WorldWideScience

Sample records for ge process

  1. Interfacial processes in the Pd/a-Ge:H system

    Science.gov (United States)

    Edelman, F.; Cytermann, C.; Brener, R.; Eizenberg, M.; Weil, R.; Beyer, W.

    1993-06-01

    The kinetics of phase transformation has been studied in a two-layer structure of Pd/a-Ge:H after vacuum annealing at temperatures from 180 to 500°C. The a-Ge:H was deposited at 250°C on both c-Si and cleaved NaCl substrates in an RF glow discharge from a GeH 4/H 2 mixture. It was found that, similarly to the Pd/c-Ge and the Pd/a-Ge (e-gun deposited) systems, in the case of 0.15-0.2 μm Pd/0.6-1.0 μm a-Ge:H interfacial germanides formed first through the production of Pd 2Ge (plus a small amount of PdGe), and then PdGe was produced. The growth of both compounds was found to be diffusion-controlled. The nonreacted a-Ge:H layer beneath the germanide overlayer crystallized at 400-500°C. A reverse sequence of germanides formation was revealed in the case of 50 nm Pd/30 nm a-Ge:H, studied by in situ heat treatment in the TEM utilizing non-supported samples. The first germanide detected was PdGe and then, as a result of PdGe and Ge reaction or the PdGe decomposition, Pd 2Ge formed. The temperature dependence of the incubation time before the first ˜ 10 nm PdGe grains formed, followed an Arrhenius curve with an activation energy of 1.45 eV.

  2. Process modules for GeSn nanoelectronics with high Sn-contents

    Science.gov (United States)

    Schulte-Braucks, C.; Glass, S.; Hofmann, E.; Stange, D.; von den Driesch, N.; Hartmann, J. M.; Ikonic, Z.; Zhao, Q. T.; Buca, D.; Mantl, S.

    2017-02-01

    This paper systematically studies GeSn n-FETs, from individual process modules to a complete device. High-k gate stacks and NiGeSn metallic contacts for source and drain are characterized in independent experiments. To study both direct and indirect bandgap semiconductors, a range of 0-14.5 at.% Sn-content GeSn alloys are investigated. Special emphasis is placed on capacitance-voltage (C-V) characteristics and Schottky-barrier optimization. GeSn n-FET devices are presented including temperature dependent I-V characteristics. Finally, as an important step towards implementing GeSn in tunnel-FETs, negative differential resistance in Ge0.87Sn0.13 tunnel-diodes is demonstrated at cryogenic temperatures. The present work provides a base for further optimization of GeSn FETs and novel tunnel FET devices.

  3. Process Modules for GeSn Nanoelectronics with high Sn-contents

    OpenAIRE

    Schulte-Braucks, C; Glass, S; Hofmann, E; Stange, D; Von Den Driesch, N; Hartmann, JM; Ikonic, Z; Zhao, GT; Buca, D.; Mantl, S

    2017-01-01

    This paper systematically studies GeSn n-FETs, from individual process modules to a complete device. High-k gate stacks and NiGeSn metallic contacts for source and drain are characterized in independent experiments. To study both direct and indirect bandgap semiconductors, a range of 0 at.% to 14.5 at.% Sn-content GeSn alloys are investigated. Special emphasis is placed on capacitance-voltage (C-V) characteristics and Schottky-barrier optimization. GeSn n-FET devices are presented including t...

  4. Exclusive processes at JLab at 6 GeV

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Andrey [Univ. of Connecticut, Storrs, CT (United States); Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)

    2015-01-01

    Deeply virtual exclusive reactions provide a unique opportunity to probe the complex internal structure of the nucleon. They allow to access information about the correlations between parton transverse spatial and longitudinal momentum distributions from experimental observables. Dedicated experiments to study Deeply Virtual Compton Scattering (DVCS) and Deeply Virtual Meson Production (DVMP) have been carried out at Jefferson Lab using continuous electron beam with energies up to 6 GeV. Unpolarized cross sections, beam, target and double spin asymmetries have been measured for DVCS as well as for π0 exclusive electroproduction. The data from Hall B provide a wide kinematic coverage with Q2=1-4.5 GeV2, xB=0.1-0.5, and -t up to 2 GeV2. Hall A data have limited kinematic range partially overlapping with Hall B kinematics but provide a high accuracy measurements. Scaling tests of the DVCS cross sections provide solid evidence of twist-2 dominance, which makes chiral-even GPDs accessible even at modest Q2. We will discuss the interpretation of these data in terms of Generalized Parton Distributions (GPDs) model. Successful description of the recent CLAS π0 exclusive production data within the framework of the GPD-based model provides a unique opportunity to access the chiral-odd GPDs.

  5. Dense Ge nanocrystal layers embedded in oxide obtained by controlling the diffusion-crystallization process

    Energy Technology Data Exchange (ETDEWEB)

    Lepadatu, Ana-Maria [National Institute of Materials Physics (Romania); Stoica, Toma [Peter Gruenberg Institute (PGI-9), Forschungszentrum Juelich (Germany); Stavarache, Ionel; Teodorescu, Valentin Serban [National Institute of Materials Physics (Romania); Buca, Dan [Peter Gruenberg Institute (PGI-9), Forschungszentrum Juelich (Germany); Ciurea, Magdalena Lidia, E-mail: ciurea@infim.ro [National Institute of Materials Physics (Romania)

    2013-10-15

    Amorphous Ge/SiO{sub 2} multilayer structures deposited by magnetron sputtering have been annealed at different temperatures between 650 and 800 Degree-Sign C for obtaining Ge nanocrystals in oxide matrix. The properties of the annealed structures were investigated by transmission electron microscopy, Raman spectroscopy, and low temperature photoluminescence. The Ge crystallization is partially achieved at 650 Degree-Sign C and increases with annealing temperature. Insight of the Ge nanocrystal formation was acquired by comparing two annealing procedures, i.e., in a conventional tube furnace and by a rapid thermal annealing. By rapid thermal annealing in comparison to conventional furnace one, the Ge crystallization process is faster than Ge diffusion, resulting in the formation of more compact layers of Ge nanocrystals with 8-9.5-nm size as Raman spectroscopy reveals. These findings are important to improve the annealing efficiency in the nanocrystals formation for a precise control of their sizes and location in oxide matrix and for the possibility to create systems with interacting nanoparticles for charge or excitonic transfer. The infrared photoluminescence of Ge nanocrystals at low temperatures shows strong emission with two sharp peaks at about 1,000 meV.

  6. The process of dissociative adsorption of fluorine on Ge(001) surface

    Energy Technology Data Exchange (ETDEWEB)

    Stankiewicz, B., E-mail: bst@ifd.uni.wroc.pl [Institute of Experimental Physics, University of Wrocław, Pl. Maxa Borna 9, 50-204 Wrocław (Poland); Mikołajczyk, P. [Nokia, Pl. Gen. J. Bema 2, 50-265 Wrocław (Poland)

    2016-10-30

    Highlights: • Initial orientations of F{sub 2} molecule on Ge(001) surface leading to its dissociative adsorption are identified. • Dissociation paths on p(1 × 2) or c(2 × 4) reconstructed substrates differ, but lead to similar final adsorbate configurations. • Energetics of the process of dissociative adsorption is examined. • Final atomic structures, local density of electronic states and spatial charge distributions are analyzed. - Abstract: The process of dissociation of a fluorine molecule on the (001) surface of germanium has been analyzed using density functional theory. Initial orientations of the F{sub 2} molecule with respect to the substrate leading to its dissociative adsorption have been identified. Reaction paths at p(1 × 2) and c(2 × 4) reconstructed Ge(001) surfaces are different, but final configurations of the adsorbate/substrate system are found qualitatively the same. Adsorption energy of around 5 eV per molecule depends on the final arrangement of adatoms, being always higher for the p(1 × 2) substrate reconstruction. The energy barrier for dissociative adsorption of F{sub 2} on Ge(001) is always less than 0.2 eV. The structural and electronic properties of distinct final adsorbate configurations have been examined, indicating that the surface density of states is metallic at Ge dimers with one adsorbed F atom and non-metallic at Ge dimers with two F adatoms.

  7. Clebsch-Gordan coefficients for scattering processes in Si and Ge

    CSIR Research Space (South Africa)

    Kunert, HW

    2012-10-01

    Full Text Available Scattering matrix for two phonon processes at k = 0 in Si and Ge of O(sup7)(subh) symmetry is given. Also diagonalization of spin-orbit interaction Hamiltonian has been computed by means of Clebsh-Gordan coefficients. The authors have concluded...

  8. Magneto-Caloric Effect of Gd5Si2Ge2Compounds under Different Processing Conditions

    Institute of Scientific and Technical Information of China (English)

    Zeng Hong; Yue Ming; Niu Peili; Zhang Jiuxing

    2004-01-01

    The magneto-caloric effect of Gd5 Si2Ge2 compounds produced by various techniques is investigated in terms of their magnetization behaviors in the magnetic field from 0 to 2.0 T.The studied materials include arc-melted, annealed and sintered alloys.The results demonstrate that the Gd5Si2Ge2 alloys obtained under different processing conditions possess distinct magneto-caloric effect due to their various microstructures.Proper annealing treatment can enhance the magneto-caloric effect of the alloy remarkably.While the sintered alloy bears relatively lower value of magnetic entropy change ( △ SM) than arc-melted one.The magnetic entropy change of the annealed Gd5 Si2Ge2 alloy arrives the arrives the maximum value of - △SM = 15.29 J· kg-1· K-1 for magnetic field change under 2.0 T in the present work.

  9. Materials and devices for quantum information processing in Si/SiGe

    Energy Technology Data Exchange (ETDEWEB)

    Sailer, Juergen

    2010-12-15

    In this thesis, we cover and discuss the complete way from material science, the fabrication of two-dimensional electron systems (2DES) in Si/SiGe heterostructures in molecular beam epitaxy (MBE), to quantum effects in few-electron devices based on these samples. We applied and compared two different approaches for the creation of pseudo-substrates that are as smooth, relaxed and defect free as possible. In the 'graded buffer' concept, starting from pure Si, the Ge content of the SiGe alloy is slowly and linearly increased until the desired Ge content is reached. In contrast, in the so-called 'low-temperature Si' concept, the SiGe alloy is deposited directly with the final Ge content, but onto a layer of highly defective Si. In terms of crystal defects, the 'graded buffer' turned out to be superior in comparison to the 'low-temperature Si' concept at the expense of a significantly higher material consumption. By continued optimization of the growth process, aiming at reducing the influence of the impurity, it nevertheless became possible to improve the charge carrier mobility from a mere 2000 cm{sup 2}/(Vs) to a record mobility exceeding 100 000 cm{sup 2}/(Vs). Within this work, we extended our MBE system with an electron beam evaporator for nuclear spin free {sup 28}Si. Together with the already existing effusion cell for {sup 70}Ge we were able to realize first 2DES in a nuclear spin free environment after successfully putting it to operation. The highest mobility 2DES in a nuclear spin free environment which have been realized in this thesis exhibited electron mobilities of up to 55 000 cm{sup 2}/(Vs). Quantum effects in Si/SiGe have been investigated in two- and zero-dimensional nanostructures. A remarkable phenomenon in the regime of the integer quantum Hall effect in Si/SiGe 2DES has been discovered and researched. For applications in quantum information processing and for the creation of qubits it is mandatory to

  10. Ion beam sputter deposition of Ge films: Influence of process parameters on film properties

    Energy Technology Data Exchange (ETDEWEB)

    Bundesmann, C., E-mail: carsten.bundesmann@iom-leipzig.de [Leibniz-Institut für Oberflächenmodifizierung e.V., Permoserstrasse 15, 04318 Leipzig (Germany); Feder, R. [Leibniz-Institut für Oberflächenmodifizierung e.V., Permoserstrasse 15, 04318 Leipzig (Germany); Wunderlich, R.; Teschner, U.; Grundmann, M. [Universität Leipzig, Fakultät für Physik und Geowissenschaften, Institut für Experimentelle Physik II, Linnéstrasse 5, 04103 Leipzig (Germany); Neumann, H. [Leibniz-Institut für Oberflächenmodifizierung e.V., Permoserstrasse 15, 04318 Leipzig (Germany)

    2015-08-31

    Several sets of Ge films were grown by ion beam sputter deposition under systematic variation of ion beam parameters (ion species and ion energy) and geometrical parameters (ion incidence angle and polar emission angle). The films were characterized concerning thickness, growth rate, mass density, structural properties and composition. The film thicknesses show a cosine-like angular distribution, and the growth rates were found to increase with increasing ion incidence angle and ion energy. All films are amorphous and the average mass density was found to be (4.3 ± 0.2) g/cm{sup 3}, without a systematic relation to ion energy and geometrical parameters. Slightly higher mass densities were found for Ge films grown by sputtering with Xe than for sputtering with Ar. The Ge films contain a fraction of inert gas atoms from backscattered primary particles. This fraction is found to be higher for sputtering with Ar than for sputtering with Xe. The fraction of inert gas atoms increases with increasing polar emission angle and increasing ion incidence angle. Raman scattering experiments revealed also systematic shifts of the characteristic Raman mode. The shifts are tentatively assigned to the change of the Ge particle densities caused by the incorporation of inert gas particles. There seem to be also slight changes in short range ordering. The experimental data are discussed with respect to the known energy and angular distributions of the sputtered and backscattered particles. - Highlights: • Ion beam sputter deposition under systematic variation of process parameters • Thickness, growth rate, mass density, composition, structure, phonon properties • All germanium films are amorphous with small variations in mass density. • Incorporation of considerable amount of inert process gas • Vibrational properties correlate with composition.

  11. Hard photon processes in electron-positron annihilation at 29 GeV

    Energy Technology Data Exchange (ETDEWEB)

    Gold, M.S.

    1986-11-01

    The hard photon processes ..mu mu gamma.. and hadrons + ..gamma.. in e/sup +/e/sup -/ annihilation at 29 GeV have been studied. The study is based on an integrated luminosity of 226 pb/sup -1/ taken at PEP with the Mark II detector. For the ..mu mu gamma.. process, a small fraction of non-planar events are observed with missing momentum along the beam direction. The resulting missing energy spectrum is consistent with that expected from higher order effects. The observed cross section is consistent with the predicted cross section for this process, sigma/sup exp/sigma/sup th/ = .90 +- .05 +- .06. The observed hard photon energy spectrum and mass distributions are found to be in agreement with O(..cap alpha../sup 3/) QED. The measured charge asymmetry is in good agreement with the predicted value, A/sub exp/A/sub th/ = .83 +- .25 +- .12. The ..mu gamma.. invariant mass distribution is used to place a limit on a possible excited muon coupling G..gamma../M* for excited muon masses in the range 1 < M* < 21 GeV of (G..gamma../M*)/sup 2/ < 10/sup -5/ GeV/sup -2/ at a 95% confidence level. In the hadrons + ..gamma.. process, evidence for final state radiation is found in an excess of events over that predicted from initial state radiation alone of 253 +- 54 +- 60 events. Further evidence for final state radiation is found in a large hadronic charge asymmetry A/sub Had+..gamma../= (-24.6 +- 5.5)%.

  12. Study of Various Processes with 160 A GeV Pb Beam

    CERN Multimedia

    2002-01-01

    % WA101 \\\\ \\\\ Ten modules of BP-1 glass detectors interleaved with various targets ranging from C to Pb were exposed to the 160~A~GeV~Pb beam in the November-December run of 1994 at CERN SPS. The experiment was carried out at normal incidence at a beam density of $\\sim$~600~cm$ ^- ^{2} $. The dimension of each plate of BP-1 glass was 50~mm~x~50~mm~x~1~mm. We etched the glass in 70\\% CH$ _{3} $SO$ _{3} $H at 50 $^{0}$C or in 48\\%~HF at room temperature. The charge threshold is found to be Z$ _{t} _{h} $ $\\sim$ 68 and 70 respectively. Using the automated scanning and measurement system developed at Berkeley, we have demonstrated that the charge resolution for Pb ions is $\\sigma _{Z} $~=~0.14 charge unit from a single measurement within a distance of 30~$\\mu$m. This excellent charge resolution allows us to make the proposed measurements of cross-sections for various processes. \\\\ \\\\We use this detector system to measure cross-sections for various processes in heavy ion collisions of 160~A~GeV~Pb with different t...

  13. WSi2 in Si(1-x)Ge(x) Composites: Processing and Thermoelectric Properties

    Science.gov (United States)

    Mackey, Jonathan A.; Sehirlioglu, Alp; Dynys, Fred

    2015-01-01

    Traditional SiGe thermoelectrics have potential for enhanced figure of merit (ZT) via nano-structuring with a silicide phase, such as WSi2. A second phase of nano-sized silicides can theoretically reduce the lattice component of thermal conductivity without significantly reducing the electrical conductivity. However, experimentally achieving such improvements in line with the theory is complicated by factors such as control of silicide size during sintering, dopant segregation, matrix homogeneity, and sintering kinetics. Samples were prepared using powder metallurgy techniques; including mechano-chemical alloying, via ball milling, and spark plasma sintering for densification. Processing, micro-structural development, and thermoelectric properties will be discussed. Additionally, couple and device level characterization will be introduced.

  14. 193 nm Excimer laser processing of Si/Ge/Si(100) micropatterns

    Science.gov (United States)

    Gontad, F.; Conde, J. C.; Chiussi, S.; Serra, C.; González, P.

    2016-01-01

    193 nm Excimer laser assisted growth and crystallization of amorphous Si/Ge bilayer patterns with circular structures of 3 μm diameter and around 25 nm total thickness, is presented. Amorphous patterns were grown by Laser induced Chemical Vapor Deposition, using nanostencils as shadow masks and then irradiated with the same laser to induce structural and compositional modifications for producing crystalline SiGe alloys through fast melting/solidification cycles. Compositional and structural analyses demonstrated that pulses of 240 mJ/cm2 lead to graded SiGe alloys with Si rich discs of 2 μm diameter on top, a buried Ge layer, and Ge rich SiGe rings surrounding each feature, as predicted by previous numerical simulation.

  15. Active magnetic refrigerants based on Gd-Si-Ge material and refrigeration apparatus and process

    Science.gov (United States)

    Gschneidner, Jr., Karl A.; Pecharsky, Vitalij K.

    1998-04-28

    Active magnetic regenerator and method using Gd.sub.5 (Si.sub.x Ge.sub.1-x).sub.4, where x is equal to or less than 0.5, as a magnetic refrigerant that exhibits a reversible ferromagnetic/antiferromagnetic or ferromagnetic-II/ferromagnetic-I first order phase transition and extraordinary magneto-thermal properties, such as a giant magnetocaloric effect, that renders the refrigerant more efficient and useful than existing magnetic refrigerants for commercialization of magnetic regenerators. The reversible first order phase transition is tunable from approximately 30 K to approximately 290 K (near room temperature) and above by compositional adjustments. The active magnetic regenerator and method can function for refrigerating, air conditioning, and liquefying low temperature cryogens with significantly improved efficiency and operating temperature range from approximately 10 K to 300 K and above. Also an active magnetic regenerator and method using Gd.sub.5 (Si.sub.x Ge.sub.1-x).sub.4, where x is equal to or greater than 0.5, as a magnetic heater/refrigerant that exhibits a reversible ferromagnetic/paramagnetic second order phase transition with large magneto-thermal properties, such as a large magnetocaloric effect that permits the commercialization of a magnetic heat pump and/or refrigerant. This second order phase transition is tunable from approximately 280 K (near room temperature) to approximately 350 K by composition adjustments. The active magnetic regenerator and method can function for low level heating for climate control for buildings, homes and automobile, and chemical processing.

  16. Recrystallization of Ge thin film on SiO2 substrates using a two-step annealing process

    Science.gov (United States)

    Kim, Sung Wook; Lee, Jaejun; Park, Youn Ho; Park, Jeong Min; Do, Hong Kyeong; Kim, Yeon Joo; Choi, Heon-Jin

    2017-01-01

    The fabrication of high-quality crystalline germanium thin films (GeTF) on an amorphous SiO2 layer is crucial for the realization of high performance-, low cost III-V solar cells used in many applications. Herein, we report the growth of a high-quality crystalline GeTF on SiO2/Si substrates using an ultra-vacuum chemical vapor deposition (UHV-CVD) method. GeTF was grown on the SiO2 layer using a two-step growth and multi-annealing processes. The fabrication method involved the deposition of a 1st seeding layer, annealing, and deposition of a 2nd main layer followed by three times of cyclic annealing. The crystallization of the seeding layer having a thickness of less than 10 nm could be ascribed to the evolution of polycrystalline structures in the main layer. The cyclic annealing performed after the deposition of the main layer is also found to be crucial for the formation of single crystalline, high-quality Ge films on SiO2 substrates with direction. The cyclic annealing results in a further reduction of the defects, thereby threading dislocations significantly to a density of 5.311 × 107 cm-2. Electrical measurements using the van der Pauw method revealed that the GeTF exhibits p-type characteristics and a high mobility of 360.10 cm2/Vs at room temperature. [Figure not available: see fulltext.

  17. Disentangling nonradiative recombination processes in Ge micro-crystals on Si substrates

    Science.gov (United States)

    Pezzoli, Fabio; Giorgioni, Anna; Gallacher, Kevin; Isa, Fabio; Biagioni, Paolo; Millar, Ross W.; Gatti, Eleonora; Grilli, Emanuele; Bonera, Emiliano; Isella, Giovanni; Paul, Douglas J.; Miglio, Leo

    2016-06-01

    We address nonradiative recombination pathways by leveraging surface passivation and dislocation management in μm-scale arrays of Ge crystals grown on deeply patterned Si substrates. The time decay photoluminescence (PL) at cryogenic temperatures discloses carrier lifetimes approaching 45 ns in band-gap engineered Ge micro-crystals. This investigation provides compelling information about the competitive interplay between the radiative band-edge transitions and the trapping of carriers by dislocations and free surfaces. Furthermore, an in-depth analysis of the temperature dependence of the PL, combined with capacitance data and finite difference time domain modeling, demonstrates the effectiveness of GeO2 in passivating the surface of Ge and thus in enhancing the room temperature PL emission.

  18. Disentangling nonradiative recombination processes in Ge micro-crystals on Si substrates

    Energy Technology Data Exchange (ETDEWEB)

    Pezzoli, Fabio, E-mail: fabio.pezzoli@unimib.it; Giorgioni, Anna; Gatti, Eleonora; Grilli, Emanuele; Bonera, Emiliano; Miglio, Leo [LNESS and Dipartimento di Scienza dei Materiali, Università degli Studi di Milano-Bicocca, via Cozzi 55, I-20125 Milano (Italy); Gallacher, Kevin; Millar, Ross W.; Paul, Douglas J. [School of Engineering, University of Glasgow, Rankine Building, Oakfield Avenue, Glasgow G12 8LT (United Kingdom); Isa, Fabio [LNESS, Dipartimento di Fisica del Politecnico di Milano and IFN-CNR, Polo Territoriale di Como, Via Anzani 42, I-22100 Como (Italy); Laboratory for Solid State Physics, ETH Zurich, Otto-Stern-Weg 1, CH-8093 Zürich (Switzerland); Biagioni, Paolo [LNESS, Dipartimento di Fisica del Politecnico di Milano and IFN-CNR, Piazza Leonardo da Vinci 32, I-20133 Milano (Italy); Isella, Giovanni [LNESS, Dipartimento di Fisica del Politecnico di Milano and IFN-CNR, Polo Territoriale di Como, Via Anzani 42, I-22100 Como (Italy)

    2016-06-27

    We address nonradiative recombination pathways by leveraging surface passivation and dislocation management in μm-scale arrays of Ge crystals grown on deeply patterned Si substrates. The time decay photoluminescence (PL) at cryogenic temperatures discloses carrier lifetimes approaching 45 ns in band-gap engineered Ge micro-crystals. This investigation provides compelling information about the competitive interplay between the radiative band-edge transitions and the trapping of carriers by dislocations and free surfaces. Furthermore, an in-depth analysis of the temperature dependence of the PL, combined with capacitance data and finite difference time domain modeling, demonstrates the effectiveness of GeO{sub 2} in passivating the surface of Ge and thus in enhancing the room temperature PL emission.

  19. ExchanGE processes in mountainous Regions (EGER – overview of design, methods, and first results

    Directory of Open Access Journals (Sweden)

    T. Foken

    2011-09-01

    Full Text Available To investigate the energy, matter and reactive and non-reactive trace gas exchange between the atmosphere and a spruce forest in the German mountain region, two intensive measuring periods were conducted at the FLUXNET site Waldstein-Weidenbrunnen in September/October 2007 and June/July 2008. They were part of the project "ExchanGE processes in mountainous Regions" (EGER. Beyond a brief description of the experiment and links to the already published results of both experiments, the main focus of the paper is the problem of the coupling of the trunk space, the canopy and the atmosphere. Therefore, the relevant coherent structures were analyzed in different canopy levels and an already published coupling classification was applied to gradients and fluxes. It could be shown that fluxes above the canopy are only related to the gradient between the canopy and the atmosphere in the case of a fully coupled system. Changes in the concentration of especially reactive trace gases (NO-NO2-O3 and HONO could only be interpreted together with the coupling stage. Finally it was pointed out that the combination of air chemical measurements with micrometeorological turbulence measurements is urgently needed to understand the biosphere-atmosphere interaction.

  20. GeSn/Ge multiquantum well photodetectors on Si substrates.

    Science.gov (United States)

    Oehme, M; Widmann, D; Kostecki, K; Zaumseil, P; Schwartz, B; Gollhofer, M; Koerner, R; Bechler, S; Kittler, M; Kasper, E; Schulze, J

    2014-08-15

    Vertical incidence GeSn/Ge multiquantum well (MQW) pin photodetectors on Si substrates were fabricated with a Sn concentration of 7%. The epitaxial structure was grown with a special low temperature molecular beam epitaxy process. The Ge barrier in the GeSn/Ge MQW was kept constant at 10 nm. The well width was varied between 6 and 12 nm. The GeSn/Ge MQW structures were grown pseudomorphically with the in-plane lattice constant of the Ge virtual substrate. The absorption edge shifts to longer wavelengths with thicker QWs in agreement with expectations from smaller quantization energies for the thicker QWs.

  1. Effects of processing conditions on PbGeTe film performance

    Science.gov (United States)

    Zhang, Su-ying; Cheng, Chiping; Ling, Jiehua; Fan, Bin; Zou, Ziying; Wang, Zhiyun; Zhang, Jiajian; Shi, Tian-Shen; Wang, Ge-ya

    1998-02-01

    Characters of PbGeTe single layer is likely affected by various factors. The adhesion of PbGeTe single layer and PbGeTe/ZnS multilayer deposited on Si substrate by PVD method is investigated by means of x-ray diffraction. The correlation of layer growing rate and the preferred orientation of Si wafer is studied by the grind angle to measure the thickness method. The particle structure of films on various surface situations is studied by the image analysis. It has been noticed, that the adhesion of PbGeTe single layer is stronger in strength than that of the PbTe single layer, which shows little correlation with the preferred orientation of the substrate. The adhesive strength of the films can be improved by inserting thin layer of Ge or oxide layer. We have found that the layer growing rate varies with the preferred orientation of the substrate, we have also noticed that the particle structure of the films can be affected by the roughness of the substrate and the polishing method. Finally, the refractive index of Pb1-xGexTe(x equals 0.08) single layer was calculated.

  2. Concentrating Ge in zinc hydrometallurgical process with hot acid leaching-halotrichite method

    Institute of Scientific and Technical Information of China (English)

    何静; 唐谟堂; 鲁君乐; 刘中清; 杨声海; 姚维义

    2003-01-01

    In recovering Ge and Ag from the calcine and fume dusts mixture of Huidong Lead-zinc Mine, the flow sheet of hot acid leaching-halotrichite method mainly consists of neutral leaching, low-acid leaching, high acid leaching and jarosite precipitation. In the ten circulation periods, the technology flow sheet was carried out smoothly.The loss of Ge in halotrichite residue is less than 5.0%, when iron is precipitated by using ferric potassium alum instead of common Na or ammonium alum and the conditions are controlled at temperature about 95 ℃ for more than 3 h, pH values below 1.5. Ge and Ag are concentrated in the high acid leached residue, and their contents are 0. 032% and 0. 162%, respectively, and the total recovery and direct recovery of zinc are 98.94% and 96.15%, respectively.

  3. Electronic stress tensor analysis of molecules in gas phase of CVD process for GeSbTe alloy

    CERN Document Server

    Nozaki, Hiroo; Ichikawa, Kazuhide; Tachibana, Akitomo

    2015-01-01

    We analyze the electronic structure of molecules which may exist in gas phase of chemical vapor deposition process for GeSbTe alloy using the electronic stress tensor, with special focus on the chemical bonds between Ge, Sb and Te atoms. We find that, from the viewpoint of the electronic stress tensor, they have intermediate properties between alkali metals and hydrocarbon molecules. We also study the correlation between the bond order which is defined based on the electronic stress tensor, and energy-related quantities. We find that the correlation with the bond dissociation energy is not so strong while one with the force constant is very strong. We interpret these results in terms of the energy density on the "Lagrange surface", which is considered to define the boundary surface of atoms in a molecule in the framework of the electronic stress tensor analysis.

  4. Electronic stress tensor analysis of molecules in gas phase of CVD process for GeSbTe alloy.

    Science.gov (United States)

    Nozaki, Hiroo; Ikeda, Yuji; Ichikawa, Kazuhide; Tachibana, Akitomo

    2015-06-15

    We analyze the electronic structure of molecules which may exist in gas phase of chemical vapor deposition process for GeSbTe alloy using the electronic stress tensor, with special focus on the chemical bonds between Ge, Sb, and Te atoms. We find that, from the viewpoint of the electronic stress tensor, they have intermediate properties between alkali metals and hydrocarbon molecules. We also study the correlation between the bond order which is defined based on the electronic stress tensor, and energy-related quantities. We find that the correlation with the bond dissociation energy is not so strong while one with the force constant is very strong. We interpret these results in terms of the energy density on the "Lagrange surface," which is considered to define the boundary surface of atoms in a molecule in the framework of the electronic stress tensor analysis.

  5. In situ X-ray diffraction study of crystallization process of GeSbTe thin films during heat treatment

    Energy Technology Data Exchange (ETDEWEB)

    Kato, Naohiko [Toyota Central R and D Labs., Inc., Nagakute, Aichi 480-1192 (Japan)]. E-mail: e0957@mosk.tytlabs.co.jp; Konomi, Ichiro [Toyota Central R and D Labs., Inc., Nagakute, Aichi 480-1192 (Japan); Seno, Yoshiki [Toyota Central R and D Labs., Inc., Nagakute, Aichi 480-1192 (Japan); Motohiro, Tomoyoshi [Toyota Central R and D Labs., Inc., Nagakute, Aichi 480-1192 (Japan)

    2005-05-15

    The crystallization processes of the Ge{sub 2}Sb{sub 2}Te{sub 5} thin film used for PD and DVD-RAM were studied in its realistic optical disk film configurations for the first time by X-ray diffraction using an intense X-ray beam of a synchrotron orbital radiation facility (SPring-8) and in situ quick detection with a Position-Sensitive-Proportional-Counter. The dependence of the amorphous-to-fcc phase-change temperature T{sub 1} on the rate of temperature elevation R{sub et} gave an activation energy E{sub a}: 0.93 eV much less than previously reported 2.2 eV obtained from a model sample 25-45 times thicker than in the real optical disks. The similar measurement on the Ge{sub 4}Sb{sub 1}Te{sub 5} film whose large reflectance change attains the readability by CD-ROM drives gave E{sub a}: 1.13 eV with larger T{sub 1} than Ge{sub 2}Sb{sub 2}Te{sub 5} thin films at any R{sub et} implying a lower sensitivity in erasing as well as a better data stability of the phase-change disk.

  6. Growth and modification of thin SiGeC films at low substrate temperatures through UV laser assisted processing

    Science.gov (United States)

    López, E.; Chiussi, S.; Serra, J.; González, P.; Serra, C.; Kosch, U.; León, B.; Fabbri, F.; Fornarini, L.; Martelli, S.

    2004-07-01

    Enhancing the performance of solar cells, near infrared photo-detectors and microelectronic devices through band gap engineering caused an increasing attention in processes for growing thin silicon germanium carbon (SiGeC) films in a wide range of composition and crystalline structures. Moreover, the demand of using cheap substrates and the development of new devices with advanced materials like "high- k dielectrics" and "organic materials" implies the need of new processes avoiding high substrate temperatures that may decompose or alter the substrate materials, crystallise part of the heterostructures or promote segregation effects. Laser induced chemical vapour deposition (LCVD) and excimer laser assisted crystallisation (ELC) are such alternative and relatively cheap "low thermal budget" techniques that, in addition, are compatible with conventional IC silicon technology. The present study will show the possibility of tailoring the composition of amorphous SiGeC coatings through the adjustment of gas flow rates in LCVD processes performed at substrate temperatures between 180 and 400 °C. The modification of an amorphous film through a subsequent ELC process performed at room temperature is analysed through SEM and depth profile XPS in order to study the effects of controlled laser radiation on it, as well as on a very thin underlaying interfacial SiO 2 layer and on the Si(1 0 0) substrate.

  7. Multiparticle Production Process in $pp$ Interaction with High Multiplicity at E_p=70 GeV. Proposal "Termalization"

    CERN Document Server

    Avdeichikov, V V; Balandin, V P; Vasendina, V A; Zhidkov, N K; Zolin, L S; Zulkarneev, R Ya; Kireev, V I; Kosarev, I G; Kuzmin, N A; Kuraev, E A; Mandjavidze, I D; Nikitin, V A; Petukhov, Yu P; Peshekhonov, V D; Rufanov, I A; Susakian, A N; Yukaev, A I; Basiladze, Sergei G; Volkov, V Yu; Ermolov, P F; Kramarenko, V A; Kubarovskii, A V; Leflat, A K; Merkin, M M; Popov, V V; Tikhonova, L A; Anikeev, A N; Vasilchenko, V G; Vorobev, A P; Lapshin, V G; Maiorov, S V; Melnik, Yu M; Meshchanin, A P; Ryadovikov, V N; Kholodenko, A G; Tsyupa, Yu P; Chikilev, O G; Yakutin, A E; Dremin, I M; Kokoulina, E S; Pankov, A A; Kuvshinov, V I

    2004-01-01

    The goal of the proposed experiment is the investigation of the collective behaviour of particles in the process of multiple hadron production in the $pp$ interaction $pp\\to n_\\pi\\pi+2N$ at the beam energy $E_{\\rm lab}=70$ GeV. The domain of high multiplicity $n_\\pi=20{-}35$ or $z=n/\\bar n=3{-}5$ will be studied. Near the threshold of the reaction $n_\\pi\\to 69$, all particles get a small relative momentum. As a consequence of the multiboson interference a number of collective effects may occur. In particular, drastic increase of the partial cross section $\\sigma(n)$ of the $n$ identical particles production, as compared with commonly accepted extrapolation, and increase of the rate of direct photons are expected. The experiment is carried out on the modernized installation SVD, a spectrometer with a vertex detector which is supplied with a trigger system for registration of rare events with high multiplicity, on extracted proton beam of the IHEP (Protvino) 70 GeV accelerator. Required beam intensity is $\\sim ...

  8. Enhancing Thermoelectric Properties of Si80Ge20 Alloys Utilizing the Decomposition of NaBH4 in the Spark Plasma Sintering Process

    Directory of Open Access Journals (Sweden)

    Ali Lahwal

    2015-09-01

    Full Text Available The thermoelectric properties of spark plasma sintered, ball-milled, p-type Si80Ge20-(NaBH4x (x = 0.7,1.7 and 2.7, and Si80Ge20B1.7-y-(NaBH4y (y = 0.2 and 0.7 samples have been investigated from 30 K to 1100 K. These samples were prepared by spark plasma sintering of an admixture of Si, Ge, B and NaBH4 powders. In particular, the degasing process during the spark plasma sintering process, the combined results of X-ray powder diffraction, Raman spectroscopy, Hall coefficient, electrical resistivity, and Seebeck coefficient measurements indicated that NaBH4 decomposed into Na, B, Na2B29, and H2 during the spark plasma sintering process; Na and B were doped into the SiGe lattice, resulting in favorable changes in the carrier concentration and the power factor. In addition, the ball milling process and the formation of Na2B29 nanoparticles resulted in stronger grain boundary scattering of heat-carrying phonons, leading to a reduced lattice thermal conductivity. As a result, a significant improvement in the figure of merit ZT (60% was attained in p-type Si80Ge20-(NaBH41.7 and Si80Ge20-B1.5(NaBH40.7 at 1100 K as compared to the p-type B-doped Si80Ge20 material used in the NASA’s radioactive thermoelectric generators. This single-step “doping-nanostructuring” procedure can possibly be applied to other thermoelectric materials.

  9. Study of the process $e^+e^-\\to\\omega\\eta\\pi^0$ in the energy range $\\sqrt{s} <2$ GeV with the SND detector

    CERN Document Server

    Achasov, M N; Barnyakov, A Yu; Beloborodov, K I; Berdyugin, A V; Berkaev, D E; Bogdanchikov, A G; Botov, A A; Dimova, T V; Druzhinin, V P; Golubev, V B; Kardapoltsev, L V; Kharlamov, A G; Koop, I A; Korol, A A; Kovrizhin, D P; Koshuba, S V; Kupich, A S; Lysenko, A P; Melnikova, N A; Martin, K A; Pakhtusova, E V; Obrazovsky, A E; Perevedentsev, E A; Rogovsky, Yu A; Serednyakov, S I; Silagadze, Z K; Shatunov, Yu M; Shatunov, P Yu; Shtol, D A; Skrinsky, A N; Surin, I K; Tikhonov, Yu A; Usov, Yu V; Vasiljev, A V; Zemlyansky, I M

    2016-01-01

    The process $e^+e^-\\to\\omega\\eta\\pi^0$ is studied in the energy range $1.45-2.00$ GeV using data with an integrated luminosity of 33 pb$^{-1}$ accumulated by the SND detector at the $e^+e^-$ collider VEPP-2000. The $e^+e^-\\to\\omega\\eta\\pi^0$ cross section is measured for the first time. The cross section has a threshold near 1.75 GeV. Its value is about 2 nb in the energy range $1.8-2.0$ GeV. The dominant intermediate state for the process $e^+e^- \\to \\omega\\eta\\pi^0$ is found to be $\\omega a_0(980)$.

  10. High-Speed Near Infrared Optical Receivers Based on Ge Waveguide Photodetectors Integrated in a CMOS Process

    Directory of Open Access Journals (Sweden)

    Gianlorenzo Masini

    2008-01-01

    Full Text Available We discuss our approach to monolithic intergration of Ge photodectors with CMOS electronics for high-speed optical transceivers. Receivers based on Ge waveguide photodetectors achieve a sensitivity of −14.2 dBm (10−12 bit error rate (BER at 10 Gbps and 1550 nm.

  11. Measurement and processing of gammas accompanying muon pairs in the reaction pi(-)C yields mu(+)mu(-) + gamma + X at 38 GeV

    Science.gov (United States)

    Bannikov, A. V.; Chelkov, G. A.; Krumshtejn, Z. V.; Petrukhin, V. I.; Vertogradov, L. S.; Bohm, J.; Piska, K.; Javrishvili, A. K.; Lomtadze, T. A.; Tskhadadze, E. G.

    A set of carbon targets and lead glass converters were placed in the sensitive volume of a streamer chamber of the magnetic spectrometer RISK in the experiment SERP-151 on the study of exclusive processes of production of muon pairs and J/Psi-particles in (pi)C interactions at 38 GeV.

  12. GE与Shell两种煤制气方法的技术特点比较%Technologies and Process Comparison of GE and Shell Coal Gasification

    Institute of Scientific and Technical Information of China (English)

    翟延平

    2012-01-01

    对GE和Shell两种煤制气方法的技术现状进行剖析,对其工艺特点进行比较。%To analyze the present situation of GE and Shell.Two kinds of coal gasification technologies.To compare the process characteristics of these two technologies.

  13. $\\beta$- decay of the N=Z, rp-process waiting points: $^{64}$Ge, $^{68}$Se and the N=Z+2: $^{66}$Ge, $^{70}$Se for accurate stellar weak-decay rates

    CERN Multimedia

    The contribution of electron capture to weak-decay rates has been neglected in model calculations of Type I X-ray bursts so far. Nucleosynthesis in these astrophysical events eventually proceeds through the rp-process near the proton drip-line. In particular, several N=Z nuclei such as $^{64}$Ge and $^{68}$Se act as waiting points in the nuclear flow due to the low S${_P}$ values of their Z+1 neighbours. Recent theoretical calculations have shown that, in these high density ($\\thicksim10^{6}$ g/cm$^3$) and high temperature (1 - 2 GK) scenarios, continuum electron capture rates might play an important role, in particular for species at and around these waiting point nuclei. This proposal is aimed at the study of the $\\beta^{+}$/EC-decay of the waiting point nuclei $^{64}$Ge, $^{68}$Se and their N=Z+2 second neighbours $^{66}$Ge and $^{70}$Se with the Total Absorption Spectroscopy method. This will allow for a detailed analysis of their contribution to the EC-decay rates in X-Ray burst explosions. The proposed ...

  14. Low noise Millimeter-wave and THz Receivers, Imaging Arrays, Switches in Advanced CMOS and SiGe Processes /

    OpenAIRE

    Uzunkol, Mehmet

    2013-01-01

    The thesis presents advanced millimeter-wave and THz receivers, imaging arrays, switches and detectors in CMOS and SiGe BiCMOS technologies. First, an in-depth analysis of a SiGe BiCMOS on-off keying (OOK) receiver composed of a low noise SiGe amplifier and an OOK detector is presented. The analysis indicates that the bias circuit and bias current have a substantial impact on the receiver and should be optimized for best performance. Also, the LO leakage from the transmitter can have a detrim...

  15. Effect of thermal treatment on the magnetization processes of nanocrystalline Fe{sub 80}Ge{sub 3}Nb{sub 10}B{sub 7} alloys

    Energy Technology Data Exchange (ETDEWEB)

    Mao Xingyu, E-mail: maoxingyu@jmu.edu.cn [Institute of Science, Jimei University, 361021 (China); Ke Zhijian; Zou Weidong; Lin Qiubao [Institute of Science, Jimei University, 361021 (China); Qin Zhijie [Department of Physics, Zhengzhou University, 450001 (China); Wu Yan [Institute of Science, Jimei University, 361021 (China)

    2012-02-15

    The dynamic magnetization processes of nanocrystalline Fe{sub 80}Ge{sub 3}Nb{sub 10}B{sub 7} alloys after annealing at different temperatures are studied through the permeability spectroscopy. Three steps of crystallization are found when amorphous Fe{sub 80}Ge{sub 3}Nb{sub 10}B{sub 7} alloys are heated from 300to 1200 K. The dominant magnetization process varies with different annealing temperatures. Domain wall bulging is the main magnetization mechanism under weak applied field. When the applied field exceeds pinning field H{sub p}, the depinning-involved domain wall displacement occurs. Different annealing temperature results in different H{sub p}. The lower value of {mu}' and high relaxation frequency after heating at 923 and 973 K are due to the strengthened domain wall pinning and the increase of magnetocrystalline anisotropy. - Highlights: > Nanocrystallization and magnetic properties of Fe{sub 80}Ge{sub 3}Nb{sub 10}B{sub 7} alloy were studied. > Permeability spectra reveals that magnetization process varies with the annealing time. > 973 K annealing may result in Fe{sub 3}Ge, which deteriorates soft magnetism. > Domain wall bulging and displacement are main magnetization mechanisms. > Pinning sites and their distribution determine the magnetic performance.

  16. Ge nanobelts with high compressive strain fabricated by secondary oxidation of self-assembly SiGe rings

    DEFF Research Database (Denmark)

    Lu, Weifang; Li, Cheng; Lin, Guangyang

    2015-01-01

    Curled Ge nanobelts were fabricated by secondary oxidation of self-assembly SiGe rings, which were exfoliated from the SiGe stripes on the insulator. The Ge-rich SiGe stripes on insulator were formed by hololithography and modified Ge condensation processes of Si0.82Ge0.18 on SOI substrate. Ge na...... nanobelts, which extrudes to Ge nanobelts in radial and tangent directions during the cooling process. This technique is promising for application in high-mobility Ge nano-scale transistors...

  17. Ge Microdisk with Lithographically-Tunable Strain using CMOS-Compatible Process

    CERN Document Server

    Sukhdeo, David S; Gupta, Shashank; Kim, Daeik; Woo, Sungdae; Kim, Youngmin; Vuckovic, Jelena; Saraswat, Krishna C; Nam, Donguk

    2015-01-01

    We present germanium microdisk optical resonators under a large biaxial tensile strain using a CMOS-compatible fabrication process. Biaxial tensile strain of ~0.7% is achieved by means of a stress concentration technique that allows the strain level to be customized by carefully selecting certain lithographic dimensions. The partial strain relaxation at the edges of a patterned germanium microdisk is compensated by depositing compressively stressed silicon nitride layer. Two-dimensional Raman spectroscopy measurements along with finite-element method simulations confirm a relatively homogeneous strain distribution within the final microdisk structure. Photoluminescence results show clear optical resonances due to whispering gallery modes which are in good agreement with finite-difference time-domain optical simulations. Our bandgap-customizable microdisks present a new route towards an efficient germanium light source for on-chip optical interconnects.

  18. LMKB/MARF1 localizes to mRNA processing bodies, interacts with Ge-1, and regulates IFI44L gene expression.

    Directory of Open Access Journals (Sweden)

    Donald B Bloch

    Full Text Available The mRNA processing body (P-body is a cellular structure that regulates the stability of cytoplasmic mRNA. MARF1 is a murine oocyte RNA-binding protein that is associated with maintenance of mRNA homeostasis and genomic stability. In this study, autoantibodies were used to identify Limkain B (LMKB, the human orthologue of MARF1, as a P-body component. Indirect immunofluorescence demonstrated that Ge-1 (a central component of the mammalian core-decapping complex co-localized with LMKB in P-bodies. Two-hybrid and co-immunoprecipitation assays were used to demonstrate interaction between Ge-1 and LMKB. The C-terminal 120 amino acids of LMKB mediated interaction with Ge-1 and the N-terminal 1094 amino acids of Ge-1 were required for interaction with LMKB. LMKB is the first protein identified to date that interacts with this portion of Ge-1. LMKB was expressed in human B and T lymphocyte cell lines; depletion of LMKB increased expression of IFI44L, a gene that has been implicated in the cellular response to Type I interferons. The interaction between LMKB/MARF1, a protein that contains RNA-binding domains, and Ge-1, which interacts with core-decapping proteins, suggests that LMKB has a role in the regulation of mRNA stability. LMKB appears to have different functions in different cell types: maintenance of genomic stability in developing oocytes and possible dampening of the inflammatory response in B and T cells.

  19. 与Si工艺兼容的Si/SiGe/Si HBT研究%The Study of Si/SiGe/Si HBT and Its Compatibility with Si Process

    Institute of Scientific and Technical Information of China (English)

    廖小平

    2001-01-01

    我们对Si/SiGe/Si HBT及其Si兼容工艺进行了研究,在研究了一些关键的单项工艺的基础上,提出了五个高速Si/SiGe/Si HBT结构和一个低噪声Si/SiGe/Si HBT结构,并已研制成功台面结构Si/SiGe/Si HBT和低噪声Si/SiGe/Si HBT,为进一步高指标的Si/SiGe/Si HBT的研究建立了基础.

  20. Structure and defect processes in Si{sub 1-x-y}Ge{sub x}Sn{sub y} random alloys

    Energy Technology Data Exchange (ETDEWEB)

    Schwingenschloegl, U. [PSE Division, KAUST, Thuwal (Saudi Arabia); Chroneos, A.; Grimes, R.W. [Department of Materials, Imperial College London (United Kingdom); Jiang, C. [Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, NM (United States); Bracht, H. [Institute of Material Physics, University of Muenster (Germany)

    2010-07-01

    Binary and ternary Si{sub 1-x-y}Ge{sub x}Sn{sub y} random alloys are being considered as candidate materials to lattice match III-V or II-VI compounds with Si or Ge in optoelectronic or microelectronic devices. The simulation of the defect interactions of these alloys is hindered by their random nature. Here we use the special quasirandom approach (SQS) in conjunction with density functional theory calculations to study the structure and the defect processes. For the binary alloy Ge{sub x}Sn{sub 1-x} the SQS method correctly describes the deviation of the lattice parameters from Vegard's Law. For the ternary alloy Si{sub 0.375}Ge{sub 0.5}Sn{sub 0.125} we find an association of As atoms to lattice vacancies and the formation of As-vacancy pairs. It is predicted that the nearest-neighbour environment exerts a strong influence on the stability of these pairs.

  1. Process optimizations to recessed e-SiGe source/drain for performance enhancement in 22 nm all-last high-k/metal-gate pMOSFETs

    Science.gov (United States)

    Qin, Changliang; Wang, Guilei; Hong, Peizhen; Liu, Jinbiao; Yin, Huaxiang; Yin, Haizhou; Ma, Xiaolong; Cui, Hushan; Lu, Yihong; Meng, Lingkuan; Xiang, Jinjuan; Zhong, Huicai; Zhu, Huilong; Xu, Qiuxia; Li, Junfeng; Yan, Jian; Zhao, Chao; Radamson, Henry H.

    2016-09-01

    In this paper, the technology of recessed embedded SiGe (e-SiGe) source/drain (S/D) module is optimized for the performance enhancement in 22 nm all-last high-k/metal-gate (HK/MG) pMOSFETs. Different Si recess-etch techniques were applied in S/D regions to increase the strain in the channel and subsequently, improve the performance of transistors. A new recess-etch method consists of a two-step etch method is proposed. This process is an initial anisotropic etch for the formation of shallow trench followed by a final isotropic etch. By introducing the definition of the upper edge distance (D) between the recessed S/D region and the channel region, the process advantage of the new approach is clearly presented. It decreases the value of D than those by conventional one-step isotropic or anisotropic etch of Si. Therefore, the series resistance is reduced and the channel strain is increased, which confirmed by the simulation results. The physical reason of D reducing is analyzed in brief. Applying this recess design, the implant conditions for S/D extension (SDE) are also optimized by using a two-step implantation of BF2 in SiGe layers. The overlap space between doping junction and channel region has great effect on the device's performance. The designed implantation profile decreases the overlap space while keeps a shallow junction depth for a controllable short channel effect. The channel resistance as well as the transfer ID-VG curves varying with different process conditions are demonstrated. It shows the drive current of the device with the optimized SDE implant condition and Si recess-etch process is obviously improved. The change trend of on-off current distributions extracted from a series of devices confirmed the conclusions. This study provides a useful guideline for developing high performance strained PMOS SiGe technology.

  2. High Electron Mobility Ge n-Channel Metal-Insulator-Semiconductor Field-Effect Transistors Fabricated by the Gate-Last Process with the Solid Source Diffusion Technique

    Science.gov (United States)

    Maeda, Tatsuro; Morita, Yukinori; Takagi, Shinichi

    2010-06-01

    We fabricate high-k/Ge n-channel metal-insulator-semiconductor field-effect transistors (MISFETs) by the gate-last process with the thermal solid source diffusion to achieve both of high quality source/drain (S/D) and gate stack. The n+/p junction formed by solid source diffusion technique of Sb dopant shows the excellent diode characteristics of ˜1.5×105 on/off ratio between +1 and -1 V and the quite low reverse current density of ˜4.1×10-4 A/cm2 at +1 V after the fabrication of high-k/Ge n-channel MISFETs that enable us to observe well-behaved transistor performances. The extracted electron mobility with the peak of 891 cm2/(V.s) is high enough to be superior to the Si universal electron mobility especially in low Eeff.

  3. Physical processes at work in sub-30 fs, PW laser pulse-driven plasma accelerators: Towards GeV electron acceleration experiments at CILEX facility

    Science.gov (United States)

    Beck, A.; Kalmykov, S. Y.; Davoine, X.; Lifschitz, A.; Shadwick, B. A.; Malka, V.; Specka, A.

    2014-03-01

    Optimal regimes and physical processes at work are identified for the first round of laser wakefield acceleration experiments proposed at a future CILEX facility. The Apollon-10P CILEX laser, delivering fully compressed, near-PW-power pulses of sub-25 fs duration, is well suited for driving electron density wakes in the blowout regime in cm-length gas targets. Early destruction of the pulse (partly due to energy depletion) prevents electrons from reaching dephasing, limiting the energy gain to about 3 GeV. However, the optimal operating regimes, found with reduced and full three-dimensional particle-in-cell simulations, show high energy efficiency, with about 10% of incident pulse energy transferred to 3 GeV electron bunches with sub-5% energy spread, half-nC charge, and absolutely no low-energy background. This optimal acceleration occurs in 2 cm length plasmas of electron density below 1018 cm-3. Due to their high charge and low phase space volume, these multi-GeV bunches are tailor-made for staged acceleration planned in the framework of the CILEX project. The hallmarks of the optimal regime are electron self-injection at the early stage of laser pulse propagation, stable self-guiding of the pulse through the entire acceleration process, and no need for an external plasma channel. With the initial focal spot closely matched for the nonlinear self-guiding, the laser pulse stabilizes transversely within two Rayleigh lengths, preventing subsequent evolution of the accelerating bucket. This dynamics prevents continuous self-injection of background electrons, preserving low phase space volume of the bunch through the plasma. Near the end of propagation, an optical shock builds up in the pulse tail. This neither disrupts pulse propagation nor produces any noticeable low-energy background in the electron spectra, which is in striking contrast with most of existing GeV-scale acceleration experiments.

  4. Physical processes at work in sub-30 fs, PW laser pulse-driven plasma accelerators: Towards GeV electron acceleration experiments at CILEX facility

    Energy Technology Data Exchange (ETDEWEB)

    Beck, A., E-mail: beck@llr.in2p3.fr [Laboratoire Leprince-Ringuet – École Polytechnique, CNRS-IN2P3, Palaiseau 91128 (France); Kalmykov, S.Y., E-mail: skalmykov2@unl.edu [Department of Physics and Astronomy, University of Nebraska – Lincoln, Nebraska 68588-0299 (United States); Davoine, X. [CEA, DAM, DIF, Arpajon F-91297 (France); Lifschitz, A. [Laboratoire d' Optique Appliquée, ENSTA ParisTech-CNRS UMR7639-École Polytechnique, Palaiseau 91762 (France); Shadwick, B.A. [Department of Physics and Astronomy, University of Nebraska – Lincoln, Nebraska 68588-0299 (United States); Malka, V. [Laboratoire d' Optique Appliquée, ENSTA ParisTech-CNRS UMR7639-École Polytechnique, Palaiseau 91762 (France); Specka, A. [Laboratoire Leprince-Ringuet – École Polytechnique, CNRS-IN2P3, Palaiseau 91128 (France)

    2014-03-11

    Optimal regimes and physical processes at work are identified for the first round of laser wakefield acceleration experiments proposed at a future CILEX facility. The Apollon-10P CILEX laser, delivering fully compressed, near-PW-power pulses of sub-25 fs duration, is well suited for driving electron density wakes in the blowout regime in cm-length gas targets. Early destruction of the pulse (partly due to energy depletion) prevents electrons from reaching dephasing, limiting the energy gain to about 3 GeV. However, the optimal operating regimes, found with reduced and full three-dimensional particle-in-cell simulations, show high energy efficiency, with about 10% of incident pulse energy transferred to 3 GeV electron bunches with sub-5% energy spread, half-nC charge, and absolutely no low-energy background. This optimal acceleration occurs in 2 cm length plasmas of electron density below 10{sup 18} cm{sup −3}. Due to their high charge and low phase space volume, these multi-GeV bunches are tailor-made for staged acceleration planned in the framework of the CILEX project. The hallmarks of the optimal regime are electron self-injection at the early stage of laser pulse propagation, stable self-guiding of the pulse through the entire acceleration process, and no need for an external plasma channel. With the initial focal spot closely matched for the nonlinear self-guiding, the laser pulse stabilizes transversely within two Rayleigh lengths, preventing subsequent evolution of the accelerating bucket. This dynamics prevents continuous self-injection of background electrons, preserving low phase space volume of the bunch through the plasma. Near the end of propagation, an optical shock builds up in the pulse tail. This neither disrupts pulse propagation nor produces any noticeable low-energy background in the electron spectra, which is in striking contrast with most of existing GeV-scale acceleration experiments.

  5. Search for the process $e^+e^-\\to J/\\psi + X(1835)$ at $\\sqrt{s}\\approx10.6$GeV

    CERN Document Server

    He, X H; Ban, Y; Wang, P; Adachi, I; Aihara, H; Asner, D M; Aulchenko, V; Aushev, T; Bakich, A M; Bala, A; Bonvicini, G; Bozek, A; Chekelian, V; Chen, A; Cheon, B G; Chilikin, K; Choi, Y; Cinabro, D; Dalseno, J; Doležal, Z; Drásal, Z; Dutta, D; Eidelman, S; Farhat, H; Fast, J E; Ferber, T; Gaur, V; Gabyshev, N; Garmash, A; Gillard, R; Goh, Y M; Golob, B; Haba, J; Hayashii, H; Hoshi, Y; Hou, W -S; Hsiung, Y B; Ishikawa, A; Julius, T; Kang, J H; Kato, E; Kawasaki, T; Kiesling, C; Kim, D Y; Kim, J H; Kim, M J; Kim, Y J; Kinoshita, K; Klucar, J; Ko, B R; Kodyš, P; Lee, S -H; Libby, J; Liu, Y; Liventsev, D; Matvienko, D; Miyata, H; Mizuk, R; Moll, A; Muramatsu, N; Mussa, R; Nakao, M; Nayak, M; Nedelkovska, E; Nisar, N K; Nishida, S; Nitoh, O; Ogawa, S; Okuno, S; Olsen, S L; Pakhlova, G; Park, H; Pestotnik, R; Petrič, M; Piilonen, L E; Ritter, M; Röhrken, M; Rostomyan, A; Sahoo, H; Sakai, Y; Sandilya, S; Santelj, L; Sanuki, T; Savinov, V; Schneider, O; Schnell, G; Schwanda, C; Senyo, K; Seon, O; Shapkin, M; Shen, C P; Shibata, T -A; Shiu, J -G; Shwartz, B; Sibidanov, A; Sohn, Y -S; Solovieva, E; Stanič, S; Starič, M; Sumiyoshi, T; Tamponi, U; Tanida, K; Tatishvili, G; Teramoto, Y; Uchida, M; Uglov, T; Unno, Y; Van Hulse, C; Varner, G; Wang, C H; Watanabe, Y; Yamashita, Y; Zhang, C C; Zhang, Z P; Zhilich, V; Zhulanov, V; Zupanc, A

    2013-01-01

    We report the results of a search for the $X(1835)$ state in the process $e^+e^-\\to J/\\psi+X(1835)$ using a data sample of 672 fb$^{-1}$ collected with the Belle detector at and near the $\\Upsilon(4S)$ resonance at the KEKB asymmetric-energy $e^+e^-$ collider. No significant evidence is found for this process, and an upper limit is set on its cross section times the branching fraction: $\\sigma_{\\rm Born}(e^+e^- \\to J/\\psi X(1835)) \\cdot$ {${\\cal B}(X(1835)\\to \\ge 3$ charged tracks)} $< 1.3 \\ {\\rm fb}$ at 90% confidence level.

  6. Demonstration of a Ge/GeSn/Ge quantum-well microdisk resonator on silicon: enabling high-quality Ge(Sn) materials for micro- and nanophotonics.

    Science.gov (United States)

    Chen, Robert; Gupta, Suyog; Huang, Yi-Chiau; Huo, Yijie; Rudy, Charles W; Sanchez, Errol; Kim, Yihwan; Kamins, Theodore I; Saraswat, Krishna C; Harris, James S

    2014-01-08

    We theoretically study and experimentally demonstrate a pseudomorphic Ge/Ge0.92Sn0.08/Ge quantum-well microdisk resonator on Ge/Si (001) as a route toward a compact GeSn-based laser on silicon. The structure theoretically exhibits many electronic and optical advantages in laser design, and microdisk resonators using these structures can be precisely fabricated away from highly defective regions in the Ge buffer using a novel etch-stop process. Photoluminescence measurements on 2.7 μm diameter microdisks reveal sharp whispering-gallery-mode resonances (Q > 340) with strong luminescence.

  7. Urban RoGeR: Merging process-based high-resolution flash flood model for urban areas with long-term water balance predictions

    Science.gov (United States)

    Weiler, M.

    2016-12-01

    Heavy rain induced flash floods are still a serious hazard and generate high damages in urban areas. In particular in the spatially complex urban areas, the temporal and spatial pattern of runoff generation processes at a wide spatial range during extreme rainfall events need to be predicted including the specific effects of green infrastructure and urban forests. In addition, the initial conditions (soil moisture pattern, water storage of green infrastructure) and the effect of lateral redistribution of water (run-on effects and re-infiltration) have to be included in order realistically predict flash flood generation. We further developed the distributed, process-based model RoGeR (Runoff Generation Research) to include the relevant features and processes in urban areas in order to test the effects of different settings, initial conditions and the lateral redistribution of water on the predicted flood response. The uncalibrated model RoGeR runs at a spatial resolution of 1*1m² (LiDAR, degree of sealing, landuse), soil properties and geology (1:50.000). In addition, different green infrastructures are included into the model as well as the effect of trees on interception and transpiration. A hydraulic model was included into RoGeR to predict surface runoff, water redistribution, and re-infiltration. During rainfall events, RoGeR predicts at 5 min temporal resolution, but the model also simulates evapotranspiration and groundwater recharge during rain-free periods at a longer time step. The model framework was applied to several case studies in Germany where intense rainfall events produced flash floods causing high damage in urban areas and to a long-term research catchment in an urban setting (Vauban, Freiburg), where a variety of green infrastructures dominates the hydrology. Urban-RoGeR allowed us to study the effects of different green infrastructures on reducing the flood peak, but also its effect on the water balance (evapotranspiration and groundwater

  8. Filled Nd(z)Fe(x)Co(4-x)Sb(12-y)Ge(y) Skutterudites: Processing and Thermoelectric Properties

    Science.gov (United States)

    Mackey, Jon; Sehirlioglu, Alp; Dynys, Fred

    2016-01-01

    Skutterudites have proven to be a useful thermoelectric system as a result of their enhanced figure of merit (ZT1), cheap material cost, favorable mechanical properties, and good thermal stability. The majority of skutterudite interest in recent years has been focused on binary skutterudites like CoSb3. Binary skutterudites are often double and triple filled, with a range of elements from the lanthanide series, in order to reduce the lattice component of thermal conductivity. Ternary and quaternary skutterudites, such as Co4Ge6Se6 or Ni4Sb8Sn4, provide additional paths to tune the electronic structure. The thermal conductivity can further be improved in these complex skutterudites by the introduction of fillers. The Nd(z)Fe(x)Co(4-x)Sb(12-y)Ge(y) system has been investigated as a p-type thermoelectric material, and is stable up to 600 C. The influence of Fe and Ge content, along with filler Nd, was investigated on thermoelectric transport properties. In addition to the chemical influence on properties, some processing details of the system will also be addressed.

  9. Filled Nd(sub z) Fe(sub x) Co(sub 4-x) Sb(sub 12-y) Ge(sub y) Skutterudites: Processing and Thermoelectric Properties

    Science.gov (United States)

    Mackey, Jon; Sehirlioglu, Alp; Dynys, Fred

    2016-01-01

    Skutterudites have proven to be a useful thermoelectric system as a result of their enhanced figure of merit (ZT1), cheap material cost, favorable mechanical properties, and good thermal stability. The majority of skutterudite interest in recent years has been focused on binary skutterudites like CoSb3. Binary skutterudites are often double and triple filled, with a range of elements from the lanthanide series, in order to reduce the lattice component of thermal conductivity. Ternary and quaternary skutterudites, such as Co4Ge6Se6 or Ni4Sb8Sn4, provide additional paths to tune the electronic structure. The thermal conductivity can further be improved in these complex skutterudites by the introduction of fillers. The Nd (sub z) Fe (sub x) Co (sub 4-x) Sb (sub 12-y)Ge (sub y) system has been investigated as a p-type thermoelectric material, and is stable up to 600 degrees Centigrade. The influence of Fe and Ge content, along with filler Nd, was investigated on thermoelectric transport properties. In addition to the chemical influence on properties, some processing details of the system will also be addressed.

  10. Effect of process temperature on structure and magnetic properties of perpendicularly magnetized D022-Mn3Ge thin films on a Cr buffer layer

    Science.gov (United States)

    Sugihara, Atsushi; Suzuki, Kazuya; Miyazaki, Terunobu; Mizukami, Shigemi

    2015-08-01

    We investigated the effect of post-annealing on the perpendicular magnetic anisotropy constant (Ku) and surface roughness (Ra) of Mn3Ge thin films grown at comparatively low temperatures (room temperature, 150, 200, and 250 °C) on Cr buffer layers. The films grown at ≥200 °C exhibit a D022-ordered crystal structure in an as-deposited state. The post-annealing process demonstrates differences in trends between the 200-°C-grown film and the 250-°C-grown film. The 200-°C-grown film displays significant degradation of Ku and an increase in Ra upon annealing at >300 °C because of its poor thermal durability, while the 250-°C-grown film is still intact even at 500 °C. The 250-°C-grown film post-annealed at 300 °C displays relatively high Ku while Ra remains low. It may be possible to grow D022-Mn3Ge with higher Ku and low Ra using a buffer-layer material with a lattice-matched crystal structure with D022-Mn3Ge and higher thermal durability than Cr.

  11. Evidence of self-affine target fragmentation process in relativistic nuclear collision at a few GeV/n

    CERN Document Server

    Ghosh, D; Bhattacharya, S; Ghosh, J; Sarkar, R

    2003-01-01

    Self-affine multiplicity scaling is investigated in the framework of two-dimensional factorial moment methodology using the concept of Hurst exponent (H). Investigation on the experimental data of target fragments emitted in sup 1 sup 2 C-AgBr and sup 2 sup 4 Mg-AgBr interactions at 4.5 A GeV revealed that best power law behaviour is exhibited at H = 0.5 for sup 1 sup 2 C initiated interactions indicating self-affine multiplicity fluctuations. But for sup 2 sup 4 Mg-AgBr interactions it cannot be unambiguously concluded whether the nature of dynamical fluctuations is self-affine or self-similar. The signal of multifractality is observed for both the interactions.

  12. The process of dissociation of Cl{sub 2} molecule on the Ge(0 0 1)-p(1 × 2) surface

    Energy Technology Data Exchange (ETDEWEB)

    Stankiewicz, B., E-mail: bst@ifd.uni.wroc.pl [Institute of Experimental Physics, University of Wrocław, Pl. Maxa Borna 9, 50-204 Wrocław (Poland); Mikołajczyk, P., E-mail: pawel.1.mikolajczyk@nokia.com [Nokia, Pl. Gen. J. Bema 2, 50-265 Wrocław (Poland)

    2015-04-30

    Highlights: • We examine chlorine molecule dissociative adsorption on the Ge(0 0 1)-p(1 × 2) surface. • We calculated final atomic structure, local density of states ,and real-space electron density. • Energy profiles along the dissociation paths of Cl{sub 2} molecule are presented. - Abstract: In this paper, we analyze theoretically four possible reaction paths during dissociative adsorption of chlorine molecule at the germanium surface. We have calculated the temporary atomic structures, local density of states and spatial distributions of charge density during the processes of dissociation and adsorption. Depending on the reaction path the properties of the system in the process can differ significantly from the final state.

  13. Monolithically integrated Ge CMOS laser

    Science.gov (United States)

    Camacho-Aguilera, Rodolfo

    2014-02-01

    Ge-on-Si devices are explored for photonic integration. Through the development of better growth techniques, monolithic integration, laser design and prototypes, it was possible to probe Ge light emitters with emphasis on lasers. Preliminary worked shows thermal photonic behavior capable of enhancing lamination at high temperatures. Increase luminescence is observed up to 120°C from L-band contribution. Higher temperatures show contribution from Δ -band. The increase carrier thermal contribution suggests high temperature applications for Ge light emitters. A Ge electrically pumped laser was probed under 0.2% biaxial strain and doping concentration ~4.5×1019cm-3 n-type. Ge pnn lasers exhibit a gain >1000cm-1 with 8mW power output, presenting a spectrum range of over 200nm, making Ge the ideal candidate for Si photonics. Large temperatures fluctuations and process limit the present device. Theoretically a gain of >4000cm- gain is possible with a threshold of as low as 1kA/cm2. Improvements in Ge work

  14. Acheivement of Nano-Scale SiGe Layer with Discrete Ge Mole Fraction Profile Using Batch-Type HVCVD

    Institute of Scientific and Technical Information of China (English)

    Gon-sub Lee; Tae-hun Shim; Jea-gun Park

    2004-01-01

    The strained Si grown on the relaxed SiGe-on-insulator C-MOSFET's is a promising device for the future system LSI devices with the design rule of sub-micron. The achievement of the discrete Ge mole fraction in the SiGe layer is a key engineering in low-temperature SiGe epitaxial growth using HVCVD. The pre-flow of GeH4 gas enhanced the Ge mole fraction and SiGe layer thickness. In addition, the Ge mole fraction and SiGe layer thickness increases with the gas ratio of GeH4/SiH4 + GeH4, process temperature, and gas flow time. However, the haze was produced if the Ge mole fraction is above 22wt%. The discrete-like Ge mole fraction with 22 wt% in 10 nm SiGe layer was obtained by the pre-flow of GeH4 for 10 s, the mixture gas ratio of GeH4/SiH4 + GeH4 of 67%, and the gas flow time for 150 s at the process temperature of 550 C.

  15. Pseudomorphic GeSn/Ge (001) heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Tonkikh, A. A., E-mail: tonkikh@mpi-halle.de [Max Planck Institute of Microstructure Physics (Germany); Talalaev, V. G. [Martin Luther University Halle-Wittenberg, ZIK SiLi-nano (Germany); Werner, P. [Max Planck Institute of Microstructure Physics (Germany)

    2013-11-15

    The synthesis of pseudomorphic GeSn heterostructures on a Ge (001) substrate by molecular-beam epitaxy is described. Investigations by transmission electron microscopy show that the GeSn layers are defect free and possess cubic diamondlike structure. Photoluminescence spectroscopy reveals interband radiative recombination in the GeSn quantum wells, which is identified as indirect transitions between the subbands of heavy electrons and heavy holes. On the basis of experimental data and modeling of the band structure of pseudomorphic GeSn compounds, the lower boundary of the bowing parameter for the indirect band gap is estimated as b{sub L} {>=} 1.47 eV.

  16. Junction-less poly-Ge FinFET and charge-trap NVM fabricated by laser-enabled low thermal budget processes

    Science.gov (United States)

    Huang, Wen-Hsien; Shieh, Jia-Min; Shen, Chang-Hong; Huang, Tzu-En; Wang, Hsing-Hsiang; Yang, Chih-Chao; Hsieh, Tung-Ying; Hsieh, Jin-Long; Yeh, Wen-Kuan

    2016-06-01

    A doping-free poly-Ge film as channel material was implemented by CVD-deposited nano-crystalline Ge and visible-light laser crystallization, which behaves as a p-type semiconductor, exhibiting holes concentration of 1.8 × 1018 cm-3 and high crystallinity (Raman FWHM ˜ 4.54 cm-1). The fabricated junctionless 7 nm-poly-Ge FinFET performs at an Ion/Ioff ratio over 105 and drain-induced barrier lowering of 168 mV/V. Moreover, the fast programming speed of 100 μs-1 ms and reliable retention can be obtained from the junctionless poly-Ge nonvolatile-memory. Such junctionless poly-Ge devices with low thermal budget are compatible with the conventional CMOS technology and are favorable for 3D sequential-layer integration and flexible electronics.

  17. 莪葛胶囊提取纯化工艺研究%Study on Process of Extraction and Purification of E'ge Capsule

    Institute of Scientific and Technical Information of China (English)

    陈武; 周洪亮; 陈最鹏; 刘志辉

    2011-01-01

    Objective To optimize process of extraction and purification orE'ge Capsule. Methods Orthogonal design was used to optimize extracting process. The extracting rate of volatile oil was index in extraction of Blue Turmeric Rhizoma, and the extracting rate of puerarin and pueraria flavonid were index in extraction of Lobed Kudzuvine Root; AB-8 macroporous adsorptive resins were used to purify pueraria flavonid. Results The optimum process were as follows: Blue Turmeric Rhizoma was comminuted to 20 mu powder, 8 times amount of water, refluxing and extracting for 5 h; Lobed Kudzuvine Root was extracted by 8 times amount of water for 50minutes, 3 times altogether; the purity of puerarin and pueraria flavonid can respectively reach to 27% and 65% after Purification. Conclusion The optimal process is feasible, which can be used in industrial production.%目的 优选莪葛胶囊提取纯化工艺.方法 以挥发油提取率为指标,正交试验法优选莪术挥发油提取工艺;以葛根素和葛根总黄酮得率为指标,正交试验筛选葛根总黄酮提取工艺,采用AB-8大孔吸附树脂纯化葛根总黄酮.结果 优选的工艺条件为:莪术粉碎成20目粗粉,加8倍量水提取5h;葛根以8倍量水煎煮3次,每次50 min;经大孔吸附树脂纯化,葛根素和葛根总黄酮纯度分别可达27%和65%.结论 该工艺可行,适合工业化生产.

  18. Epi-cleaning of Ge/GeSn heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Di Gaspare, L.; Sabbagh, D.; De Seta, M.; Sodo, A. [Dipartimento di Scienze, Università Roma Tre, Viale Marconi 446, 00146 Rome (Italy); Wirths, S.; Buca, D. [Peter Grünberg Institute 9 and JARA-Fundamentals of Future Information Technologies, Forschungszentrum Juelich, Juelich 52425 (Germany); Zaumseil, P. [IHP, Im Technologiepark 25, 15236 Frankfurt (Oder) (Germany); Schroeder, T. [IHP, Im Technologiepark 25, 15236 Frankfurt (Oder) (Germany); BTU Cottbus, Konrad-Zuse Str. 1, 03046 Cottbus (Germany); Capellini, G., E-mail: capellini@ihp-microelectronics.com [Dipartimento di Scienze, Università Roma Tre, Viale Marconi 446, 00146 Rome (Italy); IHP, Im Technologiepark 25, 15236 Frankfurt (Oder) (Germany)

    2015-01-28

    We demonstrate a very-low temperature cleaning technique based on atomic hydrogen irradiation for highly (1%) tensile strained Ge epilayers grown on metastable, partially strain relaxed GeSn buffer layers. Atomic hydrogen is obtained by catalytic cracking of hydrogen gas on a hot tungsten filament in an ultra-high vacuum chamber. X-ray photoemission spectroscopy, reflection high energy electron spectroscopy, atomic force microscopy, secondary ion mass spectroscopy, and micro-Raman showed that an O- and C-free Ge surface was achieved, while maintaining the same roughness and strain condition of the as-deposited sample and without any Sn segregation, at a process temperature in the 100–300 °C range.

  19. Effect of Ge Content on the Formation of Ge Nanoclusters in Magnetron-Sputtered GeZrOx-Based Structures.

    Science.gov (United States)

    Khomenkova, L; Lehninger, D; Kondratenko, O; Ponomaryov, S; Gudymenko, O; Tsybrii, Z; Yukhymchuk, V; Kladko, V; von Borany, J; Heitmann, J

    2017-12-01

    Ge-rich ZrO2 films, fabricated by confocal RF magnetron sputtering of pure Ge and ZrO2 targets in Ar plasma, were studied by multi-angle laser ellipsometry, Raman scattering, Auger electron spectroscopy, Fourier transform infrared spectroscopy, and X-ray diffraction for varied deposition conditions and annealing treatments. It was found that as-deposited films are homogeneous for all Ge contents, thermal treatment stimulated a phase separation and a formation of crystalline Ge and ZrO2. The "start point" of this process is in the range of 640-700 °C depending on the Ge content. The higher the Ge content, the lower is the temperature necessary for phase separation, nucleation of Ge nanoclusters, and crystallization. Along with this, the crystallization temperature of the tetragonal ZrO2 exceeds that of the Ge phase, which results in the formation of Ge crystallites in an amorphous ZrO2 matrix. The mechanism of phase separation is discussed in detail.

  20. A study on NiGe-contacted Ge n+/p Ge shallow junction prepared by dopant segregation technique

    Science.gov (United States)

    Tsui, Bing-Yue; Shih, Jhe-Ju; Lin, Han-Chi; Lin, Chiung-Yuan

    2015-05-01

    In this work, the effect of dopant segregation on the NiGe/n-Ge contact is studied by experiments and first-principles calculations. Both Al-contacted and NiGe-contacted n+/p junctions were fabricated. Phosphorus and arsenic ions were Implanted Before Germanide (IBG) formation or Implanted After Germanide (IAG) formation. The NiGe-contacted junction always exhibit higher forward current than the Al-contacted junction due to dopant segregation. First principles calculations predict that phosphorus atoms tend to segregate on both NiGe side and Ge side while arsenic atoms tend to segregate at Ge side. Since phosphorus has higher activation level and lower diffusion coefficient than arsenic, we propose a phosphorus IBG + arsenic IAG process. Shallow n+/p junction with junction depth 90 nm below the NiGe/Ge interface is achieved. The lowest and average contact resistivity is 2 × 10-6 Ω cm2 and 6.7 × 10-6 Ω cm2, respectively. Methods which can further reduce the junction depth and contact resistivity are suggested.

  1. Study of Si-Ge interdiffusion with phosphorus doping

    KAUST Repository

    Cai, Feiyang

    2016-10-28

    Si-Ge interdiffusion with phosphorus doping was investigated by both experiments and modeling. Ge/Si1-x Ge x/Ge multi-layer structures with 0.75Ge<1, a mid-1018 to low-1019 cm−3 P doping, and a dislocation density of 108 to 109 cm−2 range were studied. The P-doped sample shows an accelerated Si-Ge interdiffusivity, which is 2–8 times of that of the undoped sample. The doping dependence of the Si-Ge interdiffusion was modelled by a Fermi-enhancement factor. The results show that the Si-Ge interdiffusion coefficient is proportional to n2/n2i for the conditions studied, which indicates that the interdiffusion in a high Ge fraction range with n-type doping is dominated by V2− defects. The Fermi-enhancement factor was shown to have a relatively weak dependence on the temperature and the Ge fraction. The results are relevant to the structure and thermal processing condition design of n-type doped Ge/Si and Ge/SiGe based devices such as Ge/Si lasers.

  2. Junction-less poly-Ge FinFET and charge-trap NVM fabricated by laser-enabled low thermal budget processes

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Wen-Hsien; Shen, Chang-Hong; Wang, Hsing-Hsiang; Yang, Chih-Chao; Hsieh, Tung-Ying; Hsieh, Jin-Long; Yeh, Wen-Kuan [National Nano Device Laboratories, No. 26, Prosperity Road 1, Hsinchu 30078, Taiwan (China); Shieh, Jia-Min, E-mail: jmshieh@narlabs.org.tw, E-mail: jmshieh@faculty.nctu.edu.tw [National Nano Device Laboratories, No. 26, Prosperity Road 1, Hsinchu 30078, Taiwan (China); Departments of Photonics and Institute of Electro-Optical Engineering, National Chiao-Tung University, Hsinchu 30010, Taiwan (China); Huang, Tzu-En [Departments of Photonics and Institute of Electro-Optical Engineering, National Chiao-Tung University, Hsinchu 30010, Taiwan (China)

    2016-06-13

    A doping-free poly-Ge film as channel material was implemented by CVD-deposited nano-crystalline Ge and visible-light laser crystallization, which behaves as a p-type semiconductor, exhibiting holes concentration of 1.8 × 10{sup 18 }cm{sup −3} and high crystallinity (Raman FWHM ∼ 4.54 cm{sup −1}). The fabricated junctionless 7 nm-poly-Ge FinFET performs at an I{sub on}/I{sub off} ratio over 10{sup 5} and drain-induced barrier lowering of 168 mV/V. Moreover, the fast programming speed of 100 μs–1 ms and reliable retention can be obtained from the junctionless poly-Ge nonvolatile-memory. Such junctionless poly-Ge devices with low thermal budget are compatible with the conventional CMOS technology and are favorable for 3D sequential-layer integration and flexible electronics.

  3. Comparison of optical transients during the picosecond laser pulse-induced crystallization of GeSbTe and AgInSbTe phase-change thin films: Nucleation-driven versus growth-driven processes

    Science.gov (United States)

    Liang, Guangfei; Li, Simian; Huang, Huan; Wang, Yang; Lai, Tianshu; Wu, Yiqun

    2013-09-01

    Direct comparison of the real-time in-situ crystallization behavior of as-deposited amorphous Ge2Sb2Te5 (GeSbTe) and Ag8In14Sb55Te23 (AgInSbTe) phase-change thin films driven by picosecond laser pulses was performed by a time-resolved optical pump-probe technique with nanosecond resolution. Different optical transients showed various crystallization processes because of the dissimilar nucleation- and growth-dominated mechanisms of the two materials. The effects of laser pulse fluence, thermal conductive structure, and successive pulse irradiation on their crystallization dynamics were also discussed. A schematic was then established to describe the different crystallization processes beginning from the as-deposited amorphous state. The results may provide further insight into the phase-change mechanism under extra-non-equilibrium conditions and aid the development of ultrafast phase-change memory materials.

  4. Study of a SiGeSn/GeSn/SiGeSn structure toward direct bandgap type-I quantum well for all group-IV optoelectronics.

    Science.gov (United States)

    Ghetmiri, Seyed Amir; Zhou, Yiyin; Margetis, Joe; Al-Kabi, Sattar; Dou, Wei; Mosleh, Aboozar; Du, Wei; Kuchuk, Andrian; Liu, Jifeng; Sun, Greg; Soref, Richard A; Tolle, John; Naseem, Hameed A; Li, Baohua; Mortazavi, Mansour; Yu, Shui-Qing

    2017-02-01

    A SiGeSn/GeSn/SiGeSn single quantum well structure was grown using an industry standard chemical vapor deposition reactor with low-cost commercially available precursors. The material characterization revealed the precisely controlled material growth process. Temperature-dependent photoluminescence spectra were correlated with band structure calculation for a structure accurately determined by high-resolution x-ray diffraction and transmission electron microscopy. Based on the result, a systematic study of SiGeSn and GeSn bandgap energy separation and barrier heights versus material compositions and strain was conducted, leading to a practical design of a type-I direct bandgap quantum well.

  5. (Si)GeSn nanostructures for light emitters

    Science.gov (United States)

    Rainko, D.; Stange, D.; von den Driesch, N.; Schulte-Braucks, C.; Mussler, G.; Ikonic, Z.; Hartmann, J. M.; Luysberg, M.; Mantl, S.; Grützmacher, D.; Buca, D.

    2016-05-01

    Energy-efficient integrated circuits for on-chip or chip-to-chip data transfer via photons could be tackled by monolithically grown group IV photonic devices. The major goal here is the realization of fully integrated group IV room temperature electrically driven lasers. An approach beyond the already demonstrated optically-pumped lasers would be the introduction of GeSn/(Si)Ge(Sn) heterostructures and exploitation of quantum mechanical effects by reducing the dimensionality, which affects the density of states. In this contribution we present epitaxial growth, processing and characterization of GeSn/(Si)Ge(Sn) heterostructures, ranging from GeSn/Ge multi quantum wells (MQWs) to GeSn quantum dots (QDs) embedded in a Ge matrix. Light emitting diodes (LEDs) were fabricated based on the MQW structure and structurally analyzed via TEM, XRD and RBS. Moreover, EL measurements were performed to investigate quantum confinement effects in the wells. The GeSn QDs were formed via Sn diffusion /segregation upon thermal annealing of GeSn single quantum wells (SQW) embedded in Ge layers. The evaluation of the experimental results is supported by band structure calculations of GeSn/(Si)Ge(Sn) heterostructures to investigate their applicability for photonic devices.

  6. Impact of In doping on GeTe phase-change materials thin films obtained by means of an innovative plasma enhanced metalorganic chemical vapor deposition process

    Science.gov (United States)

    Szkutnik, P. D.; Aoukar, M.; Todorova, V.; Angélidès, L.; Pelissier, B.; Jourde, D.; Michallon, P.; Vallée, C.; Noé, P.

    2017-03-01

    We investigated the deposition and the phase-change properties of In-doped GeTe thin films obtained by plasma enhanced metalorganic chemical vapor deposition and doped with indium using a solid delivery system. The sublimated indium precursor flow rate was calculated as a function of sublimation and deposition parameters. Indium related optical emission recorded by means of optical emission spectroscopy during deposition plasma allowed proposing the dissociation mechanisms of the [In(CH3)2N(CH3)2]2 solid precursor. In particular, using an Ar + H2 + NH3 deposition plasma, sublimated indium molecules are completely dissociated and do not induce by-product contamination by addition of nitrogen or carbon in the films. X-ray photoelectron spectroscopy evidences the formation of In-Te bonds in amorphous as-deposited In-doped GeTe films. The formation of an InTe phase after 400 °C annealing is also evidenced by means of X-ray diffraction analysis. The crystallization temperature Tx, deduced from monitoring of optical reflectivity of In-doped GeTe films with doping up to 11 at. % slightly varies as a function of the In dopant level with a decrease of Tx down to a minimum value for an In doping level of about 6-8 at. %. In this In doping range, the structure of crystallized In-GeTe films changes and is dominated by the presence of a crystalline In2Te3 phase. Finally, the Kissinger activation energy for crystallization Ea is showing to monotonically decrease as the indium content in the GeTe film is increased indicating a promising effect of In doping on crystallization speed in memory devices while keeping a good thermal stability for data retention.

  7. Bi surfactant mediated growth for fabrication of Si/Ge nanostructures and investigation of Si/Ge intermixing by STM

    Energy Technology Data Exchange (ETDEWEB)

    Paul, N.

    2007-10-26

    In the thesis work presented here, we show that Bi is more promising surfactant material than Sb. We demonstrate that by using Bi as a terminating layer on Ge/Si surface, it is possible to distinguish between Si and Ge in Scanning tunnelling microscope (STM). Any attempt to utilize surfactant mediated growth must be preceded by a thorough study of its effect on the the system being investigated. Thus, the third chapter of this thesis deals with an extensive study of the Bi surfactant mediated growth of Ge on Si(111) surface as a function of Ge coverage. The growth is investigated from the single bilayer Ge coverage till the Ge coverage of about 15 BL when the further Ge deposition leads to two-dimensional growth. In the fourth chapter, the unique property of Bi terminating layer on Ge/Si surface to result in an STM height contrast between Si and Ge is explained with possible explanations given for the reason of this apparent height contrast. The controlled fabrication of Ge/Si nanostructures such as nanowires and nanorings is demonstrated. A study on Ge-Si diffusion in the surface layers by a direct method such as STM was impossible previously because of the similar electronic structure of Ge and Si. Since with the Bi terminating surface layer, one is able to distinguish between Ge and Si, the study of intermixing between them is also possible using STM. This method to distinguish between Si and Ge allows one to study intermixing on the nanoscale and to identify the fundamental diffusion processes giving rise to the intermixing. In Chapter 5 we discuss how this could prove useful especially as one could get a local probe over a very narrow Ge-Si interface. A new model is proposed to estimate change in the Ge concentration in the surface layer with time. The values of the activation energies of Ge/Si exchange and Si/Ge exchange are estimated by fitting the experimental data with the model. The Ge/Si intermixing has been studied on a surface having 1 ML Bi ({radical

  8. The low temperature epitaxy of Ge on Si (1 0 0) substrate using two different precursors of GeH4 and Ge2H6

    Science.gov (United States)

    Kil, Yeon-Ho; Yuk, Sim-Hoon; Kim, Joung Hee; Kim, Taek Sung; Kim, Yong Tae; Choi, Chel-Jong; Shim, Kyu-Hwan

    2016-10-01

    We have investigated the initial stage of low temperature epitaxy (LTE) of Ge on 8″-dia. Si (1 0 0) substrate using a rapid thermal chemical vapor deposition (RTCVD) with two different precursors of GeH4 and Ge2H6. The quality of LTE Ge films such as surface morphology, defects and crystallinity were analyzed using SEM, AFM and TEM. Experimental results confirmed that the LTE Ge using Ge2H6 precursor was much more beneficial than the LTE using GeH4 in terms of growth rate (×10), stress relaxation (85% at surface), and crystal quality (low TDDs). The discrepancy looks originated from the weak Gesbnd Ge bonds requiring their dissociation energy small compared to the Gesbnd H bonds in GeH4 precursors, and the abundant supply of GeH3 molecules should stimulate chemical reactions at free surface sites. Our LTE technology would be promising for very thin Ge virtual substrate as well as be beneficial for nano-micro electronic devices in need of low temperature processes below 300-500 °C.

