WorldWideScience

Sample records for ge cryogenic detectors

  1. Cryogenic Tracking Detectors

    CERN Multimedia

    Luukka, P R; Tuominen, E M; Mikuz, M

    2002-01-01

    The recent advances in Si and diamond detector technology give hope of a simple solution to the radiation hardness problem for vertex trackers at the LHC. In particular, we have recently demonstrated that operating a heavily irradiated Si detector at liquid nitrogen (LN$_2$) temperature results in significant recovery of Charge Collection Efficiency (CCE). Among other potential benefits of operation at cryogenic temperatures are the use of large low-resistivity wafers, simple processing, higher and faster electrical signal because of higher mobility and drift velocity of carriers, and lower noise of the readout circuit. A substantial reduction in sensor cost could result The first goal of the approved extension of the RD39 program is to demonstrate that irradiation at low temperature in situ during operation does not affect the results obtained so far by cooling detectors which were irradiated at room temperature. In particular we shall concentrate on processes and materials that could significantly reduce th...

  2. Cryogenic readout techniques for germanium detectors

    Energy Technology Data Exchange (ETDEWEB)

    Benato, G. [University of Zurich, (Switzerland); Cattadori, C. [INFN - Milano Bicocca, (Italy); Di Vacri, A. [INFN LNGS, (Italy); Ferri, E. [Universita Milano Bicocca/INFN Milano Bicocca, (Italy); D' Andrea, V.; Macolino, C. [GSSI/INFN LNGS, (Italy); Riboldi, S. [Universita degli Studi di Milano/INFN Milano, (Italy); Salamida, F. [Universita Milano Bicocca/INFN Milano Bicocca, (Italy)

    2015-07-01

    High Purity Germanium detectors are used in many applications, from nuclear and astro-particle physics, to homeland security or environment protection. Although quite standard configurations are often used, with cryostats, charge sensitive amplifiers and analog or digital acquisition systems all commercially available, it might be the case that a few specific applications, e.g. satellites, portable devices, cryogenic physics experiments, etc. also require the development of a few additional or complementary techniques. An interesting case is for sure GERDA, the Germanium Detector Array experiment, searching for neutrino-less double beta decay of {sup 76}Ge at the Gran Sasso National Laboratory of INFN - Italy. In GERDA the entire detector array, composed of semi-coaxial and BEGe naked crystals, is operated suspended inside a cryostat filled with liquid argon, that acts not only as cooling medium and but also as an active shield, thanks to its scintillation properties. These peculiar circumstances, together with the additional requirement of a very low radioactive background from all the materials adjacent to the detectors, clearly introduce significant constraints on the design of the Ge front-end readout electronics. All the Ge readout solutions developed within the framework of the GERDA collaboration, for both Phase I and Phase II, will be briefly reviewed, with their relative strength and weakness compared together and with respect to ideal Ge readout. Finally, the digital processing techniques developed by the GERDA collaboration for energy estimation of Ge detector signals will be recalled. (authors)

  3. APPROACHING CRYOGENIC GE PERFORMANCE WITH PELTIER COOLED CDTE

    Energy Technology Data Exchange (ETDEWEB)

    Khusainov, A. K. (A. Kh.); Iwanczyk, J. S. (Jan S.); Patt, B. E. (Bradley E.); Prirogov, A. M. (Alexandre M.); Vo, Duc T.

    2001-01-01

    A new class of hand-held, portable spectrometers based on large area (lcm2) CdTe detectors of thickness up to 3mm has been demonstrated to produce energy resolution of between 0.3 and 0.5% FWHM at 662 keV. The system uses a charge loss correction circuit for improved efficiency, and detector temperature stabilization to ensure consistent operation of the detector during field measurements over a wide range of ambient temperature. The system can operate continuously for up to 8hrs on rechargeable batteries. The signal output from the charge loss corrector is compatible with most analog and digital spectroscopy amplifiers and multi channel analyzers. Using a detector measuring 11.2 by 9.1 by 2.13 mm3, we have recently been able to obtain the first wide-range plutonium gamma-ray isotopic analysis with other than a cryogenically cooled germanium spectrometer. The CdTe spectrometer is capable of measuring small plutonium reference samples in about one hour, covering the range from low to high burnup. The isotopic analysis software used to obtain these results was FRAM, Version 4 from LANL. The new spectrometer is expected to be useful for low-grade assay, as well as for some in-situ plutonium gamma-ray isotopics in lieu of cryogenically cooled Ge.

  4. Cryogenic Detectors (Narrow Field Instruments)

    Science.gov (United States)

    Hoevers, H.; Verhoeve, P.

    Two cryogenic imaging spectrometer arrays are currently considered as focal plane instruments for XEUS. The narrow field imager 1 (NFI 1) will cover the energy range from 0.05 to 3 keV with an energy resolution of 2 eV, or better, at 500 eV. A second narrow field imager (NFI 2) covers the energy range from 1 to 15 keV with an energy resolution of 2 eV (at 1 keV) and 5 eV (at 7 keV), creating some overlap with part of the NFI 1 energy window. Both narrow field imagers have a 0.5 arcmin field of view. Their imaging capabilities are matched to the XEUS optics of 2 to 5 arcsec leading to 1 arcsec pixels. The detector arrays will be cooled by a closed cycle system comprising a mechanical cooler with a base temperature of 2.5 K and either a low temperature 3He sorption pump providing the very low temperature stage and/or an Adiabatic Demagnetization Refrigerator (ADR). The ADR cooler is explicitly needed to cool the NFI 2 array. The narrow field imager 1} Currently a 48 times 48 element array of superconducting tunnel junctions (STJ) is envisaged. Its operating temperature is in the range between 30 and 350 mK. Small, single Ta STJs (20-50 mum on a side) have shown 3.5 eV (FWHM) resolution at E = 525 eV and small arrays have been successfully demonstrated (6 times 6 pixels), or are currently tested (10 times 12 pixels). Alternatively, a prototype Distributed Read-Out Imaging Device (DROID), consisting of a linear superconducting Ta absorber of 20 times 100 mum2, including a 20 times 20 mum STJ for readout at either end, has shown a measured energy resolution of 2.4 eV (FWHM) at E = 500 eV. Simulations involving the diffusion properties as well as loss and tunnel rates have shown that the performance can be further improved by slight modifications in the geometry, and that the size of the DROIDS can be increased to 0.5-1.0 mm without loss in energy resolution. The relatively large areas and good energy resolution compared to single STJs make DROIDS good candidates for the

  5. Improvement in Ge Detector Cooling

    Science.gov (United States)

    2008-09-01

    linear Stirling cooler manufactured by SunPower, Inc., Athens, Ohio. This hybrid system has the same footprint as a standard 30-liter LN2 Dewar and...are two such HPGe detector cooler /cryostat systems that we are modifying and evaluating for use in the RASA. The modifications will enhance vacuum... system incorporating a 4-watt pulse-tube cooler manufactured by Thales Cryogenics, Eindhoven, Netherlands, is being modified to incorporate ultra

  6. Cryogenic technology for tracking detectors

    CERN Document Server

    Granata, V; Watts, S; Borer, K; Janos, S; Pretzl, Klaus P; Dezillie, B; Li, Z; Casagrande, L; Collins, P; Grohmann, S; Heijne, Erik H M; Lourenço, C; Niinikoski, T O; Palmieri, V G; Sonderegger, P; Borchi, E; Bruzzi, Mara; Pirollo, S; Chapuy, S; Dimcovski, Zlatomir; Grigoriev, E; Bell, W; Devine, S R H; O'Shea, V; Ruggiero, G; Smith, K; Berglund, P; de Boer, Wim; Hauler, F; Heising, S; Jungermann, L; Abreu, M C; Rato-Mendes, P; Sousa, P; Cindro, V; Mikuz, M; Zavrtanik, M; Esposito, A P; Konorov, I; Paul, S; Buontempo, S; D'Ambrosio, D; Pagano, S; Eremin, V V; Verbitskaya, E

    2001-01-01

    A low-mass cryogenic cooling technique for silicon sensor modules has been developed in the framework of the RD39 Collaboration at CERN. A prototype low-mass beam tracker cryostat has been designed, constructed and tested for applications in fixed target experiments. We shall report here briefly the main features and results of the system. (2 refs).

