WorldWideScience

Sample records for ge semiconductor detectors

  1. Fabrication of prototypes of Ge(li) semiconductor detector

    International Nuclear Information System (INIS)

    Santos, W.M.S.; Marti, G.V.; Rizzo, P.; Barros, S. de.

    1987-01-01

    The fabrication process of Ge(Li) semiconductor detector prototypes, from specific chemical treatments of doped monocrystal with receptor impurities (p + semicondutor) is presented. The detector characteristics, such as resulotion and operation tension are shown. (M.C.K.) [pt

  2. Compound Semiconductor Radiation Detector

    International Nuclear Information System (INIS)

    Kim, Y. K.; Park, S. H.; Lee, W. G.; Ha, J. H.

    2005-01-01

    In 1945, Van Heerden measured α, β and γ radiations with the cooled AgCl crystal. It was the first radiation measurement using the compound semiconductor detector. Since then the compound semiconductor has been extensively studied as radiation detector. Generally the radiation detector can be divided into the gas detector, the scintillator and the semiconductor detector. The semiconductor detector has good points comparing to other radiation detectors. Since the density of the semiconductor detector is higher than that of the gas detector, the semiconductor detector can be made with the compact size to measure the high energy radiation. In the scintillator, the radiation is measured with the two-step process. That is, the radiation is converted into the photons, which are changed into electrons by a photo-detector, inside the scintillator. However in the semiconductor radiation detector, the radiation is measured only with the one-step process. The electron-hole pairs are generated from the radiation interaction inside the semiconductor detector, and these electrons and charged ions are directly collected to get the signal. The energy resolution of the semiconductor detector is generally better than that of the scintillator. At present, the commonly used semiconductors as the radiation detector are Si and Ge. However, these semiconductor detectors have weak points. That is, one needs thick material to measure the high energy radiation because of the relatively low atomic number of the composite material. In Ge case, the dark current of the detector is large at room temperature because of the small band-gap energy. Recently the compound semiconductor detectors have been extensively studied to overcome these problems. In this paper, we will briefly summarize the recent research topics about the compound semiconductor detector. We will introduce the research activities of our group, too

  3. Semiconductor detectors in nuclear and particle physics

    International Nuclear Information System (INIS)

    Rehak, P.; Gatti, E.

    1992-01-01

    Semiconductor detectors for elementary particle physics and nuclear physics in the energy range above 1 GeV are briefly reviewed. In these two fields semiconductor detectors are used mainly for the precise position sensing. In a typical experiment, the position of a fast charged particle crossing a relatively thin semiconductor detector is measured. The position resolution achievable by semiconductor detectors is compared with the resolution achievable by gas filled position sensing detectors. Semiconductor detectors are divided into two groups: Classical semiconductor diode detectors and semiconductor memory detectors. Principles of the signal formation and the signal read-out for both groups of detectors are described. New developments of silicon detectors of both groups are reported

  4. Semiconductors detectors: basics principals, fabrication and repair

    International Nuclear Information System (INIS)

    Souza Coelho, L.F. de.

    1982-05-01

    The fabrication and repairing techniques of semiconductor detectors, are described. These methods are shown in the way they are applied by the semiconductor detector laboratory of the KFA-Julich, where they have been developed during the last 15 years. The history of the semiconductor detectors is presented here, being also described the detector fabrication experiences inside Brazil. The key problems of manufacturing are raised. In order to understand the fabrication and repairing techniques the working principles of these detectors, are described. The cases in which worked during the stay in the KFA-Julich, particularly the fabrication of a plane Ge (Li) detector, with side entry, and the repair of a coaxial Ge (Li) is described. The vanguard problems being researched in Julich are also described. Finally it is discussed a timetable for the semiconductor detector laboratory of the UFRJ, which laboratory is in the mounting stage now. (Author) [pt

  5. Semiconductor detectors in nuclear and particle physics

    International Nuclear Information System (INIS)

    Rehak, P.; Gatti, E.

    1995-01-01

    Semiconductor detectors for elementary particle physics and nuclear physics in the energy range above 1 GeV are briefly reviewed. In these two fields semiconductor detectors are used mainly for the precise position sensing. In a typical experiment, the position of a fast charged particle crossing a relatively thin semiconductor detector is measured. The position resolution achievable by semiconductor detectors is compared with the resolution achievable by gas filled position sensing detectors. Semiconductor detectors are divided into two groups; (i) classical semiconductor diode detectors and (ii) semiconductor memory detectors. Principles of the signal formation and the signal read-out for both groups of detectors are described. New developments of silicon detectors of both groups are reported. copyright 1995 American Institute of Physics

  6. HP Ge planar detectors

    International Nuclear Information System (INIS)

    Gornov, M.G.; Gurov, Yu.B.; Soldatov, A.M.; Osipenko, B.P.; Yurkowski, J.; Podkopaev, O.I.

    1989-01-01

    Parameters of planar detectors manufactured of HP Ge are presented. The possibilities to use multilayer spectrometers on the base of such semiconductor detectors for nuclear physics experiments are discussed. It is shown that the obtained detectors including high square ones have spectrometrical characteristics close to limiting possible values. 9 refs.; 3 figs.; 1 tab

  7. Response function of semiconductor detectors, Ge and Si(Li)

    International Nuclear Information System (INIS)

    Zevallos Chavez, Juan Yury

    2003-01-01

    The Response Function (RF) for Ge and Si(Li) semiconductor detectors was obtained. The RF was calculated for five detectors, four Hp Ge with active volumes of 89 cm 3 , 50 cm 3 , 8 cm 3 and 5 cm 3 , and one Si(Li) with 0.143 cm 3 of active volume. The interval of energy studied ranged from 6 keV up to 1.5 MeV. Two kinds of studies were done in this work. The first one was the RF dependence with the detection geometry. Here the calculation of the RF for a geometry named as simple and an extrapolation of that RF, were both done. The extrapolation process analyzed both, spectra obtained with a shielding geometry and spectra where the source-detector distance was modified. The second one was the RF dependence with the detection electronics. This study was done varying the shaping time of the pulse in the detection electronics. The purpose was to verify the effect of the ballistic deficit in the resolution of the detector. This effect was not observed. The RF components that describe the region of the total absorption of the energy of the incident photons, and the partial absorption of this energy, were both treated. In particular, empirical functions were proposed for the treatment of both, the multiple scattering originated in the detector (crystal), and the photon scattering originated in materials of the neighborhood of the crystal. Another study involving Monte Carlo simulations was also done in order to comprehend the photon scattering structures produced in an iron shield. A deconvolution method is suggested, for spectra related to scattered radiation in order to assess the dose delivered to the scatterer. (author)

  8. Response function of semiconductor detectors, Ge and Si(Li); Funcao resposta de detectores semicondutores, Ge e Si(Li)

    Energy Technology Data Exchange (ETDEWEB)

    Zevallos Chavez, Juan Yury

    2003-07-01

    The Response Function (RF) for Ge and Si(Li) semiconductor detectors was obtained. The RF was calculated for five detectors, four Hp Ge with active volumes of 89 cm{sup 3} , 50 cm{sup 3} , 8 cm{sup 3} and 5 cm{sup 3}, and one Si(Li) with 0.143 cm{sup 3} of active volume. The interval of energy studied ranged from 6 keV up to 1.5 MeV. Two kinds of studies were done in this work. The first one was the RF dependence with the detection geometry. Here the calculation of the RF for a geometry named as simple and an extrapolation of that RF, were both done. The extrapolation process analyzed both, spectra obtained with a shielding geometry and spectra where the source-detector distance was modified. The second one was the RF dependence with the detection electronics. This study was done varying the shaping time of the pulse in the detection electronics. The purpose was to verify the effect of the ballistic deficit in the resolution of the detector. This effect was not observed. The RF components that describe the region of the total absorption of the energy of the incident photons, and the partial absorption of this energy, were both treated. In particular, empirical functions were proposed for the treatment of both, the multiple scattering originated in the detector (crystal), and the photon scattering originated in materials of the neighborhood of the crystal. Another study involving Monte Carlo simulations was also done in order to comprehend the photon scattering structures produced in an iron shield. A deconvolution method is suggested, for spectra related to scattered radiation in order to assess the dose delivered to the scatterer. (author)

  9. A Gamma Scanner Using a Ge(Li) Semi-Conductor Detector, with the Possibility of Operation in the Anti-Coincidence Mode

    Energy Technology Data Exchange (ETDEWEB)

    Forsyth, R S; Blackadder, W H

    1970-04-15

    A fuel element transport flask has been modified as a facility for gamma scanning irradiated fuel elements up to a length of 75 cm. By means of a Ge(Li) semi-conductor detector, satisfactory activity profiles along the specimens have been obtained, permitting the location of individual fuel pellets. An annular plastic detector surrounding the Ge(Li) detector allows operation of the spectrometer in the anti-coincidence mode, and reduction of the Compton continuum by about 50% has been obtained.

  10. A Gamma Scanner Using a Ge(Li) Semi-Conductor Detector, with the Possibility of Operation in the Anti-Coincidence Mode

    International Nuclear Information System (INIS)

    Forsyth, R.S.; Blackadder, W.H.

    1970-04-01

    A fuel element transport flask has been modified as a facility for gamma scanning irradiated fuel elements up to a length of 75 cm. By means of a Ge(Li) semi-conductor detector, satisfactory activity profiles along the specimens have been obtained, permitting the location of individual fuel pellets. An annular plastic detector surrounding the Ge(Li) detector allows operation of the spectrometer in the anti-coincidence mode, and reduction of the Compton continuum by about 50% has been obtained

  11. Investigation of the operational quality of germanium gamma detectors. Estimation of Ge:Li detector survival rates

    International Nuclear Information System (INIS)

    Zerbib, J.-C.

    1980-01-01

    A working group has produced tables of information on gamma semiconductor Ge detectors: Ge(Li) or intrinsic Ge. The information was obtained as a result of enquirres addressed to various laboratories, and concerns 228-sources in France and Belgium [fr

  12. The semi-conductor detectors: art state, new concepts

    International Nuclear Information System (INIS)

    Pochet, T.

    1993-01-01

    After a brief recall of signal formation principle in a detector and of its different operation modes, the high Z materials as CdTe, HgI 2 , GaAs ,Ge and Si are presented, followed by the new 'thin layer' semiconductors

  13. Application of energy dispersive X-ray spectrometers with semiconductor detectors in radiometric analyses

    International Nuclear Information System (INIS)

    Jugelt, P.; Schieckel, M.

    1983-01-01

    Problems and possibilities of applying semiconductor detector spectrometers in radiometric analyses are described. A summary of the state of the art and tendencies of device engineering and spectra evaluation is given. Liquid-nitrogen cooled Li-drifted Si-detectors and high-purity Ge-detectors are compared. Semiconductor detectors working at room temperature are under development. In this connection CdTe and HgI 2 semiconductor detectors are compared. The use of small efficient computers in the spectrometer systems stimulates the development of algorithms for spectra analyses and for determining the concentration. Fields of application of energy dispersive X-ray spectrometers are X-ray diffraction and X-ray macroanalysis in investigating the structure of extensive surface regions

  14. Calibration of Ge(Li) semiconductor detector by method using agar volume source

    International Nuclear Information System (INIS)

    Yanase, Nobuyuki; Kasai, Atsushi

    1979-12-01

    The Ge(Li) semiconductor detector was calibrated for measurements of environmental samples. The radioisotopes used for standard sources are 22 Na, 51 Cr, 56 Co, 57 Co, 133 Ba, 137 Cs, 144 Ce and 241 Am. These are mixed with hot agar aqueous solution and fixed uniformly in a cylindrical plastic case in cooling. The agar volume source is advantageous in handling over the fluid aqueous source. The prepared cylindrical standard sources are in diameters 6 and 8 cm and thicknesses 1, 5, 10, 20, 30 and 40 mm (only for 8 cm diameter). The radioactivities of prepared standard sources are between 0.03 μCi and 0.2 μCi. It takes only a week to make the calibration except data processing. The obtained full energy peak efficiency curves include 5 - 10% error due to preparation of agar source, reference radioactivity data of purchased standard solutions, reference data of branching ratio of gamma-ray and sum effect. The efficiency curves, however, are sufficient for quantitative analysis of environmental samples. (author)

  15. The use of GaSe semiconductor detectors for monitoring high energy muon beams

    CERN Document Server

    Mancini, A M; Murri, R; Quirini, A; Rizzo, A; Vasanelli, L

    1976-01-01

    GaSe semiconductor detectors have been successfully tested during one year for monitoring muon beams in the GeV range in the neutrino experiment at CERN. Their performances are comparable with those of commercial Si surface barrier detectors for this particular application. Crystal growth, detector fabrication and characterization are briefly described. Various advantages (cost, ruggedness, resistance to radiation damage, manufacturing simplicity, etc.) are discussed. (8 refs).

  16. Room Temperature Hard Radiation Detectors Based on Solid State Compound Semiconductors: An Overview

    Science.gov (United States)

    Mirzaei, Ali; Huh, Jeung-Soo; Kim, Sang Sub; Kim, Hyoun Woo

    2018-05-01

    Si and Ge single crystals are the most common semiconductor radiation detectors. However, they need to work at cryogenic temperatures to decrease their noise levels. In contrast, compound semiconductors can be operated at room temperature due to their ability to grow compound materials with tunable densities, band gaps and atomic numbers. Highly efficient room temperature hard radiation detectors can be utilized in biomedical diagnostics, nuclear safety and homeland security applications. In this review, we discuss room temperature compound semiconductors. Since the field of radiation detection is broad and a discussion of all compound materials for radiation sensing is impossible, we discuss the most important materials for the detection of hard radiation with a focus on binary heavy metal semiconductors and ternary and quaternary chalcogenide compounds.

  17. Room Temperature Hard Radiation Detectors Based on Solid State Compound Semiconductors: An Overview

    Science.gov (United States)

    Mirzaei, Ali; Huh, Jeung-Soo; Kim, Sang Sub; Kim, Hyoun Woo

    2018-03-01

    Si and Ge single crystals are the most common semiconductor radiation detectors. However, they need to work at cryogenic temperatures to decrease their noise levels. In contrast, compound semiconductors can be operated at room temperature due to their ability to grow compound materials with tunable densities, band gaps and atomic numbers. Highly efficient room temperature hard radiation detectors can be utilized in biomedical diagnostics, nuclear safety and homeland security applications. In this review, we discuss room temperature compound semiconductors. Since the field of radiation detection is broad and a discussion of all compound materials for radiation sensing is impossible, we discuss the most important materials for the detection of hard radiation with a focus on binary heavy metal semiconductors and ternary and quaternary chalcogenide compounds.

  18. State of the art in semiconductor detectors

    International Nuclear Information System (INIS)

    Rehak, P.; Gatti, E.

    1990-01-01

    The state of the art in semiconductor detectors for elementary particle physics and X-ray astronomy is briefly reviewed. Semiconductor detectors are divided into two groups; i) classical semiconductor diode detectors and ii) semiconductor memory detectors. Principles of signal formation for both groups of detectors are described and their performance is compared. New developments of silicon detectors are reported here. (orig.)

  19. State of the art in semiconductor detectors

    International Nuclear Information System (INIS)

    Rehak, P.; Gatti, E.

    1989-01-01

    The state of the art in semiconductor detectors for elementary particle physics and x-ray astronomy is briefly reviewed. Semiconductor detectors are divided into two groups; classical semiconductor diode detectors; and semiconductor memory detectors. Principles of signal formation for both groups of detectors are described and their performance is compared. New developments of silicon detectors are reported here. 13 refs., 8 figs

  20. Progress in semiconductor drift detectors

    International Nuclear Information System (INIS)

    Rehak, P.; Walton, J.; Gatti, E.

    1985-01-01

    Progress in testing semiconductor drift detectors is reported. Generally better position and energy resolutions were obtained than resolutions published previously. The improvement is mostly due to new electronics better matched to different detectors. It is shown that semiconductor drift detectors are becoming versatile and reliable detectors for position and energy measurements

  1. Physical principles of semiconductor detectors

    International Nuclear Information System (INIS)

    Micek, S.L.

    1979-01-01

    The general properties of semiconductors with respect to the possibilities of their use as the ionization radiation detectors are discussed. Some chosen types of semiconductor junctions and their characteristics are briefly presented. There are also discussed the physical phenomena connected with the formation of barriers in various types of semiconductor counters. Finally, the basic properties of three main types of semiconductor detectors are given. (author)

  2. Metal-semiconductor, composite radiation detectors

    International Nuclear Information System (INIS)

    Orvis, W.J.; Yee, J.H.; Fuess, D.A.

    1991-12-01

    In 1989, Naruse and Hatayama of Toshiba published a design for an increased efficiency x-ray detector. The design increased the efficiency of a semiconductor detector by interspersing layers of high-z metal within it. Semiconductors such as silicon make good, high-resolution radiation detectors, but they have low efficiency because they are low-z materials (z = 14). High-z metals, on the other hand, are good absorbers of high-energy photons. By interspersing high-z metal layers with semiconductor layers, Naruse and Hatayama combined the high absorption efficiency of the high-z metals with good detection capabilities of a semiconductor. This project is an attempt to use the same design to produce a high- efficiency gamma ray detector. By their nature, gamma rays require thicker metal layers to efficiently absorb them. These thicker layers change the behavior of the detector by reducing the resolution, compared to a solid state detector, and shifting the photopeak by a predictable amount. During the last year, we have modeled parts of the detector and have nearly completed a prototype device. 2 refs

  3. Compound Semiconductor Radiation Detectors

    CERN Document Server

    Owens, Alan

    2012-01-01

    Although elemental semiconductors such as silicon and germanium are standard for energy dispersive spectroscopy in the laboratory, their use for an increasing range of applications is becoming marginalized by their physical limitations, namely the need for ancillary cooling, their modest stopping powers, and radiation intolerance. Compound semiconductors, on the other hand, encompass such a wide range of physical and electronic properties that they have become viable competitors in a number of applications. Compound Semiconductor Radiation Detectors is a consolidated source of information on all aspects of the use of compound semiconductors for radiation detection and measurement. Serious Competitors to Germanium and Silicon Radiation Detectors Wide-gap compound semiconductors offer the ability to operate in a range of hostile thermal and radiation environments while still maintaining sub-keV spectral resolution at X-ray wavelengths. Narrow-gap materials offer the potential of exceeding the spectral resolutio...

  4. Semiconductor detectors with proximity signal readout

    International Nuclear Information System (INIS)

    Asztalos, Stephen J.

    2012-01-01

    Semiconductor-based radiation detectors are routinely used for the detection, imaging, and spectroscopy of x-rays, gamma rays, and charged particles for applications in the areas of nuclear and medical physics, astrophysics, environmental remediation, nuclear nonproliferation, and homeland security. Detectors used for imaging and particle tracking are more complex in that they typically must also measure the location of the radiation interaction in addition to the deposited energy. In such detectors, the position measurement is often achieved by dividing or segmenting the electrodes into many strips or pixels and then reading out the signals from all of the electrode segments. Fine electrode segmentation is problematic for many of the standard semiconductor detector technologies. Clearly there is a need for a semiconductor-based radiation detector technology that can achieve fine position resolution while maintaining the excellent energy resolution intrinsic to semiconductor detectors, can be fabricated through simple processes, does not require complex electrical interconnections to the detector, and can reduce the number of required channels of readout electronics. Proximity electrode signal readout (PESR), in which the electrodes are not in physical contact with the detector surface, satisfies this need

  5. Semiconductor radiation detectors. Device physics

    International Nuclear Information System (INIS)

    Lutz, G.

    2007-01-01

    Starting from basic principles, the author, whose own contributions to these developments have been significant, describes the rapidly growing field of modern semiconductor detectors used for energy and position measurement radiation. This development was stimulated by requirements in elementary particle physics where it has led to important scientific discoveries. It has now spread to many other fields of science and technology. The book is written in a didactic way and includes an introduction to semiconductor physics. The working principles of semiconductor radiation detectors are explained in an intuitive way, followed by formal quantitative analysis. Broad coverage is also given to electronic signal readout and to the subject of radiation damage. The book is the first to comprehensively cover the semiconductor radiation detectors currently in use. It is useful as a teaching guide and as a reference work for research and applications. (orig.)

  6. Semiconductor high-energy radiation scintillation detector

    International Nuclear Information System (INIS)

    Kastalsky, A.; Luryi, S.; Spivak, B.

    2006-01-01

    We propose a new scintillation-type detector in which high-energy radiation generates electron-hole pairs in a direct-gap semiconductor material that subsequently recombine producing infrared light to be registered by a photo-detector. The key issue is how to make the semiconductor essentially transparent to its own infrared light, so that photons generated deep inside the semiconductor could reach its surface without tangible attenuation. We discuss two ways to accomplish this, one based on doping the semiconductor with shallow impurities of one polarity type, preferably donors, the other by heterostructure bandgap engineering. The proposed semiconductor scintillator combines the best properties of currently existing radiation detectors and can be used for both simple radiation monitoring, like a Geiger counter, and for high-resolution spectrography of the high-energy radiation. An important advantage of the proposed detector is its fast response time, about 1 ns, essentially limited only by the recombination time of minority carriers. Notably, the fast response comes without any degradation in brightness. When the scintillator is implemented in a qualified semiconductor material (such as InP or GaAs), the photo-detector and associated circuits can be epitaxially integrated on the scintillator slab and the structure can be stacked-up to achieve virtually any desired absorption capability

  7. Hybrid anode for semiconductor radiation detectors

    Science.gov (United States)

    Yang, Ge; Bolotnikov, Aleksey E; Camarda, Guiseppe; Cui, Yonggang; Hossain, Anwar; Kim, Ki Hyun; James, Ralph B

    2013-11-19

    The present invention relates to a novel hybrid anode configuration for a radiation detector that effectively reduces the edge effect of surface defects on the internal electric field in compound semiconductor detectors by focusing the internal electric field of the detector and redirecting drifting carriers away from the side surfaces of the semiconductor toward the collection electrode(s).

  8. Advanced far infrared detectors

    International Nuclear Information System (INIS)

    Haller, E.E.

    1993-05-01

    Recent advances in photoconductive and bolometric semiconductor detectors for wavelength 1 mm > λ > 50 μm are reviewed. Progress in detector performance in this photon energy range has been stimulated by new and stringent requirements for ground based, high altitude and space-borne telescopes for astronomical and astrophysical observations. The paper consists of chapters dealing with the various types of detectors: Be and Ga doped Ge photoconductors, stressed Ge:Ga devices and neutron transmutation doped Ge thermistors. Advances in the understanding of basic detector physics and the introduction of modern semiconductor device technology have led to predictable and reliable fabrication techniques. Integration of detectors into functional arrays has become feasible and is vigorously pursued by groups worldwide

  9. Metal-semiconductor, composite radiation detectors

    International Nuclear Information System (INIS)

    Orvis, W.J.; Yee, J.H.; Fuess, D.

    1992-12-01

    In 1989, Naruse and Hatayama of Toshiba published a design for an increased efficiency x-ray detector. The design increased the efficiency of a semiconductor detector by interspersing layers of high-z metal within it. Semiconductors such as silicon make good, high-resolution radiation detectors, but they have low efficiency because they are low-z materials (z = 14). High-z metals, on the other hand, are good absorbers of high-energy photons. By interspersing high-z metal layers with semiconductor layers, Naruse and Hatayama combined the high absorption efficiency of the high-z metals with the good detection capabilities of a semiconductor. This project is an attempt to use the same design to produce a high-efficiency, room temperature gamma ray detector. By their nature, gamma rays require thicker metal layers to efficiently absorb them. These thicker layers change the behavior of the detector by reducing the resolution, compared to a solid state detector, and shifting the photopeak by a predictable amount. During the last year, the authors have procured and tested a commercial device with operating characteristics similar to those of a single layer of the composite device. They have modeled the radiation transport in a multi-layered device, to verify the initial calculations of layer thickness and composition. They have modeled the electrostatic field in different device designs to locate and remove high-field regions that can cause device breakdown. They have fabricated 14 single layer prototypes

  10. Semiconductor X-ray detectors

    CERN Document Server

    Lowe, Barrie Glyn

    2014-01-01

    Identifying and measuring the elemental x-rays released when materials are examined with particles (electrons, protons, alpha particles, etc.) or photons (x-rays and gamma rays) is still considered to be the primary analytical technique for routine and non-destructive materials analysis. The Lithium Drifted Silicon (Si(Li)) X-Ray Detector, with its good resolution and peak to background, pioneered this type of analysis on electron microscopes, x-ray fluorescence instruments, and radioactive source- and accelerator-based excitation systems. Although rapid progress in Silicon Drift Detectors (SDDs), Charge Coupled Devices (CCDs), and Compound Semiconductor Detectors, including renewed interest in alternative materials such as CdZnTe and diamond, has made the Si(Li) X-Ray Detector nearly obsolete, the device serves as a useful benchmark and still is used in special instances where its large, sensitive depth is essential. Semiconductor X-Ray Detectors focuses on the history and development of Si(Li) X-Ray Detect...

  11. Measurement of energy transitions for the decay radiations of 75Ge and 69Ge in a high purity germanium detector

    Science.gov (United States)

    Aydın, Güral; Usta, Metin; Oktay, Adem

    2018-06-01

    Photoactivation experiments have a wide range of application areas in nuclear, particle physics, and medical physics such as measuring energy levels and half-lifes of nuclei, experiments for understanding imaging methods in medicine, isotope production for patient treatment, radiation security and transportation, radiation therapy, and astrophysics processes. In this study, some energy transition values of the decay radiations of 75Ge and 69Ge, which are the products of photonuclear reactions (γ, n) with germanium isotopes (75Ge and 69Ge), were measured. The gamma spectrum as a result of atomic transitions were analysed by using a high purity semiconductor germanium detector and the energy transition values which are presented here were compared with the ones which are the best in literature. It was observed that the results presented are in agreement with literature in error range and some results have better precisions.

  12. Pulse shape discrimination studies of Phase I Ge-detectors

    Energy Technology Data Exchange (ETDEWEB)

    Kirsch, Andrea [MPI fuer Kernphysik, Saupfercheckweg 1, 69117 Heidelberg (Germany); Collaboration: GERDA-Collaboration

    2013-07-01

    The GERmanium Detector Array experiment aims to search for the neutrinoless double beta decay (0νββ) of {sup 76}Ge by using isotopically enriched germanium crystals as source and detector simultaneously. The bare semiconductor diodes are operated in liquid argon at cryogenic temperatures in an ultra-low background environment. In addition, Gerda applies different active background reduction techniques, one of which is pulse shape discrimination studies of the current Phase I germanium detectors. The analysis of the signal time structure provides an important tool to distinguish single site events (SSE) of the ββ-decay from multi site events (MSE) of common gamma-ray background or surface events. To investigate the correlation between the signal shape and the interaction position, a new, also to the predominantly deployed closed-ended coaxial HPGe detectors applicable analysis technique has been developed. A summary of the used electronic/detector assembly is given and followed by a discussion of the performed classification procedure by means of accurate pulse shape simulations of 0νββ-like signals. Finally, the obtained results are presented along with an evaluation of the relevance for the Gerda experiment.

  13. Semiconductor Detectors

    International Nuclear Information System (INIS)

    Cortina, E.

    2007-01-01

    Particle detectors based on semiconductor materials are among the few devices used for particle detection that are available to the public at large. In fact we are surrounded by them in our daily lives: they are used in photoelectric cells for opening doors, in digital photographic and video camera, and in bar code readers at supermarket cash registers. (Author)

  14. Pulse shape discrimination performance of inverted coaxial Ge detectors

    Science.gov (United States)

    Domula, A.; Hult, M.; Kermaïdic, Y.; Marissens, G.; Schwingenheuer, B.; Wester, T.; Zuber, K.

    2018-05-01

    We report on the characterization of two inverted coaxial Ge detectors in the context of being employed in future 76Ge neutrinoless double beta (0 νββ) decay experiments. It is an advantage that such detectors can be produced with bigger Ge mass as compared to the planar Broad Energy Ge (BEGe) or p-type Point Contact (PPC) detectors that are currently used in the GERDA and MAJORANA DEMONSTRATOR 0 νββ decay experiments respectively. This will result in a lower background for the search of 0 νββ decay due to a reduction of detector surface to volume ratio, cables, electronics and holders which are dominating nearby radioactive sources. The measured resolution near the 76Ge Q-value at 2039 keV is 2.3 keV FWHM and their pulse-shape discrimination of background events are similar to BEGe and PPC detectors. It is concluded that this type of Ge-detector is suitable for usage in 76Ge 0 νββ decay experiments.

  15. Systematization of efficiency correction for gamma-ray disk sources with semiconductor detectors

    International Nuclear Information System (INIS)

    Chatani, Hiroshi

    1999-01-01

    Full energy peak efficiency correction for disk sources has been systematically studied using the mapping method with two high-purity germanium detectors and two low-energy photon spectrometers. The following are found using only single-line (i.e., no coincidence summing loses) γ-rays: (1) The efficiency distributions on a plane parallel to the entrance window of semiconductor detectors is in perfect accord with Gaussian curves inside the circumference of the cylindrical Ge crystal, however, they deviate from the curves outside the circumference. (2) The width parameters of the Gaussian function fitted to the efficiency distributions have a systematic relationship with γ-ray energy. (3) The mapping method is of practical use and has satisfactory accuracy

  16. Miniature semiconductor detectors for in vivo dosimetry

    International Nuclear Information System (INIS)

    Rosenfeld, A. B.; Cutajar, D.; Lerch, M. L. F.; Takacs, G.; Cornelius, I. M.; Yudelev, M.; Zaider, M.

    2006-01-01

    Silicon mini-semiconductor detectors are found in wide applications for in vivo personal dosimetry and dosimetry and Micro-dosimetry of different radiation oncology modalities. These applications are based on integral and spectroscopy modes of metal oxide semiconductor field effect transistor and silicon p-n junction detectors. The advantages and limitations of each are discussed. (authors)

  17. The physics and technology of Si and Ge detectors

    International Nuclear Information System (INIS)

    Stab, Lucien

    Semiconductor physics fundamentals are recalled (energy levels in crystalline solids, level population, charge carrier transport) as an introduction to studying NP junction at thermal equilibrium, or reversly biased. The fabrication of semiconductor detectors including surface barrier detectors, implanted junctions, and lithium-drifted semiconductors is discussed [fr

  18. Semiconductor detectors in the low countries

    CERN Document Server

    Heijne, Erik H M

    2003-01-01

    Several milestones in the development of semiconductor radiation imaging detectors are attributed to scientists from the Low Countries, the Netherlands and Belgium, and a few historical details will be highlighted. The very first usable semiconductor nuclear detector was made in Utrecht, around 1943, in the form of an AgCl crystal. The earliest large-scale application of monolithic, double- sided silicon strip detectors was in the BOL experiment around 1968 at IKO, now NIKHEF, in Amsterdam. The technology developed and patented by Philips and IKO was adapted by the author and coworkers in 1980 to produce the first silicon microstrip detector used for the reconstruction of events in a CERN fixed target experiment. An avalanche of developments then led to worldwide use of silicon microstrip detectors in elementary particle physics, motivated by the capability to reconstruct particles with lifetime similar to 10**- **1**2s, which decay on sub-millimeter scale. The intensive activity in silicon detector R&D c...

  19. Layered semiconductor neutron detectors

    Science.gov (United States)

    Mao, Samuel S; Perry, Dale L

    2013-12-10

    Room temperature operating solid state hand held neutron detectors integrate one or more relatively thin layers of a high neutron interaction cross-section element or materials with semiconductor detectors. The high neutron interaction cross-section element (e.g., Gd, B or Li) or materials comprising at least one high neutron interaction cross-section element can be in the form of unstructured layers or micro- or nano-structured arrays. Such architecture provides high efficiency neutron detector devices by capturing substantially more carriers produced from high energy .alpha.-particles or .gamma.-photons generated by neutron interaction.

  20. Semiconductor ionizino. radiation detectors

    International Nuclear Information System (INIS)

    1982-01-01

    Spectrometric semiconductor detectors of ionizing radiation with the electron-hole junction, based on silicon and germanium are presented. The following parameters are given for the individual types of germanium detectors: energy range of detected radiation, energy resolution given as full width at half maximum (FWHM) and full width at one tenth of maximum (FWTM) for 57 Co and 60 Co, detection sensitivity, optimal voltage, and electric capacitance at optimal voltage. For silicon detectors the value of FWHM for 239 Pu is given, the sensitive area and the depth of the sensitive area. (E.S.)

  1. Semiconductor detector physics

    International Nuclear Information System (INIS)

    Equer, B.

    1987-01-01

    Comprehension of semiconductor detectors follows comprehension of some elements of solid state physics. They are recalled here, limited to the necessary physical principles, that is to say the conductivity. P-n and MIS junctions are discussed in view of their use in detection. Material and structure (MOS, p-n, multilayer, ..) are also reviewed [fr

  2. Mercuric iodide semiconductor detectors encapsulated in polymeric resin

    Energy Technology Data Exchange (ETDEWEB)

    Martins, Joao F. Trencher; Santos, Robinson A. dos; Ferraz, Caue de M.; Oliveira, Adriano S.; Velo, Alexandre F.; Mesquita, Carlos H. de; Hamada, Margarida M., E-mail: mmhamada@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Disch, Christian; Fiederle, Michael [Albert-Ludwigs Universität Freiburg - UniFreibrug, Freiburg Materials Research Center - FMF, Freiburg (Germany)

    2015-07-01

    The development of new semiconductor radiation detectors always finds many setback factors, such as: high concentration of impurities in the start materials, poor long term stability, the surface oxidation and other difficulties discussed extensively in the literature, that limit their use. In this work was studied, the application of a coating resin on HgI2 detectors, in order to protect the semiconductor crystal reactions from atmospheric gases and to isolate electrically the surface of the crystals. Four polymeric resins were analyzed: Resin 1: 50% - 100%Heptane, 10% - 25% methylcyclohexane, <1% cyclohexane; Resin 2: 25% - 50% ethanol, 25% - 50% acetone, <2,5% ethylacetate; Resin 3: 50% - 100% methylacetate, 5% - 10% n-butylacetate; Resin 4: 50% - 100% ethyl-2-cyanacrylat. The influence of the polymeric resin type used on the spectroscopic performance of the HgI{sub 2} semiconductor detector is, clearly, demonstrated. The better result was found for the detector encapsulated with Resin 3. An increase of up to 26 times at the stability time was observed for the detectors encapsulated compared to that non-encapsulated detector. (author)

  3. Current responsivity of semiconductor superlattice THz-photon detectors

    DEFF Research Database (Denmark)

    Ignatov, Anatoly A.; Jauho, Antti-Pekka

    1999-01-01

    The current responsivity of a semiconductor superlattice THz-photon detector is calculated using an equivalent circuit model which takes into account the finite matching efficiency between a detector antenna and the superlattice in the presence of parasitic losses. Calculations performed for curr......The current responsivity of a semiconductor superlattice THz-photon detector is calculated using an equivalent circuit model which takes into account the finite matching efficiency between a detector antenna and the superlattice in the presence of parasitic losses. Calculations performed...... for currently available superlattice diodes show that both the magnitudes and the roll-off frequencies of the responsivity are strongly influenced by an excitation of hybrid plasma-Bloch oscillations which are found to be eigenmodes of the system in the THz-frequency band. The expected room temperature values...... of the responsivity (2–3 A/W in the 1–3 THz-frequency band) range up to several percents of the quantum efficiency e/[h-bar] omega of an ideal superconductor tunnel junction detector. Properly designed semiconductor superlattice detectors may thus demonstrate better room temperature THz-photon responsivity than...

  4. Front-end electronics for multichannel semiconductor detector systems

    CERN Document Server

    Grybos, P

    2010-01-01

    Front-end electronics for multichannel semiconductor detektor systems Volume 08, EuCARD Editorial Series on Accelerator Science and Technology The monograph is devoted to many different aspects related to front-end electronics for semiconductor detector systems, namely: − designing and testing silicon position sensitive detectors for HEP experiments and X-ray imaging applications, − designing and testing of multichannel readout electronics for semiconductor detectors used in X-ray imaging applications, especially for noise minimization, fast signal processing, crosstalk reduction and good matching performance, − optimization of semiconductor detection systems in respect to the effects of radiation damage. The monograph is the result mainly of the author's experience in the above-mentioned areas and it is an attempt of a comprehensive presentation of issues related to the position sensitive detection system working in a single photon counting mode and intended to X-ray imaging applications. The structure...

  5. Radiation damage in semiconductor detectors

    International Nuclear Information System (INIS)

    Kraner, H.W.

    1981-12-01

    A survey is presented of the important damage-producing interactions in semiconductor detectors and estimates of defect numbers are made for MeV protons, neutrons and electrons. Damage effects of fast neutrons in germanium gamma ray spectrometers are given in some detail. General effects in silicon detectors are discussed and damage constants and their relationship to leakage current is introduced

  6. Semiconductor neutron detectors based on new types of materials

    International Nuclear Information System (INIS)

    Pochet, T.; Foulon, F.

    1993-01-01

    Neutron detection in hostile environments such as nuclear reactors has been performed using a new kind of semiconductor detector. So far, crystalline semiconductor detectors are not used in nuclear reactor instrumentation because of their sensitivity to radiation damage. For doses in excess of a few tens of kilo rads, radiation induced lattice defects produce a strong loss in the standard semiconductor detector performances. In the last few years, new semiconductor materials having amorphous or polycrystalline structures such as silicon, silicon carbide or CVD diamond, became available. These semiconductors, produced by Chemical Vapor Deposition, come in the form of thin layers being typically a few tens of micron thick. Their crystalline structure is particularly resistant to radiation damage up to a few Mrads but prevent the material use in spectrometry measurements. Nevertheless, these detectors, working in a counting mode, are suitable for the detection of alpha particles produced by the neutron capture reaction with boron. Such thin film detectors have a very poor sensitivity to γ-ray background. Furthermore, they are easier and cheaper to implement than current neutron gas counters. Preliminary results obtained with diamond and amorphous silicon diodes exposed to α particles are presented. (authors). 7 figs., 3 tabs., 11 refs

  7. Production, characterization and operation of Ge enriched BEGe detectors in GERDA

    Science.gov (United States)

    Agostini, M.; Allardt, M.; Andreotti, E.; Bakalyarov, A. M.; Balata, M.; Barabanov, I.; Barros, N.; Baudis, L.; Bauer, C.; Becerici-Schmidt, N.; Bellotti, E.; Belogurov, S.; Belyaev, S. T.; Benato, G.; Bettini, A.; Bezrukov, L.; Bode, T.; Borowicz, D.; Brudanin, V.; Brugnera, R.; Budjáš, D.; Caldwell, A.; Cattadori, C.; Chernogorov, A.; D'Andrea, V.; Demidova, E. V.; Domula, A.; Egorov, V.; Falkenstein, R.; Freund, K.; Frodyma, N.; Gangapshev, A.; Garfagnini, A.; Gotti, C.; Grabmayr, P.; Gurentsov, V.; Gusev, K.; Hegai, A.; Heisel, M.; Hemmer, S.; Heusser, G.; Hofmann, W.; Hult, M.; Inzhechik, L. V.; Ioannucci, L.; Janicskó Csáthy, J.; Jochum, J.; Junker, M.; Kazalov, V.; Kihm, T.; Kirpichnikov, I. V.; Kirsch, A.; Klimenko, A.; Knöpfle, K. T.; Kochetov, O.; Kornoukhov, V. N.; Kuzminov, V. V.; Laubenstein, M.; Lazzaro, A.; Lebedev, V. I.; Lehnert, B.; Liao, H. Y.; Lindner, M.; Lippi, I.; Lubashevskiy, A.; Lubsandorzhiev, B.; Lutter, G.; Macolino, C.; Majorovits, B.; Maneschg, W.; Misiaszek, M.; Nemchenok, I.; Nisi, S.; O'Shaughnessy, C.; Palioselitis, D.; Pandola, L.; Pelczar, K.; Pessina, G.; Pullia, A.; Riboldi, S.; Rumyantseva, N.; Sada, C.; Salathe, M.; Schmitt, C.; Schreiner, J.; Schulz, O.; Schütz, A.-K.; Schwingenheuer, B.; Schönert, S.; Shevchik, E.; Shirchenko, M.; Simgen, H.; Smolnikov, A.; Stanco, L.; Strecker, H.; Ur, C. A.; Vanhoefer, L.; Vasenko, A. A.; von Sturm, K.; Wagner, V.; Walter, M.; Wegmann, A.; Wester, T.; Wilsenach, H.; Wojcik, M.; Yanovich, E.; Zavarise, P.; Zhitnikov, I.; Zhukov, S. V.; Zinatulina, D.; Zuber, K.; Zuzel, G.

    2015-02-01

    The GERmanium Detector Array ( Gerda) at the Gran Sasso Underground Laboratory (LNGS) searches for the neutrinoless double beta decay () of Ge. Germanium detectors made of material with an enriched Ge fraction act simultaneously as sources and detectors for this decay. During Phase I of theexperiment mainly refurbished semi-coaxial Ge detectors from former experiments were used. For the upcoming Phase II, 30 new Ge enriched detectors of broad energy germanium (BEGe)-type were produced. A subgroup of these detectors has already been deployed in Gerda during Phase I. The present paper reviews the complete production chain of these BEGe detectors including isotopic enrichment, purification, crystal growth and diode production. The efforts in optimizing the mass yield and in minimizing the exposure of the Ge enriched germanium to cosmic radiation during processing are described. Furthermore, characterization measurements in vacuum cryostats of the first subgroup of seven BEGe detectors and their long-term behavior in liquid argon are discussed. The detector performance fulfills the requirements needed for the physics goals of Gerda Phase II.

  8. Study of 50 GeV proton ionization loss by semiconductor detector with smoothly tunable thickness

    Energy Technology Data Exchange (ETDEWEB)

    Nazhmudinov, R.M.; Kubankin, A.S. [Belgorod National Research University, Belgorod (Russian Federation); P.N. Lebedev Physical Institute of the Russian Academy of Sciences, Moscow (Russian Federation); Shchagin, A.V., E-mail: shchagin@kipt.kharkov.ua [Belgorod National Research University, Belgorod (Russian Federation); Kharkov Institute of Physics and Technology, Kharkov (Ukraine); Shul' ga, N.F.; Trofymenko, S.V. [Kharkov Institute of Physics and Technology, Kharkov (Ukraine); Kharkov National University, Kharkov (Ukraine); Britvich, G.I.; Durum, A.A.; Kostin, M. Yu.; Maisheev, V.A.; Chesnokov, Yu.A.; Yanovich, A.A. [Institute for High Energy Physics in National Research Centre Kurchatov Institute, Protvino (Russian Federation)

    2017-01-15

    The possibility of the measurement of proton ionization loss in the Silicon (Si) layer of smoothly tunable thickness was demonstrated in an experiment with a 50-GeV proton beam. The Si surface-barrier detector with the depleted layer thickness controlled by the value of high-voltage power supply was used in the experiment. The measured spectra of ionization loss are discussed and compared with the calculated spectra. The possibilities of research of the evolution of electromagnetic field of ultrarelativistic particles traversing the media interface and the study of dynamics of particles moving in the channeling regime or the volume reflection regime with the use of detectors with smoothly tunable thickness are indicated.

  9. Background components of Ge(Li) and GeHP-detectors in the passive shield

    International Nuclear Information System (INIS)

    Buraeva, E.A.; Davydov, M.G.; Zorina, L.V.; Stasov, V.V.

    2007-01-01

    The gamma-spectrometer Ge(Li)- and the extra pure Ge-detector background components in a specially designed passive shield were subjected to investigation in the land-based laboratory in 1996-2006. The measurement time period varied from 45 up to 240 hours. The detector background is caused by the radionuclides in the shield material, in the shield cells and in the detector materials. The prominence was given to the study of the revealed time dependence of 222 Rn daughter product background including '2 10 Pb 46.5 keV peak [ru

  10. Semiconductor detectors in the low countries

    International Nuclear Information System (INIS)

    Heijne, Erik H.M.

    2003-01-01

    Several milestones in the development of semiconductor radiation imaging detectors are attributed to scientists from the Low Countries, the Netherlands and Belgium, and a few historical details will be highlighted. The very first usable semiconductor nuclear detector was made in Utrecht, around 1943, in the form of an AgCl crystal. The earliest large-scale application of monolithic, double-sided silicon strip detectors was in the BOL experiment around 1968 at IKO, now NIKHEF, in Amsterdam. The technology developed and patented by Philips and IKO was adapted by the author and coworkers in 1980 to produce the first silicon microstrip detector used for the reconstruction of events in a CERN fixed target experiment. An avalanche of developments then led to worldwide use of silicon microstrip detectors in elementary particle physics, motivated by the capability to reconstruct particles with lifetime ∼10 -12 s, which decay on sub-millimeter scale. The intensive activity in silicon detector R and D culminated in 1991 in the construction of fine-grained 2D monolithic and hybrid pixel detectors that incorporate sophisticated electronic functions in each microscopic detection element, with typical dimensions of 25-100 μm. Besides being a powerful high intensity tracker for particle physics, this device can also be designed as a new X-ray imager, which allows selective counting of individual photons in each pixel at MHz frequency

  11. Instrumentation for characterizing materials and composed semiconductors for ionizing radiation detectors

    International Nuclear Information System (INIS)

    Paschoal, Arquimedes J.A.; Leite, Adolfo M.B.; Nazzre, Fabio V.B.; Santos, Luiz A.P.

    2007-01-01

    The purpose of this work is the development of instrumentation for characterizing some type of ionizing radiation detectors. Those detectors are being manufactured by the Nuclear Instrumentation Laboratory at CRCN/Recife and can be used both on photon beam and with particles. Such detectors consist of semiconductor material in the form of films generated by oxide growing or by means of semiconductor material deposition in a substrate. Those materials can be made of metals, semi-metals, composites or semiconductor polymers. Prior to expose those detectors to ionizing radiation, it must be physically and electrically characterized. In this intention it was developed an electromechanical system. An electrical circuit was built to measure the signal from the detector and another circuit to control the movement of four probes (4-points technique) by using a stepper motor and the micro stepping technique avoiding damage to the detector. This system can be of interest to researchers that work with a sort of semiconductor materials in the form of thin film and in nanotechnological processes aiming the design of radiation ionizing detectors. (author)

  12. Silicon Based Mid Infrared SiGeSn Heterostructure Emitters and Detectors

    Science.gov (United States)

    2016-05-16

    AFRL-AFOSR-JP-TR-2016-0054 Silicon based mid infrared SiGeSn heterostrcture emitters and detectors Greg Sun UNIVERSITY OF MASSACHUSETTS Final Report... Silicon Based Mid Infrared SiGeSn Heterostructure Emitters and Detectors ” February 10, 2016 Principal Investigator: Greg Sun Engineering...diodes are incompatible with the CMOS process and therefore cannot be easily integrated with Si electronics . The GeSn mid IR detectors developed in

  13. Semiconductor-based experiments for neutrinoless double beta decay search

    International Nuclear Information System (INIS)

    Barnabé Heider, Marik

    2012-01-01

    Three experiments are employing semiconductor detectors in the search for neutrinoless double beta (0νββ) decay: COBRA, Majorana and GERDA. COBRA is studying the prospects of using CdZnTe detectors in terms of achievable energy resolution and background suppression. These detectors contain several ββ emitters and the most promising for 0νββ-decay search is 116 Cd. Majorana and GERDA will use isotopically enriched high purity Ge detectors to search for 0νββ-decay of 76 Ge. Their aim is to achieve a background ⩽10 −3 counts/(kg⋅y⋅keV) at the Q improvement compared to the present state-of-art. Majorana will operate Ge detectors in electroformed-Cu vacuum cryostats. A first cryostat housing a natural-Ge detector array is currently under preparation. In contrast, GERDA is operating bare Ge detectors submerged in liquid argon. The construction of the GERDA experiment is completed and a commissioning run started in June 2010. A string of natural-Ge detectors is operated to test the complete experimental setup and to determine the background before submerging the detectors enriched in 76 Ge. An overview and a comparison of these three experiments will be presented together with the latest results and developments.

  14. Induced Charge Fluctuations in Semiconductor Detectors with a Cylindrical Geometry

    Science.gov (United States)

    Samedov, Victor V.

    2018-01-01

    Now, compound semiconductors are very appealing for hard X-ray room-temperature detectors for medical and astrophysical applications. Despite the attractive properties of compound semiconductors, such as high atomic number, high density, wide band gap, low chemical reactivity and long-term stability, poor hole and electron mobility-lifetime products degrade the energy resolution of these detectors. The main objective of the present study is in development of a mathematical model of the process of the charge induction in a cylindrical geometry with accounting for the charge carrier trapping. The formulae for the moments of the distribution function of the induced charge and the formulae for the mean amplitude and the variance of the signal at the output of the semiconductor detector with a cylindrical geometry were derived. It was shown that the power series expansions of the detector amplitude and the variance in terms of the inverse bias voltage allow determining the Fano factor, electron mobility lifetime product, and the nonuniformity level of the trap density of the semiconductor material.

  15. Semiconductor radiation detector

    Science.gov (United States)

    Bell, Zane W.; Burger, Arnold

    2010-03-30

    A semiconductor detector for ionizing electromagnetic radiation, neutrons, and energetic charged particles. The detecting element is comprised of a compound having the composition I-III-VI.sub.2 or II-IV-V.sub.2 where the "I" component is from column 1A or 1B of the periodic table, the "II" component is from column 2B, the "III" component is from column 3A, the "IV" component is from column 4A, the "V" component is from column 5A, and the "VI" component is from column 6A. The detecting element detects ionizing radiation by generating a signal proportional to the energy deposited in the element, and detects neutrons by virtue of the ionizing radiation emitted by one or more of the constituent materials subsequent to capture. The detector may contain more than one neutron-sensitive component.

  16. Development and application of nuclear radiation detector made from high resistivity silicon and compound semiconductor

    International Nuclear Information System (INIS)

    Ding Honglin; Zhang Xiufeng; Zhang Wanchang; Li Jiang

    1995-11-01

    The development of high resistivity silicon detectors and compound semiconductor detectors as well as their application in nuclear medicine are described. It emphasizes on several key techniques in fabricating detectors in order to meet their application in nuclear medicine. As for a high resistivity silicon detector, its counting rate to 125 I 28.5 keV X-ray has to be improved. So employing a conic mesa structure can increase the thickness of samples, and can raise the electric field of collecting charges under the same bias voltage. As for a GaAs detector, its performance of collecting charges has to be improved. So the thicknesses of GaAs samples are decreased and proper thermal treatment to make Ni-Ge-Au ohmic contacts are employed. Applying a suitable reverse bias voltage can obtain a fully depleted detector, and can obtain a lower forward turn-on voltage and a thinner weak electric field region. After resolving these key techniques, the performance of GaAs detectors has been distinctly improved. The count rate to 125 I X-ray has increased by three or five times under the same testing condition and background circumstance (2 refs., 8 figs., 3 tabs.)

  17. Radiation-hard semiconductor detectors for SuperLHC

    CERN Document Server

    Bruzzi, Mara; Al-Ajili, A A; Alexandrov, P; Alfieri, G; Allport, Philip P; Andreazza, A; Artuso, M; Assouak, S; Avset, B S; Barabash, L; Baranova, E; Barcz, A; Basile, A; Bates, R; Belova, N; Betta, G F D; Biagi, S F; Bilei, G M; Bisello, D; Blue, A; Blumenau, A; Boisvert, V; Bölla, G; Bondarenko, G B; Borchi, E; Borrello, L; Bortoletto, D; Boscardin, M; Bosisio, L; Bowcock, T J V; Brodbeck, T J; Broz, J; Brukhanov, A; Brzozowski, A; Buda, M; Buhmann, P; Buttar, C; Campabadal, F; Campbell, D; Candelori, A; Casse, G; Cavallini, A; Chilingarov, A G; Chren, D; Cindro, V; Citterio, M; Collins, P; Coluccia, R; Contarato, D; Coutinho, J; Creanza, D; Cunningham, W; Cvetkov, V; Davies, G; Dawson, I; De Palma, M; Demina, R; Dervan, P; Dierlamm, A; Dittongo, S; Dobrzanski, L; Dolezal, Z; Dolgolenko, A; Eberlein, T; Eremin, V; Fall, C; Fasolo, F; Ferbel, T; Fizzotti, F; Fleta, C; Focardi, E; Forton, E; Franchenko, S; Fretwurst, E; Gamaz, F; García-Navarro, J E; García, C; Gaubas, E; Genest, M H; Gill, K A; Giolo, K; Glaser, M; Gössling, C; Golovine, V; Gorelov, I; Goss, J; Gouldwell, A; Grégoire, G; Gregori, P; Grigoriev, E; Grigson, C; Grillo, A; Groza, A; Guskov, J; Haddad, L; Harding, R; Härkönen, J; Hauler, F; Hayama, S; Hoeferkamp, M; Honniger, F; Horazdovsky, T; Horisberger, R P; Horn, M; Houdayer, A; Hourahine, B; Hruban, A; Hughes, G; Ilyashenko, Yu S; Irmscher, K; Ivanov, A; Jarasiunas, K; Jin, T; Jones, B K; Jones, R; Joram, C; Jungermann, L; Kalinina, E; Kaminski, P; Karpenko, A; Karpov, A; Kazlauskiene, V; Kazukauskas, V; Khivrich, V; Khomenkov, V P; Kierstead, J A; Klaiber Lodewigs, J M; Kleverman, M; Klingenberg, R; Kodys, P; Kohout, Z; Korjenevski, S; Kowalik, A; Kozlowski, R; Kozodaev, M; Kramberger, G; Krasel, O; Kuznetsov, A; Kwan, S; Lagomarsino, S; Lari, T; Lassila-Perini, K M; Lastovetsky, V F; Latino, G; Latushkin, S T; Lazanu, I; Lazanu, S; Lebel, C; Leinonen, K; Leroy, C; Li, Z; Lindström, G; Lindström, L; Linhart, V; Litovchenko, A P; Litovchenko, P G; Litvinov, V; Lo Giudice, A; Lozano, M; Luczynski, Z; Luukka, Panja; Macchiolo, A; Mainwood, A; Makarenko, L F; Mandic, I; Manfredotti, C; Martí i García, S; Marunko, S; Mathieson, K; Melone, J; Menichelli, D; Meroni, C; Messineo, A; Miglio, S; Mikuz, M; Miyamoto, J; Moll, M; Monakhov, E; Moscatelli, F; Mozzanti, A; Murin, L; Naoumov, D; Nava, F; Nossarzhevska, E; Nummela, S; Nysten, J; Olivero, P; O'Shea, V; Palviainen, T; Paolini, C; Parkes, C; Passeri, D; Pein, U; Pellegrini, G; Perera, L; Petasecca, M; Piatkowski, B; Piemonte, C; Pignatel, G U; Pinho, N; Pintilie, I; Pintilie, L; Polivtsev, L; Polozov, P; Popa, A I; Popule, J; Pospísil, S; Pucker, G; Radicci, V; Rafí, J M; Ragusa, F; Rahman, M; Rando, R; Röder, R; Rohe, T; Ronchin, S; Rott, C; Roy, A; Roy, P; Ruzin, A; Ryazanov, A; Sadrozinski, H F W; Sakalauskas, S; Scaringella, M; Schiavulli, L; Schnetzer, S; Schumm, B; Sciortino, S; Scorzoni, A; Segneri, G; Seidel, S; Seiden, A; Sellberg, G; Sellin, P J; Sentenac, D; Sevilla, S G; Shipsey, I; Sícho, P; Sloan, T; Solar, M; Son, S; Sopko, B; Spencer, N; Stahl, J; Stavitski, I; Stolze, D; Stone, R; Storasta, J; Strokan, N; Strupinski, W; Sudzius, M; Surma, B; Suuronen, J; Suvorov, A; Svensson, B G; Tipton, P; Tomasek, M; Troncon, C; Tsvetkov, A; Tuominen, E; Tuovinen, E; Tuuva, T; Tylchin, M; Uebersee, H; Uher, J; Ullán, M; Vaitkus, J V; Vanni, P; Velthuis, J; Verbitskaya, E; Verzellesi, G; Vrba, V; Wagner, G; Wilhelm, I; Worm, S; Wright, V; Wunstorf, R; Zabierowski, P; Zaluzhny, A; Zavrtanik, M; Zen, M; Zhukov, V; Zorzi, N; de Boer, Wim

    2005-01-01

    An option of increasing the luminosity of the Large Hadron Collider (LHC) at CERN to 10/sup 35/ cm-/sup 2/s-/sup 1/ has been envisaged to extend the physics reach of the machine. An efficient tracking down to a few centimetres from the interaction point will be required to exploit the physics potential of the upgraded LHC. As a consequence, the semiconductor detectors close to the interaction region will receive severe doses of fast hadron irradiation and the inner tracker detectors will need to survive fast hadron fluences of up to above 10 /sup 16/ cm-/sup 2/. The CERN-RD50 project "Development of Radiation Hard Semiconductor Devices for Very High Luminosity Colliders" has been established in 2002 to explore detector materials and technologies that will allow to operate devices up to, or beyond, this limit. The strategies followed by RD50 to enhance the radiation tolerance include the development of new or defect engineered detector materials (SiC, GaN, Czochralski and epitaxial silicon, oxygen enriched Flo...

  18. Production, characterization and operation of {sup 76}Ge enriched BEGe detectors in GERDA

    Energy Technology Data Exchange (ETDEWEB)

    Agostini, M.; Bode, T.; Budjas, D.; Janicsko Csathy, J.; Lazzaro, A.; Schoenert, S. [Technische Universitaet Muenchen, Physik Department and Excellence Cluster Universe, Munich (Germany); Allardt, M.; Barros, N.; Domula, A.; Lehnert, B.; Wester, T.; Wilsenach, H.; Zuber, K. [Technische Universitaet Dresden, Institut fuer Kern- und Teilchenphysik, Dresden (Germany); Andreotti, E. [Institute for Reference Materials and Measurements, Geel (Belgium); Eberhard Karls Universitaet Tuebingen, Physikalisches Institut, Tuebingen (Germany); Bakalyarov, A.M.; Belyaev, S.T.; Lebedev, V.I.; Zhukov, S.V. [National Research Centre ' ' Kurchatov Institute' ' , Moscow (Russian Federation); Balata, M.; D' Andrea, V.; Ioannucci, L.; Junker, M.; Laubenstein, M.; Macolino, C.; Nisi, S.; Zavarise, P. [INFN Laboratori Nazionali del Gran Sasso and Gran Sasso Science Institute, Assergi (Italy); Barabanov, I.; Bezrukov, L.; Gurentsov, V.; Inzhechik, L.V.; Kazalov, V.; Kuzminov, V.V.; Lubsandorzhiev, B.; Yanovich, E. [Institute for Nuclear Research of the Russian Academy of Sciences, Moscow (Russian Federation); Baudis, L.; Benato, G.; Walter, M. [Physik Institut der Universitaet Zuerich, Zurich (Switzerland); Bauer, C.; Heisel, M.; Heusser, G.; Hofmann, W.; Kihm, T.; Kirsch, A.; Knoepfle, K.T.; Lindner, M.; Maneschg, W.; Salathe, M.; Schreiner, J.; Schwingenheuer, B.; Simgen, H.; Smolnikov, A.; Strecker, H.; Wagner, V.; Wegmann, A. [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany); Becerici-Schmidt, N.; Caldwell, A.; Liao, H.Y.; Majorovits, B.; O' Shaughnessy, C.; Palioselitis, D.; Schulz, O.; Vanhoefer, L. [Max-Planck-Institut fuer Physik, Munich (Germany); Bellotti, E.; Pessina, G. [Universita Milano Bicocca, Dipartimento di Fisica, Milan (Italy); INFN Milano Bicocca, Milan (Italy); Belogurov, S.; Kornoukhov, V.N. [Institute for Nuclear Research of the Russian Academy of Sciences, Moscow (Russian Federation); Institute for Theoretical and Experimental Physics, Moscow (Russian Federation); Bettini, A.; Brugnera, R.; Garfagnini, A.; Hemmer, S.; Sada, C.; Von Sturm, K. [Dipartimento di Fisica e Astronomia dell' Universita di Padova, Padua (Italy); INFN Padova, Padua (Italy); Borowicz, D. [Jagiellonian University, Institute of Physics, Cracow (Poland); Joint Institute for Nuclear Research, Dubna (Russian Federation); Brudanin, V.; Egorov, V.; Kochetov, O.; Nemchenok, I.; Rumyantseva, N.; Shevchik, E.; Zhitnikov, I.; Zinatulina, D. [Joint Institute for Nuclear Research, Dubna (Russian Federation); Cattadori, C.; Gotti, C. [INFN Milano Bicocca, Milan (Italy); Chernogorov, A.; Demidova, E.V.; Kirpichnikov, I.V.; Vasenko, A.A. [Institute for Theoretical and Experimental Physics, Moscow (Russian Federation); Falkenstein, R.; Freund, K.; Grabmayr, P.; Hegai, A.; Jochum, J.; Schmitt, C.; Schuetz, A.K. [Eberhard Karls Universitaet Tuebingen, Physikalisches Institut, Tuebingen (Germany); Frodyma, N.; Misiaszek, M.; Pelczar, K.; Wojcik, M.; Zuzel, G. [Jagiellonian University, Institute of Physics, Cracow (Poland); Gangapshev, A. [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany); Institute for Nuclear Research of the Russian Academy of Sciences, Moscow (Russian Federation); Gusev, K. [Joint Institute for Nuclear Research, Dubna (Russian Federation); National Research Centre ' ' Kurchatov Institute' ' , Moscow (Russian Federation); Technische Universitaet Muenchen, Physik Department and Excellence Cluster Universe, Munich (Germany); Hult, M.; Lutter, G. [Institute for Reference Materials and Measurements, Geel (Belgium); Klimenko, A.; Lubashevskiy, A. [Joint Institute for Nuclear Research, Dubna (Russian Federation); Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany); Lippi, I.; Stanco, L.; Ur, C.A. [INFN Padova, Padua (Italy); Pandola, L. [INFN Laboratori Nazionali del Sud, Catania (Italy); Pullia, A.; Riboldi, S. [Universita degli Studi di Milano, Dipartimento di Fisica, Milan (Italy); INFN Milano (Italy); Shirchenko, M. [Joint Institute for Nuclear Research, Dubna (Russian Federation); National Research Centre ' ' Kurchatov Institute' ' , Moscow (Russian Federation); Collaboration: GERDA Collaboration

    2015-02-01

    The GERmanium Detector Array (GERDA) at the Gran Sasso Underground Laboratory (LNGS) searches for the neutrinoless double beta decay (0νββ) of {sup 76}Ge. Germanium detectors made of material with an enriched {sup 76}Ge fraction act simultaneously as sources and detectors for this decay. During Phase I of the experiment mainly refurbished semi-coaxial Ge detectors from former experiments were used. For the upcoming Phase II, 30 new {sup 76}Ge enriched detectors of broad energy germanium (BEGe)- type were produced. A subgroup of these detectors has already been deployed in GERDA during Phase I. The present paper reviews the complete production chain of these BEGe detectors including isotopic enrichment, purification, crystal growth and diode production. The efforts in optimizing the mass yield and in minimizing the exposure of the {sup 76}Ge enriched germanium to cosmic radiation during processing are described. Furthermore, characterization measurements in vacuum cryostats of the first subgroup of seven BEGe detectors and their long-term behavior in liquid argon are discussed. The detector performance fulfills the requirements needed for the physics goals of GERDA Phase II. (orig.)

  19. Production, characterization and operation of {sup 76}Ge enriched BEGe detectors in GERDA

    Energy Technology Data Exchange (ETDEWEB)

    Agostini, M. [Physik Department and Excellence Cluster Universe, Technische Universität München, Munich (Germany); Allardt, M. [Institut für Kern- und Teilchenphysik, Technische Universität Dresden, Dresden (Germany); Andreotti, E. [Institute for Reference Materials and Measurements, Geel (Belgium); Physikalisches Institut, Eberhard Karls Universität Tübingen, Tübingen (Germany); Bakalyarov, A. M. [National Research Centre “Kurchatov Institute”, Moscow (Russian Federation); Balata, M. [INFN Laboratori Nazionali del Gran Sasso and Gran Sasso Science Institute, Assergi (Italy); and others

    2015-02-03

    The GERmanium Detector Array (Gerda) at the Gran Sasso Underground Laboratory (LNGS) searches for the neutrinoless double beta decay (0νββ) of {sup 76}Ge. Germanium detectors made of material with an enriched {sup 76}Ge fraction act simultaneously as sources and detectors for this decay. During Phase I of theexperiment mainly refurbished semi-coaxial Ge detectors from former experiments were used. For the upcoming Phase II, 30 new {sup 76}Ge enriched detectors of broad energy germanium (BEGe)-type were produced. A subgroup of these detectors has already been deployed in Gerda during Phase I. The present paper reviews the complete production chain of these BEGe detectors including isotopic enrichment, purification, crystal growth and diode production. The efforts in optimizing the mass yield and in minimizing the exposure of the {sup 76}Ge enriched germanium to cosmic radiation during processing are described. Furthermore, characterization measurements in vacuum cryostats of the first subgroup of seven BEGe detectors and their long-term behavior in liquid argon are discussed. The detector performance fulfills the requirements needed for the physics goals of Gerda Phase II.

  20. GeAs and SiAs monolayers: Novel 2D semiconductors with suitable band structures

    Science.gov (United States)

    Zhou, Liqin; Guo, Yu; Zhao, Jijun

    2018-01-01

    Two dimensional (2D) materials provide a versatile platform for nanoelectronics, optoelectronics and clean energy conversion. Based on first-principles calculations, we propose a novel kind of 2D materials - GeAs and SiAs monolayers and investigate their atomic structure, thermodynamic stability, and electronic properties. The calculations show that monolayer GeAs and SiAs sheets are energetically and dynamically stable. Their small interlayer cohesion energies (0.191 eV/atom for GeAs and 0.178 eV/atom for SiAs) suggest easy exfoliation from the bulk solids that exist in nature. As 2D semiconductors, GeAs and SiAs monolayers possess band gap of 2.06 eV and 2.50 eV from HSE06 calculations, respectively, while their band gap can be further engineered by the number of layers. The relatively small and anisotropic carrier effective masses imply fast electric transport in these 2D semiconductors. In particular, monolayer SiAs is a direct gap semiconductor and a potential photocatalyst for water splitting. These theoretical results shine light on utilization of monolayer or few-layer GeAs and SiAs materials for the next-generation 2D electronics and optoelectronics with high performance and satisfactory stability.

  1. Investigation about semiconductor gamma ray detector - Evaluation of Ge(Li) detectors life expectation

    International Nuclear Information System (INIS)

    1980-06-01

    A list of germanium lithium gamma ray detectors has been drawn up by a working group after investigations in various laboratories. Authors analyse the historical account of each detector and try to give an answer about some questions as: - detectors life expectation, - deficiencies and death reasons, - influence of detector type and volume. Differents parameters are also collected by the working group for future works (standard geometry, low level measurements, etc.). In the list, the characteristics of 228 detectors, collected between january 1965 and december 1977 are put together. The principal conclusions of the authors are: - with a probability of 95%, half of the detectors is dead before 6.1 years, - the average age of dead population (33% of detectors) is 3.9 years, - resolution and efficiency evolution are good indicators of possible deficiency, - the fiability of vertical cryostat is better than the other systems [fr

  2. Electron Beam Induced Radiation Damage of the Semiconductor Radiation Detector based on Silicon

    International Nuclear Information System (INIS)

    Kim, Han Soo; Kim, Yong Kyun; Park, Se Hwan; Haa, Jang Ho; Kang, Sang Mook; Chung, Chong Eun; Cho, Seung Yeon; Park, Ji Hyun; Yoon, Tae Hyung

    2005-01-01

    A Silicon Surface Barrier (SSB) semiconductor detector which is generally used to detect a charged particle such as an alpha particle was developed. The performance of the developed SSB semiconductor detector was measured with an I-V curve and an alpha spectrum. The response for an alpha particle was measured by Pu-238 sources. A SSB semiconductor detector was irradiated firstly at 30sec, at 30μA and secondly 40sec, 40μA with a 2MeV pulsed electron beam generator in KAERI. And the electron beam induced radiation damage of a homemade SSB detector and the commercially available PIN photodiode were investigated. An annealing effect of the damaged SSB and PIN diode detector were also investigated using a Rapid Thermal Annealing (RTA). This data may assist in designing the silicon based semiconductor radiation detector when it is operated in a high radiation field such as space or a nuclear power plant

  3. Measurement of neutron flux by semiconductor detector; Merenje raspodele neutronskog fluksa poluprovodnickim detektorom

    Energy Technology Data Exchange (ETDEWEB)

    Obradovic, D; Bosevski, T [The Institute of Nuclear Sciences Boris Kidric, Vinca, Beograd (Yugoslavia)

    1965-07-01

    Using semiconductor detectors for measuring the neutron flux distribution is considered suitable and faster than using activation foils. Results of radial neutron flux distribution obtained by semiconductor detectors are presented.

  4. Superconducting detectors for semiconductor quantum photonics

    International Nuclear Information System (INIS)

    Reithmaier, Guenther M.

    2015-01-01

    In this thesis we present the first successful on-chip detection of quantum light, thereby demonstrating the monolithic integration of superconducting single photon detectors with individually addressable semiconductor quantum dots in a prototypical quantum photonic circuit. Therefore, we optimized both the deposition of high quality superconducting NbN thin films on GaAs substrates and the fabrication of superconducting detectors and successfully integrated these novel devices with GaAs/AlGaAs ridge waveguides loaded with self-assembled InGaAs quantum dots.

  5. Generation of uniaxial tensile strain of over 1% on a Ge substrate for short-channel strained Ge n-type Metal–Insulator–Semiconductor Field-Effect Transistors with SiGe stressors

    International Nuclear Information System (INIS)

    Moriyama, Yoshihiko; Kamimuta, Yuuichi; Ikeda, Keiji; Tezuka, Tsutomu

    2012-01-01

    Tensile strain of over 1% in Ge stripes sandwiched between a pair of SiGe source-drain stressors was demonstrated. The Metal–Oxide–Semiconductor Field-Effect Transistor (MOSFET)-like structures were fabricated on a (001)-Ge substrate having SiO 2 dummy-gate stripes with widths down to 26 nm. Recess-regions adjacent to the dummy-gate stripes were formed by an anisotropic wet etching technique. A damage-free and well-controlled anisotropic wet etching process is developed in order to avoid plasma-induced damage during a conventional Reactive-ion Etching process. The SiGe stressors were epitaxially grown on the recesses to simulate strained Ge n-channel Metal–Insulator–Semiconductor Field-Effect Transistors (MISFETs) having high electron mobility. A micro-Raman spectroscopy measurement revealed tensile strain in the narrow Ge regions which became higher for narrower regions. Tensile strain of up to 1.2% was evaluated from the measurement under an assumption of uniaxial strain configuration. These results strongly suggest that higher electron mobility than the upper limit for a Si-MOSFET is obtainable in short-channel strained Ge-nMISFETs with the embedded SiGe stressors.

  6. New approach to calculate the true-coincidence effect of HpGe detector

    Energy Technology Data Exchange (ETDEWEB)

    Alnour, I. A., E-mail: aaibrahim3@live.utm.my, E-mail: ibrahim.elnour@yahoo.com [Department of Physics, Faculty of Pure and Applied Science, International University of Africa, 12223 Khartoum (Sudan); Wagiran, H. [Department of Physics, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Skudai,Johor (Malaysia); Ibrahim, N. [Faculty of Defence Science and Technology, National Defence University of Malaysia, Kem Sungai Besi, 57000 Kuala Lumpur (Malaysia); Hamzah, S.; Elias, M. S. [Malaysia Nuclear Agency (MNA), Bangi, 43000 Kajang, Selangor D.E. (Malaysia); Siong, W. B. [Chemistry Department, Faculty of Resource Science & Technology, Universiti Malaysia Sarawak, 94300 Kota Samarahan, Sarawak (Malaysia)

    2016-01-22

    The corrections for true-coincidence effects in HpGe detector are important, especially at low source-to-detector distances. This work established an approach to calculate the true-coincidence effects experimentally for HpGe detectors of type Canberra GC3018 and Ortec GEM25-76-XLB-C, which are in operation at neutron activation analysis lab in Malaysian Nuclear Agency (NM). The correction for true-coincidence effects was performed close to detector at distances 2 and 5 cm using {sup 57}Co, {sup 60}Co, {sup 133}Ba and {sup 137}Cs as standard point sources. The correction factors were ranged between 0.93-1.10 at 2 cm and 0.97-1.00 at 5 cm for Canberra HpGe detector; whereas for Ortec HpGe detector ranged between 0.92-1.13 and 0.95-100 at 2 and 5 cm respectively. The change in efficiency calibration curve of the detector at 2 and 5 cm after correction was found to be less than 1%. Moreover, the polynomial parameters functions were simulated through a computer program, MATLAB in order to find an accurate fit to the experimental data points.

  7. Measurement of ionising radiation semiconductor detectors: a review

    International Nuclear Information System (INIS)

    Aussel, J.P.

    1986-06-01

    Manufacturing techniques for nuclear detectors using semiconductors are constantly advancing, and a large range of models with different specificities and characteristics are available. After a theoretical reminder, this report describes the main types of detectors, their working and their preferential use. A comparative table guides the neophyte reader in his choice [fr

  8. Fabrication and utilization of semiconductor radiation detectors

    International Nuclear Information System (INIS)

    Lemos Junior, Orlando Ferreira

    1969-01-01

    This paper describes the assembly of the equipment for the fabrication of Ge-Li drifted detectors and the technique used in the preparation of a Planar detector of 7 cm 2 x 0,5 cm for the Laboratory of the Linear Accelerator at the University of Sao Paulo, as well as the utilization of a 22 cm 3 coaxial detector for the analysis of fission product gamma rays at the Instituto de Engenharia Nuclear, Rio de Janeiro, R J, Brazil. (author)

  9. Solid state semiconductor detectorized survey meter

    International Nuclear Information System (INIS)

    Okamoto, Eisuke; Nagase, Yoshiyuki; Furuhashi, Masato

    1987-01-01

    Survey meters are used for measurement of gamma ray dose rate of the space and the surface contamination dencity that the atomic energy plant and the radiation facility etc. We have recently developed semiconductor type survey meter (Commercial name: Compact Survey Meter). This survey meter is a small-sized dose rate meter with excellent function. The special features are using semiconductor type detector which we have developed by our own technique, stablar wide range than the old type, long life, and easy to carry. Now we introduce the efficiency and the function of the survey meter. (author)

  10. 1-D position sensitive single carrier semiconductor detectors

    International Nuclear Information System (INIS)

    Zhong He; Knoll, G.F.; Wehe, D.K.; Rojeski, R.; Mastrangelo, C.H.; Hammig, M.; Barrett, C.; Uritani, A.

    1996-01-01

    A single polarity charge sensing method has been studied using coplanar electrodes on 5 mm cubes of CdZnTe γ-ray detectors. This method can ameliorate the hole trapping problem of room-temperature semiconductor detectors. Our experimental results confirm that the energy resolution is dramatically improved compared with that obtained using the conventional readout method, but is still about an order of magnitude worse than the theoretical limit. A method to obtain the γ-ray interaction depth between the cathode and the anode is presented here. This technique could be used to correct for the electron trapping as a function of distance from the coplanar electrodes. Experimental results showed that a position resolution of about 0.9 mm FWHM at 122 keV can be obtained. These results will be of interest in the design of higher performance room-temperature semiconductor γ-ray detectors. (orig.)

  11. A New Approach for Evaluating Charge Transport Properties of Semiconductor Detectors

    International Nuclear Information System (INIS)

    Kim, Kyung O; Kim, Jong Kyung; Kim, Soon Young; Ha, Jang Ho

    2009-01-01

    The semiconductor detectors (e.g., CdTe, CdZnTe, and HgI 2 ) have been widely used for radiation detection and medical imaging because of its various outstanding features such as excellent energy resolution, wide bandgap energy, room temperature operation, and so on. Unfortunately, the performance of these detectors is mainly limited by the charge transport properties of semiconductor, especially the mobility-lifetime products (i.e., (μτ) e and ((μτ) h ). Hence, the analysis on the mobility-lifetime products is very important for evaluating correct characteristics of semiconductor detectors. A commonly used method to analyze the mobilitylifetime products is based on their responses to α particle. However, the α particle method cannot evaluate the ((μτ)h product in many cases, because a semiconductor detector operating at positive bias voltages often yields the energy spectrum without the peaks. This method is also known to be very sensitive to the experimental conditions as well as surface conditions of the detector. In this study, a new approach with gamma-ray instead of α particle was carried out to solve the determination difficulty of the ((μτ) h product with common method. The special relation between the two mobility-lifetime products, which we call the 'Nural equation', was also developed to simply obtain each parameter based on Hecht equation

  12. 12 GeV detector technology at Jefferson Lab

    Energy Technology Data Exchange (ETDEWEB)

    Leckey, John P. [Indiana University, Bloomington, IN 47405 (United States); Collaboration: GlueX Collaboration

    2013-04-19

    The Thomas Jefferson National Accelerator Facility (JLab) is presently in the middle of an upgrade to increase the energy of its CW electron beam from 6 GeV to 12 GeV along with the addition of a fourth experimental hall. Driven both by necessity and availability, novel detectors and electronics modules have been used in the upgrade. One such sensor is the Silicon Photomultiplier (SiPM), specifically a Multi-Pixel Photon Counter (MPPC), which is an array of avalanche photodiode pixels operating in Geiger mode that are used to sense photons. The SiPMs replace conventional photomultiplier tubes and have several distinct advantages including the safe operation in a magnetic field and the lack of need for high voltage. Another key to 12 GeV success is advanced fast electronics. Jlab will use custom 250 MHz and 125 MHz 12-bit analog to digital converters (ADCs) and time to digital converters (TDCs) all of which take advantage of VME Switched Serial (VXS) bus with its GB/s high bandwidth readout capability. These new technologies will be used to readout drift chambers, calorimeters, spectrometers and other particle detectors at Jlab once the 12 GeV upgrade is complete. The largest experiment at Jlab utilizing these components is GlueX - an experiment in the newly constructed Hall D that will study the photoproduction of light mesons in the search for hybrid mesons. The performance of these components and their respective detectors will be presented.

  13. Basic processes and scintillator and semiconductor detectors

    International Nuclear Information System (INIS)

    Bourgeois, C.

    1994-01-01

    In the following course, the interaction of heavy charged particles, electrons and Γ with matter is represented. Two types of detectors are studied, organic and inorganic scintillators and semiconductors. The signal formation is analysed. (author). 13 refs., 48 figs., 5 tabs

  14. Towards time-of-flight PET with a semiconductor detector

    Science.gov (United States)

    Ariño-Estrada, Gerard; Mitchell, Gregory S.; Kwon, Sun Il; Du, Junwei; Kim, Hadong; Cirignano, Leonard J.; Shah, Kanai S.; Cherry, Simon R.

    2018-02-01

    The feasibility of using Cerenkov light, generated by energetic electrons following 511 keV photon interactions in the semiconductor TlBr, to obtain fast timing information for positron emission tomography (PET) was evaluated. Due to its high refractive index, TlBr is a relatively good Cerenkov radiator and with its wide bandgap, has good optical transparency across most of the visible spectrum. Coupling an SiPM photodetector to a slab of TlBr (TlBr-SiPM) yielded a coincidence timing resolution of 620 ps FWHM between the TlBr-SiPM detector and a LFS reference detector. This value improved to 430 ps FWHM by applying a high pulse amplitude cut based on the TlBr-SiPM and reference detector signal amplitudes. These results are the best ever achieved with a semiconductor PET detector and already approach the performance required for time-of-flight. As TlBr has higher stopping power and better energy resolution than the conventional scintillation detectors currently used in PET scanners, a hybrid TlBr-SiPM detector with fast timing capability becomes an interesting option for further development.

  15. The role of contacts in semiconductor gamma radiation detectors

    International Nuclear Information System (INIS)

    Lachish, U.