  9. The Effects of Annealing Temperatures on Composition and Strain in SixGe1−x Obtained by Melting Growth of Electrodeposited Ge on Si (100

    Directory of Open Access Journals (Sweden)

    Mastura Shafinaz Zainal Abidin

    2014-02-01

    Full Text Available The effects of annealing temperatures on composition and strain in SixGe1−x, obtained by rapid melting growth of electrodeposited Ge on Si (100 substrate were investigated. Here, a rapid melting process was performed at temperatures of 1000, 1050 and 1100 °C for 1 s. All annealed samples show single crystalline structure in (100 orientation. A significant appearance of Si-Ge vibration mode peak at ~400 cm−1 confirms the existence of Si-Ge intermixing due to out-diffusion of Si into Ge region. On a rapid melting process, Ge melts and reaches the thermal equilibrium in short time. Si at Ge/Si interface begins to dissolve once in contact with the molten Ge to produce Si-Ge intermixing. The Si fraction in Si-Ge intermixing was calculated by taking into account the intensity ratio of Ge-Ge and Si-Ge vibration mode peaks and was found to increase with the annealing temperatures. It is found that the strain turns from tensile to compressive as the annealing temperature increases. The Si fraction dependent thermal expansion coefficient of SixGe1−x is a possible cause to generate such strain behavior. The understanding of compositional and strain characteristics is important in Ge/Si heterostructure as these properties seem to give significant effects in device performance.

  10. Theoretical prediction for several important equilibrium Ge isotope fractionation factors

    Science.gov (United States)

    Tang, M.; Li, X.; Liu, Y.

    2008-12-01

    As a newly emerging field, the stable isotope geochemistry of germanium (Ge) needs basic equilibrium fractionation factors to explore its unknown world. In this study, the Ge isotope fractionations between systems including the aqueous Ge(OH)4 and GeO(OH)3- which are the dominant Ge species in seawater, the Ge-bearing organic complexes (e.g. Ge-catechol, Ge-oxalic acid and Ge-citric acid), the quartz- (or opal- ), albite-, K-feldspar- and olivine- like mineral structures are studied. It is the first time that some geologically important equilibrium Ge isotope fractionation factors are reported. Surprisingly, up to 5 per mil large isotopic fractionations between these Ge isotope systems are found at 25 degree. These results suggest a potentially broad application for the Ge isotope geochemistry. Our theoretical calculations are based on the Urey model (or Bigeleisen-Mayer equation) and high level quantum chemistry calculations. The B3LYP/6-311+G(d,p) level quantum chemistry method and the explicit solvent model ("water droplet" method) are used. Many different conformers are also used for the aqueous complexes in order to reduce the possible errors coming from the differences of configurations in solution. The accuracy of our calculation of the Ge isotopic fractionations is estimated about 0.2 per mil. Our results show quartz-like or opal-like structure can enrich most heavy Ge isotopes. Relative to quartz (or opal), some Ge isotopic fractionations are (at 25 C): quartz-organic Ge = 4-5,quartz-Ge(OH)4 =0.9,quartz-GeO(OH)3- =1.5,quartz-albite=0.6,quartz-K-feldspar=0.4 and quartz-olivine=3.9 per mil. The large fractionations between inorganic Ge complexes and organic Ge ones could be used to distinguish the possible bio-involving processes. Our results suggest a good explanation to the experimental observations of Siebert et al. (2006) and Rouxel et al. (2006) and provide important constraints to the study of Ge cycle in ocean.

  11. Insights into microstructural evolution and polycrystalline compounds formation from Pd Ge thin films

    Science.gov (United States)

    Chen, Zhiwen; Shek, C. H.; Lai, J. K. L.

    2005-04-01

    Polycrystalline Pd-Ge thin films, prepared on freshly cleaved single crystal NaCl (1 0 0) substrate by evaporation techniques, were characterized for their composition, morphologies, and crystalline structure by transmission electron microscopy (TEM). The experimental results indicated that the formation of Pd 2Ge and PdGe compounds dominated at low annealing temperatures, and it also affected the crystallization of amorphous Ge. The reactions of Pd and Ge are sensitively dependent on the annealing temperatures and the thickness ratio of Pd and Ge films. The crystallization of amorphous Ge and the reactions of Pd and Ge are mutually competitive in polycrystalline Pd-Ge thin films. The grain nucleation, growth, and aggregation in Pd-Ge thin films during processing are discussed in terms of the fundamental kinetic processes.

  12. Insights into microstructural evolution and polycrystalline compounds formation from Pd-Ge thin films

    Energy Technology Data Exchange (ETDEWEB)

    Chen Zhiwen [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong (China)]. E-mail: cnzwchen@yahoo.com.cn; Shek, C.H. [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong (China); Lai, J.K.L. [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong (China)

    2005-04-15

    Polycrystalline Pd-Ge thin films, prepared on freshly cleaved single crystal NaCl (1 0 0) substrate by evaporation techniques, were characterized for their composition, morphologies, and crystalline structure by transmission electron microscopy (TEM). The experimental results indicated that the formation of Pd{sub 2}Ge and PdGe compounds dominated at low annealing temperatures, and it also affected the crystallization of amorphous Ge. The reactions of Pd and Ge are sensitively dependent on the annealing temperatures and the thickness ratio of Pd and Ge films. The crystallization of amorphous Ge and the reactions of Pd and Ge are mutually competitive in polycrystalline Pd-Ge thin films. The grain nucleation, growth, and aggregation in Pd-Ge thin films during processing are discussed in terms of the fundamental kinetic processes.

  13. Relaxed SiGe-on-insulator fabricated by dry oxidation of sandwiched Si/SiGe/Si structure

    Energy Technology Data Exchange (ETDEWEB)

    Di Zengfeng [Research Center of Semiconductor Functional Film Engineering Technology and State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology (SIMIT), Chinese Academy of Sciences (CAS), Shanghai 200050 (China); Department of Physics and Material Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong (China); Zhang Miao [Research Center of Semiconductor Functional Film Engineering Technology and State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology (SIMIT), Chinese Academy of Sciences (CAS), Shanghai 200050 (China); Liu Weili [Research Center of Semiconductor Functional Film Engineering Technology and State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology (SIMIT), Chinese Academy of Sciences (CAS), Shanghai 200050 (China); Zhu Ming [Research Center of Semiconductor Functional Film Engineering Technology and State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology (SIMIT), Chinese Academy of Sciences (CAS), Shanghai 200050 (China); Department of Physics and Material Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong (China); Lin Chenglu [Research Center of Semiconductor Functional Film Engineering Technology and State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology (SIMIT), Chinese Academy of Sciences (CAS), Shanghai 200050 (China); Chu, Paul K. [Department of Physics and Material Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong (China)]. E-mail: paul.chu@cityu.edu.hk

    2005-12-05

    An improved technique is demonstrated to fabricate silicon-germanium on insulator (SGOI) starting with a sandwiched structure of Si/SiGe/Si. After oxidation of the sandwiched structure and successive annealing, a relaxed SiGe-on-insulator (SGOI) structure is produced. Our results indicate that the added Si cap layer is advantageous in suppressing Ge loss at the initial stage of SiGe oxidation and the subsequent annealing process homogenizes the Ge fraction. Raman measurements reveal that the strain in the SiGe layer is fully relaxed at high oxidation temperature ({approx}1150 deg. C) without generating any threading dislocations and crosshatch patterns, which generally exist in the relaxed SiGe layer on bulk Si substrate.

  14. Dynamical process of skyrmion-helical magnetic transformation of the chiral-lattice magnet FeGe probed by small-angle resonant soft x-ray scattering

    Science.gov (United States)

    Yamasaki, Y.; Morikawa, D.; Honda, T.; Nakao, H.; Murakami, Y.; Kanazawa, N.; Kawasaki, M.; Arima, T.; Tokura, Y.

    2015-12-01

    Small-angle soft x-ray scattering in resonance with Fe L absorption edge has been investigated for helical magnetic order and magnetic skyrmion crystal (SkX) in B20-type cubic FeGe. Transformation of magnetic structures among helical, conical, SkX, and field-polarized spin-collinear forms is observed with the application of a magnetic field parallel to the incident soft x-ray. The resonant soft x-ray scattering with high q -resolution revealed a transient dynamics of SkX, such as rotation of SkX and variation of the SkX lattice constant, upon the change of magnetic field.

  15. Study of the e{sup +}e{sup –} → π{sup +}π{sup –}π{sup 0} process in the energy range 1.05–2.00 GeV

    Energy Technology Data Exchange (ETDEWEB)

    Aul’chenko, V. M.; Achasov, M. N.; Barnyakov, A. Yu.; Beloborodov, K. I.; Berdyugin, A. V.; Bogdanchikov, A. G. [Russian Academy of Sciences, Budker Institute of Nuclear Physics, Siberian Branch (Russian Federation); Botov, A. A.; Vasil’ev, A. V.; Golubev, V. B.; Dimova, T. V., E-mail: baiert@inp.nsk.su; Druzhinin, V. P. [Russian Academy of Sciences, Budker Institute of Nuclear Physics, Siberian Branch (Russian Federation); Kardapol’tsev, L. V.; Kasaev, A. S.; Kirpotin, A. N.; Kirpotin, A. N.; Kovrizhin, D. P.; Koop, I. A.; Korol’, A. A.; Koshuba, S. V.; Kupich, A. S. [Russian Academy of Sciences, Budker Institute of Nuclear Physics, Siberian Branch (Russian Federation); and others

    2015-07-15

    The cross section for the e{sup +}e{sup –} → π{sup +}π{sup –}π{sup 0} process in the energy range 1.05–2.00 GeV has been measured using the data collected in the experiment with the Spherical Neutral Detector (SND) at the VEPP-2000 e{sup +}e{sup –} collider. The obtained results on the cross section are in good agreement with previous measurements by the SND at the VEPP-2M collider and BABAR, but have a better accuracy.

  16. Growth of Ge films by cluster beam deposition

    CERN Document Server

    Xu, J L; Feng, J Y

    2002-01-01

    Ge epitaxial layers with reasonable quality were grown on the Si(1 1 1) substrates by cluster beam deposition (CBD) process. The growth temperature plays a dominant role in the epitaxial growth of Ge films. The substrate temperature for epitaxial growth is about 500 deg. C, which is lower than the reported critical temperature of Ge epitaxial growth by MBE and CVD. A stress induced phase transition of Ge lattice from cubic to tetragonal is also observed in the CBD process, and the mechanism is discussed.

  17. Vertical Ge and GeSn heterojunction gate-all-around tunneling field effect transistors

    Science.gov (United States)

    Schulze, Jörg; Blech, Andreas; Datta, Arnab; Fischer, Inga A.; Hähnel, Daniel; Naasz, Sandra; Rolseth, Erlend; Tropper, Eva-Maria

    2015-08-01

    We present experimental results on the fabrication and characterization of vertical Ge and GeSn heterojunction Tunneling Field Effect Transistors (TFETs). A gate-all-around process with mesa diameters down to 70 nm is used to reduce leakage currents and improve electrostatic control of the gate over the transistor channel. An ION = 88.4 μA/μm at VDS = VG = -2 V is obtained for a TFET with a 10 nm Ge0.92Sn0.08 layer at the source/channel junction. We discuss further possibilities for device improvements.

  18. Structural evolution of Ge-rich Si{sub 1−x}Ge{sub x} films deposited by jet-ICPCVD

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yu; Yang, Meng; Wang, Gang [Key Laboratory of Advanced Photonic and Electronic Materials and School of Electronic Science and Engineering, Nanjing University, Nanjing 210093 (China); Wei, Xiaoxu; Wang, Junzhuan; Li, Yun; Zheng, Youdou; Shi, Yi, E-mail: yshi@nju.edu.cn [Key Laboratory of Advanced Photonic and Electronic Materials and School of Electronic Science and Engineering, Nanjing University, Nanjing 210093 (China); Collaborative Innovation Center of Advanced Micro-structures, Nanjing University, Nanjing 210093 (China); Zou, Zewen [College of Physics and Electronics Information, Anhui Normal University, Wuhu 241000 (China)

    2015-11-15

    Amorphous Ge-rich Si{sub 1−x}Ge{sub x} films with local Ge-clustering were deposited by dual-source jet-type inductively coupled plasma chemical-vapor deposition (jet-ICPCVD). The structural evolution of the deposited films annealed at various temperatures (Ta) is investigated. Experimental results indicate that the crystallization occurs to form Ge and Si clusters as Ta = 500 °C. With raising Ta up to 900 °C, Ge clusters percolate together and Si diffuses and redistributes to form a Ge/SiGe core/shell structure, and some Ge atoms partially diffuse to the surface as a result of segregation. The present work will be helpful in understanding the structural evolution process of a hybrid SiGe films and beneficial for further optimizing the microstructure and properties.

  19. Comparison of optical transients during the picosecond laser pulse-induced crystallization of GeSbTe and AgInSbTe phase-change thin films: Nucleation-driven versus growth-driven processes

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Guangfei [Key Laboratory of High Power Laser Materials, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800 (China); Li, Simian [State Key Laboratory of Optoelectronic Materials and Technology, Department of Physics, Sun Yat-Sen University, Guangzhou 510275 (China); Huang, Huan [Key Laboratory of High Power Laser Materials, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800 (China); Wang, Yang, E-mail: ywang@siom.ac.cn [Key Laboratory of High Power Laser Materials, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800 (China); Lai, Tianshu, E-mail: stslts@mail.sysu.edu.cn [State Key Laboratory of Optoelectronic Materials and Technology, Department of Physics, Sun Yat-Sen University, Guangzhou 510275 (China); Wu, Yiqun [Key Laboratory of High Power Laser Materials, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800 (China)

    2013-09-01

    Direct comparison of the real-time in-situ crystallization behavior of as-deposited amorphous Ge{sub 2}Sb{sub 2}Te{sub 5} (GeSbTe) and Ag{sub 8}In{sub 14}Sb{sub 55}Te{sub 23} (AgInSbTe) phase-change thin films driven by picosecond laser pulses was performed by a time-resolved optical pump-probe technique with nanosecond resolution. Different optical transients showed various crystallization processes because of the dissimilar nucleation- and growth-dominated mechanisms of the two materials. The effects of laser pulse fluence, thermal conductive structure, and successive pulse irradiation on their crystallization dynamics were also discussed. A schematic was then established to describe the different crystallization processes beginning from the as-deposited amorphous state. The results may provide further insight into the phase-change mechanism under extra-non-equilibrium conditions and aid the development of ultrafast phase-change memory materials.

  20. Negative P-T slopes characterize phase change processes: Case of the Ge1Sb2Te4 phase change alloy

    Science.gov (United States)

    Kalkan, B.; Sen, S.; Aitken, B. G.; Raju, S. V.; Clark, S. M.

    2011-07-01

    The crystalline, liquid and amorphous phase stabilities and transformations of the Ge1Sb2Te4 (GST124) alloy are investigated as a function of pressure and temperature using synchrotron diffraction experiments in a diamond anvil cell. The results indicate that the solid-state amorphization of the cubic GST124 phase under high pressure may correspond to a metastable extension of the stability field of the GST124 liquid along a hexagonal crystal-liquid phase boundary with a negative P-T slope. The internal pressures generated during phase change are shown to be too small to affect phase stability. However, they may be important in understanding reliability issues related to thermomechanical stress development in phase change random access memory structures.

  1. Photoluminescence and electroluminescence from Ge/strained GeSn/Ge quantum wells

    Science.gov (United States)

    Lin, Chung-Yi; Huang, Chih-Hsiung; Huang, Shih-Hsien; Chang, Chih-Chiang; Liu, C. W.; Huang, Yi-Chiau; Chung, Hua; Chang, Chorng-Ping

    2016-08-01

    Ge/strained GeSn/Ge quantum wells are grown on a 300 mm Si substrate by chemical vapor deposition. The direct bandgap emission from strained GeSn is observed in the photoluminescence spectra and is enhanced by Al2O3/SiO2 passivation due to the field effect. The electroluminescence of the direct bandgap emission of strained GeSn is also observed from the Ni/Al2O3/GeSn metal-insulator-semiconductor tunneling diodes. Electroluminescence is a good indicator of GeSn material quality, since defects in GeSn layers degrade the electroluminescence intensity significantly. At the accumulation bias, the holes in the Ni gate electrode tunnel to the strained n-type GeSn layer through the ultrathin Al2O3 and recombine radiatively with electrons. The emission wavelength of photoluminescence and electroluminescence can be tuned by the Sn content.

  2. Metastable Ge nanocrystalline in SiGe matrix for photodiode

    Energy Technology Data Exchange (ETDEWEB)

    Ouyang, Yao-Tsung; Su, Chien-Hao [Department of Chemical and Materials Engineering, National Central University, Taoyuan City 320, Taiwan (China); Chang, Jenq-Yang [Department of Optics and Photonics, National Central University, Taoyuan City 320, Taiwan (China); Cheng, Shao-Liang; Lin, Po-Chen [Department of Chemical and Materials Engineering, National Central University, Taoyuan City 320, Taiwan (China); Wu, Albert T., E-mail: atwu@ncu.edu.tw [Department of Chemical and Materials Engineering, National Central University, Taoyuan City 320, Taiwan (China)

    2015-09-15

    Highlights: • Amorphous Si{sub 1−x}Ge{sub x} films were prepared by co-sputtering by using rapid thermal annealing to form nanocrystal films. • Si–Ge alloy does not form total solid solution that is shown in phase diagram. • HRTEM images indicated that Ge atoms segregated and formed Ge clusters that are embedded in the amorphous Si–Ge matrix. • Ge segregation permitted high mobility; the grain size increased and the resistivity decreased with higher Ge content. • The rectifying property became stronger with the Ge fraction in the Si{sub 1−x}Ge{sub x} diodes. Si{sub 1−x}Ge{sub x} diodes are used as photodetectors, which provide a greater output current under illumination. - Abstract: Amorphous Si{sub 1−x}Ge{sub x} films were prepared by co-sputtering on an oxidized Si wafer, followed by rapid thermal annealing to form nanocrystal films. The formation of Ge nanocrystals was not at thermodynamic equilibrium formed in the amorphous Si{sub 1−x}Ge{sub x} matrix. High-resolution transmission electron microscopy was used to characterize the increase in the size of the grains in the Ge nanocrystals as the Ge content increased. The Ge nanocrystals have a greater absorption in the near-infrared region and higher carrier mobility than SiGe crystals, and the variation in their grain sizes can be used to tune the bandgap. This characteristic was exploited herein to fabricate n-Si{sub 1−x}Ge{sub x}/p-Si{sub 1−x}Ge{sub x} p–n diodes on insulating substrates, which were then examined by analyzing their current–voltage characteristics. The rectifying property became stronger as the fraction of Ge in the Si{sub 1−x}Ge{sub x} films increased. The Si{sub 1−x}Ge{sub x} diodes are utilized as photodetectors that have a large output current under illumination. This paper elucidates the correlations between the structural, optical and electrical properties and the p–n junction performance of the film.

  3. Growth Mechanism and Surface Structure of Ge Nanocrystals Prepared by Thermal Annealing of Cosputtered GeSiO Ternary Precursor

    Directory of Open Access Journals (Sweden)

    Bo Zhang

    2014-01-01

    Full Text Available Ge nanocrystals (Ge-ncs embedded in a SiO2 superlattice structure were prepared by magnetron cosputtering and postdeposition annealing. The formation of spherical nanocrystals was confirmed by transmission electron microscopy and their growth process was studied by a combination of spectroscopic techniques. The crystallinity volume fraction of Ge component was found to increase with crystallite size, but its overall low values indicated a coexistence of crystalline and noncrystalline phases. A reduction of Ge-O species was observed in the superlattice during thermal annealing, accompanied by a transition from oxygen-deficient silicon oxide to silicon dioxide. A growth mechanism involving phase separation of Ge suboxides (GeOx was then proposed to explain these findings and supplement the existing growth models for Ge-ncs in SiO2 films. Further analysis of the bonding structure of Ge atoms suggested that Ge-ncs are likely to have a core-shell structure with an amorphous-like surface layer, which is composed of GeSiO ternary complex. The surface layer thickness was extracted to be a few angstroms and equivalent to several atomic layer thicknesses.

  4. Non-Selective SiGe Graphic Epitaxial by MBE

    Institute of Scientific and Technical Information of China (English)

    Qian Zhou; Chun Han; Jing-Chun Li

    2007-01-01

    To handle the thermal budget in SiGe BiCMOS process, a nonselective graphic epitaxial technology using molecular beam epitaxial (MBE) has been developed. SEM, AFM, XRD, and dislocation density measurements are carried out. The SiGe film's RMS roughness is 0.45nm, and dislocation density is 0.3×103cm2~1.2×103cm2. No dislocation accumulation exists on the boundary of the windows; this indicates the high quality of the SiGe film. The experiment results show that the technology presented in this paper meets the fabrication requirements of SiGe BiCMOS.

  5. Germanene termination of Ge2Pt crystals on Ge(110)

    NARCIS (Netherlands)

    Bampoulis, Pantelis; Zhang, Lijie; Safaei, A.; van Gastel, Raoul; Poelsema, Bene; Zandvliet, Henricus J.W.

    2014-01-01

    We have investigated the growth of Pt on Ge(1 1 0) using scanning tunneling microscopy and spectroscopy. The deposition of several monolayers of Pt on Ge(1 1 0) followed by annealing at 1100 K results in the formation of 3D metallic Pt-Ge nanocrystals. The outermost layer of these crystals exhibits

  6. Impacts of excimer laser annealing on Ge epilayer on Si

    Science.gov (United States)

    Huang, Zhiwei; Mao, Yichen; Yi, Xiaohui; Lin, Guangyang; Li, Cheng; Chen, Songyan; Huang, Wei; Wang, Jianyuan

    2017-02-01

    The impacts of excimer laser annealing on the crystallinity of Ge epilayers on Si substrate grown by low- and high-temperature two-step approach in an ultra-high vacuum chemical vapor deposition system were investigated. The samples were treated by excimer laser annealing (ELA) at various laser power densities with the temperature above the melting point of Ge, while below that of Si, resulting in effective reduction of point defects and dislocations in the Ge layer with smooth surface. The full-width at half-maximum (FWHM) of X-ray diffraction patterns of the low-temperature Ge epilayer decreases with the increase in laser power density, indicating the crystalline improvement and negligible effect of Ge-Si intermixing during ELA processes. The short laser pulse time and large cooling rate cause quick melting and recrystallization of Ge epilayer on Si in the non-thermal equilibrium process, rendering tensile strain in Ge epilayer as calculated quantitatively with thermal mismatch between Si and Ge. The FWHM of X-ray diffraction patterns is significantly reduced for the two-step grown samples after treated by a combination of ELA and conventional furnace thermal annealing, indicating that the crystalline of Ge epilayer is improved more effectively with pre- annealing by excimer laser.

  7. Distribution and Substitution Mechanism of Ge in a Ge-(Fe-Bearing Sphalerite

    Directory of Open Access Journals (Sweden)

    Nigel J. Cook

    2015-03-01

    Full Text Available The distribution and substitution mechanism of Ge in the Ge-rich sphalerite from the Tres Marias Zn deposit, Mexico, was studied using a combination of techniques at μm- to atomic scales. Trace element mapping by Laser Ablation Inductively Coupled Mass Spectrometry shows that Ge is enriched in the same bands as Fe, and that Ge-rich sphalerite also contains measurable levels of several other minor elements, including As, Pb and Tl. Micron- to nanoscale heterogeneity in the sample, both textural and compositional, is revealed by investigation using Focused Ion Beam-Scanning Electron Microscopy (FIB-SEM combined with Synchrotron X-ray Fluorescence mapping and High-Resolution Transmission Electron Microscopy imaging of FIB-prepared samples. Results show that Ge is preferentially incorporated within Fe-rich sphalerite with textural complexity finer than that of the microbeam used for the X-ray Absorption Near Edge Structure (XANES measurements. Such heterogeneity, expressed as intergrowths between 3C sphalerite and 2H wurtzite on  zones, could be the result of either a primary growth process, or alternatively, polystage crystallization, in which early Fe-Ge-rich sphalerite is partially replaced by Fe-Ge-poor wurtzite. FIB-SEM imaging shows evidence for replacement supporting the latter. Transformation of sphalerite into wurtzite is promoted by (111* twinning or lattice-scale defects, leading to a heterogeneous ZnS sample, in which the dominant component, sphalerite, can host up to ~20% wurtzite. Ge K-edge XANES spectra for this sphalerite are identical to those of the germanite and argyrodite standards and the synthetic chalcogenide glasses GeS2 and GeSe2, indicating the Ge formally exists in the tetravalent form in this sphalerite. Fe K-edge XANES spectra for the same sample indicate that Fe is present mainly as Fe2+, and Cu K-edge XANES spectra are characteristic for Cu+. Since there is no evidence for coupled substitution involving a monovalent

  8. Synthesis of Epitaxial Films Based on Ge-Si-Sn Materials with Ge/GeSn, Ge/GeSiSn, and GeSn/GeSiSn Heterojunctions

    Science.gov (United States)

    Timofeev, V. A.; Kokhanenko, A. P.; Nikiforov, A. I.; Mashanov, V. I.; Tuktamyshev, A. R.; Loshkarev, I. D.

    2015-11-01

    Results of investigations into the synthesis of heterostructures based on Ge-Si-Sn materials by the method of low-temperature molecular beam epitaxy are presented. The formation of epitaxial films during structure growth has been controlled by the reflection high-energy electron diffraction method. Films with Ge/GeSn, Ge/GeSiSn, and GeSn/GeSiSn heterojunctions are grown with Sn content changing from 2 to 10 % at temperatures in the interval 150-350°C. The stressed state, the composition, and the lattice parameter are studied by the x-ray diffraction method using Omega-scan curves and reciprocal space maps. A tensile strain in the Ge film during Ge/Ge0.9Sn0.1/Si structure growth has reached 0.86%.

  9. Cross sections of production of J / {psi}, {psi}` resonances and of the Drell-Yan process in the Pb-Pb interactions with 158 GeV / c per nucleon; Section efficaces de production des resonances J / {psi}, {psi}` et du processus Drell-Yan dans les interactions Pb-Pb a 158 GeV / c par nucleon

    Energy Technology Data Exchange (ETDEWEB)

    Bellaiche, F

    1997-04-24

    In the framework of the experimental research for the quark and gluons plasma formation in ultrarelativistic heavy ion collisions, data obtained by the NA50 collaboration at SPS-CERN are analysed. The segmented target used by NA50 experiment is described and analysed in terms of vertex identification efficiency and re-interactions recognition. The absolute J/{psi}, {psi}`and Drell-Yan process cross-sections in 158 GeV/c per nucleon Pb-Pb interactions are extracted. The transverse energy dependence of the production yield of J/{psi} and Drell-Yan process is established. The comparison of these cross-sections with the ones measured in lighter systems and the comparison of the E dependence of J/{psi} production with the Glauber model prediction show an anomalous J/{psi} suppression observed in Pb-Pb interactions is confronted to theoretical models proposed by several authors, describing charmonium bound states formation and interactions is confronted to theoretical models proposed by several authors, describing charmonium bound states formation and interactions in confined or deconfined media. (author) 122 refs.

  10. Growth mechanism of Ge-doped CZTSSe thin film by sputtering method and solar cells.

    Science.gov (United States)

    Li, Jinze; Shen, Honglie; Chen, Jieyi; Li, Yufang; Yang, Jiale

    2016-10-19

    Ge-doped CZTSSe thin films were obtained by covering a thin Ge layer on CZTS precursors, followed by a selenization process. The effect of the Ge layer thickness on the morphologies and structural properties of Ge-doped CZTSSe thin films were studied. It was found that Ge doping could promote grain growth to form a compact thin film. The lattice shrank in the top-half of the film due to the smaller atomic radius of Ge, leading to the formation of tensile stress. According to thermodynamic analysis, Sn was easier to be selenized than Ge. Thus, Ge preferred to remain on the surface and increased the surface roughness when the Ge layer was thin. CZTSe was easier to form than Ge-doped CZTSe, which caused difficulty in Ge doping. These results offered a theoretical and experimental guide for preparing Ge-doped CZTSSe thin films for the potential applications in low-cost solar cells. With a 10 nm Ge layer on the top of the precursor, the conversion efficiency of the solar cell improved to 5.38% with an open-circuit voltage of 403 mV, a short-circuit current density of 28.51 mA cm(-2) and a fill factor of 46.83% after Ge doping.

  11. High-Performance Deep SubMicron CMOS Technologies with Polycrystalline-SiGe Gates

    NARCIS (Netherlands)

    Ponomarev, Youri V.; Stolk, Peter A.; Salm, Cora; Schmitz, Jurriaan; Woerlee, P.H.

    2000-01-01

    The use of polycrystalline SiGe as the gate material for deep submicron CMOS has been investigated. A complete compatibility to standard CMOS processing is demonstrated when polycrystalline Si is substituted with SiGe (for Ge fractions below 0.5) to form the gate electrode of the transistors. Perfor

  12. High-Performance Deep SubMicron CMOS Technologies with Polycrystalline-SiGe Gates

    NARCIS (Netherlands)

    Ponomarev, Youri V.; Stolk, Peter A.; Salm, Cora; Schmitz, Jurriaan; Woerlee, P.H.

    2000-01-01

    The use of polycrystalline SiGe as the gate material for deep submicron CMOS has been investigated. A complete compatibility to standard CMOS processing is demonstrated when polycrystalline Si is substituted with SiGe (for Ge fractions below 0.5) to form the gate electrode of the transistors.

  13. Characteristics of Sn segregation in Ge/GeSn heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Li, H.; Chang, C.; Chen, T. P.; Cheng, H. H., E-mail: hhcheng@ntu.edu.tw [Center for Condensed Matter Sciences and Graduate Institute of Electronics Engineering, National Taiwan University, Taipei 10617, Taiwan (China); Shi, Z. W.; Chen, H. [Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China)

    2014-10-13

    We report an investigation of Sn segregation in Ge/GeSn heterostructures occurred during the growth by molecular beam epitaxy. The measured Sn profile in the Ge layer shows that: (a) the Sn concentration decreases rapidly near the Ge/GeSn interface, and (b) when moving away from the interface, the Sn concentration reduced with a much slower rate. The 1/e decay lengths of the present system are much longer than those of the conventional group IV system of Ge segregation in the Si overlayer because of the smaller kinetic potential as modeled by a self-limited two-state exchange scheme. The demonstration of the Sn segregation shows the material characteristics of the heterostructure, which are needed for the investigation of its optical properties.

  14. Phonons in Ge/Si superlattices with Ge quantum dots

    CERN Document Server

    Milekhin, A G; Pchelyakov, O P; Schulze, S; Zahn, D R T

    2001-01-01

    Ge/Si superlattices with Ge quantum dots obtained by means of molecular-beam epitaxy were investigated by means of light Raman scattering under resonance conditions. These structures are shown to have oscillation properties of both two-dimensional and zero-dimensional objects. Within spectrum low-frequency range one observes twisted acoustic phonons (up to 15 order) typical for planar superlattices. Lines of acoustic phonons are overlapped with a wide band of continuous emission. Analysis of frequencies of Ge and Ge-Si optical phonons shows that Ge quantum dots are pseudoamorphous ones and mixing of Ge and Si atoms is a negligible one. One detected low-frequency shift of longitudinal optical phonons at laser excitation energy increase (2.54-2.71 eV)

  15. Black GE based on crystalline/amorphous core/shell nanoneedle arrays

    Science.gov (United States)

    Javey, Ali; Chueh, Yu-Lun; Fan, Zhiyong

    2014-03-04

    Direct growth of black Ge on low-temperature substrates, including plastics and rubber is reported. The material is based on highly dense, crystalline/amorphous core/shell Ge nanoneedle arrays with ultrasharp tips (.about.4 nm) enabled by the Ni catalyzed vapor-solid-solid growth process. Ge nanoneedle arrays exhibit remarkable optical properties. Specifically, minimal optical reflectance (black Ge can have important practical implications for efficient photovoltaic and photodetector applications on nonconventional substrates.

  16. Low-Cost, Manufacturable, 6-Inch Wafer Bonding Process for Next-Generation 5-Junction IMM+Ge Photovoltaic Devices Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose the development of a 6-inch wafer bonding process to allow bonding of a multi-junction inverted metamorphic (IMM) tandem solar cell structure to an...

  17. A global Ge isotope budget

    Science.gov (United States)

    Baronas, J. Jotautas; Hammond, Douglas E.; McManus, James; Wheat, C. Geoffrey; Siebert, Christopher

    2017-04-01

    We present measurements of Ge isotope composition and ancillary data for samples of river water, low- and high-temperature hydrothermal fluids, and seawater. The dissolved δ74Ge composition of analyzed rivers ranges from 2.0 to 5.6‰, which is significantly heavier than previously determined values for silicate rocks (δ74Ge = 0.4-0.7‰, Escoube et al., Geostand. Geoanal. Res., 36(2), 2012) from which dissolved Ge is primarily derived. An observed negative correlation between riverine Ge/Si and δ74Ge signatures suggests that the primary δ74Ge fractionation mechanism during rock weathering is the preferential incorporation of light isotopes into secondary weathering products. High temperature (>150 °C) hydrothermal fluids analyzed in this study have δ74Ge of 0.7-1.6‰, most likely fractionated during fluid equilibration with quartz in the reaction zone. Low temperature (25-63 °C) hydrothermal fluids are heavier (δ74Ge between 2.9‰ and 4.1‰) and most likely fractionated during Ge precipitation with hydrothermal clays. Seawater from the open ocean has a δ74Gesw value of 3.2 ± 0.4‰, and is indistinguishable among the different ocean basins at the current level of precision. This value should be regulated over time by the isotopic balance of Ge sources and sinks, and a new compilation of these fluxes is presented, along with their estimated isotopic compositions. Assuming steady-state, non-opal Ge sequestration during sediment authigenesis likely involves isotopic fractionation Δ74Gesolid-solution that is -0.6 ± 1.8‰.

  18. Strong room temperature electroluminescence from lateral p-SiGe/i-Ge/n-SiGe heterojunction diodes on silicon-on-insulator substrate

    Science.gov (United States)

    Lin, Guangyang; Yi, Xiaohui; Li, Cheng; Chen, Ningli; Zhang, Lu; Chen, Songyan; Huang, Wei; Wang, Jianyuan; Xiong, Xihuan; Sun, Jiaming

    2016-10-01

    A lateral p-Si0.05Ge0.95/i-Ge/n-Si0.05Ge0.95 heterojunction light emitting diode on a silicon-on-insulator (SOI) substrate was proposed, which is profitable to achieve higher luminous extraction compared to vertical junctions. Due to the high carrier injection ratio of heterostructures and optical reflection at the SiO2/Si interface of the SOI, strong room temperature electroluminescence (EL) at around 1600 nm from the direct bandgap of i-Ge with 0.30% tensile strain was observed. The EL peak intensity of the lateral heterojunction is enhanced by ˜4 folds with a larger peak energy than that of the vertical Ge p-i-n homojunction, suggesting that the light emitting efficiency of the lateral heterojunction is effectively improved. The EL peak intensity of the lateral heterojunction, which increases quadratically with injection current density, becomes stronger for diodes with a wider i-Ge region. The CMOS compatible fabrication process of the lateral heterojunctions paves the way for the integration of the light source with the Ge metal-oxide-semiconductor field-effect-transistor.

  19. Space charge sign inversion and electric field reconstruction in 24 GeV/c proton-irradiated MCz Si p$^+$-n(TD)-n$^+$ detectors processed via thermal donor introduction

    CERN Document Server

    Li, Z; Carini, G; Chen, W; Eremin, V; Gul, R; Harkonen, J; Li, M

    2009-01-01

    The aim of this study is the evaluation of radiation effects in detectors based on p-type magnetic czochralski (MCz) Si that was converted to n-type by thermal donor (TD) introduction. As-processed p+-p-n+ detectors were annealed at 430 °C resulting in p+-n(TD)-n+ structures. The space charge sign and the electric field distribution E(x) in MCz Si p+-n(TD)-n+ detectors irradiated by 24 GeV/c protons were analyzed using the data on the current pulse response and the Double Peak (DP) electric field distribution model for heavily irradiated detectors. The approach considers an irradiated detector as a structure with three regions in which the electric field depends on the coordinate, and the induced current pulse response arises from the drift process of free carriers in the detector with variable electric field. Reconstruction of the E(x) profile from the pulse response shapes is performed employing a new method for DP electric field reconstruction. This method includes: (a) a direct extraction of charge loss ...

  20. Ge/SiGe superlattices for nanostructured thermoelectric modules

    Energy Technology Data Exchange (ETDEWEB)

    Chrastina, D., E-mail: daniel@chrastina.net [L-NESS Politecnico di Milano, Polo di Como, via Anzani 42, 22100 Como (Italy); Cecchi, S. [L-NESS Politecnico di Milano, Polo di Como, via Anzani 42, 22100 Como (Italy); Hague, J.P. [Department of Physical Sciences, The Open University, Walton Hall, Milton Keynes, MK7 6AA (United Kingdom); Frigerio, J. [L-NESS Politecnico di Milano, Polo di Como, via Anzani 42, 22100 Como (Italy); Samarelli, A.; Ferre–Llin, L.; Paul, D.J. [School of Engineering, University of Glasgow, Oakfield Avenue, Glasgow, G12 8LT (United Kingdom); Müller, E. [Electron Microscopy ETH Zurich (EMEZ), ETH-Zürich, CH-8093 (Switzerland); Etzelstorfer, T.; Stangl, J. [Institut für Halbleiter und Festkörperphysik, Universität Linz, A-4040 Linz (Austria); Isella, G. [L-NESS Politecnico di Milano, Polo di Como, via Anzani 42, 22100 Como (Italy)

    2013-09-30

    Thermoelectrics are presently used in a number of applications for both turning heat into electricity and also for using electricity to produce cooling. Mature Si/SiGe and Ge/SiGe heteroepitaxial growth technology would allow highly efficient thermoelectric materials to be engineered, which would be compatible and integrable with complementary metal oxide silicon micropower circuits used in autonomous systems. A high thermoelectric figure of merit requires that electrical conductivity be maintained while thermal conductivity is reduced; thermoelectric figures of merit can be improved with respect to bulk thermoelectric materials by fabricating low-dimensional structures which enhance the density of states near the Fermi level and through phonon scattering at heterointerfaces. We have grown and characterized Ge-rich Ge/SiGe/Si superlattices for nanofabricated thermoelectric generators. Low-energy plasma-enhanced chemical vapor deposition has been used to obtain nanoscale-heterostructured material which is several microns thick. Crystal quality and strain control have been investigated by means of high resolution X-ray diffraction. High-resolution transmission electron microscopy images confirm the material and interface quality. Electrical conductivity has been characterized by the mobility spectrum technique. - Highlights: ► High-quality Ge/SiGe multiple quantum wells for thermoelectric applications ► Mobility spectra of systems featuring a large number of parallel conduction channels ► Competitive thermoelectric properties measured in single devices.

  1. Search for new charmonium states in the processes e+ e- --> J/psi D(*) D(*) at sqrt{s} ~ 10.6 GeV

    CERN Document Server

    Abe, K; Arinstein, K; Aso, T; Aulchenko, V; Aushev, T; Aziz, T; Bahinipati, S; Bakich, A M; Balagura, V; Ban, Y; Banerjee, S; Barberio, E; Bay, A; Bedny, I; Belous, K S; Bhardwaj, V; Bitenc, U; Blyth, S; Bondar, A; Bozek, A; Bracko, M; Brodzicka, J; Browder, T E; Chang, M C; Chang, P; Chao, Y; Chen, A; Chen, K F; Chen, W T; Cheon, B G; Chiang, C C; Chistov, R; Cho, I S; Choi, S K; Choi, Y; Choi, Y K; Cole, S; Dalseno, J; Danilov, M; Das, A; Dash, M; Dragic, J; Drutskoy, A; Eidelman, S; Epifanov, D; Fratina, S; Fujii, H; Fujikawa, M; Gabyshev, N; Garmash, A; Go, A; Gokhroo, G; Goldenzweig, P; Golob, B; Grosse-Perdekamp, M; Guler, H; Ha, H; Haba, J; Hara, K; Hara, T; Hasegawa, Y; Hastings, N C; Hayasaka, K; Hayashii, H; Hazumi, M; Heffernan, D; Higuchi, T; Hinz, L; Hoedlmoser, H; Hokuue, T; Horii, Y; Hoshi, Y; Hoshina, K; Hou, S; Hou, W S; Hsiung, Y B; Hyun, H J; Igarashi, Y; Iijima, T; Ikado, K; Inami, K; Ishikawa, A; Ishino, H; Itoh, R; Iwabuchi, M; Iwasaki, M; Iwasaki, Y; Jacoby, C; Joshi, N J; Kaga, M; Kah, D H; Kaji, H; Kajiwara, S; Kakuno, H; Kang, J H; Kapusta, P; Kataoka, S U; Katayama, N; Kawai, H; Kawasaki, T; Kibayashi, A; Kichimi, H; Kim, H J; Kim, H O; Kim, J H; Kim, S K; Kim, Y J; Kinoshita, K; Korpar, S; Kozakai, Y; Krizan, P; Krokovny, P; Kumar, R; Kurihara, E; Kusaka, A; Kuzmin, A; Kwon, Y J; Lange, J S; Leder, G; Lee, J; Lee, J S; Lee, M J; Lee, S E; Lesiak, T; Li, J; Limosani, A; Lin, S W; Liu, Y; Liventsev, D; MacNaughton, J; Majumder, G; Mandl, F; Marlow, D; Matsumura, T; Matyja, A; McOnie, S; Medvedeva, T; Mikami, Y; Mitaroff, W A; Miyabayashi, K; Miyake, H; Miyata, H; Miyazaki, Y; Mizuk, R; Moloney, G R; Mori, T; Müller, J; Murakami, A; Nagamine, T; Nagasaka, Y; Nakahama, Y; Nakamura, I; Nakano, E; Nakao, M; Nakayama, H; Nakazawa, H; Natkaniec, Z; Neichi, K; Nishida, S; Nishimura, K; Nishio, Y; Nishizawa, I; Nitoh, O; Noguchi, S; Nozaki, T; Ogawa, A; Ogawa, S; Ohshima, T; Okuno, S; Olsen, S L; Ono, S; Ostrowicz, W; Ozaki, H; Pakhlov, P; Pakhlova, G; Palka, H; Park, C W; Park, H; Park, K S; Parslow, N; Peak, L S; Pernicka, M; Pestotnik, R; Peters, M; Piilonen, L E; Poluektov, A; Rorie, J; Rózanska, M; Sahoo, H; Sakai, Y; Sakaue, H; Sasao, N; Sarangi, T R; Satoyama, N; Sayeed, K; Schietinger, T; Schneider, O; Schonmeier, P; Schümann, J; Schwanda, C; Schwartz, A J; Seidl, R; Sekiya, A; Senyo, K; Sevior, M E; Shang, L; Shapkin, M; Shen, C P; Shibuya, H; Shinomiya, S; Shiu, J G; Shwartz, B; Singh, J B; Sokolov, A; Solovieva, E; Somov, A; Stanic, S; Staric, M; Stypula, J; Sugiyama, A; Sumisawa, K; Sumiyoshi, T; Suzuki, S; Suzuki, S Y; Tajima, O; Takasaki, F; Tamai, K; Tamura, N; Tanaka, M; Taniguchi, N; Taylor, G N; Teramoto, Y; Tikhomirov, I; Trabelsi, K; Tse, Y F; Tsuboyama, T; Uchida, K; Uchida, Y; Uehara, S; Ueno, K; Uglov, T; Unno, Y; Uno, S; Urquijo, P; Ushiroda, Y; Usov, Yu; Varner, G; Varvell, K E; Vervink, K; Villa, S; Vinokurova, A; Wang, C C; Wang, C H; Wang, J; Wang, M Z; Wang, P; Wang, X L; Watanabe, M; Watanabe, Y; Wedd, R; Wicht, J; Widhalm, L; Wiechczynski, J; Won, E; Yabsley, B D; Yamaguchi, A; Yamamoto, H; Yamaoka, M; Yamashita, Y; Yamauchi, M; Yuan, C Z; Yusa, Y; Zhang, C C; Zhang, L M; Zhang, Z P; Zhilich, V; Zhulanov, V; Zupanc, A; Zwahlen, N

    2007-01-01

    We present a study of the X(3940) state in the process e+e- -> J/psi D* Dbar. The X(3940) mass and width are measured to be (3942 +7 -6 +- 6)MeV/c^2 and Gamma=(37 + 26 - 15 +- 8 MeV. In the process e+e- -> J/psi D* D*bar we have observed another charmonium-like state, which we denote as X(4160), in the spectrum of invariant masses of D*+ D*- combinations. The X(4160) parameters are M= 4156 + 25 - 20 +- 15 MeV/c^2 and Gamma = 139 + 111 -61 +- 21 MeV. The analysis is based on a data sample with an integrated luminosity of 693 /fb recorded near the Upsilon(4S) resonance with the Belle detector at the KEKB e+ e- asymmetric-energy collider.

  2. Search for the process e+e- →J/ψX(1835) at√s≈10.6 GeV

    Energy Technology Data Exchange (ETDEWEB)

    He, X. H.; Wang, J.; Ban, Y.; Wang, P.; Adachi, I.; Aihara, H.; Asner, David M.; Aulchenko, V.; Aushev, T.; Bakich, A. M.; Bala, Anu; Bonvicini, Giovanni; Bozek, A.; Chekelian, V.; Chen, A.; Cheon, B. G.; Chilikin, K.; Choi, Y.; Cinabro, David A.; Dalseno, J.; Dolezal, Z.; Drasal, Z.; Dutta, Deepanwita; Eidelman, S.; Farhat, H.; Fast, James E.; Ferber, T.; Gaur, Vipin; Gabyshev, N.; Garmash, Alexey; Gillard, R.; Goh, Y. M.; Golob, B.; Haba, J.; Hayashii, H.; Hoshi, Y.; Hou, W. S.; Hsiung, Y. B.; Ishikawa, A.; Julius, T.; Kang, J. H.; Kato, E.; Kawasaki, T.; Kiesling, C.; Kim, D. Y.; Kim, J. H.; Kim, M. J.; Kim, Y. J.; Kinoshita, Kay; Klucar, Jure; Ko, Byeong Rok; Kodys, P.; Lee, S. H.; Libby, J.; Liu, Y.; Liventsev, Dmitri; Matvienko, D.; Miyata, H.; Mizuk, R.; Moll, A.; Muramatsu, N.; Mussa, Roberto; Nakao, M.; Nayak, Minakshi; Nedelkovska, E.; Nisar, N. K.; Nishida, S.; Nitoh, O.; Ogawa, S.; Okuno, S.; Olsen, Stephen L.; Pakhlova, Galina; Park, H.; Pestotnik, Rok; Petric, Marko; Piilonen, Leo E.; Ritter, M.; Rohrken, M.; Rostomyan, A.; Sahoo, Himansu B.; Sakai, Y.; Sandilya, Saurabh; Santelj, Luka; Sanuki, T.; Savinov, Vladimir; Schneider, O.; Schnell, G.; Schwanda, C.; Senyo, K.; Seon, O.; Shapkin, M.; Shen, C. P.; Shibata, TA; Shiu, Jing-Ge; Shwartz, B.; Sibidanov, A.; Sohn, Young-Soo; Solovieva, E.; Stanic, S.; Staric, M.; Sumiyoshi, T.; Tamponi, Umberto; Tanida, K.; Tatishvili, Gocha; Teramoto, Y.; Uchida, M.; Uglov, T.; Unno, Yuji; Van Hulse, C.; Varner, Gary; Wang, C. H.; Watanabe, Y.; Yamashita, Yuji; Yashchenko, S.; Zhang, C. C.; Zhang, Z. P.; Zhilich, V.; Zhulanov, V.; Zupanc, A.

    2013-02-24

    We report the results of a search for the X(1835) state in the process e+e-→J/ψX(1835) using a data sample of 672 fb-1 collected with the Belle detector at and near the Υ(4S) resonance at the KEKB asymmetric-energy e+e- collider. No significant evidence is found for this process, and an upper limit is set on its cross section times the branching fraction: σBorn(e+e-→J/ψX(1835))•B(X(1835)→≥3 charged tracks)<1.3 fb at 90% confidence level.

  3. Measurement of the Cross-Section for the Process $\\gamma\\gamma \\to p \\overline{p}$ at $\\sqrt{s}_{ee}$=183-189 GeV at LEP

    CERN Document Server

    Abbiendi, G.; Akesson, P.F.; Alexander, G.; Allison, John; Amaral, P.; Anagnostou, G.; Anderson, K.J.; Arcelli, S.; Asai, S.; Axen, D.; Azuelos, G.; Bailey, I.; Barberio, E.; Barillari, T.; Barlow, R.J.; Batley, R.J.; Bechtle, P.; Behnke, T.; Bell, Kenneth Watson; Bell, P.J.; Bella, G.; Bellerive, A.; Benelli, G.; Bethke, S.; Biebel, O.; Bloodworth, I.J.; Boeriu, O.; Bock, P.; Bonacorsi, D.; Boutemeur, M.; Braibant, S.; Brigliadori, L.; Brown, Robert M.; Buesser, K.; Burckhart, H.J.; Campana, S.; Carnegie, R.K.; Caron, B.; Carter, A.A.; Carter, J.R.; Chang, C.Y.; Charlton, David G.; Csilling, A.; Cuffiani, M.; Dado, S.; Dallavalle, G.Marco; Dallison, S.; De Roeck, A.; De Wolf, E.A.; Desch, K.; Dienes, B.; Donkers, M.; Dubbert, J.; Duchovni, E.; Duckeck, G.; Duerdoth, I.P.; Elfgren, E.; Etzion, E.; Fabbri, F.; Feld, L.; Ferrari, P.; Fiedler, F.; Fleck, I.; Ford, M.; Frey, A.; Furtjes, A.; Gagnon, P.; Gary, John William; Gaycken, G.; Geich-Gimbel, C.; Giacomelli, G.; Giacomelli, P.; Giunta, Marina; Goldberg, J.; Gross, E.; Grunhaus, J.; Gruwe, M.; Gunther, P.O.; Gupta, A.; Hajdu, C.; Hamann, M.; Hanson, G.G.; Harder, K.; Harel, A.; Harin-Dirac, M.; Hauschild, M.; Hauschildt, J.; Hawkes, C.M.; Hawkings, R.; Hemingway, R.J.; Hensel, C.; Herten, G.; Heuer, R.D.; Hill, J.C.; Hoffman, Kara Dion; Homer, R.J.; Horvath, D.; Howard, R.; Huntemeyer, P.; Igo-Kemenes, P.; Ishii, K.; Jeremie, H.; Jovanovic, P.; Junk, T.R.; Kanaya, N.; Kanzaki, J.; Karapetian, G.; Karlen, D.; Kartvelishvili, V.; Kawagoe, K.; Kawamoto, T.; Keeler, R.K.; Kellogg, R.G.; Kennedy, B.W.; Kim, D.H.; Klein, K.; Klier, A.; Kluth, S.; Kobayashi, T.; Kobel, M.; Komamiya, S.; Kormos, Laura L.; Kowalewski, Robert V.; Kramer, T.; Kress, T.; Krieger, P.; von Krogh, J.; Krop, D.; Kruger, K.; Kupper, M.; Lafferty, G.D.; Landsman, H.; Lanske, D.; Layter, J.G.; Leins, A.; Lellouch, D.; Letts, J.; Levinson, L.; Lillich, J.; Lloyd, S.L.; Loebinger, F.K.; Lu, J.; Ludwig, J.; Macpherson, A.; Mader, W.; Marcellini, S.; Marchant, T.E.; Martin, A.J.; Martin, J.P.; Masetti, G.; Mashimo, T.; Mattig, Peter; McDonald, W.J.; McKenna, J.; McMahon, T.J.; McPherson, R.A.; Meijers, F.; Mendez-Lorenzo, P.; Menges, W.; Merritt, F.S.; Mes, H.; Michelini, A.; Mihara, S.; Mikenberg, G.; Miller, D.J.; Moed, S.; Mohr, W.; Mori, T.; Mutter, A.; Nagai, K.; Nakamura, I.; Neal, H.A.; Nisius, R.; O'Neale, S.W.; Oh, A.; Okpara, A.; Oreglia, M.J.; Orito, S.; Pahl, C.; Pasztor, G.; Pater, J.R.; Patrick, G.N.; Pilcher, J.E.; Pinfold, J.; Plane, David E.; Poli, B.; Polok, J.; Pooth, O.; Przybycien, M.; Quadt, A.; Rabbertz, K.; Rembser, C.; Renkel, P.; Rick, H.; Roney, J.M.; Rosati, S.; Rozen, Y.; Runge, K.; Sachs, K.; Saeki, T.; Sahr, O.; Sarkisyan, E.K.G.; Schaile, A.D.; Schaile, O.; Scharff-Hansen, P.; Schieck, J.; Schoerner-Sadenius, Thomas; Schroder, Matthias; Schumacher, M.; Schwick, C.; Scott, W.G.; Seuster, R.; Shears, T.G.; Shen, B.C.; Shepherd-Themistocleous, C.H.; Sherwood, P.; Siroli, G.; Skuja, A.; Smith, A.M.; Sobie, R.; Soldner-Rembold, S.; Spagnolo, S.; Spano, F.; Stahl, A.; Stephens, K.; Strom, David M.; Strohmer, R.; Tarem, S.; Tasevsky, M.; Taylor, R.J.; Teuscher, R.; Thomson, M.A.; Torrence, E.; Toya, D.; Tran, P.; Trefzger, T.; Tricoli, A.; Trigger, I.; Trocsanyi, Z.; Tsur, E.; Turner-Watson, M.F.; Ueda, I.; Ujvari, B.; Vachon, B.; Vollmer, C.F.; Vannerem, P.; Verzocchi, M.; Voss, H.; Vossebeld, J.; Waller, D.; Ward, C.P.; Ward, D.R.; Watkins, P.M.; Watson, A.T.; Watson, N.K.; Wells, P.S.; Wengler, T.; Wermes, N.; Wetterling, D.; Wilson, G.W.; Wilson, J.A.; Wolf, G.; Wyatt, T.R.; Yamashita, S.; Zer-Zion, D.; Zivkovic, Lidija

    2003-01-01

    The exclusive production of proton-antiproton pairs in the collisions of two quasi-real photons had been studied using data taken at sqrt(s)_ee=183 GeV and 189 GeV with the OPAL detector at LEP. Results are presented for Ppbar invariant masses, W, in the range 2.15 W< <3.95 GeV. The cross-section measurements are compared with previous data and with recent analytic calculations based on the quark-diquark model.

  4. Walking from 750 GeV to 950 GeV in the technipion zoo

    Science.gov (United States)

    Matsuzaki, Shinya; Yamawaki, Koichi

    2016-06-01

    If the 750-GeV diphoton excess is identified with the color-singlet isosinglet technipion P0 (750) in the one-family walking technicolor model, as in our previous paper, then there should exist another color-singlet technipion-isotriplet one, P±,3, predicted at around 950 GeV independently of the dynamical details. The P±,3(950 ) are produced at the LHC via vector-boson and photon-fusion processes, predominantly decaying to W γ and γ γ , respectively. Those walking technicolor signals can be explored at run 2 or 3, which would further open the door for a plethora of other (colored) technipions.

  5. Isospin structure in 68Ge

    Institute of Scientific and Technical Information of China (English)

    BAI Hong-Bo; DONG Hong-Fei; ZHANG Jin-Fu; LU Li-Jun; CAO Wan-Cang; LI Xiao-Wei; WANg Yin

    2009-01-01

    The interacting boson model-3(IBM-3) has been used to study the low-energy level structure and electromagnetic transitions of 68Ge nucleus. The main components of the wave function for some states are also analyzed respectively. The theoretical calculations are in agreement with experimental data, and the 68Ge is in transition from U(5) to SU(3).

  6. 12 GeV Upgrade

    Energy Technology Data Exchange (ETDEWEB)

    None

    2017-01-01

    To expand the opportunity for discovery, Jefferson Lab is upgrading its facility by doubling the maximum energy of CEBAF's electron beam from 6 billion electron volts (GeV) to 12 billion electron volts (GeV), constructing a new experimental hall and upgrading its three existing experimental halls.

  7. Nanocrystals formation and fractal microstructural assessment in Au/Ge bilayer films upon annealing

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Z.W. [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong (China)]. E-mail: cnzwchen@yahoo.com.cn; Lai, J.K.L. [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong (China); Shek, C.H. [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong (China); Chen, H.D. [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong (China)

    2005-08-31

    Nanocrystals formation and fractal microstructural assessment in Au/Ge bilayer films upon annealing have been investigated by transmission electron microscopy and high-resolution transmission electron microscopy observations. Experimental results indicated that the microstructure of the metal Au film plays an important role in metal-induced crystallization for Au/Ge bilayer films upon annealing. Synchronously, the crystallization processes of amorphous Ge accompanied by the formation of Ge fractal clusters, which were composed of Ge nanocrystals. We found that the grain boundaries of polycrystalline Au film were the initial nucleation sites of Ge nanocrystals. High-resolution transmission electron microscopy observations showed successive nucleation of amorphous Ge at Au grain boundaries near fractal tips. The crystallization process was suggested to be diffusion controlled and a random successive nucleation and growth mechanism.

  8. Low-temperature reduction of Ge oxide by Si and SiH4 in low-pressure H2 and Ar environment

    Science.gov (United States)

    Minami, Kaichiro; Moriya, Atsushi; Yuasa, Kazuhiro; Maeda, Kiyohiko; Yamada, Masayuki; Kunii, Yasuo; Niwano, Michio; Murota, Junichi

    2015-08-01

    Introduction of Ge into ULSIs has become increasingly attractive because of the higher carrier mobility of Ge. Since Ge native oxide is formed easily in cleanroom air, the control of formation and reduction of the Ge oxide is requested for the introduction of Ge layers into Si process. Here, the reactions between gas phase Ge oxide and Si substrate and between the Ge oxide on Ge epitaxial layer and SiH4 are investigated. The native-oxidized Ge amount is obtained by calculating from chemically shifted peak intensity of Ge 3d measured by X-ray photoelectron spectroscopy. By the adsorption of the Ge oxide on Si(1 0 0) surface, pure Ge and Si oxide are formed on the Si surface even at 350 °C and the formed Ge amount tends to correspond to the oxidized Si amount, independently of the heat-treatment environment of H2 and Ar under the condition that Si oxide is not reduced by H2. By SiH4 treatment, the amount of the oxidized Ge on the Ge layer decreases drastically even at 350 °C and Si oxide is formed on the Ge layer. From these results, it is suggested that the Ge oxide is reduced even at 350 °C by Si or SiH4, and the Si oxide and the pure Ge are formed.

  9. A comparative study of different potentials for molecular dynamics simulations ofrapid solidification process of SiGe alloy melt%两种势下硅锗合金熔体快速凝固过程的分子动力学模拟

    Institute of Scientific and Technical Information of China (English)

    郭笑天; 闫万珺; 高廷红; 谢卓成; 谢泉

    2014-01-01

    Molecular dynamic simulations of rapid solidification process of SiGe alloy melt are carried out .The atomic interactions in SiGe alloy are calculated by using Stillinger -Weber (S -W) potential and Tersoff potential respectively .According to the investigations of structural characterization methods with the Genernal rules of density and volume changes during the solidification of SiGe alloy .It is found that Tersoff potential is more appropriate to describe the rapid quenching process of SiGe alloy melt com-pared with S -W potential .%分别采用Stillinger Weber(S-W)势和Tersoff势来描述硅锗原子间相互作用,运用分子动力学方法对比模拟研究了硅锗合金熔体的快速凝固过程。通过对径向分布函数、静态结构因子、键角分布函数、配位数、Voronoi多面体以及宏观密度的研究,综合对比发现,Tersoff势和S -W势相比更适合描述硅锗合金的快速凝固过程。

  10. Properties of slow traps of ALD Al{sub 2}O{sub 3}/GeO{sub x}/Ge nMOSFETs with plasma post oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Ke, M., E-mail: kiramn@mosfet.t.u-tokyo.ac.jp; Yu, X.; Chang, C.; Takenaka, M.; Takagi, S. [Department of Electrical Engineering and Information Systems, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan and JST-CREST, K' s Gobancho 6F, 7 Gobancho, Chiyoda-ku, Tokyo 102-0076 (Japan)

    2016-07-18

    The realization of Ge gate stacks with a small amount of slow trap density as well as thin equivalent oxide thickness and low interface state density (D{sub it}) is a crucial issue for Ge CMOS. In this study, we examine the properties of slow traps, particularly the location of slow traps, of Al{sub 2}O{sub 3}/GeO{sub x}/n-Ge and HfO{sub 2}/Al{sub 2}O{sub 3}/GeO{sub x}/n-Ge MOS interfaces with changing the process and structural parameters, formed by atomic layer deposition (ALD) of Al{sub 2}O{sub 3} and HfO{sub 2}/Al{sub 2}O{sub 3} combined with plasma post oxidation. It is found that the slow traps can locate in the GeO{sub x} interfacial layer, not in the ALD Al{sub 2}O{sub 3} layer. Furthermore, we study the time dependence of channel currents in the Ge n-MOSFETs with 5-nm-thick Al{sub 2}O{sub 3}/GeO{sub x}/Ge gate stacks, with changing the thickness of GeO{sub x}, in order to further clarify the position of slow traps. The time dependence of the current drift and the effective time constant of slow traps do not change among the MOSFETs with the different thickness GeO{sub x}, demonstrating that the slow traps mainly exist near the interfaces between Ge and GeO{sub x}.

  11. Monolithically Integrated Ge-on-Si Active Photonics

    OpenAIRE

    Jifeng Liu

    2014-01-01

    Monolithically integrated, active photonic devices on Si are key components in Si-based large-scale electronic-photonic integration for future generations of high-performance, low-power computation and communication systems. Ge has become an interesting candidate for active photonic devices in Si photonics due to its pseudo-direct gap behavior and compatibility with Si complementary metal oxide semiconductor (CMOS) processing. In this paper, we present a review of the recent progress in Ge-on...

  12. Monolithically Integrated Ge-on-Si Active Photonics

    Directory of Open Access Journals (Sweden)

    Jifeng Liu

    2014-07-01

    Full Text Available Monolithically integrated, active photonic devices on Si are key components in Si-based large-scale electronic-photonic integration for future generations of high-performance, low-power computation and communication systems. Ge has become an interesting candidate for active photonic devices in Si photonics due to its pseudo-direct gap behavior and compatibility with Si complementary metal oxide semiconductor (CMOS processing. In this paper, we present a review of the recent progress in Ge-on-Si active photonics materials and devices for photon detection, modulation, and generation. We first discuss the band engineering of Ge using tensile strain, n-type doping, Sn alloying, and separate confinement of Γ vs. L electrons in quantum well (QW structures to transform the material towards a direct band gap semiconductor for enhancing optoelectronic properties. We then give a brief overview of epitaxial Ge-on-Si materials growth, followed by a summary of recent investigations towards low-temperature, direct growth of high crystallinity Ge and GeSn alloys on dielectric layers for 3D photonic integration. Finally, we review the most recent studies on waveguide-integrated Ge-on-Si photodetectors (PDs, electroabsorption modulators (EAMs, and laser diodes (LDs, and suggest possible future research directions for large-scale monolithic electronic-photonic integrated circuits on a Si platform.

  13. Photoluminescence of phosphorus atomic layer doped Ge grown on Si

    Science.gov (United States)

    Yamamoto, Yuji; Nien, Li-Wei; Capellini, Giovanni; Virgilio, Michele; Costina, Ioan; Schubert, Markus Andreas; Seifert, Winfried; Srinivasan, Ashwyn; Loo, Roger; Scappucci, Giordano; Sabbagh, Diego; Hesse, Anne; Murota, Junichi; Schroeder, Thomas; Tillack, Bernd

    2017-10-01

    Improvement of the photoluminescence (PL) of Phosphorus (P) doped Ge by P atomic layer doping (ALD) is investigated. Fifty P delta layers of 8 × 1013 cm‑2 separated by 4 nm Ge spacer are selectively deposited at 300 °C on a 700 nm thick P-doped Ge buffer layer of 1.4 × 1019 cm‑3 on SiO2 structured Si (100) substrate. A high P concentration region of 1.6 × 1020 cm‑3 with abrupt P delta profiles is formed by the P-ALD process. Compared to the P-doped Ge buffer layer, a reduced PL intensity is observed, which might be caused by a higher density of point defects in the P delta doped Ge layer. The peak position is shifted by ∼0.1 eV towards lower energy, indicating an increased active carrier concentration in the P-delta doped Ge layer. By introducing annealing at 400 °C to 500 °C after each Ge spacer deposition, P desorption and diffusion is observed resulting in relatively uniform P profiles of ∼2 × 1019 cm‑3. Increased PL intensity and red shift of the PL peak are observed due to improved crystallinity and higher active P concentration.

  14. B electrical activation in crystalline and preamorphized Ge

    Energy Technology Data Exchange (ETDEWEB)

    Bruno, E. [MATIS CNR-INFM and Dipartimento di Fisica e Astronomia, Universita di Catania, Via S. Sofia 64, 95123 Catania (Italy); Impellizzeri, G. [MATIS CNR-INFM and Dipartimento di Fisica e Astronomia, Universita di Catania, Via S. Sofia 64, 95123 Catania (Italy)], E-mail: giuliana.impellizzeri@ct.infn.it; Mirabella, S.; Piro, A.M.; Irrera, A.; Grimaldi, M.G. [MATIS CNR-INFM and Dipartimento di Fisica e Astronomia, Universita di Catania, Via S. Sofia 64, 95123 Catania (Italy)

    2008-12-05

    In this work we compare the B electrical activity in crystalline (c-Ge) and preamorphized Ge (PAI-Ge), in order to elucidate the activation mechanisms involved in the two cases and evidence the possible advantages of an approach over to the other. With this aim, we independently measured the hole fluence and the sheet resistance, thus extracting the carrier mobility, as a function of the implanted B fluence. In particular, we evidenced that it is possible to reproduce the metastability of the PAI process implanting B in c-Ge at very high fluences. However, by properly choosing the implantation conditions in c-Ge, in such a way to disable dynamic annealing during implantation, the activation of B can be raised up to the level attainable in PAI-Ge also for lower B fluences. Finally, the thermal evolution of the formed junction was tested, evidencing a high stability under annealing up to 550 deg. C in both c- and PAI-Ge.

  15. Ge-on-Si optoelectronics

    Energy Technology Data Exchange (ETDEWEB)

    Liu Jifeng, E-mail: Jifeng.Liu@Dartmouth.edu [Thayer School of Engineering, Dartmouth College, Hanover, NH 03755 (United States); Camacho-Aguilera, Rodolfo; Bessette, Jonathan T.; Sun, Xiaochen [Microphotonics Center, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Wang Xiaoxin [Thayer School of Engineering, Dartmouth College, Hanover, NH 03755 (United States); Cai Yan; Kimerling, Lionel C.; Michel, Jurgen [Microphotonics Center, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States)

    2012-02-01

    Electronic-photonic synergy has become an increasingly clear solution to enhance the bandwidth and improve the energy efficiency of information systems. Monolithic integration of optoelectronic devices is the ideal solution for large-scale electronic-photonic synergy. Due to its pseudo-direct gap behavior in optoelectronic properties and compatibility with Si electronics, epitaxial Ge-on-Si has become an attractive solution for monolithic optoelectronics. In this paper we will review recent progress in Ge-on-Si optoelectronics, including photodetectors, electroabsorption modulators, and lasers. The performance of these devices has been enhanced by band-engineering such as tensile strain and n-type doping, which transforms Ge towards a direct gap material. Selective growth reduces defect density and facilitates monolithic integration at the same time. Ge-on-Si photodetectors have approached or exceeded the performance of their III-V counterparts, with bandwidth-efficiency product > 30 GHz for p-i-n photodiodes and bandwidth-gain product > 340 GHz for avalanche photodiodes. Enhanced Franz-Keldysh effect in tensile-strained Ge offers ultralow energy photonic modulation with < 30 fJ/bit energy consumption and > 100 GHz intrinsic bandwidth. Room temperature optically-pumped lasing as well as electroluminescence has also been achieved from the direct gap transition of band-engineered Ge-on-Si waveguides. These results indicate that band-engineered Ge-on-Si is promising to achieve monolithic active optoelectronic devices on a Si platform.

  16. Higgs Mass and Cross-Section Measurements at a 500 GeV CLIC Machine, Operating at sqrt(s) = 350 GeV and 500 GeV

    CERN Document Server

    Marshall, J

    2012-01-01

    Higgs mass and cross-section measurements have been examined to assess the capability of a 500 GeV CLIC machine, operating at centre-of-mass energies of 350 GeV and 500 GeV. A Higgs mass of 120 GeV and a luminosity of 500 fb−1 were assumed. Model-independent measurements were performed by examining the recoil of the Z in the Higgsstrahlung process, with the Z subsequently decaying to a pair of muons or electrons.

  17. New approach to the growth of low dislocation relaxed SiGe material

    Science.gov (United States)

    Powell, A. R.; Iyer, S. S.; LeGoues, F. K.

    1994-04-01

    In this growth process a new strain relief mechanism operates, whereby the SiGe epitaxial layer relaxes without the generation of threading dislocations within the SiGe layer. This is achieved by depositing SiGe on an ultrathin silicon on insulator (SOI) substrate with a superficial silicon thickness less than the SiGe layer thickness. Initially, the thin Si layer is put under tension due to an equalization of the strain between the Si and SiGe layers. Thereafter, the strain created in the thin Si layer relaxes by plastic deformation. Since the dislocations are formed and glide in the thin Si layer, no threading dislocation is ever introduced in to the upper SiGe material, which appeared dislocation free to the limit of the cross sectional transmission electron microscopy analysis. We thus have a method for producing very low dislocation, relaxes SiGe films with the additional benefit of an SOI substrate.

  18. Novel Solution Process for Fabricating Ultra-Thin-Film Absorber Layers in Fe2SiS4 and Fe2GeS4 Photovoltaics

    Energy Technology Data Exchange (ETDEWEB)

    Orefuwa, Samuel A.; Lai, Cheng-Yu; Dobson, Kevin D.; Ni, Chaoying; Radu, Daniela R.

    2014-05-12

    Fe2SiS4 and Fe2GeS4 crystalline materials posses direct bandgaps of ~1.55 and ~1.4 eV respectively and an absorption coefficient larger than 10^5 cm–1; their theoretical potential as solar photovoltaic absorbers has been demonstrated. However, no solar devices that employ either Fe2SiS4 or Fe2GeS4 have been reported to date. In the presented work, nanoprecursors to Fe2SiS4 and Fe2GeS4 have been fabricated and employed to build ultra-thin-film layers via spray coating and rod coating methods. Temperature-dependent X-Ray diffraction analyses of nanoprecursors coatings show an unprecedented low temperature for forming crystalline Fe2SiS4 and Fe2GeS4. Fabricating of ultra-thin-film photovoltaic devices utilizing Fe2SiS4 and Fe2GeS4 as solar absorber material is presented.

  19. <300> GeV team

    CERN Multimedia

    1971-01-01

    The 300 GeV team had been assembled. In the photograph are Hans Horisberger, Clemens Zettler, Roy Billinge, Norman Blackburne, John Adams, Hans-Otto Wuster, Lars Persson, Bas de Raad, Hans Goebel, Simon Van der Meer.

  20. Defect and dislocation structures in low-temperature-grown Ge and Ge{sub 1−x}Sn{sub x} epitaxial layers on Si(110) substrates

    Energy Technology Data Exchange (ETDEWEB)

    Kidowaki, Shohei [Department of Crystalline Materials Science, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan); Asano, Takanori [Department of Crystalline Materials Science, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan); Research Fellow of Japan Society for the Promotion of Science, 5-3-1, Kojimachi, Chiyoda-ku, Tokyo 102-0083 (Japan); Shimura, Yosuke [Department of Crystalline Materials Science, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan); Kurosawa, Masashi [Department of Crystalline Materials Science, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan); Institute of Materials and Systems for Sustainability, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan); Taoka, Noriyuki [Department of Crystalline Materials Science, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan); Nakatsuka, Osamu, E-mail: nakatuka@alice.xtal.nagoya-u.ac.jp [Department of Crystalline Materials Science, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan); Zaima, Shigeaki [Department of Crystalline Materials Science, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan); Institute of Materials and Systems for Sustainability, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan)

    2016-01-01

    We have investigated the epitaxial growth and crystalline properties of Ge{sub 1−x}Sn{sub x} layers on a Si(110) substrate. We found that the twin growth in the Ge epitaxial layer deposited on the Si(110) using molecular beam epitaxy at a low temperature of 200 °C can be effectively suppressed by the incorporation of 2.0% Sn. We also examined the strain relaxation of annealed Ge{sub 1−x}Sn{sub x}/Si(110) samples. The degree of strain relaxation is enhanced by the annealing process, and the threading dislocation in the Ge{sub 1−x}Sn{sub x} layers decreases from 10{sup 11} cm{sup −2} to 10{sup 10} cm{sup −2} because of the propagation of misfit dislocations. We also observed misfit dislocations formed at the Ge{sub 1−x}Sn{sub x}/Si interface, which would effectively promote isotropic strain relaxation in the Ge{sub 1−x}Sn{sub x} layers. - Highlights: • Suppression of twin in GeSn growth on Si(110) substrate • Isotropic strain relaxation of Ge and GeSn layers by misfit dislocation network • Achievement of high quality GeSn epitaxial layers on Si(110) by post deposition annealing.

  1. Si-Ge-metal ternary phase diagram calculations

    Science.gov (United States)

    Fleurial, J. P.; Borshchevsky, A.

    1990-01-01

    Solution crystal growth and doping conditions of Si-Ge alloys used for high-temperature thermoelectric generation are determined here. Liquid-phase epitaxy (LPE) has been successfully employed recently to obtain single-crystalline homogeneous layers of Si-Ge solid solutions from a liquid metal solvent. Knowledge of Si-Ge-metallic solvent ternary phase diagrams is essential for further single-crystal growth development. Consequently, a thermodynamic equilibrium model was used to calculate the phase diagrams of the Si-Ge-M systems, including solid solubilities, where M is Al, Ga, In, Sn, Pb, Sb, or Bi. Good agreement between calculated liquidus and solidus data and experimental DTA and microprobe results was obtained. The results are used to compare the suitability of the different systems for crystal growth (by LPE-type process).

  2. Atomistic simulation of damage accumulation and amorphization in Ge

    Energy Technology Data Exchange (ETDEWEB)

    Gomez-Selles, Jose L., E-mail: joseluis.gomezselles@imdea.org; Martin-Bragado, Ignacio [IMDEA Materials Institute, Eric Kandel 2, 28906 Getafe, Madrid (Spain); Claverie, Alain [CEMES/CNRS, 29 rue J. Marvig, 31055 Toulouse Cedex (France); Sklenard, Benoit [CEA, LETI, 17 rue des Martyrs, 38054 Grenoble Cedex 9 (France); Benistant, Francis [GLOBALFOUNDRIES Singapore Pte Ltd., 60 Woodlands Industrial Park D Street 2, Singapore 738406 (Singapore)

    2015-02-07

    Damage accumulation and amorphization mechanisms by means of ion implantation in Ge are studied using Kinetic Monte Carlo and Binary Collision Approximation techniques. Such mechanisms are investigated through different stages of damage accumulation taking place in the implantation process: from point defect generation and cluster formation up to full amorphization of Ge layers. We propose a damage concentration amorphization threshold for Ge of ∼1.3 × 10{sup 22} cm{sup −3} which is independent on the implantation conditions. Recombination energy barriers depending on amorphous pocket sizes are provided. This leads to an explanation of the reported distinct behavior of the damage generated by different ions. We have also observed that the dissolution of clusters plays an important role for relatively high temperatures and fluences. The model is able to explain and predict different damage generation regimes, amount of generated damage, and extension of amorphous layers in Ge for different ions and implantation conditions.

  3. Laser ablation and growth of Si and Ge

    Energy Technology Data Exchange (ETDEWEB)

    Yap, Seong Shan, E-mail: seong.yap@ntnu.no [Department of Physics, Norwegian University of Science and Technology, 7491 Trondheim (Norway); Siew, Wee Ong; Nee, Chen Hon [Faculty of Engineering, Multimedia University, 63100 Cyberjaya, Selangor (Malaysia); Reenaas, Turid Worren [Department of Physics, Norwegian University of Science and Technology, 7491 Trondheim (Norway); Tou, Teck Yong [Faculty of Engineering, Multimedia University, 63100 Cyberjaya, Selangor (Malaysia)

    2012-02-01

    In this work, we investigated the laser ablation and deposition of Si and Ge at room temperature in vacuum by employing nanosecond lasers of 248 nm, 355 nm, 532 nm and 1064 nm. Time-integrated optical emission spectra were obtained for neutrals and ionized Ge and Si species in the plasma at laser fluences from 0.5 to 11 J/cm{sup 2}. The deposited films were characterized by using Raman spectroscopy, scanning electron microscopy and atomic force microscopy. Amorphous Si and Ge films, micron-sized crystalline droplets and nano-sized particles were deposited. The results suggested that ionized species in the plasma promote the process of subsurface implantation for both Si and Ge films while large droplets were produced from the superheated and melted layer of the target. The dependence of the properties of the materials on laser wavelength and fluence were discussed.

  4. Production scale purification of Ge-68 and Zn-65 from irradiated gallium metal.

    Science.gov (United States)

    Fitzsimmons, Jonathan M; Mausner, Leonard

    2015-07-01

    Germanium-68 (Ge-68) is produced by proton irradiation of a gallium metal target, purified by organic extraction and used in a medical isotope generator to produce Gallium-68 PET imaging agents. The purpose of this work was to implement a production scale separation of Ge-68 and Zn-65 that does not use organic solvents and uses a limited number of columns. The current separation approach was modified to use AG1 resin and/or Sephadex(©) G25 with zinc spikes to purify Ge-68 with near quantitative recovery. The purified Ge-68 meets DOE specifications. Methods utilizing zinc spikes resulted in the purist Ge-68 produced at Brookhaven National Lab with no other impurities by ICP-OES. During process optimization approximately 2.5 Ci of Ge-68 was purified utilizing the different processing methods, and the material was sold to the Nuclear Medicine community between 2012-2013. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. V-Ge-Cu system

    Energy Technology Data Exchange (ETDEWEB)

    Savitskij, E.M.; Efimov, Yu.V.; Bodak, O.I.; Kharchenko, O.I.; Shomova, N.A.; Frolova, T.M.

    By the methods of microscopic, X-ray phase analyses, X-ray spectral microanalysis as well as by measurement of Tsub(C) and phase lattice parameters the structure of the vanadium-region of the V-Ge ternary system (up to 40 at.%) - Cu(up to 90 at.%) is studied and isothermal cross section at 800 deg C is plotted. In the studied region solid solutions on the base of vanadium, copper and V/sub 3/Ge and V/sub 5/Ge/sub 3/ compounds are in phase equilibria. The solid solution on the vanadium base in ternary alloys practically does not possess superconductivity at the temperature over 4.2 K. Tsub(C) of V/sub 3/Ge saturated with copper decreases up to 5.3-5.6 K depending on treatment conditions and alloys composition. The superspeed quenching from molten state and the consequent low-temperature tempering of ternary alloys can increase V/sub 3/Ge Tsub(C) up to 6-6.7 K.

  6. Structural and phonon transmission study of Ge-Au-Ge eutectically bonded interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Knowlton, W.B. [Univ. of California, Berkeley, CA (United States). Dept. of Materials Science and Mineral Engineering]|[Lawrence Berkeley Lab., CA (United States). Materials Sciences Div.

    1995-07-01

    This thesis presents a structural analysis and phonon transparency investigation of the Ge-Au-Ge eutectic bond interface. Interface development was intended to maximize the interfacial ballistic phonon transparency to enhance the detection of the dark matter candidate WIMPs. The process which was developed provides an interface which produces minimal stress, low amounts of impurities, and insures Ge lattice continuity through the interface. For initial Au thicknesses of greater than 1,000 {angstrom} Au per substrate side, eutectic epitaxial growth resulted in a Au dendritic structure with 95% cross sectional and 90% planar Au interfacial area coverages. In sections in which Ge bridged the interface, lattice continuity across the interface was apparent. Epitaxial solidification of the eutectic interface with initial Au thicknesses < 500 A per substrate side produced Au agglomerations thereby reducing the Au planar interfacial area coverage to as little as 30%. The mechanism for Au coalescence was attributed to lateral diffusion of Ge and Au in the liquid phase during solidification. Phonon transmission studies were performed on eutectic interfaces with initial Au thicknesses of 1,000 {angstrom}, 500 {angstrom}, and 300 {angstrom} per substrate side. Phonon imaging of eutectically bonded samples with initial Au thicknesses of 300 {angstrom}/side revealed reproducible interfacial percent phonon transmissions from 60% to 70%. Line scan phonon imaging verified the results. Phonon propagation TOF spectra distinctly showed the predominant phonon propagation mode was ballistic. This was substantiated by phonon focusing effects apparent in the phonon imaging data. The degree of interface transparency to phonons and resulting phonon propagation modes correlate with the structure of the interface following eutectic solidification. Structural studies of samples with initial Au thickness of 1,000 {angstrom}/side appear to correspond with the phonon transmission study.

  7. 500 GeV ILC Operating Scenarios

    CERN Document Server

    Brau, James E; Barklow, T; Brau, J; Fujii, K; Gao, J; List, J; Walker, N; Yokoya, K

    2015-01-01

    The ILC Technical Design Report documents the design of a 500 GeV linear collider, but does not specify the center-of-mass energy steps of operation for the collider. The ILC Parameters Joint Working Group has studied possible running scenarios, including a realistic estimate of the real time accumulation of integrated luminosity based on ramp-up and upgrade processes, and considered the evolution of the physics outcomes. These physics goals include Higgs precision measurements, top quark measurements and searches for new physics. We present an "optimized" operating scenario and the anticipated evolution of the precision of the ILC measurements.

  8. Band calculation of lonsdaleite Ge

    Science.gov (United States)

    Chen, Pin-Shiang; Fan, Sheng-Ting; Lan, Huang-Siang; Liu, Chee Wee

    2017-01-01

    The band structure of Ge in the lonsdaleite phase is calculated using first principles. Lonsdaleite Ge has a direct band gap at the Γ point. For the conduction band, the Γ valley is anisotropic with the low transverse effective mass on the hexagonal plane and the large longitudinal effective mass along the c axis. For the valence band, both heavy-hole and light-hole effective masses are anisotropic at the Γ point. The in-plane electron effective mass also becomes anisotropic under uniaxial tensile strain. The strain response of the heavy-hole mass is opposite to the light hole.

  9. GeSn-on-insulator substrate formed by direct wafer bonding

    Science.gov (United States)

    Lei, Dian; Lee, Kwang Hong; Bao, Shuyu; Wang, Wei; Wang, Bing; Gong, Xiao; Tan, Chuan Seng; Yeo, Yee-Chia

    2016-07-01

    GeSn-on-insulator (GeSnOI) on Silicon (Si) substrate was realized using direct wafer bonding technique. This process involves the growth of Ge1-xSnx layer on a first Si (001) substrate (donor wafer) followed by the deposition of SiO2 on Ge1-xSnx, the bonding of the donor wafer to a second Si (001) substrate (handle wafer), and removal of the Si donor wafer. The GeSnOI material quality is investigated using high-resolution transmission electron microscopy, high-resolution X-ray diffraction (HRXRD), atomic-force microscopy, Raman spectroscopy, and spectroscopic ellipsometry. The Ge1-xSnx layer on GeSnOI substrate has a surface roughness of 1.90 nm, which is higher than that of the original Ge1-xSnx epilayer before transfer (surface roughness is 0.528 nm). The compressive strain of the Ge1-xSnx film in the GeSnOI is as low as 0.10% as confirmed using HRXRD and Raman spectroscopy.

  10. GeSn-on-insulator substrate formed by direct wafer bonding

    Energy Technology Data Exchange (ETDEWEB)

    Lei, Dian; Wang, Wei; Gong, Xiao, E-mail: elegong@nus.edu.sg, E-mail: yeo@ieee.org; Yeo, Yee-Chia, E-mail: elegong@nus.edu.sg, E-mail: yeo@ieee.org [Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117576 (Singapore); Lee, Kwang Hong; Wang, Bing [Low Energy Electronic Systems (LEES), Singapore MIT Alliance for Research and Technology (SMART), 1 CREATE Way, #10-01 CREATE Tower, Singapore 138602 (Singapore); Bao, Shuyu [Low Energy Electronic Systems (LEES), Singapore MIT Alliance for Research and Technology (SMART), 1 CREATE Way, #10-01 CREATE Tower, Singapore 138602 (Singapore); School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore); Tan, Chuan Seng [School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore)

    2016-07-11

    GeSn-on-insulator (GeSnOI) on Silicon (Si) substrate was realized using direct wafer bonding technique. This process involves the growth of Ge{sub 1-x}Sn{sub x} layer on a first Si (001) substrate (donor wafer) followed by the deposition of SiO{sub 2} on Ge{sub 1-x}Sn{sub x}, the bonding of the donor wafer to a second Si (001) substrate (handle wafer), and removal of the Si donor wafer. The GeSnOI material quality is investigated using high-resolution transmission electron microscopy, high-resolution X-ray diffraction (HRXRD), atomic-force microscopy, Raman spectroscopy, and spectroscopic ellipsometry. The Ge{sub 1-x}Sn{sub x} layer on GeSnOI substrate has a surface roughness of 1.90 nm, which is higher than that of the original Ge{sub 1-x}Sn{sub x} epilayer before transfer (surface roughness is 0.528 nm). The compressive strain of the Ge{sub 1-x}Sn{sub x} film in the GeSnOI is as low as 0.10% as confirmed using HRXRD and Raman spectroscopy.

  11. A facile preparation of crystalline GeS{sub 2} nanoplates and their photocatalytic activity

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Qifan [School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418 (China); Kang, Shi-Zhao, E-mail: kangsz@sit.edu.cn [School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418 (China); Li, Xiangqing [School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418 (China); Yang, Ying-Wei [State Key Laboratory of Supramolecular Structure and Materials, College Of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012 (China); Qin, Lixia [School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418 (China); Mu, Jin, E-mail: mujin@sit.edu.cn [School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418 (China)

    2015-05-15

    Graphical abstract: The crystalline GeS{sub 2} nanoplates have been successfully prepared in the low temperature solvothermal process. Meanwhile, the as-prepared crystalline GeS{sub 2} nanoplates show considerable photocatalytic activity for hydrogen evolution from water, implying that GeS{sub 2} nanomaterials have great potential in the field of hydrogen generation from light-driven water splitting. - Highlights: • GeS{sub 2} nanoplates were prepared by a low temperature solvothermal process. • GeS{sub 2} nanoplates obtained possess high crystallinity. • Nanostructured GeS{sub 2} is first applied in the photocatalytic H{sub 2} evolution. - Abstract: Crystalline GeS{sub 2} nanoplates were prepared by low temperature solvothermal process and characterized with X-ray diffraction, transmission electron microscopy, energy-dispersion X-ray analysis, X-ray photoelectron spectroscopy, nitrogen adsorption, Raman spectroscopy, FT-IR spectroscopy and UV–vis–NIR diffuse reflectance absorption spectroscopy. Photocatalytic hydrogen evolution from water over the as-prepared GeS{sub 2} nanoplates was explored using Na{sub 2}S and K{sub 2}SO{sub 3} as sacrificial reagents. The results indicate that the crystalline orthorhombic GeS{sub 2} nanoplates can be obtained at 140 °C using this simple method and acetic acid as the solvent plays an important role in the formation of the GeS{sub 2} nanoplates. More importantly, the as-prepared GeS{sub 2} nanoplates can serve as a potential photocatalyst with a rate of H{sub 2} evolution of 144 μmol g{sup −1} h{sup −1} for hydrogen production from water when a xenon lamp is used as a light source. In addition, the formation mechanism of GeS{sub 2} nanoplates was preliminarily discussed.

  12. Reducing 68Ge Background in Dark Matter Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Kouzes, Richard T.; Orrell, John L.