  7. Background reduction in cryogenic detectors

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, Daniel A.; /Fermilab

    2005-04-01

    This paper discusses the background reduction and rejection strategy of the Cryogenic Dark Matter Search (CDMS) experiment. Recent measurements of background levels from CDMS II at Soudan are presented, along with estimates for future improvements in sensitivity expected for a proposed SuperCDMS experiment at SNOLAB.

  8. Optimizing Cryogenic Detectors for Low-Mass WIMP Searches

    Science.gov (United States)

    Arnaud, Q.; Billard, J.; Juillard, A.

    2016-07-01

    This paper describes the methodology and results from a study dedicated to the optimization of cryogenic detectors for low-mass WIMP searches. Considering a data-driven background model from the EDELWEISS-III experiment, and two analysis methods, namely profile likelihood and boosted decision tree, we indentify the main experimental constraints and performances that have to be improved. We found that there is a clear difference in how to optimize the detector setup whether focusing on WIMPs with masses below 5 GeV or above. Finally, in the case of a hundred-kg scale experiment, we discuss the requirements to probe most of the parameter space region delimited by the ultimate neutrino bound below 6 GeV.

  9. Cryogenics for Particle Accelerators and Detectors

    CERN Document Server

    Lebrun, P; Vandoni, Giovanna; Wagner, U

    2002-01-01

    Cryogenics has become a key ancillary technology of particle accelerators and detectors, contributing to their sustained development over the last fifty years. Conversely, this development has produced new challenges and markets for cryogenics, resulting in a fruitful symbiotic relation which materialized in significant technology transfer and technical progress. This began with the use of liquid hydrogen and deuterium in the targets and bubble chambers of the 1950s, 1960s and 1970s. It developed more recently with increasing amounts of liquefied noble gases - mainly argon, but also krypton and even today xenon - in calorimeters. In parallel with these applications, the availability of practical type II superconductors from the early 1960s triggered the use of superconductivity in large spectrometer magnets - mostly driven by considerations of energy savings - and the corresponding development of helium cryogenics. It is however the generalized application of superconductivity in particle accelerators - RF ac...

  10. Large volume cryogenic silicon detectors

    Energy Technology Data Exchange (ETDEWEB)

    Braggio, C. [Dipartimento di Fisica, Universita di Padova, via Marzolo 8, 35131 Padova (Italy); Boscardin, M. [Fondazione Bruno Kessler (FBK), via Sommarive 18, I-38100 Povo (Italy); Bressi, G. [INFN sez. di Pavia, via Bassi 6, 27100 Pavia (Italy); Carugno, G.; Corti, D. [INFN sez. di Padova, via Marzolo 8, 35131 Padova (Italy); Galeazzi, G. [INFN lab. naz. Legnaro, viale dell' Universita 2, 35020 Legnaro (Italy); Zorzi, N. [Fondazione Bruno Kessler (FBK), via Sommarive 18, I-38100 Povo (Italy)

    2009-12-15

    We present preliminary measurements for the development of a large volume silicon detector to detect low energy and low rate energy depositions. The tested detector is a one cm-thick silicon PIN diode with an active volume of 31 cm{sup 3}, cooled to the liquid helium temperature to obtain depletion from thermally-generated free carriers. A thorough study has been done to show that effects of charge trapping during drift disappears at a bias field value of the order of 100V/cm.

  11. Active thermal feedback for massive cryogenic detectors

    Energy Technology Data Exchange (ETDEWEB)

    Meier, O. E-mail: meier@mppmu.mpg.de; Bravin, M.; Bruckmayer, M.; Di Stefano, P.; Frank, T.; Loidl, M.; Meunier, P.; Proebst, F.; Safran, G.; Seidel, W.; Sergeyev, I.; Sisti, M.; Stodolsky, L.; Uchaikin, S.; Zerle, L

    2000-04-07

    A method to stabilize cryogenic detectors with superconducting phase transition thermometers in their operating point is presented. Measurements of X-ray lines emitted by an {sup 55}Fe X-ray fluorescence source showed an improvement in energy resolution from 230 to 133 eV on the 1.5 keV aluminium line with this technique. Furthermore the required set-up allows to simulate real events by injecting heat pulses into the thermometer and in this way to calibrate the detector and to monitor its long-term stability.

  12. Development of Large Cryogenic Semiconductor Detectors

    Energy Technology Data Exchange (ETDEWEB)

    Mandic, Vuk [Univ. of Minnesota, Minneapolis, MN (United States)

    2016-12-09

    This project aims at developing large cryogenic semiconductor detectors for applications in particle physics and more broadly. We have developed a 150 mm diameter, 43 mm thick, Si-based detector that measures ionization released in an interaction of a particle inside the silicon crystal of high purity, operated at 30 mK temperature. We demonstrated that such a detector can be used to measure recoil energies on the keV scale, and that its stable operation can be maintained indefinitely. Detectors of this type could therefore be used in the fields of direct dark matter searches, coherent neutrino scattering measurements, X-ray observations, as well as in broader applications such as homeland security.

  13. Ge photocapacitive MIS infrared detectors

    Science.gov (United States)

    Binari, S. C.; Miller, W. E.; Tsuo, Y. H.; Miller, W. E.

    1979-01-01

    An undoped Ge photocapacitive detector is reported which has peak normalized detectivities at wavelengh 1.4 microns and chopping frequencies 13-1000 Hz of 9 x 10 to the 12th, 4 x 10 to the 9th cm Hz to the 1/2th/W operating respectively at temperatures 77, 195, and 295 K. The observed temperature, spectral, and frequency response of the signal and noise are explained in terms of the measured space charge and interface state properties of the device.

  14. SINGLE: single photon sensitive cryogenic light detectors

    Science.gov (United States)

    Biassoni, Matteo; SINGLE Collaboration

    2017-09-01

    Thermal detectors operated at few mK as calorimeters are a powerful tool for the study of rare particle physics processes. In order to implement particle identification, light detection can be effectively performed by means of other thermal detectors operated as light sensors. This configuration can be used also in large scale, thousand-channels setups, but the light sensors must be sensitive enough to detect few, possibly a single, photons. The SINGLE project described here aims at producing silicon based, large area devices that can be operated as thermal detectors with single-photon sensitivity, and demonstrate the reliability of the performance, scalability of the production process and integrability with present and next generation cryogenic experiments for the search for rare events.

  15. Cryogenic Silicon Microstrip Detector Modules for LHC

    CERN Document Server

    Perea-Solano, B

    2004-01-01

    CERN is presently constructing the LHC, which will produce collisions of 7 TeV protons in 4 interaction points at a design luminosity of 1034 cm-2 s-1. The radiation dose resulting from the operation at high luminosity will cause a serious deterioration of the silicon tracker performance. The state-of-art silicon microstrip detectors can tolerate a fluence of about 3 1014 cm-2 of hadrons or charged leptons. This is insufficient, however, for long-term operation in the central parts of the LHC trackers, in particular after the possible luminosity upgrade of the LHC. By operating the detectors at cryogenic temperatures the radiation hardness can be improved by a factor 10. This work proposes a cryogenic microstrip detector module concept which has the features required for the microstrip trackers of the upgraded LHC experiments at CERN. The module can hold an edgeless sensor, being a good candidate for improved luminosity and total cross-section measurements in the ATLAS, CMS and TOTEM experiments. The design o...

  16. Advanced ACTPol Cryogenic Detector Arrays and Readout

    Science.gov (United States)

    Henderson, S. W.; Allison, R.; Austermann, J.; Baildon, T.; Battaglia, N.; Beall, J. A.; Becker, D.; De Bernardis, F.; Bond, J. R.; Calabrese, E.; Choi, S. K.; Coughlin, K. P.; Crowley, K. T.; Datta, R.; Devlin, M. J.; Duff, S. M.; Dunkley, J.; Dünner, R.; van Engelen, A.; Gallardo, P. A.; Grace, E.; Hasselfield, M.; Hills, F.; Hilton, G. C.; Hincks, A. D.; Hloẑek, R.; Ho, S. P.; Hubmayr, J.; Huffenberger, K.; Hughes, J. P.; Irwin, K. D.; Koopman, B. J.; Kosowsky, A. B.; Li, D.; McMahon, J.; Munson, C.; Nati, F.; Newburgh, L.; Niemack, M. D.; Niraula, P.; Page, L. A.; Pappas, C. G.; Salatino, M.; Schillaci, A.; Schmitt, B. L.; Sehgal, N.; Sherwin, B. D.; Sievers, J. L.; Simon, S. M.; Spergel, D. N.; Staggs, S. T.; Stevens, J. R.; Thornton, R.; Van Lanen, J.; Vavagiakis, E. M.; Ward, J. T.; Wollack, E. J.