    1998-01-01

    It is proposed that the operation of semiconductor gamma radiation detectors, equipped with ohmic contacts, which allow free electron flow between the contacts and bulk material, will not be sensitive to low hole mobility, hole collection efficiency, or hole trapping. Such fast-operating detectors may be readily integrated into monolithic arrays. The detection mechanism and various material aspects are discussed and compared to those of blocking contact detectors. Some suggestions for detector realization are presented. (orig.)

  16. Semiconductor detectors in current energy dispersive X-ray spectral analysis

    Energy Technology Data Exchange (ETDEWEB)

    Betin, J; Zhabin, E; Krampit, I; Smirnov, V

    1980-04-01

    A review is presented of the properties of semiconductor detectors and of the possibilities stemming therefrom of using the detectors in X-ray spectral analysis in industries, in logging, in ecology and environmental control, in medicine, etc.

  17. Development of radiation tolerant semiconductor detectors for the Super-LHC

    CERN Document Server

    Moll, M; Al-Ajili, A A; Alfieri, G; Allport, P P; Artuso, M; Assouak, S; Avset, B S; Barabash, L; Barcz, A; Bates, R; Biagi, S F; Bilei, G M; Bisello, D; Blue, A; Blumenau, A; Boisvert, V; Bölla, G; Bondarenko, G B; Borchi, E; Borrello, L; Bortoletto, D; Boscardin, M; Bosisio, L; Bowcock, T J V; Brodbeck, T J; Broz, J; Bruzzi, M; Brzozowski, A; Buda, M; Buhmann, P; Buttar, C; Campabadal, F; Campbell, D; Candelori, A; Casse, G; Cavallini, A; Charron, S; Chilingarov, A; Chren, D; Cindro, V; Collins, P; Coluccia, R; Contarato, D; Coutinho, J; Creanza, D; Cunningham, W; Betta, G F D; Dawson, I; de Boer, Wim; De Palma, M; Demina, R; Dervan, P; Dittongo, S; Dolezal, Z; Dolgolenko, A; Eberlein, T; Eremin, V; Fall, C; Fasolo, F; Fizzotti, F; Fleta, C; Focardi, E; Forton, E; Fretwurst, E; García, C; García-Navarro, J E; Gaubas, E; Genest, M H; Gill, K A; Giolo, K; Glaser, M; Gössling, C; Golovine, V; Sevilla, S G; Gorelov, I; Goss, J; Bates, A G; Grégoire, G; Gregori, P; Grigoriev, E; Grillo, A A; Groza, A; Guskov, J; Haddad, L; Härkönen, J; Hauler, F; Hoeferkamp, M; Honniger, F; Horazdovsky, T; Horisberger, Roland Paul; Horn, M; Houdayer, A; Hourahine, B; Hughes, G; Ilyashenko, Yu S; Irmscher, K; Ivanov, A; Jarasiunas, K; Johansen, K M H; Jones, B K; Jones, R; Joram, C; Jungermann, L; Kalinina, E; Kaminski, P; Karpenko, A; Karpov, A; Kazlauskiene, V; Kazukauskas, V; Khivrich, V; Khomenkov, V; Kierstead, J A; Klaiber Lodewigs, J; Klingenberg, R; Kodys, P; Kohout, Z; Korjenevski, S; Koski, M; Kozlowski, R; Kozodaev, M; Kramberger, G; Krasel, O; Kuznetsov, A; Kwan, S; Lagomarsino, S; Lassila-Perini, K M; Lastovetsky, V F; Latino, G; Lazanu, S; Lazanu, I; Lebedev, A; Lebel, C; Leinonen, K; Leroy, C; Li Z; Lindström, G; Linhart, V; Litovchenko, A P; Litovchenko, P G; Lo Giudice, A; Lozano, M; Luczynski, Z; Luukka, P; Macchiolo, A; Makarenko, L F; Mandic, I; Manfredotti, C; Manna, N; Garcia, S Mi; Marunko, S; Mathieson, K; Melone, J; Menichelli, D; Messineo, A; Metcalfe, J; Miglio, S; Mikuz, M; Miyamoto, J; Monakhov, E; Moscatelli, F; Naoumov, D; Nossarzhevska, E; Nysten, J; Olivero, P; OShea, V; Palviainen, T; Paolini, C; Parkes, C; Passeri, D; Pein, U; Pellegrini, G; Perera, L; Petasecca, M; Piemonte, C; Pignatel, G U; Pinho, N; Pintilie, I; Pintilie, L; Polivtsev, L; Polozov, P; Popa, A; Popule, J; Pospísil, S; Pozza, A; Radicci, V; Rafí, J M; Rando, R; Röder, R; Rohe, T; Ronchin, S; Rott, C; Roy, A; Ruzin, A; Sadrozinski, H F W; Sakalauskas, S; Scaringella, M; Schiavulli, L; Schnetzer, S; Schumm, B; Sciortino, S; Scorzoni, A; Segneri, G; Seidel, S; Seiden, A; Sellberg, G; Sellin, P J; Sentenac, D; Shipsey, I; Sícho, P; Sloan, T; Solar, M; Son, S; Sopko, B; Sopko, V; Spencer, N; Stahl, J; Stolze, D; Stone, R; Storasta, J; Strokan, N; Sudzius, M; Surma, B; Suvorov, A; Svensson, B G; Tipton, P; Tomasek, M; Tsvetkov, A; Tuominen, E; Tuovinen, E; Tuuva, T; Tylchin, M; Uebersee, H; Uher, J; Ullán, M; Vaitkus, J V; Velthuis, J; Verbitskaya, E; Vrba, V; Wagner, G; Wilhelm, I; Worm, S; Wright, V; Wunstorf, R; Yiuri, Y; Zabierowski, P; Zaluzhny, A; Zavrtanik, M; Zen, M; Zhukov, V; Zorzi, N

    2005-01-01

    The envisaged upgrade of the Large Hadron Collider (LHC) at CERN towards the Super-LHC (SLHC) with a 10 times increased luminosity of 10challenges for the tracking detectors of the SLHC experiments. Unprecedented high radiation levels and track densities and a reduced bunch crossing time in the order of 10ns as well as the need for cost effective detectors have called for an intensive R&D program. The CERN RD50 collaboration "Development of Radiation Hard Semiconductor Devices for Very High Luminosity Colliders" is working on the development of semiconductor sensors matching the requirements of the SLHC. Sensors based on defect engineered silicon like Czochralski, epitaxial and oxygen enriched silicon have been developed. With 3D, Semi-3D and thin detectors new detector concepts have been evaluated and a study on the use of standard and oxygen enriched p-type silicon detectors revealed a promising approach for radiation tolerant cost effective devices. These and other most recent advancements of the RD50 ...

  18. Semiconductor detectors in current energy dispersive X-ray spectral analysis

    International Nuclear Information System (INIS)

    Betin, J.; Zhabin, E.; Krampit, I.; Smirnov, V.

    1980-01-01

    A review is presented of the properties of semiconductor detectors and of the possibilities stemming therefrom of using the detectors in X-ray spectral analysis in industries, in logging, in ecology and environmental control, in medicine, etc. (M.S.)

  19. Coakial gamma ray detector and method therefor

    International Nuclear Information System (INIS)

    Harchol, M.

    1977-01-01

    A coaxial gamma ray detector is fabricated using intrinsic Ge semiconductor material in a geometry whereby full depletion of electrical carriers is prevented within a small region proximate the point of electrical contact thereby allowing greater biasing potentials across the detector and, consequently, providing reduced electronic noise and increased energy resolution

  20. A spectrometer using semi-conductor detectors; study and applications (1963)

    International Nuclear Information System (INIS)

    Roux, G.

    1963-01-01

    The low average energy, 2.5 to 3.5 eV, required to produce one hole-electron pair in a semiconductor allows an accurate measurement of the energy of the ionizing particles. A high resolution spectrometer has been built using semiconductor detectors. The limit of resolution, due to electronics associated to the detector, to the detector itself and to the source of particles is studied here. The present practical limit of resolution of the spectrometer is 1700 elementary electric charges (full width at half maximum of a ray of a spectrum) or 6 keV in terms of energy lost by a particle in a silicon detector. The physical resolution usually obtained is 20 keV (0.33 per cent) with α particles of the 212 Bi (6.087 MeV). It depends a lot of the kind of detector used. Some results, concerning the background of the detectors and limit of measurements for low energies are given. Various applications are presented: spectrometry β, spectrometry γ and X, spectrometry of mixtures of α radioactive elements, collection of α spectra. (author) [fr

  1. Ab-initio calculations of semiconductor MgGeP{sub 2} and MgGeAs{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Kocak, B.; Ciftci, Y.O., E-mail: yasemin@gazi.edu.tr

    2016-05-15

    Highlights: • MgGeP{sub 2} and MgGeAs{sub 2} are semiconductor compounds. • MgGeP{sub 2} and MgGeAs{sub 2} are energetically, mechanically and dynamically stable. • The electronic charge density contour plot shows that the nature of bonding is a mixture of ionic-covalent. - Abstract: In this study, we focus on structural, electronic, elastic, lattice dynamic and optic properties of MgGeP{sub 2} and MgGeAs{sub 2} using ab-initio density-functional theory (DFT) within Armiento-Mattson 2005 (AM05) scheme of the generalized gradient approximation (GGA) for the exchange-correlation potential. Our computed structural results are in reasonable agreement with the literature. The band gap of these compounds is predicted to be direct. Our elastic results prove that these compounds are mechanically stable. The obtained phonon spectra of MgGeP{sub 2} and MgGeAs{sub 2} do not exhibit any significant imaginary branches using GGA-AM05 for the exchange-correlation approximation. Further analysis of the optical response of the dielectric functions, optical reflectivity, refractive index, extinction coefficient and electron energy loss delves into for the energy range of 0–22.5 eV. It motivated that there exists an optical polarization anisotropy of these compounds for optoelectronic device applications.

  2. Properties of SiC semiconductor detector of fast neutrons investigated using MCNPX code

    International Nuclear Information System (INIS)

    Sedlakova, K.; Sagatova, A.; Necas, V.; Zatko, B.

    2013-01-01

    The potential of silicon carbide (SiC) for use in semiconductor nuclear radiation detectors has been long recognized. The wide bandgap of SiC (3.25 eV for 4H-SiC polytype) compared to that for more conventionally used semiconductors, such as silicon (1.12 eV) and germanium (0.67 eV), makes SiC an attractive semiconductor for use in high dose rate and high ionization nuclear environments. The present work focused on the simulation of particle transport in SiC detectors of fast neutrons using statistical analysis of Monte Carlo radiation transport code MCNPX. Its possibilities in detector design and optimization are presented.(authors)

  3. Peltier battery thermostat for semiconductor detectors

    International Nuclear Information System (INIS)

    Caini, V.

    1980-01-01

    The description is given of a Peltier battery cooling thermostat for semiconductor detectors, whose sensing element is the detector itself. A signal proportional to the leakage current is amplified and compared with a chosen reference voltage. The difference, amplified and sensed, regulates the cooling current to the Peltier battery. Special mechanical devices speed up measurement-taking. The leakage current proved to be reducible to as little as 1/1000 of that at ambient temperature and the stabilization obtained is between +-5 nA (although between +-1 nA is also feasible). Hence it is possible to use very high load resistance preamplifiers to reduce noise and to improve stability and pulse height resolution in α spectroscopy, even with a detector unsuitable for work at very low temperatures. Other applications can be foreseen. (orig.)

  4. Study of low dimensional SiGe island on Si for potential visible Metal-Semiconductor-Metal photodetector

    Science.gov (United States)

    Rahim, Alhan Farhanah Abd; Zainal Badri, Nur'Amirah; Radzali, Rosfariza; Mahmood, Ainorkhilah

    2017-11-01

    In this paper, an investigation of design and simulation of silicon germanium (SiGe) islands on silicon (Si) was presented for potential visible metal semiconductor metal (MSM) photodetector. The characterization of the performances in term of the structural, optical and electrical properties of the structures was analyzed from the simulation results. The project involves simulation using SILVACO Technology Computer Aided Design (TCAD) tools. The different structures of the silicon germanium (SiGe) island on silicon substrate were created, which were large SiGe, small SiGe, combination SiGe and bulk Ge. All the structures were tested for potential Metal Semiconductor Metal (MSM) photodetector. The extracted data such as current versus voltage characteristic, current gain and spectral response were obtained using ATLAS SILVACO tools. The performance of SiGe island structures and bulk Ge on Si substrate as (MSM) photodetector was evaluated by photo and dark current-voltage (I-V) characteristics. It was found that SiGe islands exhibited higher energy band gap compared to bulk Ge. The SiGe islands current-voltage characteristics showed improved current gain compared to bulk Ge. Specifically the enhancement of the islands gain was contributed by the enhanced photo currents and lower dark currents. The spectral responses of the SiGe islands showed peak response at 590 nm (yellow) which is at the visible wavelength. This shows the feasibility of the SiGe islands to be utilized for visible photodetections.

  5. Study of low dimensional SiGe island on Si for potential visible Metal-Semiconductor-Metal photodetector

    Directory of Open Access Journals (Sweden)

    Abd Rahim Alhan Farhanah

    2017-01-01

    Full Text Available In this paper, an investigation of design and simulation of silicon germanium (SiGe islands on silicon (Si was presented for potential visible metal semiconductor metal (MSM photodetector. The characterization of the performances in term of the structural, optical and electrical properties of the structures was analyzed from the simulation results. The project involves simulation using SILVACO Technology Computer Aided Design (TCAD tools. The different structures of the silicon germanium (SiGe island on silicon substrate were created, which were large SiGe, small SiGe, combination SiGe and bulk Ge. All the structures were tested for potential Metal Semiconductor Metal (MSM photodetector. The extracted data such as current versus voltage characteristic, current gain and spectral response were obtained using ATLAS SILVACO tools. The performance of SiGe island structures and bulk Ge on Si substrate as (MSM photodetector was evaluated by photo and dark current-voltage (I-V characteristics. It was found that SiGe islands exhibited higher energy band gap compared to bulk Ge. The SiGe islands current-voltage characteristics showed improved current gain compared to bulk Ge. Specifically the enhancement of the islands gain was contributed by the enhanced photo currents and lower dark currents. The spectral responses of the SiGe islands showed peak response at 590 nm (yellow which is at the visible wavelength. This shows the feasibility of the SiGe islands to be utilized for visible photodetections.

  6. Microelectronics used for Semiconductor Imaging Detectors

    CERN Document Server

    Heijne, Erik H M

    2010-01-01

    Semiconductor crystal technology, microelectronics developments and nuclear particle detection have been in a relation of symbiosis, all the way from the beginning. The increase of complexity in electronics chips can now be applied to obtain much more information on the incident nuclear radiation. Some basic technologies are described, in order to acquire insight in possibilities and limitations for the most recent detectors.

  7. Study on effects of gamma-ray irradiation on TlBr semiconductor detectors

    International Nuclear Information System (INIS)

    Matsumura, Motohiro; Watanabe, Kenichi; Yamazaki, Atsushi; Uritani, Akira; Kimura, Norihisa; Nagano, Nobumichi; Hitomi, Keitaro

    2016-01-01

    Radiation hardness of thallium bromide (TlBr) semiconductor detectors to 60 Co gamma-ray irradiation was evaluated. The energy spectra and μτ products of electrons were measured to evaluate the irradiation effects. No significant degradation of spectroscopic performance of the TlBr detector for 137 Cs gamma-rays was observed up to 45 kGy irradiation. Although the μτ products of electrons in the TlBr detector slightly decreased, position of the photo-peak was stable without significant degradation after the gamma-ray irradiation. We confirmed that the TlBr semiconductor detector has a high tolerance for gamma-ray irradiation at least up to 45 kGy. (author)

  8. Dual-sided microstructured semiconductor neutron detectors (DSMSNDs)

    International Nuclear Information System (INIS)

    Fronk, Ryan G.; Bellinger, Steven L.; Henson, Luke C.; Ochs, Taylor R.; Smith, Colten T.; Kenneth Shultis, J.; McGregor, Douglas S.

    2015-01-01

    Microstructured semiconductor neutron detectors (MSNDs) have in recent years received much interest as high-efficiency replacements for thin-film-coated thermal neutron detectors. The basic device structure of the MSND involves micro-sized trenches that are etched into a vertically-oriented pvn-junction diode that are backfilled with a neutron converting material. Neutrons absorbed within the converting material induce fission of the parent nucleus, producing a pair of energetic charged-particle reaction products that can be counted by the diode. The MSND deep-etched microstructures produce good neutron-absorption and reaction-product counting efficiencies, offering a 10× improvement in intrinsic thermal neutron detection efficiency over thin-film-coated devices. Performance of present-day MSNDs are nearing theoretical limits; streaming paths between the conversion-material backfilled trenches, allow a considerable fraction of neutrons to pass undetected through the device. Dual-sided microstructured semiconductor neutron detectors (DSMSNDs) have been developed that utilize a complementary second set of trenches on the back-side of the device to count streaming neutrons. DSMSND devices are theoretically capable of greater than 80% intrinsic thermal neutron detection efficiency for a 1-mm thick device. The first such prototype DSMSNDs, presented here, have achieved 29.48±0.29% nearly 2× better than MSNDs with similar microstructure dimensions.

  9. Fe concentration dependence of tunneling magnetoresistance in magnetic tunnel junctions using group-IV ferromagnetic semiconductor GeFe

    Directory of Open Access Journals (Sweden)

    Kosuke Takiguchi

    2017-10-01

    Full Text Available Group-IV-based ferromagnetic semiconductor Ge1−xFex (GeFe is one of the most promising materials for spin injection/detection in Si and Ge. In this paper, we demonstrate a systematic study of tunneling magnetoresistance (TMR in magnetic tunnel junctions (MTJs composed of Fe/MgO/Ge1−xFex with various Fe concentrations (x = 0.065, 0.105, 0.140, and 0.175. With increasing x, the TMR ratio increases up to 1.5% when x≤ 0.105, and it decreases when x> 0.105. This is the first observation of the TMR ratio over 1% in MTJs containing a group-IV ferromagnetic semiconductor. With increasing x, while the Curie temperature of GeFe increases, the MgO surface becomes rougher, which is thought to be the cause of the upper limit of the TMR ratio. The quality of the MgO layer on GeFe is an important factor for further improvement of TMR in Fe/MgO/GeFe MTJs.

  10. X-ray imaging with photon counting hybrid semiconductor pixel detectors

    CERN Document Server

    Manolopoulos, S; Campbell, M; Snoeys, W; Heijne, Erik H M; Pernigotti, E; Raine, C; Smith, K; Watt, J; O'Shea, V; Ludwig, J; Schwarz, C

    1999-01-01

    Semiconductor pixel detectors, originally developed for particle physics experiments, have been studied as X-ray imaging devices. The performance of devices using the OMEGA 3 read-out chip bump-bonded to pixellated silicon semiconductor detectors is characterised in terms of their signal-to-noise ratio when exposed to 60 kVp X-rays. Although parts of the devices achieve values of this ratio compatible with the noise being photon statistics limited, this is not found to hold for the whole pixel matrix, resulting in the global signal-to-noise ratio being compromised. First results are presented of X-ray images taken with a gallium arsenide pixel detector bump-bonded to a new read-out chip, (MEDIPIX), which is a single photon counting read-out chip incorporating a 15-bit counter in every pixel. (author)

  11. Charge collection efficiency in a semiconductor radiation detector with a non-constant electric field

    International Nuclear Information System (INIS)

    Shah, K.S.; Lund, J.C.; Olschner, F.

    1990-01-01

    The development of improved semiconductor radiation detectors would be facilitated by a quantitative model that predicts the performance of these detectors as a function of material characteristics and device operating parameters. An accurate prediction of the pulse height spectrum from a radiation detector can be made if both the noise and the charge collection properties of the detector are understood. The noise characteristics of semiconductor radiation detectors have been extensively studied. The effect of noise can be closely simulated by convoluting the noise-free pulse height spectrum with a Gaussian function. Distortion of semiconductor detector's pulse height spectrum from charge collection effects is more complex than the effects of noise and is more difficult to predict. To compute these distortions it is necessary to know how the charge collection efficiency η varies as a function of position within the detector x. These effects are shown. This problem has been previously solved for planar detectors with a constant electric field, for the case of spherical detectors, and for coaxial detectors. In this paper the authors describe a more general solution to the charge collection problem which includes the case of a non-constant electric field in a planar geometry

  12. Trapping effect on the resolution of Ge(Li) detectors

    International Nuclear Information System (INIS)

    Venturini, L.; Suarez, A.A.

    1980-01-01

    This work describes the measurement of the resolution variation of a Ge(Li) detector as a function of irradiation position by a collimated gamma-ray beam. Also the resolution dependence has been measured as a function of the detector applied voltage, using collimated and non-collimated gamma-ray beam. (A.C.A.S.) [pt

  13. Study on Characteristic of CdZnTe Semiconductor Detectors for Alpha Particle Measurement

    International Nuclear Information System (INIS)

    Kang, Sang Mook; Ha, Jang Ho; Kim, Yong Kyun; Park, Se Hwan; Kim, Han Soo; Chung, Chong Eun

    2005-01-01

    The last 2-3 years have seen continued effort in the development of a wide band gap room-temperature compound semiconductor devices aimed principally at photon imaging covering hard X-rays, synchrotrons, and low to medium energy gamma rays. Especially, among the semiconductor materials of a wide band gap, CdZnTe(CZT) has commonly used X-ray and gammaray detection applications because of the opportunity to achieve and excellent spectral and spatial resolution. It has recently been demonstrated that CZT can be used as an ancillary detector with the ability to detect both alpha particles and X-ray at room temperature. CZT detectors are relatively inexpensive compared with some silicon detectors, and are priced about the same as amorphous silicon and photodiodes which are routinely used for charged particle detection. In this paper, we investigated the use of the CZT semiconductor material as an alpha particles detector

  14. Infrared detectors and emitters on the basis of semiconductor quantum structures

    International Nuclear Information System (INIS)

    Kruck, P. R.

    1997-08-01

    Intersubband transitions in Si/SiGe and GaAs/AlGaAs semiconductor quantum structures have been investigated with respect to possible application as infrared detectors and emitters. Investigation of the polarization dependence of subband absorption in Si/SiGe quantum wells shows both transverse magnetic and transverse electric polarized excitations. Intersubband transitions to several excited states are identified by comparison with self-consistent Luttinger-Kohn type calculations. On the basis of these investigations a quantum well infrared photodetector operating between 3 and 8 μm with a detectivity as high as D*=2 x 10 10 cm Hz 1/2 W -1 under normal incidence illumination and at an operating temperature of T=77K is realized. The polarization dependence of the photoconductivity shows the importance of both the absorption and the vertical transport properties of the photoexcited carriers for the detection mechanism. On the basis of the GaAs/AlGaAs material system a unipolar quantum cascade light emitting diode (LED) has been realized. The LED operates at a wavelength of 6.9 μm. A detailed analysis of the electroluminescence spectra shows a linewidth as narrow as 14 meV at cryogenic temperatures, increasing to 20 meV at room temperature. For typical drive-current densities of 1 kA/cm 2 the optical output power lies in the ten nanowatt range. (author)

  15. Bibliographical study on the high-purity germanium radiation detectors used in gamma and X spectrometry

    International Nuclear Information System (INIS)

    Bornand, Bernard; Friant, Alain

    1979-03-01

    The germanium or silicon lithium-drifted detectors, Ge(Li) or Si(Li), and high-purity germanium detectors, HP Ge (impurity concentration approximately 10 10 cm -3 ), are the most commonly used at the present time as gamma and X-ray spectrometers. The HP Ge detectors for which room temperature storage is the main characteristic can be obtained with a large volume and a thin window, and are used as the Ge(Li) in γ ray spectrometry or the Si(Li) in X-ray spectrometry. This publication reviews issues from 1974 to 1978 on the state of the art and applications of the HP Ge semiconductor detectors. 101 bibliographical notices with French summaries are presented. An index for authors, documents and periodicals, and subjects is included [fr

  16. Industrial workshop on LASL semiconductor radiation-detector research and development

    International Nuclear Information System (INIS)

    Endebrock, M.

    1978-11-01

    An Industrial Workshop on LASL Semiconductor Radiation Detector Research and Development was held at the Los Alamos Scientific Laboratory (LASL) in the spring of 1977. The purpose was to initiate communication between our detector research and development program and industry. LASL research programs were discussed with special emphasis on detector problems. Industrial needs and capabilities in detector research and development were also presented. Questions of technology transfer were addressed. The notes presented here are meant to be informal, as were the presentations

  17. Stable room-temperature thallium bromide semiconductor radiation detectors

    Science.gov (United States)

    Datta, A.; Fiala, J.; Becla, P.; Motakef, Shariar

    2017-10-01

    Thallium bromide (TlBr) is a highly efficient ionic semiconductor with excellent radiation detection properties. However, at room temperature, TlBr devices polarize under an applied electric field. This phenomenon not only degrades the charge collection efficiency of the detectors but also promotes chemical reaction of the metal electrodes with bromine, resulting in an unstable electric field and premature failure of the device. This drawback has been crippling the TlBr semiconductor radiation detector technology over the past few decades. In this exhaustive study, this polarization phenomenon has been counteracted using innovative bias polarity switching schemes. Here the highly mobile Br- species, with an estimated electro-diffusion velocity of 10-8 cm/s, face opposing electro-migration forces during every polarity switch. This minimizes the device polarization and availability of Br- ions near the metal electrode. Our results indicate that it is possible to achieve longer device lifetimes spanning more than 17 000 h (five years of 8 × 7 operation) for planar and pixelated radiation detectors using this technique. On the other hand, at constant bias, 2500 h is the longest reported lifetime with most devices less than 1000 h. After testing several biasing switching schemes, it is concluded that the critical bias switching frequency at an applied bias of 1000 V/cm is about 17 μHz. Using this groundbreaking result, it will now be possible to deploy this highly efficient room temperature semiconductor material for field applications in homeland security, medical imaging, and physics research.

  18. Stable room-temperature thallium bromide semiconductor radiation detectors

    Directory of Open Access Journals (Sweden)

    A. Datta

    2017-10-01

    Full Text Available Thallium bromide (TlBr is a highly efficient ionic semiconductor with excellent radiation detection properties. However, at room temperature, TlBr devices polarize under an applied electric field. This phenomenon not only degrades the charge collection efficiency of the detectors but also promotes chemical reaction of the metal electrodes with bromine, resulting in an unstable electric field and premature failure of the device. This drawback has been crippling the TlBr semiconductor radiation detector technology over the past few decades. In this exhaustive study, this polarization phenomenon has been counteracted using innovative bias polarity switching schemes. Here the highly mobile Br− species, with an estimated electro-diffusion velocity of 10−8 cm/s, face opposing electro-migration forces during every polarity switch. This minimizes the device polarization and availability of Br− ions near the metal electrode. Our results indicate that it is possible to achieve longer device lifetimes spanning more than 17 000 h (five years of 8 × 7 operation for planar and pixelated radiation detectors using this technique. On the other hand, at constant bias, 2500 h is the longest reported lifetime with most devices less than 1000 h. After testing several biasing switching schemes, it is concluded that the critical bias switching frequency at an applied bias of 1000 V/cm is about 17 μHz. Using this groundbreaking result, it will now be possible to deploy this highly efficient room temperature semiconductor material for field applications in homeland security, medical imaging, and physics research.

  19. Direct observation of both contact and remote oxygen scavenging of GeO2 in a metal-oxide-semiconductor stack

    International Nuclear Information System (INIS)

    Fadida, S.; Shekhter, P.; Eizenberg, M.; Cvetko, D.; Floreano, L.; Verdini, A.; Nyns, L.; Van Elshocht, S.; Kymissis, I.

    2014-01-01

    In the path to incorporating Ge based metal-oxide-semiconductor into modern nano-electronics, one of the main issues is the oxide-semiconductor interface quality. Here, the reactivity of Ti on Ge stacks and the scavenging effect of Ti were studied using synchrotron X-ray photoelectron spectroscopy measurements, with an in-situ metal deposition and high resolution transmission electron microscopy imaging. Oxygen removal from the Ge surface was observed both in direct contact as well as remotely through an Al 2 O 3 layer. The scavenging effect was studied in situ at room temperature and after annealing. We find that the reactivity of Ti can be utilized for improved scaling of Ge based devices.

  20. A semiconductor parameter analyzer for ionizing radiation detectors

    International Nuclear Information System (INIS)

    Santos, Luiz A.P.

    2009-01-01

    Electrometers and ion chamber are normally used to make several types of measurements in a radiation field and there is a unique voltage applied to each detector type. Some electronic devices that are built of semiconductor materials like silicon crystal can also be used for the same purpose. In this case, a characteristic curve of the device must be acquired to choose an operation point which consists of an electrical current or voltage to be applied to the device. Unlike ion chambers, such an electronic device can have different operation points depending on its current versus voltage curve (I x V). The best operation point of the device is also a function of the radiation, energy, dose rate and fluence. The purpose of this work is to show a semiconductor parameter analyzer built to acquire I x V curves as usually, and the innovation here is the fact that it can be used to obtain such a parametric curve when a quad-polar device is under irradiation. The results demonstrate that the system is a very important tool to scientists interested to evaluate a semiconductor detector before, during and after irradiation. A collection of results for devices under an X-ray beam and a neutron fluence are presented: photodiode, phototransistors, bipolar transistor and MOSFET. (author)

  1. Dual-Energy Semiconductor Detector of X-rays and Gamma Radiation

    Directory of Open Access Journals (Sweden)

    Brodyn, M.S.

    2014-03-01

    Full Text Available Analysis of the major types of ionizing radiation detectors, their advantages and disadvantages are presented. Application of ZnSe-based semiconductor detector in high temperature environment is substantiated. Different forms of ZnSe-based detector samples and double-crystal scheme for registration of X- and gamma rays in a broad energy range were used . Based on the manufactured simulator device, the study sustains the feasibility of the gamma quanta recording by a high-resistance ZnSe-based detector operating in a perpulse mode.

  2. Quest for high-Curie temperature MnxGe1-x diluted magnetic semiconductors for room-temperature spintronics applications

    Science.gov (United States)

    Nie, Tianxiao; Tang, Jianshi; Wang, Kang L.

    2015-09-01

    In this paper, we report the non-equilibrium growth of various Mn-doped Ge dilute magnetic semiconductor nanostructures using molecular-beam epitaxy, including quantum dots, nanodisks and nanowires. Their detailed structural and magnetic properties are characterized. By comparing the results with those in MnxGe1-x thin films, it is affirmed that the use of nanostructures helps eliminate crystalline defects and meanwhile enhance the carrier-mediate ferromagnetism from substantial quantum confinements. Our systematic studies provide a promising platform to build nonvolatile spinFET and other novel spintronic devices based upon dilute magnetic semiconductor nanostructures.

  3. Influence of backscattering on the spatial resolution of semiconductor X-ray detectors

    International Nuclear Information System (INIS)

    Hoheisel, M.; Korn, A.; Giersch, J.

    2005-01-01

    Pixelated X-ray detectors using semiconductor layers or scintillators as absorbers are widely used in high-energy physics, medical diagnosis, or non-destructive testing. Their good spatial resolution performance makes them particularly suitable for applications where fine details have to be resolved. Intrinsic limitations of the spatial resolution have been studied in previous simulations. These simulations focused on interactions inside the conversion layer. Transmitted photons were treated as a loss. In this work, we also implemented the structure behind the conversion layer to investigate the impact of backscattering inside the detector setup. We performed Monte Carlo simulations with the program ROSI (Roentgen Simulation) which is based on the well-established EGS4 algorithm. Line-spread functions of different fully implemented detectors were simulated. In order to characterize the detectors' spatial resolution, the modulation transfer functions (MTF) were calculated. The additional broadening of the line-spread function by carrier transport has been ignored in this work. We investigated two different detector types: a directly absorbing pixel detector where a semiconductor slab is bump-bonded to a readout ASIC such as the Medipix-2 setup with Si or GaAs as an absorbing semiconductor layer, and flat-panel detectors with a Se or a CsI converter. We found a significant degradation of the MTF compared to the case without backscattering. At energies above the K-edge of the backscattering material the spatial resolution drops and can account for the observed low-frequency drop of the MTF. Ignoring this backscatter effect might lead to misinterpretations of the charge sharing effect in counting pixel detectors

  4. Energy response of neutron area monitor with silicon semiconductor detector

    International Nuclear Information System (INIS)

    Kitaguchi, Hiroshi; Izumi, Sigeru; Kobayashi, Kaoru; Kaihara, Akihisa; Nakamura, Takashi.

    1993-01-01

    A prototype neutron area monitor with a silicon semiconductor detector has been developed which has the energy response of 1 cm dose equivalent recommended by the ICRP-26. Boron and proton radiators are coated on the surface of the silicon semiconductor detector. The detector is set at the center of a cylindrical polyethylene moderator. This moderator is covered by a porous cadmium board which serves as the thermal neutron absorber. Neutrons are detected as α-particles generated by the nuclear reaction 10 B(n,α) 7 Li and as recoil protons generated by the interaction of fast neutrons with hydrogen. The neutron energy response of the monitor was measured using thermal neutrons and monoenergetic fast neutrons generated by an accelerator. The response was consistent with the 1 cm dose equivalent response required for the monitor within ±34% in the range of 0.025 - 15 Mev. (author)

  5. Cryostat for an well logging probe using a semiconductor detector

    International Nuclear Information System (INIS)

    Tapphorn, R.M.

    1978-01-01

    This invention proposes to construct an well logging tool of the type comprising a semiconductor radiation detector devoid of the defects usually observed. This aim is attained by means of a cryostat to cool a semiconductor radiation detector in a restricted space where the temperature is high. It includes a long box dimensioned to pass through a bore hole, a cryogenic chamber housed in the box, a vacuum chamber thermally insulating the cryogenic chamber and placed around it, a semiconductor radiation detector housed in the vacuum chamber in thermal contact with the cryogenic chamber and an active vacuum pump fitted in the box and connected to the vacuum chamber to maintain a vacuum in it. In an improved version, the vacuum pump is fitted outside the cryostat so that it operates independently of the temperature conditions in the cryostat. If the pump needs to be cooled to reduce the gas discharge, it can be fitted inside the cryostat and connected to the cryogenic chamber or a second cryostat can also be provided to cool the pump. The vacuum pump is designed to maintain the vacuum in the thermal insulation vacuum chamber at a desired figure, preferably 10 -4 Torr or under, in order to preserve the integrity of the thermal insulation layer around the cryogenic chamber and thereby extending the efficient operating period of the detector. The cryogenic material used is preferably of fusion resistant type such as Freon 22 [fr

  6. Monte-Carlo modelling of Ge detectors - frequently overlooked issues

    International Nuclear Information System (INIS)

    Johnston, P.; Tagziria, H.; Gasparro, J.; Hult, M.

    2006-01-01

    This work concentrates on issues that are commonly encountered, but difficult to define including detectors tilted with respect to the cylindrical axis and otherwise misaligned, deviations of the sensitive volume from a right-cylinder, e.g. a rounded edge of co-axial Ge detectors and errors in the available data about the relevant decay scheme. The paper concentrates on methods used to overcome these difficulties

  7. Physical characteristics of GE Senographe Essential and DS digital mammography detectors

    International Nuclear Information System (INIS)

    Ghetti, Caterina; Borrini, Adriano; Ortenzia, Ornella; Rossi, Raffaella; Ordonez, Pedro L.

    2008-01-01

    The purpose of this study was to investigate physical characteristics of two full field digital mammography (FFDM) systems (GE Senographe Essential and DS). Both are indirect conversion (x ray to light) a-Si flat panels coupled with a CsI(Tl) scintillator. The examined systems have the same pixel size (100 μm) but a different field of view: a conventional size 23x19.2 cm 2 and a large field 24x30.7 cm 2 , specifically designed to image large breasts. In the GE Senographe Essential model relevant improvements in flat panel design were implemented and new deposition tools for metal, a-Si, and CsI(Tl) were introduced by GE. These changes in detector design are expected to be beneficial for advanced applications such as breast tomosynthesis. The presampling modulation transfer function (MTF), normalized noise power spectrum (NNPS), and detective quantum efficiency (DQE) were measured for a wide range of exposure (25-240 μGy) with a RQA-M2 technique (28 kVp with a Mo/Mo target/filter combination and 2 mm of additional aluminum filtration). At 1, 2, and at 4 lp/mm MTF is equal to 0.9, 0.76, and 0.46 for the conventional field detector and to 0.85, 0.59, and 0.24 for the large field detector. The latter detector exhibits an improved NNPS due to a lower electronic noise and a better DQE that reaches 60%. In addition a contrast-detail analysis was performed with CDMAM 3.4 phantom and CDCOM software: GE Senographe DS showed statistically significant poorer detection ability in comparison with the GE Senographe Essential. These results could have been expected, at least qualitatively, considering the relative DQE of the two systems

  8. Germanium nitride and oxynitride films for surface passivation of Ge radiation detectors

    Energy Technology Data Exchange (ETDEWEB)

    Maggioni, G., E-mail: maggioni@lnl.infn.it [Dipartimento di Fisica e Astronomia G. Galilei, Università di Padova, Via Marzolo 8, I-35131 Padova (Italy); Laboratori Nazionali di Legnaro, Istituto Nazionale di Fisica Nucleare, Viale dell’Universita’2, I-35020 Legnaro, Padova (Italy); Carturan, S. [Dipartimento di Fisica e Astronomia G. Galilei, Università di Padova, Via Marzolo 8, I-35131 Padova (Italy); Laboratori Nazionali di Legnaro, Istituto Nazionale di Fisica Nucleare, Viale dell’Universita’2, I-35020 Legnaro, Padova (Italy); Fiorese, L. [Laboratori Nazionali di Legnaro, Istituto Nazionale di Fisica Nucleare, Viale dell’Universita’2, I-35020 Legnaro, Padova (Italy); Dipartimento di Ingegneria dei Materiali e delle Tecnologie Industriali, Università di Trento, Via Mesiano 77, I-38050 Povo, Trento (Italy); Pinto, N.; Caproli, F. [Scuola di Scienze e Tecnologie, Sezione di Fisica, Università di Camerino, Via Madonna delle Carceri 9, Camerino (Italy); INFN, Sezione di Perugia, Perugia (Italy); Napoli, D.R. [Laboratori Nazionali di Legnaro, Istituto Nazionale di Fisica Nucleare, Viale dell’Universita’2, I-35020 Legnaro, Padova (Italy); Giarola, M.; Mariotto, G. [Dipartimento di Informatica—Università di Verona, Strada le Grazie 15, I-37134 Verona (Italy)

    2017-01-30

    Highlights: • A surface passivation method for HPGe radiation detectors is proposed. • Highly insulating GeNx- and GeOxNy-based layers are deposited at room temperature. • Deposition parameters affect composition and electrical properties of the layers. • The improved performance of a GeNx-coated HPGe diode is assessed. - Abstract: This work reports a detailed investigation of the properties of germanium nitride and oxynitride films to be applied as passivation layers to Ge radiation detectors. All the samples were deposited at room temperature by reactive RF magnetron sputtering. A strong correlation was found between the deposition parameters, such as deposition rate, substrate bias and atmosphere composition, and the oxygen and nitrogen content in the film matrix. We found that all the films were very poorly crystallized, consisting of very small Ge nitride and oxynitride nanocrystallites, and electrically insulating, with the resistivity changing from three to six orders of magnitude as a function of temperature. A preliminary test of these films as passivation layers was successfully performed by depositing a germanium nitride film on the intrinsic surface of a high-purity germanium (HPGe) diode and measuring the improved performance, in terms of leakage current, with respect to a reference passivated diode. All these interesting results allow us to envisage the application of this coating technology to the surface passivation of germanium-based radiation detectors.

  9. Measurement of radioactive tracer microsphere blood from with NaI(Tl)- and Ge-well type detectors

    International Nuclear Information System (INIS)

    Winkler, B.; Staemmler, G.; Schaper, W.; Frank, J.; Langsdorf, S.

    1982-01-01

    An intrinsic Ge-well type detector was applied for the detection of gamma rays from labeled tracer microspheres. The high energy resolution and the large peak-to-Compton ratio of this spectrometer ensures the application of all available differently labeled tracer microspheres in one experiment. The superior energy resolution of the Ge-detector was documented with the separated photopeak regions of 103-Ru and 85-Sr-labeled tracer microspheres, which result in a single photopeak when an NaI(Tl) detector is used. The Ge-well type detector was compared with an NaI(Tl) spectrometer by counting samples of cardiac muscle in either spectrometer systems. Regression analysis between both spectrometer systems demonstrate identical flow values in these samples for 5 differently labeled tracer microspheres which were administered in 5 dogs. The high sensitivity of the Ge-well-type detector together with a suitable technique for sampling of myocardial tissue accomplishes a high spatial resolution of myocardial perfusion for all available differently labeled tracer microspheres. (orig.)

  10. Evaluation of scintillators and semiconductor detectors to image three-photon positron annihilation for positron emission tomography

    International Nuclear Information System (INIS)

    Abuelhia, E.; Spyrou, N.M.; Kacperski, K.; College University, Middlesex Hospital, London

    2008-01-01

    Positron emission tomography (PET) is rapidly becoming the main nuclear imaging modality of the present century. The future of PET instrumentation relies on semiconductor detectors because of their excellent characteristics. Three-photon positron annihilation has been recently investigated as a novel imaging modality, which demands the crucial high energy resolution of semiconductor detector. In this work the evaluation of the NaI(Tl) scintillator and HPGe and CdZTe semiconductor detectors, to construct a simple three-photon positron annihilation scanner has been explored. The effect of detector and scanner size on spatial resolution (FWHM) is discussed. The characteristics: energy resolution versus count rate and point-spread function of the three-photon positron annihilation image profile from triple coincidence measurements were investigated. (author)

  11. Proposal for a semiconductor high resolution tracking detector

    International Nuclear Information System (INIS)

    Rehak, P.

    1983-01-01

    A 'new' concept for detection and tracking of charged particles in high energy physics experiments is proposed. It combines a well known high purity semiconductor diode detector (HPSDD) with a heterojunction structure (HJ) and a negative electron affinity (NEA) surface. The detector should be capable of providing a two dimensional view (few cm 2 ) of multi-track events with the following properties: a) position resolution down to a few μm (10 8 position elements); b) high density of information (10 2 -10 3 dots per mm of minimum ionizing track); c) high rate capabilities (few MHz); d) live operation with options to be triggered and/or the information from the detector can be used as an input for the decision to record an event. (orig.)

  12. Non-streaming high-efficiency perforated semiconductor neutron detectors, methods of making same and measuring wand and detector modules utilizing same

    Science.gov (United States)

    McGregor, Douglas S.; Shultis, John K.; Rice, Blake B.; McNeil, Walter J.; Solomon, Clell J.; Patterson, Eric L.; Bellinger, Steven L.

    2010-12-21

    Non-streaming high-efficiency perforated semiconductor neutron detectors, method of making same and measuring wands and detector modules utilizing same are disclosed. The detectors have improved mechanical structure, flattened angular detector responses, and reduced leakage current. A plurality of such detectors can be assembled into imaging arrays, and can be used for neutron radiography, remote neutron sensing, cold neutron imaging, SNM monitoring, and various other applications.

  13. Recent advancements in the development of radiation hard semiconductor detectors for S-LHC

    CERN Document Server

    Fretwurst, E; Al-Ajili, A A; Alfieri, G; Allport, P P; Artuso, M; Assouak, S; Avset, B S; Barabash, L; Barcz, A; Bates, R; Biagi, S F; Bilei, G M; Bisello, D; Blue, A; Blumenau, A; Boisvert, V; Bölla, G; Bondarenko, G B; Borchi, E; Borrello, L; Bortoletto, D; Boscardin, M; Bosisio, L; Bowcock, T J V; Brodbeck, T J; Broz, J; Bruzzi, M; Brzozowski, A; Buda, M; Buhmann, P; Buttar, C; Campabadal, F; Campbell, D; Candelori, A; Casse, G; Cavallini, A; Charron, S; Chilingarov, A G; Chren, D; Cindro, V; Collins, P; Coluccia, R; Contarato, D; Coutinho, J; Creanza, D; Cunningham, L; Dalla Betta, G F; Dawson, I; de Boer, Wim; De Palma, M; Demina, R; Dervan, P; Dittongo, S; Dolezal, Z; Dolgolenko, A; Eberlein, T; Eremin, V; Fall, C; Fasolo, F; Ferbel, T; Fizzotti, F; Fleta, C; Focardi, E; Forton, E; García, C; García-Navarro, J E; Gaubas, E; Genest, M H; Gill, K A; Giolo, K; Glaser, M; Gössling, C; Golovine, V; González-Sevilla, S; Gorelov,I; Goss, J; Gouldwell-Bates, A; Grégoire, G; Gregori, P; Grigoriev, E; Grillo, A A; Groza, A; Guskov, J; Haddad, L; Härkönen, J; Hauler, F; Hoeferkamp, M; Honniger, F; Horazdovsky, T; Horisberger, R P; Horn, M; Houdayer, A; Hourahine, B; Hughes, G; Ilyashenko, Yu S; Irmscher, K; Ivanov, A; Jarasiunas, K; Johansen, K M H; Jones, B K; Jones, R; Joram, C; Jungermann, L; Kalinina, E; Kaminski, P; Karpenko, A; Karpov, A; Kazlauskiene, V; Kazukauskas, V; Khivrich, V; Khomenkov, V P; Kierstead, J A; Klaiber Lodewigs, J M; Klingenberg, R; Kodys, P; Kohout, Z; Korjenevski, S; Koski, M; Kozlowski, R; Kozodaev, M; Kramberger, G; Krasel, O; Kuznetsov, A; Kwan, S; Lagomarsino, S; Lassila-Perini, K M; Lastovetsky, V F; Latino, G; Lazanu, I; Lazanu, S; Lebedev, A; Lebel, C; Leinonen, K; Leroy, C; Li, Z; Lindström, G; Linhart, V; Litovchenko, P G; Litovchenko, A P; Lo Giudice, A; Lozano, M; Luczynski, Z; Luukka, Panja; Macchiolo, A; Makarenko, L F; Mandic, I; Manfredotti, C; Manna, N; Martí i García, S; Marunko, S; Mathieson, K; Melone, J; Menichelli, D; Messineo, A; Metcalfe, J; Miglio, S; Mikuz, M; Miyamoto, J; Moll, M; Monakhov, E; Moscatelli, F; Naoumov, D; Nossarzhevska, E; Nysten, J; Olivero, P; O'Shea, V; Palviainen, T; Paolini, C; Parkes, C; Passeri, D; Pein, U; Pellegrini, G; Perera, L; Petasecca, M; Piemonte, C; Pignatel, G U; Pinho, N; Pintilie, I; Pintilie, L; Polivtsev, L; Polozov, P; Popa, A; Populea, J; Pospísil, S; Pozza, A; Radicci, V; Rafí, J M; Rando, R; Röder, R; Rohe, T; Ronchin, S; Rott, C; Roy, A; Ruzin, A; Sadrozinski, H F W; Sakalauskas, S; Scaringella, M; Schiavulli, L; Schnetzer, S; Schumm, B; Sciortino, S; Scorzoni, A; Segneri, G; Seidela, S; Seiden, A; Sellberg, G; Sellin, P J; Sentenac, D; Shipsey, I; Sícho, P; Sloan, T; Solar, M; Son, S; Sopko, B; Sopko, V; Spencer, N; Stahl, J; Stolze, D; Stone, R; Storasta, J; Strokan, N; Sudzius, M; Surma, B; Suvorov, A; Svensson, B G; Tipton, P; Tomasek, M; Tsvetkov, A; Tuominen, E; Tuovinen, E; Tuuva, T; Tylchin, M; Uebersee, H; Uher, J; Ullán, M; Vaitkus, J V; Velthuis, J; Verbitskaya, E; Vrba, V; Wagner, G; Wilhelm, I; Worm, S; Wright, V; Wunstorf, R; Yiuri, Y; Zabierowski, P; Zaluzhny, A; Zavrtanik, M; Zen, M; Zhukov, V; Zorzi, N

    2005-01-01

    The proposed luminosity upgrade of the Large Hadron Collider (S-LHC) at CERN will demand the innermost layers of the vertex detectors to sustain fluences of about 1016 hadrons/cm2. Due to the high multiplicity of tracks, the required spatial resolution and the extremely harsh radiation field new detector concepts and semiconductor materials have to be explored for a possible solution of this challenge. The CERN RD50 collaboration “Development of Radiation Hard Semiconductor Devices for Very High Luminosity Colliders” has started in 2002 an R&D program for the development of detector technologies that will fulfill the requirements of the S-LHC. Different strategies are followed by RD50 to improve the radiation tolerance. These include the development of defect engineered silicon like Czochralski, epitaxial and oxygen-enriched silicon and of other semiconductor materials like SiC and GaN as well as extensive studies of the microscopic defects responsible for the degradation of irradiated sensors. Furthe...

  14. Recent advances in Tl Br, Cd Te and CdZnTe semiconductor radiation detectors: a review

    International Nuclear Information System (INIS)

    Oliveira, Icimone B.

    2011-01-01

    The success in the development of radiation spectrometers operating at room temperature is based on many years of effort on the part of large numbers of workers around the world. These individuals have contributed to the understanding of the fundamental materials issues associated with the growth of semiconductors for this application, the development of device fabrication and processing technology, and advances in low noise electronics and pulse processing. Progress in this field continues at an accelerated pace, as in evidenced by the improvements in detector performance and by the growing number of commercial products. Thus, the last years have been seen continued effort in the development of room temperature compound semiconductors devices. High-Z compound semiconductor detectors has been explored for high energy resolution, high detection efficiency and are of low cost. Compound semiconductors detectors are well suited for addressing needs of demanding applications such as bore hole logging where high operating temperature are encountered. In this work recent developments in semiconductors detectors were reviewed. This review concentrated on thallium bromide (TlBr), cadmium zinc telluride (CdZnTe) and cadmium telluride (CdTe) crystals detectors. TlBr has higher stopping power compared to common semiconductor materials because it has the higher photoelectric and total attenuation coefficients over wide energy range from 100 keV to 1 MeV. CdTe and CdZnTe detectors have several attractive features for detecting X-ray and low energy gamma ray. Their relatively large band gaps lead to a relatively low leakage current and offer an excellent energy resolution at room temperature. A literature survey and bibliography was also included. (author)

  15. Recent advances in Tl Br, Cd Te and CdZnTe semiconductor radiation detectors: a review

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Icimone B. [Universidade Bandeirante (UNIBAN), Sao Paulo, SP (Brazil)

    2011-07-01

    The success in the development of radiation spectrometers operating at room temperature is based on many years of effort on the part of large numbers of workers around the world. These individuals have contributed to the understanding of the fundamental materials issues associated with the growth of semiconductors for this application, the development of device fabrication and processing technology, and advances in low noise electronics and pulse processing. Progress in this field continues at an accelerated pace, as in evidenced by the improvements in detector performance and by the growing number of commercial products. Thus, the last years have been seen continued effort in the development of room temperature compound semiconductors devices. High-Z compound semiconductor detectors has been explored for high energy resolution, high detection efficiency and are of low cost. Compound semiconductors detectors are well suited for addressing needs of demanding applications such as bore hole logging where high operating temperature are encountered. In this work recent developments in semiconductors detectors were reviewed. This review concentrated on thallium bromide (TlBr), cadmium zinc telluride (CdZnTe) and cadmium telluride (CdTe) crystals detectors. TlBr has higher stopping power compared to common semiconductor materials because it has the higher photoelectric and total attenuation coefficients over wide energy range from 100 keV to 1 MeV. CdTe and CdZnTe detectors have several attractive features for detecting X-ray and low energy gamma ray. Their relatively large band gaps lead to a relatively low leakage current and offer an excellent energy resolution at room temperature. A literature survey and bibliography was also included. (author)

  16. A spectrometer filter for semiconductor and scintillation detectors

    International Nuclear Information System (INIS)

    Andronov, O.I.; Brovchenko, V.G.; Evdokimov, S.T.

    1995-01-01

    The paper describes an integrating low-pass filter which takes signals from a delay line. The filter changes triangular pulses into rectangular ones. The energy resolution of a semiconductor detector whose signal is processed by the filter is 15-20% better than using a common RC-filter. The integrator stores a charge due to the scintillation pulse during the integration time without loss. The energy and time resolution of the device with the spectrometer filter is better than with an RC-filter. The energy resolution of a bismuth-germanate detector in recording radiation from 137 Cs is 9.75%

  17. Rational design of monocrystalline (InP)(y)Ge(5-2y)/Ge/Si(100) semiconductors: synthesis and optical properties.

    Science.gov (United States)

    Sims, Patrick E; Chizmeshya, Andrew V G; Jiang, Liying; Beeler, Richard T; Poweleit, Christian D; Gallagher, James; Smith, David J; Menéndez, José; Kouvetakis, John

    2013-08-21

    In this work, we extend our strategy previously developed to synthesize functional, crystalline Si(5-2y)(AlX)y {X = N,P,As} semiconductors to a new class of Ge-III-V hybrid compounds, leading to the creation of (InP)(y)Ge(5-2y) analogues. The compounds are grown directly on Ge-buffered Si(100) substrates using gas source MBE by tuning the interaction between Ge-based P(GeH3)3 precursors and In atoms to yield nanoscale "In-P-Ge3" building blocks, which then confer their molecular structure and composition to form the target solids via complete elimination of H2. The collateral production of reactive germylene (GeH2), via partial decomposition of P(GeH3)3, is achieved by simple adjustment of the deposition conditions, leading to controlled Ge enrichment of the solid product relative to the stoichiometric InPGe3 composition. High resolution XRD, XTEM, EDX, and RBS indicate that the resultant monocrystalline (InP)(y)Ge(5-2y) alloys with y = 0.3-0.7 are tetragonally strained and fully coherent with the substrate and possess a cubic diamond-like structure. Molecular and solid-state ab initio density functional theory (DFT) simulations support the viability of "In-P-Ge3" building-block assembly of the proposed crystal structures, which consist of a Ge parent crystal in which the P atoms form a third-nearest-neighbor sublattice and "In-P" dimers are oriented to exclude energetically unfavorable In-In bonding. The observed InP concentration dependence of the lattice constant is closely reproduced by DFT simulation of these model structures. Raman spectroscopy and ellipsometry are also consistent with the "In-P-Ge3" building-block interpretation of the crystal structure, while the observation of photoluminescence suggests that (InP)(y)Ge(5-2y) may have important optoelectronic applications.

  18. Current problems in semiconductor detectors for high energy physics after particle irradiations

    International Nuclear Information System (INIS)

    Lazanu, Ionel

    2002-01-01

    The use of semiconductor materials as detectors in high radiation environments, as expected in future high energy accelerators or in space missions, poses severe problems in long-time operations, due to changes in the properties of the material, and consequently in the performances of detectors. This talk presents the major theoretical areas of current problems, reviews the works in this field and the stage of their understanding, including author's contributions The mechanisms of interaction of the projectile with the semiconductor, the production of primary defects, the physical quantities and the equations able to characterise and describe the radiation effects, and the equations of kinetics of defects are considered. Correlation between microscopic damage and detector performances and the possible ways to optimise the radiation hardness of materials are discussed. (author)

  19. The effect of dielectric constants on noble metal/semiconductor SERS enhancement: FDTD simulation and experiment validation of Ag/Ge and Ag/Si substrates.

    Science.gov (United States)

    Wang, Tao; Zhang, Zhaoshun; Liao, Fan; Cai, Qian; Li, Yanqing; Lee, Shuit-Tong; Shao, Mingwang

    2014-02-11

    The finite-difference time-domain (FDTD) method was employed to simulate the electric field distribution for noble metal (Au or Ag)/semiconductor (Ge or Si) substrates. The simulation showed that noble metal/Ge had stronger SERS enhancement than noble metal/Si, which was mainly attributed to the different dielectric constants of semiconductors. In order to verify the simulation, Ag nanoparticles with the diameter of ca. 40 nm were grown on Ge or Si wafer (Ag/Ge or Ag/Si) and employed as surface-enhanced Raman scattering substrates to detect analytes in solution. The experiment demonstrated that both the two substrates exhibited excellent performance in the low concentration detection of Rhodamine 6G. Besides, the enhancement factor (1.3 × 10(9)) and relative standard deviation values (less than 11%) of Ag/Ge substrate were both better than those of Ag/Si (2.9 × 10(7) and less than 15%, respectively), which was consistent with the FDTD simulation. Moreover, Ag nanoparticles were grown in-situ on Ge substrate, which kept the nanoparticles from aggregation in the detection. To data, Ag/Ge substrates showed the best performance for their sensitivity and uniformity among the noble metal/semiconductor ones.

  20. Characterisation of GERDA Phase-I detectors in liquid argon

    Energy Technology Data Exchange (ETDEWEB)

    Barnabe Heider, Marik; Schoenert, Stefan [Max-Planck-Institut fuer Kernphysik (Germany); Gusev, Konstantin [Russian Research Center, Kurchatov Institute (Russian Federation); Joint Institute for Nuclear Research (Russian Federation)

    2009-07-01

    GERDA will search for neutrinoless double beta decay in {sup 76}Ge by submerging bare enriched HPGe detectors in liquid argon. In GERDA Phase-I, reprocessed enriched-Ge detectors, which were previously operated by the Heidelberg-Moscow and IGEX collaborations, and reprocessed natural-Ge detectors from Genius-TF, will be redeployed. We have tested the operation and performance of bare HPGe detectors in liquid nitrogen and in liquid argon over more than three years with three non-enriched p-type prototype detectors. The detector handling and mounting procedures have been defined and the Phase-I detector technology, the low-mass assembly and the long-term stability in liquid argon have been tested successfully. The Phase-I detectors were reprocessed by Canberra Semiconductor NV, Olen, according to their standard technology but without the evaporation of a passivation layer. After their reprocessing, the detectors have been mounted in their low-mass holders and their characterisation in liquid argon performed. The leakage current, the counting characteristics and the efficiency of the detectors have been measured. The testing of the detectors was carried out in the liquid argon test stand of the GERDA underground Detector Laboratory (GDL) at LNGS. The detectors are now stored underground under vacuum until their operation in GERDA.

  1. Ge-semiconductor detectors with a p-implanted n+-contact

    International Nuclear Information System (INIS)

    Protic, D.; Riepe, G.

    1979-01-01

    P-implanted large-surface-detectors with improved properties can be produced by implantation of the n + -contact with relatively low dose and high energy. After an annealing process a nearly perfect lattice structure is obtained. By a subsequent p-implantation step with high dose and low energy, the surface restisivity can be reduced. The p + -contacts are obtained by B-implantation. (DG) [de

  2. Prototype of the stacked CdZnTe semiconductor detector for 16N measurement

    International Nuclear Information System (INIS)

    Nishizawa, Hiroshi; Inujima, Hiroshi; Fujiwara, Hirotsugu; Nakamura, Hiroaki

    2001-01-01

    Prototype of the Stacked CdZnTe Semiconductor Detector for Measurement The prototype model of the stacked CdZnTe semiconductor detector, which is able to measure the 6.13 MeV γ-ray from 16 N, was fabricated. The prototype's response calculation was carried out by Monte-Carlo method. The result of the response calculation agreed with the experiment data of check sources of 137 Cs and 60 Co, and 16 N which was measured at vicinity of the primary cooling water pipe of the nuclear reactor. The source spectra were unfolded with detector's response function obtained by simulation, and it is indicated that the incident γ-ray energy and its intensity ratio was identified and that the energy of 6 MeV γ-ray could be measured by the prototype of the stacked detector. (author)

  3. A 13-element Ge detector for fluorescence EXAFS

    International Nuclear Information System (INIS)

    Cramer, S.P.; Tench, O.; Yocum, M.; George, G.N.

    1988-01-01

    At low concentrations, recording X-ray absorption spectra in fluorescence excitation mode is more sensitive than transmission mode. For dilute samples, the fluorescence signal is often obscured by scattered X-rays, and matrix and filter fluorescence. To discriminate against this background, while maintaining a large angular acceptance and high count rate capability, we have constructed a new detection system based on an array of intrinsic Ge detectors. The device uses 13 individuall 11 mm diameter Ge detectors, clustered in a 1:3:5:3:1 pattern on a common cryostat, combined with Soller slits and filters to reduce the background signals. Pulsed optical feedback preamplifiers are followed by Gaussian-shaping amplifiers having fast discriminators to register the incoming count rate (ICR). Correction for dead time using the ICR signal allowed operation in the vicinity of 75 kHz per channel, with a 1 μs shaping time at 6 keV. For lower count rate applications, an average resolution of 160 eV at 5.9 keV was obtained with 8 μs shaping. Recent experience with this detector at the Stanford Synchrotron Radiation Laboratory is presented. The performance is illustrated using spectra obtained from phosphorus compounds and a thin iridium foil. The performance of this device is compared with previous fluorescence detection schemes, such as those using filter/slit combinations or barrel monochromators. (orig.)

  4. Compton suppression tests on Ge and BGO prototype detectors for GAMMASPHERE

    Energy Technology Data Exchange (ETDEWEB)

    Baxter, A M [Australian National Univ., Canberra, ACT (Australia); Khoo, T L; Bleich, M E; Carpenter, M P; Ahmad, I; Janssens, R V.F.; Moore, E F [Argonne National Lab., IL (United States); Bearden, I G [Purdue Univ., Lafayette, IN (United States); Beene, J R; Lee, I Y [Oak Ridge National Lab., TN (United States)

    1992-08-01

    In this paper, we report on measurements of the Compton suppression and overall P/T ratio of two Ge detectors in a BGO shield of the honeycomb pattern. These were the first prototype CSG detector assemblies for GAMMASPHERE. A more detailed description of these results will be published later. (author). 4 refs., 3 figs.

  5. On the operation of a cryostat for Ge(Li) detector

    International Nuclear Information System (INIS)

    Donde, A.L.; L'vov, A.N.

    1974-01-01

    Operating experience with cryostats for Ge(Li) detectors developed at the FTI of the Academy of Science of the Ukrainian SSR, and used in several laboratories for 5 years is reported. It is shown that the spectrometric properties of all cryostat-mounted detectors operating since 1969 have not been affected and up to now the detectors are operating successfully. Nitrogen consumption has not increased and is at a level of 0.5 l/d. During five-year continuous operation the cryostat pressure has varied from 6.10 -7 to 8.10 -6 torr

  6. The Impact of HCl Precleaning and Sulfur Passivation on the Al2O3/Ge Interface in Ge Metal-Oxide-Semiconductor Capacitors

    International Nuclear Information System (INIS)

    Xue Bai-Qing; Chang Hu-Dong; Sun Bing; Wang Sheng-Kai; Liu Hong-Gang

    2012-01-01

    Surface treatment for Ge substrates using hydrogen chlorine cleaning and chemical passivation are investigated on AuTi/Al 2 O 3 /Ge metal-oxide-semiconductor capacitors. After hydrogen chlorine cleaning, a smooth Ge surface almost free from native oxide is demonstrated by atomic force microscopy and x-ray photoelectron spectroscopy observations. Passivation using a hydrogen chlorine solution is found to form a chlorine-terminated surface, while aqueous ammonium sulfide pretreatment results in a surface terminated by Ge-S bonding. Compared with chlorine-passivated samples, the sulfur-passivated ones show less frequency dispersion and better thermal stability based on capacitance-voltage characterizations. The samples with HCl pre-cleaning and (NH 4 ) 2 S passivation show less frequency dispersion than the HF pre-cleaning and (NH 4 ) 2 S passivated ones. The surface treatment process using hydrogen chlorine cleaning followed by aqueous ammonium sulfide passivation demonstrates a promising way to improve gate dielectric/Ge interface quality. (condensed matter: structure, mechanical and thermal properties)

  7. Present status and future trends of semiconductor detectors

    International Nuclear Information System (INIS)

    Lakatos, Tamas

    1988-01-01

    Some examples of the applications of semiconductor radiation detectors are briefly outlined, in order to illustrate development trends. The major parameters including energy resolution and dead time are discussed, and their improvement by the application of temporally varying parameter filters is pointed out. Development trends point toward low-loss signal processing by using adaptive filtering, possibly digital filtering. (R.P.) 14 refs.; 3 figs

  8. High-Performance γ spectrometry Using Ge(Li) Detectors

    International Nuclear Information System (INIS)

    Brethon, J.; Libs, G.; Detourne, G.; Legrand, J.; Boulanger, J.

    1968-01-01

    This report describes a high resolution gamma spectrometer design which use Ge-Li detectors, a cooled field effect transistor preamplifier, and a spectrum stabiliser. The obtained resolution and the 122 keV gamma ray of the 57 Co is 0.96 keV, and 239 Pu, 233 Pa and 95 Zr + 95 Nb spectra are shown for the example. (authors) [fr

  9. Design for measurement system of Doppler broadening profiles with the coincidence technique using a NaI detector in colinear geometry with the Ge detector

    International Nuclear Information System (INIS)

    Mori, Kazuteru; Uedono, Akira; Tanigawa, Shoichiro; Nakai, Katsuhiko

    1998-01-01

    The measurement system for Doppler broadening profiles with the coincidence technique using a NaI detector in colinear geometry with a Ge detector was developed. The principle of measurement system with the coincidence technique between the NaI detector and the Ge detector was described. Application of the system for the detection of vacancy-type defects introduced by electron irradiation in Czochralski-(Cz) grown Si was shown. Detail in the difference between the Doppler broadening profiles for Cz-Si and Si grown by the floating-zone method was also obtained. (author)

  10. Design for measurement system of Doppler broadening profiles with the coincidence technique using a NaI detector in colinear geometry with the Ge detector

    Energy Technology Data Exchange (ETDEWEB)

    Mori, Kazuteru; Uedono, Akira; Tanigawa, Shoichiro [Tsukuba Univ., Ibaraki (Japan). Inst. of Materials Science; Nakai, Katsuhiko

    1998-08-01

    The measurement system for Doppler broadening profiles with the coincidence technique using a NaI detector in colinear geometry with a Ge detector was developed. The principle of measurement system with the coincidence technique between the NaI detector and the Ge detector was described. Application of the system for the detection of vacancy-type defects introduced by electron irradiation in Czochralski-(Cz) grown Si was shown. Detail in the difference between the Doppler broadening profiles for Cz-Si and Si grown by the floating-zone method was also obtained. (author)

  11. MCNPX calculations for electron irradiated semiconductor detectors

    International Nuclear Information System (INIS)

    Sedlackova, K.; Necas, V.; Sagatova, A.; Zatko, B.

    2014-01-01

    This study aimed to treat some practical problems of (not only) semiconductor material irradiation by high energy electron beam using MCNPX simulation code. The relation between the absorbed dose and the fluency was found and the energy distribution of electron flux density was simulated on the top and back side of 270 μm thick GaAs, SiC and Si detectors. Furthermore, the dose depth profiles were calculated for GaAs, SiC and Si materials irradiated by 4 and 5 MeV electron beams. For the GaAs detector, a very good agreement with the experiment was shown. To match the absolute values of the absorbed dose with experimentally obtained values, the electron source emissivity has to be determined in relation to the electron beam setting parameters. (authors)

  12. An investigation of performance characteristics of a pixellated room-temperature semiconductor detector for medical imaging

    Energy Technology Data Exchange (ETDEWEB)

    Guerra, P; Santos, A [Centro de Investigacion Biomedica de Bioningenieria, Biomateriales y Nanomedicina, CEEI-Modulo 3, C/ Maria de Luna, 11, 50018 Zaragoza (United States); Darambara, D G, E-mail: pguerra@ciber-bbn.e [Joint Department of Physics, Royal Marsden NHS Foundation Trust and Institute of Cancer Research, Fulham Road, London SW3 6JJ (United Kingdom)

    2009-09-07

    The operation of any semiconductor detector depends on the movement of the charge carriers, which are created within the material when radiation passes through, as a result of energy deposition. The carrier movement in the bulk semiconductor induces charges on the metal electrodes, and therefore a current on the electrodes and the external circuit. The induced charge strongly depends on the material transport parameters as well as the geometrical dimensions of a pixellated semiconductor detector. This work focuses on the performance optimization in terms of energy resolution, detection efficiency and intrinsic spatial resolution of a room-temperature semiconductor pixellated detector based on CdTe/CdZnTe. It analyses and inter-relates these performance figures for various dimensions of CdTe and CdZnTe detectors and for an energy range spanning from x-ray (25 keV) to PET (511 keV) imaging. Monte Carlo simulations, which integrate a detailed and accurate noise model, are carried out to investigate several CdTe/CdZnTe configurations and to determine possible design specifications. Under the considered conditions, the simulations demonstrate the superiority of the CdZnTe over the CdTe in terms of energy resolution and sensitivity in the photopeak. Further, according to the results, the spatial resolution is maximized at high energies and the energy resolution at low energies, while a reasonable detection efficiency is achieved at high energies, with a 1 x 1 x 6 mm{sup 3} CdZnTe pixellated detector.

  13. An investigation of performance characteristics of a pixellated room-temperature semiconductor detector for medical imaging

    International Nuclear Information System (INIS)

    Guerra, P; Santos, A; Darambara, D G

    2009-01-01

    The operation of any semiconductor detector depends on the movement of the charge carriers, which are created within the material when radiation passes through, as a result of energy deposition. The carrier movement in the bulk semiconductor induces charges on the metal electrodes, and therefore a current on the electrodes and the external circuit. The induced charge strongly depends on the material transport parameters as well as the geometrical dimensions of a pixellated semiconductor detector. This work focuses on the performance optimization in terms of energy resolution, detection efficiency and intrinsic spatial resolution of a room-temperature semiconductor pixellated detector based on CdTe/CdZnTe. It analyses and inter-relates these performance figures for various dimensions of CdTe and CdZnTe detectors and for an energy range spanning from x-ray (25 keV) to PET (511 keV) imaging. Monte Carlo simulations, which integrate a detailed and accurate noise model, are carried out to investigate several CdTe/CdZnTe configurations and to determine possible design specifications. Under the considered conditions, the simulations demonstrate the superiority of the CdZnTe over the CdTe in terms of energy resolution and sensitivity in the photopeak. Further, according to the results, the spatial resolution is maximized at high energies and the energy resolution at low energies, while a reasonable detection efficiency is achieved at high energies, with a 1 x 1 x 6 mm 3 CdZnTe pixellated detector.

  14. Application of imitation for energy calibration of silicon semiconductor detectors

    CERN Document Server

    Aivazyan, G M; Mikaelyan, M A

    2003-01-01

    An effective method is described for energy calibration of semiconductor detectors (SCD) with different thickness. The method is based on imitating the charge on the input of the preamplifier deposited in SCD by known energy ionizing particles, the imitation being performed by a pulser with a partial with use of alpha-active sources. The results of laboratory studies of the described method are given with detectors of either large, 50-1000 mu m, or small, 18-20 mu m, thickness

  15. Application of imitation for energy calibration of silicon semiconductor detectors

    International Nuclear Information System (INIS)

    Aivazyan, G.M.; Badalyan, H.V.; Mikaelyan, M.A.

    2003-01-01

    An effective method is described for energy calibration of semiconductor detectors (SCD) with different thickness. The method is based on imitating the charge on the input of the preamplifier deposited in SCD by known energy ionizing particles, the imitation being performed by a pulser with a partial with use of α-active sources. The results of laboratory studies of the described method are given with detectors of either large, 50-1000μm, or small, 18-20 μm, thickness

  16. Nanosecond X-ray detector based on high resistivity ZnO single crystal semiconductor

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Xiaolong; He, Yongning, E-mail: yongning@mail.xjtu.edu.cn; Peng, Wenbo; Huang, Zhiyong; Qi, Xiaomeng; Pan, Zijian; Zhang, Wenting [School of Electronic and Information Engineering, Xi' an Jiaotong University, Xi' an 710049 (China); Chen, Liang; Liu, Jinliang; Zhang, Zhongbing; Ouyang, Xiaoping [Radiation Detection Research Center, Northwest Institute of Nuclear Technology, Xi' an 710024 (China)

    2016-04-25

    The pulse radiation detectors are sorely needed in the fields of nuclear reaction monitoring, material analysis, astronomy study, spacecraft navigation, and space communication. In this work, we demonstrate a nanosecond X-ray detector based on ZnO single crystal semiconductor, which emerges as a promising compound-semiconductor radiation detection material for its high radiation tolerance and advanced large-size bulk crystal growth technique. The resistivity of the ZnO single crystal is as high as 10{sup 13} Ω cm due to the compensation of the donor defects (V{sub O}) and acceptor defects (V{sub Zn} and O{sub i}) after high temperature annealing in oxygen. The photoconductive X-ray detector was fabricated using the high resistivity ZnO single crystal. The rise time and fall time of the detector to a 10 ps pulse electron beam are 0.8 ns and 3.3 ns, respectively, indicating great potential for ultrafast X-ray detection applications.

  17. Semiconductor tracker final integration and commissioning in the ATLAS detector

    International Nuclear Information System (INIS)

    Robichaud-Veronneau, Andree

    2008-01-01

    The SemiConductor Tracker (SCT) is part of the Inner Detector of the ATLAS experiment at the LHC. It is located between the Pixel detector and the Transition Radiation Tracker (TRT). During 2006 and 2007, the SCT was installed in its final position inside the ATLAS detector. The SCT barrel was lowered in 2006 and was tested for connectivity and noise. Common tests with the TRT to look for pick-up noise and grounding issues were also performed. The SCT end-caps were installed during summer 2007 and will undergo similar checks. The results from the various tests done before and after installation will be presented here.

  18. Monte Carlo simulations of the particle transport in semiconductor detectors of fast neutrons

    International Nuclear Information System (INIS)

    Sedlačková, Katarína; Zaťko, Bohumír; Šagátová, Andrea; Nečas, Vladimír

    2013-01-01

    Several Monte Carlo all-particle transport codes are under active development around the world. In this paper we focused on the capabilities of the MCNPX code (Monte Carlo N-Particle eXtended) to follow the particle transport in semiconductor detector of fast neutrons. Semiconductor detector based on semi-insulating GaAs was the object of our investigation. As converter material capable to produce charged particles from the (n, p) interaction, a high-density polyethylene (HDPE) was employed. As the source of fast neutrons, the 239 Pu–Be neutron source was used in the model. The simulations were performed using the MCNPX code which makes possible to track not only neutrons but also recoiled protons at all interesting energies. Hence, the MCNPX code enables seamless particle transport and no other computer program is needed to process the particle transport. The determination of the optimal thickness of the conversion layer and the minimum thickness of the active region of semiconductor detector as well as the energy spectra simulation were the principal goals of the computer modeling. Theoretical detector responses showed that the best detection efficiency can be achieved for 500 μm thick HDPE converter layer. The minimum detector active region thickness has been estimated to be about 400 μm. -- Highlights: ► Application of the MCNPX code for fast neutron detector design is demonstrated. ► Simulations of the particle transport through conversion film of HDPE are presented. ► Simulations of the particle transport through detector active region are presented. ► The optimal thickness of the HDPE conversion film has been calculated. ► Detection efficiency of 0.135% was reached for 500 μm thick HDPE conversion film

  19. Temperature-induced assembly of semiconductor nanocrystals into fractal architectures and thermoelectric power properties in Au/Ge bilayer films

    Energy Technology Data Exchange (ETDEWEB)

    Li Quanbao; Wang Jian; Jiao Zheng [Shanghai Applied Radiation Institute, Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444 (China); Wu Minghong, E-mail: mhwu@staff.shu.edu.cn [Shanghai Applied Radiation Institute, Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444 (China); Shek, Chan-Hung; Lawrence Wu, C.M.; Lai, Joseph K.L. [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong (Hong Kong); Chen Zhiwen, E-mail: cnzwchen@yahoo.com.cn [Shanghai Applied Radiation Institute, Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444 (China); Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong (Hong Kong)

    2011-08-15

    Highlights: > Ge fractal architectures were achieved by temperature-induced assembly. > The appearance of fractal architectures influences the thermoelectric power. > But it has little effect on the resistivity. > The values of the superlocalization exponent were within 1.22 {<=} {xi} {<=} 1.29. > It was higher than expected for two-dimension fractal system. - Abstract: Fractal architectures of semiconductor nanocrystals were successfully achieved by temperature-induced assembly of semiconductor nanocrystals in gold/germanium (Au/Ge) bilayer films. New assessment strategies of fractal architectures are of fundamental importance in the development of micro/nano-devices. Temperature-dependent properties including resistivity and thermoelectric power (TEP) of Au/Ge bilayer films with self-similar fractal patterns were investigated in detail. Experimental results indicated that the microstructure of Au film plays an important role in the characteristics of Au/Ge bilayer films after annealing and the crystallization processes of amorphous Ge accompany by fractal formation of Ge nanocrystals via temperature-induced assembly. The appearance of fractal architectures has significantly influence on the TEP but little effect on the resistivity of the annealed bilayer film. By analysis of the data, we found that the values of superlocalization exponent are within 1.22 {<=} {xi} {<=} 1.29, which are higher than expected for two-dimension fractal systems. The results provided possible evidence for the superlocalization on fractal architectures in Au/Ge bilayer films. The TEP measurements are considered a more effective method than the conductivity for investigating superlocalization in a percolating system.

  20. Exploring graphene field effect transistor devices to improve spectral resolution of semiconductor radiation detectors

    Energy Technology Data Exchange (ETDEWEB)

    Harrison, Richard Karl [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Howell, Stephen Wayne [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Martin, Jeffrey B. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hamilton, Allister B. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2013-12-01

    Graphene, a planar, atomically thin form of carbon, has unique electrical and material properties that could enable new high performance semiconductor devices. Graphene could be of specific interest in the development of room-temperature, high-resolution semiconductor radiation spectrometers. Incorporating graphene into a field-effect transistor architecture could provide an extremely high sensitivity readout mechanism for sensing charge carriers in a semiconductor detector, thus enabling the fabrication of a sensitive radiation sensor. In addition, the field effect transistor architecture allows us to sense only a single charge carrier type, such as electrons. This is an advantage for room-temperature semiconductor radiation detectors, which often suffer from significant hole trapping. Here we report on initial efforts towards device fabrication and proof-of-concept testing. This work investigates the use of graphene transferred onto silicon and silicon carbide, and the response of these fabricated graphene field effect transistor devices to stimuli such as light and alpha radiation.

  1. Enhanced charge storage capability of Ge/GeO2 core/shell nanostructure

    International Nuclear Information System (INIS)

    Yuan, C L; Lee, P S

    2008-01-01

    A Ge/GeO 2 core/shell nanostructure embedded in an Al 2 O 3 gate dielectrics matrix was produced. A larger memory window with good data retention was observed in the fabricated metal-insulator-semiconductor (MIS) capacitor for Ge/GeO 2 core/shell nanoparticles compared to Ge nanoparticles only, which is due to the high percentage of defects located on the surface and grain boundaries of the GeO 2 shell. We believe that the findings presented here provide physical insight and offer useful guidelines to controllably modify the charge storage properties of indirect semiconductors through defect engineering

  2. Enhanced charge storage capability of Ge/GeO(2) core/shell nanostructure.

    Science.gov (United States)

    Yuan, C L; Lee, P S

    2008-09-03

    A Ge/GeO(2) core/shell nanostructure embedded in an Al(2)O(3) gate dielectrics matrix was produced. A larger memory window with good data retention was observed in the fabricated metal-insulator-semiconductor (MIS) capacitor for Ge/GeO(2) core/shell nanoparticles compared to Ge nanoparticles only, which is due to the high percentage of defects located on the surface and grain boundaries of the GeO(2) shell. We believe that the findings presented here provide physical insight and offer useful guidelines to controllably modify the charge storage properties of indirect semiconductors through defect engineering.

  3. Advanced radiation detector development: Advanced semiconductor detector development: Development of a oom-temperature, gamma ray detector using gallium arsenide to develop an electrode detector

    International Nuclear Information System (INIS)

    Knoll, G.F.

