicle Equipped with AMT

    Directory of Open Access Journals (Sweden)

    Hui-Long Yu

    2014-01-01

    Full Text Available Dynamic models of a single-shaft parallel hybrid electric vehicle (HEV equipped with automated mechanical transmission (AMT were described in different working stages during a gear shifting process without disengaging clutch. Parameters affecting the gear shifting time, components life, and gear shifting jerk in different transient states during a gear shifting process were deeply analyzed. The mathematical models considering the detailed synchronizer working process which can explain the gear shifting failure, long time gear shifting, and frequent synchronizer failure phenomenon in HEV were derived. Dynamic coordinated control strategy of the engine, motor, and actuators in different transient states considering the detailed working stages of synchronizer in a gear shifting process of a HEV is for the first time innovatively proposed according to the state of art references. Bench test and real road test results show that the proposed control strategy can improve the gear shifting quality in all its evaluation indexes significantly.

  1. Study of the conditions affecting the critical speed of a rotating pump shaft

    International Nuclear Information System (INIS)

    Fardeau, P.; Huet, J.L.; Axisa, F.

    1983-01-01

    Knowing the parameters conditioning the critical speed of a pump shaft is important, both for safety and design purposes, since the shafts are often to operate beyond the first critical speed. These aims led CEA, associated with NOVATOME and FRAMATOME (with the cooperation of JEUMONT-SCHNEIDER) to carry out a test program on critical speeds of a full scale nuclear pump shaft. Fluid-structure interaction plays an important part in the setting of critical speed. Due to the coupling between the rotative fluid flow and the transverse vibrations of the shaft, inertial and stiffness forces are created, which are non conservative and proportional to the added mass of the fluid. The hydrostatic bearing effect and the influence of the water carried along by the pump wheel were also investigated, but proved unimportant in the case of the shaft studied. Experimental results are compared with calculations of critical speed. (orig.)

  2. 50 CFR 665.127 - Allowable gear and gear restrictions.

    Science.gov (United States)

    2010-10-01

    ... 50 Wildlife and Fisheries 9 2010-10-01 2010-10-01 false Allowable gear and gear restrictions. 665... Fisheries § 665.127 Allowable gear and gear restrictions. (a) American Samoa coral reef ecosystem MUS may be taken only with the following allowable gear and methods: (1) Hand harvest; (2) Spear; (3) Slurp gun; (4...

  3. 50 CFR 665.627 - Allowable gear and gear restrictions.

    Science.gov (United States)

    2010-10-01

    ... 50 Wildlife and Fisheries 9 2010-10-01 2010-10-01 false Allowable gear and gear restrictions. 665... Island Area Fisheries § 665.627 Allowable gear and gear restrictions. (a) Coral reef ecosystem MUS may be taken only with the following allowable gear and methods: (1) Hand harvest; (2) Spear; (3) Slurp gun; (4...

  4. 50 CFR 665.227 - Allowable gear and gear restrictions.

    Science.gov (United States)

    2010-10-01

    ... 50 Wildlife and Fisheries 9 2010-10-01 2010-10-01 false Allowable gear and gear restrictions. 665... Fisheries § 665.227 Allowable gear and gear restrictions. (a) Hawaii coral reef ecosystem MUS may be taken only with the following allowable gear and methods: (1) Hand harvest; (2) Spear; (3) Slurp gun; (4...

  5. 50 CFR 665.427 - Allowable gear and gear restrictions.

    Science.gov (United States)

    2010-10-01

    ... 50 Wildlife and Fisheries 9 2010-10-01 2010-10-01 false Allowable gear and gear restrictions. 665... Archipelago Fisheries § 665.427 Allowable gear and gear restrictions. (a) Mariana coral reef ecosystem MUS may be taken only with the following allowable gear and methods: (1) Hand harvest; (2) Spear; (3) Slurp...

  6. Study on Manufacturing Process of Hollow Main Shaft by Open Die Forging

    International Nuclear Information System (INIS)

    Kwon, Yong Chul; Kang, Jong Hun; Kim, Sang Sik

    2016-01-01

    The main shaft is one of the key components connecting the rotor hub and gear box of a wind power generator. Typically, main shafts are manufactured by open die forging method. However, the main shaft for large MW class wind generators is designed to be hollow in order to reduce the weight. Additionally, the main shafts are manufactured by a casting process. This study aims to develop a manufacturing process for hollow main shafts by the open die forging method. The design of a forging process for a solid main shaft and hollow shaft was prepared by an open die forging process design scheme. Finite element analyses were performed to obtain the flow stress by a hot compression test at different temperature and strain rates. The control parameters of each forging process, such as temperature and effective strain, were obtained and compared to predict the suitability of the hollow main shaft forging process. Finally, high productivity reflecting material utilization ratio, internal quality, shape, and dimension was verified by the prototypes manufactured by the proposed forging process for hollow main shafts

  7. Study on Manufacturing Process of Hollow Main Shaft by Open Die Forging

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Yong Chul [Gyeongnam Technopark, Changwon (Korea, Republic of); Kang, Jong Hun [Jungwon Univ., Goisan (Korea, Republic of); Kim, Sang Sik [Gyeongsang Natiional Univ., Jinju (Korea, Republic of)

    2016-02-15

    The main shaft is one of the key components connecting the rotor hub and gear box of a wind power generator. Typically, main shafts are manufactured by open die forging method. However, the main shaft for large MW class wind generators is designed to be hollow in order to reduce the weight. Additionally, the main shafts are manufactured by a casting process. This study aims to develop a manufacturing process for hollow main shafts by the open die forging method. The design of a forging process for a solid main shaft and hollow shaft was prepared by an open die forging process design scheme. Finite element analyses were performed to obtain the flow stress by a hot compression test at different temperature and strain rates. The control parameters of each forging process, such as temperature and effective strain, were obtained and compared to predict the suitability of the hollow main shaft forging process. Finally, high productivity reflecting material utilization ratio, internal quality, shape, and dimension was verified by the prototypes manufactured by the proposed forging process for hollow main shafts.

  8. Effects on Diagnostic Parameters After Removing Additional Synchronous Gear Meshes

    Science.gov (United States)

    Decker, Harry J.

    2003-01-01

    Gear cracks are typically difficult to diagnose with sufficient time before catastrophic damage occurs. Significant damage must be present before algorithms appear to be able to detect the damage. Frequently there are multiple gear meshes on a single shaft. Since they are all synchronous with the shaft frequency, the commonly used synchronous averaging technique is ineffective in removing other gear mesh effects. Carefully applying a filter to these extraneous gear mesh frequencies can reduce the overall vibration signal and increase the accuracy of commonly used vibration metrics. The vibration signals from three seeded fault tests were analyzed using this filtering procedure. Both the filtered and unfiltered vibration signals were then analyzed using commonly used fault detection metrics and compared. The tests were conducted on aerospace quality spur gears in a test rig. The tests were conducted at speeds ranging from 2500 to 5000 revolutions per minute and torques from 184 to 228 percent of design load. The inability to detect these cracks with high confidence results from the high loading which is causing fast fracture as opposed to stable crack growth. The results indicate that these techniques do not currently produce an indication of damage that significantly exceeds experimental scatter.

  9. Gearing Up for Mountain Biking.

    Science.gov (United States)

    Jahnke, Thomas; Hamson, Mike

    1999-01-01

    Examines the gear system of a mountain bike to discover any redundancy in the many gear settings available to the cyclist. Suggests a best strategy for changing up through the gears on a typical 21-gear system and an adjustment to the available gears that would result in a smoother change. (Author/ASK)

  10. Wheel inspection system environment.

    Science.gov (United States)

    2008-11-18

    International Electronic Machines Corporation (IEM) has developed and is now marketing a state-of-the-art Wheel Inspection System Environment (WISE). WISE provides wheel profile and dimensional measurements, i.e. rim thickness, flange height, flange ...

  11. Dynamic load-sharing characteristic analysis of face gear power-split gear system based on tooth contact characteristics

    Science.gov (United States)

    Dong, Hao; Hu, Yahui

    2018-04-01

    The bend-torsion coupling dynamics load-sharing model of the helicopter face gear split torque transmission system is established by using concentrated quality standard, to analyzing the dynamic load-sharing characteristic. The mathematical models include nonlinear support stiffness, time-varying meshing stiffness, damping, gear backlash. The results showed that the errors collectively influenced the load sharing characteristics, only reduce a certain error, it is never fully reached the perfect loading sharing characteristics. The system load-sharing performance can be improved through floating shaft support. The above-method will provide a theoretical basis and data support for its dynamic performance optimization design.

  12. FRACTURE SHAFT HUMERUS: INTERLOCKING

    Directory of Open Access Journals (Sweden)

    Deepak Kaladagi

    2014-12-01

    Full Text Available BACKGROUND: The incidence of humeral fracture has significantly increased during the present years due to the population growth and road traffic, domestic, industrial, automobile accidents & disasters like tsunami, earthquakes, head-on collisions, polytrauma etc. In order to achieve a stable fixation followed by early mobilization, numerous surgical implants have been devised. PURPOSE: The purpose of this study is to analyze the results of intramedullary fixation of proximal 2/3rd humeral shaft fractures using an unreamed interlocking intramedullary nail. INTRODUCTION: In 40 skeletally matured patients with fracture shaft of humerus admitted in our hospital, we used unreamed antegrade interlocking nails. MATERIAL: We carried out a prospective analysis of 40 patients randomly selected between 2001 to 2014 who were operated at JNMC Belgaum, MMC Mysore & Navodaya Medical College, Raichur. All cases were either RTAs, Domestic, Industrial, automobile accidents & also other modes of injury. METHOD: Routine investigations with pre-anaesthetic check-up & good quality X-rays of both sides of humerus was taken. Time of surgery ranged from 5-10 days from the time of admission. Only upper 1/3rd & middle 1/3rd humeral shaft fractures were included in the study. In all the cases antegrade locked unreamed humeral nails were inserted under C-arm. Patient was placed in supine position & the shoulder was kept elevated by placing a sandbag under the scapula. In all patients incision taken from tip of acromion to 3cm over deltoid longitudinally. Postoperatively sling applied with wrist & shoulder movements started after 24 hours. All the patients ranged between the age of 21-50 years. RESULTS: Total 40 patients were operated. Maximum fracture site were in the middle third- 76%, 14% upper 1/3rd. All 40 patients achieved union. The average time of union was 8-10 weeks. All patients regained full range of movements except in few cases, where there was shoulder

  13. Dynamic Analysis of Helical Planetary Gear Sets under Combined Force and Moment Loading

    Directory of Open Access Journals (Sweden)

    Yanfang Liu

    2017-01-01

    Full Text Available The dynamic behavior of a single-stage planetary gear set with helical gears of multishaft automotive automatic transmissions has been studied, in which one component of the planetary gear set is imposed by additional external vertical and axial loading from countershaft gear pair in addition to the moment. Under these combined loading conditions, the contributions of the deflections of the ring gear and the carrier cannot be neglected. A three-dimensional nonlinear time-variant dynamic model considering not only the transverse, torsional, axial, and rotational motions of the gears but also the elasticity of the mounted shafts has been developed by combining the lumped parameter method with finite element method. The natural modes and the forced vibration responses due to static transmission errors have been obtained. The proposed dynamic model is employed to describe the effects of the combined external loading condition and positioning on the dynamic behavior of a four-planet system.

  14. The Selected Problems of Studies of Aircraft Landing Gear

    Directory of Open Access Journals (Sweden)

    Rośkowicz Marek

    2016-12-01

    Full Text Available The article portrays the results of experimental studies conducted in the field of static strength test of main landing gear of lightweight aircraft as well as in the area of establishing the pneumatic tyre characteristics of main landing gear. The studies were carried out in compliance with methodologies of performing studies for the purposes of solutions implemented in aviation structures. It was stated that static strength tests of landing gear should not be done with the use of shock absorbers, due to the fact that this element, distinguished by high viscoelastic properties, by being statically loaded, is subject to displacements that do not occur during normal operation of the aircraft. Excessive displacements of shock absorber result in the load distribution in other landing gear elements being incompatible with project assumptions, which in turn leads to this strength test being interrupted, bearing in mind significantly lower loads than anticipated. It was also concluded that in order to determine pneumatic tyre characteristics it is not necessary to carry out tests on the whole landing gear strut, because the results obtained in the compression test of the wheel itself with pneumatic tyre are identical as the results acquired during tests conducted in accordance with methodology. Test preparation process with the use of the wheel itself and its realization is less time-consuming, less expensive and does not entail the necessity to build complex test stands.

  15. Dynamic investigation of a locomotive with effect of gear transmissions under tractive conditions

    Science.gov (United States)

    Chen, Zaigang; Zhai, Wanming; Wang, Kaiyun

    2017-11-01

    Locomotive is used to drag trailers to move or supply the braking forces to slow the running speed of a train. The electromagnetic torque of the motor is always transmitted by the gear transmission system to the wheelset for generation of the tractive or braking forces at the wheel-rail contact interface. Consequently, gear transmission system is significant for power delivery of a locomotive. This paper develops a comprehensive locomotive-track vertical-longitudinal coupled dynamics model with dynamic effect of gear transmissions. This dynamics model enables considering the coupling interactions between the gear transmission motion, the vertical and the longitudinal motions of the vehicle, and the vertical vibration of the track structure. In this study, some complicated dynamic excitations, such as the gear time-varying mesh stiffness, nonlinear gear tooth backlash, the nonlinear wheel-rail normal contact force and creep force, and the rail vertical geometrical irregularity, are considered. Then, the dynamic responses of the locomotive under the tractive conditions are demonstrated by numerical simulations based on the established dynamics model and by experimental test. The developed dynamics model is validated by the good agreement between the experimental and the theoretical results. The calculated results reveal that the gear transmission system has strong dynamic interactions with the wheel-rail contact interface including both the vertical and the longitudinal motions, and it has negligible effect on the vibrations of the bogie frame and carbody.

  16. Procedure for the automatic mesh generation of innovative gear teeth

    Directory of Open Access Journals (Sweden)

    Radicella Andrea Chiaramonte

    2016-01-01

    Full Text Available After having described gear wheels with teeth having the two sides constituted by different involutes and their importance in engineering applications, we stress the need for an efficient procedure for the automatic mesh generation of innovative gear teeth. First, we describe the procedure for the subdivision of the tooth profile in the various possible cases, then we show the method for creating the subdivision mesh, defined by two series of curves called meridians and parallels. Finally, we describe how the above procedure for automatic mesh generation is able to solve specific cases that may arise when dealing with teeth having the two sides constituted by different involutes.

  17. Induction heating of gears - pulsing dual-frequency concept

    Directory of Open Access Journals (Sweden)

    R. Przyłucki

    2013-04-01

    Full Text Available The paper concerns analysis of gears hardening process. In order to obtain required temperature distribution several variations of single and combined frequencies for selected gear-wheel configurations were considered. The paper includes the calculation models and analysis of geometry and current intensity as well frequency influence on temperature distribution of the tooth surface. All calculations have been carried out by means of the use of Flux3D simulation program, which enables to provide, coupled electromagnetic and temperature fields analysis.

  18. Partial tooth gear bearings

    Science.gov (United States)

    Vranish, John M. (Inventor)

    2010-01-01

    A partial gear bearing including an upper half, comprising peak partial teeth, and a lower, or bottom, half, comprising valley partial teeth. The upper half also has an integrated roller section between each of the peak partial teeth with a radius equal to the gear pitch radius of the radially outwardly extending peak partial teeth. Conversely, the lower half has an integrated roller section between each of the valley half teeth with a radius also equal to the gear pitch radius of the peak partial teeth. The valley partial teeth extend radially inwardly from its roller section. The peak and valley partial teeth are exactly out of phase with each other, as are the roller sections of the upper and lower halves. Essentially, the end roller bearing of the typical gear bearing has been integrated into the normal gear tooth pattern.

  19. Forging Long Shafts On Disks

    Science.gov (United States)

    Tilghman, Chris; Askey, William; Hopkins, Steven

    1989-01-01

    Isothermal-forging apparatus produces long shafts integral with disks. Equipment based on modification of conventional isothermal-forging equipment, required stroke cut by more than half. Enables forging of shafts as long as 48 in. (122 cm) on typical modified conventional forging press, otherwise limited to making shafts no longer than 18 in. (46cm). Removable punch, in which forged material cools after plastic deformation, essential novel feature of forging apparatus. Technology used to improve such products as components of gas turbines and turbopumps and of other shaft/disk parts for powerplants, drive trains, or static structures.

  20. Electromagnetic shaft seal

    International Nuclear Information System (INIS)

    Takahashi, Kenji.

    1994-01-01

    As an electromagnetic shaft seal, there are disposed outwarding electromagnetic induction devices having generating power directing to an electroconductive fluid as an object of sealing, and inwarding electromagnetic induction device added coaxially. There are disposed elongate rectangular looped first coils having a predetermined inner diameter, second coils having the same shape and shifted by a predetermined pitch relative to the first coil and third coil having the same shape and shifted by a predetermined pitch relative to the second coil respectively each at a predetermined inner diameter of clearance to the outwarding electromagnetic induction devices and the inwarding electromagnetic induction device. If the inwarding electromagnetic induction device and the outwarding electromagnetic induction device are operated, they are stopped at a point that the generating power of the former is equal with the sum of the generating power of the latter and a differential pressure. When three-phase AC is charged to the first coil, the second coil and the third coil successively, a force is generated in the advancing direction of the magnetic field in the electroconductive fluid by the similar effect to that of a linear motor, and the seal is maintained at high reliability. Moreover, the limit for the rotational angle of the shaft is not caused. (N.H.)

  1. Impact of NiB Coating on the Efficiency, Scuffing, and Wear of Gear Contacts

    Science.gov (United States)

    2013-05-01

    heated using an induction heater to approximately 150 °C to increase its bore diameter to fit onto the disk shaft . The specimens were designed to have a...due to load- independent and load-dependent power losses must be provided by the high-speed spindle that is connected to one of the shafts of the...reaction gearbox, as shown in figure 34. A precision torque meter placed in the spindle reaction gear shaft interface measures the torque provided to

  2. MODELING OF DYNAMIC PROCESSES IN PLANETARY IN-WHEEL MOTOR GEARBOXES OF MINE TRUCKS DURING ITS STARTING AND ACCELERATION

    Directory of Open Access Journals (Sweden)

    V. V. Mikhailov

    2012-01-01

    Full Text Available The paper describes a mathematical model for planetary double-row in-wheel motor gear box. Main parameters of its dynamic system have been determined in the paper. The paper reveals simulation of transition processes during starting and acceleration of a mine truck with electric motor wheels. Its own gear box frequency has been established theoretically and experimentally in the paper. The paper proposes an algorithm and program for calculations as an alternative to high-cost tests while investigating gear mechanism dynamics of large-size planetary gearboxes.

  3. Face-gear drives: Design, analysis, and testing for helicopter transmission applications

    Science.gov (United States)

    Litvin, F. L.; Wang, J.-C.; Bossler, R. B., Jr.; Chen, Y.-J. D.; Heath, G.; Lewicki, D. G.

    1992-01-01

    The use of face-gears in helicopter transmissions was explored. A light-weight, split-torque transmission design utilizing face-gears is described. Face-gear design and geometry were investigated. Topics included tooth generation, limiting inner and outer radii, tooth contact analysis, contact ratio, gear eccentricity, grinding, and structural stiffness. Design charts were developed to determine minimum and maximum face-gear inner and outer radii. An analytical study showed that the face-gear drive is relatively insensitive to gear misalignment with respect to transmission errors, but the tooth contact is affected by misalignment. A method of localizing the bearing contact to permit operation with misalignment was explored. Two new methods for grinding of the face-gear tooth surfaces were also investigated. The proper choice of shaft stiffness enabled good load sharing in the split-torque transmission design. Face-gear experimental studies were also conducted. These tests demonstrated the feasibility of face-gears in high-speed, high-load applications such as helicopter transmissions.

  4. Ideas for Testing of Planetary Gear Sets of Automotive Transmissions

    Directory of Open Access Journals (Sweden)

    Achtenová Gabriela

    2017-06-01

    Full Text Available The article describes the concept of modular stand, where is possible to provide tests of gear pairs with fixed axes from mechanical automotive gearboxes, as well as tests of separate planetary sets from automatic gearboxes. Special attention in the article will be paid to the variant dedicated for testing of planetary gear sets. This variant is particularly interesting because: 1 it is rarely described in the literature, and 2 this topology allows big simplification with respect to testing of standard gearwheels. In the planetary closed-loop stand it is possible to directly link two identical planetary sets. Without any bracing flange or other connecting clutches, shafts or gear sets, just two planetary sets face-to-face will be assembled and connected to the electric motor.

  5. An efficient finite element solution for gear dynamics

    International Nuclear Information System (INIS)

    Cooley, C G; Parker, R G; Vijayakar, S M

    2010-01-01

    A finite element formulation for the dynamic response of gear pairs is proposed. Following an established approach in lumped parameter gear dynamic models, the static solution is used as the excitation in a frequency domain solution of the finite element vibration model. The nonlinear finite element/contact mechanics formulation provides accurate calculation of the static solution and average mesh stiffness that are used in the dynamic simulation. The frequency domain finite element calculation of dynamic response compares well with numerically integrated (time domain) finite element dynamic results and previously published experimental results. Simulation time with the proposed formulation is two orders of magnitude lower than numerically integrated dynamic results. This formulation admits system level dynamic gearbox response, which may include multiple gear meshes, flexible shafts, rolling element bearings, housing structures, and other deformable components.

  6. Laser shaft alignment measurement model

    Science.gov (United States)

    Mo, Chang-tao; Chen, Changzheng; Hou, Xiang-lin; Zhang, Guoyu

    2007-12-01

    Laser beam's track which is on photosensitive surface of the a receiver will be closed curve, when driving shaft and the driven shaft rotate with same angular velocity and rotation direction. The coordinate of arbitrary point which is on the curve is decided by the relative position of two shafts. Basing on the viewpoint, a mathematic model of laser alignment is set up. By using a data acquisition system and a data processing model of laser alignment meter with single laser beam and a detector, and basing on the installation parameter of computer, the state parameter between two shafts can be obtained by more complicated calculation and correction. The correcting data of the four under chassis of the adjusted apparatus moving on the level and the vertical plane can be calculated. This will instruct us to move the apparatus to align the shafts.

  7. Shaft seal assembly and method

    Science.gov (United States)

    Keba, John E. (Inventor)

    2007-01-01

    A pressure-actuated shaft seal assembly and associated method for controlling the flow of fluid adjacent a rotatable shaft are provided. The seal assembly includes one or more seal members that can be adjusted between open and closed positions, for example, according to the rotational speed of the shaft. For example, the seal member can be configured to be adjusted according to a radial pressure differential in a fluid that varies with the rotational speed of the shaft. In addition, in the closed position, each seal member can contact a rotatable member connected to the shaft to form a seal with the rotatable member and prevent fluid from flowing through the assembly. Thus, the seal can be closed at low speeds of operation and opened at high speeds of operation, thereby reducing the heat and wear in the seal assembly while maintaining a sufficient seal during all speeds of operation.

  8. Ultrasonic testing of installed low-pressure turbine shafts

    International Nuclear Information System (INIS)

    Hildmann, I.; Voelker, J.; Ewald, J.

    1987-01-01

    Transverse defects in the admission area of double-flow LP turbine shafts with shrink-on wheel disks can be detected during the onset of crack growth by means of a newly developed test concept with slightly oblique longitudinal US wave incidence, and crack size estimates can be made. For process development and system adjustment a large reference specimen with circular and circular segment-type test reflectors was used. The results of comparative measurements with different types of devices and probes of different transducer size, test frequency and pulse length are presented, and the choice of the technical testing details is substantiated. (orig./DG) [de

  9. Communication: Molecular gears

    Energy Technology Data Exchange (ETDEWEB)

    Burnell, E. Elliott, E-mail: elliott.burnell@ubc.ca [Chemistry Department, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1 (Canada); Lange, Cornelis A. de, E-mail: c.a.de.lange@vu.nl [Atomic, Molecular and Laser Physics, Vrije Universiteit, De Boelelaan 1081, 1081 HV Amsterdam (Netherlands); Meerts, W. Leo, E-mail: leo.meerts@science.ru.nl [Atomic, Molecular and Laser Physics, Vrije Universiteit, De Boelelaan 1081, 1081 HV Amsterdam (Netherlands); Institute for Molecules and Materials, Radboud University Nijmegen, Heyendaalseweg 135, NL-6525 AJ Nijmegen (Netherlands)

    2016-09-07

    The {sup 1}H nuclear magnetic resonance spectrum of hexamethylbenzene orientationally ordered in the nematic liquid crystal ZLI-1132 is analysed using covariance matrix adaptation evolution strategy. The spectrum contains over 350 000 lines with many overlapping transitions, from which four independent direct dipolar couplings are obtained. The rotations of the six methyl groups appear to be correlated due to mutual steric hindrance. Adjacent methyl groups show counter-rotating or geared motion. Hexamethylbenzene thus behaves as a molecular hexagonal gear.

  10. Design and Analysis of a Novel Speed-Changing Wheel Hub with an Integrated Electric Motor for Electric Bicycles

    Directory of Open Access Journals (Sweden)

    Yi-Chang Wu

    2013-01-01

    Full Text Available The aim of this paper is to present an innovative electromechanical device which integrates a brushless DC (BLDC hub motor with a speed-changing wheel hub stored on the rear wheel of an electric bicycle. It combines a power source and a speed-changing mechanism to simultaneously provide functions of power generation and transmission for electric bicycles. As part of the proposed integrated device, the wheel hub consists of a basic planetary gear train providing three forward speeds including a low-speed gear, a direct drive, and a high-speed gear. Each gear is manually controlled by the shift control sleeve to selectively engage or disengage four pawl-and-ratchet clutches based on its clutching sequence table. The number of gear teeth of each gear element of the wheel hub is synthesized. The BLDC hub motor is an exterior-rotor-type permanent-magnet synchronous motor. Two-dimensional finite-element analysis (FEA software is employed to facilitate the motor design and performance analysis. An analysis of the power transmission path at each gear is provided to verify the validity of the proposed design. The results of this work are beneficial to the embodiment, design, and development of novel electromechanical devices for the power and transmission systems of electric bicycles.

  11. The cycloid Permanent Magnetic Gear

    DEFF Research Database (Denmark)

    Rasmussen, Peter Omand; Andersen, Torben Ole; Jørgensen, Frank T.

    2008-01-01

    This paper presents a new permanent-magnet gear based on the cycloid gearing principle. which normally is characterized by an extreme torque density and a very high gearing ratio. An initial design of the proposed magnetic gear was designed, analyzed, and optimized with an analytical model...... regarding torque density. The results were promising as compared to other high-performance magnetic-gear designs. A test model was constructed to verify the analytical model....

  12. Research of grinding process of gears with involute profile to increase its efficiency

    Science.gov (United States)

    Ivanova, T. N.; Korshunov, A. I.; Sannikov, I. N.; Tyukpiekov, V. N.

    2018-03-01

    Grinding as final processing exerts great influence on quality and accuracy of a surface layer of gears. Gear grinding is the most productive method of abrasive processing providing gears of 3 - 8 degrees of accuracy. However violation of the temperature condition of grinding leads to emergence of burns on the surfaces of gears. Therefore the research of the reasons generating defects and finding the ways of their elimination are relevant. The work presents the research of involute tooth profile grinding by wheels of different types with different ways to form a surface. For every way the movements of a tool and a workpiece in order to receive a contour of the tooth socket are simulated. The advantages and the shortcomings of the tooth grinding using form wheels in a grinding method and using dish, worm wheels in generating the grinding method are revealed. The experience of gear production shows that availability of burns in the certain part of a tooth profile is caused by features of the gear grinding process. Theoretical and experimental researches of the thermal phenomena of gear grinding with different configurations of spots in a contact zone and a trajectory of their movement are conducted. There are recommendations how to choose grinding modes, characteristics of abrasive tools taking into account a non-burnt condition of a working surface of a gear. The right choice of lubricating fluid and the way of its supply greatly affect the efficiency of the gear grinding process. It is established that lubricating fluid with special additives gives the best results to obtain desired roughness of a processed surface. The recommendations of effective fluids and their foreign analogs are made.

  13. Speed Estimation in Geared Wind Turbines Using the Maximum Correlation Coefficient

    DEFF Research Database (Denmark)

    Skrimpas, Georgios Alexandros; Marhadi, Kun S.; Jensen, Bogi Bech

    2015-01-01

    to overcome the above mentioned issues. The high speed stage shaft angular velocity is calculated based on the maximum correlation coefficient between the 1 st gear mesh frequency of the last gearbox stage and a pure sinus tone of known frequency and phase. The proposed algorithm utilizes vibration signals...

  14. Torsion of a growing shaft

    Directory of Open Access Journals (Sweden)

    Alexander V. Manzhirov

    2017-12-01

    Full Text Available The torsion of a shaft by rigid disks is considered. The shaft has the form of circular cylinder. Two rigid disks are attached to its end faces. The process of continuous growth of such shaft under the influence of twisting torques applied to the disks is studied. Dual series equations which reflect the mathematical content of the problem at the different stages of the growing process are derived and solved. Results of the numerical analysis and singularities of the qualitative mechanical behaviour of the fundamental characteristics are discussed.

  15. Modeling of Two-Wheeled Self-Balancing Robot Driven by DC Gearmotors

    Directory of Open Access Journals (Sweden)

    Frankovský P.

    2017-08-01

    Full Text Available This paper is aimed at modelling a two-wheeled self-balancing robot driven by the geared DC motors. A mathematical model consists of two main parts, the model of robot’s mechanical structure and the model of the actuator. Linearized equations of motion are derived and the overall model of the two-wheeled self-balancing robot is represented in state-space realization for the purpose of state feedback controller design.

  16. Modeling of Two-Wheeled Self-Balancing Robot Driven by DC Gearmotors

    Science.gov (United States)

    Frankovský, P.; Dominik, L.; Gmiterko, A.; Virgala, I.; Kurylo, P.; Perminova, O.

    2017-08-01

    This paper is aimed at modelling a two-wheeled self-balancing robot driven by the geared DC motors. A mathematical model consists of two main parts, the model of robot's mechanical structure and the model of the actuator. Linearized equations of motion are derived and the overall model of the two-wheeled self-balancing robot is represented in state-space realization for the purpose of state feedback controller design.

  17. Durability Characteristics Analysis of Plastic Worm Wheel with Glass Fiber Reinforced Polyamide

    OpenAIRE

    Kim, Gun-Hee; Lee, Jeong-Won; Seo, Tae-Il

    2013-01-01

    Plastic worm wheel is widely used in the vehicle manufacturing field because it is favorable for weight lightening, vibration and noise reduction, as well as corrosion resistance. However, it is very difficult for general plastics to secure the mechanical properties that are required for vehicle gears. If the plastic resin is reinforced by glass fiber in the fabrication process of plastic worm wheel, it is possible to achieve the mechanical properties of metallic material levels. In this stud...

  18. Increasing the quality of excavators’ planetary reduction gearboxes on the basis of dimensional analysis and geometrical characteristics of tooth wheels

    Science.gov (United States)

    Drygin, M. Yu; Kuryshkin, N. P.

    2018-01-01

    The article describes the problem of extending operational electrically driven excavators’ reducing gear boxes which break down nearly every six months. The main reason of the function loss is the breakdown of the bearing assembly of one of the pinions. The authors performed kinematic, dynamic and geometric calculation of gearing to detect the breakdown reasons. The main reason is that alignment condition is not provided in the differential part and in the power return gear. All toothed gear wheels must be manufactured with the positive bias of the generating rack profile, but in fact all pinions and idle gears are manufactured with negative bias. This lead to an intolerable radial clearance in the gearing and skew of the floating master gears.

  19. DETERMINATION OF TRANSMISSION GEAR RATIO IN MECHANICAL PART OF TRACTOR ELECTRO-MECHANICAL TRANSMISSION

    Directory of Open Access Journals (Sweden)

    Ch. I. Zhdanovich

    2016-01-01

    Full Text Available A methodology has been developed for selection of gear number and transmission gear ratios in mechanical part of a wheel-type tractor with electro-mechanical transmission containing a propulsion asynchronous electric motor with variablefrequency control. The paper proposes to determine a transmission gear ratio on the basis of the following: provision of wheel torque dependence on tractor speed which is the best one for a traction process and during transfer from one gear to the other; provision of nominal operational mode of the electric motor for all tractor operations where it is working for a long period of time; provision of minimum possible number of gears; complete realization of internal combustion engine power on the tractor wheels at limit operational mode of the electric motor. As a characteristic of the asynchronous electric motor with variable-frequency control contains various portions which can be used either completely or partially due to operating conditions, the gear number is determined in the process of transmission gear ration finding but not prior to this. A wheel torque of the tractor with electro-mechanical transmission can be limited according to the following factors: grip of wheel with supporting surface; maximum power of an internal combustion engine which can be transferred to the wheels and a torque which is developed by a propulsion electric motor. It is not proposed to exceed nominal operational mode of the propulsion electric motor for all the operations of the tractor if it is working for a long period of time because in the case of significant excess of the nominal operational mode of the asynchronous electric motor its rather long operation leads to low efficiency and high losses in power, large heat liberation and consequently requires to develop more complicated system for electric motor cooling. An excess of nominal electric motor torque can be justified for short-term operational modes because in this case

  20. Grinding Wheel System

    Science.gov (United States)

    Malkin, Stephen; Gao, Robert; Guo, Changsheng; Varghese, Biju; Pathare, Sumukh

    2003-08-05

    A grinding wheel system includes a grinding wheel with at least one embedded sensor. The system also includes an adapter disk containing electronics that process signals produced by each embedded sensor and that transmits sensor information to a data processing platform for further processing of the transmitted information.

  1. Performance Investigation of a Full-Scale Hybrid Composite Bull Gear

    Science.gov (United States)

    LaBerge, Kelsen; Handschuh, Robert; Roberts, Gary; Thorp, Scott

    2016-01-01

    Hybrid composite gears have been investigated as a weight saving technology for rotorcraft transmissions. These gears differ from conventional steel gears in that the structural material between the shaft interface and the gear rim is replaced with a lightweight carbon fiber composite. The work discussed here is an extension of previous coupon level hybrid gear tests to a full-scale bull gear. The NASA Glenn Research Center High-Speed Helical Gear Rig was modified for this program allowing several hybrid gear web configurations to be tested while utilizing the same gear rim. Testing was performed on both a baseline (steel) web configuration and a hybrid (steel-composite)configuration. Vibration, orbit and temperature data were recorded and compared between configurations. Vibration levels did not differ greatly between the hybrid and steel configurations, nor did temperature differential between inlet and outlet. While orbit shape displayed differences between the hybrid and baseline configurations, the general overall amplitude was comparable. The hybrid configuration discussed here successfully ran at 3300 hp(2,460 kW), however, progressive growth of the orbit while running at this test condition discontinued the test. Researchers continue to search for the cause of this orbit shift.

  2. Some structural aspects that are relevant for synthesis of planetary gear trains

    Energy Technology Data Exchange (ETDEWEB)

    Rajasri, I. [Pathfinder Engineering College, Hanamkonda (India); Gupta, A.V.S.S.K.S. [JNTU, Hyderabad (India); Rao, Y.V.D. [BITS-Pilani. Dept. of Mechanical Engineering, Hyderabad (India)

    2012-07-01

    Gear Trains are typically used in various mechanisms including wind turbines and robots to transmit specified motion and/or torque between two or more shafts and wind turbines need drives and overdrives that amplify the speed of turbine shaft and provide high speed at generator shaft. Planetary gear trains (PGT) are compact, easy to build and operate. Therefore PGTs are most suitable for such drives including over drives. Graph theory used in synthesis of the PGTs is also useful to identify various possible structural aspects of the PGTs. Generation of PGTs is followed by the test for isomorphism in PGTs generated. In this context various structural aspects relevant for the synthesis of PGTs is described. (Author)

  3. TIBIAL SHAFT FRACTURES.

    Science.gov (United States)

    Kojima, Kodi Edson; Ferreira, Ramon Venzon

    2011-01-01

    The long-bone fractures occur most frequently in the tibial shaft. Adequate treatment of such fractures avoids consolidation failure, skewed consolidation and reoperation. To classify these fractures, the AO/OTA classification method is still used, but it is worthwhile getting to know the Ellis classification method, which also includes assessment of soft-tissue injuries. There is often an association with compartmental syndrome, and early diagnosis can be achieved through evaluating clinical parameters and constant clinical monitoring. Once the diagnosis has been made, fasciotomy should be performed. It is always difficult to assess consolidation, but the RUST method may help in this. Radiography is assessed in two projections, and points are scored for the presence of the fracture line and a visible bone callus. Today, the dogma of six hours for cleaning the exposed fracture is under discussion. It is considered that an early start to intravenous antibiotic therapy and the lesion severity are very important. The question of early or late closure of the lesion in an exposed fracture has gone through several phases: sometimes early closure has been indicated and sometimes late closure. Currently, whenever possible, early closure of the lesion is recommended, since this diminishes the risk of infection. Milling of the canal when the intramedullary nail is introduced is still a controversial subject. Despite strong personal positions in favor of milling, studies have shown that there may be some advantage in relation to closed fractures, but not in exposed fractures.

  4. Influence of the shot-peening treatment on the CRF gearing behaviour

    International Nuclear Information System (INIS)

    Molinie, D.; Lemaire, E.; Randrianarivo, L.; Dorier, C.

    1998-01-01

    Surface damage are observed in service on CRF case-hardened cases. Such damage is like surface fatigue which appears in the form of frosting and can come to a micro-spalling or even a spalling damage. Survey and studies realised on gears affected by such damage, led EDF and the manufacturer to search for appropriated solutions since 1985 (optimisation of the gear bottom profile, care of the grinding and the thermochemical processing, use of oils with higher viscosity). Simulations on a running wheel device can reproduce the meshing conditions on simplified specimen. The aim is to study the influence of residual stresses following a severe grinding and shot peening treatments. An empiric selection was realised among different shot peening treatments. Endurance tests are realised on case-hardened gears with or without shot-peening treatments. Compared with standard grinded gears, it appears that the shot-peening selected increases up to 40% the gear lifetime till extended spalling. (authors)

  5. Large shaft development test plan

    International Nuclear Information System (INIS)

    Krug, A.D.

    1984-03-01

    This test plan proposes the conduct of shaft liner tests as part of the large shaft development test proposed for the Hanford Site in support of the repository development program. The objectives of these tests are to develop techniques for measuring liner alignment (straightness), both construction assembly alignment and downhole cumulative alignment, and to assess the alignment information as a real time feedback to aid the installation procedure. The test plan is based upon installing a 16 foot ID shaft liner into a 20 foot diameter shaft to a depth of 1000 feet. This test plan is considered to be preliminary in that it was prepared as input for the decision to determine if development testing is required in this area. Should the decision be made to proceed with development testing, this test plan shall be updated and revised. 6 refs., 2 figs

  6. Shaft and tunnel sealing considerations

    International Nuclear Information System (INIS)

    Kelsall, P.C.; Shukla, D.K.

    1980-01-01

    Much of the emphasis of previous repository sealing research has been placed on plugging small diameter boreholes. It is increasingly evident that equal emphasis should now be given to shafts and tunnels which constitute more significant pathways between a repository and the biosphere. The paper discusses differences in requirements for sealing shafts and tunnels as compared with boreholes and the implications for seal design. Consideration is given to a design approach for shaft and tunnel seals based on a multiple component design concept, taking into account the requirements for retrievability of the waste. A work plan is developed for the future studies required to advance shaft and tunnel sealing technology to a level comparable with the existing technology for borehole sealing

  7. Materials and lubrication for gear and bearing surfaces in uhv

    International Nuclear Information System (INIS)

    Kirby, R.E.; Collet, G.J.; Garwin, E.L.

    1980-06-01

    During design and construction of the SLAC polarized LEED (PLEED) system, a search was made for a dependable gear, bearing, and lubrication system for the computer-controlled Faraday cup used to measure diffracted beams. Components must be nonmagnetic, bakeable to 250 0 C, and at room temperature must operate at pressures in the 10 -9 to 10 -10 Pa range. A test system was constructed which incorporated a meshed pair of dissimilar pitch diameter spur gears, one of which was confined to (by bushings) and rotated on a fixed shaft, while the other gear was driven by a commercial rotary motion feedthrough which was rotated by a servo motor driven in sine fashion with a direction reversal every six turns and peak speeds of 50 rpm. The criterion for a successful pair was approx. 10 5 turns, the life rating for the feedthrough. Pairs had actual turn counts from less than 1 to 91,000. Materials for gears included stainless steel, beryllium copper, and aluminum alloys. Lubricants used singly and in concert were MoS 2 , WS 2 , Ag, hard chrome, and a MoS 2 -graphite-sodium silicate mixture. The successful gear pair was Ag-plated Al alloy and MoS 2 -graphite-sodium silicate-coated Be-Cu. Subsequent performance in the PLEED system after repeated bakeouts will also be discussed

  8. Some Experimental and Simulation Results on the Dynamic Behaviour of Spur and Helical Geared Transmissions with Journal Bearings

    Directory of Open Access Journals (Sweden)

    R. Fargère

    2012-01-01

    Full Text Available Some interactions between the dynamic and tribological behaviour of geared transmissions are examined, and a number of experimental and simulation results are compared. A model is introduced which incorporates most of the possible interactions between gears, shafts and hydrodynamic journal bearings. It combines (i a specific element for wide-faced gears that includes the normal contact conditions between actual mating teeth, that is, with tooth shape deviations and mounting errors, (ii shaft finite elements, and (iii the external forces generated by journal bearings determined by directly solving Reynolds' equation. The simulation results are compared with the measurement obtained on a high-precision test rig with single-stage spur and helical gears supported by hydrodynamic journal bearings. The experimental and simulation results compare well thus validating the simulation strategy both at the global and local scales.