    2011-03-01

    Experimental searches for dark matter include experiments with sub-0.5 keV-energy threshold high purity germanium detectors. Experimental efforts, in partnership with the CoGeNT Collaboration operating at the Soudan Underground Laboratory, are focusing on energy threshold reduction via noise abatement, reduction of backgrounds from cosmic ray generated isotopes, and ubiquitous environmental radioactive sources. The most significant cosmic ray produced radionuclide is 68Ge. This paper evaluates reducing this background by freshly mining and processing germanium ore. The most probable outcome is a reduction of the background by a factor of two, and at most a factor of four. A very cost effective alternative is to obtain processed Ge as soon as possible and store it underground for 18 months.

  13. Reducing 68Ge Background in Dark Matter Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Kouzes, Richard T.; Orrell, John L.

    2011-03-01

    Experimental searches for dark matter include experiments with sub-0.5 keV-energy threshold high purity germanium detectors. Experimental efforts, in partnership with the CoGeNT Collaboration operating at the Soudan Underground Laboratory, are focusing on energy threshold reduction via noise abatement, reduction of backgrounds from cosmic ray generated isotopes, and ubiquitous environmental radioactive sources. The most significant cosmic ray produced radionuclide is 68Ge. This paper evaluates reducing this background by freshly mining and processing germanium ore. The most probable outcome is a reduction of the background by a factor of two, and at most a factor of four. A very cost effective alternative is to obtain processed Ge as soon as possible and store it underground for 18 months.

  14. Source/drain eSiGe engineering for FinFET technology

    Science.gov (United States)

    Peng, Jianwei; Qi, Yi; Lo, Hsien-Ching; Zhao, Pei; Yong, Chloe; Yan, Jianghu; Dou, Xinyuan; Zhan, Hui; Shen, Yanping; Regonda, Suresh; Hu, Owen; Yu, Hong; Joshi, Manoj; Adams, Charlotte; Carter, Rick; Samavedam, Srikanth

    2017-09-01

    Epitaxy growth loading effect—the growth rate difference between device macros due to their local open ratio difference—is an important consideration for device design and thus process optimization. A poor loading process leads to device performance delta across macros. For eSiGe on FinFETs, we found that optimized eSiGe on FinFETs saturates as the eSiGe diamond pins at fin top surface and the fin-sidewall-spacer (FSS). The eSiGe diamond size measured by lateral CD does not increase with deposition time, but it linearly correlates to cavity depth and FSS pushdown. In principle, the eSiGe loading effect can be addressed with an extended growth time until every device macros saturates. However, it is found that, the epitaxy growth related defects, measured by abnormal eSiGe and unwanted growth, can also be elevated to an unacceptable level for a longer deposition time. Thus, the eSiGe loading process still needs to be optimized for an improved process window. In this work, an optimized eSiGe process achieves reduced loading between 2-fin and 40-fin macros and thus a smaller pFET performance gap between the two device macros.

  15. Uniform fabrication of Ge nanocrystals embedded into SiO2 film via neutron transmutation doping

    Directory of Open Access Journals (Sweden)

    Wei Liu

    2014-06-01

    Full Text Available Nanocrystalline 74Ge embedded SiO2 films were prepared by employing ion implantation and neutron transmutation doping methods. Transmission electron microscopy, energy dispersive x-ray spectroscopy, and photoluminescence of the obtained samples were measured. The existence of As dopants transmuted from 74Ge is significant to guarantee the uniformity and higher volume density of Ge nanocrystals by tuning the system׳s crystallinity and activating mass transfer process. It was observed that the photoluminescence intensity of Ge nanocrystals increased first then decreased with the increase of arsenic concentration. The optimized fluence of neutron transmutation doping was found to be 5.5×1017 cm−2 to achieve maximum photoluminescence emission in Ge embedded SiO2 film. This work opens a route in the three-dimensional nanofabrication of uniform Ge nanocrystals.

  16. Effect of nanocavities on Ge nanoclustering and out-diffusion in SiO2

    Science.gov (United States)

    Li, Chen; Feng, Honglei; Liu, Bin; Liang, Wenshuang; Liu, Guiju; Ross, Guy G.; Wang, Yiqian; Barba, David

    2017-01-01

    Germanium nanocrystals (Ge-ncs) were synthesized by implantation of Ge+ ions into the fused silica, followed by a thermal annealing at 1000 °C. High-resolution transmission electron microscopy was employed to characterize both the morphology of the formed Ge-ncs and the evolution of their depth-distribution as a function of annealing durations. The formation of nanocavities in the vicinity of nanocrystal/SiO2 interface is evidenced, as well as their influence on the release of the compressive stress exerted on Ge-ncs by surrounding SiO2. Some Ge-ncs are found inside nanocavities, and can move into the implanted layer through a nanocavity-assisted diffusion mechanism. This finding sheds light on a new process that can explain the non-uniformity of the Ge-nanocrystal spatial distribution.

  17. Uniform fabrication of Ge nanocrystals embedded into SiO2 film via neutron transmutation doping

    Institute of Scientific and Technical Information of China (English)

    Wei Liu; Tiecheng Lu; Qingyun Chen; Youwen Hu; Shaobo Dun; Issai Shlimak

    2014-01-01

    Nanocrystalline 74Ge embedded SiO2 films were prepared by employing ion implantation and neutron transmutation doping methods. Transmission electron microscopy, energy dispersive x-ray spectroscopy, and photoluminescence of the obtained samples were measured. The existence of As dopants transmuted from 74Ge is significant to guarantee the uniformity and higher volume density of Ge nanocrystals by tuning the system's crystallinity and activating mass transfer process. It was observed that the photoluminescence intensity of Ge nanocrystals increased first then decreased with the increase of arsenic concentration. The optimized fluence of neutron transmutation doping was found to be 5.5 ? 1017 cm ? 2 to achieve maximum photoluminescence emission in Ge embedded SiO2 film. This work opens a route in the three-dimensional nanofabrication of uniform Ge nanocrystals.

  18. Walking from 750 GeV to 950 GeV in the Technipion Zoo

    CERN Document Server

    Matsuzaki, Shinya

    2016-01-01

    If the 750 GeV diphoton excess is identified with the color-singlet isosinglet-technipion, $P^0$ (750), in the one-family walking technicolor, as in our previous paper, then there should exist another color-singlet technipion, isotriplet one, $P^{\\pm,3}$, definitely predicted at around 950 GeV independently of the dynamical details. The $P^{\\pm,3}(950)$ are produced at the LHC via vector boson and photon fusion processes, predominantly decaying to $W \\gamma$, and $\\gamma\\gamma$, respectively. Those walking technicolor signals can be explored at the Run 2, or 3, which would further open a way to a plethora of yet other (colored) technipions.

  19. Poly-SiGe for MEMS-above-CMOS sensors

    CERN Document Server

    Gonzalez Ruiz, Pilar; Witvrouw, Ann

    2014-01-01

    Polycrystalline SiGe has emerged as a promising MEMS (Microelectromechanical Systems) structural material since it provides the desired mechanical properties at lower temperatures compared to poly-Si, allowing the direct post-processing on top of CMOS. This CMOS-MEMS monolithic integration can lead to more compact MEMS with improved performance. The potential of poly-SiGe for MEMS above-aluminum-backend CMOS integration has already been demonstrated. However, aggressive interconnect scaling has led to the replacement of the traditional aluminum metallization by copper (Cu) metallization, due to its lower resistivity and improved reliability. Poly-SiGe for MEMS-above-CMOS sensors demonstrates the compatibility of poly-SiGe with post-processing above the advanced CMOS technology nodes through the successful fabrication of an integrated poly-SiGe piezoresistive pressure sensor, directly fabricated above 0.13 m Cu-backend CMOS. Furthermore, this book presents the first detailed investigation on the influence o...

  20. Recent progress in Ge and GeSn light emission on Si%Si基IV族异质结构发光器件的研究进展∗

    Institute of Scientific and Technical Information of China (English)

    何超; 张旭; 刘智; 成步文

    2015-01-01

    Si-based optical interconnection is expected to solve the problems caused by electric interconnection with increasing the density of integrated circuits, due to its merits of high speed, high bandwidth, and low consumption. So far, all of the key components except light source of Si-based optical interconnection have been demonstrated. Therefore, the light source has been considered as one of the most important components. Ge and GeSn based on Si have emerged as very promising candidates because of their high compatibility with Si CMOS processing, and the pseudo direct-bandgap characteristic. The energy difference between the direct and indirect bandgap of Ge is only 136 meV at room temperature. Under tensile strain or incorporation with Sn, the energy difference becomes smaller, and even less than zero, which means that Ge or GeSn changes into direct bandgap material. What is more, using large n-type doping to increase the fraction of electrons inΓ valley, we can further increase the luminous efficiency of Ge or GeSn. In this paper, we briefly overview the recent progress that has been reported in the study of Ge and GeSn light emitters for silicon photonics, including theoretical models for calculating the optical gain and loss, several common methods of introducing tensile strain into Ge, methods of increasing the n-type doping density, and the method of fabricating luminescent devices of Ge and GeSn. Finally, we discuss the challenges facing us and the development prospects, in order to have a further understanding of Ge and GeSn light sources. Several breakthroughs have been made in past years, especially in the realizing of lasing from GeSn by optically pumping and Ge by optically and electrically pumping, which makes it possible to fabricate a practical laser used in silicon photonics and CMOS technology.

  1. Neutron transmutation doped Ge bolometers

    Science.gov (United States)

    Haller, E. E.; Kreysa, E.; Palaio, N. P.; Richards, P. L.; Rodder, M.

    1983-01-01

    Some conclusions reached are as follow. Neutron Transmutation Doping (NTD) of high quality Ge single crystals provides perfect control of doping concentration and uniformity. The resistivity can be tailored to any given bolometer operating temperature down to 0.1 K and probably lower. The excellent uniformity is advantaged for detector array development.

  2. CV characteristics of polycrystalline sige films with low GE concentration

    Energy Technology Data Exchange (ETDEWEB)

    Teixeira, Ricardo Cotrin [School of Electrical and Computer Engineering (FEEC) and Center for Semiconductor Components(CCS), State University of Campinas - UNICAMP, Cidade Universitaria Zeferino Vaz, Rua Pandia Calogeras, 90, Caixa Postal 6061, CEP: 13083-870, Campinas-SP (Brazil); Doi, Ioshiaki [School of Electrical and Computer Engineering (FEEC) and Center for Semiconductor Components(CCS), State University of Campinas - UNICAMP, Cidade Universitaria Zeferino Vaz, Rua Pandia Calogeras, 90, Caixa Postal 6061, CEP: 13083-870, Campinas-SP (Brazil)]. E-mail: doi@led.unicamp.br; Diniz, Jose Alexandre [School of Electrical and Computer Engineering (FEEC) and Center for Semiconductor Components(CCS), State University of Campinas - UNICAMP, Cidade Universitaria Zeferino Vaz, Rua Pandia Calogeras, 90, Caixa Postal 6061, CEP: 13083-870, Campinas-SP (Brazil); Swart, Jacobus Willibrordus [School of Electrical and Computer Engineering (FEEC) and Center for Semiconductor Components(CCS), State University of Campinas - UNICAMP, Cidade Universitaria Zeferino Vaz, Rua Pandia Calogeras, 90, Caixa Postal 6061, CEP: 13083-870, Campinas-SP (Brazil); Pinto Zakia, Maria Beny [Center for Semiconductor Components (CCS), State University of Campinas (UNICAMP), Cidade Universitaria Zeferino Vaz, Rua Pandia Calogeras, 90, Caixa Postal 6061, CEP: 13083-870, Campinas-SP (Brazil)

    2006-12-15

    SiGe alloys are currently used for HBT and MOS as epitaxial layers for base or strained channel, respectively. In the poly phase, SiGe has been studied as a replacement for poly-Si in MOS gates due to its lower thermal budget and gate depletion and also due to the Workfunction Engineering for V {sub t} adjustments. However, for application to CMOS technology as poly-SiGe gates, others constrains emerge such as quality of the oxide interface and etch chemistry. For both applications, the Ge fraction normally lies between 20% and 40%. In this study, authors use a low Ge contents (1%) poly-SiGe thin films aiming for MOS gate electrode. The Ge fraction was determined by RBS analysis. 230 nm thick samples were deposited onto 10 nm thermally oxidized <1 0 0>, p-type Si substrates using silane and germane. Films were deposited in the temperature of 500 deg. C and total pressure of 667 Pa (5 Torr) by vertical LPCVD. The samples were doped using {sup 31}P{sup +} ion implantation from 5 x 10{sup 14} cm{sup -2} up to 2 x 10{sup 16} cm{sup -2} and annealed by RTP (40 s) from 500 deg. C up to 900 deg. C. R {sub s} values were obtained by 4-point probe technique and CV curves were extracted from nMOS capacitors with 200 {mu}m diameter. The same processing steps were used to fabricate similar poly-Si samples and capacitors for comparison. The poly-SiGe samples presented R {sub s} values one order of magnitude lower than poly-Si and CV analysis of nMOS capacitors showed very good characteristics. The 1% Ge in the alloy ensures a low thermal budget for the overall process. Although a relatively high annealing temperature (800 deg. C) must be used to reduce oxide charge and interface traps, the temperature is well below the necessary for poly-Si processing and can allow formation of the shallow junctions needed for next technological nodes.

  3. High-k gate stacks on low bandgap tensile strained Ge and GeSn alloys for field-effect transistors.

    Science.gov (United States)

    Wirths, Stephan; Stange, Daniela; Pampillón, Maria-Angela; Tiedemann, Andreas T; Mussler, Gregor; Fox, Alfred; Breuer, Uwe; Baert, Bruno; San Andrés, Enrique; Nguyen, Ngoc D; Hartmann, Jean-Michel; Ikonic, Zoran; Mantl, Siegfried; Buca, Dan

    2015-01-14

    We present the epitaxial growth of Ge and Ge0.94Sn0.06 layers with 1.4% and 0.4% tensile strain, respectively, by reduced pressure chemical vapor deposition on relaxed GeSn buffers and the formation of high-k/metal gate stacks thereon. Annealing experiments reveal that process temperatures are limited to 350 °C to avoid Sn diffusion. Particular emphasis is placed on the electrical characterization of various high-k dielectrics, as 5 nm Al2O3, 5 nm HfO2, or 1 nmAl2O3/4 nm HfO2, on strained Ge and strained Ge0.94Sn0.06. Experimental capacitance-voltage characteristics are presented and the effect of the small bandgap, like strong response of minority carriers at applied field, are discussed via simulations.

  4. Superconductivity in novel Ge-based skutterudites: {Sr,Ba}pt4Ge12.

    Science.gov (United States)

    Bauer, E; Grytsiv, A; Chen, Xing-Qiu; Melnychenko-Koblyuk, N; Hilscher, G; Kaldarar, H; Michor, H; Royanian, E; Giester, G; Rotter, M; Podloucky, R; Rogl, P

    2007-11-23

    Combining experiments and ab initio models we report on SrPt4Ge12 and BaPt4Ge12 as members of a novel class of superconducting skutterudites, where Sr or Ba atoms stabilize a framework entirely formed by Ge atoms. Below T(c)=5.35 and 5.10 K for BaPt4Ge12 and SrPt4Ge12, respectively, electron-phonon coupled superconductivity emerges, ascribed to intrinsic features of the Pt-Ge framework, where Ge-p states dominate the electronic structure at the Fermi energy.

  5. Evolution of Ge and SiGe Quantum Dots under Excimer Laser Annealing

    Institute of Scientific and Technical Information of China (English)

    HAN Gen-Quan; ZENG Yu-Gang; YU Jin-Zhong; CHENG Bu-Wen; YANG Hai-Tao

    2008-01-01

    We present different relaxation mechanisms of Ge and SiGe quantum dots under excimer laser annealing.Inyestigation of the coarsening and relaxation of the dots showS that the strain in Ge dots on Ge films is relaxed by dislocation since there is no interface between the Ge dots and the Ge layer,while the SiGe dots on Si0.77 Ge0.23film relax by lattice distortion to coherent dots which results from the obvious interface between the SiGe dots and the Si0.77Ge0.23 film.The results are suggested and sustained by Vanderbilt and Wickham's theory,and also demonstrate that no bulk diffusion Occurs during the excimer laser annealing.

  6. Understanding and engineering of NiGe/Ge junction formed by phosphorus ion implantation after germanidation

    Energy Technology Data Exchange (ETDEWEB)

    Oka, Hiroshi, E-mail: oka@asf.mls.eng.osaka-u.ac.jp; Minoura, Yuya; Hosoi, Takuji; Shimura, Takayoshi; Watanabe, Heiji [Department of Material and Life Science, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871 (Japan)

    2014-08-11

    Modulation of the effective electron Schottky barrier height (eSBH) of NiGe/Ge contacts induced by phosphorus ion implantation after germanide formation was investigated by considering local inhomogeneity in the eSBH. Systematic studies of NiGe/Ge contact devices having various germanide thicknesses and ion implantation areas indicated the threshold dopant concentration at the NiGe/Ge interface required for eSBH modulation and negligible dopant diffusion even at NiGe/Ge interface during drive-in annealing, leading to variation in the eSBH between the bottom and sidewall portions of the NiGe regions. Consequently, this method makes it possible to design source/drain contacts with low-resistivity Ohmic and ideal rectifying characteristics for future Ge-based transistors.

  7. Substrate Effects in Wideband SiGe HBT Mixer Circuits

    DEFF Research Database (Denmark)

    Johansen, Tom Keinicke; Vidkjær, Jens; Krozer, Viktor

    2005-01-01

    In this paper, the influence from substrate effects on the performance of wideband SiGe HBT mixer circuits is investigated. Equivalent circuit models including substrate networks are extracted from on-wafer test structures and compared with electromagnetic simulations. Electromagnetic simulations...... are also applied to predict short distance substrate coupling effects. Simulation results using extracted equivalent circuit models and substrate coupling networks are compared with experimental results obtained on a wideband mixer circuit implemented in a 0.35 μm, 60 GHz ft SiGe HBT BiCMOS process....

  8. Energy relaxation in optically excited Si and Ge nanocrystals

    NARCIS (Netherlands)

    S. Saeed

    2014-01-01

    The scientific objective of the research presented in this thesis is to explore energy relaxation processes of optically excited Si and Ge nanocrystals. The identification and deeper understanding of unique energy relaxation paths in these materials will open a new window of opportunity for these ma

  9. Ge/GeO2-Ordered Mesoporous Carbon Nanocomposite for Rechargeable Lithium-Ion Batteries with a Long-Term Cycling Performance.

    Science.gov (United States)

    Zeng, Lingxing; Huang, Xiaoxia; Chen, Xi; Zheng, Cheng; Qian, Qingrong; Chen, Qinghua; Wei, Mingdeng

    2016-01-13

    Germanium-based nanostructures are receiving intense interest in lithium-ion batteries because they have ultrahigh lithium ion storage ability. However, the Germanium-based anodes undergo the considerably large volume change during the charge/discharge processes, leading to a fast capacity fade. In the present work, a Ge/GeO2-ordered mesoporous carbon (Ge/GeO2-OMC) nanocomposite was successfully fabricated via a facile nanocasting route by using mesoporous carbon as a nanoreactor, and was then used as an anode for lithium-ion batteries. Benefited from its unique three-dimensional "meso-nano" structure, the Ge/GeO2-OMC nanocomposite exhibited large reversible capacity, excellent long-time cycling stability and high rate performance. For instance, a large reversible capacity of 1018 mA h g(-1) was obtained after 100 cycles at a current density of 0.1 A g(-1), which might be attributed to the unique structure of the Ge/GeO2-OMC nanocomposite. In addition, a reversible capacity of 492 mA h g(-1) can be retained when cycled to 500 cycles at a current density of 1 A g(-1).

  10. Coupled Ge/Si and Ge isotope ratios as geochemical tracers of seafloor hydrothermal systems: Case studies at Loihi Seamount and East Pacific Rise 9°50‧N

    Science.gov (United States)

    Escoube, Raphaelle; Rouxel, Olivier J.; Edwards, Katrina; Glazer, Brian; Donard, Olivier F. X.

    2015-10-01

    into authigenic Fe-oxyhydroxides in marine sediments. This study shows that combining Ge/Si and δ74/70Ge systematics provides a useful tool to trace hydrothermal Ge and Si sources in marine environments and to understand formation processes of seafloor hydrothermal deposits.

  11. Germanium-tin interdiffusion in strained Ge/GeSn multiple-quantum-well structure

    Science.gov (United States)

    Wang, Wei; Dong, Yuan; Zhou, Qian; Tok, Eng Soon; Yeo, Yee-Chia

    2016-06-01

    The thermal stability and germanium-tin (Ge-Sn) interdiffusion properties were studied in epitaxial Ge/GeSn multiple-quantum-well (MQW) structure. No obvious interdiffusion was observed for annealing temperatures of 300 °C or below, while observable interdiffusion occurred for annealing temperatures of 380 °C and above. High-resolution x-ray diffraction was used to obtain the interdiffusion coefficient by analyzing the decrease rate of Ge/GeSn periodic satellite peaks. The interdiffusion coefficient is much higher, and the activation enthalpy of 1.21 eV is substantially lower in Ge/GeSn MQW structure than that previously reported in silicon-germanium (Si-Ge) systems. When the annealing temperature is increased to above 500 °C, Ge-Sn interdiffusion becomes severe. Some small pits appear on the surface, which should be related to Sn out-diffusion to the Ge cap layer, followed by Sn desorption from the top surface. This work provides insights into the Ge-Sn interdiffusion and Sn segregation behaviors in Ge/GeSn MQW structure, and the thermal budget that may be used for fabrication of devices comprising Ge/GeSn heterostructures.

  12. Measurement of muon-pair production at 50 GeV < √s < 86 GeV at LEP

    Science.gov (United States)

    Acciarri, M.; Adam, A.; Adriani, O.; Aguilar-Benitez, M.; Ahlen, S.; Alpat, B.; Alcaraz, J.; Alemanni, G.; Allaby, J.; Aloisio, A.; Alverson, G.; Alviggi, M. G.; Ambrosi, G.; Anderhub, H.; Andreev, V. P.; Angelescu, T.; Antreasyan, D.; Arefiev, A.; Azemoon, T.; Aziz, T.; Bagnaia, P.; Baksay, L.; Ball, R. C.; Banerjee, S.; Banicz, K.; Barillère, R.; Barone, L.; Bartalini, P.; Baschirotto, A.; Basile, M.; Battiston, R.; Bay, A.; Becattini, F.; Becker, U.; Behner, F.; Berdugo, J.; Berges, P.; Bertucci, B.; Betev, B. L.; Biasini, M.; Biland, A.; Bilei, G. M.; Blaising, J. J.; Blyth, S. C.; Bobbink, G. J.; Bock, R.; Böhm, A.; Borgia, B.; Boucham, A.; Bourilkov, D.; Bourquin, M.; Boutigny, D.; Brambilla, E.; Branson, J. G.; Brigljevic, V.; Brock, I. C.; Buijs, A.; Bujak, A.; Burger, J. D.; Burger, W. J.; Busenitz, J.; Buytenhuijs, A.; Cai, X. D.; Campanelli, M.; Capell, M.; Cara Romeo, G.; Caria, M.; Carlino, G.; Cartacci, A. M.; Casaus, J.; Castellini, G.; Castello, R.; Cavallari, F.; Cavallo, N.; Cecchi, C.; Cerrada, M.; Cesaroni, F.; Chamizo, M.; Chan, A.; Chang, Y. H.; Chaturvedi, U. K.; Chemarin, M.; Chen, A.; Chen, C.; Chen, G.; Chen, G. M.; Chen, H. F.; Chen, H. S.; Chen, M.; Chiefari, G.; Chien, C. Y.; Choi, M. T.; Cifarelli, L.; Cindolo, F.; Civinini, C.; Clare, I.; Clare, R.; Cohn, H. O.; Coignet, G.; Colijn, A. P.; Colino, N.; Commichau, V.; Costantini, S.; Cotorobai, F.; de la Cruz, B.; Dai, T. S.; D'Alessandro, R.; de Asmundis, R.; De Boeck, H.; Degré, A.; Deiters, K.; Denes, P.; DeNotaristefani, F.; DiBitonto, D.; Diemoz, M.; van Dierendonck, D.; Di Lodovico, F.; Dionisi, C.; Dittmar, M.; Dominguez, A.; Doria, A.; Dorne, I.; Dova, M. T.; Drago, E.; Duchesneau, D.; Duinker, P.; Duran, I.; Dutta, S.; Easo, S.; Efremenko, Yu.; El Mamouni, H.; Engler, A.; Eppling, F. J.; Erné, F. C.; Ernenwein, J. P.; Extermann, P.; Fabre, M.; Faccini, R.; Falciano, S.; Favara, A.; Fay, J.; Felcini, M.; Ferguson, T.; Fernandez, D.; Ferroni, F.; Fesefeldt, H.; Fiandrini, E.; Field, J. H.; Filthaut, F.; Fisher, P. H.; Forconi, G.; Fredj, L.; Freudenreich, K.; Galaktionov, Yu.; Ganguli, S. N.; Gau, S. S.; Gentile, S.; Gerald, J.; Gheordanescu, N.; Giagu, S.; Goldfarb, S.; Goldstein, J.; Gong, Z. F.; Gougas, A.; Gratta, G.; Gruenewald, M. W.; Gupta, V. K.; Gurtu, A.; Gutay, L. J.; Hangarter, K.; Hartmann, B.; Hasan, A.; He, J. T.; Hebbeker, T.; Hervé, A.; van Hoek, W. C.; Hofer, H.; Hoorani, H.; Hou, S. R.; Hu, G.; Ilyas, M. M.; Innocente, V.; Janssen, H.; Jin, B. N.; Jones, L. W.; de Jong, P.; Josa-Mutuberria, I.; Kasser, A.; Khan, R. A.; Kamyshkov, Yu.; Kapinos, P.; Kapustinsky, J. S.; Karyotakis, Y.; Kaur, M.; Kienzle-Focacci, M. N.; Kim, D.; Kim, J. K.; Kim, S. C.; Kim, Y. G.; Kinnison, W. W.; Kirkby, A.; Kirkby, D.; Kirkby, J.; Kittel, W.; Klimentov, A.; König, A. C.; Köngeter, A.; Korolko, I.; Koutsenko, V.; Koulbardis, A.; Kraemer, R. W.; Kramer, T.; Krenz, W.; Kuijten, H.; Kunin, A.; Ladron de Guevara, P.; Landi, G.; Lapoint, C.; Lassila-Perini, K.; Lebeau, M.; Lebedev, A.; Lebrun, P.; Lecomte, P.; Lecoq, P.; Le Coultre, P.; Lee, J. S.; Lee, K. Y.; Leggett, C.; Le Goff, J. M.; Leiste, R.; Lenti, M.; Leonardi, E.; Levtchenko, P.; Li, C.; Lieb, E.; Lin, W. T.; Linde, F. L.; Lindemann, B.; Lista, L.; Liu, Z. A.; Lohmann, W.; Longo, E.; Lu, W.; Lu, Y. S.; Lübelsmeyer, K.; Luci, C.; Luckey, D.; Ludovici, L.; Luminari, L.; Lustermann, W.; Ma, W. G.; Macchiolo, A.; Maity, M.; Majumder, G.; Malgeri, L.; Malinin, A.; Maña, C.; Mangla, S.; Marchesini, P.; Marin, A.; Martin, J. P.; Marzano, F.; Massaro, G. G. G.; Mazumdar, K.; McNally, D.; Mele, S.; Merola, L.; Meschini, M.; Metzger, W. J.; von der Mey, M.; Mi, Y.; Mihul, A.; van Mil, A. J. W.; Mirabelli, G.; Mnich, J.; Möller, M.; Monteleoni, B.; Moore, R.; Morganti, S.; Mount, R.; Müller, S.; Muheim, F.; Nagy, E.; Nahn, S.; Napolitano, M.; Nessi-Tedaldi, F.; Newman, H.; Nippe, A.; Nowak, H.; Organtini, G.; Ostonen, R.; Pandoulas, D.; Paoletti, S.; Paolucci, P.; Park, H. K.; Pascale, G.; Passaleva, G.; Patricelli, S.; Paul, T.; Pauluzzi, M.; Paus, C.; Pauss, F.; Peach, D.; Pei, Y. J.; Pensotti, S.; Perret-Gallix, D.; Petrak, S.; Pevsner, A.; Piccolo, D.; Pieri, M.; Pinto, J. C.; Piroué, P. A.; Pistolesi, E.; Plyaskin, V.; Pohl, M.; Pojidaev, V.; Postema, H.; Produit, N.; Raghavan, R.; Rahal-Callot, G.; Rancoita, P. G.; Rattaggi, M.; Raven, G.; Razis, P.; Read, K.; Redaelli, M.; Ren, D.; Rescigno, M.; Reucroft, S.; Ricker, A.; Riemann, S.; Riemers, B. C.; Riles, K.; Rind, O.; Ro, S.; Robohm, A.; Rodin, J.; Rodriguez, F. J.; Roe, B. P.; Röhner, S.; Romero, L.; Rosier-Lees, S.; Rosselet, Ph.; van Rossum, W.; Roth, S.; Rubio, J. A.; Rykaczewski, H.; Salicio, J.; Sanchez, E.; Santocchia, A.; Sarakinos, M. E.; Sarkar, S.; Sassowsky, M.; Sauvage, G.; Schäfer, C.; Schegelsky, V.; Schmidt-Kaerst, S.; Schmitz, D.; Schmitz, P.; Schneegans, M.; Schoeneich, B.; Scholz, N.; Schopper, H.; Schotanus, D. J.; Schulte, R.; Schultze, K.; Schwenke, J.; Schwering, G.; Sciacca, C.; Sciarrino, D.; Sens, J. C.; Servoli, L.; Shevchenko, S.; Shivarov, N.; Shoutko, V.; Shukla, J.; Shumilov, E.; Siedenburg, T.; Son, D.; Sopczak, A.; Soulimov, V.; Smith, B.; Spillantini, P.; Steuer, M.; Stickland, D. P.; Sticozzi, F.; Stone, H.; Stoyanov, B.; Straessner, A.; Strauch, K.; Sudhakar, K.; Sultanov, G.; Sun, L. Z.; Susinno, G. F.; Suter, H.; Swain, J. D.; Tang, X. W.; Tauscher, L.; Taylor, L.; Ting, Samuel C. C.; Ting, S. M.; Toker, O.; Tonisch, F.; Tonutti, M.; Tonwar, S. C.; Tóth, J.; Tsaregorodtsev, A.; Tully, C.; Tuchscherer, H.; Tung, K. L.; Ulbricht, J.; Uwer, U.; Valente, E.; Van de Walle, R. T.; Vetlitsky, I.; Viertel, G.; Vivargent, M.; Völkert, R.; Vogel, H.; Vogt, H.; Vorobiev, I.; Vorobyov, A. A.; Vorobyov, An. A.; Vorvolakos, A.; Wadhwa, M.; Wallraff, W.; Wang, J. C.; Wang, X. L.; Wang, Y. F.; Wang, Z. M.; Weber, A.; Wittgenstein, F.; Wu, S. X.; Wynhoff, S.; Xu, J.; Xu, Z. Z.; Yang, B. Z.; Yang, C. G.; Yao, X. Y.; Ye, J. B.; Yeh, S. C.; You, J. M.; Zaccardelli, C.; Zalite, An.; Zemp, P.; Zeng, J. Y.; Zeng, Y.; Zhang, Z.; Zhang, Z. P.; Zhou, B.; Zhou, G. J.; Zhou, Y.; Zhu, G. Y.; Zhu, R. Y.; Zichichi, A.; L3 Collaboration

    1996-02-01

    Using the data recorded with the L3 detector at LEP, we study the process e +e - → μ+μ-( γ) for events with hard initial-state photon radiation. The effective centre-of-mass energies of the muons range from 50 GeV to 86 GeV. The data sample corresponds to an integrated luminosity of 103.5 pb -1 and yields 293 muon-pair events with a hard photon along the beam direction. The events are used to determine the cross sections and the forward-backward charge asymmetries at centre-of-mass energies below the Z resonance.

  13. SPEIR: A Ge Compton Camera

    Energy Technology Data Exchange (ETDEWEB)

    Mihailescu, L; Vetter, K M; Burks, M T; Hull, E L; Craig, W W

    2004-02-11

    The SPEctroscopic Imager for {gamma}-Rays (SPEIR) is a new concept of a compact {gamma}-ray imaging system of high efficiency and spectroscopic resolution with a 4-{pi} field-of-view. The system behind this concept employs double-sided segmented planar Ge detectors accompanied by the use of list-mode photon reconstruction methods to create a sensitive, compact Compton scatter camera.

  14. Optical gain from vertical Ge-on-Si resonant-cavity light emitting diodes with dual active regions

    Science.gov (United States)

    Lin, Guangyang; Wang, Jiaqi; Huang, Zhiwei; Mao, Yichen; Li, Cheng; Huang, Wei; Chen, Songyan; Lai, Hongkai; Huang, Shihao

    2017-09-01

    Vertical resonant-cavity light emitting diodes with dual active regions consisting of highly n-doped Ge/GeSi multiple quantum wells (MQWs) and a Ge epilayer are proposed to improve the light emitting efficiency. The MQWs are designed to optically pump the underlying Ge epilayer under electric injection. Abundant excess carriers can be optically pumped into the Γ valley of the Ge epilayer apart from electric pumping. With the combination of a vertical cavity, the efficiency of the optical-pumping process was effectively improved due to the elongation of the optical length in the cavity. With the unique feature, optical gain from the Ge epilayer is observed between 1625 and 1700 nm at injection current densities of >1.528 kA/cm2. The demonstration of optical gain from the Ge epilayer indicates that this strategy can be generally useful for Si-based light sources with indirect band materials.

  15. The effects of strain on indirect absorption in Ge/SiGe quantum wells

    Science.gov (United States)

    Lever, L.; Ikonić, Z.; Kelsall, R. W.

    2012-06-01

    We calculate the conduction band electron scattering rates from the Γ-valley into the indirect valleys in germanium, and use this to determine the strength of the indirect absorption in Ge/SiGe quantum well heterostructures. This is done as a function of the in-plane compressive strain in the Ge quantum wells, which results from pseudomorphic growth on a SiGe virtual substrate. This compressive strain results in the Δ valleys becoming available as destination states for scattering, which leads to a reduction in the Γ-valley lifetime. We calculate the indirect absorption and lifetime broadening of excitonic peaks, and show that indirect absorption decreases as the Ge fraction in the virtual substrate increases. We conclude that the Ge fraction of the SiGe virtual substrate should be approximately 95% or larger for optimum electroabsorption performance of Ge/SiGe quantum wells.

  16. Continental hydrothermal sedimentary siliceous rock and genesis of superlarge germanium (Ge) deposit hosted in coal:A study from the Lincang Ge deposit, Yunnan, China

    Institute of Scientific and Technical Information of China (English)

    QI Huawen; HU Ruizhong; SU Wenchao; QI Liang; FENG Jiayi

    2004-01-01

    There are abundant hydrothermal sedimentary structures and plant fragment fossils in the siliceous rocks from the Lincang Ge deposit. The major element compositions of these siliceous rocks are characterized by high content SiO2, low TiO2 and Al2O3 concentrations, and low Al/(Al+Fe+Mn) ratios (0.010 on average). The siliceous rocks are distinctly enriched in Ge,Sb, As, W, and secondly enriched in Cs, U, Mo and TI. Their total REE content are generally less than 1μg/g, LREE relatively concentrated, and the values of Eu anomaly and Ce anomaly vary from 0.452 to 5.141 and 0.997 to 1.174, respectively. Their NAS-normalized REE patterns are plain or left-inclined. The Oxygen isotope compositions of these siliceous rocks are similar to those of the hydrothermal siliceous sinter. The above characteristics, as well as the geological setting of the deposit, indicate these siliceous rocks formed in continental hydrothermal environment. As the interlayer or cliff of the Ge-rich coal seams, siliceous rocks tightly contacted with ore-body, and the contents of Ge in siliceous rocks vary from 5.6 to 360 μg/g (78 μg/g on aver-age). The Ge content increased in coal which close to the siliceous rocks. With the increase of Ge content, the typical trace element ratios (i.e., Ge/Ga, Nb/Ta and U/Th) and REE patterns of Ge-rich coal are more close to those of the siliceous rocks. The Ge concentrated in coal seams of the Lincang Ge deposit might be transported by the hydrothermal water, which demonstrated by the siliceous rocks, during the coal-forming processes.

  17. Continental hydrothermal sedimentary siliceous rock and genesis of superlarge germanium (Ge) deposit hosted in coal: A study from the Lincang Ge deposit, Yunnan, China

    Institute of Scientific and Technical Information of China (English)

    QI; Huawen; HU; Ruizhong; SU; Wenchao; QI; Liang; FENG; Jia

    2004-01-01

    There are abundant hydrothermal sedimentary structures and plant fragment fossils in the siliceous rocks from the Lincang Ge deposit. The major element compositions of these siliceous rocks are characterized by high content SiO2, low TiO2 and Al2O3 concentrations, and low Al/(Al+Fe+Mn) ratios (0.010 on average). The siliceous rocks are distinctly enriched in Ge,Sb, As, W, and secondly enriched in Cs, U, Mo and TI. Their total REE content are generally less than 1μg/g, LREE relatively concentrated, and the values of Eu anomaly and Ce anomaly vary from 0.452 to 5.141 and 0.997 to 1.174, respectively. Their NAS-normalized REE patterns are plain or left-inclined. The Oxygen isotope compositions of these siliceous rocks are similar to those of the hydrothermal siliceous sinter. The above characteristics, as well as the geological setting of the deposit, indicate these siliceous rocks formed in continental hydrothermal environment. As the interlayer or cliff of the Ge-rich coal seams, siliceous rocks tightly contacted with ore-body, and the contents of Ge in siliceous rocks vary from 5.6 to 360 μg/g (78 μg/g on aver-age). The Ge content increased in coal which close to the siliceous rocks. With the increase of Ge content, the typical trace element ratios (i.e., Ge/Ga, Nb/Ta and U/Th) and REE patterns of Ge-rich coal are more close to those of the siliceous rocks. The Ge concentrated in coal seams of the Lincang Ge deposit might be transported by the hydrothermal water, which demonstrated by the siliceous rocks, during the coal-forming processes.

  18. Segregation of Ge in B and Ge codoped Czochralski-Si crystal growth

    Energy Technology Data Exchange (ETDEWEB)

    Arivanandhan, Mukannan, E-mail: rmarivu@ipc.shizuoka.ac.jp [Department of Electronics and Materials Science, Graduate School of Engineering, Shizuoka University, Johoku 3-5-1, Naka-Ku, Hamamatsu 432-8011 (Japan); Research Institute of Electronics, Shizuoka University, Johoku 3-5-1, Naka-Ku, Hamamatsu 432-8011 (Japan); Gotoh, Raira; Fujiwara, Kozo; Uda, Satoshi [Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan); Hayakawa, Yasuhiro [Department of Electronics and Materials Science, Graduate School of Engineering, Shizuoka University, Johoku 3-5-1, Naka-Ku, Hamamatsu 432-8011 (Japan); Research Institute of Electronics, Shizuoka University, Johoku 3-5-1, Naka-Ku, Hamamatsu 432-8011 (Japan)

    2015-08-05

    Highlights: • Effective segregation of Ge in B and Ge codoped Czochralski-Si crystal growth was analyzed. • The equilibrium segregation coefficient of Ge was calculated. • The experimentally results were analytically analyzed using partitioning theory. - Abstract: The segregation of Ge in B and Ge codoped Czochralski (CZ)-Si crystal growth was investigated. The concentration of Ge in heavily Ge codoped CZ-Si was measured by electron probe micro analysis (EPMA) and X-ray fluorescence spectroscopy. The effective segregation coefficient of Ge (k{sub eff}) was calculated by fitting the EPMA data to the normal freezing equation, and by taking the logarithmic ratio of the Ge concentrations at the seed and tail of the ingots (top to bottom approach). The k{sub eff} of Ge increased from 0.30 to 0.55, when the initial Ge concentration in the Si melt (C{sub L(o)}{sup Ge}) was increased from 3 × 10{sup 19} to 3 × 10{sup 21} cm{sup −3}. To avoid cellular growth, the crystal pulling rate was decreased for heavily Ge codoped crystal growth (C{sub L(o)}{sup Ge} > 3 × 10{sup 20} cm{sup −3}). The equilibrium segregation coefficient (k{sub 0}) of Ge was calculated by partitioning theory, and was smaller than the experimentally estimated k{sub eff}. The variation of k{sub eff} from k{sub 0} was discussed based on Ge clustering in the heavily Ge codoped crystal, which led to changes in the bonding and strain energies caused by the incorporation of Ge into Si.

  19. GeSbTe deposition for the PRAM application

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Junghyun [Nano Fabrication Center, SAIT, Suwon, P.O. Box 111 (Korea, Republic of); Choi, Sangjoon [Nano Fabrication Center, SAIT, Suwon, P.O. Box 111 (Korea, Republic of); Lee, Changsoo [Nano Fabrication Center, SAIT, Suwon, P.O. Box 111 (Korea, Republic of); Kang, Yoonho [Nano Fabrication Center, SAIT, Suwon, P.O. Box 111 (Korea, Republic of); Kim, Daeil [School of Materials Science and Engineering. University of Ulsan, San 29, Mugeo-Dong, Nam-Gu, Ulsan 680-749 (Korea, Republic of)]. E-mail: dkim84@mail.ulsan.ac.kr

    2007-02-15

    GeSbTe (GST) chalcogenide thin films for the phase-change random access memory (PRAM) were deposited by an atomic layer deposition (ALD) process. New precursors for GST thin films made with an ALD process were synthesized. Among the synthesized precursors, Ge(N(CH{sub 3}){sub 2}){sub 4}, Sb(N(CH{sub 3}){sub 2}){sub 4}, and Te(i-Pr){sub 2} (i-Pr = iso-propyl) were selected. Using the above precursors, GST thin films were deposited using an H{sub 2} plasma-assisted ALD process. Film resistivity abruptly changed after an N{sub 2} annealing process above a temperature of 350 deg. C. Cross-sectional scanning electron microscope (SEM) photographs of the GST films on the patterned substrate with aspect ratio of 7 shows that the step coverage is about 90%.

  20. Ion Beam Synthesis of Ge Nanowires. rev. ed.

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, T.

    2001-01-01

    The formation of Ge nanowires in V-grooves has been studied experimentally as well as theoretically. As substrate oxide covered Si V-grooves were used formed by anisotropic etching of (001)Si wafers and subsequent oxidation of their surface. Implantation of 1 x 10{sup 17} Ge{sup +}cm{sup -2} at 70 keV was carried out into the oxide layer covering the V-grooves. Ion irradiation induces shape changes of the V-grooves, which are captured in a novel continuum model of surface evolution. It describes theoretically the effects of sputtering, redeposition of sputtered atoms, and swelling. Thereby, the time evolution of the target surface is determined by a nonlinear integro-differential equation, which was solved numerically for the V-groove geometry. A very good agreement is achieved for the predicted surface shape and the shape observed in XTEM images. Surprisingly, the model predicts material (Si, O, Ge) transport into the V-groove bottom which also suggests an Ge accumulation there proven by STEM-EDX investigations. In this Ge rich bottom region, subsequent annealing in N{sub 2} atmosphere results in the formation of a nanowire by coalescence of Ge precipitates shown by XTEM images. The process of phase separation during the nanowire growth was studied by means of kinetic 3D lattice Monte-Carlo simulations. These simulations also indicate the disintegration of continuous wires into droplets mediated by thermal fluctuations. Energy considerations have identified a fragmentation threshold and a lower boundary for the droplet radii which were confirmed by the Monte Carlo simulation. The here given results indicate the possibility of achieving nanowires being several nanometers wide by further growth optimizations as well as chains of equally spaced clusters with nearly uniform diameter. (orig.)

  1. GeSn/Ge heterostructure short-wave infrared photodetectors on silicon.

    Science.gov (United States)

    Gassenq, A; Gencarelli, F; Van Campenhout, J; Shimura, Y; Loo, R; Narcy, G; Vincent, B; Roelkens, G

    2012-12-03

    A surface-illuminated photoconductive detector based on Ge0.91Sn0.09 quantum wells with Ge barriers grown on a silicon substrate is demonstrated. Photodetection up to 2.2µm is achieved with a responsivity of 0.1 A/W for 5V bias. The spectral absorption characteristics are analyzed as a function of the GeSn/Ge heterostructure parameters. This work demonstrates that GeSn/Ge heterostructures can be used to developed SOI waveguide integrated photodetectors for short-wave infrared applications.

  2. Impurity and defect interactions during laser thermal annealing in Ge

    Energy Technology Data Exchange (ETDEWEB)

    Milazzo, R., E-mail: ruggero.milazzo@unipd.it; De Salvador, D.; Carnera, A.; Napolitani, E. [CNR-IMM MATIS and Dipartimento di Fisica e Astronomia, Università di Padova, Via Marzolo 8, 35131 Padova (Italy); Impellizzeri, G.; Privitera, V. [CNR-IMM MATIS and Dipartimento di Fisica e Astronomia, Università di Catania, Via S. Sofia 64, 95123 Catania (Italy); Piccinotti, D. [CNR-IMM MATIS and Dipartimento di Fisica e Astronomia, Università di Padova, Via Marzolo 8, 35131 Padova (Italy); IM2NP, CNRS-Universités d' Aix-Marseille et de Toulon, Case 142, 13397 Marseille Cedex 20 (France); La Magna, A. [CNR-IMM, Z.I. VIII Strada 5, 95121 Catania (Italy); Fortunato, G. [CNR-IMM, Via del Fosso del Cavaliere 100, 00133 Roma (Italy); Portavoce, A.; Mangelinck, D. [IM2NP, CNRS-Universités d' Aix-Marseille et de Toulon, Case 142, 13397 Marseille Cedex 20 (France)

    2016-01-28

    The microscopic mechanisms involving dopants, contaminants, and defects in Ge during pulsed melting laser thermal annealing (LTA) are investigated in detail. Samples both un-implanted and implanted with As or B are processed by LTA as well as characterized in terms of chemical (1D and 3D), electrical, and strain profiling. The clustering of As is directly measured by 3D chemical profiling and correlated with its partial electrical activation along with a reduction of the lattice strain induced by As atoms. A semi-quantitative microscopic model involving the interaction with mobile As-vacancy (AsV) complexes is proposed to describe the clustering mechanism. Boron is shown to follow different clustering behavior that changes with depth and marked by completely different strain levels. Oxygen penetrates from the surface into all the samples as a result of LTA and, only in un-implanted Ge, it occupies an interstitial position inducing also positive strain in the lattice. On the contrary, data suggest that the presence of As or B forces O to assume different configurations with negligible strain, through O-V or O-B interactions for the two dopant species, respectively. These data suggest that LTA does not inject a significant amount of vacancies in Ge, at variance with Si, unless As atoms or possibly other n-type dopants are present. These results have to be carefully considered for modeling the LTA process in Ge and its implementation in technology.

  3. Development of an improved performance SiGe unicouple

    Science.gov (United States)

    Nakahara, Jan F.; Franklin, Brian; DeFillipo, Lawrence E.

    1995-01-01

    This paper describes the fabrication of unicouples with improved SiGe alloys. Based on laboratory measurements of the thermoelectric properties the improved materials provide about a 10% improvement in the figure-of-merit between 573 and 1273 K compared to standard coarse grain unicouple materials. The improved materials are p-type Si0.796Ge0.199B0.005 fabricated at Martin Marietta Astro Space by the Vacuum casting/hot pressing method and n-type Si0.784Ge0.196Ga0.005P0.015 fabricated at Ames Laboratory by the mechanical alloying/hot isostatic pressing method. The standard unicouple bonding process was adjusted to accommodate the lower melting temperature of the SiGe/GaP material. A two-step diffusion bonding process was developed such that the p-type material is bonded to the SiMo hot shoe first at 1594 K followed by the lower melting point n-type material between 1518 and 1520 K. Standard procedures were used to silicon nitride coat the thermoelectric pellets and to attach the cold side CTE transition and heat rejection components to produce unicouples. Two unicouples successfully withstood simulated rivet operations as would be experienced in the fabrication of a Radioisotope Thermoelectric Generator (RTG) converter to verify the integrity of the tungsten cold shoe to thermoelectric material interface. The performance of these unicouples will be further evaluated in an 18-couple test module.

  4. Intersubband carrier scattering in n - and p-Si/SiGe quantum wells with diffuse interfaces

    Science.gov (United States)

    Valavanis, A.; Ikonić, Z.; Kelsall, R. W.

    2008-02-01

    Scattering rate calculations in two-dimensional Si/Si1-xGex systems have typically been restricted to rectangular Ge profiles at interfaces between layers. Real interfaces, however, may exhibit diffuse Ge profiles either by design or as a limitation of the growth process. It is shown here that alloy disorder scattering dramatically increases with Ge interdiffusion in (100) and (111) n -type quantum wells, but remains almost constant in (100) p -type heterostructures. It is also shown that smoothing of the confining potential leads to large changes in subband energies and scattering rates, and a method is presented for calculating growth process tolerances.

  5. 77 FR 56793 - Petition for Rulemaking Submitted by Annette User on Behalf of GE Osmonics, Inc.

    Science.gov (United States)

    2012-09-14

    ... Westborough, Massachusetts and Minnetonka, Minnesota. During GE's Texas license renewal process, the Texas... industrial applications. In particular, PCTE membranes are used in pharmaceutical, medical device, and water filtration applications. The petitioner believes that the requested amendments are necessary to allow...

  6. As doping of Si-Ge-Sn epitaxial semiconductor materials on a commercial CVD reactor

    Science.gov (United States)

    Bhargava, Nupur; Margetis, Joe; Tolle, John

    2017-09-01

    In this work we present the As doping, via AsH3, of Ge1-x Sn x and SiyGe1-y-x Sn x alloys grown in a commercial RPCVD reactor. The composition, thickness, and resistivity of the layers were measured for varying AsH3 flows and AsH3 growth kinetics was discussed. We find that the addition of As to the lattice induces compressive strain in the layer despite a smaller covalent radius relative to Ge and Sn. N-type dopant incorporation and activation is compared for AsH3 and PH3-based processes, and we find that As incorporates more efficiently than P. As concentrations > 2 × 1020 cm-3 were achieved for both Ge1-x Sn x and SiyGe1-y-x Sn x with resistivity as low as 0.6 mΩ cm.

  7. Ge nanopillar solar cells epitaxially grown by metalorganic chemical vapor deposition

    Science.gov (United States)

    Kim, Youngjo; Lam, Nguyen Dinh; Kim, Kangho; Park, Won-Kyu; Lee, Jaejin

    2017-02-01

    Radial junction solar cells with vertically aligned wire arrays have been widely studied to improve the power conversion efficiency. In this work, we report the first Ge nanopillar solar cell. Nanopillar arrays are selectively patterned on p-type Ge (100) substrates using nanosphere lithography and deep reactive ion etching processes. Nanoscale radial and planar junctions are realized by an n-type Ge emitter layer which is epitaxially grown by MOCVD using isobutylgermane. In situ epitaxial surface passivation is employed using an InGaP layer to avoid high surface recombination rates and Fermi level pinning. High quality n-ohmic contact is realized by protecting the top contact area during the nanopillar patterning. The short circuit current density and the power conversion efficiency of the Ge nanopillar solar cell are demonstrated to be improved up to 18 and 30%, respectively, compared to those of the Ge solar cell with a planar surface.

  8. Ge nanopillar solar cells epitaxially grown by metalorganic chemical vapor deposition

    Science.gov (United States)

    Kim, Youngjo; Lam, Nguyen Dinh; Kim, Kangho; Park, Won-Kyu; Lee, Jaejin

    2017-01-01

    Radial junction solar cells with vertically aligned wire arrays have been widely studied to improve the power conversion efficiency. In this work, we report the first Ge nanopillar solar cell. Nanopillar arrays are selectively patterned on p-type Ge (100) substrates using nanosphere lithography and deep reactive ion etching processes. Nanoscale radial and planar junctions are realized by an n-type Ge emitter layer which is epitaxially grown by MOCVD using isobutylgermane. In situ epitaxial surface passivation is employed using an InGaP layer to avoid high surface recombination rates and Fermi level pinning. High quality n-ohmic contact is realized by protecting the top contact area during the nanopillar patterning. The short circuit current density and the power conversion efficiency of the Ge nanopillar solar cell are demonstrated to be improved up to 18 and 30%, respectively, compared to those of the Ge solar cell with a planar surface. PMID:28209964

  9. Neutron capture cross sections of $^{70,72,73,74,76}$ Ge at n_TOF EAR-1

    CERN Multimedia

    We propose to measure the (n;$\\gamma$ ) cross sections of the isotopes $^{70;72;73;74;76}$Ge. Neutron induced reactions on Ge are of importance for the astrophysical slow neutron capture process, which is responsible for forming about half of the overall elemental abundances heavier than Fe. The neutron capture cross section on Ge affects the abundances produced in this process for a number of heavier isotopes up to a mass number of A = 90. Additionally, neutron capture on Ge is of interest for low background experiments involving Ge detectors. Experimental cross section data presently available for Ge (n;$\\gamma$ ) are scarce and cover only a fraction of the neutron energy range of interest. (n;$\\gamma$ ) cross sections will be measured in the full energy range from 25 meV to about 200 keV at n TOF EAR-1.

  10. Mid- to long-wavelength infrared plasmonic-photonics using heavily doped n-Ge/Ge and n-GeSn/GeSn heterostructures.

    Science.gov (United States)

    Soref, Richard; Hendrickson, Joshua; Cleary, Justin W

    2012-02-13

    Heavily doped n-type Ge and GeSn are investigated as plasmonic conductors for integration with undoped dielectrics of Si, SiGe, Ge, and GeSn in order to create a foundry-based group IV plasmonics technology. N-type Ge1-xSnx with compositions of 0 ≤ x ≤ 0.115 are investigated utilizing effective-mass theory and Drude considerations. The plasma wavelengths, relaxation times, and complex permittivities are determined as functions of the free carrier concentration over the range of 10(10) to 10(21) cm-3. Basic plasmonic properties such as propagation loss and mode height are calculated and example numerical simulations are shown of a dielectric-conductor-dielectric ribbon waveguide structure are shown. Practical operation in the 2 to 20 μm wavelength range is predicted.

  11. Ge photocapacitive MIS infrared detectors

    Science.gov (United States)

    Binari, S. C.; Miller, W. E.; Tsuo, Y. H.; Miller, W. E.

    1979-01-01

    An undoped Ge photocapacitive detector is reported which has peak normalized detectivities at wavelengh 1.4 microns and chopping frequencies 13-1000 Hz of 9 x 10 to the 12th, 4 x 10 to the 9th cm Hz to the 1/2th/W operating respectively at temperatures 77, 195, and 295 K. The observed temperature, spectral, and frequency response of the signal and noise are explained in terms of the measured space charge and interface state properties of the device.

  12. Nanostructuring of GeTiO amorphous films by pulsed laser irradiation

    Directory of Open Access Journals (Sweden)

    Valentin S. Teodorescu

    2015-04-01

    Full Text Available Laser pulse processing of surfaces and thin films is a useful tool for amorphous thin films crystallization, surface nanostructuring, phase transformation and modification of physical properties of thin films. Here we show the effects of nanostructuring produced at the surface and under the surface of amorphous GeTiO films through laser pulses using fluences of 10–30 mJ/cm2. The GeTiO films were obtained by RF magnetron sputtering with 50:50 initial atomic ratio of Ge:TiO2. Laser irradiation was performed by using the fourth harmonic (266 nm of a Nd:YAG laser. The laser-induced nanostructuring results in two effects, the first one is the appearance of a wave-like topography at the film surface, with a periodicity of 200 nm and the second one is the structure modification of a layer under the film surface, at a depth that is related to the absorption length of the laser radiation. The periodicity of the wave-like relief is smaller than the laser wavelength. In the modified layer, the Ge atoms are segregated in spherical amorphous nanoparticles as a result of the fast diffusion of Ge atoms in the amorphous GeTiO matrix. The temperature estimation of the film surface during the laser pulses shows a maximum of about 500 °C, which is much lower than the melting temperature of the GeTiO matrix. GeO gas is formed at laser fluences higher than 20 mJ/cm2 and produces nanovoids in the laser-modified layer at the film surface. A glass transition at low temperatures could happen in the amorphous GeTiO film, which explains the formation of the wave-like topography. The very high Ge diffusivity during the laser pulse action, which is characteristic for liquids, cannot be reached in a viscous matrix. Our experiments show that the diffusivity of atomic and molecular species such as Ge and GeO is very much enhanced in the presence of the laser pulse field. Consequently, the fast diffusion drives the formation of amorphous Ge nanoparticles through the

  13. Search for sleptons in $e^+ e^-$ collisions at centre-of-mass energies of 161 GeV and 172 GeV

    CERN Document Server

    Barate, R; Décamp, D; Ghez, P; Goy, C; Lees, J P; Lucotte, A; Minard, M N; Nief, J Y; Pietrzyk, B; Casado, M P; Chmeissani, M; Comas, P; Crespo, J M; Delfino, M C; Fernández, E; Fernández-Bosman, M; Garrido, L; Juste, A; Martínez, M; Miquel, R; Mir, L M; Orteu, S; Padilla, C; Park, I C; Pascual, A; Perlas, J A; Riu, I; Sánchez, F; Teubert, F; Colaleo, A; Creanza, D; De Palma, M; Gelao, G; Iaselli, Giuseppe; Maggi, G; Maggi, M; Marinelli, N; Nuzzo, S; Ranieri, A; Raso, G; Ruggieri, F; Selvaggi, G; Silvestris, L; Tempesta, P; Tricomi, A; Zito, G; Huang, X; Lin, J; Ouyang, Q; Wang, T; Xie, Y; Xu, R; Xue, S; Zhang, J; Zhang, L; Zhao, W; Abbaneo, D; Alemany, R; Bazarko, A O; Becker, U; Bright-Thomas, P G; Cattaneo, M; Cerutti, F; Dissertori, G; Drevermann, H; Forty, Roger W; Frank, M; Hagelberg, R; Hansen, J B; Harvey, J; Janot, P; Jost, B; Kneringer, E; Knobloch, J; Lehraus, Ivan; Lutters, G; Mato, P; Minten, Adolf G; Moneta, L; Pacheco, A; Pusztaszeri, J F; Ranjard, F; Rizzo, G; Rolandi, Luigi; Rousseau, D; Schlatter, W D; Schmitt, M; Schneider, O; Tejessy, W; Tomalin, I R; Wachsmuth, H W; Wagner, A; Ajaltouni, Ziad J; Barrès, A; Boyer, C; Falvard, A; Ferdi, C; Gay, P; Guicheney, C; Henrard, P; Jousset, J; Michel, B; Monteil, S; Montret, J C; Pallin, D; Perret, P; Podlyski, F; Proriol, J; Rosnet, P; Rossignol, J M; Fearnley, Tom; Hansen, J D; Hansen, J R; Hansen, P H; Nilsson, B S; Rensch, B; Wäänänen, A; Daskalakis, G; Kyriakis, A; Markou, C; Simopoulou, Errietta; Siotis, I; Vayaki, Anna; Blondel, A; Brient, J C; Machefert, F P; Rougé, A; Rumpf, M; Valassi, Andrea; Videau, H L; Focardi, E; Parrini, G; Zachariadou, K; Cavanaugh, R J; Corden, M; Georgiopoulos, C H; Hühn, T; Jaffe, D E; Antonelli, A; Bencivenni, G; Bologna, G; Bossi, F; Campana, P; Capon, G; Casper, David William; Chiarella, V; Felici, G; Laurelli, P; Mannocchi, G; Murtas, F; Murtas, G P; Passalacqua, L; Pepé-Altarelli, M; Curtis, L; Dorris, S J; Halley, A W; Knowles, I G; Lynch, J G; O'Shea, V; Raine, C; Scarr, J M; Smith, K; Teixeira-Dias, P; Thompson, A S; Thomson, E; Thomson, F; Turnbull, R M; Geweniger, C; Graefe, G; Hanke, P; Hansper, G; Hepp, V; Kluge, E E; Putzer, A; Schmidt, M; Sommer, J; Tittel, K; Werner, S; Wunsch, M; Beuselinck, R; Binnie, David M; Cameron, W; Dornan, Peter J; Girone, M; Goodsir, S M; Martin, E B; Morawitz, P; Moutoussi, A; Nash, J; Sedgbeer, J K; Spagnolo, P; Stacey, A M; Williams, M D; Ghete, V M; Girtler, P; Kuhn, D; Rudolph, G; Betteridge, A P; Bowdery, C K; Colrain, P; Crawford, G; Finch, A J; Foster, F; Hughes, G; Jones, R W L; Sloan, Terence; Whelan, E P; Williams, M I; Hoffmann, C; Jakobs, K; Kleinknecht, K; Quast, G; Renk, B; Rohne, E; Sander, H G; Van Gemmeren, P; Zeitnitz, C; Aubert, Jean-Jacques; Benchouk, C; Bonissent, A; Bujosa, G; Calvet, D; Carr, J; Coyle, P; Diaconu, C A; Konstantinidis, N P; Leroy, O; Motsch, F; Payre, P; Talby, M; Sadouki, A; Thulasidas, M; Tilquin, A; Trabelsi, K; Aleppo, M; Ragusa, F; Berlich, R; Blum, Walter; Büscher, V; Dietl, H; Ganis, G; Gotzhein, C; Kroha, H; Lütjens, G; Lutz, Gerhard; Männer, W; Moser, H G; Richter, R H; Rosado-Schlosser, A; Schael, S; Settles, Ronald; Seywerd, H C J; Saint-Denis, R; Stenzel, H; Wiedenmann, W; Wolf, G; Boucrot, J; Callot, O; Chen, S; Cordier, A; Davier, M; Duflot, L; Grivaz, J F; Heusse, P; Höcker, A; Jacholkowska, A; Jacquet, M; Kim, D W; Le Diberder, F R; Lefrançois, J; Lutz, A M; Nikolic, I A; Schune, M H; Serin, L; Simion, S; Tournefier, E; Veillet, J J; Videau, I; Zerwas, D; Azzurri, P; Bagliesi, G; Bettarini, S; Bozzi, C; Calderini, G; Ciulli, V; Dell'Orso, R; Fantechi, R; Ferrante, I; Giassi, A; Gregorio, A; Ligabue, F; Lusiani, A; Marrocchesi, P S; Messineo, A; Palla, Fabrizio; Sanguinetti, G; Sciabà, A; Steinberger, Jack; Tenchini, Roberto; Vannini, C; Venturi, A; Verdini, P G; Blair, G A; Bryant, L M; Chambers, J T; Gao, Y; Green, M G; Medcalf, T; Perrodo, P; Strong, J A; Von Wimmersperg-Töller, J H; Botterill, David R; Clifft, R W; Edgecock, T R; Haywood, S; Maley, P; Norton, P R; Thompson, J C; Wright, A E; Bloch-Devaux, B; Colas, P; Kozanecki, Witold; Lançon, E; Lemaire, M C; Locci, E; Pérez, P; Rander, J; Renardy, J F; Rosowsky, A; Roussarie, A; Schuller, J P; Schwindling, J; Trabelsi, A; Vallage, B; Black, S N; Dann, J H; Kim, H Y; Litke, A M; McNeil, M A; Taylor, G; Booth, C N; Boswell, R; Brew, C A J; Cartwright, S L; Combley, F; Kelly, M S; Lehto, M H; Newton, W M; Reeve, J; Thompson, L F; Affholderbach, K; Böhrer, A; Brandt, S; Cowan, G D; Foss, J; Grupen, Claus; Saraiva, P; Smolik, L; Stephan, F; Apollonio, M; Bosisio, L; Della Marina, R; Giannini, G; Gobbo, B; Musolino, G; Pütz, J; Rothberg, J E; Wasserbaech, S R; Williams, R W; Armstrong, S R; Charles, E; Elmer, P; Ferguson, D P S; González, S; Greening, T C; Hayes, O J; Hu, H; Jin, S; McNamara, P A; Nachtman, J M; Nielsen, J; Orejudos, W; Pan, Y B; Saadi, Y; Scott, I J; Walsh, J; Wu Sau Lan; Wu, X; Yamartino, J M; Zobernig, G

    1997-01-01

    The data recorded by the ALEPH experiment at LEP at centre-of-mass energies of 161 GeV and 172 GeV were analysed to search for sleptons, the supersymmetric partners of leptons. No evidence for the production of these particles was found. The number of candidates observed is consistent with the background expected from four-fermion processes and gammagamma-interactions. Improved mass limits at 95% C.L. are reported.

  14. Magnetic study on single crystals of YMn{sub 6}Ge{sub 6} and LuMn{sub 6}Ge{sub 6}

    Energy Technology Data Exchange (ETDEWEB)

    Koyama, M. [KYOKUGEN, Osaka University, Toyonaka, Osaka 560-8531 (Japan); Narumi, Y. [KYOKUGEN, Osaka University, Toyonaka, Osaka 560-8531 (Japan); Yoshii, S. [KYOKUGEN, Osaka University, Toyonaka, Osaka 560-8531 (Japan)]. E-mail: yoshii@mag.rcem.osaka-u.ac.jp; Kindo, K. [KYOKUGEN, Osaka University, Toyonaka, Osaka 560-8531 (Japan); Zhang, L. [Van der Waals-Zeeman Instituut, Universiteit van Amsterdam, 1018 XE Amsterdam (Netherlands); Brueck, E. [Van der Waals-Zeeman Instituut, Universiteit van Amsterdam, 1018 XE Amsterdam (Netherlands); Buschow, K.H.J. [Van der Waals-Zeeman Instituut, Universiteit van Amsterdam, 1018 XE Amsterdam (Netherlands); Boer, F.R. de [KYOKUGEN, Osaka University, Toyonaka, Osaka 560-8531 (Japan); Van der Waals-Zeeman Instituut, Universiteit van Amsterdam, 1018 XE Amsterdam (Netherlands); Lefevre, C. [Lab. Chim. Sol. Mineral, Universite Henri Poincare-Nancy 1, 54506 Vandoeuvre les Nancy Cedex (France); Venturini, G. [Lab. Chim. Sol. Mineral, Universite Henri Poincare-Nancy 1, 54506 Vandoeuvre les Nancy Cedex (France)

    2006-02-09

    The magnetic properties of single crystals of the HfFe{sub 6}Ge{sub 6}-type compounds YMn{sub 6}Ge{sub 6} and LuMn{sub 6}Ge{sub 6} obtained in an In flux have been investigated by thermomagnetic measurements and by a high-field magnetization study. Both the compounds display Neel point at T {sub N} = 482 and 527 K, respectively. The compound YMn{sub 6}Ge{sub 6} saturates at M {sub s} = 12 {mu}{sub B}/f.u. above 33 T, whereas LuMn{sub 6}Ge{sub 6} is still not saturated in the largest applied field (M(50 T) = 9 {mu}{sub B}/f.u.), thus indicating different strengths of the antiferromagnetic interactions. The magnetization curves of YMn{sub 6}Ge{sub 6} and LuMn{sub 6}Ge{sub 6} recorded with the field applied along the c-axis display a field-induced transition at relatively low field (around 10 and 15 T, respectively), which should be related to spin reorientation process. In larger applied fields, all magnetization loops display two field-induced transitions with pronounced hysteretic behaviour which may be related to the successive stabilization of helical and fan structures.

  15. Ge/Si(001) heterostructures with dense arrays of Ge quantum dots: morphology, defects, photo-emf spectra and terahertz conductivity.

    Science.gov (United States)

    Yuryev, Vladimir A; Arapkina, Larisa V; Storozhevykh, Mikhail S; Chapnin, Valery A; Chizh, Kirill V; Uvarov, Oleg V; Kalinushkin, Victor P; Zhukova, Elena S; Prokhorov, Anatoly S; Spektor, Igor E; Gorshunov, Boris P

    2012-07-23

    : Issues of Ge hut cluster array formation and growth at low temperatures on the Ge/Si(001) wetting layer are discussed on the basis of explorations performed by high resolution STM and in-situ RHEED. Dynamics of the RHEED patterns in the process of Ge hut array formation is investigated at low and high temperatures of Ge deposition. Different dynamics of RHEED patterns during the deposition of Ge atoms in different growth modes is observed, which reflects the difference in adatom mobility and their 'condensation' fluxes from Ge 2D gas on the surface for different modes, which in turn control the nucleation rates and densities of Ge clusters. Data of HRTEM studies of multilayer Ge/Si heterostructures are presented with the focus on low-temperature formation of perfect films.Heteroepitaxial Si p-i-n-diodes with multilayer stacks of Ge/Si(001) quantum dot dense arrays built in intrinsic domains have been investigated and found to exhibit the photo-emf in a wide spectral range from 0.8 to 5 μm. An effect of wide-band irradiation by infrared light on the photo-emf spectra has been observed. Photo-emf in different spectral ranges has been found to be differently affected by the wide-band irradiation. A significant increase in photo-emf is observed in the fundamental absorption range under the wide-band irradiation. The observed phenomena are explained in terms of positive and neutral charge states of the quantum dot layers and the Coulomb potential of the quantum dot ensemble. A new design of quantum dot infrared photodetectors is proposed.By using a coherent source spectrometer, first measurements of terahertz dynamical conductivity (absorptivity) spectra of Ge/Si(001) heterostructures were performed at frequencies ranged from 0.3 to 1.2 THz in the temperature interval from 300 to 5 K. The effective dynamical conductivity of the heterostructures with Ge quantum dots has been discovered to be significantly higher than that of the structure with the same amount of bulk

  16. Characterization and control of ZnGeN2 cation lattice ordering

    Science.gov (United States)

    Blanton, Eric W.; He, Keliang; Shan, Jie; Kash, Kathleen

    2017-03-01

    ZnGeN2 and other heterovalent ternary semiconductors have important potential applications in optoelectronics, but ordering of the cation sublattice, which can affect the band gap, lattice parameters, and phonons, is not yet well understood. Here the effects of growth and processing conditions on the ordering of the ZnGeN2 cation sublattice were investigated using x-ray diffraction and Raman spectroscopy. Polycrystalline ZnGeN2 was grown by exposing solid Ge to Zn and NH3 vapors at temperatures between 758 °C and 914 °C. Crystallites tended to be rod-shaped, with growth rates higher along the c-axis. The degree of ordering, from disordered, wurtzite-like x-ray diffraction spectra to orthorhombic, with space group Pna21, increased with increasing growth temperature, as evidenced by the appearance of superstructure peaks and peak splittings in the diffraction patterns. Annealing disordered, low-temperature-grown ZnGeN2 at 850 °C resulted in increased cation ordering. Growth of ZnGeN2 on a liquid Sn-Ge-Zn alloy at 758 °C showed an increase in the tendency for cation ordering at a lower growth temperature, and resulted in hexagonal platelet-shaped crystals. The trends shown here may help to guide understanding of the synthesis and characterization of other heterovalent ternary nitride semiconductors as well as ZnGeN2.

  17. Whispering Gallery Mode Resonances from Ge Micro-Disks on Suspended Beams

    Directory of Open Access Journals (Sweden)

    Abdelrahman Zaher Al-Attili

    2015-05-01

    Full Text Available Ge is considered to be one of the most promising materials for realizing full monolithic integration of a light source on a silicon (Si photonic chip. Tensile-strain is required to convert Ge into an optical gain material and to reduce the pumping required for population inversion. Several methods of strain application to Ge are proposed in literature, of which the use of free-standing beams fabricated by micro-electro-mechanical systems (MEMS processes are capable of delivering very high strain values. However, it is challenging to make an optical cavity within free-standing Ge beams, and here, we demonstrate the fabrication of a simple cavity while imposing tensile strain by suspension using Ge-On-Insulator (GOI wafers. Ge micro-disks are made on top of suspended SiO$_{2}$ beams by partially removing the supporting Si substrate. According to Raman spectroscopy, a slight tensile strain was applied to the Ge disks through the bending of the SiO2 beams. Whispering-Gallery-Mode (WGM resonances were observed from a disk with a diameter of 3um, consistent with the finite-domain time-difference simulations. The quality (Q factor was 192, and upon increasing the pumping power, the Q-factor was degraded due to the red-shift of Ge direct-gap absorption edge caused by heating.

  18. Dynamics of metal-induced crystallization of ultrathin Ge films by rapid thermal annealing

    Energy Technology Data Exchange (ETDEWEB)

    Liao, Yuanxun; Huang, Shujuan; Shrestha, Santosh; Conibeer, Gavin [School of Photovoltaic and Renewable Energy Engineering, UNSW Australia, Sydney 2052 (Australia)

    2015-12-07

    Though Ge crystallization has been widely studied, few works investigate metal-induced crystallization of ultrathin Ge films. For 2 nm Ge films in oxide matrix, crystallization becomes challenging due to easy oxidation and low mobility of Ge atoms. Introducing metal atoms may alleviate these problems, but the functions and the behaviours of metal atoms need to be clarified. This paper investigates the crystallization dynamics of a multilayer structure 1.9 nm Ge/0.5 nm Al/1.5 nm Al{sub 2}O{sub 3} under rapid thermal annealing (RTA). The functions of metal atoms, like effective anti-oxidation, downshifting Raman peaks, and incapability to decrease crystallization temperature, are found and explained. The metal behaviours, such as inter-diffusion and defect generation, are supported with direct evidences, Al-Ge nanobicrystals, and Al cluster in Ge atoms. With these understandings, a two-step RTA process achieves high-quality 2 nm nanocrystal Ge films with Raman peak at 298 cm{sup −1} of FWHM 10.3 cm{sup −1} and atomic smooth interfaces.

  19. Simulation of GeSn/Ge tunneling field-effect transistors for complementary logic applications

    Science.gov (United States)

    Liu, Lei; Liang, Renrong; Wang, Jing; Xiao, Lei; Xu, Jun

    2016-09-01

    GeSn/Ge tunneling field-effect transistors (TFETs) with different device configurations are comprehensively investigated by numerical simulation. The lateral PIN- and PNPN-type point-tunneling and vertical line-tunneling device structures are analyzed and compared. Both n- and p-type TFETs are optimized to construct GeSn complementary logic applications. Simulation results indicate that GeSn/Ge heterochannel and heterosource structures significantly improve the device characteristics of point- and line-TFETs, respectively. Device performance and subthreshold swing can be further improved by increasing the Sn composition. GeSn/Ge heterosource line-TFETs exhibit excellent device performance and superior inverter voltage-transfer characteristic, which make them promising candidates for GeSn complementary TFET applications.

  20. Femtosecond laser crystallization of amorphous Ge

    Science.gov (United States)

    Salihoglu, Omer; Kürüm, Ulaş; Yaglioglu, H. Gul; Elmali, Ayhan; Aydinli, Atilla

    2011-06-01

    Ultrafast crystallization of amorphous germanium (a-Ge) in ambient has been studied. Plasma enhanced chemical vapor deposition grown a-Ge was irradiated with single femtosecond laser pulses of various durations with a range of fluences from below melting to above ablation threshold. Extensive use of Raman scattering has been employed to determine post solidification features aided by scanning electron microscopy and atomic force microscopy measurements. Linewidth of the Ge optic phonon at 300 cm-1 as a function of laser fluence provides a signature for the crystallization of a-Ge. Various crystallization regimes including nanostructures in the form of nanospheres have been identified.

  1. Low-temperature growth of fully epitaxial CoFe/Ge/Fe3Si layers on Si for vertical-type semiconductor spintronic devices

    Science.gov (United States)

    Sakai, S.; Kawano, M.; Ikawa, M.; Sato, H.; Yamada, S.; Hamaya, K.

    2017-09-01

    We develop a low-temperature growth technique of epitaxial Ge layers on a body-centered-cubic ferromagnetic metal (bcc-FM), Fe3Si, by combining solid phase epitaxy (SPE) and molecular beam epitaxy (MBE). The insertion of an SPE-grown Ge layer enables two-dimensional epitaxial growth of Ge layers by MBE even at a growth temperature of ∼175 {}\\circ C. Thanks to the relatively flat surface of the Ge epilayers, we can obtain an epitaxial CoFe (bcc-FM) layer on top of the Ge layers, leading to the all-epitaxial CoFe/Ge/Fe3Si trilayer with a reasonable magnetization reversal process. We believe that the all-epitaxial CoFe/Ge/Fe3Si trilayer has great potential to be utilized as novel vertical-type Ge-channel spintronic devices.

  2. Design of a Si-based lattice-matched room-temperature GeSn/GeSiSn multi-quantum-well mid-infrared laser diode.

    Science.gov (United States)

    Sun, G; Soref, R A; Cheng, H H

    2010-09-13

    This paper presents modeling and simulation of a silicon-based group IV semiconductor injection laser diode in which the active region has a multiple quantum well structure formed with Ge(0.9)Sn(0.1) quantum wells separated by Ge(0.75)Si(0.1)Sn(0.15) barriers. These alloy compositions were chosen to satisfy three conditions simultaneously: a direct band gap for Ge(0.9)Sn(0.1), type-I band alignment between Ge(0.9)Sn(0.1) and Ge(0.75)Si(0.1)Sn(0.15,) and a lattice match between wells and barriers. This match ensures that the entire structure can be grown strain free upon a relaxed Ge(0.75)Si(0.1)Sn(0.15) buffer on a silicon substrate - a CMOS compatible process. Detailed analysis is performed for the type I band offsets, carrier lifetime, optical confinement, and modal gain. The carrier lifetime is found to be dominated by the spontaneous radiative process rather than the Auger process. The modal gain has a rather sensitive dependence on the number of quantum wells in the active region. The proposed laser is predicted to operate at 2.3 μm in the mid infrared at room temperature.

  3. The ternary germanides UMnGe and U2Mn3Ge

    Science.gov (United States)

    Hoffmann, Rolf-Dieter; Pöttgen, Rainer; Chevalier, Bernard; Gaudin, Etienne; Matar, Samir F.

    2013-07-01

    The title compounds were prepared by induction levitation melting of the elemental components and subsequent annealing. UMnGe (Pnma, a = 686.12(9), b = 425.49(6) and c = 736.5(1) pm) adopts the orthorhombic structure of TiNiSi and U2Mn3Ge (P63/mmc, a = 524.3(2) and c = 799.2(3) pm) possesses the hexagonal Mg2Cu3Si-type structure (ordered variant of the hexagonal Laves phase MgZn2). Both structures were refined from X-ray powder data to residuals of RI = 0.021 and 0.014 for UMnGe and U2Mn3Ge, respectively. The manganese and germanium atoms in UMnGe build up a three-dimensional [MnGe] network of ordered Mn3Ge3 hexagons with Mn-Ge distances ranging from 248 to 259 pm. The uranium atoms are coordinated by two tilted Mn3Ge3 hexagons. The manganese atoms in U2Mn3Ge build up Kagomé networks with 252 and 272 pm Mn-Mn distances which are connected via the germanium atoms (254 pm Mn-Ge) to a three-dimensional network. A remarkable feature of the U2Mn3Ge structure is a short U-U distance of 278 pm between adjacent cavities of the [Mn3Ge] network. From DFT based electronic structure calculations both germanides are found more cohesive than the Laves phase UMn2, thus underpinning the substantial role of Mn-Ge bonding. Calculations for both germanides show ferrimagnetic ground states with antiparallel spin alignments between U and Mn. The valence bands show bonding characteristics for interactions of atoms of different chemical natures and significant Mn-Mn bonding in U2Mn3Ge. Preliminary investigation of UMnGe by magnetization measurements confirms an antiferromagnetic arrangement below TN = 240 K.

  4. GeSn/SiGeSn photonic devices for mid-infrared applications: experiments and calculations

    Science.gov (United States)

    Han, Genquan; Zhang, Qingfang; Liu, Yan; Zhang, Chunfu; Hao, Yue

    2016-11-01

    In this work, a fully strained GeSn photodetector with Sn atom percent of 8% is fabricated on Ge buffer on Si(001) substrate. The wavelength λ of light signals with obvious optical response for Ge0.92Sn0.08 photodetector is extended to 2 μm. The impacts of compressive strain introduced during the epitaxial growth of GeSn on Ge/Si are studied by simulation. Besides, the tensile strain engineering of GeSn photonic devices is also investigated. Lattice-matched GeSn/SiGeSn double heterostructure light emitting diodes (LEDs) with Si3N4 tensile liner stressor are designed to promote the further mid-infrared applications of GeSn photonic devices. With the releasing of the residual stress in Si3N4 liner, a large biaxial tensile strain is induced in GeSn active layer. Under biaxial tensile strain, the spontaneous emission rate rsp and internal quantum efficiency ηIQE for GeSn/SiGeSn LED are significantly improved.

  5. Strain-induced morphology manipulations of Si and Ge-based heterostructures on Si(0 0 1) surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Dentel, D.; Aiet-Mansour, K.; Bischoff, J.L.; Kubler, L.; Bolmont, D

    2004-07-31

    By using reflection high energy electron diffraction (RHEED), atomic force microscopy (AFM), high-resolution transmission electron microscopy (HRTEM) analyses, we show that the well-known Stranski-Krastanov growth mode of Ge/Si(0 0 1) can be modified in a Volmer-Weber one by C pre-deposition on the Si(0 0 1) surface or in a Frank-Van der Merve one by supplying atomic hydrogen during the Ge growth. By tuning the growth conditions and acting on the interplay of surface diffusion, strain and surface energy, morphology manipulations by the growth process control are therefore possible. The Si capping of these Ge self-assembled nanostructures also allows us to point out a correlation between the nucleation mechanism of the Ge or SiGe islands and their associated embedding process. On bare Si surfaces, the final morphology of the embedded Ge film is strongly dependent on the kinetic parameters of the capping layer. Indeed oriented migrations of both Si and Ge atoms are able to smooth or to maintain the islands on the surface. Si diffusions also contribute in a rapid restoration of a planar morphology. On Si(0 0 1)-c(4 x 4) the adatom migrations and consequently the covering mechanism of the Ge islands seems to be governed by the strain mapping related to the C pre-deposited surface. The first stages of the Si capping process have revealed the preservation of the Ge islands associated to an increase of the surface roughness.

  6. Thermoelectric Properties of Czochralski GeSi Crystal

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    In order to discuss the application possibility of SiGe crystal in thermoelectric materials, we investigated the thermoelectric properties of several silicon-germanium alloys with different content, orientation and electric conductive type. As discussed in the experiment result, the absolute value of Seebeck coefficient fluctuates from 300 to 600 μV/K in the whole temperature range. In the present paper, the relationship of Seebeck coefficient against content, orientation and electric conductive type is summarized in detail. The Seebeck coefficient of the sample with 〈111〉orientation is smaller than that in 〈100〉 at the same temperature. Absolute value of P-type is larger than that of N-type except pure Ge. But as the temperature increases, the absolute value of pure Ge decreases many times as quickly as that of other specimens. In addition, the specimens of bulk GeSi alloy crystals for experiment were grown by the Czochralski method through varying the pulling rate during the growing process.

  7. 7-GeV Advanced Photon Source Conceptual Design Report

    Energy Technology Data Exchange (ETDEWEB)

    1987-04-01

    During the past decade, synchrotron radiation emitted by circulating electron beams has come into wide use as a powerful, versatile source of x-rays for probing the structure of matter and for studying various physical processes. Several synchrotron radiation facilities with different designs and characteristics are now in regular operation throughout the world, with recent additions in this country being the 0.8-GeV and 2.5-GeV rings of NSLS at Brookhaven National Laboratory. However, none of the operating facilities has been designed to use a low-emittance, high-energy stored beam, together with modern undulator devices, to produce a large number of hard x-ray beams of extremely high brilliance. This document is a proposal to the Department of Energy to construct and operate high-energy synchrotron radiation facility at Argonne National Laboratory. We have now chosen to set the design energy of this facility at 7.0 GeV, with the capability to operate at up to 7.5 GeV.

  8. Ge post-acceleration from laser-generated plasma

    Science.gov (United States)

    Giuffrida, L.; Torrisi, L.; Calcagnile, L.; Rosinski, M.

    2010-11-01

    An Nd:YAG laser, 1064 nm wavelength, 9 ns pulse width, 300-900 mJ pulse energy and 10 10 W/cm 2 intensity is employed to ablate a solid Ge target placed in high vacuum. Ions are produced in vacuum and are emitted mainly along the normal to the target surface. The free ion expansion process occurs in a constant-potential chamber placed at 30 kV positive voltage with respect to the ground. The post-acceleration system permits to extract Ge ions with energy proportional to the charge state. Ion Energy Analyzer (IEA) is employed to measure the energy-to-charge ratio of the Ge ions without and with the use of the post-acceleration system. The ion energy distribution can be measured from time-of-flight measurements. Multi-energetic ion implantation has been performed on Silicon substrates. Ge depth profiles, measured through RBS analysis are in good agreement with IEA spectroscopy measurements.

  9. Ge post-acceleration from laser-generated plasma

    Energy Technology Data Exchange (ETDEWEB)

    Giuffrida, L., E-mail: lorenzogiuffrida@lns.infn.i [INFN-LNS di Catania, Via S. Sofia 62, 95123 Catania (Italy) and Dipartimento di Fisica, Universita di Messina, Ctr. Papardo 31, 98166 S. Agata, Messina (Italy); Torrisi, L. [INFN-LNS di Catania, Via S. Sofia 62, 95123 Catania (Italy); Dipartimento di Fisica, Universita di Messina, Ctr. Papardo 31, 98166 S. Agata, Messina (Italy); Calcagnile, L. [CEDAD, Dip.to di Ing. dell' Innov., Universita di Lecce, Via Monteroni, 73100, Lecce (Italy); Rosinski, M. [Institute of Plasma Physics and Laser Microfusion, 23 Hery Str. 01-497 Warsaw (Poland)

    2010-11-11

    An Nd:YAG laser, 1064 nm wavelength, 9 ns pulse width, 300-900 mJ pulse energy and 10{sup 10} W/cm{sup 2} intensity is employed to ablate a solid Ge target placed in high vacuum. Ions are produced in vacuum and are emitted mainly along the normal to the target surface. The free ion expansion process occurs in a constant-potential chamber placed at 30 kV positive voltage with respect to the ground. The post-acceleration system permits to extract Ge ions with energy proportional to the charge state. Ion Energy Analyzer (IEA) is employed to measure the energy-to-charge ratio of the Ge ions without and with the use of the post-acceleration system. The ion energy distribution can be measured from time-of-flight measurements. Multi-energetic ion implantation has been performed on Silicon substrates. Ge depth profiles, measured through RBS analysis are in good agreement with IEA spectroscopy measurements.

  10. Combined wet and dry cleaning of SiGe(001)

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sang Wook; Kaufman-Osborn, Tobin; Kim, Hyonwoong [Materials Science and Engineering Program, University of California, San Diego, La Jolla, California 92093 (United States); Siddiqui, Shariq; Sahu, Bhagawan [TD Research, GLOBALFOUNDRIES USA, Inc., 257 Fuller Road, Albany, New York 12203 (United States); Yoshida, Naomi; Brandt, Adam [Applied Materials, Inc., Santa Clara, California 95054 (United States); Kummel, Andrew C., E-mail: akummel@ucsd.edu [Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093 (United States)

    2015-07-15

    Combined wet and dry cleaning via hydrofluoric acid (HF) and atomic hydrogen on Si{sub 0.6}Ge{sub 0.4}(001) surface was studied at the atomic level using ultrahigh vacuum scanning tunneling microscopy (STM), scanning tunneling spectroscopy (STS), and x-ray photoelectron spectroscopy to understand the chemical transformations of the surface. Aqueous HF removes native oxide, but residual carbon and oxygen are still observed on Si{sub 0.6}Ge{sub 0.4}(001) due to hydrocarbon contamination from post HF exposure to ambient. The oxygen contamination can be eliminated by shielding the sample from ambient via covering the sample in the HF cleaning solution until the sample is introduced to the vacuum chamber or by transferring the sample in an inert environment; however, both processes still leave carbon contaminant. Dry in-situ atomic hydrogen cleaning above 330 °C removes the carbon contamination on the surface consistent with a thermally activated atomic hydrogen reaction with surface hydrocarbon. A postdeposition anneal at 550 °C induces formation of an atomically flat and ordered SiGe surface observed by STM. STS verifies that the wet and dry cleaned surface has an unpinned Fermi level with no states between the conduction and valence band edge comparable to sputter cleaned SiGe surfaces.