    1995-11-01

    The advanced detector development project at the University of Michigan has completed the first full year of its current funding. Our general goals are the development of radiation detectors and spectrometers that are capable of portable room temperature operation. Over the past 12 months, we have worked primarily in the development of semiconductor spectrometers with open-quotes single carrierclose quotes response that offer the promise of room temperature operation and good energy resolution in gamma ray spectroscopy. We have also begun a small scale effort at investigating the properties of a small non-spectroscopic detector system with directional characteristics that will allow identification of the approximate direction in which gamma rays are incident. These activities have made use of the extensive clean room facilities at the University of Michigan for semiconductor device fabrication, and also the radiation measurement capabilities provided in our laboratory in the Phoenix Building on the North Campus. In addition to our laboratory based activities, Professor Knoll has also been a participant in several Department of Energy review activities held in the Forrestal Building and at the Germantown site. The most recent of these has been service on a DOE review panel chaired by Dr. Hap Lamonds that is reviewing the detector development programs supported through the Office of Arms Control and International Security

  4. The simulation of charge sharing in semiconductor X-ray pixel detectors

    CERN Document Server

    Mathieson, K; O'Shea, V; Passmore, M S; Rahman, M; Smith, K M; Watt, J; Whitehill, C

    2002-01-01

    Two simulation packages were used to model the sharing of charge, due to the scattering and diffusion of carriers, between adjacent pixel elements in semiconductors X-ray detectors. The X-ray interaction and the consequent multiple scattering was modelled with the aid of the Monte Carlo package, MCNP. The resultant deposited charge distribution was then used to create the charge cloud profile in the finite element semiconductor simulation code MEDICI. The analysis of the current pulses induced on pixel electrodes for varying photon energies was performed for a GaAs pixel detector. For a pixel pitch of 25 mu m, the charge lost to a neighbouring pixel was observed to be constant, at 0.6%, through the energies simulated. Ultimately, a fundamental limit on the pixel element size for imaging and spectroscopic devices may be set due to these key physical principles.

  5. Photon detector composed of metal and semiconductor nanoparticles

    International Nuclear Information System (INIS)

    Takahashi, Atsuo; Minoura, Norihiko; Karube, Isao

    2005-01-01

    Applying the function of the single electron transistor, a novel photon detector consisting of a self-assembled structure of metal and semiconductor nanoparticles and an organic insulating layer was developed. It showed coulomb blockade behavior under dark conditions and remarkable increase in current corresponding to light intensity under light irradiation. Ultraweak photon emission of about 600 counts per second in the ultraviolet region could be detected at room temperature by this photon counter

  6. Rejecting escape events in large volume Ge detectors by a pulse shape selection procedure

    International Nuclear Information System (INIS)

    Del Zoppo, A.; Agodi, C.; Alba, R.; Bellia, G.; Coniglione, R.; Loukachine, K.; Maiolino, C.; Migneco, E.; Piattelli, P.; Santonocito, D.; Sapienza, P.

    1993-01-01

    The dependence of the response to γ-rays of a large volume Ge detector on the interval width of a selected initial rise pulse slope is investigated. The number of escape events associated with a small pulse slope is found to be greater than the corresponding number of full energy events. An escape event rejection procedure based on the observed correlation between energy deposition and pulse shape is discussed. Such a procedure seems particularly suited for the design of highly granular large volume Ge detector arrays. (orig.)

  7. Semiconductor devices as track detectors in high energy colliding beam experiments

    International Nuclear Information System (INIS)

    Ludlam, T.

    1980-01-01

    In considering the design of experiments for high energy colliding beam facilities one quickly sees the need for better detectors. The full exploitation of machines like ISABELLE will call for detector capabilities beyond what can be expected from refinements of the conventional approaches to particle detection in high energy physics experiments. Over the past year or so there has been a general realization that semiconductor device technology offers the possibility of position sensing detectors having resolution elements with dimensions of the order of 10 microns or smaller. Such a detector could offer enormous advantages in the design of experiments, and the purpose of this paper is to discuss some of the possibilities and some of the problems

  8. Semiconductor devices as track detectors in high energy colliding beam experiments

    Energy Technology Data Exchange (ETDEWEB)

    Ludlam, T

    1980-01-01

    In considering the design of experiments for high energy colliding beam facilities one quickly sees the need for better detectors. The full exploitation of machines like ISABELLE will call for detector capabilities beyond what can be expected from refinements of the conventional approaches to particle detection in high energy physics experiments. Over the past year or so there has been a general realization that semiconductor device technology offers the possibility of position sensing detectors having resolution elements with dimensions of the order of 10 microns or smaller. Such a detector could offer enormous advantages in the design of experiments, and the purpose of this paper is to discuss some of the possibilities and some of the problems.

  9. Behaviour of semiconductor nuclear-particle detectors; Comportement des semi-conducteurs comme detecteurs de particules nucleaires; Povedenie detektorov yadernykh chastits na poluprovodnikakh; Propiedades de los detectores de particulas nucleares a base de semiconductores

    Energy Technology Data Exchange (ETDEWEB)

    Walter, F J; Dabbs, J W.T.; Roberts, L D [Oak Ridge National Laboratory, Oak Ridge, TN (United States)

    1962-04-15

    Experimental and theoretical studies of the behaviour of semiconductor nuclear-particle detectors have been carried out over the temperature range of 0.2{sup o}K to 300{sup o}K. A simple theoretical model for the detector behaviour, which is found to describe the observed behaviour over a wide range of parameters, is presented. The importance of semiconductor purity and bias voltage in connection with pulse height, pulse rise-time and detector area is discussed. Empirical studies of noise and energy resolution indicate that for alpha particles the smallest observed peak-widths are substantially larger than those expected on the basis of electrical noise from the detector and amplifier. Equivalent noise values of {<=} 3 keV full-width at half maximum (FWHM) have been found for a 40-mm{sup 2} silicon surface-barrier detector at 77{sup o}K. Semiconductor detectors exhibit a ''pulse-height defect'' for fission fragments. There is evidence that this defect is not caused by a ''dead layer''. If electric fields which are insufficient to insure complete ''collection'' are responsible for the defect, the necessary minimum field (at the surface) is > 3 x 10{sup 4} V/cm for fission fragments, as compared to the value of 2 x 10{sup 3} V/cm which is found necessary in the case of alpha particles in Ge and Si. Detailed considerations regarding pulse rise-time at the amplifier have shown that in high-resistivity material both the ''dielectric'' relaxation time and the resistance associated with the undepleted base material can play an important role. A quantative description of the effect of detector and amplifier parameters on the shapes and rise-times associated with the pulse are presented. The advantages and problems associated with the use of surface-barrier detectors in several unique low-temperature nuclear-alignment experiments are discussed. These experiments involved fission-fragment angular distributions and resolution of alpha-fine structure with long-term stability

  10. An experimental study of antireflective coatings in Ge light detectors for scintillating bolometers

    Directory of Open Access Journals (Sweden)

    Mancuso M.

    2014-01-01

    Full Text Available Luminescent bolometers are double-readout devices able to measure simultaneously the phonon and the light yields after a particle interaction in the detector. This operation allows in some cases to tag the type of the interacting quantum, crucial issue for background control in rare event experiments such as the search for neutrinoless double beta decay and for interactions of particle dark matter candidates. The light detectors used in the LUCIFER and LUMINEU searches (projects aiming at the study of the double beta interesting candidates 82Se and 100Mo using ZnSe and ZnMoO4 scintillating bolometers consist of hyper-pure Ge thin slabs equipped with NTD thermistors. A substantial sensitivity improvement of the Ge light detectors can be obtained applying a proper anti-reflective coatings on the Ge side exposed to the luminescent bolometer. The present paper deals with the investigation of this aspect, proving and quantifying the positive effect of a SiO2 and a SiO coating and setting the experimental bases for future tests of other coating materials. The results confirm that an appropriate coating procedure helps in improving the sensitivity of bolometric light detectors by an important factor (in the range 20% – 35% and needs to be included in the recipe for the development of an optimized radio-pure scintillating bolometer.

  11. An experimental study of antireflective coatings in Ge light detectors for scintillating bolometers

    Science.gov (United States)

    Mancuso, M.; Beeman, J. W.; Giuliani, A.; Dumoulin, L.; Olivieri, E.; Pessina, G.; Plantevin, O.; Rusconi, C.; Tenconi, M.

    2014-01-01

    Luminescent bolometers are double-readout devices able to measure simultaneously the phonon and the light yields after a particle interaction in the detector. This operation allows in some cases to tag the type of the interacting quantum, crucial issue for background control in rare event experiments such as the search for neutrinoless double beta decay and for interactions of particle dark matter candidates. The light detectors used in the LUCIFER and LUMINEU searches (projects aiming at the study of the double beta interesting candidates 82Se and 100Mo using ZnSe and ZnMoO4 scintillating bolometers) consist of hyper-pure Ge thin slabs equipped with NTD thermistors. A substantial sensitivity improvement of the Ge light detectors can be obtained applying a proper anti-reflective coatings on the Ge side exposed to the luminescent bolometer. The present paper deals with the investigation of this aspect, proving and quantifying the positive effect of a SiO2 and a SiO coating and setting the experimental bases for future tests of other coating materials. The results confirm that an appropriate coating procedure helps in improving the sensitivity of bolometric light detectors by an important factor (in the range 20% - 35%) and needs to be included in the recipe for the development of an optimized radio-pure scintillating bolometer.

  12. NMR and computational study of Ba8CuxGe46-x clathrate semiconductors

    International Nuclear Information System (INIS)

    Chen, Jing-Han; Sirusi Arvij, Ali; Zheng, Xiang; Rodriguez, Sergio Y.; Ross, Joseph H.

    2014-01-01

    Highlights: • Quadrupole NMR with first-principles calculations probes local site preferences. • Cu/Ge ratio is clarified vs. the ideal Zintl composition. • Modified Becke–Johnson exchange potential agrees well with NMR Knight shifts. - Abstract: Ba 8 Cu x Ge 46-x is a type-I clathrate material that forms as a semiconductor in a narrow composition range corresponding to the electron-balanced Zintl composition, with x = 5.3. We use NMR spectroscopy combined with ab initio electronic structure calculations to probe the electronic and structural behavior of these materials. Computational results based on a superstructure model for the atomic configuration of the alloy provide good agreement with the electric quadrupole-broadened NMR lineshapes. Modeling using the modified Becke–Johnson (TB-mBJ) exchange potential is also shown to agree well with experimental NMR Knight shifts. The results indicate that the Cu–Ge balance is the main factor determining the carrier density, within a narrow stability range near the ideal Zintl composition

  13. Magnetism in Mn-nanowires and -clusters as δ-doped layers in group IV semiconductors (Si, Ge)

    Science.gov (United States)

    Simov, K. R.; Glans, P.-A.; Jenkins, C. A.; Liberati, M.; Reinke, P.

    2018-01-01

    Mn doping of group-IV semiconductors (Si/Ge) is achieved by embedding nanostructured Mn-layers in group-IV matrix. The Mn-nanostructures are monoatomic Mn-wires or Mn-clusters and capped with an amorphous Si or Ge layer. The precise fabrication of δ-doped Mn-layers is combined with element-specific detection of the magnetic signature with x-ray magnetic circular dichroism. The largest moment (2.5 μB/Mn) is measured for Mn-wires with ionic bonding character and a-Ge overlayer cap; a-Si capping reduces the moment due to variations of bonding in agreement with theoretical predictions. The moments in δ-doped layers dominated by clusters is quenched with an antiferromagnetic component from Mn-Mn bonding.

  14. Digital approach to high-resolution pulse processing for semiconductor detectors

    International Nuclear Information System (INIS)

    Georgiev, A.; Buchner, A.; Gast, W.; Lieder, R.M.

    1992-01-01

    A new design philosophy for processing signals produced by high resolution, large volume semiconductor detectors is described. These detectors, to be used in the next generation of spectrometer arrays for nuclear research (i.e. EUROBALL, etc.), present a set of problems like resolution degradation due to charge trapping and ballistic defect effects, low resolution at a high count rate, poor long term stability, etc. To solve these problems, a new design approach has been developed, including reconstruction of the event charge, providing a pure triangular residual function, and suppressing low frequency noise. 5 refs., 4 figs

  15. Digital approach to high-resolution pulse processing for semiconductor detectors

    Energy Technology Data Exchange (ETDEWEB)

    Georgiev, A [Sofia Univ. (Bulgaria); Buchner, A [Forschungszentrum Rossendorf (Germany); Gast, W; Lieder, R M [Forschungszentrum Juelich GmbH (Germany). Inst. fuer Kernphysik; Stein, J [Target System Electronic GmbH, Solingen, (Germany)

    1992-08-01

    A new design philosophy for processing signals produced by high resolution, large volume semiconductor detectors is described. These detectors, to be used in the next generation of spectrometer arrays for nuclear research (i.e. EUROBALL, etc.), present a set of problems like resolution degradation due to charge trapping and ballistic defect effects, low resolution at a high count rate, poor long term stability, etc. To solve these problems, a new design approach has been developed, including reconstruction of the event charge, providing a pure triangular residual function, and suppressing low frequency noise. 5 refs., 4 figs.

  16. Deep-water gamma-spectrometer based on HP(Ge) detector

    International Nuclear Information System (INIS)

    Sokolov, A.; Danengirsh, S.; Popov, S.; Pchelincev, A; Gostilo, V.; Kravchenko, S.; Shapovalov, V.; Druzhinin, A.

    1995-01-01

    Full text: For radionuclide monitoring of the sea bottom near underwater storage of high active waste of nuclear industries and near places of accidents with nuclear submarines the spectrometers of gamma-radiation, which allow to carry out the measurements on the great depth, are needed. Usually, these problems are solved with devices, which are cast down into the water, using the rope, and transmit the signals on the surface by the cable. However, the depth of immersion is limited by this construction and often the conditions of measurement are complicated. The deep water gamma-spectrometer based on HP(Ge) detector for the measurement on the depth up to 3000 m is developed. The spectrometer is completely autonomic and is put up in the selected place, using the manipulator of a deep-water apparatus. The spectrometer is created in two cylindrical cases with 170 mm diameter and 1100 mm length, bearing the high hydrostatic pressure. The part of the case around the detector is created from titanium and has especial construction with a thin wall for increasing the efficiency of registration in the region of low-energy gamma-radiation. The cooling of the semiconductor detector is provided by a coolant which supports the working temperature of the detector during more than 24 hours. The electronic system of the spectrometer includes high voltage supply f or the detector, preamplifier, analog processor, analog-digital converter and a device for collecting and storing information in flash memory. The power supply of the spectrometer is provided by a battery of accumulators, which can be recharged on the surface. The programming of the processor is carried out before immersion by connecting the spectrometer to personal computer using standard interface RS-232. During 24 hours the spectrometer provides registration of 16 spectrums each in 4096 channels. The reading of the information by the computer is carried out after lifting up the spectrometer on the surface in the same

  17. Alpha-ray spectrometry at high temperature by using a compound semiconductor detector.

    Science.gov (United States)

    Ha, Jang Ho; Kim, Han Soo

    2013-11-01

    The use of conventional radiation detectors in harsh environments is limited by radiation damage to detector materials and by temperature constraints. We fabricated a wide-band gap semiconductor radiation detector based on silicon carbide. All the detector components were considered for an application in a high temperature environment like a nuclear reactor core. The radiation response, especially to alpha particles, was measured using an (241)Am source at variable operating voltages at room temperature in the air. The temperature on detector was controlled from 30°C to 250°C. The alpha-particle spectra were measured at zero bias operation. Even though the detector is operated at high temperature, the energy resolution as a function of temperature is almost constant within 3.5% deviation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Monte Carlo simulations for the optimisation of low-background Ge detector designs

    Energy Technology Data Exchange (ETDEWEB)

    Hakenmueller, Janina; Heusser, Gerd; Maneschg, Werner; Schreiner, Jochen; Simgen, Hardy; Stolzenburg, Dominik; Strecker, Herbert; Weber, Marc; Westernmann, Jonas [Max-Planck-Institut fuer Kernphysik, Saupfercheckweg 1, 69117 Heidelberg (Germany); Laubenstein, Matthias [Laboratori Nazionali del Gran Sasso, Via G. Acitelli 22, 67100 Assergi L' Aquila (Italy)

    2015-07-01

    Monte Carlo simulations for the low-background Ge spectrometer Giove at the underground laboratory of MPI-K, Heidelberg, are presented. In order to reduce the cosmogenic background at the present shallow depth (15 m w.e.) the shielding of the spectrometer includes an active muon veto and a passive shielding (lead and borated PE layers). The achieved background suppression is comparable to Ge spectrometers operated in much greater depth. The geometry of the detector and the shielding were implemented using the Geant4-based toolkit MaGe. The simulations were successfully optimised by determining the correct diode position and active volume. With the help of the validated Monte Carlo simulation the contribution of the single components to the overall background can be examined. This includes a comparison between simulated results and measurements with different fillings of the sample chamber. Having reproduced the measured detector background in the simulation provides the possibility to improve the background by reverse engineering of the passive and active shield layers in the simulation.

  19. A novel method for simultaneous observations of plasma ion and electron temperatures using a semiconductor-detector array

    International Nuclear Information System (INIS)

    Cho, T.; Numakura, T.; Kohagura, J.; Hirata, M.; Minami, R.; Watanabe, H.; Sasuga, T.; Nishizawa, Y.; Yoshida, M.; Nagashima, S.; Nakashima, Y.; Ogura, K.; Tamano, T.; Yatsu, K.; Miyoshi, S.

    2002-01-01

    A new method for a simultaneous observation of both plasma ion and electron temperatures is proposed using one semiconductor-detector array alone. This method will provide a new application of semiconductor-detector arrays for monitoring the key parameter set of nuclear-fusion triple product (i.e., ion temperatures, densities, and confinement time) as well as for clarifying physics mechanisms of energy transport between plasma ions and electrons under various plasma confining conditions. This method is developed on the basis of an alternative 'positive' use of a semiconductor 'dead layer'; that is, an SiO 2 layer is employed as a reliable ultra-thin energy analysis filter for low-energy charge-exchanged neutral particles from plasmas ranging in ion temperatures from 0.1 to several tens of kilo-electron-volts. Using recent fabrication techniques for the thin and uniform SiO 2 layers of the order of tens to hundreds of angstrom, our computer simulation and its experimental verification show the availability of such semiconductors for distinguishing neutral particles (for ion temperatures) from X-rays (for electron temperatures). These are simultaneously emitted from the plasmas into semiconductor detectors; however, we employ their quite different penetration lengths and the resultant different deposition depths and profiles in semiconductor materials. As a result, their output signals are distinguishable for these two different and fundamental species of plasmas

  20. Precision half-life measurement of .sup.140 La with Ge-detector

    Czech Academy of Sciences Publication Activity Database

    Adam, Jindřich; Belov, A. G.; Brandt, R.; Chaloun, P.; Honusek, Milan; Kalinnikov, V. G.; Krivopustov, M. I.; Kulakov, B. A.; Langrock, E. J.; Pronskikh, V. S.; Sosnin, A. N.; Stegailov, V. I.; Tsoupko-Sitnikov, V. M.; Wan, J. S.; Westmeier, W.

    2002-01-01

    Roč. 187, - (2002), s. 419-426 ISSN 0168-583X R&D Projects: GA AV ČR KSK1048102 Keywords : radioastive nuclei * Ge-detectors * half-life measurements Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 1.158, year: 2002

  1. Investigations on commercial semiconductor diodes as possible high dose rate radiation detectors

    International Nuclear Information System (INIS)

    Breitenhuber, L.; Kindl, P.; Obenaus, B.

    1992-12-01

    Investigations concerning the relevant properties of commercial semiconductor diodes such as their sensitivity and its dependence on accumulated dose, dose rate, energy, temperature and direction have been made in order to obtain their usefullness as radiation detectors. (authors)

  2. Investigation of efficient termination structure for improved breakdown properties of semiconductor radiation detectors

    International Nuclear Information System (INIS)

    Krizaj, D.; Resnik, D.; Vrtacnik, D.; Amon, S.

    1998-01-01

    Efficiency of a new junction termination structure for improvement of breakdown properties of semiconductor radiation detectors is investigated. The structure consists of a diffused resistor winding around the active junction in a spiral fashion. The current flow through the spiral enables controlled potential distribution along the spiral turns and thus controlled depletion spreading from the main junction, efficiently preventing premature avalanche breakdown. Both multiple guard-ring structures and spiral junction termination structures have shown good breakdown properties typically three to five times higher than breakdown voltages of diodes without junction termination. The breakdown voltages of spiral junction termination structures are only weakly influenced by changes in substrate doping concentration caused by neutron irradiation. They can thus be considered for termination of future semiconductor radiation detectors

  3. Development of large area silicon semiconductor detectors for use in the current mode

    CERN Document Server

    Ouyang Xia Opin; Li Zhen Fu; Zhang Guo Guang; Zhang Qi; Zhang Xia; Song Xian Cai; Jia Huan Yi; Lei Jian Hua; Sun Yuan Cheng

    2002-01-01

    Large area silicon semiconductor detectors for use in the current mode, with their dimensions of phi 40, phi 50 and phi 60 mm, their depletion thickness of 200-300 mu m, have been developed. Their performance measurements have been made, which indicate that the developed detectors can satisfactorily meet the needs in expectation. Compared with the detectors commercially available on the market, authors' large PIN detectors can serve both as reliable and efficient high-resolution devices for nuclear counting experiments, as well as monitors of high-intensity radiation fields in the current mode under a bias of 100-1000 V, while the detectors commercially available are only for the counting use

  4. Development of Ge/NbSi detectors for EDELWEISS-II with identification of near-surface events

    International Nuclear Information System (INIS)

    Juillard, A.; Marnieros, S.; Dolgorouky, Y.; Berge, L.; Collin, S.; Fiorucci, S.; Lalu, F.; Dumoulin, L.

    2006-01-01

    The actual limitation of Ge ionization heat cryogenic detectors for direct WIMP detection such as EDELWEISS arises from incomplete charge collection for near-surface events. We present results on Ge/NbSi detectors that are fitted with segmented electrodes and two NbSi Anderson insulator thermometric layers. Three such bolometers were studied in the low-background cryostat of the EDELWEISS collaboration in the LSM: analysis of the athermal signals allows us to identify and reject events occurring in the first millimeter under the electrodes

  5. Development of Ge/NbSi detectors for EDELWEISS-II with identification of near-surface events

    Energy Technology Data Exchange (ETDEWEB)

    Juillard, A. [Centre de Spectrometrie Nucleaire et de Spectrometrie de Masse (CSNSM), IN2P3/CNRS, Bat 108, Orsay Campus 91405 (France)]. E-mail: juillard@csnsm.in2p3.fr; Marnieros, S. [Centre de Spectrometrie Nucleaire et de Spectrometrie de Masse (CSNSM), IN2P3/CNRS, Bat 108, Orsay Campus 91405 (France); Dolgorouky, Y. [Centre de Spectrometrie Nucleaire et de Spectrometrie de Masse (CSNSM), IN2P3/CNRS, Bat 108, Orsay Campus 91405 (France); Berge, L. [Centre de Spectrometrie Nucleaire et de Spectrometrie de Masse (CSNSM), IN2P3/CNRS, Bat 108, Orsay Campus 91405 (France); Collin, S. [Centre de Spectrometrie Nucleaire et de Spectrometrie de Masse (CSNSM), IN2P3/CNRS, Bat 108, Orsay Campus 91405 (France); Fiorucci, S. [C.E.A, Centre d' etudes Nucleaires de Saclay, DSM/DAPNIA, Gif. Yvette, Cedex 91191n (France); Lalu, F. [Centre de Spectrometrie Nucleaire et de Spectrometrie de Masse (CSNSM), IN2P3/CNRS, Bat 108, Orsay Campus 91405 (France); Dumoulin, L. [Centre de Spectrometrie Nucleaire et de Spectrometrie de Masse (CSNSM), IN2P3/CNRS, Bat 108, Orsay Campus 91405 (France)

    2006-04-15

    The actual limitation of Ge ionization heat cryogenic detectors for direct WIMP detection such as EDELWEISS arises from incomplete charge collection for near-surface events. We present results on Ge/NbSi detectors that are fitted with segmented electrodes and two NbSi Anderson insulator thermometric layers. Three such bolometers were studied in the low-background cryostat of the EDELWEISS collaboration in the LSM: analysis of the athermal signals allows us to identify and reject events occurring in the first millimeter under the electrodes.

  6. Energy resolution and throughput of a new real time digital pulse processing system for x-ray and gamma ray semiconductor detectors

    International Nuclear Information System (INIS)

    Abbene, L; Gerardi, G; Raso, G; Brai, M; Principato, F; Basile, S

    2013-01-01

    New generation spectroscopy systems have advanced towards digital pulse processing (DPP) approaches. DPP systems, based on direct digitizing and processing of detector signals, have recently been favoured over analog pulse processing electronics, ensuring higher flexibility, stability, lower dead time, higher throughput and better spectroscopic performance. In this work, we present the performance of a new real time DPP system for X-ray and gamma ray semiconductor detectors. The system is based on a commercial digitizer equipped with a custom DPP firmware, developed by our group, for on-line pulse shape and height analysis. X-ray and gamma ray spectra measurements with cadmium telluride (CdTe) and germanium (Ge) detectors, coupled to resistive-feedback preamplifiers, highlight the excellent performance of the system both at low and high rate environments (up to 800 kcps). A comparison with a conventional analog electronics showed the better high-rate capabilities of the digital approach, in terms of energy resolution and throughput. These results make the proposed DPP system a very attractive tool for both laboratory research and for the development of advanced detection systems for high-rate-resolution spectroscopic imaging, recently proposed in diagnostic medicine, industrial imaging and security screening

  7. Wet thermal annealing effect on TaN/HfO2/Ge metal—oxide—semiconductor capacitors with and without a GeO2 passivation layer

    International Nuclear Information System (INIS)

    Liu Guan-Zhou; Li Cheng; Lu Chang-Bao; Tang Rui-Fan; Tang Meng-Rao; Wu Zheng; Yang Xu; Huang Wei; Lai Hong-Kai; Chen Song-Yan

    2012-01-01

    Wet thermal annealing effects on the properties of TaN/HfO 2 /Ge metal—oxide—semiconductor (MOS) structures with and without a GeO 2 passivation layer are investigated. The physical and the electrical properties are characterized by X-ray photoemission spectroscopy, high-resolution transmission electron microscopy, capacitance—voltage (C—V) and current—voltage characteristics. It is demonstrated that wet thermal annealing at relatively higher temperature such as 550 °C can lead to Ge incorporation in HfO 2 and the partial crystallization of HfO 2 , which should be responsible for the serious degradation of the electrical characteristics of the TaN/HfO 2 /Ge MOS capacitors. However, wet thermal annealing at 400 °C can decrease the GeO x interlayer thickness at the HfO 2 /Ge interface, resulting in a significant reduction of the interface states and a smaller effective oxide thickness, along with the introduction of a positive charge in the dielectrics due to the hydrolyzable property of GeO x in the wet ambient. The pre-growth of a thin GeO 2 passivation layer can effectively suppress the interface states and improve the C—V characteristics for the as-prepared HfO 2 gated Ge MOS capacitors, but it also dissembles the benefits of wet thermal annealing to a certain extent

  8. Ge1−xSix on Ge-based n-type metal–oxide semiconductor field-effect transistors by device simulation combined with high-order stress–piezoresistive relationships

    International Nuclear Information System (INIS)

    Lee, Chang-Chun; Hsieh, Chia-Ping; Huang, Pei-Chen; Cheng, Sen-Wen; Liao, Ming-Han

    2016-01-01

    The considerably high carrier mobility of Ge makes Ge-based channels a promising candidate for enhancing the performance of next-generation devices. The n-type metal–oxide semiconductor field-effect transistor (nMOSFET) is fabricated by introducing the epitaxial growth of high-quality Ge-rich Ge 1−x Si x alloys in source/drain (S/D) regions. However, the short channel effect is rarely considered in the performance analysis of Ge-based devices. In this study, the gate-width dependence of a 20 nm Ge-based nMOSFET on electron mobility is investigated. This investigation uses simulated fabrication procedures combined with the relationship of the interaction between stress components and piezoresistive coefficients at high-order terms. Ge 1−x Si x alloys, namely, Ge 0.96 Si 0.04 , Ge 0.93 Si 0.07 , and Ge 0.86 Si 0.14 , are individually tested and embedded into the S/D region of the proposed device layout and are used in the model of stress estimation. Moreover, a 1.0 GPa tensile contact etching stop layer (CESL) is induced to explore the effect of bi-axial stress on device geometry and subsequent mobility variation. Gate widths ranging from 30 nm to 4 μm are examined. Results show a significant change in stress when the width is < 300 nm. This phenomenon becomes notable when the Si in the Ge 1−x Si x alloy is increased. The stress contours of the Ge channel confirm the high stress components induced by the Ge 0.86 Si 0.14 stressor within the device channel. Furthermore, the stresses (S yy ) of the channel in the transverse direction become tensile when CESL is introduced. Furthermore, when pure S/D Ge 1−x Si x alloys are used, a maximum mobility gain of 28.6% occurs with an ~ 70 nm gate width. A 58.4% increase in mobility gain is obtained when a 1.0 GPa CESL is loaded. However, results indicate that gate width is extended to 200 nm at this point. - Highlights: • A 20 nm Ge-based n-channel metal–oxide semiconductor field-effect transistor is investigated

  9. Detection of secondary electrons with pixelated hybrid semiconductor detectors

    International Nuclear Information System (INIS)

    Gebert, Ulrike Sonja

    2011-01-01

    Within the scope of this thesis, secondary electrons were detected with a pixelated semiconductor detector named Timepix. The Timepix detector consists of electronics and a sensor made from a semiconductor material. The connection of sensor and electronics is done for each pixel individually using bump bonds. Electrons with energies above 3 keV can be detected with the sensor. One electron produces a certain amount of electron-hole pairs according to its energy. The charge then drifts along an electric field to the pixel electronics, where it induces an electric signal. Even without a sensor it is possible to detect an electric signal from approximately 1000 electrons directly in the pixel electronics. Two different detector systems to detect secondary electrons using the Timepix detector were investigated during this thesis. First of all, a hybrid photon detector (HPD) was used to detect single photoelectrons. The HPD consists of a vacuum vessel with an entrance window and a cesium iodine photocathode at the inner surface of the window. Photoelectrons are released from the photocathode by incident light and are accelerated in an electric field towards the Timepix detector, where the point of interaction and the arrival time of the electron is determined. With a proximity focusing setup, a time resolution of 12 ns (with an acceleration voltage of 20 kV between photocathode and Timepix detector) was obtained. The HPD examined in this thesis showed a strong dependence of the dark rate form the acceleration voltage and the pressure in the vacuum vessel. At a pressure of few 10 -5 mbar and an acceleration voltage of 20 kV, the dark rate was about 800 Hz per mm 2 area of the read out photocathode. One possibility to reduce the dark rate is to identify ion feedback events. With a slightly modified setup it was possible to reduce the dark rate to 0.5 Hz/mm 2 . To achieve this, a new photocathode was mounted in a shorter distance to the detector. The measurements where

  10. Magnetism in Mn-nanowires and -clusters as δ-doped layers in group IV semiconductors (Si, Ge

    Directory of Open Access Journals (Sweden)

    K. R. Simov

    2018-01-01

    Full Text Available Mn doping of group-IV semiconductors (Si/Ge is achieved by embedding nanostructured Mn-layers in group-IV matrix. The Mn-nanostructures are monoatomic Mn-wires or Mn-clusters and capped with an amorphous Si or Ge layer. The precise fabrication of δ-doped Mn-layers is combined with element-specific detection of the magnetic signature with x-ray magnetic circular dichroism. The largest moment (2.5 μB/Mn is measured for Mn-wires with ionic bonding character and a-Ge overlayer cap; a-Si capping reduces the moment due to variations of bonding in agreement with theoretical predictions. The moments in δ-doped layers dominated by clusters is quenched with an antiferromagnetic component from Mn–Mn bonding.

  11. Palladium silicide - a new contact for semiconductor radiation detectors

    International Nuclear Information System (INIS)

    Totterdell, D.H.J.

    1981-11-01

    Silicide layers can be used as low resistance contacts in semiconductor devices. The formation of a metal rich palladium silicide Pd 2 Si is discussed. A palladium film 100A thick is deposited at 300 0 C and the resulting silicide layer used as an ohmic contact in an n + p silicon detector. This rugged contact has electrical characteristics comparable with existing evaporated gold contacts and enables the use of more reproducible bonding techniques. (author)

  12. Treatment verification and in vivo dosimetry for total body irradiation using thermoluminescent and semiconductor detectors

    International Nuclear Information System (INIS)

    Oliveira, F.F.; Amaral, L.L.; Costa, A.M.; Netto, T.G.

    2014-01-01

    The objective of this work is the characterization of thermoluminescent and semiconductor detectors and their applications in treatment verification and in vivo dosimetry for total body irradiation (TBI) technique. Dose measurements of TBI treatment simulation performed with thermoluminescent detectors inserted in the holes of a “Rando anthropomorphic phantom” showed agreement with the prescribed dose. For regions of the upper and lower chest where thermoluminescent detectors received higher doses it was recommended the use of compensating dose in clinic. The results of in vivo entrance dose measurements for three patients are presented. The maximum percentual deviation between the measurements and the prescribed dose was 3.6%, which is consistent with the action level recommended by the International Commission on Radiation Units and Measurements (ICRU), i.e., ±5%. The present work to test the applicability of a thermoluminescent dosimetric system and of a semiconductor dosimetric system for performing treatment verification and in vivo dose measurements in TBI techniques demonstrated the value of these methods and the applicability as a part of a quality assurance program in TBI treatments. - Highlights: • Characterization of a semiconductor dosimetric system. • Characterization of a thermoluminescent dosimetric system. • Application of the TLDs for treatment verification in total body irradiation treatments. • Application of semiconductor detectors for in vivo dosimetry in total body irradiation treatments. • Implementation of in vivo dosimetry as a part of a quality assurance program in radiotherapy

  13. Spectrum interpretation problems with well-type Ge(Li) detectors due to self-absorption variations

    International Nuclear Information System (INIS)

    Bruin, M. de; Korthoven, P.J.M.; Bode, P.

    1979-01-01

    For use in instrumental neutron activation analysis, a well-type Ge(Li) detector compares favourably with a comparable detector without well. It combines a good energy resolution with a relatively high detector efficiency. Moreover, this efficiency is almost independent of sample dimensions. But the use of a well-type Ge(Li) detector also has been some drawbacks, as large summation effects will result from the high detector efficiency. The least severe aspect of this summation is the additional formation of many extra sum peaks in gamma-ray spectra of nuclides with moderate or highly complex decay schemes. This leads to higher computation times, but in general, the accuracy of the analysis will not be affected. A far more important aspect of the summation is found in the fact that the intensity ratios between high energy peaks and the sum peaks of self-absorption effects, which in a flat detector is limited to only the low energy part of the spectrum, may be extended to the high energy region. This leads to sample-dependent distortion of the high energy part of the gamma-ray spectrum which may result in misinterpretation of instrumental neutron activation analysis data. The only solution to this problem seems to be to prevent the relevant low energy photons from reaching the detector. This can be accomplished by using a high Z absorber inside the detector well. (Auth.)

  14. Gamma radiation detectors for safeguards applications

    International Nuclear Information System (INIS)

    Carchon, R.; Moeslinger, M.; Bourva, L.; Bass, C.; Zendel, M.

    2007-01-01

    The IAEA uses extensively a variety of gamma radiation detectors to verify nuclear material. These detectors are part of standardized spectrometry systems: germanium detectors for High-Resolution Gamma Spectrometry (HRGS); Cadmium Zinc Telluride (CZT) detectors for Room Temperature Gamma Spectrometry (RTGS); and NaI(Tl) detectors for Low Resolution Gamma Spectrometry (LRGS). HRGS with high-purity Germanium (HpGe) detectors cooled by liquid nitrogen is widely used in nuclear safeguards to verify the isotopic composition of plutonium or uranium in non-irradiated material. Alternative cooling systems have been evaluated and electrically cooled HpGe detectors show a potential added value, especially for unattended measurements. The spectrometric performance of CZT detectors, their robustness and simplicity are key to the successful verification of irradiated materials. Further development, such as limiting the charge trapping effects in CZT to provide improved sensitivity and energy resolution are discussed. NaI(Tl) detectors have many applications-specifically in hand-held radioisotope identification devices (RID) which are used to detect the presence of radioactive material where a lower resolution is sufficient, as they benefit from a generally higher sensitivity. The Agency is also continuously involved in the review and evaluation of new and emerging technologies in the field of radiation detection such as: Peltier-cooled CdTe detectors; semiconductor detectors operating at room temperature such as HgI 2 and GaAs; and, scintillator detectors using glass fibres or LaBr 3 . A final conclusion, proposing recommendations for future action, is made

  15. Zero cross over timing with coaxial Ge(Li) detectors

    International Nuclear Information System (INIS)

    El-Ibiary, M.Y.

    1979-07-01

    The performance of zero cross over timing systems of the constant fraction or amplitude rise time compensated type using coaxial Ge(Li) detectors is analyzed with special attention to conditions that compromise their energy-independence advantage. The outcome is verified against existing experimental results, and the parameters that lead to minimum disperson, as well as the value of the dispersion to be expected, are given by a series of charts

  16. Least square methods and covariance matrix applied to the relative efficiency calibration of a Ge(Li) detector

    International Nuclear Information System (INIS)

    Geraldo, L.P.; Smith, D.L.

    1989-01-01

    The methodology of covariance matrix and square methods have been applied in the relative efficiency calibration for a Ge(Li) detector apllied in the relative efficiency calibration for a Ge(Li) detector. Procedures employed to generate, manipulate and test covariance matrices which serve to properly represent uncertainties of experimental data are discussed. Calibration data fitting using least square methods has been performed for a particular experimental data set. (author) [pt

  17. Determining dose rate with a semiconductor detector - Monte Carlo calculations of the detector response

    Energy Technology Data Exchange (ETDEWEB)

    Nordenfors, C

    1999-02-01

    To determine dose rate in a gamma radiation field, based on measurements with a semiconductor detector, it is necessary to know how the detector effects the field. This work aims to describe this effect with Monte Carlo simulations and calculations, that is to identify the detector response function. This is done for a germanium gamma detector. The detector is normally used in the in-situ measurements that is carried out regularly at the department. After the response function is determined it is used to reconstruct a spectrum from an in-situ measurement, a so called unfolding. This is done to be able to calculate fluence rate and dose rate directly from a measured (and unfolded) spectrum. The Monte Carlo code used in this work is EGS4 developed mainly at Stanford Linear Accelerator Center. It is a widely used code package to simulate particle transport. The results of this work indicates that the method could be used as-is since the accuracy of this method compares to other methods already in use to measure dose rate. Bearing in mind that this method provides the nuclide specific dose it is useful, in radiation protection, since knowing what the relations between different nuclides are and how they change is very important when estimating the risks

  18. Systematic study of Si-based GeSn photodiodes with 2.6 µm detector cutoff for short-wave infrared detection.

    Science.gov (United States)

    Pham, Thach; Du, Wei; Tran, Huong; Margetis, Joe; Tolle, John; Sun, Greg; Soref, Richard A; Naseem, Hameed A; Li, Baohua; Yu, Shui-Qing

    2016-03-07

    Normal-incidence Ge 1-x Sn x photodiode detectors with Sn compositions of 7 and 10% have been demonstrated. Such detectors were based on Ge/Ge 1-x Sn x /Ge double heterostructures grown directly on a Si substrate via a chemical vapor deposition system. A temperature-dependence study of these detectors was conducted using both electrical and optical characterizations from 300 to 77 K. Spectral response up to 2.6 µm was achieved for a 10% Sn device at room temperature. The peak responsivity and specific detectivity (D*) were measured to be 0.3 A/W and 4 × 10 9 cmHz 1/2 W -1 at 1.55 µm, respectively. The spectral D* of a 7% Sn device at 77 K was only one order-of-magnitude lower than that of an extended-InGaAs photodiode operating in the same wavelength range, indicating the promising future of GeSn-based photodetectors.

  19. Position sensitive detector with semiconductor and image electron tube comprising such a detector

    International Nuclear Information System (INIS)

    Roziere, Guy.

    1977-01-01

    This invention concerns a position sensitive detector comprising a semiconducting substrate. It also concerns the electron tubes in which the detector may be incorporated in order to obtain an image formed at the tube input by an incident flux of particles or radiation. When a charged particle or group of such particles, electrons in particular, enter the space charge region of an inversely biased semiconductor diode, the energy supplied by these particles releases in the diode a certain number of electron-hole pairs which move in the field existing in the area towards the diode contacts. A corresponding current arises in the connections of this diode which constitutes the signal corresponding to the incident energy. Such a tube or chain of tubes is employed in nuclear medicine for observing parts of the human body, particularly by gamma radiation [fr

  20. CDZNTE ROOM-TEMPERATURE SEMICONDUCTOR GAMMA-RAY DETECTOR FOR NATIONAL-SECURITY APPLICATIONS.

    Energy Technology Data Exchange (ETDEWEB)

    CAMARDA,G.S.; BOLOTNIKOV, A.E.; CUI, Y.; HOSSAIN, A.; KOHMAN, K.T.; JAMES, R.B.

    2007-05-04

    One important mission of the Department of Energy's National Nuclear Security Administration is to develop reliable gamma-ray detectors to meet the widespread needs of users for effective techniques to detect and identify special nuclear- and radioactive-materials. Accordingly, the Nonproliferation and National Security Department at Brookhaven National Laboratory was tasked to evaluate existing technology and to develop improved room-temperature detectors based on semiconductors, such as CdZnTe (CZT). Our research covers two important areas: Improving the quality of CZT material, and exploring new CZT-based gamma-ray detectors. In this paper, we report on our recent findings from the material characterization and tests of actual CZT devices fabricated in our laboratory and from materials/detectors supplied by different commercial vendors. In particular, we emphasize the critical role of secondary phases in the current CZT material and issues in fabricating the CZT detectors, both of which affect their performance.

  1. On load resistor noise in preamplifiers for semiconductor detectors

    International Nuclear Information System (INIS)

    Baldin, S.A.; Bajramashvili, I.A.; Gubin, S.F.

    1975-01-01

    The main causes resulting in the deterioration of energy resolution in preamplifiers for semiconductor detectors (scd) with a resistor in the feedback circuit are discussed. A comparison of noise characteristics has been carried out of a number of high-resistance commercial and experimental resistors. The resistor noise dependence on the nature of drop of the resistor impedance active part in the region up to 100 Kc, as well as on the resistor spurious capacitance in shown

  2. Method of quantitative analysis of fluorine in environmental samples using a pure-Ge detector

    International Nuclear Information System (INIS)

    Sera, K.; Terasaki, K.; Saitoh, Y.; Itoh, J.; Futatsugawa, S.; Murao, S.; Sakurai, S.

    2004-01-01

    We recently developed and reported a three-detector measuring system making use of a pure-Ge detector combined with two Si(Li) detectors. The efficiency curve of the pure-Ge detector was determined as relative efficiencies to those of the existing Si(Li) detectors and accuracy of it was confirmed by analyzing a few samples whose elemental concentrations were known. It was found that detection of fluorine becomes possible by analyzing prompt γ-rays and the detection limit was found to be less than 0.1 ppm for water samples. In this work, a method of quantitative analysis of fluorine has been established in order to investigate environmental contamination by fluorine. This method is based on the fact that both characteristic x-rays from many elements and 110 keV prompt γ-rays from fluorine can be detected in the same spectrum. The present method is applied to analyses of a few environmental samples such as tealeaves, feed for domestic animals and human bone. The results are consistent with those obtained by other methods and it is found that the present method is quite useful and convenient for investigation studies on regional pollution by fluorine. (author)

  3. Flux distribution by neutrons semi-conductors detectors during the startup of the EL4 reactor

    International Nuclear Information System (INIS)

    Fuster, S.; Tarabella, A.

    1967-01-01

    The Cea developed neutron semi-conductors detectors which allows a quasi-instantaneous monitoring of neutrons flux distribution, when placed in a reactor during the tests. These detectors have been experimented in the EL4 reactor. The experiment and the results are presented and compared with reference mappings. (A.L.B.)

  4. Germanium junction detectors. Theoretical and practical factors governing their use in radiation spectrometry

    International Nuclear Information System (INIS)

    Hors, M.; Philis, C.

    1967-01-01

    Semi-conductor detectors have recently greatly increased the possibilities available to nuclear spectroscopists for the study of α, β and γ radiations. Their use in radio-chemistry has encouraged us to study their principle, their mechanism and also the conditions under which they can be used. The first part, which is theoretical, consists of a summary of what should be known concerning the best use of junction detectors, in particular Ge (Li) detectors. The second part, which is experimental, summarizes the laboratory work carried out over a period of one year on Ge (Li) detectors. Stress is laid on the possibilities presented by the use of these detectors as photo-electric spectrometers, and also on the precautions required. Amongst the numerous results presented, the resolution of 2.52 keV obtained for the γ radiation of 145.5 keV for 141 Ce may be particularly noted. (authors) [fr

  5. Probing Sub-GeV Dark Matter with Conventional Detectors

    DEFF Research Database (Denmark)

    Kouvaris, Chris; Pradler, Josef

    2017-01-01

    The direct detection of dark matter particles with mass below the GeV scale is hampered by soft nuclear recoil energies and finite detector thresholds. For a given maximum relative velocity, the kinematics of elastic dark matter nucleus scattering sets a principal limit on detectability. Here, we...... propose to bypass the kinematic limitations by considering the inelastic channel of photon emission from bremsstrahlung in the nuclear recoil. Our proposed method allows us to set the first limits on dark matter below 500 MeV in the plane of dark matter mass and cross section with nucleons. In situations...... where a dark-matter-electron coupling is suppressed, bremsstrahlung may constitute the only path to probe low-mass dark matter awaiting new detector technologies with lowered recoil energy thresholds....

  6. Oxidized Mn:Ge magnetic semiconductor: Observation of anomalous Hall effect and large magnetoresistance

    Science.gov (United States)

    Duc Dung, Dang; Choi, Jiyoun; Feng, Wuwei; Cao Khang, Nguyen; Cho, Sunglae

    2018-03-01

    We report on the structural and magneto-transport properties of the as-grown and oxidized Mn:Ge magnetic semiconductors. Based on X-ray diffraction and X-ray photoelectron spectroscopy results, the samples annealed at 650 and 700 °C became fully oxidized and the chemical binding energies of Mn was found to be Mn3O4. Thus, the system became Mn3O4 clusters embedded in Ge1-yOy. The as-grown sample showed positive linear Hall effect and negligible negative magnetoresistance (MR), which trend remained for the sample annealed up to 550 °C. Interestingly, for the samples annealed at above 650 °C, we observed the anomalous Hall effect around 45 K and the giant positive MR, which are respectively 59.2% and 78.5% at 7 kOe annealed at 650 °C and 700 °C.

  7. Ab-initio calculation of ZnGeAs{sub 2} semiconductor

    Energy Technology Data Exchange (ETDEWEB)

    Tripathy, S. K., E-mail: susanta96@gmail.com; Kumar, V., E-mail: susanta96@gmail.com [Department of Electronics Engineering, Indian School of Mines, Dhanbad 826004 (India)

    2014-04-24

    The structural, electronic, optical and elastic properties of ZnGeAs{sub 2} semiconductor have been investigated using pseudopotential plane wave method within the density functional theory (DFT). The optimized lattice constants, energy gap and crystal field splitting parameter are calculated. The optical properties such as dielectric function, optical reflectivity,, extinction coefficient, absorption spectra, refractive index and electron energy loss spectrum have been studied. The values of bulk modulus (B), elastic constants (C{sub ij}), Young’s modulus (Y), Zener anisotropic factor (A), Poisson’s ratio (ν) and Debye temperature (Θ{sub D}) have been calculated. The calculated values of all these parameters are compared with the available experimental values and the values reported by different workers. A fairly good agreement has been found between them.

  8. Induced radioactivity in the forward shielding and semiconductor tracker of the ATLAS detector.

    Science.gov (United States)

    Bĕdajánek, I; Linhart, V; Stekl, I; Pospísil, S; Kolros, A; Kovalenko, V

    2005-01-01

    The radioactivity induced in the forward shielding, copper collimator and semiconductor tracker modules of the ATLAS detector has been studied. The ATLAS detector is a long-term experiment which, during operation, will require to have service and access to all of its parts and components. The radioactivity induced in the forward shielding was calculated by Monte Carlo methods based on GEANT3 software tool. The results show that the equivalent dose rates on the outer surface of the forward shielding are very low (at most 0.038 microSv h(-1)). On the other hand, the equivalent dose rates are significantly higher on the inner surface of the forward shielding (up to 661 microSv h(-1)) and, especially, at the copper collimator close to the beampipe (up to 60 mSv h(-1)). The radioactivity induced in the semiconductor tracker modules was studied experimentally. The module was activated by neutrons in a training nuclear reactor and the delayed gamma ray spectra were measured. From these measurements, the equivalent dose rate on the surface of the semiconductor tracker module was estimated to be LHC) operation and 10 d of cooling.

  9. Assessment of present and future large-scale semiconductor detector systems

    International Nuclear Information System (INIS)

    Spieler, H.G.; Haller, E.E.

    1984-11-01

    The performance of large-scale semiconductor detector systems is assessed with respect to their theoretical potential and to the practical limitations imposed by processing techniques, readout electronics and radiation damage. In addition to devices which detect reaction products directly, the analysis includes photodetectors for scintillator arrays. Beyond present technology we also examine currently evolving structures and techniques which show potential for producing practical devices in the foreseeable future

  10. Experimental investigation of energy resolution in a semiconductor detector (surface barrier and Si (Li) detector) in the detection of protons

    International Nuclear Information System (INIS)

    Nordborg, C.

    1974-05-01

    The action of electronic effects on the energy resolution of the detector is investigated. The results are applicable not only to protons but also to heavier charged particles. It should be possible to reach a resolution of about 6 to 7 keV for 10 MeV protons with electronic detectors. Magnetic spectrometers could achieve a resolution of 2 to 3 keV. It is convenient to use Peltier elements for cooling semiconductor spectrometers. (Auth.)

  11. Search for strongly interacting massive particles using semiconductor detectors on the ground

    International Nuclear Information System (INIS)

    Derbin, A.V.; Egorov, A.I.; Bakhlanov, S.V.; Muratova, V.N.

    1999-01-01

    Using signals from recoil nucleus in semiconductor detectors, search for strongly interacting massive particles, as a possible candidate for dark matter, is continued. Experimental installation and the experimental results are given. New limits on the possible masses and cross sections of strongly interacting massive particles are presented [ru

  12. Semiconductor Pixel detectors and their applications in life sciences

    International Nuclear Information System (INIS)

    Jakubek, J

    2009-01-01

    Recent advances in semiconductor technology allow construction of highly efficient and low noise pixel detectors of ionizing radiation. Steadily improving quality of front end electronics enables fast digital signal processing in each pixel which offers recording of more complete information about each detected quantum (energy, time, number of particles). All these features improve an extend applicability of pixel technology in different fields. Some applications of this technology especially for imaging in life sciences will be shown (energy and phase sensitive X-ray radiography and tomography, radiography with heavy charged particles, neutron radiography, etc). On the other hand a number of obstacles can limit the detector performance if not handled. The pixel detector is in fact an array of individual detectors (pixels), each of them has its own efficiency, energy calibration and also noise. The common effort is to make all these parameters uniform for all pixels. However an ideal uniformity can be never reached. Moreover, it is often seen that the signal in one pixel can affect the neighbouring pixels due to various reasons (e.g. charge sharing). All such effects have to be taken into account during data processing to avoid false data interpretation. A brief view into the future of pixel detectors and their applications including also spectroscopy, tracking and dosimetry is given too. Special attention is paid to the problem of detector segmentation in context of the charge sharing effect.

  13. X-ray escape effects in Si, Ge, and NaI detectors

    International Nuclear Information System (INIS)

    Brunner, G.

    1989-01-01

    A 3-parameter representation of the type x = K 1 [1 -L(ln(1 + 1/L))] together with L = K 2 E K 3 is recommended for the escape to parent peak ratio. Parameter values are provided for Si, Ge, and NaI detectors. Scattering, which has been neglected up to now, is included. (author)

  14. The use of portable semiconductor detectors in nuclear medicine

    International Nuclear Information System (INIS)

    Kuhn, W.

    1986-01-01

    A new biotelemetric system, CdTe semiconductor detectors with portable hard memory, for the registration of time activity curves in particular body regions of patients is introduced. The hard- and software connection of the system to the already present EDV configuration is described. The characteristics of the detectors are studied, theoretically explained and compared to the information given by the producers. By means of the determination of the ortho-iodine hippuric acid clearance (OIH) from the registration of the time activity curves in the chest the first information about the practicability in clinical use as well as the validity of the method are deduced. The detector system proved itself to be susceptible to problems, especially from manipulation of the cable or from movement of the patient. The determination of the OIH clearance from the partial body curve was problematic, because an extrapolation to the whole body based on the specific OIH kinetic in the small, observed tissue section is difficult. The comparison with the camera picture should be carefully evaluated, because this method has in principle the same inadequacies. (orig./HP) [de

  15. Property of a CZT semiconductor detector for radionuclide identification

    International Nuclear Information System (INIS)

    Chun, Sung-Dae; Park, Se-Hwan; Ha, Jang Ho; Kang, Sang Mook; Lee, Dong Hoon; Kim, Yong Kyun; Cho, Yun Ho; Kim, Jong Kyung; Hong, Duk-Geun

    2008-01-01

    Compound semiconductors of high Z value material have been studied intensively for X-ray and γ-ray spectroscopy at room temperature. CdZnTe has wide band gap energy as 1.6 eV and can provide high quantum efficiency with reasonably good energy resolution at room temperature. This study is aimed at determining radionuclide analysis ability by measuring energy resolution of CZT detector which will be applied at nuclear material identification purpose. For experiment we used a CZT detector (5 x 5 x 5 mm 3 ) which is manufactured by eV Products. We have performed our measurement at varied temperatures similar to the outdoor environment for the investigation about temperature dependence of energy resolution and peak centroid fluctuation of CZT detector by using gas cooling and Peltier cooling methods. In order to test radionuclide identification we used various radionuclide samples; plutonium, europium and other standard sources. Pulse height spectra were obtained by standard electronics which consists of a preamplifier, a shaping amplifier, and a multi-channel analyzer. (author)

  16. Probing Sub-GeV Dark Matter with Conventional Detectors.

    Science.gov (United States)

    Kouvaris, Chris; Pradler, Josef

    2017-01-20

    The direct detection of dark matter particles with mass below the GeV scale is hampered by soft nuclear recoil energies and finite detector thresholds. For a given maximum relative velocity, the kinematics of elastic dark matter nucleus scattering sets a principal limit on detectability. Here, we propose to bypass the kinematic limitations by considering the inelastic channel of photon emission from bremsstrahlung in the nuclear recoil. Our proposed method allows us to set the first limits on dark matter below 500 MeV in the plane of dark matter mass and cross section with nucleons. In situations where a dark-matter-electron coupling is suppressed, bremsstrahlung may constitute the only path to probe low-mass dark matter awaiting new detector technologies with lowered recoil energy thresholds.

  17. Use of semiconductor detectors for radioactive waste account and control

    CERN Document Server

    Davydov, L N; Zakharchenko, A A

    2002-01-01

    The possibilities and development status of the contemporary semiconductor detectors and detecting devices intended for radiation monitoring at nuclear industry enterprises, including Chernobyl Shelter and depositories of nuclear wastes are shown. Such devices,created in the last years, can be successfully used for measurements of the gamma-radiation dose rate as well as for the isotope composition evaluation of nuclear materials and wastes, both during the work cycles and in emergency situations.

  18. Current applications of semiconductor x-ray detectors in chemical analysis

    International Nuclear Information System (INIS)

    Whitehead, N.E.

    1975-07-01

    In the last few years, semiconductor detectors have been used as X-ray detectors with great success, and the routine rapid accumulation of X-ray spectra is now possible. This review surveys the historical development of the detectors, the utilisation, and relative merits of various means of exciting the X-radiation from the elements in the sample, and compares the technique with other methods claiming to offer the capability of simultaneous multi-element analysis. It is concluded that it is of average sensitivity, but offers some advantages from its non-destructive nature, and in some cases its ability to offer information about the spatial distribution of elements in a sample. Other types of analysis may also be possible simultaneously. Sample preparation techniques are reviewed, especially techniques of manufacturing thin samples. An appendix contains details of the very wide variety of samples which have been analysed. More than 350 references are included. (auth.)

  19. Ge{sub 1−x}Si{sub x} on Ge-based n-type metal–oxide semiconductor field-effect transistors by device simulation combined with high-order stress–piezoresistive relationships

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Chang-Chun, E-mail: changchunlee@cycu.edu.tw [Department of Mechanical Engineering, Chung Yuan Christian University 200, Chung Pei Rd., Chungli City, Taoyuan County 32023, Taiwan, ROC (China); Hsieh, Chia-Ping [Department of Mechanical Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan, ROC (China); Huang, Pei-Chen; Cheng, Sen-Wen [Department of Mechanical Engineering, Chung Yuan Christian University 200, Chung Pei Rd., Chungli City, Taoyuan County 32023, Taiwan, ROC (China); Liao, Ming-Han [Department of Mechanical Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan, ROC (China)

    2016-03-01

    The considerably high carrier mobility of Ge makes Ge-based channels a promising candidate for enhancing the performance of next-generation devices. The n-type metal–oxide semiconductor field-effect transistor (nMOSFET) is fabricated by introducing the epitaxial growth of high-quality Ge-rich Ge{sub 1−x}Si{sub x} alloys in source/drain (S/D) regions. However, the short channel effect is rarely considered in the performance analysis of Ge-based devices. In this study, the gate-width dependence of a 20 nm Ge-based nMOSFET on electron mobility is investigated. This investigation uses simulated fabrication procedures combined with the relationship of the interaction between stress components and piezoresistive coefficients at high-order terms. Ge{sub 1−x}Si{sub x} alloys, namely, Ge{sub 0.96}Si{sub 0.04}, Ge{sub 0.93}Si{sub 0.07}, and Ge{sub 0.86}Si{sub 0.14}, are individually tested and embedded into the S/D region of the proposed device layout and are used in the model of stress estimation. Moreover, a 1.0 GPa tensile contact etching stop layer (CESL) is induced to explore the effect of bi-axial stress on device geometry and subsequent mobility variation. Gate widths ranging from 30 nm to 4 μm are examined. Results show a significant change in stress when the width is < 300 nm. This phenomenon becomes notable when the Si in the Ge{sub 1−x}Si{sub x} alloy is increased. The stress contours of the Ge channel confirm the high stress components induced by the Ge{sub 0.86}Si{sub 0.14} stressor within the device channel. Furthermore, the stresses (S{sub yy}) of the channel in the transverse direction become tensile when CESL is introduced. Furthermore, when pure S/D Ge{sub 1−x}Si{sub x} alloys are used, a maximum mobility gain of 28.6% occurs with an ~ 70 nm gate width. A 58.4% increase in mobility gain is obtained when a 1.0 GPa CESL is loaded. However, results indicate that gate width is extended to 200 nm at this point. - Highlights: • A 20 nm Ge-based n

  20. Development and characterization of semiconductor ion detectors for plasma diagnostics in the range over 0.3 keV

    Science.gov (United States)

    Cho, T.; Sakamoto, Y.; Hirata, M.; Kohagura, J.; Makino, K.; Kanke, S.; Takahashi, K.; Okamura, T.; Nakashima, Y.; Yatsu, K.; Tamano, T.; Miyoshi, S.

    1997-01-01

    For the purpose of plasma-ion-energy analyses in a wide-energy range from a few hundred eV to hundreds of keV, upgraded semiconductor detectors are newly fabricated and characterized using a test-ion-beam line from 0.3 to 12 keV. In particular, the detectable lowest-ion energy is drastically improved at least down to 0.3 keV; this energy is one to two orders-of-magnitude better than those for commercially available Si-surface-barrier diodes employed for previous plasma-ion diagnostics. A signal-to-noise ratio of two to three orders-of-magnitude better than that for usual metal-collector detectors is demonstrated for the compact-sized semiconductor along with the availability of the use under conditions of a good vacuum and a strong-magnetic field. Such characteristics are achieved due to the improving methods of the optimization of the thicknesses of a Si dead layer and a SiO2 layer, as well as the nitrogen-doping technique near the depletion layer along with minimizing impurity concentrations in Si. Such an upgraded capability of an extremely low-energy-ion detection with the low-noise characteristics enlarges research regimes of plasma-ion behavior using semiconductor detectors not only in the divertor regions of tokamaks but in wider spectra of open-field plasma devices including tandem mirrors. An application of the semiconductor ion detector for plasma-ion diagnostics is demonstrated in a specially designed ion-spectrometer structure.

  1. Measurement of neutron flux distribution by semiconductor detector

    International Nuclear Information System (INIS)

    Obradovic, D.; Bosevski, T.

    1964-01-01

    Application of semiconductor detectors for measuring neutron flux distribution is about 10 times faster than measurements by activation foils and demands significantly lower reactor power. Following corrections are avoided: mass of activation foils which influences the self shielding, nuclear decay during activity measurements; counter dead-time. It is possible to control the measured data during experiment and repeat measurements if needed. Precision of the measurement is higher since it is possible to choose the wanted statistics. The method described in this paper is applied for measurements at the RB reactor. It is concluded that the method is suitable for fast measurements but the activation analysis is still indispensable

  2. Photoluminescence and electroluminescence from Ge/strained GeSn/Ge quantum wells

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Chung-Yi; Chang, Chih-Chiang [Department of Electrical Engineering, Graduate Institute of Photonics and Optoelectronics, National Taiwan University, Taipei 10617, Taiwan (China); Huang, Chih-Hsiung; Huang, Shih-Hsien [Department of Electrical Engineering, Graduate Institute of Electronics Engineering, National Taiwan University, Taipei 10617, Taiwan (China); Liu, C. W., E-mail: chee@cc.ee.ntu.edu.tw [Department of Electrical Engineering, Graduate Institute of Photonics and Optoelectronics, National Taiwan University, Taipei 10617, Taiwan (China); Department of Electrical Engineering, Graduate Institute of Electronics Engineering, National Taiwan University, Taipei 10617, Taiwan (China); National Nano Device Labs, Hsinchu 30077, Taiwan (China); Huang, Yi-Chiau; Chung, Hua; Chang, Chorng-Ping [Applied Materials Inc., Sunnyvale, California 94085 (United States)

    2016-08-29

    Ge/strained GeSn/Ge quantum wells are grown on a 300 mm Si substrate by chemical vapor deposition. The direct bandgap emission from strained GeSn is observed in the photoluminescence spectra and is enhanced by Al{sub 2}O{sub 3}/SiO{sub 2} passivation due to the field effect. The electroluminescence of the direct bandgap emission of strained GeSn is also observed from the Ni/Al{sub 2}O{sub 3}/GeSn metal-insulator-semiconductor tunneling diodes. Electroluminescence is a good indicator of GeSn material quality, since defects in GeSn layers degrade the electroluminescence intensity significantly. At the accumulation bias, the holes in the Ni gate electrode tunnel to the strained n-type GeSn layer through the ultrathin Al{sub 2}O{sub 3} and recombine radiatively with electrons. The emission wavelength of photoluminescence and electroluminescence can be tuned by the Sn content.

  3. Response function and optimum configuration of semiconductor backscattered-electron detectors for scanning electron microscopes

    International Nuclear Information System (INIS)

    Rau, E. I.; Orlikovskiy, N. A.; Ivanova, E. S.

    2012-01-01

    A new highly efficient design for semiconductor detectors of intermediate-energy electrons (1–50 keV) for application in scanning electron microscopes is proposed. Calculations of the response function of advanced detectors and control experiments show that the efficiency of the developed devices increases on average twofold, which is a significant positive factor in the operation of modern electron microscopes in the mode of low currents and at low primary electron energies.

  4. Contribution to the study of electronic structure of crystalline semiconductors (Si, Ge, GaAs, Gap, ZnTe, ZnSe

    Directory of Open Access Journals (Sweden)

    Bouhafs B.

    2012-06-01

    Full Text Available The band structure of semiconductors was described by several theorists since the Fifties. The main objective of the present paper is to do a comparative study between various families of semi-conductors IV (Si,Ge, III-V (GaAs, GaP and II-VI (ZnSe, ZnTe with both methods; tight Binding1 method and pseudo potential method2. This work enables us to understand as well as the mechanism of conduction process in these semiconductors and powers and limits of the above methods. The obtained results allow to conclude that both methods are in a good agreement to describe the morphology of band structures of the cited semiconductors. This encourages us to study in the future the electronic behaviour through the structure of bands for more complex systems such as the heterostructures.

  5. Effect of trapping of charge carriers on the resolution of Ge(Li) detectors; Influencia da captura de portadores de cargas sobre a resolucao em detectores Ge(Li)

    Energy Technology Data Exchange (ETDEWEB)

    Venturini, Luzia

    1979-07-01

    In this work a measurement is described of the variation of the resolution of a Ge(Li) detector as a function of the position of irradiation of a collimated gamma-ray beam. Also the variation of the resolution has been measured as a function of the applied detector voltage, using a collimated and a non-collimated gamma-ray beam. The measurement indicate that in the process of charge collection loss of holes predominates and the best resolution is obtained in the middle of the compensated region. It has been verified that, in the case of a collimated gamma beam the detector resolution improves with increasing detector bias up to at least 5100 Volts. For a non-collimated gamma beam, however, the resolution reaches a constant value at about 4400 Volts. The dependence of resolution on the position of irradiation can be accounted for by introducing a local ionization factor different from the usual position independent Fano factor. (author)

  6. High permittivity materials for oxide gate stack in Ge-based metal oxide semiconductor capacitors

    Energy Technology Data Exchange (ETDEWEB)

    Molle, Alessandro, E-mail: alessandro.molle@mdm.infm.i [Laboratorio Nazionale MDM, CNR-INFM, via C. Olivetti 2, 20041 Agrate Brianza, Milano (Italy); Baldovino, Silvia [Laboratorio Nazionale MDM, CNR-INFM, via C. Olivetti 2, 20041 Agrate Brianza, Milano (Italy); Dipartimento di Scienza dei Materiali, Universita degli Studi di Milano Bicocca, Milano (Italy); Spiga, Sabina [Laboratorio Nazionale MDM, CNR-INFM, via C. Olivetti 2, 20041 Agrate Brianza, Milano (Italy); Fanciulli, Marco [Laboratorio Nazionale MDM, CNR-INFM, via C. Olivetti 2, 20041 Agrate Brianza, Milano (Italy); Dipartimento di Scienza dei Materiali, Universita degli Studi di Milano Bicocca, Milano (Italy)

    2010-01-01

    In the effort to ultimately shrink the size of logic devices towards a post-Si era, the integration of Ge as alternative channel material for high-speed p-MOSFET devices and the concomitant coupling with high permittivity dielectrics (high-k) as gate oxides is currently a key-challenge in microelectronics. However, the Ge option still suffers from a number of unresolved drawbacks and open issues mainly related to the thermodynamic and electrical compatibility of Ge substrates with high-k gate stack. Strictly speaking, two main concerns can be emphasized. On one side is the dilemma on which chemical/physical passivation is more suitable to minimize the unavoidable presence of electrically active defects at the oxide/semiconductor interface. On the other side, overcoming the SiO{sub 2} gate stack opens the route to a number of potentially outperforming high-k oxides. Two deposition approaches were here separately adopted to investigate the high-k oxide growth on Ge substrates, the molecular beam deposition (MBD) of Gd{sub 2}O{sub 3} and the atomic layer deposition (ALD) of HfO{sub 2}. In the MBD framework epitaxial and amorphous Gd{sub 2}O{sub 3} films were grown onto GeO{sub 2}-passivated Ge substrates. In this case, Ge passivation was achieved by exploiting the Ge{sup 4+} bonding state in GeO{sub 2} ultra-thin interface layers intentionally deposited in between Ge and the high-k oxide by means of atomic oxygen exposure to Ge. The composition of the interface layer has been characterized as a function of the oxidation temperature and evidence of Ge dangling bonds at the GeO{sub 2}/Ge interface has been reported. Finally, the electrical response of MOS capacitors incorporating Gd{sub 2}O{sub 3} and GeO{sub 2}-passivated Ge substrates has been checked by capacitance-voltage measurements. On the other hand, the structural and electrical properties of HfO{sub 2} films grown by ALD on Ge by using different oxygen precursors, i.e. H{sub 2}O, Hf(O{sup t}Bu){sub 2}(mmp

  7. Performance and operation experience of the Atlas Semiconductor Tracker and Pixel Detector at the LHC.

    CERN Document Server

    Stanecka, E; The ATLAS collaboration

    2013-01-01

    After more than 3 years of successful operation at the LHC, we report on the operation and performance of the ATLAS Pixel Detector and Semi-Conductor Tracker (SCT) functioning in a high luminosity, high radiation environment.

  8. Radiative lifetime of geminate and non-geminate pairs in amorphous semiconductors: a-Ge:H

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Jai [Faculty of Technology, Charles Darwin University, Darwin, NT 0909 (Australia)

    2006-07-01

    Lifetimes of radiative recombination of geminate and non-geminate pairs in amorphous semiconductors are calculated at thermal equilibrium. The theory is applied to calculate the radiative lifetimes of type I and II geminate pairs and non-geminate pairs in hydrogenated amorphous germanium (a-Ge:H) and compared with the experimental results. The type II geminate pairs can exist in singlet and triplet spin states, only singlet is considered here, whereas the type I geminate pairs do not have spin dependence. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  9. ATLAS SemiConductor Tracker Operation and Performance

    CERN Document Server

    Tojo, J; The ATLAS collaboration

    2011-01-01

    The SemiConductor Tracker (SCT), comprising of silicon micro-strip detectors is one of the key precision tracking devices in the ATLAS Inner Detector. ATLAS is one of the experiments at CERN LHC. The completed SCT is in very good shapes with 99.3% of the SCT’s 4088 modules (a total of 6.3 million strips) are operational. The noise occupancy and hit efficiency exceed the design specifications. In the talk the current status of the SCT will be reviewed. We will report on the operation of the detector, its performance and observed problems, with stress on the sensor and electronics performance. In December 2009 the ATLAS experiment at the CERN Large Hadron Collider (LHC) recorded the first proton-proton collisions at a centre-of-mass energy of 900 GeV and this was followed by the unprecedented energy of 7 TeV in March 2010. The Semi- Conductor Tracker (SCT) is the key precision tracking device in ATLAS, made from silicon micro-strip detectors processed in the planar p-in-n technology. The signals from the stri...

  10. Metal-insulator-semiconductor photodetectors.

    Science.gov (United States)

    Lin, Chu-Hsuan; Liu, Chee Wee

    2010-01-01

    The major radiation of the sun can be roughly divided into three regions: ultraviolet, visible, and infrared light. Detection in these three regions is important to human beings. The metal-insulator-semiconductor photodetector, with a simpler process than the pn-junction photodetector and a lower dark current than the MSM photodetector, has been developed for light detection in these three regions. Ideal UV photodetectors with high UV-to-visible rejection ratio could be demonstrated with III-V metal-insulator-semiconductor UV photodetectors. The visible-light detection and near-infrared optical communications have been implemented with Si and Ge metal-insulator-semiconductor photodetectors. For mid- and long-wavelength infrared detection, metal-insulator-semiconductor SiGe/Si quantum dot infrared photodetectors have been developed, and the detection spectrum covers atmospheric transmission windows.

  11. Metal-Insulator-Semiconductor Photodetectors

    Directory of Open Access Journals (Sweden)

    Chu-Hsuan Lin

    2010-09-01

    Full Text Available The major radiation of the Sun can be roughly divided into three regions: ultraviolet, visible, and infrared light. Detection in these three regions is important to human beings. The metal-insulator-semiconductor photodetector, with a simpler process than the pn-junction photodetector and a lower dark current than the MSM photodetector, has been developed for light detection in these three regions. Ideal UV photodetectors with high UV-to-visible rejection ratio could be demonstrated with III-V metal-insulator-semiconductor UV photodetectors. The visible-light detection and near-infrared optical communications have been implemented with Si and Ge metal-insulator-semiconductor photodetectors. For mid- and long-wavelength infrared detection, metal-insulator-semiconductor SiGe/Si quantum dot infrared photodetectors have been developed, and the detection spectrum covers atmospheric transmission windows.

  12. Measurements and simulations of the responses of the cluster Ge detectors to gamma rays

    International Nuclear Information System (INIS)

    Hara, Kaoru Y.; Goko, Shinji; Harada, Hideo; Hirose, Kentaro; Kimura, Atsushi; Kin, Tadahiro; Kitatani, Fumito; Koizumi, Mitsuo; Nakamura, Shoji; Toh, Yosuke

    2013-01-01

    Responses of cluster Ge detectors have been measured with standard γ-ray sources and the 35 Cl(n,γ) 36 Cl reaction in ANNRI at J-PARC/MLF. Experimental results and simulations using the EGS5 code are compared. (author)

  13. The system of digital-image optical microscope in semiconductor particle detector development

    International Nuclear Information System (INIS)

    Han Lixiang; Li Zhankui; Jin Genming; Wang Zhusheng; Xiao Guoqing

    2009-01-01

    Optical microscopic detection is very important in the process of semiconductor particle detector development. A system of digital-image optical microscope has been constructed with rather low price, which performance is comparable with the moderate-level imports. The system mounts powerful dry objective, and a 2μm resolution could be achieved. Observations with bright and dark field, polarized light,and interference light can be carried out on it. The system have large area on-line monitor,and the photographic device can be controlled by PC. It can be used in the control of defects and contaminations, pattern test, identification of crystal backing, inspection of the smoothness and the flatness of the crystal surface. It can also be used in some precise procedures, such as test, assembly, packaging and repairing. The quality of the bond could be examined by observing the appearance of the bond point and the microscopic structure of the solder. The surface fluctuation can be precisely measured under the microscope with the technology of multi-beam interference. In the article, the application of this system for semiconductor particle detector development has been illustrated, and the construction information has been described in detail. (authors)

  14. GERDA, a GERmanium Detector Array for the search for neutrinoless ββ decay in 76Ge

    International Nuclear Information System (INIS)

    Pandola, L.; Tomei, C.

    2006-01-01

    The GERDA project, searching for neutrinoless double beta-decay of 76Ge with enriched germanium detectors submerged in a cryogenic bath, has been approved for installation at the Gran Sasso National Laboratory (LNGS), Italy. The GERDA technique is aiming at a dramatic reduction of the background due to radioactive contaminations of the materials surrounding the detectors. This will lead to a sensitivity of about 1026 years on the half-life of neutrinoless double beta decay. Already in the first phase of the experiment, GERDA will be able to investigate with high statistical significance the claimed evidence for neutrinoless double beta decay of 76Ge based on the data of the Heidelberg-Moscow experiment

  15. Development of novel semiconductor detectors for the detection of ionizing radiation

    International Nuclear Information System (INIS)

    Strueder, L.

    1989-08-01

    The present thesis treats the development of novel energy- and position-resolving semiconductor detectors: Fully depletable pn CCD's. In experiments of high-energy physics they are suited as highly resolving position-sensitive detectors for minimally ionizing particles. In nuclear and atomic physics they can be applied as position-resolving energy spectrometers. Increasing interest detectors of this type find also at synchrotron-radiation sources with photon energies from 20 eV to 50 keV. As focal instruments of X-ray telescopes they are in astrophysical measurements in an energy range from 100 eV to 15 keV of use. The required accuracy in the energy measurement amounts to 100 eV (FWHM) at an X-ray energy of 1 keV, at a simultaneous precision of the position determination of 50 μm. The measurement results which are here presented on the first fully depletable CCD's show that the components posses the potential to fulfill these requirements. (orig.) [de

  16. Background reduction at low energies with BEGe detector operated in liquid argon using the GERDA-LArGe facility

    Energy Technology Data Exchange (ETDEWEB)

    Budjas, Dusan [Physik-Department E15, Technische Universitaet Muenchen (Germany); Collaboration: GERDA-Collaboration

    2014-07-01

    LArGe is a low background test facility used for proving innovative approaches to background reduction in support of the neutrinoless double beta decay experiment Gerda. These approaches include an anti-Compton veto using scintillation light detection from liquid argon, as well as a novel pulse shape discrimination method exploiting the characteristic electrical field distribution inside BEGe detectors. The latter technique can identify single-site events (typical for double beta decays) and efficiently reject multi-site events (typical for backgrounds from gamma-ray interactions), as well as different types of background events from detector surfaces. While the main focus of the LArGe facility is to assist with reaching the goal of Gerda - improving the sensitivity for {sup 76}Ge neutrinoless double beta decay search, reducing the background at low energies and lowering the energy threshold is also of interest. In particular such efforts can be potentially relevant for search of dark matter or low energy neutrino interactions. In this talk I present the experimental measurement of the low energy region with a BEGe detector operated in LArGe with the application of powerful background suppression methods. The performance will be compared to that of some dedicated dark matter detection experiments.