  9. A superconducting magnetic gear

    International Nuclear Information System (INIS)

    Campbell, A M

    2016-01-01

    A comparison is made between a magnetic gear using permanent magnets and superconductors. The objective is to see if there are any fundamental reasons why superconducting magnets should not provide higher power densities than permanent magnets. The gear is based on the variable permeability design of Attilah and Howe (2001 IEEE Trans. Magn. 37 2844–46) in which a ring of permanent magnets surrounding a ring of permeable pole pieces with a different spacing gives an internal field component at the beat frequency. Superconductors can provide much larger fields and forces but will saturate the pole pieces. However the gear mechanism still operates, but in a different way. The magnetisation of the pole pieces is now constant but rotates with angle at the beat frequency. The result is a cylindrical Halbach array which produces an internal field with the same symmetry as in the linear regime, but has an analytic solution. In this paper a typical gear system is analysed with finite elements using FlexPDE. It is shown that the gear can work well into the saturation regime and that the Halbach array gives a good approximation to the results. Replacing the permanent magnets with superconducting tapes can give large increases in torque density, and for something like a wind turbine a combined gear and generator is possible. However there are major practical problems. Perhaps the most fundamental is the large high frequency field which is inevitably present and which will cause AC losses. Also large magnetic fields are required, with all the practical problems of high field superconducting magnets in rotating machines. Nevertheless there are ways of mitigating these difficulties and it seems worthwhile to explore the possibilities of this technology further. (paper)

  10. General motors front wheel drive 2-mode hybrid transmission

    Energy Technology Data Exchange (ETDEWEB)

    Hendrickson, James [General Motors Corp., Pontiac, MI (United States). New Transmission Products Group.; Holmes, Alan G. [General Motors Corp., Pontiac, MI (United States). Powertrain Hybrid Architecture

    2009-07-01

    General Motors now expands the application of two-mode hybrid technology to front wheel drive vehicles with the development of a hybrid electric transmission packaged into essentially the same space as a conventional automatic transmission for front wheel drive. This was accomplished using a space-efficient arrangement based on two planetary gear sets and electric motor-generators with large internal diameters. A combination of damper and hydraulically-controlled clutch allow comfortable shutdown and restarting of large-displacement engines in front wheel drive vehicles. The hybrid system delivers electric low-speed urban driving, two continuously variable ranges of transmission speed ratios, four fixed transmission speed ratios, electric acceleration boosting, and regenerative braking. In the first vehicle application, the two-mode hybrid helps to reduce vehicle fuel consumption by approximately one-third. (orig.)

  11. THE DEVELOPMENT OF TECHNOLOGICAL METHODS OF LASER SURFACE TREATMENT OF HEAVILY LOADED PARTS WHEEL SET CARS

    Directory of Open Access Journals (Sweden)

    V. D. Sheliahin

    2009-06-01

    Full Text Available Possibility of application of processes of laser superficial processing for restoration and increase of a resource of operation of shafts and rims of wheels of railway cars is investigated. The influence of critical parametres of process on depth of a zone of laser influence and their interrelation with the structure obtained and hardness is determineed.

  12. The Reaction Wheel Pendulum

    CERN Document Server

    Block, Daniel J; Spong, Mark W

    2007-01-01

    This monograph describes the Reaction Wheel Pendulum, the newest inverted-pendulum-like device for control education and research. We discuss the history and background of the reaction wheel pendulum and other similar experimental devices. We develop mathematical models of the reaction wheel pendulum in depth, including linear and nonlinear models, and models of the sensors and actuators that are used for feedback control. We treat various aspects of the control problem, from linear control of themotor, to stabilization of the pendulum about an equilibrium configuration using linear control, t

  13. A Nontoxic Barlow's Wheel

    Science.gov (United States)

    Daffron, John A.; Greenslade, Thomas B.

    2015-01-01

    Barlow's wheel has been a favorite demonstration since its invention by Peter Barlow (1776-1862) in 1822.1 In the form shown in Fig. 1, it represents the first electric motor. The interaction between the electric current passing from the axle of the wheel to the rim and the magnetic field produced by the U-magnet produces a torque that turns the wheel. The original device used mercury to provide electrical contact to the rim, and the dangers involved with the use of this heavy metal have caused the apparatus to disappear from the lecture hall.

  14. Vibration Propagation of Gear Dynamics in a Gear-Bearing-Housing System Using Mathematical Modeling and Finite Element Analysis

    Science.gov (United States)

    Parker, Robert G.; Guo, Yi; Eritenel, Tugan; Ericson, Tristan M.

    2012-01-01

    Vibration and noise caused by gear dynamics at the meshing teeth propagate through power transmission components to the surrounding environment. This study is devoted to developing computational tools to investigate the vibro-acoustic propagation of gear dynamics through a gearbox using different bearings. Detailed finite element/contact mechanics and boundary element models of the gear/bearing/housing system are established to compute the system vibration and noise propagation. Both vibration and acoustic models are validated by experiments including the vibration modal testing and sound field measurements. The effectiveness of each bearing type to disrupt vibration propagation is speed-dependent. Housing plays an important role in noise radiation .It, however, has limited effects on gear dynamics. Bearings are critical components in drivetrains. Accurate modeling of rolling element bearings is essential to assess vibration and noise of drivetrain systems. This study also seeks to fully describe the vibro-acoustic propagation of gear dynamics through a power-transmission system using rolling element and fluid film wave bearings. Fluid film wave bearings, which have higher damping than rolling element bearings, could offer an energy dissipation mechanism that reduces the gearbox noise. The effectiveness of each bearing type to disrupt vibration propagation in explored using multi-body computational models. These models include gears, shafts, rolling element and fluid film wave bearings, and the housing. Radiated noise is mapped from the gearbox surface to surrounding environment. The effectiveness of rolling element and fluid film wave bearings in breaking the vibro-acoustic propagation path from the gear to the housing is investigated.

  15. Improve Gear Fault Diagnosis and Severity Indexes Determinations via Time Synchronous Average

    Directory of Open Access Journals (Sweden)

    Mohamed El Morsy

    2016-11-01

    Full Text Available In order to reduce operation and maintenance costs, prognostics and health management (PHM of the geared system is needed to improve effective gearbox fault detection tools.  PHM system allows less costly maintenance because it can inform operators of needed repairs before a fault causes collateral damage happens to the gearbox. In this article, time synchronous average (TSA technique and complex continuous wavelet analysis enhancement are used as gear fault detection approach. In the first step, extract the periodic waveform from the noisy measured signal is considered as The main value of Time synchronous averaging (TSA for gearbox signals analyses, where it allows the vibration signature of the gear under analysis to be separated from other gears and noise sources in the gearbox that are not synchronous with faulty gear. In the second step, the complex wavelet analysis is used in case of multi-faults in same gear. The signal phased-locked with the angular position of a shaft within the system is done. The main aims for this research is to improve the gear fault diagnosis and severity index determinations based on TSA  of measured signal for investigated passenger vehicle gearbox under different operation conditions. In addition to, correct the variations in shaft speed such that the spreading of spectral energy into an adjacent gear mesh bin helps in detecting the gear fault position (faulted tooth or teeth and improve the Root Mean Square (RMS, Kurtosis, and Peak Pulse as the sensitivity of severity indexes for maintenance, prognostics and health management (PHM purposes. The open loop test stand is equipped with two dynamometers and investigated vehicle gearbox of mid-size passenger car; the total power is taken-off from one side only. Reference Number: www.asrongo.org/doi:4.2016.1.1.6

  16. On gear tooth stiffness evaluation

    DEFF Research Database (Denmark)

    Pedersen, Niels Leergaard; Jørgensen, Martin Felix

    2014-01-01

    The estimation of gear stiffness is important for determining the load distribution between the gear teeth when two sets of teeth are in contact. Two factors have a major influence on the stiffness; firstly the boundary condition through the gear rim size included in the stiffness calculation...

  17. Full Dynamic Reactions in the Basic Shaft Bearings of Big Band Saw Machines

    Science.gov (United States)

    Marinov, Boycho

    2013-03-01

    The band saws machines are a certain class woodworking machines for longitudinal or transversal cutting as well as for curvilinear wood cutting. These machines saw the wood through a band-saw blade and two feeding wheels. These wheels usually are very large and they are produced with inaccuracies. The centre of mass of the disc is displaced from the axis of rotation of the distance e (eccentricity) and the axis of the disk makes an angle with the axis of rotation. In this paper, the dy- namic reactions in the bearings of the basic shaft, which drives the band saw machines, are analyzed. These reactions are caused by the external loading and the kinematics and the mass characteristics of the rotating disk. The expressions for the full dynamic reactions are obtained. These expressions allow the parameters of the machines to be chosen in such a way that the loading in the shaft and the bearings to be minimal.

  18. Mathematical description of tooth flank surface of globoidal worm gear with straight axial tooth profile

    Science.gov (United States)

    Połowniak, Piotr; Sobolak, Mariusz

    2017-12-01

    In this article, a mathematical description of tooth flank surface of the globoidal worm and worm wheel generated by the hourglass worm hob with straight tooth axial profile is presented. The kinematic system of globoidal worm gear is shown. The equation of globoid helix and tooth axial profile of worm is derived to determine worm tooth surface. Based on the equation of meshing the contact lines are obtained. The mathematical description of globoidal worm wheel tooth flank is performed on the basis of contact lines and generating the tooth side by the extreme cutting edge of worm hob. The presented mathematical model of tooth flank of TA worm and worm wheel can be used e.g. to analyse the contact pattern of the gear.

  19. 49 CFR 230.89 - Reverse gear.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Reverse gear. 230.89 Section 230.89 Transportation... Reversing Gear § 230.89 Reverse gear. (a) General provisions. Reverse gear, reverse levers, and quadrants... quadrant. Proper counterbalance shall be provided for the valve gear. (b) Air-operated power reverse gear...

  20. analysis of gear milling at vari gear milling at various gear milling

    African Journals Online (AJOL)

    eobe

    2 DEPARTMENT OF INDUSTRIAL AND ... conventional machine tools, cutter tool wear, .... speed, and tool wear on case-hardened gear is also .... study. The gear cutter is mounted on the spindle. Spindle speeds and feed rates are essential ...

  1. Wheeled hopping robot

    Science.gov (United States)

    Fischer, Gary J [Albuquerque, NM

    2010-08-17

    The present invention provides robotic vehicles having wheeled and hopping mobilities that are capable of traversing (e.g. by hopping over) obstacles that are large in size relative to the robot and, are capable of operation in unpredictable terrain over long range. The present invention further provides combustion powered linear actuators, which can include latching mechanisms to facilitate pressurized fueling of the actuators, as can be used to provide wheeled vehicles with a hopping mobility.

  2. Multi-component lightweight gearwheels with deep-drawn wheel body for automotive applications

    Science.gov (United States)

    Benkert, Tim; Hiller, Maria; Volk, Wolfram

    2017-09-01

    Multi-component gearwheels offer great lightweight opportunities for automotive applications. An assembly of a gear ring and a wheel body joined by press fit replaces the monolithic gearwheel. To save weight, the wheel body uses lightweight design. This lightweight design influences the assembled gearwheel’s mechanical properties like stiffness, weight and torque capacity. Further, the wheel body material influences the mentioned properties as well. In this paper, the effects of the lightweight wheel body manufactured by deep-drawing on the mechanical properties of the assembled gearwheel are investigated. Three different wheel body designs are examined regarding their stiffness and weight compared to a reference gearwheel. Using the best design, the influence of five materials with increasing yield strength on the maximum torque the gearwheel can transmit is studied. All research is done virtually using Abaqus 6.12-3.

  3. Humeral Shaft Fracture: Intramedullary Nailing.

    Science.gov (United States)

    Konda, Sanjit R; Saleh, Hesham; Fisher, Nina; Egol, Kenneth A

    2017-08-01

    This video demonstrates the technique of intramedullary nailing for a humeral shaft fracture. The patient is a 30-year-old man who sustained a gunshot wound to his right arm. The patient was indicated for humeral nailing given the comminuted nature of the diaphysis and to allow for minimal skin incisions. Other relative indications include soft-tissue compromise about the arm precluding a large surgical exposure. This video presents a case of a comminuted humeral shaft fracture treated with an intramedullary nail. Anatomic reduction and stable fixation was obtained with this technique. This case demonstrates a soft-tissue sparing technique of humeral shaft fixation using a humeral intramedullary nail. The technique is easy to perform and has significant benefits in minimizing surgical exposure, decreasing operative time, and decreasing blood loss. In the correct clinical setting, humeral nailing provides an expeditious form of fixation that restores length, alignment, and rotation of the fracture humeral diaphysis.

  4. Exploratory shaft liner corrosion estimate

    International Nuclear Information System (INIS)

    Duncan, D.R.

    1985-10-01

    An estimate of expected corrosion degradation during the 100-year design life of the Exploratory Shaft (ES) is presented. The basis for the estimate is a brief literature survey of corrosion data, in addition to data taken by the Basalt Waste Isolation Project. The scope of the study is expected corrosion environment of the ES, the corrosion modes of general corrosion, pitting and crevice corrosion, dissimilar metal corrosion, and environmentally assisted cracking. The expected internal and external environment of the shaft liner is described in detail and estimated effects of each corrosion mode are given. The maximum amount of general corrosion degradation was estimated to be 70 mils at the exterior and 48 mils at the interior, at the shaft bottom. Corrosion at welds or mechanical joints could be significant, dependent on design. After a final determination of corrosion allowance has been established by the project it will be added to the design criteria. 10 refs., 6 figs., 5 tabs

  5. Effects of Wheel and Hand-Rim Size on Submaximal Propulsion in Wheelchair Athletes

    NARCIS (Netherlands)

    Mason, Barry S.; Van der Woude, Lucas H. V.; Tolfrey, Keith; Lenton, John P.; Goosey-Tolfrey, Victoria L.

    MASON, B. S., L. H. V. VAN DER WOUDE, K. TOLFREY, J. P. LENTON, and V. L. GOOSEY-TOLFREY. Effects of Wheel and Hand-Rim Size on Submaximal Propulsion in Wheelchair Athletes. Med. Sci. Sports Exerc., Vol. 44, No. 1, pp. 126-134, 2012. Purpose: This study aimed to investigate the effects of fixed gear

  6. The Effect of Wheel Size on Mobility Performance in Wheelchair Athletes

    NARCIS (Netherlands)

    Mason, B.; van der Woude, L.; Lenton, J. P.; Goosey-Tolfrey, V.

    2012-01-01

    The purpose of the current study was to investigate the effects of different wheel sizes, with fixed gear ratios, on maximal effort mobility performance in wheelchair athletes. 13 highly trained wheelchair basketball players, grouped by classification level, performed a battery of 3 field tests in

  7. An exploratory shaft facility in SALT: Draft shaft study plan

    International Nuclear Information System (INIS)

    1987-03-01

    This draft Shaft Study Plan describes a program of testing and monitoring in the Exploratory Shafts of a candidate high-level nuclear waste repository site in Deaf Smith County, Texas. The purpose of the programs to assist with site characterization in support of a determination of site suitability for development as a repository design and performance assessment evaluations. The program includes a variety of geological, geophysical, geomechanical, thermomechanical, and geohydrological testing and monitoring. The program is presented as a series of separate studies concerned with geological, geomechanical, and geohydrological site characterization, and with evaluating the mechanical and hydrological response of the site to construction of the shafts. The various studies, and associated test or monitoring methods are shown. The procedure used in developing the test program has been to initially identify the information necessary to satisfy (1) federal, state, and local requirements, and (2) repository program requirements. These information requirements have then been assessed to determine which requirements can be addressed wholly or in significant part by monitoring and testing from within the shafts. Test methods have been identified to address specific information requirements. 67 refs., 39 figs., 31 tabs

  8. On the Determination of the Gear Teeth Wear Using an Inductive Sensor

    Directory of Open Access Journals (Sweden)

    V. N. Atamanov

    2015-01-01

    Full Text Available A problem to measure the teeth wear of rotating gear wheels and a possibility to create simple, reliable and inexpensive mobile systems of diagnostics allowing to record the wear in the course of use are presently relevant. The paper presents implemented technical solutions as a result of work. The aim of the work was to prove experimentally that it is possible to measure the teeth wear of a gear wheel using a passive inductive sensor and a positioning disk. The technique to determine the wear uses a phase-chronometric method developed at BMSTU.To reach the objective, an experimental installation was designed and made. Works are performed, and experimental results of used stationary inductive sensors of passive type to measure the ferromagnetic gear wheels wear of reducers in use are received. The technique for defining the points at the output signal of the inductive sensor, which correspond to the specified points of the tooth profile and, in particular, to the profile points on a pitch circle of the tooth of gear wheel has been developed. Experiments allowed us to define the main dependences of signal parameters on the sizes and arrangement of the sensor magnet with respect to the passing tooth in the course of rotation, as well as on the number of the sensor coil turns, speed of gear wheel rotation, and on the gap size between the end face of the sensor and the top of a tooth.The technique for positioning the sensor with respect to tooth has been deve loped. In particular, it allows us to position a sensor at any point of the involute, including also a point of the profile on a pitch circle. This is necessary to adjust the sensor. The conducted researches allowed us to develop a technique for exact measuring system adjustment to a hitch circle of the gear wheel and to develop for this purpose a system of diagnostics and measurement of teeth wear with the wheel being rotated. The results of work performed at the JSC ELARA in Cheboksary city

  9. A New Design of the Universal Test Rig to Measure the Wear Characterizations of Polymer Acetal Gears (Spur, Helical, Bevel, and Worm

    Directory of Open Access Journals (Sweden)

    Samy Yousef

    2015-01-01

    Full Text Available This work aims to study the wear characterization of common types of acetal polymer gears (spur, helical, bevel, and worm using a new TS universal test rig, in order to obtain reliable results and as a reference when compared with acetal nanocomposite gears later. The TS universal test rig consists of three different units that are connected by a main driver shaft and a pair of constantly meshing metal spur gears, which transfer power to the bevel and worm test units. The first unit is used to test the bevel gears, the second unit is used to test the spur and helical gears, and the third unit is used to test the worm gears. The loading mechanism is similarly designed to block the brake mechanism. Hobbing and milling machines were used to machine an injection-moulded polymer flanges and produce the tested gears. All gear pairs, except the worm gear, have identical gear ratios. The experiments were performed at speed 1420 rpm and the torque was 4 Nm. The results showed that the wear rates (in the form of weight loss of spur gears were consistent with the previous results and the other gear types had larger wear rates.

  10. Materials and lubrication for gear and bearing surfaces in UHV

    International Nuclear Information System (INIS)

    Kirby, R.E.; Collet, G.J.; Garwin, E.L.

    1981-01-01

    During design and construction of the SLAC polarized LEED (PLEED) system, a search was made for a dependable gear, bearing and lubrication system for the computer-controlled Faraday cup used to measure diffracted beams. Components must be nonmagnetic, bakeable to 250 0 C, and at room temperature must operate at pressures in the 10 -9 to 10 -10 Pa range. A test system was constructed which incorporated a meshed pair of dissimilar pitch diameter spur gears, one of which was confined by bushings to a fixed shaft on which it rotated, while the other gear was driven through a commercial rotary motion feedthrough rotated by a servo motor driven in sine fashion with a direction reversal every six turns and peak speeds of 50 rpm. The criterion for a successful pair was approx. equal to 10 5 turns, the life rating for the feedthrough. Pairs had actual turn counts from less than 1 to 91 000. Materials for gears included stainless steel, beryllium copper and aluminium alloys. Lubricants used singly and in concert were MoS 2 , WS 2 , Ag, hard chrome and a MoS 2 -graphite-sodium silicate-coated Be-Cu. Subsequent performance in the PLEED system after repeated bakeouts will also be discussed. (orig.)

  11. Impedance Synthesis Based Vibration Analysis of Geared Transmission System

    Directory of Open Access Journals (Sweden)

    Yafeng Ren

    2017-01-01

    Full Text Available The severity of gear noise response depends on the sensitivity of geared rotor system dynamics to the transmission error. As gearbox design trending towards lighter weight and lower noise, the influence of housing compliance on system dynamic characteristics cannot be ignored. In this study, a gear-shaft-bearing-housing coupled impedance model is proposed to account for the effect of housing compliance on the vibration of geared transmission system. This proposed dynamic model offers convenient modeling, efficient computing, and ability to combine computed parameters with experimental ones. The numerical simulations on system dynamic characteristics are performed for both a rigid housing configuration and a flexible one. Natural frequencies, dynamic mesh forces, and dynamic bearing reaction loads are computed, and the housing compliance contribution on system dynamic characteristics is analyzed. Results show that increasing housing compliance will decrease the system natural frequencies and will affect the dynamic bearing reaction loads significantly but have very little influence on the dynamic mesh force. Also, the analysis shows that bearing stiffness has significant influence on the degree of housing contribution on system dynamic characteristics.

  12. Wheeling in Canada

    International Nuclear Information System (INIS)

    Fytche, E.L.

    1991-01-01

    The quest for economic efficiency, or lowest cost, in the electricity supply industry is furthered by trading between high and low cost utilities, one aspect being transporting or wheeling power through the transmission system of a third party. Some of the pressures and constraints limiting wheeling are discussed. A simple formula is presented for determining whether trading and wheeling are worthwhile. It is demonstrated for assumed capital and operating cost levels, the viability of nine cases where bulk power or economy energy would need to be wheeled across provincial boundaries in order to reach potential buyers. Wheeling in Canada is different from the situation in the USA, due to large distances spanned by Canadian utilities and because most are provincial crown corporations, with different territorial interests and profit motivations than investor-owned utilities. Most trading in electricity has been between contiguous neighbours, for mutual advantage. New technology allows power transmission over distances of up to 1000 miles, and the economics of Canada's electrical supply could be improved, with means including access to low cost coal of Alberta, and remote hydro in British Columbia, Manitoba, Quebec and Labrador. Nuclear plants could be located anywhere but suffer from an unfriendly public attitude. A bridge across the Prairies appears uneconomic due to cost of transmission, and also due to low valuation given to Alberta coal. 7 refs., 2 figs., 3 tabs

  13. The hydraulic wheel

    International Nuclear Information System (INIS)

    Alvarez Cardona, A.

    1985-01-01

    The present article this dedicated to recover a technology that key in disuse for the appearance of other techniques. It is the hydraulic wheel with their multiple possibilities to use their energy mechanical rotational in direct form or to generate electricity directly in the fields in the place and to avoid the high cost of transport and transformation. The basic theory is described that consists in: the power of the currents of water and the hydraulic receivers. The power of the currents is determined knowing the flow and east knowing the section of the flow and its speed; they are given you formulate to know these and direct mensuration methods by means of floodgates, drains and jumps of water. The hydraulic receivers or properly this hydraulic wheels that are the machines in those that the water acts like main force and they are designed to transmit the biggest proportion possible of absolute work of the water, the hydraulic wheels of horizontal axis are the common and they are divided in: you rotate with water for under, you rotate with side water and wheels with water for above. It is analyzed each one of them, their components are described; the conditions that should complete to produce a certain power and formulate them to calculate it. There are 25 descriptive figures of the different hydraulic wheels

  14. Control rod drive shaft latch

    International Nuclear Information System (INIS)

    Thorp, A.G. II.

    1976-01-01

    A latch mechanism is operated by differential pressure on a piston to engage the drive shaft for a control rod in a nuclear reactor, thereby preventing the control rod from being ejected from the reactor in case of failure of the control rod drive mechanism housing which is subjected to the internal pressure in the reactor vessel. 6 claims, 4 drawing figures

  15. Geotechnical instrumentation for repository shafts

    International Nuclear Information System (INIS)

    Lentell, R.L.; Byrne, J.

    1993-01-01

    The US Congress passed the Nuclear Waste Policy Act in 1980, which required that three distinctly different geologic media be investigated as potential candidate sites for the permanent disposal of high-level nuclear waste. The three media that were selected for study were basalt (WA), salt (TX, LA, MS, UT), and tuff (NV). Preliminary Exploratory Shaft Facilities (ESF) designs were prepared for seven candidate salt sites, including bedded and domal salt environments. A bedded-salt site was selected in Deaf Smith County, TX for detailed site characterization studies and ESF Final Design. Although Congress terminated the Salt Repository Program in 1988, Final Design for the Deaf Smith ESF was completed, and much of the design rationale can be applied to subsequent deep repository shafts. This paper presents the rationale for the geotechnical instrumentation that was designed for construction and operational performance monitoring of the deep shafts of the in-situ test facility. The instrumentation design described herein can be used as a general framework in designing subsequent instrumentation programs for future high-level nuclear waste repository shafts

  16. Update of 1972 status report on deep shaft studies

    International Nuclear Information System (INIS)

    1976-09-01

    The following aspects of shaft sinking are considered: the effects of geology, factors affecting shaft size, the conventional shaft sinking techniques and the newer mechanized methods, several representative or difficult shafts, and certain long-term problems and solutions

  17. Costs associated with wheeling

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    Wheeling costs are incurred by all companies that experience a change in power flows over their transmission lines during a specific transaction, whether or not the lines of that company are part of the contract path. The costs of providing wheeling service differ from one system to another and from one kind of wheeling transaction to another. While most transactions may be completed using existing capacity, others may require an increase in line. Depending on the situation, some cost components may be high, low, negative, or not incurred at all. This article discusses two general categories of costs; transactional and capital. The former are all operation, maintenance and opportunity costs incurred in completing a specific transaction assuming the existence of adequate capacity. Capital costs are the costs of major new equipment purchases and lines necessary to provide any increased level of transmission services

  18. 30 CFR 57.19106 - Shaft sets.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Shaft sets. 57.19106 Section 57.19106 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND....19106 Shaft sets. Shaft sets shall be kept in good repair and clean of hazardous material. ...

  19. 30 CFR 56.19106 - Shaft sets.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Shaft sets. 56.19106 Section 56.19106 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND... Shaft sets. Shaft sets shall be kept in good repair and clean of hazardous material. ...

  20. Model Based Approach for Identification of Gears and Bearings Failure Modes

    Directory of Open Access Journals (Sweden)

    Renata Klein

    2011-01-01

    Full Text Available This paper describes the algorithms that were used for analysis of the PHM’09 gear-box. The purpose of the analysis was to detect and identify faults in various components of the gear-box. Each of the 560 vibration recordings presented a different set of faults, including distributed and localized gear faults, typical bearing faults and shaft faults. Each fault had to be pinpointed precisely.In the following sections we describe the algorithms used for finding faults in bearings, gears and shafts, and the conclusions that were reached. A special blend of pattern recognition and signal processing methods was applied.Bearings were analyzed using the orders representation of the envelope of a band pass filtered signal and an envelope of the de-phased signal. A special search algorithm was applied for bearings features extraction. The diagnostics of the bearings failure modes was carried out automatically. Gears were analyzed using the order domains, the quefrency of orders, and the derivatives of the phase average.

  1. Mathematical Modeling of the Braking System of Wheeled Mainline Aircraft

    Directory of Open Access Journals (Sweden)

    I. S. Shumilov

    2016-01-01

    Full Text Available The braking system of the landing gear wheels of a mainline aircraft has to meet mandatory requirements laid out in the Aviation Regulations AP-25 (Para 25.735. «Brakes and brake systems". These requirements are essential when creating the landing gear wheel brake control system (WBCS and are used as main initial data in its mathematical modeling. The WBCS is one of the most important systems to ensure the safe completion of the flight. It is a complex of devices, i.e. units (hydraulic, electrical, and mechanical, connected through piping, wiring, mechanical constraints. This complex should allow optimizing the braking process when a large number of parameters change. The most important of them are the following: runway friction coefficient (RFC, lifting force, weight and of the aircraft, etc. The main structural elements involved in braking the aircraft are: aircraft wheels with pneumatics (air tires and brake discs, WBCS, and cooling system of gear wheels when braking.To consider the aircraft deceleration on the landing run is of essence at the stage of design, development, and improvement of brakes and braking systems. Based on analysis of equation of the aircraft motion and energy balance can be determined energy loading and its basic design parameters, braking distances and braking time.As practice and analysis of energy loading show, they (brake + wheel absorb the aircraftpossessed kinetic energy at the start of braking as much as 60-70%, 70-80%, and 80-90%, respectively, under normal increased, and emergency operating conditions. The paper presents a procedure for the rapid calculation of energy loading of the brake wheel.Currently, the mainline aircrafts use mainly electrohydraulic brake systems in which there are the main, backup, and emergency-parking brake systems. All channels are equipped with automatic anti-skid systems. Their presence in the emergency (the third reserve channel significantly improves the reliability and safety of

  2. Methodology for Structural Calculation of Gear Teeth with Unconventional Profile

    Directory of Open Access Journals (Sweden)

    Radicella Andrea Chiaramonte

    2016-01-01

    Full Text Available After having made reference to the structural analysis used in the study of gear wheel teeth, we then move on to the state of the art on the topic. We proceed to identify the boundary conditions used in the structural analysis of unconventional teeth with sides having a profile of an involute of a circle but with different pressure angles in each of the two sides. A procedure for the discretization of traditional teeth and of innovative teeth is presented and compared with the discretization obtained using current software.

  3. AN APPLICATION OF MULTICRITERIA OPTIMIZATION TO THE TWO-CARRIER TWO-SPEED PLANETARY GEAR TRAINS

    Directory of Open Access Journals (Sweden)

    Jelena Stefanović-Marinović

    2017-04-01

    Full Text Available The objective of this study is the application of multi-criteria optimization to the two-carrier two-speed planetary gear trains. In order to determine mathematical model of multi-criteria optimization, variables, objective functions and conditions should be determined. The subject of the paper is two-carrier two-speed planetary gears with brakes on single shafts. Apart from the determination of the set of the Pareto optimal solutions, the weighted coefficient method for choosing an optimal solution from this set is also included in the mathematical model.

  4. Analysis and modification of a single-mesh gear fatigue rig for use in diagnostic studies

    Science.gov (United States)

    Zakrajsek, James J.; Townsend, Dennis P.; Oswald, Fred B.; Decker, Harry J.

    1992-01-01

    A single-mesh gear fatigue rig was analyzed and modified for use in gear mesh diagnostic research. The fatigue rig allowed unwanted vibration to mask the test-gear vibration signal, making it difficult to perform diagnostic studies. Several possible sources and factors contributing to the unwanted components of the vibration signal were investigated. Sensor mounting location was found to have a major effect on the content of the vibration signal. In the presence of unwanted vibration sources, modal amplification made unwanted components strong. A sensor location was found that provided a flatter frequency response. This resulted in a more useful vibration signal. A major network was performed on the fatigue rig to reduce the influence of the most probable sources of the noise in the vibration signal. The slave gears were machined to reduce weight and increase tooth loading. The housing and the shafts were modified to reduce imbalance, looseness, and misalignment in the rotating components. These changes resulted in an improved vibration signal, with the test-gear mesh frequency now the dominant component in the signal. Also, with the unwanted sources eliminated, the sensor mounting location giving the most robust representation of the test-gear meshing energy was found to be at a point close to the test gears in the load zone of the bearings.

  5. Gear ratting noise reduction of diesel engine; Diesel engine no gear hauchi soon teigen

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, S; Miura, Y [Hino Motors, Ltd., Tokyo (Japan)

    1997-10-01

    Gear raffling noise of diesel engine at idling condition is required to reduce for keeping quiet environment and comfort of driver and passengers on track and bus. Decrease of gear backlash is generally adopted for reducing gear rattling noise. On the other hand, it has been found that newly devised measurement of gear teeth speed and gear meshing error has clarified phenomena of gear rattling between the crankshaft gear and the camshaft gear of the diesel engine. And it has been also found that gear ratting noise is reduced by changing meshing between the crankshaft gear and the camshaft gear. 2 refs., 10 figs.

  6. 46 CFR 28.885 - Cargo gear.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Cargo gear. 28.885 Section 28.885 Shipping COAST GUARD... Aleutian Trade Act Vessels § 28.885 Cargo gear. (a) The safe working load (SWL) for the assembled gear... the load the gear is approved to lift, excluding the weight of the gear itself. (b) All wire rope...

  7. The prospects for retail wheeling

    International Nuclear Information System (INIS)

    O'Donnell, E.H.; Center, J.A.

    1992-01-01

    This paper as published is an outline of a presentation on retail wheeling of electric power. The topics discussed are development of increased wholesale transmission access, government regulatory policies on wholesale transmission, examples of past and present retail transmission access agreements, examples of Federal Energy Regulatory Commission jurisdiction over retail wheeling, and state policies on retail wheeling

  8. Preliminary Design and Investigation of Integrated Compressor with Composite Material Wheel

    Science.gov (United States)

    Wang, Jifeng; Müller, Norbert

    2012-06-01

    An integrated water vapor compressor with composite material wheel is developed and strength analysis using FEM is presented. The design of wound composite material allows for integrating all rotating parts of the drive that may simply reduce to only the rotor of the electrical motor, since no drive shaft is required anymore. This design can reduce the number of parts and mass, which is convenient for engineers to maintain the compressor. The electrical motors are brushless DC motors operating through a frequency drive and apply a torque on the wheels through the materials bonded in the wheel shrouds. This system allows a large amount of compression to be produced in a multi-stage compression setup. To determine the stress and vibration characteristics of this integrated compressor, numerical analysis is carried out using FEM. The simulation result shows that the integrated compressor with composite material wheel can be used in a chiller system where water as a refrigerant.

  9. Pre-cementation of deep shaft

    Science.gov (United States)

    Heinz, W. F.

    1988-12-01

    Pre-cementation or pre-grouting of deep shafts in South Africa is an established technique to improve safety and reduce water ingress during shaft sinking. The recent completion of several pre-cementation projects for shafts deeper than 1000m has once again highlighted the effectiveness of pre-grouting of shafts utilizing deep slimline boreholes and incorporating wireline technique for drilling and conventional deep borehole grouting techniques for pre-cementation. Pre-cementation of deep shaft will: (i) Increase the safety of shaft sinking operation (ii) Minimize water and gas inflow during shaft sinking (iii) Minimize the time lost due to additional grouting operations during sinking of the shaft and hence minimize costly delays and standing time of shaft sinking crews and equipment. (iv) Provide detailed information of the geology of the proposed shaft site. Informations on anomalies, dykes, faults as well as reef (gold bearing conglomerates) intersections can be obtained from the evaluation of cores of the pre-cementation boreholes. (v) Provide improved rock strength for excavations in the immediate vicinity of the shaft area. The paper describes pre-cementation techniques recently applied successfully from surface and some conclusions drawn for further considerations.

  10. Color Wheel Windows

    Science.gov (United States)

    Leonard, Stephanie

    2012-01-01

    In this article, the author describes a painting and drawing lesson which was inspired by the beautiful circular windows found in cathedrals and churches (also known as "rose windows"). This two-week lesson would reinforce both the concept of symmetry and students' understanding of the color wheel. (Contains 1 online resource.)

  11. Atomic Ferris wheel beams

    Science.gov (United States)

    Lembessis, Vasileios E.

    2017-07-01

    We study the generation of atom vortex beams in the case where a Bose-Einstein condensate, released from a trap and moving in free space, is diffracted from a properly tailored light mask with a spiral transverse profile. We show how such a diffraction scheme could lead to the production of an atomic Ferris wheel beam.

  12. Double Helical Gear Performance Results in High Speed Gear Trains

    Science.gov (United States)

    Handschuh, Robert F.; Ehinger, Ryan; Sinusas, Eric; Kilmain, Charles

    2010-01-01

    The operation of high speed gearing systems in the transmissions of tiltrotor aircraft has an effect on overall propulsion system efficiency. Recent work has focused on many aspects of high-speed helical gear trains as would be used in tiltrotor aircraft such as operational characteristics, comparison of analytical predictions to experimental data and the affect of superfinishing on transmission performance. Baseline tests of an aerospace quality system have been conducted in the NASA Glenn High-Speed Helical Gear Train Test Facility and have been described in earlier studies. These earlier tests had utilized single helical gears. The results that will be described in this study are those attained using double helical gears. This type of gear mesh can be configured in this facility to either pump the air-oil environment from the center gap between the meshing gears to the outside of tooth ends or in the reverse direction. Tests were conducted with both inward and outward air-oil pumping directions. Results are compared to the earlier baseline results of single helical gears.

  13. High Pressure Angle Gears: Comparison to Typical Gear Designs

    Science.gov (United States)

    Handschuh, Robert F.; Zabrajsek, Andrew J.

    2010-01-01

    A preliminary study has been completed to determine the feasibility of using high-pressure angle gears in aeronautic and space applications. Tests were conducted in the NASA Glenn Research Center (GRC) Spur Gear Test Facility at speeds up to 10,000 rpm and 73 N*m (648 in.*lb) for 3.18, 2.12, and 1.59 module gears (8, 12, and 16 diametral pitch gears), all designed to operate in the same test facility. The 3.18 module (8-diametral pitch), 28 tooth, 20deg pressure angle gears are the GRC baseline test specimen. Also, 2.12 module (12-diametral pitch), 42 tooth, 25deg pressure angle gears were tested. Finally 1.59 module (16-diametral pitch), 56 tooth, 35deg pressure angle gears were tested. The high-pressure angle gears were the most efficient when operated in the high-speed aerospace mode (10,000 rpm, lubricated with a synthetic turbine engine oil), and produced the lowest wear rates when tested with a perfluoroether-based grease. The grease tests were conducted at 150 rpm and 71 N*m (630 in.*lb).

  14. Mine-shaft conveyance monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Beus, M.J.; Ruff, T.M.; Iverson, S.; McCoy, W.G. [National Institute for Occupational Safety and Health, Spokane, WA (USA). Spokane Research Laboratory

    2000-10-01

    Monitoring conveyance position and wire rope load directly from the skip or cage top offers several significant safety and production advantages. The Spokane Research Laboratory (SRL) of the National Institute for Occupational Safety and Health (NIOSH) developed a shaft conveyance monitoring system (SCMS). This system consists of position and guide-displacement sensors, a maintenance-free battery power supply and a new sensor, which is mounted on the wire rope with a Crosby Clip, to measure hoist-rope tension. A radio data link transmits sensor output to the hoist room. A state-of-the-art automated hoisting test facility was also constructed to test the concept in a controlled laboratory setting. Field tests are now underway at the SRL hoisting research facility and in deep mine shafts in northern Idaho. 4 refs., 5 figs.

  15. Large shaft development test plan

    International Nuclear Information System (INIS)

    Krug, A.D.

    1984-03-01

    This test plan proposes the conduct of a large shaft development test at the Hanford site in support of the repository development program. The purpose and objective of the test plan is to obtain the information necessary to establish feasibility and to predict the performance of the drilling system used to drill large diameter shafts. The test plan is based upon drilling a 20 ft diameter shaft to a depth of 1,000 feet. The test plan specifies series of tests to evaluate the performance of the downhole assembly, the performance of the rig, and the ability of the system to cope with geologic hazards. The quality of the hole produced will also be determined. This test plan is considered to be preliminary in that it was prepared as input for the decision to determine if development testing is required in this area. Should the decision be made to proceed with development testing, this test plan shall be updated and revised. 6 refs., 2 figs., 3 tabs

  16. Design and construction of permanent magnetic gears

    DEFF Research Database (Denmark)

    Jørgensen, Frank Thorleif

    /l]. Measurement from this gear has resulted in a measured total torque density of 23 [Nm/l]. Mechanical versions of this gear type are found with total torque density in the 16 to 31 [Nm/l] range. The third and last gear technology that is investigated is a gear that reminds of a planetary gear. Research shows......This thesis deals with design and development of permanent magnetic gears. The goal of this thesis is to develop knowledge and calculation software for magnetic gears. They use strong NdFeB permanent magnets and a new magnetic gear technology, which will be a serious alternative to classical...... mechanical gears. The new magnetic gear will have a high torque density1 relationship –high efficiency and are maintenance free. In this project was manufactured two test gears which is tested and verified with models developed in this project. Present technological status for magnetic gears is introduced...

  17. TECHNO-ECONOMIC ASSESSMENT OF THE USE OF WHEELS OF PERSPECTIVE STRUCTURAL SCHEME FOR RAILWAY VEHICLES

    Directory of Open Access Journals (Sweden)

    S. A. Semenov

    2016-12-01

    , used in running gear of railway vehicles were substantiated. Practical value. The calculation method proposed in this publication allows evaluating the technical and economic feasibility of using the wheels of promising design scheme in the running gears of railway vehicles.

  18. An Omni-Directional Wall-Climbing Microrobot with Magnetic Wheels Directly Integrated with Electromagnetic Micromotors

    Directory of Open Access Journals (Sweden)

    Xiaoning Tang

    2012-04-01

    Full Text Available This paper presents an omni-directional wall-climbing microrobot with magnetic wheels. The integral design with an actuator and adhesive is realized by integrating stators and rotors of an MEMS-based electromagnetic micromotor with a magnetic wheel. The omni-directional wall-climbing mechanism is designed by a set of steering gears and three standard magnetic wheels. The required torque and magnetic force for microrobot movement are derived by its static analysis. The size of the magnetic wheel is optimized, with consideration of its own design constraints, by ANSOFT and Pro/Engineer simulation so as to reduce unnecessary torque consumption under the same designed load. Related experiments demonstrate that the microrobot (diameter: 26mm; height: 16.4; mass: 7.2g; load capacity: 3g we have developed has a good wall-climbing ability and flexible mobility, and it can perform visual detection in a ferromagnetic environment.

  19. Influence of the shaft rotation on the stability of magnetic fluid shaft seal characteristics

    Science.gov (United States)

    Krakov, M. S.; Nikiforov, I. V.