  11. Room Temperature Ferromagnetic Mn:Ge(001

    Directory of Open Access Journals (Sweden)

    George Adrian Lungu

    2013-12-01

    Full Text Available We report the synthesis of a room temperature ferromagnetic Mn-Ge system obtained by simple deposition of manganese on Ge(001, heated at relatively high temperature (starting with 250 °C. The samples were characterized by low energy electron diffraction (LEED, scanning tunneling microscopy (STM, high resolution transmission electron microscopy (HRTEM, X-ray photoelectron spectroscopy (XPS, superconducting quantum interference device (SQUID, and magneto-optical Kerr effect (MOKE. Samples deposited at relatively elevated temperature (350 °C exhibited the formation of ~5–8 nm diameter Mn5Ge3 and Mn11Ge8 agglomerates by HRTEM, while XPS identified at least two Mn-containing phases: the agglomerates, together with a Ge-rich MnGe~2.5 phase, or manganese diluted into the Ge(001 crystal. LEED revealed the persistence of long range order after a relatively high amount of Mn (100 nm deposited on the single crystal substrate. STM probed the existence of dimer rows on the surface, slightly elongated as compared with Ge–Ge dimers on Ge(001. The films exhibited a clear ferromagnetism at room temperature, opening the possibility of forming a magnetic phase behind a nearly ideally terminated Ge surface, which could find applications in integration of magnetic functionalities on semiconductor bases. SQUID probed the co-existence of a superparamagnetic phase, with one phase which may be attributed to a diluted magnetic semiconductor. The hypothesis that the room temperature ferromagnetic phase might be the one with manganese diluted into the Ge crystal is formulated and discussed.

  12. Full Band Monte Carlo Simulation of Electron Transport in Ge with Anisotropic Scattering Process%考虑各项异性散射的锗中电子输运的全能带蒙特卡洛模拟

    Institute of Scientific and Technical Information of China (English)

    陈勇; Ravaioli Umberto

    2005-01-01

    在考虑各向异性散射的基础上,对锗中电子输运特性进行了全能带蒙特卡洛模拟.计算过程如下:锗的全能带由nonlocal empirical pseudopotential 方法求得;态密度的相对值通过不同能量的状态数得到;声子色散谱由adiabatic bond-charge模型求出;电子-声子散射率在低能量时采用费米黄金律得出的非抛物线散射率,高能量则通过态密度对其修正而得到;散射后的状态满足能量守恒和动量守恒.通过比较计算结果与实验报道,证实了该模型算法的正确性,由于该模型能正确反映锗中电子的速度与能量特性,同时又能大大降低散射率的计算成本,故可运用在器件模拟中.%The electron transport properties in Ge are calculated by full band Monte Carlo technique with anisotropic scattering consideration.The calculation procedures are as follows:the full band structure is calculated by nonlocal empirical pseudopotential approach;the relative value of density of state (DOS) is computed by counting the number of states located in a certain region of the energy;the phonon dispersion curve is obtained from an adiabatic bond-charge model;the electron-phonon scattering rates are approximated by the nonparabolic model derived from Fermi's golden rule at low energy region and scaled by DOS at higher energy region;the energy and momentum conservations are employed for choosing the final state after scattering.The validity of this Monte Carlo simulator and the physical models that are used is fully confirmed by comparing the program output to experimental results listed in As this Monte Carlo model can accurately reproduce the velocity and energy characteristics of electrons in Ge and the DOS scaled scattering rate can significantly reduce the computational cost for scattering rates,this approach is suitable for device simulation.

  13. 750 GeV diphoton resonance, 125 GeV Higgs and muon g−2 anomaly in deflected anomaly mediation SUSY breaking scenarios

    Directory of Open Access Journals (Sweden)

    Fei Wang

    2016-08-01

    Full Text Available We propose to interpret the 750 GeV diphoton excess in deflected anomaly mediation supersymmetry breaking scenarios, which can naturally predict couplings between a singlet field and vector-like messengers. The CP-even scalar component (S of the singlet field can serve as the 750 GeV resonance. The messenger scale, which is of order the gravitino scale, can be as light as Fϕ∼O(10 TeV when the messenger species NF and the deflection parameter d are moderately large. Such messengers can induce the large loop decay process S→γγ. Our results show that such a scenario can successfully accommodate the 125 GeV Higgs boson, the 750 GeV diphoton excess and the muon g−2 without conflicting with the LHC constraints. We also comment on the possible explanations in the gauge mediation supersymmetry breaking scenario.

  14. Rapid solidification and dendrite growth of ternary Fe-Sn-Ge and Cu-Pb-Ge monotectic alloys

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The phase separation and dendrite growth characteristics of ternary Fe-43.9%Sn- 10%Ge and Cu-35.5%Pb-5%Ge monotectic alloys were studied systematically by the glass fluxing method under substantial undercooling conditions. The maximum undercoolings obtained in this work are 245 and 257 K, respectively, for these two alloys. All of the solidified samples exhibit serious macrosegregation, indicating that the homogenous alloy melt is separated into two liquid phases prior to rapid solidification. The solidification structures consist of four phases including α-Fe, (Sn), FeSn and FeSn2 in Fe-43.9%Sn-10%Ge ternary alloy, whereas only (Cu) and (Pb) solid solution phases in Cu-35.5%Pb-5%Ge alloy under different undercool- ings. In the process of rapid monotectic solidification, α-Fe and (Cu) phases grow in a dendritic mode, and the transition "dendrite→monotectic cell" happens when alloy undercoolings become sufficiently large. The dendrite growth velocities of α-Fe and (Cu) phases are found to increase with undercooling according to an exponential relation.

  15. Rapid solidification and dendrite growth of ternary Fe-Sn-Ge and Cu-Pb-Ge monotectic alloys

    Institute of Scientific and Technical Information of China (English)

    ZHANG XueHua; RUAN Ying; WANG WeiLi; WEI BingBo

    2007-01-01

    The phase separation and dendrite growth characteristics of ternary Fe-43.9%Sn- 10%Ge and Cu-35.5%Pb-5%Ge monotectic alloys were studied systematically by the glass fluxing method under substantial undercooling conditions. The maximum undercoolings obtained in this work are 245 and 257 K, respectively, for these two alloys. All of the solidified samples exhibit serious macrosegregation, indicating that the homogenous alloy melt is separated into two liquid phases prior to rapid solidification. The solidification structures consist of four phases including α-Fe, (Sn), FeSn and FeSn2 in Fe-43.9%Sn-10%Ge ternary alloy, whereas only (Cu) and (Pb) solid solution phases in Cu-35.5%Pb-5%Ge alloy under different undercoolings. In the process of rapid monotectic solidification, α-Fe and (Cu) phases grow in a dendritic mode, and the transition "dendrite→monotectic cell" happens when alloy undercoolings become sufficiently large. The dendrite growth velocities of α-Fe and (Cu) phases are found to increase with undercooling according to an exponential relation.

  16. Modeling of GE Appliances: Final Presentation

    Energy Technology Data Exchange (ETDEWEB)

    Fuller, Jason C.; Vyakaranam, Bharat; Leistritz, Sean M.; Parker, Graham B.

    2013-01-31

    This report is the final in a series of three reports funded by U.S. Department of Energy Office of Electricity Delivery and Energy Reliability (DOE-OE) in collaboration with GE Appliances’ through a Cooperative Research and Development Agreement (CRADA) to describe the potential of GE Appliances’ DR-enabled appliances to provide benefits to the utility grid.

  17. The Ge(0 0 1) surface

    NARCIS (Netherlands)

    Zandvliet, Henricus J.W.

    2003-01-01

    Although germanium (Ge) (0 0 1) has a relatively small surface unit cell, this surface displays a wealth of fascinating phenomena. The Ge(0 0 1) surface is a prototypical example of a system possessing both a strong short-range interaction due to dimerization of the surface atoms, as well as an

  18. Reduction of (68)Ge activity containing liquid waste from (68)Ga PET chemistry in nuclear medicine and radiopharmacy by solidification.

    Science.gov (United States)

    de Blois, Erik; Chan, Ho Sze; Roy, Kamalika; Krenning, Eric P; Breeman, Wouter A P

    PET with (68)Ga from the TiO2- or SnO2- based (68)Ge/(68)Ga generators is of increasing interest for PET imaging in nuclear medicine. In general, radionuclidic purity ((68)Ge vs. (68)Ga activity) of the eluate of these generators varies between 0.01 and 0.001%. Liquid waste containing low amounts of (68)Ge activity is produced by eluting the (68)Ge/(68)Ga generators and residues from PET chemistry. Since clearance level of (68)Ge activity in waste may not exceed 10 Bq/g, as stated by European Directive 96/29/EURATOM, our purpose was to reduce (68)Ge activity in solution from >10 kBq/g to waste. Most efficient method to reduce the (68)Ge activity is by sorption of TiO2 or Fe2O3 and subsequent centrifugation. The required 10 Bq per mL level of (68)Ge activity in waste was reached by Fe2O3 logarithmically, whereas with TiO2 asymptotically. The procedure with Fe2O3 eliminates ≥90% of the (68)Ge activity per treatment. Eventually, to simplify the processing a recirculation system was used to investigate (68)Ge activity sorption on TiO2, Fe2O3 or Zeolite. Zeolite was introduced for its high sorption at low pH, therefore (68)Ge activity containing waste could directly be used without further interventions. (68)Ge activity containing liquid waste at different HCl concentrations (0.05-1.0 M HCl), was recirculated at 1 mL/min. With Zeolite in the recirculation system, (68)Ge activity showed highest sorption.

  19. Effect of Ge nanocluster assembly self-organization at pulsed irradiation by low-energy ions during heteroepitaxy on Si

    CERN Document Server

    Dvurechenskij, A V; Smagina, Z V

    2001-01-01

    Using the method of scanning microscopy one studied experimentally size distribution of Ge clusters formed in course of experiments of two types at Ge heteroepitaxy on Si(111): regular process of molecular-beam epitaxy (MBE); pulse irradiation by approx = 200 eV energy Ge ions. The experiments were conducted at 350 deg C temperature. Pulse irradiation by an ion beam during heteroepitaxy was detected to result in reduction of the average size of Ge clusters, in compacting of their density and in reduction of mean square deviation from the average value in contrast to similar values in experiments devoted to regular MBE

  20. Low Temperature Deposition of High-k/Metal Gate Stacks on High-Sn Content (Si)GeSn-Alloys

    OpenAIRE

    Schulte-Braucks, C; Von Den Driesch, N; Glass, S; Tiedemann, AT; Breuer, U; Besmehn, A; Hartmann, JM; Ikonic, Z; Zhao, QT; Mantl, S; Buca, D.

    2016-01-01

    (Si)GeSn is an emerging group IV alloy system offering new exciting properties, with great potential for low power electronics due to the fundamental direct band gap and prospects as high mobility material. In this Article, we present a systematic study of HfO2/TaN high-k/metal gate stacks on (Si)GeSn ternary alloys and low temperature processes for large scale integration of Sn based alloys. Our investigations indicate that SiGeSn ternaries show enhanced thermal stability compared to GeSn bi...

  1. Si/SiGe MMIC's

    Science.gov (United States)

    Luy, Johann-Friedrich; Strohm, Karl M.; Sasse, Hans-Eckard; Schueppen, Andreas; Buechler, Josef; Wollitzer, Michael; Gruhle, Andreas; Schaeffler, Friedrich; Guettich, Ulrich; Klaassen, Andreas

    1995-04-01

    Silicon-based millimeter-wave integrated circuits (SIMMWIC's) can provide new solutions for near range sensor and communication applications in the frequency range above 50 GHz. This paper gives a survey on the state-of-the-art performance of this technology and on first applications. The key devices are IMPATT diodes for mm-wave power generation and detection in the self-oscillating mixer mode, p-i-n diodes for use in switches and phase shifters, and Schottky diodes in detector and mixer circuits. The silicon/silicon germanium heterobipolar transistor (SiGe HBT) with f(sub max) values of more than 90 GHz is now used for low-noise oscillators at Ka-band frequencies. First system applications are discussed.

  2. Thermal oxidation of Ge-implanted Si: Role of defects

    Science.gov (United States)

    Dedyulin, S. N.; Goncharova, L. V.

    2012-02-01

    kinetics at the SiGe/SiO interface [9,10,13]. The DG model for Si thermal oxidation [26] assumes that the oxidation occurs by diffusion of the oxidant to the SiO/Si interface where it reacts with Si. The oxidation rate is described by the parabolic equation: x02+Ax0=B(t+τ), where x0 is the oxide thickness, t is the oxidation time, A and B are constants for a given set of oxidation conditions, and τ={x}/{i2+AxiB} is the shift in the time coordinate due to the presence of the initial oxide layer, xi. Two different growth regimes are usually considered: a linear regime where t≪A2/4B that leads to the relation x0={B}/{A}(t+τ) and a parabolic regime where t≫A2/4B and x02=Bt for the oxide thickness. In the DG model the growth rates in the linear and parabolic regimes of growth are controlled by interface reaction and diffusion of the oxidant through the oxide layer, respectively. As proposed by Deal and Grove, the linear constant B/ A is relevant to the processes at the SiO/Si interface via the oxidation reaction rate at the interface. The parabolic constant B refers to the properties of the oxidant in the oxide layer via a dependence on the diffusion coefficient. A new model for Si oxidation has been recently suggested [27]. Despite using the same parabolic equation as in the DG model (Eq. (1)), Watanabe et al. arrive at this result from totally different assumptions. Namely, Watanabe et al. assume that diffusivity is suppressed in the strained oxide region (≈1 nm) near the SiO/Si interface. This assumption leaves Eq. (1) and the parabolic B constant unmodified and does not treat the interface reaction as a limiting stage.

  3. Epitaxial growth of strained and unstrained GeSn alloys up to 25% Sn

    Energy Technology Data Exchange (ETDEWEB)

    Oehme, Michael, E-mail: oehme@iht.uni-stuttgart.de; Kostecki, Konrad; Schmid, Marc; Oliveira, Filipe; Kasper, Erich; Schulze, Jörg

    2014-04-30

    Strained and unstrained GeSn layers on Si substrates were grown with Sn contents up to 20% and 25%, respectively. All metastable layer structures were fabricated by means of an ultra-low temperature molecular beam epitaxy process. The useful thickness of the metastable layers for a range of Sn contents, growth temperatures and two different strain values (unstrained, compressive strained) is explored. The epitaxial breakdown thickness which limits the useful thickness range decreases exponentially with increasing growth temperature and Sn concentration. - Highlights: • GeSn epitaxy • GeSn layers with Sn contents up to 25% • Limited layer thickness.

  4. Numerical simulation of microstructure of the GeSi alloy

    Energy Technology Data Exchange (ETDEWEB)

    Rasin, I.

    2006-09-08

    The goal of this work is to investigate pattern formation processes on the solid-liquid interface during the crystal growth of GeSi. GeSi crystals with cellular structure have great potential for applications in -ray and neutron optics. The interface patterns induce small quasi-periodic distortions of the microstructure called mosaicity. Existence and properties of this mosaicity are important for the application of the crystals. The properties depend on many factors; this dependence, is currently not known even not qualitatively. A better understanding of the physics near the crystal surface is therefore required, in order to optimise the growth process. There are three main physical processes in this system: phase-transition, diffusion and melt flow. Every process is described by its own set of equations. Finite difference methods and lattice kinetic methods are taken for solving these governing equations. We have developed a modification of the kinetic methods for the advectiondiffusion and extended this method for simulations of non-linear reaction diffusion equations. The phase-field method was chosen as a tool for describing the phase-transition. There are numerous works applied for different metallic alloys. An attempt to apply the method directly to simulation GeSi crystal growth showed that this method is unstable. This instability has not been observed in previous works due to the much smaller scale of simulations. We introduced a modified phase-field scheme, which enables to simulate pattern formation with the scale observed in experiment. A flow in the melt was taken in to account in the numerical model. The developed numerical model allows us to investigate pattern formation in GeSi crystals. Modelling shows that the flow near the crystal surface has impact on the patterns. The obtained patterns reproduce qualitatively and in some cases quantitatively the experimental results. (orig.)

  5. Development of Microwave SiGe Heterojunction Bipolar Transistors

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The microwave SiGe Heterojunction Bipolar Transistors (HBT) were fabricated by the material grown with home-made high vacuum/rapid thermal processing chemical vapor deposition equipment. The HBTs show good performance and industrial use value. The current gain is beyond 100;the breakdown voltage BVceo is 3.3V,and the cut-off frequency is 12.5GHz which is measured in packaged form.

  6. HV/CVD Grown Relaxed SiGe Buffer Layers for SiGe HMOSFETs

    Institute of Scientific and Technical Information of China (English)

    黄文韬; 罗广礼; 史进; 邓宁; 陈培毅; 钱佩信

    2003-01-01

    High-vacuum/chemical-vapor deposition (HV/CVD) system was used to grow relaxed SiGe buffer layers on Si substrates. Several methods were then used to analyze the quality of the SiGe films. X-ray diffraction and Raman spectroscopy showed that the upper layer was almost fully relaxed. Second ion mass spectroscopy showed that the Ge compositions were step-graded. Transmission electron microscopy showed that the misfit dislocations were restrained to the graded SiGe layers. Tests of the electrical properties of tensile-strained Si on relaxed SiGe buffer layers showed that their transconductances were higher than that of Si devices. These results verify the high quality of the relaxed SiGe buffer layer. The calculated critical layer thicknesses of the graded Si1-xGex layer on Si substrate and a Si layer on the relaxed SiGe buffer layer agree well with experimental results.

  7. Ge/GeSn heterostructures grown on Si (100) by molecular-beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Sadofyev, Yu. G., E-mail: sadofyev@hotmail.com; Martovitsky, V. P.; Bazalevsky, M. A.; Klekovkin, A. V. [Russian Academy of Sciences, Lebedev Physical Institute (Russian Federation); Averyanov, D. V.; Vasil’evskii, I. S. [National Research Nuclear University MEPhI (Russian Federation)

    2015-01-15

    The growth of GeSn layers by molecular-beam epitaxy on Si (100) wafers coated with a germanium buffer layer is investigated. The properties of the fabricated structures are controlled by reflection high-energy electron diffraction, atomic-force microscopy, X-ray diffractometry, Rutherford backscattering, and Raman scattering. It is shown that GeSn layers with thicknesses up to 0.5 μm and Sn molar fractions up to 0.073 manifest no sign of plastic relaxation upon epitaxy. The lattice constant of the GeSn layers within the growth plane is precisely the same as that of Ge. The effect of rapid thermal annealing on the conversion of metastable elastically strained GeSn layers into a plastically relaxed state is examined. Ge/GeSn quantum wells with Sn molar fraction up to 0.11 are obtained.

  8. Infrared photoresponse of GeSn/n-Ge heterojunctions grown by molecular beam epitaxy.

    Science.gov (United States)

    Kim, Sangcheol; Bhargava, Nupur; Gupta, Jay; Coppinger, Matthew; Kolodzey, James

    2014-05-05

    Heterojunction devices of Ge(1-x)Sn(x) / n-Ge were grown by solid source molecular beam epitaxy (MBE), and the mid-infrared (IR) photocurrent response was measured. With increasing Sn composition from 4% to 12%, the photocurrent spectra became red-shifted, suggesting that the bandgap of Ge(1-x)Sn(x) alloys was lowered compared to pure Ge. At a temperature of 100 K, the wavelengths of peak photocurrent were shifted from 1.42 µm for pure Ge (0% Sn) to 2.0 µm for 12% Sn. The bias dependence of the device response showed that the optimum reverse bias was > 0.5 volts for saturated photocurrent. The responsivity of the Ge(1-x)Sn(x) devices was estimated to be 0.17 A/W for 4% Sn. These results suggest that Ge(1-x)Sn(x) photodetectors may have practical applications in the near/mid IR wavelength regime.

  9. Pseudomorphic GeSn/Ge(001) quantum wells: Examining indirect band gap bowing

    Energy Technology Data Exchange (ETDEWEB)

    Tonkikh, Alexander A. [Max Planck Institute of Microstructure Physics, Weinberg 2 D-06120, Halle (Saale) (Germany); Institute for Physics of Microstructures RAS, GSP-105, Nizhniy Novgorod (Russian Federation); Eisenschmidt, Christian; Schmidt, Georg [Institute of Physics, Martin Luther University Halle-Wittenberg, Von-Danckelmann-Platz 3 D-01620, Halle (Saale) (Germany); Talalaev, Vadim G. [Max Planck Institute of Microstructure Physics, Weinberg 2 D-06120, Halle (Saale) (Germany); ZIK SiLi-Nano, Martin Luther University Halle-Wittenberg, Karl-Freiherr-von-Fritsch-Str. 3 D-06120, Halle (Saale) (Germany); Zakharov, Nikolay D.; Werner, Peter [Max Planck Institute of Microstructure Physics, Weinberg 2 D-06120, Halle (Saale) (Germany); Schilling, Joerg [ZIK SiLi-Nano, Martin Luther University Halle-Wittenberg, Karl-Freiherr-von-Fritsch-Str. 3 D-06120, Halle (Saale) (Germany)

    2013-07-15

    A study of the bandgap character of compressively strained GeSn{sub 0.060-0.091}/Ge(001) quantum wells grown by molecular beam epitaxy is reported. The built-in strain in GeSn wells leads to an increased separation between L and {Gamma} conduction band minima. The prevalent indirect interband transitions in GeSn were probed by photoluminescence spectroscopy. As a result we could simulate the L-valley bowing parameter in GeSn alloys, b{sub L} = 0.80 {+-} 0.06 eV at 10 K. From this we conclude that even compressively strained GeSn/Ge(001) alloys could become direct band gap semiconductors at the Sn-fraction higher than 17.0 at. %.

  10. Determination of Ge content in high concentration Ge-doped Czochralski Si single crystals by FTIR

    Institute of Scientific and Technical Information of China (English)

    JIANG Zhongwei; ZHANG Weilian; NIU Xinhuan

    2005-01-01

    SiGe single crystals with different Ge concentrations were measured by Fourier transform infrared (FTIR) spectroscopy at room temperature (RT) and 10 K. A new peak appears at the wave number of 710 cm-1 and the spectroscopy becomes clearer with an increase in Ge content. The absorption strength and wave sharp of the 710 cm-1 peak are independent of temperature. The relation of the absorption coefficient amax, the band width of half maximum (BWHM) W1/2 of the 710 cm-1 peak, and the Ge concentration is determined with the Ge content obtained by SEM-EDX. The conversion factor is k = 1.211 at 10 K. Therefore, the Ge content in high concentration Ge doped CZ-Si single crystals can be determined by FTIR.

  11. The JLab TMD Program at 6 GeV and 11 GeV

    Energy Technology Data Exchange (ETDEWEB)

    Puckett, Andrew J. [Univ. of Connecticut, Storrs, CT (United States)

    2016-05-01

    The precise mapping of the nucleon’s transverse momentum dependent parton distributions (TMDs) in the valence quark region has emerged as one of the flagship physics programs of the recently upgraded Continuous Electron Beam Accelerator Facility (CEBAF) at Jefferson Lab (JLab). The TMDs describe the three-dimensional, spin-correlated densities of quarks and gluons in the nucleon in momentum space, and are accessible experimentally through detailed studies of the Semi-Inclusive Deep Inelastic Scattering (SIDIS) process, N ( e ; e 0 h ) X . The already unrivaled intensity, polarization and duty factor performance of CEBAF will combine with the dramatic expansion of its kinematic reach embodied by the recent near-doubling of the maximum beam energy to enable the first fully differential precision measurements of SIDIS structure functions in the valence region. In this paper, I will review the existing and forthcoming SIDIS results from the 6 GeV era of CEBAF operations and present an overview of the planned JLab SIDIS program at 11 GeV beam energy

  12. Design and development of SiGe based near-infrared photodetectors

    Science.gov (United States)

    Zeller, John W.; Puri, Yash R.; Sood, Ashok K.; McMahon, Shane; Efsthadiatis, Harry; Haldar, Pradeep; Dhar, Nibir K.

    2014-10-01

    Near-infrared (NIR) sensors operating at room temperatures are critical for a variety of commercial and military applications including detecting mortar fire and muzzle flashes. SiGe technology offers a low-cost alternative to conventional IR sensor technologies such as InGaAs, InSb, and HgCdTe for developing NIR micro-sensors that will not require any cooling and can operate with high bandwidths and comparatively low dark currents. Since Ge has a larger thermal expansion coefficient than Si, tensile strain may be incorporated into detector devices during the growth process, enabling an extended operating wavelength range above 1600 nm. SiGe based pin photodetectors have advantages of high stability, low noise, and high responsivity compared to metal-semiconductor-metal (MSM) devices. We have developed a process flow and are fabricating SiGe detector devices on 12" (300 mm) silicon wafers in order to take advantage of high throughput, large-area leading-edge silicon based CMOS technology that provides small feature sizes with associated device cost/density scaling advantages. The fabrication of the detector devices is facilitated by a two-step growth process incorporating initial low temperature growth of Ge/SiGe to form a thin strain-relaxed layer, followed by high temperature growth to deposit a thicker absorbing film, and subsequent high temperature anneal. This growth process is designed to effectively reduce dark current and enhance detector performance by reducing the number of defects and threading dislocations which form recombination centers during the growth process. Various characterization techniques have been employed to determine the properties of the epitaxially deposited Ge/SiGe layers, and the corresponding results are discussed.

  13. Annealing temperature effect on structure and electrical properties of films formed of Ge nanoparticles in SiO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Stavarache, Ionel; Lepadatu, Ana-Maria [National Institute of Materials Physics, Magurele 077125 (Romania); Stoica, Toma [Peter Grünberg Institut (PGI-9), Forschungszentrum Jülich, D-52425 Jülich (Germany); Ciurea, Magdalena Lidia, E-mail: ciurea@infim.ro [National Institute of Materials Physics, Magurele 077125 (Romania); Academy of Romanian Scientists, Bucuresti 050094 (Romania)

    2013-11-15

    Ge–SiO{sub 2} films with high Ge/Si atomic ratio of about 1.86 were obtained by co-sputtering of Ge and SiO{sub 2} targets and subsequently annealed at different temperatures between 600 and 1000 °C in a conventional furnace in order to show how the annealing process influences the film morphology concerning the Ge nanocrystal and/or amorphous nanoparticle formation and to study their electrical behaviour. Atomic force microscopy (AFM) imaging, Raman spectroscopy and electrical conductance measurements were performed in order to find out the annealing effect on the film surface morphology, as well as the Ge nanoparticle formation in correlation with the hopping conductivity of the films. AFM images show that the films annealed at 600 and 700 °C present a granular surface with particle height of about 15 nm, while those annealed at higher temperatures have smoother surface. The Raman investigations evidence Ge nanocrystals (including small ones) coexisting with amorphous Ge in the films annealed at 600 °C and show that almost all Ge is crystallized in the films annealed at 700 °C. The annealing at 800 °C disadvantages the Ge nanocrystal formation due to the strong Ge diffusion. This transition in Ge nanocrystals formation process by annealing temperature increase from 700 to 800 °C revealed by AFM and Raman spectroscopy measurements corresponds to a change in the electrical transport mechanism. Thus, in the 700 °C annealed films, the current depends on temperature according to a T{sup −1/2} law which is typical for a tunnelling mechanism between neighbour Ge nanocrystals. In the 800 °C annealed films, the current–temperature characteristic has a T{sup −1/4} dependence showing a hopping mechanism within an electronic band of localized states related to diffused Ge in SiO{sub 2}.

  14. Ion-beam synthesis of Ge{sub x}Si{sub 1-x} strained layers for high speed electronic device applications

    Energy Technology Data Exchange (ETDEWEB)

    Elliman, R.G.; Jiang, H.; Wong, W.C.; Kringhoj, P. [Australian National Univ., Canberra, ACT (Australia)

    1996-12-31

    It is shown that Ge{sub x}S{sub 1-x} strained layers can be fabricated by Ge implantation and solid-phase epitaxy and that the use of these layers can improve the performance of electronic devices. Several materials science issues are addressed, including the effect of Ge on solid-phase-epitaxy, the effect of oxidation on the implanted Ge distribution, and the effect of Ge on the oxidation rate of Si. The process is demonstrated for metal-oxide-semiconductor field-effect-transistors (MOSFETs). 6 refs., 5 figs.

  15. Low Temperature Deposition of High-k/Metal Gate Stacks on High-Sn Content (Si)GeSn-Alloys.

    Science.gov (United States)

    Schulte-Braucks, C; von den Driesch, N; Glass, S; Tiedemann, A T; Breuer, U; Besmehn, A; Hartmann, J-M; Ikonic, Z; Zhao, Q T; Mantl, S; Buca, D

    2016-05-25

    (Si)GeSn is an emerging group IV alloy system offering new exciting properties, with great potential for low power electronics due to the fundamental direct band gap and prospects as high mobility material. In this Article, we present a systematic study of HfO2/TaN high-k/metal gate stacks on (Si)GeSn ternary alloys and low temperature processes for large scale integration of Sn based alloys. Our investigations indicate that SiGeSn ternaries show enhanced thermal stability compared to GeSn binaries, allowing the use of the existing Si technology. Despite the multielemental interface and large Sn content of up to 14 atom %, the HfO2/(Si)GeSn capacitors show small frequency dispersion and stretch-out. The formed TaN/HfO2/(Si)GeSn capacitors present a low leakage current of 2 × 10(-8) A/cm(2) at -1 V and a high breakdown field of ∼8 MV/cm. For large Sn content SiGeSn/GeSn direct band gap heterostructures, process temperatures below 350 °C are required for integration. We developed an atomic vapor deposition process for TaN metal gate on HfO2 high-k dielectric and validated it by resistivity as well as temperature and frequency dependent capacitance-voltage measurements of capacitors on SiGeSn and GeSn. The densities of interface traps are deduced to be in the low 10(12) cm(-2) eV(-1) range and do not depend on the Sn-concentration. The new processes developed here are compatible with (Si)GeSn integration in large scale applications.

  16. Formation of microtubes from strained SiGe/Si heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Qin, H [Laboratory of Molecular-scale Engineering, Department of Electrical and Computer Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, WI 53706 (United States); Shaji, N [Laboratory of Molecular-scale Engineering, Department of Electrical and Computer Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, WI 53706 (United States); Merrill, N E [Laboratory of Molecular-scale Engineering, Department of Electrical and Computer Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, WI 53706 (United States); Kim, H S [Laboratory of Molecular-scale Engineering, Department of Electrical and Computer Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, WI 53706 (United States); Toonen, R C [Laboratory of Molecular-scale Engineering, Department of Electrical and Computer Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, WI 53706 (United States); Blick, R H [Laboratory of Molecular-scale Engineering, Department of Electrical and Computer Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, WI 53706 (United States); Roberts, M M [Department of Materials Science and Engineering, University of Wisconsin-Madison, 1500 Engineering Drive, Madison, WI 53706 (United States); Savage, D E [Department of Materials Science and Engineering, University of Wisconsin-Madison, 1500 Engineering Drive, Madison, WI 53706 (United States); Lagally, M G [Department of Materials Science and Engineering, University of Wisconsin-Madison, 1500 Engineering Drive, Madison, WI 53706 (United States); Celler, G [SOITEC USA Inc., 2 Centennial Drive, Peabody, MA 01960 (United States)

    2005-11-15

    We report the formation of micrometre-sized SiGe/Si tubes by releasing strained SiGe/Si bilayers from substrates in a wet chemical-etching process. In order to explore statistical studies of dynamic formation of microtubes, we fabricated arrays of square bilayers. Due to the dynamic change in curvature of the bilayers, and hence the underlying etch channels, the etching process deviates from a transport-controlled regime to one of kinetic controlled. We identified two distinct modes of etching. A slow etching mode is associated with symmetric surface deformation in which the bilayers mostly retain their initial pattern. In the fast mode, bilayers are asymmetrically deformed while large etch channels are induced and etching becomes kinetically controlled. Etch rate dispersion is directly related to the degree of asymmetry in surface deformation. When the dimensions of the bilayers become significantly larger than the curvature radius, kinetic etching dominates. During the formation of tubes, SiGe/Si bilayers strongly interact with the liquid environment of etchant and solvent. Assisted by the surface tension of evaporating liquids, the tubes are drawn near the substrate and eventually fixed to it because of van der Waals forces. Our study illuminates the dynamic etching and curling processes involved with and provides insight on how a uniform etch rate and consistent curling directions can be maintained.

  17. Formation of microtubes from strained SiGe/Si heterostructures

    Science.gov (United States)

    Qin, H.; Shaji, N.; Merrill, N. E.; Kim, H. S.; Toonen, R. C.; Blick, R. H.; Roberts, M. M.; Savage, D. E.; Lagally, M. G.; Celler, G.

    2005-11-01

    We report the formation of micrometre-sized SiGe/Si tubes by releasing strained SiGe/Si bilayers from substrates in a wet chemical-etching process. In order to explore statistical studies of dynamic formation of microtubes, we fabricated arrays of square bilayers. Due to the dynamic change in curvature of the bilayers, and hence the underlying etch channels, the etching process deviates from a transport-controlled regime to one of kinetic controlled. We identified two distinct modes of etching. A slow etching mode is associated with symmetric surface deformation in which the bilayers mostly retain their initial pattern. In the fast mode, bilayers are asymmetrically deformed while large etch channels are induced and etching becomes kinetically controlled. Etch rate dispersion is directly related to the degree of asymmetry in surface deformation. When the dimensions of the bilayers become significantly larger than the curvature radius, kinetic etching dominates. During the formation of tubes, SiGe/Si bilayers strongly interact with the liquid environment of etchant and solvent. Assisted by the surface tension of evaporating liquids, the tubes are drawn near the substrate and eventually fixed to it because of van der Waals forces. Our study illuminates the dynamic etching and curling processes involved with and provides insight on how a uniform etch rate and consistent curling directions can be maintained.

  18. One-Pot Synthesis of GeAs Ultrafine Particles from Coal Fly Ash by Vacuum Dynamic Flash Reduction and Inert Gas Condensation.

    Science.gov (United States)

    Zhang, Lingen; Xu, Zhenming

    2017-06-16

    Ge-monopnictides (GeAs) plays critical role in high-tech industry, especially in the field of advanced optical devices and infrared. As a secondary material, coal fly ash could be further recycled to retrieve germanium and prepare GeAs material with high added values. Hence, the aim of this paper is to propose a one-pot synthesis that uses vacuum flash reduction and inert-gas consolidation method to prepare GeAs ultrafine particles. Germanium in coal fly ash can be successfully recycled; simultaneously, GeAs ultrafine particles were prepared. Separation principle and feasibility of this process was discussed. Temperature, carrier gas flow rate and system pressure were the major factors on formation, morphology and distribution of particle size of GeAs ultrafine particles. A three steps synthetic mechanism was clarified, namely, thermal rupture of coal fly ash and release of GeO2 and As2O3, the gas-solid phase reaction of GeO2, As2O3 and coke to generate metallic Ge and As in vacuum flash reduction. Meantime, GeAs were produced in the gas phase reaction. Finally, GeAs ultrafine particles were obtained by carrier gas condensation. In short, this research developed a practical and environment-friendly one-pot synthesis to recycle germanium in coal fly ash and prepare GeAs ultrafine particles with high added values.

  19. Molecular clouds as origin of the Fermi gamma-ray GeV excess

    Science.gov (United States)

    de Boer, Wim; Bosse, Léo; Gebauer, Iris; Neumann, Alexander; Biermann, Peter L.

    2017-08-01

    The so-called GeV excess of the diffuse Galactic gamma-ray emission, as observed by the Fermi-LAT satellite, is studied with a spectral template fit based on energy spectra for each relevant process of gamma-ray emission. This has the advantage over "conventional" analysis because one includes the spectral knowledge of physical processes into the fit, which allows one to determine simultaneously the standard background processes and contributions from nonstandard processes, like the Fermi bubbles or the GeV excess, in each sky direction. The spectral templates can be obtained in a data-driven way from the gamma-ray data, which avoids the use of emissivity models to subtract the standard background processes from the data. Instead, one can determine these backgrounds simultaneously with any "signals" in any sky direction, including the Galactic disk and the Galactic center. Using the spectral template fit, two hypothesis of the GeV excess were tested: the dark matter (DM) hypothesis assuming the excess is caused by DM annihilation, and the molecular cloud hypothesis assuming the GeV excess is related to a depletion of gamma rays below 2 GeV, as is directly observed in the Central Molecular Zone. The origin of the depletion below 2 GeV is not important but is most likely caused by a magnetic cutoff of cosmic rays approaching molecular clouds (MCs), as will be discussed later. Both hypotheses provide acceptable fits, if one considers a limited field of view centered within 20° around the Galactic center and applies cuts on the energy range and/or excludes low latitudes, cuts typically applied by the proponents of the DM hypothesis. However, if one considers the whole gamma-ray sky and includes gamma-ray energies up to 100 GeV, one can find that the MC hypothesis is preferred over the DM hypothesis for several reasons: i) the MC hypothesis provides significantly better fits; ii) the morphology of the GeV excess follows the morphology of the Carbon-monoxide maps, a

  20. Research on reverse recovery characteristics of SiGeC p-i-n diodes

    Institute of Scientific and Technical Information of China (English)

    Gao Yong; Liu Jing; Yang Yuan

    2008-01-01

    This paper analyses the reverse recovery characteristics and mechanism of SiGeC p-i-n diodes. Based on the integrated systems engineering (ISE) data, the critical physical models of SiGeC diodes are proposed. Based on heterojunction band gap engineering, the softness factor increases over six times, reverse recovery time is over 30% short and there is a 20% decrease in peak reverse recovery current for SiGeC diodes with 20% of germanium and 0.5% of carbon,compared to Si diodes. Those advantages of SiGeC p-i-n diodes are more obvious at high temperature. Compared to lifetime control, SiGeC technique is more suitable for improving diode properties and the tradeoff between reverse recovery time and forward voltage drop can be easily achieved in SiGeC diodes. Furthermore, the high thermal-stability of SiGeC diodes reduces the costs of further process steps and offers more freedoms to device design.

  1. New monocrystalline Si{sub 1-x}Ge{sub x} solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Losada, B.R.; Moehlecke, A.; Ruiz, J.M.; Luque, A. [Universidad Politecnica de Madrid (Spain)] [and others

    1995-08-01

    The development of solar cells on Si{sub 1-x}Ge{sub x} might be interesting because they might present more current photo-response than the silicon cells, based on the lower bandgap of the alloyed crystal. In particular the use of Si{sub 1-x}Ge{sub x} solar cells in dual bandgap concentration structures as GaAs/Si{sub 1-x}Ge{sub x} can lead to total efficiency increase of about 1% as compared to the GaAs/Si structure, according to our calculations. Our effort is devoted to solar cells with low content of Ge, lower than 20% at. This choice is based on two previous hypothesis (1) A low content of Ge suggests that the well known silicon cell process, slightly modified, can be applied to the Si{sub 1-x}Ge{sub x} cells. (2) Calculations suggest that for utilisation in tandem with GaAs cells, the gain of efficiency is low above 20at % Ge.

  2. Ferromagnetic germanide in Ge nanowire transistors for spintronics application.

    Science.gov (United States)

    Tang, Jianshi; Wang, Chiu-Yen; Hung, Min-Hsiu; Jiang, Xiaowei; Chang, Li-Te; He, Liang; Liu, Pei-Hsuan; Yang, Hong-Jie; Tuan, Hsing-Yu; Chen, Lih-Juann; Wang, Kang L

    2012-06-26

    To explore spintronics applications for Ge nanowire heterostructures formed by thermal annealing, it is critical to develop a ferromagnetic germanide with high Curie temperature and take advantage of the high-quality interface between Ge and the formed ferromagnetic germanide. In this work, we report, for the first time, the formation and characterization of Mn(5)Ge(3)/Ge/Mn(5)Ge(3) nanowire transistors, in which the room-temperature ferromagnetic germanide was found through the solid-state reaction between a single-crystalline Ge nanowire and Mn contact pads upon thermal annealing. The atomically clean interface between Mn(5)Ge(3) and Ge with a relatively small lattice mismatch of 10.6% indicates that Mn(5)Ge(3) is a high-quality ferromagnetic contact to Ge. Temperature-dependent I-V measurements on the Mn(5)Ge(3)/Ge/Mn(5)Ge(3) nanowire heterostructure reveal a Schottky barrier height of 0.25 eV for the Mn(5)Ge(3) contact to p-type Ge. The Ge nanowire field-effect transistors built on the Mn(5)Ge(3)/Ge/Mn(5)Ge(3) heterostructure exhibit a high-performance p-type behavior with a current on/off ratio close to 10(5), and a hole mobility of 150-200 cm(2)/(V s). Temperature-dependent resistance of a fully germanided Mn(5)Ge(3) nanowire shows a clear transition behavior near the Curie temperature of Mn(5)Ge(3) at about 300 K. Our findings of the high-quality room-temperature ferromagnetic Mn(5)Ge(3) contact represent a promising step toward electrical spin injection into Ge nanowires and thus the realization of high-efficiency spintronic devices for room-temperature applications.

  3. Mechanism of the addition of nonenolizable aldehydes and ketones to (Di)metallenes (R(2)X=YR(2), X = Si, Ge Y = C, Si, Ge): a density functional and multiconfigurational perturbation theory study.

    Science.gov (United States)

    Mosey, Nicholas J; Baines, Kim M; Woo, Tom K

    2002-11-06

    The mechanism of the addition of nonenolizable aldehydes and ketones to group 14 (di)metallenes has been examined through a theoretical study of the addition of formaldehyde to Si=C, Ge=C, Si=Si, Si=Ge, and Ge=Ge bonds at the B3LYP/6-311++G(d,p) and CAS-MCQDPT2/6-31++G(d,p) levels of theory. The reaction pathways located can be grouped as either involving the formation of singlet diradical or zwitterionic intermediates or as concerted processes. Within each group of reaction pathways, several different mechanisms have been located, with not all mechanisms being available to all of the (di)metallenes. It was found that for reactions in which a Si-O bond results (i.e., addition to Si=C, Si=Si, and Si=Ge) both diradical and zwitterionic intermediates are possible; however, the formation of diradical intermediates was not found for reactions that result in the formation of a Ge-O bond (addition to Ge=C and Ge=Ge). The underlying cause of this pathway selectivity is examined, as well as the effect of solvent on the relative energies of the pathways. The results of the study shed light on the cause of experimentally obtained results regarding the mechanism of the reaction of (di)metallenes with nonenolizable ketones and aldehydes.

  4. Formation, structure and properties of GeCn± and Ge2Cn± binary clusters

    Institute of Scientific and Technical Information of China (English)

    CAO Yali; LI Guoliang; TANG Zichao

    2005-01-01

    The binary cluster ions Ge2Cn+/Ge2Cn- and GeCn+ have been produced by laser ablation. The parity effect is present in the negative ions Ge2Cn-, though it is not very prominent. While the experiments tell that the parity effect is totally not shown in the positive ions Ge2Cn+. An extensive theoretical investigation on GeCn/GeCn+/GeCn-(n = 1-10) and Ge2Cn/Ge2Cn+/Ge2Cn-(n = 1-9) has been carried out by density functional theory at B3LPY level. The calculation shows that the low-lying states of GeCn/GeCn+/GeCn-(n = 1-10) and Ge2Cn/Ge2Cn+/Ge2Cn-(n = 1-9) are linear structure with germanium atoms locating at terminals respectively. The electronic distributions, ionization potential (IPad), electron affinity (EA) and increasing bonding energy reveal that the parity effect of neutral species is much stronger than that of ions, which is attributed to the valence π-electrons. It is explained that the differences between experiments and calculations are due to the kinetic factor in the formation of Ge2Cn±.

  5. Epitaxial Growth of GeGaAs.

    Science.gov (United States)

    1981-06-01

    liquid solvent for epitaxial growth of Ge. Because of the finite solubility of GaAs in Pb (7 x 10-4 atomic fraction at 500°C) relatively fast initial...mixture of Pb and Sn was used as a melt. The solubility of Ge in a PbSn eutetic mixture is significantly higher than the solubility of Ge in pure Pb...shallow donor acceptor levels. Addition of a deep level to the crystal lat- tice at this point would further pin the fermi level near mid-gap

  6. I8As21Ge25

    Directory of Open Access Journals (Sweden)

    2009-03-01

    Full Text Available Single crystals of octaiodine henacosarsenic pentacosagermanium were grown by chemical transport reactions. The structure is isotypic with the analogous clathrates-I. In this structure, the statistically occupied clathrand atoms (As,Ge46 form bonds in a distorted tetrahedral coordination and their arrangement can define two polyhedra of different sizes; one is an (As,Ge20 pentagonal dodecahedron, and the other is an (As,Ge24 tetrakaidecahedron. The guest atom (iodine resides inside these polyhedra with site symmetry m3 (Wyckoff position 2a and overline{4}2m (Wyckoff position 6d, respectively.

  7. Study of the quasi-two body processes including {sigma}(1385) production in {pi}{sup -}p and K{sup -} reactions at 4 GeV/c; Estudio de procesos cuasi-dos cuerpos con produccion de {sigma} (1385) en interacciones {pi}{sup -}p y K{sup p} A 4 GeV/c

    Energy Technology Data Exchange (ETDEWEB)

    Aguilar-Benitez, M.; Salicio, J.

    1981-07-01

    An analysis of (1385) production in reactions of the type 0{sup +} 1/z 4 +{yields}>-1{sup +} 3+/2 and 0{sup -} + 1/2+{yields} 0{sup -} + 3*/2 is presented. A determination of the {sigma}(1385) production parameters Is performed and the results are compared with the predictions from several models. A transversity amplitudes reconstruction describing the processes {pi} {sup p} ->K(890) {sigma}(1385) and K{sup -}p {yields} 3{yields}{phi}(1385), {zeta}{sup -}{sigma}(1385) is obtained in a model independent way. We observe dominance of unnatural partly exchange in the production mechanisms. Exchanges of exotic quantum numbers are established by the study of {pi}p {yields} K{sup 0}+ {sigma}(1385)s and K{sup -} p{yields}>{pi}+{sigma}(1385){+-} processes. Additive quark model predictions are reasonable agreement with the experimental data. (Author)

  8. Atomic-scale quantification of interdiffusion and dopant localization in GeSbTe-based memory devices

    Science.gov (United States)

    Chae, B.-G.; Seol, J.-B.; Song, J.-H.; Jung, W.-Y.; Hwang, H.; Park, C.-G.

    2016-09-01

    Fabrication of phase-change memory devices at modest or ambient temperatures leads to nanoscale compositional variations in phase-transition layers, where amorphous-polycrystalline phase change takes place via electrical switching, and can alter the device's performances. Here, by transmission electron microscopy and atom probe tomography, we address that thermal annealing at 400 °C for 20 min induces an elemental interdiffusion in the devices consisting of TiN (top electrode), carbon-doped GeSbTe (phase-transition layer), and TiSiN (bottom heater). With respect to the employed annealing process, the Ge atoms of GeSbTe layer have diffused into TiSiN layer at a given sample volume, while the Ti atoms of TiSiN layer into GeSbTe layer. Furthermore, non-random nature of dopant distribution in the GeSbTe materials leads to a Ti-localization including dopants at the GeSbTe/TiSiN interfaces. Our findings have two important implications: First, the annealing-driven interdiffusion of Ge and Ti is a predominant mechanism responsible for nanoscale compositional variations in GeSbTe layer; second, such an interdiffusion and the resultant dopant localization play a crucial role on the driving force for amorphous-polycrystalline transition of GeSbTe-based memory devices.

  9. Growth of Ge nanofilms using electrochemical atomic layer deposition, with a "bait and switch" surface-limited reaction.

    Science.gov (United States)

    Liang, Xuehai; Zhang, Qinghui; Lay, Marcus D; Stickney, John L

    2011-06-01

    Ge nanofilms were deposited from aqueous solutions using the electrochemical analog of atomic layer deposition (ALD). Direct electrodeposition of Ge from an aqueous solution is self-limited to a few monolayers, depending on the pH. This report describes an E-ALD process for the growth of Ge films from aqueous solutions. The E-ALD cycle involved inducing a Ge atomic layer to deposit on a Te atomic layer formed on Ge, via underpotential deposition (UPD). The Te atomic layer was then reductively stripped from the deposit, leaving the Ge and completing the cycle. The Te atomic layer was bait for Ge deposition, after which the Te was switched out, reduced to a soluble telluride, leaving the Ge (one "bait and switch" cycle). Deposit thickness was a linear function of the number of cycles. Raman spectra indicated formation of an amorphous Ge film, consistent with the absence of a XRD pattern. Films were more stable and homogeneous when formed on Cu substrates, than on Au, due to a larger hydrogen overpotential, and the corresponding lower tendency to form bubbles.

  10. Experimental determination of the Ta–Ge phase diagram

    Energy Technology Data Exchange (ETDEWEB)

    Araújo Pinto da Silva, Antonio Augusto, E-mail: aaaps@ppgem.eel.usp.br [EEL/USP – Escola de Engenharia de Lorena (EEL), Universidade de São Paulo (USP), Pólo Urbo-Industrial Gleba AI-6, 12602-810 Lorena, SP (Brazil); Coelho, Gilberto Carvalho [EEL/USP – Escola de Engenharia de Lorena (EEL), Universidade de São Paulo (USP), Pólo Urbo-Industrial Gleba AI-6, 12602-810 Lorena, SP (Brazil); UniFoa – Centro Universitário de Volta Redonda, Núcleo de Pesquisa, Campus Três Poços, Avenida Paulo Erlei Alves Abrantes, 1325, Bairro Três Poços, 27240-560 Volta Redonda, RJ (Brazil); Nunes, Carlos Angelo; Suzuki, Paulo Atsushi [EEL/USP – Escola de Engenharia de Lorena (EEL), Universidade de São Paulo (USP), Pólo Urbo-Industrial Gleba AI-6, 12602-810 Lorena, SP (Brazil); Fiorani, Jean Marc; David, Nicolas; Vilasi, Michel [Université de Lorraine, Institut Jean Lamour, Faculté des Sciences et Technologies, BP 70239, F-54506 Vandoeuvre-lès-Nancy (France)

    2013-11-05

    Highlights: •Ta–Ge phase diagram propose for the first time. •The phase αTa{sub 5}Ge{sub 3} was not observed in samples investigated in this work. •Three eutectics reactions where determined with the liquid compositions at 20.5; 28.0; 97.0 at.% Ge. -- Abstract: In the present work, the Ta–Ge phase diagram has been experimentally studied, considering the inexistence of a Ta–Ge phase diagram in the literature. The samples were prepared via arc melting and characterized by Scanning Electron Microscopy (SEM), Energy Dispersive Spectroscopy (EDS) and X-ray Diffraction (XRD). The intermetallics phases βTa{sub 3}Ge, αTa{sub 3}Ge, βTa{sub 5}Ge{sub 3} and TaGe{sub 2} where confirmed in this system. Three eutectics reactions where determined with the liquid compositions at 20.5; 28.0; 97.0 at.% Ge. The phases βTa{sub 3}Ge and βTa{sub 5}Ge{sub 3} solidifies congruently while TaGe{sub 2} is formed through a peritectic transformation. The temperature of the Ta-rich eutectic (L ↔ Ta{sub ss} + βTa{sub 3}Ge) was measured by the Pirani-Alterthum method at 2440 °C and the Ge-rich eutectic (L ↔ TaGe{sub 2} + Ge{sub ss}) by DTA at 937 °C.

  11. Density Functional Theory Study on Mechanism of Forming Spiro-Ge-heterocyclic Ring Compound from Me2Ge=Ge: and Acetaldehyde

    Institute of Scientific and Technical Information of China (English)

    Xiu-hui Lu; Yong-qing Li; Wei-jie Bao; Dong-ting Liu

    2013-01-01

    The H2Ge=Ge:,as well as and its derivatives (X2Ge=Ge:,X=H,Me,F,CI,Br,Ph,Ar,...)is a kind of new species.Its cycloaddition reactions is a new area for the study of germylene chemistry.The mechanism of the cycloaddition reaction between singlet Me2Ge=Ge:and acetaldehyde was investigated with the B3LYP/6-31G* method in this work.From the potential energy profile,it could be predicted that the reaction has one dominant reaction pathway.The reaction rule is that the two reactants firstly form a four-membered Ge-heterocyclic ring germylene through the [2+2] cycloaddition reaction.Because of the 4p unoccupied orbital of Ge:atom in the four-membered Ge-heterocyclic ring germylene and the π orbital of acetaldehyde forning a π-p donor-acceptor bond,the four-membered Ge-heterocyclic ring germylene further combines with acetaldehyde to form an intermediate.Because the Ge atom in intermediate happens sp3 hybridization after transition state,then,intermediate isomerizes to a spiro-Ge-heterocyclic ring compound via a transition state.The research result indicates the laws of cycloaddition reaction between Me2Ge=Ge:and acetaldehyde,and lays the theory foundation of the cycloaddition reaction between H2Ge=Ge:and its derivatives (X2Ge=Ge:,X=H,Me,F,Cl,Br,Ph,Ar) and asymmetric π-bonded compounds,which are significant for the synthesis of small-ring and spiro-Ge-heterocyclic ring compounds.

  12. 氧压酸浸炼锌流程中置换渣提取锗镓铟%Recovery of Ge/Ga/In from Replacement Slag in Pressure Oxidation Leaching Process of Zinc Sulfide Concentrate

    Institute of Scientific and Technical Information of China (English)

    王继民; 曹洪杨; 陈少纯; 徐毅; 张登凯

    2014-01-01

    为从锌精矿氧压酸浸炼锌工艺的置换渣中提取锗镓铟元素,对二段浸出-萃取分离锗镓铟铜工艺进行研究,锌电积废液用于一段浸出,H2SO4-HF混酸用于一段浸出渣的二段浸出;一段浸出液分别采用二(2-乙基已基)磷酸(P204),C3-5氧肟酸+二(2-乙基已基)(P204)磷酸及5-壬基水杨醛肟(CP150)分别萃取铟,锗镓及铜;二段浸出液用C3-5氧肟酸萃取提锗,萃余液加入氟化钠沉淀氟硅酸钠.试验结果显示,一段浸出用酸度为3.1N的湿法炼锌电积废液,液固比4∶1,初始氧分压0.4 MPa,150℃,经3h的二级浸出后,浸出渣率约为15%,铟镓铜锌4个元素的浸出率都达到98%,而锗浸出率约为80%;一段浸出残渣用H2S04-HF混酸浸出,其氟/硅摩尔比4.2∶1.0,硫酸浓度为2N温度80℃,液固比3∶1,浸出时间为5h,一段浸出残渣中锗几乎完全浸出;一段浸出液在pH 2.0~2.2,30%二(2-乙基已基)磷酸萃取,部分铁与几乎所有的铟被萃取,用2N盐酸反萃,铟、铁的反萃率分别为98.28%和2.79%,可达到铟铁的分离;萃铟余液用3%的氧肟酸+10%二(2-乙基已基)磷酸-煤油协萃锗、镓,铁也发生共萃,锗、镓和铁的单级萃取率均在90%以上,采用次氯酸钠反萃,锗反萃率近100%,且Ge/Ga和Ge/Fe的反萃分离系数分别为10836和318.7.用3 mol·L-的硫酸,相比(W/O) 1∶2反萃镓,镓的一次反萃率达97.5%.二段浸出液采用10%C3-5氧肟酸-煤油萃取,相比(O/w)为1.2∶1.0,锗的单级萃取率达到98.31%.经30%次氯酸钠溶液反萃,锗的一次反萃率达到98.83%,萃余液加入氟化钠,氟硅化物的沉淀率为90%左右.沉硅滤液经补充氢氟酸后返回二段沉出,锗的浸出仍可达到较完全的浸出.该工艺无废液排放,并且通过与湿法炼锌流程的物料交换而变得简化.

  13. The Impact of HC1 Precleaning and Sulfur Passivation on the Al2O3/Ge Interface in Ge Metal-Oxide-Semiconductor Capacitors

    Institute of Scientific and Technical Information of China (English)

    XUE Bai-Qing; CHANG Hu-Dong; SUN Bing; WANG Sheng-Kai; LIU Hong-Gang

    2012-01-01

    Surface treatment for Ge substrates using hydrogen chlorine cleaning and chemical passivation are investigated on AuTi/Al2O3/Ge metal-oxide-semiconductor capacitors. After hydrogen chlorine cleaning, a smooth Ge surface almost free from native oxide is demonstrated by atomic force microscopy and x-ray photoelectron spectroscopy observations. Passivation using a hydrogen chlorine solution is found to form a chlorine-terminated surface, while aqueous ammonium sulfide pretreatment results in a surface terminated by Ge-S bonding. Compared with chlorine-passivated samples, the sulfur-passivated ones show less frequency dispersion and better thermal stability based on capacitance-voltage characterizations. The samples with HCl pre-cleaning and (NH4)2S passivation show less frequency dispersion than the HF pre-cleaning and (NH4)2S passivated ones. The surface treatment process using hydrogen chlorine cleaning followed by aqueous ammonium sulfide passivation demonstrates a promising way to improve gate dielectric/Ge interface quality.%Surface treatment for Ge substrates using hydrogen chlorine cleaning and chemical passivation are investigated on AuTi/Al2O3/Ge metal-oxide-semiconductor capacitors.After hydrogen chlorine cleaning,a smooth Ge surface almost free from native oxide is demonstrated by atomic force microscopy and x-ray photoelectron spectroscopy observations.Passivation using a hydrogen chlorine solution is found to form a chlorine-terminated surface,while aqueous ammonium sulfide pretreatment results in a surface terminated by Ge-S bonding.Compared with chlorine-passivated samples,the sulfur-passivated ones show less frequency dispersion and better thermal stability based on capacitance-voltage characterizations.The samples with HCl pre-cleaning and (NH4 )2S passivation show less frequency dispersion than the HF pre-cleaning and (NH4)2S passivated ones.The surface treatment process using hydrogen chlorine cleaning followed by aqueous ammonium sulfide

  14. I8Sb10Ge36

    Directory of Open Access Journals (Sweden)

    Mohammed Kars

    2010-06-01

    Full Text Available Single crystals of the title compound, octaiodide decaantimonate hexatriacontagermanide, were grown by chemical transport reactions. The structure is isotypic with the analogous clathrates-I. In this structure, the (Ge,Sb46 framework consists of statistically occupied Ge and Sb sites that atoms form bonds in a distorted tetrahedral arrangement. They form polyhedra that are covalently bonded to each other by shared faces. There are two polyhedra of different sizes, viz. a (Ge,Sb20 dodecahedron and a (Ge,Sb24 tetracosahedron in a 1:3 ratio. The guest atom (iodine resides inside these polyhedra with symmetry m3 (Wyckoff position 2a and overline{4}2m (Wyckoff position 2d, respectively.

  15. Ge Quantum Dot Infrared Imaging Camera Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Luna Innovations Incorporated proposes to develop a high performance Ge quantum dots-based infrared (IR) imaging camera on Si substrate. The high sensitivity, large...

  16. Simple Synthesis and Luminescence Characteristics of PVP-Capped GeO2 Nanoparticles

    Directory of Open Access Journals (Sweden)

    Wei Wu

    2011-01-01

    Full Text Available Polyvinylpyrrolidone (PVP-capped rutile GeO2 nanoparticles were synthesized through a facile hydrothermal process. The obtained nanoparticles were characterized by X-ray diffraction (XRD, transmission electron microscopy (TEM, Fourier transform infrared spectroscopy (FTIR, thermo gravimetric analysis (TGA, and photoluminescence spectroscopy (PL. The capped GeO2 nanoparticles showed significantly enhanced luminescence properties compared with those of the uncapped ones. We attributed this result to the effect of reducing surface defects and enhancing the possibility of electron-hole recombination of the GeO2 nanoparticles by the PVP molecules. PVP-capped GeO2 nanoparticles have potential application in optical and electronic fields.

  17. Synthesis of GeSe2 Nanobelts Using Thermal Evaporation and Their Photoelectrical Properties

    Directory of Open Access Journals (Sweden)

    Lijie Zhang

    2014-01-01

    Full Text Available GeSe2 nanobelts were synthesized via a simple thermal-evaporation process by using gold particles as catalyst and GeSe2 flakes as starting materials. The morphology, crystal structure, and composition were characterized with scanning electron microscopy (SEM, high-resolution transmission electron microscopy (TEM, X-ray diffraction spectroscopy (XRD, X-ray photoelectron spectroscopy (XPS, and energy-dispersive X-ray spectroscopy (EDS. SEM micrographs show that most of GeSe2 nanobelts have distinct segmented structures (wide belt, zigzag belt, and narrow belt. A possible mechanism was proposed for the growth of segmented nanobelts. It is possible that the growth of the segmented nanobelts is dominated by both vapor-liquid-solid and vapor-solid mechanisms. Devices made of single GeSe2 nanobelt have been fabricated and their photoelectrical property has been investigated. Results indicate that these nanobelt devices are potential building blocks for optoelectronic applications.

  18. Surface-induced charge at the Ge (001) surface and its interaction with self-interstitials

    Energy Technology Data Exchange (ETDEWEB)

    Kamiyama, Eiji; Sueoka, Koji [Department of Communication Engineering, Okayama Prefectural University, 111 Kuboki, Soja-shi, Okayama-ken 719-1197 (Japan); Vanhellemont, Jan [Department of Solid State Sciences, Ghent University, B-9000 Gent (Belgium)

    2014-02-21

    The Ge (001) surface with dimer structure, is negatively charged while into the bulk, positive charges are observed even deeper than the fifteenth layer from the surface. This is different from the Si case. This charge distribution can lead to the repulsion of positively charged self-interstitials by the positively charged near surface layer in an implantation or irradiation process. Self-interstitial reflection by Ge surfaces had been proposed to explain the results of diffusion experiments during irradiation whereby positively charged self-interstitials are generated by collisions of highly energetic particles with Ge atoms. We investigated different Ge (001) surface comparing an as-cleaved surface with dangling bonds to a surface with dimer structure, and to a surface terminated by hydrogen atoms. The effect of these different surface terminations on the surface-induced charges in the near surface bulk were calculated by ab initio techniques.

  19. GeSn pin diodes: from pure Ge to direct-gap materials

    Science.gov (United States)

    Gallagher, James; Senaratne, Charutha; Xu, Chi; Aoki, Toshihiro; Kouvetakis, John; Menendez, Jose

    2015-03-01

    Complete n - i - p Ge1-ySny diode structures (y =0-0.09) were fabricated on Si substrates with Sn concentrations covering the entire range between pure Ge and direct-gap materials. The structures typically consist of a thick (>1 μm) n + + Ge buffer layer grown by Gas Source Molecular Epitaxy using Ge4H10 and either P(SiH3)3 or P(GeH3)3 , followed by a GeSn intrinsic layer (~ 500 nm), grown by Chemical Vapor Deposition (CVD) using Ge3H8 and SnD4, and a GeSn p-type top layer (~ 200 nm) grown by CVD using Ge3H8,SnD4andB2H6. Temperature-dependence of the I - V characteristics of these diodes as well as the forward-bias dependence of their electroluminescence (EL) signal were investigated, making it possible for the first time to extract the compositional dependence of parameters such as band gaps, activation energies, and dark currents. The EL spectra are dominated by direct-gap emission, which shifts from 1590 nm to 2300 nm, in agreement with photoluminescence results. DOD AFOSR FA9550-12-1-0208 and DOD AFOSR FA9550-13-1-0022.

  20. Study of Ge2Sb2Te5 Film for Nonvolatile Memory Medium

    Institute of Scientific and Technical Information of China (English)

    Baowei QIAO; Yunfeng LAI; Jie FENG; Yun LING; Yinyin LIN; Ting'ao TANG; Bingchu CAI; Bomy CHEN

    2005-01-01

    The amorphous Ge2Sb2Te5 film with stoichiometric compositions was deposited by co-sputtering of separate Ge,Sb, and Te targets on SiO2/Si (100) wafer in ultrahigh vacuum magnetron sputtering apparatus. The crystallization behavior of amorphous Ge2Sb2Te5 film was investigated by X-ray diffraction (XRD), atomic force microscopy (AFM) and differential scanning calorimetry (DSC). With an increase of annealing temperature, the amorphous Ge2Sb2Te5 film undergoes a two-step crystallization process that it first crystallizes in face-centered-cubic (fcc) crystal structure and finally fcc structure changes to hexagonal (hex) structure. Activation energy values of 3.636±0.137and 1.579±0.005 eV correspond to the crystallization and structural transformation processes, respectively. From annealing temperature dependence of the film resistivity, it is determined th at the first steep decrease of the resistivity corresponds to crystallization while the second one is primarily caused by structural transformation from "fcc"to "hex" and growth of the crystal grains. Current-voltage (I-V) characteristics of the device with 40 nm-thick Ge2Sb2Te5 film show that the Ge2Sb2Te5 film with nanometer order thickness is still applicable for memory medium of nonvolatile phase change memory.

  1. Polycondensation-type Ge nanofractal assembly

    Directory of Open Access Journals (Sweden)

    Zhiwen Chen

    2011-03-01

    Full Text Available The group IV semiconductors such as silicon (Si and germanium (Ge are unique materials with a wide range of technological applications. A versatile integrated device for the semiconductor industry is highly desirable for advanced applications. Notwithstanding the widespread application of Ge its use is not as extensive as that of Si, and nebulous domains in our understanding of its precise technical functions still remain. Previous nanostructures have either been one-dimensional nanomaterials such as nanowires, nanorods, nanobelts/nanoribbons, nanotubes, two-dimensional nanoscale thin films, or zero-dimensional nanoparticles, which all have integer dimensions. Herein, the non-integer dimensional Ge nanostructures, referred to as nanofractals, were successfully assembled by high-vacuum thermal evaporation techniques. We have found that the thermodynamically driven assemblies of Ge nanocrystals possess amazing nanostructures such as polycondensation-type Ge nanofractals with non-integer dimensions, thick branches and smooth edges, metastable gamma-Au0.6Ge0.4 nanocrystals, and a variety of interesting micro/nanometer-sized features. The results of computer simulations using a ripening mechanism of non-uniform grains agree very well with the patterns formed in experiments.

  2. Gettering effects in Si{sub x}Ge{sub 1-x} single crystalline wafers

    Energy Technology Data Exchange (ETDEWEB)

    Wollweber, J.; Schulz, D.; Schroeder, W. [Institut fuer Kristallzuechtung, Berlin (Germany)] [and others

    1995-08-01

    The new interest in single crystal growth of SiGe solid solutions is caused by the development of advanced electronics. The SiGe alloys are mostly used in the form of Si/Si{sub x}Ge{sub 1-x} epitaxial layers in heterostructures, the perfect bulk crystals are required to study fundamental properties. Furthermore, Si{sub x}Ge{sub 1-x} crystals can be used as a substrate material instead of Silicon in order to avoid the buffer layers between the Silicon substrate and strained Si{sub x}Ge{sub 1-x}. Monocrystalline SiGe alloys may be a potential candidate as a base material for infrared solar cells too because of an enhanced IR-sensitivity. In this paper we report a new approach to the growth of Si{sub x}Ge{sub 1-x} single crystals (up to 2{double_prime} in diameter) using the crucible free rf-heated float zone technique as well as the Czochralski-technique for solar cells. The goal is to produce solar cells with an increased photo current in comparison to Silicon cells. based on the lower bandgap of the alloyed crystal. In order to be able to use the Si cells technology (a matter still pending to be proven), low contents of Ge are intended, desirably in the range of about x=0.2. It is worth to mention, that in the conventional Silicon cell processes which give efficiencies up to 18-19%, this efficiency is not limited by the bulk base recombination in the lifetime is above 200 {mu}s there. We can conclude, that there is no basic limitation did prevents Si{sub x}Ge{sub 1-x} wafers to present high lifetimes, above 200{mu}s, at least if the Ge content is below 5%. We can also conclude that the phosphorous gettering from a POCl{sub 3} source, used in silicon, can be successfully used to enhance lifetimes in Si{sub x}Ge{sub 1-x}, at least for the Ge concentration used here.

  3. GaAs Photovoltaics on Polycrystalline Ge Substrates

    Science.gov (United States)

    Wilt, David M.; Pal, AnnaMaria T.; McNatt, Jeremiah S.; Wolford, David S.; Landis, Geoffrey A.; Smith, Mark A.; Scheiman, David; Jenkins, Phillip P.; McElroy Bruce

    2007-01-01

    High efficiency III-V multijunction solar cells deposited on metal foil or even polymer substrates can provide tremendous advantages in mass and stowage, particularly for planetary missions. As a first step towards that goal, poly-crystalline p/i/n GaAs solar cells are under development on polycrystalline Ge substrates. Organo Metallic Vapor Phase Epitaxy (OMVPE) parameters for pre-growth bake, nucleation and deposition have been examined. Single junction p/i/n GaAs photovoltaic devices, incorporating InGaP front and back window layers, have been grown and processed. Device performance has shown a dependence upon the thickness of a GaAs buffer layer deposited between the Ge substrate and the active device structure. A thick (2 m) GaAs buffer provides for both increased average device performance as well as reduced sensitivity to variations in grain size and orientation. Illumination under IR light (lambda > 1 micron), the cells showed a Voc, demonstrating the presence of an unintended photoactive junction at the GaAs/Ge interface. The presence of this junction limited the efficiency to approx.13% (estimated with an anti-refection coating) due to the current mismatch and lack of tunnel junction interconnect.

  4. From X-Rays to MRI: Physics in GE

    Science.gov (United States)

    Schmitt, Roland W.

    2004-03-01

    The GE Research Laboratory, founded in 1900, became the first laboratory of scientific research in U.S. industry. William Coolidge, a physicist, joined the laboratory in 1905 and produced two advances of immense importance. The first, ductile tungsten, is still the heart of every incandescent light bulb. The second, the "Coolidge" X-Ray tube, remains an essential tool of modern medicine. In the process, Coolidge explored two main approaches of physics in industry. One addresses a commercial problem or opportunity (better light bulbs) and finds interesting physics. The other explores interesting physics (X-rays) and creates a commercial opportunity. This paper addresses the mix of these approaches during GE's years as an "electric" (and therefore physics-based) company. Episodes include the following: the work of Irving Langmuir (1932 Nobel laureate in chemistry, but as much physicist as chemist); the post-World War II "golden age of industrial physics" when the endless frontier offered opportunities from nuclear power to diamond making to superconductivity; the Nobel-prize winning work of Ivar Giaever; and interdisciplinary efforts that enabled GE to become a world business leader in two medical diagnostic technologies it did not invent: computed tomography and magnetic resonance imaging. I will speculate on whether this mix of problem-driven and opportunity-driven effort is as relevant to the 21st century as it was to the 20th.

  5. Search for Tetrahedral Symmetry in 70Ge

    Science.gov (United States)

    Le, Khanh; Haring-Kaye, R. A.; Elder, R. M.; Jones, K. D.; Morrow, S. I.; Tabor, S. L.; Tripathi, V.; Bender, P. C.; Allegro, P. R. P.; Medina, N. H.; Oliveira, J. R. B.; Doring, J.

    2014-09-01

    The even-even Ge isotopes have recently become an active testing ground for a variety of exotic structural characteristics, including the existence of tetrahedral symmetry (pyramid-like shapes). Although theoretical shape calculations predict the onset of tetrahedral symmetry near 72Ge, the experimental signatures (including vanishing quadrupole moments within high-spin bands) remain elusive. This study searched for possible experimental evidence of tetrahedral symmetry in 70Ge. Excited states in 70Ge were populated at Florida State University using the 55Mn(18O,p2n) fusion-evaporation reaction at 50 MeV. Prompt γ- γ coincidences were measured with a Compton-suppressed Ge array consisting of three Clover detectors and seven single-crystal detectors. The existing level scheme was enhanced through the addition of 20 new transitions and the rearrangement of five others based on the measured coincidence relations and relative intensities. Lifetimes of 24 states were measured using the Doppler-shift attenuation method, from which transition quadrupole moments were inferred. These results will be compared with those obtained from cranked Woods-Saxon calculations. The even-even Ge isotopes have recently become an active testing ground for a variety of exotic structural characteristics, including the existence of tetrahedral symmetry (pyramid-like shapes). Although theoretical shape calculations predict the onset of tetrahedral symmetry near 72Ge, the experimental signatures (including vanishing quadrupole moments within high-spin bands) remain elusive. This study searched for possible experimental evidence of tetrahedral symmetry in 70Ge. Excited states in 70Ge were populated at Florida State University using the 55Mn(18O,p2n) fusion-evaporation reaction at 50 MeV. Prompt γ- γ coincidences were measured with a Compton-suppressed Ge array consisting of three Clover detectors and seven single-crystal detectors. The existing level scheme was enhanced through the addition

  6. SINTESA DAN KARAKTERISASI PADUAN ZrNbMoGe UNTUK MATERIAL KELONGSONG BAHAN BAKAR NUKLIR

    Directory of Open Access Journals (Sweden)

    Iman Kuntoro

    2015-04-01

    Full Text Available Sintesa paduan ZrNbMoGe untuk material kelongsong dilakukan dengan proses peleburan dan pengerolan panas untuk menghasilkan pelat tipis dengan ketebalan 1,4 mm. Proses peleburan dilakukan dengan melebur unsur pemadu ZrNbMoGe dalam dapur busur listrik dengan komposisi (prosen berat 97,5% Zr, 1% Nb, 1% Mo dan 0,5% Ge. Proses pengerolan panas dilakukan pada temperatur 800 oC dan 850 oC dengan rasio reduksi 5 % untuk tiap langkah. Hasil karakterisasi menunjukkan kekerasan ingot dan pelat paduan ZrNbMoGe masing-masing sebesar 199 VHR dan 188 VHR, lebih tinggi dibandingkan kekerasan bahan kelongsong Zirkaloi-4. Peningkatan kekerasan diperkirakan terjadi akibat terbentuknya presipitat keras Zr3Ge dalam ingot selama proses peleburan, yang telah diamati dari hasil uji presipitat dengan SEM-EDX dan uji XRD. Hasil uji korosi dalam lingkungan air aqua bidistillate menunjukkan laju korosi yang cukup rendah sebesar 0,0457 MPY, sedangkan hasil uji oksidasi suhu tinggi pada temperatur 800 oC selama 36 jam memberikan pertambahan berat sebesar 0,0959 mg/cm2, mendekati harga pertambahan berat untuk bahan Zirkaloi-4 sebesar 0,1105 mg/cm2. Kata kunci : sintesa, zirkonium, kelongsong, rol.   Synthesis of ZrNbMoGe alloy used for nuclear fuel cladding material was performed by melting and hot rolling processes to produce thin plates of 1.4 mm thickness. The melting process was done by melting the elements of ZrNbMoGe alloy using an arc melting furnace with compositions (weight percentage of 97.5% Zr, 1% Nb, 1% Mo and 0.5% Ge. The hot rolling process was done at temperatures of 800 oC and 850 oC with reduction ratios of 5% for each step. Result of the characterizations showed that the hardness of ingot and plate of ZrNbMoGe alloy were 199 VHR and 188 VHR respectively. These are higher than the hardness of the cladding material of Zircaloi-4. Increasing of hardness was believed due to the formation of hard precipitates of Zr3Ge in the ingot during the melting process

  7. Making the deal real: how GE Capital integrates acquisitions.

    Science.gov (United States)

    Ashkenas, R N; DeMonaco, L J; Francis, S C

    1998-01-01

    Most companies view acquisitions and mergers as onetime events managed with heroic effort--anxiety-producing experiences that often result in lost jobs, restructured responsibilities, derailed careers, and diminished power. Little wonder, then, that most managers think about how to get them over with--not how to do them better. But even as the number of mergers and acquisitions rises in the United States, studies show the performance of the resulting companies falls below industry averages more often than not. To improve these statistics, executives need to view acquisition integration as a manageable process, not a unique event. One company that has done exactly that is GE Capital Services, which has assimilated more than 100 acquisitions in the past five years alone and, in the process, has developed a formal model for melding new acquisitions into the corporate fold. Drawing on their experiences working with the company to develop the model, consultants Ron Ashkenas and Suzanne Francis, together with GE Capital's Lawrence DeMonaco, offer four lessons from the company's successful run. First, begin the integration process before the deal is signed. Second, dedicate a full-time individual to managing the integration process. Third, implement any necessary restructuring sooner rather than later. And fourth, integrate not only the business operations but also the corporate cultures. These guidelines won't erase all of the discomfort that accompanies many mergers, but they can make the process more transparent and predictable for those involved.

  8. Supersaturated solid solution obtained by mechanical alloying of 75% Fe, 20% Ge and 5% Nb mixture at different milling intensities

    Energy Technology Data Exchange (ETDEWEB)

    Blazquez, J.S.; Ipus, J.J.; Millan, M.; Franco, V. [Departamento de Fisica de la Materia Condensada, ICMSE-CSIC, Universidad de Sevilla, P.O. Box 1065, Apartado 1065, 41080 Sevilla (Spain); Conde, A. [Departamento de Fisica de la Materia Condensada, ICMSE-CSIC, Universidad de Sevilla, P.O. Box 1065, Apartado 1065, 41080 Sevilla (Spain)], E-mail: conde@us.es; Oleszak, D.; Kulik, T. [Faculty of Materials Science and Engineering, Warsaw University of Technology, ul. Woloska 141, 02-507 Warsaw (Poland)

    2009-02-05

    Mechanical alloying process of Fe{sub 75}Ge{sub 20}Nb{sub 5} composition has been studied at different milling frequencies from initial pure powder mixture to the development of a single bcc phase (supersaturated solid solution). As an intermediate state, an intermetallic phase is formed, which disappears after further milling or after thermal treatment (ascribed to an endothermic process at 700-800 K). A preferential partition of Nb and Ge to the boundaries between nanocrystals of bcc Fe-Ge-Nb supersaturated solid solution is observed from X-ray diffraction (XRD) and Moessbauer results.

  9. Material gain engineering in GeSn/Ge quantum wells integrated with an Si platform

    Science.gov (United States)

    Mączko, H. S.; Kudrawiec, R.; Gladysiewicz, M.

    2016-09-01

    It is shown that compressively strained Ge1‑xSnx/Ge quantum wells (QWs) grown on a Ge substrate with 0.1 ≤ x ≤ 0.2 and width of 8 nm ≤ d ≤ 14 nm are a very promising gain medium for lasers integrated with an Si platform. Such QWs are type-I QWs with a direct bandgap and positive transverse electric mode of material gain, i.e. the modal gain. The electronic band structure near the center of Brillouin zone has been calculated for various Ge1‑xSnx/Ge QWs with use of the 8-band kp Hamiltonian. To calculate the material gain for these QWs, occupation of the L valley in Ge barriers has been taken into account. It is clearly shown that this occupation has a lot of influence on the material gain in the QWs with low Sn concentrations (Sn  15%). However, for QWs with Sn > 20% the critical thickness of a GeSn layer deposited on a Ge substrate starts to play an important role. Reduction in the QW width shifts up the ground electron subband in the QW and increases occupation of the L valley in the barriers instead of the Γ valley in the QW region.

  10. BYSR硫黄回收工艺在促进剂M酸性废气处理中的应用%Application of BYSR Sulfur Recovery Process in the Acidic Was tGe as Treatment of Accelerator M Production

    Institute of Scientific and Technical Information of China (English)

    邢维宝; 于海山; 李兵兵; 洪学斌; 吴刚

    2013-01-01

    介绍BYSR硫黄回收工艺的技术特点、工艺流程及其在促进剂M酸性废气处理中的应用。结果表明:BYSR硫黄回收工艺的二级克劳斯工艺,总硫回收率为95.0%~97.0%,二级克劳斯工艺+低温克劳斯工艺,总硫回收率为99.0%~99.5%;尾气中二氧化硫排放量达到国标要求;回收硫黄的纯度不小于99.90%;装置的工艺适应性和针对性更高,操作弹性大,有助于降低促进剂生产企业的投资和运营成本。%In this paper, the technical characteristics and process flow of BYSR sulfur recovery process are introduced, and the application in the acidic waste gas treatment of accelerator M production is presented. The total sulfur recovery of the enhanced Claus process based on BYSR is 95.0%~97.0%. The total sulfur recovery of the enhanced Claus process plus low temperature reactor is 99.0%~99.5%. The sulfur dioxide content in tail gas meets the requirement of the national standard. The purity of recovered sulfur reaches 99.90%. The process has good adaptability and lfexibility, which can reduce the investment and operating costs of accelerator producers.

  11. Influence of hydrogen surface passivation on Sn segregation, aggregation, and distribution in GeSn/Ge(001) materials

    Science.gov (United States)

    Johll, Harman; Samuel, Milla; Koo, Ruey Yi; Kang, Hway Chuan; Yeo, Yee-Chia; Tok, Eng Soon

    2015-05-01

    Plane-wave density functional theory is used to investigate the impact of hydrogen passivation of the p(2×2) reconstructed Ge1-xSnx surface on Sn segregation, aggregation, and distribution. On a clean surface, Sn preferentially segregates to the surface layer, with surface coverages of 25%, 50%, and 100% for total Sn concentrations of 2.5%, 5.0%, and 10.0%, respectively. In contrast, a hydrogen passivated surface increases interlayer migration of Sn to subsurface layers, in particular, to the third layer from the surface, and results in surface coverages of 0%, 0%, and 50% corresponding to Sn concentrations of 2.5%, 5.0%, and 10.0%, respectively. Hydrogen transfer from a Ge-capped surface to the one enriched with increasing Sn surface coverage is also an unfavorable process. The presence of hydrogen therefore reduces the surface energy by passivating the reactive dangling bonds and enhancing Sn interlayer migration to the subsurface layers. For both clean and hydrogenated surfaces, aggregation of Sn at the surface layer is also not favored. We explain these results by considering bond enthalpies and the enthalpies of hydrogenation for various surface reactions. Our results thus point to reduced Sn segregation to the surface in a Ge1-xSnx epitaxial thin film if CVD growth, using hydride precursors in the hydrogen limited growth regime, is used. This would lead to a more abrupt interface and is consistent with recent experimental observation. Hydrogenation is therefore a promising method for controlling and manipulating elemental population of Sn in a Ge1-xSnx epitaxial thin film.

  12. Performance Investigation of Nanoscale Strained Ge pMOSFETs with a GeSn Alloy Stressor.

    Science.gov (United States)

    Lee, Chang-Chun; Chang, Shu-Tong; Cheng, Sen-Wen; Chian, Bow-Tsin

    2015-11-01

    A germanium (Ge)-based substrate combined with germanium-tin (GeSn) alloy embedded in source/drain (S/D) regions has attracted significant attention because of its ability to satisfy the requirements of a high-mobility channel. Devices are shrunk in their geometries to meet the target of superior density in layout arrangement. Thus, determining the influences of devices on mobility gain is important. Accordingly, several designed factors, including gate width, S/D length, and Sn concentration of the GeSn stressor, are systematically analyzed in this study. A second-order formula composed of piezoresistance coefficients is derived and adopted to achieve a precise mobility gain estimation. A peak of the carrier mobility gain appears when a nanoscale geometry combination of 20 nm gate length and -200 nm gate width is used in the Ge channel, and 10% of the Sn mole proportion of the GeSn alloy is applied.

  13. Fabrication and measurement of devices in Si/SiGe nanomembranes

    Science.gov (United States)

    Mohr, Robert

    Silicon/silicon-germanium (Si/SiGe) heterostructures are useful as hosts for gated quantum dots. The quality of the as-grown Si/SiGe heterostructure has a large impact on the final quality of the quantum dot as a qubit host. For many years, quantum dots have been fab- ricated on strain-graded heterostructures. Commonly used strain-graded heterostructures inevitably develop plastic defects that lead to interface roughness, crosshatch, and mosaic tilt. All of these factors are sources of disorder in Si/SiGe quantum electronics. In this dissertation, I report the fabrication of Hall bars and gated quantum dots on heterostructures grown on fully elastically relaxed SiGe nanomembranes, rather than strain-graded heterostructures. I report measurements of Hall bars demonstrating the creation of two-dimensional electron gases in these structures. I report the fabrication procedures used to create pairs of Hall bars and quantum dots on individual membranes. In addition, I explain a general process flow for the creation of Si/SiGe quantum devices. I focus especially on an ion-implantation technique I implemented for the fabrication of Hall bars and quantum dots in Si/SiGe heterostructures without modulation doping layers.

  14. An alternative Explanation for the Fermi GeV Gamma-Ray Excess

    CERN Document Server

    de Boer, Wim; Neumann, Alexander; Biermann, Peter L

    2016-01-01

    The "GeV-excess" of the diffuse gamma-rays in the halo is studied with a template fit based on energy spectra for each possible process of gamma-ray emission. Such a fit allows to determine the background and signal simultaneously, so the Galactic Disk can be included in the analysis. We find evidence that the "excess", characterised by a gamma-ray spectrum peaking at 2 GeV, is much stronger in Molecular Clouds in the disk than the "GeV-excess" observed up to now in the halo. The possible reason why the emissivity of Molecular Clouds peaks at 2 GeV are the energy losses and magnetic cutoffs inside MCs, thus depleting the low energy part of the CR spectra and shifting the maximum of the gamma-ray spectra to higher energies. This peaking of the emissivity in Molecular Clouds at 2 GeV was clearly observed from the spectrum of the Central Molecular Zone, which dominates the emission in the inner few degrees of the Galactic Centre. Although the spectrum of the Central Molecular Zone peaks at 2 GeV, it cannot be re...

  15. Enhancement of the crystalline Ge film growth by inductively coupled plasma-assisted pulsed DC sputtering.

    Science.gov (United States)

    Kim, Eunkyeom; Han, Seung-Hee

    2014-11-01

    The effect of pulsed DC sputtering on the crystalline growth of Ge thin film was investigated. Ge thin films were deposited on the glass substrates using ICP-assisted pulsed DC sputtering. The Ge target was sputtered using asymmetric bipolar pulsed DC sputtering system with and without assistance of ICP source. The pulse frequency of 200 Hz and the pulse on time of 500 μsec (duty cycle = 10%) were kept during sputtering process. Crystal structures were studied from X-ray diffraction. The X-ray diffraction patterns clearly showed crystalline film structures. The Ge thin films with randomly oriented crystalline were obtained using pulsed DC sputtering without ICP, whereas they had well aligned (220) orientation crystalline using ICP source. Moreover, the combination of ICP assistance and pulsed DC sputtering enhanced the growth of crystalline Ge thin films without hydrogen and metal by in situ deposition. The structure and lattice of the films were studied from TEM images. The cross-sectional TEM images revealed the deposited Ge films with columnar structure.

  16. III-V/Ge MOS device technologies for low power integrated systems

    Science.gov (United States)

    Takagi, S.; Noguchi, M.; Kim, M.; Kim, S.-H.; Chang, C.-Y.; Yokoyama, M.; Nishi, K.; Zhang, R.; Ke, M.; Takenaka, M.

    2016-11-01

    CMOS utilizing high mobility III-V/Ge channels on Si substrates is expected to be one of the promising devices for high performance and low power integrated systems in the future technology nodes, because of the enhanced carrier transport properties. In addition, Tunneling-FETs (TFETs) using Ge/III-V materials are regarded as one of the most important steep slope devices for the ultra-low power applications. In this paper, we address the device and process technologies of Ge/III-V MOSFETs and TFETs on the Si CMOS platform. The channel formation, source/drain (S/D) formation and gate stack engineering are introduced for satisfying the device requirements. The plasma post oxidation to form GeOx interfacial layers is a key gate stack technology for Ge CMOS. Also, direct wafer bonding of ultrathin body quantum well III-V-OI channels, combined with Tri-gate structures, realizes high performance III-V n-MOSFETs on Si. We also demonstrate planar-type InGaAs and Ge/strained SOI TFETs. The defect-less p+-n source junction formation with steep impurity profiles is a key for high performance TFET operation.

  17. GeNemo: a search engine for web-based functional genomic data.

    Science.gov (United States)

    Zhang, Yongqing; Cao, Xiaoyi; Zhong, Sheng

    2016-07-08

    A set of new data types emerged from functional genomic assays, including ChIP-seq, DNase-seq, FAIRE-seq and others. The results are typically stored as genome-wide intensities (WIG/bigWig files) or functional genomic regions (peak/BED files). These data types present new challenges to big data science. Here, we present GeNemo, a web-based search engine for functional genomic data. GeNemo searches user-input data against online functional genomic datasets, including the entire collection of ENCODE and mouse ENCODE datasets. Unlike text-based search engines, GeNemo's searches are based on pattern matching of functional genomic regions. This distinguishes GeNemo from text or DNA sequence searches. The user can input any complete or partial functional genomic dataset, for example, a binding intensity file (bigWig) or a peak file. GeNemo reports any genomic regions, ranging from hundred bases to hundred thousand bases, from any of the online ENCODE datasets that share similar functional (binding, modification, accessibility) patterns. This is enabled by a Markov Chain Monte Carlo-based maximization process, executed on up to 24 parallel computing threads. By clicking on a search result, the user can visually compare her/his data with the found datasets and navigate the identified genomic regions. GeNemo is available at www.genemo.org.