  17. Preliminary report on the development of a high resolution PET camera using semiconductor detectors

    International Nuclear Information System (INIS)

    Kikuchi, Yohei; Ishii, Keizo; Yamazaki, Hiromichi; Matsuyama, Shigeo; Yamaguchi, Takashi; Yamamoto, Yusuke; Sato, Takemi; Aoki, Yasushi; Aoki, Kenichi

    2005-01-01

    We are developing a PET camera using small semiconductor detectors, whose resolution is equivalent to the physical limit of spatial resolution. First, a coincidence system of 16 Schottky CdTe detectors of 0.5 mm width obtained a resolution of <1 mm and it was confirmed that the Schottky CdTe detector is suitable for high resolution PET. Next, the performance of a pair of 32 channel CdTe arrays (1.2 mm width per channel) was investigated for the development of the prototype of high resolution PET. The time resolution between opposing detector pair was 13 ns (FWHM) when high voltage (700 V) was applied. The image of a 0.6 mm diameter point source was obtained in an experiment with opposing detector arrays using four channels, indicating that, a higher resolution can be achieved with the 32 channel CdTe array

  18. Studies of Hadronic Event Structure in $e^+ e^-$ Annihilation from 30 GeV to 209 GeV with the L3 Detector

    CERN Document Server

    Achard, P.; Aguilar-Benitez, M.; Alcaraz, J.; Alemanni, G.; Allaby, J.; Aloisio, A.; Alviggi, M.G.; Anderhub, H.; Andreev, Valery P.; Anselmo, F.; Arefev, A.; Azemoon, T.; Aziz, T.; Bagnaia, P.; Bajo, A.; Baksay, G.; Baksay, L.; Baldew, S.V.; Banerjee, S.; Banerjee, Sw.; Barczyk, A.; Barillere, R.; Bartalini, P.; Basile, M.; Batalova, N.; Battiston, R.; Bay, A.; Becattini, F.; Becker, U.; Behner, F.; Bellucci, L.; Berbeco, R.; Berdugo, J.; Berges, P.; Bertucci, B.; Betev, B.L.; Biasini, M.; Biglietti, M.; Biland, A.; Blaising, J.J.; Blyth, S.C.; Bobbink, G.J.; Bohm, A.; Boldizsar, L.; Borgia, B.; Bottai, S.; Bourilkov, D.; Bourquin, M.; Braccini, S.; Branson, J.G.; Brochu, F.; Burger, J.D.; Burger, W.J.; Cai, X.D.; Capell, M.; Romeo, G.Cara; Carlino, G.; Cartacci, A.; Casaus, J.; Cavallari, F.; Cavallo, N.; Cecchi, C.; Cerrada, M.; Chamizo, M.; Chang, Y.H.; Chemarin, M.; Chen, A.; Chen, G.; Chen, G.M.; Chen, H.F.; Chen, H.S.; Chiefari, G.; Cifarelli, L.; Cindolo, F.; Clare, I.; Clare, R.; Coignet, G.; Colino, N.; Costantini, S.; de la Cruz, B.; Cucciarelli, S.; van Dalen, J.A.; de Asmundis, R.; Deglon, P.; Debreczeni, J.; Degre, A.; Dehmelt, K.; Deiters, K.; della Volpe, D.; Delmeire, E.; Denes, P.; DeNotaristefani, F.; De Salvo, A.; Diemoz, M.; Dierckxsens, M.; Dionisi, C.; Dittmar, M.; Doria, A.; Dova, M.T.; Duchesneau, D.; Duda, M.; Echenard, B.; Eline, A.; El Hage, A.; El Mamouni, H.; Engler, A.; Eppling, F.J.; Extermann, P.; Falagan, M.A.; Falciano, S.; Favara, A.; Fay, J.; Fedin, O.; Felcini, M.; Ferguson, T.; Fesefeldt, H.; Fiandrini, E.; Field, J.H.; Filthaut, F.; Fisher, P.H.; Fisher, W.; Fisk, I.; Forconi, G.; Freudenreich, K.; Furetta, C.; Galaktionov, Iouri; Ganguli, S.N.; Garcia-Abia, Pablo; Gataullin, M.; Gentile, S.; Giagu, S.; Gong, Z.F.; Grenier, Gerald Jean; Grimm, O.; Gruenewald, M.W.; Guida, M.; Gupta, V.K.; Gurtu, A.; Gutay, L.J.; Haas, D.; Hatzifotiadou, D.; Hebbeker, T.; Herve, Alain; Hirschfelder, J.; Hofer, H.; Hohlmann, M.; Holzner, G.; Hou, S.R.; Hu, Y.; Jin, B.N.; Jones, Lawrence W.; de Jong, P.; Josa-Mutuberria, I.; Kaur, M.; Kienzle-Focacci, M.N.; Kim, J.K.; Kirkby, Jasper; Kittel, W.; Klimentov, A.; Konig, A.C.; Kopal, M.; Koutsenko, V.; Kraber, M.; Kraemer, R.W.; Kruger, A.; Kunin, A.; Ladron de Guevara, P.; Laktineh, I.; Landi, G.; Lebeau, M.; Lebedev, A.; Lebrun, P.; Lecomte, P.; Lecoq, P.; Le Coultre, P.; Le Goff, J.M.; Leiste, R.; Levtchenko, M.; Levtchenko, P.; Li, C.; Likhoded, S.; Lin, C.H.; Lin, W.T.; Linde, F.L.; Lista, L.; Liu, Z.A.; Lohmann, W.; Longo, E.; Lu, Y.S.; Luci, C.; Luminari, L.; Lustermann, W.; Ma, W.G.; Malgeri, L.; Malinin, A.; Mana, C.; Mangeol, D.; Mans, J.; Martin, J.P.; Marzano, F.; Mazumdar, K.; McNeil, R.R.; Mele, S.; Merola, L.; Meschini, M.; Metzger, W.J.; Mihul, A.; Milcent, H.; Mirabelli, G.; Mnich, J.; Mohanty, G.B.; Muanza, G.S.; Muijs, A.J.M.; Musicar, B.; Musy, M.; Nagy, S.; Natale, S.; Napolitano, M.; Nessi-Tedaldi, F.; Newman, H.; Nisati, A.; Novak, T.; Kluge, Hannelies; Ofierzynski, R.; Organtini, G.; Pal, I.; Palomares, C.; Paolucci, P.; Paramatti, R.; Passaleva, G.; Patricelli, S.; Paul, Thomas Cantzon; Pauluzzi, M.; Paus, C.; Pauss, F.; Pedace, M.; Pensotti, S.; Perret-Gallix, D.; Petersen, B.; Piccolo, D.; Pierella, F.; Pioppi, M.; Piroue, P.A.; Pistolesi, E.; Plyaskin, V.; Pohl, M.; Pojidaev, V.; Pothier, J.; Prokofev, D.; Quartieri, J.; Rahal-Callot, G.; Rahaman, Mohammad Azizur; Raics, P.; Raja, N.; Ramelli, R.; Rancoita, P.G.; Ranieri, R.; Raspereza, A.; Razis, P.; Ren, D.; Rescigno, M.; Reucroft, S.; Riemann, S.; Riles, Keith; Roe, B.P.; Romero, L.; Rosca, A.; Rosemann, C.; Rosenbleck, C.; Rosier-Lees, S.; Roth, Stefan; Rubio, J.A.; Ruggiero, G.; Rykaczewski, H.; Sakharov, A.; Saremi, S.; Sarkar, S.; Salicio, J.; Sanchez, E.; Schafer, C.; Schegelsky, V.; Schopper, H.; Schotanus, D.J.; Sciacca, C.; Servoli, L.; Shevchenko, S.; Shivarov, N.; Shoutko, V.; Shumilov, E.; Shvorob, A.; Son, D.; Souga, C.; Spillantini, P.; Steuer, M.; Stickland, D.P.; Stoyanov, B.; Straessner, A.; Sudhakar, K.; Sultanov, G.; Sun, L.Z.; Sushkov, S.; Suter, H.; Swain, J.D.; Szillasi, Z.; Tang, X.W.; Tarjan, P.; Tauscher, L.; Taylor, L.; Tellili, B.; Teyssier, D.; Timmermans, Charles; Ting, Samuel C.C.; Ting, S.M.; Tonwar, S.C.; Toth, J.; Tully, C.; Tung, K.L.; Ulbricht, J.; Valente, E.; Van de Walle, R.T.; Vasquez, R.; Veszpremi, V.; Vesztergombi, G.; Vetlitsky, I.; Vicinanza, D.; Viertel, G.; Villa, S.; Vivargent, M.; Vlachos, S.; Vodopianov, I.; Vogel, H.; Vogt, H.; Vorobev, I.; Vorobyov, A.A.; Wadhwa, M.; Wang, Q.; Wang, X.L.; Wang, Z.M.; Weber, M.; Wilkens, H.; Wynhoff, S.; Xia, L.; Xu, Z.Z.; Yamamoto, J.; Yang, B.Z.; Yang, C.G.; Yang, H.J.; Yang, M.; Yeh, S.C.; Zalite, An.; Zalite, Yu.; Zhang, Z.P.; Zhao, J.; Zhu, G.Y.; Zhu, R.Y.; Zhuang, H.L.; Zichichi, A.; Zimmermann, B.; Zoller, M.

    2004-01-01

    In this Report, QCD results obtained from a study of hadronic event structure in high energy e^+e^- interactions with the L3 detector are presented. The operation of the LEP collider at many different collision energies from 91 GeV to 209 GeV offers a unique opportunity to test QCD by measuring the energy dependence of different observables. The main results concern the measurement of the strong coupling constant, \\alpha_s, from hadronic event shapes and the study of effects of soft gluon coherence through charged particle multiplicity and momentum distributions.

  19. Influence of hydrostatic pressure on nuclear radiation detector's properties based on semiconductor alloy CdZnTe

    International Nuclear Information System (INIS)

    Kutnij, V.E.; Kutnij, D.V.; Rybka, A.V.; Nakonechnyj, D.V.; Babun, A.V.

    2003-01-01

    The influence of hydrostatic pressure on properties of CdZnTe semiconductor detectors (Cd-50,Zn-2,Te-48 mas.%, 5 centre dot 5 centre dot 2 mm) was investigated. Were considered different types of hydrostatic treatment at 100 MPa, second hydrostatic treatment at 100 MPa and 200 MPa. Hydrostatic pressure influence on detectors electric resistance, J-V characteristics and spectrometric parameters was determined

  20. Testing in a stratospheric balloon of a semiconductor detector altimeter

    International Nuclear Information System (INIS)

    Gilly, L.; Jourdan, P.

    1968-01-01

    An altimeter containing a semiconductor detector has been operated on flight. We have used a stratospheric balloon launched from AIRE-SUR-ADOUR with the C.N.E.S. collaboration. During this assay two apparatus have been used. The first allowed to follow the balloon during its ascension and descent, the second to follow its evolution at its maximum altitude. Informations transmitted by radio and recorded on Magnetophon, have been studied after the flight. Results are identical with these given by the barometer used by the C.N.E.S. in this essay. (authors) [fr

  1. Dosimetric evaluation of semiconductor detectors for application in neutron dosimetry and microdosimetry in nuclear reactor and radiosurgical facilities

    International Nuclear Information System (INIS)

    Cardenas, Jose Patricio Nahuel

    2010-01-01

    The main objective of this research is the dosimetric evaluation of semiconductor components (surface barrier detectors and PIN photodiodes) for applications in dose equivalent measurements on low dose fields (fast and thermal fluxes) using an AmBe neutron source, the IEA-R1 reactor neutrongraphy facility (epithermal and thermal fluxes) and the Critical Unit facility IPEN/MB-01 (fast fluxes). As moderator compound to fast neutrons flux from the AmBe source was used paraffin and boron and polyethylene as converter for thermal and fast neutrons measurements. The resulting fluxes were used to the irradiation of semiconductor components (SSB - Surface Barrier Detector and PIN photodiodes). A mixed converter made of a borated polyethylene foil (Kodak) was also used. Monte Carlo simulation methodology was employed to evaluate analytically the optimal paraffin thickness. The obtained results were similar to the experimental data and allowed the evaluation of emerging neutron flux from moderator, as well as the fast neutron flux reaching the polyethylene covering the semiconductor sensitive surface. Gamma radiation levels were evaluated covering the whole detector with cadmium foil 1 mm thick, allowing thermal neutrons blockage and gamma radiation measurements. The IPEN/MB-01 facility was employed to evaluate the detector response for high neutron flux. The results were in good agreement with other studies published. Using the obtained spectra an approach to dose equivalent calculation was established. (author)

  2. Alpha- and gamma-detection by the avalanche detectors with metal-resistor-semiconductor structure

    International Nuclear Information System (INIS)

    Vetokhin, S.S.; Evtushenko, V.P.; Zalesskij, V.B.; Malyshev, S.A.; Chudakov, V.A.; Shunevich, S.A.

    1992-01-01

    Possibility to use silicon avalanche photodetectors with metal-resistor-semiconductor structure with 0.12 cm 2 photosensitive area as detectors of α-particles, as well as, photodetector of γ-quanta scintillation detector is shown. When detection of α-particles the energy resolution reaches 10%. R energy resolution for avalanche photodetector-CsI(Tl) scintillator system cooled up to - 60 deg C at 59 keV ( 241 Am) and 662 keV ( 137 Cs) energy of γ-quanta constitutes 60% and 80%, respectively. R minimal value in the conducted experiments is determined by the degree of irregularity of avalanche amplification along the photodetector area

  3. Double-tag events study with the L3 detector at $\\sqrt{s}$ = 189 GeV

    CERN Document Server

    Achard, Pablo

    2000-01-01

    A preliminary study of double tag events using the L3 detector at center of mass energy sqrt{s}=189 GeV has been performed. The cross-section of gamma* gamma* collisions is measured at average =14.5 GeV2. The results are in agreement with predictions based on perturbative QCD, while the Quark Parton Model alone is insufficient to describe the data. The measurements lie below the LO and above the NLO BFKL calculations.

  4. Efficiency calibration of x-ray HPGe detectors for photons with energies above the Ge K binding energy

    Energy Technology Data Exchange (ETDEWEB)

    Maidana, Nora L., E-mail: nmaidana@if.usp.br [Instituto de Física, Universidade de São Paulo, Travessa R 187, Cidade Universitária, CEP:05508-900 São Paulo, SP (Brazil); Vanin, Vito R.; Jahnke, Viktor [Instituto de Física, Universidade de São Paulo, Travessa R 187, Cidade Universitária, CEP:05508-900 São Paulo, SP (Brazil); Fernández-Varea, José M. [Facultat de Física (ECM and ICC), Universitat de Barcelona, Diagonal 645, E-08028 Barcelona (Spain); Martins, Marcos N. [Instituto de Física, Universidade de São Paulo, Travessa R 187, Cidade Universitária, CEP:05508-900 São Paulo, SP (Brazil); Brualla, Lorenzo [NCTeam, Strahlenklinik, Universitätsklinikum Essen, Hufelandstraße 55, D-45122 Essen (Germany)

    2013-11-21

    We report on the efficiency calibration of a HPGe x-ray detector using radioactive sources and an analytical expression taken from the literature, in two different arrangements, with and without a broad-angle collimator. The frontal surface of the Ge crystal was scanned with pencil beams of photons. The Ge dead layer was found to be nonuniform, with central and intermediate regions that have thin (μm range) and thick (mm range) dead layers, respectively, surrounded by an insensitive ring. We discuss how this fact explains the observed efficiency curves and generalize the adopted model. We show that changes in the thickness of the Ge-crystal dead layer affect the efficiency of x-ray detectors, but the use of an appropriate broad-beam external collimator limiting the photon flux to the thin dead layer in the central region leads to the expected efficiency dependence with energy and renders the calibration simpler.

  5. Semiconductor micropattern pixel detectors a review of the beginnings

    CERN Document Server

    Heijne, Erik H M

    2001-01-01

    The innovation in monolithic and hybrid semiconductor 'micropattern' or 'reactive' pixel detectors for tracking in particle physics was actually to fit logic and pulse processing electronics with µW power on a pixel area of less than 0.04 mm2, retaining the characteristics of a traditional nuclear amplifier chain. The ns timing precision in conjunction with local memory and logic operations allowed event selection at > 10 MHz rates with unambiguous track reconstruction even at particle multiplicities > 10 cm-2. The noise in a channel was ~100 e- r.m.s. and enabled binary operation with random noise 'hits' at a level 30 Mrad, respectively.

  6. Optimizing the design and analysis of cryogenic semiconductor dark matter detectors for maximum sensitivity

    Energy Technology Data Exchange (ETDEWEB)

    Pyle, Matt Christopher [Stanford Univ., CA (United States)

    2012-01-01

    In this thesis, we illustrate how the complex E- field geometry produced by interdigitated electrodes at alternating voltage biases naturally encodes 3D fiducial volume information into the charge and phonon signals and thus is a natural geometry for our next generation dark matter detectors. Secondly, we will study in depth the physics of import to our devices including transition edge sensor dynamics, quasi- particle dynamics in our Al collection fins, and phonon physics in the crystal itself so that we can both understand the performance of our previous CDMS II device as well as optimize the design of our future devices. Of interest to the broader physics community is the derivation of the ideal athermal phonon detector resolution and it's T3 c scaling behavior which suggests that the athermal phonon detector technology developed by CDMS could also be used to discover coherent neutrino scattering and search for non-standard neutrino interaction and sterile neutrinos. These proposed resolution optimized devices can also be used in searches for exotic MeV-GeV dark matter as well as novel background free searches for 8GeV light WIMPs.

  7. NMR and computational study of Ba{sub 8}Cu{sub x}Ge{sub 46-x} clathrate semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Jing-Han, E-mail: jhchen@tamu.edu; Sirusi Arvij, Ali; Zheng, Xiang; Rodriguez, Sergio Y.; Ross, Joseph H.

    2014-04-01

    Highlights: • Quadrupole NMR with first-principles calculations probes local site preferences. • Cu/Ge ratio is clarified vs. the ideal Zintl composition. • Modified Becke–Johnson exchange potential agrees well with NMR Knight shifts. - Abstract: Ba{sub 8}Cu{sub x}Ge{sub 46-x} is a type-I clathrate material that forms as a semiconductor in a narrow composition range corresponding to the electron-balanced Zintl composition, with x = 5.3. We use NMR spectroscopy combined with ab initio electronic structure calculations to probe the electronic and structural behavior of these materials. Computational results based on a superstructure model for the atomic configuration of the alloy provide good agreement with the electric quadrupole-broadened NMR lineshapes. Modeling using the modified Becke–Johnson (TB-mBJ) exchange potential is also shown to agree well with experimental NMR Knight shifts. The results indicate that the Cu–Ge balance is the main factor determining the carrier density, within a narrow stability range near the ideal Zintl composition.

  8. Optoelectronic and transport properties of LiBZ (B = Al, In, Ga and Z = Si, Ge, Sn) semiconductors

    Science.gov (United States)

    Shah, Syed Hatim; Khan, Shah Haider; Laref, A.; Murtaza, G.

    2018-02-01

    Half-Heusler compounds LiBZ (B = Al, In, Ga and Z = Si, Ge, Sn) are comprehensively investigated using state of the art full potential linearized augmented plane wave (FP-LAPW) method. Stable geometry of the compounds obtained through energy minimization procedure. Lattice constant increased while bulk modulus decreased in replacing the ions of size increasing from top to bottom of the periodic table. Band structure calculations show LiInGe and LiInSn as direct bandgap while LiAlSi, LiInGe and LiGaSn indirect bandgap semiconductors. Density of states demonstrates mixed s, p, d states of cations and anions in the valence and conduction bands. These compounds have mixed ionic and covalent bonding. Compounds show dominant optical response in the visible and low frequency ultraviolet energy region. The transport properties of the compounds are described in terms of Seebeck coefficient, electrical and thermal conductivities. The calculated figure of merit of LiAlSi is in good agreement with the recent experimental results.

  9. Ultra high resolution X-ray detectors

    International Nuclear Information System (INIS)

    Hess, U.; Buehler, M.; Hentig, R. von; Hertrich, T.; Phelan, K.; Wernicke, D.; Hoehne, J.

    2001-01-01

    CSP Cryogenic Spectrometers GmbH is developing cryogenic energy dispersive X-ray spectrometers based on superconducting detector technology. Superconducting sensors exhibit at least a 10-fold improvement in energy resolution due to their low energy gap compared to conventional Si(Li) or Ge detectors. These capabilities are extremely valuable for the analysis of light elements and in general for the analysis of the low energy range of the X-ray spectrum. The spectrometer is based on a mechanical cooler needing no liquid coolants and an adiabatic demagnetization refrigerator (ADR) stage which supplies the operating temperature of below 100 mK for the superconducting sensor. Applications include surface analysis in semiconductor industry as well material analysis for material composition e.g. in ceramics or automobile industry

  10. On selecting a sensitive region thickness of a silicon semiconductor detector for operation under counting conditions

    International Nuclear Information System (INIS)

    Pronkin, N.S.; Khakhalin, V.V.

    1972-01-01

    The paper discusses the selection of a thickness of a sensitive area of a silicon semiconductor detector, used in the count regime based on the signal to noise ratio and β-radiation registration efficiency. (author)

  11. Silicon radiation detectors

    International Nuclear Information System (INIS)

    Lutz, G.

    1995-01-01

    An introduction to and an overview of function principles and properties of semiconductor radiation detectors is attempted. The paper is addressed to people interested in detector development but not already experts in the field of semiconductor detectors. (orig.)

  12. Semiconductor scintillator detector for gamma radiation

    International Nuclear Information System (INIS)

    Laan, F.T.V. der; Borges, V.; Zabadal, J.R.S.

    2015-01-01

    Nowadays the devices employed to evaluate individual radiation exposition are based on dosimetric films and thermoluminescent crystals, whose measurements must be processed in specific transductors. Hence, these devices carry out indirect measurements. Although a new generation of detectors based on semiconductors which are employed in EPD's (Electronic Personal Dosemeters) being yet available, it high producing costs and large dimensions prevents the application in personal dosimetry. Recent research works reports the development of new detection devices based on photovoltaic PIN diodes, which were successfully employed for detecting and monitoring exposition to X rays. In this work, we step forward by coupling a 2mm anthracene scintillator NE1, which converts the high energy radiation in visible light, generating a Strong signal which allows dispensing the use of photomultipliers. A low gain high performance amplifier and a digital acquisition device are employed to measure instantaneous and cumulative doses for energies ranging from X rays to Gamma radiation up to 2 MeV. One of the most important features of the PIN diode relies in the fact that it can be employed as a detector for ionization radiation, since it requires a small energy amount for releasing electrons. Since the photodiode does not amplify the corresponding photon current, it must be coupled to a low gain amplifier. Therefore, the new sensor works as a scintillator coupled with a photodiode PIN. Preliminary experiments are being performed with this sensor, showing good results for a wide range of energy spectrum. (author)

  13. The study of response of wide band gap semiconductor detectors using the Geant4

    Directory of Open Access Journals (Sweden)

    Hussain Riaz

    2014-01-01

    Full Text Available The energy dependence on the intrinsic efficiency, absolute efficiency, full energy peak absolute efficiency and peak-to-total ratio have been studied for various wide band gap semiconductor detectors using the Geant4 based Monte Carlo simulations. The detector thickness of 1-4 mm and the area in 16-100 mm2 range were considered in this work. In excellent agreement with earlier work (Rybka et al., [20], the Geant4 simulated values of detector efficiencies have been found to decrease with incident g-ray energy. Both for the detector thickness and the detector area, the increasing trends have been observed for total efficiency as well as for full-energy peak efficiency in 0.1 MeV-50 MeV range. For Cd1-xZnxTe, the detector response remained insensitive to changes in relative proportions of Zn. For various wide band gap detectors studied in this work, the detection efficiency of TlBr was found highest over the entire range of energy, followed by the HgI2, CdTe, and then by CZT.

  14. Comparison of Cadmium-Zinc-Telluride semiconductor and Yttrium-Aluminum-Perovskite scintillator as photon detectors for epithermal neutron spectroscopy

    International Nuclear Information System (INIS)

    Tardocchi, M.; Pietropaolo, A.; Andreani, C.; Gorini, G.; Imberti, S.; Perelli-Cippo, E.; Senesi, R.; Rhodes, N.; Schooneveld, E.M.

    2006-01-01

    The range of applications of epithermal neutron scattering experiments has been recently extended by the development of the Resonance Detector. In a Resonance Detector, resonant neutron absorption in an analyzer foil results in prompt emission of X- and γ-rays which are detected by a photon counter. Several combinations of analyzer foils and photon detectors have been studied and tested over the years and best results have been obtained with the combination of a natural uranium and (i) Cadmium-Zinc-Telluride (CZT) semiconductor (ii) Yttrium-Aluminum-Perovskite (YAP) scintillators. Here we compare the performance of the CZT semiconductor and YAP scintillator as Resonance Detector units. Two Resonance Detector prototypes made of natural uranium foil viewed by CZT and YAP were tested on the VESUVIO spectrometer at the ISIS spallation neutron source. The results show that both YAP and CZT can be used to detect epithermal neutrons in the energy range from 1 up to 66 eV. It was found that the signal-to-background ratio of the measurement can significantly be improved by raising the lower level discrimination threshold on the γ energy to about 600 keV. The advantages/disadvantages of the choice of a Resonance Detector based on YAP or CZT are discussed together with some potential applications

  15. Physical characteristics modification of a SiGe-HBT semiconductor device for performance improvement in a terahertz detecting system

    Science.gov (United States)

    Ghodsi, Hamed; Kaatuzian, Hassan

    2015-05-01

    In order to improve the performance of a pre-designed direct conversion terahertz detector which is implemented in a 0.25 μm-SiGe-BiCMOS process, we propose some slight modifications in the bipolar section of the SiGe device physical design. Comparison of our new proposed device and the previously reported device is done by SILVACO TCAD software simulation and we have used previous experimentally reported data to confirm our software simulations. Our proposed modifications in device structural design show a present device responsivity improvement of about 10% from 1 to 1.1 A/W while the bandwidth improvement is about 218 GHz. The minimum noise equivalent power at detector output is increased by about 14.3% and finally power consumption per pixel at the maximum responsivity is decreased by about 5%.

  16. Modification of coaxial Ge/Li detector for low-energy gamma radiation

    International Nuclear Information System (INIS)

    Skrivankova, M.; Seda, J.

    1992-01-01

    A modification is described of a coaxial Ge/Li type ionizing radiation detector which makes possible the detection and spectrometry not only of medium- and high-energy gamma rays but also of low-energy (above 5 keV) X-rays and gamma rays. The modification consists in grinding down a thick diffuse layer of the face, which is subsequently etched in a mixture of nitric and hydrofluoric acids (ratio 5:2 to 1:5). Phosphorus or arsenic is subsequently implanted at an energy of 5 to 30 keV and in a dose of 10 14 to 10 15 ions/cm 2 . The detector is then drifted at 30 to 50 degC for 2 to 20 hours, encased in a cryostat, and submerged into liquid nitrogen. (Z.S.)

  17. Semiconductor X-ray spectrometers

    International Nuclear Information System (INIS)

    Muggleton, A.H.F.

    1978-02-01

    An outline is given of recent developments in particle and photon induced x-ray fluorescence (XRF) analysis. Following a brief description of the basic mechanism of semiconductor detector operation a comparison is made between semiconductor detectors, scintillators and gas filled proportional devices. Detector fabrication and cryostat design are described in more detail and the effects of various device parameters on system performance, such as energy resolution, count rate capability, efficiency, microphony, etc. are discussed. The main applications of these detectors in x-ray fluorescence analysis, electron microprobe analysis, medical and pollution studies are reviewed

  18. Advanced crystal growth techniques for thallium bromide semiconductor radiation detectors

    Science.gov (United States)

    Datta, Amlan; Becla, Piotr; Guguschev, Christo; Motakef, Shariar

    2018-02-01

    Thallium Bromide (TlBr) is a promising room-temperature radiation detector candidate with excellent charge transport properties. Currently, Travelling Molten Zone (TMZ) technique is widely used for growth of semiconductor-grade TlBr crystals. However, there are several challenges associated with this type of crystal growth process including lower yield, high thermal stress, and low crystal uniformity. To overcome these shortcomings of the current technique, several different crystal growth techniques have been implemented in this study. These include: Vertical Bridgman (VB), Physical Vapor Transport (PVT), Edge-defined Film-fed Growth (EFG), and Czochralski Growth (Cz). Techniques based on melt pulling (EFG and Cz) were demonstrated for the first time for semiconductor grade TlBr material. The viability of each process along with the associated challenges for TlBr growth has been discussed. The purity of the TlBr crystals along with its crystalline and electronic properties were analyzed and correlated with the growth techniques. Uncorrected 662 keV energy resolutions around 2% were obtained from 5 mm x 5 mm x 10 mm TlBr devices with virtual Frisch-grid configuration.

  19. A Response of coaxial Ge (Li) detector to the extended source of gamma radiation

    International Nuclear Information System (INIS)

    Coffou, E.; Knapp, V.; Petkovic, T.

    1980-01-01

    In measurements of the absolute source strength of extended source of γ radiation, two main limitations on the accuracy are dues to the difficulties in accounting for the self-absorption in the source and for geometrical dependence of detector efficiency. Two problems were separated by introduction of the average only energy dependent efficiency, which lends itself to calculational and experimental determination (to be reported), and the response of coaxial Ge(Li) detector to cylindrical extended source with self-absorption has been developed here to a reduced analytical form convenient gu numerical calculations. (author)

  20. Pulse-height loss in the signal readout circuit of compound semiconductor detectors

    Science.gov (United States)

    Nakhostin, M.; Hitomi, K.

    2018-06-01

    Compound semiconductor detectors such as CdTe, CdZnTe, HgI2 and TlBr are known to exhibit large variations in their charge collection times. This paper considers the effect of such variations on the measurement of induced charge pulses by using resistive feedback charge-sensitive preamplifiers. It is shown that, due to the finite decay-time constant of the preamplifiers, the capacitive decay during the signal readout leads to a variable deficit in the measurement of ballistic signals and a digital pulse processing method is employed to correct for it. The method is experimentally examined by using sampled pulses from a TlBr detector coupled to a charge-sensitive preamplifier with 150 μs of decay-time constant and 20 % improvement in the energy resolution of the detector at 662 keV is achieved. The implications of the capacitive decay on the correction of charge-trapping effect by using depth-sensing technique are also considered.

  1. Influence of the geometrical characteristics of an HpGe detector on its efficiency

    International Nuclear Information System (INIS)

    Vargas, M.J.; Timon, A.F.; Sanchez, D.P.

    2002-01-01

    Computer codes based on Monte Carlo calculations have been extensively developed for the computation of the efficiency in gamma-ray spectrometry. The errors in the specific parameters of the detector due to the lack of precise knowledge of its characteristics usually represent one of the most important sources of inaccuracy in this simulation technique. Influence of several detector parameters on the efficiency for a typical coaxial n-type HpGe detector is presented. Calculations of the full-energy peak efficiencies were performed by means of a Monte Carlo code in the range 122-1836 keV for several types of source configuration: point source, cellulose filter, and two different cylindrical boxes containing a solid matrix of SiO 2 . The detector parameters varied were the crystal diameter, crystal height, diameter of the internal core, and the position of the crystal with respect to the beryllium window. Significant deviations in the efficiency, depending on the source geometry and the photon energy, can be produced by varying only slightly some of the detector parameters. (author)

  2. Physical characteristics modification of a SiGe-HBT semiconductor device for performance improvement in a terahertz detecting system

    International Nuclear Information System (INIS)

    Ghodsi, Hamed; Kaatuzian, Hassan

    2015-01-01

    In order to improve the performance of a pre-designed direct conversion terahertz detector which is implemented in a 0.25 μm-SiGe-BiCMOS process, we propose some slight modifications in the bipolar section of the SiGe device physical design. Comparison of our new proposed device and the previously reported device is done by SILVACO TCAD software simulation and we have used previous experimentally reported data to confirm our software simulations. Our proposed modifications in device structural design show a present device responsivity improvement of about 10% from 1 to 1.1 A/W while the bandwidth improvement is about 218 GHz. The minimum noise equivalent power at detector output is increased by about 14.3% and finally power consumption per pixel at the maximum responsivity is decreased by about 5%. (paper)

  3. Effect of trapping of charge carriers on the resolution of Ge(Li) detectors

    International Nuclear Information System (INIS)

    Venturini, Luzia

    1979-01-01

    In this work a measurement is described of the variation of the resolution of a Ge(Li) detector as a function of the position of irradiation of a collimated gamma-ray beam. Also the variation of the resolution has been measured as a function of the applied detector voltage, using a collimated and a non-collimated gamma-ray beam. The measurement indicate that in the process of charge collection loss of holes predominates and the best resolution is obtained in the middle of the compensated region. It has been verified that, in the case of a collimated gamma beam the detector resolution improves with increasing detector bias up to at least 5100 Volts. For a non-collimated gamma beam, however, the resolution reaches a constant value at about 4400 Volts. The dependence of resolution on the position of irradiation can be accounted for by introducing a local ionization factor different from the usual position independent Fano factor. (author)

  4. Detector applications

    International Nuclear Information System (INIS)

    Pehl, R.H.

    1977-10-01

    Semiconductor detectors are now applied to a very wide range of problems. The combination of relatively low cost, excellent energy resolution, and simultaneous broad energy-spectrum analysis is uniquely suited to many applications in both basic and applied physics. Alternative techniques, such as magnetic spectrometers for charged-particle spectroscopy, while offering better energy resolution, are bulky, expensive, and usually far more difficult to use. Furthermore, they do not directly provide the broad energy-spectrum measurements easily accomplished using semiconductor detectors. Scintillation detectors, which are approximately equivalent to semiconductor detectors in convenience and cost, exhibit 10 to 100 times worse energy resolution. However, their high efficiency and large potential size recommend their use in some measurements

  5. Detection of radioactivity by semiconductors

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    The class of detectors discussed in this chapter has a responsive component involving a diode, a junction between two types of semiconductor materials. Although diode detectors are not particularly efficient in counting radioactive emissions, they are superior to other commercially available detectors in spectroscopy. Consequently, diode detectors are used extensively for quanlitative purposes and for quantitative purposes when mixtures of radionuclides are present, not the usual situation with biological or medical research. Topics addressed in this chapter are as follows: Band Theory; Semiconductors and Junctions; and Radiation Detectors. 6 refs., 14 figs

  6. Spectrometer based on the silicon semiconductor detectors for a study of the two charged particles correlation

    International Nuclear Information System (INIS)

    Krumsztein, Z.W.; Siemiarczuk, T.; Szawlowski, M.

    1974-01-01

    The spectrometer based on the silicon semiconductor detectors for a study of the correlation between two charged particles is described. The results of the time resolution and particles identification measurements are presented. The tests were performed in the proton beam of the JINR synchrocyclotron. (author)

  7. A proposal for both plasma ion- and electron-temperature diagnostics under simultaneous incidence of particles and x-rays into a semiconductor on the basis of a proposed model for a semiconductor detector response

    International Nuclear Information System (INIS)

    Numakura, T; Cho, T; Kohagura, J; Hirata, M; Minami, R; Yoshida, M; Nakashima, Y; Tamano, T; Yatsu, K; Miyoshi, S

    2003-01-01

    A method is proposed for obtaining radial profiles of plasma temperatures of both plasma ion (T i ) and electron (T e ) simultaneously by the use of a semiconductor detector array. The method is based on our developed particle-response model for a semiconductor detector; in particular, the response theory is constructed for giving the applicability in particle energies ranging down to a kiloelectronvolt. Calculated results from our model are in fairly good agreement with experimental data on the detector response of incident particle beams with energies in the range 100 eV to a few kiloelectronvolts. On the basis of the verification of the proposed model, an idea of the use of a developed semiconductor detector array covered with 'reliably unbreakable' ultrathin SiO 2 'dead-layer filters' having various nanometre-order thicknesses is applied for simultaneous T i and T e analyses by using charge-exchange neutral particles and x-rays from plasmas. Radial profiles of T i and T e are obtained in a single plasma discharge alone, and the data reliability is independently cross-checked by a radial scan of a conventional charge-exchange neutral-particle analyser system as well as a 50-channel microchannel plate x-ray diagnostics system in the GAMMA 10 tandem mirror

  8. MSM-Metal Semiconductor Metal Photo-detector Using Black Silicon Germanium (SiGe) for Extended Wavelength Near Infrared Detection

    Science.gov (United States)

    2012-09-01

    its effect on the optical beam. Computer Tunable optical source Detectors Test MSM detector Lock-in- amplifier Multiplexer Transimpedance ... amplifier Three-way beam splitter L3 sample L1 Light source L4 L2 Reference Detector Reflectance Detector

  9. Design and test of a prototype silicon detector module for ATLAS Semiconductor Tracker endcaps

    International Nuclear Information System (INIS)

    Clark, A.G.; Donega, M.; D'Onofrio, M.

    2005-01-01

    The ATLAS Semiconductor Tracker (SCT) will be a central part of the tracking system of the ATLAS experiment. The SCT consists of four concentric barrels of silicon detectors as well as two silicon endcap detectors formed by nine disks each. The layout of the forward silicon detector module presented in this paper is based on the approved layout of the silicon detectors of the SCT, their geometry and arrangement in disks, but uses otherwise components identical to the barrel modules of the SCT. The module layout is optimized for excellent thermal management and electrical performance, while keeping the assembly simple and adequate for a large scale module production. This paper summarizes the design and layout of the module and present results of a limited prototype production, which has been extensively tested in the laboratory and testbeam. The module design was not finally adopted for series production because a dedicated forward hybrid layout was pursued

  10. Radiation detectors

    International Nuclear Information System (INIS)

    2013-01-01

    This sixth chapter presents the operational principles of the radiation detectors; detection using photographic emulsions; thermoluminescent detectors; gas detectors; scintillation detectors; liquid scintillation detectors; detectors using semiconductor materials; calibration of detectors; Bragg-Gray theory; measurement chain and uncertainties associated to measurements

  11. Wide Bandgap Semiconductor Detector Optimization for Flash X-Ray Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Roecker, Caleb Daniel [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Schirato, Richard C. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-11-17

    Charge trapping, resulting in a decreased and spatially dependent electric field, has long been a concern for wide bandgap semiconductor detectors. While significant work has been performed to characterize this degradation at varying temperatures and radiation environments, this work concentrates upon examining the event-to-event response in a flash X-ray environment. The following work investigates if charge trapping is a problem for CZT detectors, with particular emphasis on flash X-ray radiation fields at cold temperatures. Results are compared to a non-flash radiation field, using an Am-241 alpha source and similar temperature transitions. Our ability to determine if a response change occurred was hampered by the repeatability of our flash X-ray systems; a small response change was observed with the Am-241 source. Due to contrast of these results, we are in the process of revisiting the Am-241 measurements in the presence of a high radiation environment. If the response change is more pronounced in the high radiation environment, a similar test will be performed in the flash X-ray environment.

  12. Ninth degree polynomial fit function for calculation of efficiency calibrations for Ge(Li) and HPGe detectors

    International Nuclear Information System (INIS)

    Uosif, M.A.M.

    2006-01-01

    A new 9 th degree polynomial fit function has been constructed to calculate the absolute γ-ray detection efficiencies (ηth) of Ge(Li) and HPGe Detectors, for calculating the absolute efficiency at any interesting γ-energy in the energy range between 25 and 2000 keV and distance between 6 and 148 cm. The total absolute γ -ray detection efficiencies have been calculated for six detectors, three of them are Ge(Li) and three HPGe at different distances. The absolute efficiency of the different detectors was calculated at the specific energy of the standard sources for each measuring distances. In this calculation, experimental (η e xp) and fitting (η f it) efficiency have been calculated. Seven calibrated point sources Am-241, Ba-133, Co-57, Co-60, Cs-137, Eu-152 and Ra-226 were used. The uncertainties of efficiency calibration have been calculated also for quality control. The measured (η e xp) and (η f it) calculated efficiency values were compared with efficiency, which calculated, by Gray fit function (time)- The results obtained on the basis of (η e xp)and (η f it) seem to be in very good agreement

  13. Fabrication of SrGe2 thin films on Ge (100), (110), and (111) substrates

    Science.gov (United States)

    Imajo, T.; Toko, K.; Takabe, R.; Saitoh, N.; Yoshizawa, N.; Suemasu, T.

    2018-01-01

    Semiconductor strontium digermanide (SrGe2) has a large absorption coefficient in the near-infrared light region and is expected to be useful for multijunction solar cells. This study firstly demonstrates the formation of SrGe2 thin films via a reactive deposition epitaxy on Ge substrates. The growth morphology of SrGe2 dramatically changed depending on the growth temperature (300-700 °C) and the crystal orientation of the Ge substrate. We succeeded in obtaining single-oriented SrGe2 using a Ge (110) substrate at 500 °C. Development on Si or glass substrates will lead to the application of SrGe2 to high-efficiency thin-film solar cells.

  14. CO2 laser pulse switching by optically excited semiconductors

    International Nuclear Information System (INIS)

    Silva, V.L. da.

    1986-01-01

    The construction and the study of a semi-conductor optical switch used for generating short infrared pulses and to analyse the semiconductor characteristics, are presented. The switch response time depends on semiconductor and control laser characteristics. The results obtained using a Ge switch controlled by N 2 , NdYag and Dye lasers are presented. The response time was 50 ns limited by Ge recombination time. The reflectivity increased from 7% to 59% using N 2 laser to control the switch. A simple model for semiconductor optical properties that explain very well the experimental results, is also presented. (author) [pt

  15. Study of pulse shapes in Ge detectors with PET

    Energy Technology Data Exchange (ETDEWEB)

    Grabmayr, Peter; Hegai, Alexander; Jochum, Josef; Schmitt, Christopher; Schuetz, Ann-Kathrin [Eberhard Karls Univeritaet Tuebingen (Germany); Collaboration: GERDA-Collaboration

    2016-07-01

    The Gerda collaboration aims to determine the half life of the neutrinoless double beta decay (0νββ) of {sup 76}Ge. For Phase II Gerda wants to reduce the background contribution significantly by active background-suppression techniques. One of such techniques is the pulse shape analysis of signals induced by the interaction of radiation with the detector. The pulse shapes depend not only on the energy of the interacting gamma, the geometry and field configuration but also on the location of interaction in the crystal. The waveform and the location of the interaction in the germanium can be determined by positron-emission-tomography (PET). First results of this novel pulse shape study with the PET will be presented in this talk.

  16. 3D heteroepitaxy of mismatched semiconductors on silicon

    International Nuclear Information System (INIS)

    Falub, Claudiu V.; Kreiliger, Thomas; Isa, Fabio; Taboada, Alfonso G.; Meduňa, Mojmír; Pezzoli, Fabio; Bergamaschini, Roberto; Marzegalli, Anna; Müller, Elisabeth; Chrastina, Daniel; Isella, Giovanni; Neels, Antonia; Niedermann, Philippe; Dommann, Alex; Miglio, Leo; Känel, Hans von

    2014-01-01

    We present a method for monolithically integrating mismatched semiconductor materials with Si, coined three-dimensional (3D) heteroepitaxy. The method comprises the replacement of conventional, continuous epilayers by dense arrays of strain- and defect-free, micron-sized crystals. The crystals are formed by a combination of deep-patterning of the Si substrates and self-limited lateral expansion during the epitaxial growth. Consequently, the longstanding issues of crack formation and wafer bowing can be avoided. Moreover, threading dislocations can be eliminated by appropriately choosing pattern sizes, layer thicknesses and surface morphology, the latter being dependent on the growth temperature. We show this approach to be valid for various material combinations, pattern geometries and substrate orientations. We demonstrate that Ge crystals evolve into perfect structures away from the heavily dislocated interface with Si, by using a synchrotron X-ray beam focused to a spot a few hundred nanometers in size and by recording 3D reciprocal space maps along their height. Room temperature photoluminescence (PL) experiments reveal that the interband integrated PL intensity of the Ge crystals is enhanced by almost three orders of magnitude with respect to that of Ge epilayers directly grown on flat Si substrates. Electrical measurements performed on single heterojunction diodes formed between 3D Ge crystals and the Si substrate exhibit rectifying behavior with dark currents of the order of 1 mA/cm 2 . For GaAs the thermal strain relaxation as a function of pattern size is similar to that found for group IV materials. Significant differences exist, however, in the evolution of crystal morphology with pattern size, which more and more tends to a pyramidal shape defined by stable {111} facets with decreasing width of the Si pillars. - Highlights: • Νew method for integrating mismatched semiconductors • Arrays of three-dimensional epitaxial Ge and GaAs crystals on Si

  17. Very Low-Power Consumption Analog Pulse Processing ASIC for Semiconductor Radiation Detectors

    International Nuclear Information System (INIS)

    Wessendorf, K.O.; Lund, J.C.; Brunett, B.A.; Laguna, G.R.; Clements, J.W.

    1999-01-01

    We describe a very-low power consumption circuit for processing the pulses from a semiconductor radiation detector. The circuit was designed for use with a cadmium zinc telluride (CZT) detector for unattended monitoring of stored nuclear materials. The device is intended to be battery powered and operate at low duty-cycles over a long period of time. This system will provide adequate performance for medium resolution gamma-ray pulse-height spectroscopy applications. The circuit incorporates the functions of a charge sensitive preamplifier, shaping amplifier, and peak sample and hold circuit. An application specific integrated circuit (ASIC) version of the design has been designed, built and tested. With the exception of the input field effect transistor (FET), the circuit is constructed using bipolar components. In this paper the design philosophy and measured performance characteristics of the circuit are described

  18. Electronic, elastic and optical properties of ZnGeP{sub 2} semiconductor under hydrostatic pressures

    Energy Technology Data Exchange (ETDEWEB)

    Tripathy, S.K.; Kumar, V., E-mail: vkumar52@hotmail.com

    2014-03-15

    The electronic, elastic and optical properties of zinc germanium phosphide, ZnGeP{sub 2}, semiconductor have been studied using local density approximation (LDA) method within the density functional theory (DFT). The lattice constants (a and c), band structure, density of states (DOS), bulk modulus (B) and pressure derivative of bulk modulus (B′) have been discussed. The value of pseudo-direct band gap (E{sub g}) at Γ point has been calculated. The pressure dependences of elastic stiffness coefficients (C{sub ij}), Zener anisotropy factor (A), Poisson's ratio (ν), Young modulus (Y) and shear modulus (G) have also been calculated. The ratio of B/G shows that that ZnGeP{sub 2} is ductile in nature. The optical properties have been discussed in detail under three different pressures in the energy range 0–22 eV. The calculated values of all parameters are compared with the available experimental values and the values reported by different workers. Reasonably good agreement has been obtained between them.

  19. Improvements in γ-ray reconstruction with positive sensitive Ge detectors using the backtracking method

    International Nuclear Information System (INIS)

    Milechina, L.; Cederwall, B.

    2003-01-01

    Gamma-ray tracking, a new detection technique for nuclear spectroscopy, requires efficient algorithms for reconstructing the interaction paths of multiple γ rays in a detector volume. In the present work, we discuss the effect of the atomic electron momentum distribution in Ge as well as employment of different types of figure-of-merit within the context of the so called backtracking method

  20. Application of epithermal neutron activation in multielement analysis of silicate rocks employing both coaxial Ge(Li) and low energy photon detector systems

    Science.gov (United States)

    Baedecker, P.A.; Rowe, J.J.; Steinnes, E.

    1977-01-01

    The instrumental activation analysis of silicate rocks using epithermal neutrons has been studied using both high resolution coaxial Ge(Li) detectors and low energy photon detectors, and applied to the determination of 23 elements in eight new U.S.G.S. standard rocks. The analytical use X-ray peaks associated with electron capture or internal conversion processes has been evaluated. Of 28 elements which can be considered to be determinable by instrumental means, the epithermal activation approach is capable of giving improved sensitivity and precision in 16 cases, over the normal INAA procedure. In eleven cases the use of the low energy photon detector is thought to show advantages over convertional coaxial Ge(Li) spectroscopy. ?? 1977 Akade??miai Kiado??.

  1. SiGe derivatization by spontaneous reduction of aryl diazonium salts

    Science.gov (United States)

    Girard, A.; Geneste, F.; Coulon, N.; Cardinaud, C.; Mohammed-Brahim, T.

    2013-10-01

    Germanium semiconductors have interesting properties for FET-based biosensor applications since they possess high surface roughness allowing the immobilization of a high amount of receptors on a small surface area. Since SiGe combined low cost of Si and intrinsic properties of Ge with high mobility carriers, we focused the study on this particularly interesting material. The comparison of the efficiency of a functionalization process involving the spontaneous reduction of diazonium salts is studied on Si(1 0 0), SiGe and Ge semiconductors. XPS analysis of the functionalized surfaces reveals the presence of a covalent grafted layer on all the substrates that was confirmed by AFM. Interestingly, the modified Ge derivatives have still higher surface roughness after derivatization. To support the estimated thickness by XPS, a step measurement of the organic layers is done by AFM or by profilometer technique after a O2 plasma etching of the functionalized layer. This original method is well-adapted to measure the thickness of thin organic films on rough substrates such as germanium. The analyses show a higher chemical grafting on SiGe substrates compared with Si and Ge semiconductors.

  2. Multi electrode semiconductors detectors

    CERN Document Server

    Amendolia, S R; Bertolucci, Ennio; Bosisio, L; Bradaschia, C; Budinich, M; Fidecaro, F; Foà, L; Focardi, E; Giazotto, A; Giorgi, M A; Marrocchesi, P S; Menzione, A; Ristori, L; Rolandi, Luigi; Scribano, A; Stefanini, A; Vincelli, M L

    1981-01-01

    Detectors with very high space resolution have been built in this laboratory and tested at CERN in order to investigate their possible use in high energy physics experiments. These detectors consist of thin layers of silicon crystals acting as ionization chambers. Thin electrodes, structured in strips or in more fancy shapes are applied to their surfaces by metal coating. The space resolution which could be reached is of the order of a few microns. An interesting feature of these solid state detectors is that they can work under very high or low external pressure or at very low temperature. The use of these detectors would strongly reduce the dimensions and the cost of high energy experiments. (3 refs).

  3. Multi electrode semiconductor detectors

    International Nuclear Information System (INIS)

    Amendolia, S.R.; Batignani, G.; Bertolucci, E.; Bosisio, L.; Budinich, M.; Bradaschia, C.; Fidecaro, F.; Foa, L.; Focardi, E.; Giazotto, A.; Giorgi, M.A.; Marrocchesi, P.S.; Menzione, A.; Ristori, L.; Rolandi, L.; Scribano, A.; Stefanini, A.; Vincelli, M.L.

    1981-01-01

    Detectors with very high space resolution have been built in the laboratory and tested at CERN in order to investigate their possible use in high energy physics experiments. These detectors consist of thin layers of silicon crystals acting as ionization chambers. Thin electrodes, structured in strips or in more fancy shapes are applied to their surfaces by metal coating. The space resolution which could be reached is of the order of a few microns. An interesting feature of these solid state detectors is that they can work under very high or low external pressure or at very low temperature. The use of these detectors would strongly reduce the dimensions and the cost of high energy experiments. (Auth.)

  4. Semiconductor Thermal Neutron Detector

    Directory of Open Access Journals (Sweden)

    Toru Aoki

    2014-02-01

    Full Text Available The  CdTe  and  GaN  detector  with  a  Gd  converter  have  been developed  and  investigated  as  a  neutron  detector  for neutron  imaging.  The  fabricated  Gd/CdTe  detector  with  the  25  mm  thick  Gd  was  designed  on  the  basis  of  simulation results  of  thermal  neutron  detection  efficiency  and  spatial  resolution.  The  Gd/CdTe  detector  shows  the  detection  of neutron  capture  gamma  ray  emission  in  the  155Gd(n,  g156Gd,  157Gd(n,  g158Gd  and  113Cd(n,  g114Cd  reactions  and characteristic X-ray emissions due to conversion-electrons generated inside the Gd film. The observed efficient thermal neutron detection with the Gd/CdTe detector shows its promise in neutron radiography application. Moreover, a BGaN detector has also investigated to separate neutron signal from gamma-ray clearly. 

  5. Properties and growth peculiarities of Si{sub 0.30}Ge{sub 0.70} stressor integrated in 14 nm fin-based p-type metal-oxide-semiconductor field-effect transistors

    Energy Technology Data Exchange (ETDEWEB)

    Hikavyy, A., E-mail: Andriy.Hikavyy@imec.be; Rosseel, E.; Kubicek, S.; Mannaert, G.; Favia, P.; Bender, H.; Loo, R.; Horiguchi, N.

    2016-03-01

    Integration of Si{sub 0.30}Ge{sub 0.70} in the Source/Drain (S/D) areas of metal oxide semiconductor transistors built according to 14 nm technological node rules has been shown. SiGe properties and growth peculiarities are presented and elaborated. In order to preserve the fin structures during a pre-epitaxy surface preparation, the H{sub 2} bake pressure had to be increased to 19,998 Pa at 800 °C. Influence of this bake on the Si recess in the S/D areas is presented. Excellent quality of both the raised and the embedded Si{sub 0.30}Ge{sub 0.70} was demonstrated by transmission electron microscopy inspections. Energy-dispersive X-ray spectroscopy measurement showed two stages of SiGe growth for the embedded case: first with a lower Ge content at the beginning of the deposition until the (111) facets are formed, and second with a higher Ge content which is governed by the growth on (111) planes. Nano-beam diffraction analysis showed that SiGe grown in the S/D areas of p-type metal-oxide-semiconductor field-effect transistor is fully elastically relaxed in the direction across the fin and partially strained along the fin. Finally, a strain accumulation effect in the chain of transistors has been observed. - Highlights: • Si{sub 0.30}Ge{sub 0.70} stressor has been implemented in the 14 nm technology node CMOS flow. • Embedded and raised variants have been investigated. • High Si{sub 0.30}Ge{sub 0.70} quality was confirmed. • Si{sub 0.30}Ge{sub 0.70} layer is elastically relaxed across the fin direction. • Partial stress presence and stress accumulation effect were observed.

  6. Measurement stand for diagnosis of semiconductor detectors based on IBM PC/XT computer (4-way spectrometric analysis of pulses)

    International Nuclear Information System (INIS)

    Gruszecki, M.

    1990-01-01

    The technical assumptions and partial realization of our technological stand for quality inspection of semiconductor detectors for ionizing radiation manufactured in the INP in Cracow are described. To increase the efficiency of the measurements simultaneous checking of 4 semiconductor chips or finished products is suggested. In order to justify this measurement technique a review of possible variants of the measurement apparatus is presented for the systems consisting of home made units. Comparative parameters for the component modules and for complete measuring systems are given. The construction and operation of data acquisition system based on IBM PC/XT are described. The system ensures simultaneous registration of pulses obtained from 4 detectors with maximal rate of up to 500 x 10 3 pulses/s. 42 refs., 6 figs., 3 tabs. (author)

  7. Semiconductor scintillator detector for gamma radiation; Detector cintilador semicondutor para radiacao gama

    Energy Technology Data Exchange (ETDEWEB)

    Laan, F.T.V. der; Borges, V.; Zabadal, J.R.S., E-mail: ftvdl@ufrgs.br, E-mail: borges@ufrgs.br, E-mail: jorge.zabadal@ufrgs.br [Universidade Federal do Rio Grande do Sul (GENUC/DEMEC/UFRGS), Porto Alegre, RS (Brazil). Grupo de Estudos Nucleares. Departamento de Engenharia Mecanica

    2015-07-01

    Nowadays the devices employed to evaluate individual radiation exposition are based on dosimetric films and thermoluminescent crystals, whose measurements must be processed in specific transductors. Hence, these devices carry out indirect measurements. Although a new generation of detectors based on semiconductors which are employed in EPD's (Electronic Personal Dosemeters) being yet available, it high producing costs and large dimensions prevents the application in personal dosimetry. Recent research works reports the development of new detection devices based on photovoltaic PIN diodes, which were successfully employed for detecting and monitoring exposition to X rays. In this work, we step forward by coupling a 2mm anthracene scintillator NE1, which converts the high energy radiation in visible light, generating a Strong signal which allows dispensing the use of photomultipliers. A low gain high performance amplifier and a digital acquisition device are employed to measure instantaneous and cumulative doses for energies ranging from X rays to Gamma radiation up to 2 MeV. One of the most important features of the PIN diode relies in the fact that it can be employed as a detector for ionization radiation, since it requires a small energy amount for releasing electrons. Since the photodiode does not amplify the corresponding photon current, it must be coupled to a low gain amplifier. Therefore, the new sensor works as a scintillator coupled with a photodiode PIN. Preliminary experiments are being performed with this sensor, showing good results for a wide range of energy spectrum. (author)

  8. Noise and optimum filtering in spectrometers with semiconductor detectors operating at elevated temperature

    International Nuclear Information System (INIS)

    Dabrowski, W.; Korbel, K.

    1983-01-01

    The importance of the excess noise in the semiconductor detectors operating at the elevated temperature is discussed. Under the assumption of a conventional CR-RC type filtration the variancy of the noise output is determined. The new term ''second noise-corner time constant'' was proposed. The expression for relative signal-to-noise ratio as the dependence on the noise as well as circuits time constants was derived. It was also presented in a graphical form. 12 refs., 6 figs. (author)

  9. Transition radiation detectors for electron identification beyond 1 GeV/c

    International Nuclear Information System (INIS)

    Appuhn, R.D.; Heinloth, K.; Lange, E.; Oedingen, R.; Schloesser, A.

    1987-07-01

    Transition radiation detectors (TRDs) have been tested for the separation of electrons from pions in the momentum range between 1 GeV/c and 6 GeV/c. Foams as well as fibres and foils served as radiator materials while two types of chambers, a longitudinal drift chamber (DC) and a multiwire proportional chamber (MWPC), both of 16 mm depth and dominantly filled with xenon, were used for detecting the transition radiation photons with a setup of four chambers. Analyzing the data we compared the methods of mean, truncated mean and of maximum likelihood of the total charge measurements and several methods of cluster analysis. As a result of the total charge measurements performed at test beams at CERN and DESY we obtained about 1% pion contamination at 90% electron efficiency for the polypropylene materials in the configuration of four modules with a total length of 40 cm. An improvement by a factor of about two for the electron/pion discrimination can be obtained in case of a detailed analysis of the clusters. (orig.)

  10. Electric-field controlled ferromagnetism in MnGe magnetic quantum dots

    Directory of Open Access Journals (Sweden)

    Faxian Xiu

    2011-03-01

    Full Text Available Electric-field control of ferromagnetism in magnetic semiconductors at room temperature has been actively pursued as one of the important approaches to realize practical spintronics and non-volatile logic devices. While Mn-doped III-V semiconductors were considered as potential candidates for achieving this controllability, the search for an ideal material with high Curie temperature (Tc>300 K and controllable ferromagnetism at room temperature has continued for nearly a decade. Among various dilute magnetic semiconductors (DMSs, materials derived from group IV elements such as Si and Ge are the ideal candidates for such materials due to their excellent compatibility with the conventional complementary metal-oxide-semiconductor (CMOS technology. Here, we review recent reports on the development of high-Curie temperature Mn0.05Ge0.95 quantum dots (QDs and successfully demonstrate electric-field control of ferromagnetism in the Mn0.05Ge0.95 quantum dots up to 300 K. Upon the application of gate-bias to a metal-oxide-semiconductor (MOS capacitor, the ferromagnetism of the channel layer (i.e. the Mn0.05Ge0.95 quantum dots was modulated as a function of the hole concentration. Finally, a theoretical model based upon the formation of magnetic polarons has been proposed to explain the observed field controlled ferromagnetism.

  11. A simple semi-empirical way of accounting for the contribution of pair production process to the efficiency of Ge detectors

    International Nuclear Information System (INIS)

    Sudarshan, M.; Singh, R.

    1991-01-01

    By considering the data for a 38cm 3 Ge(Li) detector from E γ = 319.80 to 2598.80 keV, and for a 68 cm 3 HPGe detector from E γ = 223.430 to 3253.610 keV, it has been demonstrated that the contribution of the pair production process to the full energy peak efficiency (FEPE) of germanium detectors can be quite adequately accounted for in a semi-empirical way. (author)

  12. Magnetic and electrical transport properties of delta-doped amorphous Ge:Mn magnetic semiconductors

    International Nuclear Information System (INIS)

    Li, H.L.; Lin, H.T.; Wu, Y.H.; Liu, T.; Zhao, Z.L.; Han, G.C.; Chong, T.C.

    2006-01-01

    We report on the growth and characterization of delta-doped amorphous Ge:Mn diluted magnetic semiconductor thin films on GaAs (0 0 1) substrates. The fabricated samples exhibit different magnetic behaviors, depending on the Mn doping concentration. The Curie temperature was found to be dependent on both the Mn doping concentration and spacing between the doping layers. A sharp drop in magnetization and rise in resistivity are observed at low temperature in samples with high Mn doping concentrations, which is also accompanied by a negative thermal remanent magnetization (TRM) in the higher temperature range. The temperature at which the magnetization starts to drop and the negative TRM appears show a correlation with the Mn doping concentration. The experimental results are discussed based on the formation of ferromagnetic regions at high temperature and antiferromagnetic coupling between these regions at low temperature

  13. DEPFET-detectors: New developments

    Energy Technology Data Exchange (ETDEWEB)

    Lutz, G. [MPI Semiconductor Laboratory, Max Planck Institut fuer Physik, Otto Hahn Ring 6, D 81739 Munich (Germany)]. E-mail: gerhard.lutz@cern.ch; Andricek, L. [MPI Semiconductor Laboratory, Max Planck Institut fuer Physik, Otto Hahn Ring 6, D 81739 Munich (Germany); Eckardt, R. [MPI Semiconductor Laboratory, Max Planck Institut fuer extraterrestrische Physik, Otto Hahn Ring 6, D 81739 Munich (Germany); Haelker, O. [MPI Semiconductor Laboratory, Max Planck Institut fuer extraterrestrische Physik, Otto Hahn Ring 6, D 81739 Munich (Germany); Hermann, S. [MPI Semiconductor Laboratory, Max Planck Institut fuer extraterrestrische Physik, Otto Hahn Ring 6, D 81739 Munich (Germany); Lechner, P. [MPI Semiconductor Laboratory, PNSensor GmbH, Otto Hahn Ring 6, D 81739 Munich (Germany); Richter, R. [MPI Semiconductor Laboratory, Max Planck Institut fuer Physik, Otto Hahn Ring 6, D 81739 Munich (Germany); Schaller, G. [MPI Semiconductor Laboratory, Max Planck Institut fuer extraterrestrische Physik, Otto Hahn Ring 6, D 81739 Munich (Germany); Schopper, F. [MPI Semiconductor Laboratory, Max Planck Institut fuer extraterrestrische Physik, Otto Hahn Ring 6, D 81739 Munich (Germany); Soltau, H. [MPI Semiconductor Laboratory, PNSensor GmbH, Otto Hahn Ring 6, D 81739 Munich (Germany); Strueder, L. [MPI Semiconductor Laboratory, Max Planck Institut fuer extraterrestrische Physik, Otto Hahn Ring 6, D 81739 Munich (Germany); Treis, J. [MPI Semiconductor Laboratory, Max Planck Institut fuer extraterrestrische Physik, Otto Hahn Ring 6, D 81739 Munich (Germany); Woelfl, S. [MPI Semiconductor Laboratory, Max Planck Institut fuer extraterrestrische Physik, Otto Hahn Ring 6, D 81739 Munich (Germany); Zhang, C. [MPI Semiconductor Laboratory, Max Planck Institut fuer extraterrestrische Physik, Otto Hahn Ring 6, D 81739 Munich (Germany)

    2007-03-01

    The Depleted Field Effect Transistor (DEPFET) detector-amplifier structure forms the basis of a variety of detectors being developed at the MPI semiconductor laboratory. These detectors are foreseen to be used in astronomy and particle physics as well as other fields of science. The detector developments are described together with some intended applications. They comprise the X-ray astronomy missions XEUS and SIMBOL-X as well as the vertex detector of the planned International Linear Collider (ILC). All detectors are produced in the MPI semiconductor laboratory that has a complete silicon technology available.

  14. DEPFET-detectors: New developments

    International Nuclear Information System (INIS)

    Lutz, G.; Andricek, L.; Eckardt, R.; Haelker, O.; Hermann, S.; Lechner, P.; Richter, R.; Schaller, G.; Schopper, F.; Soltau, H.; Strueder, L.; Treis, J.; Woelfl, S.; Zhang, C.

    2007-01-01

    The Depleted Field Effect Transistor (DEPFET) detector-amplifier structure forms the basis of a variety of detectors being developed at the MPI semiconductor laboratory. These detectors are foreseen to be used in astronomy and particle physics as well as other fields of science. The detector developments are described together with some intended applications. They comprise the X-ray astronomy missions XEUS and SIMBOL-X as well as the vertex detector of the planned International Linear Collider (ILC). All detectors are produced in the MPI semiconductor laboratory that has a complete silicon technology available

  15. Toward single electron resolution phonon mediated ionization detectors

    Energy Technology Data Exchange (ETDEWEB)

    Mirabolfathi, Nader, E-mail: mirabolfathi@physics.tamu.edu [Department of Physics and Astronomy, Texas A& M University (United States); Harris, H. Rusty; Mahapatra, Rupak; Sundqvist, Kyle; Jastram, Andrew [Department of Physics and Astronomy, Texas A& M University (United States); Serfass, Bruno; Faiez, Dana; Sadoulet, Bernard [Department of Physics, University of California at Berkeley (United States)

    2017-05-21

    Experiments seeking to detect rare event interactions such as dark matter or coherent elastic neutrino nucleus scattering are striving for large mass detectors with very low detection threshold. Using Neganov-Luke phonon amplification effect, the Cryogenic Dark Matter Search (CDMS) experiment is reaching unprecedented RMS resolutions of ∼14 eV{sub ee}. CDMSlite is currently the most sensitive experiment to WIMPs of mass ∼5 GeV/c{sup 2} but is limited in achieving higher phonon gains due to an early onset of leakage current into Ge crystals. The contact interface geometry is particularly weak for blocking hole injection from the metal, and thus a new design is demonstrated that allows high voltage bias via vacuum separated electrode. With an increased bias voltage and a×2 Luke phonon gain, world best RMS resolution of sigma ∼7 eV{sub ee} for 0.25 kg (d=75 mm, h=1 cm) Ge detectors was achieved. Since the leakage current is a function of the field and the phonon gain is a function of the applied voltage, appropriately robust interface blocking material combined with thicker substrate (25 mm) will reach a resolution of ∼2.8 eV{sub ee}. In order to achieve better resolution of ∼ eV, we are investigating a layer of insulator between the phonon readout surface and the semiconductor crystals.

  16. The importance of the time scale in radiation detection exemplified by comparing conventional and avalache semiconductor detectors

    Energy Technology Data Exchange (ETDEWEB)

    Tove, P A; Cho, Z H; Huth, G C [California Univ., Los Angeles (USA). Lab. of Nuclear Medicine and Radiation Biology

    1976-02-01

    The profound importance of the time scale of a radiation detection process is discussed in an analysis of limitations in energy resolution and timing, with emphasis on semiconductor detectors used for X-ray detection. The basic event detection time involves stopping of the particle and creating a distribution of free electrons and holes containing all desired information (energy, time position) about the particle or quantum, in a time approximately equal to 10/sup -12/s. The process of extracting this information usually involves a much longer time because the signal is generated in the relatively slow process of charge collection, and further prolongation may be caused by signal processing required to depress noise for improving energy resolution. This is a common situation for conventional semiconductor detectors with external amplifiers where time constants of 10/sup -5/-10/sup -4/s may be optimum, primarily because of amplifier noise. A different situation applies to the avalanche detector where internal amplification helps in suppressing noise without expanding the time scale of detections, resulting in an optimum time of 10/sup -9/-10/sup -8/s. These two cases are illustrated by plotting energy resolution vs. time constant, for different magnitudes of the parallel and series type noise sources. The effects of the inherent energy spread due to statistips and spatial inhomogeneities are also discussed to illustrate the potential of these two approaches for energy and time determination. Two constructional approaches for avalanche detectors are briefly compared.

  17. Electrical properties and transport mechanisms in phase change memory thin films of quasi-binary-line GeTe–Sb{sub 2}Te{sub 3} chalcogenide semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Sherchenkov, A. A. [National Research University of Electronic Technology (Russian Federation); Kozyukhin, S. A., E-mail: sergkoz@igic.ras.ru [Russian Academy of Sciences, Kurnakov Institute of General and Inorganic Chemistry (Russian Federation); Lazarenko, P. I.; Babich, A. V. [National Research University of Electronic Technology (Russian Federation); Bogoslovskiy, N. A. [Russian Academy of Sciences, Ioffe Physical–Technical Institute (Russian Federation); Sagunova, I. V.; Redichev, E. N. [National Research University of Electronic Technology (Russian Federation)

    2017-02-15

    The temperature dependences of the resistivity and current–voltage (I–V) characteristics of phase change memory thin films based on quasi-binary-line GeTe–Sb{sub 2}Te{sub 3} chalcogenide semiconductors Ge{sub 2}Sb{sub 2}Te{sub 5}, GeSb{sub 2}Te{sub 5}, and GeSb{sub 4}Te{sub 7} are investigated. The effect of composition variation along the quasibinary line on the electrical properties and transport mechanisms of the thin films is studied. The existence of three ranges with different I–V characteristics is established. The position and concentration of energy levels controlling carrier transport are estimated. The results obtained show that the electrical properties of the thin films can significantly change during a shift along the quasi-binary line GeTe–Sb{sub 2}Te{sub 3}, which is important for targeted optimization of the phase change memory technology.

  18. Analysis and modelling of the performance of a new solid-state detector in nuclear medicine: from Anger- to Semiconductor-detectors

    International Nuclear Information System (INIS)

    Imbert, L.

    2012-01-01

    Myocardial single-photon emission computed tomography (SPECT) is considered as the gold standard for the diagnosis of coronary artery disease. Developed in the 1980's with rotating Anger gamma cameras, this technique could be dramatically enhanced by new imaging systems working with semiconductor detectors and which performances are clearly enhanced. Two semiconductor cameras, dedicated to nuclear cardiology and equipped with Cadmium Zinc Telluride detectors, have been recently commercialized: the Discovery NM- 530c (General Electric) and the DSPECT (Spectrum Dynamics). The performances of these CZT cameras were compared: 1) by a comprehensive analysis of phantom and human SPECT images considered as normal and 2) with the parameters commonly recommended for SPECT recording and reconstruction. The results show the superiority of the CZT cameras in terms of detection sensitivity, spatial resolution and contrast-to-noise ratio, compared to conventional Anger cameras. These properties might lead to dramatically reduce acquisition times and/or the injected activities. However, the limits of these new CZT cameras, as well as the mechanism of certain artefacts, remain poorly known. This knowledge could be enhanced by a numerical modeling of the DSPECT camera, and this might also help to optimize acquisition and reconstruction parameters. We developed a simulator where the geometry of the detectors of the DSPECT camera and their energy response were modeled in the GATE platform. In order to validate this simulator, actually recorded data were compared with simulated data through three performance parameters: detection sensitivity, spatial resolution and energy resolution. Results were in agreement between simulated and actually recorded data. This observation validates the DSPECT simulator and opens the door to further studies planed to optimize the recorded and reconstruction processes, especially for complex protocols such as simultaneous dual-radionuclide acquisition

  19. The effects of intense gamma-irradiation on the alpha-particle response of silicon carbide semiconductor radiation detectors

    International Nuclear Information System (INIS)

    Ruddy, Frank H.; Seidel, John G.

    2007-01-01

    Silicon Carbide (SiC) semiconductor radiation detectors are being developed for alpha-particle, X-ray and Gamma-ray, and fast-neutron energy spectrometry. SiC detectors have been operated at temperatures up to 306 deg. C and have also been found to be highly resistant to the radiation effects of fast-neutron and charged-particle bombardments. In the present work, the alpha-particle response of a SiC detector based on a Schottky diode design has been carefully monitored as a function of 137 Cs gamma-ray exposure. The changes in response have been found to be negligible for gamma exposures up to and including 5.4 MGy, and irradiations to higher doses are in progress

  20. Fabrication of Ge-on-insulator wafers by Smart-CutTM with thermal management for undamaged donor Ge wafers

    Science.gov (United States)

    Kim, Munho; Cho, Sang June; Jayeshbhai Dave, Yash; Mi, Hongyi; Mikael, Solomon; Seo, Jung-Hun; Yoon, Jung U.; Ma, Zhenqiang

    2018-01-01

    Newly engineered substrates consisting of semiconductor-on-insulator are gaining much attention as starting materials for the subsequent transfer of semiconductor nanomembranes via selective etching of the insulating layer. Germanium-on-insulator (GeOI) substrates are critically important because of the versatile applications of Ge nanomembranes (Ge NMs) toward electronic and optoelectronic devices. Among various fabrication techniques, the Smart-CutTM technique is more attractive than other methods because a high temperature annealing process can be avoided. Another advantage of Smart-CutTM is the reusability of the donor Ge wafer. However, it is very difficult to realize an undamaged Ge wafer because there exists a large mismatch in the coefficient of thermal expansion among the layers. Although an undamaged donor Ge wafer is a prerequisite for its reuse, research related to this issue has not yet been reported. Here we report the fabrication of 4-inch GeOI substrates using the direct wafer bonding and Smart-CutTM process with a low thermal budget. In addition, a thermo-mechanical simulation of GeOI was performed by COMSOL to analyze induced thermal stress in each layer of GeOI. Crack-free donor Ge wafers were obtained by annealing at 250 °C for 10 h. Raman spectroscopy and x-ray diffraction (XRD) indicated similarly favorable crystalline quality of the Ge layer in GeOI compared to that of bulk Ge. In addition, Ge p-n diodes using transferred Ge NM indicate a clear rectifying behavior with an on and off current ratio of 500 at ±1 V. This demonstration offers great promise for high performance transferrable Ge NM-based device applications.

  1. Room Temperature Ferromagnetic Mn:Ge(001

    Directory of Open Access Journals (Sweden)

    George Adrian Lungu

    2013-12-01

    Full Text Available We report the synthesis of a room temperature ferromagnetic Mn-Ge system obtained by simple deposition of manganese on Ge(001, heated at relatively high temperature (starting with 250 °C. The samples were characterized by low energy electron diffraction (LEED, scanning tunneling microscopy (STM, high resolution transmission electron microscopy (HRTEM, X-ray photoelectron spectroscopy (XPS, superconducting quantum interference device (SQUID, and magneto-optical Kerr effect (MOKE. Samples deposited at relatively elevated temperature (350 °C exhibited the formation of ~5–8 nm diameter Mn5Ge3 and Mn11Ge8 agglomerates by HRTEM, while XPS identified at least two Mn-containing phases: the agglomerates, together with a Ge-rich MnGe~2.5 phase, or manganese diluted into the Ge(001 crystal. LEED revealed the persistence of long range order after a relatively high amount of Mn (100 nm deposited on the single crystal substrate. STM probed the existence of dimer rows on the surface, slightly elongated as compared with Ge–Ge dimers on Ge(001. The films exhibited a clear ferromagnetism at room temperature, opening the possibility of forming a magnetic phase behind a nearly ideally terminated Ge surface, which could find applications in integration of magnetic functionalities on semiconductor bases. SQUID probed the co-existence of a superparamagnetic phase, with one phase which may be attributed to a diluted magnetic semiconductor. The hypothesis that the room temperature ferromagnetic phase might be the one with manganese diluted into the Ge crystal is formulated and discussed.

  2. Outstanding laser damage threshold in Li2MnGeS4 and tunable optical nonlinearity in diamond-like semiconductors.

    Science.gov (United States)

    Brant, Jacilynn A; Clark, Daniel J; Kim, Yong Soo; Jang, Joon I; Weiland, Ashley; Aitken, Jennifer A

    2015-03-16

    The new Li2MnGeS4 and Li2CoSnS4 compounds result from employing a rational and simple design strategy that guides the discovery of diamond-like semiconductors (DLSs) with wide regions of optical transparency, high laser damage threshold, and efficient second-order optical nonlinearity. Single-crystal X-ray diffraction was used to solve and refine the crystal structures of Li2MnGeS4 and Li2CoSnS4, which crystallize in the noncentrosymmetric space groups Pna21 and Pn, respectively. Synchrotron X-ray powder diffraction (SXRPD) was used to assess the phase purity, and diffuse reflectance UV-vis-NIR spectroscopy was used to estimate the bandgaps of Li2MnGeS4 (Eg = 3.069(3) eV) and Li2CoSnS4 (Eg = 2.421(3) eV). In comparison with Li2FeGeS4, Li2FeSnS4, and Li2CoSnS4 DLSs, Li2MnGeS4 exhibits the widest region of optical transparency (0.60-25 μm) and phase matchability (≥1.6 μm). All four of the DLSs exhibit second-harmonic generation and are compared with the benchmark NLO material, AgGaSe2. Most remarkably, Li2MnGeS4 does not undergo two- or three-photon absorption upon exposure to a fundamental Nd:YAG beam (λ = 1.064 μm) and exhibits a laser damage threshold > 16 GW/cm(2).

  3. Simulation of drift dynamics of arbitrary carrier distributions in complex semiconductor detectors

    CERN Document Server

    De Castro Manzano, Pablo

    2014-01-01

    An extensible open-source C++ software for the simulation of elec- trons and holes drift in semiconductor detectors of complex geometries has been developed in order to understand transient currents and charge collection efficiencies of arbitrary charge distributions. The simulation is based on Ramo’s theorem formalism to obtain induced currents in the electrodes. Efficient open source C++ numerical libraries are used to ob- tain the electric and weighting field using finite-element methods and to simulate the carrier transport. A graphical user interface is also provided. The tool has already been proved useful to model laser induced transient currents

  4. Method of summation of amplitudes of coinciding pulses from Ge(Li) detectors used to study cascades of gamma-transitions in (n,#betta#) reaction

    International Nuclear Information System (INIS)

    Bogdzel', A.A.; Vasil'eva, Eh.V.; Elizarov, O.I.

    1982-01-01

    Main performanes and peculiarities of spectrometer based on the coincidence pulse amplitude total-count method and containing two Ge(La) detectors with transmission neutron spectrometer - IBR-30 pulse reactor are considered. It is shown on the 35 Cl(n, #betta#) reaction that the method of summalion of amplitudes of coinciding pulses from the Ge(Li) detector can be used to study the cascades of two #betta#-transitions with a total energy similar to the neutron binding energy. The shape of the response function of this spectrometer was studied versus the energies of #betta#-transition cascades

  5. Vibrational spectra for hydrogenated amorphous semiconductors

    International Nuclear Information System (INIS)

    Kamitakahara, W.A.; Bouchard, A.M.; Biswas, R.; Gompf, F.; Suck, J.B.

    1990-01-01

    Hydrogen vibration spectra have been measured by neutron scattering for several amorphous semiconductor materials, including a-Ge:H and a-SiC:H samples containing about 10 at. % H. The data for a-Ge:H are compared in detail with the results of realistic computer simulations

  6. Contacts to semiconductors

    International Nuclear Information System (INIS)

    Tove, P.A.

    1975-08-01

    Contacts to semiconductors play an important role in most semiconductor devices. These devices range from microelectronics to power components, from high-sensitivity light or radiation detectors to light-emitting of microwave-generating components. Silicon is the dominating material but compound semiconductors are increasing in importance. The following survey is an attempt to classify contact properties and the physical mechanisms involved, as well as fabrication methods and methods of investigation. The main interest is in metal-semiconductor type contacts where a few basic concepts are dealt with in some detail. (Auth.)

  7. Radiation effects in semiconductors

    CERN Document Server

    2011-01-01

    There is a need to understand and combat potential radiation damage problems in semiconductor devices and circuits. Written by international experts, this book explains the effects of radiation on semiconductor devices, radiation detectors, and electronic devices and components. These contributors explore emerging applications, detector technologies, circuit design techniques, new materials, and innovative system approaches. The text focuses on how the technology is being used rather than the mathematical foundations behind it. It covers CMOS radiation-tolerant circuit implementations, CMOS pr

  8. Development and characterization of the lead iodide semiconductor detector

    International Nuclear Information System (INIS)

    Oliveira, Icimone Braga de

    2001-01-01

    A methodology for purification and growth of PbI 2 crystal as well as for its characterization as a room temperature radiation detector was developed in this work. Commercial salts were purified using the zone refining method and, for the purified material growth, the Bridgman method was used. To calculate the purification efficiency, studies of the decrease impurities concentrations were made in the salts and in three sections of the materials purified, using the neutron activation analysis technique. The results showed that the impurities segregate preferentially in the ingot final section. A significant decrease of the impurities concentration in function of the purification pass number was observed. The grown crystals presented good crystalline quality according to the results of the X-ray diffraction analysis. To evaluate the crystal as a semiconductor detector, measurements of dark leakage current, resistivity and the response of ( 241 Am) alpha particle and ( 241 Am, 57 Co, 133 Ba and 137 Cs) gamma rays were carried out. The radiation response is strongly dependent on the crystals purity. The crystals purified with 500 passes exhibited energy resolution of 10% for 241 Am alpha particle and the gamma rays resolution was compatible with the literature. The photosensibility of the PbI 2 crystal found in the wavelength from 400 to 600 nm range suggests an another application at this crystal as a photodetector to be coupled to scintillators. (author)

  9. Semiconductor radiation detection systems

    CERN Document Server

    2010-01-01

    Covers research in semiconductor detector and integrated circuit design in the context of medical imaging using ionizing radiation. This book explores other applications of semiconductor radiation detection systems in security applications such as luggage scanning, dirty bomb detection and border control.

  10. Experimental bounds on ββ-decay, cold dark matter and solar axions with an ultralow background Ge detector

    International Nuclear Information System (INIS)

    Avignone, F.T. III; Ahlen, S.P.; Brodzinski, R.L.

    1986-01-01

    The PNL/USC ultralow background prototype Ge detector in the Homestake goldmine is being applied to searches for O nu ββ-decay, dark matter candidates and solar axions. An upper bound of 2.2 eV has been placed on the Majorana mass of the electron neutrino. The low energy data exclude particles with spin independent Z 0 exchange interactions having masses between 20 GeV and 5 TeV, as significant contributors to the cold dark matter of the halo of their galaxy. The existence of stable Dirac neutrinos more massive than 20 GeV is also excluded except for a narrow region around the Z 0 resonance. Finally, Dine-Fischler-Srednicki (DFS) axion models with F/2x/sub e/' ≤ 0.5 x10 7 GeV are ruled out by the maximum count rate attributable to solar axions

  11. Measurement of 15 MeV gamma-rays with the Ge cluster detectors of EUROBALL

    CERN Document Server

    Million, B; Camera, F; Brambilla, S; Gadea, A; Giugni, D; Herskind, B; Kmiecik, M; Isocrate, R; Leoni, S; Maj, A; Prelz, F; Wieland, O

    2000-01-01

    A measurement of the response to 15.1 MeV gamma-rays has been made for the Ge cluster detectors in the EUROBALL array. Each cluster detector consists of seven germanium capsules surrounded by a single anticompton shield of BGO. The reaction D( sup 1 sup 1 B,gamma) sup 1 sup 2 C+n at E sub b sub e sub a sub m =19.1 MeV has been employed. The 'adding-back' of signals simultaneously present in the capsules composing each cluster detector has been made on an event by event basis. The intensity in full-energy peak increases by a factor of three as compared to that of the spectrum obtained by summing the individual spectra of the 7 capsules. The pulse height to energy conversion is found to be very linear from few hundreds keV to 15 MeV. The efficiency is discussed relative to that of large volume BaF sub 2 scintillators.