    2008-12-01

    Distribution of the magnetic particles concentration in a magnetic fluid shaft seal is studied numerically for a rotating shaft. It is revealed that the shaft rotation causes not only an azimuthal flow of the magnetic fluid, but a meridional flow as well. This meridional flow prevents the growth of magnetic particle concentration in the gap of the magnetic fluid shaft seal. As a result, the burst pressure of the magnetic fluid shaft seal for the rotating shaft is stable and does not change with time. Figs 6, Refs 7.

  20. Wheels With Sense

    Science.gov (United States)

    Cambridge, Dwayne; Clauss, Douglas; Hewson, Fraser; Brown, Robert; Hisrich, Robert; Taylor, Cyrus

    2002-10-01

    We describe a student intrapreneurial project in the Physics Entrepreneurship Program at Case Western Reserve University. At the request of a major fortune 100 company, a study has been made of the technical and marketing issues for a new business of selling sensors on commercial vehicle wheels for monitoring pressure, temperature, rotations, and vibrations, as well as providing identification. The nature of the physics involved in the choice of the appropriate device such as capacitive or piezoresistive sensors is discussed, along with the possibility of MEMS (micro-electro-mechanical systems) technology and RFID (radiofrequency identification) readout on wheels. Five options (status quo, in-house development, external business acquisition, a large business national partnership, and a small-business Cleveland consortium partnership) were studied from both technological and business perspectives to commercialize the technology. The decision making process for making a choice is explained.

  1. Diabetes education on wheels.

    Science.gov (United States)

    Hardway, D; Weatherly, K S; Bonheur, B

    1993-01-01

    Diabetes education programs remain underdeveloped in the pediatric setting, resulting in increased consumer complaints and financial liability for hospitals. The Diabetes Education on Wheels program was designed to provide comprehensive, outcome-oriented education for patients with juvenile diabetes. The primary goal of the program was to enhance patients' and family members' ability to achieve self-care in the home setting. The program facilitated sequential learning, improved consumer satisfaction, and promoted financial viability for the hospital.

  2. Shaft placement in a bedded salt repository

    International Nuclear Information System (INIS)

    Klasi, M.L.

    1982-10-01

    Preferred shaft pillar sizes and shaft locations were determined with respect to the induced thermal stresses in a generic bedded salt repository at a depth of 610 m with a gross thermal loading of 14.8 W/m 2 . The model assumes isotropic material properties, plane strain and linear elastic behavior. Various shaft locations were analyzed over a 25 year period. The thermal results show that for this time span, the stratigraphy is unimportant except for the region immediately adjacent to the repository. The thermomechanical results show that for the given repository depth of 610 m, a minimum central shaft pillar radius of 244 m is required to equal the material strength in the barrier pillar. An assumed constant stress and constant temperature distribution creep model of the central shaft region adjacent to the repository conservatively overestimates a creep closure of 310 mm in a 6.1 m diameter centrally-located shaft

  3. The SSC access shafts calculational study

    International Nuclear Information System (INIS)

    Baishev, I.S.; Mokhov, N.V.; Toohig, T.E.

    1991-06-01

    The SSC generic shaft requirements and access spacing are considered elsewhere. The shafts connecting the ground surface with the underground accelerator tunnel deliver to the surface some portion of the radiation created in the tunnel. The radiation safety problem of access shafts consists of two major questions: Does the dose equivalent at the ground surface exceed permissible limits? If it exceeds those limits, what additional shielding measures are required? A few works deal with this problem for high energy machines. This work is an attempt to answer these questions for the basic types of shafts specific to the SSC magnet delivery, utility and personnel shafts using full-scale Monte-Carlo calculations of the entire process from hadronic cascades in the lattice elements to particles scattered in the tunnel, niches, alcoves, shafts and surface bunkers and buildings. 9 refs., 16 figs., 1 tab

  4. Analysis of justification for applying two gear sets within the universal gear reducers

    OpenAIRE

    Rackov Milan; Kuzmanović Siniša; Knežević Ivan; Čavić Maja; Penčić Marko

    2017-01-01

    In the area of universal gear reducers, standard does not prescribe relations between load capacity, gear ratios and axis heights. Therefore, larger load capacity of some gear reducers manufacturers has advantage for lower gear ratio and, vice versa, smaller load capacity of the gearbox achieves higher values of gear ratio. However, there are some manufacturers who produce gear reducers with smaller or larger load capacity for higher or lower gear ratio, within the same axis height. This pape...

  5. Interlocking Molecular Gear Chains Built on Surfaces.

    Science.gov (United States)

    Zhao, Rundong; Qi, Fei; Zhao, Yan-Ling; Hermann, Klaus E; Zhang, Rui-Qin; Van Hove, Michel A

    2018-05-17

    Periodic chains of molecular gears in which molecules couple with each other and rotate on surfaces have been previously explored by us theoretically using ab initio simulation tools. On the basis of the knowledge and experience gained about the interactions between neighboring molecular gears, we here explore the transmission of rotational motion and energy over larger distances, namely, through a longer chain of gear-like passive "slave" molecules. Such microscopic gears exhibit quite different behaviors compared to rigid cogwheels in the macroscopic world due to their structural flexibility affecting intermolecular interaction. Here, we investigate the capabilities of such gear chains and reveal the mechanisms of the transmission process in terms of both quantum-level density functional theory (DFT) and simple classical mechanics. We find that the transmission of rotation along gear chains depends strongly on the gear-gear distance: short distances can cause tilting of gears and even irregular "creep-then-jump" (or "stick-slip") motion or expulsion of gears; long gear-gear distances cause weak coupling between gears, slipping and skipping. More importantly, for transmission of rotation at intermediate gear-gear distances, our modeling clearly exhibits the relative roles of several important factors: flexibility of gear arms, axles, and supports, as well as resulting rotational delays, slippages, and thermal and other effects. These studies therefore allow better informed design of future molecular machine components involving motors, gears, axles, etc.

  6. Gear Tooth Wear Detection Algorithm

    Science.gov (United States)

    Delgado, Irebert R.

    2015-01-01

    Vibration-based condition indicators continue to be developed for Health Usage Monitoring of rotorcraft gearboxes. Testing performed at NASA Glenn Research Center have shown correlations between specific condition indicators and specific types of gear wear. To speed up the detection and analysis of gear teeth, an image detection program based on the Viola-Jones algorithm was trained to automatically detect spiral bevel gear wear pitting. The detector was tested using a training set of gear wear pictures and a blind set of gear wear pictures. The detector accuracy for the training set was 75 percent while the accuracy for the blind set was 15 percent. Further improvements on the accuracy of the detector are required but preliminary results have shown its ability to automatically detect gear tooth wear. The trained detector would be used to quickly evaluate a set of gear or pinion pictures for pits, spalls, or abrasive wear. The results could then be used to correlate with vibration or oil debris data. In general, the program could be retrained to detect features of interest from pictures of a component taken over a period of time.

  7. Shaft MisalignmentDetectionusing Stator Current Monitoring

    OpenAIRE

    Alok Kumar Verma, Somnath Sarangi and M.H. Kolekar

    2013-01-01

    This paper inspects the misaligned of shaft by usingdiagnostic medium such as current and vibration.Misalignments in machines can cause decrease inefficiency and in the long-run it may cause failurebecause of unnecessary vibration, stress on motor,bearings and short-circuiting in stator and rotorwindings.In this study, authors investigate the onsetof instability on a shaft mounted on journal bearings.Shaft displacement and stator current samples duringmachine run up under misaligned condition...

  8. Storage shaft definitive closure plug and method

    International Nuclear Information System (INIS)

    Dardaine, M.

    1992-01-01

    A definitive closure plug system for radioactive waste storage at any deepness, is presented. The inherent weight of the closure materials is used to set in the plug: these materials display an inclined sliding surface in such a way that when the closure material rests on a stable surface of the shaft storage materials, the relative sliding of the different materials tends to spread them towards the shaft internal wall so as to completely occlude the shaft

  9. Evaluation of MEMS-Based Wireless Accelerometer Sensors in Detecting Gear Tooth Faults in Helicopter Transmissions

    Science.gov (United States)

    Lewicki, David George; Lambert, Nicholas A.; Wagoner, Robert S.

    2015-01-01

    The diagnostics capability of micro-electro-mechanical systems (MEMS) based rotating accelerometer sensors in detecting gear tooth crack failures in helicopter main-rotor transmissions was evaluated. MEMS sensors were installed on a pre-notched OH-58C spiral-bevel pinion gear. Endurance tests were performed and the gear was run to tooth fracture failure. Results from the MEMS sensor were compared to conventional accelerometers mounted on the transmission housing. Most of the four stationary accelerometers mounted on the gear box housing and most of the CI's used gave indications of failure at the end of the test. The MEMS system performed well and lasted the entire test. All MEMS accelerometers gave an indication of failure at the end of the test. The MEMS systems performed as well, if not better, than the stationary accelerometers mounted on the gear box housing with regards to gear tooth fault detection. For both the MEMS sensors and stationary sensors, the fault detection time was not much sooner than the actual tooth fracture time. The MEMS sensor spectrum data showed large first order shaft frequency sidebands due to the measurement rotating frame of reference. The method of constructing a pseudo tach signal from periodic characteristics of the vibration data was successful in deriving a TSA signal without an actual tach and proved as an effective way to improve fault detection for the MEMS.

  10. A novel safety device with metal counter meshing gears discriminator directly driven by axial flux permanent magnet micromotors based on MEMS technology

    Science.gov (United States)

    Zhang, Weiping; Chen, Wenyuan; Zhao, Xiaolin; Li, Shengyong; Jiang, Yong

    2005-08-01

    In a novel safety device based on MEMS technology for high consequence systems, the discriminator consists of two groups of metal counter meshing gears and two pawl/ratchet wheel mechanisms. Each group of counter meshing gears is onepiece and driven directly by an axial flux permanent magnet micromotor respectively. The energy-coupling element is an optical shutter with two collimators and a coupler wheel. The safety device's probability is less than 1/106. It is fabricated by combination of an LiGA-like process and precision mechanical engineering. The device has simple structure, few dynamic problems, high strength and strong reliability.

  11. Nonlinear electromechanical modelling and dynamical behavior analysis of a satellite reaction wheel

    Science.gov (United States)

    Aghalari, Alireza; Shahravi, Morteza

    2017-12-01

    The present research addresses the satellite reaction wheel (RW) nonlinear electromechanical coupling dynamics including dynamic eccentricity of brushless dc (BLDC) motor and gyroscopic effects, as well as dry friction of shaft-bearing joints (relative small slip) and bearing friction. In contrast to other studies, the rotational velocity of the flywheel is considered to be controllable, so it is possible to study the reaction wheel dynamical behavior in acceleration stages. The RW is modeled as a three-phases BLDC motor as well as flywheel with unbalances on a rigid shaft and flexible bearings. Improved Lagrangian dynamics for electromechanical systems is used to obtain the mathematical model of the system. The developed model can properly describe electromechanical nonlinear coupled dynamical behavior of the satellite RW. Numerical simulations show the effectiveness of the presented approach.

  12. Development in Geared Turbofan Aeroengine

    Science.gov (United States)

    Mohd Tobi, A. L.; Ismail, A. E.

    2016-05-01

    This paper looks into the implementation of epicyclic gear system to the aeroengine in order to increase the efficiency of the engine. The improvement made is in the direction of improving fuel consumption, reduction in pollutant gasses and perceived noise. Introduction of epicyclic gear system is capable to achieve bypass ratio of up to 15:1 with the benefits of weight and noise reduction. Radical new aircraft designs and engine installation are being studied to overcome some of the challenges associated with the future geared turbofan and open-rotor engine.

  13. 49 CFR 570.10 - Wheel assemblies.

    Science.gov (United States)

    2010-10-01

    ... bead through one full wheel revolution and note runout in excess of one-eighth of an inch. (c) Mounting... 49 Transportation 6 2010-10-01 2010-10-01 false Wheel assemblies. 570.10 Section 570.10... Pounds or Less § 570.10 Wheel assemblies. (a) Wheel integrity. A tire rim, wheel disc, or spider shall...

  14. Studying the Relative Positions of the Teeth of Conjugated Wheels in the Double Harmonic Transmission

    Directory of Open Access Journals (Sweden)

    Draghiţa Ianici

    2017-11-01

    Full Text Available The paper presents a detailed study of the gearing processes in the two stages of the double harmonic transmission. To highlight the graphics of the relative motion of the conjugates teeth it was developed an original calculation program, written in Visual Basic. By running the calculation program, the relative successive positions of the conjugate teeth were viewed and the basic parameters of the gearing were established: the angle profile (α, the tooth height (h and the size of the deformation of the flexible toothed wheel (w0.

  15. 29 CFR 1918.54 - Rigging gear.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 7 2010-07-01 2010-07-01 false Rigging gear. 1918.54 Section 1918.54 Labor Regulations...) SAFETY AND HEALTH REGULATIONS FOR LONGSHORING Vessel's Cargo Handling Gear § 1918.54 Rigging gear. (a... other alternate device shall be provided to allow trimming of the gear and to prevent employees from...

  16. Tracked Vehicle Road Wheel Puller

    Science.gov (United States)

    2009-02-01

    employed for removing smaller-size components, such as bolts and the like. U.S. Patent No. 5,410,792, issued to Freeman (3), discloses a caster wheel ...separation of the rubberized annular layer from the outer annular surface of the wheel . Figure 5 further illustrates a modification of the wheel puller...2001. 2. Rubino et al. Pulling Tool. U.S. Patent 5,479,688, 1996. 3. Freeman. Caster Wheel Axle Extraction Apparatus. U.S. Patent 5,410,792

  17. New progressive technology of flat gears processing development

    Directory of Open Access Journals (Sweden)

    Михайло Володимирович Маргуліс

    2015-11-01

    Full Text Available Relevant scientific and technical problems in relation to mechanical engineering is development of new technological processes that make it possible to achieve high accuracy and durability of machine parts that meet the requirements imposed on them. So it is important to develop a new method to make a flat gear teeth by plastic deformation of the ingot. The article deals with the actual problem of improving productivity and quality of plane wheels teeth that are widely used in advanced wave, planetary and other transmissions. A progressive method to produce flat gear teeth gear by plastic deformation of the ingot with two knurl rollers alternately moving reciprocally in the direction not intersecting the axis of the ingot mounting surface has been described in the article. The working surface of the rollers corresponds to the resulting shape of the teeth. The schemes of the teeth installing and knurling have been shown. The necessary material and the heat treatment of the knurling tools have been described. Its use will significantly increase the wear resistance of the working surfaces of the teeth and their durability as well as to increase productivity and its manufacturing costs. The material of the rollers is BC15steel. The surface layer of the knurling tools was subjected to nitration, surface hardness being up to 65 HRC. Knurling is made in the5236P shaper suited for this purpose

  18. 50 CFR 648.84 - Gear-marking requirements and gear restrictions.

    Science.gov (United States)

    2010-10-01

    ... 50 Wildlife and Fisheries 8 2010-10-01 2010-10-01 false Gear-marking requirements and gear... Management Measures for the NE Multispecies and Monkfish Fisheries § 648.84 Gear-marking requirements and gear restrictions. (a) Bottom-tending fixed gear, including, but not limited to, gillnets and longlines...

  19. Modelling the Meshing of Cycloidal Gears

    Directory of Open Access Journals (Sweden)

    Nachimowicz Jerzy

    2016-06-01

    Full Text Available Cycloidal drives belong to the group of planetary gear drives. The article presents the process of modelling a cycloidal gear. The full profile of the planetary gear is determined from the following parameters: ratio of the drive, eccentricity value, the equidistant (ring gear roller radius, epicycloid reduction ratio, roller placement diameter in the ring gear. Joong-Ho Shin’s and Soon-Man Kwon’s article (Shin and Know, 2006 was used to determine the profile outline of the cycloidal planetary gear lobes. The result was a scatter chart with smooth lines and markers, presenting the full outline of the cycloidal gear.

  20. Nitrogen implantation of type 303 stainless steel gears for improved wear and fatigue resistance

    International Nuclear Information System (INIS)

    Kustas, F.M.; Misra, M.S.; Tack, W.T.

    1987-01-01

    Fine-positioning mechanisms are responsible for accurate and reproducible control of aerospace system devices, i.e. filter grading wheels. Low wear and fatigue resistance of mechanism components, such as pinions and gears, can reduce system performance and reliability. Surface modification using ion implantation with nitrogen was used on type 303 stainless steel pinions and gears to increase tribological performance. Wear-life tests of untreated, nitrogen-implanted and nitrogen-implanted-and-annealed gears were performed in a fine-positioning mechanism under controlled environmental conditions. Wear and fatigue resistance were monitored at selected time intervals which were a percentage of the predicted failure life as determined by a numerical stress analysis. Surface analyses including scanning electron microscopy and Auger electron spectroscopy were performed to establish the wear and fatigue mechanisms and the nitrogen concentration-depth distributions respectively. Nitrogen implantation resulted in a significant improvement in both surface wear and fatigue spalling resistance over those of untreated gears. A 40% reduction in surface wear and a 44% reduction in dedendum spalling was observed. In contrast, the nitrogen-implanted-and-annealed gears showed a 46% increase in sliding wear area and an 11% increase in spall density compared with those of untreated gears, indicating that the post-implantation anneal was detrimental to wear and fatigue resistance. (orig.)

  1. Model studies of crosswind landing-gear configurations for STOL aircraft

    Science.gov (United States)

    Stubbs, S. M.; Byrdsong, T. A.

    1973-01-01

    A dynamic model was used to directly compare four different crosswind landing gear mechanisms. The model was landed as a free body onto a laterally sloping runway used to simulate a crosswind side force. A radio control system was used for steering to oppose the side force as the model rolled to a stop. The configuration in which the landing gears are alined by the pilot and locked in the direction of motion prior to touchdown gave the smoothest runout behavior with the vehicle maintaining its crab angle throughout the landing roll. Nose wheel steering was confirmed to be better than steering with nose and main gears differentially or together. Testing is continuing to obtain quantitative data to establish an experimental data base for validation of an analytical program that will be capable of predicting full scale results.

  2. Spiral groove seal. [for hydraulic rotating shaft

    Science.gov (United States)

    Ludwig, L. P. (Inventor)

    1973-01-01

    Mating flat surfaces inhibit leakage of a fluid around a stationary shaft. A spiral groove pattern produces a pumping action toward the fluid when the shaft rotates which prevents leakage while a generated hydraulic lifting force separates the mating surfaces to minimize wear.

  3. Spiral groove seal. [for rotating shaft

    Science.gov (United States)

    Ludwig, L. P.; Strom, T. N. (Inventor)

    1974-01-01

    Mating flat surfaces inhibit leakage of a fluid around a stationary shaft. A spiral groove produces a pumping action toward the fluid when the shaft rotates. This prevents leakage while a generated hydraulic lifting force separates the mating surfaces to minimize wear. Provision is made for placing these spiral grooves in communication with the fluid to accelerate the generation of the hydraulic lifting force.

  4. Wheel speed management control system for spacecraft

    Science.gov (United States)

    Goodzeit, Neil E. (Inventor); Linder, David M. (Inventor)

    1991-01-01

    A spacecraft attitude control system uses at least four reaction wheels. In order to minimize reaction wheel speed and therefore power, a wheel speed management system is provided. The management system monitors the wheel speeds and generates a wheel speed error vector. The error vector is integrated, and the error vector and its integral are combined to form a correction vector. The correction vector is summed with the attitude control torque command signals for driving the reaction wheels.

  5. Mechanical Design Engineering Enabler Project wheel and wheel drives

    Science.gov (United States)

    Nutt, Richard E.; Couch, Britt K.; Holley, John L., Jr.; Garris, Eric S.; Staut, Paul V.

    1992-01-01

    Our group was assigned the responsibility of designing the wheel and wheel drive system for a proof-of-concept model of the lunar-based ENABLER. ENABLER is a multi-purpose, six wheeled vehicle designed to lift and transport heavy objects associated with the construction of a lunar base. The resulting design was based on the performance criteria of the ENABLER. The drive system was designed to enable the vehicle to achieve a speed of 7 mph on a level surface, climb a 30 percent grade, and surpass a one meter high object and one meter wide crevice. The wheel assemblies were designed to support the entire weight of the vehicle on two wheels. The wheels were designed to serve as the main component of the vehicle's suspension and will provide suitable traction for lunar-type surfaces. The expected performance of the drive system for the ENABLER was influenced by many mechanical factors. The expected top speed on a level sandy surface is 4 mph instead of the desired 7 mph. This is due to a lack of necessary power at the wheels. The lack of power resulted from dimension considerations that allowed only an eight horsepower engine and also from mechanical inefficiencies of the hydraulic system. However, the vehicle will be able to climb a 30 percent grade, surpass a one meter high object and one meter wide crevice. The wheel assemblies will be able to support the entire weight of the vehicle on two wheels. The wheels will also provide adequate suspension for the vehicle and sufficient traction for lunar-type surfaces.

  6. Integration of a silicon-based microprobe into a gear measuring instrument for accurate measurement of micro gears

    International Nuclear Information System (INIS)

    Ferreira, N; Krah, T; Jeong, D C; Kniel, K; Härtig, F; Metz, D; Dietzel, A; Büttgenbach, S

    2014-01-01

    The integration of silicon micro probing systems into conventional gear measuring instruments (GMIs) allows fully automated measurements of external involute micro spur gears of normal modules smaller than 1 mm. This system, based on a silicon microprobe, has been developed and manufactured at the Institute for Microtechnology of the Technische Universität Braunschweig. The microprobe consists of a silicon sensor element and a stylus which is oriented perpendicularly to the sensor. The sensor is fabricated by means of silicon bulk micromachining. Its small dimensions of 6.5 mm × 6.5 mm allow compact mounting in a cartridge to facilitate the integration into a GMI. In this way, tactile measurements of 3D microstructures can be realized. To enable three-dimensional measurements with marginal forces, four Wheatstone bridges are built with diffused piezoresistors on the membrane of the sensor. On the reverse of the membrane, the stylus is glued perpendicularly to the sensor on a boss to transmit the probing forces to the sensor element during measurements. Sphere diameters smaller than 300 µm and shaft lengths of 5 mm as well as measurement forces from 10 µN enable the measurements of 3D microstructures. Such micro probing systems can be integrated into universal coordinate measuring machines and also into GMIs to extend their field of application. Practical measurements were carried out at the Physikalisch-Technische Bundesanstalt by qualifying the microprobes on a calibrated reference sphere to determine their sensitivity and their physical dimensions in volume. Following that, profile and helix measurements were carried out on a gear measurement standard with a module of 1 mm. The comparison of the measurements shows good agreement between the measurement values and the calibrated values. This result is a promising basis for the realization of smaller probe diameters for the tactile measurement of micro gears with smaller modules. (paper)

  7. LHC preparations change gear

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    After the formal approval by CERN Council in December (January, page 1) of the LHC protonproton collider for CERN's 27- kilometre LEP tunnel, preparations for the new machine change gear. Lyndon Evans becomes LHC Project Leader, and CERN's internal structure will soon be reorganized to take account of the project becoming a definite commitment. On the experimental side, the full Technical Proposals for the big general purpose ATLAS and CMS detectors were aired at a major meeting of the LHC Committee at CERN in January. These Technical Proposals are impressive documents each of some several hundred pages. (Summaries of the detector designs will appear in forthcoming issues of the CERN Courier.) The ALICE heavy ion experiment is not far behind, and plans for other LHC experiments are being developed. Playing an important role in this groundwork has been the Detector Research and Development Committee (DRDC), founded in 1990 to foster detector development for the LHC experimental programme and structured along the lines of a traditional CERN Experiments Committee. Established under the Director Generalship of Carlo Rubbia and initially steered by Research Director Walter Hoogland, the DRDC has done sterling work in blazing a trail for LHC experiments. Acknowledging that the challenge of LHC experimentation needs technological breakthroughs as well as specific detector subsystems, DRDC proposals have covered a wide front, covering readout electronics and computing as well as detector technology. Its first Chairman was Enzo larocci, succeeded in 1993 by Michal Turala. DRDC's role was to evaluate proposals, and make recommendations to CERN's Research Board for approval and resource allocation, not an easy task when the LHC project itself had yet to be formally approved. Over the years, a comprehensive portfolio of detector development has been built up, much of which has either led to specific LHC detector subsystems for traditional detector tasks

  8. Design and development of automatic sharia compliant wheelchair wheels cleaner

    Science.gov (United States)

    Shaari, Muhammad Farid; Rasli, Ibrahim Ismail Mohammad; Jamaludin, M. Z. Z. Wan; Isa, W. A. Mohamad; M., H.; Rashid, A. H. Abdul

    2017-04-01

    Sharia compliant wheelchair wheel cleaner was developed in order to assist the muslim Person with Disabilities (PWD) to pray in the mosque without leaving their wheelchair because of the filthy wheels. Though there are many wheelchair wheel cleaning system in the market, it is very rare to find sharia compliant cleaning system that applies sertu concept which is one of the cleaning and purification technique in Islamic practice. The sertu concept is based on 6:1 ratio that refers to the six times pipe water cleaning and one time soiled water cleaning. The development process consists of design stage, fabrication and system installation stage and followed by testing stage. During the design stage, the proposed prototype underwent design brainstorming, operation programming and structural simulation analysis. Once fabricated, the cleaner prototype underwent was tested. The results showed that the prototype can cater load up to 100kg with 1.31×10-6 mm shaft bending displacement. The water ejection timing varied approximately 3% compared to the program.

  9. Perancangan dan Realisasi Kontrol Prototype Landing Gear System Menggunakan PLCmikro berbasis Mikrokontroller PIC16F877A

    Directory of Open Access Journals (Sweden)

    RATNA SUSANA

    2016-02-01

    Full Text Available Abstrak Landing gear system merupakan suatu sistem penggerak pada roda pesawat yang menggunakan electromechanic system dengan sejumlah relay tanpa control terpusat. Melalui penelitian ini, electromechanic system tersebut diubah menjadi landing gear system yang dikendalikan secara terpusat menggunakan mikrokontroller dan diprogram oleh ldmikro berbahasa ladder diagram yang kemudian lebih dikenal dengan nama “PLCmikro”. Input discreate digunakan untuk menggerakkan aktuator solenoid valve agar piston double acting cylinder dapat bekerja sesuai sistem yang diinginkan. Input analog digunakan sebagai informasi ketinggian pesawat minimum agar pesawat tetap aman terbang di udara. Control Landing gear system yang direalisasikan berhasil menggerakkan piston masuk maupun keluar dari tabung, memberikan informasi proses pergerakkan piston yang bermasalah dan posisi roda yang telah masuk atau keluar dari pesawat berupa lampu LED. Sistem ini juga berhasil membaca informasi ketinggian minimum pesawat dari potensiometer serta mengubahnya menjadi informasi suara dan lampu LED.   Kata kunci: Landing gear system, PLCmikro, Ldmikro, ladder diagram, double acting cylinder. Abstract The landing gear system an aircraft wheel drive system that uses electromechanic system with a relay without any centralized control. Through this study, the electromechanic system was changed to landing gear system with a centrally controlled by using microcontroller and programmed with ldmikro ladder diagram language which came to be known by the name of "PLCmikro". Discreate input used to drive the actuator solenoid valve double acting cylinder so that the piston can work as desired system. The analog input is used as the minimum flight altitude information to keep the plane safe to fly in the air. Landing gear control system is realized successfully drive the piston in and out of the tube, providing information processes are problematic piston movement and wheel position that has

  10. Principal Components of Superhigh-Dimensional Statistical Features and Support Vector Machine for Improving Identification Accuracies of Different Gear Crack Levels under Different Working Conditions

    Directory of Open Access Journals (Sweden)

    Dong Wang

    2015-01-01

    Full Text Available Gears are widely used in gearbox to transmit power from one shaft to another. Gear crack is one of the most frequent gear fault modes found in industry. Identification of different gear crack levels is beneficial in preventing any unexpected machine breakdown and reducing economic loss because gear crack leads to gear tooth breakage. In this paper, an intelligent fault diagnosis method for identification of different gear crack levels under different working conditions is proposed. First, superhigh-dimensional statistical features are extracted from continuous wavelet transform at different scales. The number of the statistical features extracted by using the proposed method is 920 so that the extracted statistical features are superhigh dimensional. To reduce the dimensionality of the extracted statistical features and generate new significant low-dimensional statistical features, a simple and effective method called principal component analysis is used. To further improve identification accuracies of different gear crack levels under different working conditions, support vector machine is employed. Three experiments are investigated to show the superiority of the proposed method. Comparisons with other existing gear crack level identification methods are conducted. The results show that the proposed method has the highest identification accuracies among all existing methods.

  11. Using combined system of shaft guides for buckets during shaft deepening

    Energy Technology Data Exchange (ETDEWEB)

    Durov, E.M.; Ivenskii, N.S.; Alekhin, P.I.

    1981-06-01

    This paper discusses a system of shaft guides used in the Krasnopol'evsk underground coal mine. The existing skip shaft 514 m deep is deepened to a depth of 700 m. Shaft design is adapted to a system of two pairs of skips, however, only one pair of skips is in operation and the other has been removed. The free space can be used to remove rock material from shaft bottom. It is noted that a system of buckets moving along elastic shaft guides made of rope or along rigid shaft guides can be used. Both solutions have numerous advantages. If rope guides are used time consuming installation of shaft guides is unnecessary in the zone close to the bottom. If rigid guides are used capacity of the bucket can be significantly increased. A system which combines advantages of both solutions is used: in the lower part of the shaft being deepened, buckets are guided by rope, and in the upper zone in which rigid shaft guides have been installed the bucket moves along rigid guides and rope guides simultaneously. Design of the element guiding the bucket is shown in two diagrams. It is noted that using the combined system of shaft guides increases capacity of the hoisting system by 1.5 times.

  12. Durability Characteristics Analysis of Plastic Worm Wheel with Glass Fiber Reinforced Polyamide.

    Science.gov (United States)

    Kim, Gun-Hee; Lee, Jeong-Won; Seo, Tae-Il

    2013-05-10

    Plastic worm wheel is widely used in the vehicle manufacturing field because it is favorable for weight lightening, vibration and noise reduction, as well as corrosion resistance. However, it is very difficult for general plastics to secure the mechanical properties that are required for vehicle gears. If the plastic resin is reinforced by glass fiber in the fabrication process of plastic worm wheel, it is possible to achieve the mechanical properties of metallic material levels. In this study, the mechanical characteristic analysis of the glass-reinforced plastic worm wheel, according to the contents of glass fiber, is performed by analytic and experimental methods. In the case of the glass fiber-reinforced resin, the orientation and contents of glass fibers can influence the mechanical properties. For the characteristic prediction of plastic worm wheel, computer-aided engineering (CAE) analysis processes such as structural and injection molding analysis were executed with the polyamide resin reinforcement glass fiber (25 wt %, 50 wt %). The injection mold for fabricating the prototype plastic worm wheel was designed and made to reflect the CAE analysis results. Finally, the durability of prototype plastic worm wheel fabricated by the injection molding process was evaluated by the experimental method and the characteristics according to the glass fiber contents.

  13. Shaft/shaft-seal interface characteristics of a multiple disk centrifugal blood pump.

    Science.gov (United States)

    Manning, K B; Miller, G E

    1999-06-01

    A multiple disk centrifugal pump (MDCP) is under investigation as a potential left ventricular assist device. As is the case with most shaft driven pumps, leakage problems around the shaft/shaft seal interface are of major interest. If leakage were to occur during or after implantation, potential events such as blood loss, clotting, blood damage, and/or infections might result in adverse effects for the patient. Because these effects could be quite disastrous, potential shaft and shaft seal materials have been investigated to determine the most appropriate course to limit these effects. Teflon and nylon shaft seals were analyzed as potential candidates along with a stainless steel shaft and a Melonite coated shaft. The materials and shafts were evaluated under various time durations (15, 30, 45, and 60 min), motor speeds (800, 1,000, 1,200, and 1,400 rpm), and outer diameters (1/2 and 3/4 inches). The motor speed and geometrical configurations were typical for the MDCP under normal physiologic conditions. An air and water study was conducted to analyze the inner diameter wear, the inner temperature values, and the outer temperature values. Statistical comparisons were computed for the shaft seal materials, the shafts, and the outer diameters along with the inner and outer temperatures. The conclusions made from the results indicate that both the tested shaft seal materials and shaft materials are not ideal candidates to be used for the MDCP. Teflon experienced a significant amount of wear in air and water studies. Nylon did experience little wear, but heat generation was an evident problem. A water study on nylon was not conducted because of its molecular structure.

  14. Advanced Face Gear Surface Durability Evaluations

    Science.gov (United States)

    Lewicki, David G.; Heath, Gregory F.

    2016-01-01

    The surface durability life of helical face gears and isotropic super-finished (ISF) face gears was investigated. Experimental fatigue tests were performed at the NASA Glenn Research Center. Endurance tests were performed on 10 sets of helical face gears in mesh with tapered involute helical pinions, and 10 sets of ISF-enhanced straight face gears in mesh with tapered involute spur pinions. The results were compared to previous tests on straight face gears. The life of the ISF configuration was slightly less than that of previous tests on straight face gears. The life of the ISF configuration was slightly greater than that of the helical configuration.

  15. Nonlinear modeling of adaptive magnetorheological landing gear dampers under impact conditions

    Science.gov (United States)

    Ahuré Powell, Louise A.; Choi, Young T.; Hu, Wei; Wereley, Norman M.

    2016-11-01

    Adaptive landing gear dampers that can continuously adjust their stroking load in response to various operating conditions have been investigated for improving the landing performance of a lightweight helicopter. In prior work, adaptive magnetorheological (MR) landing gear dampers that maintained a constant peak stroking force of 4000 lbf across sink rates ranging from 6 to 12 ft s-1 were designed, fabricated and successfully tested. In this follow-on effort, it is desired to expand the high end of the sink rate range to hold the peak stroking load constant for sink rates ranging from 6 to 26 ft s-1, thus extending the high end of the speed range from 12 (in the first study) to 26 ft s-1. To achieve this increase, a spring-based relief valve MR landing gear damper was developed. In order to better understand the MR landing gear damper behavior, a modified nonlinear Bingham Plastic model was formulated, and it incorporates Darcy friction, viscous forces across the MR and relief valves to better account for the damper force behavior at higher speeds. In addition, gas pressure inside the MR damper piston is considered so the total damper force includes a gas force. The MR landing gear damper performance is characterized using drop tests, and the experiments are used to validate model predictions data at low and high nominal impact speeds up to 26 ft s-1 (shaft velocity of 9.6 ft s-1).

  16. An elevator wheel

    Energy Technology Data Exchange (ETDEWEB)

    Zhornik, V.I.; Cherkov, Ye.M.; Simonov, A.A.

    1982-01-01

    This invention deals with mineral enrichment and is primarily for unloading submerged products of enrichment during separation in heavy mediums. An elevator wheel is proposed for unloading the submerged product from the bath of a heavy to medium separator which includes ladle disks with internal walls and overlapping sheets hinged to the ends. In order to increase the degree of dehydration of the unloaded product, the internal wall of each ladle is made of sheets installed in stages with clearances relative to each other. The advantages of the proposed device include an improvement in the degree of dehydration of the submerged product in the ladles and a reduction in the carry away of the heavy medium with the enrichment products.

  17. Exploratory Shaft Facility design basis study report

    International Nuclear Information System (INIS)

    Langstaff, A.L.

    1987-01-01

    The Design Basis Study is a scoping/sizing study that evaluated the items concerning the Exploratory Shaft Facility Design including design basis values for water and methane inflow; flexibility of the design to support potential changes in program direction; cost and schedule impacts that could result if the design were changed to comply with gassy mine regulations; and cost, schedule, advantages and disadvantages of a larger second shaft. Recommendations are proposed concerning water and methane inflow values, facility layout, second shaft size, ventilation, and gassy mine requirements. 75 refs., 3 figs., 7 tabs

  18. Advanced theories of hypoid gears

    CERN Document Server

    Wang, Xudong

    2013-01-01

    In order to develop more efficient types of gears, further investigation into the theories of engagement is necessary. Up until now most of the research work on the theories of engagement has been carried out separately on different groups, and based on individual types of profiles. This book aims at developing some universal theories, which can not only be used for all types of gears, but can also be utilized in other fields such as sculptured surfaces. The book has four characteristics: the investigations are concentrated on mismatched tooth surfaces; all the problems are dealt with from a

  19. Induction Hardening of External Gear

    Science.gov (United States)

    Bukanin, V. A.; Ivanov, A. N.; Zenkov, A. E.; Vologdin, V. V.; Vologdin, V. V., Jr.

    2018-03-01

    Problems and solution of gear induction hardening are described. Main attention is paid to the parameters of heating and cooling systems. ELTA 7.0 program has been used to obtain the required electrical parameters of inductor, power sources, resonant circuits, as well as to choose the quenching media. Comparison of experimental and calculated results of investigation is provided. In order to compare advantages and disadvantages of single- and dual-frequency heating processes, many variants of these technologies were simulated. The predicted structure and hardness of steel gears are obtained by use of the ELTA data base taken into account the Continuous Cooling Transformation diagrams.

  20. Design, Fabrication and Testing of Carbon Fiber Reinforced Epoxy Drive Shaft for All Terrain Vehicle using Filament Winding

    Directory of Open Access Journals (Sweden)

    Yeshwant Nayak Suhas

    2018-01-01

    Full Text Available Filament winding is a composite material fabrication technique that is used to manufacture concentric hollow components. In this study Carbon/Epoxy composite drive shafts were fabricated using filament winding process with a fiber orientation of [852/±452/252]s. Carbon in the form of multifilament fibers of Tairyfil TC-33 having 3000 filaments/strand was used as reinforcement with low viscosity epoxy resin as the matrix material. The driveshaft is designed to be used in SAE Baja All Terrain Vehicle (ATV that makes use of a fully floating axle in its rear wheel drive system. The torsional strength of the shaft was tested and compared to that of an OEM steel shaft that was previously used in the ATV. Results show that the composite shaft had 8.5% higher torsional strength in comparison to the OEM steel shaft and was also lighter by 60%. Scanning electron microscopy (SEM micrographs were studied to investigate the probable failure mechanism. Delamination, matrix agglomeration, fiber pull-out and matrix cracking were the prominent failure mechanisms identified.

  1. Shaft Seal Compensates for Cold Flow

    Science.gov (United States)

    Myers, W. N.; Hein, L. A.

    1985-01-01

    Seal components easy to install. Ring seal for rotating or reciprocating shafts spring-loaded to compensate for slow yielding (cold flow) of sealing material. New seal relatively easy to install because components preassembled, then installed in one piece.

  2. Documentation and verification of the SHAFT code

    International Nuclear Information System (INIS)

    St John, C.M.

    1991-12-01

    The SHAFT code incorporates equations to compute stresses in a shaft liner when the rock through which a shaft passes is subject to known three-dimensional states of stress or strain. The deformation modes considered are hoop deformation, axial deformation, and shear on a plane normal to the shaft axis. Interaction between the liner and the soil and rock is considered, and it is assumed that the liner is in place before loading is applied. This code is intended to be used interactively but creates a permanent record complete with necessary quality assurance information. The code has been carefully verified for the case of generalized plane strain, in which an arbitrary axial strain can be defined. It may also be used for plane stress analysis. Output is given in the form of stresses at selected sample points in the linear and the rock and a simple graphical representation of the distribution of stress through the liner. 12 figs., 13 tabs

  3. Reliability assessment of underground shaft closure

    International Nuclear Information System (INIS)

    Fossum, A.F.; Munson, D.E.

    1994-01-01

    The intent of the WIPP, being constructed in the bedded geologic salt deposits of Southeastern New Mexico, is to provide the technological basis for the safe disposal of radioactive Transuranic (TRU) wastes generated by the defense programs of the United States. In determining this technological basis, advanced reliability and structural analysis techniques are used to determine the probability of time-to-closure of a hypothetical underground shaft located in an argillaceous salt formation and filled with compacted crushed salt. Before being filled with crushed salt for sealing, the shaft provides access to an underground facility. Reliable closure of the shaft depends upon the sealing of the shaft through creep closure and recompaction of crushed backfill. Appropriate methods are demonstrated to calculate cumulative distribution functions of the closure based on laboratory determined random variable uncertainty in salt creep properties

  4. FIXTURING DEVICE FOR DRILLING A STRAIGHT SHAFT

    Directory of Open Access Journals (Sweden)

    SUSAC, Florin

    2017-05-01

    Full Text Available The paper presents a fixturing device used for machining by drilling a straight shaft. The shaft was manufactured on EMCO CONCEPT TURN 55 CNC. The blank used was a bar with circular cross-section. The orientation and fixing scheme of the part and the orientation elements for fixturing device are presented as they were drawn in Autodesk Inventor and AutoCAD software.