  18. Thermodynamic assessment of the Nb-Ge system

    Energy Technology Data Exchange (ETDEWEB)

    Geng Tai [School of Materials Science and Engineering, University of Science and Technology Beijing, Xueyuan Road, 30, Haidian District, Beijing 100083 (China); Li Changrong, E-mail: crli@mater.ustb.edu.cn [School of Materials Science and Engineering, University of Science and Technology Beijing, Xueyuan Road, 30, Haidian District, Beijing 100083 (China); Du Zhenmin; Guo Cuiping [School of Materials Science and Engineering, University of Science and Technology Beijing, Xueyuan Road, 30, Haidian District, Beijing 100083 (China); Zhao Xinqing; Xu Huibin [School of Materials Science and Engineering, Beijing University of Aeronautics and Astronautics, Beijing 100083 (China)

    2011-02-10

    Research highlights: > For the phases Nb{sub 3}Ge{sub 2} and Nb{sub 3}Ge, the reasonable sublattice models were constructed. > A set of thermodynamic parameters for the Nb-Ge system was obtained. > The optimized result can interpreter the vaporization of Ge during preparation. - Abstract: The Nb-Ge binary system has been thermodynamically assessed using the CALPHAD (Calculation of Phase Diagrams) approach on the basis of the experimental data of both the phase equilibria and the thermochemical properties. The reasonable models were constructed for all the phases of the system. The liquid and the terminal solid solution phases, Bcc-(Nb) and Diamond-(Ge), were described as the substitutional solutions with Redlich-Kister polynomials for the expressions of the excess Gibbs free energies. The intermediate phases (Nb{sub 3}Ge), (Nb{sub 5}Ge{sub 3}), (Nb{sub 3}Ge{sub 2}) and (NbGe{sub 2}) with homogeneity ranges were treated as the sublattice models Nb{sub 0.75}(Ge,Nb,Va){sub 0.25}, Nb{sub 0.5}(Nb,Ge){sub 0.125}(Ge,Va){sub 0.375}, (Nb,Ge){sub 0.222}(Nb,Ge){sub 0.333}Nb{sub 0.333}(Ge,Va){sub 0.111} and (Nb,Ge){sub 0.333}(Nb,Ge){sub 0.667} respectively based on their structure features of atom arrangements. A set of self-consistent thermodynamic parameters for the Nb-Ge system was obtained. Using the present thermodynamic data, the calculation results can reproduce the experimental data well.

  19. Monolithic Ge-on-Si lasers for large-scale electronic-photonic integration

    Science.gov (United States)

    Liu, Jifeng; Kimerling, Lionel C.; Michel, Jurgen

    2012-09-01

    A silicon-based monolithic laser source has long been envisioned as a key enabling component for large-scale electronic-photonic integration in future generations of high-performance computation and communication systems. In this paper we present a comprehensive review on the development of monolithic Ge-on-Si lasers for this application. Starting with a historical review of light emission from the direct gap transition of Ge dating back to the 1960s, we focus on the rapid progress in band-engineered Ge-on-Si lasers in the past five years after a nearly 30-year gap in this research field. Ge has become an interesting candidate for active devices in Si photonics in the past decade due to its pseudo-direct gap behavior and compatibility with Si complementary metal oxide semiconductor (CMOS) processing. In 2007, we proposed combing tensile strain with n-type doping to compensate the energy difference between the direct and indirect band gap of Ge, thereby achieving net optical gain for CMOS-compatible diode lasers. Here we systematically present theoretical modeling, material growth methods, spontaneous emission, optical gain, and lasing under optical and electrical pumping from band-engineered Ge-on-Si, culminated by recently demonstrated electrically pumped Ge-on-Si lasers with >1 mW output in the communication wavelength window of 1500-1700 nm. The broad gain spectrum enables on-chip wavelength division multiplexing. A unique feature of band-engineered pseudo-direct gap Ge light emitters is that the emission intensity increases with temperature, exactly opposite to conventional direct gap semiconductor light-emitting devices. This extraordinary thermal anti-quenching behavior greatly facilitates monolithic integration on Si microchips where temperatures can reach up to 80 °C during operation. The same band-engineering approach can be extended to other pseudo-direct gap semiconductors, allowing us to achieve efficient light emission at wavelengths previously

  20. Dopage p par BI3 de couches Ge/Ge ET Ge/GaAs; caractérisationélectrique

    Science.gov (United States)

    Étienne, D.; Achargui, N.; Bougnot, G.

    1986-01-01

    B doped Ge layers were obtained by chemical vapor transport using a disproportionation reaction 2GeI2=Ge+GeI4. They were p-type and their electric parameters: resistivity ϱ, Hall mobility μH and carrier concentration p were studied as a function of substrate temperature, partial pressure of BI3 and hydrogen flow rate on BI3 source. The incorporation of B into monocrystalline layers is studied thermodynamically.

  1. Structure of glassy GeO2.

    Science.gov (United States)

    Salmon, Philip S; Barnes, Adrian C; Martin, Richard A; Cuello, Gabriel J

    2007-10-17

    The full set of partial structure factors for glassy germania, or GeO2, were accurately measured by using the method of isotopic substitution in neutron diffraction in order to elucidate the nature of the pair correlations for this archetypal strong glass former. The results show that the basic tetrahedral Ge(O1/2)4 building blocks share corners with a mean inter-tetrahedral Ge-Ô-Ge bond angle of 132(2)°. The topological and chemical ordering in the resultant network displays two characteristic length scales at distances greater than the nearest neighbour. One of these describes the intermediate range order, and manifests itself by the appearance of a first sharp diffraction peak in the measured diffraction patterns at a scattering vector kFSDP≈1.53 Å(-1), while the other describes so-called extended range order, and is associated with the principal peak at kPP = 2.66(1) Å(-1). We find that there is an interplay between the relative importance of the ordering on these length scales for tetrahedral network forming glasses that is dominated by the extended range ordering with increasing glass fragility. The measured partial structure factors for glassy GeO2 are used to reproduce the total structure factor measured by using high energy x-ray diffraction and the experimental results are also compared to those obtained by using classical and first principles molecular dynamics simulations.

  2. DALiuGE: A graph execution framework for harnessing the astronomical data deluge

    Science.gov (United States)

    Wu, C.; Tobar, R.; Vinsen, K.; Wicenec, A.; Pallot, D.; Lao, B.; Wang, R.; An, T.; Boulton, M.; Cooper, I.; Dodson, R.; Dolensky, M.; Mei, Y.; Wang, F.

    2017-07-01

    The Data Activated Liu Graph Engine - DALiuGE- is an execution framework for processing large astronomical datasets at a scale required by the Square Kilometre Array Phase 1 (SKA1). It includes an interface for expressing complex data reduction pipelines consisting of both datasets and algorithmic components and an implementation run-time to execute such pipelines on distributed resources. By mapping the logical view of a pipeline to its physical realisation, DALiuGE separates the concerns of multiple stakeholders, allowing them to collectively optimise large-scale data processing solutions in a coherent manner. The execution in DALiuGE is data-activated, where each individual data item autonomously triggers the processing on itself. Such decentralisation also makes the execution framework very scalable and flexible, supporting pipeline sizes ranging from less than ten tasks running on a laptop to tens of millions of concurrent tasks on the second fastest supercomputer in the world. DALiuGE has been used in production for reducing interferometry datasets from the Karl E. Jansky Very Large Array and the Mingantu Ultrawide Spectral Radioheliograph; and is being developed as the execution framework prototype for the Science Data Processor (SDP) consortium of the Square Kilometre Array (SKA) telescope. This paper presents a technical overview of DALiuGE and discusses case studies from the CHILES and MUSER projects that use DALiuGE to execute production pipelines. In a companion paper, we provide in-depth analysis of DALiuGE's scalability to very large numbers of tasks on two supercomputing facilities.

  3. Probing hard color-singlet exchange in pp¯ collisions at sqrt(s) = 630 GeV and 1800 GeV

    Science.gov (United States)

    D0 Collaboration; Abbott, B.; Abolins, M.; Abramov, V.; Acharya, B. S.; Adam, I.; Adams, D. L.; Adams, M.; Ahn, S.; Aihara, H.; Alves, G. A.; Amos, N.; Anderson, E. W.; Astur, R.; Baarmand, M. M.; Babintsev, V. V.; Babukhadia, L.; Baden, A.; Baldin, B.; Banerjee, S.; Bantly, J.; Barberis, E.; Baringer, P.; Bartlett, J. F.; Belyaev, A.; Beri, S. B.; Bertram, I.; Bezzubov, V. A.; Bhat, P. C.; Bhatnagar, V.; Bhattacharjee, M.; Biswas, N.; Blazey, G.; Blessing, S.; Bloom, P.; Boehnlein, A.; Bojko, N. I.; Borcherding, F.; Boswell, C.; Brandt, A.; Breedon, R.; Brock, R.; Bross, A.; Buchholz, D.; Burtovoi, V. S.; Butler, J. M.; Carvalho, W.; Casey, D.; Casilum, Z.; Castilla-Valdez, H.; Chakraborty, D.; Chang, S.-M.; Chekulaev, S. V.; Chen, W.; Choi, S.; Chopra, S.; Choudhary, B. C.; Christenson, J. H.; Chung, M.; Claes, D.; Clark, A. R.; Cobau, W. G.; Cochran, J.; Coney, L.; Cooper, W. E.; Cretsinger, C.; Cullen-Vidal, D.; Cummings, M. A. C.; Cutts, D.; Dahl, O. I.; Davis, K.; de, K.; del Signore, K.; Demarteau, M.; Denisov, D.; Denisov, S. P.; Diehl, H. T.; Diesburg, M.; di Loreto, G.; Draper, P.; Ducros, Y.; Dudko, L. V.; Dugad, S. R.; Dyshkant, A.; Edmunds, D.; Ellison, J.; Elvira, V. D.; Engelmann, R.; Eno, S.; Eppley, G.; Ermolov, P.; Eroshin, O. V.; Evdokimov, V. N.; Fahland, T.; Fatyga, M. K.; Feher, S.; Fein, D.; Ferbel, T.; Finocchiaro, G.; Fisk, H. E.; Fisyak, Y.; Flattum, E.; Forden, G. E.; Fortner, M.; Frame, K. C.; Fuess, S.; Gallas, E.; Galyaev, A. N.; Gartung, P.; Gavrilov, V.; Geld, T. L.; Genik, R. J., II; Genser, K.; Gerber, C. E.; Gershtein, Y.; Gibbard, B.; Gobbi, B.; Gómez, B.; Gómez, G.; Goncharov, P. I.; González Solís, J. L.; Gordon, H.; Goss, L. T.; Gounder, K.; Goussiou, A.; Graf, N.; Grannis, P. D.; Green, D. R.; Greenlee, H.; Grinstein, S.; Grudberg, P.; Grünendahl, S.; Guglielmo, G.; Guida, J. A.; Guida, J. M.; Gupta, A.; Gurzhiev, S. N.; Gutierrez, G.; Gutierrez, P.; Hadley, N. J.; Haggerty, H.; Hagopian, S.; Hagopian, V.; Hahn, K. S.; Hall, R. E.; Hanlet, P.; Hansen, S.; Hauptman, J. M.; Hedin, D.; Heinson, A. P.; Heintz, U.; Hernández-Montoya, R.; Heuring, T.; Hirosky, R.; Hobbs, J. D.; Hoeneisen, B.; Hoftun, J. S.; Hsieh, F.; Hu, Ting; Hu, Tong; Ito, A. S.; James, E.; Jaques, J.; Jerger, S. A.; Jesik, R.; Joffe-Minor, T.; Johns, K.; Johnson, M.; Jonckheere, A.; Jones, M.; Jöstlein, H.; Jun, S. Y.; Jung, C. K.; Kahn, S.; Kalbfleisch, G.; Karmanov, D.; Karmgard, D.; Kehoe, R.; Kelly, M. L.; Kim, S. K.; Klima, B.; Klopfenstein, C.; Ko, W.; Kohli, J. M.; Koltick, D.; Kostritskiy, A. V.; Kotcher, J.; Kotwal, A. V.; Kozelov, A. V.; Kozlovsky, E. A.; Krane, J.; Krishnaswamy, M. R.; Krzywdzinski, S.; Kuleshov, S.; Kulik, Y.; Kunori, S.; Landry, F.; Landsberg, G.; Lauer, B.; Leflat, A.; Li, J.; Li-Demarteau, Q. Z.; Lima, J. G. R.; Lincoln, D.; Linn, S. L.; Linnemann, J.; Lipton, R.; Lobkowicz, F.; Loken, S. C.; Lucotte, A.; Lueking, L.; Lyon, A. L.; Maciel, A. K. A.; Madaras, R. J.; Madden, R.; Magaña-Mendoza, L.; Manankov, V.; Mani, S.; Mao, H. S.; Markeloff, R.; Marshall, T.; Martin, M. I.; Mauritz, K. M.; May, B.; Mayorov, A. A.; McCarthy, R.; McDonald, J.; McKibben, T.; McKinley, J.; McMahon, T.; Melanson, H. L.; Merkin, M.; Merritt, K. W.; Miao, C.; Miettinen, H.; Mincer, A.; Mishra, C. S.; Mokhov, N.; Mondal, N. K.; Montgomery, H. E.; Mooney, P.; Mostafa, M.; da Motta, H.; Murphy, C.; Nang, F.; Narain, M.; Narasimham, V. S.; Narayanan, A.; Neal, H. A.; Negret, J. P.; Nemethy, P.; Norman, D.; Oesch, L.; Oguri, V.; Oliveira, E.; Oltman, E.; Oshima, N.; Owen, D.; Padley, P.; Para, A.; Park, Y. M.; Partridge, R.; Parua, N.; Paterno, M.; Pawlik, B.; Perkins, J.; Peters, M.; Piegaia, R.; Piekarz, H.; Pischalnikov, Y.; Pope, B. G.; Prosper, H. B.; Protopopescu, S.; Qian, J.; Quintas, P. Z.; Raja, R.; Rajagopalan, S.; Ramirez, O.; Reucroft, S.; Rijssenbeek, M.; Rockwell, T.; Roco, M.; Rubinov, P.; Ruchti, R.; Rutherfoord, J.; Sánchez-Hernández, A.; Santoro, A.; Sawyer, L.; Schamberger, R. D.; Schellman, H.; Sculli, J.; Shabalina, E.; Shaffer, C.; Shankar, H. C.; Shivpuri, R. K.; Shpakov, D.; Shupe, M.; Singh, H.; Singh, J. B.; Sirotenko, V.; Smith, E.; Smith, R. P.; Snihur, R.; Snow, G. R.; Snow, J.; Snyder, S.; Solomon, J.; Sosebee, M.; Sotnikova, N.; Souza, M.; Steinbrück, G.; Stephens, R. W.; Stevenson, M. L.; Stewart, D.; Stichelbaut, F.; Stoker, D.; Stolin, V.; Stoyanova, D. A.; Strauss, M.; Streets, K.; Strovink, M.; Sznajder, A.; Tamburello, P.; Tarazi, J.; Tartaglia, M.; Thomas, T. L. T.; Thompson, J.; Trippe, T. G.; Tuts, P. M.; Vaniev, V.; Varelas, N.; Varnes, E. W.; Vititoe, D.; Volkov, A. A.; Vorobiev, A. P.; Wahl, H. D.; Wang, G.; Warchol, J.; Watts, G.; Wayne, M.; Weerts, H.; White, A.; White, J. T.; Wightman, J. A.; Willis, S.; Wimpenny, S. J.

    1998-11-01

    We present results on dijet production via hard color-singlet exchange in proton-antiproton collisions at sqrt(s)=630 GeV and 1800 GeV using the DØ detector. The fraction of dijet events produced via color-singlet exchange is measured as a function of jet transverse energy, separation in pseudorapidity between the two highest transverse energy jets, and proton-antiproton center-of-mass energy. The results are consistent with a color-singlet fraction that increases with an increasing fraction of quark-initiated processes and inconsistent with two-gluon models for the hard color-singlet.

  4. Preparation and Properties of a Novel Al-Si-Ge-Zn Filler Metal for Brazing Aluminum

    Science.gov (United States)

    Niu, Zhiwei; Huang, Jihua; Yang, Hao; Chen, Shuhai; Zhao, Xingke

    2015-06-01

    The study is concerned with developing a filler metal with low melting temperature and good processability for brazing aluminum and its alloys. For this purpose, a novel Al-Si-Ge-Zn alloy was prepared according to Al-Si-Ge and Al-Si-Zn ternary phase diagrams. The melting characteristics, microstructures, wettability, and processing property of the alloy were investigated. The results showed that the melting temperature range of the novel filler metal was 505.2-545.1 °C, and the temperature interval between the solidus and the liquidus was 39.9 °C. Compared with a common Al-Si-Ge alloy, it had smaller and better dispersed β-GeSi solid solution precipitates, and the Zn-rich phases distributed on the boundary of the β-GeSi precipitates. The novel filler metal has good processability and good wettability with Al. There was one obvious transition layer with a thin α-Al solid solution between the filler metal and base metal, which is favorable to improve the strength of brazing joint.

  5. Clathrate formation in the systems Sr-Cu-Ge and {Ba,Sr}-Cu-Ge

    Science.gov (United States)

    Zeiringer, I.; Moser, R.; Kneidinger, F.; Podloucky, R.; Royanian, E.; Grytsiv, A.; Bauer, E.; Giester, G.; Falmbigl, M.; Rogl, P.

    2014-09-01

    In the ternary system Sr-Cu-Ge, a novel clathrate type-I phase was detected, Sr8CuxGe46-x (5.2≤xtemperature interval. Sr8Cu5.3Ge40.7 decomposes eutectoidally on cooling at 730±3 °C into (Ge), SrGe2 and τ1-SrCu2-xGe2+x. Phase equilibria at 700 °C have been established for the Ge rich part and are characterized by the appearance of only one ternary compound, τ1-SrCu2-xGe2+x, which crystallizes with the ThCr2Si2 structure type and forms a homogeneity range up to x=0.4 (a=0.42850(4), c=1.0370(1) nm). Additionally, the extent of the clathrate type-I solid solution Ba8-ySryCuxGe46-x (0≤y≤~5.6; 5.2≤x≤5.4, from as cast alloys) has been studied at various temperatures. The clathrate type-I crystal structure (space group Pm3barn) has been proven by X-ray single crystal diffraction on two single crystals with the composition (from refinement): Sr8Cu5.36Ge40.64 (a=1.06368(2) nm at 300 K) and Ba4.86Sr3.14Cu5.36Ge40.64 (a=1.06748(2) nm at 300 K) measured at 300, 200 and 100 K. From the temperature dependence of the lattice parameters and the atomic displacement parameters, thermal expansion coefficients, Debye- and Einstein-temperatures and the speed of sound have been determined. From heat capacity measurements of Sr8Cu5.3Ge40.7 at low temperatures the Sommerfeld coefficient (γ=24 mJ/mol K2) and the Debye temperature (ΘDLT=273 K) have been extracted. From a detailed analysis of these data at higher temperatures, Einstein branches of the phonon dispersion relation have been derived and compared to those obtained from the atomic displacement parameters. Electrical resistivity measurements of Sr8Cu5.3Ge40.7 reveal a rather metallic behavior in the low temperature range (<300 K). Density function theory calculations provide densities of states, electronic resistivity and Seebeck coefficient as well as the vibrational spectrum and specific heat.

  6. Diamond turning of Si and Ge single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Blake, P.; Scattergood, R.O.

    1988-12-01

    Single-point diamond turning studies have been completed on Si and Ge crystals. A new process model was developed for diamond turning which is based on a critical depth of cut for plastic flow-to-brittle fracture transitions. This concept, when combined with the actual machining geometry for single-point turning, predicts that {open_quotes}ductile{close_quotes} machining is a combined action of plasticity and fracture. Interrupted cutting experiments also provide a meant to directly measure the critical depth parameter for given machining conditions.

  7. Results on decay with emission of two neutrinos or Majorons in Ge from GERDA Phase I

    Science.gov (United States)

    Agostini, M.; Allardt, M.; Bakalyarov, A. M.; Balata, M.; Barabanov, I.; Barros, N.; Baudis, L.; Bauer, C.; Becerici-Schmidt, N.; Bellotti, E.; Belogurov, S.; Belyaev, S. T.; Benato, G.; Bettini, A.; Bezrukov, L.; Bode, T.; Borowicz, D.; Brudanin, V.; Brugnera, R.; Budjáš, D.; Caldwell, A.; Cattadori, C.; Chernogorov, A.; D'Andrea, V.; Demidova, E. V.; di Vacri, A.; Domula, A.; Doroshkevich, E.; Egorov, V.; Falkenstein, R.; Fedorova, O.; Freund, K.; Frodyma, N.; Gangapshev, A.; Garfagnini, A.; Grabmayr, P.; Gurentsov, V.; Gusev, K.; Hegai, A.; Heisel, M.; Hemmer, S.; Heusser, G.; Hofmann, W.; Hult, M.; Inzhechik, L. V.; Csáthy, J. Janicskó; Jochum, J.; Junker, M.; Kazalov, V.; Kihm, T.; Kirpichnikov, I. V.; Kirsch, A.; Klimenko, A.; Knöpfle, K. T.; Kochetov, O.; Kornoukhov, V. N.; Kuzminov, V. V.; Laubenstein, M.; Lazzaro, A.; Lebedev, V. I.; Lehnert, B.; Liao, H. Y.; Lindner, M.; Lippi, I.; Lubashevskiy, A.; Lubsandorzhiev, B.; Lutter, G.; Macolino, C.; Majorovits, B.; Maneschg, W.; Medinaceli, E.; Misiaszek, M.; Moseev, P.; Nemchenok, I.; Palioselitis, D.; Panas, K.; Pandola, L.; Pelczar, K.; Pullia, A.; Riboldi, S.; Rumyantseva, N.; Sada, C.; Salathe, M.; Schmitt, C.; Schneider, B.; Schönert, S.; Schreiner, J.; Schütz, A.-K.; Schulz, O.; Schwingenheuer, B.; Selivanenko, O.; Shirchenko, M.; Simgen, H.; Smolnikov, A.; Stanco, L.; Stepaniuk, M.; Ur, C. A.; Vanhoefer, L.; Vasenko, A. A.; Veresnikova, A.; von Sturm, K.; Wagner, V.; Walter, M.; Wegmann, A.; Wester, T.; Wilsenach, H.; Wojcik, M.; Yanovich, E.; Zavarise, P.; Zhitnikov, I.; Zhukov, S. V.; Zinatulina, D.; Zuber, K.; Zuzel, G.

    2015-09-01

    A search for neutrinoless decay processes accompanied with Majoron emission has been performed using data collected during Phase I of the GERmanium Detector Array (GERDA) experiment at the Laboratori Nazionali del Gran Sasso of INFN (Italy). Processes with spectral indices were searched for. No signals were found and lower limits of the order of 10 yr on their half-lives were derived, yielding substantially improved results compared to previous experiments with Ge. A new result for the half-life of the neutrino-accompanied decay of Ge with significantly reduced uncertainties is also given, resulting in yr.

  8. A 270×1 Ge-on-Si photodetector array for sensitive infrared imaging

    Science.gov (United States)

    Sammak, A.; Aminian, M.; Qi, L.; Charbon, E.; Nanver, Lis K.

    2014-05-01

    A CMOS compatible Ge photodetector (Ge-PD) fabricated on Si substrates has been shown to be suitable for near infrared (NIR) sensing; linear and avalanche detection, in both proportional and Geiger modes have been demonstrated, for photon counting at room temperature [1]. This paper focuses on implementations of the technology for the fabrication of imaging arrays of such detectors with high reproducibility and yield. The process involves selective chemical vapor deposition (CVD) of a ~ 1-μm-thick n-type Ge crystal on a Si substrate at 700°C, followed by deposition of a nm-thin Ga and B layer-stack (so-called PureGaB), all in the same deposition cycle. The PureGaB layer fulfills two functions; firstly, the Ga forms an ultrashallow p+n junction on the surface of Ge islands that allows highly sensitive NIR photodiode detection in the Ge itself; secondly, the B-layer forms a barrier that protects the Ge/Ga layers against oxidation when exposed to air and against spiking during metallization. A design for patterning the surrounding oxide is developed to ensure a uniform selective growth of the Ge crystalline islands so that the wafer surface remains flat over the whole array and any Ge nucleation on SiO2 surface is avoided. This design can deliver pixel sizes up to 30×30 μm2 with a Ge fill factor of up to 95 %. An Al metallization is used to contact each of the photodiodes to metal pads located outside the array area. A new process module has been developed for removing the Al metal on the Ge-islands to create an oxide-covered PureGaB-only front-entrance window without damaging the ultrashallow junction; thus the sensitivity to front-side illumination is maximized, especially at short wavelengths. The electrical I-V characteristics of each photodetector pixel are, to our knowledge, the best reported in literature with ideality factors of ~1.05 with Ion/Ioff ratios of 108. The uniformity is good and the yield is close to 100% over the whole array.

  9. Multi-GeV Gluonic Mesons

    CERN Document Server

    Page, P R

    2001-01-01

    Lattice QCD gives reliable predictions for hybrid charmonium and multi-GeV glueball masses. Proton-antiproton annihilation may offer an excellent opportunity for the first observation of these states. There are two distinct possible programs: The search for J^PC-exotic and non-J^PC-exotic states. The latter program represents substantially higher cross sections and does not absolutely require partial wave analysis, two very attractive features. The program can be performed with a varying pbar energy <10 GeV and a fixed target.

  10. Si/SiGe heterointerfaces in one-, two-, and three-dimensional nanostructures: their impact on SiGe light emission

    Science.gov (United States)

    Lockwood, David; Wu, Xiaohua; Baribeau, Jean-Marc; Mala, Selina; Wang, Xialou; Tsybeskov, Leonid

    2016-03-01

    Fast optical interconnects together with an associated light emitter that are both compatible with conventional Si-based complementary metal-oxide- semiconductor (CMOS) integrated circuit technology is an unavoidable requirement for the next-generation microprocessors and computers. Self-assembled Si/Si1-xGex nanostructures, which can emit light at wavelengths within the important optical communication wavelength range of 1.3 - 1.55 μm, are already compatible with standard CMOS practices. However, the expected long carrier radiative lifetimes observed to date in Si and Si/Si1-xGex nanostructures have prevented the attainment of efficient light-emitting devices including the desired lasers. Thus, the engineering of Si/Si1-xGex heterostructures having a controlled composition and sharp interfaces is crucial for producing the requisite fast and efficient photoluminescence (PL) at energies in the range 0.8-0.9 eV. In this paper we assess how the nature of the interfaces between SiGe nanostructures and Si in heterostructures strongly affects carrier mobility and recombination for physical confinement in three dimensions (corresponding to the case of quantum dots), two dimensions (corresponding to quantum wires), and one dimension (corresponding to quantum wells). The interface sharpness is influenced by many factors such as growth conditions, strain, and thermal processing, which in practice can make it difficult to attain the ideal structures required. This is certainly the case for nanostructure confinement in one dimension. However, we demonstrate that axial Si/Ge nanowire (NW) heterojunctions (HJs) with a Si/Ge NW diameter in the range 50 - 120 nm produce a clear PL signal associated with band-to-band electron-hole recombination at the NW HJ that is attributed to a specific interfacial SiGe alloy composition. For three-dimensional confinement, the experiments outlined here show that two quite different Si1-xGex nanostructures incorporated into a Si0.6Ge0.4 wavy

  11. Si/SiGe heterointerfaces in one-, two-, and three-dimensional nanostructures: their impact on SiGe light emission

    Directory of Open Access Journals (Sweden)

    David J. Lockwood

    2016-03-01

    Full Text Available Fast optical interconnects together with an associated light emitter that are both compatible with conventional Si-based complementary metal-oxide- semiconductor (CMOS integrated circuit technology is an unavoidable requirement for the next-generation microprocessors and computers. Self-assembled Si/Si1-xGex nanostructures, which can emit light at wavelengths within the important optical communication wavelength range of 1.3 – 1.55 μm, are already compatible with standard CMOS practices. However, the expected long carrier radiative lifetimes observed to date in Si and Si/Si1-xGex nanostructures have prevented the attainment of efficient light-emitting devices including the desired lasers. Thus, the engineering of Si/Si1-xGex heterostructures having a controlled composition and sharp interfaces is crucial for producing the requisite fast and efficient photoluminescence (PL at energies in the range 0.8-0.9 eV. In this paper we assess how the nature of the interfaces between SiGe nanostructures and Si in heterostructures strongly affects carrier mobility and recombination for physical confinement in three dimensions (corresponding to the case of quantum dots, two dimensions (corresponding to quantum wires, and one dimension (corresponding to quantum wells. The interface sharpness is influenced by many factors such as growth conditions, strain, and thermal processing, which in practice can make it difficult to attain the ideal structures required. This is certainly the case for nanostructure confinement in one dimension. However, we demonstrate that axial Si/Ge nanowire (NW heterojunctions (HJs with a Si/Ge NW diameter in the range 50 – 120 nm produce a clear PL signal associated with band-to-band electron-hole recombination at the NW HJ that is attributed to a specific interfacial SiGe alloy composition. For three-dimensional confinement, the experiments outlined here show that two quite different Si1-xGex nanostructures incorporated into a Si

  12. Tensile-strained Ge/SiGe quantum-well photodetectors on silicon substrates with extended infrared response.

    Science.gov (United States)

    Chang, Guo-En; Chen, Shao-Wei; Cheng, H H

    2016-08-08

    We report on tensile-strained Ge/Si0.11Ge0.89 quantum-well (QW) metal-semiconductor-metal (MSM) photodetectors on Si substrates. A tensile strain of 0.21% is introduced into the Ge wells by growing the QW stack on in-situ annealed Ge-on-Si virtual substrates (VS). The optical characterization of Ge/Si0.11Ge0.89 QW MSM photodetectors indicates that the optical response increases to a wavelength of 1.5 μm or higher owing to the strain-induced direct bandgap shrinkage. Analysis of the band structure by using a k · p model suggests that by optimizing the tensile strain and Ge well width, tensile-strained Ge/SiGe QW photodetectors can be designed to cover the telecommunication C-band and beyond for optical telecommunications and on-chip interconnection.

  13. Ultra-smooth epitaxial Ge grown on Si(001) utilizing a thin C-doped Ge buffer layer

    KAUST Repository

    Mantey, J.

    2013-01-01

    Here, we present work on epitaxial Ge films grown on a thin buffer layer of C doped Ge (Ge:C). The growth rate of Ge:C is found to slow over time and is thus unsuitable for thick (>20 nm) layers. We demonstrate Ge films from 10 nm to >150 nm are possible by growing pure Ge on a thin Ge:C buffer. It is shown that this stack yields exceedingly low roughness levels (comparable to bulk Si wafers) and contains fewer defects and higher Hall mobility compared to traditional heteroepitaxial Ge. The addition of C at the interface helps reduce strain by its smaller atomic radius and its ability to pin defects within the thin buffer layer that do not thread to the top Ge layer. © 2013 AIP Publishing LLC.

  14. Compton profile study of V3Ge and Cr3Ge

    Indian Academy of Sciences (India)

    Y C Sharma; V Vyas; V Purvia; K B Joshi; B K Sharma

    2008-02-01

    In this paper the results of a Compton profile study of two polycrystalline A15 compounds, namely, V3Ge and Cr3Ge, have been reported. The measurements have been performed using 59.54 keV -rays from an 241Am source. The theoretical Compton profiles have been computed for both the compounds using ab-initio linear combination of atomic orbitals (LCAO) method employing CRYSTAL98. For both the A15 compounds, the isotropic experimental profiles are found to be in good overall agreement with the calculations. The comparison points out residual differences in V3Ge whereas for Cr3Ge the differences are within experimental error. The behaviour of valence electrons in the two iso-structural compounds has been examined on the scale of Fermi momentum. The valence electron distribution seems to be dominated by the metallic constituents rather than Ge and two compounds show covalent nature of bonding which is larger in V3Ge compared to Cr3Ge.

  15. The Characterization of GeH_2 and GeH Using Matrix Isolation Infrared Spectroscopy

    Science.gov (United States)

    Amicangelo, Jay; Bailey, Christopher; Hoover, Madelyn; Huffman, Bruce

    2014-06-01

    Matrix isolation infrared spectroscopy was used to characterize the fundamental infrared peaks of the germanium hydride species GeH_2 and GeH in low temperature argon matrices that result from the vacuum-ultraviolet (VUV) photolysis of germane (GeH_4). Experiments were performed by depositing mixtures of GeH_4 with argon onto a CsI window cooled to 12 K while simultaneously photolyzing the mixture with 121 nm VUV radiation from a hydrogen resonance lamp. For GeH_2, the fundamental infrared peaks are observed at 1839.1 wn (νb{3}, antisymmetric stretch), 1816.6 wn (νb{1}, symmetric stretch) and 913.4 wn (νb{2}, bend). For GeH, the fundamental infrared stretching peak is observed at 1813.4 wn. The assignment of the observed peaks is established by performing experiments with isotopic germane (GeD_4), by performing matrix annealing experiments (warming to 25 - 35 K and refreezing to 12 K), by performing mercury-xenon lamp matrix photolysis experiments (200 - 900 nm), and by comparison to quantum chemical calculations performed at the B3LYP and MP2 levels of theory. This work corrects what appears to be incorrect assignments made in the earlier report of Smith and Guillory G. R. Smith and W. A. Guillory, J. Chem. Phys., 56, 1423 (1972).

  16. Restricted-Access Al-Mediated Material Transport in Al Contacting of PureGaB Ge-on-Si p + n Diodes

    Science.gov (United States)

    Sammak, Amir; Qi, Lin; Nanver, Lis K.

    2015-12-01

    The effectiveness of using nanometer-thin boron (PureB) layers as interdiffusion barrier to aluminum (Al) is studied for a contacting scheme specifically developed for fabricating germanium-on-silicon (Ge-on-Si) p + n photodiodes with an oxide-covered light entrance window. Contacting is achieved at the perimeter of the Ge-island anode directly to an Al interconnect metallization. The Ge is grown in oxide windows to the Si wafer and covered by a B and gallium (Ga) layer stack (PureGaB) composed of about a nanometer of Ga for forming the p + Ge region and 10 nm of B as an interdiffusion barrier to the Al. To form contact windows, the side-wall oxide is etched away, exposing a small tip of the Ge perimeter to Al that from this point travels about 5 μm into the bulk Ge crystal. In this process, Ge and Si materials are displaced, forming Ge-filled V-grooves at the Si surface. The Al coalesces in grains. This process is studied here by high-resolution cross-sectional transmission electron microscopy and energy dispersive x-ray spectroscopy that confirm the purities of the Ge and Al grains. Diodes are fabricated with different geometries and statistical current-voltage characterization reveals a spread that can be related to across-the-wafer variations in the contact processing. The I- V behavior is characterized by low dark current, low contact resistance, and breakdown voltages that are suitable for operation in avalanching modes. The restricted access to the Ge of the Al inducing the Ge and Si material transport does not destroy the very good electrical characteristics typical of PureGaB Ge-on-Si diodes.

  17. Novel Ge waveguide platform on Ge-on-insulator wafer for mid-infrared photonic integrated circuits.

    Science.gov (United States)

    Kang, Jian; Takenaka, Mitsuru; Takagi, Shinichi

    2016-05-30

    We present Ge rib waveguide devices fabricated on a Ge-on-insulator (GeOI) wafer as a proof-of-concept Ge mid-infrared photonics platform. Numerical analysis revealed that the driving current for a given optical attenuation in a carrier-injection Ge waveguide device at a 1.95 μm wavelength can be approximately five times smaller than that in a Si device, enabling in-line carrier-injection Ge optical modulators based on free-carrier absorption. We prepared a GeOI wafer with a 2-μm-thick buried oxide layer (BOX) by wafer bonding. By using the GeOI wafer, we fabricated Ge rib waveguides. The Ge rib waveguides were transparent to 2 μm wavelengths and the propagation loss was found to be 1.4 dB/mm, which may have been caused by sidewall scattering. We achieved a negligible bend loss in the Ge rib waveguide, even with a 5 μm bend radius, owing to the strong optical confinement in the GeOI structure. We also formed a lateral p-i-n junction along the Ge rib waveguide to explore the capability of absorption modulation by carrier injection. By injecting current through the lateral p-i-n junction, we achieved optical intensity modulation in the 2 μm band based on the free-carrier absorption in Ge.

  18. High Quality GaAs Growth by MBE on Si Using GeSi Buffers and Prospects for Space Photovoltaics

    Science.gov (United States)

    Carlin, J. A.; Ringel, S. A.; Fitzgerald, E. A.; Bulsara, M.

    2005-01-01

    Si/Si substrate show nearly identical I-V characteristics in both forward and reverse bias regions. External quantum efficiencies of AlGaAs/GaAs cell structures grown on Ge/GeSi/Si and Ge substrates demonstrated nearly identical photoresponse, which indicates that high lifetimes, diffusion lengths and efficient minority carrier collection is maintained after complete cell processing.

  19. Neutron thermodiffraction study of the crystallization of Ag-Ge-Se glasses: evidence of a new phase

    Energy Technology Data Exchange (ETDEWEB)

    Piarristeguy, Andrea A; Yot, Pascal G; Ribes, Michel; Pradel, Annie [Institut Charles Gerhardt, Equipe PMDP UMR 5253 CNRS, CC1503, Universite Montpellier 2, F-34095 Montpellier Cedex 5 (France); Cuello, Gabriel J [Institut Laue Langevin, 6 rue Jules Horowitz, BP 156, F-38042 Grenoble Cedex 9 (France)], E-mail: andrea.piarristeguy@lpmc.univ-montp2.fr, E-mail: cuello@ill.eu, E-mail: pyot@lpmc.univ-montp2.fr, E-mail: mribes@lpmc.univ-montp2.fr, E-mail: apradel@lpmc.univ-montp2.fr

    2008-04-16

    Silver-containing chalcogenide glasses are potential candidates for electrical memory manufacturing. In order to study the glasses under dynamic conditions, using the temperature as the main parameter, a neutron thermodiffraction study of three Ag{sub x}(Ge{sub 0.25}Se{sub 0.75}){sub 100-x} glasses (x = 5,15 and 25) was carried out. Two in situ diffraction experiments were performed: a first series including heating ramps from room temperature up to 350 {sup 0}C and a second one comprising the measurement of an isotherm at about 300 {sup 0}C for 5 h. For the three studied glasses two stable crystalline phases were formed during the heating process: the cubic Ag{sub 8}GeSe{sub 6} appeared first, followed by the crystallization of monoclinic GeSe{sub 2}. The crystallization process for the Ag-rich (x = 15 and 25) glasses was more complex, with the appearance of a new unstable phase at high temperature, i.e. Ag{sub 2}GeSe{sub 3}. Such a phase decomposed with time or temperature to produce a new phase, Ag{sub 10}Ge{sub 3}Se{sub 11}, along with the stable GeSe{sub 2}. This phase has never been reported to date while the existence of Ag{sub 2}GeSe{sub 3} was still controversial.

  20. Synthesis of visible light emitting self assembled Ge nanocrystals embedded within a SiO{sub 2} matrix

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez-Hernandez, A.; De Moure-Flores, F.; Quinones-Galvan, J. G.; Santoyo-Salazar, J.; Melendez-Lira, M. [Departamento de Fisica, Centro de Investigacion y de Estudios Avanzados del Instituto Politecnico Nacional, A.P. 14740, C.P. 07300, Mexico, Distrito Federal (Mexico); Rangel-Kuoppa, V. T. [Institute of Semiconductor and Solid State Physics, Johannes Kepler Universitaet, A-4040 Linz (Austria); Plach, Thomas [Christian Doppler Laboratory for Microscopic and Spectroscopic Material Characterization, Center for Surface and Nanoanalytics, Johannes Kepler Universitaet, A-4040 Linz (Austria); Zapata-Torres, M. [Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada, Unidad Legaria IPN, Calzada Legaria 694, Col. Irrigacion, 11500 Mexico, Distrito Federal (Mexico); Hernandez-Hernandez, L. A. [Escuela Superior de Fisica y Matematicas del Instituto Politecnico Nacional, Edificio 9 U.P. Adolfo Lopez Mateos, Col. San Pedro Zacatenco, C.P. 07730 (Mexico)

    2012-02-15

    As-grown light emitting self-assembled Ge nanocrystals (Ge-NCs) embedded in a SiO{sub 2} matrix were produced via a sequential deposition process of SiO{sub 2}/Ge/SiO{sub 2} layers employing a reactive radio frequency sputtering technique. Obtained Ge-NCs show a crystallographic phase, the proportion, size, quality, and specific orientation of which are determined by the oxygen partial pressure. Photoluminescence (PL) spectra indicate that the size distribution of Ge-NCs is reduced and centered on about 8 nm when higher oxygen partial pressure is employed; the formation of Ge-NCs is corroborated by transmission electron microscopy measurements, and their sizes are consistent with estimates from PL measurements. Resistivity measurements are explained by a near neighbors hopping process, with specific features depending on the Ge-NCs' size. The features of PL and resistivity measurements indicate that there is no appreciable dependence of the number of interfacial defects on the oxygen partial pressure.

  1. Synthesis of visible light emitting self assembled Ge nanocrystals embedded within a SiO2 matrix

    Science.gov (United States)

    Hernández-Hernández, A.; Rangel-Kuoppa, V. T.; Plach, Thomas; De Moure-Flores, F.; Quiñones-Galván, J. G.; Santoyo-Salazar, J.; Zapata-Torres, M.; Hernández-Hernández, L. A.; Meléndez-Lira, M.

    2012-02-01

    As-grown light emitting self-assembled Ge nanocrystals (Ge-NCs) embedded in a SiO2 matrix were produced via a sequential deposition process of SiO2/Ge/SiO2 layers employing a reactive radio frequency sputtering technique. Obtained Ge-NCs show a crystallographic phase, the proportion, size, quality, and specific orientation of which are determined by the oxygen partial pressure. Photoluminescence (PL) spectra indicate that the size distribution of Ge-NCs is reduced and centered on about 8 nm when higher oxygen partial pressure is employed; the formation of Ge-NCs is corroborated by transmission electron microscopy measurements, and their sizes are consistent with estimates from PL measurements. Resistivity measurements are explained by a near neighbors hopping process, with specific features depending on the Ge-NCs' size. The features of PL and resistivity measurements indicate that there is no appreciable dependence of the number of interfacial defects on the oxygen partial pressure.

  2. Ratio of Jet Cross Sections at s = 630 GeV and 1800 GeV

    Science.gov (United States)

    Abbott, B.; Abolins, M.; Abramov, V.; Acharya, B. S.; Adams, D. L.; Adams, M.; Alves, G. A.; Amos, N.; Anderson, E. W.; Baarmand, M. M.; Babintsev, V. V.; Babukhadia, L.; Baden, A.; Baldin, B.; Balm, P. W.; Banerjee, S.; Bantly, J.; Barberis, E.; Baringer, P.; Bartlett, J. F.; Bassler, U.; Bean, A.; Begel, M.; Belyaev, A.; Beri, S. B.; Bernardi, G.; Bertram, I.; Besson, A.; Bezzubov, V. A.; Bhat, P. C.; Bhatnagar, V.; Bhattacharjee, M.; Blazey, G.; Blessing, S.; Boehnlein, A.; Bojko, N. I.; Borcherding, F.; Brandt, A.; Breedon, R.; Briskin, G.; Brock, R.; Brooijmans, G.; Bross, A.; Buchholz, D.; Buehler, M.; Buescher, V.; Burtovoi, V. S.; Butler, J. M.; Canelli, F.; Carvalho, W.; Casey, D.; Casilum, Z.; Castilla-Valdez, H.; Chakraborty, D.; Chan, K. M.; Chekulaev, S. V.; Cho, D. K.; Choi, S.; Chopra, S.; Christenson, J. H.; Chung, M.; Claes, D.; Clark, A. R.; Cochran, J.; Coney, L.; Connolly, B.; Cooper, W. E.; Coppage, D.; Cummings, M. A.; Cutts, D.; Dahl, O. I.; Davis, G. A.; Davis, K.; de, K.; del Signore, K.; Demarteau, M.; Demina, R.; Demine, P.; Denisov, D.; Denisov, S. P.; Desai, S.; Diehl, H. T.; Diesburg, M.; di Loreto, G.; Doulas, S.; Draper, P.; Ducros, Y.; Dudko, L. V.; Duensing, S.; Dugad, S. R.; Dyshkant, A.; Edmunds, D.; Ellison, J.; Elvira, V. D.; Engelmann, R.; Eno, S.; Eppley, G.; Ermolov, P.; Eroshin, O. V.; Estrada, J.; Evans, H.; Evdokimov, V. N.; Fahland, T.; Feher, S.; Fein, D.; Ferbel, T.; Fisk, H. E.; Fisyak, Y.; Flattum, E.; Fleuret, F.; Fortner, M.; Frame, K. C.; Fuess, S.; Gallas, E.; Galyaev, A. N.; Gartung, P.; Gavrilov, V.; Genik, R. J.; Genser, K.; Gerber, C. E.; Gershtein, Y.; Gibbard, B.; Gilmartin, R.; Ginther, G.; Gómez, B.; Gómez, G.; Goncharov, P. I.; González Solís, J. L.; Gordon, H.; Goss, L. T.; Gounder, K.; Goussiou, A.; Graf, N.; Graham, G.; Grannis, P. D.; Green, J. A.; Greenlee, H.; Grinstein, S.; Groer, L.; Grudberg, P.; Grünendahl, S.; Gupta, A.; Gurzhiev, S. N.; Gutierrez, G.; Gutierrez, P.; Hadley, N. J.; Haggerty, H.; Hagopian, S.; Hagopian, V.; Hahn, K. S.; Hall, R. E.; Hanlet, P.; Hansen, S.; Hauptman, J. M.; Hays, C.; Hebert, C.; Hedin, D.; Heinson, A. P.; Heintz, U.; Heuring, T.; Hirosky, R.; Hobbs, J. D.; Hoeneisen, B.; Hoftun, J. S.; Hou, S.; Huang, Y.; Ito, A. S.; Jerger, S. A.; Jesik, R.; Johns, K.; Johnson, M.; Jonckheere, A.; Jones, M.; Jöstlein, H.; Juste, A.; Kahn, S.; Kajfasz, E.; Karmanov, D.; Karmgard, D.; Kehoe, R.; Kim, S. K.; Klima, B.; Klopfenstein, C.; Knuteson, B.; Ko, W.; Kohli, J. M.; Kostritskiy, A. V.; Kotcher, J.; Kotwal, A. V.; Kozelov, A. V.; Kozlovsky, E. A.; Krane, J.; Krishnaswamy, M. R.; Krzywdzinski, S.; Kubantsev, M.; Kuleshov, S.; Kulik, Y.; Kunori, S.; Kuznetsov, V. E.; Landsberg, G.; Leflat, A.; Lehner, F.; Li, J.; Li, Q. Z.; Lima, J. G.; Lincoln, D.; Linn, S. L.; Linnemann, J.; Lipton, R.; Lucotte, A.; Lueking, L.; Lundstedt, C.; Maciel, A. K.; Madaras, R. J.; Manankov, V.; Mao, H. S.; Marshall, T.; Martin, M. I.; Martin, R. D.; Mauritz, K. M.; May, B.; Mayorov, A. A.; McCarthy, R.; McDonald, J.; McMahon, T.; Melanson, H. L.; Meng, X. C.; Merkin, M.; Merritt, K. W.; Miao, C.; Miettinen, H.; Mihalcea, D.; Mincer, A.; Mishra, C. S.; Mokhov, N.; Mondal, N. K.; Montgomery, H. E.; Moore, R. W.; Mostafa, M.; da Motta, H.; Nagy, E.; Nang, F.; Narain, M.; Narasimham, V. S.; Neal, H. A.; Negret, J. P.; Negroni, S.; Norman, D.; Oesch, L.; Oguri, V.; Olivier, B.; Oshima, N.; Padley, P.; Pan, L. J.; Para, A.; Parashar, N.; Partridge, R.; Parua, N.; Paterno, M.; Patwa, A.; Pawlik, B.; Perkins, J.; Peters, M.; Peters, O.; Piegaia, R.; Piekarz, H.; Pope, B. G.; Popkov, E.; Prosper, H. B.; Protopopescu, S.; Qian, J.; Quintas, P. Z.; Raja, R.; Rajagopalan, S.; Ramberg, E.; Rapidis, P. A.; Reay, N. W.; Reucroft, S.; Rha, J.; Rijssenbeek, M.; Rockwell, T.; Roco, M.; Rubinov, P.; Ruchti, R.; Rutherfoord, J.; Santoro, A.; Sawyer, L.; Schamberger, R. D.; Schellman, H.; Schwartzman, A.; Sculli, J.; Sen, N.; Shabalina, E.; Shankar, H. C.; Shivpuri, R. K.; Shpakov, D.; Shupe, M.; Sidwell, R. A.; Simak, V.; Singh, H.; Singh, J. B.; Sirotenko, V.; Slattery, P.; Smith, E.; Smith, R. P.; Snihur, R.; Snow, G. R.; Snow, J.; Snyder, S.; Solomon, J.; Sorín, V.; Sosebee, M.; Sotnikova, N.; Soustruznik, K.; Souza, M.; Stanton, N. R.; Steinbrück, G.; Stephens, R. W.; Stevenson, M. L.; Stichelbaut, F.; Stoker, D.; Stolin, V.; Stoyanova, D. A.; Strauss, M.; Streets, K.; Strovink, M.; Stutte, L.; Sznajder, A.; Taylor, W.; Tentindo-Repond, S.; Thompson, J.; Toback, D.; Tripathi, S. M.; Trippe, T. G.; Turcot, A. S.; Tuts, P. M.; van Gemmeren, P.; Vaniev, V.; van Kooten, R.; Varelas, N.; Volkov, A. A.; Vorobiev, A. P.; Wahl, H. D.; Wang, H.; Wang, Z.-M.; Warchol, J.; Watts, G.; Wayne, M.; Weerts, H.; White, A.; White, J. T.; Whiteson, D.; Wightman, J. A.; Wijngaarden, D. A.; Willis, S.; Wimpenny, S. J.; Wirjawan, J. V.; Womersley, J.; Wood, D. R.; Yamada, R.; Yamin, P.; Yasuda, T.; Yip, K.; Youssef, S.; Yu, J.; Yu, Z.; Zanabria, M.; Zheng, H.; Zhou, Z.; Zhu, Z. H.; Zielinski, M.; Zieminska, D.; Zieminski, A.; Zutshi, V.; Zverev, E. G.; Zylberstejn, A.

    2001-03-01

    The D0 Collaboration has measured the inclusive jet cross section in p¯p collisions at s = 630 GeV. The results for pseudorapidities η<0.5 are combined with our previous results at s = 1800 GeV to form a ratio of cross sections with smaller uncertainties than either individual measurement. Next-to-leading-order QCD predictions show excellent agreement with the measurement at 630 GeV; agreement is also satisfactory for the ratio. Specifically, despite a 10% to 15% difference in the absolute magnitude, the dependence of the ratio on jet transverse momentum is very similar for data and theory.

  3. Synthesis and Structural Characterization of the New Clathrates K8Cd4Ge42, Rb8Cd4Ge42, and Cs8Cd4Ge42

    Directory of Open Access Journals (Sweden)

    Marion C. Schäfer

    2016-03-01

    Full Text Available This paper presents results from our exploratory work in the systems K-Cd-Ge, Rb-Cd-Ge, and Cs-Cd-Ge, which yielded the novel type-I clathrates with refined compositions K8Cd3.77(7Ge42.23, Rb8Cd3.65(7Ge42.35, and Cs7.80(1Cd3.65(6Ge42.35. The three compounds represent rare examples of clathrates of germanium with the alkali metals, where a d10 element substitutes a group 14 element. The three structures, established by single-crystal X-ray diffraction, indicate that the framework-building Ge atoms are randomly substituted by Cd atoms on only one of the three possible crystallographic sites. This and several other details of the crystal chemistry are elaborated.

  4. Growth of one-dimensional Si/SiGe heterostructures by thermal CVD

    Energy Technology Data Exchange (ETDEWEB)

    Mouchet, Celine; Latu-Romain, Laurence; Rouviere, Emmanuelle; Celle, Caroline; Simonato, Jean-Pierre [CEA, LITEN, DTNM, LCH, 38054 Grenoble (France); Cayron, Cyril [CEA, LITEN, DTH, Grenoble Electron Microscopy at Minatec, 38054 Grenoble (France)], E-mail: jean-pierre.simonato@cea.fr

    2008-08-20

    The first results on a simple new process for the direct fabrication of one-dimensional superlattices using common CVD chambers are presented. The experiments were carried out in a 200 mm industrial Centura reactor (Applied Materials). Low dimensionality and superlattices allow a significant increase in the figure of merit of thermoelectrics by controlling the transport of phonons and electrons. The monocrystalline nanowires produced according to this process are both one-dimensional and present heterostructures, with very thin layers (40 nm) of Si and SiGe. Concentrations up to 30 at.% Ge were obtained in the SiGe parts. Complementary techniques including transmission electronic microscopy (TEM), selected area electron diffraction (SAED), energy dispersive x-ray spectroscopy (EDS), scanning transmission electron microscopy (STEM) in bright field and high angle annular dark field (HAADF STEM), and energy-filtered transmission electron microscopy (EF-TEM) were used to characterize the nanoheterostructures.

  5. Templated self-assembly of SiGe quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Dais, Christian

    2009-08-19

    This PhD thesis reports on the fabrication and characterization of exact aligned SiGe quantum dot structures. In general, SiGe quantum dots which nucleate via the Stranski-Krastanov growth mode exhibit broad size dispersion and nucleate randomly on the surface. However, to tap the full potential of SiGe quantum dots it is necessary to control the positioning and size of the dots on a nanometer length, e.g. for electronically addressing of individual dots. This can be realized by so-called templated self-assembly, which combines top-down lithography with bottom-up selfassembly. In this process the lithographically defined pits serve as pre-defined nucleation points for the epitaxially grown quantum dots. In this thesis, extreme ultraviolet interference lithography at a wavelength of e=13.4 nm is employed for prepatterning of the Si substrates. This technique allows the precise and fast fabrication of high-resolution templates with a high degree of reproducibility. The subsequent epitaxial deposition is either performed by molecular beam epitaxy or low-pressure chemical vapour deposition. It is shown that the dot nucleation on pre-patterned substrates depends strongly on the lithography parameters, e.g. size and periodicity of the pits, as well as on the epitaxy parameters, e.g. growth temperature or material coverage. The interrelations are carefully analyzed by means of scanning force microscopy, transmission electron microscopy and X-ray diffraction measurements. Provided that correct template and overgrowth parameters are chosen, perfectly aligned and uniform SiGe quantum dot arrays of different period, size as well as symmetry are created. In particular, the quantum dot arrays with the so far smallest period (35 nm) and smallest size dispersion are fabricated in this thesis. Furthermore, the strain fields of the underlying quantum dots allow the fabrication of vertically aligned quantum dot stacks. Combining lateral and vertical dot alignment results in three

  6. Photoluminescence studies of epitaxial Si 1- xGe x and Si 1- x-yGe xC y layers on Si formed by ion beam synthesis

    Science.gov (United States)

    Katsumata, H.; Kobayashi, N.; Makita, Y.; Hasegawa, M.; Hayashi, N.; Shibata, H.; Uekusa, S.

    1997-01-01

    Low temperature (2 K) photoluminescence (PL) properties of epitaxial Si 1- xGe x and Si 1- x-yGe xC y layers on Si ( x = 0.13 and y = 0.014 at peak concentration) formed by ion beam synthesis (IBS) have been investigated. Samples were prepared by a high-dose Ge with/without C ion implantation (I 2) at room temperature and by subsequent three different crystallization techniques: (i) furnace annealing (FA) process up to 840°C, (ii) ion beam-induced epitaxial crystallization (IBIEC) process with 400 keV Ge or Ar ions at 300-350°C, and (iii) IBIEC process followed by FA process up to 640°C (IBIEC + FA). Although FA-grown Si 1- x-yGe xC y samples showed G-line (C sSi iC s complex) emission at 0.969 eV, IBIEC-grown samples presented a sharp I 1 non-phonon emission at 1.0193 eV. This indicates that C atoms agglomeration is dominant for FA-grown samples, while a creation of trigonal tetravacancy cluster is dominant for IBIEC-grown samples. On the other hand, (IBIEC with Ge ions + FA)-grown Si 1- x-yGe xC y samples showed neither G-line nor I 1-related emissions, which indicates that good crystalline Si 1- x-yGe xC y layers without C agglomeration were formed by this process. In contrast, (IBIEC with Ar ions + FA)-grown samples exhibited novel successive PL vibronic sidebands at 0.98-1.03 eV. From their excitation power dependence measurements, they were found to be associated with exciton bound to defects levels created by Ar + bombardment.

  7. Vertical self-organization of Ge1-xMnx nanocolumn multilayers grown on Ge(001) substrates

    Science.gov (United States)

    Le, Thi Giang; Dau, Minh Tuan

    2016-07-01

    High-resolution transmission electron microscopy (HR-TEM) has been used to investigate the structural properties of GeMn/Ge nanocolumns multilayer samples grown on Ge(001) substrates by means of molecular beam epitaxy (MBE) system. Four bilayers with the spacer thickness in the range between 6 nm and 15 nm and 10 periods of bilayers of Ge0.94Mn0.06/Ge nanocolumn are presented. A simplified 2D model based on the theory of elastic constant interactions has been used to provide reasonable explanations to the vertical self-organization of GeMn nanocolumns in multilayers.

  8. Investigation on the strain of SiGe/Si heteroepitaxial system during high temperature annealing by RBS/Channeling

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The influence of the high temperature processing on the strain stored in SiGe hetero epilayer was studied by means of RBS/Channeling. Channeling angularscan along the < 110 > axial direction in the (100) plane was used to characterize the tetragonal distortion in the SiGe strained layer. The strained crystal structure parameters were acquired by combining the determination of strain with the elasticity theory. It is shown that the strain stored in the SiGe epilayer has significantly change (relaxation factor from 0.023 to 0.84) after high temperature annealing. The potential strain relaxation mechanisms were discussed.

  9. Thermal Expansion in YbGaGe

    OpenAIRE

    Bobev, Svilen; Williams, Darrick J.; Thompson, J.D.; Sarrao, J L

    2004-01-01

    Thermal expansion and magnetic susceptibility measurements as a function of temperature are reported for YbGaGe. Despite the fact that this material has been claimed to show zero thermal expansion over a wide temperature range, we observe thermal expansion typical of metals and Pauli paramagnetic behavior, which perhaps indicates strong sample dependence in this system.

  10. Analytical response function for planar Ge detectors

    Science.gov (United States)

    García-Alvarez, Juan A.; Maidana, Nora L.; Vanin, Vito R.; Fernández-Varea, José M.

    2016-04-01

    We model the response function (RF) of planar HPGe x-ray spectrometers for photon energies between around 10 keV and 100 keV. The RF is based on the proposal of Seltzer [1981. Nucl. Instrum. Methods 188, 133-151] and takes into account the full-energy absorption in the Ge active volume, the escape of Ge Kα and Kβ x-rays and the escape of photons after one Compton interaction. The relativistic impulse approximation is employed instead of the Klein-Nishina formula to describe incoherent photon scattering in the Ge crystal. We also incorporate a simple model for the continuous component of the spectrum produced by the escape of photo-electrons from the active volume. In our calculations we include external interaction contributions to the RF: (i) the incoherent scattering effects caused by the detector's Be window and (ii) the spectrum produced by photo-electrons emitted in the Ge dead layer that reach the active volume. The analytical RF model is compared with pulse-height spectra simulated using the PENELOPE Monte Carlo code.

  11. Platinum germanium ordering in UPtGe

    Science.gov (United States)

    Hoffmann, Rolf-Dieter; Pöttgen, Rainer; Lander, Gerry H.; Rebizant, Jean

    2001-09-01

    The non-centrosymmetric structure of UPtGe was investigated by X-ray diffraction on both powders and single crystals: EuAuGe type, Imm2, a=432.86(5), b=718.81(8), c=751.66(9) pm, wR2=0.0738 for 399 F2 values and 22 variables. The platinum and germanium atoms form two-dimensional layers of puckered Pt 3Ge 3 hexagons with short PtGe intralayer distances of 252 and 253 pm. These condensed two-dimensionally infinite nets are interconnected to each other via weak PtPt contacts with bond distances of 300 pm. The two crystallographically independent uranium atoms are situated above and below the six-membered platinum-germanium rings. The U1 atoms have six closer germanium neighbors while the U2 atoms have six closer platinum neighbors. The group-subgroup relation with the KHg 2 type structure is presented.

  12. Ge doping of FeGa3

    Science.gov (United States)

    Alvarez-Quiceno, J. C.; Cabrera-Baez, M.; Munévar, J.; Micklitz, H.; Bittar, E. M.; Baggio-Saitovitch, E.; Ribeiro, R. A.; Avila, M. A.; Dalpian, G. M.; Osorio-Guillén, J. M.

    2015-03-01

    The intermetallic narrow-gap semiconductor FeGa3 is one of the few Fe-based diamagnetic materials. Experimentally, Ge doping induces a ferromagnetic (FM) state. The mechanism responsible for this FM response is still unestablished, but there are proposals of itinerant magnetism to explain this behavior. Our DFT simulations show that inserting holes induces a delocalized FM response, while inserting electrons induces a localized FM response around some Fe atoms. We also modeled different distributions of Ge substitution and observe that the FM response depends on the Ge concentration and also on the Ge distribution on the Ga sites. We observed that the extra electrons become localized in some specific Fe atoms, rather than delocalized over the entire crystal lattice, as expected from an itinerant model. For experimental probing of this scenario, we have performed 57Fe Mössbauer spectroscopy on flux-grown singlecrystalline samples. The resulting resonance peak shape supports a localized model for ferromagnetism, since it is possible to resolve the presence of two distinct Fe isomer shifts (despite a single crystallographic site), expected to correspond to Fe atoms with high and low magnetic moments. The authors thank Capes, CNPQ and FAPESP for financial support.

  13. Parametrized dielectric functions of amorphous GeSn alloys

    Science.gov (United States)

    D'Costa, Vijay Richard; Wang, Wei; Schmidt, Daniel; Yeo, Yee-Chia

    2015-09-01

    We obtained the complex dielectric function of amorphous Ge1-xSnx (0 ≤ x ≤ 0.07) alloys using spectroscopic ellipsometry from 0.4 to 4.5 eV. Amorphous GeSn films were formed by room-temperature implantation of phosphorus into crystalline GeSn alloys grown by molecular beam epitaxy. The optical response of amorphous GeSn alloys is similar to amorphous Ge and can be parametrized using a Kramers-Kronig consistent Cody-Lorentz dispersion model. The parametric model was extended to account for the dielectric functions of amorphous Ge0.75Sn0.25 and Ge0.50Sn0.50 alloys from literature. The compositional dependence of band gap energy Eg and parameters associated with the Lorentzian oscillator have been determined. The behavior of these parameters with varying x can be understood in terms of the alloying effect of Sn on Ge.

  14. Dicalcium heptagermanate Ca(2)Ge(7)O(16) revised.

    Science.gov (United States)

    Redhammer, Günther J; Roth, Georg; Amthauer, Georg

    2007-07-01

    The structure of dicalcium heptagermanate, previously described with an orthorhombic space group, has been redetermined in the tetragonal space group P(overline4)b2. It contains three Ge positions (site symmetry 1, ..2 and 2.22, respectively), one Ca position (..2) and four O atoms, all on general 8i positions (site symmetry 1). A sheet of four-membered rings of Ge tetrahedra (with Ge on the 8i position) and isolated Ge tetrahedra (Ge on the 4g position) alternate with a sheet of Ge octahedra (Ge on the 2d position) and eightfold-coordinated Ca sites along the c direction in an ABABA... sequence. The three-dimensional framework of Ge sites displays a channel-like structure, evident in a projection on to the ab plane.

  15. Atomically flat Ge buffer layers and alternating shutter growth of CaGe2 for large area germanane

    Science.gov (United States)

    Xu, Jinsong; Katoch, Jyoti; Ahmed, Adam; Pinchuk, Igor; Williams, Robert; McComb, David; Kawakami, Roland

    Germanane (GeH), which is converted from CaGe2 by soaking in HCl acid, has recently attracted interest because of its novel properties, such as large band gap (1.56eV), spin orbit coupling and predictions of high mobility (18000 cm2/Vs). Previously CaGe2 was successfully grown on Ge(111) substrates by molecular beam epitaxy (MBE) growth. But there were cracks between µm-sized islands, which is not desirable for scientific study and application, and limits the material quality. By growing atomically flat Ge buffer layers and using alternating shutter MBE growth, we are able to grow crack-free, large area films of CaGe2 films. Reflection high energy electron diffraction (RHEED) patterns of Ge buffer layer and CaGe2 indicates high quality two dimensional surfaces, which is further confirmed by atomic force microscopy (AFM), showing atomically flat and uniform Ge buffer layer and CaGe2. The appearance of Laue oscillation in X-ray diffraction (XRD) and Kiessig fringes in X-ray reflectivity (XRR) proves the uniformity of CaGe2 film and the smoothness of the interface. The high quality of CaGe2 film makes it promising to explore novel properties of GeH. Funded by NSF MRSEC DMR-1420451.

  16. TEM characterization of Ge precipitates in an Al-1.6 at% Ge alloy

    Energy Technology Data Exchange (ETDEWEB)

    Kaneko, K. [Department of Material Science and Engineering, Kyushu University, 744 Motooka, Nishi, Fukuoka 819-0395 (Japan)], E-mail: kaneko@zaiko.kyushu-u.ac.jp; Inoke, K. [FEI Company Japan Ltd., 13-34 Kohnan 2, Minato, Tokyo 108-0075 (Japan); Sato, K.; Kitawaki, K.; Higashida, H. [Department of Material Science and Engineering, Kyushu University, 744 Motooka, Nishi, Fukuoka 819-0395 (Japan); Arslan, I.; Midgley, P.A. [Department of Material Science and Metallurgy, University of Cambridge, Pembroke Street, Cambridge CB2 3QZ (United Kingdom)

    2008-02-15

    The growth mechanism and morphology of Ge precipitates in an Al-Ge alloy was characterized by a combination of in-situ transmission electron microscopy, high-resolution transmission electron microscopy and three-dimensional electron tomography. Anisotropic growth of rod-shaped Ge precipitates was observed by in-situ transmission electron microscopy over different time periods, and faceting of the precipitates was clearly seen using high-resolution transmission electron microscopy and three-dimensional electron tomography. This anisotropic growth of rod-shaped Ge precipitates was enhanced by vacancy concentration as proposed previously, but also by surface diffusion as observed during the in-situ experiment. Furthermore, a variety of precipitate morphologies was identified by three-dimensional electron tomography.

  17. Superconductor-insulator transition in long MoGe nanowires.

    Science.gov (United States)

    Kim, Hyunjeong; Jamali, Shirin; Rogachev, A

    2012-07-13

    The properties of one-dimensional superconducting wires depend on physical processes with different characteristic lengths. To identify the process dominant in the critical regime we have studied the transport properties of very narrow (9-20 nm) MoGe wires fabricated by advanced electron-beam lithography in a wide range of lengths, 1-25  μm. We observed that the wires undergo a superconductor-insulator transition (SIT) that is controlled by cross sectional area of a wire and possibly also by the width-to-thickness ratio. The mean-field critical temperature decreases exponentially with the inverse of the wire cross section. We observed that a qualitatively similar superconductor-insulator transition can be induced by an external magnetic field. Our results are not consistent with any currently known theory of the SIT. Some long superconducting MoGe nanowires can be identified as localized superconductors; namely, in these wires the one-electron localization length is much smaller than the length of a wire.

  18. Hot Carrier Dynamics in the X Valley in Si and Ge Measured by Pump-IR-Probe Absorption Spectroscopy

    Science.gov (United States)

    Wang, W. B.; Cavicchia, M. A.; Alfano, R. R.

    1996-01-01

    Si is the semiconductor of choice for nanoelectronic roadmap into the next century for computer and other nanodevices. With growing interest in Si, Ge, and Si(sub m)Ge(sub n) strained superlattices, knowledge of the carrier relaxation processes in these materials and structures has become increasingly important. The limited time resolution for earlier studies of carrier dynamics in Ge and Si, performed using Nd:glass lasers, was not sufficient to observe the fast cooling processes. In this paper, we present a direct measurement of hot carrier dynamics in the satellite X valley in Si and Ge by time-resolved infrared(IR) absorption spectroscopy, and show the potential of our technique to identify whether the X valley is the lowest conduction valley in semiconductor materials and structures.

  19. Precision measurement of the integrated luminosity of the data taken by BESIII at center of mass energies between 3.810 GeV and 4.600 GeV

    CERN Document Server

    Ablikim, M; Ai, X C; Albayrak, O; Albrecht, M; Ambrose, D J; Amoroso, A; An, F F; An, Q; Bai, J Z; Ferroli, R Baldini; Ban, Y; Bennett, D W; Bennett, J V; Bertani, M; Bettoni, D; Bian, J M; Bianchi, F; Boger, E; Bondarenko, O; Boyko, I; Briere, R A; Cai, H; Cai, X; Cakir, O; Calcaterra, A; Cao, G F; Cetin, S A; Chang, J F; Chelkov, G; Chen, G; Chen, H S; Chen, H Y; Chen, J C; Chen, M L; Chen, S J; Chen, X; Chen, X R; Chen, Y B; Cheng, H P; Chu, X K; Cibinetto, G; Cronin-Hennessy, D; Dai, H L; Dai, J P; Dbeyssi, A; Dedovich, D; Deng, Z Y; Denig, A; Denysenko, I; Destefanis, M; De Mori, F; Ding, Y; Dong, C; Dong, J; Dong, L Y; Dong, M Y; Du, S X; Duan, P F; Fan, J Z; Fang, J; Fang, S S; Fang, X; Fang, Y; Fava, L; Feldbauer, F; Felici, G; Feng, C Q; Fioravanti, E; Fritsch, M; Fu, C D; Gao, Q; Gao, Y; Gao, Z; Garzia, I; Geng, C; Goetzen, K; Gong, W X; Gradl, W; Greco, M; Gu, M H; Gu, Y T; Guan, Y H; Guo, A Q; Guo, L B; Guo, Y; Guo, Y P; Haddadi, Z; Hafner, A; Han, S; Han, Y L; Hao, X Q; Harris, F A; He, K L; He, Z Y; Held, T; Heng, Y K; Hou, Z L; Hu, C; Hu, H M; Hu, J F; Hu, T; Hu, Y; Huang, G M; Huang, G S; Huang, H P; Huang, J S; Huang, X T; Huang, Y; Hussain, T; Ji, Q; Ji, Q P; Ji, X B; Ji, X L; Jiang, L L; Jiang, L W; Jiang, X S; Jiao, J B; Jiao, Z; Jin, D P; Jin, S; Johansson, T; Julin, A; Kalantar-Nayestanaki, N; Kang, X L; Kang, X S; Kavatsyuk, M; Ke, B C; Kliemt, R; Kloss, B; Kolcu, O B; Kopf, B; Kornicer, M; Kuehn, W; Kupsc, A; Lai, W; Lange, J S; Lara, M; Larin, P; Leng, C; Li, C H; Li, Cheng; Li, D M; Li, F; Li, G; Li, H B; Li, J C; Li, Jin; Li, K; Li, Lei; Li, P R; Li, T; Li, W D; Li, W G; Li, X L; Li, X M; Li, X N; Li, X Q; Li, Z B; Liang, H; Liang, Y F; Liang, Y T; Liao, G R; Lin, D X; Liu, B J; Liu, C X; Liu, F H; Liu, Fang; Liu, Feng; Liu, H B; Liu, H H; Liu, H M; Liu, J; Liu, J P; Liu, J Y; Liu, K; Liu, K Y; Liu, L D; Liu, P L; Liu, Q; Liu, S B; Liu, X; Liu, X X; Liu, Y B; Liu, Z A; Liu, Zhiqiang; Liu, Zhiqing; Loehner, H; Lou, X C; Lu, H J; Lu, J G; Lu, R Q; Lu, Y; Lu, Y P; Luo, C L; Luo, M X; Luo, T; Luo, X L; Lv, M; Lyu, X R; Ma, F C; Ma, H L; Ma, L L; Ma, Q M; Ma, S; Ma, T; Ma, X N; Ma, X Y; Maas, F E; Maggiora, M; Malik, Q A; Mao, Y J; Mao, Z P; Marcello, S; Messchendorp, J G; Min, J; Min, T J; Mitchell, R E; Mo, X H; Mo, Y J; Morales, C Morales; Moriya, K; Muchnoi, N Yu; Muramatsu, H; Nefedov, Y; Nerling, F; Nikolaev, I B; Ning, Z; Nisar, S; Niu, S L; Niu, X Y; Olsen, S L; Ouyang, Q; Pacetti, S; Patteri, P; Pelizaeus, M; Peng, H P; Peters, K; Ping, J L; Ping, R G; Poling, R; Pu, Y N; Qi, M; Qian, S; Qiao, C F; Qin, L Q; Qin, N; Qin, X S; Qin, Y; Qin, Z H; Qiu, J F; Rashid, K H; Redmer, C F; Ren, H L; Ripka, M; Rong, G; Ruan, X D; Santoro, V; Sarantsev, A; Savrié, M; Schoenning, K; Schumann, S; Shan, W; Shao, M; Shen, C P; Shen, P X; Shen, X Y; Sheng, H Y; Song, W M; Song, X Y; Sosio, S; Spataro, S; Sun, G X; Sun, J F; Sun, S S; Sun, Y J; Sun, Y Z; Sun, Z J; Sun, Z T; Tang, C J; Tang, X; Tapan, I; Thorndike, E H; Tiemens, M; Toth, D; Ullrich, M; Uman, I; Varner, G S; Wang, B; Wang, B L; Wang, D; Wang, D Y; Wang, K; Wang, L L; Wang, L S; Wang, M; Wang, P; Wang, P L; Wang, Q J; Wang, S G; Wang, W; Wang, X F; Wang, Y D; Wang, Y F; Wang, Y Q; Wang, Z; Wang, Z G; Wang, Z H; Wang, Z Y; Weber, T; Wei, D H; Wei, J B; Weidenkaff, P; Wen, S P; Wiedner, U; Wolke, M; Wu, L H; Wu, Z; Xia, L G; Xia, Y; Xiao, D; Xiao, Z J; Xie, Y G; Xiu, Q L; Xu, G F; Xu, L; Xu, Q J; Xu, Q N; Xu, X P; Yan, L; Yan, W B; Yan, W C; Yan, Y H; Yang, H X; Yang, L; Yang, Y; Yang, Y X; Ye, H; Ye, M; Ye, M H; Yin, J H; Yu, B X; Yu, C X; Yu, H W; Yu, J S; Yuan, C Z; Yuan, W L; Yuan, Y; Yuncu, A; Zafar, A A; Zallo, A; Zeng, Y; Zhang, B X; Zhang, B Y; Zhang, C; Zhang, C C; Zhang, D H; Zhang, H H; Zhang, H Y; Zhang, J J; Zhang, J L; Zhang, J Q; Zhang, J W; Zhang, J Y; Zhang, J Z; Zhang, K; Zhang, L; Zhang, S H; Zhang, X Y; Zhang, Y; Zhang, Y H; Zhang, Y T; Zhang, Z H; Zhang, Z P; Zhang, Z Y; Zhao, G; Zhao, J W; Zhao, J Y; Zhao, J Z; Zhao, Lei; Zhao, Ling; Zhao, M G; Zhao, Q; Zhao, Q W; Zhao, S J; Zhao, T C; Zhao, Y B; Zhao, Z G; Zhemchugov, A; Zheng, B; Zheng, J P; Zheng, W J; Zheng, Y H; Zhong, B; Zhou, L; Zhou, Li; Zhou, X; Zhou, X K; Zhou, X R; Zhou, X Y; Zhu, K; Zhu, K J; Zhu, S; Zhu, X L; Zhu, Y C; Zhu, Y S; Zhu, Z A; Zhuang, J; Zotti, L; Zou, B S; Zou, J H

    2015-01-01

    From December 2011 to May 2014, about 5 $\\rm fb^{-1}$ of data were taken with the BESIII detector at center-of-mass energies between 3.810 GeV and 4.600 GeV to study the charmoniumlike states and higher excited charmonium states. The time integrated luminosity of the collected data sample is measured to a precision of 1% by analyzing events produced by the large-angle Bhabha scattering process.

  20. Fabrication of PureGaB Ge-on-Si photodiodes for well-controlled 100-pA-level dark currents

    NARCIS (Netherlands)

    Sammak, A.; Aminian, M.; Qi, L.; De Boer, W.B.; Charbon, E.; Nanver, L.K.

    2014-01-01

    The selective epitaxial growth of Ge-on-Si followed by in-situ deposition of a nm-thin Ga/B layer stack (PureGaB) has previously been shown to be a robust CMOS-compatible process for fabrication of Ge-on-Si photodiodes. In this paper, strategies to improve the control and reproducibility of PureGaB

  1. Fabrication of PureGaB Ge-on-Si photodiodes for well-controlled 100-pA-level dark currents

    NARCIS (Netherlands)

    Sammak, A.; Aminian, M.; Qi, L.; De Boer, W.B.; Charbon, E.; Nanver, L.K.

    2014-01-01

    The selective epitaxial growth of Ge-on-Si followed by in-situ deposition of a nm-thin Ga/B layer stack (PureGaB) has previously been shown to be a robust CMOS-compatible process for fabrication of Ge-on-Si photodiodes. In this paper, strategies to improve the control and reproducibility of PureGaB

  2. Fabrication and ferromagnetism of Si-SiGe/MnGe core-shell nanopillars

    Science.gov (United States)

    Wang, Liming; Liu, Tao; Wang, Shuguang; Zhong, Zhenyang; Jia, Quanjie; Jiang, Zuimin

    2016-10-01

    Si-Si0.5Ge0.5/Mn0.08Ge0.92 core-shell nanopillar samples were fabricated on ordered Si nanopillar patterned substrates by molecular beam epitaxy at low temperatures. The magnetic properties of the samples are found to depend heavily on the growth temperature of the MnGe layer. The sample grown at a moderate temperature of 300 °C has the highest Curie temperature of 240 K as well as the strongest ferromagnetic signals. On the basis of the microstructural results, the ferromagnetic properties of the samples are believed to come from the intrinsic Mn-doped amorphous or crystalline Ge ferromagnetic phase rather than any intermetallic ferromagnetic compounds of Mn and Ge. After being annealed at a temperature of 500 °C, all the samples exhibit the same Curie temperature of 220 K, which is in sharp contrast to the different Curie temperature for the as-grown samples, and the ferromagnetism for the annealed samples comes from Mn5GeSi2 compounds which are formed during the annealing.

  3. Doping and strain dependence of the electronic band structure in Ge and GeSn alloys

    Science.gov (United States)

    Xu, Chi; Gallagher, James; Senaratne, Charutha; Brown, Christopher; Fernando, Nalin; Zollner, Stefan; Kouvetakis, John; Menendez, Jose

    2015-03-01

    A systematic study of the effect of dopants and strain on the electronic structure of Ge and GeSn alloys is presented. Samples were grown by UHV-CVD on Ge-buffered Si using Ge3H8 and SnD4 as the sources of Ge and Sn, and B2H6/P(GeH3)3 as dopants. High-energy critical points in the joint-density of electronic states were studied using spectroscopic ellipsometry, which yields detailed information on the strain and doping dependence of the so-called E1, E1 +Δ1 , E0' and E2 transitions. The corresponding dependencies of the lowest direct band gap E0 and the fundamental indirect band gap Eindwere studied via room-T photoluminescence spectroscopy. Of particular interest for this work were the determination of deformation potentials, band gap renormalization effects, Burstein-Moss shifts due to the presence of carriers at band minima, and the dependence of other critical point parameters, such as amplitudes and phase angles, on the doping concentration. The selective blocking of transitions due to high doping makes it possible to investigate the precise k-space location of critical points. These studies are complemented with detailed band-structure calculations within a full-zone k-dot- p approach. Supported by AFOSR under DOD AFOSR FA9550-12-1-0208 and DOD AFOSR FA9550-13-1-0022.

  4. Reactivity of diaminogermylenes with ruthenium carbonyl: Ru3Ge3 and RuGe2 derivatives.

    Science.gov (United States)

    Cabeza, Javier A; García-Álvarez, Pablo; Polo, Diego

    2011-07-04

    The nature of the products of the reactions of [Ru(3)(CO)(12)] with diaminogermylenes depends upon the volume and the cyclic or acyclic structure of the latter. Thus, the triruthenium cluster [Ru(3){μ-Ge(NCH(2)CMe(3))(2)C(6)H(4)}(3)(CO)(9)], which has a planar Ru(3)Ge(3) core and an overall C(3h) symmetry, has been prepared in quantitative yield by treating [Ru(3)(CO)(12)] with an excess of the cyclic 1,3-bis(neo-pentyl)-2-germabenzimidazol-2-ylidene in toluene at 100 °C, but under analogous reaction conditions, the acyclic and bulkier Ge(HMDS)(2) (HMDS = N(SiMe(3))(2)) quantitatively leads to the mononuclear ruthenium(0) derivative [Ru{Ge(HMDS)(2)}(2)(CO)(3)]. Mixtures of products have been obtained from the reactions of [Ru(3)(CO)(12)] with the cyclic and very bulky 1,3-bis(tert-butyl)-2-germaimidazol-2-ylidene under various reaction conditions. The Ru(3)Ge(3) and RuGe(2) products reported in this paper are the first ruthenium complexes containing diaminogermylene ligands.

  5. High efficiency low cost GaAs/Ge cell technology

    Science.gov (United States)

    Ho, Frank

    1990-01-01

    Viewgraphs on high efficiency low cost GaAs/Ge cell technology are presented. Topics covered include: high efficiency, low cost GaAs/Ge solar cells; advantages of Ge; comparison of typical production cells for space applications; panel level comparisons; and solar cell technology trends.

  6. Electrical characterization of p-GeSn/n-Ge diodes with interface traps under dc and ac regimes

    Science.gov (United States)

    Baert, B.; Gupta, S.; Gencarelli, F.; Loo, R.; Simoen, E.; Nguyen, N. D.

    2015-08-01

    In this work, the electrical properties of p-GeSn/n-Ge diodes are investigated in order to assess the impact of defects at the interface between Ge and GeSn using temperature-dependent current-voltage and capacitance-voltage measurements. These structures are made from GeSn epitaxial layers grown by CVD on Ge with in situ doping by Boron. As results, an average ideality factor of 1.2 has been determined and an activation energy comprised between 0.28 eV and 0.30 eV has been extracted from the temperature dependence of the reverse-bias current. Based on the comparison with numerical results obtained from device simulations, we explain this activation energy by the presence of traps located near the GeSn/Ge interface.

  7. p-n Junction Diodes Fabricated on Si-Si/Ge Heteroepitaxial Films

    Science.gov (United States)

    Das, K.; Mazumder, M. D. A.; Hall, H.; Alterovitz, Samuel A. (Technical Monitor)

    2000-01-01

    A set of photolithographic masks was designed for the fabrication of diodes in the Si-Si/Ge material system. Fabrication was performed on samples obtained from two different wafers: (1) a complete HBT structure with an n (Si emitter), p (Si/Ge base), and an n/n+ (Si collector/sub-collector) deposited epitaxially (MBE) on a high resistivity p-Si substrate, (2) an HBT structure where epitaxial growth was terminated after the p-type base (Si/Ge) layer deposition. Two different process runs were attempted for the fabrication of Si-Si/Ge (n-p) and Si/Ge-Si (p-n) junction diodes formed between the emitter-base and base-collector layers, respectively, of the Si-Si/Ge-Si HBT structure. One of the processes employed a plasma etching step to expose the p-layer in the structure (1) and to expose the e-layer in structure (2). The Contact metallization used for these diodes was a Cu-based metallization scheme that was developed during the first year of the grant. The plasma-etched base-collector diodes on structure (2) exhibited well-behaved diode-like characteristics. However, the plasma-etched emitter-base diodes demonstrated back-to-back diode characteristics. These back-to back characteristics were probably due to complete etching of the base-layer, yielding a p-n-p diode. The deep implantation process yielded rectifying diodes with asymmetric forward and reverse characteristics. The ideality factor of these diodes were between 1.6 -2.1, indicating that the quality of the MBE grown epitaxial films was not sufficiently high, and also incomplete annealing of the implantation damage. Further study will be conducted on CVD grown films, which are expected to have higher epitaxial quality.

  8. Ellipsometric characterization of doped Ge0.95Sn0.05 films in the infrared range for plasmonic applications.

    Science.gov (United States)

    Augel, L; Fischer, I A; Hornung, F; Dressel, M; Berrier, A; Oehme, M; Schulze, J

    2016-09-15

    GeSn as a group-IV material opens up new possibilities for realizing photonic device concepts in Si-compatible fabrication processes. Here we present results of the ellipsometric characterization of highly p- and n-type doped Ge0.95Sn0.05 alloys deposited on Si substrates investigated in the wavelength range from 1 to 16 μm. We discuss the suitability of these films for integrated plasmonic applications in the infrared region.

  9. Holographic and e-Beam Image Recording in Ge5As37S58-Se Nanomultilayer Structures

    Science.gov (United States)

    Stronski, A.; Achimova, E.; Paiuk, O.; Meshalkin, A.; Abashkin, V.; Lytvyn, O.; Sergeev, S.; Prisacar, A.; Triduh, G.

    2016-01-01

    Processes of e-beam and holographic recording of surface relief structures using Ge5As37S58-Se multilayer nanostructures as registering media were studied in this paper. Optical properties of Ge5As37S58, Se layers, and Ge5As37S58-Se multilayer nanostructures were investigated. Spectral dependencies of refractive index were analyzed within the frames of single oscillator model. Values of optical band gaps for Ge5As37S58, Se layers, and Ge5As37S58-Se multilayer nanostructures were obtained from Tauc dependencies. Using e-beam and holographic recording, diffraction gratings were fabricated in Ge5As37S58-Se multilayer nanostructures. Images of Ukraine and Moldova state emblems were obtained by e-beam recording. Image size consisted of 512 × 512 pixels (size of 1 pixel was ~2 μm). Ge5As37S58-Se multilayer nanostructures are perspective for the direct recording of holographic diffraction gratings and other optical elements.

  10. Ge2Sb2Te5/SnSe2 nanocomposite multilayer thin films for phase change memory application

    Science.gov (United States)

    Feng, Xiaoyi; Wen, Ting; Zhai, Jiwei; Lai, Tianshu; Wang, Changzhou; Song, Sannian; Song, Zhitang

    2014-10-01

    By nanocompositing Ge2Sb2Te5 and SnSe2, the electrical and thermal proprieties of Ge2Sb2Te5/SnSe2 multilayer films for phase change random access memory (PCRAM) are better than those of Ge2Sb2Te5 films. The crystallization temperature rises and can be controlled. The resistance gap can reach approximately five orders of magnitude to ensure high data reliability. The activity energy (Ea) is more than 2.60 eV and the temperature for 10 year data retention reach 110 °C. The analysis of both XRD patterns and TEM images confirmed the reversible phase change transition between amorphous and crystalline state in Ge2Sb2Te5/SnSe2 nanocomposite multilayer films. According to transient photoreflectance traces, the speed of crystallization process was about 33 ns. Among different Ge2Sb2Te5/SnSe2 multilayer films, the film constitute of [Ge2Sb2Te5 (4 nm)/SnSe2(10 nm)]7 showed better properties and was manufactured by CMOS technology to phase change memory (PCM) cells. This result revealed that the Ge2Sb2Te5/SnSe2 nanocomposite multilayer film is a promising phase change material.

  11. XPS study on the selective wet etching mechanism of GeSbTe phase change thin films with tetramethylammonium hydroxide

    Science.gov (United States)

    Deng, Changmeng; Geng, Yongyou; Wu, Yiqun

    Phase change lithography has pretty potential applications for high density optical data storage mastering and micro/nano structure patterning because it is not restricted by optical diffraction limitation and at relatively low cost. GeSbTe, as an initially investigated material for phase change lithography, its mechanism of selective etching in inorganic or organic alkaline aqueous solutions, such as NaOH and tetramethylammonium hydroxide (TMAH), is still unknown. In this paper, XPS measurement is used to study the selective wet etching mechanism of GeSbTe phase change thin films with TMAH solution, and the results show that oxidization played an important role in the etching process. Ge, Sb and Te are oxidized into GeO2, Sb2O5 and TeO2, respectively, and then as the corresponding salts dissolved into the etchant solution. Ge-X (X is Ge, Sb or Te) bonds are first broken in the etching, then Sb-X bonds, and finally Te-Te bonds. To confirm the effect of oxidization in the etching, H2O2 as an oxidant is added into the TMAH solution, and the etching rates are increased greatly for both amorphous and crystalline states. The selective etching mechanism of Ge2Sb2Te5 phase change films is discussed by the difference of bonds breakage between the amorphous and crystalline states.