  12. Detector materials: germanium and silicon

    International Nuclear Information System (INIS)

    Haller, E.E.

    1981-11-01

    This article is a summary of a short course lecture given in conjunction with the 1981 Nuclear Science Symposium. The basic physical properties of elemental semiconductors are reviewed. The interaction of energetic radiation with matter is discussed in order to develop a feeling for the appropriate semiconductor detector dimensions. The extremely low net dopant concentrations which are required are derived directly from the detector dimensions. A survey of the more recent techniques which have been developed for the analysis of detector grade semiconductor single crystals is presented

  13. Detection of secondary electrons with pixelated hybrid semiconductor detectors; Sekundaerelektronennachweis mit pixelierten hybriden Halbleiterdetektoren

    Energy Technology Data Exchange (ETDEWEB)

    Gebert, Ulrike Sonja

    2011-09-14

    Within the scope of this thesis, secondary electrons were detected with a pixelated semiconductor detector named Timepix. The Timepix detector consists of electronics and a sensor made from a semiconductor material. The connection of sensor and electronics is done for each pixel individually using bump bonds. Electrons with energies above 3 keV can be detected with the sensor. One electron produces a certain amount of electron-hole pairs according to its energy. The charge then drifts along an electric field to the pixel electronics, where it induces an electric signal. Even without a sensor it is possible to detect an electric signal from approximately 1000 electrons directly in the pixel electronics. Two different detector systems to detect secondary electrons using the Timepix detector were investigated during this thesis. First of all, a hybrid photon detector (HPD) was used to detect single photoelectrons. The HPD consists of a vacuum vessel with an entrance window and a cesium iodine photocathode at the inner surface of the window. Photoelectrons are released from the photocathode by incident light and are accelerated in an electric field towards the Timepix detector, where the point of interaction and the arrival time of the electron is determined. With a proximity focusing setup, a time resolution of 12 ns (with an acceleration voltage of 20 kV between photocathode and Timepix detector) was obtained. The HPD examined in this thesis showed a strong dependence of the dark rate form the acceleration voltage and the pressure in the vacuum vessel. At a pressure of few 10{sup -5} mbar and an acceleration voltage of 20 kV, the dark rate was about 800 Hz per mm{sup 2} area of the read out photocathode. One possibility to reduce the dark rate is to identify ion feedback events. With a slightly modified setup it was possible to reduce the dark rate to 0.5 Hz/mm{sup 2}. To achieve this, a new photocathode was mounted in a shorter distance to the detector. The

  14. Tracking in full Monte Carlo detector simulations of 500 GeV e+e- collisions

    International Nuclear Information System (INIS)

    Ronan, M.T.

    2000-01-01

    In full Monte Carlo simulation models of future Linear Collider detectors, charged tracks are reconstructed from 3D space points in central tracking detectors. The track reconstruction software is being developed for detailed physics studies that take realistic detector resolution and background modeling into account. At this stage of the analysis, reference tracking efficiency and resolutions for ideal detector conditions are presented. High performance detectors are being designed to carry out precision studies of e + e - annihilation events in the energy range of 500 GeV to 1.5 TeV. Physics processes under study include Higgs mass and branching ratio measurements, measurement of possible manifestations of Supersymmetry (SUSY), precision Electro-Weak (EW) studies and searches for new phenomena beyond their current expectations. The relatively-low background machine environment at future Linear Colliders will allow precise measurements if proper consideration is given to the effects of the backgrounds on these studies. In current North American design studies, full Monte Carlo detector simulation and analysis is being used to allow detector optimization taking into account realistic models of machine backgrounds. In this paper the design of tracking software that is being developed for full detector reconstruction is discussed. In this study, charged tracks are found from simulated space point hits allowing for the straight-forward addition of background hits and for the accounting of missing information. The status of the software development effort is quantified by some reference performance measures, which will be modified by future work to include background effects

  15. General specifications for silicon semiconductors for use in radiation dosimetry

    International Nuclear Information System (INIS)

    Rikner, G.; Grusell, E.

    1987-01-01

    Silicon semiconductor detectors used in radiation dosimetry have different properties, just as e.g. ionisation chambers, affecting the interaction of radiation with matter in the vicinity of the sensitive volume of the detector, e.g. wall materials, and also the collection of the charges liberated in the detector by the radiation. The charge collection depends on impurities, lattice imperfections and other properties of the semiconductor crystal. In this paper the relevant parameters of a silicon semiconductor detector intended for dosimetry are reviewed. The influence of doping material, doping level, various effects of radiation damage, mechanical construction, detector size, statistical noise and connection to the electrometer are discussed. (author)

  16. Monolithically Integrated Ge-on-Si Active Photonics

    Directory of Open Access Journals (Sweden)

    Jifeng Liu

    2014-07-01

    Full Text Available Monolithically integrated, active photonic devices on Si are key components in Si-based large-scale electronic-photonic integration for future generations of high-performance, low-power computation and communication systems. Ge has become an interesting candidate for active photonic devices in Si photonics due to its pseudo-direct gap behavior and compatibility with Si complementary metal oxide semiconductor (CMOS processing. In this paper, we present a review of the recent progress in Ge-on-Si active photonics materials and devices for photon detection, modulation, and generation. We first discuss the band engineering of Ge using tensile strain, n-type doping, Sn alloying, and separate confinement of Γ vs. L electrons in quantum well (QW structures to transform the material towards a direct band gap semiconductor for enhancing optoelectronic properties. We then give a brief overview of epitaxial Ge-on-Si materials growth, followed by a summary of recent investigations towards low-temperature, direct growth of high crystallinity Ge and GeSn alloys on dielectric layers for 3D photonic integration. Finally, we review the most recent studies on waveguide-integrated Ge-on-Si photodetectors (PDs, electroabsorption modulators (EAMs, and laser diodes (LDs, and suggest possible future research directions for large-scale monolithic electronic-photonic integrated circuits on a Si platform.

  17. Electrical limitations to energy resolution in semiconductor particle detectors; Limitations electriques du pouvoir de resolution en energie des detecteurs a semi-conducteurs; Ehlektricheskie ogranicheniya razreshayushchej sposobnosti po ehnergii v poluprovodnikovykh detektorakh chastits; Limitaciones electricas en la resolucion energetica de detectores de particulas a base de semiconductores

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, W L; Goulding, F S [Lawrence Radiation Laboratory, University of California, Berkeley, CA (United States)

    1962-04-15

    Based on the assumption that the noise contribution of a semiconductor detector is due solely to its bulk properties, equations are presented which indicate the theoretical limits of noise in detectoramplifier combinations. These equations show that an optimum amplifier time-constant and detector bias voltage exist for which condition the minimum noise is independent of the semiconductor resistivity. The optimum performance of a detector-amplifier system is shown to depend only upon detector area, input capacity (less detector capacity), semiconductor minority carrier lifetime and the transconductance of the amplifier input tube. A new detector structure which includes a guard-ring electrode as an integral part of the detector structure is described which has the effect of largely eliminating noise due to surface leakage. Experimental results for detector leakage and energy resolution which agree well with theory are presented. The theoretical limit of noise, expressed as full width at half maximum, is from 7 to 10 keV for 1-cm{sup 2} p-type silicon detectors at 25{sup o}C. (author) [French] Partant de l'hypothese que le bruit imputable au detecteur a semi-conducteur est du exclusivement aux proprietes fondamentales du semi-conducteur, les auteurs etablissent des equations donnant les limites theoriques du bruit dans les combinaisons detecteur-amplificateur. Ces equations montrent qu'il existe une constante de temps optimum de l'amplificateur et une tension de polarisation du detecteur, pour lesquelles le bruit minimum est independant de la resistivite du semi-conducteur. Les auteurs prouvent que l'optimum de fonctionnement d'un ensemble detecteur-amplificateur ne depend que de la surface du detecteur, de la capacite a l'entree (deduction faite de la capacite du detecteur), du porteur minoritaire du semi-conducteur, de la duree de vie et de la transconductance du tube d'entree de l'amplificateur. Ils decrivent un modele nouveau de detecteur qui comprend une

  18. Gamma-ray pulse height spectrum analysis on systems with multiple Ge detectors using spectrum summing

    Energy Technology Data Exchange (ETDEWEB)

    Killian, E.W. [Idaho National Engineering Lab., Idaho Falls, ID (United States)

    1997-11-01

    A technique has been developed at the Idaho National Engineering Laboratory to sum high resolution gamma-ray pulse spectra from systems with multiple Ge detectors. Lockheed Martin Idaho Technologies Company operates a multi-detector spectrometer configuration at the Stored Waste Examination Pilot Plant facility which is used to characterize the radionuclide contents in waste drums destined for shipment to Waste Isolation Pilot Plant. This summing technique was developed to increase the sensitivity of the system, reduce the count times required to properly quantify the radio-nuclides and provide a more consistent methodology for combining data collected from multiple detectors. In spectrometer systems with multiple detectors looking at non homogeneous waste forms it is often difficult to combine individual spectrum analysis results from each detector to obtain a meaningful result for the total waste container. This is particularly true when the counting statistics in each individual spectrum are poor. The spectrum summing technique adds the spectra collected by each detector into a single spectrum which has better counting statistics than each individual spectrum. A normal spectral analysis program can then be used to analyze the sum spectrum to obtain radio-nuclide values which have smaller errors and do not have to be further manipulated to obtain results for the total waste container. 2 refs., 2 figs.

  19. Semiconductor nanocrystals formed in SiO2 by ion implantation

    International Nuclear Information System (INIS)

    Zhu, J.G.; White, C.W.; Budai, J.D.; Withrow, S.P.; Chen, Y.

    1994-11-01

    Nanocrystals of group IV (Si, Ge and SiGe), III-V (GaAs), and II-VI (CdSe) semiconductor materials have been fabricated inside SiO 2 by ion implantation and subsequent thermal annealing. The microstructure of these nanocrystalline semiconductor materials has been studied by transmission electron microscopy (TEM). The nanocrystals form in near-spherical shape with random crystal orientations in amorphous SiO 2 . Extensive studies on the nanocrystal size distributions have been carried out for the Ge nanocrystals by changing the implantation doses and the annealing temperatures. Remarkable roughening of the nanocrystals occurs when the annealing temperature is raised over the melting temperature of the implanted semiconductor material. Strong red photoluminescence peaked around 1.67 eV has been achieved in samples with Si nanocrystals in SiO 2

  20. Experimental bounds on ββ-decay, cold dark matter and solar axions with an ultralow background Ge detector

    International Nuclear Information System (INIS)

    Avignone, F.T. III; Ahlen, S.P.; Brodzinski, R.L.

    1986-01-01

    The PNL/USC ultralow background prototype Ge detector in the Homestake goldmine is being applied to searches for 0 nu ββ-decay, dark matter candidates and solar axions. An upper bound of 2.2 eV has been placed on the Majorana mass of the electron neutrino. The low energy data exclude particles with spin independent Z 0 exchange interactions having masses between 20 GeV and 5 TeV as significant contributors to the cold dark matter of the halo of our galaxy. The existence of stable Dirac neutrinos more massive than 20 GeV is also excluded except for a narrow region around the Z 0 resonance. Finally, Dine-Fischler-Srednicki (DFS) axion models with F/2x'/sub e/ ≤ 0.5 x 10 7 GeV are ruled out by the maximum count rate attributable to solar axions. 36 refs., 11 figs

  1. The Clover detector

    Energy Technology Data Exchange (ETDEWEB)

    Beck, F A; Byrski, Th; Durien, D; Duchene, G; France, G de; Kharraja, B; Wei, L [Strasbourg-1 Univ., 67 (France). Centre de Recherches Nucleaires; Butler, P; Jones, G; Jones, P [Liverpool Univ. (United Kingdom). Oliver Lodge Lab.; Hannachi, F [Daresbury Lab. (United Kingdom)

    1992-08-01

    The EUROGAM Phase I device is almost running for experiments and new technical developments are in progress for its second phase. For example, a composite Ge detector should enable: a very large photopeak efficiency with good energy and timing resolutions; and, the covering, with Ge, of a large portion of 4{pi}-Str. The Clover detector, proposed by the CRN, Strasbourg, is one of this new generation of Ge detectors. It is currently developed in France by the EUROGAM collaboration. The design, the technical characteristics of the counter and the first results of the prototype tests are discussed in this contribution. (author). 1 ref., 2 tabs., 2 refs.

  2. Semiconductor crystal high resolution imager

    Science.gov (United States)

    Levin, Craig S. (Inventor); Matteson, James (Inventor)

    2011-01-01

    A radiation imaging device (10). The radiation image device (10) comprises a subject radiation station (12) producing photon emissions (14), and at least one semiconductor crystal detector (16) arranged in an edge-on orientation with respect to the emitted photons (14) to directly receive the emitted photons (14) and produce a signal. The semiconductor crystal detector (16) comprises at least one anode and at least one cathode that produces the signal in response to the emitted photons (14).

  3. Device Physics of Narrow Gap Semiconductors

    CERN Document Server

    Chu, Junhao

    2010-01-01

    Narrow gap semiconductors obey the general rules of semiconductor science, but often exhibit extreme features of these rules because of the same properties that produce their narrow gaps. Consequently these materials provide sensitive tests of theory, and the opportunity for the design of innovative devices. Narrow gap semiconductors are the most important materials for the preparation of advanced modern infrared systems. Device Physics of Narrow Gap Semiconductors offers descriptions of the materials science and device physics of these unique materials. Topics covered include impurities and defects, recombination mechanisms, surface and interface properties, and the properties of low dimensional systems for infrared applications. This book will help readers to understand not only the semiconductor physics and materials science, but also how they relate to advanced opto-electronic devices. The last chapter applies the understanding of device physics to photoconductive detectors, photovoltaic infrared detector...

  4. Find - a computer program for peak search in gamma-ray spectra measured with Ge (Li) detectors

    International Nuclear Information System (INIS)

    Venturini, L.

    1988-01-01

    The program FIND is a FORTRAN IV computer code for peak search in spectra measured with Ge(Li) detectors. The program gives the position and estimates energy and relative significance for every peak found in the spectrum. The search in done by calculating a negative smoothed second difference of the experimental spectrum, as suggested by Phillips and Marlow (1). (author) [pt

  5. A Comparison of the Valence Band Structure of Bulk and Epitaxial GeTe-based Diluted Magnetic Semiconductors

    International Nuclear Information System (INIS)

    Pietrzyk, M.A.; Kowalski, B.J.; Orlowski, B.A.; Knoff, W.; Story, T.; Dobrowolski, W.; Slynko, V.E.; Slynko, E.I.; Johnson, R.L.

    2010-01-01

    In this work we present a comparison of the experimental results, which have been obtained by the resonant photoelectron spectroscopy for a set of selected diluted magnetic semiconductors based on GeTe, doped with manganese. The photoemission spectra are acquired for the photon energy range of 40-60 eV, corresponding to the Mn 3p → 3d resonances. The spectral features related to Mn 3d states are revealed in the emission from the valence band. The Mn 3d states contribution manifests itself in the whole valence band with a maximum at the binding energy of 3.8 eV. (authors)

  6. Fast front-end electronics for semiconductor tracking detectors: Trends and perspectives

    Energy Technology Data Exchange (ETDEWEB)

    Rivetti, Angelo

    2014-11-21

    In the past few years, extensive research efforts pursued by both the industry and the academia have lead to major improvements in the performance of Analog to Digital Converters (ADCs) and Time to Digital Converters (TDCs). ADCs achieving 8–10 bit resolution, 50–100 MHz conversion frequency and less than 1 mW power consumption are the today's standard, while TDCs have reached sub-picosecond time resolution. These results have been made possible by architectural upgrades combined with the use of ultra deep submicron CMOS technologies with minimum feature size of 130 nm or smaller. Front-end ASICs in which a prompt digitization is followed by signal conditioning in the digital domain can now be envisaged also within the tight power budget typically available in high density tracking systems. Furthermore, tracking detectors embedding high resolution timing capabilities are gaining interest. In the paper, ADC's and TDC's developments which are of particular relevance for the design front-end electronics for semiconductor trackers are discussed along with the benefits and challenges of exploiting such high performance building blocks in implementing the next generation of ASICs for high granularity particle detectors.

  7. Detector trends

    International Nuclear Information System (INIS)

    Charpak, G.

    1986-01-01

    The author describes briefly the development of detectors for high energy physics experiments. Especially considered are semiconductor microstrip detectors, drift tubes, holographic bubble chambers, scintillating fiber optics, and calorimeters. (HSI).

  8. PC based analysis of gamma ray spectra generated by semiconductor detectors

    International Nuclear Information System (INIS)

    Abani, M.C.; Madan, V.K.

    1993-01-01

    This report describes a spectrum analysis method and computer program for analysis of gamma spectra obtained by using semiconductor detectors and multichannel analysers. The analysis steps incorporated are smoothing, peak location using signal processing method of convolution, selectable background subtraction viz linear, polynomial and step like, peak fitting both for singlets and doublets using Mukoyama's method for evaluation of full width at half maximum and area evaluation including errors in its evaluation. The program also provides a facility for energy calibration. Typical results of analysis for singlets and doublets are included. This report is based on Wilson's report which has been modified and extended. The program is written in BASIC and its listing is included in the appendices. (author). 20 refs., 2 figs., 2 tabs

  9. Dual photon absorptiometer utilizing a HpGe detector and microprocessor controller

    International Nuclear Information System (INIS)

    Ellis, K.J.; Vartsky, D.; Pearlstein, T.B.; Alberi, J.L.; Cohn, S.H.

    1978-01-01

    The analysis of bone mineral content (BMC) using a single energy-photon beam assumes that there are only two materials present, bone mineral and a uniform soft tissue component. Uncertainty in the value of BMC increases with different adipose tissue components in the transmitted beam. These errors, however, are reduced by the dual energy technique. Also, extension to additional energies further identifies the separate constituents of the soft tissue component. A multi-energy bone scanning apparatus with data acquisition and analysis capability sufficient to perform multi-energy analysis of bone mineral content was designed and developed. The present work reports on the development of device operated in the dual energy mode. The high purity germanium (HpGe) detector is an integral component of the scanner. Errors in BMC due to multiple small angle scatters are reduced due to the excellent energy resolution of the detector (530 eV at 60 keV). Also, the need to filter the source or additional collimation on the detector is eliminated. A new dual source holder was designed using 200 mCi 125 I and 100 mCi 241 Am. The active areas of the two source capsules are aligned on a common axis. The congruence of the dual source was verified by measuring the collimator response function. This new holder design insures that the same tissue mass simultaneously attenuates both sources. The controller portion of the microprocessor allows for variation in total scan length, step size, and counting time per step. These options allow for multiple measurements without changes in the detector, source, or collimator. The system has been successfully used to determine the BMC content of different bones

  10. Radiation damage measurements in room temperature semiconductor radiation detectors

    International Nuclear Information System (INIS)

    Franks, L.A.; Olsen, R.W.; James, R.B.; Brunett, B.A.; Walsh, D.S.; Doyle, B.L.; Vizkelethy, G.; Trombka, J.I.

    1998-01-01

    The literature of radiation damage measurements on cadmium zinc telluride (CZT), cadmium telluride (CT), and mercuric iodide (HgI 2 ) is reviewed and in the case of CZT supplemented by new alpha particle data. CZT strip detectors exposed to intermediate energy (1.3 MeV) proton fluences exhibit increased interstrip leakage after 10 10 p/cm 2 and significant bulk leakage after 10 12 p/cm 2 . CZT exposed to 200 MeV protons shows a two-fold loss in energy resolution after a fluence of 5 x 10 9 p/cm 2 in thick (3 mm) planar devices but little effect in 2 mm devices. No energy resolution effects were noted from moderated fission spectrum of neutrons after fluences up to 10 10 n/cm 2 , although activation was evident. Exposures of CZT to 5 MeV alpha particle at fluences up to 1.5 x 10 10 α/cm 2 produced a near linear decrease in peak position with fluence and increases in FWHM beginning at about 7.5 x 10 9 α/cm 2 . CT detectors show resolution losses after fluences of 3 x 10 9 p/cm 2 at 33 MeV for chlorine-doped detectors. Indium doped material may be more resistant. Neutron exposures (8 MeV) caused resolution losses after fluences of 2 x 10 10 n/cm 2 . Mercuric iodide has been studied with intermediate energy protons (10 to 33 MeV) at fluences up to 10 12 p/cm 2 and with 1.5 GeV protons at fluences up to 1.2 x 10 8 p/cm 2 . Neutron exposures at 8 MeV have been reported at fluences up to 10 15 n/cm 2 . No radiation damage was reported under these irradiation conditions

  11. The basics of experimental determination of the Fano factor in intrinsic semiconductors

    International Nuclear Information System (INIS)

    Samedov, Victor-V.

    2013-06-01

    Intrinsic semiconductors such as High Purity Germanium Detectors are exceptional X-ray and gamma-ray detectors because of their large sizes and small band gap. They are used for fundamental scientific researches, nuclear material safeguards and security, environmental protection, and human health and safety. The fundamental limit of the energy resolution of a semiconductor detector is determined by variance in the number of electron-hole pairs produced by X-rays in detector volume. The principal characteristic of material for using as semiconductor detector is the Fano factor that determines the fluctuation in the number of electron-hole pairs. Now, all existing methods of experimental determination of the Fano factor in semiconductors are based on the subtraction of electronic noise from the signal variance. In this work, I propose the method of experimental determination of the Fano factor in a planar semiconductor detector based on dependences of the mean amplitude and the energy resolution on the electric field. It was shown that inverse electric field expansion of these dependences allow determining the Fano factor, electron mobility lifetime product, and relative variance of electron lifetime due to inhomogeneous charge transport in semiconductor material. The important advantage of the proposed method is independence on detector electronic noise. (authors)

  12. Radiation damage resistance in mercuric iodide X-ray detectors

    Energy Technology Data Exchange (ETDEWEB)

    Patt, B E; Dolin, R C; Devore, T M; Markakis, J M [EG and G Energy Measurements, Inc., Goleta, CA (USA); Iwanczyk, J S; Dorri, N [Xsirius, Inc., Marina del Rey, CA (USA); Trombka, J [National Aeronautics and Space Administration, Greenbelt, MD (USA). Goddard Space Flight Center

    1990-12-20

    Mercuric iodide (HgI{sub 2}) radiation detectors show great potential as ambient-temperature solid-state detectors for X-rays, gamma rays and visible light, with parameters that are competitive with existing technologies. In a previous experiment, HgI{sub 2} detectors irradiated with 10 MeV protons/cm{sup 2} exhibited no damage. The 10 MeV protons represent only the low range of the spectrum of energies that are important. An experiment has been conducted at the Saturne accelerator facility at Saclay, France, to determine the susceptibility of these detectors to radiation damage by high-energy (1.5 GeV) protons. The detectors were irradiated to a fluence of 10{sup 8} protons/cm{sup 2}. This fluence is equivalent to the cosmic radiation expected in a one-year period in space. The resolution of the detectors was measured as a function of the integral dose. No degradation in the response of any of the detectors or spectrometers was seen. It is clear from this data that HgI{sub 2} has extremely high radiation-damage resistance, exceeding that of most other semiconductor materials used for radiation detectors. Based on the results shown to date, HgI{sub 2} detectors are suitable for applications in which they may be exposed to high integral dose levels. (orig.).

  13. Ballistic deficit correction methods for large Ge detectors-high counting rate study

    International Nuclear Information System (INIS)

    Duchene, G.; Moszynski, M.

    1995-01-01

    This study presents different ballistic correction methods versus input count rate (from 3 to 50 kcounts/s) using four large Ge detectors of about 70 % relative efficiency. It turns out that the Tennelec TC245 linear amplifier in the BDC mode (Hinshaw method) is the best compromise for energy resolution throughout. All correction methods lead to narrow sum-peaks indistinguishable from single Γ lines. The full energy peak throughput is found representative of the pile-up inspection dead time of the corrector circuits. This work also presents a new and simple representation, plotting simultaneously energy resolution and throughput versus input count rate. (TEC). 12 refs., 11 figs

  14. Reduced Pressure-Chemical Vapour Deposition of Si/SiGe heterostructures for nanoelectronics

    International Nuclear Information System (INIS)

    Hartmann, J.M.; Andrieu, F.; Lafond, D.; Ernst, T.; Bogumilowicz, Y.; Delaye, V.; Weber, O.; Rouchon, D.; Papon, A.M.; Cherkashin, N.

    2008-01-01

    We have first of all quantified the impact of pressure on Si and SiGe growth kinetics. Definite growth rate and Ge concentration increases with the pressure have been evidenced at low temperatures (650-750 deg. C). By contrast, the high temperature (950-1050 deg. C) Si growth rate either increases or decreases with pressure (gaseous precursor depending). We have then described the selective epitaxial growth process we use to form Si or Si 0.7 Ge 0.3 :B raised sources and drains on ultra-thin patterned Silicon-On-Insulator (SOI) substrates. We have afterwards presented the specifics of SiGe virtual substrates and of the tensile-strained Si layers grown on top (used as templates for the elaboration of tensily strained-SOI wafers). The tensile strain, which can be tailored from 1.3 up to 3 GPa, leads to an electron mobility gain by a factor of 2 in n-Metal Oxide Semiconductor Field Effect Transistors (MOSFETs) built on top. High Ge content SiGe virtual substrates can also be used for the elaboration of compressively strained Ge channels, with impressive hole mobility gains (x9) compared to bulk Si. After that, we have described the main structural features of thick Ge layers grown directly on Si (that can be used as donor wafers for the elaboration of GeOI wafers or as the active medium of near infrared photo-detectors). Finally, we have shown how Si/SiGe multilayers can be used for the formation of high performance 3D devices such as multi-bridge channel or nano-beam gate-all-around FETs, the SiGe sacrificial layers being removed thanks to plasma dry etching, wet etching or in situ gaseous HCl etching

  15. Voltage Controlled Hot Carrier Injection Enables Ohmic Contacts Using Au Island Metal Films on Ge.

    Science.gov (United States)

    Ganti, Srinivas; King, Peter J; Arac, Erhan; Dawson, Karl; Heikkilä, Mikko J; Quilter, John H; Murdoch, Billy; Cumpson, Peter; O'Neill, Anthony

    2017-08-23

    We introduce a new approach to creating low-resistance metal-semiconductor ohmic contacts, illustrated using high conductivity Au island metal films (IMFs) on Ge, with hot carrier injection initiated at low applied voltage. The same metallization process simultaneously allows ohmic contact to n-Ge and p-Ge, because hot carriers circumvent the Schottky barrier formed at metal/n-Ge interfaces. A 2.5× improvement in contact resistivity is reported over previous techniques to achieve ohmic contact to both n- and p- semiconductor. Ohmic contacts at 4.2 K confirm nonequilibrium current transport. Self-assembled Au IMFs are strongly orientated to Ge by annealing near the Au/Ge eutectic temperature. Au IMF nanostructures form, provided the Au layer is below a critical thickness. We anticipate that optimized IMF contacts may have applicability to many material systems. Optimizing this new paradigm for metal-semiconductor contacts offers the prospect of improved nanoelectronic systems and the study of voltage controlled hot holes and electrons.

  16. SiGe HBT linear-in-dB high dynamic range RF envelope detectors and wideband high linearity amplifiers

    OpenAIRE

    Pan, Hsuan-yu

    2010-01-01

    This research work aims on exploiting SiGe HBT technologies in high dynamic range wideband RF linear-in- dB envelope detectors and linear amplifiers. First, an improved all-npn broadband highly linear SiGe HBT differential amplifier is presented based on a variation of Caprio's Quad. A broadband linear amplifier with 46dBm OIP₃ at 20MHz, 34dBm OIP₃ at 1GHz, 6dB noise figure and 10.3dBm P₁dB is demonstrated. Second, an improved exact dynamic model of a fast-settling linear-in-dB Automatic Gain...

  17. The Role of Ge Wetting Layer and Ge Islands in Si MSM Photodetectors

    International Nuclear Information System (INIS)

    Mahmodi, H.; Hashim, M. R.

    2010-01-01

    In this work, Ge thin films were deposited on silicon substrates by radio frequency magnetron sputtering to form Ge islands from Ge layer on Si substrate during post-growth rapid thermal annealing (RTA). The size of the islands decreases from 0.6 to 0.1 as the rapid thermal annealing time increases from 30 s to 60 s at 900 deg. C. Not only that the annealing produces Ge islands but also wetting layer. Energy Dispersive X-ray Spectroscopy (EDX) and Scanning Electron Microscopy (SEM) were employed for structural analysis of Ge islands. Metal-Semiconductor-Metal photodetectors (MSM PDs) were fabricated on Ge islands (and wetting layer)/Si. The Ge islands and wetting layer between the contacts of the fabricated devices are etched in order to see their effects on the device. The performance of the Ge islands MSM-PD was evaluated by dark and photo current-voltage (I-V) measurements at room temperature (RT). It was found that the device with island and wetting layer significantly enhance the current gain (ratio of photo current to dark current) of the device.

  18. Summer program Report : Quality control and Aging study for the GE1/1 detectors in CMS Muon endcap upgrade

    CERN Document Server

    Rajan, Adithya

    2017-01-01

    In this report, I summarize the work I did during my tenure in the Summer program. The project started with conducting three quality controls -- gas leak test, High Voltage test and Gas gain test. These are necessary to check if the GE1/1 detectors pass the requirements necessary for its deployment in the CMS. Then, I explain how aging study of the detectors was conducted and how the data was analyzed to ascertain if the detector has undergone aging. Lastly, the ongoing process of setting up a further accelerated aging study within the GEM lab is explained, with some potential difficulties associated with it.

  19. Semiconductor sensors

    International Nuclear Information System (INIS)

    Hartmann, Frank

    2011-01-01

    Semiconductor sensors have been around since the 1950s and today, every high energy physics experiment has one in its repertoire. In Lepton as well as Hadron colliders, silicon vertex and tracking detectors led to the most amazing physics and will continue doing so in the future. This contribution tries to depict the history of these devices exemplarily without being able to honor all important developments and installations. The current understanding of radiation damage mechanisms and recent R and D topics demonstrating the future challenges and possible technical solutions for the SLHC detectors are presented. Consequently semiconductor sensor candidates for an LHC upgrade and a future linear collider are also briefly introduced. The work presented here is a collage of the work of many individual silicon experts spread over several collaborations across the world.

  20. Growth of Ferromagnetic Epitaxial Film of Hexagonal FeGe on (111) Ge Surface

    Science.gov (United States)

    Kumar, Dushyant; Joshi, P. C.; Hossain, Z.; Budhani, R. C.

    2014-03-01

    The realization of semiconductors showing ferromagnetic order at easily accessible temperatures has been of interest due to their potential use in spintronic devices where long spin life times are of key interest. We have realized the growth of FeGe thin films on Ge (111) wafers using pulsed laser deposition (PLD). The stoichiometric and single phase FeGe target used in PLD chamber has been made by arc melting. A typical θ-2 θ diffraction spectra performed on 40 nm thick FeGe film suggests the stabilization of β-Ni2In (B82-type) hexagonal phase with an epitaxial orientation of (0001)FeGe ||(111)Ge and [11-20]FeGe ||[-110]Ge. SEM images shows a granular structure with the formation of very large grains of about 100 to 500 nm in lateral dimension. The magnetization vs. temperature data taken from SQUID reveal the TC of ~ 270K. Since, PLD technique makes it easier to stabilize the B82 (Ni2In) hexagonal phase in thin FeGe films, this work opens opportunities to reinvestigate many conflicting results on various properties of the FeGe system.

  1. The structural, elastic, electronic and dynamical properties of chalcopyrite semiconductor BeGeAs{sub 2} from first-principles calculations

    Energy Technology Data Exchange (ETDEWEB)

    Ciftci, Yasemin Oe. [Gazi University Teknikokullar, Department of Physics, Faculty of Sciences, Ankara (Turkey); Evecen, Meryem; Aldirmaz, Emine [Amasya University, Department of Physics, Faculty of Arts and Sciences, Amasya (Turkey)

    2017-01-15

    First-principles calculations for the structural, elastic, electronic and vibrational properties of BeGeAs{sub 2} with chalcopyrite structure have been reported in the frame work of the density functional theory. The calculated ground state properties are in good agreement with the available data. By considering the electronic band structure and electronic density of states calculation, it is found that this compound is a semiconductor which confirmed the previous work. Single-crystal elastic constants and related properties such as Young's modulus, Poisson ratio, shear modulus and bulk modulus have been predicted using the stress-finite strain technique. It can be seen from the calculated elastic constants that this compound is mechanically stable in the chalcopyrite structure. Pressure dependences of elastic constants and band gap are also reported. Finally, the phonon dispersion curves and total and partial density of states were calculated and discussed. The calculated phonon frequencies BeGeAs{sub 2} are positive, indicating the dynamical stability of the studied compound. (orig.)

  2. Amplifier channel for a fission fragment semiconductor detector

    International Nuclear Information System (INIS)

    Tyurin, G.P.

    1981-01-01

    To compensate the decrease of the transformation coefficient of fission fragment semiconductor detector (SCD) developed is a special amplification channel with controlled transfer coefficient. The block diagram of the channel is presented, the main functional units of which are as follows: preamplifying head with charge-sensitive and timing preamplifiers, linear amplifier and the circuit of spectrum position stabilization, which includes a differential discriminator, integrator and reference signal generator. The amplification channel is made in the CAMAC standard and has the following specifications: dinamical input capacitance of charge-sensitive amplifier c=10000 n PHI, signal amplitude at output of the linear amplifier at energy of fission fragments of 120 MeV has negative polarity and is equal to 5 V. Pulse amplitude change at SCD sensitivity decrease to 50% constitutes not more than 1%. Timing preamplifier has the gain factor at voltage of K=80 at front duration of 3.5 nc. Time resolution of the amplification channel is not worse than 1 nc. Dimensions of preamplifying head are 40x40x15 mm. The amplification channel permitted to use SCD for long-term measurements of fission fragment spectra [ru

  3. A GEM Detector System for an Upgrade of the High-eta Muon Endcap Stations GE1/1 + ME1/1 in CMS

    CERN Document Server

    Abbaneo, D; Aspell, P.; Bianco, S.; Hoepfner, K.; Hohlmann, M.; Maggi, M.; De Lentdecker, G.; Safonov, A.; Sharma, A.; Tytgat, M.

    2012-01-01

    Based on the CMS Upgrade R&D Proposal RD10.02, we describe the motivation and main features of the CMS GEM Project for LS2 and propose the addition of a full GE1/12 detector station comprising Gas Electron Multiplier (GEM) chambers to the forward muon system of CMS. The limitations of the currently existing forward muon detector when operating at increasingly high luminosity expected after LS1 are laid out followed by a brief description of the anticipated performance improvements achievable with a GE1/1 station. The second part describes the detector system followed by an overview of electronics and associated services including a discussion of the schedule and cost of the project. Plans for a precursor demonstrator installation in LS1 are presented. This proposal is intended as a concise follow-up of the detailed document CMS-IN-2012-023. If approved, this is to be followed by a detailed Technical Design Report.

  4. Simulation and Performance Test Technology Development for Semiconductor Radiation Detection Instrument Fabrication

    International Nuclear Information System (INIS)

    Kim, Jong Kyung; Lee, W. G.; Kim, S. Y.; Shin, C. H.; Kim, K. O.; Park, J. M.; Jang, D. Y.; Kang, J. S.

    2010-06-01

    - Analysis on the Absorbed Dose and Electron Generation by Using MCNPX Code - Analysis on the Change of Measured Energy Spectrum As a Function of Bias Voltage Applied in Semiconductor Detector - Comparison of Monte Carlo Simulation Considering the Charge Collection Efficiency and Experimental Result - Development of Semiconductor Sensor Design Code Based on the Graphic User Interface - Analysis on Depth Profile of Ion-implanted Semiconductor Wafer Surface and Naturally Generated SiO2 Insulation Layer Using Auger Electron Spectroscopy - Measurement of AFM Images and Roughness to Abalyze Surface of Semiconductor Wafer with respect to Annealing and Cleaning Process - Measurement of Physical Properties for Semiconductor Detector Surface after CZT Passivation Process - Evaluation of Crystal Structure and Specific Resistance of CZT - Measurement/Analysis on Band Structure of CZT Crystal - Evaluation of Neutron Convertor Layer with respect to Change in Temperature - Measurement/Evaluation of physical characteristics for lattice parameter, specific resistance, and band structure of CZT crystal - Measurement/Evaluation of lattice transition of SiC semiconductor detector after radiation irradiation - Measurement/Evaluation of performance of semiconductor detector with respect to exposure in high temperature environment

  5. Low frequency noise in semiconductor detectors

    International Nuclear Information System (INIS)

    Stojanovic, M.; Marjanovic, N.

    1998-01-01

    Noise characteristics of surface-barrier detectors based on Au contacts on n-Si were measured and analyzed. The metal layers were deposited by evaporation to 40-100 nm thickness. Standard surface-barrier detectors based on Au/Si structures are known to have favorable characteristics, but they tend to degrade with aging and under severe working conditions. Degradation is particularly related to the increase in noise level, leakage current and the reduction of detector efficiency and resolution. Therefore, practical applications of surface-barrier detectors demand their constant upgrading. Improvements of detector properties are concentrated mainly on the front surface and front (rectifying) contact. The aim was to improve the noise characteristics of the surface-barrier structures and retain the favorable detector properties of the Au/Si system. (authors)

  6. Department of Radiation Detectors: Overview

    International Nuclear Information System (INIS)

    Piekoszewski, J.

    1999-01-01

    Full text: Work carried out in 1998 in the Department of Radiation Detectors concentrated on three subjects: (i) Semiconductor Detectors (ii) X-ray Tube Generators (iii) Material Modification Using Ion and Plasma Beams. SEMICONDUCTOR DETECTORS: Semiconductor detectors of ionizing radiation are among the basic tools utilized in such fields of research and industry as nuclear physics, high energy physics, medical (oncology) radiotherapy, radiological protection, environmental monitoring, energy dispersive X-ray fluorescence non-destructive analysis of chemical composition, nuclear power industry. The departmental objectives are: a search for new types of detectors; producing unique detectors tailored for physics experiments; manufacturing standard detectors for radiation measuring instruments; scientific development of the staff. These objectives were accomplished in 1998 particularly by: research on unique thin silicon detectors for identification of particles in E-ΔE telescopes, modernization of technology of manufacturing Ge(Li) detectors capable of detecting broader range of gamma energies, manufacturing detectors developed in previous years, re-generating and servicing customer detectors of various origin. In accomplishment of the above the Department co-operated with groups of physicists from IPJ, PAN Institute of Physics (Warsaw), and with some technology Institutes based in Warsaw (ITME, ITE). Some detectors and services have been delivered to customers on a commercial basis. X-Ray TUBE GENERATORS: The Department conducts research on design and technology of manufacturing X-ray generators as well as on imaging and dosimetry of X-ray beams. Various models of special construction X-ray tubes and their power supplies are under construction. In 1998 work concentrated on: completing laboratory equipment for manufacturing X-ray tubes and their components, developing technology of manufacturing X-ray tubes and their components, completing a laboratory set-up with

  7. Experience from operating germanium detectors in GERDA

    Science.gov (United States)

    Palioselitis, Dimitrios; GERDA Collaboration

    2015-05-01

    Phase I of the Germanium Detector Array (GERDA) experiment, searching for the neutrinoless double beta (0νββ) decay of 76Ge, was completed in September 2013. The most competitive half-life lower limit for the 0νββ decay of 76Ge was set (T-0ν1/2 > 2.1 · 1025 yr at 90% C.L.). GERDA operates bare Ge diodes immersed in liquid argon. During Phase I, mainly refurbished semi-coaxial high purity Ge detectors from previous experiments were used. The experience gained with handling and operating bare Ge diodes in liquid argon, as well as the stability and performance of the detectors during GERDA Phase I are presented. Thirty additional new enriched BEGe-type detectors were produced and will be used in Phase II. A subgroup of these detectors has already been used successfully in GERDA Phase I. The present paper gives an overview of the production chain of the new germanium detectors, the steps taken to minimise the exposure to cosmic radiation during manufacturing, and the first results of characterisation measurements in vacuum cryostats.

  8. Band structure of semiconductor compounds of Mg sub 2 Si and Mg sub 2 Ge with strained crystal lattice

    CERN Document Server

    Krivosheeva, A V; Shaposhnikov, V L; Krivosheev, A E; Borisenko, V E

    2002-01-01

    The effect of isotopic and unaxial deformation of the crystal lattice on the electronic band structure of indirect band gap semiconductors Mg sub 2 Si and Mg sub 2 Ge has been simulated by means of the linear augmented plane wave method. The reduction of the lattice constant down to 95 % results in a linear increase of the direct transition in magnesium silicide by 48%. The stresses arising under unaxial deformation shift the bands as well as result in splitting of degenerated states. The dependence of the interband transitions on the lattice deformation is nonlinear in this case

  9. Determination and stabilization of the altitude of an aircraft in space using semi-conductor detectors

    International Nuclear Information System (INIS)

    Gilly, L.

    1967-01-01

    The device studied in this report can be used as altimeter or as altitude stabilizer (B.F. number PV 100-107, March 23, 1967). It includes essentially a 'surface barrier' semiconductor detector which counts alpha particles of a radioactive source. Two sources are used corresponding to two possible utilizations of the device. This report describes experiences made in laboratory which comprises electronic tests and a physic study. Systematic analysis of experimental errors is made comparatively with aneroid altimeters. An industrial device project is given. (author) [fr

  10. Development of semiconductor electronics

    International Nuclear Information System (INIS)

    Bardeen, John.

    1977-01-01

    In 1931, Wilson applied Block's theory about the energy bands for the motion of electrons in a crystal lattice to semiconductors and showed that conduction can take place in two different ways, by electrons and by holes. Not long afterwards Frenkel showed that these carriers can flow by diffusion in a concentration gradient as well as under the influence of an electric field and wrote down equations for the current flow. The third major contribution, in the late 1930's was the explanation of rectification at a metalsemiconductor contact by Mott and more completely by Schottky. In late 1947 the first transistor of the point contact type was invented by Brattin, Shockley and Bardeen. Then after single crystals of Ge were grown, the junction transistor was developed by the same group. The first silicon transistors appeared in 1954. Then an important step was discovery of the planar transistor by Hoenri in 1960 which led to development of integrated circuits by 1962. Many transistors are produced by batch processing on a slice of silicon. Then in 1965 Mos (Metal-Oxide Semiconductor) transistor and in 1968 LSI (Large Scale Intergration circuits) were developed. Aside from electronic circuits, there are many other applications of semiconductors, including junction power rectifiers, junction luminescence (including lasers), solar batteries, radiation detectors, microwave oscillators and charged-coupled devices for computer memories and devices. One of the latest developments is a microprocessor with thousands of transistors and associated circuitry on a single small chip of silicon. It can be programmed to provide a variety of circuit functions, thus it is not necessary to go through the great expense of LSI's for each desired function, but to use standard microprocessors and program to do the job

  11. Ge{sub 0.83}Sn{sub 0.17} p-channel metal-oxide-semiconductor field-effect transistors: Impact of sulfur passivation on gate stack quality

    Energy Technology Data Exchange (ETDEWEB)

    Lei, Dian; Wang, Wei; Gong, Xiao, E-mail: elegong@nus.edu.sg, E-mail: yeo@ieee.org; Liang, Gengchiau; Yeo, Yee-Chia, E-mail: elegong@nus.edu.sg, E-mail: yeo@ieee.org [Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117576 (Singapore); Zhang, Zheng; Pan, Jisheng [Institute of Material Research and Engineering, A*STAR (Agency for Science, Technology and Research), 3 Research Link, Singapore 117602 (Singapore); Tok, Eng-Soon [Department of Physics, National University of Singapore, Singapore 117551 (Singapore)

    2016-01-14

    The effect of room temperature sulfur passivation of the surface of Ge{sub 0.83}Sn{sub 0.17} prior to high-k dielectric (HfO{sub 2}) deposition is investigated. X-ray photoelectron spectroscopy (XPS) was used to examine the chemical bonding at the interface of HfO{sub 2} and Ge{sub 0.83}Sn{sub 0.17}. Sulfur passivation is found to be effective in suppressing the formation of both Ge oxides and Sn oxides. A comparison of XPS results for sulfur-passivated and non-passivated Ge{sub 0.83}Sn{sub 0.17} samples shows that sulfur passivation of the GeSn surface could also suppress the surface segregation of Sn atoms. In addition, sulfur passivation reduces the interface trap density D{sub it} at the high-k dielectric/Ge{sub 0.83}Sn{sub 0.17} interface from the valence band edge to the midgap of Ge{sub 0.83}Sn{sub 0.17}, as compared with a non-passivated control. The impact of the improved D{sub it} is demonstrated in Ge{sub 0.83}Sn{sub 0.17} p-channel metal-oxide-semiconductor field-effect transistors (p-MOSFETs). Ge{sub 0.83}Sn{sub 0.17} p-MOSFETs with sulfur passivation show improved subthreshold swing S, intrinsic transconductance G{sub m,int}, and effective hole mobility μ{sub eff} as compared with the non-passivated control. At a high inversion carrier density N{sub inv} of 1 × 10{sup 13 }cm{sup −2}, sulfur passivation increases μ{sub eff} by 25% in Ge{sub 0.83}Sn{sub 0.17} p-MOSFETs.

  12. Detector response of the PHENIX Muon Piston Colorimeter for √{Snn} = 200 GeV Au+Au collisons

    Science.gov (United States)

    Kimelman, Benjamin; Phenix Collaboration

    2013-10-01

    Transverse energy is often used to characterize the energy density in ultra-relativistic heavy ion collisions. Most measurements are obtained in the the central rapidity region; however, the PHENIX Muon Piston Calorimeter (MPC), a homogeneous electromagnetic calorimeter, is a useful tool for measuring this quantity in the forward/backward pseudo-rapidity regions. A full Geant3 detector simulation is used for assessing detector response and the effects of particle decays on the measurement of transverse energy in the pseudo-rapidity range 3 . 1 < | η | < 3 . 9 . In 2010, √{SNN} = 200 GeV Au+Au collisons were obtained and are being analyzed. Various event generators are used as input to the detector simulation to help determine the effects of inflow, outflow, and hadronic response of the MPC. We gratefully acknowledge support from NSF grant number 1209240.

  13. Semiconductor radiation detectors: device physics

    National Research Council Canada - National Science Library

    Lutz, Gerhard

    1999-01-01

    ..., including nuclear physics, elementary particle physics, optical and x-ray astronomy, medicine, and materials testing - and the number of applications is growing continually. Closely related, and initiated by the application of semiconductors, is the development of low-noise low-power integrated electronics for signal readout. The success of semicond...

  14. Spectroscopic Imaging Using Ge and CdTe Based Detector Systems for Hard X-ray Applications

    Science.gov (United States)

    Astromskas, Vytautas

    Third generation synchrotron facilities such as the Diamond Light Source (DLS) have a wide range of experiments performed for a wide range of science fields. The DLS operates at energies up to 150 keV which introduces great challenges to radiation detector technology. This work focuses on the requirements that the detector technology faces for X-ray Absorption Fine Structure (XAFS) and powder diffraction experiments in I12 and I15 beam lines, respectively. A segmented HPGe demonstrator detector with in-built charge sensitive CUBE preamplifiers and a Schottky e- collection CdTe Medipix3RX detector systems were investigated to understand the underlying mechanisms that limit spectroscopic, imaging performances and stability and to find ways to overcome or minimise those limitations. The energy resolution and stability of the Ge demonstrator detector was found to have the required characteristics for XAFS measurements. Charge sharing was identified as a limiting factor to the resolution which is going to be addressed in the future development of a full detector system as well as reductions in electronic noise and cross-talk effects. The stability study of the Schottky CdTe Medipix3RX detector showed that polarization is highly dependent on temperature, irradiation duration and incoming flux. A new pixel behaviour called tri-phase (3-P) pixel was identified and a novel method for determining optimum operational conditions was developed. The use of the 3-P pixels as a criterion for depolarization resulted in a stable performance of the detector. Furthermore, the detector was applied in powder diffraction measurement at the I15 beam line and resulted in the detector diffraction pattern matching the simulated data. CdTe Medipix3RX and HEXITEC spectroscopic imaging detectors were applied in identification and discrimination of transitional metals for security application and K-edge subtraction for medical applications. The results showed that both detectors have potential

  15. Mathematical calibration of Ge detectors, and the instruments that use them

    International Nuclear Information System (INIS)

    Bronson, F.L.; Young, B.

    1997-01-01

    Efficiency calibrations for Ge detectors are typically done with the use of multiple energy calibrations sources which are added to a bulk matrix intended to simulate the measurement sample, and then deposited in the sample container. This is rather easy for common laboratory samples. Bu, even there, for many environmental samples, waste assay samples, and operational health physics samples, accurate calibrations are difficult. For these situations, various mathematical corrections or direct calibration techniques are used at Canberra. EML has pioneered the use of mathematical calibrations following source-based detector characterization measurements for in situ measurements of environmental fallout. Canberra has expanded this by the use of MCNP for the source measurements required in EML. For other calibration situations, MCNP was used directly, as the primary calibration method. This is demonstrated to be at least as accurate as source based measurements, and probably better. Recently, a new method [ISOCS] has been developed and is nearing completion. This promises to be an easy to use calibration software that can be used by the customer for in situ gamma spectroscopy to accurately measure many large sized samples, such as boxes, drums, pipes, or to calibrate small laboratory-type samples. 8 refs., 8 figs., 5 tabs

  16. Mathematical calibration of Ge detectors, and the instruments that use them

    Energy Technology Data Exchange (ETDEWEB)

    Bronson, F.L.; Young, B. [Canberra Industries, Meriden, CT (United States)

    1997-11-01

    Efficiency calibrations for Ge detectors are typically done with the use of multiple energy calibrations sources which are added to a bulk matrix intended to simulate the measurement sample, and then deposited in the sample container. This is rather easy for common laboratory samples. Bu, even there, for many environmental samples, waste assay samples, and operational health physics samples, accurate calibrations are difficult. For these situations, various mathematical corrections or direct calibration techniques are used at Canberra. EML has pioneered the use of mathematical calibrations following source-based detector characterization measurements for in situ measurements of environmental fallout. Canberra has expanded this by the use of MCNP for the source measurements required in EML. For other calibration situations, MCNP was used directly, as the primary calibration method. This is demonstrated to be at least as accurate as source based measurements, and probably better. Recently, a new method [ISOCS] has been developed and is nearing completion. This promises to be an easy to use calibration software that can be used by the customer for in situ gamma spectroscopy to accurately measure many large sized samples, such as boxes, drums, pipes, or to calibrate small laboratory-type samples. 8 refs., 8 figs., 5 tabs.

  17. Spatiotemporal Monte Carlo transport methods in x-ray semiconductor detectors: application to pulse-height spectroscopy in a-Se.

    Science.gov (United States)

    Fang, Yuan; Badal, Andreu; Allec, Nicholas; Karim, Karim S; Badano, Aldo

    2012-01-01

    The authors describe a detailed Monte Carlo (MC) method for the coupled transport of ionizing particles and charge carriers in amorphous selenium (a-Se) semiconductor x-ray detectors, and model the effect of statistical variations on the detected signal. A detailed transport code was developed for modeling the signal formation process in semiconductor x-ray detectors. The charge transport routines include three-dimensional spatial and temporal models of electron-hole pair transport taking into account recombination and trapping. Many electron-hole pairs are created simultaneously in bursts from energy deposition events. Carrier transport processes include drift due to external field and Coulombic interactions, and diffusion due to Brownian motion. Pulse-height spectra (PHS) have been simulated with different transport conditions for a range of monoenergetic incident x-ray energies and mammography radiation beam qualities. Two methods for calculating Swank factors from simulated PHS are shown, one using the entire PHS distribution, and the other using the photopeak. The latter ignores contributions from Compton scattering and K-fluorescence. Comparisons differ by approximately 2% between experimental measurements and simulations. The a-Se x-ray detector PHS responses simulated in this work include three-dimensional spatial and temporal transport of electron-hole pairs. These PHS were used to calculate the Swank factor and compare it with experimental measurements. The Swank factor was shown to be a function of x-ray energy and applied electric field. Trapping and recombination models are all shown to affect the Swank factor.

  18. Hole spin coherence in a Ge/Si heterostructure nanowire

    DEFF Research Database (Denmark)

    Higginbotham, Andrew P; Larsen, Thorvald Wadum; Yao, Jun

    2014-01-01

    Relaxation and dephasing of hole spins are measured in a gate-defined Ge/Si nanowire double quantum dot using a fast pulsed-gate method and dispersive readout. An inhomogeneous dephasing time T2(*)≈ 0.18 μs exceeds corresponding measurements in III-V semiconductors by more than an order of magnit......Relaxation and dephasing of hole spins are measured in a gate-defined Ge/Si nanowire double quantum dot using a fast pulsed-gate method and dispersive readout. An inhomogeneous dephasing time T2(*)≈ 0.18 μs exceeds corresponding measurements in III-V semiconductors by more than an order...

  19. Amplitude and rise time compensated timing optimized for large semiconductor detectors

    International Nuclear Information System (INIS)

    Kozyczkowski, J.J.; Bialkowski, J.

    1976-01-01

    The ARC timing described has excellent timing properties even when using a wide range e.g. from 10 keV to over 1 MeV. The detector signal from a preamplifier is accepted directly by the unit as a timing filter amplifier with a sensitivity of 1 mV is incorporated. The adjustable rise time rejection feature makes it possible to achieve a good prompt time spectrum with symmetrical exponential shape down to less than 1/100 of the peak value. A complete block diagram of the unit is given together with results of extensive tests of its performance. For example the time spectrum for (1330+-20) keV of 60 Co taken with a 43 cm 3 Ge(Li) detector has the following parameters: fwhm = 2.2ns, fwtm = 4.4 ns and fw (0.01) m = 7.6 ns and for (50 +- 10) keV of 22 Na the following was obtained: fwhm = 10.8 ns, fwtm = 21.6 ns and fw (0.01) m = 34.6 ns. In another experiment with two fast plastic scintillations (NE 102A) and using a 20% dynamic energy range the following was measured: fwhm = 280 ps, fwtm = 470 ps and fw (0.01) m = 70ps. (Auth.)

  20. Semiconductor drift chamber: an application of a novel charge transport scheme

    International Nuclear Information System (INIS)

    Gatti, E.; Rehak, P.

    1983-08-01

    The purpose of this paper is to describe a novel charge tranport scheme in semiconductors in which the field responsible for the charge transport is independent of the depletion field. The application of the novel charge transport scheme leads to the following new semiconductor detectors: (1) Semiconductor Draft Chamber; (2) Ultra low capacitance - large semiconductor x-ray spectrometers and photodiodes; and (3) Fully depleted thick CCD. Special attention is paid to the concept of the Semiconductor Draft Chamber as a position sensing detector for high energy charged particles. Position resolution limiting factors are considered, and the values of the resolutions are given

  1. Experience from operating germanium detectors in GERDA

    International Nuclear Information System (INIS)

    Palioselitis, Dimitrios

    2015-01-01

    Phase I of the Germanium Detector Array (GERDA) experiment, searching for the neutrinoless double beta (0νββ) decay of 76 Ge, was completed in September 2013. The most competitive half-life lower limit for the 0νββ decay of 76 Ge was set (T- 0ν 1/2 > 2.1 · 10 25 yr at 90% C.L.). GERDA operates bare Ge diodes immersed in liquid argon. During Phase I, mainly refurbished semi-coaxial high purity Ge detectors from previous experiments were used. The experience gained with handling and operating bare Ge diodes in liquid argon, as well as the stability and performance of the detectors during GERDA Phase I are presented. Thirty additional new enriched BEGe-type detectors were produced and will be used in Phase II. A subgroup of these detectors has already been used successfully in GERDA Phase I. The present paper gives an overview of the production chain of the new germanium detectors, the steps taken to minimise the exposure to cosmic radiation during manufacturing, and the first results of characterisation measurements in vacuum cryostats. (paper)

  2. Development of the mercury iodide semiconductor crystal for application as a radiation detector

    International Nuclear Information System (INIS)

    Martins, Joao Francisco Trencher

    2011-01-01

    In this work, the establishment of a technique for HgI growth and preparation of crystals, for use as room temperature radiation semiconductor detectors is described. Three methods of crystal growth were studied while developing this work: physical vapor transport (PVT); saturated solution of HgI 2 , using two different solvents; (a) dimethyl sulfoxide (DMSO) and (b) acetone, and the Bridgman method. In order to evaluate the obtained crystals by the three methods, systematic measurements were carried out for determining the stoichiometry, structure, orientation, surface morphology and impurity of the crystal. The influence of these physical chemical properties on the crystals development was studied, evaluating their performance as radiation detectors. The X-ray diffractograms indicated that the crystals were, preferentially, oriented in the (001) e (101) directions with tetragonal structure for all crystals. Nevertheless, morphology with a smaller deformation level was observed for the crystal obtained by the PVT technique, comparing to other methods. Uniformity on the surface layer of the PVT crystal was detected, while clear incrustations of elements distinct from the crystal could be viewed on the DMSO crystal surface. The best results as to radiation response were found for the crystal grown by physical vapor transport. Significant improvement in the HgI z2 radiation detector performance was achieved for purer crystals, growing the crystal twice by PVT technique. (author)

  3. Biggest semiconductor installed

    CERN Multimedia

    2008-01-01

    Scientists and technicians at the European Laboratory for Particle Physics, commonly known by its French acronym CERN (Centre Europen pour la Recherche Nuclaire), have completed the installation of the largest semiconductor silicon detector.

  4. X-ray characterization of Ge dots epitaxially grown on nanostructured Si islands on silicon-on-insulator substrates.

    Science.gov (United States)

    Zaumseil, Peter; Kozlowski, Grzegorz; Yamamoto, Yuji; Schubert, Markus Andreas; Schroeder, Thomas

    2013-08-01

    On the way to integrate lattice mismatched semiconductors on Si(001), the Ge/Si heterosystem was used as a case study for the concept of compliant substrate effects that offer the vision to be able to integrate defect-free alternative semiconductor structures on Si. Ge nanoclusters were selectively grown by chemical vapour deposition on Si nano-islands on silicon-on-insulator (SOI) substrates. The strain states of Ge clusters and Si islands were measured by grazing-incidence diffraction using a laboratory-based X-ray diffraction technique. A tensile strain of up to 0.5% was detected in the Si islands after direct Ge deposition. Using a thin (∼10 nm) SiGe buffer layer between Si and Ge the tensile strain increases to 1.8%. Transmission electron microscopy studies confirm the absence of a regular grid of misfit dislocations in such structures. This clear experimental evidence for the compliance of Si nano-islands on SOI substrates opens a new integration concept that is not only limited to Ge but also extendable to semiconductors like III-V and II-VI materials.

  5. Search for neutrinoless double beta decay of Ge-76 with the GERmanium Detector Array '' GERDA ''

    International Nuclear Information System (INIS)

    Brugnera, R.

    2009-01-01

    The study of neutrinoless double beta decay (DBD) is the most powerful approach to the fundamental question if the neutrino is a Majorana particle, i.e. its own anti-particle. The observation of neutrinoless DBD would not only establish the Majorana nature of the neutrino but also represent a determination of its effective mass if the nuclear matrix element is given. So far, the most sensitive results have been obtained with Ge-76, and the group of Klapdor-Kleingrothaus has made a claim of discovery. Future experiments have to reduce radioactive backgrounds to increase the sensitivity. '' GERDA '' is a new double beta-decay experiment which is currently under construction in the INFN Gran Sasso National Laboratory, Italy. It is implementing a new shielding concept by operating bare Ge diodes - enriched in Ge-76 - in high purity liquid argon supplemented by a water shield. The aim of '' GERDA '' is to verify or refute the recent claim of discovery, and, in a second phase, to achieve a two orders of magnitude lower background index than recent experiments, increasing the sensitive mass and reaching exposure of 100 kg yr. It be will discuss design, physics reach, and status of construction of '' GERDA '', and present results from various R efforts including long term stability of bare Ge diodes in cryogenic liquids, material screening, cryostat performance, detector segmentation, cryogenic precision electronics, safety aspects, and Monte Carlo simulations. (author)

  6. Study of charged-current ep interactions at Q2 > 200 GeV2 with the ZEUS detector at HERA

    International Nuclear Information System (INIS)

    Derrick, M.; Krakauer, D.; Magill, S.

    1996-06-01

    Deep inelastic charged-current reactions have been studied in e + p and e - p collisions at a center of mass energy of about 300 GeV in the kinematic region Q 2 >200 GeV 2 and x>0.006 using the ZEUS detector at HERA. The integrated cross sections for Q 2 >200 GeV 2 are found to be σ e + p→ anti νX =30.3 -4.2-2.6 +5.5+1.6 pb and σ e - p→νX =54.7 -9.8-3.4 +15.9+2.8 pb. Differential cross sections have been measured as functions of the variables x, y and Q 2 . From the measured differential cross sections dσ/dQ 2 , the W boson mass is determined to be M W =79 -7-4 +8+4 GeV. Measured jet rates and transverse energy profiles agree with model predictions. A search for charged-current interactions with a large rapidity gap yielded one candidate event, corresponding to a cross section σ e + p→ anti νX (Q 2 >200 GeV 2 ; η max -0.7 +1.8 ±0.1 pb. (orig.)

  7. Operation of CdZnTe Semiconductor Detectors in Liquid Scintillator for the COBRA Experiment

    International Nuclear Information System (INIS)

    Oldorf, Christian

    2015-08-01

    COBRA, the Cadmium-Zinc-Telluride O-neutrino double-Beta Research Apparatus, is an experiment aiming for the measurement of the neutrinoless double beta decay with several isotopes, in particular 116 Cd, 106 Cd and 130 Te. A highly granular large scale experiment with about 400 kg of CdZnTe semiconductor detectors is currently under development. To provide evidence for the neutrinoless double beta decay of 116 Cd, a background rate in the order of 10 -3 counts/keV/kg/a is needed to achieve the required half-life sensitivity of at least 2 . 10 26 years. To reach this target, the detectors have to be operated in a highly pure environment, shielded from external radiation. Liquid scintillator is a promising candidate as a circum fluent replacement for the currently used lacquer. Next to the function as highly pure passivation material, liquid scintillator also acts as a neutron shield and active veto for external gammas. Within this thesis, the design, construction and assembly of a test set-up is described. The operation of four CdZnTe detectors after several years of storage in liquid scintillator is demonstrated. Next to extensive material compatibility tests prior to the assembly, the commissioning of the set-up and the characterization of the detectors are shown. Finally, results concerning the background reduction capability of liquid scintillator and the detection of cosmic muons are presented and compared to a Monte Carlo simulation.

  8. A surface barrier detector for simultaneous detection of α and β particles

    International Nuclear Information System (INIS)

    Shiraishi, Fumio

    1981-01-01

    Semiconductor detectors are indispensable as the solid detectors with high energy resolution. Ge detectors are used for gamma-ray spectroscopy and its applied fields, while Si detectors are used as the detectors for charged particles such as α and β rays and low energy X-ray. In this paper, it is reported that the Si detector developed in the author's laboratory is suitable to monitor very weak radioactivity. The Si detector is a rectifier, but in order to capture radiation, it has large area and increased thickness, and a window is provided for incident charged particles. The Si detectors are classified into three types according to the manufacturing methods, namely surface barrier type, PN joint type and Li drift type. The Si detector introduced here is of surface barrier type, but it is characterized by the use of P-type Si with superhigh purity. The method of manufacturing this detector, its specifications and characteristics are described. Because of the surface barrier type, it can be produced simply in short time, and the yield of products is good. The stability is good, and the sensitivity is high, accordingly very weak radioactivity can be measured. As the examples of measurements, the results of uranium ore and fertilizer on the market are compared. Also the utilization as surface contamination meters is explained. (Kako, I.)

  9. Efficiency correction for disk sources using coaxial High-Purity Ge detectors

    International Nuclear Information System (INIS)

    Chatani, Hiroshi.

    1993-03-01

    Efficiency correction factors for disk sources were determined by making use of closed-ended coaxial High-Purity Ge (HPGe) detectors, their relative efficiencies for a 3' 'x3' ' NaI(Tl) with the 1.3 MeV γ-rays were 30 % and 10 %, respectively. Parameters for the correction by mapping method were obtained systematically, using several monoenergetic (i.e. no coincidence summing loses) γ-ray sources produced by irradiation in the Kyoto University Reactor (KUR) core. These were found out that (1) the systematics of the Gaussian fitting parameters, which were calculated using the relative efficiency distributions of HPGe, to the γ-ray energies are recognized, (2) the efficiency distributions deviate from the Gaussian distributions outside of the radii of HPGe. (3) mapping method is a practical use in satisfactory accuracy, as the results in comparison with the disk source measurements. (author)

  10. Fast rise time IR detectors for lepton colliders

    International Nuclear Information System (INIS)

    Drago, A.; Bini, S.; Guidi, M. Cestelli; Marcelli, A.; Pace, E.

    2016-01-01

    Diagnostics is a fundamental issue for accelerators whose demands are continuously increasing. In particular bunch-by-bunch diagnostics is a key challenge for the latest generation of lepton colliders and storage rings. The Frascati Φ-factory, DAΦNE, colliding at 1.02 GeV in the centre of mass, hosts in the main rings few synchrotron radiation beamlines and two of them collect the synchrotron radiation infrared emission: SINBAD from the electron ring and 3+L from the positron ring. At DAΦNE each bucket is 2.7 ns long and particles are gathered in bunches emitting pulsed IR radiation, whose intensity in the long wavelength regime is directly proportional to the accumulated particles. Compact uncooled photoconductive HgCdTe detectors have been tested in both beamlines using dedicated optical layouts. Actually, the fast rise time of HgCdTe semiconductors give us the chance to test bunch-by-bunch devices for both longitudinal and transverse diagnostics. For the longitudinal case, single pixel detectors have been used, while for the transverse diagnostics, multi-pixel array detectors, with special custom design, are under test. This contribution will briefly describe the status of the research on fast IR detectors at DAΦNE, the results obtained and possible foreseen developments.

  11. Design and operation of a 2-D thin-film semiconductor neutron detector array for use as a beamport monitor

    International Nuclear Information System (INIS)

    Unruh, Troy C.; Bellinger, Steven L.; Huddleston, David E.; McNeil, Walter J.; Patterson, Eric; Sobering, Tim J.; McGregor, Douglas S.

    2009-01-01

    Silicon-based diodes coated with a thin film of neutron reactive materials have been shown to produce excellent low-efficiency neutron detectors. This work employs the same technology, but groups 25 equally sized and spaced diodes on a single 29 mm by 29 mm substrate. A 5x5 array was fabricated and coated with a thin film of 6 LiF for use as a low-efficiency neutron beam monitor. The 5x5 neutron detector array is coupled to an array of amplifiers, allowing the response to be interpreted using a LabVIEW FPGA. The 5x5 array has been characterized in a diffracted neutron beam. This work is a part of on-going research to develop various designs of high- and low-efficiency semiconductor neutron detectors.

  12. Infrared detectors

    CERN Document Server

    Rogalski, Antonio

    2010-01-01

    This second edition is fully revised and reorganized, with new chapters concerning third generation and quantum dot detectors, THz detectors, cantilever and antenna coupled detectors, and information on radiometry and IR optics materials. Part IV concerning focal plane arrays is significantly expanded. This book, resembling an encyclopedia of IR detectors, is well illustrated and contains many original references … a really comprehensive book.-F. Sizov, Institute of Semiconductor Physics, National Academy of Sciences, Kiev, Ukraine

  13. Semiconductor radiation detectors technology and applications

    CERN Document Server

    2018-01-01

    The aim of this book is to educate the reader on radiation detectors, from sensor to read-out electronics to application. Relatively new detector materials, such as CdZTe and Cr compensated GaAs, are introduced, along with emerging applications of radiation detectors. This X-ray technology has practical applications in medical, industrial, and security applications. It identifies materials based on their molecular composition, not densities as the traditional transmission equipment does. With chapters written by an international selection of authors from both academia and industry, the book covers a wide range of topics on radiation detectors, which will satisfy the needs of both beginners and experts in the field.

  14. Cryogenic semiconductor high-intensity radiation monitors

    International Nuclear Information System (INIS)

    Palmieri, V.G.; Bell, W.H.; Borer, K.; Casagrande, L.; Da Via, C.; Devine, S.R.H.; Dezillie, B.; Esposito, A.; Granata, V.; Hauler, F.; Jungermann, L.; Li, Z.; Lourenco, C.; Niinikoski, T.O.; Shea, V. O'; Ruggiero, G.; Sonderegger, P.

    2003-01-01

    This paper describes a novel technique to monitor high-intensity particle beams by means of a semiconductor detector. It consists of cooling a semiconductor detector down to cryogenic temperature to suppress the thermally generated leakage current and to precisely measure the integrated ionization signal. It will be shown that such a device provides very good linearity and a dynamic range wider than is possible with existing techniques. Moreover, thanks to the Lazarus effect, extreme radiation hardness can be achieved providing in turn absolute intensity measurements against precise calibration of the device at low beam flux

  15. Structural characterization of the high-temperature modification of the Cu_2ZnGeTe_4 quaternary semiconductor compound

    International Nuclear Information System (INIS)

    Nieves, L.; Marcano, G.; Power, C.; Rincon, C.; Delgado, G.E.; Lopez-Rivera, S.A.

    2016-01-01

    A combined study of the X-ray powder diffraction, differential thermal analysis, optical absorption, and Raman spectroscopy of the high-temperature modification of Cu_2ZnGeTe_4 quaternary semiconductor, obtained by fast quenching from 820 K to ice water temperature, has been done. It has been found that this phase crystallizes in a tetragonal kesterite-type structure. From the analysis of the absorption coefficient spectra, the band gap energy of this material at room temperature has been found to be 1.49 eV. An optical transition from defect acceptor states to the conduction band is also observed below the fundamental absorption edge. Three strongest Raman lines observed at 116, 119, and 139 cm"-"1 have been assigned to the A-symmetry modes. Also, lines at 81, 89, 97, and 263 cm"-"1 tentatively ascribed as B or E-symmetry modes have been detected from the spectrum. The presence in this high-temperature modification of ZnTe and Cu_2GeTe_3 secondary phases has been detected by both XRD and Raman spectroscopy. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  16. Use of semiconductors in energy-dispersive X-ray analysis

    International Nuclear Information System (INIS)

    Schiekel, M.

    1983-01-01

    The state-of-the-art of the application of semiconductor detectors with high resolution for photon radiation in energy-dispersive spectrometers is reviewed. It is concluded that the use of semiconductor detectors results in an improvement of spectrometers and thus in a wider range of application. Characteristics of the spectrometers, such as energy resolution and efficiency, are discussed and possible applications indicated. (author)

  17. Position-sensitive superconductor detectors

    International Nuclear Information System (INIS)

    Kurakado, M.; Taniguchi, K.

    2016-01-01

    Superconducting tunnel junction (STJ) detectors and superconducting transition- edge sensors (TESs) are representative superconductor detectors having energy resolutions much higher than those of semiconductor detectors. STJ detectors are thin, thereby making it suitable for detecting low-energy X rays. The signals of STJ detectors are more than 100 times faster than those of TESs. By contrast, TESs are microcalorimeters that measure the radiation energy from the change in the temperature. Therefore, signals are slow and their time constants are typically several hundreds of μs. However, TESs possess excellent energy resolutions. For example, TESs have a resolution of 1.6 eV for 5.9-keV X rays. An array of STJs or TESs can be used as a pixel detector. Superconducting series-junction detectors (SSJDs) comprise multiple STJs and a single-crystal substrate that acts as a radiation absorber. SSJDs are also position sensitive, and their energy resolutions are higher than those of semiconductor detectors. In this paper, we give an overview of position-sensitive superconductor detectors.

  18. Metoda pentru analiza spectrometrica cu detector de Ge(Li) a probelor de trasori radioactivi cu rasini schimbatoare de ioni

    International Nuclear Information System (INIS)

    Stanescu, S.P.; Farcasiu, O.M.

    1981-07-01

    The radioactive tracers methods presently in use in hydrology are based on ''in situ'' low resolution gamma-ray spectrometry measurements. However sometimes the information obtained in this way is not conclusive and the need for better spectrometry systems is evident. Therefore the authors present a method for measuring in laboratory conditions samples of radioactive tracers collected ''in situ'' and concentrated on ions exchange resins, sing low level gamma-ray spectrometry with Ge(Li) detector. The advantages of this method in comparison with the methods based on Na(Tl) detectors are also presented in the paper. (authors)

  19. SiliPET: Design of an ultra-high resolution small animal PET scanner based on stacks of semi-conductor detectors

    International Nuclear Information System (INIS)

    Cesca, N.; Auricchio, N.; Di Domenico, G.; Zavattini, G.; Malaguti, R.; Andritschke, R.; Kanbach, G.; Schopper, F.

    2007-01-01

    We studied with Monte Carlo simulations, using the EGSnrc code, a new scanner for small animal positron emission tomography (PET), based on stacks of double-sided semiconductor detectors. Each stack is composed of planar detectors with dimension 70x60x1 mm 3 and orthogonal strips on both sides with 500 μm pitch to read the two interaction coordinates, the third being the detector number in the stack. Multiple interactions in a stack are discarded. In this way, we achieve a precise determination of the first interaction point of the two 511 keV photons. The reduced dimensions of the scanner also improve the solid angle coverage resulting in a high sensitivity. Preliminary results of scanners based on Si planar detectors are presented and the initial tomographic reconstructions demonstrate very good spatial resolution limited only by the positron range. This suggests that, this is a promising new approach for small animal PET imaging. We are testing some double-sided silicon detectors, equipped with 128 orthogonal p and n strips on opposite sides using VATAGP3 ASIC by IDEAS

  20. Radiation detectors laboratory; Laboratorio de detectores de radiacion

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez J, F.J. [Instituto Nacional de Investigaciones Nucleares, A.P. 18-1027, 11801 Mexico D.F. (Mexico)

    1997-07-01

    The Radiation detectors laboratory was established with the assistance of the International Atomic Energy Agency which gave this the responsibility to provide its services at National and regional level for Latin America and it is located at the ININ. The more expensive and delicate radiation detectors are those made of semiconductor, so it has been put emphasis in the use and repairing of these detectors type. The supplied services by this laboratory are: selection consultant, detectors installation and handling and associated systems. Installation training, preventive and corrective maintenance of detectors and detection systems calibration. (Author)

  1. Measurement of neutron flux distribution by semiconductor detector; merenje raspodele neutronskog fluksa poluprovodnickim detektorom

    Energy Technology Data Exchange (ETDEWEB)

    Obradovic, D; Bosevski, T [Institut za nuklearne nauke Boris Kidric, Vinca, Beograd (Yugoslavia)

    1964-07-01

    Application of semiconductor detectors for measuring neutron flux distribution is about 10 times faster than measurements by activation foils and demands significantly lower reactor power. Following corrections are avoided: mass of activation foils which influences the self shielding, nuclear decay during activity measurements; counter dead-time. It is possible to control the measured data during experiment and repeat measurements if needed. Precision of the measurement is higher since it is possible to choose the wanted statistics. The method described in this paper is applied for measurements at the RB reactor. It is concluded that the method is suitable for fast measurements but the activation analysis is still indispensable.

  2. Use of radioactive tracers in the semiconductor industry

    International Nuclear Information System (INIS)

    Akerman, Karol

    1975-01-01

    Manufacture of the semiconductor materials comprises production and purification of the raw materials (GeC14 or SiHC13), purification of the elemental semiconductors by metallurgical methods (including zone melting), production and doping of single crystals, dividing the crystals into slices of suitable size, formation of p-n junctions and fabrication of the finished semiconductor devices. In the sequence of operations, the behavior of very small quantities of an element must be monitored, and radioactive tracers are often used to solve these problems. Examples are given of the use of radioactive tracers in the semiconductor industry

  3. Synthesis of crystalline Ge nanoclusters in PE-CVD-deposited SiO2 films

    DEFF Research Database (Denmark)

    Leervad Pedersen, T.P.; Skov Jensen, J.; Chevallier, J.

    2005-01-01

    The synthesis of evenly distributed Ge nanoclusters in plasma-enhanced chemical-vapour-deposited (PE-CVD) SiO2 thin films containing 8 at. % Ge is reported. This is of importance for the application of nanoclusters in semiconductor technology. The average diameter of the Ge nanoclusters can...

  4. Response of CR39 detector to 5 A GeV Si14+ ions and measurement of total charge changing cross-section

    International Nuclear Information System (INIS)

    Gupta, Renu; Kumar, Ashavani

    2013-01-01

    In the present work, response of CR39 track etch detector was obtained by cone-height measurement technique. CR39 track etch detector was used to identify the incident charged particles and their fragments by the measurements of cone-height of tracks using an optical microscope DM6000 M and automated image analyzer system installed with Leica QWin Plus software. The CR39 detector was calibrated and the response points were fitted with a linear relation and all the points are within the limits of the experimental errors. The charge resolution of the detector was calculated to be 0.2e. The response function is obtained and fitted with a linear relation which is good throughout Z/β=6.1–14.1. The experimental value of the total charge changing cross-section of 5 A GeV Si 14+ ion beam in polyethylene and CR39 combined target is σ tot =(734±128) mb. The total charge changing cross-section is compared with the experimental results of others based on cone base-area measurement technique and also fitted by the Bradt–Peters geometrical cross-section. - Highlights: • Charge resolution of 0.2e was obtained by cone-height measurement. • Consistency in manual measurements of cone-heights is presented. • Response of CR39 detector was obtained and fitted with first degree polynomial. • Total charge changing cross-section of 5 A GeV Si 14+ ions in CH 2 and CR39 as a combined target was calculated

  5. Thin SiGe virtual substrates for Ge heterostructures integration on silicon

    International Nuclear Information System (INIS)

    Cecchi, S.; Chrastina, D.; Frigerio, J.; Isella, G.; Gatti, E.; Guzzi, M.; Müller Gubler, E.; Paul, D. J.

    2014-01-01

    The possibility to reduce the thickness of the SiGe virtual substrate, required for the integration of Ge heterostructures on Si, without heavily affecting the crystal quality is becoming fundamental in several applications. In this work, we present 1 μm thick Si 1−x Ge x buffers (with x > 0.7) having different designs which could be suitable for applications requiring a thin virtual substrate. The rationale is to reduce the lattice mismatch at the interface with the Si substrate by introducing composition steps and/or partial grading. The relatively low growth temperature (475 °C) makes this approach appealing for complementary metal-oxide-semiconductor integration. For all the investigated designs, a reduction of the threading dislocation density compared to constant composition Si 1−x Ge x layers was observed. The best buffer in terms of defects reduction was used as a virtual substrate for the deposition of a Ge/SiGe multiple quantum well structure. Room temperature optical absorption and photoluminescence analysis performed on nominally identical quantum wells grown on both a thick graded virtual substrate and the selected thin buffer demonstrates a comparable optical quality, confirming the effectiveness of the proposed approach

  6. Electric field distribution and the charge collection process in not-ideally compensated coaxial Ge(Li) detectors

    International Nuclear Information System (INIS)

    Szymczyk, W.M.; Moszynski, M.

    1978-01-01

    The not-ideally compensated space charge of donors and acceptors in lithium-drifted coaxial Ge(Li) detectors can modify the electric field distribution in the detector depleted volume, and influence in this way the charge collection process. Observations of the capacity, the time of charge collection (transit time), and the relative efficiency characteristics vs. detector bias voltage, showed that in conventional pin + coaaxial structures an undercompensation near the inner p-type core was typical. It was found that such an undercompensation had negligible consequences from the charge collection point of view. However, one case was observed where the modification near the outer electrode was present. In that case the charge pulses with remarkably increased rise-times were observed, as compared to the predictions based on the assumption of the classical, E proportional to 1/r, electric field distribution. The pulses expected from not-ideally compensated detectors were calculated using the Variable Velocity Approximation. The pulses expected from and much better agreement with the observed pulses was obtained. The calculated and observed dependencies of the charge transit times vs. reciprocal of the detector bias voltage exhibited, in the absence of the outer-electrode modification, linear parts. Measurement of their slopes permitted to find experimentally the depletion layer width provided the charge carriers mobility value was known, or vice versa. (Auth.)