    2016-08-01

    Advanced ACTPol is a polarization-sensitive upgrade for the 6 m aperture Atacama Cosmology Telescope, adding new frequencies and increasing sensitivity over the previous ACTPol receiver. In 2016, Advanced ACTPol will begin to map approximately half the sky in five frequency bands (28-230 GHz). Its maps of primary and secondary cosmic microwave background anisotropies—imaged in intensity and polarization at few arcminute-scale resolution—will enable precision cosmological constraints and also a wide array of cross-correlation science that probes the expansion history of the universe and the growth of structure via gravitational collapse. To accomplish these scientific goals, the Advanced ACTPol receiver will be a significant upgrade to the ACTPol receiver, including four new multichroic arrays of cryogenic, feedhorn-coupled AlMn transition edge sensor polarimeters (fabricated on 150 mm diameter wafers); a system of continuously rotating meta-material silicon half-wave plates; and a new multiplexing readout architecture which uses superconducting quantum interference devices and time division to achieve a 64-row multiplexing factor. Here we present the status and scientific goals of the Advanced ACTPol instrument, emphasizing the design and implementation of the Advanced ACTPol cryogenic detector arrays.

  17. Cryogenic phonon-scintillation detectors with PMT readout for rare event search experiments

    Science.gov (United States)

    Zhang, X.; Lin, J.; Mikhailik, V. B.; Kraus, H.

    2016-06-01

    Cryogenic phonon-scintillation detectors (CPSD) for rare event search experiments require reliable, efficient and robust photon detectors that can resolve individual photons in a scintillation event. We report on a cryogenic detector containing a scintillating crystal, equipped with an NTD-Ge phonon sensor and a photon detector based on a low-temperature photomultiplier tube (PMT) that is powered by a Cockcroft-Walton generator. Here we present results from the characterisation of two detector modules, one with CaWO4, the other with CaMoO4 as scintillator. The energy resolutions (FWHM) at 122.1 keV for the scintillation/PMT channel are 19.9% and 29.7% respectively for CaWO4 and CaMoO4 while the energy resolutions (FWHM) for the phonon channels are 2.17 keV (1.8%) and 0.97 keV (0.79%). These characteristics compare favourably with other CPSDs currently used in cryogenic rare-event search experiments. The detection module with PMT readout benefits from the implementation of a well-understood, reliable, and commercially available component and improved time resolution, while retaining the major advantages of conventional CPSD, such as high sensitivity, resolving power and discrimination ability.

  18. The Detector Calibration System for the CUORE cryogenic bolometer array

    CERN Document Server

    Cushman, J S; Davis, C J; Ejzak, L; Lenz, D; Lim, K E; Heeger, K M; Maruyama, R H; Nucciotti, A; Sangiorgio, S; Wise, T

    2016-01-01

    The Cryogenic Underground Observatory for Rare Events (CUORE) is a ton-scale cryogenic experiment designed to search for neutrinoless double-beta decay of $^{130}$Te and other rare events. The CUORE detector consists of 988 TeO$_2$ bolometers operated underground at 10~mK in a dilution refrigerator at the Laboratori Nazionali del Gran Sasso. Candidate events are identified through a precise measurement of their energy. The absolute energy response of the detectors is established by the regular calibration of each individual bolometer using gamma sources. The close-packed configuration of the CUORE bolometer array combined with the extensive shielding surrounding the detectors requires the placement of calibration sources within the array itself. The CUORE Detector Calibration System is designed to insert radioactive sources into and remove them from the cryostat while respecting the stringent heat load, radiopurity, and operational requirements of the experiment. This paper describes the design, commissioning...

  19. Development of cryogenic installations for large liquid argon neutrino detectors

    CERN Document Server

    Adamowski, M; Geynisman, M; Hentschel, S; Montanari, D; Nessi, M; Norris, B

    2015-01-01

    A proposal for a very large liquid argon (68,000 kg) based neutrino detector is being studied. To validate the design principles and the detector technology, and to gain experience in the development of the cryostats and the cryogenic systems needed for such large experiments, several smaller scale installations will be developed and implemented, at Fermilab and CERN. The cryogenic systems for these installations will be developed, constructed, installed and commissioned by an international engineering team. These installations shall bring the required cooling power under specific conditions to the experiments for the initial cool-down and the long term operation, and shall also guarantee the correct distribution of the cooling power within the cryostats to ensure a homogeneous temperature distribution within the cryostat itself. The cryogenic systems shall also include gaseous and liquid phase argon purification devices to be used to reach and maintain the very stringent purity requirements needed for these...

  20. Recent progress of CERN 39-cryogenic tracking detectors collaboration

    Institute of Scientific and Technical Information of China (English)

    J.H(a)rk(o)nen

    2006-01-01

    Significant progress was made by the CERN RD39 collaboration in the development of super radiation-hard cryogenic silicon detectors for applications in experiments at LHC,in particular after its future luminosity upgrade. The detailed modeling shows that the electric field in irradiated silicon detectors can easily be manipulated by the filling state of two deep defect levels at cryogenic temperature. Advanced radiation hard detectors using charge or current injection and the current injected detectors(CID) were developed by RD39. The results show that CID detectors can be operated at the temperature of 100-200 K with much improved charge collection efficiency(CCE) as compared with RT operation. Future studies are developing ultra-hard cryogenic silicon detectors for the LHC upgrade,where the radiation hardness is required up to 1016 neq/cm2,at which trapping will limit the charge collection depth to the range of 20 to 50 μm regardless of the depletion depth. The key of our approach is to use freeze-out trapping to affect CCE.

  1. Photosensitive Gaseous Detectors for Cryogenic Temperature Applications

    CERN Document Server

    Periale, L; Iacobaeus, C; Lund-Jensen, B; Picchi, P; Pietropaolo, F

    2007-01-01

    There are several proposals and projects today for building LXe Time Projection Chambers (TPCs) for dark matter search. An important element of these TPCs are the photomultipliers operating either inside LXe or in vapors above the liquid. We have recently demonstrated that photosensitive gaseous detectors (wire type and hole-type) can operate perfectly well until temperatures of LN2. In this paper results of systematic studies of operation of the photosensitive version of these detectors (combined with reflective or semi-transparent CsI photocathodes) in the temperature interval of 300-150 K are presented. In particular, it was demonstrated that both sealed and flushed by a gas detectors could operate at a quite stable fashion in a year/time scale. Obtained results, in particular the long-term stability of photosensitive gaseous detectors, strongly indicate that they can be cheap and simple alternatives to photomultipliers or avalanche solid-state detectors in LXe TPC applications.

  2. Vacuum and cryogenic system for the MUSE detectors

    Science.gov (United States)

    Lizon, J. L.; Accardo, M.; Gojak, Domingo; Reiss, Roland; Kern, Lothar

    2012-09-01

    MUSE with its 24 detectors distributed over an eight square meter vertical area was requiring a well engineered and extremely reliable cryogenic system. The solution should also use a technology proven to be compatible with the very high sensitivity of the VLT interferometer. A short introduction reviews the various available technologies to cool these 24 chips down to 160 K. The first part of the paper presents the selected concept insisting on the various advantages offered by LN2. In addition to the purely vacuum and cryogenic aspects we highlight some of the most interesting features given by the control system based on a PLC.

  3. Cryogenic Si detectors for ultra radiation hardness in SLHC environment

    Science.gov (United States)

    Li, Zheng; Abreu, M.; Anbinderis, P.; Anbinderis, T.; Ambrosio, N. D.'.; de Boer, W.; Borchi, E.; Borer, K.; Bruzzi, M.; Buontempo, S.; Chen, W.; Cindro, V.; Dierlamm, A.; Eremin, V.; Gaubas, E.; Gorbatenko, V.; Grigoriev, E.; Hauler, F.; Heijne, E.; Heising, S.; Hempel, O.; Herzog, R.; Härkönen, J.; Ilyashenko, I.; Janos, S.; Jungermann, L.; Kalesinskas, V.; Kapturauskas, J.; Laiho, R.; Luukka, P.; Mandic, I.; De Masi, Rita; Menichelli, D.; Mikuz, M.; Militaru, O.; Niinikosky, T. O.; Shea, V. O.'.; Pagano, S.; Paul, S.; Piotrzkowski, K.; Pretzl, K.; Rato Mendes, P.; Rouby, X.; Ruggiero, G.; Smith, K.; Sonderegger, P.; Sousa, P.; Tuominen, E.; Tuovinen, E.; Verbitskaya, E.; Vaitkus, J.; Wobst, E.; Zavrtanik, M.