  12. Standard molar enthalpy of formation of FeGe(s) and FeGe{sub 2}(s) intermetallic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Phapale, S. [Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India); Mishra, R., E-mail: mishrar@barc.gov.in [Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India); Chattaraj, D.; Samui, P. [Product Development Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India); Sengupta, P. [Material Science Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India); Mishra, P.K. [Technical Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India)

    2014-04-05

    Highlights: • FeGe(s) and FeGe{sub 2}(s) have been synthesized and characterized. • The heat of dissolutions of Fe(s), Ge(s), FeGe(s) and FeGe2(s) in liquid tin have been measured. • Δ{sub f}H{sub 298}{sup °} of FeGe, FeGe{sub 2} were found to be to −15.56 ± 0.92 and −36.89 ± 1.17 kJ mol{sup −1}, respectively. -- Abstract: Thermodynamics plays an important role in predicting long term stability of the materials under different reactive conditions. The present paper describes determination of standard molar enthalpies of formation of FeGe(s) and FeGe{sub 2}(s) compounds employing a high temperature solution calorimeter. The reaction enthalpies of Fe(s), Ge(s), FeGe(s) and FeGe{sub 2}(s) in liquid Sn at 986 K were measured using a Calvet calorimeter. The standard molar enthalpy of formation of the compounds at 298 K (Δ{sub f}H{sub 298}{sup °}) were calculated using the measured reaction enthalpy data. The values of Δ{sub f}H{sub 298}{sup °} of FeGe(s) and FeGe{sub 2}(s) at 298 K were found to −15.56 ± 0.92 and −36.89 ± 1.17 kJ mol{sup −1}, respectively. The standard molar enthalpy of formation of FeGe(s) and FeGe{sub 2}(s) at 298 K obtained experimentally has been compared with the calculated values derived using Vienna ab initio simulation package (VASP)

  13. Structural Changes of Amorphous GeTe2 Films by Annealing (Formation of Metastable Crystalline GeTe2 Films)

    Science.gov (United States)

    Fukumoto, Hirofumi; Tsunetomo, Keiji; Imura, Takeshi; Osaka, Yukio

    1987-01-01

    Amorphous GeTe2 films with the thickness ˜0.5 μm, prepared by sputtering technique, transform into the crystalline GeTe2 films with the isomorphic structure to β-cristobalite, cubic SiO2, at Ta(annealing temperature){=}200°C. The cubic phase of GeTe2 is metastable and decomposes into the mixed crystal of GeTe and Te at Ta{=}250°C.

  14. Supersoft SUSY models and the 750 GeV diphoton excess, beyond effective operators

    Science.gov (United States)

    Carpenter, Linda M.; Colburn, Russell; Goodman, Jessica

    2016-07-01

    We propose that the sbino, the scalar partner of a Dirac bino, can explain the 750 GeV diphoton excess observed by the ATLAS and CMS Collaborations. We first argue for the existence of couplings between sbino to pairs of Standard Model gauge bosons using effective operator analysis. We then analyze the minimal completion of the effective operator model in which the sbino couples to pairs of gauge bosons through loops of heavy sfermions, with the sfermion-bino coupling originating from scalar potential D-terms. We find that the sbino model may be fit the 750 GeV excess by considering gluon fusion processes with decay to diphotons.

  15. Supersoft SUSY Models and the 750 GeV Diphoton Excess, Beyond Effective Operators

    CERN Document Server

    Carpenter, Linda M; Goodman, Jessica

    2015-01-01

    We propose that the sbino, the scalar partner of a Dirac bino can explain the 750 GeV diphoton excess observed by ATLAS and LHC . We analyze a model in which the sbino couples to pairs of Standard Model (SM) gauge bosons. We analyze an effective operator model, as well as a completion in which the sbino couples to pairs of gauge bosons through loops of heavy sfermions. We find that the sbino may be given an appreciable decay width through tree level coupling in the Higgs sector. We find that we may fit the 750 GeV excess by considering gluon fusion processes with decay to diphotons.

  16. Analysis and Design of Wide-Band SiGe HBT Active Mixers

    DEFF Research Database (Denmark)

    Johansen, Tom Keinicke; Krozer, Viktor; Vidkjær, Jens

    2005-01-01

    performing frequency conversion of wide-band signals is discussed. The analysis is verified by computer simulations using a realistic high-frequency large-signal SiGe HBT model. An active mixer design based on the Gilbert cell topology modified for wide-band operation using emitter degenerated...... transconductance stage and shunt feedback load stage is discussed. Experimental results are given for an active mixer implemented in a 0.8-μm 35-GHz fT SiGe HBT BiCMOS process....

  17. CMOS-compatible PureGaB Ge-on-Si APD pixel arrays

    NARCIS (Netherlands)

    Sammak, Amir; Aminian, Mahdi; Nanver, Lis Karen; Charbon, Edoardo

    2016-01-01

    Pure gallium and pure boron (PureGaB) Ge-on-Si photodiodes were fabricated in a CMOS compatible process and operated in linear and avalanche mode. Three different pixel geometries with very different area-to-perimeter ratios were investigated in linear arrays of 300 pixels with each a size of 26 × 2

  18. An X-band Schottky diode mixer in SiGe technology with tunable Marchand balun

    DEFF Research Database (Denmark)

    Michaelsen, Rasmus Schandorph; Johansen, Tom Keinicke; Tamborg, Kjeld M.

    2016-01-01

    In this paper, we propose a double balanced mixer with a tunable Marchand balun. The circuit is designed in a SiGe BiCMOS process using Schottky diodes. The tunability of the Marchand balun is used to enhance critical parameters for double balanced mixers. The local oscillator-IF isolation can be...

  19. Production, characterization and operation of {sup 76}Ge enriched BEGe detectors in GERDA

    Energy Technology Data Exchange (ETDEWEB)

    Agostini, M.; Bode, T.; Budjas, D.; Janicsko Csathy, J.; Lazzaro, A.; Schoenert, S. [Technische Universitaet Muenchen, Physik Department and Excellence Cluster Universe, Munich (Germany); Allardt, M.; Barros, N.; Domula, A.; Lehnert, B.; Wester, T.; Wilsenach, H.; Zuber, K. [Technische Universitaet Dresden, Institut fuer Kern- und Teilchenphysik, Dresden (Germany); Andreotti, E. [Institute for Reference Materials and Measurements, Geel (Belgium); Eberhard Karls Universitaet Tuebingen, Physikalisches Institut, Tuebingen (Germany); Bakalyarov, A.M.; Belyaev, S.T.; Lebedev, V.I.; Zhukov, S.V. [National Research Centre ' ' Kurchatov Institute' ' , Moscow (Russian Federation); Balata, M.; D' Andrea, V.; Ioannucci, L.; Junker, M.; Laubenstein, M.; Macolino, C.; Nisi, S.; Zavarise, P. [INFN Laboratori Nazionali del Gran Sasso and Gran Sasso Science Institute, Assergi (Italy); Barabanov, I.; Bezrukov, L.; Gurentsov, V.; Inzhechik, L.V.; Kazalov, V.; Kuzminov, V.V.; Lubsandorzhiev, B.; Yanovich, E. [Institute for Nuclear Research of the Russian Academy of Sciences, Moscow (Russian Federation); Baudis, L.; Benato, G.; Walter, M. [Physik Institut der Universitaet Zuerich, Zurich (Switzerland); Bauer, C.; Heisel, M.; Heusser, G.; Hofmann, W.; Kihm, T.; Kirsch, A.; Knoepfle, K.T.; Lindner, M.; Maneschg, W.; Salathe, M.; Schreiner, J.; Schwingenheuer, B.; Simgen, H.; Smolnikov, A.; Strecker, H.; Wagner, V.; Wegmann, A. [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany); Becerici-Schmidt, N.; Caldwell, A.; Liao, H.Y.; Majorovits, B.; O' Shaughnessy, C.; Palioselitis, D.; Schulz, O.; Vanhoefer, L. [Max-Planck-Institut fuer Physik, Munich (Germany); Bellotti, E.; Pessina, G. [Universita Milano Bicocca, Dipartimento di Fisica, Milan (Italy); INFN Milano Bicocca, Milan (Italy); Belogurov, S.; Kornoukhov, V.N. [Institute for Nuclear Research of the Russian Academy of Sciences, Moscow (Russian Federation); Institute for Theoretical and Experimental Physics, Moscow (Russian Federation); Bettini, A.; Brugnera, R.; Garfagnini, A.; Hemmer, S.; Sada, C.; Von Sturm, K. [Dipartimento di Fisica e Astronomia dell' Universita di Padova, Padua (Italy); INFN Padova, Padua (Italy); Borowicz, D. [Jagiellonian University, Institute of Physics, Cracow (Poland); Joint Institute for Nuclear Research, Dubna (Russian Federation); Brudanin, V.; Egorov, V.; Kochetov, O.; Nemchenok, I.; Rumyantseva, N.; Shevchik, E.; Zhitnikov, I.; Zinatulina, D. [Joint Institute for Nuclear Research, Dubna (Russian Federation); Cattadori, C.; Gotti, C. [INFN Milano Bicocca, Milan (Italy); Chernogorov, A.; Demidova, E.V.; Kirpichnikov, I.V.; Vasenko, A.A. [Institute for Theoretical and Experimental Physics, Moscow (Russian Federation); Falkenstein, R.; Freund, K.; Grabmayr, P.; Hegai, A.; Jochum, J.; Schmitt, C.; Schuetz, A.K. [Eberhard Karls Universitaet Tuebingen, Physikalisches Institut, Tuebingen (Germany); Frodyma, N.; Misiaszek, M.; Pelczar, K.; Wojcik, M.; Zuzel, G. [Jagiellonian University, Institute of Physics, Cracow (Poland); Gangapshev, A. [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany); Institute for Nuclear Research of the Russian Academy of Sciences, Moscow (Russian Federation); Gusev, K. [Joint Institute for Nuclear Research, Dubna (Russian Federation); National Research Centre ' ' Kurchatov Institute' ' , Moscow (Russian Federation); Technische Universitaet Muenchen, Physik Department and Excellence Cluster Universe, Munich (Germany); Hult, M.; Lutter, G. [Institute for Reference Materials and Measurements, Geel (Belgium); Klimenko, A.; Lubashevskiy, A. [Joint Institute for Nuclear Research, Dubna (Russian Federation); Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany); Lippi, I.; Stanco, L.; Ur, C.A. [INFN Padova, Padua (Italy); Pandola, L. [INFN Laboratori Nazionali del Sud, Catania (Italy); Pullia, A.; Riboldi, S. [Universita degli Studi di Milano, Dipartimento di Fisica, Milan (Italy); INFN Milano (Italy); Shirchenko, M. [Joint Institute for Nuclear Research, Dubna (Russian Federation); National Research Centre ' ' Kurchatov Institute' ' , Moscow (Russian Federation); Collaboration: GERDA Collaboration

    2015-02-01

    The GERmanium Detector Array (GERDA) at the Gran Sasso Underground Laboratory (LNGS) searches for the neutrinoless double beta decay (0νββ) of {sup 76}Ge. Germanium detectors made of material with an enriched {sup 76}Ge fraction act simultaneously as sources and detectors for this decay. During Phase I of the experiment mainly refurbished semi-coaxial Ge detectors from former experiments were used. For the upcoming Phase II, 30 new {sup 76}Ge enriched detectors of broad energy germanium (BEGe)- type were produced. A subgroup of these detectors has already been deployed in GERDA during Phase I. The present paper reviews the complete production chain of these BEGe detectors including isotopic enrichment, purification, crystal growth and diode production. The efforts in optimizing the mass yield and in minimizing the exposure of the {sup 76}Ge enriched germanium to cosmic radiation during processing are described. Furthermore, characterization measurements in vacuum cryostats of the first subgroup of seven BEGe detectors and their long-term behavior in liquid argon are discussed. The detector performance fulfills the requirements needed for the physics goals of GERDA Phase II. (orig.)

  20. Ge{sup 4+} doped TiO{sub 2} for stoichiometric degradation of warfare agents

    Energy Technology Data Exchange (ETDEWEB)

    Stengl, Vaclav, E-mail: stengl@iic.cas.cz [Department of Solid State Chemistry, Institute of Inorganic Chemistry AS CR v.v.i., 250 68 Rez (Czech Republic); Grygar, Tomas Matys [Department of Solid State Chemistry, Institute of Inorganic Chemistry AS CR v.v.i., 250 68 Rez (Czech Republic); Oplustil, Frantisek; Nemec, Tomas [Military Technical Institute of Protection Brno, Veslarska 230, 628 00 Brno (Czech Republic)

    2012-08-15

    Highlights: Black-Right-Pointing-Pointer We prepared nanodisperse Ge{sup 4+} doped titania by a novel synthesis method. Black-Right-Pointing-Pointer Synthesis does not involve organic solvents, organometallics nor thermal processes. Black-Right-Pointing-Pointer The prepared materials are efficient in removal of chemical warfare agents. Black-Right-Pointing-Pointer Ge{sup 4+} doping improves rate of removal of soman and agent VX by TiO{sub 2}. - Abstract: Germanium doped TiO{sub 2} was prepared by homogeneous hydrolysis of aqueous solutions of GeCl{sub 4} and TiOSO{sub 4} with urea. The synthesized samples were characterized by X-ray diffraction, scanning electron microscopy, EDS analysis, specific surface area (BET) and porosity determination (BJH). Ge{sup 4+} doping increases surface area and content of amorphous phase in prepared samples. These oxides were used in an experimental evaluation of their reactivity with chemical warfare agent, sulphur mustard, soman and agent VX. Ge{sup 4+} doping worsens sulphur mustard degradation and improves soman and agent VX degradation. The best degree of removal (degradation), 100% of soman, 99% of agent VX and 95% of sulphur mustard, is achieved with sample with 2 wt.% of germanium.

  1. Origin, secret, and application of the ideal phase-change material GeSbTe

    Energy Technology Data Exchange (ETDEWEB)

    Yamada, Noboru [Advanced Technology Research Laboratories, Panasonic Corporation, 3-4 Hikaridai, Seika-cho, Soraku-gun, 619-0237 Kyoto (Japan); Nanoelectronics Research Institute, National Institute of Advanced Industrial Science and Technology, Central 4, 1-1-1, Higashi, Tsukuba, Ibaraki 305-8562 (Japan)

    2012-10-15

    Discovery of the GeSbTe phase-change alloy in particular along the GeTe-Sb{sub 2}Te{sub 3} tie-line took place in the mid-1980s. The amorphous alloys showed ideal properties, for example, high thermal stability at r.t. and laser-induced rapid crystallization with large optical changes. Thereafter, GeSbTe was successively applied to various optical disks such as DVDs and BDs. Through DSC and XRD analyses, the appearance of the metastable phase having a NaCl-type structure was observed over a wide compositional region. This was the ''key'' to realizing the ideal phase-change properties. During this year, the role of the constituent elements of Ge and Sb became clear by RMC modeling using AXS data at SPring-8, where the ''nucleation dominant crystallization process'' was well explained. The aspect of the latest Blu-ray Disc (BD) product of Panasonic: GeSbTe phase-change films are utilized in every recording layer. It is seen that the front-side recording layers, L1 and L2, are highly transparent. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  2. Microstructural changes and fractal Ge nanocrystallites in polycrystalline Au/amorphous Ge thin bilayer films upon annealing

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Z W; Lai, J K L; Shek, C H [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong (China)

    2006-11-07

    Microstructural changes and fractal Ge nanocrystallites in polycrystalline Au/amorphous Ge thin bilayer films upon annealing have been investigated by scanning electron microscopy, transmission electron microscopy observations and x-ray energy-dispersive spectroscopy (EDS). Experimental results indicated that the microstructure of the metal Au film plays an important role in metal-induced crystallization for Au/Ge thin bilayer films upon annealing. Interestingly, we found the position exchange of Au and Ge films and the formation of the fractal Ge nanocrystallites induced by annealing. EDS microanalysis indicated that although there is lateral interdiffusion of Au and Ge atoms, the thickness of the fractal region and the matrix remain nearly the same. At the same time, EDS shows that there are also Au aggregates extending out of the films. It is suggested that, besides the preferred nucleation at the Au/Ge interface, the breaking of Ge-Ge bonds may stimulate the crystallization of amorphous Ge, so that the crystallization temperature of Au/Ge system is much lower than that of the isolated amorphous Ge system.

  3. Microstructural changes and fractal Ge nanocrystallites in polycrystalline Au/amorphous Ge thin bilayer films upon annealing

    Science.gov (United States)

    Chen, Z. W.; Lai, J. K. L.; Shek, C. H.

    2006-11-01

    Microstructural changes and fractal Ge nanocrystallites in polycrystalline Au/amorphous Ge thin bilayer films upon annealing have been investigated by scanning electron microscopy, transmission electron microscopy observations and x-ray energy-dispersive spectroscopy (EDS). Experimental results indicated that the microstructure of the metal Au film plays an important role in metal-induced crystallization for Au/Ge thin bilayer films upon annealing. Interestingly, we found the position exchange of Au and Ge films and the formation of the fractal Ge nanocrystallites induced by annealing. EDS microanalysis indicated that although there is lateral interdiffusion of Au and Ge atoms, the thickness of the fractal region and the matrix remain nearly the same. At the same time, EDS shows that there are also Au aggregates extending out of the films. It is suggested that, besides the preferred nucleation at the Au/Ge interface, the breaking of Ge-Ge bonds may stimulate the crystallization of amorphous Ge, so that the crystallization temperature of Au/Ge system is much lower than that of the isolated amorphous Ge system.

  4. Ternary and quaternary Ni(Si)Ge(Sn) contact formation for highly strained Ge p- and n-MOSFETs

    Science.gov (United States)

    Wirths, S.; Troitsch, R.; Mussler, G.; Hartmann, J.-M.; Zaumseil, P.; Schroeder, T.; Mantl, S.; Buca, D.

    2015-05-01

    The formation of new ternary NiGeSn and quaternary NiSiGeSn alloys has been investigated to fabricate metallic contacts on high Sn content, potentially direct bandgap group IV semiconductors. (Si)GeSn layers were pseudomorphically grown on Ge buffered Si(001) by reduced pressure chemical vapor deposition. Ni, i.e. the metal of choice for source/drain metallization in Si nanoelectronics, is employed for the stano-(silicon)-germanidation of highly strained (Si)GeSn alloys. We show that NiGeSn on GeSn layers change phase from well-oriented Ni5(GeSn)3 to poly-crystalline Ni1(GeSn)1 at very low annealing temperatures. A large range of GeSn compositions with Sn concentrations up to 12 at.%, and SiGeSn ternaries with large Si and Sn compositions from 18%/3% to 4%/11% are investigated. In addition, the sheet resistance, of importance for electronic or optoelectronic device contacts, is quantified. The incorporation of Si extends the thermal stability of the resulting low resistive quaternary phase compared to their NiGeSn counterparts.

  5. Photoreflectance Spectroscopy Characterization of Ge/Si0.16Ge0.84 Multiple Quantum Wells on Ge Virtual Substrate

    Directory of Open Access Journals (Sweden)

    Hung-Pin Hsu

    2013-01-01

    Full Text Available We report a detailed characterization of a Ge/Si0.16Ge0.84 multiple quantum well (MQW structure on Ge-on-Si virtual substrate (VS grown by ultrahigh vacuum chemical vapor deposition by using temperature-dependent photoreflectance (PR in the temperature range from 10 to 300 K. The PR spectra revealed a wide range of optical transitions from the MQW region as well as transitions corresponding to the light-hole and heavy-hole splitting energies of Ge-on-Si VS. A detailed comparison of PR spectral line shape fits and theoretical calculation led to the identification of various quantum-confined interband transitions. The temperature-dependent PR spectra of Ge/Si0.16Ge0.84 MQW were analyzed using Varshni and Bose-Einstein expressions. The parameters that describe the temperature variations of various quantum-confined interband transition energies were evaluated and discussed.

  6. Morphological analysis of GeTe in inline phase change switches

    Science.gov (United States)

    King, Matthew R.; El-Hinnawy, Nabil; Salmon, Mike; Gu, Jitty; Wagner, Brian P.; Jones, Evan B.; Borodulin, Pavel; Howell, Robert S.; Nichols, Doyle T.; Young, Robert M.

    2015-09-01

    Crystallization and amorphization phenomena in indirectly heated phase change material-based devices were investigated. Scanning transmission electron microscopy was utilized to explore GeTe phase transition processes in the context of the unique inline phase change switch (IPCS) architecture. A monolithically integrated thin film heating element successfully converted GeTe to ON and OFF states. Device cycling prompted the formation of an active area which sustains the majority of structural changes during pulsing. A transition region on both sides of the active area consisting of polycrystalline GeTe and small nuclei (<15 nm) in an amorphous matrix was also observed. The switching mechanism, determined by variations in pulsing parameters, was shown to be predominantly growth-driven. A preliminary model for crystallization and amorphization in IPCS devices is presented.

  7. Hard-photon production at $\\sqrt{s}$ = 161 and 172 GeV at LEP

    CERN Document Server

    Acciarri, M; Aguilar-Benítez, M; Ahlen, S P; Alcaraz, J; Alemanni, G; Allaby, James V; Aloisio, A; Alverson, G; Alviggi, M G; Ambrosi, G; Anderhub, H; Andreev, V P; Angelescu, T; Anselmo, F; Arefev, A; Azemoon, T; Aziz, T; Bagnaia, P; Baksay, L; Banerjee, S; Banerjee, Sw; Banicz, K; Barczyk, A; Barillère, R; Barone, L; Bartalini, P; Baschirotto, A; Basile, M; Battiston, R; Bay, A; Becattini, F; Becker, U; Behner, F; Berdugo, J; Berges, P; Bertucci, B; Betev, B L; Bhattacharya, S; Biasini, M; Biland, A; Bilei, G M; Blaising, J J; Blyth, S C; Bobbink, Gerjan J; Böck, R K; Böhm, A; Boldizsar, L; Borgia, B; Bourilkov, D; Bourquin, Maurice; Braccini, S; Branson, J G; Brigljevic, V; Brock, I C; Buffini, A; Buijs, A; Burger, J D; Burger, W J; Busenitz, J K; Button, A M; Cai, X D; Campanelli, M; Capell, M; Cara Romeo, G; Carlino, G; Cartacci, A M; Casaus, J; Castellini, G; Cavallari, F; Cavallo, N; Cecchi, C; Cerrada-Canales, M; Cesaroni, F; Chamizo-Llatas, M; Chang, Y H; Chaturvedi, U K; Chekanov, S V; Chemarin, M; Chen, A; Chen, G; Chen, G M; Chen, H F; Chen, H S; Chéreau, X J; Chiefari, G; Chien, C Y; Cifarelli, Luisa; Cindolo, F; Civinini, C; Clare, I; Clare, R; Cohn, H O; Coignet, G; Colijn, A P; Colino, N; Commichau, V; Costantini, S; Cotorobai, F; de la Cruz, B; Csilling, Akos; Dai, T S; D'Alessandro, R; De Asmundis, R; Degré, A; Deiters, K; Della Volpe, D; Denes, P; De Notaristefani, F; DiBitonto, Daryl; Diemoz, M; Van Dierendonck, D N; Di Lodovico, F; Dionisi, C; Dittmar, Michael; Dominguez, A; Doria, A; Dova, M T; Duchesneau, D; Duinker, P; Durán, I; Dutta, S; Easo, S; Efremenko, Yu V; El-Mamouni, H; Engler, A; Eppling, F J; Erné, F C; Ernenwein, J P; Extermann, Pierre; Fabre, M; Faccini, R; Falciano, S; Favara, A; Fay, J; Fedin, O; Felcini, Marta; Fenyi, B; Ferguson, T; Ferroni, F; Fesefeldt, H S; Fiandrini, E; Field, J H; Filthaut, Frank; Fisher, P H; Fisk, I; Forconi, G; Fredj, L; Freudenreich, Klaus; Furetta, C; Galaktionov, Yu; Ganguli, S N; García-Abia, P; Gau, S S; Gentile, S; Gheordanescu, N; Giagu, S; Goldfarb, S; Goldstein, J; Gong, Z F; Gougas, Andreas; Gratta, Giorgio; Grünewald, M W; Gupta, V K; Gurtu, A; Gutay, L J; Hartmann, B; Hasan, A; Hatzifotiadou, D; Hebbeker, T; Hervé, A; Van Hoek, W C; Hofer, H; Hong, S J; Hoorani, H; Hou, S R; Hu, G; Innocente, Vincenzo; Jenkes, K; Jin, B N; Jones, L W; de Jong, P; Josa-Mutuberria, I; Kasser, A; Khan, R A; Kamrad, D; Kamyshkov, Yu A; Kapustinsky, J S; Karyotakis, Yu; Kaur, M; Kienzle-Focacci, M N; Kim, D; Kim, D H; Kim, J K; Kim, S C; Kim, Y G; Kinnison, W W; Kirkby, A; Kirkby, D; Kirkby, Jasper; Kiss, D; Kittel, E W; Klimentov, A; König, A C; Kopp, A; Korolko, I; Koutsenko, V F; Krämer, R W; Krenz, W; Kunin, A; Ladrón de Guevara, P; Laktineh, I; Landi, G; Lapoint, C; Lassila-Perini, K M; Laurikainen, P; Lebeau, M; Lebedev, A; Lebrun, P; Lecomte, P; Lecoq, P; Le Coultre, P; Le Goff, J M; Leiste, R; Leonardi, E; Levchenko, P M; Li Chuan; Lin, C H; Lin, W T; Linde, Frank L; Lista, L; Liu, Z A; Lohmann, W; Longo, E; Lu, W; Lü, Y S; Lübelsmeyer, K; Luci, C; Luckey, D; Luminari, L; Lustermann, W; Ma Wen Gan; Maity, M; Majumder, G; Malgeri, L; Malinin, A; Maña, C; Mangeol, D J J; Mangla, S; Marchesini, P A; Marin, A; Martin, J P; Marzano, F; Massaro, G G G; McNally, D; McNeil, R R; Mele, S; Merola, L; Meschini, M; Metzger, W J; Von der Mey, M; Mi, Y; Mihul, A; Van Mil, A J W; Mirabelli, G; Mnich, J; Molnár, P; Monteleoni, B; Moore, R; Morganti, S; Moulik, T; Mount, R; Müller, S; Muheim, F; Muijs, A J M; Nahn, S; Napolitano, M; Nessi-Tedaldi, F; Newman, H; Niessen, T; Nippe, A; Nisati, A; Nowak, H; Oh, Yu D; Opitz, H; Organtini, G; Ostonen, R; Palomares, C; Pandoulas, D; Paoletti, S; Paolucci, P; Park, H K; Park, I H; Pascale, G; Passaleva, G; Patricelli, S; Paul, T; Pauluzzi, M; Paus, C; Pauss, Felicitas; Peach, D; Pei, Y J; Pensotti, S; Perret-Gallix, D; Petersen, B; Petrak, S; Pevsner, A; Piccolo, D; Pieri, M; Pinto, J C; Piroué, P A; Pistolesi, E; Plyaskin, V; Pohl, M; Pozhidaev, V; Postema, H; Produit, N; Prokofev, D; Prokofiev, D O; Rahal-Callot, G; Raja, N; Rancoita, P G; Rattaggi, M; Raven, G; Razis, P A; Read, K; Ren, D; Rescigno, M; Reucroft, S; Van Rhee, T; Riemann, S; Riles, K; Robohm, A; Rodin, J; Roe, B P; Romero, L; Rosier-Lees, S; Rosselet, P; Van Rossum, W; Roth, S; Rubio, Juan Antonio; Ruschmeier, D; Rykaczewski, H; Salicio, J; Sánchez, E; Sanders, M P; Sarakinos, M E; Sarkar, S; Sassowsky, M; Schäfer, C; Shchegelskii, V; Schmidt-Kärst, S; Schmitz, D; Schmitz, P; Scholz, N; Schopper, Herwig Franz; Schotanus, D J; Schwenke, J; Schwering, G; Sciacca, C; Sciarrino, D; Servoli, L; Shevchenko, S; Shivarov, N; Shoutko, V; Shukla, J; Shumilov, E; Shvorob, A V; Siedenburg, T; Son, D; Sopczak, André; Smith, B; Spillantini, P; Steuer, M; Stickland, D P; Stone, A; Stone, H; Stoyanov, B; Strässner, A; Strauch, K; Sudhakar, K; Sultanov, G G; Sun, L Z; Susinno, G F; Suter, H; Swain, J D; Tang, X W; Tauscher, Ludwig; Taylor, L; Ting, Samuel C C; Ting, S M; Tonutti, M; Tonwar, S C; Tóth, J; Tully, C; Tuchscherer, H; Tung, K L; Uchida, Y; Ulbricht, J; Uwer, U; Valente, E; Van de Walle, R T; Vesztergombi, G; Vetlitskii, I; Viertel, Gert M; Vivargent, M; Völkert, R; Vogel, H; Vogt, H; Vorobev, I; Vorobyov, A A; Vorvolakos, A; Wadhwa, M; Wallraff, W; Wang, J C; Wang, X L; Wang, Z M; Weber, A; Wittgenstein, F; Wu, S X; Wynhoff, S; Xu, J; Xu, Z Z; Yang, B Z; Yang, C G; Yao, X Y; Ye, J B; Yeh, S C; You, J M; Zalite, A; Zalite, Yu; Zemp, P; Zeng, Y; Zhang, Z; Zhang, Z P; Zhou, B; Zhu, G Y; Zhu, R Y; Zichichi, Antonino; Ziegler, F

    1997-01-01

    We have studied the process $e^+e^-{\\rightarrow}\\rm n {\\gamma}$ $(\\rm n{\\ge}2)$ at centre-of-mass energies of 161.3 GeV and 172.1 GeV. The analysis is based on a sample of events collected by the L3 detector in 1996 corresponding to total integrated luminosities of 10.7 ${\\rm pb^{-1}}$ and 10.1 ${\\rm pb^{-1}}$ respectively. The observed rates of events with two and more photons and the characteristic distributions are in good agreement with the Standard Model expectations. This is used to set lower limits on contact interaction energy scale parameters, on the QED cut-off parameters and on the mass of excited electrons.

  8. Electronic structure and luminescence properties of Ca2Ge7O16:Dy3+

    Science.gov (United States)

    Leonidov, I. I.; Ishchenko, A. V.; Konstantinova, E. I.; Petrov, V. P.; Chernyshev, V. A.; Nikiforov, A. E.

    2016-12-01

    The present report represents an overview of the results of a combined experimental-computational study of electronic structure, thermoluminescence (TL) and afterglow properties of Ca2Ge7O16:Dy3+ synthesized for the first time. Afterglow curves of Ca2Ge7O16:Dy3+ at 575 nm showing persistent luminescence have been described in Becquerel law. The TL measurements reveal at least one TL band at 326 K and two luminescence bands at 475 and 535 nm. Persistent luminescence in Ca2Ge7O16:Dy3+ originates from relatively shallow charge traps with high probability of charge carriers recapture. The model of energy processes, configurations of traps and luminescence centers has been proposed with the aid of ab initio calculations performed using the LCAO approximation and several hybrid functionals.

  9. Effects of Ge4+ acceptor dopant on sintering and electrical properties of (K0.5Na0.5)NbO3 lead-free piezoceramics

    Science.gov (United States)

    Chen, Kepi; Jiao, Yanlin

    2017-01-01

    Lead-free (K0.5Na0.5)(Nb1-x Ge x )O3 (KNN-xGe, where x = 0-0.01) piezoelectric ceramics were prepared by conventional ceramic processing. The effects of Ge4+ cation doping on the phase compositions, microstructure and electrical properties of KNN ceramics were studied. SEM images show that Ge4+ cation doping improved the sintering and promoted the grain growth of the KNN ceramics. Dielectric and ferroelectric measurements proved that Ge4+ cations substituted Nb5+ ions as acceptors, and the Curie temperature (T C) shows an almost linear decrease with increasing the Ge4+ content. Combining this result with microstructure observations and electrical measurements, it is concluded that the optimal sintering temperature for KNN-xGe ceramics was 1020°C. Ge4+ doping less than 0.4 mol.%can improve the compositional homogeneity and piezoelectric properties of KNN ceramics. The KNN-xGe ceramics with x = 0.2% exhibited the best piezoelectric properties: piezoelectric constant d 33 = 120 pC/N, planar electromechanical coupling coefficient k p = 34.7%, mechanical quality factor Q m = 130, and tanδ = 3.6%.

  10. Effects of Ge4+ acceptor dopant on sintering and electrical properties of (K0.5Na0.5)NbO3 lead-free piezoceramics

    Science.gov (United States)

    Chen, Kepi; Jiao, Yanlin

    2017-03-01

    Lead-free (K0.5Na0.5)(Nb1- x Ge x )O3 (KNN- xGe, where x = 0-0.01) piezoelectric ceramics were prepared by conventional ceramic processing. The effects of Ge4+ cation doping on the phase compositions, microstructure and electrical properties of KNN ceramics were studied. SEM images show that Ge4+ cation doping improved the sintering and promoted the grain growth of the KNN ceramics. Dielectric and ferroelectric measurements proved that Ge4+ cations substituted Nb5+ ions as acceptors, and the Curie temperature ( T C) shows an almost linear decrease with increasing the Ge4+ content. Combining this result with microstructure observations and electrical measurements, it is concluded that the optimal sintering temperature for KNN- xGe ceramics was 1020°C. Ge4+ doping less than 0.4 mol.%can improve the compositional homogeneity and piezoelectric properties of KNN ceramics. The KNN- xGe ceramics with x = 0.2% exhibited the best piezoelectric properties: piezoelectric constant d 33 = 120 pC/N, planar electromechanical coupling coefficient k p = 34.7%, mechanical quality factor Q m = 130, and tan δ = 3.6%.

  11. ATLAS 750 GeV Analysis

    CERN Document Server

    Wang, Fuquan; The ATLAS collaboration

    2016-01-01

    These slides are for BEACH 2016 presentation about 750 GeV searches at the ATLAS experiment with the 3.2 $\\text{fb}^{-1}$ $\\sqrt{s}$=13 TeV data collected in year 2015. The results from $\\gamma\\gamma$ and $Z\\gamma$ final states are summarized. For $\\gamma\\gamma$ analysis, the local significance is 3.9 $\\sigma$ for the spin-0 selection and 3.8 $\\sigma$ for spin-2 selection at 750 GeV, with global significance both at 2.1 $\\sigma$. For the $Z\\gamma$ analysis, both the leptonic and hadronic decays of the $Z$ boson are studied and no excess at the signal region is observed.

  12. Physical characterization of Cu{sub 2}ZnGeSe{sub 4} thin films from annealing of Cu-Zn-Ge precursor layers

    Energy Technology Data Exchange (ETDEWEB)

    Buffière, M., E-mail: buffiere@imec.be [Imec—Partner in Solliance, Leuven (Belgium); Department of Electrical Engineering (ESAT), KU Leuven, Heverlee (Belgium); ElAnzeery, H. [Imec—Partner in Solliance, Leuven (Belgium); KACST-Intel Consortium Center of Excellence in Nano-manufacturing Applications (CENA), Riyadh (Saudi Arabia); Microelectronics System Design department, Nile University, Cairo (Egypt); Oueslati, S.; Ben Messaoud, K. [Imec—Partner in Solliance, Leuven (Belgium); KACST-Intel Consortium Center of Excellence in Nano-manufacturing Applications (CENA), Riyadh (Saudi Arabia); Department of Physics, Faculty of Sciences of Tunis, El Manar (Tunisia); Brammertz, G.; Meuris, M. [Imec Division IMOMEC — Partner in Solliance, Diepenbeek (Belgium); Institute for Material Research (IMO) Hasselt University, Diepenbeek (Belgium); Poortmans, J. [Imec—Partner in Solliance, Leuven (Belgium); Department of Electrical Engineering (ESAT), KU Leuven, Heverlee (Belgium)

    2015-05-01

    Cu{sub 2}ZnGeSe{sub 4} (CZGeSe) can be considered as a potential alternative for wide band gap thin film devices. In this work, CZGeSe thin films were deposited on Mo-coated soda lime glass substrates by sequential deposition of sputtered Cu, Zn and e-beam evaporated Ge layers from elemental targets followed by annealing at high temperature using H{sub 2}Se gas. We report on the effect of the precursor stack order and composition and the impact of the annealing temperature on the physical properties of CZGeSe thin films. The optimal layer morphology was obtained when using a Mo/Cu/Zn/Ge precursor stack annealed at 460 °C. We have observed that the formation of secondary phases such as ZnSe can be prevented by tuning the initial composition of the stack, the stack order and the annealing conditions. This synthesis process allows synthesizing CZGeSe absorber with an optical band gap of 1.5 eV. - Highlights: • Cu{sub 2}ZnGeSe{sub 4} (CZGeSe) thin films were deposited using a two-step process. • CZGeSe dense layers were obtained using a Mo/Cu/Zn/Ge precursor annealed at 460 °C. • Formation of ZnSe can be avoided by tuning the composition and order of the initial stack. • P-type CZGeSe absorber with an optical band gap of 1.5 eV was obtained.

  13. C-V and DLTS Characterization of Rapid Thermal Oxides on Si0.887Ge0.113 and Si0.8811Ge0.113C0.0059 Alloys

    Science.gov (United States)

    Feng, W.; Choi, W. K.; Bera, L. K.; Mi, J.; YANG, C. Y.

    Capacitance versus voltage (C-V) and deep level transient spectroscopy (DLTS) characterization was performed on rapid thermal oxides (RTO) on Si0.887Ge0.113 and Si0.8811Ge0.113C0.0059 alloys. A high interface trap density (~ 1012 eV-1 cm-2) and a high apparent doping level were obtained for the SiO2/Si0.8811Ge0.113C0.0059 samples. The C-V results at different temperatures showed that the high apparent doping levels of the SiO2/Si0.8811Ge0.113C0.0059 samples might be due to the formation of SiC-related defects introduced by the high temperature oxidation process.

  14. Booster 6-GeV study

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Xi; Ankenbrandt, Charles M.; Pellico, William A.; Lackey, James; Padilla, Rene; /Fermilab; Norem, J.; /Argonne

    2004-12-01

    Since a wider aperture has been obtained along the Booster beam line, this opens the opportunity for Booster running a higher intensity beam than ever before. Sooner or later, the available RF accelerating voltage will become a new limit for the beam intensity. Either by increasing the RFSUM or by reducing the accelerating rate can achieve the similar goal. The motivation for the 6-GeV study is to gain the relative accelerating voltage via a slower acceleration.

  15. Heteroepitaxy of Ge-Si{sub 1{minus}x}Ge{sub x} superlattices on Si (100) substrates by GeH{sub 4}-Si MBE

    Energy Technology Data Exchange (ETDEWEB)

    Orlov, L.K.; Tolomasov, V.A.; Potapov, A.V.; Drozdov, Yu.N. [Russian Academy of Sciences, Nizhny Novgorod (Russian Federation). Inst. for Physics of Microstructures; Vdovin, V.I. [Inst. for Rare Metals Giredmet, Moscow (Russian Federation)

    1996-12-31

    The authors applied GeH{sub 4}-SI MBE for growing Ge-Si{sub 1{minus}x}Ge{sub x} superlattices on Si(100). They investigated the distribution and the structure of defects inside heteroepitaxial Si{sub 1{minus}x}Ge{sub x} layers grown on Si(100). It was shown that the system has unique peculiarities of a dislocation structure formation. They found out that the plastic deformation on a layer-substrate heteroboundary eliminates strong elastic deformation inside the grown layer.

  16. A repair station for HpGe detectors

    Science.gov (United States)

    Shearman, Robert; Lister, Christopher; Mitchell, A. J.; Copp, Patrick; Jepeal, Steven; Chowdhury, Partha

    2013-10-01

    Hyper-pure Germanium detectors (HpGe) offer the highest energy resolution for gamma-ray nuclear spectroscopy (about 1.5 keV @ 1 MeV), and are used in all the world's leading detector arrays such as GammaSphere, AGATA and GRETINA. The detector crystals are operated in cryostats at 100 K to reduce thermal noise. To maintain low leakage current and low operating temperatures, cryostat hygiene is very important. Detectors must be regularly maintained by using a high-vacuum, oil-free annealing station. At elevated temperatures above 373 K the process of pumping and baking can also anneal away neutron damage to the detector crystals. This poster will show the design and building of a new HpGe repair station at U. Mass Lowell, and make comparisons of results obtained from this new station to the Gammasphere annealing factory at Argonne. This research is funded by the DOE National Nuclear Safety Administration and the Office of Science.

  17. Breeding of Oil Sunflower Hybrid GE817%油用型向日葵杂交种 GE817的选育

    Institute of Scientific and Technical Information of China (English)

    孟繁明; 李凤学; 辛中宽; 吴艳梅

    2015-01-01

    The oil sunflower hybrid GE817 was bred through hybridization by the Inner Mongolia Ailite Sunflower Seed Co. Ltd. with a process of 5 years. In the Inner Mongolia oil sunflower production test, its seed yield was 3 732 kg/hm 2, in-creasing by 11.72% compared with that of the control S31. In the production, it showed the advantages of strong resistance, wide adaptability and good comprehensive properties. Meanwhile, the GE817 parent breeding and seed production technolo-gies are put forward.%油用向日葵杂交种 GE817是内蒙古金葵艾利特种业公司历经5年时间杂交选育而成。在内蒙古油葵生产试验中籽实产量3732 kg/hm2,较对照 S31增产11.72%,生产中表现出抗逆性强、适应性广、综合性状良好等优点。同时,提出了GE817亲本繁殖及制种技术。

  18. Determination of the $e^+ e^- \\to \\gamma \\gamma(\\gamma)$ cross-section at centre-of-mass energies ranging from 189 GeV to 202 GeV

    CERN Document Server

    Abreu, P.; Adye, T.; Adzic, P.; Albrecht, Z.; Alderweireld, T.; Alekseev, G.D.; Alemany, R.; Allmendinger, T.; Allport, P.P.; Almehed, S.; Amaldi, U.; Amapane, N.; Amato, S.; Anassontzis, E.G.; Andersson, P.; Andreazza, A.; Andringa, S.; Antilogus, P.; Apel, W.D.; Arnoud, Y.; Asman, B.; Augustin, J.E.; Augustinus, A.; Baillon, P.; Ballestrero, A.; Bambade, P.; Barao, F.; Barbiellini, G.; Barbier, R.; Bardin, D.Yu.; Barker, G.J.; Baroncelli, A.; Battaglia, M.; Baubillier, M.; Becks, K.H.; Begalli, M.; Behrmann, A.; Beilliere, P.; Belokopytov, Yu.; Belous, K.; Benekos, N.C.; Benvenuti, A.C.; Berat, C.; Berggren, M.; Berntzon, L.; Bertrand, D.; Besancon, M.; Bilenky, Mikhail S.; Bizouard, M.A.; Bloch, D.; Blom, H.M.; Bonesini, M.; Boonekamp, M.; Booth, P.S.L.; Borisov, G.; Bosio, C.; Botner, O.; Boudinov, E.; Bouquet, B.; Bourdarios, C.; Bowcock, T.J.V.; Boyko, I.; Bozovic, I.; Bozzo, M.; Bracko, M.; Branchini, P.; Brenner, R.A.; Bruckman, P.; Brunet, J.M.; Bugge, L.; Buran, T.; Buschbeck, B.; Buschmann, P.; Cabrera, S.; Caccia, M.; Calvi, M.; Camporesi, T.; Canale, V.; Carena, F.; Carroll, L.; Castillo Gimenez, M.V.; Cattai, A.; Cavallo, F.R.; Chapkin, M.; Charpentier, P.; Checchia, P.; Chelkov, G.A.; Chierici, R.; Shlyapnikov, P.; Chochula, P.; Chorowicz, V.; Chudoba, J.; Cieslik, K.; Collins, P.; Contri, R.; Cortina, E.; Cosme, G.; Cossutti, F.; Costa, M.; Crawley, H.B.; Crennell, D.; Crosetti, G.; Cuevas Maestro, J.; Czellar, S.; D'Hondt, J.; Dalmau, J.; Davenport, M.; Da Silva, W.; Della Ricca, G.; Delpierre, P.; Demaria, N.; De Angelis, A.; De Boer, W.; De Clercq, C.; De Lotto, B.; De Min, A.; De Paula, L.; Dijkstra, H.; Di Ciaccio, L.; Dolbeau, J.; Doroba, K.; Dracos, M.; Drees, J.; Dris, M.; Eigen, G.; Ekelof, T.; Ellert, M.; Elsing, M.; Engel, J.P.; Espirito Santo, M.C.; Fanourakis, G.; Fassouliotis, D.; Feindt, M.; Fernandez, J.; Ferrer, A.; Ferrer-Ribas, E.; Ferro, F.; Firestone, A.; Flagmeyer, U.; Foeth, H.; Fokitis, E.; Fontanelli, F.; Franek, B.; Frodesen, A.G.; Fruhwirth, R.; Fulda-Quenzer, F.; Fuster, J.; Galloni, A.; Gamba, D.; Gamblin, S.; Gandelman, M.; Garcia, C.; Gaspar, C.; Gaspar, M.; Gasparini, U.; Gavillet, P.; Gazis, Evangelos; Gele, D.; Geralis, T.; Ghodbane, N.; Gil Botella, Ines; Glege, F.; Gokieli, R.; Golob, B.; Gomez-Ceballos, G.; Goncalves, P.; Gonzalez Caballero, I.; Gopal, G.; Gorn, L.; Guz, Yu.; Gracco, V.; Grahl, J.; Graziani, E.; Gris, P.; Grosdidier, G.; Grzelak, K.; Guy, J.; Haag, C.; Hahn, F.; Hahn, S.; Haider, S.; Hajduk, Z.; Hallgren, A.; Hamacher, K.; Hansen, J.; Harris, F.J.; Hauler, F.; Hedberg, V.; Heising, S.; Hernandez, J.J.; Herquet, P.; Herr, H.; Higon, E.; Holmgren, S.O.; Holt, P.J.; Hoorelbeke, S.; Houlden, M.; Hrubec, J.; Huber, M.; Hughes, G.J.; Hultqvist, K.; Jackson, John Neil; Jacobsson, R.; Jalocha, P.; Janik, R.; Jarlskog, C.; Jarlskog, G.; Jarry, P.; Jean-Marie, B.; Jeans, D.; Johansson, Erik Karl; Jonsson, P.; Joram, C.; Juillot, P.; Jungermann, L.; Kapusta, Frederic; Karafasoulis, K.; Katsanevas, S.; Katsoufis, E.C.; Keranen, R.; Kernel, G.; Kersevan, B.P.; Khokhlov, Yu.A.; Khomenko, B.A.; Khovansky, N.N.; Kiiskinen, A.; King, B.; Kinvig, A.; Kjaer, N.J.; Klapp, O.; Kluit, P.; Kokkinias, P.; Kostyukhin, V.; Kourkoumelis, C.; Kuznetsov, O.; Krammer, M.; Kriznic, E.; Krumshtein, Z.; Kubinec, P.; Kucewicz, W.; Kurowska, J.; Kurvinen, K.; Lamsa, J.W.; Lane, D.W.; Lapin, V.; Laugier, J.P.; Lauhakangas, R.; Leder, G.; Ledroit, Fabienne; Leinonen, L.; Leisos, A.; Leitner, R.; Lemonne, J.; Lenzen, G.; Lepeltier, V.; Lethuillier, M.; Libby, J.; Liebig, W.; Liko, D.; Lipniacka, A.; Lippi, I.; Lorstad, B.; Loken, J.G.; Lopes, J.H.; Lopez, J.M.; Lopez-Fernandez, R.; Loukas, D.; Lutz, P.; Lyons, L.; MacNaughton, J.; Mahon, J.R.; Maio, A.; Malek, A.; Maltezos, S.; Malychev, V.; Mandl, F.; Marco, J.; Marco, R.; Marechal, B.; Margoni, M.; Marin, J.C.; Mariotti, C.; Markou, A.; Martinez-Rivero, C.; Marti i Garcia, S.; Masik, J.; Mastroyiannopoulos, N.; Matorras, F.; Matteuzzi, C.; Matthiae, G.; Mazzucato, F.; Mazzucato, M.; McCubbin, M.; McKay, R.; McNulty, R.; McPherson, G.; Merle, E.; Meroni, C.; Meyer, W.T.; Myagkov, A.; Migliore, E.; Mirabito, L.; Mitaroff, W.A.; Mjornmark, U.; Moa, T.; Moch, M.; Moller, Rasmus; Monig, Klaus; Monge, M.R.; Moraes, D.; Morettini, P.; Morton, G.; Muller, U.; Munich, K.; Mulders, M.; Mulet-Marquis, C.; Mundim, L.M.; Muresan, R.; Murray, W.J.; Muryn, B.; Myatt, G.; Myklebust, T.; Naraghi, F.; Nassiakou, M.; Navarria, F.L.; Nawrocki, K.; Negri, P.; Neufeld, N.; Nicolaidou, R.; Nielsen, B.S.; Niezurawski, P.; Nikolenko, M.; Nomokonov, V.; Nygren, A.; Oblakowska Mucha, A.; Obraztsov, V.; Olshevsky, A.G.; Onofre, A.; Orava, R.; Orazi, G.; Osterberg, K.; Ouraou, A.; Oyanguren, A.; Paganoni, M.; Paiano, S.; Pain, R.; Paiva, R.; Palacios, J.; Papadopoulou, T.D.; Pape, L.; Parkes, C.; Parodi, F.; Parzefall, U.; Passeri, A.; Passon, O.; Pavel, T.; Pegoraro, M.; Peralta, L.; Pernicka, M.; Perrotta, A.; Petridou, C.; Petrolini, A.; Phillips, H.T.; Pierre, F.; Pimenta, M.; Piotto, E.; Podobnik, T.; Poireau, V.; Pol, M.E.; Polok, G.; Poropat, P.; Pozdnyakov, V.; Privitera, P.; Pukhaeva, N.; Pullia, A.; Radojicic, D.; Ragazzi, S.; Rahmani, H.; Rames, J.; Ratoff, P.N.; Read, Alexander L.; Rebecchi, P.; Redaelli, Nicola Giuseppe; Regler, M.; Rehn, J.; Reid, D.; Reinertsen, P.; Reinhardt, R.; Renton, P.B.; Resvanis, L.K.; Richard, F.; Ridky, J.; Rinaudo, G.; Ripp-Baudot, Isabelle; Romero, A.; Ronchese, P.; Rosenberg, E.I.; Rosinsky, P.; Roudeau, P.; Rovelli, T.; Ruhlmann-Kleider, V.; Ruiz, A.; Saarikko, H.; Sacquin, Y.; Sadovsky, A.; Sajot, G.; Salt, J.; Sampsonidis, D.; Sannino, M.; Savoy-Navarro, A.; Schwemling, P.; Schwering, B.; Schwickerath, U.; Scuri, Fabrizio; Seager, P.; Sedykh, Yu.; Segar, A.M.; Seibert, N.; Sekulin, R.; Sette, G.; Shellard, R.C.; Siebel, M.; Simard, L.; Simonetto, F.; Sisakian, A.N.; Smadja, G.; Smirnova, O.; Smith, G.R.; Solovianov, O.; Sopczak, A.; Sosnowski, R.; Spassoff, T.; Spiriti, E.; Squarcia, S.; Stanescu, C.; Stanitzki, M.; Stevenson, K.; Stocchi, A.; Strauss, J.; Strub, R.; Stugu, B.; Szczekowski, M.; Szeptycka, M.; Tabarelli, T.; Taffard, A.; Tegenfeldt, F.; Terranova, F.; Timmermans, Jan; Tinti, N.; Tkachev, L.G.; Tobin, M.; Todorova, S.; Tome, B.; Tonazzo, A.; Tortora, L.; Tortosa, P.; Transtromer, G.; Treille, D.; Tristram, G.; Trochimczuk, M.; Troncon, C.; Turluer, M.L.; Tyapkin, I.A.; Tyapkin, P.; Tzamarias, S.; Ullaland, O.; Uvarov, V.; Valenti, G.; Vallazza, E.; Van Dam, Piet; Van Den Boeck, W.; Van Eldik, J.; Van Lysebetten, A.; Van Remortel, N.; Van Vulpen, I.; Vegni, G.; Ventura, L.; Venus, W.; Verbeure, F.; Verdier, P.; Verlato, M.; Vertogradov, L.S.; Verzi, V.; Vilanova, D.; Vitale, L.; Vlasov, E.; Vodopianov, A.S.; Voulgaris, G.; Vrba, V.; Wahlen, H.; Washbrook, A.J.; Weiser, C.; Wicke, D.; Wickens, J.H.; Wilkinson, G.R.; Winter, M.; Wolf, G.; Yi, J.; Yushchenko, O.; Zalewska, A.; Zalewski, P.; Zavrtanik, D.; Zevgolatakos, E.; Zimine, N.I.; Zinchenko, A.; Zoller, P.; Zumerle, G.; Zupan, M.

    2000-01-01

    A test of the QED process \\eeintogg(\\fot) is reported. The data analysed were collected with the DELPHI detector in 1998 and 1999 at the highest ener\\-gies achieved at LEP, reaching 202 GeV in the centre-of-mass. The total integrated luminosity amounts to 375.7 pb$^{-1}$. The differential and total cross-sections for the process $e^+e^- \\to \\gamma \\gamma$ were measured, and found to be in agreement with the QED prediction. 95\\% Confidence Level (C.L.) lower limits on the QED cut-off parameters of $\\rm \\Lambda_+ >$ 330 GeV and $\\rm \\Lambda_{-}>$ 320 GeV were derived. A 95\\% C.L. lower bound on the mass of an excited electron of 311 $\\rm GeV/c^2$ (for $\\lambda_{\\gamma}$ =1) was obtained. s-channel virtual graviton exchange was searched for, resulting in 95\\% C.L. lower limits on the string mass scale, $\\rm M_S$: $\\rm M_S > 713 \\, GeV/c^2$ ( $\\lambda=1$) and $\\rm M_S > 691 \\,GeV/c^2$ ($\\lambda = -1$).

  19. Far-infrared Optical Glasses and Fibers Based on Ge-Te-Se Glass System%远红外Ge-Te-Se硫系玻璃与光纤

    Institute of Scientific and Technical Information of China (English)

    孙杰; 王训四; 聂秋华; 戴世勋; 章向华; Bruno BUREAU; Catherine BOUSSARD; Clement CONSEIL

    2012-01-01

    GexTe65Se(35-x (x = 20, 22, 23, 24, in mole fraction, x%) Te-based chalcogenide glasses were prepared by a conventional melt-qluenching method in a silica tube under vacuum. The performance of these glasses was analyzed by X-ray diffraction, differential scanning calorimetry (DSC), visible/near-infrared (IR) absorption spectroscopy and infrared transmission spectroscopy. These glasses appeared to have excellent thermal stability and transmission properties. There was no crystallization peak on the DSC curve for the two glass compositions, namely, Ge23Te65Se12 and Ge24Te6sSe11, indicating a notably enhanced resistance to crystallization and a maximum value of Tg at 188℃ for the glass composition Ge24Te65Sell. The optical transmission window was from 1.8 μm in the bandgap region to 18 pan in the phonon region. A distillation process that could effectively eliminate the absorption bands in the IR region was used for these glasses. The fabrication (rod-in-tube method) and fiber drawing were both conducted with glass compositions of Ge23Te65Se12 and Ge24Te65Sen as cladding and core, respectively. The Ge-Te-Se infrared optical fiber with core-cladding structure exhibited good fiber drawing properties.%采用传统的熔融–淬冷法制备了系列GexTe65Se(35–x)(x=20,22,23,24;摩尔分数,x%)Te基硫系玻璃。利用X射线衍射、差示扫描量热分析、分光光度计、红外光谱仪等设备研究了玻璃的性能。这些玻璃具有良好的热稳定性和红外透过性能。组分为Ge23Te65Se12,Ge24Te65Se11的玻璃的差示扫描量热曲线中没有出现析晶峰,表明玻璃具有良好的抗析晶性能。组分为Ge24Te65Se11的玻璃的转变温度Tg最高,达到了188℃。这些玻璃样品的红外透过范围都很宽,从近红外的1.8μm到远红外的18μm。通过在玻璃的制备工艺中引入蒸馏提纯工艺可以有效减弱杂质吸收峰对玻璃红外透过性能的影响。最后,选用Ge23Te65Se

  20. Amorphous inclusions during Ge and GeSn epitaxial growth via chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Gencarelli, F., E-mail: federica.gencarelli@imec.be [imec, Kapeldreef 75, 3001 Leuven (Belgium); Dept. of Metallurgy and Materials Engineering, KU Leuven, B-3001 Leuven (Belgium); Shimura, Y. [imec, Kapeldreef 75, 3001 Leuven (Belgium); Nuclear and Radiation Physics Section, KU Leuven, B-3001 Leuven (Belgium); Kumar, A. [imec, Kapeldreef 75, 3001 Leuven (Belgium); Nuclear and Radiation Physics Section, KU Leuven, B-3001 Leuven (Belgium); Vincent, B.; Moussa, A.; Vanhaeren, D.; Richard, O.; Bender, H. [imec, Kapeldreef 75, 3001 Leuven (Belgium); Vandervorst, W. [imec, Kapeldreef 75, 3001 Leuven (Belgium); Nuclear and Radiation Physics Section, KU Leuven, B-3001 Leuven (Belgium); Caymax, M.; Loo, R. [imec, Kapeldreef 75, 3001 Leuven (Belgium); Heyns, M. [imec, Kapeldreef 75, 3001 Leuven (Belgium); Dept. of Metallurgy and Materials Engineering, KU Leuven, B-3001 Leuven (Belgium)

    2015-09-01

    In this work, we discuss the characteristics of particular island-type features with an amorphous core that are developed during the low temperature epitaxial growth of Ge and GeSn layers by means of chemical vapor deposition with Ge{sub 2}H{sub 6}. Although further investigations are needed to unambiguously identify the origin of these features, we suggest that they are originated by the formation of clusters of H and/or contaminants atoms during growth. These would initially cause the formation of pits with crystalline rough facets over them, resulting in ring-shaped islands. Then, when an excess surface energy is overcome, an amorphous phase would nucleate inside the pits and fill them. Reducing the pressure and/or increasing the growth temperature can be effective ways to prevent the formation of these features, likely due to a reduction of the surface passivation from H and/or contaminant atoms. - Highlights: • Island features with amorphous cores develop during low T Ge(Sn) CVD with Ge{sub 2}H{sub 6.} • These features are thoroughly characterized in order to understand their origin. • A model is proposed to describe the possible evolution of these features. • Lower pressures and/or higher temperatures avoid the formation of these features.

  1. Design of monolithically integrated GeSi electro-absorption modulators and photodetectors on a SOI platform

    Science.gov (United States)

    Liu, Jifeng; Pan, Dong; Jongthammanurak, Samerkhae; Wada, Kazumi; Kimerling, Lionel C.; Michel, Jurgen

    2007-01-01

    We present a design of monolithically integrated GeSi electroabsorption modulators and photodetectors for electronic-photonic integrated circuits on a silicon-on-insulator (SOI) platform. The GeSi electroabsorption modulator is based on the Franz-Keldysh effect, and the GeSi composition is chosen for optimal performance around 1550 nm. The designed modulator device is butt-coupled to Si(core)/SiO2(cladding) high index contrast waveguides, and has a predicted 3 dB bandwidth of >50 GHz and an extinction ratio of 10 dB. The same device structure can also be used for a waveguide-coupled photodetector with a predicted responsivity of > 1 A/W and a 3 dB bandwidth of > 35 GHz. Use of the same GeSi composition and device structure allows efficient monolithic process integration of the modulators and the photodetectors on an SOI platform.

  2. Ternary germanides RERhGe2 (RE = Y, Gd-Ho) - New representatives of the YIrGe2 type

    Science.gov (United States)

    Voßwinkel, Daniel; Heletta, Lukas; Hoffmann, Rolf-Dieter; Pöttgen, Rainer

    2016-11-01

    The YIrGe2 type ternary germanides RERhGe2 (RE = Y, Gd-Ho) were synthesized from the elements by arc-melting and characterized by powder X-ray diffraction. The structure of DyRhGe2 was refined from single crystal X-ray diffractometer data: Immm, a = 426.49(9), b = 885.0(2), c = 1577.4(3) pm, wR2 = 0.0533, 637 F2 values, 30 variables (300 K data). The structure contains two crystallographically independent dysprosium atoms in pentagonal prismatic and hexagonal prismatic coordination. The three-dimensional [RhGe2] polyanion is stabilized through covalent Rh-Ge (243-261 pm) and Ge-Ge (245-251 pm) bonding. The close structural relationship with the slightly rhodium-poorer germanides RE5Rh4Ge10 (≡ RERh0.8Ge2) is discussed. Temperature-dependent magnetic susceptibility measurements reveal Pauli paramagnetism for YRhGe2 and Curie-Weiss paramagnetism for RERhGe2 with RE = Gd, Tb, Dy and Ho. These germanides order antiferromagnetically at TN = 7.2(5), 10.6(5), 8.1(5), and 6.4(5) K, respectively.

  3. Fabrication of Multilevel Switching High Density Phase Change Data Recording Using Stacked GeTe/GeSbTe Structure

    Science.gov (United States)

    Hong, Sung-Hoon; Lee, Heon; Kim, Kang-In; Choi, Yunjung; Lee, Young-Kook

    2011-08-01

    The multilevel switching characteristics of stacked phase change materials with the structures of Ge2Sb2Te5, AgInSbTe/Ge2Sb2Te5, and GeTe/Ge2Sb2Te5 were investigated at the nano scale using nanoimprint lithography and conductive atomic force microscopy. Stacked phase change materials devices consisting of nano pillars 200 nm in diameter were fabricated using nanoimprint lithography, and their electrical characteristics were evaluated using conductive atomic force microscopy, with a pulse generator and a voltage source. The stacked GeTe/Ge2Sb2Te5 phase change materials exhibited three levels of resistance with a difference of 2 orders in magnitude between them, while the single-layer and stacked phase change materials with similar electrical resistances, such as Ge2Sb2Te5/AgInSbTe exhibited only bi level switching characteristics.

  4. Density and Capture Cross-Section of Interface Traps in GeSnO2 and GeO2 Grown on Heteroepitaxial GeSn.

    Science.gov (United States)

    Gupta, Somya; Simoen, Eddy; Loo, Roger; Madia, Oreste; Lin, Dennis; Merckling, Clement; Shimura, Yosuke; Conard, Thierry; Lauwaert, Johan; Vrielinck, Henk; Heyns, Marc

    2016-06-01

    An imperative factor in adapting GeSn as the channel material in CMOS technology, is the gate-oxide stack. The performance of GeSn transistors is degraded due to the high density of traps at the oxide-semiconductor interface. Several oxide-gate stacks have been pursued, and a midgap Dit obtained using the ac conductance method, is found in literature. However, a detailed signature of oxide traps like capture cross-section, donor/acceptor behavior and profile in the bandgap, is not yet available. We investigate the transition region between stoichiometric insulators and strained GeSn epitaxially grown on virtual Ge substrates. Al2O3 is used as high-κ oxide and either Ge1-xSnxO2 or GeO2 as interfacial layer oxide. The interface trap density (Dit) profile in the lower half of the bandgap is measured using deep level transient spectroscopy, and the importance of this technique for small bandgap materials like GeSn, is explained. Our results provide evidence for two conclusions. First, an interface traps density of 1.7 × 10(13) cm(-2)eV(-1) close to the valence band edge (Ev + 0.024 eV) and a capture cross-section (σp) of 1.7 × 10(-18) cm(2) is revealed for GeSnO2. These traps are associated with donor states. Second, it is shown that interfacial layer passivation of GeSn using GeO2 reduces the Dit by 1 order of magnitude (2.6 × 10(12) cm(-2)eV(-1)), in comparison to GeSnO2. The results are cross-verified using conductance method and saturation photovoltage technique. The Dit difference is associated with the presence of oxidized (Sn(4+)) and elemental Sn in the interfacial layer oxide.

  5. Electric and Magnetic Field Tunable Rectification and Magnetoresistance in FexGe1-x/Ge Heterojunction Diodes

    Institute of Scientific and Technical Information of China (English)

    QIN Yu-Feng; CHEN Yan-Xue; MEI Liang-Mo; ZHANG Ze; YAN Shi-Shen; KANG Shi-Shou; XIAO Shu-Qin; LI Qiang; DAI Zheng-Kun; SHEN Ting-Ting; DAI You-Yong; LIU Guo-Lei

    2011-01-01

    Fex Ge1- x/Ge amorphous heterojunction diodes with p-Fex Ge1-x ferromagnetic semiconductor layers are grown on single-crystal Ge substrates of p-type,n-type and intrinsic semiconductors,respectively.The I-V curves of pFe0.4 Ge0.6 /p-Ge diodes only show slight changes with temperature or with magnetic field.For the p-Fe0.4 Ge0.6 /nGe diode,good rectification is maintained at room temperature.More interestingly,the I-V curve of the pFe0.4Ge0.6/i-Ge diode can be tuned by the magnetic field,indicating a large positive magnetoresistance.The resistances of the junctions decrease with the increasing temperature,suggesting a typical semiconductor transport behavior.The origin of the positive magnetoresistance is discussed based on the effect of the electric and magnetic field on the energy band structures of the interface.In the past decades,ferromagnetic semiconductors (FMSs),which can be used as spin current sources,have received much attention due to their potential application in the next generation of information technology.In 1996,Ohno et a/.… reported molecular beam epitaxial (Ga,Mn)As FMSs,which show a wellaligned ferromagnetic order and an anomalous Halleffect.In 2002,Park et al.[2]%FexGe1-x/Ge amorphous heterojunction diodes with p-FexGe1-x ferromagnetic semiconductor layers are grown on single-crystal Ge substrates of p-type, n-type and intrinsic semiconductors, respectively. The I-V curves of p-Fe0.4Geo.6/p-Ge diodes only show slight changes with temperature or with magnetic field. For the p-Fe0.4Ge0.6/n-Ge diode, good rectification is maintained at room temperature. More interestingly, the I-V curve of the p-Fe0.4Ge0.6/I-Ge diode can be tuned by the magnetic field, indicating a large positive magnetoresistance. The resistances of the junctions decrease with the increasing temperature, suggesting a typical semiconductor transport behavior. The origin of the positive magnetoresistance is discussed based on the effect of the electric and magnetic field on the

  6. Formation of ζ phase in Cu-Ge peritectic alloys

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Rapid growth behavior of ζ phase has been investigated in the undercooling experiments of Cu-14%Ge, Cu-15%Ge, Cu-18.5%Ge and Cu-22%Ge alloys. Alloys of the four compositions obtain the maximum undercoolings of 202 K(0.17TL), 245 K(0.20TL), 223 K(0.20TL) and 176 K(0.17TL), respectively. As the content of Ge increases, the microstructural transition of "α(Cu) dendrite + ζ peritectic phase → ζ peritectic phase → ζ dendrite + (ε+ζ ) eutectic" takes place in the alloy at small undercooling, while the microstructural transition of "fragmented α (Cu) dendrite +ζperitectic phase → ζ peritectic phase → ζ dendrite + ε phase" happens in the alloy at large undercooling. EDS analysis of the Ge content in ζ peritectic phase indicates that undercooling enlarges the solid solubility of α dendrite, which leads to a decrease in the Ge content in ζ phase as undercooling increases. In the Cu-18.5%Ge alloy composed of ζ peritectic phase, the Ge content in ζ phase increases when undercooling increases, which is due to the restraint of the Ge enrichment on the grain boundaries by high undercooling effect.

  7. Die Internen Und Externen Interferenzfehler Beim Lernprozess Des Deutschen Als Zweitfremdsprache Für Türkische Muttersprachler Und Vorschläge Zur Fehlertherapie Internal And External Interference Errors In The Process Of Learning German As A Second Foreign Language And Methods To Prevent Mistakes

    Directory of Open Access Journals (Sweden)

    Adnan OFLAZ

    2013-09-01

    Full Text Available Das Ziel dieser Untersuchung liegt darin, die verschiedenen Arten von Interferenzen, die beim Lernprozess der deutschen Sprache auftreten, zuerst theoretisch aufzuklären, dann systematisch mit der kontrastiven Methode durch eine Fehleranalyse zu bestimmen und danach auszuwerten. Die Beeinflussung der Sprache von einer anderen Sprache verursacht Überschneidungen. Interferenzfehler können wir in den Bereichen “Phonologie, Orthographie, Morphologie, Syntax, Semantik, Pragmatik oder auch Textlinguistik erkennen. Anschließend werden Vorschläge zur Fehlerkorrektur auf den grammatikalischen, ortographischen und lexikalischen Ebenen vorgenommen. Betrachtet man dies aus dem kognitiven Blickwinkel, kann jeder unschwer erkennen, dass die Vorkenntnisse retroaktive und proaktive Effekte haben. Das heißt, diese Kenntnisse können den Lernprozess entweder positiv oder negativ beeinträchtigen. Von diesem Ausgangspunkt aus werden in dieser Arbeit die Wechselwirkungen, die sowohl von der erstgelernten Fremdsprache als auch von der Muttersprache abhängig sind, der Reihe nach identifiziert, klassifiziert und abschliessend analysiert. Auf den Ergebnissen dieser Fehleranalyse basierend, machen Studenten unter dem Einfluss der interlingualen Interferenzen meist Fehler bei der Wortstellung, der Zeitform „Perfekt“, Pluralbildung, der Deklination der Adjektive, der Groß- bzw Kleinschreibung und bei dem Gebrauch der Konjunktionen sowie auf den lexikalischen Ebenen. Unter dem Einfluss der intralingualen Interferenzen machen sie Fehler bei der Bildung der Zeitformen „Perfekt und Präteritum“ und bei der Konjugation des Verbs. The primary aim of this study is to analyze the different types ofinterferences that may occur in the process of learning the Germanlanguage both theoretically and systematically by making use of thecontrastive method in order to detect and evaluate common errors. In asecond step, methods to correct these errors on a grammatical

  8. Structural transformation of Ge dimers on Ge(001) surfaces induced by bias voltage

    Institute of Scientific and Technical Information of China (English)

    Qin Zhi-Hui; Shi Dong-Xia; Gao Hong-Jun

    2008-01-01

    Scanning tunnelling microscopy is utilized to investigate the local bias voltage tunnelling dependent transformation between (2×1) and c(4×2) structures on Ge(001) surfaces, which is reversibly observed at room temperature and a critical bias voltage of -0.80 V. Similar transformation is also found on an epitaxial Ge islands but at a slightly different critical bias voltage of -1.00V. It is found that the interaction between the topmost atoms on the STM tip and the atoms of the dimers, and the pinning effect induced by Sb atoms, the vacancies or the epitaxial clusters, can drive the structural transformation at the critical bias voltage.

  9. Design of Ge/SiGe quantum-confined Stark effect modulators for CMOS compatible photonics

    Science.gov (United States)

    Lever, Leon; Ikonić, Zoran; Valavanis, Alex; Kelsall, Robert W.

    2010-02-01

    A simulation technique for modeling optical absorption in Ge/SiGe multiple quantum well (MQW) heterostructures is described, based on a combined 6 × 6 k • p hole wave-function a one-band effective mass electron wavefunction calculation. Using this model, we employ strain engineering to target a specific applications-oriented wavelength, namely 1310 nm, and arrive at a design for a MQW structure to modulate light at this wavelength. The modal confinement in a proposed device is then found using finite-element modeling, and we estimate the performance of a proposed waveguide-integrated electroabsorption modulator.

  10. Electronic structure of Ge-2 and Ge-2 and thermodynamic properties of Ge-2 from all electron ab initio investigations and Knudsen effusion mass spectroscopic measurements

    DEFF Research Database (Denmark)

    Shim, Irene; Baba, M. Sai; Gingerich, K.A.

    2002-01-01

    excited states are presented. Thermal functions based on the theoretically determined molecular parameters were used to derive the thermodynamic properties of the Ge-2 molecule from new mass spectrometric equilibrium data. The literature value for the dissociation energy of Ge-2 has been re...

  11. Room Temperature Electroluminescence from Tensile-Strained Si0.13Ge0.87/Ge Multiple Quantum Wells on a Ge Virtual Substrate

    Directory of Open Access Journals (Sweden)

    Guangyang Lin

    2016-09-01

    Full Text Available Direct band electroluminescence (EL from tensile-strained Si0.13Ge0.87/Ge multiple quantum wells (MQWs on a Ge virtual substrate (VS at room temperature is reported herein. Due to the competitive result of quantum confinement Stark effect and bandgap narrowing induced by tensile strain in Ge wells, electroluminescence from Γ1-HH1 transition in 12-nm Ge wells was observed at around 1550 nm. As injection current density increases, additional emission shoulders from Γ2-HH2 transition in Ge wells and Ge VS appeared at around 1300–1400 nm and 1600–1700 nm, respectively. The peak energy of EL shifted to the lower energy side superquadratically with an increase of injection current density as a result of the Joule heating effect. During the elevation of environmental temperature, EL intensity increased due to a reduction of energy between L and Γ valleys of Ge. Empirical fitting of the relationship between the integrated intensity of EL (L and injection current density (J with L~Jm shows that the m factor increased with injection current density, suggesting higher light emitting efficiency of the diode at larger injection current densities, which can be attributed to larger carrier occupations in the Γ valley and the heavy hole (HH valance band at higher temperatures.

  12. Fabrication of core-shell nanostructures via silicon on insulator dewetting and germanium condensation: towards a strain tuning method for SiGe-based heterostructures in a three-dimensional geometry

    Science.gov (United States)

    Naffouti, Meher; David, Thomas; Benkouider, Abdelmalek; Favre, Luc; Cabie, Martiane; Ronda, Antoine; Berbezier, Isabelle; Abbarchi, Marco

    2016-07-01

    We report on a novel method for the implementation of core-shell SiGe-based nanocrystals combining silicon on insulator dewetting in a molecular beam epitaxy reactor with an ex situ Ge condensation process. With an in situ two-step process (annealing and Ge deposition) we produce two families of islands on the same sample: Si-rich, formed during the first step and, all around them, Ge-rich formed after Ge deposition. By increasing the amount of Ge deposited on the annealed samples from 0 to 18 monolayers, the islands’ shape in the Si-rich zones can be tuned from elongated and flat to more symmetric and with a larger vertical aspect ratio. At the same time, the spatial extension of the Ge-rich zones is progressively increased as well as the Ge content in the islands. Further processing by ex situ rapid thermal oxidation results in the formation of a core-shell composition profile in both Si and Ge-rich zones with atomically sharp heterointerfaces. The Ge condensation induces a Ge enrichment of the islands’ shell of up to 50% while keeping a pure Si core in the Si-rich zones and a ˜25% SiGe alloy in the Ge-rich ones. The large lattice mismatch between core and shell, the absence of dislocations and the islands’ monocrystalline nature render this novel class of nanostructures a promising device platform for strain-based band-gap engineering. Finally, this method can be used for the implementation of ultralarge scale meta-surfaces with dielectric Mie resonators for light manipulation at the nanoscale.

  13. Structural and thermoelectric properties of SiGe/Al multilayer systems during metal induced crystallization

    Science.gov (United States)

    Lindorf, M.; Rohrmann, H.; Span, G.; Raoux, S.; Jordan-Sweet, J.; Albrecht, M.

    2016-11-01

    While the process of metal induced crystallization (MIC) is widely used in the fabrication of thin film electronic devices, its application to the field of thermoelectrics is fairly new. Especially, its implementation in the field of the classic thermoelectric material SiGe could lead to a low cost approach by combining the benefits of low thermal budget, self-doping, and thin film and sputter deposition compatibility. In this work, samples consisting of SiGe/Al multilayers deposited on aluminum oxide based substrates have been prepared. Special emphasis was put on the ratio of Al to SiGe and the resulting changes in transport properties during annealing. On one hand, a certain amount of Al is needed to ensure a complete MIC process for the SiGe, but on the other hand, an excess of Al results in a metallic system with low thermoelectric efficiency. In-situ characterization during annealing of the samples was carried out via x-ray diffraction, electrical resistivity, and Seebeck measurements.

  14. Thermally induced strain relaxation in SiGe/Si heterostructures with low-temperature buffer layers

    Energy Technology Data Exchange (ETDEWEB)

    Vdovin, V.I.; Mil' vidskii, M.G. [Institute for Chemical Problems of Microelectronics, 119017 Moscow (Russian Federation); Yugova, T.G. [Institute of Rare Metals ' Giredmet' , 119017 Moscow (Russian Federation); Rzaev, M.M. [Lebedev Physical Institute, RAS, 119991 Moscow (Russian Federation); Schaeffler, F. [Institut fuer Halbleiter- und Festkoerperphysik, 4040 Linz (Austria)

    2005-04-01

    Processes of misfit dislocation (MD) nucleation and multiplication in SiGe/Si strained-layer heterostructures under thermal annealing were studied. Specific subjects include the kinetics of dislocation network formation in heterostructures with low-temperature (LT) buffer layers and mechanisms of dislocation nucleation. Samples with LT-Si (400 C) and LT-SiGe (250 C) buffer layers were grown by MBE. In general, the processes of MD generation occur similarly in the heterostructures studied independently of the alloy composition (Ge content: 0.15, 0.30) and kind of buffer layer. Intrinsic point defects related to the LT epitaxial growth influence mainly the rate of MD nucleation. We suggest a new mechanism of MD generation which includes a nucleation of incipient dislocation loops at heterogeneous sources within SiGe epitaxial layer and formation of spiral sources at threading V-shaped dislocation half-loops. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  15. Phase Transition Phenomena in Ultra-Thin Ge2Sb2Te5 Film

    Institute of Scientific and Technical Information of China (English)

    ZHANG Ting; LIU Bo; SONG Zhi-Tang; LIU Wei-Li; FENG Song-Lin; CHEN Bomy

    2005-01-01

    @@ We observe reversible phase transition phenomena in proto-type chalcogenide random access memory (C-RAM)devices adopting ultra-thin (12nm) Ge2Sb3 Te5 thin film. In this kind of proto-type device, the ultra-thin amorphous Ge2Sb2 Te5 thin film undergoes a crystallization process when a voltage is applied. The polycrystalline Ge2Sb3 Te5 remain unchanged when the voltage is below 0.6 V. A higher power is needed if the transition from polycrystalline to amorphous is expected. The re-amorphization process can be realized by applying a voltage higher than 0.7 V. The threshold voltage Vth and threshold electric field Eth of the transition from the polycrystalline state to the amorphous state in this proto-type device are ~0.7 V and ~ 5 × 105 V/cm, respectively. The programming voltage is significantly reduced compared to the values of C-RAM devices adopting a 200-nm-thick Ge2Sb2 Te5 inset.

  16. LHC Future Prospects of the 750 GeV Resonance

    CERN Document Server

    Sato, Ryosuke

    2016-01-01

    A quantitative discussion on the future prospects of the 750 GeV resonance at the LHC experiment is given using a simple effective field theory analysis. The relative size of two effective operators relevant to diphoton decays can be probed by ratios of diboson signals in a robust way. We obtain the future sensitivities of $Z\\gamma $, $ZZ$ and $WW$ resonance searches at the high luminosity LHC, rescaling from the current sensitivities at $\\sqrt{s}=13$ TeV. Then, we show that a large fraction of parameter space in the effective field theory will be covered with 300 fb$^{-1}$ and almost the whole parameter space will be tested with 3000 fb$^{-1}$. This discussion is independent of production processes, other decay modes and total decay width.

  17. Redox pioneer: Professor Wulf Dröge.

    Science.gov (United States)

    Kinscherf, Ralf

    2011-06-01

    Dr. Wulf Dröge is recognized here as a redox pioneer because he has published as first author an article on antioxidant/redox biology that has been cited more than 2000 times and over 10 articles that have been cited more than 100 times. One of the key discoveries (1987) was the stimulatory effect of superoxide radicals and hydrogen peroxide on lymphocyte functions, which triggered a series of studies on the role of reactive oxygen species, glutathione, and its precursor cysteine in physiological and pathological processes. He discovered abnormally low cysteine and glutathione levels in human immunodeficiency virus-infected patients and the age-related decline in the postabsorptive plasma cysteine concentration, which is believed to cause age-related oxidative stress. He developed a theoretical concept of the mechanism of aging and death, which is outlined in his books Avoiding the First Cause of Death and Challenging the Limits of the Human Lifespan.

  18. Radiation-modified structure of Ge25Sb15S60 and Ge35Sb5S60 glasses.

    Science.gov (United States)

    Kavetskyy, T; Shpotyuk, O; Kaban, I; Hoyer, W

    2008-06-28

    Atomic structures of Ge(25)Sb(15)S(60) and Ge(35)Sb(5)S(60) glasses are investigated in the gamma-irradiated and annealed after gamma-irradiation states by means of high-energy synchrotron x-ray diffraction technique. The first sharp diffraction peak (FSDP) is detected at around 1.1 A(-1) in the structure factors of both alloys studied. The FSDP position is found to be stable for radiation/annealing treatment of the samples, while the FSDP intensity shows some changes between gamma-irradiated and annealed states. The peaks in the pair distribution functions observed between 2 and 4 A are related to the Ge-S, Ge-Sb, and Sb-Sb first neighbor correlations and Ge-Ge second neighbor correlations in the edge-shared GeS(42) tetrahedra, and S-S and/or Ge-Ge second neighbor correlations in the corner-shared GeS(42) tetrahedra. Three mechanisms of the radiation-/annealing-induced changes are discussed in the framework of coordination topological defect formation and bond-free solid angle concepts.

  19. Elasticity, Hardness and Thermal Conductivity of Si-Ge-Based Oxynitrides (SiGeN2O)

    Science.gov (United States)

    Ding, Yingchun; Chen, Min; Wu, Wenjuan; Xu, Ming

    2017-01-01

    Capitalizing on density functional theory, the novel Si-Ge-based oxynitrides (SiGeN2O) have been studied in terms of mechanical and thermal properties. Regarding α- or β-SiGeN2O, the SiGeN2O exhibits smaller mechanical moduli, suggesting a compressible and soft material. Our calculated lattice constants of two SiGeN2O phases are very consistent with other values. In addition, the hardness for SiGeN2O is investigated in details according to different semi-empirical methods. The results indicate a small hardness of two phases of SiGeN2O. Furthermore, the mechanical anisotropy, Debye temperature and the minimum thermal conductivity of two SiGeN2O compounds are clearly estimated for both SiGeN2O compounds. It is found that the SiGeN2O compounds show low thermal conductivity, which is suitable to be used as a thermal barrier coating.

  20. Elasticity, Hardness and Thermal Conductivity of Si-Ge-Based Oxynitrides (SiGeN2O)

    Science.gov (United States)

    Ding, Yingchun; Chen, Min; Wu, Wenjuan; Xu, Ming

    2016-09-01

    Capitalizing on density functional theory, the novel Si-Ge-based oxynitrides (SiGeN2O) have been studied in terms of mechanical and thermal properties. Regarding α- or β-SiGeN2O, the SiGeN2O exhibits smaller mechanical moduli, suggesting a compressible and soft material. Our calculated lattice constants of two SiGeN2O phases are very consistent with other values. In addition, the hardness for SiGeN2O is investigated in details according to different semi-empirical methods. The results indicate a small hardness of two phases of SiGeN2O. Furthermore, the mechanical anisotropy, Debye temperature and the minimum thermal conductivity of two SiGeN2O compounds are clearly estimated for both SiGeN2O compounds. It is found that the SiGeN2O compounds show low thermal conductivity, which is suitable to be used as a thermal barrier coating.

  1. Carbon Chains Containing Group IV Elements: Rotational Detection of GeC_4 and GeC_5

    Science.gov (United States)

    McCarthy, Michael C.; Martin-Drumel, Marie-Aline; Thorwirth, Sven

    2017-06-01

    Following the recent discovery of T-shaped GeC_2 by chirped-pulse FT microwave spectroscopy, evidence has been found for two longer carbon chains, GeC_4 and GeC_5, guided by high-level quantum chemical calculations of their molecular structure. Like their isovalent Si-bearing counterparts, those with an even number of carbon atoms are predicted to possess ^1Σ ground states, while odd-numbered carbon chains have low-lying ^3Σ linear isomers; all are predicted to be highly polar. With the exception of ^{73}Ge, rotational lines of the other four Ge isotopic species have been observed between 6 and 18 GHz. From these measurements, the Ge-C bond length has been determined to high precision, and can be compared to that found in other Ge species, such as GeC [1] and GeC_3Ge [2] studied previously at rotational resolution. Somewhat surprisingly, the spectrum of GeC_5 very closely resembles that of ^1Σ molecule, presumably owing to the very large spin-orbit constant of atomic Ge, which is manifest as an equally large spin-spin constant in the chain. A comparison between the production of SiC_n and GeC_n chains by laser ablation, including the absence of those with n=3, will be given. [1] C. R. Brazier and J. I. Ruiz, J. Mol. Spectrosc., 270, 26-32 (2011). [2] S. Thorwirth et al., J. Phys. Chem. A, 120, 254-259 (2016).

  2. A novel type of ultra fast and ultra soft recovery SiGe/Si heterojunction power diode with an ideal ohmic contact

    Institute of Scientific and Technical Information of China (English)

    Ma Li; Gao Yong; Wang Cai-Lin

    2004-01-01

    A novel type of p+ (SiGe)-n--n+ heterojunction switching power diode with high-speed capability is presented to overcome the drawbacks of existing power diodes. The improvement is achieved by using a p+-n+ mosaic layer electrons and holes simultaneously. Compared with conventional p+(SiGe)-n--n+ diodes, the ideal ohmic contact p+ (SiGe)-n--n+ diodes have about one third of the reverse recovery time and a half of peak reverse recovery current.Furthermore, the softness factor increases nearly two times and the leakage current decreases 1-2 orders of magnitude.These improvements are achieved without resorting special process step to lower the carrier lifetime and thus the devices could be easily integrated into power ICs. The Ge percentage content of p+ (SiGe) layer is an important parameter for the optimal device design.

  3. Development of {sup 77}Ge/{sup 77}As parent-daughter system for periodic removal of {sup 77}As for environmental sanitation and biochemical purposes

    Energy Technology Data Exchange (ETDEWEB)

    Olah, Zita; Doczi, Rita [Budapest Univ. of Technology and Economics (Hungary). Inst. of Nuclear Techniques; Szuecs, Zoltan [Hungarian Academy of Sciences, Debrecen (Hungary). Inst. for Nuclear Research; Varga, Zoltan [Hungarian Academy of Sciences, Budapest (Hungary). Research Centre for Natural Sciences

    2015-07-01

    A simple method was developed for the separation of radioactive {sup 77}As from neutron irradiated natural GeO{sub 2} samples for environmental and biochemical studies. The method is based on the volatility of GeCl{sub 4}. The GeCl{sub 4} was co-evaporated from the reaction mixture with an azeotropic mixture of HCl and water, and immediately condensed into a separate finger part of the special glass apparatus which was cooled by liquid nitrogen. By inverting the room temperature and the deep frozen parts of the glass equipment after three half-lives of the {sup 77}Ge the separation process can be repetitive, getting a special type of {sup 77}Ge/{sup 77}As parent-daughter system. The radionuclidic purity of the remaining As fraction was found to be 99.95%. Its yield, however, drastically decreased in the second and subsequent separations.

  4. High-pressure structural behavior of nanocrystalline Ge

    DEFF Research Database (Denmark)

    Wang, H.; Liu, J. F.; Yan, H.;

    2007-01-01

    The equation of state and the pressure of the I-II transition have been studied for nanocrystalline Ge using synchrotron x-ray diffraction. The bulk modulus and the transition pressure increase with decreasing particle size for both Ge-I and Ge-II, but the percentage volume collapse at the transi......The equation of state and the pressure of the I-II transition have been studied for nanocrystalline Ge using synchrotron x-ray diffraction. The bulk modulus and the transition pressure increase with decreasing particle size for both Ge-I and Ge-II, but the percentage volume collapse...... at the transition remains constant. Simplified models for the high-pressure structural behaviour are presented, based on the assumption that a large fraction of the atoms reside in grain boundary regions of the nanocrystalline material. The interface structure plays a significant role in affecting the transition...