  7. Electron injection in semiconductor drift detectors

    International Nuclear Information System (INIS)

    Rehak, P.; Gatti, E.; Longoni, A.; Sampietro, M.; Castoldi, A.; Vacchi, A.

    1990-01-01

    The paper reports the first successful results of a simple MOS structure to inject electrons at a given position in Silicon Drift Detectors. The structure allows on-line calibration of the drift velocity of electrons within the detector. The calibration is a practical method to trace the temperature dependence of the electron mobility. Several of these injection structures can be implemented in silicon drift detectors without additional steps in the fabrication process. 5 refs., 11 figs

  8. Monolithic Ge-on-Si lasers for large-scale electronic-photonic integration

    Science.gov (United States)

    Liu, Jifeng; Kimerling, Lionel C.; Michel, Jurgen

    2012-09-01

    A silicon-based monolithic laser source has long been envisioned as a key enabling component for large-scale electronic-photonic integration in future generations of high-performance computation and communication systems. In this paper we present a comprehensive review on the development of monolithic Ge-on-Si lasers for this application. Starting with a historical review of light emission from the direct gap transition of Ge dating back to the 1960s, we focus on the rapid progress in band-engineered Ge-on-Si lasers in the past five years after a nearly 30-year gap in this research field. Ge has become an interesting candidate for active devices in Si photonics in the past decade due to its pseudo-direct gap behavior and compatibility with Si complementary metal oxide semiconductor (CMOS) processing. In 2007, we proposed combing tensile strain with n-type doping to compensate the energy difference between the direct and indirect band gap of Ge, thereby achieving net optical gain for CMOS-compatible diode lasers. Here we systematically present theoretical modeling, material growth methods, spontaneous emission, optical gain, and lasing under optical and electrical pumping from band-engineered Ge-on-Si, culminated by recently demonstrated electrically pumped Ge-on-Si lasers with >1 mW output in the communication wavelength window of 1500-1700 nm. The broad gain spectrum enables on-chip wavelength division multiplexing. A unique feature of band-engineered pseudo-direct gap Ge light emitters is that the emission intensity increases with temperature, exactly opposite to conventional direct gap semiconductor light-emitting devices. This extraordinary thermal anti-quenching behavior greatly facilitates monolithic integration on Si microchips where temperatures can reach up to 80 °C during operation. The same band-engineering approach can be extended to other pseudo-direct gap semiconductors, allowing us to achieve efficient light emission at wavelengths previously

  9. Monolithic Ge-on-Si lasers for large-scale electronic–photonic integration

    International Nuclear Information System (INIS)

    Liu, Jifeng; Kimerling, Lionel C; Michel, Jurgen

    2012-01-01

    A silicon-based monolithic laser source has long been envisioned as a key enabling component for large-scale electronic–photonic integration in future generations of high-performance computation and communication systems. In this paper we present a comprehensive review on the development of monolithic Ge-on-Si lasers for this application. Starting with a historical review of light emission from the direct gap transition of Ge dating back to the 1960s, we focus on the rapid progress in band-engineered Ge-on-Si lasers in the past five years after a nearly 30-year gap in this research field. Ge has become an interesting candidate for active devices in Si photonics in the past decade due to its pseudo-direct gap behavior and compatibility with Si complementary metal oxide semiconductor (CMOS) processing. In 2007, we proposed combing tensile strain with n-type doping to compensate the energy difference between the direct and indirect band gap of Ge, thereby achieving net optical gain for CMOS-compatible diode lasers. Here we systematically present theoretical modeling, material growth methods, spontaneous emission, optical gain, and lasing under optical and electrical pumping from band-engineered Ge-on-Si, culminated by recently demonstrated electrically pumped Ge-on-Si lasers with >1 mW output in the communication wavelength window of 1500–1700 nm. The broad gain spectrum enables on-chip wavelength division multiplexing. A unique feature of band-engineered pseudo-direct gap Ge light emitters is that the emission intensity increases with temperature, exactly opposite to conventional direct gap semiconductor light-emitting devices. This extraordinary thermal anti-quenching behavior greatly facilitates monolithic integration on Si microchips where temperatures can reach up to 80 °C during operation. The same band-engineering approach can be extended to other pseudo-direct gap semiconductors, allowing us to achieve efficient light emission at wavelengths previously

  10. Total cross section measurements for νμ, ν-barμ interactions in 3 - 30 GeV energy range with IHEP - JINR neutrino detector

    International Nuclear Information System (INIS)

    Anikeev, V.B.; Belikov, S.V.; Borisov, A.A.

    1995-01-01

    The results of total cross section measurements for the ν μ , ν-bar μ interactions with isoscalar target in the 3 - 30 GeV energy range have been presented. The data were obtained with the IHEP - JINR Neutrino Detector in the 'natural' neutrino beams of the U - 70 accelerator. The significant deviation from the linear dependence for σ tot versus neutrino energy is determined in the energy range less than 15 GeV. 46 refs., 10 figs., 5 tabs

  11. Three types of photon detectors for in situ measurements

    Science.gov (United States)

    Helmer, R. G.; Gehrke, R. J.; Carpenter, M. V.

    1999-02-01

    The authors have been involved in the calibration and use of three types of γ- and X-ray detectors for in situ measurements of soil contamination. These three detectors are an N-type, thin-window Ge semiconductor detector (5.0 cm diam.× 2.0 cm deep), a plastic scintillator (30.5 cm × 30.5 cm × 3.8 cm thick), and an array of six CaF 2 detectors (each 7.6 cm × 7.6 cm × 0.15 cm thick). The latter two detectors have been used with scanning systems that allow significant areas (say, >100 m 2) to be surveyed completely with the aid of either laser-based triangulation or a global positioning system (GPS) to record the precise position for each measurement. Typically, these systems scan at a rate of 15-30 cm/s which allows an area of 100 m 2 to covered with the plastic scintillator in about 15 min. The data are telemetered or transferred via RS232 protocol to a computer, providing operators with real-time mapping of the area surveyed and of the measured detector count rate. The "efficiencies" of these detectors have been determined by a combination of measurements of calibrated planar sources and Monte Carlo transport calculations for a variety of source sizes and depths in soil, as well as by comparing these field measurements with independent laboratory sample analysis.

  12. Status and problems of semiconductor detectors

    International Nuclear Information System (INIS)

    Walton, J.T.; Goulding, F.S.; Haller, E.E.; Pehl, R.H.

    1981-03-01

    A brief review is given of the types of silicon and germanium detectors used or presently being developed for nuclear experiments. Large-area silicon and germanium detector telescopes for use in long-range particle detection and identification are emphasized. Large area position-sensitive detectors are also described. Some results are presented regarding radiation damage and damage repair by annealing. Evidence is also presented for the importance of producing large area silicon crystals of adequate quality to reduce trapping problems to negligible proportions

  13. Status and problems of semiconductor detectors

    Energy Technology Data Exchange (ETDEWEB)

    Walton, J.T.; Goulding, F.S.; Haller, E.E.; Pehl, R.H.

    1981-03-01

    A brief review is given of the types of silicon and germanium detectors used or presently being developed for nuclear experiments. Large-area silicon and germanium detector telescopes for use in long-range particle detection and identification are emphasized. Large area position-sensitive detectors are also described. Some results are presented regarding radiation damage and damage repair by annealing. Evidence is also presented for the importance of producing large area silicon crystals of adequate quality to reduce trapping problems to negligible proportions.

  14. SAMPO80, Ge(Li) Detector Gamma Spectra Unfolding with Isotope Identification

    International Nuclear Information System (INIS)

    Koskelo, M.J.; Aarnio, P.A.; Routti, J.T.

    1998-01-01

    1 - Description of problem or function: Analysis of gamma spectra measured with Ge(Li) or HPGe detectors. 2 - Method of solution: - Shape calibration using a non-linear least squares algorithm with a variable metric method. - Peak location with a smoothed second difference method. - Peak area calculation with a linear least squares fit to predefined peak shapes. - Nuclide identification with a linear least squares fit based on associated lines. 3 - Restrictions on the complexity of the problem: Number of shape calibration points allowed: 20; Number of energy calibration points allowed: 20; Number of efficiency calibration points allowed: 20; Maximum number of found peaks: 100; Maximum number of fitted peaks: 100; Maximum number of peaks in a multiplet: 5; Maximum number of channels in a fitting interval: 50; Maximum number of peaks for nuclide identification: 80; Maximum number of identified nuclides: 30; Maximum number of lines per nuclide: 30

  15. Improvements in Applied Gamma-Ray Spectrometry with Germanium Semiconductor Detector

    Energy Technology Data Exchange (ETDEWEB)

    Brune, D; Hellstroem, S [AB Atomenergi, Nykoeping (Sweden); Dubois, J [Chalmers University of Technology, Goeteborg (Sweden)

    1965-01-15

    A germanium semi-conductor detector has in the present investigation been used in four cases of applied gamma-ray spectrometry. In one case the weak-activity contribution of Cs{sup 134} in Cs{sup 137} standard sources has been determined. The second case concerns the determination of K{sup 42} in samples of biological origin containing strong Na{sup 24} activities. In the third case the Nb{sup 94} and Nb{sup 95} activities from neutron-irradiated niobium foils used in the dosimetry of high neutron fluxes with long exposure times have been completely resolved and it has been possible to determine the ratio of the two activities with a high degree of accuracy. Finally, a Zr{sup 95} - Nb{sup 95} source has been analysed in a similar way with respect to its radiochemical composition. The resolution obtained also made possible a determination of the branching ratio of the two gamma-transitions in Zr{sup 95} and of the energies of the gamma-transitions of both nuclides.

  16. Vibrational dynamics and band structure of methyl-terminated Ge(111)

    Energy Technology Data Exchange (ETDEWEB)

    Hund, Zachary M.; Nihill, Kevin J.; Sibener, S. J., E-mail: s-sibener@uchicago.edu [The James Franck Institute and Department of Chemistry, The University of Chicago, 929 E. 57" t" h Street, Chicago, Illinois 60637 (United States); Campi, Davide; Bernasconi, M. [Dipartimento di Scienza dei Materiali, Universita di Milano-Bicocca, Via Cozzi 53, 20125 Milano (Italy); Wong, Keith T.; Lewis, Nathan S. [Division of Chemistry and Chemical Engineering, Beckman Institute and Kavli Nanoscience Institute, California Institute of Technology, 210 Noyes Laboratory, 127-72, Pasadena, California 91125 (United States); Benedek, G. [Dipartimento di Scienza dei Materiali, Universita di Milano-Bicocca, Via Cozzi 53, 20125 Milano (Italy); Donostia International Physics Center (DIPC), Universidad del País Vasco (EHU), 20018 Donostia/San Sebastian (Spain)

    2015-09-28

    A combined synthesis, experiment, and theory approach, using elastic and inelastic helium atom scattering along with ab initio density functional perturbation theory, has been used to investigate the vibrational dynamics and band structure of a recently synthesized organic-functionalized semiconductor interface. Specifically, the thermal properties and lattice dynamics of the underlying Ge(111) semiconductor crystal in the presence of a commensurate (1 × 1) methyl adlayer were defined for atomically flat methylated Ge(111) surfaces. The mean-square atomic displacements were evaluated by analysis of the thermal attenuation of the elastic He diffraction intensities using the Debye-Waller model, revealing an interface with hybrid characteristics. The methyl adlayer vibrational modes are coupled with the Ge(111) substrate, resulting in significantly softer in-plane motion relative to rigid motion in the surface normal. Inelastic helium time-of-flight measurements revealed the excitations of the Rayleigh wave across the surface Brillouin zone, and such measurements were in agreement with the dispersion curves that were produced using density functional perturbation theory. The dispersion relations for H-Ge(111) indicated that a deviation in energy and lineshape for the Rayleigh wave was present along the nearest-neighbor direction. The effects of mass loading, as determined by calculations for CD{sub 3}-Ge(111), as well as by force constants, were less significant than the hybridization between the Rayleigh wave and methyl adlayer librations. The presence of mutually similar hybridization effects for CH{sub 3}-Ge(111) and CH{sub 3}-Si(111) surfaces extends the understanding of the relationship between the vibrational dynamics and the band structure of various semiconductor surfaces that have been functionalized with organic overlayers.

  17. Vibrational dynamics and band structure of methyl-terminated Ge(111)

    International Nuclear Information System (INIS)

    th Street, Chicago, Illinois 60637 (United States))" data-affiliation=" (The James Franck Institute and Department of Chemistry, The University of Chicago, 929 E. 57th Street, Chicago, Illinois 60637 (United States))" >Hund, Zachary M.; th Street, Chicago, Illinois 60637 (United States))" data-affiliation=" (The James Franck Institute and Department of Chemistry, The University of Chicago, 929 E. 57th Street, Chicago, Illinois 60637 (United States))" >Nihill, Kevin J.; th Street, Chicago, Illinois 60637 (United States))" data-affiliation=" (The James Franck Institute and Department of Chemistry, The University of Chicago, 929 E. 57th Street, Chicago, Illinois 60637 (United States))" >Sibener, S. J.; Campi, Davide; Bernasconi, M.; Wong, Keith T.; Lewis, Nathan S.; Benedek, G.

    2015-01-01

    A combined synthesis, experiment, and theory approach, using elastic and inelastic helium atom scattering along with ab initio density functional perturbation theory, has been used to investigate the vibrational dynamics and band structure of a recently synthesized organic-functionalized semiconductor interface. Specifically, the thermal properties and lattice dynamics of the underlying Ge(111) semiconductor crystal in the presence of a commensurate (1 × 1) methyl adlayer were defined for atomically flat methylated Ge(111) surfaces. The mean-square atomic displacements were evaluated by analysis of the thermal attenuation of the elastic He diffraction intensities using the Debye-Waller model, revealing an interface with hybrid characteristics. The methyl adlayer vibrational modes are coupled with the Ge(111) substrate, resulting in significantly softer in-plane motion relative to rigid motion in the surface normal. Inelastic helium time-of-flight measurements revealed the excitations of the Rayleigh wave across the surface Brillouin zone, and such measurements were in agreement with the dispersion curves that were produced using density functional perturbation theory. The dispersion relations for H-Ge(111) indicated that a deviation in energy and lineshape for the Rayleigh wave was present along the nearest-neighbor direction. The effects of mass loading, as determined by calculations for CD 3 -Ge(111), as well as by force constants, were less significant than the hybridization between the Rayleigh wave and methyl adlayer librations. The presence of mutually similar hybridization effects for CH 3 -Ge(111) and CH 3 -Si(111) surfaces extends the understanding of the relationship between the vibrational dynamics and the band structure of various semiconductor surfaces that have been functionalized with organic overlayers

  18. Entangled γ-photons—classical laboratory exercise with modern detectors

    Science.gov (United States)

    Hetfleiš, Jakub; Lněnička, Jindřich; Šlégr, Jan

    2018-03-01

    This paper describes the application of modern semiconductor detectors of γ and β radiation, which can be used in undergraduate laboratory experiments and lecture demonstrations as a replacement for Geiger-Müller (GM) tubes. Unlike GM tubes, semiconductor detectors do not require a high voltage power source or shaping circuits. The principle of operation of semiconductor detectors is discussed briefly, and classical experiments from nuclear physics are described, ranging from the measurements of linear and mass attenuation coefficient to a demonstration of entangled γ-photons.

  19. Extreme IR absorption in group IV-SiGeSn core-shell nanowires

    Science.gov (United States)

    Attiaoui, Anis; Wirth, Stephan; Blanchard-Dionne, André-Pierre; Meunier, Michel; Hartmann, J. M.; Buca, Dan; Moutanabbir, Oussama

    2018-06-01

    Sn-containing Si and Ge (Ge1-y-xSixSny) alloys are an emerging family of semiconductors with the potential to impact group IV material-based devices. These semiconductors provide the ability to independently engineer both the lattice parameter and bandgap, which holds the premise to develop enhanced or novel photonic and electronic devices. With this perspective, we present detailed investigations of the influence of Ge1-y-xSixSny layers on the optical properties of Si and Ge based heterostructures and nanowires. We found that by adding a thin Ge1-y-xSixSny capping layer on Si or Ge greatly enhances light absorption especially in the near infrared range, leading to an increase in short-circuit current density. For the Ge1-y-xSixSny structure at thicknesses below 30 nm, a 14-fold increase in the short-circuit current is observed with respect to bare Si. This enhancement decreases by reducing the capping layer thickness. Conversely, decreasing the shell thickness was found to improve the short-circuit current in Si/Ge1-y-xSixSny and Ge/Ge1-y-xSixSny core/shell nanowires. The optical absorption becomes very important by increasing the Sn content. Moreover, by exploiting an optical antenna effect, these nanowires show extreme light absorption, reaching an enhancement factor, with respect to Si or Ge nanowires, on the order of 104 in Si/Ge0.84Si0.04Sn0.12 and 12 in Ge/Ge0.84Si0.04Sn0.12. Furthermore, we analyzed the optical response after the addition of a dielectric layer of Si3N4 to the Si/Ge1-y-xSixSny core-shell nanowire and found approximatively a 50% increase in the short-circuit current density for a dielectric layer of thickness equal to 45 nm and both a core radius and a shell thickness greater than 40 nm. The core-shell optical antenna benefits from a multiplication of enhancements contributed by leaky mode resonances in the semiconductor part and antireflection effects in the dielectric part.

  20. Measurement of the Cross-Section for the Process $\\gamma-\\gamma$ to Proton-Antiproton at $\\sqrt{s_{ee}}$ = 183 - 189 GeV with the OPAL Detector at LEP

    CERN Document Server

    Barillari, T

    2004-01-01

    The exclusive production of proton-antiproton pairs in the collisions of two quasi-real photons has been studied using data taken at sqrt(s_ee) = 183 GeV and 189 GeV with the OPAL detector at LEP. Results are presented for proton-antiproton invariant masses, W, in the range 2.15 < W < 3.95 GeV. The cross-section measurements are compared with previous data and with recent analytic calculations based on the quark-diquark model.

  1. A new metallic oxide semiconductor field effect transistor detector for use of in vivo dosimetry

    International Nuclear Information System (INIS)

    Qi Zhenyu; Deng Xiaowu; Huang Shaomin; Kang Dehua; Anatoly Rosenfeld

    2006-01-01

    Objective: To investigate the application of a recently developed metallic oxide semiconductor field effect transistor (MOSFET) detector for use in vivo dosimetry. Methods: The MOSFET detector was calibrated for X-ray beams of 8 MV and 15 MV, as well as electron beams with energy of 6,8,12 and 18 MeV. The dose linearity of the MOSFET detector was investigated for the doses ranging from 0 up to 50 Gy using 8 MV X-ray beams. Angular effect was evaluated as well in a cylindrical PMMA phantom by changing the beam entrance angle every 15 degree clockwise. The MOSFET detector was then used for a breast cancer patient in vivo dose measurement, after the treatment plan was verified in a water phantom using a NE-2571 ion chamber, in vivo measurements were performed in the first and last treatment, and once per week during the whole treatment. The measured doses were then compared with planning dose to evaluate the accuracy of each treatment. Results: The MOSFET detector represented a good energy response for X-ray beams of 8 MV and 15 MV, and for electron beams with energy of 6 MeV up to 18 MeV. With the 6 V bias, Dose linearity error of the MOSFET detector was within 3.0% up to approximately 50 Gy, which can be significantly reduced to 1% when the detector was calibrated before and after each measurement. The MOSFET response varied within 1.5% for angles from 270 degree to 90 degree. However, maximum error of 10.0% was recorded comparing MOSFET response between forward and backward direction. In vivo measurement for a breast cancer patient using 3DCRT showed that, the average dose deviation between measurement and calculation was 2.8%, and the maximum error was less then 5.0%. Conclusions: The new MOSFET detector, with its advantages of being in size, easy use, good energy response and dose linearity, can be used for in vivo dose measurement. (authors)

  2. Room-temperature ferromagnetic Cr-doped Ge/GeOx core–shell nanowires

    Science.gov (United States)

    Katkar, Amar S.; Gupta, Shobhnath P.; Motin Seikh, Md; Chen, Lih-Juann; Walke, Pravin S.

    2018-06-01

    The Cr-doped tunable thickness core–shell Ge/GeOx nanowires (NWs) were synthesized and characterized using x-ray diffraction, field-emission scanning electron microscopy, transmission electron microscopy, energy-dispersive x-ray spectroscopy, x-ray photoelectron spectroscopy and magnetization studies. The shell thickness increases with the increase in synthesis temperature. The presence of metallic Cr and Cr3+ in core–shell structure was confirmed from XPS study. The magnetic property is highly sensitive to the core–shell thickness and intriguing room temperature ferromagnetism is realized only in core–shell NWs. The magnetization decreases with an increase in shell thickness and practically ceases to exist when there is no core. These NWs show remarkably high Curie temperature (TC > 300 K) with the dominating values of its magnetic remanence (MR) and coercivity (HC) compared to germanium dilute magnetic semiconductor nanomaterials. We believe that our finding on these Cr-doped Ge/GeOX core–shell NWs has the potential to be used as a hard magnet for future spintronic devices, owing to their higher characteristic values of ferromagnetic ordering.

  3. Absolute peak detection efficiencies of a Ge(Li) detector for high gamma-ray energies

    International Nuclear Information System (INIS)

    Katagiri, Masaki

    1985-11-01

    Absolute peak detection efficiencies of a Ge(Li) detector for gamma-rays of 3.5 MeV to 12 MeV were measured using four (p,γ) reactions and a (n,γ) reaction. Two-line-method was used to obtaine peak detection efficiencies. The efficiencies with the both cases are agreed very well. Utilization of (n,γ) reaction is, therefore, effective for measuring these efficiencies, because high energy gamma-rays can be generated easily by using a neutron source. These results were applied to calibration of a gamma-ray standard source, emitting 6.13 MeV gamma-rays, and of intensities of 56 Co standard gamma-ray source. (author)

  4. Development of an integrated response generator for Si/CdTe semiconductor Compton cameras

    International Nuclear Information System (INIS)

    Odaka, Hirokazu; Sugimoto, Soichiro; Ishikawa, Shin-nosuke; Katsuta, Junichiro; Koseki, Yuu; Fukuyama, Taro; Saito, Shinya; Sato, Rie; Sato, Goro; Watanabe, Shin

    2010-01-01

    We have developed an integrated response generator based on Monte Carlo simulation for Compton cameras composed of silicon (Si) and cadmium telluride (CdTe) semiconductor detectors. In order to construct an accurate detector response function, the simulation is required to include a comprehensive treatment of the semiconductor detector devices and the data processing system in addition to simulating particle tracking. Although CdTe is an excellent semiconductor material for detection of soft gamma rays, its ineffective charge transport property distorts its spectral response. We investigated the response of CdTe pad detectors in the simulation and present our initial results here. We also performed the full simulation of prototypes of Si/CdTe semiconductor Compton cameras and report on the reproducibility of detection efficiencies and angular resolutions of the cameras, both of which are essential performance parameters of astrophysical instruments.

  5. Semiconductor nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Marstein Erik Stensrud

    2003-07-01

    This thesis presents a study of two material systems containing semiconductor nanocrystals, namely porous silicon (PSi) films and germanium (Ge) nanocrystals embedded in silicon dioxide (SiO2) films. The PSi films were made by anodic etching of silicon (Si) substrates in an electrolyte containing hydrofluoric acid. The PSi films were doped with erbium (Er) using two different doping methods. electrochemical doping and doping by immersing the PSi films in a solution containing Er. The resulting Er concentration profiles were investigated using scanning electron microscopy (SEN1) combined with energy dispersive X-ray analysis (EDS). The main subject of the work on PSi presented in this thesis was investigating and comparing these two doping methods. Ge nanocrystals were made by implanting Ge ions into Si02 films that were subsequently annealed. However. nanocrystal formation occurred only for certain sets of processing parameters. The dependence of the microstructure of the Ge implanted Si02 films on the processing parameters were therefore investigated. A range of methods were employed for these investigations, including transmission electron microscopy (TEM) combined with EDS, X-ray photoelectron spectroscopy (XPS) and secondary ion mass spectroscopy (SIMS). The observed structures, ranging from Ge nanocrystals to voids with diameters of several tens of nanometers and Ge rich Si02 films without any nanocrystals is described. A model explaining the void formation is also presented. For certain sets of processing parameters. An accumulation of Ge at the Si-Si02 interface was observed. The effect of this accumulation on the electrical properties of MOS structures made from Ge implanted SiO2 films was investigated using CV-measurements. (Author)

  6. Molecular beam deposition of Al2O3 on p-Ge(001)/Ge0.95Sn0.05 heterostructure and impact of a Ge-cap interfacial layer

    International Nuclear Information System (INIS)

    Merckling, C.; Franquet, A.; Vincent, B.; Vandervorst, W.; Loo, R.; Caymax, M.; Sun, X.; Shimura, Y.; Takeuchi, S.; Nakatsuka, O.; Zaima, S.

    2011-01-01

    We investigated the molecular beam deposition of Al 2 O 3 on Ge 0.95 Sn 0.05 surface with and without an ultra thin Ge cap layer in between. We first studied the atomic configuration of both Ge 1-x Sn x and Ge/Ge 1-x Sn x surfaces after deoxidation by reflection high-energy electron diffraction and resulted, respectively, in a c(4x2) and (2x1) surface reconstructions. After in situ deposition of an Al 2 O 3 high-κ gate dielectric we evidenced using time-of-flight secondary ion mass spectroscopy analyses that Sn diffusion was at the origin of high leakage current densities in the Ge 1-x Sn x /Al 2 O 3 gate stack. This damage could be avoided by inserting a thin 5-nm-thick Ge cap between the oxide and the Ge 1-x Sn x layer. Finally, metal-oxide-semiconductor capacitors on the Ge capped sample showed well-behaved capacitance-voltage (C-V) characteristics with interface trap density (D it ) in the range of 10 12 eV -1 cm -2 in mid gap and higher close to the valence band edge.

  7. Microstructures and thermoelectric properties of GeSbTe based layered compounds

    Energy Technology Data Exchange (ETDEWEB)

    Yan, F.; Zhu, T.J.; Zhao, X.B. [Zhejiang University, State Key Laboratory of Silicon Materials, Department of Materials Science and Engineering, Hangzhou (China); Dong, S.R. [Zhejiang University, Department of Information and Electronics Engineering, Hangzhou (China)

    2007-08-15

    Microstructures and thermoelectric properties of Ge{sub 1}Sb{sub 2}Te{sub 4} and Ge{sub 2}Sb{sub 2}Te{sub 5} chalcogenide semiconductors have been investigated to explore the possibility of their thermoelectric applications. The phase transformation from the face-centered cubic to hexagonal structure was observed in Ge{sub 2}Sb{sub 2}Te{sub 5} compounds prepared by the melt spinning technique. The Seebeck coefficient and electrical resistivity of the alloys were increased due to the enhanced scattering of charge carriers at grain boundaries. The maximum power factors of the rapidly solidified Ge{sub 1}Sb{sub 2}Te{sub 4} and Ge{sub 2}Sb{sub 2}Te{sub 5} attained 0.975 x 10{sup -3} Wm{sup -1}K{sup -2} at 750 K and 0.767 x 10{sup -3} Wm{sup -1}K{sup -2} at 643 K respectively, higher than those of water quenched counterparts, implying that thermoelectric properties of GeSbTe based layered compounds can be improved by grain refinement. The present results show this class of chalcogenide semiconductors is promising for thermoelectric applications. (orig.)

  8. Semiconductor opto-electronics

    CERN Document Server

    Moss, TS; Ellis, B

    1972-01-01

    Semiconductor Opto-Electronics focuses on opto-electronics, covering the basic physical phenomena and device behavior that arise from the interaction between electromagnetic radiation and electrons in a solid. The first nine chapters of this book are devoted to theoretical topics, discussing the interaction of electromagnetic waves with solids, dispersion theory and absorption processes, magneto-optical effects, and non-linear phenomena. Theories of photo-effects and photo-detectors are treated in detail, including the theories of radiation generation and the behavior of semiconductor lasers a

  9. Calorimetric low-temperature detectors on semiconductor base for the energy-resolving detection of heavy ions

    International Nuclear Information System (INIS)

    Kienlin, A. von.

    1994-01-01

    In the framework of this thesis for the first time calorimetric low-temperature detectors for the energy-resolving detection of heavy ions were developed and successfully applied. Constructed were two different detector types, which work both with a semiconductor thermistor. The temperature increasement effected by a particle incidence is read out. In the first detector type the thermistor was simutaneously used as absorber. The thickness of the germanium crystals was sufficient in order to stop the studied heavy ions completely. In the second type, a composed calorimeter, a sapphire crystal, which was glued on a germanium thermistor, served as absorber for the incident heavy ions. The working point of the calorimeter lies in the temperature range (1.2-4.2 K), which is reachable with a pumped 4 He cryostat. The temperatur increasement of the calorimeter amounts after the incidence of a single α particle about 20-30 μK and that after a heavy ion incidence up to some mK. An absolute energy resolution of 400-500 keV was reached. In nine beam times the calorimeters were irradiated by heavy ions ( 20 Ne, 40 Ar, 136 Xe, 208 Pb, 209 Bi) of different energies (3.6 MeV/nucleon< E<12.5 MeV/nucleon) elastically scattered from gold foils. In the pulse height spectra of the first detector type relatively broad, complex-structurated line shapes were observed. By systematic measurements dependences of the complex line structures on operational parameters of the detector, the detector temperature, and the position of the incident particle could be detected. Together with the results of further experiments a possible interpretation of these phenomena is presented. Contrarily to the complex line structures of the pure germanium thermistor the line shapes in the pulse height spectra, which were taken up in a composite germanium/sapphire calorimeter, are narrow and Gauss-shaped

  10. 2011 ATLAS Detector Performance - ID and Forward detectors

    CERN Document Server

    Davies‎, E; The ATLAS collaboration; Abdel Khalek, S

    2012-01-01

    This poster describes the performance of 2 parts of ATLAS: - The Inner Detector which consists of 3 subdetectors: the Pixel detector, the SemiConductor Tracker (or SCT) and the Transition Radiation Tracker (or TRT). Here, we report on Pixel detector and SCT performance over 2011. - ALFA detector which will determine the absolute luminosity of the CERN LHC at the ATLAS Interaction Point (IP), and the total proton-proton cross section, by tracking elastically scattered protons at very small angles in the limit of the Coulomb Nuclear interference region.

  11. Physics with isotopically controlled semiconductors

    International Nuclear Information System (INIS)

    Haller, E.E.

    1994-08-01

    Control of the isotopic composition of semiconductors offers a wide range of new scientific opportunities. In this paper a number of recent results obtained with isotopically pure as well as deliberately mixed diamond and Ge bulk single crystals and Ge isotope superlattices will be reviewed. Isotopic composition affects several properties such as phonon energies, bandstructure and lattice constant in subtle but theoretically well understood ways. Large effects are observed for thermal conductivity, local vibrational modes of impurities and after neutron transmutation doping (NTD). Several experiments which could profit greatly from isotope control are proposed

  12. Fast-timing methods for semiconductor detectors

    International Nuclear Information System (INIS)

    Spieler, H.

    1982-03-01

    The basic parameters are discussed which determine the accuracy of timing measurements and their effect in a practical application, specifically timing with thin-surface barrier detectors. The discussion focusses on properties of the detector, low-noise amplifiers, trigger circuits and time converters. New material presented in this paper includes bipolar transistor input stages with noise performance superior to currently available FETs, noiseless input terminations in sub-nanosecond preamplifiers and methods using transmission lines to couple the detector to remotely mounted preamplifiers. Trigger circuits are characterized in terms of effective rise time, equivalent input noise and residual jitter

  13. Characterisation of Silicon Timing Detectors for the RD50 Collaboration

    CERN Document Server

    Immig, David Maximilian

    2017-01-01

    Increasing pile-up and irradiation following with the high luminosity upgrade of the LHC, demands the development of improved semiconductor detectors. The former problem can be reduced by more precise time information, which can be obtained using a future detector based on the low gain avalanche diode (LGAD). LGADs are studied by the RD50-Collaboration, which studies the characteristics of semiconductor devices to improve these for future requirements of high energy physics. This reports is engaged with the process to characterise semiconductor detectors, specially LGADs, with capacitance-voltage and current-voltage measurements as well as transient current techniques of un- and irradiated semiconductor devices.

  14. Strain engineering on electronic structure and carrier mobility in monolayer GeP3

    Science.gov (United States)

    Zeng, Bowen; Long, Mengqiu; Zhang, Xiaojiao; Dong, Yulan; Li, Mingjun; Yi, Yougen; Duan, Haiming

    2018-06-01

    Using density functional theory coupled with the Boltzmann transport equation with relaxation time approximation, we have studied the strain effect on the electronic structure and carrier mobility of two-dimensional monolayer GeP3. We find that the energies of valence band maximum and conduction band minimum are nearly linearly shifted with a biaxial strain in the range of  ‑4% to 6%, and the band structure experiences a remarkable transition from semiconductor to metal with the appropriate compression (‑5% strain). Under biaxial strain, the mobility of the electron and hole in monolayer GeP3 reduces and increases by more than one order of magnitude, respectively. It is suggested that it is possible to perform successive transitions from an n-type semiconductor (‑4% strain) to a good performance p-semiconductor (+6% strain) by applying strain in monolayer GeP3, which is potentially useful for flexible electronics and nanosized mechanical sensors.

  15. Improvement of the GERDA Ge Detectors Energy Resolution by an Optimized Digital Signal Processing

    Science.gov (United States)

    Benato, G.; D'Andrea, V.; Cattadori, C.; Riboldi, S.

    GERDA is a new generation experiment searching for neutrinoless double beta decay of 76Ge, operating at INFN Gran Sasso Laboratories (LNGS) since 2010. Coaxial and Broad Energy Germanium (BEGe) Detectors have been operated in liquid argon (LAr) in GERDA Phase I. In the framework of the second GERDA experimental phase, both the contacting technique, the connection to and the location of the front end readout devices are novel compared to those previously adopted, and several tests have been performed. In this work, starting from considerations on the energy scale stability of the GERDA Phase I calibrations and physics data sets, an optimized pulse filtering method has been developed and applied to the Phase II pilot tests data sets, and to few GERDA Phase I data sets. In this contribution the detector performances in term of energy resolution and time stability are here presented. The improvement of the energy resolution, compared to standard Gaussian shaping adopted for Phase I data analysis, is discussed and related to the optimized noise filtering capability. The result is an energy resolution better than 0.1% at 2.6 MeV for the BEGe detectors operated in the Phase II pilot tests and an improvement of the energy resolution in LAr of about 8% achieved on the GERDA Phase I calibration runs, compared to previous analysis algorithms.

  16. Mn-Rich Nanostructures in Ge1-xMnx: Fabrication, Microstructure, and Magnetic Properties

    Directory of Open Access Journals (Sweden)

    Ying Jiang

    2012-01-01

    Full Text Available Magnetic semiconductors have attracted extensive attention due to their novel physical properties as well as the potential applications in future spintronics devices. Over the past decade, tremendous efforts have been made in the diluted magnetic semiconductors (DMS system, with many controversies disentangled but many puzzles unsolved as well. Here in this paper, we summarize recent experimental results in the growth, microstructure and magnetic properties of Ge-based DMSs (mainly Ge1-xMnx, which have been comprehensively researched owing to their compatibility with Si microelectronics. Growth conditions of high-quality, defect-free, and magnetic Ge1-xMnx bulks, thin films, ordered arrays, quantum dots, and nanowires are discussed in detail.

  17. A new computational method for simulation of charge transport in semiconductor radiation detectors

    International Nuclear Information System (INIS)

    Holban, I.

    1993-01-01

    An effective computational method for simulation of charge transport in semiconductor radiation detectors is the purpose of the present work. Basic equations for analysis include (1) Poisson's equations, (2) continuity equation for electrons and holes, (3) rate equations for deep levels, (4) current equation for electrons and holes and (5) boundary conditions. The system of equations is discretized and equidistant space and time grids is brought. The nonlinearity of the problem is overcome by using Newton-Raphson iteration scheme. Instead of solving a nonlinear boundary problem we resolve a linear matrix equation. Our computation procedure becomes very efficient using a sparse matrix. The computed program allows to calculate the charge collection efficiency and transient response for arbitrary electric fields when trapping and detrapping effects are present. The earlier literature results are reproduced. (Author)

  18. Large-angle production of charged pions by 3 GeV/c - 12 GeV/c protons on carbon, copper and tin targets

    CERN Document Server

    Catanesi, M.G.; Ellis, Malcolm; Robbins, S.; Soler, F.J.P.; Gossling, C.; Bunyatov, S.; Krasnoperov, A.; Popov, B.; Serdiouk, V.; Tereschenko, V.; Di Capua, E.; Vidal-Sitjes, G.; Artamonov, A.; Arce, P.; Giani, S.; Gilardoni, S.; Gorbunov, P.; Grant, A.; Grossheim, A.; Gruber, P.; Ivanchenko, V.; Kayis-Topaksu, A.; Panman, J.; Papadopoulos, I.; Pasternak, J.; Tcherniaev, E.; Tsukerman, I.; Veenhof, R.; Wiebusch, C.; Zucchelli, P.; Blondel, A.; Borghi, S.; Campanelli, M.; Morone, M.C.; Prior, G.; Schroeter, R.; Engel, R.; Meurer, C.; Kato, I.; Gastaldi, U.; Mills, G.B.; Graulich, J.S.; Gregoire, G.; Bonesini, M.; Ferri, F.; Paganoni, M.; Paleari, F.; Kirsanov, M.; Bagulya, A.; Grichine, V.; Polukhina, M.; Palladino, V.; Coney, L.; Schmitz, D.; Barr, G.; De Santo, A.; Pattison, C.; Zuber, K.; Bobisut, F.; Gibin, D.; Guglielmi, A.; Mezzetto, M.; Dumarchez, J.; Vannucci, F.; Dore, U.; Orestano, D.; Pastore, F.; Tonazzo, A.; Tortora, L.; Booth, C.; Buttar, C.; Hodgson, P.; howlett, L.; Bogomilov, M.; Chizhov, M.; Kolev, D.; Tsenov, R.; Piperov, Stefan; Temnikov, P.; Apollonio, M.; Chimenti, P.; Giannini, G.; Santin, G.; Burguet-Castell, J.; Cervera-Villanueva, A.; Gomez-Cadenas, J.J.; Martin-Albo, J.; Novella, P.; Sorel, M.; Tornero, A.

    2008-01-01

    A measurement of the double-differential $\\pi^{\\pm}$ production cross-section in proton--carbon, proton--copper and proton--tin collisions in the range of pion momentum $100 \\MeVc \\leq p < 800 \\MeVc$ and angle $0.35 \\rad \\le \\theta <2.15 \\rad$ is presented. The data were taken with the HARP detector in the T9 beam line of the CERN PS. The pions were produced by proton beams in a momentum range from 3 \\GeVc to 12 \\GeVc hitting a target with a thickness of 5% of a nuclear interaction length. The tracking and identification of the produced particles was done using a small-radius cylindrical time projection chamber (TPC) placed in a solenoidal magnet. An elaborate system of detectors in the beam line ensured the identification of the incident particles. Results are shown for the double-differential cross-sections at four incident proton beam momenta (3 \\GeVc, 5 \\GeVc, 8 \\GeVc and 12 \\GeVc).

  19. Operation and performance of the ATLAS semiconductor tracker

    CERN Document Server

    Aad, Georges; Abdallah, Jalal; Abdel Khalek, Samah; Abdinov, Ovsat; Aben, Rosemarie; Abi, Babak; Abolins, Maris; AbouZeid, Ossama; Abramowicz, Halina; Abreu, Henso; Abreu, Ricardo; Abulaiti, Yiming; Acharya, Bobby Samir; Adamczyk, Leszek; Adams, David; Adelman, Jahred; Adomeit, Stefanie; Adye, Tim; Agatonovic-Jovin, Tatjana; Aguilar-Saavedra, Juan Antonio; Agustoni, Marco; Ahlen, Steven; Ahmad, Ashfaq; Ahmadov, Faig; Aielli, Giulio; Åkesson, Torsten Paul Ake; Akimoto, Ginga; Akimov, Andrei; Alberghi, Gian Luigi; Albert, Justin; Albrand, Solveig; Alconada Verzini, Maria Josefina; Aleksa, Martin; Aleksandrov, Igor; Alexa, Calin; Alexander, Gideon; Alexandre, Gauthier; Alexopoulos, Theodoros; Alhroob, Muhammad; Alimonti, Gianluca; Alio, Lion; Alison, John; Allbrooke, Benedict; Allison, Lee John; Allport, Phillip; Allwood-Spiers, Sarah; Almond, John; Aloisio, Alberto; Alonso, Alejandro; Alonso, Francisco; Alpigiani, Cristiano; Altheimer, Andrew David; Alvarez Gonzalez, Barbara; Alviggi, Mariagrazia; Amako, Katsuya; Amaral Coutinho, Yara; Amelung, Christoph; Amidei, Dante; Amor Dos Santos, Susana Patricia; Amorim, Antonio; Amoroso, Simone; Amram, Nir; Amundsen, Glenn; Anastopoulos, Christos; Ancu, Lucian Stefan; Andari, Nansi; Andeen, Timothy; Anders, Christoph Falk; Anders, Gabriel; Anderson, Kelby; Andreazza, Attilio; Andrei, George Victor; Anduaga, Xabier; Angelidakis, Stylianos; Angelozzi, Ivan; Anger, Philipp; Angerami, Aaron; Anghinolfi, Francis; Anisenkov, Alexey; Anjos, Nuno; Annovi, Alberto; Antonaki, Ariadni; Antonelli, Mario; Antonov, Alexey; Antos, Jaroslav; Anulli, Fabio; Aoki, Masato; Aperio Bella, Ludovica; Apolle, Rudi; Arabidze, Giorgi; Aracena, Ignacio; Arai, Yasuo; Araque, Juan Pedro; Arce, Ayana; Arguin, Jean-Francois; Argyropoulos, Spyridon; Arik, Metin; Armbruster, Aaron James; Arnaez, Olivier; Arnal, Vanessa; Arnold, Hannah; Arslan, Ozan; Artamonov, Andrei; Artoni, Giacomo; Asai, Shoji; Asbah, Nedaa; Ashkenazi, Adi; Ask, Stefan; Åsman, Barbro; Asquith, Lily; Assamagan, Ketevi; Astalos, Robert; Atkinson, Markus; Atlay, Naim Bora; Auerbach, Benjamin; Augsten, Kamil; Aurousseau, Mathieu; Avolio, Giuseppe; Azuelos, Georges; Azuma, Yuya; Baak, Max; Bacci, Cesare; Bachacou, Henri; Bachas, Konstantinos; Backes, Moritz; Backhaus, Malte; Backus Mayes, John; Badescu, Elisabeta; Bagiacchi, Paolo; Bagnaia, Paolo; Bai, Yu; Bain, Travis; Baines, John; Baker, Oliver Keith; Baker, Sarah; Balek, Petr; Balli, Fabrice; Banas, Elzbieta; Banerjee, Swagato; Banfi, Danilo; Bangert, Andrea Michelle; Bannoura, Arwa A E; Bansal, Vikas; Bansil, Hardeep Singh; Barak, Liron; Baranov, Sergei; Barberio, Elisabetta Luigia; Barberis, Dario; Barbero, Marlon; Barillari, Teresa; Barisonzi, Marcello; Barklow, Timothy; Barlow, Nick; Barnett, Bruce; Barnett, Michael; Barnovska, Zuzana; Baroncelli, Antonio; Barone, Gaetano; Barr, Alan; Barreiro, Fernando; Barreiro Guimarães da Costa, João; Bartoldus, Rainer; Barton, Adam Edward; Bartos, Pavol; Bartsch, Valeria; Bassalat, Ahmed; Basye, Austin; Bates, Richard; Batkova, Lucia; Batley, Richard; Battistin, Michele; Bauer, Florian; Bawa, Harinder Singh; Beau, Tristan; Beauchemin, Pierre-Hugues; Beccherle, Roberto; Bechtle, Philip; Beck, Hans Peter; Becker, Anne Kathrin; Becker, Sebastian; Beckingham, Matthew; Becot, Cyril; Beddall, Andrew; Beddall, Ayda; Bedikian, Sourpouhi; Bednyakov, Vadim; Bee, Christopher; Beemster, Lars; Beermann, Thomas; Begel, Michael; Behr, Katharina; Belanger-Champagne, Camille; Bell, Paul; Bell, William; Bella, Gideon; Bellagamba, Lorenzo; Bellerive, Alain; Bellomo, Massimiliano; Belloni, Alberto; Belotskiy, Konstantin; Beltramello, Olga; Benary, Odette; Benchekroun, Driss; Bendtz, Katarina; Benekos, Nektarios; Benhammou, Yan; Benhar Noccioli, Eleonora; Benitez Garcia, Jorge-Armando; Benjamin, Douglas; Bensinger, James; Benslama, Kamal; Bentvelsen, Stan; Berge, David; Bergeaas Kuutmann, Elin; Berger, Nicolas; Berghaus, Frank; Berglund, Elina; Beringer, Jürg; Bernabéu, José; Bernard, Clare; Bernat, Pauline; Bernius, Catrin; Bernlochner, Florian Urs; Berry, Tracey; Berta, Peter; Bertella, Claudia; Bertolucci, Federico; Besana, Maria Ilaria; Besjes, Geert-Jan; Bessidskaia, Olga; Besson, Nathalie; Betancourt, Christopher; Bethke, Siegfried; Bhimji, Wahid; Bianchi, Riccardo-Maria; Bianchini, Louis; Bianco, Michele; Biebel, Otmar; Bieniek, Stephen Paul; Bierwagen, Katharina; Biesiada, Jed; Biglietti, Michela; Bilbao De Mendizabal, Javier; Bilokon, Halina; Bindi, Marcello; Binet, Sebastien; Bingul, Ahmet; Bini, Cesare; Black, Curtis; Black, James; Black, Kevin; Blackburn, Daniel; Blair, Robert; Blanchard, Jean-Baptiste; Blazek, Tomas; Bloch, Ingo; Blocker, Craig; Blum, Walter; Blumenschein, Ulrike; Bobbink, Gerjan; Bobrovnikov, Victor; Bocchetta, Simona Serena; Bocci, Andrea; Boddy, Christopher Richard; Boehler, Michael; Boek, Jennifer; Boek, Thorsten Tobias; Bogaerts, Joannes Andreas; Bogdanchikov, Alexander; Bogouch, Andrei; Bohm, Christian; Bohm, Jan; Boisvert, Veronique; Bold, Tomasz; Boldea, Venera; Boldyrev, Alexey; Bomben, Marco; Bona, Marcella; Boonekamp, Maarten; Borisov, Anatoly; Borissov, Guennadi; Borri, Marcello; Borroni, Sara; Bortfeldt, Jonathan; Bortolotto, Valerio; Bos, Kors; Boscherini, Davide; Bosman, Martine; Boterenbrood, Hendrik; Boudreau, Joseph; Bouffard, Julian; Bouhova-Thacker, Evelina Vassileva; Boumediene, Djamel Eddine; Bourdarios, Claire; Bousson, Nicolas; Boutouil, Sara; Boveia, Antonio; Boyd, James; Boyko, Igor; Bozovic-Jelisavcic, Ivanka; Bracinik, Juraj; Branchini, Paolo; Brandt, Andrew; Brandt, Gerhard; Brandt, Oleg; Bratzler, Uwe; Brau, Benjamin; Brau, James; Braun, Helmut; Brazzale, Simone Federico; Brelier, Bertrand; Brendlinger, Kurt; Brennan, Amelia Jean; Brenner, Richard; Bressler, Shikma; Bristow, Kieran; Bristow, Timothy Michael; Britton, Dave; Brochu, Frederic; Brock, Ian; Brock, Raymond; Bromberg, Carl; Bronner, Johanna; Brooijmans, Gustaaf; Brooks, Timothy; Brooks, William; Brosamer, Jacquelyn; Brost, Elizabeth; Brown, Gareth; Brown, Jonathan; Bruckman de Renstrom, Pawel; Bruncko, Dusan; Bruneliere, Renaud; Brunet, Sylvie; Bruni, Alessia; Bruni, Graziano; Bruschi, Marco; Bryngemark, Lene; Buanes, Trygve; Buat, Quentin; Bucci, Francesca; Buchholz, Peter; Buckingham, Ryan; Buckley, Andrew; Buda, Stelian Ioan; Budagov, Ioulian; Buehrer, Felix; Bugge, Lars; Bugge, Magnar Kopangen; Bulekov, Oleg; Bundock, Aaron Colin; Burckhart, Helfried; Burdin, Sergey; Burghgrave, Blake; Burke, Stephen; Burmeister, Ingo; Busato, Emmanuel; Büscher, Daniel; Büscher, Volker; Bussey, Peter; Buszello, Claus-Peter; Butler, Bart; Butler, John; Butt, Aatif Imtiaz; Buttar, Craig; Butterworth, Jonathan; Butti, Pierfrancesco; Buttinger, William; Buzatu, Adrian; Byszewski, Marcin; Cabrera Urbán, Susana; Caforio, Davide; Cakir, Orhan; Calafiura, Paolo; Calandri, Alessandro; Calderini, Giovanni; Calfayan, Philippe; Calkins, Robert; Caloba, Luiz; Calvet, David; Calvet, Samuel; Camacho Toro, Reina; Camarda, Stefano; Cameron, David; Caminada, Lea Michaela; Caminal Armadans, Roger; Campana, Simone; Campanelli, Mario; Campoverde, Angel; Canale, Vincenzo; Canepa, Anadi; Cantero, Josu; Cantrill, Robert; Cao, Tingting; Capeans Garrido, Maria Del Mar; Caprini, Irinel; Caprini, Mihai; Capua, Marcella; Caputo, Regina; Cardarelli, Roberto; Carli, Tancredi; Carlino, Gianpaolo; Carminati, Leonardo; Caron, Sascha; Carquin, Edson; Carrillo-Montoya, German D; Carter, Antony; Carter, Janet; Carvalho, João; Casadei, Diego; Casado, Maria Pilar; Castaneda-Miranda, Elizabeth; Castelli, Angelantonio; Castillo Gimenez, Victoria; Castro, Nuno Filipe; Catastini, Pierluigi; Catinaccio, Andrea; Catmore, James; Cattai, Ariella; Cattani, Giordano; Caughron, Seth; Cavaliere, Viviana; Cavalli, Donatella; Cavalli-Sforza, Matteo; Cavasinni, Vincenzo; Ceradini, Filippo; Cerio, Benjamin; Cerny, Karel; Santiago Cerqueira, Augusto; Cerri, Alessandro; Cerrito, Lucio; Cerutti, Fabio; Cerv, Matevz; Cervelli, Alberto; Cetin, Serkant Ali; Chafaq, Aziz; Chakraborty, Dhiman; Chalupkova, Ina; Chan, Kevin; Chang, Philip; Chapleau, Bertrand; Chapman, John Derek; Charfeddine, Driss; Charlton, Dave; Chau, Chav Chhiv; Chavez Barajas, Carlos Alberto; Cheatham, Susan; Chegwidden, Andrew; Chekanov, Sergei; Chekulaev, Sergey; Chelkov, Gueorgui; Chelstowska, Magda Anna; Chen, Chunhui; Chen, Hucheng; Chen, Karen; Chen, Liming; Chen, Shenjian; Chen, Xin; Chen, Yujiao; Cheng, Hok Chuen; Cheng, Yangyang; Cheplakov, Alexander; Cherkaoui El Moursli, Rajaa; Chernyatin, Valeriy; Cheu, Elliott; Chevalier, Laurent; Chiarella, Vitaliano; Chiefari, Giovanni; Childers, John Taylor; Chilingarov, Alexandre; Chiodini, Gabriele; Chisholm, Andrew; Chislett, Rebecca Thalatta; Chitan, Adrian; Chizhov, Mihail; Chouridou, Sofia; Chow, Bonnie Kar Bo; Christidi, Ilektra-Athanasia; Chromek-Burckhart, Doris; Chu, Ming-Lee; Chudoba, Jiri; Chwastowski, Janusz; Chytka, Ladislav; Ciapetti, Guido; Ciftci, Abbas Kenan; Ciftci, Rena; Cinca, Diane; Cindro, Vladimir; Ciocio, Alessandra; Cirkovic, Predrag; Citron, Zvi Hirsh; Citterio, Mauro; Ciubancan, Mihai; Clark, Allan G; Clark, Philip James; Clarke, Robert; Cleland, Bill; Clemens, Jean-Claude; Clement, Christophe; Coadou, Yann; Cobal, Marina; Coccaro, Andrea; Cochran, James H; Coffey, Laurel; Cogan, Joshua Godfrey; Coggeshall, James; Cole, Brian; Cole, Stephen; Colijn, Auke-Pieter; Collins-Tooth, Christopher; Collot, Johann; Colombo, Tommaso; Colon, German; Compostella, Gabriele; Conde Muiño, Patricia; Coniavitis, Elias; Conidi, Maria Chiara; Connell, Simon Henry; Connelly, Ian; Consonni, Sofia Maria; Consorti, Valerio; Constantinescu, Serban; Conta, Claudio; Conti, Geraldine; Conventi, Francesco; Cooke, Mark; Cooper, Ben; Cooper-Sarkar, Amanda; Cooper-Smith, Neil; Copic, Katherine; Cornelissen, Thijs; Corradi, Massimo; Corriveau, Francois; Corso-Radu, Alina; Cortes-Gonzalez, Arely; Cortiana, Giorgio; Costa, Giuseppe; Costa, María José; Costanzo, Davide; Côté, David; Cottin, Giovanna; Cowan, Glen; Cox, Brian; Cranmer, Kyle; Cree, Graham; Crépé-Renaudin, Sabine; Crescioli, Francesco; Crispin Ortuzar, Mireia; Cristinziani, Markus; Croft, Vince; Crosetti, Giovanni; Cuciuc, Constantin-Mihai; Cuenca Almenar, Cristóbal; Cuhadar Donszelmann, Tulay; Cummings, Jane; Curatolo, Maria; Cuthbert, Cameron; Czirr, Hendrik; Czodrowski, Patrick; Czyczula, Zofia; D'Auria, Saverio; D'Onofrio, Monica; Da Cunha Sargedas De Sousa, Mario Jose; Da Via, Cinzia; Dabrowski, Wladyslaw; Dafinca, Alexandru; Dai, Tiesheng; Dale, Orjan; Dallaire, Frederick; Dallapiccola, Carlo; Dam, Mogens; Daniells, Andrew Christopher; Dano Hoffmann, Maria; Dao, Valerio; Darbo, Giovanni; Darlea, Georgiana Lavinia; Darmora, Smita; Dassoulas, James; Dattagupta, Aparajita; Davey, Will; David, Claire; Davidek, Tomas; Davies, Eleanor; Davies, Merlin; Davignon, Olivier; Davison, Adam; Davison, Peter; Davygora, Yuriy; Dawe, Edmund; Dawson, Ian; Daya-Ishmukhametova, Rozmin; De, Kaushik; de Asmundis, Riccardo; De Castro, Stefano; De Cecco, Sandro; de Graat, Julien; De Groot, Nicolo; de Jong, Paul; De la Torre, Hector; De Lorenzi, Francesco; De Nooij, Lucie; De Pedis, Daniele; De Salvo, Alessandro; De Sanctis, Umberto; De Santo, Antonella; De Vivie De Regie, Jean-Baptiste; De Zorzi, Guido; Dearnaley, William James; Debbe, Ramiro; Debenedetti, Chiara; Dechenaux, Benjamin; Dedovich, Dmitri; Degenhardt, James; Deigaard, Ingrid; Del Peso, Jose; Del Prete, Tarcisio; Deliot, Frederic; Delitzsch, Chris Malena; Deliyergiyev, Maksym; Dell'Acqua, Andrea; Dell'Asta, Lidia; Dell'Orso, Mauro; Della Pietra, Massimo; della Volpe, Domenico; Delmastro, Marco; Delsart, Pierre-Antoine; Deluca, Carolina; Demers, Sarah; Demichev, Mikhail; Demilly, Aurelien; Denisov, Sergey; Derendarz, Dominik; Derkaoui, Jamal Eddine; Derue, Frederic; Dervan, Paul; Desch, Klaus Kurt; Deterre, Cecile; Deviveiros, Pier-Olivier; Dewhurst, Alastair; Dhaliwal, Saminder; Di Ciaccio, Anna; Di Ciaccio, Lucia; Di Domenico, Antonio; Di Donato, Camilla; Di Girolamo, Alessandro; Di Girolamo, Beniamino; Di Mattia, Alessandro; Di Micco, Biagio; Di Nardo, Roberto; Di Simone, Andrea; Di Sipio, Riccardo; Di Valentino, David; Diaz, Marco Aurelio; Diehl, Edward; Dietrich, Janet; Dietzsch, Thorsten; Diglio, Sara; Dimitrievska, Aleksandra; Dingfelder, Jochen; Dionisi, Carlo; Dita, Petre; Dita, Sanda; Dittus, Fridolin; Djama, Fares; Djobava, Tamar; Barros do Vale, Maria Aline; Do Valle Wemans, André; Doan, Thi Kieu Oanh; Dobos, Daniel; Dobson, Ellie; Doglioni, Caterina; Doherty, Tom; Dohmae, Takeshi; Dolejsi, Jiri; Dolezal, Zdenek; Dolgoshein, Boris; Donadelli, Marisilvia; Donati, Simone; Dondero, Paolo; Donini, Julien; Dopke, Jens; Doria, Alessandra; Dos Anjos, Andre; Dova, Maria-Teresa; Doyle, Tony; Dris, Manolis; Dubbert, Jörg; Dube, Sourabh; Dubreuil, Emmanuelle; Duchovni, Ehud; Duckeck, Guenter; Ducu, Otilia Anamaria; Duda, Dominik; Dudarev, Alexey; Dudziak, Fanny; Duflot, Laurent; Duguid, Liam; Dührssen, Michael; Dunford, Monica; Duran Yildiz, Hatice; Düren, Michael; Durglishvili, Archil; Dwuznik, Michal; Dyndal, Mateusz; Ebke, Johannes; Edson, William; Edwards, Nicholas Charles; Ehrenfeld, Wolfgang; Eifert, Till; Eigen, Gerald; Einsweiler, Kevin; Ekelof, Tord; El Kacimi, Mohamed; Ellert, Mattias; Elles, Sabine; Ellinghaus, Frank; Ellis, Nicolas; Elmsheuser, Johannes; Elsing, Markus; Emeliyanov, Dmitry; Enari, Yuji; Endner, Oliver Chris; Endo, Masaki; Engelmann, Roderich; Erdmann, Johannes; Ereditato, Antonio; Eriksson, Daniel; Ernis, Gunar; Ernst, Jesse; Ernst, Michael; Ernwein, Jean; Errede, Deborah; Errede, Steven; Ertel, Eugen; Escalier, Marc; Esch, Hendrik; Escobar, Carlos; Esposito, Bellisario; Etienvre, Anne-Isabelle; Etzion, Erez; Evans, Hal; Fabbri, Laura; Facini, Gabriel; Fakhrutdinov, Rinat; Falciano, Speranza; Faltova, Jana; Fang, Yaquan; Fanti, Marcello; Farbin, Amir; Farilla, Addolorata; Farooque, Trisha; Farrell, Steven; Farrington, Sinead; Farthouat, Philippe; Fassi, Farida; Fassnacht, Patrick; Fassouliotis, Dimitrios; Favareto, Andrea; Fayard, Louis; Federic, Pavol; Fedin, Oleg; Fedorko, Wojciech; Fehling-Kaschek, Mirjam; Feigl, Simon; Feligioni, Lorenzo; Feng, Cunfeng; Feng, Eric; Feng, Haolu; Fenyuk, Alexander; Fernandez Perez, Sonia; Ferrag, Samir; Ferrando, James; Ferrari, Arnaud; Ferrari, Pamela; Ferrari, Roberto; Ferreira de Lima, Danilo Enoque; Ferrer, Antonio; Ferrere, Didier; Ferretti, Claudio; Ferretto Parodi, Andrea; Fiascaris, Maria; Fiedler, Frank; Filipčič, Andrej; Filipuzzi, Marco; Filthaut, Frank; Fincke-Keeler, Margret; Finelli, Kevin Daniel; Fiolhais, Miguel; Fiorini, Luca; Firan, Ana; Fischer, Julia; Fisher, Wade Cameron; Fitzgerald, Eric Andrew; Flechl, Martin; Fleck, Ivor; Fleischmann, Philipp; Fleischmann, Sebastian; Fletcher, Gareth Thomas; Fletcher, Gregory; Flick, Tobias; Floderus, Anders; Flores Castillo, Luis; Florez Bustos, Andres Carlos; Flowerdew, Michael; Formica, Andrea; Forti, Alessandra; Fortin, Dominique; Fournier, Daniel; Fox, Harald; Fracchia, Silvia; Francavilla, Paolo; Franchini, Matteo; Franchino, Silvia; Francis, David; Franklin, Melissa; Franz, Sebastien; Fraternali, Marco; French, Sky; Friedrich, Conrad; Friedrich, Felix; Froidevaux, Daniel; Frost, James; Fukunaga, Chikara; Fullana Torregrosa, Esteban; Fulsom, Bryan Gregory; Fuster, Juan; Gabaldon, Carolina; Gabizon, Ofir; Gabrielli, Alessandro; Gabrielli, Andrea; Gadatsch, Stefan; Gadomski, Szymon; Gagliardi, Guido; Gagnon, Pauline; Galea, Cristina; Galhardo, Bruno; Gallas, Elizabeth; Gallo, Valentina Santina; Gallop, Bruce; Gallus, Petr; Galster, Gorm Aske Gram Krohn; Gan, KK; Gandrajula, Reddy Pratap; Gao, Jun; Gao, Yongsheng; Garay Walls, Francisca; Garberson, Ford; García, Carmen; Garcia Argos, Carlos; García Navarro, José Enrique; Garcia-Sciveres, Maurice; Gardner, Robert; Garelli, Nicoletta; Garonne, Vincent; Gatti, Claudio; Gaudio, Gabriella; Gaur, Bakul; Gauthier, Lea; Gauzzi, Paolo; Gavrilenko, Igor; Gay, Colin; Gaycken, Goetz; Gazis, Evangelos; Ge, Peng; Gecse, Zoltan; Gee, Norman; Geerts, Daniël Alphonsus Adrianus; Geich-Gimbel, Christoph; Gellerstedt, Karl; Gemme, Claudia; Gemmell, Alistair; Genest, Marie-Hélène; Gentile, Simonetta; George, Matthias; George, Simon; Gerbaudo, Davide; Gershon, Avi; Ghazlane, Hamid; Ghodbane, Nabil; Giacobbe, Benedetto; Giagu, Stefano; Giangiobbe, Vincent; Giannetti, Paola; Gianotti, Fabiola; Gibbard, Bruce; Gibson, Stephen; Gilchriese, Murdock; Gillam, Thomas; Gillberg, Dag; Gilles, Geoffrey; Gingrich, Douglas; Giokaris, Nikos; Giordani, MarioPaolo; Giordano, Raffaele; Giorgi, Francesco Michelangelo; Giraud, Pierre-Francois; Giugni, Danilo; Giuliani, Claudia; Giulini, Maddalena; Gjelsten, Børge Kile; Gkialas, Ioannis; Gladilin, Leonid; Glasman, Claudia; Glatzer, Julian; Glaysher, Paul; Glazov, Alexandre; Glonti, George; Goblirsch-Kolb, Maximilian; Goddard, Jack Robert; Godfrey, Jennifer; Godlewski, Jan; Goeringer, Christian; Goldfarb, Steven; Golling, Tobias; Golubkov, Dmitry; Gomes, Agostinho; Gomez Fajardo, Luz Stella; Gonçalo, Ricardo; Goncalves Pinto Firmino Da Costa, Joao; Gonella, Laura; González de la Hoz, Santiago; Gonzalez Parra, Garoe; Gonzalez Silva, Laura; Gonzalez-Sevilla, Sergio; Goodrick, Maurice; Goossens, Luc; Gorbounov, Petr Andreevich; Gordon, Howard; Gorelov, Igor; Gorfine, Grant; Gorini, Benedetto; Gorini, Edoardo; Gorišek, Andrej; Gornicki, Edward; Goshaw, Alfred; Gössling, Claus; Gostkin, Mikhail Ivanovitch; Gouighri, Mohamed; Goujdami, Driss; Goulette, Marc Phillippe; Goussiou, Anna; Goy, Corinne; Gozpinar, Serdar; Grabas, Herve Marie Xavier; Graber, Lars; Grabowska-Bold, Iwona; Grafström, Per; Grahn, Karl-Johan; Gramling, Johanna; Gramstad, Eirik; Grancagnolo, Sergio; Grassi, Valerio; Gratchev, Vadim; Gray, Heather; Graziani, Enrico; Grebenyuk, Oleg; Greenwood, Zeno Dixon; Gregersen, Kristian; Gregor, Ingrid-Maria; Grenier, Philippe; Griffiths, Justin; Grigalashvili, Nugzar; Grillo, Alexander; Grimm, Kathryn; Grinstein, Sebastian; Gris, Philippe Luc Yves; Grishkevich, Yaroslav; Grivaz, Jean-Francois; Grohs, Johannes Philipp; Grohsjean, Alexander; Gross, Eilam; Grosse-Knetter, Joern; Grossi, Giulio Cornelio; Groth-Jensen, Jacob; Grout, Zara Jane; Grybel, Kai; Guan, Liang; Guescini, Francesco; Guest, Daniel; Gueta, Orel; Guicheney, Christophe; Guido, Elisa; Guillemin, Thibault; Guindon, Stefan; Gul, Umar; Gumpert, Christian; Gunther, Jaroslav; Guo, Jun; Gupta, Shaun; Gutierrez, Phillip; Gutierrez Ortiz, Nicolas Gilberto; Gutschow, Christian; Guttman, Nir; Guyot, Claude; Gwenlan, Claire; Gwilliam, Carl; Haas, Andy; Haber, Carl; Hadavand, Haleh Khani; Haddad, Nacim; Haefner, Petra; Hageboeck, Stephan; Hajduk, Zbigniew; Hakobyan, Hrachya; Haleem, Mahsana; Hall, David; Halladjian, Garabed; Hamacher, Klaus; Hamal, Petr; Hamano, Kenji; Hamer, Matthias; Hamilton, Andrew; Hamilton, Samuel; Hamnett, Phillip George; Han, Liang; Hanagaki, Kazunori; Hanawa, Keita; Hance, Michael; Hanke, Paul; Hansen, Jørgen Beck; Hansen, Jorn Dines; Hansen, Peter Henrik; Hara, Kazuhiko; Hard, Andrew; Harenberg, Torsten; Harkusha, Siarhei; Harper, Devin; Harrington, Robert; Harris, Orin; Harrison, Paul Fraser; Hartjes, Fred; Hasegawa, Satoshi; Hasegawa, Yoji; Hasib, A; Hassani, Samira; Haug, Sigve; Hauschild, Michael; Hauser, Reiner; Havranek, Miroslav; Hawkes, Christopher; Hawkings, Richard John; Hawkins, Anthony David; Hayashi, Takayasu; Hayden, Daniel; Hays, Chris; Hayward, Helen; Haywood, Stephen; Head, Simon; Heck, Tobias; Hedberg, Vincent; Heelan, Louise; Heim, Sarah; Heim, Timon; Heinemann, Beate; Heinrich, Lukas; Heisterkamp, Simon; Hejbal, Jiri; Helary, Louis; Heller, Claudio; Heller, Matthieu; Hellman, Sten; Hellmich, Dennis; Helsens, Clement; Henderson, James; Henderson, Robert; Hengler, Christopher; Henrichs, Anna; Henriques Correia, Ana Maria; Henrot-Versille, Sophie; Hensel, Carsten; Herbert, Geoffrey Henry; Hernández Jiménez, Yesenia; Herrberg-Schubert, Ruth; Herten, Gregor; Hertenberger, Ralf; Hervas, Luis; Hesketh, Gavin Grant; Hessey, Nigel; Hickling, Robert; Higón-Rodriguez, Emilio; Hill, Ewan; Hill, John; Hiller, Karl Heinz; Hillert, Sonja; Hillier, Stephen; Hinchliffe, Ian; Hines, Elizabeth; Hirose, Minoru; Hirschbuehl, Dominic; Hobbs, John; Hod, Noam; Hodgkinson, Mark; Hodgson, Paul; Hoecker, Andreas; Hoeferkamp, Martin; Hoffman, Julia; Hoffmann, Dirk; Hofmann, Julia Isabell; Hohlfeld, Marc; Holmes, Tova Ray; Hong, Tae Min; Hooft van Huysduynen, Loek; Hostachy, Jean-Yves; Hou, Suen; Hoummada, Abdeslam; Howard, Jacob; Howarth, James; Hrabovsky, Miroslav; Hristova, Ivana; Hrivnac, Julius; Hryn'ova, Tetiana; Hsu, Pai-hsien Jennifer; Hsu, Shih-Chieh; Hu, Diedi; Hu, Xueye; Huang, Yanping; Hubacek, Zdenek; Hubaut, Fabrice; Huegging, Fabian; Huffman, Todd Brian; Hughes, Emlyn; Hughes, Gareth; Huhtinen, Mika; Hülsing, Tobias Alexander; Hurwitz, Martina; Huseynov, Nazim; Huston, Joey; Huth, John; Iacobucci, Giuseppe; Iakovidis, Georgios; Ibragimov, Iskander; Iconomidou-Fayard, Lydia; Idarraga, John; Ideal, Emma; Iengo, Paolo; Igonkina, Olga; Iizawa, Tomoya; Ikegami, Yoichi; Ikematsu, Katsumasa; Ikeno, Masahiro; Iliadis, Dimitrios; Ilic, Nikolina; Inamaru, Yuki; Ince, Tayfun; Ioannou, Pavlos; Iodice, Mauro; Iordanidou, Kalliopi; Ippolito, Valerio; Irles Quiles, Adrian; Isaksson, Charlie; Ishino, Masaya; Ishitsuka, Masaki; Ishmukhametov, Renat; Issever, Cigdem; Istin, Serhat; Iturbe Ponce, Julia Mariana; Ivarsson, Jenny; Ivashin, Anton; Iwanski, Wieslaw; Iwasaki, Hiroyuki; Izen, Joseph; Izzo, Vincenzo; Jackson, Brett; Jackson, John; Jackson, Matthew; Jackson, Paul; Jaekel, Martin; Jain, Vivek; Jakobs, Karl; Jakobsen, Sune; Jakoubek, Tomas; Jakubek, Jan; Jamin, David Olivier; Jana, Dilip; Jansen, Eric; Jansen, Hendrik; Janssen, Jens; Janus, Michel; Jarlskog, Göran; Javadov, Namig; Javůrek, Tomáš; Jeanty, Laura; Jeng, Geng-yuan; Jennens, David; Jenni, Peter; Jentzsch, Jennifer; Jeske, Carl; Jézéquel, Stéphane; Ji, Haoshuang; Ji, Weina; Jia, Jiangyong; Jiang, Yi; Jimenez Belenguer, Marcos; Jin, Shan; Jinaru, Adam; Jinnouchi, Osamu; Joergensen, Morten Dam; Johansson, Erik; Johansson, Per; Johns, Kenneth; Jon-And, Kerstin; Jones, Graham; Jones, Roger; Jones, Tim; Jongmanns, Jan; Jorge, Pedro; Joseph, John; Joshi, Kiran Daniel; Jovicevic, Jelena; Ju, Xiangyang; Jung, Christian; Jungst, Ralph Markus; Jussel, Patrick; Juste Rozas, Aurelio; Kaci, Mohammed; Kaczmarska, Anna; Kado, Marumi; Kagan, Harris; Kagan, Michael; Kajomovitz, Enrique; Kama, Sami; Kanaya, Naoko; Kaneda, Michiru; Kaneti, Steven; Kanno, Takayuki; Kantserov, Vadim; Kanzaki, Junichi; Kaplan, Benjamin; Kapliy, Anton; Kar, Deepak; Karakostas, Konstantinos; Karastathis, Nikolaos; Karnevskiy, Mikhail; Karpov, Sergey; Karthik, Krishnaiyengar; Kartvelishvili, Vakhtang; Karyukhin, Andrey; Kashif, Lashkar; Kasieczka, Gregor; Kass, Richard; Kastanas, Alex; Kataoka, Yousuke; Katre, Akshay; Katzy, Judith; Kaushik, Venkatesh; Kawagoe, Kiyotomo; Kawamoto, Tatsuo; Kawamura, Gen; Kazama, Shingo; Kazanin, Vassili; Kazarinov, Makhail; Keeler, Richard; Keener, Paul; Kehoe, Robert; Keil, Markus; Keller, John; Keoshkerian, Houry; Kepka, Oldrich; Kerševan, Borut Paul; Kersten, Susanne; Kessoku, Kohei; Keung, Justin; Khalil-zada, Farkhad; Khandanyan, Hovhannes; Khanov, Alexander; Khodinov, Alexander; Khomich, Andrei; Khoo, Teng Jian; Khoriauli, Gia; Khoroshilov, Andrey; Khovanskiy, Valery; Khramov, Evgeniy; Khubua, Jemal; Kim, Hee Yeun; Kim, Hyeon Jin; Kim, Shinhong; Kimura, Naoki; Kind, Oliver; King, Barry; King, Matthew; King, Robert Steven Beaufoy; King, Samuel Burton; Kirk, Julie; Kiryunin, Andrey; Kishimoto, Tomoe; Kisielewska, Danuta; Kiss, Florian; Kitamura, Takumi; Kittelmann, Thomas; Kiuchi, Kenji; Kladiva, Eduard; Klein, Max; Klein, Uta; Kleinknecht, Konrad; Klimek, Pawel; Klimentov, Alexei; Klingenberg, Reiner; Klinger, Joel Alexander; Klioutchnikova, Tatiana; Klok, Peter; Kluge, Eike-Erik; Kluit, Peter; Kluth, Stefan; Kneringer, Emmerich; Knoops, Edith; Knue, Andrea; Kobayashi, Tomio; Kobel, Michael; Kocian, Martin; Kodys, Peter; Koevesarki, Peter; Koffas, Thomas; Koffeman, Els; Kogan, Lucy Anne; Kohlmann, Simon; Kohout, Zdenek; Kohriki, Takashi; Koi, Tatsumi; Kolanoski, Hermann; Koletsou, Iro; Koll, James; Komar, Aston; Komori, Yuto; Kondo, Takahiko; Kondrashova, Nataliia; Köneke, Karsten; König, Adriaan; König, Sebastian; Kono, Takanori; Konoplich, Rostislav; Konstantinidis, Nikolaos; Kopeliansky, Revital; Koperny, Stefan; Köpke, Lutz; Kopp, Anna Katharina; Korcyl, Krzysztof; Kordas, Kostantinos; Korn, Andreas; Korol, Aleksandr; Korolkov, Ilya; Korolkova, Elena; Korotkov, Vladislav; Kortner, Oliver; Kortner, Sandra; Kostyukhin, Vadim; Kotov, Sergey; Kotov, Vladislav; Kotwal, Ashutosh; Kourkoumelis, Christine; Kouskoura, Vasiliki; Koutsman, Alex; Kowalewski, Robert Victor; Kowalski, Tadeusz; Kozanecki, Witold; Kozhin, Anatoly; Kral, Vlastimil; Kramarenko, Viktor; Kramberger, Gregor; Krasnopevtsev, Dimitriy; Krasny, Mieczyslaw Witold; Krasznahorkay, Attila; Kraus, Jana; Kravchenko, Anton; Kreiss, Sven; Kretz, Moritz; Kretzschmar, Jan; Kreutzfeldt, Kristof; Krieger, Peter; Kroeninger, Kevin; Kroha, Hubert; Kroll, Joe; Kroseberg, Juergen; Krstic, Jelena; Kruchonak, Uladzimir; Krüger, Hans; Kruker, Tobias; Krumnack, Nils; Krumshteyn, Zinovii; Kruse, Amanda; Kruse, Mark; Kruskal, Michael; Kubik, Petr; Kubota, Takashi; Kuday, Sinan; Kuehn, Susanne; Kugel, Andreas; Kuhl, Andrew; Kuhl, Thorsten; Kukhtin, Victor; Kulchitsky, Yuri; Kuleshov, Sergey; Kuna, Marine; Kunkle, Joshua; Kupco, Alexander; Kurashige, Hisaya; Kurochkin, Yurii; Kurumida, Rie; Kus, Vlastimil; Kuwertz, Emma Sian; Kuze, Masahiro; Kvita, Jiri; La Rosa, Alessandro; La Rotonda, Laura; Lacasta, Carlos; Lacava, Francesco; Lacey, James; Lacker, Heiko; Lacour, Didier; Lacuesta, Vicente Ramón; Ladygin, Evgueni; Lafaye, Remi; Laforge, Bertrand; Lagouri, Theodota; Lai, Stanley; Laier, Heiko; Lambourne, Luke; Lammers, Sabine; Lampen, Caleb; Lampl, Walter; Lançon, Eric; Landgraf, Ulrich; Landon, Murrough; Lang, Valerie Susanne; Lange, Clemens; Lankford, Andrew; Lanni, Francesco; Lantzsch, Kerstin; Laplace, Sandrine; Lapoire, Cecile; Laporte, Jean-Francois; Lari, Tommaso; Lassnig, Mario; Laurelli, Paolo; Lavrijsen, Wim; Law, Alexander; Laycock, Paul; Le, Bao Tran; Le Dortz, Olivier; Le Guirriec, Emmanuel; Le Menedeu, Eve; LeCompte, Thomas; Ledroit-Guillon, Fabienne Agnes Marie; Lee, Claire Alexandra; Lee, Hurng-Chun; Lee, Jason; Lee, Shih-Chang; Lee, Lawrence; Lefebvre, Guillaume; Lefebvre, Michel; Legger, Federica; Leggett, Charles; Lehan, Allan; Lehmacher, Marc; Lehmann Miotto, Giovanna; Lei, Xiaowen; Leister, Andrew Gerard; Leite, Marco Aurelio Lisboa; Leitner, Rupert; Lellouch, Daniel; Lemmer, Boris; Leney, Katharine; Lenz, Tatjana; Lenzen, Georg; Lenzi, Bruno; Leone, Robert; Leonhardt, Kathrin; Leontsinis, Stefanos; Leroy, Claude; Lester, Christopher; Lester, Christopher Michael; Levchenko, Mikhail; Levêque, Jessica; Levin, Daniel; Levinson, Lorne; Levy, Mark; Lewis, Adrian; Lewis, George; Leyko, Agnieszka; Leyton, Michael; Li, Bing; Li, Bo; Li, Haifeng; Li, Ho Ling; Li, Liang; Li, Shu; Li, Yichen; Liang, Zhijun; Liao, Hongbo; Liberti, Barbara; Lichard, Peter; Lie, Ki; Liebal, Jessica; Liebig, Wolfgang; Limbach, Christian; Limosani, Antonio; Limper, Maaike; Lin, Simon; Linde, Frank; Lindquist, Brian Edward; Linnemann, James; Lipeles, Elliot; Lipniacka, Anna; Lisovyi, Mykhailo; Liss, Tony; Lissauer, David; Lister, Alison; Litke, Alan; Liu, Bo; Liu, Dong; Liu, Jianbei; Liu, Kun; Liu, Lulu; Liu, Miaoyuan; Liu, Minghui; Liu, Yanwen; Livan, Michele; Livermore, Sarah; Lleres, Annick; Llorente Merino, Javier; Lloyd, Stephen; Lo Sterzo, Francesco; Lobodzinska, Ewelina; Loch, Peter; Lockman, William; Loddenkoetter, Thomas; Loebinger, Fred; Loevschall-Jensen, Ask Emil; Loginov, Andrey; Loh, Chang Wei; Lohse, Thomas; Lohwasser, Kristin; Lokajicek, Milos; Lombardo, Vincenzo Paolo; Long, Brian Alexander; Long, Jonathan; Long, Robin Eamonn; Lopes, Lourenco; Lopez Mateos, David; Lopez Paredes, Brais; Lorenz, Jeanette; Lorenzo Martinez, Narei; Losada, Marta; Loscutoff, Peter; Lou, XinChou; Lounis, Abdenour; Love, Jeremy; Love, Peter; Lowe, Andrew; Lu, Feng; Lubatti, Henry; Luci, Claudio; Lucotte, Arnaud; Luehring, Frederick; Lukas, Wolfgang; Luminari, Lamberto; Lundberg, Olof; Lund-Jensen, Bengt; Lungwitz, Matthias; Lynn, David; Lysak, Roman; Lytken, Else; Ma, Hong; Ma, Lian Liang; Maccarrone, Giovanni; Macchiolo, Anna; Machado Miguens, Joana; Macina, Daniela; Madaffari, Daniele; Madar, Romain; Maddocks, Harvey Jonathan; Mader, Wolfgang; Madsen, Alexander; Maeno, Mayuko; Maeno, Tadashi; Magradze, Erekle; Mahboubi, Kambiz; Mahlstedt, Joern; Mahmoud, Sara; Maiani, Camilla; Maidantchik, Carmen; Maio, Amélia; Majewski, Stephanie; Makida, Yasuhiro; Makovec, Nikola; Mal, Prolay; Malaescu, Bogdan; Malecki, Pawel; Maleev, Victor; Malek, Fairouz; Mallik, Usha; Malon, David; Malone, Caitlin; Maltezos, Stavros; Malyshev, Vladimir; Malyukov, Sergei; Mamuzic, Judita; Mandelli, Beatrice; Mandelli, Luciano; Mandić, Igor; Mandrysch, Rocco; Maneira, José; Manfredini, Alessandro; Manhaes de Andrade Filho, Luciano; Manjarres Ramos, Joany Andreina; Mann, Alexander; Manning, Peter; Manousakis-Katsikakis, Arkadios; Mansoulie, Bruno; Mantifel, Rodger; Mapelli, Livio; March, Luis; Marchand, Jean-Francois; Marchiori, Giovanni; Marcisovsky, Michal; Marino, Christopher; Marques, Carlos; Marroquim, Fernando; Marsden, Stephen Philip; Marshall, Zach; Marti, Lukas Fritz; Marti-Garcia, Salvador; Martin, Brian; Martin, Brian Thomas; Martin, Jean-Pierre; Martin, Tim; Martin, Victoria Jane; Martin dit Latour, Bertrand; Martinez, Homero; Martinez, Mario; Martin-Haugh, Stewart; Martyniuk, Alex; Marx, Marilyn; Marzano, Francesco; Marzin, Antoine; Masetti, Lucia; Mashimo, Tetsuro; Mashinistov, Ruslan; Masik, Jiri; Maslennikov, Alexey; Massa, Ignazio; Massol, Nicolas; Mastrandrea, Paolo; Mastroberardino, Anna; Masubuchi, Tatsuya; Matricon, Pierre; Matsunaga, Hiroyuki; Matsushita, Takashi; Mättig, Peter; Mättig, Stefan; Mattmann, Johannes; Maurer, Julien; Maxfield, Stephen; Maximov, Dmitriy; Mazini, Rachid; Mazzaferro, Luca; Mc Goldrick, Garrin; Mc Kee, Shawn Patrick; McCarn, Allison; McCarthy, Robert; McCarthy, Tom; McCubbin, Norman; McFarlane, Kenneth; Mcfayden, Josh; Mchedlidze, Gvantsa; Mclaughlan, Tom; McMahon, Steve; McPherson, Robert; Meade, Andrew; Mechnich, Joerg; Medinnis, Michael; Meehan, Samuel; Mehlhase, Sascha; Mehta, Andrew; Meier, Karlheinz; Meineck, Christian; Meirose, Bernhard; Melachrinos, Constantinos; Mellado Garcia, Bruce Rafael; Meloni, Federico; Mengarelli, Alberto; Menke, Sven; Meoni, Evelin; Mercurio, Kevin Michael; Mergelmeyer, Sebastian; Meric, Nicolas; Mermod, Philippe; Merola, Leonardo; Meroni, Chiara; Merritt, Frank; Merritt, Hayes; Messina, Andrea; Metcalfe, Jessica; Mete, Alaettin Serhan; Meyer, Carsten; Meyer, Christopher; Meyer, Jean-Pierre; Meyer, Jochen; Middleton, Robin; Migas, Sylwia; Mijović, Liza; Mikenberg, Giora; Mikestikova, Marcela; Mikuž, Marko; Miller, David; Mills, Corrinne; Milov, Alexander; Milstead, David; Milstein, Dmitry; Minaenko, Andrey; Miñano Moya, Mercedes; Minashvili, Irakli; Mincer, Allen; Mindur, Bartosz; Mineev, Mikhail; Ming, Yao; Mir, Lluisa-Maria; Mirabelli, Giovanni; Mitani, Takashi; Mitrevski, Jovan; Mitsou, Vasiliki A; Mitsui, Shingo; Miucci, Antonio; Miyagawa, Paul; Mjörnmark, Jan-Ulf; Moa, Torbjoern; Mochizuki, Kazuya; Moeller, Victoria; Mohapatra, Soumya; Mohr, Wolfgang; Molander, Simon; Moles-Valls, Regina; Mönig, Klaus; Monini, Caterina; Monk, James; Monnier, Emmanuel; Montejo Berlingen, Javier; Monticelli, Fernando; Monzani, Simone; Moore, Roger; Moraes, Arthur; Morange, Nicolas; Morel, Julien; Moreno, Deywis; Moreno Llácer, María; Morettini, Paolo; Morgenstern, Marcus; Morii, Masahiro; Moritz, Sebastian; Morley, Anthony Keith; Mornacchi, Giuseppe; Morris, John; Morvaj, Ljiljana; Moser, Hans-Guenther; Mosidze, Maia; Moss, Josh; Mount, Richard; Mountricha, Eleni; Mouraviev, Sergei; Moyse, Edward; Muanza, Steve; Mudd, Richard; Mueller, Felix; Mueller, James; Mueller, Klemens; Mueller, Thibaut; Mueller, Timo; Muenstermann, Daniel; Munwes, Yonathan; Murillo Quijada, Javier Alberto; Murray, Bill; Musheghyan, Haykuhi; Musto, Elisa; Myagkov, Alexey; Myska, Miroslav; Nackenhorst, Olaf; Nadal, Jordi; Nagai, Koichi; Nagai, Ryo; Nagai, Yoshikazu; Nagano, Kunihiro; Nagarkar, Advait; Nagasaka, Yasushi; Nagel, Martin; Nairz, Armin Michael; Nakahama, Yu; Nakamura, Koji; Nakamura, Tomoaki; Nakano, Itsuo; Namasivayam, Harisankar; Nanava, Gizo; Narayan, Rohin; Nattermann, Till; Naumann, Thomas; Navarro, Gabriela; Nayyar, Ruchika; Neal, Homer; Nechaeva, Polina; Neep, Thomas James; Negri, Andrea; Negri, Guido; Negrini, Matteo; Nektarijevic, Snezana; Nelson, Andrew; Nelson, Timothy Knight; Nemecek, Stanislav; Nemethy, Peter; Nepomuceno, Andre Asevedo; Nessi, Marzio; Neubauer, Mark; Neumann, Manuel; Neves, Ricardo; Nevski, Pavel; Newcomer, Mitchel; Newman, Paul; Nguyen, Duong Hai; Nickerson, Richard; Nicolaidou, Rosy; Nicquevert, Bertrand; Nielsen, Jason; Nikiforou, Nikiforos; Nikiforov, Andriy; Nikolaenko, Vladimir; Nikolic-Audit, Irena; Nikolics, Katalin; Nikolopoulos, Konstantinos; Nilsson, Paul; Ninomiya, Yoichi; Nisati, Aleandro; Nisius, Richard; Nobe, Takuya; Nodulman, Lawrence; Nomachi, Masaharu; Nomidis, Ioannis; Norberg, Scarlet; Nordberg, Markus; Nowak, Sebastian; Nozaki, Mitsuaki; Nozka, Libor; Ntekas, Konstantinos; Nunes Hanninger, Guilherme; Nunnemann, Thomas; Nurse, Emily; Nuti, Francesco; O'Brien, Brendan Joseph; O'grady, Fionnbarr; O'Neil, Dugan; O'Shea, Val; Oakham, Gerald; Oberlack, Horst; Obermann, Theresa; Ocariz, Jose; Ochi, Atsuhiko; Ochoa, Ines; Oda, Susumu; Odaka, Shigeru; Ogren, Harold; Oh, Alexander; Oh, Seog; Ohm, Christian; Ohman, Henrik; Ohshima, Takayoshi; Okamura, Wataru; Okawa, Hideki; Okumura, Yasuyuki; Okuyama, Toyonobu; Olariu, Albert; Olchevski, Alexander; Olivares Pino, Sebastian Andres; Oliveira Damazio, Denis; Oliver Garcia, Elena; Olszewski, Andrzej; Olszowska, Jolanta; Onofre, António; Onyisi, Peter; Oram, Christopher; Oreglia, Mark; Oren, Yona; Orestano, Domizia; Orlando, Nicola; Oropeza Barrera, Cristina; Orr, Robert; Osculati, Bianca; Ospanov, Rustem; Otero y Garzon, Gustavo; Otono, Hidetoshi; Ouchrif, Mohamed; Ouellette, Eric; Ould-Saada, Farid; Ouraou, Ahmimed; Oussoren, Koen Pieter; Ouyang, Qun; Ovcharova, Ana; Owen, Mark; Ozcan, Veysi Erkcan; Ozturk, Nurcan; Pachal, Katherine; Pacheco Pages, Andres; Padilla Aranda, Cristobal; Pagáčová, Martina; Pagan Griso, Simone; Paganis, Efstathios; Pahl, Christoph; Paige, Frank; Pais, Preema; Pajchel, Katarina; Palacino, Gabriel; Palestini, Sandro; Pallin, Dominique; Palma, Alberto; Palmer, Jody; Pan, Yibin; Panagiotopoulou, Evgenia; Panduro Vazquez, William; Pani, Priscilla; Panikashvili, Natalia; Panitkin, Sergey; Pantea, Dan; Paolozzi, Lorenzo; Papadopoulou, Theodora; Papageorgiou, Konstantinos; Paramonov, Alexander; Paredes Hernandez, Daniela; Parker, Michael Andrew; Parodi, Fabrizio; Parsons, John; Parzefall, Ulrich; Pasqualucci, Enrico; Passaggio, Stefano; Passeri, Antonio; Pastore, Fernanda; Pastore, Francesca; Pásztor, Gabriella; Pataraia, Sophio; Patel, Nikhul; Pater, Joleen; Patricelli, Sergio; Pauly, Thilo; Pearce, James; Pedersen, Maiken; Pedraza Lopez, Sebastian; Pedro, Rute; Peleganchuk, Sergey; Pelikan, Daniel; Peng, Haiping; Penning, Bjoern; Penwell, John; Perepelitsa, Dennis; Perez Codina, Estel; Pérez García-Estañ, María Teresa; Perez Reale, Valeria; Perini, Laura; Pernegger, Heinz; Perrino, Roberto; Peschke, Richard; Peshekhonov, Vladimir; Peters, Krisztian; Peters, Yvonne; Petersen, Brian; Petersen, Jorgen; Petersen, Troels; Petit, Elisabeth; Petridis, Andreas; Petridou, Chariclia; Petrolo, Emilio; Petrucci, Fabrizio; Petteni, Michele; Pettersson, Nora Emilia; Pezoa, Raquel; Phillips, Peter William; Piacquadio, Giacinto; Pianori, Elisabetta; Picazio, Attilio; Piccaro, Elisa; Piccinini, Maurizio; Piegaia, Ricardo; Pieron, Jacek Piotr; Pignotti, David; Pilcher, James; Pilkington, Andrew; Pina, João Antonio; Pinamonti, Michele; Pinder, Alex; Pinfold, James; Pingel, Almut; Pinto, Belmiro; Pires, Sylvestre; Pitt, Michael; Pizio, Caterina; Pleier, Marc-Andre; Pleskot, Vojtech; Plotnikova, Elena; Plucinski, Pawel; Poddar, Sahill; Podlyski, Fabrice; Poettgen, Ruth; Poggioli, Luc; Pohl, David-leon; Pohl, Martin; Polesello, Giacomo; Policicchio, Antonio; Polifka, Richard; Polini, Alessandro; Pollard, Christopher Samuel; Polychronakos, Venetios; Pommès, Kathy; Pontecorvo, Ludovico; Pope, Bernard; Popeneciu, Gabriel Alexandru; Popovic, Dragan; Poppleton, Alan; Portell Bueso, Xavier; Pospelov, Guennady; Pospisil, Stanislav; Potamianos, Karolos; Potrap, Igor; Potter, Christina; Potter, Christopher; Poulard, Gilbert; Poveda, Joaquin; Pozdnyakov, Valery; Pralavorio, Pascal; Pranko, Aliaksandr; Prasad, Srivas; Pravahan, Rishiraj; Prell, Soeren; Price, Darren; Price, Joe; Price, Lawrence; Prieur, Damien; Primavera, Margherita; Proissl, Manuel; Prokofiev, Kirill; Prokoshin, Fedor; Protopapadaki, Eftychia-sofia; Protopopescu, Serban; Proudfoot, James; Przybycien, Mariusz; Przysiezniak, Helenka; Ptacek, Elizabeth; Pueschel, Elisa; Puldon, David; Purohit, Milind; Puzo, Patrick; Qian, Jianming; Qin, Gang; Qin, Yang; Quadt, Arnulf; Quarrie, David; Quayle, William; Quilty, Donnchadha; Qureshi, Anum; Radeka, Veljko; Radescu, Voica; Radhakrishnan, Sooraj Krishnan; Radloff, Peter; Rados, Pere; Ragusa, Francesco; Rahal, Ghita; Rajagopalan, Srinivasan; Rammensee, Michael; Randle-Conde, Aidan Sean; Rangel-Smith, Camila; Rao, Kanury; Rauscher, Felix; Rave, Tobias Christian; Ravenscroft, Thomas; Raymond, Michel; Read, Alexander Lincoln; Rebuzzi, Daniela; Redelbach, Andreas; Redlinger, George; Reece, Ryan; Reeves, Kendall; Rehnisch, Laura; Reinsch, Andreas; Reisin, Hernan; Relich, Matthew; Rembser, Christoph; Ren, Zhongliang; Renaud, Adrien; Rescigno, Marco; Resconi, Silvia; Resende, Bernardo; Rezanova, Olga; Reznicek, Pavel; Rezvani, Reyhaneh; Richter, Robert; Ridel, Melissa; Rieck, Patrick; Rijssenbeek, Michael; Rimoldi, Adele; Rinaldi, Lorenzo; Ritsch, Elmar; Riu, Imma; Rizatdinova, Flera; Rizvi, Eram; Robertson, Steven; Robichaud-Veronneau, Andree; Robinson, Dave; Robinson, James; Robson, Aidan; Roda, Chiara; Rodrigues, Luis; Roe, Shaun; Røhne, Ole; Rolli, Simona; Romaniouk, Anatoli; Romano, Marino; Romeo, Gaston; Romero Adam, Elena; Rompotis, Nikolaos; Roos, Lydia; Ros, Eduardo; Rosati, Stefano; Rosbach, Kilian; Rose, Matthew; Rosendahl, Peter Lundgaard; Rosenthal, Oliver; Rossetti, Valerio; Rossi, Elvira; Rossi, Leonardo Paolo; Rosten, Rachel; Rotaru, Marina; Roth, Itamar; Rothberg, Joseph; Rousseau, David; Royon, Christophe; Rozanov, Alexandre; Rozen, Yoram; Ruan, Xifeng; Rubbo, Francesco; Rubinskiy, Igor; Rud, Viacheslav; Rudolph, Christian; Rudolph, Matthew Scott; Rühr, Frederik; Ruiz-Martinez, Aranzazu; Rurikova, Zuzana; Rusakovich, Nikolai; Ruschke, Alexander; Rutherfoord, John; Ruthmann, Nils; Ryabov, Yury; Rybar, Martin; Rybkin, Grigori; Ryder, Nick; Saavedra, Aldo; Sacerdoti, Sabrina; Saddique, Asif; Sadeh, Iftach; Sadrozinski, Hartmut; Sadykov, Renat; Safai Tehrani, Francesco; Sakamoto, Hiroshi; Sakurai, Yuki; Salamanna, Giuseppe; Salamon, Andrea; Saleem, Muhammad; Salek, David; Sales De Bruin, Pedro Henrique; Salihagic, Denis; Salnikov, Andrei; Salt, José; Salvachua Ferrando, Belén; Salvatore, Daniela; Salvatore, Pasquale Fabrizio; Salvucci, Antonio; Salzburger, Andreas; Sampsonidis, Dimitrios; Sanchez, Arturo; Sánchez, Javier; Sanchez Martinez, Victoria; Sandaker, Heidi; Sandbach, Ruth Laura; Sander, Heinz Georg; Sanders, Michiel; Sandhoff, Marisa; Sandoval, Tanya; Sandoval, Carlos; Sandstroem, Rikard; Sankey, Dave; Sansoni, Andrea; Santoni, Claudio; Santonico, Rinaldo; Santos, Helena; Santoyo Castillo, Itzebelt; Sapp, Kevin; Sapronov, Andrey; Saraiva, João; Sarrazin, Bjorn; Sartisohn, Georg; Sasaki, Osamu; Sasaki, Yuichi; Satsounkevitch, Igor; Sauvage, Gilles; Sauvan, Emmanuel; Savard, Pierre; Savu, Dan Octavian; Sawyer, Craig; Sawyer, Lee; Saxon, James; Sbarra, Carla; Sbrizzi, Antonio; Scanlon, Tim; Scannicchio, Diana; Scarcella, Mark; Schaarschmidt, Jana; Schacht, Peter; Schaefer, Douglas; Schaefer, Ralph; Schaepe, Steffen; Schaetzel, Sebastian; Schäfer, Uli; Schaffer, Arthur; Schaile, Dorothee; Schamberger, R. Dean; Scharf, Veit; Schegelsky, Valery; Scheirich, Daniel; Schernau, Michael; Scherzer, Max; Schiavi, Carlo; Schieck, Jochen; Schillo, Christian; Schioppa, Marco; Schlenker, Stefan; Schmidt, Evelyn; Schmieden, Kristof; Schmitt, Christian; Schmitt, Christopher; Schmitt, Sebastian; Schneider, Basil; Schnellbach, Yan Jie; Schnoor, Ulrike; Schoeffel, Laurent; Schoening, Andre; Schoenrock, Bradley Daniel; Schorlemmer, Andre Lukas; Schott, Matthias; Schouten, Doug; Schovancova, Jaroslava; Schram, Malachi; Schramm, Steven; Schreyer, Manuel; Schroeder, Christian; Schuh, Natascha; Schultens, Martin Johannes; Schultz-Coulon, Hans-Christian; Schulz, Holger; Schumacher, Markus; Schumm, Bruce; Schune, Philippe; Schwartzman, Ariel; Schwegler, Philipp; Schwemling, Philippe; Schwienhorst, Reinhard; Schwindling, Jerome; Schwindt, Thomas; Schwoerer, Maud; Sciacca, Gianfranco; Scifo, Estelle; Sciolla, Gabriella; Scott, Bill; Scuri, Fabrizio; Scutti, Federico; Searcy, Jacob; Sedov, George; Sedykh, Evgeny; Seidel, Sally; Seiden, Abraham; Seifert, Frank; Seixas, José; Sekhniaidze, Givi; Sekula, Stephen; Selbach, Karoline Elfriede; Seliverstov, Dmitry; Sellers, Graham; Semprini-Cesari, Nicola; Serfon, Cedric; Serin, Laurent; Serkin, Leonid; Serre, Thomas; Seuster, Rolf; Severini, Horst; Sforza, Federico; Sfyrla, Anna; Shabalina, Elizaveta; Shamim, Mansoora; Shan, Lianyou; Shank, James; Shao, Qi Tao; Shapiro, Marjorie; Shatalov, Pavel; Shaw, Kate; Shaw, Rick; Sherwood, Peter; Shimizu, Shima; Shimmin, Chase Owen; Shimojima, Makoto; Shiyakova, Mariya; Shmeleva, Alevtina; Shochet, Mel; Short, Daniel; Shrestha, Suyog; Shulga, Evgeny; Shupe, Michael; Shushkevich, Stanislav; Sicho, Petr; Sidorov, Dmitri; Sidoti, Antonio; Siegert, Frank; Sijacki, Djordje; Silbert, Ohad; Silva, José; Silver, Yiftah; Silverstein, Daniel; Silverstein, Samuel; Simak, Vladislav; Simard, Olivier; Simic, Ljiljana; Simion, Stefan; Simioni, Eduard; Simmons, Brinick; Simoniello, Rosa; Simonyan, Margar; Sinervo, Pekka; Sinev, Nikolai; Sipica, Valentin; Siragusa, Giovanni; Sircar, Anirvan; Sisakyan, Alexei; Sivoklokov, Serguei; Sjölin, Jörgen; Sjursen, Therese; Skottowe, Hugh Philip; Skovpen, Kirill; Skubic, Patrick; Slater, Mark; Slavicek, Tomas; Sliwa, Krzysztof; Smakhtin, Vladimir; Smart, Ben; Smestad, Lillian; Smirnov, Sergei; Smirnov, Yury; Smirnova, Lidia; Smirnova, Oxana; Smizanska, Maria; Smolek, Karel; Snesarev, Andrei; Snidero, Giacomo; Snow, Joel; Snyder, Scott; Sobie, Randall; Socher, Felix; Sodomka, Jaromir; Soffer, Abner; Soh, Dart-yin; Solans, Carlos; Solar, Michael; Solc, Jaroslav; Soldatov, Evgeny; Soldevila, Urmila; Solfaroli Camillocci, Elena; Solodkov, Alexander; Solovyanov, Oleg; Solovyev, Victor; Sommer, Philip; Song, Hong Ye; Soni, Nitesh; Sood, Alexander; Sopczak, Andre; Sopko, Vit; Sopko, Bruno; Sorin, Veronica; Sosebee, Mark; Soualah, Rachik; Soueid, Paul; Soukharev, Andrey; South, David; Spagnolo, Stefania; Spanò, Francesco; Spearman, William Robert; Spighi, Roberto; Spigo, Giancarlo; Spousta, Martin; Spreitzer, Teresa; Spurlock, Barry; St Denis, Richard Dante; Staerz, Steffen; Stahlman, Jonathan; Stamen, Rainer; Stanecka, Ewa; Stanek, Robert; Stanescu, Cristian; Stanescu-Bellu, Madalina; Stanitzki, Marcel Michael; Stapnes, Steinar; Starchenko, Evgeny; Stark, Jan; Staroba, Pavel; Starovoitov, Pavel; Staszewski, Rafal; Stavina, Pavel; Steele, Genevieve; Steinberg, Peter; Stekl, Ivan; Stelzer, Bernd; Stelzer, Harald Joerg; Stelzer-Chilton, Oliver; Stenzel, Hasko; Stern, Sebastian; Stewart, Graeme; Stillings, Jan Andre; Stockton, Mark; Stoebe, Michael; Stoicea, Gabriel; Stolte, Philipp; Stonjek, Stefan; Stradling, Alden; Straessner, Arno; Stramaglia, Maria Elena; Strandberg, Jonas; Strandberg, Sara; Strandlie, Are; Strauss, Emanuel; Strauss, Michael; Strizenec, Pavol; Ströhmer, Raimund; Strom, David; Stroynowski, Ryszard; Stucci, Stefania Antonia; Stugu, Bjarne; Styles, Nicholas Adam; Su, Dong; Su, Jun; Subramania, Halasya Siva; Subramaniam, Rajivalochan; Succurro, Antonella; Sugaya, Yorihito; Suhr, Chad; Suk, Michal; Sulin, Vladimir; Sultansoy, Saleh; Sumida, Toshi; Sun, Xiaohu; Sundermann, Jan Erik; Suruliz, Kerim; Susinno, Giancarlo; Sutton, Mark; Suzuki, Yu; Svatos, Michal; Swedish, Stephen; Swiatlowski, Maximilian; Sykora, Ivan; Sykora, Tomas; Ta, Duc; Tackmann, Kerstin; Taenzer, Joe; Taffard, Anyes; Tafirout, Reda; Taiblum, Nimrod; Takahashi, Yuta; Takai, Helio; Takashima, Ryuichi; Takeda, Hiroshi; Takeshita, Tohru; Takubo, Yosuke; Talby, Mossadek; Talyshev, Alexey; Tam, Jason; Tamsett, Matthew; Tan, Kong Guan; Tanaka, Junichi; Tanaka, Reisaburo; Tanaka, Satoshi; Tanaka, Shuji; Tanasijczuk, Andres Jorge; Tani, Kazutoshi; Tannoury, Nancy; Tapprogge, Stefan; Tarem, Shlomit; Tarrade, Fabien; Tartarelli, Giuseppe Francesco; Tas, Petr; Tasevsky, Marek; Tashiro, Takuya; Tassi, Enrico; Tavares Delgado, Ademar; Tayalati, Yahya; Taylor, Frank; Taylor, Geoffrey; Taylor, Wendy; Teischinger, Florian Alfred; Teixeira Dias Castanheira, Matilde; Teixeira-Dias, Pedro; Temming, Kim Katrin; Ten Kate, Herman; Teng, Ping-Kun; Terada, Susumu; Terashi, Koji; Terron, Juan; Terzo, Stefano; Testa, Marianna; Teuscher, Richard; Therhaag, Jan; Theveneaux-Pelzer, Timothée; Thoma, Sascha; Thomas, Juergen; Thomas-Wilsker, Joshuha; Thompson, Emily; Thompson, Paul; Thompson, Peter; Thompson, Stan; Thomsen, Lotte Ansgaard; Thomson, Evelyn; Thomson, Mark; Thong, Wai Meng; Thun, Rudolf; Tian, Feng; Tibbetts, Mark James; Tikhomirov, Vladimir; Tikhonov, Yury; Timoshenko, Sergey; Tiouchichine, Elodie; Tipton, Paul; Tisserant, Sylvain; Todorov, Theodore; Todorova-Nova, Sharka; Toggerson, Brokk; Tojo, Junji; Tokár, Stanislav; Tokushuku, Katsuo; Tollefson, Kirsten; Tomlinson, Lee; Tomoto, Makoto; Tompkins, Lauren; Toms, Konstantin; Topilin, Nikolai; Torrence, Eric; Torres, Heberth; Torró Pastor, Emma; Toth, Jozsef; Touchard, Francois; Tovey, Daniel; Tran, Huong Lan; Trefzger, Thomas; Tremblet, Louis; Tricoli, Alessandro; Trigger, Isabel Marian; Trincaz-Duvoid, Sophie; Tripiana, Martin; Triplett, Nathan; Trischuk, William; Trocmé, Benjamin; Troncon, Clara; Trottier-McDonald, Michel; Trovatelli, Monica; True, Patrick; Trzebinski, Maciej; Trzupek, Adam; Tsarouchas, Charilaos; Tseng, Jeffrey; Tsiareshka, Pavel; Tsionou, Dimitra; Tsipolitis, Georgios; Tsirintanis, Nikolaos; Tsiskaridze, Shota; Tsiskaridze, Vakhtang; Tskhadadze, Edisher; Tsukerman, Ilya; Tsulaia, Vakhtang; Tsuno, Soshi; Tsybychev, Dmitri; Tudorache, Alexandra; Tudorache, Valentina; Tuna, Alexander Naip; Tupputi, Salvatore; Turchikhin, Semen; Turecek, Daniel; Turk Cakir, Ilkay; Turra, Ruggero; Tuts, Michael; Tykhonov, Andrii; Tylmad, Maja; Tyndel, Mike; Uchida, Kirika; Ueda, Ikuo; Ueno, Ryuichi; Ughetto, Michael; Ugland, Maren; Uhlenbrock, Mathias; Ukegawa, Fumihiko; Unal, Guillaume; Undrus, Alexander; Unel, Gokhan; Ungaro, Francesca; Unno, Yoshinobu; Urbaniec, Dustin; Urquijo, Phillip; Usai, Giulio; Usanova, Anna; Vacavant, Laurent; Vacek, Vaclav; Vachon, Brigitte; Valencic, Nika; Valentinetti, Sara; Valero, Alberto; Valery, Loic; Valkar, Stefan; Valladolid Gallego, Eva; Vallecorsa, Sofia; Valls Ferrer, Juan Antonio; Van Berg, Richard; Van Der Deijl, Pieter; van der Geer, Rogier; van der Graaf, Harry; Van Der Leeuw, Robin; van der Ster, Daniel; van Eldik, Niels; van Gemmeren, Peter; Van Nieuwkoop, Jacobus; van Vulpen, Ivo; van Woerden, Marius Cornelis; Vanadia, Marco; Vandelli, Wainer; Vanguri, Rami; Vaniachine, Alexandre; Vankov, Peter; Vannucci, Francois; Vardanyan, Gagik; Vari, Riccardo; Varnes, Erich; Varol, Tulin; Varouchas, Dimitris; Vartapetian, Armen; Varvell, Kevin; Vazeille, Francois; Vazquez Schroeder, Tamara; Veatch, Jason; Veloso, Filipe; Veneziano, Stefano; Ventura, Andrea; Ventura, Daniel; Venturi, Manuela; Venturi, Nicola; Venturini, Alessio; Vercesi, Valerio; Verducci, Monica; Verkerke, Wouter; Vermeulen, Jos; Vest, Anja; Vetterli, Michel; Viazlo, Oleksandr; Vichou, Irene; Vickey, Trevor; Vickey Boeriu, Oana Elena; Viehhauser, Georg; Viel, Simon; Vigne, Ralph; Villa, Mauro; Villaplana Perez, Miguel; Vilucchi, Elisabetta; Vincter, Manuella; Vinogradov, Vladimir; Virzi, Joseph; Vivarelli, Iacopo; Vives Vaque, Francesc; Vlachos, Sotirios; Vladoiu, Dan; Vlasak, Michal; Vogel, Adrian; Vokac, Petr; Volpi, Guido; Volpi, Matteo; von der Schmitt, Hans; von Radziewski, Holger; von Toerne, Eckhard; Vorobel, Vit; Vorobev, Konstantin; Vos, Marcel; Voss, Rudiger; Vossebeld, Joost; Vranjes, Nenad; Vranjes Milosavljevic, Marija; Vrba, Vaclav; Vreeswijk, Marcel; Vu Anh, Tuan; Vuillermet, Raphael; Vukotic, Ilija; Vykydal, Zdenek; Wagner, Wolfgang; Wagner, Peter; Wahrmund, Sebastian; Wakabayashi, Jun; Walder, James; Walker, Rodney; Walkowiak, Wolfgang; Wall, Richard; Waller, Peter; Walsh, Brian; Wang, Chao; Wang, Chiho; Wang, Fuquan; Wang, Haichen; Wang, Hulin; Wang, Jike; Wang, Jin; Wang, Kuhan; Wang, Rui; Wang, Song-Ming; Wang, Tan; Wang, Xiaoxiao; Wanotayaroj, Chaowaroj; Warburton, Andreas; Ward, Patricia; Wardrope, David Robert; Warren, Matthew; Warsinsky, Markus; Washbrook, Andrew; Wasicki, Christoph; Watanabe, Ippei; Watkins, Peter; Watson, Alan; Watson, Ian; Watson, Miriam; Watts, Gordon; Watts, Stephen; Waugh, Ben; Webb, Samuel; Weber, Michele; Weber, Stefan Wolf; Webster, Jordan S; Weidberg, Anthony; Weigell, Philipp; Weinert, Benjamin; Weingarten, Jens; Weiser, Christian; Weits, Hartger; Wells, Phillippa; Wenaus, Torre; Wendland, Dennis; Weng, Zhili; Wengler, Thorsten; Wenig, Siegfried; Wermes, Norbert; Werner, Matthias; Werner, Per; Wessels, Martin; Wetter, Jeffrey; Whalen, Kathleen; White, Andrew; White, Martin; White, Ryan; White, Sebastian; Whiteson, Daniel; Wicke, Daniel; Wickens, Fred; Wiedenmann, Werner; Wielers, Monika; Wienemann, Peter; Wiglesworth, Craig; Wiik-Fuchs, Liv Antje Mari; Wijeratne, Peter Alexander; Wildauer, Andreas; Wildt, Martin Andre; Wilkens, Henric George; Will, Jonas Zacharias; Williams, Hugh; Williams, Sarah; Willis, Christopher; Willocq, Stephane; Wilson, John; Wilson, Alan; Wingerter-Seez, Isabelle; Winklmeier, Frank; Wittgen, Matthias; Wittig, Tobias; Wittkowski, Josephine; Wollstadt, Simon Jakob; Wolter, Marcin Wladyslaw; Wolters, Helmut; Wosiek, Barbara; Wotschack, Jorg; Woudstra, Martin; Wozniak, Krzysztof; Wright, Michael; Wu, Mengqing; Wu, Sau Lan; Wu, Xin; Wu, Yusheng; Wulf, Evan; Wyatt, Terry Richard; Wynne, Benjamin; Xella, Stefania; Xiao, Meng; Xu, Da; Xu, Lailin; Yabsley, Bruce; Yacoob, Sahal; Yamada, Miho; Yamaguchi, Hiroshi; Yamaguchi, Yohei; Yamamoto, Akira; Yamamoto, Kyoko; Yamamoto, Shimpei; Yamamura, Taiki; Yamanaka, Takashi; Yamauchi, Katsuya; Yamazaki, Yuji; Yan, Zhen; Yang, Haijun; Yang, Hongtao; Yang, Un-Ki; Yang, Yi; Yanush, Serguei; Yao, Liwen; Yao, Weiming; Yasu, Yoshiji; Yatsenko, Elena; Yau Wong, Kaven Henry; Ye, Jingbo; Ye, Shuwei; Yen, Andy L; Yildirim, Eda; Yilmaz, Metin; Yoosoofmiya, Reza; Yorita, Kohei; Yoshida, Rikutaro; Yoshihara, Keisuke; Young, Charles; Young, Christopher John; Youssef, Saul; Yu, David Ren-Hwa; Yu, Jaehoon; Yu, Jiaming; Yu, Jie; Yuan, Li; Yurkewicz, Adam; Zabinski, Bartlomiej; Zaidan, Remi; Zaitsev, Alexander; Zaman, Aungshuman; Zambito, Stefano; Zanello, Lucia; Zanzi, Daniele; Zaytsev, Alexander; Zeitnitz, Christian; Zeman, Martin; Zemla, Andrzej; Zengel, Keith; Zenin, Oleg; Ženiš, Tibor; Zerwas, Dirk; Zevi della Porta, Giovanni; Zhang, Dongliang; Zhang, Fangzhou; Zhang, Huaqiao; Zhang, Jinlong; Zhang, Lei; Zhang, Xueyao; Zhang, Zhiqing; Zhao, Zhengguo; Zhemchugov, Alexey; Zhong, Jiahang; Zhou, Bing; Zhou, Lei; Zhou, Ning; Zhu, Cheng Guang; Zhu, Hongbo; Zhu, Junjie; Zhu, Yingchun; Zhuang, Xuai; Zibell, Andre; Zieminska, Daria; Zimine, Nikolai; Zimmermann, Christoph; Zimmermann, Robert; Zimmermann, Simone; Zimmermann, Stephanie; Zinonos, Zinonas; Ziolkowski, Michael; Zobernig, Georg; Zoccoli, Antonio; zur Nedden, Martin; Zurzolo, Giovanni; Zutshi, Vishnu; Zwalinski, Lukasz