  5. Incidence and epidemiology of tibial shaft fractures.

    Science.gov (United States)

    Larsen, Peter; Elsoe, Rasmus; Hansen, Sandra Hope; Graven-Nielsen, Thomas; Laessoe, Uffe; Rasmussen, Sten

    2015-04-01

    The literature lacks recent population-based epidemiology studies of the incidence, trauma mechanism and fracture classification of tibial shaft fractures. The purpose of this study was to provide up-to-date information on the incidence of tibial shaft fractures in a large and complete population and report the distribution of fracture classification, trauma mechanism and patient baseline demographics. Retrospective reviews of clinical and radiological records. A total of 196 patients were treated for 198 tibial shaft fractures in the years 2009 and 2010. The mean age at time of fracture was 38.5 (21.2SD) years. The incidence of tibial shaft fracture was 16.9/100,000/year. Males have the highest incidence of 21.5/100,000/year and present with the highest frequency between the age of 10 and 20, whereas women have a frequency of 12.3/100,000/year and have the highest frequency between the age of 30 and 40. AO-type 42-A1 was the most common fracture type, representing 34% of all tibial shaft fractures. The majority of tibial shaft fractures occur during walking, indoor activity and sports. The distribution among genders shows that males present a higher frequency of fractures while participating in sports activities and walking. Women present the highest frequency of fractures while walking and during indoor activities. This study shows an incidence of 16.9/100,000/year for tibial shaft fractures. AO-type 42-A1 was the most common fracture type, representing 34% of all tibial shaft fractures. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Analyzing the Wheeled Vehicle Gearbox Structures for Running in Harsh Conditions

    Directory of Open Access Journals (Sweden)

    V. V. Vasiliev

    2015-01-01

    Full Text Available In domestic automotive industry the need for transition from transmission with manual control to automatic gearboxes (GB emerged long ago. Regarding the leading foreign manufacturers (Allison, ZF, Eaton, etc., an experience in design of automatic transmissions and the level of technological development is incomparably small. Thus, to have an informed choice of the gearbox structure types and control system is a relevant problem. Application efficiency of this or other gearbox depends both on its adaptability to the actual operating conditions and on the quality of transition refinement. This paper analyzes the special features of the gear change process in the most common types of automatic gearboxes. Constructive feasibilities of an "ideal" gear change (without power loss and strategies for gear shifting are compared. The paper offers an overview of common problems when achieving these goals and the ways to solve them. An automatic transmission of the particular type used in the wheeled vehicles under off-road conditions determines the probability of maintaining their mobility. This is due to the phenomenon of wheel`s breakdown to slipping caused by sharp increase of torque on the wheel. Planetary hydromechanical transmissions (AT provide continuous input torque to the wheels, but they are expensive and difficult to manufacture and use. Besides, to provide a high number of density ratios in them is more complicated than in the automated and manual transmissions (AMT. This is important when moving long in the lower gears under difficult conditions. Compared with AT dual clutch transmissions due to design features require even more precise and fast control system of actuators and engine. Automation of constant-mesh or synchromesh transmissions provides a significant reduction in the duration of interruption in torque delivery. If it is not enough to increase mobility in the harsh conditions, a rational choice is to use a transmission type of TCCT

  7. Computer simulation of gear tooth manufacturing processes

    Science.gov (United States)

    Mavriplis, Dimitri; Huston, Ronald L.

    1990-01-01

    The use of computer graphics to simulate gear tooth manufacturing procedures is discussed. An analytical basis for the simulation is established for spur gears. The simulation itself, however, is developed not only for spur gears, but for straight bevel gears as well. The applications of the developed procedure extend from the development of finite element models of heretofore intractable geometrical forms, to exploring the fabrication of nonstandard tooth forms.

  8. Voluntary Wheel Running in Mice.

    Science.gov (United States)

    Goh, Jorming; Ladiges, Warren

    2015-12-02

    Voluntary wheel running in the mouse is used to assess physical performance and endurance and to model exercise training as a way to enhance health. Wheel running is a voluntary activity in contrast to other experimental exercise models in mice, which rely on aversive stimuli to force active movement. This protocol consists of allowing mice to run freely on the open surface of a slanted, plastic saucer-shaped wheel placed inside a standard mouse cage. Rotations are electronically transmitted to a USB hub so that frequency and rate of running can be captured via a software program for data storage and analysis for variable time periods. Mice are individually housed so that accurate recordings can be made for each animal. Factors such as mouse strain, gender, age, and individual motivation, which affect running activity, must be considered in the design of experiments using voluntary wheel running. Copyright © 2015 John Wiley & Sons, Inc.

  9. Wheels lining up for ATLAS

    CERN Multimedia

    2003-01-01

    On 30 October, the mechanics test assembly of the central barrel of the ATLAS tile hadronic calorimeter was completed in building 185. It is the second wheel for the Tilecal completely assembled this year.

  10. Grinding Wheel Profile

    Science.gov (United States)

    2004-01-01

    This graphic dubbed by engineers as the 'Grinding Wheel Profile' is the detective's tool used by the Opportunity team to help them understand one of the processes that formed the interior of a rock called 'McKittrick.' Scientists are looking for clues as to how layers, grains and minerals helped create this rock, and the engineers who built the rock abrasion tool (RAT) wanted to ensure that their instrument's handiwork did not get confused with natural processes.In the original microscopic image underlaying the graphics, engineers and scientists noticed 'layers' or 'scratches' on the spherical object nicknamed 'blueberry' in the lower right part of the image. The designers of the rock abrasion tool noticed that the arc length and width of the scratches were similar to the shape and size of the rock abrasion tool's grinding wheel, which is made out of a pad of diamond teeth.The scrapes on the bottom right blueberry appear to be caused by the fact that the berry got dislodged slightly and its surface was scraped with the grinding pad. In this image, the largest yellow circle is the overall diameter of the hole ground by the rock abrasion tool and the largest yellow rectangular shape is the area of the grinding wheel bit. The smaller yellow semi-circle is the path that the center of the grinding tool follows. The orange arrow arcing around the solid yellow circle (center of grinding tool) indicates the direction that the grinding tool spins around its own center at 3,000 revolutions per minute. The tool simultaneously spins in an orbit around the center of the hole, indicated by the larger orange arrow to the left.The grinding tool is 22 millimeters (0.9 inches) in length and the actual grinding surface, which consists of the diamond pad, is 1.5 millimeters (0.06 inches) in length, indicated by the two smaller rectangles. You can see that the smaller bottom rectangle fits exactly the width of the scrape marks.The grooves on the blueberry are also the same as the

  11. GEAR UP Aspirations Project Evaluation

    Science.gov (United States)

    Trimble, Brad A.

    2013-01-01

    The purpose of this study was to conduct a formative evaluation of the first two years of the Gaining Early Awareness and Readiness for Undergraduate Programs (GEAR UP) Aspirations Project (Aspirations) using a Context, Input, Process, and Product (CIPP) model so as to gain an in-depth understanding of the project during the middle school…

  12. Estimating the Backup Reaction Wheel Orientation Using Reaction Wheel Spin Rates Flight Telemetry from a Spacecraft

    Science.gov (United States)

    Rizvi, Farheen

    2013-01-01

    A report describes a model that estimates the orientation of the backup reaction wheel using the reaction wheel spin rates telemetry from a spacecraft. Attitude control via the reaction wheel assembly (RWA) onboard a spacecraft uses three reaction wheels (one wheel per axis) and a backup to accommodate any wheel degradation throughout the course of the mission. The spacecraft dynamics prediction depends upon the correct knowledge of the reaction wheel orientations. Thus, it is vital to determine the actual orientation of the reaction wheels such that the correct spacecraft dynamics can be predicted. The conservation of angular momentum is used to estimate the orientation of the backup reaction wheel from the prime and backup reaction wheel spin rates data. The method is applied in estimating the orientation of the backup wheel onboard the Cassini spacecraft. The flight telemetry from the March 2011 prime and backup RWA swap activity on Cassini is used to obtain the best estimate for the backup reaction wheel orientation.

  13. New Siemens applications for designing bevel gears

    Science.gov (United States)

    Goanta, A. M.; Dumitrache, P.

    2017-08-01

    The current situation in the design of gearings is different from software to software and in some cases requires specialized settings with or without additional costs. There are two ways of generating evolving tooting: one is based on the designer’s solid knowledge of geometry and gearing and the other is based on a series of automation subprograms for 3D modelling of gears. The first method is a general one, applicable to all design software that is based on generating a curve evolving specific to a tooth flank, continued with the construction of the symmetrical flank, the pattern multiplication of circular type around the center of the gear and finally generation of the three-dimensional characteristic of each individual tooth. The second method is much faster and requires only general knowledge about the gear but sufficiently advanced to allow permanent dialogue with the subprogram for generating cone gears. Absolute novelty items are brought about by the new NX design applications that lead to getting gears with curved teeth. In conclusion the paper shows how different variants of bevel gears are generated using various subprograms or performance settings, installed over the SIEMENS NX. An essential component of the paper is highlighting generation capacity of gears and gearing intended for predefined types of gear cutting machines such as those for Gleason and Oerlikon teeth.

  14. The impact of various distance between axes of worm gear on torque value. Worm gear test stand

    Science.gov (United States)

    Sobek, M.; Baier, A.; Grabowski, Ł.

    2017-08-01

    Transferring both rotational and translational movements in systems used in the automotive industry is a very important and complex issue. In addition, the situation becomes much more difficult and complicated when the design of the transition system requires a high precision of operation as well as a well definite and long operating life. Such requirements are imposed on all components of today’s motor vehicles. However, particular attention is paid to the elements that directly or indirectly affect the safety of persons traveling in the vehicle. Such components are undoubtedly components included as parts of the steering system of the vehicle. Power steering systems have been present in motor vehicles for more than a century. They go through continuous metamorphosis and they are getting better and better. Current power steering systems are based on an electric motor and some kind of transmission. Depending on the position of the drive relative to the steering column, different configurations of the transmission are used. This article will cover issues related to tests of power steering gearing using a worm drive. The worm drive is a very specific example of a propulsion system that uses twisted axles. Normally, in this type of transition you can find two gear units with the axis mounted with a 90° angle between. The components of the worm drive are a worm and a worm gear, also called a worm wheel. In terms of the geometrical form, the worm resembles a helical spur gear. The shape of the worm is similar to the shape of a screw with a trapezoidal thread. A correct matching of these two components ensures proper operation of the entire transmission. Incorrect positioning of the components in relation to each other can significantly reduce the lifetime of the drive unit, and also lead to abnormal work, eg by raising the noise level. This article describes a test method of finding the appropriate distance between the axles of both worm drive units by testing the

  15. Designing vertical mine shafts under conditions of increasing shaft depth with rock hoisting to the operating mining level

    Energy Technology Data Exchange (ETDEWEB)

    Durov, E.M.

    1983-05-01

    A system for shaft excavation in deep coal mines with mining depth exceeding 1,000 m is discussed. During mine sinking rocks are removed to the ground surface. When depth of a deep mine shaft is increased rocks are removed to the operating mining level, causing lower investment costs than the system with rock hoisting to the ground surface. The Yuzhgiproshakht design firm carries out investigations on the optimum methods for increasing shaft depth in coal mines. Coal mines with the following coal output are included in evaluations: 0.9, 1.2, 1.5, and 1.8 Mt/year. Mine shaft depth of 600, 800, 1000, 1200, 1400 and 1600 m is analyzed. Shaft depth is increased by 100, 200, 300 or 400 m. Shaft sinking rate ranges from 10 to 70 m/month. Effects of rock hoisting from the shaft bottom on the hoisting scheme in a mine shaft are analyzed. Position of hoisting bucket in relation to cages or skips moving in a shaft is investigated. Investigation results are given in 5 schemes. Analyses show that use of a shaft sinking system with rock hoisting to the ground surface during shaft excavation and with rock hoisting to the operating mining level during shaft depth increasing is economical when a shaft with skips is from 7 to 8 m in diameter or when a cage shaft is 6 m, 7 m or 8 m in diameter. Use of standardized shaft excavation systems is recommended. (In Russian)

  16. Dynamic characteristic of electromechanical coupling effects in motor-gear system

    Science.gov (United States)

    Bai, Wenyu; Qin, Datong; Wang, Yawen; Lim, Teik C.

    2018-06-01

    Dynamic characteristics of an electromechanical model which combines a nonlinear permeance network model (PNM) of a squirrel-cage induction motor and a coupled lateral-torsional dynamic model of a planetary geared rotor system is analyzed in this study. The simulations reveal the effects of internal excitations or parameters like machine slotting, magnetic saturation, time-varying mesh stiffness and shaft stiffness on the system dynamics. The responses of the electromechanical system with PNM motor model are compared with those responses of the system with dynamic motor model. The electromechanical coupling due to the interactions between the motor and gear system are studied. Furthermore, the frequency analysis of the electromechanical system dynamic characteristics predicts an efficient way to detect work condition of unsymmetrical voltage sag.

  17. Research on the dynamic response of high-contact-ratio spur gears influenced by surface roughness under EHL condition

    Science.gov (United States)

    Kang, Huang; Xiong, Yangshou; Wang, Tao; Chen, Qi

    2017-01-01

    Employing high-contact-ratio (HCR) gear is an effective method of decreasing the load on a single tooth, as well as reducing vibration and noise. While the spindlier tooth leads to greater relative sliding, having more teeth participate in contact at the same time makes the HCR gear more sensitive to the surface quality. Available literature regarding HCR gear primarily investigates the geometrical optimization, load distribution, or efficiency calculation. Limited work has been conducted on the effect of rough surfaces on the dynamic performance of HCR gear. For this reason, a multi-degree-of-freedom (MDOF) model is presented mathematically to characterize the static transmission error based on fractal theory, investigate the relative sliding friction using an EHL-based friction coefficient formula, and detail the time-varying friction coefficient suitable for HCR gear. Based on numerical results, the surface roughness has little influence on system response in terms of the dynamic transmission error but has a large effect on the motion in off-line-of-action (OLOA) direction and friction force. The impact of shaft-bearing stiffness and damping ratio is also explored with results revealing that a greater shaft-bearing stiffness is beneficial in obtaining a more stable motion in OLOA direction, and a larger damping ratio results in a smaller effective friction force. The theory presented in this report outlines a new method of analyzing the dynamics of HCR gear in respect of introducing surface roughness into MDOF model directly, as well as establishing an indirect relationship between dynamic responses and surface roughness. This method is expected to guide surface roughness design and manufacturing in the future.

  18. Shaft siting decision report: Final report

    International Nuclear Information System (INIS)

    1985-11-01

    The purpose of this study is to identify and establish relative guidelines to be used for siting of repository shafts. Weights were determined for the significant factors which impact the selection of shaft locations for a nuclear waste repository in salt. The study identified a total of 45 factors. A panel of experienced mining people utilized the Kepner-Tregoe (K-T) Decision Analysis Process to perform a structured evaluation of each significant shaft siting factor. The evaluation determined that 22 of the factors were absolute constraints and that the other 23 factors were desirable characteristics. The group established the relative weights for each of the 23 desirable characteristics by using a paired comparison method. 49 refs., 2 figs., 5 tabs

  19. Waste and dust utilisation in shaft furnaces

    Energy Technology Data Exchange (ETDEWEB)

    Senk, D.; Babich, A.; Gudenau, H.W. [Rhein Westfal TH Aachen, Aachen (Germany)

    2005-07-01

    Wastes and dusts from steel industry, non-ferrous metallurgy and other branches can be utilised e.g. in agglomeration processes (sintering, pelletising or briquetting) and by injection into shaft furnaces. This paper deals with the second way. Combustion and reduction behaviour of iron- and carbon-rich metallurgical dusts and sludges containing lead, zinc and alkali as well as other wastes with and without pulverised coal (PC) has been studied when injecting into shaft furnaces. Following shaft furnaces have been examined: blast furnace, cupola furnace, OxiCup furnace and imperial-smelting furnace. Investigations have been done at laboratory and industrial scale. Some dusts and wastes under certain conditions can be not only reused but can also improve combustion efficiency at the tuyeres as well as furnace performance and productivity.

  20. Design of Gear Churning Power Loss Measurement Device

    OpenAIRE

    Wang Bin; Zhou Ya Jie; Wang Ping

    2017-01-01

    To explore the impacts of gear churning power losses, a research was conducted to achieve the internal causes of power losses of churning gear by designing a gear churning power losses measurement device. The gear churning power losses could be influenced by different gear modules, the number of teeth and the axial position of gear. Finally, the impacts of gear churning power losses were discussed by comparing experimental data and theoretical data.

  1. Two new wheels for ATLAS

    CERN Multimedia

    2002-01-01

    Juergen Zimmer (Max Planck Institute), Roy Langstaff (TRIUMF/Victoria) and Sergej Kakurin (JINR), in front of one of the completed wheels of the ATLAS Hadronic End Cap Calorimeter. A decade of careful preparation and construction by groups in three continents is nearing completion with the assembly of two of the four 4 m diameter wheels required for the ATLAS Hadronic End Cap Calorimeter. The first two wheels have successfully passed all their mechanical and electrical tests, and have been rotated on schedule into the vertical position required in the experiment. 'This is an important milestone in the completion of the ATLAS End Cap Calorimetry' explains Chris Oram, who heads the Hadronic End Cap Calorimeter group. Like most experiments at particle colliders, ATLAS consists of several layers of detectors in the form of a 'barrel' and two 'end caps'. The Hadronic Calorimeter layer, which measures the energies of particles such as protons and pions, uses two techniques. The barrel part (Tile Calorimeter) cons...

  2. Investigation on wear characteristic of biopolymer gear

    Science.gov (United States)

    Ghazali, Wafiuddin Bin Md; Daing Idris, Daing Mohamad Nafiz Bin; Sofian, Azizul Helmi Bin; Basrawi, Mohamad Firdaus bin; Khalil Ibrahim, Thamir

    2017-10-01

    Polymer is widely used in many mechanical components such as gear. With the world going to a more green and sustainable environment, polymers which are bio based are being recognized as a replacement for conventional polymers based on fossil fuel. The use of biopolymer in mechanical components especially gear have not been fully explored yet. This research focuses on biopolymer for spur gear and whether the conventional method to investigate wear characteristic is applicable. The spur gears are produced by injection moulding and tested on several speeds using a custom test equipment. The wear formation such as tooth fracture, tooth deformation, debris and weight loss was observed on the biopolymer spur gear. It was noted that the biopolymer gear wear mechanism was similar with other type of polymer spur gears. It also undergoes stages of wear which are; running in, linear and rapid. It can be said that the wear mechanism of biopolymer spur gear is comparable to fossil fuel based polymer spur gear, thus it can be considered to replace polymer gears in suitable applications.

  3. Ipsilateral humeral neck and shaft fractures

    Directory of Open Access Journals (Sweden)

    Zhu Bin

    2017-01-01

    Full Text Available Background/Aim. Fractures of the proximal humerus or shaft are common, however, ipsilateral neck and shaft humerus fracture is a rare phenomenon. This combination injury is challenging for orthopaedic surgeons because of its complex treatment options at present. The purpose of this study was to review a series of ipsilateral humeral neck and shaft fractures to study the fracture pattern, complications and treatment outcomes of each treatment options used. Methods. A total of six patients (four female and two male with the average age of 42.8 years (range: 36–49 years was collected and reviewed retrospectively. Two of them were treated with double plates and four with antegrade intramedullary nail. According to the Neer’s classification, all proximal fractures were two-part surgical neck fractures. All humeral shaft fractures were located at the middle of one third. Five fractures were simple transverse (A3, one fragmented wedge fracture (B3. One patient had associated radial nerve palsy. Results. All surgical neck fractures except one united uneventfully in the average time span of 8.7 weeks. Four humeral shaft fractures healed in near anatomic alignment. The remaining two patients had the nonunion with no radiological signs of fracture healing. The average University of California, Los Angeles End-Results (UCLA score was 23.1. On the contrary, the average American Shoulder and Elbow Surgeon's (ASES score was 73.3. The patients treated with antegrade intramedullary nails presented 70.5 points. The ASES scores were 79 in the double plates group. Conclusions. Ipsilateral humeral shaft and neck fracture is extremely rare. Both antegrade intramedullar nailing and double plates result in healing of fractures. However the risk of complication is lower in the double plating group.

  4. Propulsion Wheel Motor for an Electric Vehicle

    Science.gov (United States)

    Figuered, Joshua M. (Inventor); Herrera, Eduardo (Inventor); Waligora, Thomas M. (Inventor); Bluethmann, William J. (Inventor); Farrell, Logan Christopher (Inventor); Lee, Chunhao J. (Inventor); Vitale, Robert L. (Inventor); Winn, Ross Briant (Inventor); Eggleston, IV, Raymond Edward (Inventor); Guo, Raymond (Inventor); hide

    2016-01-01

    A wheel assembly for an electric vehicle includes a wheel rim that is concentrically disposed about a central axis. A propulsion-braking module is disposed within an interior region of the wheel rim. The propulsion-braking module rotatably supports the wheel rim for rotation about the central axis. The propulsion-braking module includes a liquid cooled electric motor having a rotor rotatable about the central axis, and a stator disposed radially inside the rotor relative to the central axis. A motor-wheel interface hub is fixedly attached to the wheel rim, and is directly attached to the rotor for rotation with the rotor. The motor-wheel interface hub directly transmits torque from the electric motor to the wheel rim at a 1:1 ratio. The propulsion-braking module includes a drum brake system having an electric motor that rotates a cam device, which actuates the brake shoes.

  5. Analysis of power wheeling services

    Energy Technology Data Exchange (ETDEWEB)

    Tepel, R.C.; Jewell, W.; Johnson, R.; Maddigan, R.

    1986-11-01

    Purpose of this study is to examine existing wheeling arrangements to determine the terms of the agreements, to analyze the terms relative to regulatory goals, and finally, to suggest ways in which the arrangements can be modified to lead to outcomes more closely in line with the goals. The regulatory goals that are considered are: Does the arrangement meet the revenue requirement of the wheeling firm. Is efficient use promoted. Are the costs fairly apportioned. And, is the arrangement practical and feasible to implement.

  6. Construction of blind shafts with the PVS 3500 planetary full shaft drilling machine

    International Nuclear Information System (INIS)

    Glogowski, P.; Kolditz, H.

    1992-01-01

    The PVS 3500 planetary full shaft drilling machine has proved as a prototype in the construction of two blind shafts. The drilling rate of 8 m/shift or 25.6 m 3 /MS is outstanding for the initial use of this drilling machine. Blind shafts were cut from the solid by a dry drilling method for the first time. It opens up the possibility of making available storage boreholes for larger quantities of radioactive waste with low activity and for toxic waste materials. (orig.)

  7. Nonlinear dynamics analysis of the spur gear system for railway locomotive

    Science.gov (United States)

    Wang, Junguo; He, Guangyue; Zhang, Jie; Zhao, Yongxiang; Yao, Yuan

    2017-02-01

    Considering the factors such as the nonlinearity backlash, static transmission error and time-varying meshing stiffness, a three-degree-of-freedom torsional vibration model of spur gear transmission system for a typical locomotive is developed, in which the wheel/rail adhesion torque is considered as uncertain but bounded parameter. Meantime, the Ishikawa method is used for analysis and calculation of the time-varying mesh stiffness of the gear pair in meshing process. With the help of bifurcation diagrams, phase plane diagrams, Poincaré maps, time domain response diagrams and amplitude-frequency spectrums, the effects of the pinion speed and stiffness on the dynamic behavior of gear transmission system for locomotive are investigated in detail by using the numerical integration method. Numerical examples reveal various types of nonlinear phenomena and dynamic evolution mechanism involving one-period responses, multi-periodic responses, bifurcation and chaotic responses. Some research results present useful information to dynamic design and vibration control of the gear transmission system for railway locomotive.

  8. Spur gears: Optimal geometry, methods for generation and Tooth Contact Analysis (TCA) program

    Science.gov (United States)

    Litvin, Faydor L.; Zhang, Jiao

    1988-01-01

    The contents of this report include the following: (1) development of optimal geometry for crowned spur gears; (2) methods for their generation; and (3) tooth contact analysis (TCA) computer programs for the analysis of meshing and bearing contact on the crowned spur gears. The method developed for synthesis is used for the determination of the optimal geometry for crowned pinion surface and is directed to reduce the sensitivity of the gears to misalignment, localize the bearing contact, and guarantee the favorable shape and low level of the transmission errors. A new method for the generation of the crowned pinion surface has been proposed. This method is based on application of the tool with a surface of revolution that slightly deviates from a regular cone surface. The tool can be used as a grinding wheel or as a shaver. The crowned pinion surface can also be generated by a generating plane whose motion is provided by an automatic grinding machine controlled by a computer. The TCA program simulates the meshing and bearing contact of the misaligned gears. The transmission errors are also determined.

  9. Gear failure of a PHWR refuelling machine

    International Nuclear Information System (INIS)

    Iorio, A.F.; Crespi, J.C.

    1986-01-01

    After ten year service in Atucha Nuclear Station a gear belonging to a pressurized heavy water reactor refuelling machine, failed. The gear box was used to transmit motion to the inlet-outlet heavy-water valve of that machine. Visual examination of the gear device revealed an absence of lubricant and several gear teeth were broken off at the root. The gear motion was transmitted from a speed-reducing device with controlled adjustable times in order to produce a right fitness of the valve closure. The main cause of gear failure was due to misalignment produced during assembly or in-service operation. It is suggested to control periodically the level of oil lubricant. (orig./IHOE) [de

  10. Lubrication and cooling for high speed gears

    Science.gov (United States)

    Townsend, D. P.

    1985-01-01

    The problems and failures occurring with the operation of high speed gears are discussed. The gearing losses associated with high speed gearing such as tooth mesh friction, bearing friction, churning, and windage are discussed with various ways shown to help reduce these losses and thereby improve efficiency. Several different methods of oil jet lubrication for high speed gearing are given such as into mesh, out of mesh, and radial jet lubrication. The experiments and analytical results for the various methods of oil jet lubrication are shown with the strengths and weaknesses of each method discussed. The analytical and experimental results of gear lubrication and cooling at various test conditions are presented. These results show the very definite need of improved methods of gear cooling at high speed and high load conditions.

  11. Results from Investigations of Torsional Vibration in Turbine Set Shaft Systems

    Science.gov (United States)

    Taradai, D. V.; Deomidova, Yu. A.; Zile, A. Z.; Tomashevskii, S. B.

    2018-01-01

    The article generalizes the results obtained from investigations of torsional vibration in the shaft system of the T-175/210-12.8 turbine set installed at the Omsk CHPP-5 combined heat and power plant. Three different experimental methods were used to determine the lowest natural frequencies of torsional vibration excited in the shaft system when the barring gear is switched into operation, when the generator is synchronized with the grid, and in response to unsteady disturbances caused by the grid and by the turbine control and steam admission system. It is pointed out that the experimental values of the lowest natural frequencies (to the fourth one inclusively) determined using three different methods were found to be almost completely identical with one another, even though the shaft system was stopped in the experiments carried out according to one method and the shaft system rotated at the nominal speed in those carried out according to two other methods. The need to further develop the experimental methods for determining the highest natural frequencies is substantiated. The values of decrements for the first, third, and fourth natural torsional vibration modes are obtained. A conclusion is drawn from a comparison between the calculated and experimental data on the shaft system's static twisting about the need to improve the mathematical models for calculating torsional vibration. The measurement procedure is described, and the specific features pertinent to the way in which torsional vibration manifests itself as a function of time and turbine set operating mode under the conditions of its long-term operation are considered. The fundamental measurement errors are analyzed, and their influence on the validity of measured parameters is evaluated. With an insignificant level of free and forced torsional vibrations set up under the normal conditions of turbine set and grid operation, it becomes possible to exclude this phenomenon from the list of main factors

  12. 49 CFR 229.73 - Wheel sets.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Wheel sets. 229.73 Section 229.73 Transportation... TRANSPORTATION RAILROAD LOCOMOTIVE SAFETY STANDARDS Safety Requirements Suspension System § 229.73 Wheel sets. (a...) when applied or turned. (b) The maximum variation in the diameter between any two wheel sets in a three...

  13. Shaft Wear After Surfacing with Micro-Jet Cooling / Zużycie Ścierne Wałów Po Napawaniu Z Chłodzeniem Mikro-Strugowym

    Directory of Open Access Journals (Sweden)

    Węgrzyn T.

    2015-12-01

    Full Text Available A paper presents a piece of information about innovate surfacing technology with micro-jet cooling. There are put down information about parameters of shaft surfacing with micro-jet cooling process. There were given information about influence of various micro-jet gases on metallographic structure of machine shaft after surfacing. There were analyzed tribological properties of welds. Welding surfacing process is very often used to apply a hardness or wear-resistant layer of base metal. It is very important method of extending the life of machines, tools, and construction equipment. Surfacing is also known as wearfacing, is often used to build up shafts, gears or cutting edges. Regenerated surface properties of various machine elements do not provide good tribological properties. The tribological interactions of a solid shaft surfaces were tested after welding with micro-jet cooling.

  14. 29 CFR 1919.19 - Gear requiring welding.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 7 2010-07-01 2010-07-01 false Gear requiring welding. 1919.19 Section 1919.19 Labor... (CONTINUED) GEAR CERTIFICATION Certification of Vessels' Cargo Gear § 1919.19 Gear requiring welding. Chains or other gear which have been lengthened, altered or repaired by welding shall be properly heat...

  15. 50 CFR 697.23 - Restricted gear areas.

    Science.gov (United States)

    2010-10-01

    ... 50 Wildlife and Fisheries 9 2010-10-01 2010-10-01 false Restricted gear areas. 697.23 Section 697... Measures § 697.23 Restricted gear areas. (a) Resolution of lobster gear conflicts with fisheries managed...) Restricted Gear Area I—(1) Duration—(i) Mobile Gear. From October 1 through June 15 of each fishing year, no...

  16. Recent quality of ultra large rotor shafts

    International Nuclear Information System (INIS)

    Suzuki, Akira; Kinoshita, Shushi; Morita, Kikuo; Kikuchi, Hideo; Takada, Masayoshi

    1983-01-01

    Large size and high quality are required for rotor shafts accompanying recent trend of thermal and nuclear power generation toward large capacity. As for the low pressure rotor shafts for large capacity turbines, the disks and a shaft tend to be made into one body instead of conventional shrink fit construction, because of the experience of rotor accidents and the improvement of reliability. Therefore the ingots required become more and more large, and excellent production techniques are required for steel making, forging and heat treatment. Kobe Steel Ltd. have made about 20 large generator shafts from 420 t and 500 t ingots, and confirmed their stable high quality. Also a one-body low pressure rotor of 2600 mm diameter was made for trial, and its quality was examined. It was confirmed that the effect of forging and heat treatment was given sufficiently, and the production techniques for super-large one-body rotors were established. In steel making, vacuum degassing was applied twice to decrease hydrogen content, and VV restriction forging and pre-stage treatment were carried out. The properties of large rotors are reported. (Kako, I.)

  17. Incidence and epidemiology of tibial shaft fractures

    DEFF Research Database (Denmark)

    Larsen, Peter; Elsøe, Rasmus; Hansen, Sandra Hope

    2015-01-01

    Introduction: The literature lacks recent population-based epidemiology studies of the incidence, trauma mechanism and fracture classification of tibial shaft fractures. The purpose of this study was to provide up-to-date information on the incidence of tibial shaft fractures in a large....... The mean age at time of fracture was 38.5 (21.2SD) years. The incidence of tibial shaft fracture was 16.9/100,000/year. Males have the highest incidence of 21.5/100,000/year and present with the highest frequency between the age of 10 and 20, whereas women have a frequency of 12.3/100,000/year and have...... frequency of fractures while participating in sports activities and walking. Women present the highest frequency of fractures while walking and during indoor activities. Conclusion: This study shows an incidence of 16.9/100,000/year for tibial shaft fractures. AO-type 42-A1 was the most common fracture type...

  18. Exploratory shaft conceptual design report: Permian Basin

    International Nuclear Information System (INIS)

    1983-07-01

    This conceptual design report summarizes the conceptualized design for an exploratory shaft facility at a representative site in the Permian Basin locatd in the western part of Texas. Conceptualized designs for other possible locations (Paradox Basin in Utah and Gulf Interior Region salt domes in Louisiana and Mississippi) are summarized in separate reports. The purpose of the exploratory shaft facility is to provide access to the reference repository horizon to permit in situ testing of the salt. The in situ testing is necessary to verify repository salt design parameters, evaluate isotropy and homogeneity of the salt, and provide a demonstration of the constructability and confirmation of the design to gain access to the repository. The fundamental purpose of this conceptual design report is to assure the feasibility of the exploratory shaft project and to develop a reliable cost estimate and realistic schedule. Because a site has not been selected and site-specific subsurface data are not available, it has been necessary to make certain assumptions in order to develop a conceptual design for an exploratory shaft facility in salt. As more definitive information becomes available to support the design process, adjustments in the projected schedule and estimated costs will be required

  19. Exploratory shaft conceptual design report: Paradox Basin

    International Nuclear Information System (INIS)

    1983-07-01

    This conceptual design report summarizes the conceptualized design for an exploratory shaft facility at a representative site in the Paradox Basin located in the southeastern part of Utah. Conceptualized designs for other possible locations (Permian Basin in Texas and Gulf Interior Region salt domes in Louisiana and Mississippi) are summarized in separate reports. The purpose of the exploratory shaft facility is to provide access to the reference repository horizon to permit in situ testing of the salt. The in-situ testing is necessary to verify repository salt design parameters, evaluate isotropy and homogeneity of the salt, and provide a demonstration of the constructability and confirmation of the design to gain access to the repository. The fundamental purpose of this conceptual design report is to assure the feasibility of the exploratory shaft project and to develop a reliable cost estimate and realistic schedule. Because a site has not been selected and site-specific subsurface data are not available, it has been necessary to make certain assumptions in order to develop a conceptual design for an exploratory shaft facility in salt. As more definitive information becomes available to support the design process, adjustments in the projected schedule and estimated costs will be required

  20. A Circularly Arranged Sextuple Triptycene Gear Molecule.

    Science.gov (United States)

    Ube, Hitoshi; Yamada, Ryo; Ishida, Jun-Ichi; Sato, Hiroyasu; Shiro, Motoo; Shionoya, Mitsuhiko

    2017-11-22

    Herein we report the synthesis of a circularly arranged sextuple triptycene gear molecule, hexakis(10-dodecyloxy-9-triptycyl)ethynylbenzene, via the trimerization of the corresponding triyne with a cobalt catalyst. The six triptycene gears are closely engaged with each other as confirmed by single crystal X-ray structure analysis, and their motion in solution was established by NMR spectroscopy. Notably, when one bulky RuCp* complex was attached to one triptycene gear, the whole movement of the six gears was highly restricted via their mechanical engagement. Development of such a multigear molecule would provide a structural basis for molecular motion transmission systems with a switching function.

  1. Load Sharing Behavior of Star Gearing Reducer for Geared Turbofan Engine

    Science.gov (United States)

    Mo, Shuai; Zhang, Yidu; Wu, Qiong; Wang, Feiming; Matsumura, Shigeki; Houjoh, Haruo

    2017-07-01

    Load sharing behavior is very important for power-split gearing system, star gearing reducer as a new type and special transmission system can be used in many industry fields. However, there is few literature regarding the key multiple-split load sharing issue in main gearbox used in new type geared turbofan engine. Further mechanism analysis are made on load sharing behavior among star gears of star gearing reducer for geared turbofan engine. Comprehensive meshing error analysis are conducted on eccentricity error, gear thickness error, base pitch error, assembly error, and bearing error of star gearing reducer respectively. Floating meshing error resulting from meshing clearance variation caused by the simultaneous floating of sun gear and annular gear are taken into account. A refined mathematical model for load sharing coefficient calculation is established in consideration of different meshing stiffness and supporting stiffness for components. The regular curves of load sharing coefficient under the influence of interactions, single action and single variation of various component errors are obtained. The accurate sensitivity of load sharing coefficient toward different errors is mastered. The load sharing coefficient of star gearing reducer is 1.033 and the maximum meshing force in gear tooth is about 3010 N. This paper provides scientific theory evidences for optimal parameter design and proper tolerance distribution in advanced development and manufacturing process, so as to achieve optimal effects in economy and technology.

  2. Recovery tread wheel pairs of machining

    Directory of Open Access Journals (Sweden)

    Igor IVANOV

    2013-01-01

    Full Text Available The basic methods of resurfacing wheels are determined and analised. It’sshown that for raising resource of used wheels and decreasing requirements of railwaytransport for new wheels it’s reasonable to use methods of recovering not only geometricparameters of rim, but also its mechanical properties. It’s marked that use of infeedprofile high-speed grinding (VPVSh enables to intensify significantly process ofmechanical treatment of wheel rim profile both when its resurfacing in service and whenmanufacturing new wheel.

  3. Connect-disconnect coupling for preadjusted rigid shafts

    Science.gov (United States)

    Bajkowski, F. W.; Holmberg, A.

    1969-01-01

    Coupling device enables a rigid shaft to be connected to or disconnected from a fixed base without disturbing the point of adjustment of the shaft in a socket or causing the shaft to rotate. The coupling consists of an externally threaded, internally slotted boss extending from the fixed base.

  4. 30 CFR 77.1911 - Ventilation of slopes and shafts.

    Science.gov (United States)

    2010-07-01

    ... SAFETY AND HEALTH MANDATORY SAFETY STANDARDS, SURFACE COAL MINES AND SURFACE WORK AREAS OF UNDERGROUND COAL MINES Slope and Shaft Sinking § 77.1911 Ventilation of slopes and shafts. (a) All slopes and... connected to the slope or shaft opening with fireproof air ducts; (3) Designed to permit the reversal of the...

  5. Procedure for determining the optimum rate of increasing shaft depth

    Energy Technology Data Exchange (ETDEWEB)

    Durov, E.M.

    1983-03-01

    Presented is an economic analysis of increasing shaft depth during mine modernization. Investigations carried out by the Yuzhgiproshakht Institute are analyzed. The investigations are aimed at determining the optimum shaft sinking rate (the rate which reduces investment to the minimum). The following factors are considered: coal output of a mine (0.9, 1.2, 1.5 and 1.8 Mt/year), depth at which the new mining level is situated (600, 800, 1200, 1400 and 1600 m), four schemes of increasing depth of 2 central shafts (rock hoisting to ground surface, rock hoisting to the existing level, rock haulage to the developed level, rock haulage to the level being developed using a large diameter borehole drilled from the new level to the shaft bottom and enlarged from shaft bottom to the new level), shaft sinking rate (10, 20, 30, 40, 50 and 60 m/month), range of increasing shaft depth (the difference between depth of the shaft before and after increasing its depth by 100, 200, 300 and 400 m). Comparative evaluations show that the optimum shaft sinking rate depends on the scheme for rock hoisting (one of 4 analyzed), range of increasing shaft depth and gas content in coal seams. The optimum shaft sinking rate ranges from 20 to 40 m/month in coal mines with low methane content and from 20 to 30 m/month in gassy coal mines. The planned coal output of a mine does not influence the optimum shaft sinking rate.

  6. The Dilemma of Derelict Gear.

    Science.gov (United States)

    Scheld, A M; Bilkovic, D M; Havens, K J

    2016-01-21

    Every year, millions of pots and traps are lost in crustacean fisheries around the world. Derelict fishing gear has been found to produce several harmful environmental and ecological effects, however socioeconomic consequences have been investigated less frequently. We analyze the economic effects of a substantial derelict pot removal program in the largest estuary of the United States, the Chesapeake Bay. By combining spatially resolved data on derelict pot removals with commercial blue crab (Callinectes sapidus) harvests and effort, we show that removing 34,408 derelict pots led to significant gains in gear efficiency and an additional 13,504 MT in harvest valued at US $21.3 million--a 27% increase above that which would have occurred without removals. Model results are extended to a global analysis where it is seen that US $831 million in landings could be recovered annually by removing less than 10% of the derelict pots and traps from major crustacean fisheries. An unfortunate common pool externality, the degradation of marine environments is detrimental not only to marine organisms and biota, but also to those individuals and communities whose livelihoods and culture depend on profitable and sustainable marine resource use.

  7. Involute Spur Gear Template Development by Parametric Technique ...

    African Journals Online (AJOL)

    Nekky Umera

    cylindrical coordinate systems to create the involute curve profile. Since spur gear ... Template gear development using parametric method means that the dimensions control the ... and rapid prototyping of interlocking gears. Excel is a common ...

  8. VARIABLE MESH STIFFNESS OF SPUR GEAR TEETH USING ...

    African Journals Online (AJOL)

    gear engagement. A gear mesh kinematic simulation ... model is appropnate for VMS of a spur gear tooth. The assumptions for ... This process has been continued until one complete tooth meshing cycle is ..... Element Method. Using MATLAB,.

  9. Surface contact fatigue failures in gears

    CSIR Research Space (South Africa)

    Fernandes, PJL

    1997-06-01

    Full Text Available Surface contact fatigue is the most common cause of gear failure. It results in damage to contacting surfaces which can significantly reduce the load-carrying capacity of components, and may ultimately lead to complete failure of a gear. Three types...

  10. Shimmy of Aircraft Main Landing Gears

    NARCIS (Netherlands)

    Besselink, I.J.M.

    2000-01-01

    The landing gear is an important aircraft system, which has to meet many different design requirements. It is a highly loaded structure, which is designed for minimum weight. Shimmy is a dynamic instability of the landing gear, which is caused by the interaction of the dynamic behaviour of the

  11. Tooth bending fatigue failures in gears

    CSIR Research Space (South Africa)

    Fernandes, PJL

    1996-09-01

    Full Text Available . It results in progressive damage to gear teeth and ultimately leads to complete failure of the gear. The characteristics of this failure mode are discussed in detail and a number of actual case studies are presented which show the occurrence of this failure...

  12. A method for gear fatigue life prediction considering the internal flow field of the gear pump

    Science.gov (United States)

    Shen, Haidong; Li, Zhiqiang; Qi, Lele; Qiao, Liang

    2018-01-01

    Gear pump is the most widely used volume type hydraulic pump, and it is the main power source of the hydraulic system. Its performance is influenced by many factors, such as working environment, maintenance, fluid pressure and so on. It is different from the gear transmission system, the internal flow field of gear pump has a greater impact on the gear life, therefore it needs to consider the internal hydraulic system when predicting the gear fatigue life. In this paper, a certain aircraft gear pump as the research object, aim at the typical failure forms, gear contact fatigue, of gear pump, proposing the prediction method based on the virtual simulation. The method use CFD (Computational fluid dynamics) software to analyze pressure distribution of internal flow field of the gear pump, and constructed the unidirectional flow-solid coupling model of gear to acquire the contact stress of tooth surface on Ansys workbench software. Finally, employing nominal stress method and Miner cumulative damage theory to calculated the gear contact fatigue life based on modified material P-S-N curve. Engineering practice show that the method is feasible and efficient.