    2007-09-01

    Radiation hardness up to 10 16 neq/cm 2 is required in the future HEP experiments for most inner detectors. However, 10 16 neq/cm 2 fluence is well beyond the radiation tolerance of even the most advanced semiconductor detectors fabricated by commonly adopted technologies: the carrier trapping will limit the charge collection depth to an effective range of 20-30 μm regardless of depletion depth. Significant improvement of the radiation hardness of silicon sensors has been taken place within RD39. Fortunately the cryogenic tool we have been using provides us a convenient way to solve the detector charge collection efficiency (CCE) problem at SLHC radiation level (10 16 neq/cm 2). There are two key approaches in our efforts: (1) use of the charge/current injection to manipulate the detector internal electric field in such a way that it can be depleted at a modest bias voltage at cryogenic temperature range (⩽230 K); and (2) freezing out of the trapping centers that affects the CCE at cryogenic temperatures lower than that of the LN 2 temperature. In our first approach, we have developed the advanced radiation hard detectors using charge or current injection, the current injected diodes (CID). In a CID, the electric field is controlled by injected current, which is limited by the space charge, yielding a nearly uniform electric field in the detector, independent of the radiation fluence. In our second approach, we have developed models of radiation-induced trapping levels and the physics of their freezing out at cryogenic temperatures. In this approach, we intend to study the trapping effect at temperatures below LN 2 temperature. A freeze-out of trapping can certainly help in the development of ultra-radiation hard Si detectors for SLHC. A detector CCE measurement system using ultra-fast picosecond laser with a He cryostat has been built at CERN. This system can be used to find out the practical cryogenic temperature range that can be used to freeze out the

  4. Cryogenic Si detectors for ultra radiation hardness in SLHC environment

    Energy Technology Data Exchange (ETDEWEB)

    Li Zheng [Brookhaven National Laboratory, Upton, NY 11973-5000 (United States); Abreu, M. [LIP, Av. E. Garcia, P-1000 Lisbon (Portugal); Anbinderis, P.; Anbinderis, T. [University of Vilnius, Institute of Materials Science and Applied Research, 2040 Vilnius (Lithuania); Ambrosio, N.D' . [Instiuto di Cibernetica ' E. Caianiello' , 80078 Pozzuoli (Italy); Boer, W. de [IEKP University of Karlsruhe, D-76128 Karlsruhe (Germany); Borchi, E. [Dipartimento di Energetica, Universita di Firenze, I-50139 Florence (Italy); Borer, K. [Laboratorium fuer Hochenergiephysik der Universitaet Bern, Sidlerstarsse 5, CH-3012 Bern (Switzerland); Bruzzi, M. [Dipartimento di Energetica, Universita di Firenze, I-50139 Firenze (Italy); Buontempo, S. [Instiuto di Cibernetica ' E. Caianiello' , 80078 Pozzuoli (Italy); Chen, W. [Brookhaven National Laboratory, Upton, NY 11973-5000 (United States); Cindro, V. [Jozef Stefan Institute, Exp. Particle Physics Department, PO. Box 3000, 1001 Ljubljana (Slovenia); Dierlamm, A. [IEKP University of Karlsruhe, D-76128 Karlsruhe (Germany); Eremin, V. [Ioffe Physico-Technical Institute, Russian Academy of Sciences, St. Petersburg 194021 (Russian Federation); Gaubas, E.; Gorbatenko, V. [University of Vilnius, Institute of Materials Science and Applied Research, 2040 Vilnius (Lithuania); Grigoriev, E. [IEKP University of Karlsruhe, D-76128 Karlsruhe (Germany); Department de Radiologie, Universite de Geneve, CH-1211 Geneva (Switzerland); Hauler, F. [IEKP University of Karlsruhe, D-76128 Karlsruhe (Germany); Heijne, E. [CERN, CH-1211 Geneva (Switzerland); Heising, S. [IEKP University of Karlsruhe, D-76128 Karlsruhe (Germany)] (and others)

    2007-09-01

    Radiation hardness up to 10{sup 16} n{sub eq}/cm{sup 2} is required in the future HEP experiments for most inner detectors. However, 10{sup 16} n{sub eq}/cm{sup 2} fluence is well beyond the radiation tolerance of even the most advanced semiconductor detectors fabricated by commonly adopted technologies: the carrier trapping will limit the charge collection depth to an effective range of 20-30 {mu}m regardless of depletion depth. Significant improvement of the radiation hardness of silicon sensors has been taken place within RD39. Fortunately the cryogenic tool we have been using provides us a convenient way to solve the detector charge collection efficiency (CCE) problem at SLHC radiation level (10{sup 16} n{sub eq}/cm{sup 2}). There are two key approaches in our efforts: (1) use of the charge/current injection to manipulate the detector internal electric field in such a way that it can be depleted at a modest bias voltage at cryogenic temperature range ({<=}230 K); and (2) freezing out of the trapping centers that affects the CCE at cryogenic temperatures lower than that of the LN{sub 2} temperature. In our first approach, we have developed the advanced radiation hard detectors using charge or current injection, the current injected diodes (CID). In a CID, the electric field is controlled by injected current, which is limited by the space charge, yielding a nearly uniform electric field in the detector, independent of the radiation fluence. In our second approach, we have developed models of radiation-induced trapping levels and the physics of their freezing out at cryogenic temperatures. In this approach, we intend to study the trapping effect at temperatures below LN{sub 2} temperature. A freeze-out of trapping can certainly help in the development of ultra-radiation hard Si detectors for SLHC. A detector CCE measurement system using ultra-fast picosecond laser with a He cryostat has been built at CERN. This system can be used to find out the practical

  5. Analytical response function for planar Ge detectors

    Science.gov (United States)

    García-Alvarez, Juan A.; Maidana, Nora L.; Vanin, Vito R.; Fernández-Varea, José M.

    2016-04-01

    We model the response function (RF) of planar HPGe x-ray spectrometers for photon energies between around 10 keV and 100 keV. The RF is based on the proposal of Seltzer [1981. Nucl. Instrum. Methods 188, 133-151] and takes into account the full-energy absorption in the Ge active volume, the escape of Ge Kα and Kβ x-rays and the escape of photons after one Compton interaction. The relativistic impulse approximation is employed instead of the Klein-Nishina formula to describe incoherent photon scattering in the Ge crystal. We also incorporate a simple model for the continuous component of the spectrum produced by the escape of photo-electrons from the active volume. In our calculations we include external interaction contributions to the RF: (i) the incoherent scattering effects caused by the detector's Be window and (ii) the spectrum produced by photo-electrons emitted in the Ge dead layer that reach the active volume. The analytical RF model is compared with pulse-height spectra simulated using the PENELOPE Monte Carlo code.

  6. Advanced ACTPol Cryogenic Detector Arrays and Readout

    CERN Document Server

    Henderson, S W; Austermann, J; Baildon, T; Battaglia, N; Beall, J A; Becker, D; De Bernardis, F; Bond, J R; Calabrese, E; Choi, S K; Coughlin, K P; Crowley, K T; Datta, R; Devlin, M J; Duff, S M; Dunner, R; Dunkley, J; van Engelen, A; Gallardo, P A; Grace, E; Hasselfield, M; Hills, F; Hilton, G C; Hincks, A D; Hlozek, R; Ho, S P; Hubmayr, J; Huffenberger, K; Hughes, J P; Irwin, K D; Koopman, B J; Kosowsky, A B; Li, D; McMahon, J; Munson, C; Nati, F; Newburgh, L; Niemack, M D; Niraula, P; Page, L A; Pappas, C G; Salatino, M; Schillaci, A; Schmitt, B L; Sehgal, N; Sherwin, B D; Sievers, J L; Simon, S M; Spergel, D N; Staggs, S T; Stevens, J R; Thornton, R; Van Lanen, J; Vavagiakis, E M; Ward, J T; Wollack, E J

    2015-01-01

    Advanced ACTPol is a polarization-sensitive upgrade for the 6 m aperture Atacama Cosmology Telescope (ACT), adding new frequencies and increasing sensitivity over the previous ACTPol receiver. In 2016, Advanced ACTPol will begin to map approximately half the sky in five frequency bands (28-230 GHz). Its maps of primary and secondary cosmic microwave background (CMB) anisotropies -- imaged in intensity and polarization at few arcminute-scale resolution -- will enable precision cosmological constraints and also a wide array of cross-correlation science that probes the expansion history of the universe and the growth of structure via gravitational collapse. To accomplish these scientific goals, the Advanced ACTPol receiver will be a significant upgrade to the ACTPol receiver, including four new multichroic arrays of cryogenic, feedhorn-coupled AlMn transition edge sensor (TES) polarimeters (fabricated on 150 mm diameter wafers); a system of continuously rotating meta-material silicon half-wave plates; and a new ...