    The semiconductor tracker is a silicon microstrip detector forming part of the inner tracking system of the ATLAS experiment at the LHC. The operation and performance of the semiconductor tracker during the first years of LHC running are described. More than 99% of the detector modules were operational during this period, with an average intrinsic hit efficiency of (99.74 +/- 0.04)%. The evolution of the noise occupancy is discussed, and measurements of the Lorentz angle, delta-ray production and energy loss presented. The alignment of the detector is found to be stable at the few-micron level over long periods of time. Radiation damage measurements, which include the evolution of detector leakage currents, are found to be consistent with predictions and are used in the verification of radiation background simulations.

  20. 73Se, an unusual PAC probe applied to the study of semiconductors

    International Nuclear Information System (INIS)

    Vianden, R.

    1990-01-01

    The isotope 73 Se was produced by an (α,3n) reaction from 72 Ge in order to study the applicability of this probe to PAC defect studies in semiconductors. Measurements before and after annealing recoil implanted samples showed that the quadrupole interaction of the 66 keV state in the daughter isotope 73 As with the lattice damage created by the implantation is comparable to that found for 111 In in Ge. This indicates that 73 Se can be a suitable probe for defect studies in semiconductors with nuclear methods. (orig.)

  1. Growth dynamics of SiGe nanowires by the Vapour Liquid Solid method and its impact on SiGe/Si axial heterojunction abruptness.

    Science.gov (United States)

    Pura, Jose Luis; Periwal, Priyanka; Baron, Thierry; Jimenez, Juan

    2018-06-05

    The Vapour Liquid Solid (VLS) method is by far the most extended procedure for bottom-up nanowire growth. This method also allows for the manufacture of nanowire axial heterojunctions in a straightforward way. To do this, during the growth process the precursor gases are switched on/off to obtain the desired change in the nanowire composition. Using this technique axially heterostructured nanowires can be grown, which are crucial for the fabrication of electronic and optoelectronic devices. SiGe/Si nanowires are compatible with Complementary Metal Oxide Semiconductor (CMOS) technology, this improves their versatility and the possibility of integration with the current electronic technologies. Abrupt heterointerfaces are fundamental for the development and correct operation of electronic and optoelectronic devices. Unfortunately, VLS growth of SiGe/Si heterojunctions does not provide abrupt transitions because of the high solubility of group IV semiconductors in Au, with the corresponding reservoir effect that precludes the growth of sharp interfaces. In this work, we studied the growth dynamics of SiGe/Si heterojunctions based on already developed models for VLS growth. A composition map of the Si-Ge-Au liquid alloy is proposed to better understand the impact of the growing conditions on the nanowire growth process and the heterojunction formation. The solution of our model provides heterojunction profiles in good agreement with experimental measurements. Finally, the in-depth study of the composition map provides a practical approach to reduce drastically the heterojunction abruptness by reducing the Si and Ge concentrations in the catalyst droplet. This converges with previous approaches that use catalysts aiming to reduce the solubility of the atomic species. This analysis opens new paths to reduce the heterojunction abruptness using Au catalysts, but the model can be naturally extended to other catalysts and semiconductors. © 2018 IOP Publishing Ltd.

  2. Novel silicon stripixel detector: concept, simulation, design, and fabrication

    International Nuclear Information System (INIS)

    Li, Z.

    2004-01-01

    A novel detector concept has been developed in this work that has the necessary properties to provide two-dimensional (2-D) position sensitivity with a moderate number of readout electronic channels and single-sided detector fabrication process. The concept is based on interleaved pixel electrodes arranged in a projective X-Y readout, which makes possible position encoding with minimum number of channels. In further discussions, we refer to this concept as 'stripixel' detector, as it combines the 2-D position resolution of a pixel electrode geometry with the simplicity of the projective readout of a double-sided strip detector. For DC coupled detectors with large pitches (>20 μm), individual pixels are divided into X- and Y-cell that can be interleaved by many different schemes that ensure the charge sharing between them. This type of stripixel detectors is called interleaved stripixel detectors. When the detector pitch goes down (<20 μm), the X and Y-pixel may not have to be interleaved, and they can be connected in an alternating way to X-Y strip readout. This type of stripixel detectors is called alternating stripixel detectors (ASD). For ASD, a position resolution better than 1 μm in two dimensions can be achieved by determining the centroid of the charge collected on pixel electrodes with a granularity in the range of 5-6 μm. For AC coupled detectors, no interleaving scheme may be needed, and there may be no limit on the pitch size, i.e. it may go from pitches in the order of microns, to hundreds of microns or even mm's. This electrode granularity does not pose difficult demands on the lithography and the fabrication technology. This novel detector concept can be applied to any semiconductor detectors/sensors, such as Si, Ge, GaAs, SiC, diamond, etc

  3. On active shieldings in (ββ)0ν 76Ge decay experiments

    International Nuclear Information System (INIS)

    Garcia, E.; Morales, A.; Morales, J.; Nunez-Lagos, R.; Ortiz de Solorzano, A.; Puimedon, J.; Saenz, C.; Salinas, A.; Sarsa, M.L.; Villar, J.A.

    1992-01-01

    The sensitivity of an ultra low background Ge detector for the (ββ) 0ν decay of 76 Ge is estimated in two different experimental set-ups. The main difference between them is the inclusion or not of an active NaI shielding. We find that sensitivity of the Ge detector is not improved by this active shielding either for the O + -->O + or the O + -->2 + (ββ) 0ν transitions. Our results provide a valuable information for future 76 Ge enriched experiments. (orig.)

  4. Prototyping and tests for an MRPC-based time-of-flight detector for 1 GeV neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Yakorev, D. [Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden (Germany); Aumann, T. [GSI Helmholtz zentrum fuer Schwerionenforschung, Darmstadt (Germany); Technische Universitaet Darmstadt (Germany); Bemmerer, D., E-mail: d.bemmerer@hzdr.de [Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden (Germany); Boretzky, K. [GSI Helmholtz zentrum fuer Schwerionenforschung, Darmstadt (Germany); Caesar, C. [GSI Helmholtz zentrum fuer Schwerionenforschung, Darmstadt (Germany); Technische Universitaet Darmstadt (Germany); Ciobanu, M. [GSI Helmholtz zentrum fuer Schwerionenforschung, Darmstadt (Germany); Cowan, T.; Elekes, Z. [Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden (Germany); Elvers, M. [Universitaet zu Koeln (Germany); Gonzalez Diaz, D. [GSI Helmholtz zentrum fuer Schwerionenforschung, Darmstadt (Germany); Technische Universitaet Darmstadt (Germany); Tsinghua University, Beijing (China); Hannaske, R. [Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden (Germany); Hehner, J.; Heil, M. [GSI Helmholtz zentrum fuer Schwerionenforschung, Darmstadt (Germany); Kempe, M. [Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden (Germany); Maroussov, V. [Universitaet zu Koeln (Germany); Nusair, O. [GSI Helmholtz zentrum fuer Schwerionenforschung, Darmstadt (Germany); Al Balqa' Applied University, Salt (Jordan); Simon, H. [GSI Helmholtz zentrum fuer Schwerionenforschung, Darmstadt (Germany); Sobiella, M.; Stach, D.; Wagner, A. [Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden (Germany); and others

    2011-10-21

    The NeuLAND detector at the R{sup 3}B experiment at the future FAIR facility in Darmstadt aims to detect fast neutrons (0.2-1.0 GeV) with high time and spatial resolutions ({sigma}{sub t}<100ps,{sigma}{sub x,y,z}<1cm). This task can be performed either with a scintillator or based on the multigap resistive plate chamber (MRPC) technology. Here, prototyping and test for an MRPC-based solution are discussed. In order to reach 90% detection efficiency, the final detector must consist of 50 consecutive MRPC stacks. Each stack contains a 4 mm thick anode made of iron converter material, with an additional 4 mm of converter material between two stacks. The secondary charged particles stemming from hadronic interactions of the high energetic neutrons in the converter will be detected in the MRPCs. As part of the ongoing development effort, a number of prototypes for this detector have been developed and built. They have been tested in experiments with a single-electron beam with picosecond resolution at the superconducting linac ELBE (Dresden, Germany). The results of the tests are presented here, and an outlook is given.

  5. Drift time variations in CdZnTe detectors measured with alpha-particles: Their correlation with the detector’s responses

    Energy Technology Data Exchange (ETDEWEB)

    Bolotnikov A. E.; Butcher, J.; Hamade, M.; Petryk, M.; Bolotnikov, A.; Camarda, G.; Cui, Y.; Hossain, A.; Kim, K.; Yang, G.; and James, R.

    2012-05-14

    Homogeneity of properties related to material crystallinity is a critical parameter for achieving high-performance CdZnTe (CZT) radiation detectors. Unfortunately, this requirement is not always satisfied in today's commercial CZT material due to high concentrations of extended defects, in particular subgrain boundaries, which are believed to be part of the causes hampering the energy resolution and efficiency of CZT detectors. In the past, the effects of subgrain boundaries have been studied in Si, Ge and other semiconductors. It was demonstrated that subgrain boundaries tend to accumulate secondary phases and impurities causing inhomogeneous distributions of trapping centers. It was also demonstrated that subgrain boundaries result in local perturbations of the electric field, which affect the carrier transport and other properties of semiconductor devices. The subgrain boundaries in CZT material likely behave in a similar way, which makes them responsible for variations in the electron drift time and carrier trapping in CZT detectors. In this work, we employed the transient current technique to measure variations in the electron drift time and related the variations to the device performances and subgrain boundaries, whose presence in the crystals were confirmed with white beam X-ray diffraction topography and infrared transmission microscopy.

  6. Using of germanium detectors in nuclear experiments with photon beams

    International Nuclear Information System (INIS)

    Kapitonov, I.M.; Tutin, I.A.

    1995-01-01

    Full text: The study of atomic nuclei with real photons is very important source of the information about nuclear structure. In such experiments the basic electromagnetic interaction between the photon and the target nuclei is well known. Experiments with photon beams become especially valuable when outcoming particles are also photons. In these cases completely model-independent information on nuclear structure can be extracted. The use of semiconductor Ge-spectrometers with excellent resolution and large sensitive volumes for recording outcoming photons gives us such an additional important advantage as possibility to observe individual closely spaced levels of the final nuclei. In the report an experience of using Ge-detectors in two types of nuclear experiments is described. Both of them - nuclear resonance fluorescence (NRF) and nuclear photodisintegration - are carried out in beams of bremsstrahlung gamma radiation. The central element of the setup recording gamma quanta in these experiments is germanium detector. NRF is unique method for studying low-lying excited nuclear states. The spins of the states can be determined easily from the measured angular distributions of scattered photons. Model independent parity assignments in NRF can be achieved by measuring polarization observables. There are two experimental possibilities: the use of linearly polarized photons (off-axis bremsstrahlung) in the entrance channel and the measurement of the linear polarization of the scattered photons using Compton polarimeters. For both methods several germanium detectors (3-5) must be used simultaneously. Nowadays Compton polarimeter can also be done from single large Ge-crystal by segmenting the outer electrode. Advantages and drawbacks of the methods and background conditions are discussed and requirements to Ge-crystals are formulated. The importance of using a new generation of electron accelerators with continuous wave (cw) beams for NRF-measurements is stressed. The

  7. Modeling the Efficiency of a Germanium Detector

    Science.gov (United States)

    Hayton, Keith; Prewitt, Michelle; Quarles, C. A.

    2006-10-01

    We are using the Monte Carlo Program PENELOPE and the cylindrical geometry program PENCYL to develop a model of the detector efficiency of a planar Ge detector. The detector is used for x-ray measurements in an ongoing experiment to measure electron bremsstrahlung. While we are mainly interested in the efficiency up to 60 keV, the model ranges from 10.1 keV (below the Ge absorption edge at 11.1 keV) to 800 keV. Measurements of the detector efficiency have been made in a well-defined geometry with calibrated radioactive sources: Co-57, Se-75, Ba-133, Am-241 and Bi-207. The model is compared with the experimental measurements and is expected to provide a better interpolation formula for the detector efficiency than simply using x-ray absorption coefficients for the major constituents of the detector. Using PENELOPE, we will discuss several factors, such as Ge dead layer, surface ice layer and angular divergence of the source, that influence the efficiency of the detector.

  8. Cryogenic readout techniques for germanium detectors

    Energy Technology Data Exchange (ETDEWEB)

    Benato, G. [University of Zurich, (Switzerland); Cattadori, C. [INFN - Milano Bicocca, (Italy); Di Vacri, A. [INFN LNGS, (Italy); Ferri, E. [Universita Milano Bicocca/INFN Milano Bicocca, (Italy); D' Andrea, V.; Macolino, C. [GSSI/INFN LNGS, (Italy); Riboldi, S. [Universita degli Studi di Milano/INFN Milano, (Italy); Salamida, F. [Universita Milano Bicocca/INFN Milano Bicocca, (Italy)

    2015-07-01

    High Purity Germanium detectors are used in many applications, from nuclear and astro-particle physics, to homeland security or environment protection. Although quite standard configurations are often used, with cryostats, charge sensitive amplifiers and analog or digital acquisition systems all commercially available, it might be the case that a few specific applications, e.g. satellites, portable devices, cryogenic physics experiments, etc. also require the development of a few additional or complementary techniques. An interesting case is for sure GERDA, the Germanium Detector Array experiment, searching for neutrino-less double beta decay of {sup 76}Ge at the Gran Sasso National Laboratory of INFN - Italy. In GERDA the entire detector array, composed of semi-coaxial and BEGe naked crystals, is operated suspended inside a cryostat filled with liquid argon, that acts not only as cooling medium and but also as an active shield, thanks to its scintillation properties. These peculiar circumstances, together with the additional requirement of a very low radioactive background from all the materials adjacent to the detectors, clearly introduce significant constraints on the design of the Ge front-end readout electronics. All the Ge readout solutions developed within the framework of the GERDA collaboration, for both Phase I and Phase II, will be briefly reviewed, with their relative strength and weakness compared together and with respect to ideal Ge readout. Finally, the digital processing techniques developed by the GERDA collaboration for energy estimation of Ge detector signals will be recalled. (authors)

  9. Gate-stack engineering for self-organized Ge-dot/SiO2/SiGe-shell MOS capacitors

    Directory of Open Access Journals (Sweden)

    Wei-Ting eLai

    2016-02-01

    Full Text Available We report the first-of-its-kind, self-organized gate-stack heterostructure of Ge-dot/SiO2/SiGe-shell on Si fabricated in a single step through the selective oxidation of a SiGe nano-patterned pillar over a Si3N4 buffer layer on a Si substrate. Process-controlled tunability of the Ge-dot size (7.5−90 nm, the SiO2 thickness (3−4 nm, and as well the SiGe-shell thickness (2−15 nm has been demonstrated, enabling a practically-achievable core building block for Ge-based metal-oxide-semiconductor (MOS devices. Detailed morphologies, structural, and electrical interfacial properties of the SiO2/Ge-dot and SiO2/SiGe interfaces were assessed using transmission electron microscopy, energy dispersive x-ray spectroscopy, and temperature-dependent high/low-frequency capacitance-voltage measurements. Notably, NiGe/SiO2/SiGe and Al/SiO2/Ge-dot/SiO2/SiGe MOS capacitors exhibit low interface trap densities of as low as 3-5x10^11 cm^-2·eV^-1 and fixed charge densities of 1-5x10^11 cm^-2, suggesting good-quality SiO2/SiGe-shell and SiO2/Ge-dot interfaces. In addition, the advantage of having single-crystalline Si1-xGex shell (x > 0.5 in a compressive stress state in our self-aligned gate-stack heterostructure has great promise for possible SiGe (or Ge MOS nanoelectronic and nanophotonic applications.

  10. Advanced semiconductor detector development: Development of a room-temperature, gamma ray detector using gallium arsenide to develop an electrode detector. Progress report, September 30, 1994--September 29, 1995

    International Nuclear Information System (INIS)

    Knoll, G.F.

    1995-07-01

    Devices fabricated from wide bandgap materials that can be operated without cooling suffer from poor energy resolution and are limited to very small volumes; this arises largely from poor hole mobility in compound semiconductors. Three different device configurations are being investigated for possibly overcoming this limitation: buried grid-single carrier devices, trenched single carrier devices, and devices using patterned coplanar electrodes (CdZnTe). In the first, leakage problems were encountered. For the second, a set of specifications has been completed, and electron cyclotron resonance etching will be done at an off-campus facility. For the third, Aurora will supply 3 different CdZnTe detectors. An analytical study was done of the patterned electrode approach

  11. Liquid argon as an electron/photon detector in the energy range of 50 MeV to 2 GeV: a Monte Carlo investigation

    International Nuclear Information System (INIS)

    Goodman, M.S.; Denis, G.; Hall, M.; Karpovsky, A.; Wilson, R.; Gabriel, T.A.; Bishop, B.L.

    1980-12-01

    Monte Carlo techniques which have been used to study the characteristics of a proposed electron/photon detector based on the total absorption of electromagnetic showers in liquid argon have been investigated. The energy range studied was 50 MeV to 2 GeV. Results are presented on the energy and angular resolution predicted for the device, along with the detailed predictions of the transverse and longitudinal shower distributions. Comparisons are made with other photon detectors, and possible applications are discussed

  12. Solid State Neutron Detector - A Review of Status

    International Nuclear Information System (INIS)

    Mukhopadhyay, Sanjoy

    2010-01-01

    The PowerPoint presentation was organized into the following areas: Driving forces behind research in semiconductor neutron devices; The (sup 3)He shortage crisis; Alternative detectors for neutron; Semiconductor diodes coated with boron; Perforated semiconductors for neutron detection; and, Three dimensional pillar and trench structured semiconductors.

  13. Particle identification by silicon detectors

    International Nuclear Information System (INIS)

    Santos, Denison de Souza

    1997-01-01

    A method is developed for the evaluation of the energy loss, dE/dx, of a charged particle traversing a silicon strip detector. The method is applied to the DELPHI microvertex detector leading to diagrams of dE/dx versus momentum for different particles. The specific case of pions and protons is treated and the most probable value of dE/dx and the width of the dE/dx distribution for those particles in the momentum range of 0.2 GeV/c to 1.5 GeV/c, are obtained. The resolution found is 13.4 % for particles with momentum higher than 2 GeV/c and the separation power is 2.9 for 1.0 GeV/c pions and protons. (author)

  14. Advanced detector systems; What do they have to offer for activation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Bode, P [Technische Univ. Delft (Netherlands); Lindstrom, R M [National Inst. of Standards and Technology, Gaithersburg, MD (United States)

    1993-01-01

    Neutron activated reference materials have been analyzed using a standard Ge(Li)-detector with 17% relative efficiency, a very large Ge-detector with 96% relative efficiency, and a well-type Ge detector. Sensitivities are presented, and usefulness of these systems for NAA is compared on the basis of performance, economics and complexity. (author) 10 refs.; 3 figs.; 4 tabs.

  15. High-pressure-assisted synthesis of high-volume ZnGeP2 polycrystalline

    Science.gov (United States)

    Huang, Changbao; Wu, Haixin; Xiao, Ruichun; Chen, Shijing; Ma, Jiaren

    2018-06-01

    The pnictide and chalcogenide semiconductors are promising materials for the applications in the field of photoelectric. High-purity and high-volume polycrystalline required in the real-world applications is hard to be synthesized due to the high vapor pressure of phosphorus and sulfur components at high temperature. A new high-pressure-resisted method was used to investigate the synthesis of the nonlinear-optical semiconductor ZnGeP2. The high-purity ZnGeP2 polycrystalline material of approximately 500 g was synthesized in one run, which enables the preparation of nominally stoichiometric material. Since increasing internal pressure resistance of quartz crucible and reducing the reaction space, the high-pressure-resisted method can be used to rapidly synthesize other pnictide and chalcogenide semiconductors and control the components ratio.

  16. Radiation detectors laboratory

    International Nuclear Information System (INIS)

    Ramirez J, F.J.

    1997-01-01

    The Radiation detectors laboratory was established with the assistance of the International Atomic Energy Agency which gave this the responsibility to provide its services at National and regional level for Latin America and it is located at the ININ. The more expensive and delicate radiation detectors are those made of semiconductor, so it has been put emphasis in the use and repairing of these detectors type. The supplied services by this laboratory are: selection consultant, detectors installation and handling and associated systems. Installation training, preventive and corrective maintenance of detectors and detection systems calibration. (Author)

  17. Transient and temperature-dependent phenomena in Ge:Be and Ge:Zn far infrared photoconductors

    International Nuclear Information System (INIS)

    Haegel, N.M.

    1985-11-01

    An experimental study of the transient and temperature-dependent behavior of Ge:Be and Ge:Zn photoconductors has been performed under the low background photon flux conditions (p dot approx. = 10 8 photons/second) typical of astronomy and astrophysics applications. The responsivity of Ge:Be and Ge:Zn detectors is strongly temperature-dependent in closely compensated material, and the effect of compensation on free carrier lifetime in Ge:Be has been measured using the photo-Hall effect technique. Closely compensated material has been obtained by controlling the concentration of novel hydrogen-related shallow acceptor complexes, A(Be,H) and A(Zn,H), which exist in doped crystals grown under a H 2 atmosphere. A review of selection criteria for multilevel materials for optimum photoconductor performance is included. 55 refs., 47 figs

  18. Ultrafast THz Saturable Absorption in Semiconductors

    DEFF Research Database (Denmark)

    Turchinovich, Dmitry; Hoffmann, Matthias C.

    2011-01-01

    We demonstrate THz saturable absorption in n-doped semiconductors GaAs, GaP, and Ge in a nonlinear THz time-domain spectroscopy experiment. Saturable absorption is caused by sample conductivity modulation due to electron heating and satellite valley scattering in the field of a strong THz pulse....

  19. Verification of the plan dosimetry for high dose rate brachytherapy using metal-oxide-semiconductor field effect transistor detectors

    International Nuclear Information System (INIS)

    Qi Zhenyu; Deng Xiaowu; Huang Shaomin; Lu Jie; Lerch, Michael; Cutajar, Dean; Rosenfeld, Anatoly

    2007-01-01

    The feasibility of a recently designed metal-oxide-semiconductor field effect transistor (MOSFET) dosimetry system for dose verification of high dose rate (HDR) brachytherapy treatment planning was investigated. MOSFET detectors were calibrated with a 0.6 cm 3 NE-2571 Farmer-type ionization chamber in water. Key characteristics of the MOSFET detectors, such as the energy dependence, that will affect phantom measurements with HDR 192 Ir sources were measured. The MOSFET detector was then applied to verify the dosimetric accuracy of HDR brachytherapy treatments in a custom-made water phantom. Three MOSFET detectors were calibrated independently, with the calibration factors ranging from 0.187 to 0.215 cGy/mV. A distance dependent energy response was observed, significant within 2 cm from the source. The new MOSFET detector has a good reproducibility ( 2 =1). It was observed that the MOSFET detectors had a linear response to dose until the threshold voltage reached approximately 24 V for 192 Ir source measurements. Further comparison of phantom measurements using MOSFET detectors with dose calculations by a commercial treatment planning system for computed tomography-based brachytherapy treatment plans showed that the mean relative deviation was 2.2±0.2% for dose points 1 cm away from the source and 2.0±0.1% for dose points located 2 cm away. The percentage deviations between the measured doses and the planned doses were below 5% for all the measurements. The MOSFET detector, with its advantages of small physical size and ease of use, is a reliable tool for quality assurance of HDR brachytherapy. The phantom verification method described here is universal and can be applied to other HDR brachytherapy treatments

  20. Structural characterization of the high-temperature modification of the Cu{sub 2}ZnGeTe{sub 4} quaternary semiconductor compound

    Energy Technology Data Exchange (ETDEWEB)

    Nieves, L.; Marcano, G.; Power, C.; Rincon, C. [Centro de Estudios de Semiconductores, Departamento de Fisica, Facultad de Ciencias, Universidad de Los Andes, Merida, 5101 (Venezuela, Bolivarian Republic of); Delgado, G.E. [Laboratorio de Cristalografia, Departamento de Quimica, Facultad de Ciencias, Universidad de Los Andes, Merida, 5101 (Venezuela, Bolivarian Republic of); Lopez-Rivera, S.A. [Grupo de Fisica Aplicada, Departamento de Fisica, Facultad de Ciencias, Universidad de Los Andes, Merida, 5101 (Venezuela, Bolivarian Republic of)

    2016-06-15

    A combined study of the X-ray powder diffraction, differential thermal analysis, optical absorption, and Raman spectroscopy of the high-temperature modification of Cu{sub 2}ZnGeTe{sub 4} quaternary semiconductor, obtained by fast quenching from 820 K to ice water temperature, has been done. It has been found that this phase crystallizes in a tetragonal kesterite-type structure. From the analysis of the absorption coefficient spectra, the band gap energy of this material at room temperature has been found to be 1.49 eV. An optical transition from defect acceptor states to the conduction band is also observed below the fundamental absorption edge. Three strongest Raman lines observed at 116, 119, and 139 cm{sup -1} have been assigned to the A-symmetry modes. Also, lines at 81, 89, 97, and 263 cm{sup -1} tentatively ascribed as B or E-symmetry modes have been detected from the spectrum. The presence in this high-temperature modification of ZnTe and Cu{sub 2}GeTe{sub 3} secondary phases has been detected by both XRD and Raman spectroscopy. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  1. LArGe. A liquid argon scintillation veto for GERDA

    International Nuclear Information System (INIS)

    Heisel, Mark

    2011-01-01

    LArGe is a GERDA low-background test facility to study novel background suppression methods in a low-background environment, for possible applications in the GERDA experiment. GERDA searches for the neutrinoless double-beta decay in 76 Ge, by operating naked germanium detectors submersed into 65 m 3 of liquid argon. Similarly, LArGe runs Ge-detectors in 1 m 3 (1.4 tons) of liquid argon, which in addition is instrumented with photomultipliers to detect argon scintillation light. The light is used in anti-coincidence with the germanium detectors, to effectively suppress background events that deposit energy in the liquid argon. This work adresses the design, construction, and commissioning of LArGe. The background suppression efficiency has been studied in combination with a pulse shape discrimination (PSD) technique for various sources, which represent characteristic backgrounds to GERDA. Suppression factors of a few times 10 3 have been achieved. First background data of LArGe (without PSD) yield a background index of (0.12-4.6).10 -2 cts/(keV.kg.y) (90% c.l.), which is at the level of the Gerda phase I design goal. Furthermore, for the first time we measure the natural 42 Ar abundance (in parallel to Gerda), and have indication for the 2νββ-decay in natural germanium. (orig.)

  2. LArGe. A liquid argon scintillation veto for GERDA

    Energy Technology Data Exchange (ETDEWEB)

    Heisel, Mark

    2011-04-13

    LArGe is a GERDA low-background test facility to study novel background suppression methods in a low-background environment, for possible applications in the GERDA experiment. GERDA searches for the neutrinoless double-beta decay in {sup 76}Ge, by operating naked germanium detectors submersed into 65 m{sup 3} of liquid argon. Similarly, LArGe runs Ge-detectors in 1 m{sup 3} (1.4 tons) of liquid argon, which in addition is instrumented with photomultipliers to detect argon scintillation light. The light is used in anti-coincidence with the germanium detectors, to effectively suppress background events that deposit energy in the liquid argon. This work adresses the design, construction, and commissioning of LArGe. The background suppression efficiency has been studied in combination with a pulse shape discrimination (PSD) technique for various sources, which represent characteristic backgrounds to GERDA. Suppression factors of a few times 10{sup 3} have been achieved. First background data of LArGe (without PSD) yield a background index of (0.12-4.6).10{sup -2} cts/(keV.kg.y) (90% c.l.), which is at the level of the Gerda phase I design goal. Furthermore, for the first time we measure the natural {sup 42}Ar abundance (in parallel to Gerda), and have indication for the 2{nu}{beta}{beta}-decay in natural germanium. (orig.)

  3. Ferroelectric phase transitions in multiferroic Ge1-xMnxTe driven by local lattice distortions

    Czech Academy of Sciences Publication Activity Database

    Kriegner, D.; Furthmüller, J.; Kirchschlager, R.; Endres, J.; Horák, L.; Cejpek, P.; Reichlová, Helena; Martí, Xavier; Primetzhofer, D.; Ney, A.; Bauer, G.; Bechstedt, F.; Holy, V.; Springholz, G.

    2016-01-01

    Roč. 94, č. 5 (2016), 1-8, č. článku 054112. ISSN 2469-9950 Institutional support: RVO:68378271 Keywords : semiconductor Ge 1-x Mn x Te * GeTe * GeMnTe * alloys * heat * Mn Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.836, year: 2016

  4. First realization of a tracking detector for high energy physics experiments based on Josephson digital readout circuitry

    CERN Document Server

    Pagano, S; Esposito, A P; Mukhanov, O; Rylov, S

    1999-01-01

    We have designed and realized a prototype of a high energy particle microstrip detector with Josephson readout circuits. The key features of this device are: minimum ionizing particle sensitivity, due to the use of semiconductive sensors, fast speed and radiation hardness, due to the use of superconductive circuitry, and current discrimination, which allows the use of several types of semiconductors as detector (Si, GaAs, CVD-diamond) without loss in performances. The Josephson circuitry, made by a combination of RSFQ and latching logic gates, realizes an 8-bit current discriminator and parallel to serial converter and can be directly interfaced to room temperature electronics. This device, which is designed for application as vertex detector for the Compass and LHC-B accelerator experiments, has been tested with small radioactive sources acid will undergo to a test beam at the CERN SPS facility with 24 GeV/c protons. Current results and future perspectives will be reported. (11 refs).

  5. Search for narrow resonances in e+e- annihilation between 1.85 and 3.1 GeV with the KEDR detector

    International Nuclear Information System (INIS)

    Anashin, V.V.; Aulchenko, V.M.; Baldin, E.M.; Barladyan, A.K.; Barnyakov, A.Yu.; Barnyakov, M.Yu.; Baru, S.E.; Basok, I.Yu.; Beloborodova, O.L.; Blinov, A.E.; Blinov, V.E.; Bobrov, A.V.; Bobrovnikov, V.S.; Bogomyagkov, A.V.; Bondar, A.E.; Buzykaev, A.R.; Eidelman, S.I.; Grigoriev, D.N.; Glukhovchenko, Yu.M.; Gulevich, V.V.

    2011-01-01

    We report results of a search for narrow resonances in e + e - annihilation at center-of-mass energies between 1.85 and 3.1 GeV performed with the KEDR detector at the VEPP-4M e + e - collider. The upper limit on the leptonic width of a narrow resonance Γ ee R .Br(R→hadr)<120 eV has been obtained (at 90% C.L.).

  6. Spectroscopic Studies of Semiconductor Materials for Aggressive-scaled Micro- and Opto-electronic Devices: nc-SiO2, GeO2; ng-Si, Ge and ng-Transition metal (TM) oxides

    Science.gov (United States)

    Cheng, Cheng

    Non-crystalline thin film materials are widely used in the semiconductor industry (micro- and optoelectronics) and in green energy, e.g., photovolatic applications. This dissertation under-pins these device application with studies of their electronic structures using derivative X-ray Absorption Spectroscopy (XAS) and derivative Spectroscopic Ellipsometry (SE) for the first time to experimentally determine electronic and intrinsic defect structures. Differences between electron and hole mobilities in c- (and ng-Si) and c- (and ng- Ge), make Ge channels superior to Si channels in for aggressively scaled CMOS field effect transistors (FETs). Bonding between Si and Ge substrates and gate dielectric oxides is the focus this dissertation. The primary objective of this research is to measure and interpret by ab-initio theory the electronic and intrinsic electronic defect structures mirco-electronic thin film materials. This is accomplished for the first time by combining (i) derivative XAS TEY data obtained at the Stanford Synchrotron Radiation Light Source (SSRL) with (ii) derivative Spectroscopic Ellipsometry results obtained at the J.A. Woollam Co. laboratory. All the oxides were deposited in RPECVD system with in-line AES and RHEED. Thins films and gate stacks were annealed in RTA system in Ar to determine temperature dependent changes. 2nd derivative analysis is applied on XAS and SE spectra emphasizing the conduction band (CB) and virtual bound state (VBS) regimes. 2nd derivative SE spectra for ng-Si and ng-Ge each have 3 distinct regimes: (i) 3 excitons, (ii) 2 features in the CB edge region, and (iii) 3 additional exciton features above the IP. Excitonic spectral width provides conductivity electron masses (em0*) and hence electron mobilities. The wider the energy range, the higher the electron mobility in that CB. Spectra of high-K dielectrics have an additional energy regime between the CB edge regime, and the higher eV excitons. This regime has 4 intra-d state

  7. Simulation of hole-mobility in doped relaxed and strained Ge layers

    Science.gov (United States)

    Watling, Jeremy R.; Riddet, Craig; Chan, Morgan Kah H.; Asenov, Asen

    2010-11-01

    As silicon based metal-oxide-semiconductor field-effect transistors (MOSFETs) are reaching the limits of their performance with scaling, alternative channel materials are being considered to maintain performance in future complementary metal-oxide semiconductor technology generations. Thus there is renewed interest in employing Ge as a channel material in p-MOSFETs, due to the significant improvement in hole mobility as compared to Si. Here we employ full-band Monte Carlo to study hole transport properties in Ge. We present mobility and velocity-field characteristics for different transport directions in p-doped relaxed and strained Ge layers. The simulations are based on a method for over-coming the potentially large dynamic range of scattering rates, which results from the long-range nature of the unscreened Coulombic interaction. Our model for ionized impurity scattering includes the affects of dynamic Lindhard screening, coupled with phase-shift, and multi-ion corrections along with plasmon scattering. We show that all these effects play a role in determining the hole carrier transport in doped Ge layers and cannot be neglected.

  8. Characterization and first experimental application of space-resolving, energy-dispersive germanium detectors for the precision spectroscopy on heavy ions

    International Nuclear Information System (INIS)

    Spillmann, Uwe

    2009-02-01

    First the actual status of the research for the 1s Lamb shift on heaviest systems as well as studies on the polarization of the radiative recombination radiation into the K shell of uranium are presented. On this base future precision experiments at storage rings are discussed. then follows a survey presentation of the GSI accelerator facility. Especially the experimental storage ring ESR is described, at which the experiments mentioned above were performed. Then an introduction to the fundamental understanding of the physical processes in the detection of X-radiation in semiconductor detectors is given. The following chapter discusses the detection technique of the Compton polarimetry and some experimental concepts for this. Then by means of a 4 x 4 pixel Ge(i) detector system, by which for the first time the K-REC radiation from uranium was measured at the ESR, an overview about the Monte-Carlo software EGS4 is given, which was applied to the efficiency correction in the evaluation phase and for the estimation of the detector behaviour during the planning phase of the new detectors. A presentation of the 1D and 2D microstrip detector system as well as the performed laboratory measurements follows. The results for the characterization of the 2D microstrip detector system at the synchrotron-radiation source ESRF in view of its application with the FOCAL spectrometer are thereafter described. The results of first test measurement on the Compton polarimetry, which were also performed at the ESRF, are then presented. Finally first experimental results, which wer obtained by the novel planar structured Ge(i) detectors, are shown

  9. Application of the A/E pulse shape discrimination method to first Ge-76 enriched BEGe detectors operated in GERDA

    Energy Technology Data Exchange (ETDEWEB)

    Lazzaro, Andrea; Agostini, Matteo; Budjas, Dusan; Schoenert, Stefan [Physik-Department E15, Technische Universitaet Muenchen (Germany); Collaboration: GERDA-Collaboration

    2013-07-01

    In 2013 the Gerda experiment will be upgraded to its second phase with more than double of the current {sup 76}Ge mass. The additional diodes are custom made Broad Energy Germanium (BEGe) detectors. This design has been chosen to enhance the pulse shape discrimination (PSD) capability, with respect to the Phase I coaxial detectors. The goal of Phase II is to improve by one order of magnitude the current background index; the PSD will bring a major contribution to this result. Since summer 2012 the first set of five enriched BEGe detectors are operated in Gerda Phase I. This offers us the possibility to test the PSD performances and the signal analysis in an environment as close as possible to the Gerda Phase II configuration. In this talk I present the A/E analysis, the calibration of the cut parameters and the results in terms of background reduction for the data taken with these enriched BEGe.

  10. Study of the Solar Anisotropy for Cosmic Ray Primaries of about 200 GeV Energy with the L3+C Muon Detector

    CERN Document Server

    Achard, P; Aguilar-Benitez, M; van den Akker, M; Alcaraz, J; Alemanni, G; Allaby, J; Aloisio, A; Alviggi, M G; Anderhub, H; Andreev, Valery P; Anselmo, F; Arefev, A; Azemoon, T; Aziz, T; Bagnaia, P; Bajo, A; Baksay, G; Baksay, L; Bahr, J; Baldew, S V; Banerjee, S; Banerjee, Sw; Barczyk, A; Barillere, R; Bartalini, P; Basile, M; Batalova, N; Battiston, R; Bay, A; Becattini, F; Becker, U; Behner, F; Bellucci, L; Berbeco, R; Berdugo, J; Berges, P; Bertucci, B; Betev, B L; Biasini, M; Biglietti, M; Biland, A; Blaising, J J; Blyth, S C; Bobbink, G J; Bohm, A; Boldizsar, L; Borgia, B; Bottai, S; Bourilkov, D; Bourquin, M; Braccini, S; Branson, J G; Brochu, F; Burger, J D; Burger, W J; Cai, X D; Capell, M; Cara Romeo, G; Carlino, G; Cartacci, A; Casaus, J; Cavallari, F; Cavallo, N; Cecchi, C; Cerrada, M; Chamizo, M; Chiarusi, T; Chang, Y H; Chemarin, M; Chen, A; Chen, G; Chen, G M; Chen, H F; Chen, H S; Chiefari, G; Cifarelli, L; Cindolo, F; Clare, I; Clare, R; Coignet, G; Colino, N; Costantini, S; de la Cruz, B; Cucciarelli, S; van Dalen, J; de Asmundis, R; Deglon, P; Debreczeni, J; Degre, A; Dehmelt, K; Deiters, K; della Volpe, D; Delmeire, E; Denes, P; DeNotaristefani, F; De Salvo, A; Diemoz, M; Dierckxsens, M; Ding, L K; Dionisi, C; Dittmar, M; Doria, A; Dova, M T; Duchesneau, D; Duda, M; Duran, I; Echenard, B; Eline, A; El Hage, A; El Mamouni, H; Engler, A; Eppling, F J; Extermann, P; Faber, G; Falagan, M A; Falciano, S; Favara, A; Fay, J; Fedin, O; Felcini, M; Ferguson, T; Fesefeldt, H; Fiandrini, E; Field, J H; Filthaut, F; Fisher, W; Fisk, I; Forconi, G; Freudenreich, K; Furetta, C; Galaktionov, Iouri; Ganguli, S N; Garcia-Abia, Pablo; Gataullin, M; Gentile, S; Giagu, S; Gong, Z F; Grabosch, H J; Grenier, G; Grimm, O; Groenstege, H; Gruenewald, M W; Guida, M; Guo, Y N; Gupta, S; Gupta, V K; Gurtu, A; Gutay, L J; Haas, D; Haller, Ch; Hatzifotiadou, D; Hayashi, Y; He, Z X; Hebbeker, T; Herve, Alain; Hirschfelder, J; Hofer, H; Hohlmann, M; Holzner, G; Hou, S R; Huo, A X; Hu, Y; Ito, N; Jin, B N; Jing, C L; Jones, Lawrence W; de Jong, P; Josa-Mutuberria, I; Kantserov, V; Kaur, M; Kawakami, S; Kienzle-Focacci, M N; Kim, J K; Kirkby, Jasper; Kittel, W; Klimentov, A; Konig, A C; Kok, E; Korn, A; Kopal, M; Koutsenko, V; Kraber, M; Kuang, H H; Kraemer, R W; Kruger, A; Kuijpers, J; Kunin, A; Ladron de Guevara, P; Laktineh, I; Landi, G; Lebeau, M; Lebedev, A; Lebrun, P; Lecomte, P; Lecoq, P; Le Coultre, P; Le Goff, J M; Lei, Y; Leich, H; Leiste, R; Levtchenko, M; Levtchenko, P; Li, C; Li, L; Li, Z C; Likhoded, S; Lin, C H; Lin, W T; Linde, F L; Lista, L; Liu, Z A; Lohmann, W; Longo, E; Lu, Y S; Luci, C; Luminari, L; Lustermann, W; Ma, W G; Ma, X H; Ma, Y Q; Malgeri, L; Malinin, A; Mana, C; Mans, J; Martin, J P; Marzano, F; Mazumdar, K; McNeil, R R; Mele, S; Meng, X W; Merola, L; Meschini, M; Metzger, W J; Mihul, A; van Mil, A; Milcent, H; Mirabelli, G; Mnich, J; Mohanty, G B; Monteleoni, B; Muanza, y G S; Muijs, A J M; Musicar, B; Musy, M; Nagy, S; Nahnhauer, R; Naumov, V A; Natale, S; Napolitano, M; Nessi-Tedaldi, F; Newman, H; Nisati, A; Novak, T; Kluge, Hannelies; Ofierzynski, R; Organtini, G; Pal, I; Palomares, C; Paolucci, P; Paramatti, R; Parriaud, J -F; Passaleva, G; Patricelli, S; Paul, Thomas Cantzon; Pauluzzi, M; Paus, C; Pauss, F; Pedace, M; Pensotti, S; Perret-Gallix, D; Petersen, B; Piccolo, D; Pierella, F; Pieri, M; Pioppi, M; Piroue, P A; Pistolesi, E; Plyaskin, V; Pohl, M; Pojidaev, V; Pothier, J; Prokofev, D; Quartieri, J; Qing, C R; Rahal-Callot, G; Rahaman, Mohammad Azizur; Raics, P; Raja, N; Ramelli, R; Rancoita, P G; Ranieri, R; Raspereza, A; Ravindran, K C; Razis, P; Ren, D; Rescigno, M; Reucroft, S; Rewiersma, P; Riemann, y S; Riles, Keith; Roe, B P; Rojkov, A; Romero, L; Rosca, A; Rosemann, C; Rosenbleck, C; Rosier-Lees, S; Roth, Stefan; Rubio, J A; Ruggiero, G; Rykaczewski, H; Saidi, R; Sakharov, A; Saremi, S; Sarkar, S; Salicio, J; Sanchez, E; Schafer, C; Schegelsky, V; Schmitt, V; Schoeneich, B; Schopper, H; Schotanus, D J; Sciacca, C; Servoli, L; Shen, C Q; Shevchenko, S; Shivarov, N; Shoutko, V; Shumilov, E; Shvorob, A; Son, D; Souga, C; Spillantini, P; Steuer, M; Stickland, D P; Stoyanov, B; Straessner, A; Sudhakar, K; Sulanke, H; Sultanov, G; Sun, L Z; Sushkov, S; Suter, H; Swain, J D; Szillasi, Z; Tang, X W; Tarjan, P; Tauscher, L; Taylor, L; Tellili, B; Teyssier, D; Timmermans, Charles; Ting, Samuel C C; Ting, S M; Tonwar, S C; Toth, J; Trowitzsch, G; Tully, C; Tung, K L; Ulbricht, J; Unger, M; Valente, E; Verkooijen, H; Van de Walle, R T; Vasquez, R; Veszpremi, V; Vesztergombi, G; Vetlitsky, I; Vicinanza, D; Viertel, G; Villa, S; Vivargent, M; Vlachos, S; Vodopianov, I; Vogel, H; Vogt, H; Vorobev, I; Vorobyov, A A; Wadhwa, M; Wang, R G; Wang, Q; Wang, X L; Wang, X W; Wang, Z M; Weber, M; van Wijk, R; Wijnen, T A M; Wilkens, H; Wynhoff, S; Xia, L; Xu, Y P; Xu, J S; Xu, Z Z; Yamamoto, J; Yang, B Z; Yang, C G; Yang, H J; Yang, M; Yang, X F; Yao, Z G; Yeh, S C; Yu, Z Q; Zalite, An; Zalite, Yu; Zhang, C; Zhang, F; Zhang, J; Zhang, S; Zhang, Z P; Zhao, J; Zhou, S J; Zhu, G Y; Zhu, R Y; Zhuang, H L; Zhu, Q Q; Zichichi, A; Zimmermann, B; Zoller, M; Zwart, A N M

    2008-01-01

    Primary cosmic rays experience multiple deflections in the nonuniform galactic and heliospheric magnetic fields which may generate anisotropies. A study of anisotropies in the energy range between 100 and 500 GeV is performed. This energy range is not yet well explored. The L3 detector at the CERN electron-positron collider, LEP, is used for a study of the angular distribution of atmospheric muons with energies above 20 GeV. This distribution is used to investigate the isotropy of the time-dependent intensity of the primary cosmic-ray flux with a Fourier analysis. A small deviation from isotropy at energies around 200 GeV is observed for the second harmonics at the solar frequency. No sidereal anisotropy is found at a level above 10^-4. The measurements have been performed in the years 1999 and 2000.