  13. Three omni-directional wheels control on a mobile robot

    OpenAIRE

    Ribeiro, António Fernando; Moutinho, Ivo; Silva, Pedro; Fraga, Carlos; Pereira, Nino

    2004-01-01

    Traditional two wheels differential drive normally used on mobile robots have manoeuvrability limitations and take time to sort out. Most teams use two driving wheels (with one or two cast wheels), four driving wheels and even three driving wheels. A three wheel drive with omni-directional wheel has been tried with success, and was implemented on fast moving autonomous mobile robots. This paper deals with the mathematical kinematics description of such mobile platform, it describes the advant...

  14. Space shuttle wheels and brakes

    Science.gov (United States)

    Carsley, R. B.

    1985-01-01

    The Space Shuttle Orbiter wheels were subjected to a combination of tests which are different than any previously conducted in the aerospace industry. The major testing difference is the computer generated dynamic landing profiles used during the certification process which subjected the wheels and tires to simulated landing loading conditions. The orbiter brakes use a unique combination of carbon composite linings and beryllium heat sink to minimize weight. The development of a new lining retention method was necessary in order to withstand the high temperature generated during the braking roll. As with many programs, the volume into which this hardware had to fit was established early in the program, with no provisions made for growth to offset the continuously increasing predicted orbiter landing weight.

  15. Concepts for backfilling and sealing of shafts

    International Nuclear Information System (INIS)

    Pierau, B.

    1990-01-01

    The disposal site is situated at a depth of 1000 to 1200 meters. It is covered by very thick cretatious mudstone layers forming the main barrier against the spread of radioactively contaminated water into the biosphere. Because of the excavation works and the resulting stress redistributions, the material surrounding the shafts is probably broken up, which leads to increased permeability in comparison with the intact rock. It is planned to backfill the shafts with an insoluble mineral mixture including a fine fraction necessary to achieve the sealing required. The joints and cracks in the brocken-up surrounding material are believed to be sealed by themselves due to swelling of the mudstone. Some strata of the mudstone contain more than 20% of smektite, a swelling clay mineral. Those regions, where the broken-up zone cannot be considered sure to self-seal due to swelling, are planned to be sealed by pressure grouting using clay suspension. (orig./HP) [de

  16. Exploratory shaft facility preliminary designs - Permian Basin

    International Nuclear Information System (INIS)

    1983-09-01

    The purpose of the Preliminary Design Report, Permian Basin, is to provide a description of the preliminary design for an Exploratory Shaft Facility in the Permian Basin, Texas. This issue of the report describes the preliminary design for constructing the exploratory shaft using the Large Hole Drilling method of construction and outlines the preliminary design and estimates of probable construction cost. The Preliminary Design Report is prepared to complement and summarize other documents that comprise the design at the preliminary stage of completion, December 1982. Other design documents include drawings, cost estimates and schedules. The preliminary design drawing package, which includes the construction schedule drawing, depicts the descriptions in this report. For reference, a list of the drawing titles and corresponding numbers are included in the Appendix. The report is divided into three principal sections: Design Basis, Facility Description, and Construction Cost Estimate. 30 references, 13 tables

  17. Work on a transfer tunnel access shaft

    CERN Multimedia

    Laurent Guiraud

    2000-01-01

    Civil engineers work on one of the access shafts from the SPS to the LHC transfer tunnel, which will allow components and equipment to be lowered directly so that minimal transport is required. The transfer tunnel will take a proton beam from the SPS pre-accelerator and inject it into the clockwise circulating ring in the LHC where the beam will be accelerated to a final energy of 7 TeV.

  18. Mi Cuarto Libro de Maquinas Simples: Otras Modificaciones de la Rueda. Escuela Intermedia Grados 7, 8 y 9 (My Fourth Book of Simple Machines: Other Modifications of the Wheel. Intermediate School Grades 7, 8, and 9).

    Science.gov (United States)

    Alvarado, Patricio R.; Montalvo, Luis

    This is the fourth book in a five-book physical science series on simple machines. The books are designed for Spanish-speaking junior high school students. This volume explains further refinements of the wheel which is introduced in volume three. The fourth volume explains principles behind gears and the relationship between velocity and force by…

  19. USE OF HIGH-STRENGTH BAINITIC CAST IRON FOR PRODUCING GEAR WHEELS

    Directory of Open Access Journals (Sweden)

    A. I. Pokrovskiy

    2015-01-01

    Full Text Available The advantages and drawbacks of high-strength cast irons with bainitic structure are reviewed basing on the authors’ own experience in the production of critical partsfrom this material and on the analysis of world trends. A possibility of the replacement of alloy steels by bainitic cast iron in manufacturing critical machine parts is discussed.

  20. About numerical analysis of electromagnetic field induce in gear wheels during hardening process

    Directory of Open Access Journals (Sweden)

    Gabriel Cheregi

    2008-05-01

    Full Text Available The paper presents the results of a numericalsimulation using finite element analysis for a coupledmagneto-thermal problem, specific for inductionhardening processes. The analysis takes into account therelative movement between inductor and the heated part.Numerical simulation allows to determine accurately thethermal regime of the induction heating process and theoptimal parameters which offer maximum efficiency.Therefore the experiments number in designing processcan be decreased and a better knowledge of the processcan be obtained.

  1. Reaction wheels for kinetic energy storage

    Science.gov (United States)

    Studer, P. A.

    1984-11-01

    In contrast to all existing reaction wheel implementations, an order of magnitude increase in speed can be obtained efficiently if power to the actuators can be recovered. This allows a combined attitude control-energy storage system to be developed with structure mounted reaction wheels. The feasibility of combining reaction wheels with energy storage wwheels is demonstrated. The power required for control torques is a function of wheel speed but this energy is not dissipated; it is stored in the wheel. The I(2)R loss resulting from a given torque is shown to be constant, independent of the design speed of the motor. What remains, in order to efficiently use high speed wheels (essential for energy storage) for control purposes, is to reduce rotational losses to acceptable levels. Progress was made in permanent magnet motor design for high speed operation. Variable field motors offer more control flexibility and efficiency over a broader speed range.

  2. Customer loads of two-wheeled vehicles

    Science.gov (United States)

    Gorges, C.; Öztürk, K.; Liebich, R.

    2017-12-01

    Customer usage profiles are the most unknown influences in vehicle design targets and they play an important role in durability analysis. This publication presents a customer load acquisition system for two-wheeled vehicles that utilises the vehicle's onboard signals. A road slope estimator was developed to reveal the unknown slope resistance force with the help of a linear Kalman filter. Furthermore, an automated mass estimator was developed to consider the correct vehicle loading. The mass estimation is performed by an extended Kalman filter. Finally, a model-based wheel force calculation was derived, which is based on the superposition of forces calculated from measured onboard signals. The calculated wheel forces were validated by measurements with wheel-load transducers through the comparison of rainflow matrices. The calculated wheel forces correspond with the measured wheel forces in terms of both quality and quantity. The proposed methods can be used to gather field data for improved vehicle design loads.

  3. Fault Detection in High Speed Helical Gears Considering Signal Processing Method in Real Simulation

    Directory of Open Access Journals (Sweden)

    Amir Ali Tabatabai Adnani

    Full Text Available Abstract In the present study, in order to detect the fault of the gearmeshs, two engaged gears based on research department of a major automotive company have been modeled. First off, by using the CATIA software the fault was induced to the output gear. Then, the faulty gearmesh and non-faulty gearmesh is modeled to find the fault pattern to predict and estimate the failure of the gearmesh. The induced defect is according to the frequently practical fault that takes place to the teeth of gears. In order to record the acceleration signals to calculate the decomposition algorithm, mount the accelerometer on accessible place of the output shaft to recognize the pattern. Then, for more realistic simulation, noise is added to the output signal. At the first step by means of Butterworth low pass digital, the noise has to be removed from signals after that by using the Empirical Mode Decomposition (EMD, signals have decomposed into the Instinct Mode Function (IMF and every IMF were tested by using the Instantaneous Frequency (IF in way of Hillbert Transform (HT. For this purpose a code was developed in MATLAB software. Then, in order to detect the presence of the fault the frequency spectrum of IMF's are created and defect is detected in gearmesh frequency of the spectrum.

  4. Four-Wheel Vehicle Suspension System

    Science.gov (United States)

    Bickler, Donald B.

    1990-01-01

    Four-wheel suspension system uses simple system of levers with no compliant components to provide three-point suspension of chassis of vehicle while maintaining four-point contact with uneven terrain. Provides stability against tipping of four-point rectangular base, without rocking contact to which rigid four-wheel frame susceptible. Similar to six-wheel suspension system described in "Articulated Suspension Without Springs" (NPO-17354).

  5. Arrangement for adapting a wind wheel to an electric power generator

    Energy Technology Data Exchange (ETDEWEB)

    Beusse, H

    1977-08-11

    The invention is concerned with a device for adapting a wind wheel to an electric power generator in such a way that the wind wheel will always be operated with a maximum performance coefficient, that another source of energy, e.g. a prime mover, can supply the power deficit if the wind power is not sufficient, and that the generator at the output of the facility is kept mains-synchronous of constant speed and constant voltage. According to the invention, the shaft power of the wind power engine is transmitted to a first generator driving an electromotor. The motor is coupled to a second generator feeding into a consumer grid. By means of an anemometer the excitation output of the motor is controled in such manner that the speed of the generator is practically constant-provided a sufficient supply of wind is available. On the shaft of the output generator a prinse mover, e.g. a Diesel engine, is mounted being controllable for contant speed by means of a controll device in such a way that the prime mover takes over the missing amount of power if the wind supply falls short of the power taken off at the generator output.

  6. Engagement of Metal Debris into Gear Mesh

    Science.gov (United States)

    handschuh, Robert F.; Krantz, Timothy L.

    2010-01-01

    A series of bench-top experiments was conducted to determine the effects of metallic debris being dragged through meshing gear teeth. A test rig that is typically used to conduct contact fatigue experiments was used for these tests. Several sizes of drill material, shim stock and pieces of gear teeth were introduced and then driven through the meshing region. The level of torque required to drive the "chip" through the gear mesh was measured. From the data gathered, chip size sufficient to jam the mechanism can be determined.

  7. Origami Wheel Transformer: A Variable-Diameter Wheel Drive Robot Using an Origami Structure.

    Science.gov (United States)

    Lee, Dae-Young; Kim, Sa-Reum; Kim, Ji-Suk; Park, Jae-Jun; Cho, Kyu-Jin

    2017-06-01

    A wheel drive mechanism is simple, stable, and efficient, but its mobility in unstructured terrain is seriously limited. Using a deformable wheel is one of the ways to increase the mobility of a wheel drive robot. By changing the radius of its wheels, the robot becomes able to pass over not only high steps but also narrow gaps. In this article, we propose a novel design for a variable-diameter wheel using an origami-based soft robotics design approach. By simply folding a patterned sheet into a wheel shape, a variable-diameter wheel was built without requiring lots of mechanical parts and a complex assembly process. The wheel's diameter can change from 30 to 68 mm, and it is light in weight at about 9.7 g. Although composed of soft materials (fabrics and films), the wheel can bear more than 400 times its weight. The robot was able to change the wheel's radius in response to terrain conditions, allowing it to pass over a 50-mm gap when the wheel is shrunk and a 50-mm step when the wheel is enlarged.

  8. 50 CFR 622.46 - Prevention of gear conflicts.

    Science.gov (United States)

    2010-10-01

    ... 50 Wildlife and Fisheries 8 2010-10-01 2010-10-01 false Prevention of gear conflicts. 622.46... Management Measures § 622.46 Prevention of gear conflicts. (a) No person may knowingly place in the Gulf EEZ any article, including fishing gear, that interferes with fishing or obstructs or damages fishing gear...

  9. 46 CFR 108.641 - Instructions for changing steering gear.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Instructions for changing steering gear. 108.641 Section... steering gear. Instructions stating, in order, the different steps to be taken for changing to emergency and secondary steering gear must be posted in the steering gear room and at each secondary steering...

  10. 14 CFR 25.1515 - Landing gear speeds.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Landing gear speeds. 25.1515 Section 25... Limitations § 25.1515 Landing gear speeds. (a) The established landing gear operating speed or speeds, V LO, may not exceed the speed at which it is safe both to extend and to retract the landing gear, as...

  11. 50 CFR 654.25 - Prevention of gear conflicts.

    Science.gov (United States)

    2010-10-01

    ... 50 Wildlife and Fisheries 8 2010-10-01 2010-10-01 false Prevention of gear conflicts. 654.25... Measures § 654.25 Prevention of gear conflicts. (a) No person may knowingly place in the management area any article, including fishing gear, that interferes with fishing or obstructs or damages fishing gear...

  12. 49 CFR 230.77 - Foundation brake gear.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Foundation brake gear. 230.77 Section 230.77... Tenders Brake and Signal Equipment § 230.77 Foundation brake gear. (a) Maintenance. Foundation brake gear...) Distance above the rails. No part of the foundation brake gear of the steam locomotive or tender shall be...

  13. 50 CFR 640.22 - Gear and diving restrictions.

    Science.gov (United States)

    2010-10-01

    ... 50 Wildlife and Fisheries 8 2010-10-01 2010-10-01 false Gear and diving restrictions. 640.22... ATLANTIC Management Measures § 640.22 Gear and diving restrictions. (a) Prohibited gear and methods. (1) A spiny lobster may not be taken in the EEZ with a spear, hook, or similar device, or gear containing such...

  14. 29 CFR 1919.31 - Proof tests-loose gear.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 7 2010-07-01 2010-07-01 false Proof tests-loose gear. 1919.31 Section 1919.31 Labor... (CONTINUED) GEAR CERTIFICATION Certification of Vessels: Tests and Proof Loads; Heat Treatment; Competent Persons § 1919.31 Proof tests—loose gear. (a) Chains, rings, shackles and other loose gear (whether...

  15. 46 CFR 58.25-20 - Piping for steering gear.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Piping for steering gear. 58.25-20 Section 58.25-20... MACHINERY AND RELATED SYSTEMS Steering Gear § 58.25-20 Piping for steering gear. (a) Pressure piping must... the hydraulic system can be readily recharged from within the steering-gear compartment and must be...

  16. Greasing the Wheels of Trade

    OpenAIRE

    Hendrik P. van Dalen; Aico P. van Vuuren

    2003-01-01

    This discussion paper resulted in a publication in 'De Economist' , 2005, 153(2), 139-165. How much does a nation spend on resources to 'grease the wheels of trade'? To examine this question the Dutch economy is used as an exemplary case as the Netherlands are known as a nation of traders. This image was derived in the seventeenth century from successes in long distance trade, shipping and financial innovations. Despite its historical background in trading the potential to 'truck and barter' ...

  17. 50 CFR 654.22 - Gear restrictions.

    Science.gov (United States)

    2010-10-01

    ..., DEPARTMENT OF COMMERCE STONE CRAB FISHERY OF THE GULF OF MEXICO Management Measures § 654.22 Gear... retaining chamber. (6) A plastic or wire trap must have a degradable panel. (i) A plastic trap will be...

  18. Sea Turtle Human/Gear Interactions Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Southeast Fisheries Science Center Mississippi Laboratories is responsible for new gear development and testing to reduce bycatch and incidental interactions of...

  19. Gulf of Mexico Shrimp Permit Gear Survey

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Data set contains annual vessel gear characterization of permit holders shrimp vessel. Data includes net type, TED type, BRD type, etc.

  20. Vibration Based Sun Gear Damage Detection

    Science.gov (United States)

    Hood, Adrian; LaBerge, Kelsen; Lewicki, David; Pines, Darryll

    2013-01-01

    Seeded fault experiments were conducted on the planetary stage of an OH-58C helicopter transmission. Two vibration based methods are discussed that isolate the dynamics of the sun gear from that of the planet gears, bearings, input spiral bevel stage, and other components in and around the gearbox. Three damaged sun gears: two spalled and one cracked, serve as the focus of this current work. A non-sequential vibration separation algorithm was developed and the resulting signals analyzed. The second method uses only the time synchronously averaged data but takes advantage of the signal/source mapping required for vibration separation. Both algorithms were successful in identifying the spall damage. Sun gear damage was confirmed by the presence of sun mesh groups. The sun tooth crack condition was inconclusive.

  1. Tooth contact analysis of spur gears. Part 2-Analysis of modified gears

    Directory of Open Access Journals (Sweden)

    Pop Nicolae

    2017-01-01

    Full Text Available The misalignment between gears axes or direction deviations of teeth leads accentuate the edge effect, Modified spur gears which localize the initial bearing contact by proper modifications of the lead profile are used to avoid the development of the edge effect. A semi-analytical method was involved to find the contact area, pressures distribution and depth stresses states for the standard gears and gears with modified lead profile. The lead modifications concerned the crowning of the flank surface and the end relieving of the tooth flanks, both being applied to the pinion teeth only.

  2. High Speed Gear Sized and Configured to Reduce Windage Loss

    Science.gov (United States)

    Kunz, Robert F. (Inventor); Medvitz, Richard B. (Inventor); Hill, Matthew John (Inventor)

    2013-01-01

    A gear and drive system utilizing the gear include teeth. Each of the teeth has a first side and a second side opposite the first side that extends from a body of the gear. For each tooth of the gear, a first extended portion is attached to the first side of the tooth to divert flow of fluid adjacent to the body of the gear to reduce windage losses that occur when the gear rotates. The gear may be utilized in drive systems that may have high rotational speeds, such as speeds where the tip velocities are greater than or equal to about 68 m/s. Some embodiments of the gear may also utilize teeth that also have second extended portions attached to the second sides of the teeth to divert flow of fluid adjacent to the body of the gear to reduce windage losses that occur when the gear rotates.

  3. Rotating Shaft Tilt Angle Measurement Using an Inclinometer

    OpenAIRE

    Luo Jun; Wang Zhiqian; Shen Chengwu; Wen Zhuoman; Liu Shaojin; Cai Sheng; Li Jianrong

    2015-01-01

    This paper describes a novel measurement method to accurately measure the rotating shaft tilt angle of rotating machine for alignment or compensation using a dual-axis inclinometer. A model of the rotating shaft tilt angle measurement is established using a dual-axis inclinometer based on the designed mechanical structure, and the calculation equation between the rotating shaft tilt angle and the inclinometer axes outputs is derived under the condition that the inclinometer axes are perpendic...

  4. Gearbox Reliability Collaborative High-Speed Shaft Calibration

    Energy Technology Data Exchange (ETDEWEB)

    Keller, J.; McNiff, B.

    2014-09-01

    Instrumentation has been added to the high-speed shaft, pinion, and tapered roller bearing pair of the Gearbox Reliability Collaborative gearbox to measure loads and temperatures. The new shaft bending moment and torque instrumentation was calibrated and the purpose of this document is to describe this calibration process and results, such that the raw shaft bending and torque signals can be converted to the proper engineering units and coordinate system reference for comparison to design loads and simulation model predictions.

  5. Grouting of nuclear waste vault shafts

    International Nuclear Information System (INIS)

    Gyenge, M.

    1980-01-01

    A nuclear waste vault must be designed and built to ensure adequate isolation of the nuclear wastes from human contact. Consequently, after a vault has been fully loaded it must be adequately sealed off to prevent radionuclide migration which may be provided by circulating ground water. Of particular concern in vault sealing are the physical and chemical properties of the sealing materials its long-term durability and stability and the techniques used for its emplacement. Present grouting technology and grout material are reviewed in terms of the particular needs of shaft grouting. Areas requiring research and development are indicated

  6. Instrumentation and test gear circuits manual

    CERN Document Server

    Marston, R M

    2013-01-01

    Instrumentation and Test Gear Circuits Manual provides diagrams, graphs, tables, and discussions of several types of practical circuits. The practical circuits covered in this book include attenuators, bridges, scope trace doublers, timebases, and digital frequency meters. Chapter 1 discusses the basic instrumentation and test gear principles. Chapter 2 deals with the design of passive attenuators, and Chapter 3 with passive and active filter circuits. The subsequent chapters tackle 'bridge' circuits, analogue and digital metering techniques and circuitry, signal and waveform generation, and p

  7. Residual torsional properties of composite shafts subjected to impact loadings

    International Nuclear Information System (INIS)

    Sevkat, Ercan; Tumer, Hikmet

    2013-01-01

    Highlights: • Impact loading reduces the torsional strength of composite shaft. • Impact energy level determines the severity of torsional strength reduction. • Hybrid composite shafts can be manufactured by mixing two types of filament. • Maximum torque capacity of shafts can be estimated using finite element method. - Abstract: This paper presents an experimental and numerical study to investigate residual torsional properties of composite shafts subjected to impact loadings. E-glass/epoxy, carbon/epoxy and E-glass–carbon/epoxy hybrid composite shafts were manufactured by filament winding method. Composite shafts were impacted at 5, 10, 20 and 40 J energy levels. Force–time and energy–time histories of impact tests were recorded. One composite shaft with no impact, and four composite shafts with impact damage, five in total, were tested under torsion. Torque-twisting angle relations for each test were obtained. Reduction at maximum torque and maximum twisting angle induced by impact loadings were calculated. While 5 J impact did not cause significant reduction at maximum torque and maximum twisting angle, remaining impact loadings caused 34–67% reduction at maximum torque, and 30–61% reduction at maximum twisting angle. Reductions increased with increasing energy levels and varied depending on the material of composite shafts. The 3-D finite element (FE) software, Abaqus, incorporated with an elastic orthotropic model, was then used to simulate the torsion tests. Good agreement between experimental and numerical results was achieved

  8. Increasing shaft depth with rock hoisting to the surface. [USSR

    Energy Technology Data Exchange (ETDEWEB)

    Durov, E.M.

    1982-06-01

    Schemes of shaft construction with increasing shaft depth depend on: shaft depth, shaft diameter, types of hoisting systems, schemes of shaft reinforcement. Investigations carried out in underground coal mines in the USSR show that waste rock haulage to the surface by an independent hoisting system is most economical. Installation of this system depends on the existing hoisting scheme. When one of the operating cages or skips can be removed without a negative influence on mine operation the system of rock waste hoisting is used. The hoisting bucket used for rock removal from the shaft bottom moves in the shaft section from which one of the cages or skips has been removed. Examples of using this scheme in Donbass, Kuzbass and other coal basins are given. Economic aspects of waste material hoisting to the surface are analyzed. The system is economical when the remaining hoisting system can accept additional loads after removal of a cage or skip from the shaft. Investigations show that use of a bucket with a capacity from 2.5 to 3.0 m/sup 3/ for waste rock removal from the shaft being modernized and deepened is most economical.

  9. Meals on Wheels Association of America

    Science.gov (United States)

    ... Meals About Meals on Wheels Get Started The Issue The Problem & Our Solution Meals on Wheels Health Facts & Resources Senior Facts Map State Fact Sheets Research More Than a Meal Pilot Research Study Medicare Claims Analyses Policy Myths Hunger in Older Adults Take Action Volunteer Advocate #SAVELUNCH ...

  10. A Full Disturbance Model for Reaction Wheels

    NARCIS (Netherlands)

    Le, M.P.; Ellenbroek, Marcellinus Hermannus Maria; Seiler, R; van Put, P.; Cottaar, E.J.E.

    2014-01-01

    Reaction wheels are rotating devices used for the attitude control of spacecraft. However, reaction wheels also generate undesired disturbances in the form of vibrations, which may have an adverse effect on the pointing accuracy and stability of spacecraft (optical) payloads. A disturbance model for

  11. Assessment of a Boat Fractured Steering Wheel

    Directory of Open Access Journals (Sweden)

    Vukelic Goran

    2016-09-01

    Full Text Available During regular use of the steering wheel mounted on a boat, two cracks emanating from a fastener hole were noticed which, consequently, caused final fracture of the wheel. To determine the behavior of a boat steering wheel with cracks present, assessment of a fractured wheel was performed. Torque moments of the fasteners were measured prior to removing the steering wheel from the boat. Visual and dye penetrant inspection followed along with the material detection. Besides using experimental procedures, assessment of the fractured wheel was performed using finite element analysis, i.e. stress intensity factor values were numerically determined. Variation of stress intensity factor with crack length is presented. Possible causes of crack occurrence are given and they include excessive values of fastener torque moments coupled with fretting between fastener and fastener hole that was poorly machined. Results obtained by this assessment can be taken for predicting fracture behavior of a cracked steering wheel and as a reference in the design, mounting and exploitation process of steering wheels improving that way their safety in transportation environment.

  12. Riding the Ferris Wheel: A Sinusoidal Model

    Science.gov (United States)

    Mittag, Kathleen Cage; Taylor, Sharon E.

    2011-01-01

    When thinking of models for sinusoidal waves, examples such as tides of the ocean, daily temperatures for one year in your town, light and sound waves, and certain types of motion are used. Many textbooks [1, p. 222] also present a "Ferris wheel description problem" for students to work. This activity takes the Ferris wheel problem out of the…

  13. The Ferris Wheel and Justifications of Curvature

    Science.gov (United States)

    Stevens, Irma E.; Moore, Kevin C.

    2016-01-01

    This report discusses the results of semi-structured clinical interviews with ten prospective secondary mathematics teachers who were provided with dynamic images of Ferris wheels. We asked the students to graph the relationship between the distance a rider traveled around the Ferris wheel and the height of the rider from the ground. We focus on…

  14. 29 CFR 1915.134 - Abrasive wheels.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 7 2010-07-01 2010-07-01 false Abrasive wheels. 1915.134 Section 1915.134 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR... wheels shall fit freely on the spindle and shall not be forced on. The spindle nut shall be tightened...

  15. Dynamic and Acoustic Characterisation of Automotive Wheels

    Directory of Open Access Journals (Sweden)

    Francesca Curà

    2004-01-01

    Full Text Available The subject of this paper is the dynamic and acoustic characterisation of an automotive wheel. In particular, an experimental research activity previously performed by the authors about the dynamic behaviour of automotive wheels has been extended to the acoustic field.

  16. RATIONALE OF THE EVALUATION AND SELECTION OF KINEMATIC AND TRIBOLOGICAL CHARACTERISTICS OF THE SYSTEM «PINION – GEAR RACK» OF COLD-PILGERING MILLS

    Directory of Open Access Journals (Sweden)

    T. M. Kadilnikova

    2014-02-01

    Full Text Available Purpose. During operation of cold-pilgering mills rotation of the shafts is carried out by means of pinion gears being in meshing with stationary gear racks, which is accompanied by various tribological defects, that can be avoided during the detailed investigation and justification of selection and evaluation of kinematic and tribological characteristics of the system "pinion - gear rack". Methodology. Runout occurs as a consequence of increased friction and depends on the material hardness of which pinions and toothed racks are manufactured, their thermal treatment, selection of correct lubrication, insufficient oil purity and its untimely change, gears overload and other factors. To assess the runout of tribological pair cogs "pinion - gear rack" of the cold-pilgering mills we will use a system of differential equations of the first order. Using the solution of this system under the given conditions, it is possible to obtain relations for kinematic and tribological parameters. Findings. Relations for the durability, runout, sliding speed, and length of the line of the tribological pair "pinion - gear rack" contact are obtained. They provide high indicators of runout and durability of the system with minimum weight and overall dimensions of the design, which is an important factor to increase efficiency of cold-pilgering mills. Originality. The analysis of the relations, which was obtained to identify durability, wear, sliding speed, and the length of the line of the tribological pair "pinion - gear rack" contact allows you to choose for cold-pilgering mills special pinions with the design parameters, which optimally satisfy the technological conditions of rolling. Practical value. Analytical determination of the slip velocity for tribological pair makes it possible to adjust the technical process of cold-pilgering mills and to make constructive changes in the system of "pinion - gear rack" in order to increase its wear resistance.

  17. Removable control rod drive shaft guide

    International Nuclear Information System (INIS)

    Ales, M.W.; Brown, S.K.; Dixon, L.D.

    1988-01-01

    A removable control rod drive shaft guide is described for a control rod ''guide'' structure card, comprising: a. a substantially annular shaped main body portion having a central axial bore for receiving a control rod drive shaft and an upper exterior groove for receiving removal tooling; b. the main body portion having a reduced outer diameter at its lower section; c. a shoulder portion integral with the main body portion for supporting the main body portion on the guide structure card; d. the shoulder portion having a substantially radial bore and the reduced outer diameter lower section having a slot in alignment with the radial bore; e. a locking arm ''pivotaly'' mounted in the radial bore which protrudes into the slot and is movable between a first normal locking position for engaging the guide structure card and a second release position; f. a spring received within a second axial bore in the main body portion and biased against the locking arm for urging and locking arm into the first normal locking position; and g. a release tab at one end of the locking arm for moving the locking arm into the second release position

  18. Systems and Methods for Implementing Bulk Metallic Glass-Based Strain Wave Gears and Strain Wave Gear Components

    Science.gov (United States)

    Hofmann, Douglas C. (Inventor); Wilcox, Brian (Inventor)

    2016-01-01

    Bulk metallic glass-based strain wave gears and strain wave gear components. In one embodiment, a strain wave gear includes: a wave generator; a flexspline that itself includes a first set of gear teeth; and a circular spline that itself includes a second set of gear teeth; where at least one of the wave generator, the flexspline, and the circular spline, includes a bulk metallic glass-based material.

  19. 78 FR 68817 - Proposed Information Collection; Comment Request; Northeast Region Gear Identification

    Science.gov (United States)

    2013-11-15

    ... gear type being used to help prevent gear conflicts. II. Method of Collection No information is... certain types of fishing gear mark the gear with specified information. The gear marking requirements... for marking several strings of a given gear type, or may use multiple different gear types that...

  20. Biaxial wheel/hub test facility. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, G.; Grubisic, V. [eds.

    2000-07-01

    The 4{sup th} meeting aims to exchange the experience and knowledge of engineers during several presentations and discussions about new developments required for a reliable, time and cost reducing validation of the wheel/hub assembly. Tremendous development of the wheel performance, described by the ratio of the rated load (kg) versus the wheel weight (kg) had taken place during the last 5000 years. Starting from the ratio of 3 for wooden 2-piece-disc-wheels in Mesopotamia it needed nearly 1000 years to increase the ratio to approx 5 at light-weight spoke wheels for fighting carriages, found in the grave of king Tutenchamon in Egypt. Modern light alloy wheels of commercial vehicles reach values up to 160 kg/kg. Additionally the comlex design of the modern systems for cars and commercial vehicles comprising wheel, brake, hub, bearing, spindle and hub carrier, including different materials and their treatment, fasteners, press-fits, require an appropriate testing procedure. The variable loading conditions, caused by operational wheel forces, brake and torque moments including heating, may result in changing tolerances and press-fits during operation and consequently in different damage mechanisms. This can be simulated in the Biaxial Wheel Test Machine, whereby corresponding load programs are necessary. An overview about all biaxial test machines in usage at the end of 1999 is shown in the introduction. The total number is 17 for cars, 7 for commercial vehicles and 1 for trains. The six presentations of this meeting were consequently concentrated on: (a) recommendations for a standardization of load programs of the German Wheel Committee, (b) the simulation of brake and torque events and (c) the possibility for a numerical stress analyses and fatigue life assessment. (orig./AKF)

  1. Gear Tooth Root Stresses of a Very Heavily Loaded Gear Pair-Case Study: Orbiter Body Flap Actuator Pinion and Ring Gear

    Science.gov (United States)

    Krantz, Timothy L.; Handschuh, Robert F.

    2015-01-01

    The space shuttle orbiter's body flap actuator gearing was assessed as a case study of the stresses for very heavily loaded external-internal gear pairs (meshing pinion and ring gear). For many applications, using the high point of single tooth contact (HPSTC) to locate the position of the tooth force is adequate for assessing the maximum tooth root stress condition. But for aerospace gearing such an approach may be inadequate for assessing the stress condition while also simultaneously minimizing mass. In this work specialized contact analyses and finite element methods were used to study gear tooth stresses of body flap actuator gears. The analytical solutions considered the elastic deformations as an inherent part of the solutions. The ratio for the maximum tooth stresses using the HPSTC approach solutions relative to the contact analysis and finite element solutions were 1.40 for the ring gear and 1.28 for the pinion gear.

  2. Research on the Problem of Spur Gear Teeth Contact in the Car Gear Box

    Directory of Open Access Journals (Sweden)

    Viktor Skrickij

    2011-04-01

    Full Text Available The article presents research on the problem of two gear contact in the car gearbox. Contact stiffness is evaluated for the whole period of mesh. Also, contact stresses are evaluated in the contact place. The presented method can be used for calculating spur gear.Article in Lithuanian

  3. The response of a high-speed train wheel to a harmonic wheel-rail force

    International Nuclear Information System (INIS)

    Sheng, Xiaozhen; Liu, Yuxia; Zhou, Xin

    2016-01-01

    The maximum speed of China's high-speed trains currently is 300km/h and expected to increase to 350-400km/h. As a wheel travels along the rail at such a high speed, it is subject to a force rotating at the same speed along its periphery. This fast moving force contains not only the axle load component, but also many components of high frequencies generated from wheel-rail interactions. Rotation of the wheel also introduces centrifugal and gyroscopic effects. How the wheel responds is fundamental to many issues, including wheel-rail contact, traction, wear and noise. In this paper, by making use of its axial symmetry, a special finite element scheme is developed for responses of a train wheel subject to a vertical and harmonic wheel-rail force. This FE scheme only requires a 2D mesh over a cross-section containing the wheel axis but includes all the effects induced by wheel rotation. Nodal displacements, as a periodic function of the cross-section angle 6, can be decomposed, using Fourier series, into a number of components at different circumferential orders. The derived FE equation is solved for each circumferential order. The sum of responses at all circumferential orders gives the actual response of the wheel. (paper)

  4. Fractures of the shafts of the tibia and fibula

    International Nuclear Information System (INIS)

    Bender, C.E.; Campbell, D.C.

    1985-01-01

    Fractures of the shafts of the tibia and fibula are the most common long bone fractures. This chapter discusses tibial and fibular shaft fractures. Treatment of tibial and fibular fractures is similar and, therefore, reference is primarily made to the tibia. Diagnostic techniques are also evaluated

  5. Boundary integral method for torsion of composite shafts

    International Nuclear Information System (INIS)

    Chou, S.I.; Mohr, J.A.

    1987-01-01

    The Saint-Venant torsion problem for homogeneous shafts with simply or multiply-connected regions has received a great deal of attention in the past. However, because of the mathematical difficulties inherent in the problem, very few problems of torsion of shafts with composite cross sections have been solved analytically. Muskhelishvili (1963) studied the torsion problem for shafts with cross sections having several solid inclusions surrounded by an elastic material. The problem of a circular shaft reinforced by a non-concentric round inclusion, a rectangular shaft composed of two rectangular parts made of different materials were solved. In this paper, a boundary integral equation method, which can be used to solve problems more complex than those considered by Katsikadelis et. al., is developed. Square shaft with two dissimilar rectangular parts, square shaft with a square inclusion are solved and the results compared with those given in the reference cited above. Finally, a square shaft composed of two rectangular parts with circular inclusion is solved. (orig./GL)

  6. Percutaneous Kirschner wire (K-wire) fixation for humerus shaft ...

    African Journals Online (AJOL)

    Background: Fractures of the humeral shaft are uncommon, representing less than 10 percent of all fractures in children. Humeral shaft fractures in children can be treated by immobilisation alone. A small number of fractures are unable to be reduced adequately or maintained in adequate alignment, and these should be ...

  7. New endoscope shaft for endoscopic transsphenoidal pituitary surgery.

    NARCIS (Netherlands)

    Lindert, E.J. van; Grotenhuis, J.A.

    2005-01-01

    OBJECTIVE: To describe a new endoscope shaft developed for suction-aspiration during endoscopic transsphenoidal pituitary surgery. METHODS: A custom-made shaft for a Wolf endoscope (Richard Wolf GmbH, Knittlingen, Germany) was developed with a height of 10 mm and a width of 5 mm, allowing an

  8. Proceedings of the conference on shaft drilling technology

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    This book contains the following topics, Market analysis, World-wide operations, Innovative drilling and boring, Raise boring, Shaft lining and fittings, Entry considerations for the Yucca Mountain exploratory shaft facility for potential Radioactive Waste Disposal, Drilling rigs in the coal industry

  9. 46 CFR 171.100 - Shaft tunnels and stern tubes.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Shaft tunnels and stern tubes. 171.100 Section 171.100... PERTAINING TO VESSELS CARRYING PASSENGERS Additional Subdivision Requirements § 171.100 Shaft tunnels and... passengers on an international voyage. (b) The watertight seal in the bulkhead between the stern tube space...

  10. A coupled mechanical/hydrologic model for WIPP shaft seals

    International Nuclear Information System (INIS)

    Ehgartner, B.

    1991-06-01

    Effective sealing of the Waste Isolation Pilot Plant (WIPP) shafts will be required to isolate defense-generated transuranic wastes from the accessible environment. Shafts penetrate water-bearing hard rock formations before entering a massive creeping-salt formation (Salado) where the WIPP is located. Short and long-term seals are planned for the shafts. Short-term seals, a composite of concrete and bentonite, will primarily be located in the hard rock formations separating the water-bearing zones from the Salado Formation. These seals will limit water flow to the underlying long-term seals in the Salado. The long-term seals will consist of lengthly segments of initially unsaturated crushed salt. Creep closure of the shaft will consolidate unsaturated crushed salt, thereby reducing its permeability. However, water passing through the upper short-term seals and brine inherent to the salt host rock itself will eventually saturate the crushed salt and consolidation could be inhibited. Before saturating, portions of the crushed salt in the shafts are expected to consolidate to a permeability equivalent to the salt host rock, thereby effectively isolating the waste from the overlying water-bearing formations. A phenomenological model is developed for the coupled mechanical/hydrologic behavior of sealed WIPP shafts. The model couples creep closure of the shaft, crushed salt consolidation, and the associated reduction in permeability with Darcy's law for saturated fluid flow to predict the overall permeability of the shaft seal system with time. 17 refs., 6 figs., 1 tab

  11. Hair Shaft Abnormality in Children: a Narrative Review

    Directory of Open Access Journals (Sweden)

    Ghasem Rahmatpour Rokni

    2017-08-01

    Full Text Available Background Hair is an ectodermal structure, and its formation is regulated by master genes important in embryology. Hair shaft consists of three major regions: the medulla, cortex and cuticle. Hair shaft abnormality will divide structural hair abnormalities into two broad categories - those associated with increased hair fragility and those not associated with increased hair fragility. We conducted a review study to assess hair shaft abnormality in children. Materials and Methods We conducted a review of all papers published on hair shaft abnormalities. A literature search was performed using PubMed, Scopus and Google Scholar on papers publish from 1990 to 2016. The search terms were: hair shaft abnormality, Hair loss, Hair fragility. All abstracts and full text English-language articles were studied. Results While common developmental and structural features are shared in hair follicles and hair shafts. Anomalies of the hair shaft are separated into those with and those without increased hair fragility. Conclusion Although hair has no vital function, it may serve as an indicator for human health. Clinical and morphological hair abnormalities can be clues to specific complex disorders. Hair shaft abnormalities can be inherited or acquired, can reflect a local problem or a systemic disease.

  12. Exploratory Shaft Seismic Design Basis Working Group report

    International Nuclear Information System (INIS)

    Subramanian, C.V.; King, J.L.; Perkins, D.M.; Mudd, R.W.; Richardson, A.M.; Calovini, J.C.; Van Eeckhout, E.; Emerson, D.O.

    1990-08-01

    This report was prepared for the Yucca Mountain Project (YMP), which is managed by the US Department of Energy. The participants in the YMP are investigating the suitability of a site at Yucca Mountain, Nevada, for construction of a repository for high-level radioactive waste. An exploratory shaft facility (ESF) will be constructed to permit site characterization. The major components of the ESF are two shafts that will be used to provide access to the underground test areas for men, utilities, and ventilation. If a repository is constructed at the site, the exploratory shafts will be converted for use as intake ventilation shafts. In the context of both underground nuclear explosions (conducted at the nearby Nevada Test Site) and earthquakes, the report contains discussions of faulting potential at the site, control motions at depth, material properties of the different rock layers relevant to seismic design, the strain tensor for each of the waveforms along the shaft liners, and the method for combining the different strain components along the shaft liners. The report also describes analytic methods, assumptions used to ensure conservatism, and uncertainties in the data. The analyses show that none of the shafts' structures, systems, or components are important to public radiological safety; therefore, the shafts need only be designed to ensure worker safety, and the report recommends seismic design parameters appropriate for this purpose. 31 refs., 5 figs., 6 tabs

  13. Performance of meta power rotor shaft torque meter

    DEFF Research Database (Denmark)

    Schmidt Paulsen, U.

    2002-01-01

    The present report describes the novel experimental facility in detecting shaft torque in the transmission system (main rotor shaft, exit stage of gearbox) of a wind turbine, the results and the perspectives in using this concept. The measurements arecompared with measurements, based on existing ...

  14. Waste and dust utilisation in shaft furnaces

    Directory of Open Access Journals (Sweden)

    Senk, D.