  7. Massive silicon or germanium detectors at cryogenic temperature

    Energy Technology Data Exchange (ETDEWEB)

    Braggio, C. [Dip. Fisica dell' Universita di Ferrara and INFN, via del Paradiso 12, 44100 Ferrara (Italy); Bressi, G. [INFN, sez.Pavia, Via U. Bassi 6, 27100 Pavia (Italy); Carugno, G. [INFN, sez. Padova, Via Marzolo 8, 35131 Padova (Italy); Feltrin, E. [INFN, Lab. Naz. Legnaro, Via dell' Universita 1, 35020 Legnaro (PD) (Italy)]. E-mail: feltrin@lnl.infn.it; Galeazzi, G. [INFN, Lab. Naz. Legnaro, Via dell' Universita 1, 35020 Legnaro (PD) (Italy)

    2006-11-30

    Several massive silicon and germanium home-made detectors, working at cryogenic temperature, have been studied. They are the benchmarking schemes to check the possibility of realizing a semiconductor time projection chamber that could have various interesting applications in weak interaction problems. Reported here are the first results on investigations of charge collection efficiency and metal-semiconductor contact hardness. The leakage current, total depletion voltage and alpha or gamma spectroscopy are presented.

  8. Interdefect charge exchange in silicon particle detectors at cryogenic temperatures

    CERN Document Server

    MacEvoy, B; Hall, G; Moscatelli, F; Passeri, D; Santocchia, A

    2002-01-01

    Silicon particle detectors in the next generation of experiments at the CERN Large Hadron Collider will be exposed to a very challenging radiation environment. The principal obstacle to long-term operation arises from changes in detector doping concentration (N/sub eff/), which lead to an increase in the bias required to deplete the detector and hence achieve efficient charge collection. We have previously presented a model of interdefect charge exchange between closely spaced centers in the dense terminal clusters formed by hadron irradiation. This manifestly non-Shockley-Read-Hall (SRH) mechanism leads to a marked increase in carrier generation rate and negative space charge over the SRH prediction. There is currently much interest in the subject of cryogenic detector operation as a means of improving radiation hardness. Our motivation, however, is primarily to investigate our model further by testing its predictions over a range of temperatures. We present measurements of spectra from /sup 241/Am alpha par...

  9. CALDER: cryogenic light detector for rare events search

    CERN Document Server

    Pagnanini, L; Bellini, F; Calvo, M; Cardani, L; Casali, N; Castellano, M G; Colantoni, I; Coppolecchia, A; Cosmelli, C; Cruciani, A; De Bernardis, P; Di Domizio, S; D'Addabbo, A; Martinez, M; Masi, S; Tomei, C; Vignati, M

    2015-01-01

    The CALDER project aims at developing cryogenic light detectors with high sensitivity to UV and visible light, to be used for particle tagging in massive bolometers. Indeed the sensitivity of CUORE can be increased by a factor of 3, thanks to the reduction of the $\\alpha$-background, obtained by detecting the Cherenkov light (100 eV) emitted by $\\beta/\\gamma$ events. Currently used light detectors have not the features required to address this task, so we decided to develop a new light detector using Kinetic Inductance Detector as a sensor. This approach is very challenging and requires an intensive R$\\&$D to be satisfied. The first results of this activity are shown in the following.

  10. Fracture Processes Observed with A Cryogenic Detector

    CERN Document Server

    Åström, J; Stodolsky, L; Timonen, J; Bucci, C; Cooper, S; Cozzini, C; Feilitzsch, F; Kraus, H; Marchese, J; Meier, O; Nagel, U; Ramachers, Y; Seidel, W; Sisti, M; Uchaikin, S V; Zerle, L

    2005-01-01

    In the early stages of running of the CRESST dark matter search using sapphire detectors at very low temperature, an unexpectedly high rate of signal pulses appeared. Their origin was finally traced to fracture events in the sapphire due to the very tight clamping of the detectors. During extensive runs the energy and time of each event was recorded, providing large data sets for such phenomena. We believe this is the first time that the energy release in fracture has been accurately measured on a microscopic event-by-event basis.We report some features of the data, including energy distributions for the events, waiting time distributions, autocorrelations and the Hurst exponent. The energy distribution appear to follow a power law, $dN/dE\\propto E^{-\\beta}$, similar to the Gutenberg-Richter power law for earthquake magnitudes, and after appropriate translation, with a similar exponent. In the time domain,the waiting time $w$ or gap distribution between events has a power law behavior at small $w$ and an an e...

  11. Cryogenic detector modules and edgeless silicon sensors

    Energy Technology Data Exchange (ETDEWEB)

    Rouby, X. [Universite Catholique de Louvain, B-1348 Louvain-la-Neuve (Belgium)]. E-mail: rouby@fynu.ucl.ac.be; Eremin, V. [Ioffe Physico-Technical Institute, Russian Academy of Sciences, St. Petersburg 194021 (Russian Federation); Grohmann, S. [ILK Dresden, Bertolt-Brecht-Allee 20, D-01309 Dresden (Germany); Haerkoenen, J. [Helsinki Institute of Physics, 00014 Helsinki (Finland); Li, Z. [Brookhaven National Laboratory, Upton, NY 11973-5000 (United States); Luukka, P. [Helsinki Institute of Physics, 00014 Helsinki (Finland); Militaru, O. [Universite Catholique de Louvain, B-1348 Louvain-la-Neuve (Belgium); Niinikoski, T. [CERN, CH-1211 Geneva (Switzerland); Nuessle, G. [CERN, CH-1211 Geneva (Switzerland); Perea Solano, B. [CERN, CH-1211 Geneva (Switzerland); Piotrzkowski, K. [Universite Catholique de Louvain, B-1348 Louvain-la-Neuve (Belgium); Tuovinen, E. [Helsinki Institute of Physics, 00014 Helsinki (Finland); Verbitskaya, E. [Ioffe Physico-Technical Institute, Russian Academy of Sciences, St. Petersburg 194021 (Russian Federation)

    2007-01-11

    We are studying the operation of silicon microstrip detector with readout electronics in the temperature range from 90 to 130K. The sensor can be operated in the current-injection mode which significantly improves its radiation hardness. A first module prototype has been built, with APV25 readout chips and an embedded microtube, providing efficient low-mass cooling of the whole module with a two-phase flow of N{sub 2} or Ar. First pedestal and pulse shape temperature dependencies are presented for this module. We have also built an edgeless test module with two pairs of laser cut sensors, with both angular and parallel cuts with respect to the strips (at 120{mu}m pitch). We are studying the efficiency of the microstrip sensors very close (<200{mu}m) to the physical border of the cut silicon crystal and present here some electrical characteristics.

  12. The detector calibration system for the CUORE cryogenic bolometer array

    Science.gov (United States)

    Cushman, Jeremy S.; Dally, Adam; Davis, Christopher J.; Ejzak, Larissa; Lenz, Daniel; Lim, Kyungeun E.; Heeger, Karsten M.; Maruyama, Reina H.; Nucciotti, Angelo; Sangiorgio, Samuele; Wise, Thomas

    2017-02-01

    The Cryogenic Underground Observatory for Rare Events (CUORE) is a ton-scale cryogenic experiment designed to search for neutrinoless double-beta decay of 130Te and other rare events. The CUORE detector consists of 988 TeO2 bolometers operated underground at 10 mK in a dilution refrigerator at the Laboratori Nazionali del Gran Sasso. Candidate events are identified through a precise measurement of their energy. The absolute energy response of the detectors is established by the regular calibration of each individual bolometer using gamma sources. The close-packed configuration of the CUORE bolometer array combined with the extensive shielding surrounding the detectors requires the placement of calibration sources within the array itself. The CUORE Detector Calibration System is designed to insert radioactive sources into and remove them from the cryostat while respecting the stringent heat load, radiopurity, and operational requirements of the experiment. This paper describes the design, commissioning, and performance of this novel source calibration deployment system for ultra-low-temperature environments.