  5. SiGe HBTs Optimization for Wireless Power Amplifier Applications

    Directory of Open Access Journals (Sweden)

    Pierre-Marie Mans

    2010-01-01

    Full Text Available This paper deals with SiGe HBTs optimization for power amplifier applications dedicated to wireless communications. In this work, we investigate the fT-BVCEO tradeoff by various collector optimization schemes such as epilayer thickness and dopant concentration, and SIC and CAP characteristics. Furthermore, a new trapezoidal base Germanium (Ge profile is proposed. Thanks to this profile, precise control of Ge content at the metallurgical emitter-base junction is obtained. Gain stability is obtained for a wide range of temperatures through tuning the emitter-base junction Ge percent. Finally, a comprehensive investigation of Ge introduction into the collector (backside Ge profile is conducted in order to improve the fT values at high injection levels.

  6. Nanoscale electrical properties of epitaxial Cu3Ge film

    Science.gov (United States)

    Wu, Fan; Cai, Wei; Gao, Jia; Loo, Yueh-Lin; Yao, Nan

    2016-07-01

    Cu3Ge has been pursued as next-generation interconnection/contact material due to its high thermal stability, low bulk resistivity and diffusion barrier property. Improvements in electrical performance and structure of Cu3Ge have attracted great attention in the past decades. Despite the remarkable progress in Cu3Ge fabrication on various substrates by different deposition methods, polycrystalline films with excess Ge were frequently obtained. Moreover, the characterization of nanoscale electrical properties remains challenging. Here we show the fabrication of epitaxial Cu3Ge thin film and its nanoscale electrical properties, which are directly correlated with localized film microstructures and supported by HRTEM observations. The average resistivity and work function of epitaxial Cu3Ge thin film are measured to be 6 ± 1 μΩ cm and ~4.47 ± 0.02 eV respectively, qualifying it as a good alternative to Cu.

  7. Nanoscale electrical properties of epitaxial Cu3Ge film

    Science.gov (United States)

    Wu, Fan; Cai, Wei; Gao, Jia; Loo, Yueh-Lin; Yao, Nan

    2016-01-01

    Cu3Ge has been pursued as next-generation interconnection/contact material due to its high thermal stability, low bulk resistivity and diffusion barrier property. Improvements in electrical performance and structure of Cu3Ge have attracted great attention in the past decades. Despite the remarkable progress in Cu3Ge fabrication on various substrates by different deposition methods, polycrystalline films with excess Ge were frequently obtained. Moreover, the characterization of nanoscale electrical properties remains challenging. Here we show the fabrication of epitaxial Cu3Ge thin film and its nanoscale electrical properties, which are directly correlated with localized film microstructures and supported by HRTEM observations. The average resistivity and work function of epitaxial Cu3Ge thin film are measured to be 6 ± 1 μΩ cm and ~4.47 ± 0.02 eV respectively, qualifying it as a good alternative to Cu. PMID:27363582

  8. Phase segregation in Pb:GeSbTe chalcogenide system

    Science.gov (United States)

    Kumar, J.; Ahmad, M.; Chander, R.; Thangaraj, R.; Sathiaraj, T. S.

    2008-01-01

    Effect of Pb substitution on the amorphous-crystalline transformation temperature, optical band gap and crystalline structure of Ge{2}Sb{2}Te{5} has been studied. In Pb:GeSbTe chalcogenide films prepared by thermal evaporation, an amorphous to crystallization transition is observed at 124, 129, 136 and 138 °C in Pb{0}Ge{20}Sb{24}Te{56}, Pb{1.6}Ge{19}Sb{26}Te{54}, Pb{3}Ge{17}Sb{28}Te{53} and Pb{5}Ge{12}Sb{28}Te{55} respectively. XRD investigations of annealed samples reveal that Pb substitution retains NaCl type crystalline structure of GST but expands the lattice due to large atomic radii. The increase in amorphous-crystalline transformation temperature is followed with the increase in phase segregation. The optical gap shows marginal variations with composition.

  9. Impacts of plasma-induced damage due to UV light irradiation during etching on Ge fin fabrication and device performance of Ge fin field-effect transistors

    Science.gov (United States)

    Mizubayashi, Wataru; Noda, Shuichi; Ishikawa, Yuki; Nishi, Takashi; Kikuchi, Akio; Ota, Hiroyuki; Su, Ping-Hsun; Li, Yiming; Samukawa, Seiji; Endo, Kazuhiko

    2017-02-01

    We investigated the impacts of plasma-induced damage due to UV light irradiation during etching on Ge fin fabrication and the device performance of Ge fin field-effect transistors (Ge FinFETs). UV light irradiation during etching affected the shape of the Ge fin and the surface roughness of the Ge fin sidewall. A vertical and smooth Ge fin could be fabricated by neutral beam etching without UV light irradiation. The performances of Ge FinFETs fabricated by neutral beam etching were markedly improved as compared to those of Ge FinFETs fabricated by inductively coupled plasma etching, in which the UV light has an impact.

  10. Searches for charginos and neutralinos in $e^+ e^-$ collisions at $\\sqrt{s}$ = 161 and 172 GeV

    CERN Document Server

    Barate, R; Décamp, D; Ghez, P; Goy, C; Lees, J P; Lucotte, A; Minard, M N; Nief, J Y; Pietrzyk, B; Casado, M P; Chmeissani, M; Comas, P; Crespo, J M; Delfino, M C; Fernández, E; Fernández-Bosman, M; Garrido, L; Juste, A; Martínez, M; Merino, G; Miquel, R; Mir, L M; Padilla, C; Park, I C; Pascual, A; Perlas, J A; Riu, I; Sánchez, F; Colaleo, A; Creanza, D; De Palma, M; Gelao, G; Iaselli, Giuseppe; Maggi, G; Maggi, M; Marinelli, N; Nuzzo, S; Ranieri, A; Raso, G; Ruggieri, F; Selvaggi, G; Silvestris, L; Tempesta, P; Tricomi, A; Zito, G; Huang, X; Lin, J; Ouyang, Q; Wang, T; Xie, Y; Xu, R; Xue, S; Zhang, J; Zhang, L; Zhao, W; Abbaneo, D; Alemany, R; Bazarko, A O; Becker, U; Bright-Thomas, P G; Cattaneo, M; Cerutti, F; Dissertori, G; Drevermann, H; Forty, Roger W; Frank, M; Gianotti, F; Hagelberg, R; Hansen, J B; Harvey, J; Janot, P; Jost, B; Kneringer, E; Lehraus, Ivan; Mato, P; Minten, Adolf G; Moneta, L; Pacheco, A; Pusztaszeri, J F; Ranjard, F; Rizzo, G; Rolandi, Luigi; Rousseau, D; Schlatter, W D; Schmitt, M; Schneider, O; Tejessy, W; Teubert, F; Tomalin, I R; Wachsmuth, H W; Wagner, A; Ajaltouni, Ziad J; Barrès, A; Boyer, C; Falvard, A; Ferdi, C; Gay, P; Guicheney, C; Henrard, P; Jousset, J; Michel, B; Monteil, S; Montret, J C; Pallin, D; Perret, P; Podlyski, F; Proriol, J; Rosnet, P; Rossignol, J M; Fearnley, Tom; Hansen, J D; Hansen, J R; Hansen, P H; Nilsson, B S; Rensch, B; Wäänänen, A; Daskalakis, G; Kyriakis, A; Markou, C; Simopoulou, Errietta; Vayaki, Anna; Blondel, A; Brient, J C; Machefert, F P; Rougé, A; Rumpf, M; Valassi, Andrea; Videau, H L; Boccali, T; Focardi, E; Parrini, G; Zachariadou, K; Cavanaugh, R J; Corden, M; Georgiopoulos, C H; Hühn, T; Jaffe, D E; Antonelli, A; Bencivenni, G; Bologna, G; Bossi, F; Campana, P; Capon, G; Casper, David William; Chiarella, V; Felici, G; Laurelli, P; Mannocchi, G; Murtas, F; Murtas, G P; Passalacqua, L; Pepé-Altarelli, M; Curtis, L; Dorris, S J; Halley, A W; Knowles, I G; Lynch, J G; O'Shea, V; Raine, C; Scarr, J M; Smith, K; Teixeira-Dias, P; Thompson, A S; Thomson, E; Thomson, F; Turnbull, R M; Buchmüller, O L; Dhamotharan, S; Geweniger, C; Graefe, G; Hanke, P; Hansper, G; Hepp, V; Kluge, E E; Putzer, A; Sommer, J; Tittel, K; Werner, S; Wunsch, M; Beuselinck, R; Binnie, David M; Cameron, W; Dornan, Peter J; Girone, M; Goodsir, S M; Martin, E B; Morawitz, P; Moutoussi, A; Nash, J; Sedgbeer, J K; Spagnolo, P; Stacey, A M; Williams, M D; Ghete, V M; Girtler, P; Kuhn, D; Rudolph, G; Betteridge, A P; Bowdery, C K; Buck, P G; Colrain, P; Crawford, G; Finch, A J; Foster, F; Hughes, G; Jones, R W L; Sloan, Terence; Whelan, E P; Williams, M I; Giehl, I; Hoffmann, C; Jakobs, K; Kleinknecht, K; Quast, G; Renk, B; Rohne, E; Sander, H G; Van Gemmeren, P; Zeitnitz, C; Aubert, Jean-Jacques; Benchouk, C; Bonissent, A; Bujosa, G; Carr, J; Coyle, P; Diaconu, C A; Ealet, A; Fouchez, D; Konstantinidis, N P; Leroy, O; Motsch, F; Payre, P; Talby, M; Sadouki, A; Thulasidas, M; Tilquin, A; Trabelsi, K; Aleppo, M; Antonelli, M; Ragusa, F; Berlich, R; Blum, Walter; Büscher, V; Dietl, H; Ganis, G; Gotzhein, C; Kroha, H; Lütjens, G; Lutz, Gerhard; Männer, W; Moser, H G; Richter, R H; Rosado-Schlosser, A; Schael, S; Settles, Ronald; Seywerd, H C J; Saint-Denis, R; Stenzel, H; Wiedenmann, W; Wolf, G; Boucrot, J; Callot, O; Chen, S; Davier, M; Duflot, L; Grivaz, J F; Heusse, P; Höcker, A; Jacholkowska, A; Kim, D W; Le Diberder, F R; Lefrançois, J; Lutz, A M; Marumi, M; Schune, M H; Serin, L; Tournefier, E; Veillet, J J; Videau, I; Zerwas, D; Azzurri, P; Bagliesi, G; Bettarini, S; Bozzi, C; Calderini, G; Ciulli, V; Dell'Orso, R; Fantechi, R; Ferrante, I; Giassi, A; Gregorio, A; Ligabue, F; Lusiani, A; Marrocchesi, P S; Messineo, A; Palla, Fabrizio; Sanguinetti, G; Sciabà, A; Sguazzoni, G; Steinberger, Jack; Tenchini, Roberto; Vannini, C; Venturi, A; Verdini, P G; Blair, G A; Bryant, L M; Chambers, J T; Green, M G; Medcalf, T; Perrodo, P; Strong, J A; Von Wimmersperg-Töller, J H; Botterill, David R; Clifft, R W; Edgecock, T R; Haywood, S; Maley, P; Norton, P R; Thompson, J C; Wright, A E; Bloch-Devaux, B; Colas, P; Fabbro, B; Lançon, E; Lemaire, M C; Locci, E; Pérez, P; Rander, J; Renardy, J F; Rosowsky, A; Roussarie, A; Schwindling, J; Trabelsi, A; Vallage, B; Black, S N; Dann, J H; Kim, H Y; Litke, A M; McNeil, M A; Taylor, G; Booth, C N; Brew, C A J; Cartwright, S L; Combley, F; Kelly, M S; Lehto, M H; Reeve, J; Thompson, L F; Affholderbach, K; Böhrer, A; Brandt, S; Cowan, G D; Foss, J; Grupen, Claus; Smolik, L; Stephan, F; Apollonio, M; Bosisio, L; Della Marina, R; Giannini, G; Gobbo, B; Musolino, G; Pütz, J; Rothberg, J E; Wasserbaech, S R; Williams, R W; Armstrong, S R; Charles, E; Elmer, P; Ferguson, D P S; Gao, Y; González, S; Greening, T C; Hayes, O J; Hu, H; Jin, S; McNamara, P A; Nachtman, J M; Nielsen, J; Orejudos, W; Pan, Y B; Saadi, Y; Scott, I J; Walsh, J; Wu Sau Lan; Wu, X; Yamartino, J M; Zobernig, G

    1998-01-01

    The data recorded by the ALEPH detector at centre-of-mass energies of 161, 170, and 172 GeV are analysed for signals of chargino and neutralino production. No evidence of a signal is found, although candidate events consistent with the expectations from Standard Model processes are observed. Limits at 95% C.L. on the production cross sections are derived and bounds on the parameters of the Minimal Supersymmetric Standard Model are set. The lower limit on the mass of the lightest chargino is 85.5 GeV/c^2 for gaugino-like charginos (mu = -500 GeV/c^2), and 85.0 GeV/c^2 for Higgsino-like charginos (M_2 = 500 GeV/c^2), for heavy sneutrinos (M(snu) > 200 GeV/c^2) and tanb = sqrt(2). The effect of light sleptons on chargino and neutralino limits is investigated. The assumptions of a universal slepton mass and a universal gaugino mass are relaxed, allowing less model-dependent limits to be obtained.

  11. Search for Higgs bosons and new particles decaying into two photons at $\\sqrt{s}$ = 183 GeV

    CERN Document Server

    Ackerstaff, K; Allison, J; Altekamp, N; Anderson, K J; Anderson, S; Arcelli, S; Asai, S; Ashby, S F; Axen, D A; Azuelos, Georges; Ball, A H; Barberio, E; Barlow, R J; Bartoldus, R; Batley, J Richard; Baumann, S; Bechtluft, J; Behnke, T; Bell, K W; Bella, G; Bentvelsen, Stanislaus Cornelius Maria; Bethke, Siegfried; Betts, S; Biebel, O; Biguzzi, A; Bird, S D; Blobel, Volker; Bloodworth, Ian J; Bobinski, M; Bock, P; Böhme, J; Boutemeur, M; Braibant, S; Bright-Thomas, P G; Brown, R M; Burckhart, Helfried J; Burgard, C; Bürgin, R; Capiluppi, P; Carnegie, R K; Carter, A A; Carter, J R; Chang, C Y; Charlton, D G; Chrisman, D; Ciocca, C; Clarke, P E L; Clay, E; Cohen, I; Conboy, J E; Cooke, O C; Couyoumtzelis, C; Coxe, R L; Cuffiani, M; Dado, S; Dallavalle, G M; Davis, R; De Jong, S; del Pozo, L A; de Roeck, A; Desch, Klaus; Dienes, B; Dixit, M S; Doucet, M; Dubbert, J; Duchovni, E; Duckeck, G; Duerdoth, I P; Eatough, D; Estabrooks, P G; Etzion, E; Evans, H G; Fabbri, Franco Luigi; Fanfani, A; Fanti, M; Faust, A A; Fiedler, F; Fierro, M; Fischer, H M; Fleck, I; Folman, R; Fürtjes, A; Futyan, D I; Gagnon, P; Gary, J W; Gascon, J; Gascon-Shotkin, S M; Geich-Gimbel, C; Geralis, T; Giacomelli, G; Giacomelli, P; Gibson, V; Gibson, W R; Gingrich, D M; Glenzinski, D A; Goldberg, J; Gorn, W; Grandi, C; Gross, E; Grunhaus, Jacob; Gruwé, M; Hanson, G G; Hansroul, M; Hapke, M; Hargrove, C K; Hartmann, C; Hauschild, M; Hawkes, C M; Hawkings, R; Hemingway, Richard J; Herndon, M; Herten, G; Heuer, R D; Hildreth, M D; Hill, J C; Hillier, S J; Hobson, P R; Höcker, Andreas; Homer, R James; Honma, A K; Horváth, D; Hossain, K R; Howard, R; Hüntemeyer, P; Igo-Kemenes, P; Imrie, D C; Ishii, K; Jacob, F R; Jawahery, A; Jeremie, H; Jimack, Martin Paul; Joly, A; Jones, C R; Jovanovic, P; Junk, T R; Karlen, D A; Kartvelishvili, V G; Kawagoe, K; Kawamoto, T; Kayal, P I; Keeler, Richard K; Kellogg, R G; Kennedy, B W; Klier, A; Kluth, S; Kobayashi, T; Kobel, M; Koetke, D S; Kokott, T P; Kolrep, M; Komamiya, S; Kowalewski, R V; Kress, T; Krieger, P; Von Krogh, J; Kyberd, P; Lafferty, G D; Lanske, D; Lauber, J; Lautenschlager, S R; Lawson, I; Layter, J G; Lazic, D; Lee, A M; Lefebvre, E; Lellouch, Daniel; Letts, J; Levinson, L; Liebisch, R; List, B; Littlewood, C; Lloyd, A W; Lloyd, S L; Loebinger, F K; Long, G D; Losty, Michael J; Ludwig, J; Liu, D; Macchiolo, A; MacPherson, A L; Mannelli, M; Marcellini, S; Markopoulos, C; Martin, A J; Martin, J P; Martínez, G; Mashimo, T; Mättig, P; McDonald, W J; McKenna, J A; McKigney, E A; McMahon, T J; McPherson, R A; Meijers, F; Menke, S; Merritt, F S; Mes, H; Meyer, J; Michelini, Aldo; Mihara, S; Mikenberg, G; Miller, D J; Mir, R; Mohr, W; Montanari, A; Mori, T; Nagai, K; Nakamura, I; Neal, H A; Nellen, B; Nisius, R; O'Neale, S W; Oakham, F G; Odorici, F; Ögren, H O; Oreglia, M J; Orito, S; Pálinkás, J; Pásztor, G; Pater, J R; Patrick, G N; Patt, J; Pérez-Ochoa, R; Petzold, S; Pfeifenschneider, P; Pilcher, J E; Pinfold, James L; Plane, D E; Poffenberger, P R; Poli, B; Polok, J; Przybycien, M B; Rembser, C; Rick, Hartmut; Robertson, S; Robins, S A; Rodning, N L; Roney, J M; Roscoe, K; Rossi, A M; Rozen, Y; Runge, K; Runólfsson, O; Rust, D R; Sachs, K; Saeki, T; Sahr, O; Sang, W M; Sarkisyan-Grinbaum, E; Sbarra, C; Schaile, A D; Schaile, O; Scharf, F; Scharff-Hansen, P; Schieck, J; Schmitt, B; Schmitt, S; Schöning, A; Schörner-Sadenius, T; Schröder, M; Schumacher, M; Schwick, C; Scott, W G; Seuster, R; Shears, T G; Shen, B C; Shepherd-Themistocleous, C H; Sherwood, P; Siroli, G P; Sittler, A; Skuja, A; Smith, A M; Snow, G A; Sobie, Randall J; Söldner-Rembold, S; Sproston, M; Stahl, A; Stephens, K; Steuerer, J; Stoll, K; Strom, D; Ströhmer, R; Tafirout, R; Talbot, S D; Tanaka, S; Taras, P; Tarem, S; Teuscher, R; Thiergen, M; Thomson, M A; Von Törne, E; Torrence, E; Towers, S; Trigger, I; Trócsányi, Z L; Tsur, E; Turcot, A S; Turner-Watson, M F; Van Kooten, R; Vannerem, P; Verzocchi, M; Vikas, P; Voss, H; Wäckerle, F; Wagner, A; Ward, C P; Ward, D R; Watkins, P M; Watson, A T; Watson, N K; Wells, P S; Wermes, N; White, J S; Wilson, G W; Wilson, J A; Wyatt, T R; Yamashita, S; Yekutieli, G; Zacek, V; Zer-Zion, D

    1998-01-01

    A search for the resonant production of high mass photon pairs associated with a leptonic or hadronic system has been performed using a data sample of 57.7 pb-1 collected at an average center-of-mass energy of 182.6 GeV with the OPAL detector at LEP. No evidence for contributions from non-Standard Model physics processes was observed. The observed candidates are used to place limits on BR (H to gamma gamma) assuming a Standard Model production rate for Higgs boson masses up to 92 GeV, and on the production cross section for a scalar resonance decaying into di-photons up to a mass of 170 GeV. Upper limits on the product of cross section and branching ratios, sigma(e+e- to XY) * BR(X to gamma gamma) * BR(Y to f fbar) as low as 70fb are obtained over the M(X) range 10 - 170 GeV for the case where 10 90 GeV, independent of the nature of Y provided it decays to a fermion pair and has negligible width. Higgs scalars which couple only to gauge bosons at Standard Model strength are ruled out up to a mass of 90.0 GeV...

  12. Amorphous GeOx-Coated Reduced Graphene Oxide Balls with Sandwich Structure for Long-Life Lithium-Ion Batteries.

    Science.gov (United States)

    Choi, Seung Ho; Jung, Kyeong Youl; Kang, Yun Chan

    2015-07-01

    Amorphous GeOx-coated reduced graphene oxide (rGO) balls with sandwich structure are prepared via a spray-pyrolysis process using polystyrene (PS) nanobeads as sacrificial templates. This sandwich structure is formed by uniformly coating the exterior and interior of few-layer rGO with amorphous GeOx layers. X-ray photoelectron spectroscopy analysis reveals a Ge:O stoichiometry ratio of 1:1.7. The amorphous GeOx-coated rGO balls with sandwich structure have low charge-transfer resistance and fast Li(+)-ion diffusion rate. For example, at a current density of 2 A g(-1), the GeOx-coated rGO balls with sandwich and filled structures and the commercial GeO2 powders exhibit initial charge capacities of 795, 651, and 634 mA h g(-1), respectively; the corresponding 700th-cycle charge capacities are 758, 579, and 361 mA h g(-1). In addition, at a current density of 5 A g(-1), the rGO balls with sandwich structure have a 1600th-cycle reversible charge capacity of 629 mA h g(-1) and a corresponding capacity retention of 90.7%, as measured from the maximum reversible capacity at the 100th cycle.

  13. Commissioning and Operation of 12 GeV CEBAF

    Energy Technology Data Exchange (ETDEWEB)

    Freyberger, Arne P. [Jefferson Lab., Newport News, VA (United States)

    2015-09-01

    The Continuous Electron Beam Accelerator Facility (CEBAF) located at the Thomas Jefferson National Accelerator Laboratory (JLab) has been recently upgraded to deliver continuous electron beams to the experimental users at a maximum energy of 12 GeV, three times the original design energy of 4 GeV. This paper will present an overview of the upgrade, referred to as the 12GeV upgrade, and highlights from recent beam commissioning results.

  14. Optical phonons in Ge quantum dots obtained on Si(111)

    CERN Document Server

    Talochkin, A B

    2002-01-01

    The light combination scattering on the optical phonons in the Ge quantum dots, obtained on the Si surface of the (111) orientation through the molecular-beam epitaxy, is studied. The series of lines, connected with the phonon spectrum quantization, was observed. It is shown, that the phonon modes frequencies are well described by the elastic properties and dispersion of the voluminous Ge optical phonons. The value of the Ge quantum dots deformation is determined

  15. Integration of highly-strained SiGe materials in 14 nm and beyond nodes FinFET technology

    Science.gov (United States)

    Wang, Guilei; Abedin, Ahmad; Moeen, Mahdi; Kolahdouz, Mohammadreza; Luo, Jun; Guo, Yiluan; Chen, Tao; Yin, Huaxiang; Zhu, Huilong; Li, Junfeng; Zhao, Chao; Radamson, Henry H.

    2015-01-01

    SiGe has been widely used as stressors in source/drain (S/D) regions of Metal-Oxide-Semiconductor Field Effect Transistor (MOSFET) to enhance the channel mobility. In this study, selectively grown Si1-xGex (0.33 ⩽ x ⩽ 0.35) with boron concentration of 1 × 1020 cm-3 was used to elevate the S/D regions on bulk FinFETs in 14 nm technology node. The epitaxial quality of SiGe layers, SiGe profile and the strain amount of the SiGe layers were investigated. In order to in-situ clean the Si-fins before SiGe epitaxy, a series of prebaking experiments at temperature ranging from 740 to 825 °C were performed. The results showed that the thermal budget needs to be limited to 780-800 °C in order to avoid any damage to the shape of Si-fins but to remove the native oxide which is essential for high epitaxial quality. In this study, a kinetic gas model was also applied to predict the SiGe growth profile on Si-fins with trapezoidal shape. The input parameters for the model include growth temperature, partial pressures of reactant gases and the chip layout. By knowing the epitaxial profile, the strain to the Si-fins exerted by SiGe layers can be calculated. This is important in understanding the carrier transport in the FinFETs. The other benefit of the modeling is that it provides a cost-effective alternative for epitaxy process development as the SiGe profile can be readily predicted for any chip layout in advance.

  16. Indium (In)- and tin (Sn)-based metal induced crystallization (MIC) on amorphous germanium (α-Ge)

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Dong-Ho; Park, Jin-Hong, E-mail: jhpark9@skku.edu

    2014-12-15

    Highlights: • In- and Sn-based MIC phenomenon on amorphous (α)-Ge is newly reported. • The In- and Sn-MIC phenomenon respectively started at 250 °C and 400 °C. • The Sn-MIC process presents higher sheet resistance and bigger crystal grains. - Abstract: In this paper, metal-induced crystallization (MIC) phenomenon on α-Ge by indium (In) and tin (Sn) are thoroughly investigated. In- and Sn-MIC process respectively started at 250 °C and 400 °C. Compared to the previously reported MIC samples including In-MIC, Sn-MIC process presented higher sheet resistance (similar to that of SPC) and bigger crystal grains above 50 nm (slightly smaller than that of SPC). According to SIMS analysis, Sn atoms diffused more slowly into Ge than In at 400 °C, providing lower density of heterogeneous nuclei induced by metals and consequently larger crystal grains.

  17. P-doped carbon nanotube and Ge-doped boron nitride nanotube as a real catalysts for N2O + SiO reaction: DFT examination

    Science.gov (United States)

    Najafi, Meysam

    2017-10-01

    The mechanisms of N2O reduction via SiO on surfaces of P-doped carbon nanotube (CNT) and Si-doped boron nitride nanotube (BNNT) by density functional theory were investigated. The P and Si adsorption energies on surfaces of CNT and BNNT were calculated to be -314.6 and -347.2 kcal/mol, respectively. The decomposition of CNT-P-N2O and BNNT-Ge-N2O and reduction of CNT-P-O* and BNNT-Ge-O* by SiO molecule were investigated. The BNNT-Ge-O* has lower activation energy and more negative ΔGad rather than CNT-P-O* and therefore the process of BNNT-Ge-O* + SiO → BNNT-Ge + SiO2 was spontaneous more than CNT-P-O* + SiO → CNT-P + SiO2 from thermodynamic view point. Results show that activation energy for BNNT-Ge-O* + N2O → BNNT-Ge-O2 + N2 and CNT-P-O* + N2O → CNT-P-O2 + N2 reactions were 27.89 and 31.56 kcal/mol, respectively. The results show that P-doped CNT and Ge-doped BNNT can be observed as a real catalyst for the reduction of N2O.

  18. Study of dimuon pair production in e+ e- collisions from 196 - 202 GeV

    CERN Document Server

    Flacher, Henning

    2000-01-01

    In this thesis the electroweak process $e^{+} e^{-}$ --> $μ^{+} μ^{-}$ was studied and an inclusive and exclusive cross section were measured. Furthermore the forward-backward asymmetry Afb was determined from the exclusive event sample. The investigated data was recorded·with the detector ALEPH at centre-of-mass energies of 196, 200 and 202 GeV resulting in a total integrated luminosity of 208.1 pb-1. All the measured results are in good agreement with the Standard Model. From the measurements of total cross sections and angular distributions for all the two fermion processes at energies from 130 - 202 GeV limits on processes beyond the Standard Model were derived. For Contact Interactions they were found to be of the order of 10 TeV while for TeV-Scale Quantum Gravity a limit for the ultra-violet cut-off parameter of A::1 TeV could be derived.

  19. A SiGe BiCMOS Instrumentation Channel for Extreme Environment Applications

    Directory of Open Access Journals (Sweden)

    Chandradevi Ulaganathan

    2010-01-01

    Full Text Available An instrumentation channel is designed, implemented, and tested in a 0.5-μm SiGe BiCMOS process. The circuit features a reconfigurable Wheatstone bridge network that interfaces an assortment of external sensors to signal processing circuits. Also, analog sampling is implemented in the channel using a flying capacitor configuration. The analog samples are digitized by a low-power multichannel A/D converter. Measurement results show that the instrumentation channel supports input signals up to 200 Hz and operates across a wide temperature range of -180°C to 125°C. This work demonstrates the use of a commercially available first generation SiGe BiCMOS process in designing circuits suitable for extreme environment applications.

  20. The Proposed Majorana 76Ge Double-Beta Decay Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Aalseth, Craig E; Anderson, Dale N; Arthur, Richard J; Avignone, Frank; Baktash, Cryus; Ball, Thedore; Barabash, Alexander S; Bertrand, F; Brodzinski, Ronald L; Brudanin, V; Bugg, William; Champagne, A E; Chan, Yuen-Dat; Cianciolo, Thomas V; Collar, J I; Creswick, R W; Descovich, M; Di Marco, Marie; Doe, P J; Dunham, Glen C; Efremenko, Yuri; Egerov, V; Ejiri, H; Elliott, Steven R; Emanuel, A; Fallon, Paul; Farach, H A; Gaitskell, R J; Gehman, Victor; Grzywacz, Robert; Hallin, A; Hazma, R; Henning, R; Hime, Andrew; Hossbach, Todd W; Jordan, David V; Kazkaz, K; Kephart, Jeremy; King, G S; Kochetov, Oleg; Konovalov, S; Kouzes, Richard T; Lesko, Kevin; Luke, P; Luzum, M; Macchiavelli, A O; McDonald, A; Mei, Dongming; Miley, Harry S; Mills, G B; Mokhtarani, A; Nomachi, Masaharu; Orrell, John L; Palms, John M; Poon, Alan; Radford, D C; Reeves, James H; Robertson, R G. H.; Runkle, Robert C; Rykaczewski, Krzysztof P; Saburov, Konstantin; Sandukovsky, Viatcheslav; Sonnenschein, Andrew; Tornow, W; Tull, C; van de Water, R G; Vanushin, Igor; Vetter, Kai; Warner, Ray A; Wilkerson, John F; Wouters, Jan M; Young, A R; Yumatov, V

    2005-01-01

    The proposed Majorana experiment is based on an array of segmented intrinsic Ge detectors with a total mass of 500 kg of Ge isotopically enriched to 86% in 76Ge. Background reduction will be accomplished by: material selection, detector segmentation, pulse shape analysis, electro-formation of copper parts, and granularity of detector spacing. The predicted experimental sensitivity for measurement of the neutrinoless double-beta decay mode of 76Ge, over a data acquisition period of 5000 kg•y, is ~ 4 x 1027 y.

  1. On the macroscopic formation length for GeV photons

    CERN Document Server

    Thomsen, H D; Kirsebom, K; Knudsen, H; Uggerhøj, E; Uggerhøj1, U I; Sona, P; Mangiarotti, A; Ketel, T J; Dizdar, A; Dalton, M M; Ballestrero, S; Connell, S H

    2009-01-01

    Experimental results for the radiative energy loss of 206 and 234 GeV electrons in 5–10 μm thin Ta targets are presented. An increase in radiation emission probability at low photon energies compared to a 100 μm thick target is observed. This increase is due to the formation length of the GeV photons exceeding the thickness of the thin foils, the so-called Ternovskii–Shul'ga–Fomin (TSF) effect. The formation length of GeV photons from a multi-hundred GeV projectile is through the TSF effect shown directly to be a factor 1010 longer than their wavelength.

  2. Formation of extended defects in SiGe/Si heterostructures with SiGeC intermediate layers

    Energy Technology Data Exchange (ETDEWEB)

    Vdovin, V.I.; Reznik, V.Ya. [Institute for Chemical Problems of Microelectronics, Moscow (Russian Federation); Torack, T.A.; Fei, Lu [MEMC Inc, St Peters, MO (United States); Mil' vidskii, M.G. [Institute of Rare Metals ' Giredmet' , Moscow (Russian Federation); Falster, R. [MEMC Electronic Materials SpA, Novara (Italy)

    2007-07-01

    The generation of misfit dislocations (MDs) and stacking faults (SFs) was studied by TEM and preferential chemical etching in multilayer Si(001)/SiGe/SiGeC(10 nm)/SiGe/Si heterostructures grown by CVD at 650 C. Prior to growth of Si layer, the other part of heterostructure was annealed at 950 C in the growth chamber to get relaxed buffer layers and strained Si layer free of extended defects. We used SiGe alloys with Ge content of 24 at.% and C content of 0.5 at.%. Carbon in the strained SiGe matrix was found to promote high rates of strain relaxation through the nucleation of perfect dislocation loops close to the interface with Si substrate. For Si layer thickness >10 nm, threading dislocations split in these layers under tensile strain to form SFs. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  3. Investigation of Ge1-xSnx/Ge with high Sn composition grown at low-temperature

    Directory of Open Access Journals (Sweden)

    I. S. Yu

    2011-12-01

    Full Text Available We report on experimental investigations of the growth of Ge1-xSnx film with thickness above the critical thickness using Molecular Beam Epitaxy. A series of Ge1-xSnx films with various Sn compositions up to 14% are deposited on a Ge buffer layer for growth at low temperatures close to the melting point of Sn. Analysis of various measurements shows that the Ge1-xSnx film is defect free in the XTEM image and that Sn is distributed almost uniformly in the film for Sn compositions up to 9.3%. The Sn composition of the films is higher than the Sn composition that is theoretically predicted to cause the energy band of Ge to change from an indirect to a direct bandgap; thus, the present investigation provides a method for growing direct bandgap GeSn film, which is desired for use in applications involving optoelectronic devices.

  4. GeSn p-i-n photodetectors with GeSn layer grown by magnetron sputtering epitaxy

    Science.gov (United States)

    Zheng, Jun; Wang, Suyuan; Liu, Zhi; Cong, Hui; Xue, Chunlai; Li, Chuanbo; Zuo, Yuhua; Cheng, Buwen; Wang, Qiming

    2016-01-01

    We report an investigation of normal-incidence GeSn-based p-i-n photodetectors (PDs) with a Ge0.94Sn0.06 active layer grown using sputter epitaxy on a Ge(100) substrate. A low dark current density of 0.24 A/cm2 was obtained at a reverse bias of 1 V. A high optical responsivity of the Ge0.94Sn0.06/Ge p-i-n PDs at zero bias was achieved, with an optical response wavelength extending to 1985 nm. The temperature-dependent optical-response measurement was performed, and a clear redshift absorption edge was observed. This work presents an approach for developing efficient and cost-effective GeSn-based infrared devices.

  5. Gamma bandgap determination in pseudomorphic GeSn layers grown on Ge with up to 15% Sn content

    Science.gov (United States)

    Gassenq, A.; Milord, L.; Aubin, J.; Guilloy, K.; Tardif, S.; Pauc, N.; Rothman, J.; Chelnokov, A.; Hartmann, J. M.; Reboud, V.; Calvo, V.

    2016-12-01

    Adding Tin (Sn) to Germanium (Ge) can turn it into a direct bandgap group IV semiconductor emitting in the mid-infrared wavelength range. Several approaches are currently being investigated to improve the GeSn devices. It has been theoretically predicted that the strain can improve their optical properties. However, the impact of strain on band parameters has not yet been measured for really high Sn contents (i.e., above 11%). In this work, we have used the photocurrent and photoluminescence spectroscopy to measure the gamma bandgap in compressively strained GeSn layers grown on Ge buffers. A good agreement is found with the modeling and the literature. We show here that the conventional GeSn deformation potentials used in the literature for smaller Sn contents can be applied up to 15% Sn. This gives a better understanding of strained-GeSn for future laser designs.

  6. In-situ Ga doping of fully strained Ge1-xSnx heteroepitaxial layers grown on Ge(001) substrates

    DEFF Research Database (Denmark)

    Shimura, Y.; Takeuchi, S.; Nakatsuka, O.;

    2012-01-01

    to the introduction of dislocations, due to the increase in the strain of the Ge1-xSnx layers. We achieved the growth of a fully strained Ge0.922Sn0.078 layer on Ge with a Ga concentration of 5.5×1019 /cm3 without any dislocations and stacking faults. The resistivity of the Ga-doped Ge1-xSnx layer decreased as the Sn...... content was increased. This decrease was due to an increase in the carrier concentration, with an increase in the activation level of Ga atoms in the Ge1-xSnx epitaxial layers being induced by the introduction of Sn. As a result, we found that the resistivity for the Ge0.950Sn0.050 layer annealed at 600°C...

  7. Magneto-transport properties of MnGeP2 and MnGeAs2 films

    Directory of Open Access Journals (Sweden)

    Yunki Kim

    2016-12-01

    Full Text Available MnGeAs2 and MnGeP2 thin films were deposited on GaAs and Si substrates. For these film samples, roomtemperature ferromagnetism was observed from magnetization and resistance measurements and verified from hysteresis in magnetization measurements. Hysteresis as well as anomalous behavior in Hall effect measurements was found in the deposited MnGeAs2 and MnGeP2 films, implying spin polarization of the mobile carriers in the films. The Hall resistance measurements above the ferromagnetic transition temperature showed that the carriers are n-type in MnGeAs2 and p-type in MnGeP2.

  8. Multi-GeV Electron Spectrometer

    CERN Document Server

    Faccini, R; Bacci, A; Batani, D; Bellaveglia, M; Benocci, R; Benedetti, C; Cacciotti, L; Cecchetti, C A; Clozza, A; Cultrera, L; Di~Pirro, G; Drenska, N; Anelli, F; Ferrario, M; Filippetto, D; Fioravanti, S; Gallo, A; Gamucci, A; Gatti, G; Ghigo, A; Giulietti, A; Giulietti, D; Gizzi, L A; Koester, P; Labate, L; Levato, T; Lollo, V; Londrillo, P; Martellotti, S; Pace, E; Patack, N; Rossi, A; Tani, F; Serafini, L; Turchetti, G; Vaccarezza, C; Valente, P

    2010-01-01

    The advance in laser plasma acceleration techniques pushes the regime of the resulting accelerated particles to higher energies and intensities. In particular the upcoming experiments with the FLAME laser at LNF will enter the GeV regime with almost 1pC of electrons. From the current status of understanding of the acceleration mechanism, relatively large angular and energy spreads are expected. There is therefore the need to develop a device capable to measure the energy of electrons over three orders of magnitude (few MeV to few GeV) under still unknown angular divergences. Within the PlasmonX experiment at LNF a spectrometer is being constructed to perform these measurements. It is made of an electro-magnet and a screen made of scintillating fibers for the measurement of the trajectories of the particles. The large range of operation, the huge number of particles and the need to focus the divergence present unprecedented challenges in the design and construction of such a device. We will present the design ...

  9. A 100 GeV SLAC Linac

    Energy Technology Data Exchange (ETDEWEB)

    Farkas, Zoltan D

    2002-03-07

    The SLAC beam energy can be increased from the current 50 GeV to 100 GeV, if we change the operating frequency from the present 2856 MHz to 11424 MHz, using technology developed for the NLC. We replace the power distribution system with a proposed NLC distribution system as shown in Fig. 1. The four 3 meter s-band 820 nS fill time accelerator sections are replaced by six 2 meter x-band 120 nS fill time sections. Thus the accelerator length per klystron retains the same length, 12 meters. The 4050 65MW-3.5 {micro}S klystrons are replaced by 75MW-1.5 {micro}S permanent magnet klystrons developed here and in Japan. The present input to the klystrons would be multiplied by a factor of 4 and possibly amplified. The SLED [1] cavities have to be replaced. The increase in beam voltage is due to the higher elastance to group velocity ratio, higher compression ratio and higher unloaded to external Q ratio of the new SLED cavities. The average power input is reduced because of the narrower klystron pulse width and because the klystron electro-magnets are replaced by permanent magnets.

  10. Towards simultaneous achievement of carrier activation and crystallinity in Ge and GeSn with heated phosphorus ion implantation: An optical study

    Science.gov (United States)

    D'Costa, Vijay Richard; Wang, Lanxiang; Wang, Wei; Lim, Sin Leng; Chan, Taw Kuei; Chua, Lye Hing; Henry, Todd; Zou, Wei; Hatem, Christopher; Osipowicz, Thomas; Tok, Eng Soon; Yeo, Yee-Chia

    2014-09-01

    We have investigated the optical properties of Ge and GeSn alloys implanted with phosphorus ions at 400 °C by spectroscopic ellipsometry from far-infrared to ultraviolet. The dielectric response of heated GeSn implants displays structural and transport properties similar to those of heated Ge implants. The far-infrared dielectric function of as-implanted Ge and GeSn shows the typical free carrier response which can be described by a single Drude oscillator. Bulk Ge-like critical points E1, E1 + Δ1, E0', and E2 are observed in the visible-UV dielectric function of heated Ge and GeSn indicating single crystalline quality of the as-implanted layers. Although the implantation at 400 °C recovers crystallinity in both Ge and GeSn, an annealing step is necessary to enhance the carrier activation.

  11. Si/Ge photodiodes for coherent and analog communication

    Science.gov (United States)

    Piels, Molly

    allows optimization of the absorption profile independently from the RC-limited frequency response and compression current and ultimately enables larger saturation current-bandwidth products. This thesis includes the first theory, fabrication, and measurement of a uni-traveling carrier photodiode on the Si/Ge platform. Key contributions include an accurate nonlinear device model and a complete set of processes and design rules for fabricating Ge devices in the UCSB nanofab. The UTC structure is shown to be useful in extending the bandwidth and power handling capabilities of waveguide-integrated photodiodes, especially at high frequencies.

  12. Magnetic and electrical properties of epitaxial GeMn

    Energy Technology Data Exchange (ETDEWEB)

    Ahlers, Stefan

    2009-01-15

    In this work, GeMn magnetic semiconductors will be investigated. The fabrication of GeMn thin films with Mn contents up to 11.7% was realised with molecular beam epitaxy. At a fabrication temperature of 60 C, the suppression of Mn{sub x}Ge{sub y} phases could reproducibly be obtained. Dislocation free epitaxy of diamond-lattice type GeMn thin films was observed. In all fabrication conditions where Mn{sub x}Ge{sub y} suppression was feasible, an inhomogeneous dispersion of Mn was observed in form of a self-assembly of nanometre sized, Mn rich regions in a Ge rich matrix. Each Mn rich region exhibits ferromagnetic coupling with high Curie temperatures exceeding, in part, room temperature. The local ferromagnetic ordering leads to the formation of large, spatially separated magnetic moments, which induce a superparamagnetic behaviour of the GeMn thin films. At low temperatures {<=} 20 K, remanent behaviour was found to emerge. X-ray absorption experiments revealed a similarity of the Mn incorporation in diamond-lattice type GeMn thin films and in the hexagonal lattice of the intermetallic Mn{sub 5}Ge{sub 3} phase, respectively. These tetrahedra represent building blocks of the Mn{sub 5}Ge{sub 3} unit cell. The incorporation of Mn{sub 5}Ge{sub 3} building blocks was found to be accompanied by local structural disorder. The electrical properties of GeMn thin films were addressed by transport measurements. It was shown that by using a n-type Ge substrate, a pn energy barrier between epilayers and substrate to suppress parallel substrate conduction paths can be introduced. With the pn barrier concept, first results on the magnetotransport behaviour of GeMn thin films were obtained. GeMn was found to be p-type, but of high resistivity. a series of GeMn thin films was fabricated, where intermetallic Mn{sub x}Ge{sub y} phase separation was supported in a controlled manner. Phase separation was found to result in the formation of partially coherent, nanometre sized Mn{sub 5

  13. Fabrication of GeSn-multiple quantum wells by overgrowth of Sn on Ge by using molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, F. [Institute for Semiconductor Engineering, University of Stuttgart, 70569 Stuttgart (Germany); Centre of Physics, University of Minho, Campus de Gualtar, 4710-057 Braga (Portugal); Fischer, I. A.; Schulze, J. [Institute for Semiconductor Engineering, University of Stuttgart, 70569 Stuttgart (Germany); Benedetti, A. [CACTI, Univ. de Vigo, Campus Universitario Lagoas Marcosende 15, Vigo (Spain); Zaumseil, P. [IHP GmbH, Innovations for High Performance Microelectronics, Leibniz-Institut für innovative Mikroelektronik, Im Technologiepark 25, 15236 Frankfurt (Oder) (Germany); Cerqueira, M. F.; Vasilevskiy, M. I. [Centre of Physics, University of Minho, Campus de Gualtar, 4710-057 Braga (Portugal); Stefanov, S.; Chiussi, S. [Dpto. Fisica Aplicada, Univ. de Vigo, Rua Maxwell s/n, Campus Universitario Lagoas Marcosende, Vigo (Spain)

    2015-12-28

    We report on the fabrication and structural characterization of epitaxially grown ultra-thin layers of Sn on Ge virtual substrates (Si buffer layer overgrown by a 50 nm thick Ge epilayer followed by an annealing step). Samples with 1 to 5 monolayers of Sn on Ge virtual substrates were grown using solid source molecular beam epitaxy and characterized by atomic force microscopy. We determined the critical thickness at which the transition from two-dimensional to three-dimensional growth occurs. This transition is due to the large lattice mismatch between Ge and Sn (≈14.7%). By depositing Ge on top of Sn layers, which have thicknesses at or just below the critical thickness, we were able to fabricate ultra-narrow GeSn multi-quantum-well structures that are fully embedded in Ge. We report results on samples with one and ten GeSn wells separated by 5 and 10 nm thick Ge spacer layers that were characterized by high resolution transmission electron microscopy and X-ray diffraction. We discuss the structure and material intermixing observed in the samples.

  14. Room-temperature direct-bandgap photoluminescence from strain-compensated Ge/SiGe multiplequantum wells on silicon

    Institute of Scientific and Technical Information of China (English)

    Hu Wei-Xuan; Cheng Bu-Wen; Xue Chun-Lai; Zhang Guang-Ze; Su Shao-Jian; Zuo Yu-Hua; Wang Qi-Ming

    2012-01-01

    Strain-compensated Ge/Si0.15Ge0.s5 multiple quantum wells were grown on an Si0.1Ge0.9 virtual substrate using ultrahigh vacuum chemical vapor deposition technology on an n+-Si(001) substrate.Photoluminescence measurements were performed at room temperature,and the quantum confinement effect of the direct-bandgap transitions of a Ge quantum well was observed,which is in good agreement with the calculated results.The luminescence mechanism was discussed by recombination rate analysis and the temperature dependence of the luminescence spectrum.

  15. Low temperature growth of heavy boron-doped hydrogenated Ge epilayers and its application in Ge/Si photodetectors

    Science.gov (United States)

    Kuo, Wei-Cheng; Lee, Ming Jay; Wu, Mount-Learn; Lee, Chien-Chieh; Tsao, I.-Yu; Chang, Jenq-Yang

    2017-04-01

    In this study, heavily boron-doped hydrogenated Ge epilayers are grown on Si substrates at a low growth temperature (220 °C). The quality of the boron-doped epilayers is dependent on the hydrogen flow rate. The optical emission spectroscopic, X-ray diffraction and Hall measurement results demonstrate that better quality boron-doped Ge epilayers can be obtained at low hydrogen flow rates (0 sccm). This reduction in quality is due to an excess of hydrogen in the source gas, which breaks one of the Ge-Ge bonds on the Ge surface, leading to the formation of unnecessary dangling bonds. The structure of the boron doped Ge epilayers is analyzed by transmission electron microscopy and atomic force microscopy. In addition, the performance, based on the I-V characteristics, of Ge/Si photodetectors fabricated with boron doped Ge epilayers produced under different hydrogen flow rates was examined. The photodetectors with boron doped Ge epilayers produced with a low hydrogen flow rate (0 sccm) exhibited a higher responsivity of 0.144 A/W and a lower dark current of 5.33 × 10-7 A at a reverse bias of 1 V.

  16. Solid state synthesis of Mn5Ge3 in Ge/Ag/Mn trilayers: Structural and magnetic studies

    Science.gov (United States)

    Myagkov, V. G.; Bykova, L. E.; Matsynin, A. A.; Volochaev, M. N.; Zhigalov, V. S.; Tambasov, I. A.; Mikhlin, Yu L.; Velikanov, D. A.; Bondarenko, G. N.

    2017-02-01

    The thin-film solid-state reaction between elemental Ge and Mn across chemically inert Ag layers with thicknesses of (0, 0.3, 1 and 2.2 μm) in Ge/Ag/Mn trilayers was studied for the first time. The initial samples were annealed at temperatures between 50 and 500 °C at 50 °C intervals for 1 h. The initiation temperature of the reaction for Ge/Mn (without a Ag barrier layer) was 120 °C and increased slightly up to 250 °C when the Ag barrier layer thickness increased up to 2.2 μm. In spite of the Ag layer, only the ferromagnetic Mn5Ge3 compound and the Nowotny phase were observed in the initial stage of the reaction after annealing at 500 °C. The cross-sectional studies show that during Mn5Ge3 formation the Ge is the sole diffusing species. The magnetic and cross-sectional transmission electron microscopy (TEM) studies show an almost complete transfer of Ge atoms from the Ge film, via a 2.2 μm Ag barrier layer, into the Mn layer. We attribute the driving force of the long-range transfer to the long-range chemical interactions between reacting Mn and Ge atoms.

  17. Photoconductivity of ultra-thin Ge(GeSn) layers grown in Si by low-temperature molecular beam epitaxy

    Science.gov (United States)

    Talochkin, A. B.; Chistokhin, I. B.; Mashanov, V. I.

    2016-04-01

    Photoconductivity (PC) spectra of Si/Ge(GeSn)/Si structures with the ultra-thin (1.0-2.3 nm) Ge and GeSn alloy layers grown by the low-temperature (T = 100 °C) molecular beam epitaxy are studied. Photoresponse in the range of 1.2-0.4 eV related to light absorption in the buried Ge(GeSn) layer is observed. It is shown that in case of lateral PC, a simple diffusion model can be used to determine the absorption coefficient of this layer α ˜ 105 cm-1. This value is 100 times larger than that of a single Ge quantum dot layer and is reached significantly above the band gap of most bulk semiconductors. The observed absorption is caused by optical transitions between electron and hole states localized at the interfaces. The anomalous high value of α can be explained by the unusual state of Ge(GeSn) layer with high concentration of dangling bonds, the optical properties of which have been predicted theoretically by Knief and von Niessen (Phys. Rev. B 59, 12940 (1999)).

  18. Fabrication of GeSn-multiple quantum wells by overgrowth of Sn on Ge by using molecular beam epitaxy

    Science.gov (United States)

    Oliveira, F.; Fischer, I. A.; Benedetti, A.; Zaumseil, P.; Cerqueira, M. F.; Vasilevskiy, M. I.; Stefanov, S.; Chiussi, S.; Schulze, J.

    2015-12-01

    We report on the fabrication and structural characterization of epitaxially grown ultra-thin layers of Sn on Ge virtual substrates (Si buffer layer overgrown by a 50 nm thick Ge epilayer followed by an annealing step). Samples with 1 to 5 monolayers of Sn on Ge virtual substrates were grown using solid source molecular beam epitaxy and characterized by atomic force microscopy. We determined the critical thickness at which the transition from two-dimensional to three-dimensional growth occurs. This transition is due to the large lattice mismatch between Ge and Sn (≈14.7%). By depositing Ge on top of Sn layers, which have thicknesses at or just below the critical thickness, we were able to fabricate ultra-narrow GeSn multi-quantum-well structures that are fully embedded in Ge. We report results on samples with one and ten GeSn wells separated by 5 and 10 nm thick Ge spacer layers that were characterized by high resolution transmission electron microscopy and X-ray diffraction. We discuss the structure and material intermixing observed in the samples.

  19. Ge/SiGe quantum confined Stark effect electro-absorption modulation with low voltage swing at λ = 1550 nm.

    Science.gov (United States)

    Dumas, D C S; Gallacher, K; Rhead, S; Myronov, M; Leadley, D R; Paul, D J

    2014-08-11

    Low-voltage swing (≤1.0 V) high-contrast ratio (6 dB) electro-absorption modulation covering 1460 to 1560 nm wavelength has been demonstrated using Ge/SiGe quantum confined Stark effect (QCSE) diodes grown on a silicon substrate. The heterolayers for the devices were designed using an 8-band k.p Poisson-Schrödinger solver which demonstrated excellent agreement with the experimental results. Modelling and experimental results demonstrate that by changing the quantum well width of the device, low power Ge/SiGe QCSE modulators can be designed to cover the S- and C-telecommunications bands.

  20. Li-Ge-H system: Hydrogenation and structural properties of LiGeHx (0

    Science.gov (United States)

    Pavlyuk, V.; Ciesielski, W.; Kulawik, D.; Prochwicz, W.; Rożdżyńska-Kiełbik, B.

    2016-11-01

    The synthesis, isothermal section at 450 °C of the Li-Ge-H system in the concentration region from 40 at.% Li to 70 at.% Li and structural characterizations of the observed phases are reported. The hydrogenation and structural properties of the LiGeHx (0 < x < 0.25) phase were studied by volumetric analysis and X-ray diffraction. The absorption of hydrogen by LiGe binary compound produce the ternary hydride phase LiGeHx (0 < x < 0.25), thus the volume tetragonal unit cell increases on 1.8 Å3. The LiGeHx solid solution is formed by means of the insertion of hydrogen atoms into tetrahedral voids of parent LiGe structure. The extension of homogeneity range of LiGeHx (0 < x < 0.25) phase and its crystal structure were more precisely refined using X-ray diffraction data. Electronic structure calculations reveal an increased occupation of electronic states at the Fermi level for LiGeHx in comparison to LiGe.

  1. Structural and optical properties of GaAs-based heterostructures with Ge and Ge/InGaAs quantum wells

    Energy Technology Data Exchange (ETDEWEB)

    Aleshkin, V. Ya.; Dubinov, A. A., E-mail: sanya@ipm.sci-nnov.ru; Drozdov, M. N. [Russian Academy of Sciences, Institute for Physics of Microstructures (Russian Federation); Zvonkov, B. N. [Nizhni Novgorod State University, Research Physical Technical Institute (Russian Federation); Kudryavtsev, K. E.; Tonkikh, A. A.; Yablonskiy, A. N. [Russian Academy of Sciences, Institute for Physics of Microstructures (Russian Federation); Werner, P. [Max Planck Institute of Microstructure Physics (Germany)

    2013-05-15

    GaAs-based heterostructures with Ge and Ge/InGaAs quantum wells are grown by laser-assisted sputtering. Structural and optical studies of the heterostructures are carried out. A broad photoluminescence line is observed in the wavelength range from 1300 to 1650 nm. The line corresponds to indirect transitions in the momentum space of the Ge quantum wells and to transitions between the In{sub 0.28}Ga{sub 0.72}As and Ge layers, indirect in coordinate space, but direct in momentum space.

  2. Toward 17µm pitch heterogeneously integrated Si/SiGe quantum well bolometer focal plane arrays

    Science.gov (United States)

    Ericsson, Per; Fischer, Andreas C.; Forsberg, Fredrik; Roxhed, Niclas; Samel, Björn; Savage, Susan; Stemme, Göran; Wissmar, Stanley; Öberg, Olof; Niklaus, Frank

    2011-06-01

    Most of today's commercial solutions for un-cooled IR imaging sensors are based on resistive bolometers using either Vanadium oxide (VOx) or amorphous Silicon (a-Si) as the thermistor material. Despite the long history for both concepts, market penetration outside high-end applications is still limited. By allowing actors in adjacent fields, such as those from the MEMS industry, to enter the market, this situation could change. This requires, however, that technologies fitting their tools and processes are developed. Heterogeneous integration of Si/SiGe quantum well bolometers on standard CMOS read out circuits is one approach that could easily be adopted by the MEMS industry. Due to its mono crystalline nature, the Si/SiGe thermistor material has excellent noise properties that result in a state-ofthe- art signal-to-noise ratio. The material is also stable at temperatures well above 450°C which offers great flexibility for both sensor integration and novel vacuum packaging concepts. We have previously reported on heterogeneous integration of Si/SiGe quantum well bolometers with pitches of 40μm x 40μm and 25μm x 25μm. The technology scales well to smaller pixel pitches and in this paper, we will report on our work on developing heterogeneous integration for Si/SiGe QW bolometers with a pixel pitch of 17μm x 17μm.

  3. Formation of Ge-Sn nanodots on Si(100 surfaces by molecular beam epitaxy

    Directory of Open Access Journals (Sweden)

    Yu Ing-Song

    2011-01-01

    Full Text Available Abstract The surface morphology of Ge0.96Sn0.04/Si(100 heterostructures grown at temperatures from 250 to 450°C by atomic force microscopy (AFM and scanning tunnel microscopy (STM ex situ has been studied. The statistical data for the density of Ge0.96Sn0.04 nanodots (ND depending on their lateral size have been obtained. Maximum density of ND (6 × 1011 cm-2 with the average lateral size of 7 nm can be obtained at 250°C. Relying on the reflection of high energy electron diffraction, AFM, and STM, it is concluded that molecular beam growth of Ge1-xSnx heterostructures with the small concentrations of Sn in the range of substrate temperatures from 250 to 450°C follows the Stranski-Krastanow mechanism. Based on the technique of recording diffractometry of high energy electrons during the process of epitaxy, the wetting layer thickness of Ge0.96Sn0.04 films is found to depend on the temperature of the substrate.

  4. GeSn-on-Si normal incidence photodetectors with bandwidths more than 40 GHz.

    Science.gov (United States)

    Oehme, Michael; Kostecki, Konrad; Ye, Kaiheng; Bechler, Stefan; Ulbricht, Kai; Schmid, Marc; Kaschel, Mathias; Gollhofer, Martin; Körner, Roman; Zhang, Wogong; Kasper, Erich; Schulze, Jörg

    2014-01-13

    GeSn (Sn content up to 4.2%) photodiodes with vertical pin structures were grown on thin Ge virtual substrates on Si by a low temperature (160 °C) molecular beam epitaxy. Vertical detectors were fabricated by a double mesa process with mesa radii between 5 µm and 80 µm. The nominal intrinsic absorber contains carrier densities from below 1 · 10(16) cm(-3) to 1 · 10(17) cm(-3) for Ge reference detectors and GeSn detectors with 4.2% Sn, respectively. The photodetectors were investigated with electrical and optoelectrical methods from direct current up to high frequencies (40 GHz). For a laser wavelength of 1550 nm an increasing of the optical responsivities (84 mA/W -218 mA/W) for vertical incidence detectors with thin (300 nm) absorbers as function of the Sn content were found. Most important from an application perspective all detectors had bandwidth above 40 GHz at enough reverse voltage which increased from zero to -5 V within the given Sn range. Increasing carrier densities (up to 1 · 10(17) cm(-3)) with Sn contents caused the depletion of the nominal intrinsic absorber at increasing reverse voltages.

  5. Difference gel electrophoresis (DiGE) identifies differentially expressed proteins in endoscopically-collected pancreatic fluid

    Science.gov (United States)

    Paulo, Joao A.; Lee, Linda S.; Banks, Peter A.; Steen, Hanno; Conwell, Darwin L.

    2012-01-01

    Alterations in the pancreatic fluid proteome of individuals with chronic pancreatitis may offer insights into the development and progression of the disease. The endoscopic pancreas function test (ePFT) can safely collect large volumes of pancreatic fluid that are potentially amenable to proteomic analyses using difference gel electrophoresis (DiGE) coupled with liquid chromatography-tandem mass spectrometry (LC-MS/MS). Pancreatic fluid was collected endoscopically using the ePFT method following secretin stimulation from three individuals with severe chronic pancreatitis and three chronic abdominal pain controls. The fluid was processed to minimize protein degradation and the protein profiles of each cohort, as determined by DiGE and LC-MS/MS, were compared. This DiGE-LC-MS/MS analysis reveals proteins that are differentially expressed in chronic pancreatitis compared to chronic abdominal pain controls. Proteins with higher abundance in pancreatic fluid from chronic pancreatitis individuals include: actin, desmoplankin, alpha-1-antitrypsin, SNC73, and serotransferrin. Those of relatively lower abundance include carboxypeptidase B, lipase, alpha-1-antichymotrypsin, alpha-2-macroglobulin, Arp2/3 subunit 4, glyceraldehyde-3-phosphate dehydrogenase, and protein disulfide isomerase. Endoscopic collection (ePFT) in tandem with DiGE-LC-MS/MS is a suitable approach for pancreatic fluid proteome analysis, however, further optimization of our protocol, as outlined herein, may improve proteome coverage in future analyses. PMID:21792986

  6. Single photon detection in a waveguide-coupled Ge-on-Si lateral avalanche photodiode.

    Science.gov (United States)

    Martinez, Nicholas J D; Gehl, Michael; Derose, Christopher T; Starbuck, Andrew L; Pomerene, Andrew T; Lentine, Anthony L; Trotter, Douglas C; Davids, Paul S

    2017-07-10

    We examine gated-Geiger mode operation of an integrated waveguide-coupled Ge-on-Si lateral avalanche photodiode (APD) and demonstrate single photon detection at low dark count for this mode of operation. Our integrated waveguide-coupled APD is fabricated using a selective epitaxial Ge-on-Si growth process resulting in a separate absorption and charge multiplication (SACM) design compatible with our silicon photonics platform. Single photon detection efficiency and dark count rate is measured as a function of temperature in order to understand and optimize performance characteristics in this device. We report single photon detection of 5.27% at 1310 nm and a dark count rate of 534 kHz at 80 K for a Ge-on-Si single photon avalanche diode. Dark count rate is the lowest for a Ge-on-Si single photon detector in this range of temperatures while maintaining competitive detection efficiency. A jitter of 105 ps was measured for this device.

  7. Electronic and transport properties of Ge nanoparticle pellets structured by focused ion beam

    Energy Technology Data Exchange (ETDEWEB)

    Gondorf, Andreas; Geller, Martin; Lorke, Axel [Universitaet Duisburg-Essen, Duisburg (Germany)

    2010-07-01

    Semiconductor nanoparticles are of interest for future electronic and optoelectronic devices, especially low cost, flexible, printable electronics. We investigate here the transport properties (charge carrier concentration and mobility) of Ge nanoparticles, which were synthesized in the gas-phase and pressed into pellets. The nanoparticles inside these pellets sinter into a sponge-like structure, that may exhibit unusual magneto-transport properties similar to the strong magnetoresistance observed in nanoporous gold [Fujita, PRL 101, 166601 (2008)]. The measurements are made on directly contacted macroscopic pellets and on Hall-bar microstructures fabricated by a focused ion beam (FIB). In the FIB fabrication process, a lamella is cut out of a pellet and positioned onto a prestructured substrate with metal contacts. The sample is connected with the contacts by deposition of platinum. Finally the disk is etched by FIB into a Hallbar shape. We use I-V and Hall-measurements and find a very weak but measurable Hall-effect and a negative magnetoresistance of about 0.01% at 2.5 T. At room temperature, Ge nanoparticles show a charge carrier concentration of about 4.10{sup 14} cm{sup -3}, comparable to the intrinsic charge carrier concentration in bulk germanium. Ge nanoparticles have a very low mobility of 0.1 cm{sup 2}/Vs at 25 C, which is comparable to the mobility of organic semiconductors, so that Ge nanoparticles may be suitable in some applications which are presently based on organic semiconductors.

  8. Multiparticle production in pi- p collisions at 100 GeV

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, H.L.; /Chicago U., EFI

    1970-06-01

    The authors propose an experiment to examine in some detail the multiple production of pions in {pi}-p collisions at 100 GeV. In the experiment they identify and measure the proton recoiling from the collision and then measure the multiplicity and the momentum distribution of the accompanying mesonic shower. They propose to measure: (1) the elastic {pi}p cross-section over a wide range of momentum transfer 0.1 {le} -t {le} 15 GeV{sup 2} or until the cross-section d{sigma}/dt drops below 10{sup -33} cm{sup 2}/GeV{sup 2}/c{sup 2}; (2) using proton recoil measurements above, the mesonic missing mass cross-sections over a wide range of possible mass and momentum transfer; (3) the multiplicity and momentum distribution of the charged and neutral particles in the mesonic shower over a wide range of mass and momentum transfer, they should be able to identify completely a large class of such events; (4) reactions of the type {pi} + p {yields} (2n+1) {pi} + p have a particular interest, imasmuch as such combinations of an odd number of pions might represent Regge recurrences of the pion which could be produced by a coherent diffraction process with substantial cross-section at 100 GeV.

  9. Phase noise modeling in LC oscillators implemented in SiGe technology

    Institute of Scientific and Technical Information of China (English)

    M.Bouhouche; S.Latreche; C.Gontrand

    2013-01-01

    This paper addresses phase noise analysis of a radiofrequency LC oscillator built around a SiGe heterojunction bipolar transistor (HBT) realized in a 0.35 μm BiCMOS process,as an active device.First,we give a brief background to SiGe HBT device physics.The key point is to initiate quantitative analysis on the influence of defects induced during extrinsic base implantation on electric performances of this device.These defects are responsible for the current fluctuations at the origin of low frequency noise in BiCMOS technologies.Next,we investigate the effect of implantation defects as a source of noise in semiconductors on the phase noise of a radiofrequency LC oscillator.We observe their influence on the oscillator phase noise,and we quantify the influence of their energy distribution in the semiconductor gap.Second,we give a behavioral model of an LC oscillator containing a SiGe HBT as an active device.The key goal is to study the susceptibility of a radiofrequency oscillator built around a SiGe HBT to phase noise disturbance sources.Based on the time variance behavior of phase noise in oscillators,transient simulations (in the time domain) were used to analyze the time-dependent noise sensitivity of the oscillator.

  10. Diaminogermylene and diaminostannylene derivatives of gold(I): novel AuM and AuM2 (M = Ge, Sn) complexes.

    Science.gov (United States)

    Cabeza, Javier A; Fernández-Colinas, José M; García-Álvarez, Pablo; Polo, Diego

    2012-03-19

    The reactions of [AuCl(THT)] (THT = tetrahydrothiophene) with 1 equiv of the group 14 diaminometalenes M(HMDS)(2) [M = Ge, Sn; HMDS = N(SiMe(3))(2)] lead to [Au{MCl(HMDS)(2)}(THT)] [M = Ge (1), Sn (2)], which contain a metalate(II) ligand that arises from insertion of the corresponding M(HMDS)(2) reagent into the Au-Cl bond of the gold(I) reagent. While compound 1 reacts with more Ge(HMDS)(2) to give the germanate-germylene derivative [Au{GeCl(HMDS)(2)}{Ge(HMDS)(2)}] (3), which results from substitution of Ge(HMDS)(2) for the THT ligand of 1, an analogous treatment of compound 2 with Sn(HMDS)(2) gives the stannate-stannylene derivative [Au{SnCl(HMDS)(2)}{Sn(HMDS)(2)(THT)}] (4), which has a THT ligand attached to the stannylene tin atom and which, in solution at room temperature, participates in a dynamic process that makes its two Sn(HMDS)(2) fragments equivalent (on the NMR time scale). A similar dynamic process has not been observed for the AuGe(2) compound 3 or for the AuSn(2) derivatives [Au{SnR(HMDS)(2)}{Sn(HMDS)(2)(THT)}] [R = Bu (5), HMDS (6)], which have been prepared by treating complex 4 with LiR. The structures of compounds 1 and 3-6 have been determined by X-ray diffraction.

  11. Early effect of SiGe heterojunction bipolar transistors

    Science.gov (United States)

    Xu, Xiao-Bo; Zhang, He-Ming; Hu, Hui-Yong; Qu, Jiang-Tao

    2012-06-01

    The standard Early voltage of the SGP model is generalized for SiGe NPN heterojunction bipolar transistors (HBTs). A new compact formulation of the Early voltage compatible with the SGP model is presented. The impact of the Ge profile on Early effect is shown and validated by experiments. The model can be applied to the SGP model for circuit simulation.

  12. GeGI (Germanium Gamma Imager) Performance: Maritime Interdiction Operation

    Energy Technology Data Exchange (ETDEWEB)

    Dreyer, Jonathan G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Burks, Morgan T. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Trombino, Dave [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2014-09-23

    The Gamma Ray Imager (GeGI) was demonstrated during the Maritime Interdiction Operation at Point Alameda, the site of the former Naval Air Station, in Alameda, CA. During this exercise GeGI was used to localize sources within an abandoned building and a cargo ship, the Admiral Callaghan.

  13. Parametrized dielectric functions of amorphous GeSn alloys

    Energy Technology Data Exchange (ETDEWEB)

    D' Costa, Vijay Richard, E-mail: elevrd@nus.edu.sg; Wang, Wei; Yeo, Yee-Chia, E-mail: eleyeoyc@nus.edu.sg [Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583 (Singapore); Schmidt, Daniel [Singapore Synchrotron Light Source, National University of Singapore, Singapore 117603 (Singapore)

    2015-09-28

    We obtained the complex dielectric function of amorphous Ge{sub 1−x}Sn{sub x} (0 ≤ x ≤ 0.07) alloys using spectroscopic ellipsometry from 0.4 to 4.5 eV. Amorphous GeSn films were formed by room-temperature implantation of phosphorus into crystalline GeSn alloys grown by molecular beam epitaxy. The optical response of amorphous GeSn alloys is similar to amorphous Ge and can be parametrized using a Kramers-Kronig consistent Cody-Lorentz dispersion model. The parametric model was extended to account for the dielectric functions of amorphous Ge{sub 0.75}Sn{sub 0.25} and Ge{sub 0.50}Sn{sub 0.50} alloys from literature. The compositional dependence of band gap energy E{sub g} and parameters associated with the Lorentzian oscillator have been determined. The behavior of these parameters with varying x can be understood in terms of the alloying effect of Sn on Ge.

  14. Synthesis of Ge nanocrystals embedded in a Si host matrix

    Science.gov (United States)

    Ngiam, Shih-Tung; Jensen, Klavs F.; Kolenbrander, K. D.

    1994-12-01

    The synthesis of a composite material consisting of Ge nanoclusters (greater than or equal to 2 nm in diameter) embedded in a Si host matrix is reported. The Ge nanoparticles are produced by pulsed laser ablation and are codeposited in a Si film simultaneously grown by chemical beam epitaxy using disilane. Scanning transmission electron microscopy, combined with energy-dispersive x-ray measurements, show that discrete Ge particles (greater than or equal to 2 nm diameter) are deposited within a polycrystalline Si host matrix. High-resolution transmission electron microscopy reveals that the paricles are crystalline with a lattice spacing corresponding to that of Ge. The enhancement of Si deposition rates from silanes in the presence of Ge, previously demonstrated in chemical vapor deposition of Si(1 - x)Ge(x) alloys, is shown to facilitate the growth of a Si layer around the Ge nanocrystals. The overall composition of the Ge cluster/Si host composite material is determined by Rutherford backscattering measurements.

  15. Replacement of Ge in GeTe by [Ag +Sb] and rare earths: effect on thermoelectric properties

    Science.gov (United States)

    Levin, E. M.; Hanson, M.; Hanus, R.; Schmidt-Rohr, K.

    2013-03-01

    High-efficiency p-type Te-Sb-Ge-Ag (TAGS) thermoelectric materials are based on the GeTe narrow-band self-dopant semiconductor where Ge can be replaced by up to 16 at.% [Ag +Sb]. To understand the effect of Ge replacement by 4 at.% [Ag +Sb] as well as rare earths atoms, we have synthesized and studied XRD, thermopower, electrical resistivity, thermal conductivity, and 125Te NMR of GeTe and Ag2Sb2Ge46-xRxTe50 with R =Gd, Dy and x = 1, 2. At 700 K, GeTe exhibits a thermopower of +146 μVK-1 and a large power factor, 42 μWcm-1K-2. Replacement of Ge by [Ag +Sb] and rare earths enhances the thermopower, but slightly reduces the power factor due to an increase in electrical resistivity. The thermal conductivity at 300 K of all alloys studied is reduced by a factor of two compared to GeTe. 125Te NMR spin-lattice relaxation time and resonance frequency reflect changes in carrier concentration. However, decrease of thermal conductivity due to carriers and increase of electrical resistivity are mostly due to a reduction of carrier mobility and indicate strong scattering produced by [Ag +Sb] and rare earth atoms. At 700 K, the thermoelectric figure of merit of GeTe is 0.8, whereas that in Ag2Sb2Ge45Dy1Te50 is much larger, 1.2, due to a reduction in thermal conductivity. Enhancement of thermopower is discussed within a model of energy filtering.

  16. Undoped and in-situ B doped GeSn epitaxial growth on Ge by atmospheric pressure-chemical vapor deposition

    DEFF Research Database (Denmark)

    Vincent, B.; Gencarelli, F.; Bender, H.

    2011-01-01

    In this letter, we propose an atmospheric pressure-chemical vapor deposition technique to grow metastable GeSn epitaxial layers on Ge. We report the growth of defect free fully strained undoped and in-situ B doped GeSn layers on Ge substrates with Sit contents up to 8%. Those metastable layers stay...

  17. Commissioning and operational results of the 12 GeV helium compression system at Jlab

    Energy Technology Data Exchange (ETDEWEB)

    Knudsen, Peter N. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Ganni, Venkatarao [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Dixon, Kelly D. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Norton, Robert O. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Creel, Jonathan D. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)

    2015-12-01

    The new compressor system at Jefferson Lab (JLab) for the 12 GeV upgrade was commissioned in the spring of 2013 and incorporates many design changes, discussed in previous publications, to improve the operational range, efficiency, reliability and maintainability as compared to previous compressor skids used for this application. The 12 GeV helium compression system has five compressors configured with four pressure levels supporting three pressure levels in the new cold box. During compressor commissioning the compressors were operated independent of the cold box over a wide range of process conditions to verify proper performance including adequate cooling and oil removal. Isothermal and volumetric efficiencies over these process conditions for several built-involume ratios were obtained. This paper will discuss the operational envelope results and the modifications/improvements incorporated into the skids.

  18. Solid State Synthesis and Thermoelectric Properties of Mg-Si-Ge System

    Institute of Scientific and Technical Information of China (English)

    Renbo SONG; Yazheng LIU; Tatsuhiko AIZAWA

    2005-01-01

    Thermoelectric materials, Mg2Si1-xGex (x=0, 0.2, 0.4, 0.6, 0.8, 1), have been prepared by bulk mechanical alloying (BMA) and hot pressing (HP). The electrical conductivity, Seebeck coefficient and thermal conductivity were measured from room temperature up to about 700 K. The electrical conductivity of all the samples increases with increasing temperature, while the Seebeck coefficient and thermal conductivity decrease with increasing temperature.Mg2Si and Mg2Si0.8Ge0.2 possess negative type of conductivity, while for other compounds it is positive. At the same time, the effect of hot processing condition on thermoelectric properties was also investigated. The maximum figure of merit of Mg2Si0.6Ge0.4 was obtained with the processing parameter of BMA at 600 cycles and hot pressing at 773 K and 1 GPa for 1 h.

  19. Neutron polarimetry in the momentum range 1-6 GeV

    Directory of Open Access Journals (Sweden)

    Wang Ying

    2017-01-01

    Full Text Available In the framework of the ALPOM II experiment, we compare the figure of Merit of two processes for the neutron analyzing power measurement in the reactions n→+p→n→+p$\\vec n + p \\to \\vec n + p$ and n→+p→p+n→$\\vec n + p \\to p + \\vec n$ in the beam momentum range from 1 to 6 GeV. Based on a pole model calculation for the cross sections and existing data for analyzing powers, this study suggests that for neutron momentum larger than 3 GeV, the process of n→+p→p+n→$\\vec n + p \\to p + \\vec n$ is more effective for polarimetry.

  20. Phase-field simulations of faceted Ge/Si-crystal arrays, merging into a suspended film

    Science.gov (United States)

    Salvalaglio, Marco; Bergamaschini, Roberto; Backofen, Rainer; Voigt, Axel; Montalenti, Francesco; Miglio, Leo

    2017-01-01

    We simulate the morphological evolution of Ge microcrystals, grown out-of-equilibrium on deeply patterned Si substrates, as resulting from surface diffusion driven by the tendency toward the minimization of the surface energy. In particular, we report three-dimensional phase-field simulations accounting for the realistic surface energy anisotropy of Ge/Si crystals. In Salvalaglio et al. (2015) [10] it has been shown both by experiments and simulations that annealing of closely spaced crystals leads to a coalescence process with the formation of a suspended film. However, this was explained only by considering an isotropic surface energy. Here, we extend such a study by showing first the morphological changes of faceted isolated crystals. Then, the evolution of dense arrays is considered, describing their coalescence along with the evolution of facets. Combined with the previous results without anisotropy in the surface energy, this work allows us to confirm and assess the key features of the coalescence process.

  1. Commissioning and operational results of the 12 GeV helium compression system at JLab

    Science.gov (United States)

    Knudsen, P.; Ganni, V.; Dixon, K.; Norton, R.; Creel, J.

    2015-12-01

    The new compressor system at Jefferson Lab (JLab) for the 12 GeV upgrade was commissioned in the spring of 2013 and incorporates many design changes, discussed in previous publications, to improve the operational range, efficiency, reliability and maintainability as compared to previous compressor skids used for this application. The 12 GeV helium compression system has five compressors configured with four pressure levels supporting three pressure levels in the new cold box. During compressor commissioning the compressors were operated independent of the cold box over a wide range of process conditions to verify proper performance including adequate cooling and oil removal. Isothermal and volumetric efficiencies over these process conditions for several built-involume ratios were obtained. This paper will discuss the operational envelope results and the modifications/improvements incorporated into the skids.

  2. Epitaxial GeSn film formed by solid phase epitaxy and its application to Yb{sub 2}O{sub 3}-gated GeSn metal-oxide-semiconductor capacitors with sub-nm equivalent oxide thickness

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ching-Wei; Wu, Yung-Hsien; Hsieh, Ching-Heng; Lin, Chia-Chun [Department of Engineering and System Science, National Tsing Hua University, 300 Hsinchu, Taiwan (China)

    2014-11-17

    Through the technique of solid phase epitaxy (SPE), an epitaxial Ge{sub 0.955}Sn{sub 0.045} film was formed on a Ge substrate by depositing an amorphous GeSn film followed by a rapid thermal annealing at 550 °C. A process that uses a SiO{sub 2} capping layer on the amorphous GeSn film during SPE was proposed and it prevents Sn precipitation from occurring while maintaining a smooth surface due to the reduced surface mobility of Sn atoms. The high-quality epitaxial GeSn film was observed to have single crystal structure, uniform thickness and composition, and tiny surface roughness with root mean square of 0.56 nm. With a SnO{sub x}-free surface, Yb{sub 2}O{sub 3}-gated GeSn metal-oxide-semiconductor (MOS) capacitors with equivalent oxide thickness (EOT) of 0.55 nm were developed. A small amount of traps inside the Yb{sub 2}O{sub 3} was verified by negligible hysteresis in capacitance measurement. Low leakage current of 0.4 A/cm{sup 2} at gate bias of flatband voltage (V{sub FB})-1 V suggests the high quality of the gate dielectric. In addition, the feasibility of using Yb{sub 2}O{sub 3} to well passivate GeSn surface was also evidenced by the small interface trap density (D{sub it}) of 4.02 × 10{sup 11} eV{sup −1} cm{sup −2}, which can be attributed to smooth GeSn surface and Yb{sub 2}O{sub 3} valency passivation. Both leakage current and D{sub it} performance outperform other passivation techniques at sub-nm EOT regime. The proposed epitaxial GeSn film along with Yb{sub 2}O{sub 3} dielectric paves an alternative way to enable high-performance GeSn MOS devices.

  3. Response function of semiconductor detectors, Ge and Si(Li); Funcao resposta de detectores semicondutores, Ge e Si(Li)

    Energy Technology Data Exchange (ETDEWEB)

    Zevallos Chavez, Juan Yury

    2003-07-01

    The Response Function (RF) for Ge and Si(Li) semiconductor detectors was obtained. The RF was calculated for five detectors, four Hp Ge with active volumes of 89 cm{sup 3} , 50 cm{sup 3} , 8 cm{sup 3} and 5 cm{sup 3}, and one Si(Li) with 0.143 cm{sup 3} of active volume. The interval of energy studied ranged from 6 keV up to 1.5 MeV. Two kinds of studies were done in this work. The first one was the RF dependence with the detection geometry. Here the calculation of the RF for a geometry named as simple and an extrapolation of that RF, were both done. The extrapolation process analyzed both, spectra obtained with a shielding geometry and spectra where the source-detector distance was modified. The second one was the RF dependence with the detection electronics. This study was done varying the shaping time of the pulse in the detection electronics. The purpose was to verify the effect of the ballistic deficit in the resolution of the detector. This effect was not observed. The RF components that describe the region of the total absorption of the energy of the incident photons, and the partial absorption of this energy, were both treated. In particular, empirical functions were proposed for the treatment of both, the multiple scattering originated in the detector (crystal), and the photon scattering originated in materials of the neighborhood of the crystal. Another study involving Monte Carlo simulations was also done in order to comprehend the photon scattering structures produced in an iron shield. A deconvolution method is suggested, for spectra related to scattered radiation in order to assess the dose delivered to the scatterer. (author)

  4. 3 GeV Injector Design Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Wiedemann, H.; /SLAC, SSRL

    2009-12-16

    This Design Handbook is intended to be the main reference book for the specifications of the 3 GeV SPEAR booster synchrotron project. It is intended to be a consistent description of the project including design criteria, key technical specifications as well as current design approaches. Since a project is not complete till it's complete changes and modifications of early conceptual designs must be expected during the duration of the construction. Therefore, this Design Handbook is issued as a loose leaf binder so that individual sections can be replaced as needed. Each page will be dated to ease identification with respect to latest revisions. At the end of the project this Design Handbook will have become the 'as built' reference book of the injector for operations and maintenance personnel.

  5. Phase diagram of UCoGe

    Science.gov (United States)

    Mineev, V. P.

    2017-03-01

    The temperature-pressure phase diagram of ferromagnetic superconductor UCoGe includes four phase transitions. They are between the paramagnetic and the ferromagnetic states with the subsequent transition in the superconducting ferromagnetic state and between the normal and the superconducting states after which the transition to the superconducting ferromagnetic state has to occur. Here we have developed the Landau theory description of the phase diagram and established the specific ordering arising at each type of transition. The phase transitions to the ferromagnetic superconducting state are inevitably accompanied by the emergence of screening currents. The corresponding magnetostatics considerations allow for establishing the significant difference between the transition from the ferromagnetic to the ferromagnetic superconducting state and the transition from the superconducting to the ferromagnetic superconducting state.

  6. CW SRF Electron Linac for Nuclear Physics Research: CEBAF 4 GeV, 6 GeV, and 12 GeV

    CERN Document Server

    Reece, Charles E

    2016-01-01

    CEBAF, the Continuous Electron Beam Accelerator Facility, has been actively serving the nuclear physics research community as a unique forefront international resource since 1995. This CW electron linear accelerator (linac) at the U.S. Department of Energy's Thomas Jefferson National Accelerator Facility (Jefferson Lab) has continued to evolve as a precision tool for discerning the structure and dynamics within nuclei. Superconducting RF (SRF) technology has been the essential foundation for CEBAF, first as a 4 GeV machine, then 6 GeV, and currently capable of 12 GeV. We review the development, implementation, and performance of SRF systems for CEBAF from its early beginnings to the commissioning of the 12 GeV era.

  7. GeNF - experimental report 2003

    Energy Technology Data Exchange (ETDEWEB)

    Schreyer, A.; Vollbrandt, J.; Willumeit, R. (eds.) [GKSS-Forschungszentrum Geesthacht GmbH (Germany). Inst. for Materials Research

    2004-07-01

    At the Geesthacht Neutron Facility GeNF about 210 experiments were performed in 2003 by GKSS and by or for external users, partners or contractors. In most cases the measurements were performed and analysed in cooperation by the guest and by the GKSS staff or by the permanent external user group staff. The activities, which are based on a proposal procedure and on the in house R and D program, are reported in 76 contributions in the present annual experimental report for the year 2003. The contributions may contain one or also several combined experiments. During 2003 the GKSS research reactor FRG-1 achieved an operation time of 252 days at the full 5 MW reactor power providing a neutron flux of ca. 1,4 x 10{sup 14} thermal neutrons / cm{sup 2} s. The cold neutron source was available during the complete operation time. The focus of the in house R and D work at GeNF instruments was the characterisation of metal alloys, the analysis of stresses in welds and technical structures at ARES, FSS, DCD and SANS-2, the structural investigation of hydrogen containing substances such as polymers, colloids and biological macromolecules at SANS-1 as well as the characterisation of magnetic thin films at PNR and ROeDI. The reflectomer TOREMA was thoroughly upgraded to the instrument NeRo and now offers new measurement possibilities. In the appendices the progress of the project REFSANS at FRM-II is reported as well as the experimental activities of the newly installed GKSS outstation HARWI-II at DESY. (orig.)

  8. GeNF - Experimental report 2006

    Energy Technology Data Exchange (ETDEWEB)

    Pranzas, P.K.; Schreyer, A.; Willumeit, R. (eds.) [GKSS-Forschungszentrum Geesthacht GmbH (Germany). Inst. of Materials Research

    2007-07-01

    At the Geesthacht Neutron Facility GeNF about 212 experiments were performed in 2006 by GKSS and by or for external users, partners or contractors. In most cases the measurements were performed and analysed in cooperation by the guests and by the GKSS staff or by the permanent external user group staff. The activities, which are based on a proposal procedure and on the in house R and D program, are reported in 71 contributions in the present annual experimental report for the year 2006. The contributions may contain one or also several combined experiments. During 2006 the GKSS research reactor FRG-1 achieved an operation time of 197 days at the full 5 MW reactor power providing a neutron flux of ca. 1.4 x 10{sup 14} thermal neutrons/cm{sup 2}s. The cold neutron source was available during the complete operation time. The focus of the in house R and D work at GeNF instruments was the characterisation of nanostructures in engineering materials, the analysis of stresses and textures in welds and technical structures at ARES-2, TEX-2, DCD and SANS-2, the structural investigation of hydrogen containing substances such as polymers, colloids and biological macromolecules at SANS-1 as well as the characterisation of magnetic thin films at PNR, NeRo, POLDI and ROeDI. The thoroughly upgraded residual stress diffractomer ARES-2 went in full operation in spring 2006 as well as the new neutron tomography device at GENRA-3. The installation of modern experiment control hardware and software based on LabView was completed on all designated instruments. In the appendices I and II the experimental reports of REFSANS at FRM II are attached as well as of the GKSS outstation HARWI-II at DESY. Both instruments started full operation in 2006. (orig.)

  9. Good NEWS for GeV Dark Matter Searches

    CERN Document Server

    Profumo, Stefano

    2015-01-01

    The proposed NEWS apparatus, a spherical detector with a small central electrode sensor operating as a proportional counter, promises to explore new swaths of the direct detection parameter space in the GeV and sub-GeV Dark Matter particle mass range by employing very light nuclear targets, such as H and He, and by taking advantage of a very low (sub-keV) energy threshold. Here we discuss and study two example classes of Dark Matter models that will be tested with NEWS: GeV-scale millicharged Dark Matter, and a GeV-Dirac Fermion Dark Matter model with a light (MeV-GeV) scalar or vector mediator, and indicate the physical regions of parameter space the experiment can probe.

  10. GeV dark matter searches with the NEWS detector

    Science.gov (United States)

    Profumo, Stefano

    2016-03-01

    The proposed NEWS apparatus, a spherical detector with a small central electrode sensor operating as a proportional counter, promises to explore new swaths of the direct detection parameter space in the GeV and sub-GeV dark matter particle mass range by employing very light nuclear targets, such as H and He, and by taking advantage of a very low (sub-keV) energy threshold. Here we discuss and study two example classes of dark matter models that will be tested with NEWS: GeV-scale millicharged dark matter, and a GeV-Dirac Fermion dark matter model with a light (MeV-GeV) scalar or vector mediator, and indicate the physical regions of parameter space the experiment can probe.

  11. Polarized Proton Collisions at 205GeV at RHIC

    Science.gov (United States)

    Bai, M.; Roser, T.; Ahrens, L.; Alekseev, I. G.; Alessi, J.; Beebe-Wang, J.; Blaskiewicz, M.; Bravar, A.; Brennan, J. M.; Bruno, D.; Bunce, G.; Courant, E.; Drees, A.; Fischer, W.; Gardner, C.; Gill, R.; Glenn, J.; Haeberli, W.; Huang, H.; Jinnouchi, O.; Kewisch, J.; Luccio, A.; Luo, Y.; Nakagawa, I.; Okada, H.; Pilat, F.; Mackay, W. W.; Makdisi, Y.; Montag, C.; Ptitsyn, V.; Satogata, T.; Stephenson, E.; Svirida, D.; Tepikian, S.; Trbojevic, D.; Tsoupas, N.; Wise, T.; Zelenski, A.; Zeno, K.; Zhang, S. Y.