    2005-12-01

    Full Text Available Wastes and dusts from steel industry, non-ferrous metallurgy and other branches can be utilized e.g. in agglomeration processes (sintering, pelletizing or briquetting and by injection into shaft furnaces. This paper deals with the second way. Combustion and reduction behaviour of iron- and carbon-rich metallurgical dusts and sludges containing lead, zinc and alkali as well as other wastes with and without pulverized coal (PC has been studied when injecting into shaft furnaces. Following shaft furnaces have been examined: blast furnace, cupola furnace, OxiCup furnace and imperial-smelting furnace. Investigations have been done at laboratory and industrial scale. Some dusts and wastes under certain conditions can be not only reused but can also improve combustion efficiency at the tuyeres as well as furnace performance and productivity.

    Los residuos y polvos de filtro provenientes de la industria siderúrgica, de la obtención de metales no ferrosos y de otras industrias, pueden ser utilizados, por ejemplo, en procesos de aglomeración como sintetizado, peletizado o briqueteado. En su caso, estos pueden ser inyectados en los hornos de cuba. Este artículo se enfoca a la inyección de estos materiales en los hornos de cuba. El comportamiento de la combustión y reducción de los polvos ricos en hierro y carbono y también lodos que contienen plomo, zinc y compuestos alcalinos y otros residuos con o sin carbón pulverizado (CP fue examinado, cuando se inyectaron en hornos de cuba. Los siguientes hornos de cuba fueron examinados: Horno alto, cubilote, OxiCup y horno de cuba Imperial Smelting. Las investigaciones se llevaron a cabo a escala de laboratorio e industrial. Algunos residuos y polvos bajo ciertas condiciones, no sólo pueden ser reciclados, sino también mejoran la eficiencia de combustión en las toberas, la operación y productividad del horno.

  15. ON-BOARD MONITORING OF TECHNICAL STATE FOR POWER UNITS OF WHEELED AND TRACKED VEHICLES

    Directory of Open Access Journals (Sweden)

    Yu. D. Karpievich

    2016-01-01

    Full Text Available The paper considers new methodologies pertaining to on-board diagnosis of wear-out rate for friction linings of a clutch driven disk and friction discs of a hydraulic press clutch of transmission gear boxes which are based on physical process that uses friction work as an integrated indicator. A new methodology in determination of life-span rate for engine oil has been developed in the paper. The paper presents block schematic diagrams for on-board monitoring of technical state for power units of wheeled and tracked vehicles. Usage of friction work as an integrated indicator for determination of wear-out rate for friction linings of clutch driven disk and friction discs of a haydraulic press clutch makes it possible timely at any operational period of wheeled and tracked vehicles to determine their residual operation life and forecast their replacement.While taking volume of the used fuel for determination of engine oil life-span rate it permits quickly and effectively at any operational period of wheeled and tracked vehicles to determine residual useful life of the engine oil and also forecast its replacement.

  16. MATHEMATICAL MODEL OF WHEELSET OSCILLATIONS WITH INDEPENDENT WHEEL ROTATION IN THE HORIZONTAL PLANE

    Directory of Open Access Journals (Sweden)

    S. V. Myamlin

    2016-08-01

    wheel rotation. Practical value. The developed mathematical model of the single wheelset motion with independent wheel rotation can be used to create the advanced designs of railway running gear of cars.

  17. Minisatellite Attitude Guidance Using Reaction Wheels

    Directory of Open Access Journals (Sweden)

    Ion STROE

    2015-06-01

    Full Text Available In a previous paper [2], the active torques needed for the minisatellite attitude guidance from one fixed attitude posture to another fixed attitude posture were determined using an inverse dynamics method. But when considering reaction/momentum wheels, instead of this active torques computation, the purpose is to compute the angular velocities of the three reaction wheels which ensure the minisatellite to rotate from the initial to the final attitude. This paper presents this computation of reaction wheels angular velocities using a similar inverse dynamics method based on inverting Euler’s equations of motion for a rigid body with one fixed point, written in the framework of the x-y-z sequence of rotations parameterization. For the particular case A=B not equal C of an axisymmetric minisatellite, the two computations are compared: the active torques computation versus the computation of reaction wheels angular velocities ̇x , ̇y and ̇z. An interesting observation comes out from this numerical study: if the three reaction wheels are identical (with Iw the moment of inertia of one reaction wheel with respect to its central axis, then the evolutions in time of the products between Iw and the derivatives of the reaction wheels angular velocities, i.e. ̇ , ̇ and ̇ remain the same and do not depend on the moment of inertia Iw.

  18. Ipsilateral femoral neck and shaft fractures: An overlooked association

    International Nuclear Information System (INIS)

    Daffner, R.H.; Riemer, B.L.; Butterfield, S.L.

    1991-01-01

    A total of 304 patients with injuries to the femoral shaft and ipsilateral hip presented between 1984 and 1990. Some 253 of them suffered fractures of the femoral shaft and dislocated hips or fractures of the acetabulum, and 51 of these sustained fractures of the femoral shaft and neck or trochanteric region. All of the trochanteric injuries were demonstrated on the initial radiographs. However, in 11 of the patients with combined femoral shaft and neck fractures, the diagnosis was delayed by as much as 4 weeks. This delay related to the fact that these fractures tended not to separate in the initial evaluation period and that there was external rotation of the proximal femoral fragment due to the femoral shaft fracture. (orig./GDG)

  19. Ipsilateral femoral neck and shaft fractures: An overlooked association

    Energy Technology Data Exchange (ETDEWEB)

    Daffner, R.H. (Dept. of Diagnostic Radiology, Allegheny General Hospital, Pittsburgh, PA (USA) Medical Coll. of Pennsylvania, Pittsburgh, PA (USA)); Riemer, B.L.; Butterfield, S.L. (Dept. of Orthopedic Surgery, Allegheny General Hospital, Pittsburgh, PA (USA) Medical Coll. of Pennsylvania, Pittsburgh, PA (USA))

    1991-05-01

    A total of 304 patients with injuries to the femoral shaft and ipsilateral hip presented between 1984 and 1990. Some 253 of them suffered fractures of the femoral shaft and dislocated hips or fractures of the acetabulum, and 51 of these sustained fractures of the femoral shaft and neck or trochanteric region. All of the trochanteric injuries were demonstrated on the initial radiographs. However, in 11 of the patients with combined femoral shaft and neck fractures, the diagnosis was delayed by as much as 4 weeks. This delay related to the fact that these fractures tended not to separate in the initial evaluation period and that there was external rotation of the proximal femoral fragment due to the femoral shaft fracture. (orig./GDG).

  20. A Computational Investigation of Gear Windage

    Science.gov (United States)

    Hill, Matthew J.; Kunz, Robert F.

    2012-01-01

    A CFD method has been developed for application to gear windage aerodynamics. The goals of this research are to develop and validate numerical and modeling approaches for these systems, to develop physical understanding of the aerodynamics of gear windage loss, including the physics of loss mitigation strategies, and to propose and evaluate new approaches for minimizing loss. Absolute and relative frame CFD simulation, overset gridding, multiphase flow analysis, and sub-layer resolved turbulence modeling were brought to bear in achieving these goals. Several spur gear geometries were studied for which experimental data are available. Various shrouding configurations and free-spinning (no shroud) cases were studied. Comparisons are made with experimental data from the open literature, and data recently obtained in the NASA Glenn Research Center Gear Windage Test Facility. The results show good agreement with experiment. Interrogation of the validative and exploratory CFD results have led, for the first time, to a detailed understanding of the physical mechanisms of gear windage loss, and have led to newly proposed mitigation strategies whose effectiveness is computationally explored.

  1. Exploratory Shaft Facility quality assurance impact evaluation

    International Nuclear Information System (INIS)

    1987-08-01

    This report addresses the impact of the quality assurance practices used for the Exploratory Shaft Facility (ESF) design, and construction in licensing as part of the repository. Acceptance criteria used for evaluating the suitability of ESF QA practices are based on documents that had not been invoked for repository design or construction activities at the time of this evaluation. This report identifies the QA practices necessary for ESF design and construction licensability. A review and evaluation of QA practices for ESF design and construction resulted in the following conclusions. QA practices were found to be acceptable with a few exceptions. QA practices for construction activities were found to be insufficiently documented in implementing procedures to allow a full and effective evaluation for licensing purposes. Recommendations are provided for mitigating impacts to ensure compatibility of the QA practices with those considered necessary for repository licensing. 8 refs., 3 tabs

  2. Tibial shaft fractures in football players

    Directory of Open Access Journals (Sweden)

    Daisley Susan

    2007-06-01

    Full Text Available Abstract Background Football is officially the most popular sport in the world. In the UK, 10% of the adult population play football at least once a year. Despite this, there are few papers in the literature on tibial diaphyseal fractures in this sporting group. In addition, conflicting views on the nature of this injury exist. The purpose of this paper is to compare our experience of tibial shaft football fractures with the little available literature and identify any similarities and differences. Methods and Results A retrospective study of all tibial football fractures that presented to a teaching hospital was undertaken over a 5 year period from 1997 to 2001. There were 244 tibial fractures treated. 24 (9.8% of these were football related. All patients were male with a mean age of 23 years (range 15 to 29 and shin guards were worn in 95.8% of cases. 11/24 (45.8% were treated conservatively, 11/24 (45.8% by Grosse Kemp intramedullary nail and 2/24 (8.3% with plating. A difference in union times was noted, conservative 19 weeks compared to operative group 23.9 weeks (p Conclusion Our series compared similarly with the few reports available in the literature. However, a striking finding noted by the authors was a drop in the incidence of tibial shaft football fractures. It is likely that this is a reflection of recent compulsory FIFA regulations on shinguards as well as improvements in the design over the past decade since its introduction.

  3. A rotating target wheel system for gammasphere

    International Nuclear Information System (INIS)

    Greene, J. P.

    1999-01-01

    A description is given for a low-mass, rotating target wheel to be used within the Gammasphere target chamber. This system was developed for experiments employing high beam currents in order to extend lifetimes of targets using low-melting point target material. The design is based on a previously successful implementation of rotating target wheels for the Argonne Positron Experiment (APEX) as well as the Fragment Mass Analyser (FMA) at ATLAS (Argonne Tandem Linac Accelerator System). A brief history of these rotating target wheel systems is given as well as a discussion on target preparation and performance

  4. Why Animals Run on Legs, Not on Wheels.

    Science.gov (United States)

    Diamond, Jared

    1983-01-01

    Speculates why animals have not developed wheels in place of inefficient legs. One study cited suggests three reasons why animals are better off without wheels: wheels are efficient only on hard surfaces, limitation of wheeled motion due to vertical obstructions, and the problem of turning in spaces cluttered with obstacles. (JN)

  5. Wheel set run profile renewing method effectiveness estimation

    OpenAIRE

    Somov, Dmitrij; Bazaras, Žilvinas; Žukauskaite, Orinta

    2010-01-01

    At all the repair enterprises, despite decreased rim wear-off resistance, after every grinding only geometry wheel profile parameters are renewed. Exploit wheel rim work edge decrease tendency is noticed what induces acquiring new wheels. This is related to considerable axle load and train speed increase and also because of wheel work edge repair method imperfection.

  6. 49 CFR 230.113 - Wheels and tire defects.

    Science.gov (United States)

    2010-10-01

    ... tires may not have a seam running lengthwise that is within 33/4 inches of the flange. (g) Worn flanges... 49 Transportation 4 2010-10-01 2010-10-01 false Wheels and tire defects. 230.113 Section 230.113... Tenders Wheels and Tires § 230.113 Wheels and tire defects. Steam locomotive and tender wheels or tires...

  7. D Modelling with the Samsung Gear 360

    Science.gov (United States)

    Barazzetti, L.; Previtali, M.; Roncoroni, F.

    2017-02-01

    The Samsung Gear 360 is a consumer grade spherical camera able to capture photos and videos. The aim of this work is to test the metric accuracy and the level of detail achievable with the Samsung Gear 360 coupled with digital modelling techniques based on photogrammetry/computer vision algorithms. Results demonstrate that the direct use of the projection generated inside the mobile phone or with Gear 360 Action Direction (the desktop software for post-processing) have a relatively low metric accuracy. As results were in contrast with the accuracy achieved by using the original fisheye images (front and rear facing images) in photogrammetric reconstructions, an alternative solution to generate the equirectangular projections was developed. A calibration aimed at understanding the intrinsic parameters of the two lenses camera, as well as their relative orientation, allowed one to generate new equirectangular projections from which a significant improvement of geometric accuracy has been achieved.

  8. Effect of tooth profile modification on wear in internal gears

    Science.gov (United States)

    Tunalioglu, M. S.; Tuc, B.

    2018-05-01

    Internal gears are often used in the automotive industry when two gears are required to rotate in the same direction. Tooth shapes, slippage speeds at the beginning and end of meshing are different according to the external gears. Manufacturing of internal gears is more difficult than external gears. Thus, it is necessary to determine the working conditions and wear behavior of internal gears carefully. The profile modification method in terms of strength and surface tension of the gear mechanism are performed in order to increase the load-carrying capability. In this study, profile modification method was performed in the internal gears to reduce the wear on the teeth. For this purpose, the wear of the internal gears was theoretically investigated by adapting the Archard wear equation to the internal gears. Closed circuit power circulation system was designed and manufactured to experimentally investigate the wear in internal gears. With this system, wear tests of gears made of St 50 material without profile modification and different profile modifications were made and the results were compared. Experimental study was performed in the same loading and cycle time conditions to validate the theoretical results and it was seen that the results are compatible. According to the experimental results, it is seen that in the internal gears, when profile modification done the wear is decreased in the teeth tip region.

  9. Reinventing the wheel: comparison of two wheel cage styles for assessing mouse voluntary running activity.

    Science.gov (United States)

    Seward, T; Harfmann, B D; Esser, K A; Schroder, E A

    2018-04-01

    Voluntary wheel cage assessment of mouse activity is commonly employed in exercise and behavioral research. Currently, no standardization for wheel cages exists resulting in an inability to compare results among data from different laboratories. The purpose of this study was to determine whether the distance run or average speed data differ depending on the use of two commonly used commercially available wheel cage systems. Two different wheel cages with structurally similar but functionally different wheels (electromechanical switch vs. magnetic switch) were compared side-by-side to measure wheel running data differences. Other variables, including enrichment and cage location, were also tested to assess potential impacts on the running wheel data. We found that cages with the electromechanical switch had greater inherent wheel resistance and consistently led to greater running distance per day and higher average running speed. Mice rapidly, within 1-2 days, adapted their running behavior to the type of experimental switch used, suggesting these running differences are more behavioral than due to intrinsic musculoskeletal, cardiovascular, or metabolic limits. The presence of enrichment or location of the cage had no detectable impact on voluntary wheel running. These results demonstrate that mice run differing amounts depending on the type of cage and switch mechanism used and thus investigators need to report wheel cage type/wheel resistance and use caution when interpreting distance/speed run across studies. NEW & NOTEWORTHY The results of this study highlight that mice will run different distances per day and average speed based on the inherent resistance present in the switch mechanism used to record data. Rapid changes in running behavior for the same mouse in the different cages demonstrate that a strong behavioral factor contributes to classic exercise outcomes in mice. Caution needs to be taken when interpreting mouse voluntary wheel running activity to

  10. Shuttle Rudder/Speed Brake Power Drive Unit (PDU) Gear Scuffing Tests With Flight Gears

    Science.gov (United States)

    Proctor, Margaret P.; Oswald, Fred B.; Krants, Timothy L.

    2005-01-01

    Scuffing-like damage has been found on the tooth surfaces of gears 5 and 6 of the NASA space shuttle rudder/speed brake power drive unit (PDU) number 2 after the occurrence of a transient back-driving event in flight. Tests were conducted using a pair of unused spare flight gears in a bench test at operating conditions up to 2866 rpm and 1144 in.-lb at the input ring gear and 14,000 rpm and 234 in.-lb at the output pinion gear, corresponding to a power level of 52 hp. This test condition exceeds the maximum estimated conditions expected in a backdriving event thought to produce the scuffing damage. Some wear marks were produced, but they were much less severe than the scuffing damaged produced during shuttle flight. Failure to produce scuff damage like that found on the shuttle may be due to geometrical variations between the scuffed gears and the gears tested herein, more severe operating conditions during the flight that produced the scuff than estimated, the order of the test procedures, the use of new hydraulic oil, differences between the dynamic response of the flight gearbox and the bench-test gearbox, or a combination of these. This report documents the test gears, apparatus, and procedures, summarizes the test results, and includes a discussion of the findings, conclusions, and recommendations.

  11. Vibration behavior optimization of planetary gear sets

    Directory of Open Access Journals (Sweden)

    Farshad Shakeri Aski

    2014-12-01

    Full Text Available This paper presents a global optimization method focused on planetary gear vibration reduction by means of tip relief profile modifications. A nonlinear dynamic model is used to study the vibration behavior. In order to investigate the optimal radius and amplitude, Brute Force method optimization is used. One approach in optimization is straightforward and requires considerable computation power: brute force methods try to calculate all possible solutions and decide afterwards which one is the best. Results show the influence of optimal profile on planetary gear vibrations.

  12. The Influence of Wheel/Rail Contact Conditions on the Microstructure and Hardness of Railway Wheels

    Directory of Open Access Journals (Sweden)

    Paul Molyneux-Berry

    2014-01-01

    Full Text Available The susceptibility of railway wheels to wear and rolling contact fatigue damage is influenced by the properties of the wheel material. These are influenced by the steel composition, wheel manufacturing process, and thermal and mechanical loading during operation. The in-service properties therefore vary with depth below the surface and with position across the wheel tread. This paper discusses the stress history at the wheel/rail contact (derived from dynamic simulations and observed variations in hardness and microstructure. It is shown that the hardness of an “in-service” wheel rim varies significantly, with three distinct effects. The underlying hardness trend with depth can be related to microstructural changes during manufacturing (proeutectoid ferrite fraction and pearlite lamellae spacing. The near-surface layer exhibits plastic flow and microstructural shear, especially in regions which experience high tangential forces when curving, with consequentially higher hardness values. Between 1 mm and 7 mm depth, the wheel/rail contacts cause stresses exceeding the material yield stress, leading to work hardening, without a macroscopic change in microstructure. These changes in material properties through the depth of the wheel rim would tend to increase the likelihood of crack initiation on wheels toward the end of their life. This correlates with observations from several train fleets.

  13. Numerical Calculation and Experiment of Coupled Dynamics of the Differential Velocity Vane Pump Driven by the Hybrid Higher-order Fourier Non-circular Gears

    Science.gov (United States)

    Xu, Gaohuan; Chen, Jianneng; Zhao, Huacheng

    2018-06-01

    The transmission systems of the differential velocity vane pumps (DVVP) have periodic vibrations under loads. And it is not easy to find the reason. In order to optimize the performance of the pump, the authors proposed DVVP driven by the hybrid Higher-order Fourier non-circular gears and tested it. There were also similar periodic vibrations and noises under loads. Taking into account this phenomenon, the paper proposes fluid mechanics and solid mechanics simulation methodology to analyze the coupling dynamics between fluid and transmission system and reveals the reason. The results show that the pump has the reverse drive phenomenon, which is that the blades drive the non-circular gears when the suction and discharge is alternating. The reverse drive phenomenon leads the sign of the shaft torque to be changed in positive and negative way. So the transmission system produces torsional vibrations. In order to confirm the simulation results, micro strains of the input shaft of the pump impeller are measured by the Wheatstone bridge and wireless sensor technology. The relationships between strain and torque are obtained by experimental calibration, and then the true torque of input shaft is calculated indirectly. The experimental results are consistent to the simulation results. It is proven that the periodic vibrations are mainly caused by fluid solid coupling, which leads to periodic torsional vibration of the transmission system.

  14. An Ultrasonic Wheel-Array Probe

    Science.gov (United States)

    Drinkwater, B. W.; Brotherhood, C. J.; Freemantle, R. J.

    2004-02-01

    This paper describes the development and modeling of an ultrasonic array wheel probe scanning system. The system operates at 10 MHz using a 64 element array transducer which is 50 mm in length and located in a fluid filled wheel. The wheel is coupled to the test structure dry, or with a small amount of liquid couplant. When the wheel is rolled over the surface of the test structure a defect map (C-Scan) is generated in real-time. The tyre is made from a soft, durable polymer which has very little acoustic loss. Two application studies are presented; the inspection of sealant layers in an aluminum aircraft wing structure and the detection of embedded defects in a thick section carbon composite sample.

  15. Multiple Wheel Throwing: And Chess Sets.

    Science.gov (United States)

    Sapiro, Maurice

    1978-01-01

    A chess set project is suggested to teach multiple throwing, the creation on a potter's wheel of several pieces of similar configuration. Processes and finished sets are illustrated with photographs. (SJL)

  16. UT Biomedical Informatics Lab (BMIL) probability wheel

    Science.gov (United States)

    Huang, Sheng-Cheng; Lee, Sara; Wang, Allen; Cantor, Scott B.; Sun, Clement; Fan, Kaili; Reece, Gregory P.; Kim, Min Soon; Markey, Mia K.

    A probability wheel app is intended to facilitate communication between two people, an "investigator" and a "participant", about uncertainties inherent in decision-making. Traditionally, a probability wheel is a mechanical prop with two colored slices. A user adjusts the sizes of the slices to indicate the relative value of the probabilities assigned to them. A probability wheel can improve the adjustment process and attenuate the effect of anchoring bias when it is used to estimate or communicate probabilities of outcomes. The goal of this work was to develop a mobile application of the probability wheel that is portable, easily available, and more versatile. We provide a motivating example from medical decision-making, but the tool is widely applicable for researchers in the decision sciences.

  17. ANALYSIS OF FORMING TREAD WHEEL SETS

    Directory of Open Access Journals (Sweden)

    Igor IVANOV

    2017-09-01

    Full Text Available This paper shows the results of a theoretical study of profile high-speed grinding (PHSG for forming tread wheel sets during repair instead of turning and mold-milling. Significant disadvantages of these methods are low capacity to adapt to the tool and inhomogeneous structure of the wheel material. This leads to understated treatment regimens and difficulties in recovering wheel sets with thermal and mechanical defects. This study carried out modeling and analysis of emerging cutting forces. Proposed algorithms describe the random occurrence of the components of the cutting forces in the restoration profile of wheel sets with an inhomogeneous structure of the material. To identify the statistical features of randomly generated structures fractal dimension and the method of random additions were used. The multifractal spectrum formed is decomposed into monofractals by wavelet transform. The proposed method allows you to create the preconditions for controlling the parameters of the treatment process.

  18. Electrostatic Spectrometer for Mars Rover Wheel

    Data.gov (United States)

    National Aeronautics and Space Administration — Develop a simple electrostatic spectrometer that can be mounted on the wheels of a Mars rover to continuously and unobtrusively determine the mineral composition and...

  19. Benefits of magnesium wheels for consumer cars

    Science.gov (United States)

    Frishfelds, Vilnis; Timuhins, Andrejs; Bethers, Uldis

    2018-05-01

    Advantages and disadvantages of magnesium wheels are considered based on a mechanical model of a car. Magnesium wheels are usually applied to racing cars as they provide slightly better strength/weight ratio than aluminum alloys. Do they provide notable benefits also for the everyday user when the car speeds do not exceed allowed speed limit? Distinct properties of magnesium rims are discussed. Apart from lighter weight of magnesium alloys, they are also good in dissipating the energy of vibrations. The role of energy dissipation in the rim of a wheel is estimated by a quarter car model. Improvements to safety by using the magnesium wheels are considered. Braking distance and responsiveness of the car is studied both with and without using an Anti Blocking System (ABS). Influence of rim weight on various handling parameters of the car is quantitatively tested.

  20. Improving bending stress in spur gears using asymmetric gears and shape optimization

    DEFF Research Database (Denmark)

    Pedersen, Niels Leergaard

    2010-01-01

    Bending stress plays a significant role in gear design wherein its magnitude is controlled by the nominal bending stress and the stress concentration due to the geometrical shape. The bending stress is indirectly related to shape changes made to the cutting tool. This work shows that the bending...... stress can be reduced significantly by using asymmetric gear teeth and by shape optimizing the gear through changes made to the tool geometry. However, to obtain the largest possible stress reduction a custom tool must be designed depending on the number of teeth, but the stress reductions found...

  1. Tooth contact analysis of spur gears. Part 1-SAM analysis of standard gears

    Directory of Open Access Journals (Sweden)

    Creţu Spiridon

    2017-01-01

    Full Text Available The involute gears are sensitive to the misalignment of their axes which determines transmission errors and perturbations of pressures distributions along the tooth flank. The concentrated contacts in gears are no longer as Hertz type. A semi-analytical method was developed to find the contact area, pressures distribution and depth stresses state. The matrix of initial separations is found analytically for standard and non-standard spur gears. The presence of misalignment as well as the flank crowning and flank end relief are included in the numerical analysis process.

  2. Rotating Shaft Tilt Angle Measurement Using an Inclinometer

    Science.gov (United States)

    Luo, Jun; Wang, Zhiqian; Shen, Chengwu; Wen, Zhuoman; Liu, Shaojin; Cai, Sheng; Li, Jianrong

    2015-10-01

    This paper describes a novel measurement method to accurately measure the rotating shaft tilt angle of rotating machine for alignment or compensation using a dual-axis inclinometer. A model of the rotating shaft tilt angle measurement is established using a dual-axis inclinometer based on the designed mechanical structure, and the calculation equation between the rotating shaft tilt angle and the inclinometer axes outputs is derived under the condition that the inclinometer axes are perpendicular to the rotating shaft. The reversal measurement method is applied to decrease the effect of inclinometer drifts caused by temperature, to eliminate inclinometer and rotating shaft mechanical error and inclinometer systematic error to attain high measurement accuracy. The uncertainty estimation shows that the accuracy of rotating shaft tilt angle measurement depends mainly on the inclinometer uncertainty and its uncertainty is almost the same as the inclinometer uncertainty in the simulation. The experimental results indicate that measurement time is 4 seconds; the range of rotating shaft tilt angle is 0.002° and its standard deviation is 0.0006° using NS-5/P2 inclinometer, whose precision and resolution are ±0.01° and 0.0005°, respectively.

  3. Rotating Shaft Tilt Angle Measurement Using an Inclinometer

    Directory of Open Access Journals (Sweden)

    Luo Jun

    2015-10-01

    Full Text Available This paper describes a novel measurement method to accurately measure the rotating shaft tilt angle of rotating machine for alignment or compensation using a dual-axis inclinometer. A model of the rotating shaft tilt angle measurement is established using a dual-axis inclinometer based on the designed mechanical structure, and the calculation equation between the rotating shaft tilt angle and the inclinometer axes outputs is derived under the condition that the inclinometer axes are perpendicular to the rotating shaft. The reversal measurement method is applied to decrease the effect of inclinometer drifts caused by temperature, to eliminate inclinometer and rotating shaft mechanical error and inclinometer systematic error to attain high measurement accuracy. The uncertainty estimation shows that the accuracy of rotating shaft tilt angle measurement depends mainly on the inclinometer uncertainty and its uncertainty is almost the same as the inclinometer uncertainty in the simulation. The experimental results indicate that measurement time is 4 seconds; the range of rotating shaft tilt angle is 0.002° and its standard deviation is 0.0006° using NS-5/P2 inclinometer, whose precision and resolution are ±0.01° and 0.0005°, respectively.

  4. DC Control Effort Minimized for Magnetic-Bearing-Supported Shaft

    Science.gov (United States)

    Brown, Gerald V.

    2001-01-01

    A magnetic-bearing-supported shaft may have a number of concentricity and alignment problems. One of these involves the relationship of the position sensors, the centerline of the backup bearings, and the magnetic center of the magnetic bearings. For magnetic bearings with permanent magnet biasing, the average control current for a given control axis that is not bearing the shaft weight will be minimized if the shaft is centered, on average over a revolution, at the magnetic center of the bearings. That position may not yield zero sensor output or center the shaft in the backup bearing clearance. The desired shaft position that gives zero average current can be achieved if a simple additional term is added to the control law. Suppose that the instantaneous control currents from each bearing are available from measurements and can be input into the control computer. If each control current is integrated with a very small rate of accumulation and the result is added to the control output, the shaft will gradually move to a position where the control current averages to zero over many revolutions. This will occur regardless of any offsets of the position sensor inputs. At that position, the average control effort is minimized in comparison to other possible locations of the shaft. Nonlinearities of the magnetic bearing are minimized at that location as well.

  5. Dynamic analysis of cross shaft type universal joint with clearance

    International Nuclear Information System (INIS)

    Lu, Jian Wei; Wang, Gong Cheng; Chen, Hao; Vakakis, Alexander F.; Bergman, Lawrence A.

    2013-01-01

    Cross shaft type universal joint is widely used in ground vehicles to transfer torque between two intersecting axes, and its transmission feature can make a great contribution to NVH performance of the vehicle. We looked at the assembling clearance at cross shaft neck, and presented a dynamic model of cross shaft type universal joint with clearance at cross shaft neck. Two-state model is applied to describe the contact force between the cross shaft and driving joint fork based on Hertz theorem, and lumped mass method is applied to build up the dynamic model of the universal joint. Based on this model, numerical analysis is carried out to discuss the transmission feature of the universal joint with clearance at cross shaft neck, and the influence of clearance on the dynamic behavior of the system is evaluated with numerical results based on time history, power spectrum, and phase portrait. The method and conclusions presented are helpful to improvement of the transmission feature of cross shaft type universal joint.

  6. A Nontoxic Barlow's Wheel

    Science.gov (United States)

    Daffron, John A.; Greenslade, Thomas B., Jr.

    2015-01-01

    Barlow's wheel has been a favorite demonstration since its invention by Peter Barlow (1776-1862) in 1822. In the form shown in Fig. 1, it represents the first electric motor. The interaction between the electric current passing from the axle of the wheel to the rim and the magnetic field produced by the U-magnet produces a torque that turns…

  7. Construction features of the exploratory shaft at Yucca Mountain

    International Nuclear Information System (INIS)

    Adair, G.W.; Fiore, J.N.

    1984-01-01

    The Exploratory Shaft (ES) at Yucca Mountain is planned to be constructed during 1985 and 1986 as part of the detailed site characterization for one of three sites which may be selected as candidates for location of a high-level radioactive waste repository. Conventional mining methods will be used for the shaft sinking phase of the ES project. The ES will be comprised of surface support facilities, a 1480-ft-deep circular shaft lined with concrete to a finished inside diameter of 12 ft, lateral excavations and test installations extending up to 200 ft from the shaft, and long lateral borings extending up to 2300 ft from the shaft. The estimated time for sinking the shaft to a total depth of about 1480 ft and completing the lateral excavations and borings is about two years. The major underground development planned for the primary test level at a depth of 1200 ft consists of the equivalent of 1150 ft of 15- by 15-ft drift. The total volume of rock to be removed from the shaft proper and the lateral excavations totals about 1/2 million cubic feet. Construction equipment for the shaft and underground excavation phases consists of conventional mine hoisting equipment, shot hole and rock bolt drilling jumbos, mucking machines, and hauling machines. The desire to maintain relatively uniform and even walls in selected shaft and drift intervals will require that controlled blasting techniques be employed. Certain lateral boring operations associated with tests to be conducted in the underground development may pose some unusual problems or require specialized equipment. One of the operations is boring and lining a 30-in.-diam by 600-ft-long horizontal hole with a boring machine being developed under the direction of Sandia National Laboratories. Another special operation is coring long lateral holes (500 to 2000 ft) with minimum use of liquid circulating fluids. 8 figures

  8. Construction features of the Exploratory Shaft at Yucca Mountain

    International Nuclear Information System (INIS)

    Adair, G.W.; Fiore, J.N.

    1984-01-01

    The Exploratory Shaft (ES) at Yucca Mountain is planned to be constructed during 1985 and 1986 as part of the detailed site characterization for one of three sites which may be selected as candidates for location of a high-level radioactive waste repository. Conventional mining methods will be used for the shaft sinking phase of the ES project. The ES will be comprised of surface support facilities, a 1,480-foot-deep circular shaft lined with concrete to a finished inside diameter of 12 feet, lateral excavations and test installations extending up to 200 feet from the shaft, and long lateral borings extending up to 2,300 feet from the shaft. The estimated time for sinking the shaft to a total depth of about 1,480 feet and completing the lateral excavations and borings is about two years. The major underground development planned for the primary test level at a depth of 1,200 feet consists of the equivalent of 1,150 feet of 15- by 15-foot drift. The total volume of rock to be removed from the shaft proper and the lateral excavations totals about 1/2 million cubic feet. Construction equipment for the shaft and underground excavation phases consists of conventional mine hoisting equipment, shot hole and rock bolt drilling jumbos, mucking machines, and hauling machines. The desire to maintain relatively uniform and even walls in selected shaft and drift intervals will require that controlled blasting techniques be employed. Such techniques generally classified as ''smooth blasting'' are commonly used for excavation in the construction industry

  9. Advanced Material Studies for Additive Manufacturing in terms of Future Gear Application

    Directory of Open Access Journals (Sweden)

    Jan Bräunig

    2014-06-01

    Full Text Available Additive manufacturing by laser beam melting is predestined for complex component geometry like integrated cooling channels without enormous posttreatment processing. To investigate the influence of build-up direction in terms of later tooth excitation of gear-wheels, first fundamental material analyses were accomplished in this publication. Therefore, additively produced specimens were used to determine the build-up direction dependent elastic properties of the material in all three spatial directions based on tensile and torsion tests. The anisotropies of elastic limits and breaking points of previous studies were confirmed in this paper. Furthermore, torsion values were also determined depending on build-up direction. Laser beam melted X3NiCoMoTi18-9-5 (hot-work tool steel was shown to exhibit extremely high performance under shear loading in comparison to conventionally processed steel. The influence of build-up direction on torsional strength was also shown.

  10. Aerodynamic analysis of an isolated vehicle wheel

    Science.gov (United States)

    Leśniewicz, P.; Kulak, M.; Karczewski, M.

    2014-08-01

    Increasing fuel prices force the manufacturers to look into all aspects of car aerodynamics including wheels, tyres and rims in order to minimize their drag. By diminishing the aerodynamic drag of vehicle the fuel consumption will decrease, while driving safety and comfort will improve. In order to properly illustrate the impact of a rotating wheel aerodynamics on the car body, precise analysis of an isolated wheel should be performed beforehand. In order to represent wheel rotation in contact with the ground, presented CFD simulations included Moving Wall boundary as well as Multiple Reference Frame should be performed. Sliding mesh approach is favoured but too costly at the moment. Global and local flow quantities obtained during simulations were compared to an experiment in order to assess the validity of the numerical model. Results of investigation illustrates dependency between type of simulation and coefficients (drag and lift). MRF approach proved to be a better solution giving result closer to experiment. Investigation of the model with contact area between the wheel and the ground helps to illustrate the impact of rotating wheel aerodynamics on the car body.

  11. Aerodynamic analysis of an isolated vehicle wheel

    International Nuclear Information System (INIS)

    Leśniewicz, P; Kulak, M; Karczewski, M

    2014-01-01

    Increasing fuel prices force the manufacturers to look into all aspects of car aerodynamics including wheels, tyres and rims in order to minimize their drag. By diminishing the aerodynamic drag of vehicle the fuel consumption will decrease, while driving safety and comfort will improve. In order to properly illustrate the impact of a rotating wheel aerodynamics on the car body, precise analysis of an isolated wheel should be performed beforehand. In order to represent wheel rotation in contact with the ground, presented CFD simulations included Moving Wall boundary as well as Multiple Reference Frame should be performed. Sliding mesh approach is favoured but too costly at the moment. Global and local flow quantities obtained during simulations were compared to an experiment in order to assess the validity of the numerical model. Results of investigation illustrates dependency between type of simulation and coefficients (drag and lift). MRF approach proved to be a better solution giving result closer to experiment. Investigation of the model with contact area between the wheel and the ground helps to illustrate the impact of rotating wheel aerodynamics on the car body.

  12. Injuries and helmet use related to non-motorized wheeled activities among pediatric patients.

    Science.gov (United States)

    Lindsay, H; Brussoni, M

    2014-07-01

    Patients presenting to emergency departments (ED) for injuries resulting from recreational activities represent a unique source of information on important directions for injury prevention efforts. We describe the epidemiology of non-motorized wheeled activity-related injury in pediatric patients presenting to Canadian EDs as well as patients' helmet use. Data for the years 2004 to 2009 were abstracted from the Canadian Hospitals Injury Reporting and Prevention Program (CHIRPP), a national ED injury surveillance program in fifteen hospitals. Most of the 28 618 children aged 1 to 16 years injured during non-motorized wheeled activities were injured while cycling, followed by skateboarding. Most injuries occurred among boys. Children injured on scooters tended to be younger whereas skateboarders were the oldest. On average, the number of all injuries decreased by 6% over the time period. Falls were the most common mechanism of injury; 8.3% of patients had head injuries, which were seen more often among cyclists than other wheeled-activity users. Helmet use was greatest among cyclists (62.2%) and lowest among skateboarders (32.9%). Injured patients presenting to EDs in jurisdictions with legislation mandating helmet use had 2.12 greater odds of helmet use and 0.86 lesser odds of head injury compared with those presenting in jurisdictions without helmet laws. These results provide further evidence that legislation mandating helmet use may be an effective way of reducing injury among all wheeled-activity users. The small number of patients who presented with helmet use and protective gear (59.4% overall) suggests that this remains an area for intervention.

  13. Gear Fault Diagnosis Based on BP Neural Network

    Science.gov (United States)

    Huang, Yongsheng; Huang, Ruoshi

    2018-03-01

    Gear transmission is more complex, widely used in machinery fields, which form of fault has some nonlinear characteristics. This paper uses BP neural network to train the gear of four typical failure modes, and achieves satisfactory results. Tested by using test data, test results have an agreement with the actual results. The results show that the BP neural network can effectively solve the complex state of gear fault in the gear fault diagnosis.

  14. 50 CFR 622.31 - Prohibited gear and methods.

    Science.gov (United States)

    2010-10-01

    ... 50 Wildlife and Fisheries 8 2010-10-01 2010-10-01 false Prohibited gear and methods. 622.31... Management Measures § 622.31 Prohibited gear and methods. In addition to the prohibited gear/methods specified in this section, see §§ 622.33, 622.34, and 622.35 for seasonal/area prohibited gear/methods and...

  15. Mathematical Modelling of Involute Spur Gears Manufactured by Rack Cutter

    Directory of Open Access Journals (Sweden)

    Tufan Gürkan YILMAZ

    2016-05-01

    Full Text Available In this study, mathematical modelling of asymmetric involute spur gears was situated in by Litvin approach. In this context, firstly, mathematical expressions of rack cutter which manufacture asymmetric involute spur gear, then mathematical expression of asymmetric involute spur gear were obtained by using differential geometry, coordinate transformation and gear theory. Mathematical expressions were modelled in MATLAB and output files including points of involute spur gear’s teeth were designed automatically thanks to macros.

  16. Mechanical coupling for a rotor shaft assembly of dissimilar materials

    Science.gov (United States)

    Shi, Jun [Glastonbury, CT; Bombara, David [New Hartford, CT; Green, Kevin E [Broad Brook, CT; Bird, Connic [Rocky Hill, CT; Holowczak, John [South Windsor, CT

    2009-05-05

    A mechanical coupling for coupling a ceramic disc member to a metallic shaft includes a first wedge clamp and a second wedge clamp. A fastener engages a threaded end of a tie-bolt to sandwich the ceramic disc between the wedge clamps. An axial spring is positioned between the fastener and the second wedge clamp to apply an axial preload along the longitudinal axis. Another coupling utilizes a rotor shaft end of a metallic rotor shaft as one wedge clamp. Still another coupling includes a solid ceramic rotor disc with a multiple of tie-bolts radially displaced from the longitudinal axis to exert the preload on the solid ceramic rotor disc.

  17. Application of hydraulically assembled shaft coupling hubs to large agitators

    International Nuclear Information System (INIS)

    Murray, W.E.; Anderson, T.D.; Bethmann, H.K.

    1991-01-01

    This paper describes the basis for and implementation of hydraulically assembled shaft coupling hubs for large tank-mounted agitators. This modification to the original design was intended to minimize maintenance personnel exposure to ionizing radiation and also provide for disassembly capability without damage to shafts or hubs. In addition to realizing these objectives, test confirmed that the modified couplings reduced agitator shaft end runouts approximately 65%, thereby reducing bearing loads and increasing service life, a significant enhancement for a nuclear facility. 5 refs

  18. WIPP air-intake shaft disturbed-rock zone study

    International Nuclear Information System (INIS)

    Dale, T.; Hurtado, L.D.

    1996-01-01

    The disturbed-rock zone surrounding the air-intake shaft at the Waste Isolation Pilot Plant (WIPP) site was investigated to determine the extent and the permeability of the disturbed-rock zone as a function of radial distance from the 6.1 m diameter shaft, at different elevations within the Salado. Gas- and brine-permeability tests were performed in the bedded halite of the Salado formation at two levels within the air-intake shaft. The gas- and brine-permeability test results demonstrated that the radial distance to an undisturbed formation permeability of 1 x 10 -21 m 2 was less than 3.0 m

  19. Proposed design procedure for transmission shafting under fatigue loading

    Science.gov (United States)

    Loewenthal, S. H.

    1978-01-01

    The B106 American National Standards Committee is currently preparing a new standard for the design of transmission shafting. A design procedure, proposed for use in the new standard, for computing the diameter of rotating solid steel shafts under combined cyclic bending and steady torsion is presented. The formula is based on an elliptical variation of endurance strength with torque exhibited by combined stress fatigue data. Fatigue factors are cited to correct specimen bending endurance strength data for use in the shaft formula. A design example illustrates how the method is to be applied.

  20. Device for selectively securing an object to a shaft

    International Nuclear Information System (INIS)

    Calizano, F.; Chauvel, M.