  13. Cryogenic Semiconductor Detectors: Simulation of Signal Formation & Irradiation Beam Test

    CERN Document Server

    AUTHOR|(CDS)2091318; Stamoulis, G; Vavougios, D

    The Beam Loss Monitoring system of the Large Hadron Collider is responsible for the pro- tection of the machine from damage and for the prevention of a magnet quench. Near the interaction points of the LHC, in the triplet magnets area, the BLMs are sensitive to the collision debris, limiting their ability to distinguish beam loss signal from signal caused due to the collision products. Placing silicon & diamond detectors inside the cold mass of the mag- nets, in liquid helium temperatures, would provide significant improvement to the precision of the measurement of the energy deposition in the superconducting coil of the magnet. To further study the signal formation and the shape of the transient current pulses of the aforementioned detectors in cryogenic temperatures, a simulation application has been developed. The application provides a fast way of determining the electric field components inside the detectors bulk and then introduces an initial charge distribution based on the properties of the radiat...

  14. Ionization Collection in Detectors of the Cryogenic Dark Matter Search

    Energy Technology Data Exchange (ETDEWEB)

    Phipps, Arran T.J. [Univ. of California, Berkeley, CA (United States)

    2016-01-01

    Determining the composition of dark matter is at the forefront of modern scientific research. There is compelling evidence for the existence of vast quantities of dark matter throughout the universe, however it has so-far eluded all direct detection efforts and its identity remains a mystery. Weakly interacting massive particles (WIMPs) are a favored dark matter candidate and have been the primary focus of direct detection for several decades. The Cryogenic Dark Matter Search (CDMS) has developed the Z-dependent Ionization and Phonon (ZIP) detector to search for such particles. Typically made from germanium, these detectors are capable of distinguishing between electromagnetic background and a putative WIMP signal through the simultaneous measurement of ionization and phonons produced by scattering events. CDMS has operated several arrays of these detectors at the Soudan Underground Laboratory (Soudan, MN, USA) resulting in many competitive (often world-leading) WIMP exclusion limits. This dissertation focuses on ionization collection in these detectors under the sub-Kelvin, low electric field, and high crystal purity conditions unique to CDMS. The design and performance of a fully cryogenic HEMT-based amplifier capable of achieving the SuperCDMS SNOLAB ionization energy resolution goal of 100 eVee is presented. The experimental apparatus which has been used to record electron and hole properties under CDMS conditions is described. Measurements of charge transport, trapping, and impact ionization as a function of electric field in two CDMS detectors are shown, and the ionization collection efficiency is determined. The data is used to predict the error in the nuclear recoil energy scale under both CDMSlite and iZIP operating modes. A two species, two state model is developed to describe how ionization collection and space charge generation in CDMS detectors are controlled by the presence of “overcharged” D- donor and A+ acceptor impurity states. The thermal

  15. Cryogenic operation of a 24 GHz MMIC SiGe HBT medium power amplifier

    Science.gov (United States)

    Qin, Guoxuan; Jiang, Ningyue; Seo, Jung-Hun; Cho, Namki; Ponchak, George E.; van der Weide, Daniel; Ma, Pingxi; Stetson, Scott; Racanelli, Marco; Ma, Zhenqiang

    2010-12-01

    The performance of a SiGe heterojunction bipolar transistor (HBT) millimetre-wave power amplifier (PA) operating at cryogenic temperature was reported and analysed for the first time. A 24 GHz two-stage medium PA employing common-emitter and common-base SiGe power HBTs in the first and the second stage, respectively, showed a significant power gain increase at 77 K in comparison with that measured at room temperature. Detailed analyses indicate that cryogenic operation of SiGe HBT-based PAs mainly affects (improves) the performance of the SiGe HBTs in the circuits due to transconductance enhancement through magnified, favourable changes of SiGe bandgap due to cooling (ΔEg/kT) and minimized thermal effects, with little influence on the passive components of the circuits.

  16. The integrated cryogenic system for the atmospheric vertical interferometric detector on FY-4 satellite

    Science.gov (United States)

    Wu, Yinong; Liu, EnGuang; Jiang, Zhenhua; Yang, Baoyu; Mu, Yongbin

    2016-05-01

    The cryogenic system for the atmospheric vertical interferometric detector on FY-4 satellite includes a Stirling cryocooler, a radiant cooler, a cryogenic heat pipe and some flexible thermal links as well. These cryogenic elements were integrated together in order to decrease the background radiation and maximize the sensitivity with high efficiency and high reliability. This paper summarizes the cryogenic integration design, technical challenges, and the results of thermal and performance testing.

  17. CALDER: Cryogenic light detectors for background-free searches

    Science.gov (United States)

    Cardani, L.; Bellini, F.; Casali, N.; Castellano, M. G.; Colantoni, I.; Coppolecchia, A.; Cosmelli, C.; Cruciani, A.; Di Domizio, S.; Tomei, C.; Vignati, M.

    2015-08-01

    The development of background-free detectors is essential for experiments searching for rare events. Bolometers, that are among the most competitive devices for the study of neutrino-less double beta decay (0νDBD) and Dark Matter interactions, suffer from the absence of techniques that allow to identify the nature of the interacting particles. This limit can be overcome by coupling the bolometer to an independent device for the measurement of the light emitted by interactions, as the combined read-out of the bolometric and light signals allows to identify and reject particles different from those of interest. CUORE, the most advanced bolometric experiment for 0νDBD searches, could disentangle the electrons produced by 0νDBD from the dangerous background due to α particles, by measuring the (tiny) Cherenkov light emitted by electrons and not by α's. LUCIFER, a project based on ZnSe scintillating bolometers for the study of 82Se 0νDBD, would be competitive also in the search of Dark Matter interactions if equipped with light detectors that allow to distinguish and reject the background due to electrons and γ's. These advances require cryogenic detectors characterized by noise lower than 20 eV, large active area, wide temperature range of operation, high radio-purity and ease in fabricating hundreds of channels. The CALDER collaboration aims to develop such detectors by exploiting the superb energy resolution and natural multiplexed read-out provided by Kinetic Inductance Detectors.

  18. Initial studies in the modelling of position resolving cryogenic detectors

    CERN Document Server

    Ashby, J V; Greenough, C S

    2002-01-01

    In this paper, we describe some results in the modelling of a Cryogenic Detector. These detectors use the heat generated from an X-ray event to determine the event's time and position. The model makes the basic assumption that the heat transport can be represented through by linear diffusion process and that the times at which the temperature changes reach the edge sensors can be used to determine the position of the event. The paper develops a finite element model of the device and performs a series of numerical experiments. The results of these experiments are compared with a simple analytic model. Two methods of determining the event position are presented: one based on an analytic solution and a second using neural network.

  19. New application of superconductors: high sensitivity cryogenic light detectors

    CERN Document Server

    Cardani, L; Casali, N; Casellano, M G; Colantoni, I; Coppolecchia, A; Cosmelli, C; Cruciani, A; D'Addabbo, A; Di Domizio, S; Martinez, M; Tomei, C; Vignati, M

    2016-01-01

    In this paper we describe the current status of the CALDER project, which is developing ultra-sensitive light detectors based on superconductors for cryogenic applications. When we apply an AC current to a superconductor, the Cooper pairs oscillate and acquire kinetic inductance, that can be measured by inserting the superconductor in a LC circuit with high merit factor. Interactions in the superconductor can break the Cooper pairs, causing sizable variations in the kinetic inductance and, thus, in the response of the LC circuit. The continuous monitoring of the amplitude and frequency modulation allows to reconstruct the incident energy with excellent sensitivity. This concept is at the basis of Kinetic Inductance Detectors (KIDs), that are characterized by natural aptitude to multiplexed read-out (several sensors can be tuned to different resonant frequencies and coupled to the same line), resolution of few eV, stable behavior over a wide temperature range, and ease in fabrication. We present the results ob...