  11. Photon detector configured to employ the Gunn effect and method of use

    Science.gov (United States)

    Cich, Michael J

    2015-03-17

    Embodiments disclosed herein relate to photon detectors configured to employ the Gunn effect for detecting high-energy photons (e.g., x-rays and gamma rays) and methods of use. In an embodiment, a photon detector for detecting high-energy photons is disclosed. The photon detector includes a p-i-n semiconductor diode having a p-type semiconductor region, an n-type semiconductor region, and a compensated i-region disposed between the p-type semiconductor region and the n-type semiconductor region. The compensated i-region and has a width of about 100 .mu.m to about 400 .mu.m and is configured to exhibit the Gunn effect when the p-i-n semiconductor diode is forward biased a sufficient amount. The compensated i-region is doped to include a free carrier concentration of less than about 10.sup.10 cm.sup.-3.

  12. Semiconductor micropattern pixel detectors: a review of the beginnings

    International Nuclear Information System (INIS)

    Heijne, E.H.M.

    2001-01-01

    The innovation in monolithic and hybrid semiconductor 'micropattern' or 'reactive' pixel detectors for tracking in particle physics was actually to fit logic and pulse processing electronics with μW power on a pixel area of less than 0.04 mm 2 , retaining the characteristics of a traditional nuclear amplifier chain. The ns timing precision in conjunction with local memory and logic operations allowed event selection at >10 MHz rates with unambiguous track reconstruction even at particle multiplicities >10 cm -2 . The noise in a channel was ∼100e - rms and enabled binary operation with random noise 'hits' at a level -8 . Rectangular pixels from 75 μmx500 μm down to 34 μmx125 μm have been used by different teams. In binary mode a tracking precision from 6 to 14 μm was obtained, and using analog interpolation one came close to 1 μm. Earlier work, still based on charge integrating imaging circuits, provided a starting point. Two systems each with more than 1 million sensor + readout channels have been built, for WA97-NA57 and for the Delphi very forward tracker. The use of 0.5 μm and 0.25 μm CMOS and enclosed geometry for the transistors in the pixel readout chips resulted in radiation hardness of ∼2 Mrad, respectively, >30 Mrad

  13. Multilayer Semiconductor Charged-Particle Spectrometers for Accelerator Experiments

    Science.gov (United States)

    Gurov, Yu. B.; Lapushkin, S. V.; Sandukovsky, V. G.; Chernyshev, B. A.

    2018-03-01

    The current state of studies in the field of development of multilayer semiconductor systems (semiconductor detector (SCD) telescopes), which allow the energy to be precisely measured within a large dynamic range (from a few to a few hundred MeV) and the particles to be identified in a wide mass range (from pions to multiply charged nuclear fragments), is presented. The techniques for manufacturing the SCD telescopes from silicon and high-purity germanium are described. The issues of measuring characteristics of the constructed detectors and their impact on the energy resolution of the SCD telescopes and on the quality of the experimental data are considered. Much attention is given to the use of the constructed semiconductor devices in experimental studies at accelerators of PNPI (Gatchina), LANL (Los Alamos) and CELSIUS (Uppsala).

  14. Electron Band Alignment at Interfaces of Semiconductors with Insulating Oxides: An Internal Photoemission Study

    Directory of Open Access Journals (Sweden)

    Valeri V. Afanas'ev

    2014-01-01

    Full Text Available Evolution of the electron energy band alignment at interfaces between different semiconductors and wide-gap oxide insulators is examined using the internal photoemission spectroscopy, which is based on observations of optically-induced electron (or hole transitions across the semiconductor/insulator barrier. Interfaces of various semiconductors ranging from the conventional silicon to the high-mobility Ge-based (Ge, Si1-xGex, Ge1-xSnx and AIIIBV group (GaAs, InxGa1-xAs, InAs, GaP, InP, GaSb, InSb materials were studied revealing several general trends in the evolution of band offsets. It is found that in the oxides of metals with cation radii larger than ≈0.7 Å, the oxide valence band top remains nearly at the same energy (±0.2 eV irrespective of the cation sort. Using this result, it becomes possible to predict the interface band alignment between oxides and semiconductors as well as between dissimilar insulating oxides on the basis of the oxide bandgap width which are also affected by crystallization. By contrast, oxides of light elements, for example, Be, Mg, Al, Si, and Sc exhibit significant shifts of the valence band top. General trends in band lineup variations caused by a change in the composition of semiconductor photoemission material are also revealed.

  15. Evidence of formation of trans-Fe nuclei in Fe+Al interactions at 1.88 GeV using Cr-39 (DOP) detector

    International Nuclear Information System (INIS)

    Ganguly, A.K.; Chaudhuri, Biva

    1991-01-01

    A wedge-shaped aluminium target was irradiated with 1.88 A GeV Fe beam to study various features of Fe+Al nucleus-nucleus interaction and their dependence on target thickness. The detector employed was a stack of CR-39 (DOP) and Lexan plastic nuclear track detectors which have a characteristically high charge resolution property. To distinguish the actual events from background and buildup a selection criteria for easy and unambiguous rejection of unwanted interfering events the stack of detectors was placed at an angle of 60deg with respect to the beam. After irradiation the CR-39 (DOP) detectors were etched and the elliptic etch-pit diameters were scanned. The diameter distribution of the elliptic etch-pits exhibits the existence of trans Fe nuclei. The production of trans Fe fraction is seen to increase with the thickness of the aluminium target. The possible causes of this increase are being investigated. (author). 12 refs., 4 figs

  16. Multichannel, time-resolved picosecond laser ultrasound imaging and spectroscopy with custom complementary metal-oxide-semiconductor detector

    International Nuclear Information System (INIS)

    Smith, Richard J.; Light, Roger A.; Johnston, Nicholas S.; Pitter, Mark C.; Somekh, Mike G.; Sharples, Steve D.

    2010-01-01

    This paper presents a multichannel, time-resolved picosecond laser ultrasound system that uses a custom complementary metal-oxide-semiconductor linear array detector. This novel sensor allows parallel phase-sensitive detection of very low contrast modulated signals with performance in each channel comparable to that of a discrete photodiode and a lock-in amplifier. Application of the instrument is demonstrated by parallelizing spatial measurements to produce two-dimensional thickness maps on a layered sample, and spectroscopic parallelization is demonstrated by presenting the measured Brillouin oscillations from a gallium arsenide wafer. This paper demonstrates the significant advantages of our approach to pump probe systems, especially picosecond ultrasonics.

  17. Multichannel, time-resolved picosecond laser ultrasound imaging and spectroscopy with custom complementary metal-oxide-semiconductor detector

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Richard J.; Light, Roger A.; Johnston, Nicholas S.; Pitter, Mark C.; Somekh, Mike G. [Institute of Biophysics, Imaging and Optical Science, University of Nottingham, Nottinghamshire NG7 2RD (United Kingdom); Sharples, Steve D. [Applied Optics Group, Electrical Systems and Optics Research Division, University of Nottingham, Nottinghamshire NG7 2RD (United Kingdom)

    2010-02-15

    This paper presents a multichannel, time-resolved picosecond laser ultrasound system that uses a custom complementary metal-oxide-semiconductor linear array detector. This novel sensor allows parallel phase-sensitive detection of very low contrast modulated signals with performance in each channel comparable to that of a discrete photodiode and a lock-in amplifier. Application of the instrument is demonstrated by parallelizing spatial measurements to produce two-dimensional thickness maps on a layered sample, and spectroscopic parallelization is demonstrated by presenting the measured Brillouin oscillations from a gallium arsenide wafer. This paper demonstrates the significant advantages of our approach to pump probe systems, especially picosecond ultrasonics.

  18. Performance tests of developed silicon strip detector by using a 150 GeV electron beam

    International Nuclear Information System (INIS)

    Hyun, Hyojung; Jung, Sunwoo; Kah, Dongha; Kang, Heedong; Kim, Hongjoo; Park, Hwanbae

    2008-01-01

    We manufactured and characterized a silicon micro-strip detector to be used in a beam tracker. A silicon detector features a DC-coupled silicon strip sensor with VA1 Prime2 analog readout chips. The silicon strip sensors have been fabricated on 5-in. wafers at Electronics and Telecommunications Research Institute (Daejeon, Korea). The silicon strip sensor is single-sided and has 32 channels with a 1 mm pitch, and its active area is 3.2 by 3.2 cm 2 with 380 μm thickness. The readout electronics consists of VA hybrid, VA Interface, and FlashADC and Control boards. Analog signals from the silicon strip sensor were being processed by the analog readout chips on the VA hybrid board. Analog signals were then changed into digital signals by a 12 bit 25 MHz FlashADC. The digital signals were read out by the Linux-operating PC through the FlashADC-USB2 interface. The DAQ system and analysis programs were written in the framework of ROOT package. The beam test with the silicon detector had been performed at CERN beam facility. We used a 150 GeV electron beam out of the SPS(Super Proton Synchrotron) H2 beam line. We present beam test setup and measurement result of signal-to-noise ratio of each strip channel. (author)

  19. Electronic structure of semiconductor interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Herman, F

    1983-02-01

    The study of semiconductor interfaces is one of the most active and exciting areas of current semiconductor research. Because interfaces play a vital role in modern semiconductor technology (integrated circuits, heterojunction lasers, solar cells, infrared detectors, etc.), there is a strong incentive to understand interface properties at a fundamental level and advance existing technology thereby. At the same time, technological advances such as molecular beam epitaxy have paved the way for the fabrication of semiconductor heterojunctions and superlattices of novel design which exhibit unusual electronic, optical, and magnetic properties and offer unique opportunities for fundamental scientific research. A general perspective on this subject is offered treating such topics as the atomic and electronic structure of semiconductor surfaces and interfaces; oxidation and oxide layers; semiconductor heterojunctions and superlattices; rectifying metal-semiconductor contacts; and interface reactions. Recent progress is emphasized and some future directions are indicated. In addition, the role that large-scale scientific computation has played in furthering our theoretical understanding of semiconductor surfaces and interfaces is discussed. Finally, the nature of theoretical models, and the role they play in describing the physical world is considered.

  20. Electronic structure of semiconductor interfaces

    International Nuclear Information System (INIS)

    Herman, F.

    1983-01-01

    The study of semiconductor interfaces is one of the most active and exciting areas of current semiconductor research. Because interfaces play a vital role in modern semiconductor technology (integrated circuits, heterojunction lasers, solar cells, infrared detectors, etc.), there is a strong incentive to understand interface properties at a fundamental level and advance existing technology thereby. At the same time, technological advances such as molecular beam epitaxy have paved the way for the fabrication of semiconductor heterojunctions and superlattices of novel design which exhibit unusual electronic, optical, and magnetic properties and offer unique opportunities for fundamental scientific research. A general perspective on this subject is offered treating such topics as the atomic and electronic structure of semiconductor surfaces and interfaces; oxidation and oxide layers; semiconductor heterojunctions and superlattices; rectifying metal-semiconductor contacts; and interface reactions. Recent progress is emphasized and some future directions are indicated. In addition, the role that large-scale scientific computation has played in furthering our theoretical understanding of semiconductor surfaces and interfaces is discussed. Finally, the nature of theoretical models, and the role they play in describing the physical world is considered. (Author) [pt

  1. Detectors and flux instrumentation for future neutrino facilities

    CERN Document Server

    Abe, T.; Andreopoulos, C.; Ankowski, A.; Badertscher, A.; Battistoni, G.; Blondel, A.; Bouchez, J.; Bross, A.; Bueno, A.; Camilleri, L.; Campagne, Jean-Eric; Cazes, A.; Cervera-Villanueva, A.; De Lellis, G.; Di Capua, F.; Ellis, Malcolm; Ereditato, A.; Esposito, L.S.; Fukushima, C.; Gschwendtner, E.; Gomez-Cadenas, J.J.; Iwasaki, M.; Kaneyuki, K.; Karadzhov, Y.; Kashikhin, V.; Kawai, Y.; Komatsu, M.; Kozlovskaya, E.; Kudenko, Y.; Kusaka, A.; Kyushima, H.; Longhin, A.; Marchionni, A.; Marotta, A.; McGrew, C.; Menary, S.; Meregaglia, A.; Mezzeto, M.; Migliozzi, P.; Mondal, N.K.; Montanari, C.; Nakadaira, T.; Nakamura, M.; Nakumo, H.; Nakayama, H.; Nelson, J.; Nowak, J.; Ogawa, S.; Peltoniemi, J.; Pla-Dalmau, A.; Ragazzi, S.; Rubbia, A.; Sanchez, F.; Sarkamo, J.; Sato, O.; Selvi, M.; Shibuya, H.; Shozawa, M.; Sobczyk, J.; Soler, F.J.P.; Strolin, Paolo Emilio; Suyama, M.; Tanak, M.; Terranova, F.; Tsenov, R.; Uchida, Y.; Weber, A.; Zlobin, A.

    2009-01-01

    This report summarises the conclusions from the detector group of the International Scoping Study of a future Neutrino Factory and Super-Beam neutrino facility. The baseline detector options for each possible neutrino beam are defined as follows: 1. A very massive (Megaton) water Cherenkov detector is the baseline option for a sub-GeV Beta Beam and Super Beam facility. 2. There are a number of possibilities for either a Beta Beam or Super Beam (SB) medium energy facility between 1-5 GeV. These include a totally active scintillating detector (TASD), a liquid argon TPC or a water Cherenkov detector. 3. A 100 kton magnetized iron neutrino detector (MIND) is the baseline to detect the wrong sign muon final states (golden channel) at a high energy (20-50 GeV) neutrino factory from muon decay. A 10 kton hybrid neutrino magnetic emulsion cloud chamber detector for wrong sign tau detection (silver channel) is a possible complement to MIND, if one needs to resolve degeneracies that appear in the $\\delta$-$\\theta_{13}$...

  2. Semiconductor saturable absorbers for ultrafast terahertz signals

    DEFF Research Database (Denmark)

    Hoffmann, Matthias C.; Turchinovich, Dmitry

    2010-01-01

    states, due to conduction band onparabolicity and scattering into satellite valleys in strong THz fields. Saturable absorber parameters, such as linear and nonsaturable transmission, and saturation fluence, are extracted by fits to a classic saturable absorber model. Further, we observe THz pulse......We demonstrate saturable absorber behavior of n-type semiconductors GaAs, GaP, and Ge in the terahertz THz frequency range at room temperature using nonlinear THz spectroscopy. The saturation mechanism is based on a decrease in electron conductivity of semiconductors at high electron momentum...

  3. Observation of spin-selective tunneling in SiGe nanocrystals.

    Science.gov (United States)

    Katsaros, G; Golovach, V N; Spathis, P; Ares, N; Stoffel, M; Fournel, F; Schmidt, O G; Glazman, L I; De Franceschi, S

    2011-12-09

    Spin-selective tunneling of holes in SiGe nanocrystals contacted by normal-metal leads is reported. The spin selectivity arises from an interplay of the orbital effect of the magnetic field with the strong spin-orbit interaction present in the valence band of the semiconductor. We demonstrate both experimentally and theoretically that spin-selective tunneling in semiconductor nanostructures can be achieved without the use of ferromagnetic contacts. The reported effect, which relies on mixing the light and heavy holes, should be observable in a broad class of quantum-dot systems formed in semiconductors with a degenerate valence band.

  4. Hypersonic modes in nanophononic semiconductors.

    Science.gov (United States)

    Hepplestone, S P; Srivastava, G P

    2008-09-05

    Frequency gaps and negative group velocities of hypersonic phonon modes in periodically arranged composite semiconductors are presented. Trends and criteria for phononic gaps are discussed using a variety of atomic-level theoretical approaches. From our calculations, the possibility of achieving semiconductor-based one-dimensional phononic structures is established. We present results of the location and size of gaps, as well as negative group velocities of phonon modes in such structures. In addition to reproducing the results of recent measurements of the locations of the band gaps in the nanosized Si/Si{0.4}Ge{0.6} superlattice, we show that such a system is a true one-dimensional hypersonic phononic crystal.

  5. Design of nanophotonic, hot-electron solar-blind ultraviolet detectors with a metal-oxide-semiconductor structure

    International Nuclear Information System (INIS)

    Wang, Zhiyuan; Wang, Xiaoxin; Liu, Jifeng

    2014-01-01

    Solar-blind ultraviolet (UV) detection refers to photon detection specifically in the wavelength range of 200 nm–320 nm. Without background noises from solar radiation, it has broad applications from homeland security to environmental monitoring. The most commonly used solid state devices for this application are wide band gap (WBG) semiconductor photodetectors (Eg > 3.5 eV). However, WBG semiconductors are difficult to grow and integrate with Si readout integrated circuits (ROICs). In this paper, we design a nanophotonic metal-oxide-semiconductor structure on Si for solar-blind UV detectors. Instead of using semiconductors as the active absorber, we use Sn nano-grating structures to absorb UV photons and generate hot electrons for internal photoemission across the Sn/SiO 2 interfacial barrier, thereby generating photocurrent between the metal and the n-type Si region upon UV excitation. Moreover, the transported hot electron has an excess kinetic energy >3 eV, large enough to induce impact ionization and generate another free electron in the conduction band of n-Si. This process doubles the quantum efficiency. On the other hand, the large metal/oxide interfacial energy barrier (>3.5 eV) also enables solar-blind UV detection by blocking the less energetic electrons excited by visible photons. With optimized design, ∼75% UV absorption and hot electron excitation can be achieved within the mean free path of ∼20 nm from the metal/oxide interface. This feature greatly enhances hot electron transport across the interfacial barrier to generate photocurrent. The simple geometry of the Sn nano-gratings and the MOS structure make it easy to fabricate and integrate with Si ROICs compared to existing solar-blind UV detection schemes. The presented device structure also breaks through the conventional notion that photon absorption by metal is always a loss in solid-state photodetectors, and it can potentially be extended to other active metal photonic devices. (paper)

  6. The ATLAS inner detector semiconductor tracker (Si and GaAs strips): review of the 1995 beam tests at the CERN SPS H8 beamline

    International Nuclear Information System (INIS)

    Moorhead, G.F.

    1995-01-01

    This talk will consist of a brief review of the ATLAS Inner Detector (ID) Semiconductor Tracker (SCT) strip detector (both silicon and gallium arsenide) beam tests conducted at the ATLAS test beam facility at the CERN SPS H8 beamline. It will include a brief overview of the H8 facilities, the experimental layout of the SCT/Strip apparatus, the data acquisition system, some of the online software tools and the high precision silicon hodoscope and timing modules used. A very brief indication of some of the main varieties of detector systems tested and the measurements performed will be given. Throughout some emphasis will be placed on the contributions and-interests of members of the Melbourne group. (author)

  7. Electrical switching phenomenon and memory effect in the semiconductor chalcogenide glass Ge0.10 As0.20 Te0.70

    International Nuclear Information System (INIS)

    Haro, M.; Marquez, E.; Villares, P.; Jimenez-Garay, R.

    1987-01-01

    Electrical switching phenomenon, as well as the memory effect in the semiconductor chalcogenide glass Ge 0.10 As 0.20 Te 0.70 has been studied. A device with a plano-punctual interelectrode configuration has been designed and built, so that the electrical stimuli may be applied correctly. This device permits adequate positioning of the upper electrode, as well as contact pressure regulation. The I-V characteristics in the OFF-state have been obtained, showing a marked non-linear character. Equally, a relation has been found between the threshold voltage and electrical resistance parameters, indicating that the electrical power giving rise to the phenomenon is constant. Finally, memory effects showing a sudden reduction in electrical resistance, as well as interelectrode filaments, have been observed. (author)

  8. Germanium junction detectors. Theoretical and practical factors governing their use in radiation spectrometry; Detecteurs a jonction au germanium. Elements theoriques et pratiques pour l'utilisation en spectrometrie de rayonnements

    Energy Technology Data Exchange (ETDEWEB)

    Hors, M; Philis, C [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1967-07-01

    Semi-conductor detectors have recently greatly increased the possibilities available to nuclear spectroscopists for the study of {alpha}, {beta} and {gamma} radiations. Their use in radio-chemistry has encouraged us to study their principle, their mechanism and also the conditions under which they can be used. The first part, which is theoretical, consists of a summary of what should be known concerning the best use of junction detectors, in particular Ge (Li) detectors. The second part, which is experimental, summarizes the laboratory work carried out over a period of one year on Ge (Li) detectors. Stress is laid on the possibilities presented by the use of these detectors as photo-electric spectrometers, and also on the precautions required. Amongst the numerous results presented, the resolution of 2.52 keV obtained for the {gamma} radiation of 145.5 keV for {sup 141}Ce may be particularly noted. (authors) [French] Les detecteurs a semi-conducteurs ont recemment accru les possibilites offertes aux spectroscopistes nucleaires pour l'etude des radiations {alpha}, {beta}, {gamma}. Leurs utilisations en radiochimie nous ont incite a en etudier le principe, le mecanisme et d'autre part les conditions d'emploi. La premiere partie, theorique, rappelle l'essentiel de ce qu'il est utile de connaitre pour une utilisation optimale des detecteurs a jonctions et en particulier des detecteurs Ge (Li). La deuxieme partie, experimentale, resume les travaux realises au laboratoire pendant un an avec des detecteurs Ge (Li). Nous insistons sur les possibilites offertes et les precautions a prendre dans l'utilisation de ces detecteurs comme spectrometres photoelectriques. Parmi les nombreux resultats presentes, citons la resolution de 2,52 keV obtenue pour le rayonnement {gamma} de 145 f5 keV du {sup 141}Ce. (auteurs)

  9. Test of GERDA Phase II detector assembly

    Energy Technology Data Exchange (ETDEWEB)

    Bode, Tobias; Gusev, Konstantin [Technische Universitaet Muenchen (Germany); Schwingenheuer, Bernhard; Wagner, Victoria [Max-Planck Institut fuer Kernphysik, Heidelberg (Germany); Collaboration: GERDA-Collaboration

    2014-07-01

    The GERDA experiment searches for the lepton number violating neutrinoless double beta decay (0νββ) of {sup 76}Ge. The experiment uses HPGe detectors enriched in {sup 76}Ge as source and detection material. In GERDA Phase I five BEGe detectors were operated successfully. These detectors are distinguished for improved energy resolution and enhanced pulse shape discrimination (PSD) against background events. In Phase II additional 25 BEGe detectors will be installed. New electronics and radio-pure low-mass holders were specially designed for Phase II. Prior to the installation in GERDA all BEGe detectors are tested in their final assembly in the LNGS underground laboratory. This talk presents the mechanics and performance of the GERDA Phase II detector assembly.

  10. Impact of post deposition annealing in the electrically active traps at the interface between Ge(001) substrates and LaGeO{sub x} films grown by molecular beam deposition

    Energy Technology Data Exchange (ETDEWEB)

    Molle, Alessandro [Laboratorio MDM, CNR-IMM, via C. Olivetti 2, Agrate Brianza (MB) I-20864 (Italy); Baldovino, Silvia; Fanciulli, Marco [Laboratorio MDM, CNR-IMM, via C. Olivetti 2, Agrate Brianza (MB) I-20864 (Italy); Dipartimento di Scienza dei Materiali, Universita degli Studi di Milano Bicocca, Milano (Italy); Tsoutsou, Dimitra; Golias, Evangelos; Dimoulas, Athanasios [MBE Laboratory, Institute of Materials Science, NCSR DEMOKRITOS, Athens 153 10 (Greece)

    2011-10-15

    Changes in the electron trapping at the interface between Ge substrates and LaGeO{sub x} films grown by atomic O assisted molecular beam deposition are inferred upon post deposition annealing treatment on the as-deposited films from electrically detected magnetic resonance (EDMR) spectroscopy and from the electrical response of Pt/LaGeO{sub x}/Ge metal oxide semiconductor (MOS) capacitors. The improved electrical performance of the MOS capacitors upon annealing is consistent with the EDMR detected reduction of oxide defects which are associated with GeO species in the LaGeO{sub x} layer as evidenced by x-ray photoelectron spectroscopy.

  11. New detector concepts

    International Nuclear Information System (INIS)

    Kemmer, J.; Lutz, G.

    1986-07-01

    On the basis of the semiconductor drift chamber many new detectors are proposed, which enable the determination of energy, energy loss, position and penetration depth of radiation. A novel integrated transistor-detector configuration allows non destructive repeated readout and amplification of the signal. The concept may be used for the construction of one or two-dimensional PIXEL arrays. (orig.)

  12. Display of a high-pT H → ZZ* → eeμμ decay (mH = 130 GeV), after full simulation and reconstruction in the ATLAS detector

    CERN Multimedia

    ATLAS, Experiment

    2014-01-01

    The four leptons and the recoiling jet with ET = 135 GeV are clearly visible. Hits in the Inner Detector are shown in green for the four reconstructed leptons, both for the precision tracker (pixel and silicon micro-strip detectors) at the inner radii and for the transition radiation tracker at the outer radii. The other tracks reconstructed with pT > 0.5 GeV in the Inner Detector are shown in blue. The two electrons are depicted as reconstructed tracks in yellow and their energy deposits in each layer of the electromagnetic LAr calorimeter are shown in red. The two muons are shown as combined reconstructed tracks in orange, with the hit strips in the resistive-plate chambers and the hit drift tubes in the monitored drift-tube chambers visible as white lines in the barrel muon stations. The energy deposits from the muons in the barrel tile calorimeter can also be seen in purple.

  13. A spectrometer using semi-conductor detectors; study and applications (1963); Spectrometre utilisant les detecteurs a semi-conducteur: etudes et applications (1963)

    Energy Technology Data Exchange (ETDEWEB)

    Roux, G [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1963-07-01

    The low average energy, 2.5 to 3.5 eV, required to produce one hole-electron pair in a semiconductor allows an accurate measurement of the energy of the ionizing particles. A high resolution spectrometer has been built using semiconductor detectors. The limit of resolution, due to electronics associated to the detector, to the detector itself and to the source of particles is studied here. The present practical limit of resolution of the spectrometer is 1700 elementary electric charges (full width at half maximum of a ray of a spectrum) or 6 keV in terms of energy lost by a particle in a silicon detector. The physical resolution usually obtained is 20 keV (0.33 per cent) with {alpha} particles of the {sup 212}Bi (6.087 MeV). It depends a lot of the kind of detector used. Some results, concerning the background of the detectors and limit of measurements for low energies are given. Various applications are presented: spectrometry {beta}, spectrometry {gamma} and X, spectrometry of mixtures of {alpha} radioactive elements, collection of {alpha} spectra. (author) [French] La faible energie moyenne, 2,5 a 3,5 eV, necessaire pour produire une paire electron-trou dans un semi-conducteur, permet une mesure precise de l'energie des particules ionisantes. Un spectrometre a haute resolution a ete construit utilisant des detecteurs a semi-conducteur. La limitation en resolution due a l'electronique associee au detecteur, au detecteur lui-meme et a la source de particules, est etudiee. La resolution pratique limite actuelle du spectrometre est 1700 charges electriques elementaires (largeur a mi-hauteur d'une raie de spectre) ou 6 keV exprimee en energie perdue par une particule dans un detecteur au silicium. La resolution physique couramment obtenue est de 20 keV (0,33 pour cent) pour les particules {alpha} du bismuth 212 (6,087 MeV). Elle depend beaucoup du detecteur utilise. Quelques resultats sont donnes concernant le mouvement propre des detecteurs et la limitation des

  14. Laser vapor phase deposition of semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Karlov, N.V.; Luk' ianchuk, B.S.; Sisakian, E.V.; Shafeev, G.A.

    1987-06-01

    The pyrolytic effect of IR laser radiation is investigated with reference to the initiation and control of the vapor phase deposition of semiconductor films. By selecting the gas mixture composition and laser emission parameters, it is possible to control the deposition and crystal formation processes on the surface of semiconductors, with the main control action achieved due to the nonadiabatic kinetics of reactions in the gas phase and high temperatures in the laser heating zone. This control mechanism is demonstrated experimentally during the laser vapor deposition of germanium and silicon films from tetrachlorides on single-crystal Si and Ge substrates. 5 references.

  15. Development and characterization of the lead iodide semiconductor detector; Desenvolvimento e caracterizacao do detector semicondutor de iodeto de chumbo

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Icimone Braga de

    2001-07-01

    A methodology for purification and growth of PbI{sub 2} crystal as well as for its characterization as a room temperature radiation detector was developed in this work. Commercial salts were purified using the zone refining method and, for the purified material growth, the Bridgman method was used. To calculate the purification efficiency, studies of the decrease impurities concentrations were made in the salts and in three sections of the materials purified, using the neutron activation analysis technique. The results showed that the impurities segregate preferentially in the ingot final section. A significant decrease of the impurities concentration in function of the purification pass number was observed. The grown crystals presented good crystalline quality according to the results of the X-ray diffraction analysis. To evaluate the crystal as a semiconductor detector, measurements of dark leakage current, resistivity and the response of ({sup 241}Am) alpha particle and ({sup 241}Am, {sup 57}Co, {sup 133}Ba and {sup 137}Cs) gamma rays were carried out. The radiation response is strongly dependent on the crystals purity. The crystals purified with 500 passes exhibited energy resolution of 10% for {sup 241} Am alpha particle and the gamma rays resolution was compatible with the literature. The photosensibility of the PbI{sub 2} crystal found in the wavelength from 400 to 600 nm range suggests an another application at this crystal as a photodetector to be coupled to scintillators. (author)

  16. Development of semiconductor radiation sensors for portable alarm-dosimeter

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Y. K.; Moon, B. S.; Chung, C. E.; Hong, S. B.; Kim, J. Y.; Kim, J. B.; Han, S. H.; Lee, W. G. [Korea Atomic Energy Research Institute, Taejeon (Korea)

    2001-01-01

    We studied Semiconductor Radiation Sensors for Portable Alarm-Dosimeter. We calculated response functions for gamma energy 0.021, 0.122, 0.662, 0.835, 1.2 MeV using EGS4 codes. When we measured at various distance from source to detector, the detection efficiency of Si semiconductor detector was better than that of GM tube. The linear absorption coefficients of steel and aluminum plate were measured. These experimental results of the response of detector for intensity of radiation field coincide to the theoretical expectation. The count value of Si detector was changed with changing thickness of steel as changing threshold voltage of discriminator, and the linear absorption coefficient increased with increasing threshold voltage. Radiation detection efficiency shows difference at each threshold voltage condition. This results coincided to the theoretical simulation. 33 refs., 27 figs., 8 tabs. (Author)

  17. Efficient tunable luminescence of SiGe alloy sheet polymers

    International Nuclear Information System (INIS)

    Vogg, G.; Meyer, A. J.-P.; Miesner, C.; Brandt, M. S.; Stutzmann, M.

    2001-01-01

    Crystalline SiGe alloy sheet polymers were topotactically prepared from epitaxially grown calcium germanosilicide Ca(Si 1-x Ge x ) 2 precursor films in the whole composition range. These polygermanosilynes are found to be a well-defined mixture of the known siloxene and polygermyne sheet polymers with the OH groups exclusively bonded to silicon. The optical properties determined by photoluminescence and optical reflection measurements identify the mixed SiGe sheet polymers as direct semiconductors with efficient luminescence tunable in the energy range between 2.4 and 1.3 eV. [copyright] 2001 American Institute of Physics

  18. In vivo dosimetry with semiconductor and thermoluminescent detectors applied to head and neck cancer treatment

    International Nuclear Information System (INIS)

    Viegas, Claudio Castelo Branco

    2003-03-01

    In vivo dosimetry in radiotherapy, i. e, the assessment of the doses received by patients during their treatments, permits a verification of the therapy quality. A routine of in vivo dosimetry is, undoubtedly, a direct benefit for the patient. Unfortunately, in Brazil and in Latin America this procedure is still a privilege for only a few patients. This routine is of common application only in developed countries. The aim of this work is to show the viability and implementation of a routine in vivo dosimetry, using diodes semiconductors and thermoluminescent dosimeters (TLD), at the radiotherapy section of the National Institute of Cancer in Brazil, in the case of head and neck cancer treatment. In order to reach that aim, the characteristics of the response of diodes ISORAD-p and LiF:Mg;Ti (TLD-100) thermoluminescent detectors in powder form were determined. The performance of those detectors for in vivo dosimetry was tested using an RANDO Alderson anthropomorfic phantom and, once their adequacy proved for the kind of measurements proposed, they were used for dose assessment in the case of tumour treatments in the head and neck regions, for Cobalt-60 irradiations. (author)

  19. Thermoelectrically cooled semiconductor detectors for non-destructive analysis of works of art by means of energy dispersive X-ray fluorescence

    CERN Document Server

    Cesareo, R; Castellano, A

    1999-01-01

    Thermoelectrically cooled semiconductor detectors, such as Si-PIN, Si-drift, Cd sub 1 sub - sub x Zn sub x Te and HgI sub 2 , coupled to miniaturized low-power X-ray tubes, are well suited in portable systems for energy-dispersive X-ray fluorescence (EDXRF), analysis of archaeological samples. The Si-PIN detector is characterized by a thickness of about 300 mu m, an area of about 2x3 mm sup 2 , an energy resolution of about 200-250 eV at 5.9 keV and an entrance window of 25-75 mu m. The Si-drift detector has approximately the same area and thickness, but an energy resolution of 155 eV at 5.9 keV. The efficiency of these detectors is around 100% from 4 to 10 keV, and then decreases versus energy, reaching approx 9% at 30 keV. Coupled to a miniaturized 10 kV, 0.1 mA, Ca-anode or to a miniaturized 30 kV, 0.1 mA, W-anode X-ray tubes, portable systems can be constructed, which are able to analyse K-lines of elements up to about silver, and L-lines of heavy elements. The Cd sub 1 sub - sub x Zn sub x Te detector ha...

  20. Space charge sign inversion and electric field reconstruction in 24 GeV/c proton-irradiated MCZ Si p+-n(TD)-n+ detectors processed via thermal donor introduction

    International Nuclear Information System (INIS)

    Li, Z.; Verbitskaya, E.; Carini, G.; Chen, W.; Eremin, V.; Gul, R.; Haerkoenen, J.; Li, M.

    2009-01-01

    The aim of this study is the evaluation of radiation effects in detectors based on p-type magnetic czochralski (MCZ) Si that was converted to n-type by thermal donor (TD) introduction. As-processed p + -p-n + detectors were annealed at 430 deg. C resulting in p + -n(TD)-n + structures. The space charge sign and the electric field distribution E(x) in MCz Si p + -n(TD)-n + detectors irradiated by 24 GeV/c protons were analyzed using the data on the current pulse response and the Double Peak (DP) electric field distribution model for heavily irradiated detectors. The approach considers an irradiated detector as a structure with three regions in which the electric field depends on the coordinate, and the induced current pulse response arises from the drift process of free carriers in the detector with variable electric field. Reconstruction of the E(x) profile from the pulse response shapes is performed employing a new method for DP electric field reconstruction. This method includes: (a) a direct extraction of charge loss due to trapping and (b) the fitting of a simulated pulse response to the 'corrected' pulse by adjusting the electric field profiles in the three regions. Reconstruction of E(x) distribution showed that in the diodes irradiated by a proton fluence of (2-4)x10 14 p/cm 2 space charge sign inversion has occurred. This is the evidence that the influence of 24 GeV/c proton radiation on MCz Si p + -n(TD)-n + detectors is similar to that on p + -n-n + detectors based on FZ or diffusion oxygenated n-type Si.

  1. Semiconductors and semimetals epitaxial microstructures

    CERN Document Server

    Willardson, Robert K; Beer, Albert C; Gossard, Arthur C

    1994-01-01

    Newly developed semiconductor microstructures can now guide light and electrons resulting in important consequences for state-of-the-art electronic and photonic devices. This volume introduces a new generation of epitaxial microstructures. Special emphasis has been given to atomic control during growth and the interrelationship between the atomic arrangements and the properties of the structures.Key Features* Atomic-level control of semiconductor microstructures* Molecular beam epitaxy, metal-organic chemical vapor deposition* Quantum wells and quantum wires* Lasers, photon(IR)detectors, heterostructure transistors

  2. Baby-MIND neutrino detector

    Science.gov (United States)

    Mefodiev, A. V.; Kudenko, Yu. G.; Mineev, O. V.; Khotjantsev, A. N.

    2017-11-01

    The main objective of the Baby-MIND detector (Magnetized Iron Neutrino Detector) is the study of muon charge identification efficiency for muon momenta from 0.3 to 5 GeV/ c. This paper presents the results of measurement of the Baby-MIND parameters.

  3. Maximizing signal-to-noise ratio (SNR) in 3-D large bandgap semiconductor pixelated detectors in optimal and non-optimal filtering conditions

    International Nuclear Information System (INIS)

    Rodrigues, Miesher L.; Serra, Andre da S.; He, Zhong; Zhu, Yuefeng

    2009-01-01

    3-D pixelated semiconductor detectors are used in radiation detection applications requiring spectroscopic and imaging information from radiation sources. Reconstruction algorithms used to determine direction and energy of incoming gamma rays can be improved by reducing electronic noise and using optimum filtering techniques. Position information can be improved by achieving sub-pixel resolution. Electronic noise is the limiting factor. Achieving sub-pixel resolution - position of the interaction better than one pixel pitch - in 3-D pixelated semiconductor detectors is a challenging task due to the fast transient characteristics of these signals. This work addresses two fundamental questions: the first is to determine the optimum filter, while the second is to estimate the achievable sub-pixel resolution using this filter. It is shown that the matched filter is the optimum filter when applying the signal-to-noise ratio criteria. Also, non-optimum filters are studied. The framework of 3-D waveform simulation using the Shockley-Ramo Theorem and the Hecht Equation for electron and hole trapping is presented in this work. This waveform simulator can be used to analyze current detectors as well as explore new ideas and concepts in future work. Numerical simulations show that assuming an electronic noise of 3.3 keV it is possible to subdivide the pixel region into 5x5 sub-pixels. After analyzing these results, it is suggested that sub-pixel information can also improve energy resolution. Current noise levels present the major drawback to both achieve sub-pixel resolution as well as improve energy resolution below the current limits. (author)

  4. New developments in PET detector technology

    International Nuclear Information System (INIS)

    Niu Lingxin; Zhao Shujun; Zhang Bin; Liu Haojia

    2010-01-01

    The researches on PET detector are always active and innovative area. The research direction of PET detector includes improving performances of scintillator-based detectors, investigating new detectors suitable for multi-modality imaging (e.g. PET/CT and PET/MRI), meeting requirements of TOF and DOI technologies and boosting the development of the technologies. In this paper, new developments in PET detector technology about scintillation crystal, photodetector and semiconductor detector is introduced. (authors)

  5. Effect of ultrathin GeOx interfacial layer formed by thermal oxidation on Al2O3 capped Ge

    International Nuclear Information System (INIS)

    Han Le; Zhang Xiong; Wang Sheng-Kai; Xue Bai-Qing; Liu Hong-Gang; Wu Wang-Ran; Zhao Yi

    2014-01-01

    We propose a modified thermal oxidation method in which an Al 2 O 3 capping layer is used as an oxygen blocking layer (OBL) to form an ultrathin GeO x interfacial layer, and obtain a superior Al 2 O 3 /GeO x /Ge gate stack. The GeO x interfacial layer is formed in oxidation reaction by oxygen passing through the Al 2 O 3 OBL, in which the Al 2 O 3 layer could restrain the oxygen diffusion and suppress the GeO desorption during thermal treatment. The thickness of the GeO x interfacial layer would dramatically decrease as the thickness of Al 2 O 3 OBL increases, which is beneficial to achieving an ultrathin GeO x interfacial layer to satisfy the demand for small equivalent oxide thickness (EOT). In addition, the thickness of the GeO x interfacial layer has little influence on the passivation effect of the Al 2 O 3 /Ge interface. Ge (100) p-channel metal–oxide–semiconductor field-effect transistors (pMOSFETs) using the Al 2 O 3 /GeO x /Ge gate stacks exhibit excellent electrical characteristics; that is, a drain current on-off (I on /I off ) ratio of above 1×10 4 , a subthreshold slope of ∼ 120 mV/dec, and a peak hole mobility of 265 cm 2 /V·s are achieved. (condensed matter: structural, mechanical, and thermal properties)

  6. Synchrotron applications of an amorphous silicon flat-panel detector

    International Nuclear Information System (INIS)

    Lee, J. H.; Can Aydiner, C.; Almer, J.; Bernier, J.; Chapman, K. W.; Chupas, P. J.; Haeffner, D.; Kump, K.; Lee, P. L.; Lienert, U.; Miceli, A.; Vera, G.; LANL; GE Healthcare

    2008-01-01

    A GE Revolution 41RT flat-panel detector (GE 41RT) from GE Healthcare (GE) has been in operation at the Advanced Photon Source for over two years. The detector has an active area of 41 cm x 41 cm with 200 (micro)m x 200 (micro)m pixel size. The nominal working photon energy is around 80 keV. The physical set-up and utility software of the detector system are discussed in this article. The linearity of the detector response was measured at 80.7 keV. The memory effect of the detector element, called lag, was also measured at different exposure times and gain settings. The modulation transfer function was measured in terms of the line-spread function using a 25 (micro)m x 1 cm tungsten slit. The background (dark) signal, the signal that the detector will carry without exposure to X-rays, was measured at three different gain settings and with exposure times of 1 ms to 15 s. The radial geometric flatness of the sensor panel was measured using the diffraction pattern from a CeO 2 powder standard. The large active area and fast data-capturing rate, i.e. 8 frames s -1 in radiography mode, 30 frames s -1 in fluoroscopy mode, make the GE 41RT one of a kind and very versatile in synchrotron diffraction. The loading behavior of a Cu/Nb multilayer material is used to demonstrate the use of the detector in a strain-stress experiment. Data from the measurement of various samples, amorphous SiO 2 in particular, are presented to show the detector effectiveness in pair distribution function measurements

  7. Fast timing methods for semiconductor detectors. Revision

    International Nuclear Information System (INIS)

    Spieler, H.

    1984-10-01

    This tutorial paper discusses the basic parameters which determine the accuracy of timing measurements and their effect in a practical application, specifically timing with thin-surface barrier detectors. The discussion focusses on properties of the detector, low-noise amplifiers, trigger circuits and time converters. New material presented in this paper includes bipolar transistor input stages with noise performance superior to currently available FETs, noiseless input terminations in sub-nanosecond preamplifiers and methods using transmission lines to couple the detector to remotely mounted preamplifiers. Trigger circuits are characterized in terms of effective rise time, equivalent input noise and residual jitter

  8. Irradiation damages of semiconductor devices and their improvement

    Energy Technology Data Exchange (ETDEWEB)

    Uwatoko, Yoshiya [Saitama Univ., Urawa (Japan); Ohyama, Hidenori; Hayama, Kiyoteru; Hakata, Tetsuya; Kudou, Tomohiro

    1998-01-01

    In this study, effect of radiation on semiconductor devices was evaluated at both sides of electrical and crystalline properties for two years from 1995 fiscal years. And, damage of Si(sub 1-x)Ge(sub x) device was considered at viewpoints of Ge content and sprung-out atomic number and non ionization energy loss of constituting atom formed by radiation on its radiation source dependency of damage. This paper was a report on proton beam damage of the Si(sub 1-x)Ge(sub x) device, neutron damage of InGaAs photodiode, and effect of Ga content and kinds of beam on their damages. (G.K.)

  9. Production of D* mesons in photon-photon collisions at $\\sqrt{s}_{ee}$ = 183 GeV and 189 GeV using the OPAL detector at LEP

    CERN Document Server

    Patt, J

    2000-01-01

    The inclusive production of D*/sup +or-/ mesons in photon-photon collisions has been measured using the OPAL detector at LEP at e/sup +/e/sup -/ centre-of-mass energies square root (s/sub ee/) of 183 and 189 GeV. The D*/sup +/ mesons are reconstructed in their decay to D /sup 0/ pi /sup +/ with the D/sup 0/ observed in the two decay modes K/sup -/ pi /sup +/ and K/sup -/ pi /sup +/ pi /sup -/ pi /sup +/. After background subtraction, 121+or-14 (stat.) D*/sup +or-/ events have been selected. Jets are reconstructed using a cone jet finding algorithm to separate direct and single-resolved events. Differential cross-sections d sigma /dp/sub T//sup D/* and d sigma /d eta /sup D /* as functions of the D*/sup +or-/ transverse momentum p/sub T//sup D/* and pseudorapidity eta /sup D/* are presented in the kinematic region 2

    GeV and eta /sup D/*<1.5. They are compared to next-to-leading order (NLO) perturbative QCD calculations. The total cross-section for the process e/sup +/e/sup - / to ...

  10. Canberra semiconductor, an industrial partner for physics research

    International Nuclear Information System (INIS)

    Verplancke, J.; Burger, P.; Schoenmaekers, W.

    1990-01-01

    Canberra semiconductor produces germanium and silicon solid state detectors for nuclear radiation. Its business domain covers the production of standard detectors on an industrial basis, for industrial and applied physics applications, as well as the development of special detectors and electronics, tailored to the needs of a particular application, in science and research. There exists an important and beneficial interaction between these two activities. (orig.)

  11. Nitride semiconductor devices fundamentals and applications

    CERN Document Server

    Morkoç, Hadis

    2013-01-01

    This book gives a clear presentation of the necessary basics of semiconductor and device physics and engineering. It introduces readers to fundamental issues that will enable them to follow the latest technological research. It also covers important applications, including LED and lighting, semiconductor lasers, high power switching devices, and detectors. This balanced and up-to-date treatment makes the text an essential educational tool for both advanced students and professionals in the electronics industry.

  12. Superconducting nanowire single photon detectors fabricated from an amorphous Mo0.75Ge0.25 thin film

    International Nuclear Information System (INIS)

    Verma, V. B.; Lita, A. E.; Vissers, M. R.; Marsili, F.; Pappas, D. P.; Mirin, R. P.; Nam, S. W.

    2014-01-01

    We present the characteristics of superconducting nanowire single photon detectors (SNSPDs) fabricated from amorphous Mo 0.75 Ge 0.25 thin-films. Fabricated devices show a saturation of the internal detection efficiency at temperatures below 1 K, with system dark count rates below 500 cps. Operation in a closed-cycle cryocooler at 2.5 K is possible with system detection efficiencies exceeding 20% for SNSPDs which have not been optimized for high detection efficiency. Jitter is observed to vary between 69 ps at 250 mK and 187 ps at 2.5 K using room temperature amplifiers.

  13. A novel 3D detector configuration enabling high quantum efficiency, low crosstalk, and low output capacitance

    International Nuclear Information System (INIS)

    Aurola, A.; Marochkin, V.; Tuuva, T.

    2016-01-01

    The benefits of pixelated planar direct conversion semiconductor radiation detectors comprising a thick fully depleted substrate are that they offer low crosstalk, small output capacitance, and that the planar configuration simplifies manufacturing. In order to provide high quantum efficiency for high energy X-rays and Gamma-rays such a radiation detector should be as thick as possible. The maximum thickness and thus the maximum quantum efficiency has been limited by the substrate doping concentration: the lower the substrate doping the thicker the detector can be before reaching the semiconductor material's electric breakdown field. Thick direct conversion semiconductor detectors comprising vertical three-dimensional electrodes protruding through the substrate have been previously proposed by Sherwood Parker in order to promote rapid detection of radiation. An additional advantage of these detectors is that their thickness is not limited by the substrate doping, i.e., the size of the maximum electric field value in the detector does not depend on detector thickness. However, the thicker the substrate of such three dimensional detectors is the larger the output capacitance is and thus the larger the output noise is. In the novel direct conversion pixelated radiation detector utilizing a novel three dimensional semiconductor architecture, which is proposed in this work, the detector thickness is not limited by the substrate doping and the output capacitance is small and does not depend on the detector thickness. In addition, by incorporating an additional node to the novel three-dimensional semiconductor architecture it can be utilized as a high voltage transistor that can deliver current across high voltages. Furthermore, it is possible to connect a voltage difference of any size to the proposed novel three dimensional semiconductor architecture provided that it is thick enough—this is a novel feature that has not been previously possible for semiconductor

  14. Two-arm semiconductor spectrometer for charged particles for the investigation of absorption by nuclei of stopped negative pions

    International Nuclear Information System (INIS)

    Gornov, M.G.; Gurov, Yu.B.; Lukin, A.S.; Morokhov, P.V.; Pechkurov, V.A.; Pichugin, A.P.; Saveliev, V.I.; Shafigullin, R.R.; Sergeev, F.M.; Khomutov, A.A.; Oganesian, K.O.; Osipenko, B.P.; Sandukovsky, V.G.

    1984-01-01

    A two-arm semiconductor spectrometer for the detection of secondary charged particles, such as p, d, t, 3 He, 4 He and of their correlations in the process of stopped pion absorption by nuclei is described. The spectrometer consists of two telescopes of Si-detectors with a sensitive surface of 800 mm 2 , two semiconductor detectors as monitors and the 'live' target, a silicon surface barrier detector. The number of semiconductor detectors is 19. A technique for pion stop selection in thin targets is described. The problem of particle identification and of measurements of their energy with the help of a multicrystal semiconductor telescope is discussed. The technique provides an absolute normalization of spectra. The 'alive' target helps to obtain more information on the process of pion absorption by Si-nuclei. (orig.)

  15. Task A. Study of large P/sub T/ direct photon production at the ISR. Task B. Direct photon production at the tevatron (E-706). Task C. Search for fractional charge particles in semiconductors. Progress report, June 1, 1983-May 31, 1984

    International Nuclear Information System (INIS)

    Cleland, W.E.; Coon, D.D.; Engels, E. Jr.; Shepard, P.F.; Thompson, J.A.

    1984-01-01

    Task A is the Pitt contingent of the Axial Field Spectrometer Collaboration, performing experiment R807/808 at CERN. The experiment has studied several topics related to study of high P/sub T/ phenomena such as production of jets at high E/sub T/ and a comparison of their properties with jets seen in e + e - . We are working primarily on those aspects of the experiment involving reactions with photons in the final state. We are completing an analysis of prompt photons and pions produced at 11 0 in the center of mass, from data taken in 1982. Presently, new data are being taken with two large NaI arrays in place. With these data, we are studying low P/sub T/ (20 to 200 MeV/c) photon production as well as prompt photons in the range 1.5 < P/sub T/ < 4 GeV/c. For the 1.5 - 4 GeV/c data we plan to compare single photon production in pp and anti pp collisions. Task B is the Pitt contingent of the E706 collaboration, which is studying prompt photon production in πp and pp collisions at the Tevatron. The major contribution of the Pitt effort to the experiment is the provision of the array of semiconductor detectors required for the charged particle spectrometer to be used in the study of correlated hadronic jets. Task C is the search for fractional charge in semiconductors. Although the physics goals of this experiment are removed from those of the other tasks, the technical overlap with task B is extremely important. The construction and testing of semiconductor detectors requires specialized semiconductor physics knowledge and instrumentation, both of which are being developed concurrently by these two tasks. 109 references

  16. Mechanism of dopant-vacancy association in α-quartz GeO2

    KAUST Repository

    Wang, Hao; Chroneos, Alexander; Schwingenschlö gl, Udo

    2013-01-01

    Improving the electron mobility of devices such as Ge metal oxide semiconductor field effect transistors requires good Ge/dielectric interfaces. GeO2 thus is reconsidered as a passivation layer for Ge. However, O-vacancies need to be controlled as they have a deleterious impact on the properties. We employ electronic structure calculations to investigate the introduction of trivalent ions (Al, Y, and La) in α-quartz GeO2. The binding energies of the dopant-vacancy pairs reveal that dopants can be used to control the O-vacancies and reduce the induced dangling bonds. It is proposed that the introduction of Al will limit the concentration of O-vacancies at low Fermi energy.

  17. Mechanism of dopant-vacancy association in α-quartz GeO2

    KAUST Repository

    Wang, Hao

    2013-02-28

    Improving the electron mobility of devices such as Ge metal oxide semiconductor field effect transistors requires good Ge/dielectric interfaces. GeO2 thus is reconsidered as a passivation layer for Ge. However, O-vacancies need to be controlled as they have a deleterious impact on the properties. We employ electronic structure calculations to investigate the introduction of trivalent ions (Al, Y, and La) in α-quartz GeO2. The binding energies of the dopant-vacancy pairs reveal that dopants can be used to control the O-vacancies and reduce the induced dangling bonds. It is proposed that the introduction of Al will limit the concentration of O-vacancies at low Fermi energy.

  18. A novel integrated circuit for semiconductor radiation detectors with sparse readout

    International Nuclear Information System (INIS)

    Zhang Yacong; Chen Zhognjian; Lu Wengao; Zhao Baoying; Ji Lijiu

    2008-01-01

    A novel fully integrated CMOS readout circuit for semiconductor radiation detector with sparse readout is presented. The new sparse scheme is: when one channel is being read out, the trigger signal from other channels is delayed and then processed. Therefore, the dead time is reduced and so is the error rate. Besides sparse readout, sequential readout is also allowed, which means the analog voltages and addresses of all the channels are read out sequentially once there is a channel triggered. The circuit comprises Charge Sensitive Amplifier (CSA), pulse shaper, peak detect and hold circuit, and digital logic. A test chip of four channels designed in a 0.5 μ DPTM CMOS technology has been taped out. The results of post simulation indicate that the gain is 79.3 mV/fC with a linearity of 99.92%. The power dissipation is 4 mW per channel. Theory analysis and calculation shows that the error probability is approximately 2.5%, which means a reduction of about 37% is obtained compared with the traditional scanning scheme, assuming a 16-channel system with a particle rate of 100 k/s per channel. (authors)

  19. Strip type radiation detector and method of making same

    International Nuclear Information System (INIS)

    Jantsch, O.; Feigt, I.; Willig, W.R.

    1976-01-01

    An improved strip detector and a method for making such a detector in which a high resistivity N conduction semiconductor body has electrode strips formed thereon by diffusion is described. The strips are formed so as to be covered by an oxide layer at the surface point of the PN junction and in which the opposite side of the semiconductor body then has a substantial amount of material etched away to form a thin semiconductor upon which strip electrodes which are perpendicular to the electrodes on the first side are then placed

  20. Metal Induced Gap States on Pt/Ge(001)

    NARCIS (Netherlands)

    Oncel, N.; van Beek, W.J.; Poelsema, Bene; Zandvliet, Henricus J.W.

    2007-01-01

    Using scanning tunneling microscopy (STM) and scanning tunneling spectroscopy (STS) we have studied the electronic properties of a novel, planar, metal semiconductor contact. For this purpose we take advantage of the unique properties of the Pt-modified Ge(001) surface, which consist of coexisting

  1. Detector simulation needs for detector designers

    International Nuclear Information System (INIS)

    Hanson, G.G.

    1987-11-01

    Computer simulation of the components of SSC detectors and of the complete detectors will be very important for the designs of the detectors. The ratio of events from interesting physics to events from background processes is very low, so detailed understanding of detector response to the backgrounds is needed. Any large detector for the SSC will be very complex and expensive and every effort must be made to design detectors which will have excellent performance and will not have to undergo major rebuilding. Some areas in which computer simulation is particularly needed are pattern recognition in tracking detectors and development of shower simulation code which can be trusted as an aid in the design and optimization of calorimeters, including their electron identification performance. Existing codes require too much computer time to be practical and need to be compared with test beam data at energies of several hundred GeV. Computer simulation of the processing of the data, including electronics response to the signals from the detector components, processing of the data by microprocessors on the detector, the trigger, and data acquisition will be required. In this report we discuss the detector simulation needs for detector designers

  2. Evaluation of NDA techniques applying to the measurement of alpha-activities in medium or low level radioactive reprocessing wastes (part 5). The development of LiF coating semiconductor detector

    Energy Technology Data Exchange (ETDEWEB)

    Hattori, Takatoshi; Ishii, Keiichiro [Central Research Inst. of Electric Power Industry, Komae, Tokyo (Japan). Komae Research Lab.

    1988-12-01

    In order to design the neutron detection system in the non-destructive assay device applying to the measurement of alpha-activity in medium or low level radioactive reprocessing wastes, we examined the property of the LiF coating semiconductor detector applying to gamma-radiation field. The sensitivity for thermal neutron of LiF coating ion implanted detector is 1.6 cps/nv, and reduced to half in about 300 R/h gamma-radiation field. Compared with the other neutron detectors, for example proportional counters, the performance of this detector is almost similar to that of them. This new detector has a merit to be possible to use a dry battery instead of a high voltage supply. (author).

  3. Dislocation-free Ge Nano-crystals via Pattern Independent Selective Ge Heteroepitaxy on Si Nano-Tip Wafers.

    Science.gov (United States)

    Niu, Gang; Capellini, Giovanni; Schubert, Markus Andreas; Niermann, Tore; Zaumseil, Peter; Katzer, Jens; Krause, Hans-Michael; Skibitzki, Oliver; Lehmann, Michael; Xie, Ya-Hong; von Känel, Hans; Schroeder, Thomas

    2016-03-04

    The integration of dislocation-free Ge nano-islands was realized via selective molecular beam epitaxy on Si nano-tip patterned substrates. The Si-tip wafers feature a rectangular array of nanometer sized Si tips with (001) facet exposed among a SiO2 matrix. These wafers were fabricated by complementary metal-oxide-semiconductor (CMOS) compatible nanotechnology. Calculations based on nucleation theory predict that the selective growth occurs close to thermodynamic equilibrium, where condensation of Ge adatoms on SiO2 is disfavored due to the extremely short re-evaporation time and diffusion length. The growth selectivity is ensured by the desorption-limited growth regime leading to the observed pattern independence, i.e. the absence of loading effect commonly encountered in chemical vapor deposition. The growth condition of high temperature and low deposition rate is responsible for the observed high crystalline quality of the Ge islands which is also associated with negligible Si-Ge intermixing owing to geometric hindrance by the Si nano-tip approach. Single island as well as area-averaged characterization methods demonstrate that Ge islands are dislocation-free and heteroepitaxial strain is fully relaxed. Such well-ordered high quality Ge islands present a step towards the achievement of materials suitable for optical applications.

  4. High spin states in 66,68Ge

    International Nuclear Information System (INIS)

    Hermkens, U.; Becker, F.; Eberth, J.; Freund, S.; Mylaeus, T.; Skoda, S.; Teichert, W.; Werth, A. v.d.

    1992-01-01

    High spin states of 66,68 Ge have been investigated at the FN Tandem accelerator of the University of Koeln via the reactions 40 Ca( 32 S,α2p,4p) 66,68 Ge at a beam energy of 100 MeV and 58 Ni( 16 O,α2p) 68 Ge at 65 MeV. The OSIRIS spectrometer with 12 escape suppressed Ge detectors was used to measure γγ coincidences and γ-ray angular distributions. In 66 Ge ( 68 Ge) 33 (22) new levels were found and 63 (62) new γ-transitions were placed in the level scheme. Both nuclei show a rather complicated but similar excitation pattern, ruled by the interplay of quasiparticle and collective degrees of freedom. The results are compared to the recently published EXVAM calculations for 68 Ge. (orig.)

  5. Reconstruction of GeV Neutrino Events in LENA

    International Nuclear Information System (INIS)

    Moellenberg, R.; Feilitzsch, F. von; Goeger-Neff, M.; Hellgartner, D.; Lewke, T.; Meindl, Q.; Oberauer, L.; Potzel, W.; Tippmann, M.; Winter, J.; Wurm, M.; Peltoniemi, J.

    2011-01-01

    LENA (Low Energy Neutrino Astronomy) is a proposed next generation liquid-scintillator detector with about 50 kt target mass. Besides the detection of solar neutrinos, geoneutrinos, supernova neutrinos and the search for the proton decay, LENA could also be used as the far detector of a next generation neutrino beam. The present contribution outlines the status of the Monte Carlo studies towards the reconstruction of GeV neutrinos in LENA. Both the tracking capabilities at a few hundred MeV, most interesting for a beta beam, and above 1 GeV for a superbeam experiment are presented.

  6. Photoproduction in the Energy Range 70-200 GeV

    CERN Multimedia

    2002-01-01

    This experiment continues the photoproduction studies of WA4 and WA57 up to the higher energies made available by the upgrading of the West Hall. An electron beam of energy 200 GeV is used to produce tagged photons in the range 65-180 GeV; The photon beam is incident on a 60 cm liquid hydrogen target in the Omega Spectrometer. A Ring Image Cherenkov detector provides pion/kaon separation up to 150 GeV/c. The Transition Radiation Detector extends the charged pion identification to the momentum range from about 80 GeV/c upwards. The large lead/liquid scintillator calorimeter built by the WA70 collaboration and the new lead/scintillating fibre det (Plug) are used for the detection of the $\\gamma$ rays produced by the interactions of the primary photons in the hydrogen target. \\\\ \\\\ The aim is to make a survey of photoproduction reactions up to photon energies of 200 GeV. The large aperture of the Omega Spectrometer will particularly enable study of fragmentation of the photon to states of high mass, up to @C 9 G...

  7. A new configuration of the Moxon-Rae detector based on Si detector

    International Nuclear Information System (INIS)

    Niu, H.; Hsu, J.Y.; Liang, J.H.; Yuan, L.G.

    2002-01-01

    A new Moxon-Rae detector configuration based on Si semiconductor detector was proposed in this paper. Three γ-ray sources, 137 Cs, 60 Co, and 24 Na, were employed to make actual measurements using the new Moxon-Rae detector. The measured pulse height spectra and detection efficiencies were compared with the EGS4 simulated values. The results revealed that the proposed new configuration is indeed a successful method and specially a useful technique for higher energy γ-ray measurement

  8. Evidence for spin to charge conversion in GeTe(111

    Directory of Open Access Journals (Sweden)

    C. Rinaldi

    2016-03-01

    Full Text Available GeTe has been predicted to be the father compound of a new class of multifunctional materials, ferroelectric Rashba semiconductors, displaying a coupling between spin-dependent k-splitting and ferroelectricity. In this paper, we report on epitaxial Fe/GeTe(111 heterostructures grown by molecular beam epitaxy. Spin-pumping experiments have been performed in a radio-frequency cavity by pumping a spin current from the Fe layer into GeTe at the Fe ferromagnetic resonance and detecting the transverse charge current originated in the slab due to spin-to-charge conversion. Preliminary experiments indicate that a clear spin to charge conversion exists, thus unveiling the potential of GeTe for spin-orbitronics.

  9. Development of Radiation Hard Semiconductor Devices for Very High Luminosity Colliders

    CERN Multimedia

    Joram, C; Gregor, I; Dierlamm, A H; Wilson, F F; Sloan, T; Tuboltsev, Y V; Marone, M; Artuso, M; Cindro, V; Bruzzi, M; Bhardwaj, A; Bohm, J; Mikestikova, M; Walz, M; Breindl, M A; Ruzin, A; Marunko, S; Guskov, J; Haerkoenen, J J; Pospisil, S; Fadeyev, V; Makarenko, L; Kaminski, P; Zelazko, J; Pintilie, L; Radu, R; Nistor, S V; Ullan comes, M; Storasta, J V; Gaubas, E; Lacasta llacer, C; Kilminster, B J; Garutti, E; Buhmann, P; Khomenkov, V; Poehlsen, J A; Fernandez garcia, M; Buttar, C; Eklund, L M; Munoz sanchez, F J; Eremin, V; Aleev, A; Modi, B; Sicho, P; Gisen, A J; Nikolopoulos, K; Van beuzekom, M G; Kozlowski, R; Lozano fantoba, M; Leroy, C; Pernegger, H; Del burgo, R; Vila alvarez, I; Palomo pinto, F R; Lounis, A; Eremin, I; Fadeeva, N; Rogozhkin, S; Shivpuri, R K; Arsenovich, T; Ott, J; Abt, M; Loenker, J; Savic, N; Monaco, V; Visser, J; Lynn, D; Horazdovsky, T; Solar, M; Dervan, P J; Meng, L; Spencer, E N; Kazuchits, N; Brzozowski, A; Kozubal, M; Nistor, L C; Marti i garcia, S; Gomez camacho, J J; Fretwurst, E; Hoenniger, F; Schwandt, J; Hartmann, F; Marchiori, G; Maneuski, D; De capua, S; Williams, M R J; Mandic, I; Gadda, A; Preiss, J; Macchiolo, A; Nisius, R; Grinstein, S; Gonella, L; Wennloef, H L O; Slavicek, T; Masek, P; Casse, G; Flores, D; Tuuva, T; Jimenez ramos, M D C; Charron, S; Rubinskiy, I; Jansen, H; Eichhorn, T V; Matysek, M; Andersson-lindstroem, G; Donegani, E; Bomben, M; Oshea, V; Muenstermann, D; Holmkvist, C W; Oh, A; Lopez paz, I; Verbitskaya, E; Mitina, D; Grigoriev, E; Zaluzhnyy, A; Mikuz, M; Kramberger, G; Scaringella, M; Ranjeet, R; Jain, A; Luukka, P R; Tuominen, E M; Allport, P P; Cartiglia, N; Brigljevic, V; Kohout, Z; Quirion, D; Lauer, K; Collins, P; Gallrapp, C; Rohe, T V; Chauveau, J; Villani, E G; Fox, H; Parkes, C J; Nikitin, A; Spiegel, L G; Creanza, D M; Menichelli, D; Mcduff, H; Carna, M; Weers, M; Weigell, P; Bortoletto, D; Staiano, A; Bellan, R; Szumlak, T; Sopko, V; Pawlowski, M; Pintilie, I; Pellegrini, G; Rafi tatjer, J M; Moll, M; Eckstein, D; Klanner, R; Gomez, G; Gersabeck, M; Cobbledick, J L; Shepelev, A; Golubev, A; Apresyan, A; Lipton, R J; Borgia, A; Zavrtanik, M; Manna, N; Ranjan, K; Chhabra, S; Beyer, J; Korolkov, I; Heintz, U; Sadrozinski, H; Seiden, A; Surma, B; Esteban, S; Kazukauskas, V; Kalendra, V; Mekys, A; Nachman, B P; Tackmann, K; Steinbrueck, G; Pohlsen, T; Calderini, G; Svihra, P; Murray, D; Bolla, G; Zontar, D; Focardi, E; Seidel, S C; Winkler, A D; Altenheiner, S; Parzefall, U; Moser, H; Sopko, B; Buckland, M D; Vaitkus, J V; Ortlepp, T

    2002-01-01

    The requirements at the Large Hadron Collider (LHC) at CERN have pushed the present day silicon tracking detectors to the very edge of the current technology. Future very high luminosity colliders or a possible upgrade scenario of the LHC to a luminosity of 10$^{35}$ cm$^{-2}$s$^{-1}$ will require semiconductor detectors with substantially improved properties. Considering the expected total fluences of fast hadrons above 10$^{16}$ cm$^{-2}$ and a possible reduced bunch-crossing interval of $\\approx$10 ns, the detector must be ultra radiation hard, provide a fast and efficient charge collection and be as thin as possible.\\\\ We propose a research and development program to provide a detector technology, which is able to operate safely and efficiently in such an environment. Within this project we will optimize existing methods and evaluate new ways to engineer the silicon bulk material, the detector structure and the detector operational conditions. Furthermore, possibilities to use semiconductor materials othe...

  10. Structural and electrical evaluation for strained Si/SiGe on insulator

    International Nuclear Information System (INIS)

    Wang Dong; Ii, Seiichiro; Ikeda, Ken-ichi; Nakashima, Hideharu; Ninomiya, Masaharu; Nakamae, Masahiko; Nakashima, Hiroshi

    2006-01-01

    Three strained Si/SiGe on insulator wafers having different Ge fractions were evaluated using dual-metal-oxide-semiconductor (dual-MOS) deep level transient spectroscopy (DLTS) and transmission electron microscopy (TEM) methods. The interface of SiGe/buried oxide (BOX) shows roughness less than 1 nm by high resolution TEM observation. The interface states densities (D it ) of SiGe/BOX are approximately 1 x 10 12 cm -2 eV -1 , which is approximately one order of magnitude higher than that of Si/BOX in a Si on insulator wafer measured as reference by the same method of dual-MOS DLTS. The high D it of SiGe/BOX is not due to interface roughness but due to Ge atoms. The threading dislocations were also clearly observed by TEM and were analyzed

  11. Purification and preparation of bismuth(III) iodide for application as radiation semiconductor detector; Purificacao e preparacao do cristal semicondutor de iodeto de bismuto para aplicacao como detector de radiacao

    Energy Technology Data Exchange (ETDEWEB)

    Ferraz, Caue de Mello

    2016-11-01

    This study describes the experimental procedure of a BiI{sub 3} purification method powder, aiming a future application of these semiconductor crystals as room temperature radiation detector. The Repeated Vertical Bridgman Technique was applied for the purification, based on the melting and nucleation phenomena. An ampoule filled with a maximum of 25% by volume of BiI{sub 3} powder was mounted into the Bridgman furnace and vertically moved at a speed of 2 millimeters per hour, inside the furnace with programmed thermal gradient and temperature profile, at a temperature maximum of 530 deg C. The reduction of the impurities in the BiI{sub 3}, each purification, was analysed by Instrumental Neutron Activation Analysis (INAA), in order to evaluate the efficiency of the purification technique established in this work, for trace metal impurities. It was demonstrated that the Repeated Bridgman is effective to reduce the concentration of many impurities in BiI{sub 3}, such as Ag, As, Br, Cr, K, Mo, Na and Sb. The crystalline structure of the BiI{sub 3} crystal purified twice and third times was similar to the BiI{sub 3} pattern. However, for BiI{sub 3} powder and purified once an intensity contribution of the BiOI was observed in the diffractograms. It is known that semiconductor detectors fabricated from high purity crystal exhibit significant improvement in their performance compared to those produced from low purity crystals. (author)

  12. Germanium cryogenic detectors: Alpha surface events rejection capabilities

    International Nuclear Information System (INIS)

    Fiorucci, S.; Broniatowski, A.; Chardin, G.; Censier, B.; Lesquen, A. de; Deschamps, H.; Fesquet, M.; Jin, Y.

    2006-01-01

    Alpha surface events and multiple compton gamma interactions are the two major background components in Ge detectors for double-beta decay investigations. Two different methods have been studied to identify such type of events, using cryogenic Ge detectors developed primarily for dark matter search: (i) combined heat and ionization measurements, and (ii) pulse-shape analysis of the charge collection signals. Both methods show strong separation between electron recoil events and surface alphas. Cryogenic heat-ionization detectors therefore appear able to reject virtually all surface alpha interactions

  13. The STAR-RICH Detector

    CERN Document Server

    Lasiuk, B; Braem, André; Cozza, D; Davenport, M; De Cataldo, G; Dell'Olio, L; Di Bari, D; Di Mauro, A; Dunlop, J C; Finch, E; Fraissard, Daniel; Franco, A; Gans, J; Ghidini, B; Harris, J W; Horsley, M; Kunde, G J; Lasiuk, B; Lesenechal, Y; Majka, R D; Martinengo, P; Morsch, Andreas; Nappi, E; Paic, G; Piuz, François; Posa, F; Raynaud, J; Salur, S; Sandweiss, J; Santiard, Jean-Claude; Satinover, J; Schyns, E M; Smirnov, N; Van Beelen, J; Williams, T D; Xu, Z

    2002-01-01

    The STAR-RICH detector extends the particle idenfication capabilities of the STAR spectrometer for charged hadrons at mid-rapidity. It allows identification of pions and kaons up to ~3 GeV/c and protons up to ~5 GeV/c. The characteristics and performance of the device in the inaugural RHIC run are described.

  14. Work on the ATLAS semiconductor tracker barrel

    CERN Multimedia

    Maximilien Brice

    2005-01-01

    Precision work is performed on the semiconductor tracker barrel of the ATLAS experiment. All work on these delicate components must be performed in a clean room so that impurities in the air, such as dust, do not contaminate the detector. The semiconductor tracker will be mounted in the barrel close to the heart of the ATLAS experiment to detect the path of particles produced in proton-proton collisions.

  15. Ge Detector Data Classification with Neural Networks

    Science.gov (United States)

    Wilson, Carly; Martin, Ryan; Majorana Collaboration

    2014-09-01

    The Majorana Demonstrator experiment is searching for neutrinoless double beta-decay using p-type point contact PPC germanium detectors at the Sanford Underground Research Facility, in South Dakota. Pulse shape discrimination can be used in PPC detectors to distinguish signal-like events from backgrounds. This research program explored the possibility of building a self-organizing map that takes data collected from germanium detectors and classifies the events as either signal or background. Self organizing maps are a type of neural network that are self-learning and less susceptible to being biased from imperfect training data. We acknowledge support from the Office of Nuclear Physics in the DOE Office of Science, the Particle and Nuclear Astrophysics Program of the National Science Foundation and the Russian Foundation for Basic Research.

  16. Epitaxial graphene-encapsulated surface reconstruction of Ge(110)

    Science.gov (United States)

    Campbell, Gavin P.; Kiraly, Brian; Jacobberger, Robert M.; Mannix, Andrew J.; Arnold, Michael S.; Hersam, Mark C.; Guisinger, Nathan P.; Bedzyk, Michael J.

    2018-04-01

    Understanding and engineering the properties of crystalline surfaces has been critical in achieving functional electronics at the nanoscale. Employing scanning tunneling microscopy, surface x-ray diffraction, and high-resolution x-ray reflectivity experiments, we present a thorough study of epitaxial graphene (EG)/Ge(110) and report a Ge(110) "6 × 2" reconstruction stabilized by the presence of epitaxial graphene unseen in group-IV semiconductor surfaces. X-ray studies reveal that graphene resides atop the surface reconstruction with a 0.34 nm van der Waals (vdW) gap and provides protection from ambient degradation.

  17. Special Cryostats for Lithium Compensated Germanium Detectors

    Energy Technology Data Exchange (ETDEWEB)

    Lauber, A; Malmsten, B; Rosencrantz, B

    1968-05-15

    In many applications of Ge(Li) detectors an extreme design of the cryostat is desirable. One example is a coincidence or anticoincidence setup where the Ge(Li) detector is surrounded by one or several other detectors, usually Nal(Tl) crystals or plastic scintillators. To be usable in this arrangement the part of the cryostat containing the Ge(Li) detector should have the form of a long hood, with the detector placed at its very end. The diameter of the hood should be as small as detector dimensions permit. Excellent energy resolution and reasonably low liquid nitrogen consumption must be retained. Two cryostats fulfilling these conditions will be described. For the first cryostat emphasis lay on the reduction of the hood diameter to an absolute minimum; for the other incorporation of a device regulating the temperature of the cryostat surface was required. The difficulties encountered will be discussed; they were primarily connected with the necessity of combining minimum temperature loss at the detector position with extreme cryostat compactness and cold finger length. The incorporation of a cooled FET transistor in the cryostat will also be described. The gamma spectrometers using the cryostats gave resolutions down to 2.8 keV FWHM for the 1173 keV gamma line from Co 60 and 1.2 keV FWHM for the 122 keV line from Co 57.

  18. Structural, Electronic, and Thermodynamic Properties of Tetragonal t-SixGe3−xN4

    Directory of Open Access Journals (Sweden)

    Chenxi Han

    2018-03-01

    Full Text Available The structural, mechanical, anisotropic, electronic, and thermal properties of t-Si3N4, t-Si2GeN4, t-SiGe2N4, and t-Ge3N4 in the tetragonal phase are systematically investigated in the present work. The mechanical stability is proved by the elastic constants of t-Si3N4, t-Si2GeN4, t-SiGe2N4, and t-Ge3N4. Moreover, they all demonstrate brittleness, because B/G < 1.75, and v < 0.26. The elastic anisotropy of t-Si3N4, t-Si2GeN4, t-SiGe2N4, and t-Ge3N4 is characterized by Poisson’s ratio, Young’s modulus, the percentage of elastic anisotropy for bulk modulus AB, the percentage of elastic anisotropy for shear modulus AG, and the universal anisotropic index AU. The electronic structures of t-Si3N4, t-Si2GeN4, t-SiGe2N4, and t-Ge3N4 are all wide band gap semiconductor materials, with band gaps of 4.26 eV, 3.94 eV, 3.83 eV, and 3.25 eV, respectively, when using the Heyd-Scuseria-Ernzerhof (HSE06 hybrid functional. Moreover, t-Ge3N4 is a quasi-direct gap semiconductor material. The thermodynamic properties of t-Si3N4, t-Si2GeN4, t-SiGe2N4, and t-Ge3N4 are investigated utilizing the quasi-harmonic Debye model. The effects of temperature and pressure on the thermal expansion coefficient, heat capacity, Debye temperature, and Grüneisen parameters are discussed in detail.

  19. Sensitivity of a low energy Ge detector system for in vivo monitoring in the framework of ICRP 78 applications.

    Science.gov (United States)

    Lopez, M A; Navarro, T

    2003-01-01

    In in vivo detection of internal contamination by actinides the minimum detectable activities (MDAs) correspond to significant doses, so the sensitivity of the detection system is the key to establishing adequate individual monitoring programmes for internal exposure to these radionuclides. The whole body counting (WBC) faculty at CIEMAT uses a low-energy Ge detector system with different available counting geometries to estimate the retention of actinides in the lungs and evaluate 125I in thyroid and 241Am in bone (skull and knee). A study of the factors and uncertainties involved in estimations of MDA is presented for lung and thyroid monitoring. The dependence of detection limits on counting efficiency in the measurement of low-energy emitters in the lungs has been carefully studied, carrying out a comparison among different biometric equations obtained by ultrasound techniques for estimations of chest wall thickness. Dosimetric implications of the estimated MDAs are taken into account in the framework of ICRP 78 application and considering Spanish regulations. The main interest in lung measurements is for the assessment of occupational exposure. This work confirms the low-energy Ge detector system to be an adequate in vivo technique for the routine monitoring of internal exposure to most insoluble uranium compounds (detection of 3% enriched uranium in lungs), and also to be useful in special monitoring programmes or in the case of incidents when the detection of 241Am is required.

  20. New SRDN-3 probes with a semi-conductor detector for measuring radon activity concentration in underground spaces

    International Nuclear Information System (INIS)

    Przylibski, T.A.; Lidia Fijalkowska-Lichwa; Elzbieta Kochowska; Krzysztof Kozak; Jadwiga Mazur

    2010-01-01

    The article presents new Polish probes SRDN-3, developed at the Institute of Nuclear Chemistry and Technology in Warsaw, equipped with a semi-conductor detector used for continuous measurements of 222 Rn activity concentration. Due to a relatively high lower detection limit, the device is dedicated for use in underground spaces-caves, adits, mines, tourist routes in strongholds, pyramids, etc. Its structure allows for difficult conditions in which the device is transported to the measurement site, as well as hard operating conditions caused chiefly by large ambient relative humidity, reaching up to 100%. The authors present calibration results of these appliances, as well as the results of their work in a cave and an adit in the Sudetes (SW Poland). After almost 2 years of working in difficult conditions, the probes displayed high reliability. No defects of the semi-conductor detectors or the electronics were observed, which ensured problem-free communication of the probe-programmer-PC set. Thanks to this, the authors have a 2 year stock of data, recorded hourly by five probes, at their disposal. The only element that did not withstand the test of extreme operating conditions was one of the combined relative humidity and temperature sensors. No powering problems were observed either, and the batteries were replaced once a year, before the winter season. Also the programmer functioned faultlessly, enabling data transmission to a PC, which, being much more sensitive to operating conditions, had been placed away from the site of probe exposure. After using more sensitive temperature, relative humidity and pressure sensors, SRDN-3 probes will certainly prove an excellent tool for microclimate measurements (including measurement of air-atmosphere exchange) in caves and other underground sites. Even nowadays they are already a satisfactory tool for monitoring 222 Rn concentration in underground spaces. (author)