    1984-01-01

    A magnetic tape reel is secured to a reel drive motor shaft by a device including a hub secured to the shaft, a plurality of shoes, and actuating means for thrusting the shoes against the reel and for releasing them from contact with the reel. The securing device includes a cam mounted on the shaft in combination with a locking device including the cam periphery. The locking device thrusts the shoes against the object and is operated by rotation of the motor. The cam is immobilized in rotation while the shoes are locked

  1. ANALYTICAL EVALUATION OF CRACK PROPAGATION FOR BULB HYDRAULIC TURBINES SHAFTS

    Directory of Open Access Journals (Sweden)

    Mircea O. POPOVICU

    2011-05-01

    Full Text Available The Hydroelectric Power Plants uses the regenerating energy of rivers. The hydraulic Bulb turbines running with low heads are excellent alternative energy sources. The shafts of these units present themselves as massive pieces, with cylindrical shape, manufactured from low-alloyed steels. The paper analyses the fatigue cracks occurring at some turbines in the neighbourhood of the connection zone between the shaft and the turbine runner flange. To obtain the tension state in this zone ANSIS and AFGROW computing programs were used. The number of running hours until the piercing of the shaft wall is established as a useful result.

  2. Reactor coolant pump shaft seal stability during station blackout

    International Nuclear Information System (INIS)

    Rhodes, D.B.; Hill, R.C.; Wensel, R.G.

    1987-05-01

    Results are presented from an investigation into the behavior of Reactor Coolant Pump shaft seals during a potential station blackout (loss of all ac power) at a nuclear power plant. The investigation assumes loss of cooling to the seals and focuses on the effect of high temperature on polymer seals located in the shaft seal assemblies, and the identification of parameters having the most influence on overall hydraulic seal performance. Predicted seal failure thresholds are presented for a range of station blackout conditions and shaft seal geometries

  3. Design and Delivery of HMT Half-Shaft Prototype

    Science.gov (United States)

    2012-11-01

    spindle welded to the outer joint output is ease of Design  and Delivery of HMT Half‐ Shaft  Prototype    24    assembly. Flange 1 contains threaded... spindle , and splined shafts . Also, the spindle of the production design is splined to match the splines of the hub internals. 2.2. Analysis The...inner-joint (Figure 33). Design  and Delivery of HMT Half‐ Shaft  Prototype    27      Figure 33: FBD of Flange/ Spindle Applying Newton’s Laws to the

  4. Reactor coolant pump shaft seal stability during station blackout

    Energy Technology Data Exchange (ETDEWEB)

    Rhodes, D B; Hill, R C; Wensel, R G

    1987-05-01

    Results are presented from an investigation into the behavior of Reactor Coolant Pump shaft seals during a potential station blackout (loss of all ac power) at a nuclear power plant. The investigation assumes loss of cooling to the seals and focuses on the effect of high temperature on polymer seals located in the shaft seal assemblies, and the identification of parameters having the most influence on overall hydraulic seal performance. Predicted seal failure thresholds are presented for a range of station blackout conditions and shaft seal geometries.

  5. Study on signal processing in Eddy current testing for defects in spline gear

    International Nuclear Information System (INIS)

    Lee, Jae Ho; Park, Tae Sug; Park, Ik Keun

    2016-01-01

    Eddy current testing (ECT) is commonly applied for the inspection of automated production lines of metallic products, because it has a high inspection speed and a reasonable price. When ECT is applied for the inspection of a metallic object having an uneven target surface, such as the spline gear of a spline shaft, it is difficult to distinguish between the original signal obtained from the sensor and the signal generated by a defect because of the relatively large surface signals having similar frequency distributions. To facilitate the detection of defect signals from the spline gear, implementation of high-order filters is essential, so that the fault signals can be distinguished from the surrounding noise signals, and simultaneously, the pass-band of the filter can be adjusted according to the status of each production line and the object to be inspected. We will examine the infinite impulse filters (IIR filters) available for implementing an advanced filter for ECT, and attempt to detect the flaw signals through optimization of system design parameters for detecting the signals at the system level

  6. High frequency vibration characteristics of electric wheel system under in-wheel motor torque ripple

    Science.gov (United States)

    Mao, Yu; Zuo, Shuguang; Wu, Xudong; Duan, Xianglei

    2017-07-01

    With the introduction of in-wheel motor, the electric wheel system encounters new vibration problems brought by motor torque ripple excitation. In order to analyze new vibration characteristics of electric wheel system, torque ripple of in-wheel motor based on motor module and vector control system is primarily analyzed, and frequency/order features of the torque ripple are discussed. Then quarter vehicle-electric wheel system (QV-EWS) dynamics model based on the rigid ring tire assumption is established and the main parameters of the model are identified according to tire free modal test. Modal characteristics of the model are further analyzed. The analysis indicates that torque excitation of in-wheel motor is prone to arouse horizontal vibration, in which in-phase rotational, anti-phase rotational and horizontal translational modes of electric wheel system mainly participate. Based on the model, vibration responses of the QV-EWS under torque ripple are simulated. The results show that unlike vertical low frequency (lower than 20 Hz) vibration excited by road roughness, broadband torque ripple will arouse horizontal high frequency (50-100 Hz) vibration of electric wheel system due to participation of the three aforementioned modes. To verify the theoretical analysis, the bench experiment of electric wheel system is conducted and vibration responses are acquired. The experiment demonstrates the high frequency vibration phenomenon of electric wheel system and the measured order features as well as main resonant frequencies agree with simulation results. Through theoretical modeling, analysis and experiments this paper reveals and explains the high frequency vibration characteristics of electric wheel system, providing references for the dynamic analysis, optimal design of QV-EWS.

  7. Gear cutting tools fundamentals of design and computation

    CERN Document Server

    Radzevich, Stephen P

    2010-01-01

    Presents the DG/K-based method of surface generation, a novel and practical mathematical method for designing gear cutting tools with optimal parameters. This book proposes a scientific classification for the various kinds of the gear machining meshes, discussing optimal designs of gear cutting tools.

  8. Intelligent Test Mechanism Design of Worn Big Gear

    Directory of Open Access Journals (Sweden)

    Hong-Yu LIU

    2014-10-01

    Full Text Available With the continuous development of national economy, big gear was widely applied in metallurgy and mine domains. So, big gear plays an important role in above domains. In practical production, big gear abrasion and breach take place often. It affects normal production and causes unnecessary economic loss. A kind of intelligent test method was put forward on worn big gear mainly aimed at the big gear restriction conditions of high production cost, long production cycle and high- intensity artificial repair welding work. The measure equations transformations were made on involute straight gear. Original polar coordinate equations were transformed into rectangular coordinate equations. Big gear abrasion measure principle was introduced. Detection principle diagram was given. Detection route realization method was introduced. OADM12 laser sensor was selected. Detection on big gear abrasion area was realized by detection mechanism. Tested data of unworn gear and worn gear were led in designed calculation program written by Visual Basic language. Big gear abrasion quantity can be obtained. It provides a feasible method for intelligent test and intelligent repair welding on worn big gear.

  9. Electrostatic microactuators with integrated gear linkages for mechanical power transmission

    NARCIS (Netherlands)

    Legtenberg, R.; Legtenberg, Rob; Berenschot, Johan W.; Elwenspoek, Michael Curt; Fluitman, J.H.J.

    1996-01-01

    In this paper a surface micromachining process is presented which has been used to fabricate electrostatic microactuators that are interconnected with each other and linked to other movable microstructures by integrated gear linkages. The gear linkages consist of rotational and linear gear

  10. 50 CFR 635.21 - Gear operation and deployment restrictions.

    Science.gov (United States)

    2010-10-01

    ... 50 Wildlife and Fisheries 8 2010-10-01 2010-10-01 false Gear operation and deployment restrictions....21 Gear operation and deployment restrictions. Link to an amendment published at 75 FR 57701, Sept. 22, 2010. The green-stick gear authorization requirements under paragraphs (c)(2)(v)(A), (c)(2)(v)(B...

  11. 46 CFR 182.610 - Main steering gear.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Main steering gear. 182.610 Section 182.610 Shipping...) MACHINERY INSTALLATION Steering Systems § 182.610 Main steering gear. (a) A vessel must be provided with a main steering gear that is: (1) Of adequate strength and capable of steering the vessel at all service...

  12. Gear shift map design methodology for automotive transmissions

    NARCIS (Netherlands)

    Ngo, Viet Dac; Hofman, Theo; Steinbuch, Maarten; Serrarens, Alex

    In this paper, a design methodology is developed to condtruct the gear shift map for the automotive transmissions used in conventional and hybrid electric vehicles. The methodology utilizes an optimal gear shift strategy to derive the optimal gear shift patterns over a wide range of driving

  13. 46 CFR 167.65-25 - Steering gear tests.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Steering gear tests. 167.65-25 Section 167.65-25... SHIPS Special Operating Requirements § 167.65-25 Steering gear tests. On all nautical school ships making voyages of more than 48 hours' duration, the entire steering gear, the whistle, the means of...

  14. 30 CFR 75.1404 - Automatic brakes; speed reduction gear.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Automatic brakes; speed reduction gear. 75.1404... Automatic brakes; speed reduction gear. [Statutory Provisions] Each locomotive and haulage car used in an... permit automatic brakes, locomotives and haulage cars shall be subject to speed reduction gear, or other...

  15. 46 CFR 61.20-1 - Steering gear.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Steering gear. 61.20-1 Section 61.20-1 Shipping COAST... Periodic Tests of Machinery and Equipment § 61.20-1 Steering gear. (a) The marine inspector must inspect the steering gear at each inspection for certification for vessels whose Certificate of Inspections...

  16. Evaluation Of Vibration-Monitoring Gear-Diagnostic System

    Science.gov (United States)

    Townsend, Dennis P.; Zakrajsek, James J.

    1995-01-01

    Report describes experimental evaluation of commercial electronic system designed to monitor vibration signal from accelerometer on gear-box to detect vibrations indicative of damage to gears. System includes signal-conditioning subsystem and personal computer in which analog-to-digital converter installed. Results show system fairly effective in detecting surface fatigue pits on spur-gear teeth.

  17. Analysis of landing gear noise during approach

    NARCIS (Netherlands)

    Merino Martinez, R.; Snellen, M.; Simons, D.G.

    2016-01-01

    Airframe noise is becoming increasingly important during approach, even reaching higher noise levels than the engines in some cases. More people are a_ected due to low ight altitudes and _xed tra_c routing associated with typical approaches. For most air- craft types, the landing gear system is a

  18. Energy efficiency improvement by gear shifting optimization

    Directory of Open Access Journals (Sweden)

    Blagojevic Ivan A.

    2013-01-01

    Full Text Available Many studies have proved that elements of driver’s behavior related to gear selection have considerable influence on the fuel consumption. Optimal gear shifting is a complex task, especially for inexperienced drivers. This paper presents an implemented idea for gear shifting optimization with the aim of fuel consumption minimization with more efficient engine working regimes. Optimized gear shifting enables the best possible relation between vehicle motion regimes and engine working regimes. New theoretical-experimental approach has been developed using On-Board Diagnostic technology which so far has not been used for this purpose. The matrix of driving modes according to which tests were performed is obtained and special data acquisition system and analysis process have been developed. Functional relations between experimental test modes and adequate engine working parameters have been obtained and all necessary operations have been conducted to enable their use as inputs for the designed algorithm. The created Model has been tested in real exploitation conditions on passenger car with Otto fuel injection engine and On-Board Diagnostic connection without any changes on it. The conducted tests have shown that the presented Model has significantly positive effects on fuel consumption which is an important ecological aspect. Further development and testing of the Model allows implementation in wide range of motor vehicles with various types of internal combustion engines.

  19. ESF [Exploratory Shaft Facility] flexibility analysis

    International Nuclear Information System (INIS)

    Brusenback, R.W.

    1987-03-01

    This report directs that uncertainty allowances be included within the ESF facilities. The recommendations herein developed are intended as input to Title II Design criteria. Flexibility is measured first by lineal ft of drift, and then by hoisting rate and capacity of supporting utilities and services. A defined probability of need shows an extra 10,000 ft of drift for the first level of flexibility responding to testing and operations, and over 60,000 ft of drift for the second level of flexibility which recognizes possible need for perimeter drifting to investigate geologic stratigraphy. Observing there will be time constraints, a single shaft muck hoisting rate up to 170 to 250 tons per hour is recommended. The potential hoisting rate recommended for flexibility should be satisfied by a hoist approximately equivalent to, or conveniently upgraded from those being considered for sinking and construction, or 1000 horsepower. The cost of flexibility is limited to engineering planning and design (mostly conceptual) which makes later expansion achievable, and to selected items for initial construction where later upgrading would be impractical, impossible, or very costly. The cost is fixed to the level of flexibility and does not vary with excavated footage. The incremental margin is only a small fraction of the additional footage made available. Flexibility presents a strategy and not a position of design or technology. Examples used in this report are intended to be illustrative only, and not to lead design or cost estimates. 7 tabs

  20. Torsional vibrations of shafts of mechanical systems

    Science.gov (United States)

    Gulevsky, V. A.; Belyaev, A. N.; Trishina, T. V.

    2018-03-01

    The aim of the research is to compare the calculated dependencies for determining the equivalent rigidity of a mechanical system and to come to an agreement on the methods of compiling dynamic models for systems with elastic reducer couplings in applied and classical oscillation theories. As a result of the analysis, it was revealed that most of the damage in the mechanisms and their details is due to the appearance of oscillations due to the dynamic impact of various factors: shock and alternating loads, unbalanced parts of machines, etc. Therefore, the designer at the design stage, and the engineer in the process of operation should provide the possibility of regulating the oscillatory processes both in details and machines by means of creating rational designs, as well as the use of special devices such as vibration dampers, various vibrators with optimal characteristics. A method is proposed for deriving a formula for determining the equivalent stiffness of a double-mass oscillating system of a multistage reducer with elastic reducer links without taking into account the internal losses and inertia of its elements, which gives a result completely coinciding with the result obtained by the classical theory of small mechanical oscillations and allows eliminating formulas for reducing the moments of inertia of the flywheel masses and the stiffness of the shafts.

  1. Warm modified Chaplygin gas shaft inflation

    Energy Technology Data Exchange (ETDEWEB)

    Jawad, Abdul; Ilyas, Amara; Rani, Shamaila [COMSATS Institute of Information Technology, Department of Mathematics, Lahore (Pakistan)

    2017-02-15

    In this paper, we examine the possible realization of a new inflation family called ''shaft inflation'' by assuming the modified Chaplygin gas model and a tachyon scalar field. We also consider the special form of the dissipative coefficient Γ = a{sub 0}(T{sup 3})/(φ{sup 2}) and calculate the various inflationary parameters in the scenario of strong and weak dissipative regimes. In order to examine the behavior of inflationary parameters, the n{sub s}-φ, n{sub s}-r, and n{sub s}-α{sub s} planes (where n{sub s}, α{sub s}, r, and φ represent the spectral index, its running, tensor-to-scalar ratio, and scalar field, respectively) are being developed, which lead to the constraints r < 0.11, n{sub s} = 0.96 ± 0.025, and α{sub s} = -0.019 ± 0.025. It is quite interesting that these results of the inflationary parameters are compatible with BICEP2, WMAP (7+9) and recent Planck data. (orig.)

  2. Stuck in gear: age-related loss of variable gearing in skeletal muscle.

    Science.gov (United States)

    Holt, Natalie C; Danos, Nicole; Roberts, Thomas J; Azizi, Emanuel

    2016-04-01

    Skeletal muscles power a broad diversity of animal movements, despite only being able to produce high forces over a limited range of velocities. Pennate muscles use a range of gear ratios, the ratio of muscle shortening velocity to fiber shortening velocity, to partially circumvent these force-velocity constraints. Muscles operate with a high gear ratio at low forces; fibers rotate to greater angles of pennation, enhancing velocity but compromising force. At higher forces, muscles operate with a lower gear ratio; fibers rotate little so limiting muscle shortening velocity, but helping to preserve force. This ability to shift gears is thought to be due to the interplay of contractile force and connective tissue constraints. In order to test this hypothesis, gear ratios were determined in the medial gastrocnemius muscles of both healthy young rats, and old rats where the interaction between contractile and connective tissue properties was assumed to be disrupted. Muscle fiber and aponeurosis stiffness increased with age (PGear ratio decreased with increasing force in young (Pgearing is lost in old muscle. These findings support the hypothesis that variable gearing results from the interaction between contractile and connective tissues and suggest novel explanations for the decline in muscle performance with age. © 2016. Published by The Company of Biologists Ltd.

  3. Project considerations and design of systems for wheeling cogenerated power

    Energy Technology Data Exchange (ETDEWEB)

    Tessmer, R.G. Jr.; Boyle, J.R.; Fish, J.H. III; Martin, W.A.

    1994-08-01

    Wheeling electric power, the transmission of electricity not owned by an electric utility over its transmission lines, is a term not generally recognized outside the electric utility industry. Investigation of the term`s origin is intriguing. For centuries, wheel has been used to describe an entire machine, not just individual wheels within a machine. Thus we have waterwheel, spinning wheel, potter`s wheel and, for an automobile, wheels. Wheel as a verb connotes transmission or modification of forces and motion in machinery. With the advent of an understanding of electricity, use of the word wheel was extended to be transmission of electric power as well as mechanical power. Today, use of the term wheeling electric power is restricted to utility transmission of power that it doesn`t own. Cogeneration refers to simultaneous production of electric and thermal power from an energy source. This is more efficient than separate production of electricity and thermal power and, in many instances, less expensive.

  4. Drilled Shaft Foundations for Noise Barrier Walls and Slope Stabilization

    Science.gov (United States)

    2002-12-01

    This research project is focused on two primary objectives. The first objective relates to the development of a methodology for using the SPT (Standard Penetration Test) results to design the laterally loaded drilled shafts. The second objective aims...

  5. Effectiveness of plate augmentation for femoral shaft nonunion after nailing

    Directory of Open Access Journals (Sweden)

    Chin-Jung Lin

    2012-08-01

    Conclusion: Plate augmentation with retention of the nail with autologous bone grafting may be an effective and reliable alternative in treating nonunion of the femoral shaft fracture after open reduction and internal fixation with intramedullary nail.

  6. Experience in sealing water bearing strata during deep shaft sinking

    Science.gov (United States)

    Kipko, E. Ja.; Polozov, Ju. A.; Lagunov, V. A.; Lushnikova, O. Ju.

    1984-12-01

    The paper deals with major concepts of grouting through holes drilled from the surface. The results of grouting through a single borehole at the location of two 1090 m deep shafts in Donbass are presented.

  7. Nonsynchronous vibrations observed in a supercritical power transmission shaft

    Science.gov (United States)

    Darlow, M. S.; Zorzi, E. S.

    1979-01-01

    A flexible shaft is prone to a number of vibration phenomena which occur at frequencies other than synchronous with rotational speed. Nonsynchronous vibrations from several sources were observed while running a test rig designed to simulate the operation of a supercritical power transmission shaft. The test rig was run first with very light external damping and then with a higher level of external damping, for comparison. As a result, the effect of external damping on the nonsynchronous vibrations of the test rig was observed. All of these nonsynchronous vibrations were of significant amplitude. Their presence in the vibrations spectra for a supercritical power transmission shaft at various speeds in the operating range indicates that very careful attention to all of the vibration spectra should be made in any supercritical power transmission shafting. This paper presents a review of the analysis performed and a comparison with experimental data. A thorough discussion of the observed nonsynchronous whirl is also provided.

  8. Shaft Crack Identification Based on Vibration and AE Signals

    Directory of Open Access Journals (Sweden)

    Wenxiu Lu

    2011-01-01

    Full Text Available The shaft crack is one of the main serious malfunctions that often occur in rotating machinery. However, it is difficult to locate the crack and determine the depth of the crack. In this paper, the acoustic emission (AE signal and vibration response are used to diagnose the crack. The wavelet transform is applied to AE signal to decompose into a series of time-domain signals, each of which covers a specific octave frequency band. Then an improved union method based on threshold and cross-correlation method is applied to detect the location of the shaft crack. The finite element method is used to build the model of the cracked rotor, and the crack depth is identified by comparing the vibration response of experiment and simulation. The experimental results show that the AE signal is effective and convenient to locate the shaft crack, and the vibration signal is feasible to determine the depth of shaft crack.

  9. Design of Wheeled Mobile Robot with Tri-Star Wheel as Rescue Robot

    Directory of Open Access Journals (Sweden)

    Rafiuddin Syam

    2016-05-01

    Full Text Available This study aims to design, and analyze a mobilerobot that can handle some of the obstacles, they are unevensurfaces, slopes, can also climb stairs. WMR in this study is Tristarwheel that is containing three wheels for each set. Onaverage surface only two wheels in contact with the surface, ifthere is an uneven surface or obstacle then the third wheel willrotate with the rotation center of the wheel in contact with theleading obstacle then only one wheel in contact with the surface.This study uses the C language program. Furthermore, theminimum thrust to be generated torque of the motor andtransmission is 9.56 kg. The results obtained by calculation andanalysis of DC motors used must have a torque greater than14.67 kg.cm. Minimum thrust to be generated motor torque andthe transmission is 9.56 kg. The experimental results give goodresults for robot to moving forward, backward, turn left, turnright and climbing the stairs

  10. Umbrella Wheel - a stair-climbing and obstacle-handling wheel design concept

    DEFF Research Database (Denmark)

    Iversen, Simon; Jouffroy, Jerome

    2017-01-01

    This paper proposes a new design for stair-climbing using a wheel that can split into segments and walk up stairs or surmount other obstacles often found where humans traverse, while still being able to retain a perfectly round shape for traveling on smooth ground. Using this change of configurat......This paper proposes a new design for stair-climbing using a wheel that can split into segments and walk up stairs or surmount other obstacles often found where humans traverse, while still being able to retain a perfectly round shape for traveling on smooth ground. Using this change...... of configuration, staircases with a wide range of dimensions can be covered efficiently and safely. The design, named Umbrella Wheel, can consist of as many wheel segments as desired, and as few as two. A smaller or higher number of wheel segments has advantages and disadvantages depending on the specific...

  11. Analysis of optimum wire rope configuration for equal unidirectional torsional stiffness for flexible steering shaft

    Directory of Open Access Journals (Sweden)

    Hussain Najaf

    2016-01-01

    Full Text Available The design and modeling of Low Stiffness Resilience Shaft (LSRS for the Semi-Active Steering (SAS system using wire ropes is discussed in this paper, along with the static structural torsion test simulation of the wire ropes in order to determine the best possible configuration which serves the purpose of an LSRS. The importance of this study arises due to the unidirectional torsional properties of a wire rope. For an effective operational LSRS, the wire ropes need to have similar angular deflection in both the clockwise and anti-clockwise direction. LSRS, an integral component of the SAS is a flexible shaft that can replace the conventional rigid shaft of the steering system and allows active control to be performed. 3D solid models of the simple strand and the 4 strand wire ropes used in finite element analysis were generated in CAD software SolidWorksTM. The single strand and the different configuration of wire ropes required to function the LSRS effectively were then analyzed using Finite element simulation in ANSYSTM. A single wire rope could not be used because its construction has inconsistency in the torsional stiffness in clockwise and anti-clockwise direction. The single-strand right-direction lay wire rope is found to have 16.05% angular deflection percentage difference in the clockwise and anticlockwise directions which indicates that using a single strand wire rope for the LSRS will cause the vehicle to have a variable response in the clockwise and anti clockwise direction upon turning the steering wheel. Due to this inconsistency, two variations namely Variation 1 and Variation 2 with arrangement of 4 strand wire rope were devised so that the angular deflection percentage difference would be negligible. Simulation results indicated that Variation 1 of the two variations with an angular deflection percentage difference of 0.34% in the clockwise and anti-clockwise direction respectively is best suited for the use in LSRS as it has

  12. The detection of wind turbine shaft misalignment using temperature monitoring

    OpenAIRE

    Tonks, Oliver; Wang, Qing

    2016-01-01

    Temperature is a parameter increasingly monitored in wind turbine systems. This paper details a potential temperature monitoring technique for use on shaft couplings. Such condition monitoring methods aid fault detection in other areas of wind turbines. However, application to shaft couplings has not previously been widely researched. A novel temperature measurement technique is outlined, using an infra-red thermometer which can be applied to online condition monitoring. The method was va...

  13. A shaft seal system for the Waste Isolation Pilot Plant

    International Nuclear Information System (INIS)

    Hansen, F.D.; Ahrens, E.H.; Dennis, A.W.; Hurtado, L.D.; Knowles, M.K.; Tillerson, J.R.; Thompson, T.W.; Galbraith, D.

    1996-01-01

    As part of the demonstration of compliance with federal regulations, a shaft seal system has been designed for the Waste Isolation Pilot Plant. The system completely fills the 650 m shafts with components consisting of the common engineering materials, each of which possesses low permeability, longevity, and can be constructed using available technology. Design investigations couple rock mechanics and fluid flow analysis and tests of these materials within the natural geological setting, and demonstrate the effectiveness of the design

  14. Recent Advances in the Analysis of Spiral Bevel Gears

    Science.gov (United States)

    Handschuh, Robert F.

    1997-01-01

    A review of recent progress for the analysis of spiral bevel gears will be described. The foundation of this work relies on the description of the gear geometry of face-milled spiral bevel gears via the approach developed by Litvin. This methodology was extended by combining the basic gear design data with the manufactured surfaces using a differential geometry approach, and provides the data necessary for assembling three-dimensional finite element models. The finite element models have been utilized to conduct thermal and structural analysis of the gear system. Examples of the methods developed for thermal and structural/contact analysis are presented.

  15. Technologies for the marking of fishing gear to identify gear components entangled on marine animals and to reduce abandoned, lost or otherwise discarded fishing gear.

    Science.gov (United States)

    He, Pingguo; Suuronen, Petri

    2018-04-01

    Fishing gears are marked to establish and inform origin, ownership and position. More recently, fishing gears are marked to aid in capacity control, reduce marine litter due to abandoned, lost or otherwise discarded fishing gear (ALDFG) and assist in its recovery, and to combat illegal, unreported and unregulated (IUU) fishing. Traditionally, physical marking, inscription, writing, color, shape, and tags have been used for ownership and capacity purposes. Buoys, lights, flags, and radar reflectors are used for marking of position. More recently, electronic devices have been installed on marker buoys to enable easier relocation of the gear by owner vessels. This paper reviews gear marking technologies with focus on coded wire tags, radio frequency identification tags, Automatic Identification Systems, advanced electronic buoys for pelagic longlines and fish aggregating devices, and re-location technology if the gear becomes lost. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Straight motion gear for vehicle brakes with electrical actuation; Translationsgetriebe fuer elektrisch betaetigte Fahrzeugbremsen

    Energy Technology Data Exchange (ETDEWEB)

    Bill, K.H.; Semsch, M. [Technische Univ. Darmstadt (Germany). Fachgebiet Fahrzeugtechnik

    1998-01-01

    Electric brake systems and components are increasing in importance due to the easy wheel-selective operation in future vehicle concepts. Building electric brake systems economically is decisively dependent on the availability of wheel brakes suitable in terms of dynamic behaviour, energy requirements, space, size, reliability and costs. In particular, the coupling of the transducer and friction brake by means of a suitable gear system adapted to the requirements of a vehicle brake represents a problem which has not yet been satisfactorily solved. In Subproject B6 of the Sonderforschungsbereich 241-IMES, sponsored by the Deutsche Forschungsgemeinschaft, research on new mechatronic brake systems is being conducted at the Automotive Engineering Department of Darmstadt University. (orig.) [Deutsch] Elektrische Bremssysteme und Komponenten gewinnen durch den leicht durchfuehrbaren radselektiven Eingriff bei kuenftigen Fahrzeugkonzepten eine zunehmende Bedeutung. Die wirtschaftliche Realisierung elektrischer Bremssysteme wird massgeblich von der Verfuegbarkeit geeigneter Radbremsen im Hinblick auf Dynamikverhalten, Energiebedarf, Bauraum, Masse, Zuverlaessigkeit und Kosten abhaengen. Besonders die Kopplung von Autor und Reibungsbremse durch ein geeignetes, an die Erfordernisse einer Fahrzeugbremse angepasstes Getriebesystem stellt ein bisher noch nicht befriedigend geloestes Problem dar. Im Teilprojekt B6 des Sonderforschungsbereiches 241-IMES, gefoerdert durch die Deutsche Forschungsgemeinschaft, werden hierzu an der Technischen Universitaet Darmstadt (TUD), Fachgebiet Fahrzeugtechnik, mechatronische Bremssysteme entwickelt. (orig.)

  17. Grinding Fluid Jet Characteristics and Their Effect on a Gear Profile Grinding Process

    Directory of Open Access Journals (Sweden)

    Philip Geilert

    2017-10-01

    Full Text Available Profile gear grinding is characterized by a high level of achievable process performance and workpiece quality. However, the wide contact length between the workpiece and the grinding wheel is disadvantageous for the fluid supply to the contact zone and leads to the risk of locally burning the workpiece surface. For the reduction of both the thermal load and the risk of thermo-mechanical damage, the usage of a grinding fluid needs to be investigated and optimized. For this purpose, different kinds of grinding fluid nozzles were tested, which provide different grinding fluid jet characteristics. Through a specific design of the nozzles, it is possible to control the fluid flow inside the nozzle. It was found that this internal fluid flow directly influences the breakup of the coolant fluid jet. There are three groups of jet breakup (“droplet”, “wave & droplet”, and “atomization”. The first experimental results show that the influence of the jet breakup on the process performance is significant. The “wave & droplet” jet breakup can achieve a high process performance, in contrast to the “atomization” jet breakup. It can therefore be assumed that the wetting of the grinding wheel by the grinding fluid jet is significantly influenced by the jet breakup.

  18. Design capability of CANDU heat transport pump shafts against cracking

    International Nuclear Information System (INIS)

    Kumar, A.N.; Sheikh, Z.B.; Padgett, A.

    1993-01-01

    During 1986 three different Light Water Reactors (LWR's) in the U.S. reported either a cracked or fractured shaft on one or more of their reactor coolant (RC) pumps. The RC pumps for all these stations were supplied by Byron Jackson (BJ) Pump Company. A majority of CANDU heat transport (HT) pumps (equivalent of RC pumps) are supplied by BJ Pump Company and are similar in design to RC pumps. Hence the failure of these RC pumps in the U.S. utilities caused concern regarding the relevance of these failures to the BJ supplied CANDU HT pumps (HTP). This paper presents the results of AECL assessment to establish the capability of the HT pump shaft against cracking. Two methods were used for assessment: (a) detailed comparative design review of the HTP and RCP shafts; (b) semi-empirical analysis of the HTP shafts. The results of the AECL assessment showed significant differences in detailed design, materials, assembly and fits of various components and the control of operating parameters between the HT and RC pumps. It was concluded that because of these differences the failures similar to RC pump shafts are not likely to appear in HT pump shafts. This conclusion is further reinforced by about 140,000 hours of operating history of the longest running HT pump of comparable size to RC Pumps, without failures

  19. Shaft Siting and Configuration for Flexible Operating Mode

    International Nuclear Information System (INIS)

    Robert Boutin

    2001-01-01

    The purpose of this document as stated in the ''Technical Work Plan for Subsurface Design Section FY 01 Work Activities'' (CRWMS M and O 2001a, pg. 14) is to review and evaluate the most current concepts for shaft siting and configuration. The locations of the shaft sites will be evaluated in reference to the overall subsurface ventilation layout shown in Figure 1. The scope will include discussions on pad size requirements, shaft construction components such as collars, shaft stations, sumps, ground support and linings, head frames, fan ducting and facility equipping. In addition to these, shaft excavation methodologies and integration with the overall subsurface construction schedule will be described. The Technical Work Plan (TWP), (CRWMS M and O 2001a), for this document has been prepared in accordance with AP-2.21Q, ''Quality Determinations and Planning for Scientific, Engineering and Regulatory Compliance Activities''. This document will be prepared in accordance with AP-3.10Q, ''Analysis and Models''. This document contributes to Site Recommendation (SR). The intended use of this document is to provide an analysis for shaft siting and configuration criteria for subsequent construction. This document identifies preliminary design concepts that should not be used for procurement, fabrication, or construction

  20. Salt Repository Project shaft design guide: Revision 0

    International Nuclear Information System (INIS)

    1987-12-01

    The Salt Repository Project (SRP) Shaft Design Guide (SDG) and the accompanying SRP Input to Seismic Design define the basic approach for developing appropriate shaft designs for a high-level nuclear waste repository in salt at a proposed site in Deaf Smith County, Texas. The SDG is based on current mining industry standards and practices enhanced to meet the special needs of an underground nuclear waste repository. It provides a common approach for design of both the exploratory and repository shafts. The SDG defines shaft lining and material concepts and presents methods for calculating the loads and displacements that will be imposed on lining structures. It also presents the methodology and formulae for sizing lining components. The SDG directs the shaft designer to sources of geoscience and seismic design data for the Deaf Smith County, Texas repository site. In addition, the SDG describes methods for confirming shaft lining design by means of computer analysis, and it discusses performance monitoring needs that must be considered in the design. 113 refs., 18 figs., 14 tabs

  1. Long-term brine migration through an engineered shaft seal system

    International Nuclear Information System (INIS)

    Fryar, D.G.; Beach, J.A.; Kelley, V.A.; Knowles, M.K.

    1997-01-01

    The shaft seal system for the Waste Isolation Pilot Plant (WIPP) must provide a barrier to the migration of fluids within the shafts to prevent the release of contaminants to the accessible environment. To investigate the performance of the shaft seal system, a set of fluid flow performance models was developed based upon the physical characteristics of the WIPP shaft seal system and the surrounding geologic media. This paper describes the results of a numerical model used to investigate the long-term potential for brine migration through the shaft seal system. Modeling results demonstrate that the WIPP shaft seal system will effectively limit brine migration within the repository shafts

  2. Efficiency of fishing gears in the river Halda, Chittagong, Bangladesh

    Directory of Open Access Journals (Sweden)

    Mohammad Arshad-Ul-Alam

    2015-12-01

    Full Text Available To determine the catch efficiency of fishing gears, catch per unit effort (CPUEdata were collected for two years during January 2007 to December 2008 from the river Halda. Analyses were done to examine the variation of CPUE among gears, studied sections, months and years. The mean CPUE for pooled data of all gears was 2.247±0.265 kg.gear-1day-1 and 2.697±0.355 kg.gear-1day-1 for 2007 and 2008 respectively. Among eight gear categories, bag nets yielded the highest CPUE during 2007 (5.957±0.704 kg.gear-1day-1 and seine nets during 2008 (7.288±1.477 kg.gear-1day-1. Among 31 gear types, small meshed bag nets yielded the highest CPUE (18.065±6.660 and 15.69±4.479 kg.gear-1day-1 during 2007 and 2008 respectively. CPUE was highest during March-April and September-November periods. Analysis of variance showed significant difference among catch rates of different fishing gears. The CPUE differed significantly among different months for net fence, gill net, cast net and scoop net during 2007; and for seine net, net fence, bag net and cast net during 2008.

  3. Reaction Wheel Disturbance Model Extraction Software - RWDMES

    Science.gov (United States)

    Blaurock, Carl

    2009-01-01

    The RWDMES is a tool for modeling the disturbances imparted on spacecraft by spinning reaction wheels. Reaction wheels are usually the largest disturbance source on a precision pointing spacecraft, and can be the dominating source of pointing error. Accurate knowledge of the disturbance environment is critical to accurate prediction of the pointing performance. In the past, it has been difficult to extract an accurate wheel disturbance model since the forcing mechanisms are difficult to model physically, and the forcing amplitudes are filtered by the dynamics of the reaction wheel. RWDMES captures the wheel-induced disturbances using a hybrid physical/empirical model that is extracted directly from measured forcing data. The empirical models capture the tonal forces that occur at harmonics of the spin rate, and the broadband forces that arise from random effects. The empirical forcing functions are filtered by a physical model of the wheel structure that includes spin-rate-dependent moments (gyroscopic terms). The resulting hybrid model creates a highly accurate prediction of wheel-induced forces. It accounts for variation in disturbance frequency, as well as the shifts in structural amplification by the whirl modes, as the spin rate changes. This software provides a point-and-click environment for producing accurate models with minimal user effort. Where conventional approaches may take weeks to produce a model of variable quality, RWDMES can create a demonstrably high accuracy model in two hours. The software consists of a graphical user interface (GUI) that enables the user to specify all analysis parameters, to evaluate analysis results and to iteratively refine the model. Underlying algorithms automatically extract disturbance harmonics, initialize and tune harmonic models, and initialize and tune broadband noise models. The component steps are described in the RWDMES user s guide and include: converting time domain data to waterfall PSDs (power spectral

  4. Finite Element Residual Stress Analysis of Planetary Gear Tooth

    Directory of Open Access Journals (Sweden)

    Jungang Wang

    2013-01-01

    Full Text Available A method to simulate residual stress field of planetary gear is proposed. In this method, the finite element model of planetary gear is established and divided to tooth zone and profile zone, whose different temperature field is set. The gear's residual stress simulation is realized by the thermal compression stress generated by the temperature difference. Based on the simulation, the finite element model of planetary gear train is established, the dynamic meshing process is simulated, and influence of residual stress on equivalent stress of addendum, pitch circle, and dedendum of internal and external meshing planetary gear tooth profile is analyzed, according to non-linear contact theory, thermodynamic theory, and finite element theory. The results show that the equivalent stresses of planetary gear at both meshing and nonmeshing surface are significantly and differently reduced by residual stress. The study benefits fatigue cracking analysis and dynamic optimization design of planetary gear train.

  5. Power loss analysis in altered tooth-sum spur gearing

    Directory of Open Access Journals (Sweden)

    Sachidananda H. K.

    2018-01-01

    Full Text Available The main cause of power loss or dissipation of heat in case of meshed gears is due to friction existing between gear tooth mesh and is a major concern in low rotational speed gears, whereas in case of high operating speed the power loss taking place due to compression of air-lubricant mixture (churning losses and windage losses due to aerodynamic trial of air lubricant mixture which controls the total efficiency needs to be considered. Therefore, in order to improve mechanical efficiency it is necessary for gear designer during gear tooth optimization to consider these energy losses. In this research paper the power loss analysis for a tooth-sum of 100 altered by ±4% operating between a specified center distance is considered. The results show that negative altered tooth-sum gearing performs better as compared to standard and positive altered tooth-sum gearing.

  6. Investigation of Sideband Index Response to Prototype Gear Tooth Damage

    Science.gov (United States)

    Dempsey, Paula J.

    2013-01-01

    The objective of this analysis was to evaluate the ability of gear condition indicators (CI) to detect contact fatigue damage on spiral bevel gear teeth. Tests were performed in the NASA Glenn Spiral Bevel Gear Fatigue Rig on eight prototype gear sets (pinion/gear). Damage was initiated and progressed on the gear and pinion teeth. Vibration data was measured during damage progression at varying torque values while varying damage modes to the gear teeth were observed and documented with inspection photos. Sideband indexes (SI) and root mean square (RMS) CIs were calculated from the time synchronous averaged vibration data. Results found that both CIs respond differently to varying torque levels, damage levels and damage modes

  7. Modeling of automotive driveline system for reducing gear rattles

    Science.gov (United States)

    Shangguan, Wen-Bin; Liu, Xue-Lai; Yin, Yuming; Rakheja, Subhash

    2018-03-01

    A nonlinear torsional model for a driveline system with 4 degrees of freedom is proposed for studying gear rattle if a car is at idle. The time-varying meshing stiffness of geared teeth, gear backlash, and the damping from oil film are included in the model. The dynamic responses of the driveline system, such as clutch angular displacement, meshing force and relative displacement between geared teeth, are calculated using the presented model. The influences of stiffness and damping of a clutch on gear rattle of geared teeth in a generic transmission are investigated. Based on the calculation and analysis results, a design guideline to select clutch's stiffness and damping is developed to reduce gear rattle for a car at idle. Taking a generic driveline system of a passenger car as an example, the developed method is experimentally validated by comparing the baseline clutch and revised clutch, in terms of the measured noise inside engine compartment and cab and vibrations at transmission housing.

  8. Wheeling rates evaluation using optimal power flows

    International Nuclear Information System (INIS)

    Muchayi, M.; El-Hawary, M. E.