  20. Cryogenic detectors for dark matter search and neutrinoless double beta decay

    Science.gov (United States)

    Münster, Andrea; Schönert, Stefan; Willers, Michael

    2017-02-01

    The search for the neutrinoless double beta decay and the direct search for dark matter particles are amongst the most fundamental questions in astroparticle physics and cosmology. To achieve a high sensitivity, detectors with an excellent energy resolution and highly efficient particle identification capabilities are required. In recent years, cryogenic particle detectors have become one of the driving technologies in these fields. Future direct dark matter search experiments aim to improve the sensitivity for low mass dark matter particles (≲ 10 GeV /c2) down to the neutrino floor and the next generation of neutrinoless double beta decay experiments aims to improve the sensitivity on the half-life to ∼1026 -1027 years, corresponding to the parameter space predicted for the inverted mass ordering and degenerate mass range. To achieve these goals, significant improvements in detector performance and in radiopurity are required and both classes of experiments can benefit from the strong synergies in the fields of detector development and in the production of high purity single-crystals.

  1. CALDER: Cryogenic light detectors for background-free searches

    Energy Technology Data Exchange (ETDEWEB)

    Cardani, L. [Dipartimento di Fisica - Sapienza Università di Roma, Roma - Italy and Physics Department, Princeton University, Princeton, NJ (United States); Bellini, F.; Casali, N.; Coppolecchia, A.; Cosmelli, C.; Cruciani, A.; Vignati, M. [Dipartimento di Fisica - Sapienza Università di Roma and INFN - Sezione di Roma, Roma - Italy (Italy); Castellano, M. G. [Istituto di Fotonica e Nanotecnologie - CNR, Roma - Italy (Italy); Colantoni, I. [Dipartimento di Fisica - Sapienza Università di Roma (Italy); Di Domizio, S. [Dipartimento di Fisica, Università di Genova, Genova - Italy and INFN Sezione di Genova, Genova - Italy (Italy); Tomei, C. [INFN - Sezione di Roma, Roma - Italy (Italy)

    2015-08-17

    The development of background-free detectors is essential for experiments searching for rare events. Bolometers, that are among the most competitive devices for the study of neutrino-less double beta decay (0νDBD) and Dark Matter interactions, suffer from the absence of techniques that allow to identify the nature of the interacting particles. This limit can be overcome by coupling the bolometer to an independent device for the measurement of the light emitted by interactions, as the combined read-out of the bolometric and light signals allows to identify and reject particles different from those of interest. CUORE, the most advanced bolometric experiment for 0νDBD searches, could disentangle the electrons produced by 0νDBD from the dangerous background due to α particles, by measuring the (tiny) Cherenkov light emitted by electrons and not by α’s. LUCIFER, a project based on ZnSe scintillating bolometers for the study of {sup 82}Se 0νDBD, would be competitive also in the search of Dark Matter interactions if equipped with light detectors that allow to distinguish and reject the background due to electrons and γ’s. These advances require cryogenic detectors characterized by noise lower than 20 eV, large active area, wide temperature range of operation, high radio-purity and ease in fabricating hundreds of channels. The CALDER collaboration aims to develop such detectors by exploiting the superb energy resolution and natural multiplexed read-out provided by Kinetic Inductance Detectors.

  2. A comprehensive analysis of irradiated silicon detectors at cryogenic temperatures

    CERN Document Server

    Santocchia, A; Hall, G; MacEvoy, B; Moscatelli, F; Passeri, D; Pignatel, Giogrio Umberto

    2003-01-01

    The effect of particle irradiation on high-resistivity silicon detectors has been extensively studied with the goal of engineering devices able to survive the very challenging radiation environment at the CERN Large Hadron Collider (LHC). The main aspect under investigation has been the changes observed in detector effective doping concentration (N/sub eff/). We have previously proposed a mechanism to explain the evolution of N/sub eff/, whereby charge is exchanged directly between closely-spaced defect centres in the dense terminal clusters formed by hadron irradiation. This model has been implemented in both a commercial finite-element device simulator (ISE-TCAD) and a purpose-built simulation of interdefect charge exchange. To control the risk of breakdown due to the high leakage currents foreseen during ten years of LHC operation, silicon detectors will be operated below room temperature (around -10 degrees C). This, and more general current interest in the field of cryogenic operation, has led us to inve...

  3. New application of superconductors: High sensitivity cryogenic light detectors

    Science.gov (United States)

    Cardani, L.; Bellini, F.; Casali, N.; Castellano, M. G.; Colantoni, I.; Coppolecchia, A.; Cosmelli, C.; Cruciani, A.; D'Addabbo, A.; Di Domizio, S.; Martinez, M.; Tomei, C.; Vignati, M.

    2017-02-01

    In this paper we describe the current status of the CALDER project, which is developing ultra-sensitive light detectors based on superconductors for cryogenic applications. When we apply an AC current to a superconductor, the Cooper pairs oscillate and acquire kinetic inductance, that can be measured by inserting the superconductor in a LC circuit with high merit factor. Interactions in the superconductor can break the Cooper pairs, causing sizable variations in the kinetic inductance and, thus, in the response of the LC circuit. The continuous monitoring of the amplitude and frequency modulation allows to reconstruct the incident energy with excellent sensitivity. This concept is at the basis of Kinetic Inductance Detectors (KIDs) that are characterized by natural aptitude to multiplexed read-out (several sensors can be tuned to different resonant frequencies and coupled to the same line), resolution of few eV, stable behavior over a wide temperature range, and ease in fabrication. We present the results obtained by the CALDER collaboration with 2×2 cm2 substrates sampled by 1 or 4 Aluminum KIDs. We show that the performances of the first prototypes are already competitive with those of other commonly used light detectors, and we discuss the strategies for a further improvement.

  4. Quasiparticle diffusion over several mm in cryogenic detectors

    Energy Technology Data Exchange (ETDEWEB)

    Loidl, M. E-mail: loidl@hep.saclay.cea.fr; Cooper, S.; Meier, O.; Proebst, F.; Safran, G.; Seidel, W.; Sisti, M.; Stodolsky, L.; Uchaikin, S

    2001-06-11

    The use of quasiparticle diffusion in a superconducting film has the potential to allow an increase in the size of a cryogenic detector without proportional loss of energy resolution. The quasiparticle lifetime and the diffusion constant are critical parameters which have limited this development. Using W superconducting phase transition thermometers as the sensors and a W/Al bilayer as the diffusion film, we have measured quasiparticle diffusion over a distance of 2 mm and deduced a diffusion constant of D=2.5x10{sup -4} m{sup 2}/s and a quasiparticle lifetime of {tau}=9.0 ms, which is, to our knowledge, by far the longest ever observed. With Ir/Au thermometers and an Ir/Au/Al diffusion film we found D=4.6x10{sup -3} m{sup 2}/s and {tau}=0.43 ms with diffusion over 4 mm, the longest distance observed to date.

  5. Comparative technique in measurements of Ge detectors effective volumes

    Science.gov (United States)

    Demidova, E. V.; Kirpichnikov, I. V.; Vasenko, A. A.

    1999-01-01

    A simple and quick procedure was proposed for measurements of large coaxial Ge detectors effective volumes. It included a comparison of background spectra collected with several detectors without any shielding in an underground laboratory. Such measurements were performed in Homestake (USA) and Canfranc (Spain) laboratories with several 1 kg and 2 kg detectors. Monte-Carlo calculations confirmed that ratios of numbers of events in continua of the spectra should be either equal or very close to the ratios of the detectors effective volumes.

  6. Cryogenic absolute radiometers as laboratory irradiance standards, remote sensing detectors, and pyroheliometers

    Science.gov (United States)

    Foukal, Peter V.; Hoyt, C.; Kochling, H.; Miller, P.

    1990-01-01

    The dramatic improvement in heat diffusivity of pure Cu at liquid-He temperatures makes possible very important advances in the absolute accuracy, reproducibility, sensitivity, and time constant of cryogenic electrical substitution radiometers (ESRs), relative to conventional ESRs. The design and characterization of a table-top cryogenic ESR now available for detector calibration work to the 0.01-percent level of absolute accuracy under laser illumination is discussed. A sensitive cryogenic ESR recently delivered to the NIST for radiometric calibrations of black bodies is also described, along with the design and testing of a very fast cryogenic ESR developed for NASA remote-sensing studies of the earth's radiation budget.