    2006-05-01

    The Brookhaven Relativistic Heavy Ion Collider (RHIC) has been providing collisions of polarized protons at a beam energy of 100 GeV since 2001. Equipped with two full Siberian snakes in each ring, polarization is preserved during acceleration from injection to 100 GeV. However, the intrinsic spin resonances beyond 100 GeV are about a factor of 2 stronger than those below 100 GeV making it important to examine the impact of these strong intrinsic spin resonances on polarization survival and the tolerance for vertical orbit distortions. Polarized protons were first accelerated to the record energy of 205 GeV in RHIC with a significant polarization measured at top energy in 2005. This Letter presents the results and discusses the sensitivity of the polarization survival to orbit distortions.

  12. Carrier transport in Ge nanowires / Si substrate heterojunction

    Science.gov (United States)

    Lee, E.-K.; Kamenev, B.; Tsybeskov, L.; Sharma, S.; Kamins, T. I.

    2006-03-01

    Semiconductor nanowires (NWs) attached to lattice-mismatched single-crystal substrates form quasi-one-dimensional (QOD) heterojunctions (HJs) where efficient structural relaxation might occur due to high surface-to-volume ratio. Current-voltage characteristics in Ge NW/(p+)Si samples with nearly micron-long Ge NWs exhibit metal-type conductivity with ohmic behavior and little conductivity temperature dependence. In contrast, Ge NW/(n+)Si samples display significant change in conductivity as a function of temperature with an activation energy up to 200 meV. In a narrow temperature interval near 150 K we observed current instabilities and oscillations for Ge NW/(n+)Si. At higher temperatures we find negative differential photoconductivity at low forward biases. Our experimental results are explained using a model of nearly ideal Si substrate/Ge NW hetero-interfaces.

  13. First evidence of low energy enhancement in Ge isotopes

    Directory of Open Access Journals (Sweden)

    Renstrøm T.

    2015-01-01

    Full Text Available The γ-strength functions and level densities of 73,74Ge have been extracted from particle-γ coincidence data using the Oslo method. In addition the γ-strength function of 74Ge above the neutron separation threshold, Sn = 10.196 MeV has been extracted from photoneutron measurements. When combined, these two experiments give a γ-strength function covering the energy range of ∼1-13 MeV for 74Ge. This thorough investigation of 74Ge is a part of an international campaign to study the previously reported low energy enhancement in this mass region in the γ-strength function from ∼3MeV towards lower γ energies. The obtained data show that both 73,74Ge display an increase in strength at low γ energies.

  14. Plasmon-assisted photoresponse in Ge-coated bowtie nanojunctions

    CERN Document Server

    Evans, Kenneth M; Natelson, Douglas

    2016-01-01

    We demonstrate plasmon-enhanced photoconduction in Au bowtie nanojunctions containing nanogaps overlaid with an amorphous Ge film. The role of plasmons in the production of nanogap photocurrent is verified by studying the unusual polarization dependence of the photoresponse. With increasing Ge thickness, the nanogap polarization of the photoresponse rotates 90 degrees, indicating a change in the dominant relevant plasmon mode, from the resonant transverse plasmon at low thicknesses to the nonresonant "lightning rod" mode at higher thicknesses. To understand the plasmon response in the presence of the Ge overlayer and whether the Ge degrades the Au plasmonic properties, we investigate the photothermal response (from the temperature-dependent Au resistivity) in no-gap nanowire structures, as a function of Ge film thickness and nanowire geometry. The film thickness and geometry dependence are modeled using a cross-sectional, finite element simulation. The no-gap structures and the modeling confirm that the strik...

  15. Anisotropic Differential Reflectance Spectroscopy of Thin GeSe

    Science.gov (United States)

    Matson, Joseph; Woods, Grace; Churchill, Hugh

    2017-01-01

    Atomically thin monochalcogenides are predicted to exhibit a two-dimensional structural phase transition. This phase transition could be useful for designing new phase change memory devices. The critical temperature is dependent on the material as well as the thickness, and is predicted to occur just above room temperature for monolayer GeSe. We used differential reflectance spectroscopy on thin samples of GeSe to measure changes in the optical anisotropy with temperature as a signature of this phase transition. We constructed an apparatus for temperature-depedendent spectroscopy of micro-scale GeSe samples, and measured anisotropic optical absorption of thin GeSe. We observed a decrease in optical anisotropy of GeSe at elevated temperatures, which may be a first indication of the continuous transition from a rectangular to a square lattice in that material. This work was supported by NSF REU Grant #EEC-1359306.

  16. Barrier enhancement of Ge MSM IR photodetector with Ge layer optimization

    Science.gov (United States)

    Asar, Tarık; Özçelik, Süleyman

    2015-12-01

    Germanium thin films were deposited on n-type Silicon substrates with three different sputter power by using DC magnetron sputtering system at room temperature. The structural and morphological properties of the samples have been obtained by means of X-ray diffraction and atomic force microscopy measurements. Then, Germanium metal-semiconductor-metal infrared photodetectors were fabricated on these structures. The carrier recombination lifetime and the diffusion length of the devices were also calculated by using the carrier density and mobility data was obtained from the room temperature Hall Effect measurements. The dark current-voltage measurements of devices were achieved at room temperature. The electrical parameters such as ideality factor, Schottky barrier height, saturation current and series resistance were extracted from dark current-voltage characteristics. Finally, it has been shown that the barrier enhancement of Ge MSM IR photodetector can be achieved by Ge layer optimization.

  17. Preparation of Si sub 1 sub - sub x sub - sub y Ge sub x C sub y semiconductor films on Si by ion implantation and solid phase epitaxy

    CERN Document Server

    Liu Xue Qin; Zhen Cong Mian; Zhang Jing; Yang Yi; Guo Yong

    2002-01-01

    Si sub 1 sub - sub x sub - sub y Ge sub x C sub y ternary alloy semiconductor films were prepared on Si(100) substrates by C ion implanting SiGe films and subsequent solid phase epitaxy (SPE). Two-step annealing technique was employed in the SPE processing. The properties of the alloy films were determined using Rutherford backscattering spectroscopy (RBS), Fourier transform infrared spectroscopy (FTIR) and High-resolution x-ray diffraction (HRXRD) measurements. It is shown that C atoms are located at substitutional sites and the incorporation of C relieves the compressive strain in the SiGe layer

  18. Modifications to Di-Jet Hadron Pair Correlations in Au+Au Collisions at sqrt(s_NN) = 200 GeV

    CERN Document Server

    Adler, S S; Aidala, C; Ajitanand, N N; Akiba, Y; Alexander, J; Amirikas, R; Aphecetche, L; Aronson, S H; Averbeck, R; Awes, T C; Azmoun, R; Babintsev, V; Baldisseri, Alberto; Barish, K N; Barnes, P D; Bassalleck, B; Bathe, S; Batsouli, S; Baublis, V; Bazilevsky, A; Belikov, S; Berdnikov, Yu A; Bhagavatula, S; Boissevain, J G; Borel, H; Borenstein, S R; Brooks, M L; Brown, D S; Bruner, N; Bucher, D; Büsching, H; Bumazhnov, V; Bunce, G; Burward-Hoy, J M; Butsyk, S; Camard, X; Chai, J S; Chand, P; Chang, W C; Chernichenko, S; Chi, C Y; Chiba, J; Chiu, M; Choi, I J; Choi, J; Choudhury, R K; Chujo, T; Cianciolo, V; Cobigo, Y; Cole, B A; Constantin, P; D'Enterria, D G; Dávid, G; Delagrange, H; Denisov, A; Deshpande, Abhay A; Desmond, E J; Devismes, A; Dietzsch, O; Drapier, O; Drees, A; Drees, K A; Du Rietz, R; Durum, A; Dutta, D; Efremenko, Yu V; El-Chenawi, K F; Enokizono, A; Enyo, H; Esumi, S; Ewell, L A; Fields, D E; Fleuret, F; Fokin, S L; Fox, B D; Fraenkel, Zeev; Frantz, J E; Franz, A; Frawley, A D; Fung, S Y; Garpman, S; Ghosh, K; Glenn, A; Gogiberidze, G; Gonin, M; Gosset, J; Goto, Y; Granier de Cassagnac, R; Grau, N; Greene, S V; Grosse-Perdekamp, M; Guryn, W; Gustafsson, Hans Åke; Hachiya, T; Haggerty, J S; Hamagaki, H; Hansen, A G; Hartouni, E P; Harvey, M; Hayano, R; Hayashi, N; He, X; Heffner, M; Hemmick, T K; Heuser, J M; Hibino, M; Hill, J C; Holzmann, W; Homma, K; Hong, B; Hoover, A; Ichihara, T; Ikonnikov, V V; Imai, K; Isenhower, D; Ishihara, M; Issah, M; Isupov, A; Jacak, B V; Jang, W Y; Jeong, Y; Jia, J; Jinnouchi, O; Johnson, B M; Johnson, S C; Joo, K S; Jouan, D; Kametani, S; Kamihara, N; Kang, J H; Kapoor, S S; Katou, K; Kelly, S; Khachaturov, B; Khanzadeev, A; Kikuchi, J; Kim, D H; Kim, D J; Kim, D W; Kim, E; Kim, G B; Kim, H J; Kistenev, E P; Kiyomichi, A; Kiyoyama, K; Klein-Bösing, C; Kobayashi, H; Kochenda, L; Kochetkov, V; Koehler, D; Kohama, T; Kopytine, M; Kotchetkov, D; Kozlov, A; Kroon, P J; Kuberg, C H; Kurita, K; Kuroki, Y; Kweon, M J; Kwon, Y; Kyle, G S; Lacey, R; Ladygin, V P; Lajoie, J G; Lebedev, A; Leckey, S; Lee, D M; Lee, S; Leitch, M J; Li, X H; Lim, H; Litvinenko, A G; Liu, M X; Liu, Y; Maguire, C F; Makdisi, Y I; Malakhov, A; Man'ko, V I; Mao, Y; Martínez, G; Marx, M D; Masui, H; Matathias, F; Matsumoto, T; McGaughey, P L; Melnikov, E A; Messer, F; Miake, Y; Milan, J; Miller, T E; Milov, A; Mioduszewski, S; Mischke, R E; Mishra, G C; Mitchell, J T; Mohanty, A K; Morrison, D P; Moss, J M; Muhlbacher, F; Mukhopadhyay, D; Muniruzzaman, M; Murata, J; Nagamiya, S; Nagle, J L; Nakamura, T; Nandi, B K; Nara, M; Newby, J; Nilsson, P; Nyanin, A S; Nystrand, J; O'Brien, E; Ogilvie, C A; Ohnishi, H; Ojha, I D; Okada, K; Ono, M; Onuchin, V A; Oskarsson, A; Otterlund, I; Oyama, K; Ozawa, K; Pal, D; Palounek, A P T; Pantuev, V S; Papavassiliou, V; Park, J; Parmar, A; Pate, S F; Peitzmann, T; Peng, J C; Peresedov, V; Pinkenburg, C; Pisani, R P; Plasil, F; Purschke, M L; Purwar, A K; Rak, J; Ravinovich, I; Read, K F; Reuter, M; Reygers, K; Riabov, V; Riabov, Y; Roche, G; Romana, A; Rosati, M; Rosnet, P; Ryu, S S; Sadler, M E; Saitô, N; Sakaguchi, T; Sakai, M; Sakai, S; Samsonov, V; Sanfratello, L; Santo, R; Sato, H D; Sato, S; Sawada, S; Schutz, Y; Semenov, V; Seto, R; Shaw, M R; Shea, T K; Shibata, T A; Shigaki, K; Shiina, T; Silva, C L; Silvermyr, D; Sim, K S; Singh, C P; Singh, V; Sivertz, M; Soldatov, A; Soltz, R A; Sondheim, W E; Sørensen, S P; Sourikova, I V; Staley, F; Stankus, P W; Stenlund, E; Stepanov, M; Ster, A; Stoll, S P; Sugitate, T; Sullivan, J P; Takagui, E M; Taketani, A; Tamai, M; Tanaka, K H; Tanaka, Y; Tanida, K; Tannenbaum, M J; Tarjan, P; Tepe, J D; Thomas, T L; Tojo, J; Torie, H A; Towell, R S; Tserruya, Itzhak; Tsuruoka, H; Tuli, S K; Tydesjo, H; Tyurin, N; van Hecke, H W; Velkovska, J; Velkovsky, M; Veszpremi, V; Villatte, L; Vinogradov, A A; Volkov, M A; Vznuzdaev, E A; Wang, X R; Watanabe, Y; White, S N; Wohn, F K; Woody, C L; Xie, W; Yang, Y; Yanovich, A A; Yokkaichi, S; Young, G R; Yushmanov, I E; Zajc, W A; Zhang, C; Zhou, S; Zhou, S J; Zolin, L S

    2006-01-01

    Azimuthal correlations of high-pT charged hadron pairs from (di-)jet-fragmentation are studied at mid-rapidity in Au+Au collisions at vsNN=200 GeV. The distribution of jet-associated partner hadrons (1.0< pT <2.5 GeV/c) per trigger hadron (2.5< pT <4.0 GeV/c) is found to vary with collision centrality, both in shape and in yield, indicating a significant effect of the nuclear collision medium on the (di-)jet fragmentation process.

  19. eDT and Model-based Configuration of 12GeV CEBAF

    Energy Technology Data Exchange (ETDEWEB)

    Turner, Dennison L. [Jefferson Lab, Newport News, VA (United States)

    2015-09-01

    This poster will discuss model-driven setup of CEBAF for the 12GeV era, focusing on the elegant Download Tool (eDT). eDT is a new operator tool that generates magnet design setpoints for various machine energies and pass configurations. eDT was developed in the effort towards a process for reducing machine configuration time and reproducibility by way of an accurate accelerator model.

  20. J/Psi Polarization in 800-GeV p-Cu Interactions

    CERN Document Server

    Chang, T H; Brown, C N; Carey, T A; Cooper, W E; Gagliardi, C A; Garvey, G T; Geesaman, D F; Hawker, E A; He, X C; Isenhower, L D; Kaplan, D M; Kaufman, S B; Koetke, D D; Kyle, G S; McGaughey, P L; Lee, W M; Leitch, M J; Moss, J M; Müller, B A; Papavassiliou, V; Peng, J C; Petitt, G; Reimer, P E; Sadler, M E; Sondheim, W E; Stankus, P W; Towell, R S; Tribble, R E; Vasilev, M A; Webb, J C; Willis, J L; Young, G R

    2003-01-01

    We present measurements of the polarization of the $ J/\\psi $ produced in 800-GeV proton interactions with a copper target. Polarization of the $ J/\\psi $ is sensitive to the $ c \\bar{c} $ production and hadronization processes. A longitudinal polarization is observed at large $ x_{F} $, while at small $ x_{F} $ the state is produced essentially unpolarized or slightly transversely polarized. No significant variation of the polarization is observed versus $ p_{T} $.

  1. Photoinduced aging and viscosity evolution in Se-rich Ge-Se glasses

    Energy Technology Data Exchange (ETDEWEB)

    Gueguen, Yann; Sangleboeuf, Jean-Christophe; Rouxel, Tanguy [LARMAUR ERL CNRS 6274, Université de Rennes 1, Campus de Beaulieu, 35042 Rennes Cedex (France); King, Ellyn A.; Lucas, Pierre [Department of Materials Science and Engineering, University of Arizona, 4715 E. Fort Lowell Road, Tucson, Arizona 85712 (United States); Keryvin, Vincent [LIMATB EA 4250, Université de Bretagne Sud, Rue de Saint Maudé, 56321 Lorient Cedex (France); Bureau, Bruno [Equipe Verres et Céramiques, UMR-CNRS 6226 Sciences Chimiques de Rennes, Université de Rennes 1, Campus de Beaulieu, 35042 Rennes Cedex (France)

    2013-08-21

    We propose here to investigate the non-equilibrium viscosity of Ge-Se glasses under and after light irradiation. Ge{sub 10}Se{sub 90} and Ge{sub 20}Se{sub 80} fibers have been aged in the dark and under ambient light, over months. During aging, both the relaxation of enthalpy and the viscosity have been investigated. The viscosity was measured by shear relaxation-recovery tests allowing the measurement of non-equilibrium viscosity. When Ge{sub 10}Se{sub 90} glass fibers are aged under irradiation, a relatively fast fictive temperature decrease is observed. Concomitantly, during aging under irradiation, the non-equilibrium viscosity increases and reaches an equilibrium after two months of aging. This viscosity increase is also observed in Ge{sub 20}Se{sub 80} fibers. Nevertheless, this equilibrium viscosity is far below the viscosity expected at the configurational equilibrium. As soon as the irradiation ceases, the viscosity increases almost instantaneously by about one order of magnitude. Then, if the fibers are kept in the dark, their viscosity slowly increases over months. The analysis of the shear relaxation functions shows that the aging is thermorheologically simple. On the other side, there is no simple relaxation between the shear relaxation functions measured under irradiation and those measured in the dark. These results clearly suggest that a very specific photoinduced aging process occurs under irradiation. This aging is due to photorelaxation. Nevertheless, the viscosity changes are not solely correlated to photoaging and photorelaxation. A scenario is proposed to explain all the observed viscosity evolutions under and after irradiation, on the basis of photoinduced transient defects.

  2. Effect of asymmetric concentration profile on thermal conductivity in Ge/SiGe superlattices

    Energy Technology Data Exchange (ETDEWEB)

    Hahn, Konstanze R., E-mail: konstanze.hahn@dsf.unica.it [Department of Physics, University of Cagliari, Cittadella Universitaria, 09042 Monserrato (Italy); Cecchi, Stefano [Department of Epitaxy, Paul-Drude-Institut für Festkörperelektronik, Hausvogteiplatz 5-7, 10117 Berlin (Germany); Colombo, Luciano [Department of Physics, University of Cagliari, Cittadella Universitaria, 09042 Monserrato (Italy); Institut de Cieǹcia de Materials de Barcelona (ICMAB-CSIC), Campus UAB, Bellaterra, 08193 Barcelona (Spain); Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona Institute of Science and Technology, Campus UAB, Bellaterra, 08193 Barcelona (Spain)

    2016-05-16

    The effect of the chemical composition in Si/Ge-based superlattices on their thermal conductivity has been investigated using molecular dynamics simulations. Simulation cells of Ge/SiGe superlattices have been generated with different concentration profiles such that the Si concentration follows a step-like, a tooth-saw, a Gaussian, and a gamma-type function in direction of the heat flux. The step-like and tooth-saw profiles mimic ideally sharp interfaces, whereas Gaussian and gamma-type profiles are smooth functions imitating atomic diffusion at the interface as obtained experimentally. Symmetry effects have been investigated comparing the symmetric profiles of the step-like and the Gaussian function to the asymmetric profiles of the tooth-saw and the gamma-type function. At longer sample length and similar degree of interdiffusion, the thermal conductivity is found to be lower in asymmetric profiles. Furthermore, it is found that with smooth concentration profiles where atomic diffusion at the interface takes place the thermal conductivity is higher compared to systems with atomically sharp concentration profiles.

  3. Effect of asymmetric concentration profile on thermal conductivity in Ge/SiGe superlattices

    Science.gov (United States)

    Hahn, Konstanze R.; Cecchi, Stefano; Colombo, Luciano

    2016-05-01

    The effect of the chemical composition in Si/Ge-based superlattices on their thermal conductivity has been investigated using molecular dynamics simulations. Simulation cells of Ge/SiGe superlattices have been generated with different concentration profiles such that the Si concentration follows a step-like, a tooth-saw, a Gaussian, and a gamma-type function in direction of the heat flux. The step-like and tooth-saw profiles mimic ideally sharp interfaces, whereas Gaussian and gamma-type profiles are smooth functions imitating atomic diffusion at the interface as obtained experimentally. Symmetry effects have been investigated comparing the symmetric profiles of the step-like and the Gaussian function to the asymmetric profiles of the tooth-saw and the gamma-type function. At longer sample length and similar degree of interdiffusion, the thermal conductivity is found to be lower in asymmetric profiles. Furthermore, it is found that with smooth concentration profiles where atomic diffusion at the interface takes place the thermal conductivity is higher compared to systems with atomically sharp concentration profiles.

  4. Towards Resonant-State THz Laser Based on Strained p-Ge and SiGe QW Structures

    Science.gov (United States)

    2006-07-01

    achieve intra-center population inversion for deep acceptors, such as copper, in p-Ge. 10. The technique, which allows us to solve Schroedinger ...strained Ge. 2. By using the developed method of solving Schroedinger equation with Luttinger Hamiltonian for complex valence band structure and the

  5. Effect of GeO2 deposition temperature in atomic layer deposition on electrical properties of Ge gate stack

    Science.gov (United States)

    Kanematsu, Masayuki; Shibayama, Shigehisa; Sakashita, Mitsuo; Takeuchi, Wakana; Nakatsuka, Osamu; Zaima, Shigeaki

    2016-08-01

    We investigated the effect of GeO2 deposition temperature (T depo) on electronic properties of Al/Al2O3/GeO2/Ge MOS capacitors. Capacitance-voltage characteristics show frequency dispersions under depletion and strong inversion conditions, which can be attributed from the interface states at the atomic layer deposition (ALD)-GeO2/Ge interface and from the defect states in the quasi-neutral region in the Ge substrate, respectively. We found that the interface state density (D it) shows similar values and energy distributions as T depo decreases to 200 from 300 °C, while a higher D it is observed at a T depo of 150 °C. Also, from the temperature dependence of conductance, the frequency dispersion under the strong inversion condition can be related to the minority carrier diffusion to the quasi-neutral region of the Ge substrate. The frequency dependence of conductance reveals that the undesirable increment of the bulk defect density can be suppressed by decreasing T depo. In this study, the bulk defect density in a MOS capacitor prepared at a T depo of 200 °C decreases one tenth compared with that at a T depo of 300 °C. The ALD of GeO2 at a low temperature of around 200 °C is effective for both obtaining a low D it and preventing the undesirable introduction of bulk defect density.

  6. SiGe BiCMOS manufacturing platform for mmWave applications

    Science.gov (United States)

    Kar-Roy, Arjun; Howard, David; Preisler, Edward; Racanelli, Marco; Chaudhry, Samir; Blaschke, Volker

    2010-10-01

    TowerJazz offers high volume manufacturable commercial SiGe BiCMOS technology platforms to address the mmWave market. In this paper, first, the SiGe BiCMOS process technology platforms such as SBC18 and SBC13 are described. These manufacturing platforms integrate 200 GHz fT/fMAX SiGe NPN with deep trench isolation into 0.18μm and 0.13μm node CMOS processes along with high density 5.6fF/μm2 stacked MIM capacitors, high value polysilicon resistors, high-Q metal resistors, lateral PNP transistors, and triple well isolation using deep n-well for mixed-signal integration, and, multiple varactors and compact high-Q inductors for RF needs. Second, design enablement tools that maximize performance and lowers costs and time to market such as scalable PSP and HICUM models, statistical and Xsigma models, reliability modeling tools, process control model tools, inductor toolbox and transmission line models are described. Finally, demonstrations in silicon for mmWave applications in the areas of optical networking, mobile broadband, phased array radar, collision avoidance radar and W-band imaging are listed.

  7. Preparation of Ga/Ni Solid Target for Cyclotron-Produced 68Ge by Electrodeposition

    Directory of Open Access Journals (Sweden)

    SHEN Yi-jia1,2;FU Hong-yu1;LUO Wen-bo1;DENG Xue-song1;LIU Yu-ping1;LI Guang1;XU Hong-wei1,2;WANG Gang1

    2014-02-01

    Full Text Available Germanium 68 is mainly used for preparation of the 68Ge-68Ga generator and the calibration of positron emission computed tomography. The low melting point of the target material in the production reaction 69Ga (p, 2n 68Ge has limited the availability of Ge-68. In order to use the existing industrial cyclotron hardware to produce Germanium 68, the method of electrodepositing gallium-nickel alloy was set up in this study. Acidic requirements were met through the preparation of the gallium-nickel alloy targets and by optimizing the plating bath composition and electrodepositing conditions, finally confirmed by adjustment of the electro-deposition process, and preparation of the gallium-nickel alloy targets with a gallium content of 75%. After three time irradiation tests, the process was certified to produce targets of Germanium 68. This process is user-friendly, the preparation of the targets is of stable quality, and it can be applied to the cyclotron production of Germanium 68.

  8. TEM studies of Ge nanocrystal formation in PECVD grown SiO2:Ge/SiO2 multilayers

    Science.gov (United States)

    Agan, S.; Dana, A.; Aydinli, A.

    2006-06-01

    We investigate the effect of annealing on the Ge nanocrystal formation in multilayered germanosilicate-oxide films grown on Si substrates by plasma enhanced chemical vapour deposition (PECVD). The multilayered samples were annealed at temperatures ranging from 750 to 900 °C for 5 min under nitrogen atmosphere. The onset of formation of Ge nanocrystals, at 750 °C, can be observed via high resolution TEM micrographs. The diameters of Ge nanocrystals were observed to be between 5 and 14 nm. As the annealing temperature is raised to 850 °C, a second layer of Ge nanocrystals forms next to the original precipitation band, positioning itself closer to the substrate SiO2 interface. High resolution cross section TEM images, electron diffraction and electron energy-loss spectroscopy as well as energy-dispersive x-ray analysis (EDAX) data all indicate that Ge nanocrystals are present in each layer.

  9. Segregation of Sb in Ge epitaxial layers and its usage for the selective doping of Ge-based structures

    Energy Technology Data Exchange (ETDEWEB)

    Antonov, A. V.; Drozdov, M. N.; Novikov, A. V., E-mail: anov@ipmras.ru; Yurasov, D. V. [Institute for Physics of Microstructures of the Russian Academy of Sciences (Russian Federation)

    2015-11-15

    The segregation of Sb in Ge epitaxial layers grown by the method of molecular beam epitaxy on Ge (001) substrates is investigated. For a growth temperature range of 180–325°C, the temperature dependence is determined for the segregation ratio of Sb in Ge, which shows a sharp increase (by more than three orders of magnitude) with increasing temperature. The strong dependence of the segregation properties of Sb on the growth temperature makes it possible to adapt a method based on the controlled use of segregation developed previously for the doping of Si structures for the selective doping of Ge structures with a donor impurity. Using this method selectively doped Ge:Sb structures, in which the bulk impurity concentration varies by an order of magnitude at distances of 3–5 nm, are obtained.

  10. Temperature-induced assembly of semiconductor nanocrystals into fractal architectures and thermoelectric power properties in Au/Ge bilayer films

    Energy Technology Data Exchange (ETDEWEB)

    Li Quanbao; Wang Jian; Jiao Zheng [Shanghai Applied Radiation Institute, Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444 (China); Wu Minghong, E-mail: mhwu@staff.shu.edu.cn [Shanghai Applied Radiation Institute, Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444 (China); Shek, Chan-Hung; Lawrence Wu, C.M.; Lai, Joseph K.L. [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong (Hong Kong); Chen Zhiwen, E-mail: cnzwchen@yahoo.com.cn [Shanghai Applied Radiation Institute, Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444 (China); Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong (Hong Kong)

    2011-08-15

    Highlights: > Ge fractal architectures were achieved by temperature-induced assembly. > The appearance of fractal architectures influences the thermoelectric power. > But it has little effect on the resistivity. > The values of the superlocalization exponent were within 1.22 {<=} {xi} {<=} 1.29. > It was higher than expected for two-dimension fractal system. - Abstract: Fractal architectures of semiconductor nanocrystals were successfully achieved by temperature-induced assembly of semiconductor nanocrystals in gold/germanium (Au/Ge) bilayer films. New assessment strategies of fractal architectures are of fundamental importance in the development of micro/nano-devices. Temperature-dependent properties including resistivity and thermoelectric power (TEP) of Au/Ge bilayer films with self-similar fractal patterns were investigated in detail. Experimental results indicated that the microstructure of Au film plays an important role in the characteristics of Au/Ge bilayer films after annealing and the crystallization processes of amorphous Ge accompany by fractal formation of Ge nanocrystals via temperature-induced assembly. The appearance of fractal architectures has significantly influence on the TEP but little effect on the resistivity of the annealed bilayer film. By analysis of the data, we found that the values of superlocalization exponent are within 1.22 {<=} {xi} {<=} 1.29, which are higher than expected for two-dimension fractal systems. The results provided possible evidence for the superlocalization on fractal architectures in Au/Ge bilayer films. The TEP measurements are considered a more effective method than the conductivity for investigating superlocalization in a percolating system.

  11. Growth and characterization of gold catalyzed SiGe nanowires and alternative metal-catalyzed Si nanowires

    Directory of Open Access Journals (Sweden)

    Gentile Pascal

    2011-01-01

    Full Text Available Abstract The growth of semiconductor (SC nanowires (NW by CVD using Au-catalyzed VLS process has been widely studied over the past few years. Among others SC, it is possible to grow pure Si or SiGe NW thanks to these techniques. Nevertheless, Au could deteriorate the electric properties of SC and the use of other metal catalysts will be mandatory if NW are to be designed for innovating electronic. First, this article's focus will be on SiGe NW's growth using Au catalyst. The authors managed to grow SiGe NW between 350 and 400°C. Ge concentration (x in Si1- x Ge x NW has been successfully varied by modifying the gas flow ratio: R = GeH4/(SiH4 + GeH4. Characterization (by Raman spectroscopy and XRD revealed concentrations varying from 0.2 to 0.46 on NW grown at 375°C, with R varying from 0.05 to 0.15. Second, the results of Si NW growths by CVD using alternatives catalysts such as platinum-, palladium- and nickel-silicides are presented. This study, carried out on a LPCVD furnace, aimed at defining Si NW growth conditions when using such catalysts. Since the growth temperatures investigated are lower than the eutectic temperatures of these Si-metal alloys, VSS growth is expected and observed. Different temperatures and HCl flow rates have been tested with the aim of minimizing 2D growth which induces an important tapering of the NW. Finally, mechanical characterization of single NW has been carried out using an AFM method developed at the LTM. It consists in measuring the deflection of an AFM tip while performing approach-retract curves at various positions along the length of a cantilevered NW. This approach allows the measurement of as-grown single NW's Young modulus and spring constant, and alleviates uncertainties inherent in single point measurement.

  12. Hafnium silicate and hafnium silicon oxynitride gate dielectrics for strained Si_xGe_1-x: Interface stability

    Science.gov (United States)

    Addepalli, Swarna; Sivasubramani, Prasanna; El-Bouanani, Mohamed; Kim, Moon; Gnade, Bruce; Wallace, Robert

    2003-03-01

    Strained Si_xGe_1-x layers have gained considerable attention due to hole mobility enhancement, and ease of integration with Si-based CMOS technology. The deposition of stable high-κ dielectrics [1] such as hafnium silicate and hafnium silicon oxynitride in direct contact with SiGe would simultaneously improve the capacitance of the gate stack and lower the leakage current for high performance SiGe devices. However, the oxidation of the Si_xGe_1-x substrate either during dielectric deposition or post-deposition processing would degrade device performance due to the thermodynamic instability of germanium oxide [2,3]. Results from XPS, HR-TEM, and C-V, and I-V analyses after various annealing treatments will be presented for hafnium silicate and hafnium silicon oxynitride films deposited on strained Si_xGe_1-x(100), and correlated with dielectric-Si_xGe_1-x(100) interface stability. Implications to the introduction of these oxides as viable gate dielectric candidates for SiGe-based CMOS technology will be discussed. This work is supported by DARPA through SPAWAR Grant No. N66001-00-1-8928, and the Texas Advanced Technology Program. References: [1] G. D. Wilk, R. M. Wallace and J. M. Anthony, Journal of Applied Physics, 89, 5243 (2001) [2] W. S. Liu, J .S. Chen, M.-A. Nicolet, V. Arbet-Engels, K. L. Wang, Journal of Applied Physics, 72, 4444 (1992), and, Applied Physics Letters, 62, 3321 (1993) [3] W. S. Liu, M. -A. Nicolet, H. -H. Park, B. -H. Koak, J. -W. Lee, Journal of Applied Physics, 78, 2631 (1995)

  13. Unexpected Ge-Ge Contacts in the Two-Dimensional Ge4 Se3 Te Phase and Analysis of Their Chemical Cause with the Density of Energy (DOE) Function.

    Science.gov (United States)

    Küpers, Michael; Konze, Philipp M; Maintz, Stefan; Steinberg, Simon; Mio, Antonio M; Cojocaru-Mirédin, Oana; Zhu, Min; Müller, Merlin; Luysberg, Martina; Mayer, Joachim; Wuttig, Matthias; Dronskowski, Richard

    2017-08-14

    A hexagonal phase in the ternary Ge-Se-Te system with an approximate composition of GeSe0.75 Te0.25 has been known since the 1960s but its structure has remained unknown. We have succeeded in growing single crystals by chemical transport as a prerequisite to solve and refine the Ge4 Se3 Te structure. It consists of layers that are held together by van der Waals type weak chalcogenide-chalcogenide interactions but also display unexpected Ge-Ge contacts, as confirmed by electron microscopy analysis. The nature of the electronic structure of Ge4 Se3 Te was characterized by chemical bonding analysis, in particular by the newly introduced density of energy (DOE) function. The Ge-Ge bonding interactions serve to hold electrons that would otherwise go into antibonding Ge-Te contacts. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Ion beam synthesis of SiGe alloy layers

    Energy Technology Data Exchange (ETDEWEB)

    Im, Seongil [Univ. of California, Berkeley, CA (United States)

    1994-05-01

    Procedures required for minimizing structural defects generated during ion beam synthesis of SiGe alloy layers were studied. Synthesis of 200 mm SiGe alloy layers by implantation of 120-keV Ge ions into <100> oriented Si wafers yielded various Ge peak concentrations after the following doses, 2 x 1016cm-2, 3 x 1016cm-2 (mid), and 5 x 1016cm-2 (high). Following implantation, solid phase epitaxial (SPE) annealing in ambient N2 at 800C for 1 hr. resulted in only slight redistribution of the Ge. Two kinds of extended defects were observed in alloy layers over 3 x l016cm-2cm dose at room temperature (RT): end-of-range (EOR) dislocation loops and strain-induced stacking faults. Density of EOR dislocation loops was much lower in alloys produced by 77K implantation than by RT implantation. Decreasing the dose to obtain 5 at% peak Ge concentration prevents strain relaxation, while those SPE layers with more than 7 at% Ge peak show high densities of misfit- induced stacking faults. Sequential implantation of C following high dose Ge implantation (12 at% Ge peak concentration in layer) brought about a remarkable decrease in density of misfit-induced stacking faults. For peak implanted C > 0.55 at%, stacking fault generation in the epitaxial layer was suppressed, owing to strain compensation by C atoms in the SiGe lattice. A SiGe alloy layer with 0.9 at% C peak concentration under a 12 at% Ge peak exhibited the best microstructure. Results indicate that optimum Ge/C ratio for strain compensation is between 11 and 22. The interface between amorphous and regrown phases (a/c interface) had a dramatic morphology change during its migration to the surface. Initial <100> planar interface decomposes into a <111> faceted interface, changing the growth kinetics; this is associated with strain relaxation by stacking fault formation on (111) planes in the a/c interface.

  15. Electrical characterization of SiGeSn grown on Ge substrate using ultra high vacuum chemical vapor deposition

    Science.gov (United States)

    Ahoujja, Mo; Kang, S.; Hamilton, M.; Yeo, Y. K.; Kouvetakis, J.; Menendez, J.

    2012-02-01

    There has been recently considerable interest in growing SiyGe1-x-ySnx alloys for the fabrication of photonic devices that could be integrated with Si technologies. We report temperature dependent Hall (TDH) measurements of the hole concentration and mobility from high quality p-type doped Si0.08Ge0.90Sn0.02 layers grown on p-type doped Ge substrates using ultra high vacuum chemical vapor deposition. The TDH measurements show the hole sheet density remains constant at low temperatures before slightly decreasing and dipping at ˜ 125 K. It then exponentially increases with temperature due to the activation of shallow acceptors. At temperatures above ˜ 450 K, the hole sheet density increases sharply indicating the onset of intrinsic conduction in the SiGeSn and/or Ge layers. To extract the electrical properties of the SiGeSn layer alone, a parametric fit using a multi layer conducting model is applied to the measured hole concentration and mobility data. The analysis yields boron and gallium doping concentrations of 3x10^17 cm-3 and 1x10^18 cm-3 with activation energies of 10 meV and 11 meV for the SiGeSn layer and Ge substrate, respectively. Furthermore, a temperature independent hole sheet concentration of ˜5x10^15 cm-2 with a mobility of ˜250 cm^2/Vs, which is believed to be due to an interfacial layer between the SiGeSn layer and the Ge substrate, is also determined.

  16. Observation of e(+)e(-) -> eta ' J/psi center-of-mass energies between 4.189 and 4.600 GeV

    NARCIS (Netherlands)

    Ablikim, M.; Achasov, M. N.; Ahmed, S.; Ai, X. C.; Albayrak, O.; Albrecht, M.; Ambrose, D. J.; Amoroso, A.; An, F. F.; An, Q.; Bai, J. Z.; Ferroli, R. Baldini; Ban, Y.; Bennett, D. W.; Bennett, J. V.; Berger, N.; Bertani, M.; Bettoni, D.; Bian, J. M.; Bianchi, F.; Boger, E.; Boyko, I.; Briere, R. A.; Cai, H.; Cai, X.; Cakir, O.; Calcaterra, A.; Cao, G. F.; Cetin, S. A.; Chang, J. F.; Chelkov, G.; Chen, G.; Chen, H. S.; Chen, H. Y.; Chen, J. C.; Chen, M. L.; Chen, S.; Chen, S. J.; Chen, X.; Chen, X. R.; Chen, Y. B.; Cheng, H. P.; Chu, X. K.; Cibinetto, G.; Dai, H. L.; Dai, J. P.; Dbeyssi, A.; Dedovich, D.; Deng, Z. Y.; Denig, A.; Denysenko, I.; Destefanis, M.; De Mori, F.; Ding, Y.; Dong, C.; Dong, J.; Dong, L. Y.; Dong, M. Y.; Dou, Z. L.; Du, S. X.; Duan, P. F.; Fan, J. Z.; Fang, J.; Fang, S. S.; Fang, X.; Fang, Y.; Farinelli, R.; Fava, L.; Fedorov, O.; Feldbauer, F.; Felici, G.; Feng, C. Q.; Fioravanti, E.; Fritsch, M.; Fu, C. D.; Gao, Q.; Gao, X. L.; Gao, X. Y.; Gao, Y.; Gao, Z.; Garzia, I.; Goetzen, K.; Gong, L.; Gong, W. X.; Gradl, W.; Greco, M.; Gu, M. H.; Gu, Y. T.; Guan, Y. H.; Guo, A. Q.; Guo, L. B.; Guo, R. P.; Guo, Y.; Guo, Y. P.; Haddadi, Z.; Hafner, A.; Han, S.; Hao, X. Q.; Harris, F. A.; He, K. L.; Heinsius, F. H.; Held, T.; Heng, Y. K.; Holtmann, T.; Hou, Z. L.; Hu, C.; Hu, H. M.; Hu, J. F.; Hu, T.; Hu, Y.; Huang, G. S.; Huang, J. S.; Huang, X. T.; Huang, X. Z.; Huang, Y.; Huang, Z. L.; Hussain, T.; Ji, Q.; Ji, Q. P.; Ji, X. B.; Ji, X. L.; Jiang, L. W.; Jiang, X. S.; Jiang, X. Y.; Jiao, J. B.; Jiao, Z.; Jin, D. P.; Jin, S.; Johansson, T.; Julin, A.; Kalantar-Nayestanaki, N.; Kang, X. L.; Kang, X. S.; Kavatsyuk, M.; Ke, B. C.; Kiese, P.; Kliemt, R.; Kloss, B.; Kolcu, O. B.; Kopf, B.; Kornicer, M.; Kupsc, A.; Kuehn, W.; Lange, J. S.; Lara, M.; Larin, P.; Leithoff, H.; Leng, C.; Li, C.; Li, Cheng; Li, D. M.; Li, F.; Li, F. Y.; Li, G.; Li, H. B.; Li, H. J.; Li, J. C.; Li, Jin; Li, K.; Li, K.; Li, Lei; Li, P. R.; Li, Q. Y.; Li, T.; Li, W. D.; Li, W. G.; Li, X. L.; Li, X. N.; Li, X. Q.; Li, Y. B.; Li, Z. B.; Liang, H.; Liang, Y. F.; Liang, Y. T.; Liao, G. R.; Lin, D. X.; Liu, B.; Liu, B. J.; Liu, C. X.; Liu, D.; Liu, F. H.; Liu, Fang; Liu, Feng; Liu, H. B.; Liu, H. H.; Liu, H. H.; Liu, H. M.; Liu, J.; Liu, J. B.; Liu, J. P.; Liu, J. Y.; Liu, K.; Liu, K. Y.; Liu, L. D.; Liu, P. L.; Liu, Q.; Liu, S. B.; Liu, X.; Liu, Y. B.; Liu, Y. Y.; Liu, Z. A.; Liu, Zhiqing; Loehner, H.; Lou, X. C.; Lu, H. J.; Lu, J. G.; Lu, Y.; Lu, Y. P.; Luo, C. L.; Luo, M. X.; Luo, T.; Luo, X. L.; Lyu, X. R.; Ma, F. C.; Ma, H. L.; Ma, L. L.; Ma, M. M.; Ma, Q. M.; Ma, T.; Ma, X. N.; Ma, X. Y.; Ma, Y. M.; Maas, F. E.; Maggiora, M.; Mao, Y. J.; Mao, Z. P.; Marcello, S.; Messchendorp, J. G.; Mezzadri, G.; Min, J.; Mitchell, R. E.; Mo, X. H.; Mo, Y. J.; Morales, C. Morales; Muchnoi, N. Yu.; Muramatsu, H.; Musiol, P.; Nefedov, Y.; Nerling, F.; Nikolaev, I. B.; Ning, Z.; Nisar, S.; Niu, S. L.; Niu, X. Y.; Olsen, S. L.; Ouyang, Q.; Pacetti, S.; Pan, Y.; Patteri, P.; Pelizaeus, M.; Peng, H. P.; Peters, K.; Pettersson, J.; Ping, J. L.; Ping, R. G.; Poling, R.; Prasad, V.; Qi, H. R.; Qi, M.; Qian, S.; Qiao, C. F.; Qin, L. Q.; Qin, N.; Qin, X. S.; Qin, Z. H.; Qiu, J. F.; Rashid, K. H.; Redmer, C. F.; Ripka, M.; Rong, G.; Rosner, Ch.; Ruan, X. D.; Sarantsev, A.; Savrie, M.; Schnier, C.; Schoenning, K.; Schumann, S.; Shan, W.; Shao, M.; Shen, C. P.; Shen, P. X.; Shen, X. Y.; Sheng, H. Y.; Shi, M.; Song, W. M.; Song, X. Y.; Sosio, S.; Spataro, S.; Sun, G. X.; Sun, J. F.; Sun, S. S.; Sun, X. H.; Sun, Y. J.; Sun, Y. Z.; Sun, Z. J.; Sun, Z. T.; Tang, C. J.; Tang, X.; Tapan, I.; Thorndike, E. H.; Tiemens, M.; Uman, I.; Varner, G. S.; Wang, B.; Wang, B. L.; Wang, D.; Wang, D. Y.; Wang, K.; Wang, L. L.; Wang, L. S.; Wang, M.; Wang, P.; Wang, P. L.; Wang, S. G.; Wang, W.; Wang, W. P.; Wang, X. F.; Wang, Y.; Wang, Y. D.; Wang, Y. F.; Wang, Y. Q.; Wang, Z.; Wang, Z. G.; Wang, Z. H.; Wang, Z. Y.; Wang, Z. Y.; Weber, T.; Wei, D. H.; Wei, J. B.; Weidenkaff, P.; Wen, S. P.; Wiedner, U.; Wolke, M.; Wu, L. H.; Wu, L. J.; Wu, Z.; Xia, L.; Xia, L. G.; Xia, Y.; Xiao, D.; Xiao, H.; Xiao, Z. J.; Xie, Y. G.; Xiu, Q. L.; Xu, G. F.; Xu, J. J.; Xu, L.; Xu, Q. J.; Xu, Q. N.; Xu, X. P.; Yan, L.; Yan, W. B.; Yan, W. C.; Yan, Y. H.; Yang, H. J.; Yang, H. X.; Yang, L.; Yang, Y. X.; Ye, M.; Ye, M. H.; Yin, J. H.; Yu, B. X.; Yu, C. X.; Yu, J. S.; Yuan, C. Z.; Yuan, W. L.; Yuan, Y.; Yuncu, A.; Zafar, A. A.; Zallo, A.; Zeng, Y.; Zeng, Z.; Zhang, B. X.; Zhang, B. Y.; Zhang, C.; Zhang, C. C.; Zhang, D. H.; Zhang, H. H.; Zhang, H. Y.; Zhang, J.; Zhang, J. J.; Zhang, J. L.; Zhang, J. Q.; Zhang, J. W.; Zhang, J. Y.; Zhang, J. Z.; Zhang, K.; Zhang, L.; Zhang, S. Q.; Zhang, X. Y.; Zhang, Y.; Zhang, Y. H.; Zhang, Y. N.; Zhang, Y. T.; Zhang, Yu; Zhang, Z. H.; Zhang, Z. P.; Zhang, Z. Y.; Zhao, G.; Zhao, J. W.; Zhao, J. Y.; Zhao, J. Z.; Zhao, Lei; Zhao, Ling; Zhao, M. G.; Zhao, Q.; Zhao, Q. W.; Zhao, S. J.; Zhao, T. C.; Zhao, Y. B.; Zhao, Z. G.; Zhemchugov, A.; Zheng, B.; Zheng, J. P.; Zheng, W. J.; Zheng, Y. H.; Zhong, B.; Zhou, L.; Zhou, X.; Zhou, X. K.; Zhou, X. R.; Zhou, X. Y.; Zhu, K.; Zhu, K. J.; Zhu, S.; Zhu, S. H.; Zhu, X. L.; Zhu, Y. C.; Zhu, Y. S.; Zhu, Z. A.; Zhuang, J.; Zotti, L.; Zou, B. S.; Zou, J. H.

    2016-01-01

    The process e(+)e(-) -> eta' J/psi is observed for the first time with a statistical significance of 8.6 sigma at center-of-mass energy root s = 4.226 GeV and 7.3 sigma at root s = 4.258 GeV using data samples collected with the BESIII detector. The Born cross sections are measured to be (3.7 +/- 0.

  17. Observation of e(+)e(-) -> omega chi(c1,2) near root s=4.42 and 4.6 GeV

    NARCIS (Netherlands)

    Ablikim, M.; Achasov, M. N.; Ai, X. C.; Albayrak, O.; Albrecht, M.; Ambrose, D. J.; Amoroso, A.; Haddadi, Z.; Kalantar-Nayestanaki, N.; Kavatsyuk, M.; Loehner, H.; Messchendorp, J.G.; Tiemens, M.

    2016-01-01

    Based on data samples collected with the BESIII detector operating at the BEPCII storage ring at center-of-mass energies root s > 4.4 GeV, the processes e(+)e(-) -> omega chi(c1,2) are observed for the first time. With an integrated luminosity of 1074 pb(-1) near root s = 4.42 GeV, a significant ome

  18. Observation of e(+)e(-) -> omega chi(c1,2) near root s=4.42 and 4.6 GeV

    NARCIS (Netherlands)

    Ablikim, M.; Achasov, M. N.; Ai, X. C.; Albayrak, O.; Albrecht, M.; Ambrose, D. J.; Amoroso, A.; Haddadi, Z.; Kalantar-Nayestanaki, N.; Kavatsyuk, M.; Loehner, H.; Messchendorp, J.G.; Tiemens, M.

    2016-01-01

    Based on data samples collected with the BESIII detector operating at the BEPCII storage ring at center-of-mass energies root s > 4.4 GeV, the processes e(+)e(-) -> omega chi(c1,2) are observed for the first time. With an integrated luminosity of 1074 pb(-1) near root s = 4.42 GeV, a significant ome

  19. Quantum Dot TiO2-Ge Solar Cells

    Science.gov (United States)

    Church, Carena; Muthuswamy, Elayaraja; Kauzlarich, Susan; Carter, Sue

    2014-03-01

    Colloidal germanium (Ge) quantum dots (CQDs) are attractive solar materials due to their low toxicity compared to Pb- or Cd- based nanocrystals (NC), low cost, and optimal, tunable bandgap for both increased IR response and potential power conversion efficiency (η) boosts from Multiple Exciton Generation (MEG). We report on the successful fabrication and characterization of spun-cast donor/acceptor type TiO2-Ge CQD solar cells utilizing Ge colloidal quantum dots (CQD) synthesized via a facile microwave method as the active layer. We find that our Ge QD size performance-related trends are similar to other QD systems studied. Additionally, our best heterojunction devices achieved short circuit currents (JSC) of 450 μA and open circuit voltages (VOC) of 0.335 V, resulting in η = 0.022 %. While this represents significant increases over previous Ge CQD PV (85 % over hybrid Ge-P3HT PV, 350 % over Ge NC PV), our photocurrents are still much lower than other NC systems. Analysis of intensity-dependent J-V characteristics reveal that our currents are limited by a space-charge region that forms leading to unbalanced charge extraction. We conclude by discussing a variety of film treatments and device structures we have tested to increase JSC.

  20. Ge L{sub 3}-edge x-ray absorption near-edge structure study of structural changes accompanying conductivity drift in the amorphous phase of Ge{sub 2}Sb{sub 2}Te{sub 5}

    Energy Technology Data Exchange (ETDEWEB)

    Mitrofanov, K. V. [Nanoelectronics Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba 305-8562 (Japan); Kolobov, A. V., E-mail: a.kolobov@aist.go.jp; Fons, P. [Nanoelectronics Research Institute and Green Nanoelectronics Center, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba 305-8562, Japan and Synchrotron Radiation Research Institute (JASRI), SPring-8, 1-1-1, Kouto, Sayo, Hyogo 679-5198 (Japan); Wang, X.; Tominaga, J. [Nanoelectronics Research Institute and Green Nanoelectronics Center, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba 305-8562 (Japan); Tamenori, Y.; Uruga, T. [Synchrotron Radiation Research Institute (JASRI), SPring-8, 1-1-1, Kouto, Sayo, Hyogo 679-5198 (Japan); Ciocchini, N.; Ielmini, D. [DEIB - Politecnico di Milano, Piazza L. Da Vinci 32, 20133 Milano (Italy)

    2014-05-07

    A gradual uncontrollable increase in the resistivity of the amorphous phase of phase-change alloys, such as Ge{sub 2}Sb{sub 2}Te{sub 5}, known as drift, is a serious technological issue for application of phase-change memory. While it has been proposed that drift is related to structural relaxation, no direct structural results have been reported so far. Here, we report the results of Ge L{sub 3}-edge x-ray absorption measurements that suggest that the drift in electrical conductivity is associated with the gradual conversion of tetrahedrally coordinated Ge sites into pyramidal sites, while the system still remains in the amorphous phase. Based on electronic configuration arguments, we propose that during this process, which is governed by the existence of lone-pair electrons, the concentration of free carriers in the system decreases resulting in an increase in resistance despite the structural relaxation towards the crystalline phase.

  1. GeNF - Experimental report 2007

    Energy Technology Data Exchange (ETDEWEB)

    Pranzas, P.K.; Schreyer, A.; Willumeit, R. (eds.) [GKSS-Forschungszentrum Geesthacht GmbH (Germany). Inst. fuer Materialforschung

    2008-11-05

    At the Geesthacht Neutron Facility GeNF about 203 experiments were performed in 2007 by GKSS and by or for external users, partners or contractors. In most cases the measurements were performed and analysed in cooperation by the guests and by the GKSS staff or by the permanent external user group staff. The activities, which are based on a proposal procedure and on the in house R and D program, are reported in 70 contributions in the present annual experimental report for the year 2007. The contributions may contain one or also several combined experiments. During 2007 the GKSS research reactor FRG-1 achieved an operation time of 204 days at the full 5 MW reactor power providing a neutron flux of ca. 1.4 x 10{sup 14} thermal neutrons/cm{sup 2}s. In May/June 2007 the FRG-1 was upgraded with a new cold neutron source yielding a flux increase at the five instruments using cold neutrons of up to 40 %. The focus of the in house R and D work at GeNF instruments in 2007 was the characterisation of nano-structures in engineering materials, the analysis of stresses and textures in welds and technical structures at SANS-2, DCD, ARES-2 and TEX-2, the structural investigation of hydrogen containing substances such as polymers, colloids and biological macromolecules at SANS-1 as well as the characterisation of magnetic thin films at NeRo, PNR, POLDI and ROeDI. The modern experiment control hardware and software based on LabView was continuously improved on all instruments. In the appendices I and II the experimental reports of the GKSS outstation at the FRM II are attached as well as of the GKSS outstation at DESY. At the neutron reflectometer REFSANS at FRM II measurements are possible using a broad range of the scattering vector with reflectivities up to 10{sup -7}. Three reports show the activities of GKSS in the field of texture measurement at the instrument STRESS-SPEC. The instrument HARWI II at DESY is accepted very well by the community and is overbooked in all fields

  2. GeNF - Experimental report 2008

    Energy Technology Data Exchange (ETDEWEB)

    Pranzas, Philipp Klaus; Mueller, Martin; Willumeit, Regine; Schreyer, Andreas (eds.) [GKSS-Forschungszentrum Geesthacht GmbH (Germany). Inst. fuer Materialforschung

    2009-12-11

    At the Geesthacht Neutron Facility GeNF about 182 experiments were performed in 2008 by GKSS and by or for external users, partners or contractors. In most cases the measurements were performed and analysed in cooperation by the guests, by GKSS staff or by the permanent external user group staff. The activities, which are based on a proposal procedure and on the in house R and D program, are reported in 76 contributions in the present annual experimental report for the year 2008. The contributions may contain several combined experiments. During 2008 the GKSS research reactor FRG-1 achieved an operation time of 175 days at the full 5 MW reactor power providing a neutron flux of ca. 1.4.10{sup 14} thermal neutrons/cm{sup 2} s. The focus of the in house R and D work at GeNF instruments in 2008 was the characterisation of nanostructures in engineering materials, the analysis of stresses and textures in welds and technical structures at SANS-2, DCD, ARES-2 and TEX-2, the structural investigation of hydrogen containing substances such as polymers, colloids and biological macromolecules at SANS-1 as well as the characterisation of magnetic thin films at NeRo, PNR, POLDI and ROeDI. The modern experiment control hardware (e.g. sample environments, like magnets, cryostats or furnaces) and software based on LabView was continuously improved on all instruments. In the appendices I and II the experimental reports of the GKSS outstation at the FRM II are attached as well as of the GKSS outstation at DESY. The massive activity at the FRM II outstation is documented by the increasing number of REFSANS reports, accumulated to nine. Three reports show the activities of GKSS in the field of texture measurement at the instrument STRESS-SPEC. The instrument HARWI II at the synchrotron storage ring DORIS III at DESY is accepted very well by the community and is heavily overbooked in all fields (tomography, diffraction, etc.). After an 8-month shutdown period for an upgrade in the frame

  3. Search for the standard model Higgs boson at the LEP2 Collider near sqrt(s)=183 GeV

    Science.gov (United States)

    ALEPH Collaboration; Barate, R.; Buskulic, D.; Decamp, D.; Ghez, P.; Goy, C.; Jezequel, S.; Lees, J.-P.; Lucotte, A.; Martin, F.; Merle, E.; Minard, M.-N.; Nief, J.-Y.; Perrodo, P.; Pietrzyk, B.; Alemany, R.; Casado, M. P.; Chmeissani, M.; Crespo, J. M.; Delfino, M.; Fernandez, E.; Fernandez-Bosman, M.; Garrido, Ll.; Graugès, E.; Juste, A.; Martinez, M.; Merino, G.; Miquel, R.; Mir, Ll. M.; Morawitz, P.; Pacheco, A.; Park, I. C.; Pascual, A.; Riu, I.; Sanchez, F.; Colaleo, A.; Creanza, D.; de Palma, M.; Gelao, G.; Iaselli, G.; Maggi, G.; Maggi, M.; Nuzzo, S.; Ranieri, A.; Raso, G.; Ruggieri, F.; Selvaggi, G.; Silvestris, L.; Tempesta, P.; Tricomi, A.; Zito, G.; Huang, X.; Lin, J.; Ouyang, Q.; Wang, T.; Xie, Y.; Xu, R.; Xue, S.; Zhang, J.; Zhang, L.; Zhao, W.; Abbaneo, D.; Becker, U.; Boix, G.; Cattaneo, M.; Cerutti, F.; Ciulli, V.; Dissertori, G.; Drevermann, H.; Forty, R. W.; Frank, M.; Gianotti, F.; Hagelberg, R.; Halley, A. W.; Hansen, J. B.; Harvey, J.; Janot, P.; Jost, B.; Lehraus, I.; Leroy, O.; Loomis, C.; Maley, P.; Mato, P.; Minten, A.; Moneta, L.; Moutoussi, A.; Ranjard, F.; Rolandi, L.; Rousseau, D.; Schlatter, D.; Schmitt, M.; Schneider, O.; Tejessy, W.; Teubert, F.; Tomalin, I. R.; Tournefier, E.; Vreeswijk, M.; Wachsmuth, H.; Ajaltouni, Z.; Badaud, F.; Chazelle, G.; Deschamps, O.; Dessagne, S.; Falvard, A.; Ferdi, C.; Gay, P.; Guicheney, C.; Henrard, P.; Jousset, J.; Michel, B.; Monteil, S.; Montret, J.-C.; Pallin, D.; Perret, P.; Podlyski, F.; Hansen, J. D.; Hansen, J. R.; Hansen, P. H.; Nilsson, B. S.; Rensch, B.; Wäänänen, A.; Daskalakis, G.; Kyriakis, A.; Markou, C.; Simopoulou, E.; Vayaki, A.; Blondel, A.; Brient, J.-C.; Machefert, F.; Rougé, A.; Rumpf, M.; Tanaka, R.; Valassi, A.; Videau, H.; Focardi, E.; Parrini, G.; Zachariadou, K.; Cavanaugh, R.; Corden, M.; Georgiopoulos, C.; Huehn, T.; Jaffe, D. E.; Antonelli, A.; Bencivenni, G.; Bologna, G.; Bossi, F.; Campana, P.; Capon, G.; Chiarella, V.; Laurelli, P.; Mannocchi, G.; Murtas, F.; Murtas, G. P.; Passalacqua, L.; Pepe-Altarelli, M.; Chalmers, M.; Curtis, L.; Lynch, J. G.; Negus, P.; O'Shea, V.; Raine, C.; Scarr, J. M.; Teixeira-Dias, P.; Thompson, A. S.; Thomson, E.; Ward, J. J.; Buchmüller, O.; Dhamotharan, S.; Geweniger, C.; Hanke, P.; Hansper, G.; Hepp, V.; Kluge, E. E.; Putzer, A.; Sommer, J.; Tittel, K.; Werner, S.; Wunsch, M.; Beuselinck, R.; Binnie, D. M.; Cameron, W.; Dornan, P. J.; Girone, M.; Goodsir, S.; Marinelli, N.; Martin, E. B.; Nash, J.; Sedgbeer, J. K.; Spagnolo, P.; Williams, M. D.; Ghete, V. M.; Girtler, P.; Kneringer, E.; Kuhn, D.; Rudolph, G.; Betteridge, A. P.; Bowdery, C. K.; Buck, P. G.; Colrain, P.; Crawford, G.; Ellis, G.; Finch, A. J.; Foster, F.; Hughes, G.; Jones, R. W. L.; Robertson, A. N.; Williams, M. I.; van Gemmeren, P.; Giehl, I.; Hoffmann, C.; Jakobs, K.; Kleinknecht, K.; Kröcker, M.; Nürnberger, H.-A.; Quast, G.; Renk, B.; Rohne, E.; Sander, H.-G.; Schmeling, S.; Zeitnitz, C.; Ziegler, T.; Aubert, J. J.; Benchouk, C.; Bonissent, A.; Carr, J.; Coyle, P.; Ealet, A.; Fouchez, D.; Motsch, F.; Payre, P.; Talby, M.; Thulasidas, M.; Tilquin, A.; Aleppo, M.; Antonelli, M.; Ragusa, F.; Berlich, R.; Büscher, V.; Dietl, H.; Ganis, G.; Hüttmann, K.; Lütjens, G.; Mannert, C.; Männer, W.; Moser, H.-G.; Schael, S.; Settles, R.; Seywerd, H.; Stenzel, H.; Wiedenmann, W.; Wolf, G.; Boucrot, J.; Callot, O.; Chen, S.; Davier, M.; Duflot, L.; Grivaz, J.-F.; Heusse, Ph.; Höcker, A.; Jacholkowska, A.; Kado, M.; Kim, D. W.; Le Diberder, F.; Lefrançois, J.; Serin, L.; Veillet, J.-J.; Videau, I.; de Vivie de Régie, J.-B.; Zerwas, D.; Azzurri, P.; Bagliesi, G.; Bettarini, S.; Boccali, T.; Bozzi, C.; Calderini, G.; dell'Orso, R.; Fantechi, R.; Ferrante, I.; Giassi, A.; Gregorio, A.; Ligabue, F.; Lusiani, A.; Marrocchesi, P. S.; Messineo, A.; Palla, F.; Rizzo, G.; Sanguinetti, G.; Sciabà, A.; Sguazzoni, G.; Tenchini, R.; Vannini, C.; Venturi, A.; Verdini, P. G.; Blair, G. A.; Chambers, J. T.; Coles, J.; Cowan, G.; Green, M. G.; Medcalf, T.; Strong, J. A.; von Wimmersperg-Toeller, J. H.; Botterill, D. R.; Clifft, R. W.; Edgecock, T. R.; Norton, P. R.; Thompson, J. C.; Wright, A. E.; Bloch-Devaux, B.; Colas, P.; Fabbro, B.; Faïf, G.; Lançon, E.; Lemaire, M.-C.; Locci, E.; Perez, P.; Przysiezniak, H.; Rander, J.; Renardy, J.-F.; Rosowsky, A.; Trabelsi, A.; Tuchming, B.; Vallage, B.; Black, S. N.; Dann, J. H.; Kim, H. Y.; Konstantinidis, N.; Litke, A. M.; McNeil, M. A.; Taylor, G.; Booth, C. N.; Cartwright, S.; Combley, F.; Kelly, M. S.; Lehto, M.; Thompson, L. F.; Affholderbach, K.; Böhrer, A.; Brandt, S.; Foss, J.; Grupen, C.; Prange, G.; Smolik, L.; Stephan, F.; Giannini, G.; Gobbo, B.; Putz, J.; Rothberg, J.; Wasserbaech, S.; Williams, R. W.; Armstrong, S. R.; Charles, E.; Elmer, P.; Ferguson, D. P. S.; Gao, Y.; González, S.; Greening, T. C.; Hayes, O. J.; Hu, H.; Jin, S.; Mamier, G.; McNamara, P. A., III; Nachtman, J. M.; Nielsen, J.; Orejudos, W.; Pan, Y. B.; Saadi, Y.; Scott, I. J.; Vogt, M.; Walsh, J.; Wu, Sau Lan; Wu, X.; Zobernig, G.

    1999-02-01

    During 1997 the ALEPH experiment at LEP gathered 57 pb-1 of data at centre-of-mass energies near 183 GeV. These data are used to look for possible signals from the production of the Standard Model Higgs boson in the reaction e+e--->HZ. No evidence of a signal is found in the data; seven events are selected, in agreement with the expectation of 7.2 events from background processes. This observation results in an improved lower limit on the mass of the Higgs boson: mH>87.9 GeV/c2 at 95% confidence level.

  4. Higgs Candidates in $e^{+}e^{-}$ Interactions at $\\sqrt{s}$ = 206.6 GeV

    CERN Document Server

    Acciarri, M.; Adriani, O.; Aguilar-Benitez, M.; Alcaraz, J.; Alemanni, G.; Allaby, J.; Aloisio, A.; Alviggi, M.G.; Ambrosi, G.; Anderhub, H.; Andreev, Valery P.; Angelescu, T.; Anselmo, F.; Arefev, A.; Azemoon, T.; Aziz, T.; Bagnaia, P.; Bajo, A.; Baksay, L.; Balandras, A.; Baldew, S.V.; Banerjee, S.; Banerjee, Sw.; Barczyk, A.; Barillere, R.; Bartalini, P.; Basile, M.; Batalova, N.; Battiston, R.; Bay, A.; Becattini, F.; Becker, U.; Behner, F.; Bellucci, L.; Berbeco, R.; Berdugo, J.; Berges, P.; Bertucci, B.; Betev, B.L.; Bhattacharya, S.; Biasini, M.; Biland, A.; Blaising, J.J.; Blyth, S.C.; Bobbink, G.J.; Bohm, A.; Boldizsar, L.; Borgia, B.; Bourilkov, D.; Bourquin, M.; Braccini, S.; Branson, J.G.; Brochu, F.; Buffini, A.; Buijs, A.; Burger, J.D.; Burger, W.J.; Cai, X.D.; Capell, M.; Cara Romeo, G.; Carlino, G.; Cartacci, A.M.; Casaus, J.; Castellini, G.; Cavallari, F.; Cavallo, N.; Cecchi, C.; Cerrada, M.; Cesaroni, F.; Chamizo, M.; Chang, Y.H.; Chaturvedi, U.K.; Chemarin, M.; Chen, A.; Chen, G.; Chen, G.M.; Chen, H.F.; Chen, H.S.; Chiefari, G.; Cifarelli, L.; Cindolo, F.; Civinini, C.; Clare, I.; Clare, R.; Coignet, G.; Colino, N.; Costantini, S.; Cotorobai, F.; de la Cruz, B.; Csilling, A.; Cucciarelli, S.; Dai, T.S.; van Dalen, J.A.; D'Alessandro, R.; de Asmundis, R.; Deglon, P.; Degre, A.; Deiters, K.; della Volpe, D.; Delmeire, E.; Denes, P.; DeNotaristefani, F.; De Salvo, A.; Diemoz, M.; Dierckxsens, M.; van Dierendonck, D.; Dionisi, C.; Dittmar, M.; Dominguez, A.; Doria, A.; Dova, M.T.; Duchesneau, D.; Dufournaud, D.; Duinker, P.; Duran, I.; El Mamouni, H.; Engler, A.; Eppling, F.J.; Erne, F.C.; Ewers, A.; Extermann, P.; Fabre, M.; Falagan, M.A.; Falciano, S.; Favara, A.; Fay, J.; Fedin, O.; Felcini, M.; Ferguson, T.; Fesefeldt, H.; Fiandrini, E.; Field, J.H.; Filthaut, F.; Fisher, P.H.; Fisk, I.; Forconi, G.; Freudenreich, K.; Furetta, C.; Galaktionov, Iouri; Ganguli, S.N.; Garcia-Abia, Pablo; Gataullin, M.; Gau, S.S.; Gentile, S.; Gheordanescu, N.; Giagu, S.; Gong, Z.F.; Grenier, Gerald Jean; Grimm, O.; Gruenewald, M.W.; Guida, M.; van Gulik, R.; Gupta, V.K.; Gurtu, A.; Gutay, L.J.; Haas, D.; Hasan, A.; Hatzifotiadou, D.; Hebbeker, T.; Herve, Alain; Hidas, P.; Hirschfelder, J.; Hofer, H.; Holzner, G.; Hoorani, H.; Hou, S.R.; Hu, Y.; Iashvili, I.; Jin, B.N.; Jones, Lawrence W.; de Jong, P.; Josa-Mutuberria, I.; Khan, R.A.; Kafer, D.; Kaur, M.; Kienzle-Focacci, M.N.; Kim, D.; Kim, J.K.; Kirkby, Jasper; Kiss, D.; Kittel, W.; Klimentov, A.; Konig, A.C.; Kopal, M.; Kopp, A.; Koutsenko, V.; Kraber, M.; Kraemer, R.W.; Krenz, W.; Kruger, A.; Kunin, A.; Ladron de Guevara, P.; Laktineh, I.; Landi, G.; Lebeau, M.; Lebedev, A.; Lebrun, P.; Lecomte, P.; Lecoq, P.; Le Coultre, P.; Lee, H.J.; Le Goff, J.M.; Leiste, R.; Levtchenko, P.; Li, C.; Likhoded, S.; Lin, C.H.; Lin, W.T.; Linde, F.L.; Lista, L.; Liu, Z.A.; Lohmann, W.; Longo, E.; Lu, Y.S.; Lubelsmeyer, K.; Luci, C.; Luckey, David; Lugnier, L.; Luminari, L.; Lustermann, W.; Ma, W.G.; Maity, M.; Malgeri, L.; Malinin, A.; Mana, C.; Mangeol, D.; Mans, J.; Marian, G.; Martin, J.P.; Marzano, F.; Mazumdar, K.; McNeil, R.R.; Mele, S.; Merola, L.; Meschini, M.; Metzger, W.J.; von der Mey, M.; Mihul, A.; Milcent, H.; Mirabelli, G.; Mnich, J.; Mohanty, G.B.; Moulik, T.; Muanza, G.S.; Muijs, A.J.M.; Musicar, B.; Musy, M.; Napolitano, M.; Nessi-Tedaldi, F.; Newman, H.; Niessen, T.; Nisati, A.; Kluge, Hannelies; Ofierzynski, R.; Organtini, G.; Oulianov, A.; Palomares, C.; Pandoulas, D.; Paoletti, S.; Paolucci, P.; Paramatti, R.; Park, H.K.; Park, I.H.; Passaleva, G.; Patricelli, S.; Paul, Thomas Cantzon; Pauluzzi, M.; Paus, C.; Pauss, F.; Pedace, M.; Pensotti, S.; Perret-Gallix, D.; Petersen, B.; Piccolo, D.; Pierella, F.; Pieri, M.; Piroue, P.A.; Pistolesi, E.; Plyaskin, V.; Pohl, M.; Pojidaev, V.; Postema, H.; Pothier, J.; Prokofev, D.O.; Prokofev, D.; Quartieri, J.; Rahal-Callot, G.; Rahaman, M.A.; Raics, P.; Raja, N.; Ramelli, R.; Rancoita, P.G.; Ranieri, R.; Raspereza, A.; Raven, G.; Razis, P.; Ren, D.; Rescigno, M.; Reucroft, S.; Riemann, S.; Riles, Keith; Rodin, J.; Roe, B.P.; Romero, L.; Rosca, A.; Rosier-Lees, S.; Roth, Stefan; Rosenbleck, C.; Rubio, J.A.; Ruggiero, G.; Rykaczewski, H.; Saremi, S.; Sarkar, S.; Salicio, J.; Sanchez, E.; Sanders, M.P.; Schafer, C.; Schegelsky, V.; Schmidt-Kaerst, S.; Schmitz, D.; Schopper, H.; Schotanus, D.J.; Schwering, G.; Sciacca, C.; Seganti, A.; Servoli, L.; Shevchenko, S.; Shivarov, N.; Shoutko, V.; Shumilov, E.; Shvorob, A.; Siedenburg, T.; Son, D.; Smith, B.; Spillantini, P.; Steuer, M.; Stickland, D.P.; Stone, A.; Stoyanov, B.; Straessner, A.; Sudhakar, K.; Sultanov, G.; Sun, L.Z.; Sushkov, S.; Suter, H.; Swain, J.D.; Szillasi, Z.; Sztaricskai, T.; Tang, X.W.; Tauscher, L.; Taylor, L.; Tellili, B.; Timmermans, Charles

    2000-01-01

    In a search for the Standard Model Higgs boson, carried out on 212.5 pb-1 of data collected by the L3 detector at the highest LEP centre-of-mass energies, including 116.5 pb-1 above root(s) = 206GeV, an excess of candidates for the process e+e- -> Z* -> HZ is found for Higgs masses near 114.5GeV. We present an analysis of our data and the characteristics of our strongest candidates.

  5. A study of electron-muon pair production in 450 GeV/c pBe collisions

    CERN Document Server

    Åkesson, T; Angelis, Aris L S; Antos, J; Atherton, Henry W; Aubry, P; Bartels, H W; Beaudoin, G; Beaulieu, J M; Beker, H; Benary, O; Bettoni, D; Bisi, V; Blevis, I; Bøggild, H; Cleland, W; Clemen, M; Collick, B; Corriveau, F; Dagan, S; Dederichs, K H; Depommier, P; Di Giacomo, Marco; Di Liberto, S; Dodd, J R; Dolgoshein, B A; Drees, A; Eidelman, S; Enyo, H; Erlandsson, B; Esten, M J; Fabjan, Christian Wolfgang; Fischer, P; Gaidot, A; Gibrat-Debu, F; Giubellino, P; Glässel, P; Goerlach, U; Golubkov, Yu A; Haglund, R F; Hamel, L A; van Hecke, H; Hedberg, V; Heifetz, R; Hölscher, A; Jacak, B V; Jarlskog, G; Johannson, S; Kraner, H W; Kroh, V; Lamarche, F; Leroy, C; Lissauer, D; London, G W; Lörstad, B; Lounis, A; Martelli, F; Marzari-Chiesa, A; Masera, M; Mazzoni, M A; Mazzucato, E; McCubbin, M L; McCubbin, N A; McGaughey, P L; Meddi, F; Mjörnmark, U; Muciaccia, M T; Muraviev, S; Murray, M; Neubert, M; Nevski, P; Nilsson, S; Olsen, L; Oren, Y; Pansart, J P; Park, Y M; Pfeiffer, A; Piuz, François; Polychronakos, V; Pomianowski, P A; Poulard, G; Price, M; Rahm, David Charles; Ramello, L; Riccati, L; Romano, G; Rosa, G; Sándor, L; Schükraft, Jürgen; Sekimoto, M; Seman, M; Shikonian, A; Shmeleva, A; Sidorov, V; Simone, S; Sirois, Y; Sletten, H; Smirnov, S; Sondheim, W E; Specht, H J; Stern, E; Stumer, I; Sumarokov, A L; Sunier, J W; Tcherniatine, V; Thompson, J; Tikhomirov, V; Valine, C M; Vanyashin, A V; Vasseur, G; Veenhof, R; Wigmans, R; Willis, W J; Yepes, P

    1996-01-01

    We report on the production of $e^{\\pm}\\mu^{\\mp}$ pairs in $450\\GeVc$ {\\em pBe} collisions at the CERN SPS. The $e\\mu$ signal, which has average missing energy of 21~GeV, is shown to be consistent with expectations from charm decay, and implies a $\\sigma\\times B$ for $çbar$ production in p-nucleon collisions of $0.63\\pm 0.28 \\mu b$. Alternatively, using an estimate of charm production from other experiments, the data imply a 95\\% confidence level upper limit of 0.88$\\mu b$ on any new physics process which produces \\epmmump.

  6. An optically pumped 2.5 μm GeSn laser on Si operating at 110 K

    Science.gov (United States)

    Al-Kabi, Sattar; Ghetmiri, Seyed Amir; Margetis, Joe; Pham, Thach; Zhou, Yiyin; Dou, Wei; Collier, Bria; Quinde, Randy; Du, Wei; Mosleh, Aboozar; Liu, Jifeng; Sun, Greg; Soref, Richard A.; Tolle, John; Li, Baohua; Mortazavi, Mansour; Naseem, Hameed A.; Yu, Shui-Qing

    2016-10-01

    This paper reports the demonstration of optically pumped GeSn edge-emitting lasers grown on Si substrates. The whole device structures were grown by an industry standard chemical vapor deposition reactor using the low cost commercially available precursors SnCl4 and GeH4 in a single run epitaxy process. Temperature-dependent characteristics of laser-output versus pumping-laser-input showed lasing operation up to 110 K. The 10 K lasing threshold and wavelength were measured as 68 kW/cm2 and 2476 nm, respectively. Lasing characteristic temperature (T0) was extracted as 65 K.

  7. DisGeNET-RDF: harnessing the innovative power of the Semantic Web to explore the genetic basis of diseases.

    Science.gov (United States)

    Queralt-Rosinach, Núria; Piñero, Janet; Bravo, Àlex; Sanz, Ferran; Furlong, Laura I

    2016-07-15

    DisGeNET-RDF makes available knowledge on the genetic basis of human diseases in the Semantic Web. Gene-disease associations (GDAs) and their provenance metadata are published as human-readable and machine-processable web resources. The information on GDAs included in DisGeNET-RDF is interlinked to other biomedical databases to support the development of bioinformatics approaches for translational research through evidence-based exploitation of a rich and fully interconnected linked open data. http://rdf.disgenet.org/ support@disgenet.org. © The Author 2016. Published by Oxford University Press.

  8. Synthesis of AgGaGeS4 polycrystalline materials by vapor transporting and mechanical oscillation method

    Science.gov (United States)

    Huang, Wei; Zhao, Beijun; Zhu, Shifu; He, Zhiyu; Chen, Baojun; Pu, Yunxiao; Lin, Li; Zhao, Zhangrui; Zhong, Yikai

    2017-06-01

    Single-phase AgGaGeS4 polycrystalline materials were synthesized directly from the constituent elements by vapor transporting and mechanical oscillation method. The problem of explosions was solved by careful control of the heating and cooling cycle and adopting the two-zone rocking furnace with specially designed temperature profile. The mechanical and temperature oscillations, as well as gradient cooling, were introduced in the synthesis process. The X-ray diffraction (XRD) analysis and Energy Dispersive Spectrometer (EDS) micro analysis indicated that the synthesized compound is a single-phase AgGaGeS4 polycrystalline material.

  9. Search for the Standard Model Higgs boson in $e^+ e^-$ interactions at $\\sqrt{s} = 189 GeV$

    CERN Document Server

    Acciarri, M; Adriani, O; Aguilar-Benítez, M; Alcaraz, J; Alemanni, G; Allaby, James V; Aloisio, A; Alviggi, M G; Ambrosi, G; Anderhub, H; Andreev, V P; Angelescu, T; Anselmo, F; Arefev, A; Azemoon, T; Aziz, T; Bagnaia, P; Baksay, L; Balandras, A; Ball, R C; Banerjee, S; Banerjee, Sw; Barczyk, A; Barillère, R; Barone, L; Bartalini, P; Basile, M; Battiston, R; Bay, A; Becattini, F; Becker, U; Behner, F; Berdugo, J; Berges, P; Bertucci, B; Betev, B L; Bhattacharya, S; Biasini, M; Biland, A; Blaising, J J; Blyth, S C; Bobbink, Gerjan J; Böhm, A; Boldizsar, L; Borgia, B; Bourilkov, D; Bourquin, Maurice; Braccini, S; Branson, J G; Brigljevic, V; Brochu, F; Buffini, A; Buijs, A; Burger, J D; Burger, W J; Busenitz, J K; Button, A M; Cai, X D; Campanelli, M; Capell, M; Cara Romeo, G; Carlino, G; Cartacci, A M; Casaus, J; Castellini, G; Cavallari, F; Cavallo, N; Cecchi, C; Cerrada-Canales, M; Cesaroni, F; Chamizo-Llatas, M; Chang, Y H; Chaturvedi, U K; Chemarin, M; Chen, A; Chen, G; Chen, G M; Chen, H F; Chen, H S; Chéreau, X J; Chiefari, G; Cifarelli, Luisa; Cindolo, F; Civinini, C; Clare, I; Clare, R; Coignet, G; Colijn, A P; Colino, N; Costantini, S; Cotorobai, F; Cozzoni, B; de la Cruz, B; Csilling, Akos; Cucciarelli, S; Dai, T S; van Dalen, J A; D'Alessandro, R; De Asmundis, R; Déglon, P L; Degré, A; Deiters, K; Della Volpe, D; Denes, P; De Notaristefani, F; De Salvo, A; Diemoz, M; Van Dierendonck, D N; Di Lodovico, F; Dionisi, C; Dittmar, Michael; Dominguez, A; Doria, A; Dova, M T; Duchesneau, D; Dufournaud, D; Duinker, P; Durán, I; El-Mamouni, H; Engler, A; Eppling, F J; Erné, F C; Extermann, Pierre; Fabre, M; Faccini, R; Falagán, M A; Falciano, S; Favara, A; Fay, J; Fedin, O; Felcini, Marta; Ferguson, T; Ferroni, F; Fesefeldt, H S; Fiandrini, E; Field, J H; Filthaut, Frank; Fisher, P H; Fisk, I; Forconi, G; Fredj, L; Freudenreich, Klaus; Furetta, C; Galaktionov, Yu; Ganguli, S N; García-Abia, P; Gataullin, M; Gau, S S; Gentile, S; Gheordanescu, N; Giagu, S; Gong, Z F; Grenier, G; Grimm, O; Grünewald, M W; van Gulik, R; Gupta, V K; Gurtu, A; Gutay, L J; Haas, D; Hasan, A; Hatzifotiadou, D; Hebbeker, T; Hervé, A; Hidas, P; Hirschfelder, J; Hofer, H; Holzner, G; Hoorani, H; Hou, S R; Iashvili, I; Jin, B N; Jones, L W; de Jong, P; Josa-Mutuberria, I; Khan, R A; Kamrad, D; Kaur, M; Kienzle-Focacci, M N; Kim, D; Kim, D H; Kim, J K; Kim, S C; Kirkby, Jasper; Kiss, D; Kittel, E W; Klimentov, A; König, A C; Kopp, A; Korolko, I; Koutsenko, V F; Kräber, M H; Krämer, R W; Krenz, W; Kunin, A; Lacentre, P E; Ladrón de Guevara, P; Laktineh, I; Landi, G; Lassila-Perini, K M; Laurikainen, P; Lavorato, A; Lebeau, M; Lebedev, A; Lebrun, P; Lecomte, P; Lecoq, P; Le Coultre, P; Lee, H J; Le Goff, J M; Leiste, R; Leonardi, E; Levchenko, P M; Li Chuan; Lin, C H; Lin, W T; Linde, Frank L; Lista, L; Liu, Z A; Lohmann, W; Longo, E; Lü, Y S; Lübelsmeyer, K; Luci, C; Luckey, D; Lugnier, L; Luminari, L; Lustermann, W; Ma Wen Gan; Maity, M; Malgeri, L; Malinin, A; Maña, C; Mangeol, D J J; Marchesini, P A; Marian, G; Martin, J P; Marzano, F; Massaro, G G G; Mazumdar, K; McNeil, R R; Mele, S; Merola, L; Meschini, M; Metzger, W J; Von der Mey, M; Migani, D; Mihul, A; Milcent, H; Mirabelli, G; Mnich, J; Mohanty, G B; Molnár, P; Monteleoni, B; Moulik, T; Muanza, G S; Muheim, F; Muijs, A J M; Napolitano, M; Nessi-Tedaldi, F; Newman, H; Niessen, T; Nisati, A; Nowak, H; Oh, Yu D; Organtini, G; Ostonen, R; Palomares, C; Pandoulas, D; Paoletti, S; Paolucci, P; Park, H K; Park, I H; Pascale, G; Passaleva, G; Patricelli, S; Paul, T; Pauluzzi, M; Paus, C; Pauss, Felicitas; Peach, D; Pedace, M; Pei, Y J; Pensotti, S; Perret-Gallix, D; Petersen, B; Piccolo, D; Pieri, M; Piroué, P A; Pistolesi, E; Plyaskin, V; Pohl, M; Pozhidaev, V; Postema, H; Pothier, J; Produit, N; Prokofev, D; Prokofiev, D O; Quartieri, J; Rahal-Callot, G; Rahaman, M A; Raja, N; Ramelli, R; Rancoita, P G; Raven, G; Razis, P A; Ren, D; Rescigno, M; Reucroft, S; Van Rhee, T; Riemann, S; Riles, K; Robohm, A; Rodin, J; Roe, B P; Romero, L; Rosca, A; Rosier-Lees, S; Rubio, Juan Antonio; Ruschmeier, D; Rykaczewski, H; Sarkar, S; Salicio, J; Sánchez, E; Sanders, M P; Sarakinos, M E; Schäfer, C; Shchegelskii, V; Schmidt-Kärst, S; Schmitz, D; Schopper, Herwig Franz; Schotanus, D J; Schwenke, J; Schwering, G; Sciacca, C; Sciarrino, D; Seganti, A; Servoli, L; Shevchenko, S; Shivarov, N; Shoutko, V; Shumilov, E; Shvorob, A V; Siedenburg, T; Son, D; Smith, B; Spillantini, P; Steuer, M; Stickland, D P; Stone, A; Stone, H; Stoyanov, B; Strässner, A; Sudhakar, K; Sultanov, G G; Sun, L Z; Suter, H; Swain, J D; Szillási, Z; Tang, X W; Tauscher, Ludwig; Taylor, L; Timmermans, C; Ting, Samuel C C; Ting, S M; Tonwar, S C; Tóth, J; Tully, C; Tung, K L; Uchida, Y; Ulbricht, J; Valente, E; Vesztergombi, G; Vetlitskii, I; Vicinanza, D; Viertel, Gert M; Villa, S; Vivargent, M; Vlachos, S; Vodopyanov, I; Vogel, H; Vogt, H; Vorobev, I; Vorobyov, A A; Vorvolakos, A; Wadhwa, M; Wallraff, W; Wang, M; Wang, X L; Wang, Z M; Weber, A; Weber, M; Wienemann, P; Wilkens, H; Wu, S X; Wynhoff, S; Xia, L; Xu, Z Z; Yang, B Z; Yang, C G; Yang, H J; Yang, M; Ye, J B; Yeh, S C; Zalite, A; Zalite, Yu; Zhang, Z P; Zhu, G Y; Zhu, R Y; Zichichi, Antonino; Ziegler, F; Zilizi, G; Zöller, M

    1999-01-01

    A search for the Standard Model Higgs boson is carried out on $176.4\\ \\mathrm{pb}^{-1}$ of data collected by the L3 detector at a center-of-mass energy of $189 \\mathrm{\\ Ge\\kern -0.1em V}$. The data are consistent with the expectations of Standard Model processes and no evidence of a Higgs signal is observed. Combining the results of this search with those at lower center-of-mass energies, a lower limit on the mass of the Standard Model Higgs boson of $95.3\\mathrm{\\ Ge\\kern -0.1em V}$ is set at the 95\\% confidence level.

  10. Thermoelectric properties of WSi{sub 2}–Si{sub x}Ge{sub 1−x} composites

    Energy Technology Data Exchange (ETDEWEB)

    Dynys, F.W.; Sayir, A. [NASA Glenn Research Center, Cleveland, OH 44135 (United States); Mackey, J., E-mail: jam151@zips.uakron.edu [Department of Mechanical Engineering, University of Akron, Akron, OH 44325 (United States); Sehirlioglu, A. [Department of Materials Science and Engineering, Case Western Reserve University, Cleveland, OH 44106 (United States)

    2014-08-01

    Highlights: • We explore a novel W/Si/Ge composite system for thermoelectric applications. • The influence of crucible selection on electrical properties is investigated. • Introduction of W can reduce the expensive Ge component of the alloy. - Abstract: Thermoelectric properties of the W/Si/Ge alloy system have been investigated with varying concentration levels of germanium and tungsten. The alloys were fabricated by directional solidification with the Bridgman method using boron nitride and fused silica crucibles. The effect of crucible contamination was investigated and found to result in doping the system to suitable levels for thermoelectric applications. The system has been demonstrated as a suitable high temperature p-type thermoelectric material exhibiting high power factors, >3000 μW/m K{sup 2}. Seebeck coefficients of the system are on the order of +300 μV/K and electrical conductivities of 2.8 × 10{sup 4} S/m at the optimum operating temperature. The best composition, 0.9 at% W/9.3 at% Ge, achieved a figure of merit comparable to RTG values over the temperature range of interest. The results suggest that W addition can reduce the use of expensive Ge component of the alloy. Reported are the details of processing conditions, microstructure development, and temperature dependent thermoelectric properties. The material system was stable at the temperatures required for NASA’s radioisotope thermoelectric generators.

  11. Ge quantum dot arrays grown by ultrahigh vacuum molecular-beam epitaxy on the Si(001 surface: nucleation, morphology, and CMOS compatibility

    Directory of Open Access Journals (Sweden)

    Yuryev Vladimir

    2011-01-01

    Full Text Available Abstr