    1998-01-01

    Wheeling is the transmission of electrical power and reactive power from a seller to a buyer through a transmission network owned by a third party. The wheeling rates are then the prices charged by the third party for the use of its network. This paper proposes and evaluates a strategy for pricing wheeling power using a pricing algorithm that in addition to the fuel cost for generation incorporates the optimal allocation of the transmission system operating cost, based on time-of-use pricing. The algorithm is implemented for the IEEE standard 14 and 30 bus system which involves solving a modified optimal power flow problem iteratively. The base of the proposed algorithm is the hourly spot price. The analysis spans a total time period of 24 hours. Unlike other algorithms that use DC models, the proposed model captures wheeling rates of both real and reactive power. Based on the evaluation, it was concluded that the model has the potential for wide application in calculating wheeling rates in a deregulated competitive power transmission environment. 9 refs., 3 tabs

  9. On Shaft Data Acquisition System (OSDAS)

    Science.gov (United States)

    Pedings, Marc; DeHart, Shawn; Formby, Jason; Naumann, Charles

    2012-01-01

    On Shaft Data Acquisition System (OSDAS) is a rugged, compact, multiple-channel data acquisition computer system that is designed to record data from instrumentation while operating under extreme rotational centrifugal or gravitational acceleration forces. This system, which was developed for the Heritage Fuel Air Turbine Test (HFATT) program, addresses the problem of recording multiple channels of high-sample-rate data on most any rotating test article by mounting the entire acquisition computer onboard with the turbine test article. With the limited availability of slip ring wires for power and communication, OSDAS utilizes its own resources to provide independent power and amplification for each instrument. Since OSDAS utilizes standard PC technology as well as shared code interfaces with the next-generation, real-time health monitoring system (SPARTAA Scalable Parallel Architecture for Real Time Analysis and Acquisition), this system could be expanded beyond its current capabilities, such as providing advanced health monitoring capabilities for the test article. High-conductor-count slip rings are expensive to purchase and maintain, yet only provide a limited number of conductors for routing instrumentation off the article and to a stationary data acquisition system. In addition to being limited to a small number of instruments, slip rings are prone to wear quickly, and introduce noise and other undesirable characteristics to the signal data. This led to the development of a system capable of recording high-density instrumentation, at high sample rates, on the test article itself, all while under extreme rotational stress. OSDAS is a fully functional PC-based system with 48 channels of 24-bit, high-sample-rate input channels, phase synchronized, with an onboard storage capacity of over 1/2-terabyte of solid-state storage. This recording system takes a novel approach to the problem of recording multiple channels of instrumentation, integrated with the test

  10. Tibia shaft fractures: costly burden of nonunions

    Directory of Open Access Journals (Sweden)

    Antonova Evgeniya

    2013-01-01

    Full Text Available Abstract Background Tibia shaft fractures (TSF are common for men and women and cause substantial morbidity, healthcare use, and costs. The impact of nonunions on healthcare use and costs is poorly described. Our goal was to investigate patient characteristics and healthcare use and costs associated with TSF in patients with and without nonunion. Methods We retrospectively analyzed medical claims in large U.S. managed care claims databases (Thomson Reuters MarketScan®, 16 million lives. We studied patients ≥ 18 years old with a TSF diagnosis (ICD-9 codes: 823.20, 823.22, 823.30, 823.32 in 2006 with continuous pharmaceutical and medical benefit enrollment 1 year prior and 2 years post-fracture. Nonunion was defined by ICD-9 code 733.82 (after the TSF date. Results Among the 853 patients with TSF, 99 (12% had nonunion. Patients with nonunion had more comorbidities (30 vs. 21, pre-fracture and were more likely to have their TSF open (87% vs. 70% than those without nonunion. Patients with nonunion were more likely to have additional fractures during the 2-year follow-up (of lower limb [88.9% vs. 69.5%, P  Conclusions Nonunions in TSF’s are associated with substantial healthcare resource use, common use of strong opioids, and high per-patient costs. Open fractures are associated with higher likelihood of nonunion than closed ones. Effective screening of nonunion risk may decrease this morbidity and subsequent healthcare resource use and costs.

  11. Mechanised drivage of roads, slopes and shafts

    Energy Technology Data Exchange (ETDEWEB)

    1977-08-01

    The variety of methods of work and the individual nature of statistics available from members makes a comparison of operational activity in this field very difficult. There is considerable variation between members drivage requirements on a ton per metre driven basis. This is primarily dictated by the natural conditions and the consequent methods of work adopted. The cost contribution to coal production from the drivage or heading activity appears to lie between 10 and 30 percent where the method is mainly longwall, and approximately 70 percent where it is mainly roof and pillar. There is therefore an opportunity for significant overall cost reduction if the drivage process itself can be made more efficient and, beyond the activity itself, it appears likely that there should be scope for increasing the tons per metre driven. On the basis of a postulated average roadway life of 5 to 6 years, the subsequent cost of maintenance may add a significant long term burden particularly in deep and highly stressed strata. The R and D work aimed at improved roadway siting, strata consolidation and provision of roof support systems which do not require repair is thus likely to have a basic effect on production costs. Data on shaft construction is limited; but this activity must have major importance to members anticipating increase in production or transfer of production sites; and the likely criteria for operational effectiveness seem likely to be speed of construction rather than purely initial construction cost. There is a relative scarcity of specific mention of debris disposal systems. On the tons/metre data quoted it would however appear that debris disposal from drivages requires some 20 percent or more of colliery haulage demand and must be a significant factor in colliery economics.

  12. Real-time monitoring of wind turbine generator shaft alignment using laser measurement.

    OpenAIRE

    Mankowski, O.; Wang, Q.

    2013-01-01

    Shaft Misalignment is one of the most common sources of trouble of wind turbine drive train when rigid couplings connect the shafts. Ideal alignment of the shaft is difficult to be obtained and the couplings attached to the shaft may present angular or parallel misalignment defined also as lateral and axially misalignment. Despite misalignment is often observed in the practice, there are relatively few studies on wind turbine shaft misalignment in the literature and their results are sometime...

  13. Design and Construction of a Robotic Vehicle with Omni-directional Mecanum Wheels

    Directory of Open Access Journals (Sweden)

    Ján VACHÁLEK

    2014-06-01

    Full Text Available The paper deals with the design and construction of a universal robotic vehicle prototype, used for laboratory and educational purposes. The main goal is its use as a technology demonstrator for the needs of students, therefore it is equipped with several kinds of sensors and universal advanced control technologies and design solutions. Its basis is a control system and construction concept using mobile battery gear and omnidirectional Mecanum wheels. A manipulating arm and advanced tracking and spatial navigation systems are also components of the design. Since the problem of a customized design and construction of such a robotic vehicle is very complex and solved in various scientific fields, in this paper we will mainly focus on the detailed description of the control systems and subsystems of the vehicle.

  14. Improved efficiency of lifting freight on inclined mine shafts

    Energy Technology Data Exchange (ETDEWEB)

    Molchanov, A A

    1980-01-01

    Design and operating principles are described for a self-propelled inclined lifter with hinged-lever mechanism of forced compression of the drive wheels to the rails. Limit values are defined for the main parameters of the traction device.

  15. Global Analysis of a Planetary Gear Train

    Directory of Open Access Journals (Sweden)

    Tongjie Li

    2014-01-01

    Full Text Available By using the Poincaré-like cell-to-cell mapping method and shooting method, the global characteristics of a planetary gear train are studied based on the torsional vibration model with errors of transmission, time-varying meshing stiffness, and multiple gear backlashes. The study results reveal that the planetary with a certain set of parameters has four coexisting periodic orbits, which are P-1, P-2, P-4, and P-8, respectively. P-1 and P-2 motions are not of long-term stability, P-8 motion is of local stability, and P-4 motion is of global stability. Shooting method does not have the capacity of searching coexisting periodic orbits in a global scope, and it is easy to omit some periodic orbits which are far away from the main gropes of periodic orbits.

  16. Geared Topological Metamaterials with Tunable Mechanical Stability

    Directory of Open Access Journals (Sweden)

    Anne S. Meeussen

    2016-11-01

    Full Text Available The classification of materials into insulators and conductors has been shaken up by the discovery of topological insulators that conduct robustly at the edge but not in the bulk. In mechanics, designating a material as insulating or conducting amounts to asking if it is rigid or floppy. Although mechanical structures that display topological floppy modes have been proposed, they are all vulnerable to global collapse. Here, we design and build mechanical metamaterials that are stable and yet capable of harboring protected edge and bulk modes, analogous to those in electronic topological insulators and Weyl semimetals. To do so, we exploit gear assemblies that, unlike point masses connected by springs, incorporate both translational and rotational degrees of freedom. Global structural stability is achieved by eliminating geometrical frustration of collective gear rotations extending through the assembly. The topological robustness of the mechanical modes makes them appealing across scales from engineered macrostructures to networks of toothed microrotors of potential use in micromachines.

  17. Electrohydraulic drive system with planetary superposed gears

    Energy Technology Data Exchange (ETDEWEB)

    Graetz, A.; Klimek, K.H.; Welz, H.

    1989-01-01

    To prevent drive problems in ploughs the drives must be designed in such a way as to compensate for asymmetries. If electromechanical drives are replaced by an electrohydraulic drive system with superposed planetary gears and hydrostatic torque reaction supports the following advantages occur: load-free acceleration, load equalisation between main and auxiliary drive, overload protection, and reduction of systems vibrations. 2 figs., 2 tabs.

  18. Evaluation of the 30 Ton CHA Crane Wheel Axle Modification

    International Nuclear Information System (INIS)

    RICH, J.W.

    2002-01-01

    An existing design for eccentric bushings was utilized and updated as necessary to accommodate minor adjustment as required to correct wheel alignment on the North West Idler wheel. The design is revised to install eccentric bushings on only one end

  19. Tensegrital Wheel for Enhanced Surface Mobility, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — ProtoInnovations introduces the "tensegrital wheel" an inventive concept for wheeled locomotion that exploits the geometric and mechanical attributes of a tensegrity...

  20. Maximum Torque and Momentum Envelopes for Reaction Wheel Arrays

    Science.gov (United States)

    Markley, F. Landis; Reynolds, Reid G.; Liu, Frank X.; Lebsock, Kenneth L.

    2009-01-01

    Spacecraft reaction wheel maneuvers are limited by the maximum torque and/or angular momentum that the wheels can provide. For an n-wheel configuration, the torque or momentum envelope can be obtained by projecting the n-dimensional hypercube, representing the domain boundary of individual wheel torques or momenta, into three dimensional space via the 3xn matrix of wheel axes. In this paper, the properties of the projected hypercube are discussed, and algorithms are proposed for determining this maximal torque or momentum envelope for general wheel configurations. Practical strategies for distributing a prescribed torque or momentum among the n wheels are presented, with special emphasis on configurations of four, five, and six wheels.

  1. Reaction Wheel Disturbance Model Extraction Software, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Reaction wheel disturbances are some of the largest sources of noise on sensitive telescopes. Such wheel-induced mechanical noises are not well characterized....

  2. A Generalized Dynamic Model of Geared System: Establishment and Application

    Directory of Open Access Journals (Sweden)

    Hui Liu

    2011-12-01

    Full Text Available In order to make the dynamic characteristic simulation of the ordinary and planetary gears drive more accurate and more efficient , a generalized dynamic model of geared system is established including internal and external mesh gears in this paper. It is used to build a mathematical model, which achieves the auto judgment of the gear mesh state. We do not need to concern about active or passive gears any more, and the complicated power flow analysis can be avoided. With the numerical integration computation, the axis orbits diagram and dynamic gear mesh force characteristic are acquired and the results show that the dynamic response of translational displacement is greater when contacting line direction change is considered, and with the quickly change of direction of contacting line, the amplitude of mesh force would be increased, which easily causes the damage to the gear tooth. Moreover, compared with ordinary gear, dynamic responses of planetary gear would be affected greater by the gear backlash. Simulation results show the effectiveness of the generalized dynamic model and the mathematical model.

  3. DESIGN IMPROVEMENT OF THE LOCOMOTIVE RUNNING GEARS

    Directory of Open Access Journals (Sweden)

    S. V. Myamlin

    2013-09-01

    Full Text Available Purpose. To determine the dynamic qualities of the mainline freight locomotives characterizing the safe motion in tangent and curved track sections at all operational speeds, one needs a whole set of studies, which includes a selection of the design scheme, development of the corresponding mathematical model of the locomotive spatial fluctuations, construction of the computer calculation program, conducting of the theoretical and then experimental studies of the new designs. In this case, one should compare the results with existing designs. One of the necessary conditions for the qualitative improvement of the traction rolling stock is to define the parameters of its running gears. Among the issues related to this problem, an important place is occupied by the task of determining the locomotive dynamic properties on the stage of projection, taking into account the selected technical solutions in the running gear design. Methodology. The mathematical modeling studies are carried out by the numerical integration method of the dynamic loading for the mainline locomotive using the software package «Dynamics of Rail Vehicles » («DYNRAIL». Findings. As a result of research for the improvement of locomotive running gear design it can be seen that the creation of the modern locomotive requires from engineers and scientists the realization of scientific and technical solutions. The solutions enhancing design speed with simultaneous improvement of the traction, braking and dynamic qualities to provide a simple and reliable design, especially the running gear, reducing the costs for maintenance and repair, low initial cost and operating costs for the whole service life, high traction force when starting, which is as close as possible to the ultimate force of adhesion, the ability to work in multiple traction mode and sufficient design speed. Practical Value. The generalization of theoretical, scientific and methodological, experimental studies aimed

  4. A comparative study between an improved novel air-cushion sensor and a wheeled probe for minimally invasive surgery.

    Science.gov (United States)

    Zbyszewski, Dinusha; Challacombe, Benjamin; Li, Jichun; Seneviratne, Lakmal; Althoefer, Kaspar; Dasgupta, Prokar; Murphy, Declan

    2010-07-01

    We describe a comparative study between an enhanced air-cushion tactile sensor and a wheeled indentation probe. These laparoscopic tools are designed to rapidly locate soft-tissue abnormalities during minimally invasive surgery (MIS). The air-cushion tactile sensor consists of an optically based sensor with a 7.8 mm sphere "floating" on a cushion of air at the tip of a shaft. The wheeled indentation probe is a 10 mm wide and 5 mm in diameter wheel mounted to a force/torque sensor. A continuous rolling indentation technique is used to pass the sensors over the soft-tissue surfaces. The variations in stiffness of the viscoelastic materials that are detected during the rolling indentations are illustrated by stiffness maps that can be used for tissue diagnosis. The probes were tested by having to detect four embedded nodules in a silicone phantom. Each probe was attached to a robotic manipulator and rolled over the silicone phantom in parallel paths. The readings of each probe collected during the process of rolling indentation were used to achieve the final results. The results show that both sensors reliably detected the areas of variable stiffness by accurately identifying the location of each nodule. These are illustrated in the form of two three-dimensional spatiomechanical maps. These probes have the potential to be used in MIS because they could provide surgeons with information on the mechanical properties of soft tissue, consequently enhancing the reduction in haptic feedback.

  5. Određivanje krutosti planetarnog prenosnika / Determination of gear mesh stiffness in planetary gearing

    Directory of Open Access Journals (Sweden)

    Vojislav Batinić

    2008-04-01

    Full Text Available Kontaktna krutost zubaca jedan je od glavnih generatora unutrašnjih dinamičkih sila u spregama zupčanika planetarnih prenosnika. Neophodan je pri opisivanju dinamičkog ponašanja planetarnih prenosnika, tj. pri postavljanju jednačina dinamičke ravnoteže. U radu je prikazan metodološki pristup analitičkom i eksperimentalnom određivanju krutosti posmatranog planetarnog prenosnika. / Gear mesh stiffness in planetary gearing is one of the main generators of internal dynamic forces. It is necessary in describing dynamic behavior of planetary trains, i.e. in defining their equations of dynamic balance. This paper presents a methodological approach to experimental and analytical calculation of stiffness in planetary gearing.

  6. 29 CFR 1910.215 - Abrasive wheel machinery.

    Science.gov (United States)

    2010-07-01

    ... be securely fastened to the spindle and the bearing surface shall run true. When more than one wheel... 29 Labor 5 2010-07-01 2010-07-01 false Abrasive wheel machinery. 1910.215 Section 1910.215 Labor... OCCUPATIONAL SAFETY AND HEALTH STANDARDS Machinery and Machine Guarding § 1910.215 Abrasive wheel machinery. (a...

  7. 49 CFR 229.75 - Wheels and tire defects.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Wheels and tire defects. 229.75 Section 229.75....75 Wheels and tire defects. Wheels and tires may not have any of the following conditions: (a) A... two adjoining spots that are each two or more inches in length. (e) A seam running lengthwise that is...

  8. Method of lining a vertical mine shaft with concrete

    Science.gov (United States)

    Eklund, James D.; Halter, Joseph M.; Rasmussen, Donald E.; Sullivan, Robert G.; Moffat, Robert B.

    1981-01-01

    The apparatus includes a cylindrical retainer form spaced inwardly of the wall of the shaft by the desired thickness of the liner to be poured and having overlapping edges which seal against concrete flow but permit the form to be contracted to a smaller circumference after the liner has hardened and is self-supporting. A curb ring extends downwardly and outwardly toward the shaft wall from the bottom of the retainer form to define the bottom surface of each poured liner section. An inflatable toroid forms a seal between the curb ring and the shaft wall. A form support gripper ring having gripper shoes laterally extendable under hydraulic power to engage the shaft wall supports the retainer form, curb ring and liner until the newly poured liner section becomes self-supporting. Adjusting hydraulic cylinders permit the curb ring and retainer form to be properly aligned relative to the form support gripper ring. After a liner section is self-supporting, an advancing system advances the retainer form, curb ring and form support gripper ring toward a shaft boring machine above which the liner is being formed. The advancing system also provides correct horizontal alignment of the form support gripper ring.

  9. Eddy Current Sensing of Torque in Rotating Shafts

    Science.gov (United States)

    Varonis, Orestes J.; Ida, Nathan

    2013-12-01

    The noncontact torque sensing in machine shafts is addressed based on the stress induced in a press-fitted magnetoelastic sleeve on the shaft and eddy current sensing of the changes of electrical conductivity and magnetic permeability due to the presence of stress. The eddy current probe uses dual drive, dual sensing coils whose purpose is increased sensitivity to torque and decreased sensitivity to variations in distance between probe and shaft (liftoff). A mechanism of keeping the distance constant is also employed. Both the probe and the magnetoelastic sleeve are evaluated for performance using a standard eddy current instrument. An eddy current instrument is also used to drive the coils and analyze the torque data. The method and sensor described are general and adaptable to a variety of applications. The sensor is suitable for static and rotating shafts, is independent of shaft diameter and operational over a large range of torques. The torque sensor uses a differential eddy current measurement resulting in cancellation of common mode effects including temperature and vibrations.

  10. Analysis and optimization of dynamic model of eccentric shaft grinder

    Science.gov (United States)

    Gao, Yangjie; Han, Qiushi; Li, Qiguang; Peng, Baoying

    2018-04-01

    Eccentric shaft servo grinder is the core equipment in the process chain of machining eccentric shaft. The establishment of the movement model and the determination of the kinematic relation of the-axis in the grinding process directly affect the quality of the grinding process, and there are many error factors in grinding, and it is very important to analyze the influence of these factors on the work piece quality. The three-dimensional model of eccentric shaft grinder is drawn by Pro/E three-dimensional drawing software, the model is imported into ANSYS Workbench Finite element analysis software, and the finite element analysis is carried out, and then the variation and parameters of each component of the bed are obtained by the modal analysis result. The natural frequencies and formations of the first six steps of the eccentric shaft grinder are obtained by modal analysis, and the weak links of the parts of the grinder are found out, and a reference improvement method is proposed for the design of the eccentric shaft grinder in the future.

  11. Torsional Vibration of a Shafting System under Electrical Disturbances

    Directory of Open Access Journals (Sweden)

    Ling Xiang

    2012-01-01

    Full Text Available Torsional vibration responses of a nonlinear shafting system are studied by a modified Riccati torsional transfer matrix combining with the Newmark-β method. Firstly, the system is modeled as a chain consisting of an elastic spring with concentrated mass points, from which a multi-segment lumped mass model is established. Secondly, accumulated errors are eliminated from the eigenfrequencies and responses of the system's torsional vibration by this newly developed procedure. The incremental transfer matrix method, combining the modified Riccati torsional transfer matrix with Newmark-β method, is further applied to solve the dynamical equations for the torsional vibration of the nonlinear shafting system. Lastly, the shafting system of a turbine-generator is employed as an illustrating example, and simulation analysis has been performed on the transient responses of the shaft's torsional vibrations during typical power network disturbances, such as three-phase short circuit, two-phase short circuit and asynchronous juxtaposition. The results validate the present method and are instructive for the design of a turbo-generator shaft.

  12. SECTIONAL AREA CALCULATION OF MATERIAL REMOVED FROM BLANK WHILE FORMING SPACE BETWEEN TWO TEETH OF SATELLITE GEAR OF PLANETARY PIN TOOTH REDUCER

    Directory of Open Access Journals (Sweden)

    N. G. Yankevich

    2009-01-01

    Full Text Available One of the most important values while forming gear wheels is a material section area Sс which is to be removed by a tool in the process of forming a space between two teeth in one pass. Cutting resistance which is proportional  to section area of  the layer to be cut and, correspondingly, a thermodynamic intensity in the polishing zone depend on Sс value.The paper proposes relations for calculation of a material section area Sс which is to be removed from a blank while forming a space between two teeth of a satellite gear of a planetary pin tooth reducer.Measurements being made in the AutoCAD packet have shown that any corrections of the profile do not make a significant influence on a section area Sс.

  13. Influence of material and gear parameters on the safety of gearing in metallurgical industry

    Directory of Open Access Journals (Sweden)

    S. Medvecká - Beňová

    2015-01-01

    Full Text Available This paper deals with the appropriate choice of parameters to obtain the desired level of safety of gears in a gearbox to drive the conveyor in the metallurgical industry under increased load. Steel with surface hardness up to 350 HBW, or heat treated steel with hardness of 500 - 650 HBW are used. As a final heat treatment are used surface hardening, cementation and hardening, nitridation. Good properties of heat-treated steels are at the correct thickness of the heat-treated layer of the tooth. Results are presented for dual-ratio gearbox with spur gears from operation of an integrated steel company.

  14. Magnet-Sleeve-Sealed Mini Trochoidal-Gear Pump Prototype with Polymer Composite Gear

    Directory of Open Access Journals (Sweden)

    Pedro Javier Gamez-Montero

    2017-09-01

    Full Text Available The trochoidal-gear technology has been growing in groundbreaking fields. Forthcoming applications are demanding to this technology a step forward in the conceiving stage of positive displacement machines. The compendium of the qualities and the inherent characteristics of trochoidal-gear technology, especially towards the gerotor pump, together with scale/size factor and magnetic-driven transmission has led to the idea of a magnet-sleeve-sealed variable flow mini trochoidal-gear pump. From its original concept, to the last phase of the design development, the proof of concept, this new product will intend to overcome problems such as noise, vibration, maintenance, materials, and dimensions. The paper aims to show the technological path followed from the concept, design, and model, to the manufacture of the first prototype, where the theoretical and numerical approaches are not always directly reflected in the prototype performance results. Early in the design process, from a standard-commercial sintered metal mini trochoidal-gear unit, fundamental characteristics and dimensional limitations have been evaluated becoming the strategic parameters that led to its configuration. The main technical challenge to confront is being sealed with non-exterior driveshaft, ensuring that the whole interior is filled and wetted with working fluid and helping the hydrodynamic film formation, the pumping effect, and the heat dissipation. Subsequently, the mini pump architecture, embodiment, methodology, materials, and manufacture are presented. The trend of applications of polymer composite materials and their benefits wanted to be examined with this new mini pump prototype, and a pure polyoxymethylene mini trochoidal-gear set has been designed and manufactured. Finally, both the sintered and the polymer trochoidal-gear units have been experimentally tested in an in-house full-instrumented mini test bench. Although the main goal of the presented work is the

  15. Influencia de la lubricación en la eficiencia de engranajes de tornillo sinfín//Influence of oil lubrication on cylindrical worm gear efficiency

    Directory of Open Access Journals (Sweden)

    Gonzalo González-Rey

    2012-12-01

    Full Text Available Fue desarrollado un procedimiento para estimar la eficiencia de engranajes de tornillo sinfín cilíndrico considerando pérdidas de potencia por fricción entre flancos conjugados, tres bases de lubricantes y sistema de lubricación. El procedimiento fue validado por comparación con valores de eficiencia reportados para engranajes fabricados por una compañía especializada en engranajes. Los resultadosestablecen fuerte dependencia entre el coeficiente de fricción y la velocidad de deslizamiento hasta valores inferiores a 0.4 m/s en engranajes con aceites sintéticos y para engranajes con inmersión en aceites minerales el coeficiente de fricción de ensayo fue observado constante hasta velocidades dedeslizamiento inferiores a 0,9 m/s. Fue determinado que en sistemas de lubricación por inmersión, los aceites sintéticos en sustitución de aceites minerales mejoran como promedio en 44 % la eficiencia de engranajes de tornillo sinfín. Finalmente, fue formulado un módulo racional del engranaje orientado amaximizar la eficiencia del engranaje lubricado con aceite sintético.Palabras claves: eficiencia, engranaje, tornillo sinfín, lubricante, aceite sintético, ISO/TR 145281._______________________________________________________________________________AbstractIn this study, a general procedure is proposed for the prediction of cylindrical worm gear efficiency takinginto account friction losses between worm and wheel gear, three base oils and lubrication system. Thevalidation of procedure was achieved by comparing with values of efficiency for worm gear unitsreferenced by a German gear manufacturer company. In the case of worm gears lubricated with syntheticbase oils, results show an strong dependency between basic coefficient of friction and sliding velocity up to0,4 m/s and for dip lubrication with mineral oils the basic coefficient of friction was observed constant forsliding velocity below 0,9 m/s. Other results confirm the increase of

  16. Rolling Friction on a Wheeled Laboratory Cart

    Science.gov (United States)

    Mungan, Carl E.

    2012-01-01

    A simple model is developed that predicts the coefficient of rolling friction for an undriven laboratory cart on a track that is approximately independent of the mass loaded onto the cart and of the angle of inclination of the track. The model includes both deformation of the wheels/track and frictional torque at the axles/bearings. The concept of…

  17. Vegetation response to wagon wheel camp layouts.

    African Journals Online (AJOL)

    Wagon wheel camp layouts have been favoured, in some quarters, for rotational grazing due to the economy and convenience of having the camps radially arranged around central facilities. A possible disadvantage of such layouts is the tendency for over-grazing near the hub and under-grazing at the extremities.

  18. Examination of a failed fifth wheel coupling

    CSIR Research Space (South Africa)

    Fernandes, PJL

    1998-03-01

    Full Text Available Examination of a fifth wheel coupling which had failed in service showed that it had been modified and that the operating handle had been moved from its original design position. This modification completely eliminated the safety device designed...

  19. Omnidirectional Wheel-Legged Hybrid Mobile Robot

    Directory of Open Access Journals (Sweden)

    István Vilikó

    2015-06-01

    Full Text Available The purpose of developing hybrid locomotion systems is to merge the advantages and to eliminate the disadvantages of different type of locomotion. The proposed solution combines wheeled and legged locomotion methods. This paper presents the mechatronic design approach and the development stages of the prototype.

  20. Investigating Functions with a Ferris Wheel

    Science.gov (United States)

    Johnson, Heather Lynn; Hornbein, Peter; Azeem, Sumbal

    2016-01-01

    The authors provide a dynamic Ferris wheel computer activity that teachers can use as an instructional tool to help students investigate functions. They use a student's work to illustrate how students can use relationships between quantities to further their thinking about functions.

  1. Experiments on a Tail-wheel Shimmy

    Science.gov (United States)

    Harling, R; Dietz, O

    1954-01-01

    Model tests on the "running belt" and tests with a full-scale tail wheel were made on a rotating drum as well as on a runway in order to investigate the causes of the undesirable shimmy phenomena frequently occurring on airplane tail wheels, and the means of avoiding them. The small model (scale 1:10) permitted simulation of the mass, moments of inertia, and fuselage stiffness of the airplane and determination of their influence on the shimmy, whereas by means of the larger model with pneumatic tires (scale 1:2) more accurate investigations were made on the tail wheel itself. The results of drum and road tests show good agreement with one another and with model values. Detailed investigations were made regarding the dependence of the shimmy tendency on trail, rolling speed, load, size of tires, ground friction,and inclination of the swivel axis; furthermore, regarding the influence of devices with restoring effect on the tail wheel, and the friction damping required for prevention of shimmy. Finally observations from slow-motion pictures are reported and conclusions drawn concerning the influence of tire deformation.

  2. The physics of wheel-rail stability

    Science.gov (United States)

    Tan, B. T. G.

    2018-05-01

    This article discusses, at a simple level, the dynamics of the wheel-rail interface, which is fundamental to the stability of rail vehicles. The physics underlying this topic deserves to be better known by physicists and physics students, as it underpins such an important part of our technological infrastructure.

  3. 49 CFR 215.103 - Defective wheel.

    Science.gov (United States)

    2010-10-01

    ... of the rim; or, (i) A wheel on the car has been welded unless the car is being moved for repair in... on the car shows evidence of being loose such as oil seepage on the back hub or back plate; (h) A...

  4. Steady state modeling of desiccant wheels

    DEFF Research Database (Denmark)

    Bellemo, Lorenzo; Elmegaard, Brian; Kærn, Martin Ryhl

    2014-01-01

    Desiccant wheels are rotary desiccant dehumidifiers used in air conditioning and drying applications. The modeling of simultaneous heat and mass transfer in these components is crucial for estimating their performances, as well as for simulating and optimizing their implementation in complete...

  5. Performance Evaluation of Abrasive Grinding Wheel Formulated ...

    African Journals Online (AJOL)

    This paper presents a study on the formulation and manufacture of abrasive grinding wheel using locally formulated silicon carbide abrasive grains. Six local raw material substitutes were identified through pilot study and with the initial mix of the identified materials, a systematic search for an optimal formulation of silicon ...

  6. The time has come for retail wheeling

    International Nuclear Information System (INIS)

    Dahlen, D.O.; Achinger, S.K.

    1993-01-01

    Retail wheeling, the transmission and distribution of electric power for end users, fosters competition and promotes the efficient use of resources. Access to electric-utility transmission and distribution systems would establish competitive electric markets by permitting retail customers to obtain the lowest cost for energy which would meet their specific needs. Among electric utilities and their customers, the idea of allowing market forces to attract supply and set prices is a current controversy. To counter the anticompetitive effects of recent mergers in the wholesale market, the Federal Energy Regulatory Commission (FERC) has mandated open transmission access for wholesale customers. However, the FERC denied access to retail customers and qualifying facilities (QF) in both its Northeast Utilities (FERC case No. EC-90-1 90) and PacifiCorp (U.S. Circuit Court of Appeals for D.C., 89-1333) decisions. Retail wheeling will benefit both consumers and producers. The ability of large customers to purchase power from the lowest cost sources and have it transmitted to their facilities, will save American industrial and commercial customers at least $15 billion annually. The Increased efficiency resulting from competition would also reduce residential electric bills. Through retail wheeling, independent power producers can market their capacity to a greater customer base, and traditional utilities will benefit from access to other utilities markets with the more efficient utilities prospering. Retail wheeling will, therefore, reward efficient utilities and encourage inefficient utilities to improve

  7. 2009 Tactical Wheeled Vehicles Conference (TWV)

    Science.gov (United States)

    2009-02-03

    fields. 5 ... Spent $265.2 Million in Reset of TWVs … or larger than the entire 2007 revenue of the Los Angeles Dodgers . ... Spent $265.2 Million in...Reset of T Vs or larger than the entire 2007 revenue of the Los Angeles Dodgers . ... Maintains over 29,000 Tactical Wheeled Vehicles in theater … or

  8. The Physics of Wheel-Rail Stability

    Science.gov (United States)

    Tan, B. T. G.

    2018-01-01

    This article discusses, at a simple level, the dynamics of the wheel-rail interface, which is fundamental to the stability of rail vehicles. The physics underlying this topic deserves to be better known by physicists and physics students, as it underpins such an important part of our technological infrastructure

  9. Bifurcation phenomena in internal dynamics of gear systems

    Directory of Open Access Journals (Sweden)

    Hortel M.

    2007-10-01

    Full Text Available The impact effects in gear mesh represent specific phenomena in the dynamic investigation of highspeed light transmission systems with kinematic couplings. They are caused of greater dynamic than static elastic deformations in meshing gear profiles. In term of internal dynamics they are influenced among others by time heteronomous stiffness functions in gear mesh and resonance tuning of stiffness level. The damping in gear mesh and in gear system is concerned significantly in the amplitude progress, greatness and phase shift of relative motion towards stiffness function alternatively towards its modify form in gear mesh. In consequence of these and another actions rise above resonance characteristics certain singular locations with jump amplitude course.

  10. Nonlinear dynamics modelling of multistage micro-planetary gear transmission

    Directory of Open Access Journals (Sweden)

    Li Jianying

    2018-01-01

    Full Text Available The transmission structure of a 2K-H multistage micro-planetary gear transmission reducer is described in detail, and three assumptions are supposed in dynamic modelling. On basis of these assumptions, a three stages 2K-H micro-planetary gear transmission dynamic model is established, in which the relative displacement each meshing gear pairs can be obtained after including the comprehensive transmission error. According to gear kinematics, the friction arms between the sun gear, the ring gear and the nth planet are also obtained, and the friction coefficient in the mixed elastohydrodynamic lubrication is considered, the transmission system motion differential equations are obtained, including above factors and the time-varying meshing stiffness, damping and backlash, inter-stage coupling stiffness, it can be provided an theoretical foundation for further analysing the parameter sensitivity, dynamic stability and designing.

  11. Economic method for helical gear flank surface characterisation

    Science.gov (United States)

    Koulin, G.; Reavie, T.; Frazer, R. C.; Shaw, B. A.

    2018-03-01

    Typically the quality of a gear pair is assessed based on simplified geometric tolerances which do not always correlate with functional performance. In order to identify and quantify functional performance based parameters, further development of the gear measurement approach is required. Methodology for interpolation of the full active helical gear flank surface, from sparse line measurements, is presented. The method seeks to identify the minimum number of line measurements required to sufficiently characterise an active gear flank. In the form ground gear example presented, a single helix and three profile line measurements was considered to be acceptable. The resulting surfaces can be used to simulate the meshing engagement of a gear pair and therefore provide insight into functional performance based parameters. Therefore the assessment of the quality can be based on the predicted performance in the context of an application.

  12. Reinventing the Wheel: The Economic Benefits of Wheeled Transportation in Early British Colonial West Africa

    OpenAIRE

    Isaías N. Chaves; Stanley L. Engerman; James A. Robinson

    2013-01-01

    One of the great puzzles of Sub-Saharan African economic history is that wheeled transportation was barely used prior to the colonial period. Instead, head porterage was the main method of transportation. The consensus among historians is that this was a rational adaption to the underlying conditions and factor endowments. In this paper we undertake the first systematic investigation of the relative costs of the different forms of wheeled transportation in Africa. We focus on calculating the ...

  13. A dynamic wheel-rail impact analysis of railway track under wheel flat by finite element analysis

    Science.gov (United States)

    Bian, Jian; Gu, Yuantong; Murray, Martin Howard

    2013-06-01

    Wheel-rail interaction is one of the most important research topics in railway engineering. It involves track impact response, track vibration and track safety. Track structure failures caused by wheel-rail impact forces can lead to significant economic loss for track owners through damage to rails and to the sleepers beneath. Wheel-rail impact forces occur because of imperfections in the wheels or rails such as wheel flats, irregular wheel profiles, rail corrugations and differences in the heights of rails connected at a welded joint. A wheel flat can cause a large dynamic impact force as well as a forced vibration with a high frequency, which can cause damage to the track structure. In the present work, a three-dimensional finite element (FE) model for the impact analysis induced by the wheel flat is developed by the use of the FE analysis (FEA) software package ANSYS and validated by another validated simulation. The effect of wheel flats on impact forces is thoroughly investigated. It is found that the presence of a wheel flat will significantly increase the dynamic impact force on both rail and sleeper. The impact force will monotonically increase with the size of wheel flats. The relationships between the impact force and the wheel flat size are explored from this FEA and they are important for track engineers to improve their understanding of the design and maintenance of the track system.

  14. Shaft Excavation in Frozen Ground at Point 5

    CERN Document Server

    Osborne, J

    2000-01-01

    Construction work on the 112 MCHF civil engineering contract started at Point 5 in August 1998. The new surface buildings and underground structures are necessary to accommodate the CMS detector for the LHC Project. The principal underground works consist of two new shafts, two parallel caverns separated by a supporting pillar, and a number of small connection tunnels and service galleries. The two shafts are to be sunk through approximately 50 m of water-bearing moraine to the underlying molasse rock. From a number of possible construction methods, ground freezing of the moraine was considered to be most appropriate. The ground freezing is used to control the groundwater and to support temporarily the moraine during excavation and lining of the shafts. The aim of this paper is to present the ground-freezing technique and to discuss the advantages and disadvantages of the system in the light of its first few months of running on the Point 5 site.

  15. Bentonite as a waste isolation pilot plant shaft sealing material

    International Nuclear Information System (INIS)

    Daemen, J.; Ran, Chongwei

    1996-12-01

    Current designs of the shaft sealing system for the Waste Isolation Pilot Plant (WIPP) propose using bentonite as a primary sealing component. The shaft sealing designs anticipate that compacted bentonite sealing components can perform through the 10,000-year regulatory period and beyond. To evaluate the acceptability of bentonite as a sealing material for the WIPP, this report identifies references that deal with the properties and characteristics of bentonite that may affect its behavior in the WIPP environment. This report reviews published studies that discuss using bentonite as sealing material for nuclear waste disposal, environmental restoration, toxic and chemical waste disposal, landfill liners, and applications in the petroleum industry. This report identifies the physical and chemical properties, stability and seal construction technologies of bentonite seals in shafts, especially in a saline brine environment. This report focuses on permeability, swelling pressure, strength, stiffness, longevity, and densification properties of bentonites

  16. Bentonite as a waste isolation pilot plant shaft sealing material

    Energy Technology Data Exchange (ETDEWEB)

    Daemen, J.; Ran, Chongwei [Univ. of Nevada, Reno, NV (United States)

    1996-12-01

    Current designs of the shaft sealing system for the Waste Isolation Pilot Plant (WIPP) propose using bentonite as a primary sealing component. The shaft sealing designs anticipate that compacted bentonite sealing components can perform through the 10,000-year regulatory period and beyond. To evaluate the acceptability of bentonite as a sealing material for the WIPP, this report identifies references that deal with the properties and characteristics of bentonite that may affect its behavior in the WIPP environment. This report reviews published studies that discuss using bentonite as sealing material for nuclear waste disposal, environmental restoration, toxic and chemical waste disposal, landfill liners, and applications in the petroleum industry. This report identifies the physical and chemical properties, stability and seal construction technologies of bentonite seals in shafts, especially in a saline brine environment. This report focuses on permeability, swelling pressure, strength, stiffness, longevity, and densification properties of bentonites.

  17. The effect of induction motor shaft diameter on motor performance

    Directory of Open Access Journals (Sweden)

    Asım Gökhan Yetgin

    2017-10-01

    Full Text Available Induction motors are used in many areas from the past to the present and in different fields with the development of technology has continued to be used. It is obvious that induction motors as an improvement to the efficiency in terms of energy saving would cause great benefit. In that context, induction motor manufacturers and designers are constantly trying out new methods to improve motor performance and efficiency. In this study, what would be the optimum diameter of the shaft in order to increase the efficiency of the induction motor were investigated. In the study, 5.5 kW, 7.5 kW and 11 kW motors analyzes were also performed. Obtained shaft diameter values were compared with the manufacturer values. In addition, critical points such as the magnetic flux values, weight values and performances of the motors were examined and optimal shaft diameter values for each motor have been determined.

  18. Reclamation of derelict land: procedure for locating abandoned mine shafts

    Energy Technology Data Exchange (ETDEWEB)

    1976-01-01

    A procedure for locating abandoned shafts has been compiled from the experiences of those familiar with the problem. The procedure begins with a careful study of all the maps, aerial photographs and documents related to the mining activity and may include specialized surveys using geophysical, geochemical and aerial photographic methods when specific conditions are known or are likely to exist at the site. Direct methods, of either excavation, probing or drilling are required in each instance to confirm the location. Most of the methods are illustrated with case histories, and seismic and remote sensing methods are discussed in detail in appendices. Also in appendices, specific sources of information relating to mining are listed. Physical characteristics of mine shafts which are likely to have a bearing on the finding of the shaft are discussed, and an outline of the costs of the methods is presented. A glossary of mining terms used in the document and a detailed bibliography are provided.

  19. Shaft seal assembly for high speed and high pressure applications

    Science.gov (United States)

    Hadt, W. F.; Ludwig, L. P. (Inventor)

    1979-01-01

    A seal assembly is provided for reducing the escape of fluids from between a housing and a shaft rotably mounted in the housing. The seal assembly comprises a pair of seal rings resiliently connected to each other and disposed in side-by-side relationship. In each seal ring, both the internal bore surface and the radial face which faces away from the other seal ring are provided with a plurality of equi-spaced recesses. The seal faces referred to are located adjacent a seating surface of the housing. Under normal operating conditions, the seal assembly is stationary with respect to the housing, and the recesses generate life, keep the assembly spaced from the rotating shaft and allow slip therebetween. The seal assembly can seize on the shaft, and slip will then occur between the radial faces and the housing.

  20. Prediction of Landing Gear Noise Reduction and Comparison to Measurements

    Science.gov (United States)

    Lopes, Leonard V.

    2010-01-01

    Noise continues to be an ongoing problem for existing aircraft in flight and is projected to be a concern for next generation designs. During landing, when the engines are operating at reduced power, the noise from the airframe, of which landing gear noise is an important part, is equal to the engine noise. There are several methods of predicting landing gear noise, but none have been applied to predict the change in noise due to a change in landing gear design. The current effort uses the Landing Gear Model and Acoustic Prediction (LGMAP) code, developed at The Pennsylvania State University to predict the noise from landing gear. These predictions include the influence of noise reduction concepts on the landing gear noise. LGMAP is compared to wind tunnel experiments of a 6.3%-scale Boeing 777 main gear performed in the Quiet Flow Facility (QFF) at NASA Langley. The geometries tested in the QFF include the landing gear with and without a toboggan fairing and the door. It is shown that LGMAP is able to predict the noise directives and spectra from the model-scale test for the baseline configuration as accurately as current gear prediction methods. However, LGMAP is also able to predict the difference in noise caused by the toboggan fairing and by removing the landing gear door. LGMAP is also compared to far-field ground-based flush-mounted microphone measurements from the 2005 Quiet Technology Demonstrator 2 (QTD 2) flight test. These comparisons include a Boeing 777-300ER with and without a toboggan fairing that demonstrate that LGMAP can be applied to full-scale flyover measurements. LGMAP predictions of the noise generated by the nose gear on the main gear measurements are also shown.