  7. Ge/GaAs heterostructure matrix detector

    Energy Technology Data Exchange (ETDEWEB)

    Kostamo, P. [Optoelectronics Laboratory, Helsinki University of Technology, P.O. Box 3500, 02015 HUT (Finland)]. E-mail: pasi.kostamo@hut.fi; Saeynaetjoki, A. [Optoelectronics Laboratory, Helsinki University of Technology, P.O. Box 3500, 02015 HUT (Finland); Knuuttila, L. [Optoelectronics Laboratory, Helsinki University of Technology, P.O. Box 3500, 02015 HUT (Finland); Lipsanen, H. [Optoelectronics Laboratory, Helsinki University of Technology, P.O. Box 3500, 02015 HUT (Finland); Andersson, H. [Oxford Instruments Analytical Oy (United Kingdom); Banzuzi, K. [Oxford Instruments Analytical Oy (United Kingdom); Nenonen, S. [Oxford Instruments Analytical Oy (United Kingdom); Sipilae, H. [Oxford Instruments Analytical Oy (United Kingdom); Vaijaervi, S. [Oxford Instruments Analytical Oy (United Kingdom); Lumb, D. [Science Payload and Advanced Concepts Office, ESA/ESTEC, Nordwijk (Netherlands)

    2006-07-01

    In this paper we present a novel germanium/gallium arsenide heterostructure X-ray detector with the active volume of germanium. The heterostructure is fabricated by depositing a gallium arsenide layer on a high-purity germanium wafer in a vertical metalorganic vapor-phase epitaxy system. This approach provides a new alternative to traditional lithium diffused n+ contact which is not easily applicable for finely pixelated detectors. The detector chip fabrication utilizing this kind of heterostructure is straightforward and only standard lithographic processes need to be applied. Electrical properties of the small format detector matrices are studied. Very low reverse biased current at 77 K is observed. It is concluded that the diffusion of arsenic in germanium results in an n-type germanium layer under the epitaxial gallium arsenide.

  8. GeV dark matter searches with the NEWS detector

    Science.gov (United States)

    Profumo, Stefano

    2016-03-01

    The proposed NEWS apparatus, a spherical detector with a small central electrode sensor operating as a proportional counter, promises to explore new swaths of the direct detection parameter space in the GeV and sub-GeV dark matter particle mass range by employing very light nuclear targets, such as H and He, and by taking advantage of a very low (sub-keV) energy threshold. Here we discuss and study two example classes of dark matter models that will be tested with NEWS: GeV-scale millicharged dark matter, and a GeV-Dirac Fermion dark matter model with a light (MeV-GeV) scalar or vector mediator, and indicate the physical regions of parameter space the experiment can probe.

  9. Charge collection efficiency and resolution of an irradiated double sided silicon microstrip detector operated at cryogenic temperatures

    CERN Document Server

    Bartalini, P; Buytaert, J; Chabaud, V; Collins, P; Dijkstra, H; Dormond, O; Frei, R; Parkes, C; Ruf, T; Saladino, S; Saladino, Stefania

    1999-01-01

    99-026 This paper presents results on the measurement of the cluster shapes, resolution and charge collection efficiency of a double sided silicon microstrip detector after irradiation with 24 GeV protons to a fluence of 3.5 x 10^14 p/cm2 and operated at cryogenic temperatures. An empirical model is presented which describes the expected cluster shapes as a function of depletion depth, and is shown to agree with the data. It is observed that the clusters on the p-side broaden if the detector is under-depleted, leading to a degradation of resolution and efficiency.The model is used to make predictions for detector types envisaged for the LHC experiments. The results also show that at cryogenic temperature the charge collection efficiency varies depending on the operating conditions of the detector and can reach values of 100 % at unexpectedly low bias voltage. By analysing the cluster shapes it is shown that these variations are due to changes in depletion depth. This phenomenon, known as the ``Lazarus effect'...

  10. The Successful Operation of Hole-type Gaseous Detectors at Cryogenic Temperatures

    CERN Document Server

    Pereiale, L; Iacobaeus, C; Francke, T; Lund-Jensen, B; Pavlopoulos, P; Picchi, P; Pietropaolo, F; Tokanai, F

    2004-01-01

    We have demonstrated that hole-type gaseous detectors, GEMs and capillary plates, can operate up to 77 K. For example, a single capillary plate can operate at gains of above 10E3 in the entire temperature interval between 300 until 77 K. The same capillary plate combined with CsI photocathodes could operate perfectly well at gains (depending on gas mixtures) of 100-1000. Obtained results may open new fields of applications for capillary plates as detectors of UV light and charge particles at cryogenic temperatures: noble liquid TPCs, WIMP detectors or LXe scintillating calorimeters and cryogenic PETs.

  11. Investigation of Neganov-Luke amplified cryogenic light-detectors for CRESST and EURECA

    Energy Technology Data Exchange (ETDEWEB)

    Ertl, Andreas; Guetlein, Achim; Lanfranchi, Jean-Come; Muenster, Andrea; Potzel, Walter; Roth, Sabine; Simon, Daniel; Scholl, Stephan; Sivers, Moritz von; Strauss, Raimund; Wawoczny, Stephan; Willers, Michael; Wuestrich, Marc; Zoeller, Andreas [Technische Universitaet Muenchen, Physik Department E15, Garching (Germany)

    2013-07-01

    Experiments for the direct detection of dark matter which employ the phonon-light technique like CRESST and the planned experiment EURECA rely heavily on the separation of the different nuclear-recoil bands at low energies for their background suppression. The CRESST experiment uses scintillating CaWO{sub 4} crystals as a target in the search for coherent WIMP-nucleon scattering. In the case of electron recoils, about 1% of the energy deposited in a CaWO{sub 4} crystal is detected as scintillation light in a separate cryogenic light-detector. For nuclear recoils the scintillation light is further quenched which motivates the need for very sensitive light-detectors. Neganov-Luke amplified cryogenic light-detectors offer a promising way to increase the sensitivity of cryogenic light-detectors by drifting photon induced electrons and holes in an applied electric field and thus amplifying the resulting phonon signal.

  12. 12 GeV detector technology at Jefferson Lab

    Science.gov (United States)

    Leckey, John P.; GlueX Collaboration

    2013-04-01

    The Thomas Jefferson National Accelerator Facility (JLab) is presently in the middle of an upgrade to increase the energy of its CW electron beam from 6 GeV to 12 GeV along with the addition of a fourth experimental hall. Driven both by necessity and availability, novel detectors and electronics modules have been used in the upgrade. One such sensor is the Silicon Photomultiplier (SiPM), specifically a Multi-Pixel Photon Counter (MPPC), which is an array of avalanche photodiode pixels operating in Geiger mode that are used to sense photons. The SiPMs replace conventional photomultiplier tubes and have several distinct advantages including the safe operation in a magnetic field and the lack of need for high voltage. Another key to 12 GeV success is advanced fast electronics. Jlab will use custom 250 MHz and 125 MHz 12-bit analog to digital converters (ADCs) and time to digital converters (TDCs) all of which take advantage of VME Switched Serial (VXS) bus with its GB/s high bandwidth readout capability. These new technologies will be used to readout drift chambers, calorimeters, spectrometers and other particle detectors at Jlab once the 12 GeV upgrade is complete. The largest experiment at Jlab utilizing these components is GlueX - an experiment in the newly constructed Hall D that will study the photoproduction of light mesons in the search for hybrid mesons. The performance of these components and their respective detectors will be presented.

  13. 12 GeV detector technology at Jefferson Lab

    Energy Technology Data Exchange (ETDEWEB)

    Leckey, John P. [Indiana U.

    2013-04-01

    The Thomas Jefferson National Accelerator Facility (JLab) is presently in the middle of an upgrade to increase the energy of its CW electron beam from 6 GeV to 12 GeV along with the addition of a fourth experimental hall. Driven both by necessity and availability, novel detectors and electronics modules have been used in the upgrade. One such sensor is the Silicon Photomultiplier (SiPM), specifically a Multi-Pixel Photon Counter (MPPC), which is an array of avalanche photodiode pixels operating in Geiger mode that are used to sense photons. The SiPMs replace conventional photomultiplier tubes and have several distinct advantages including the safe operation in a magnetic field and the lack of need for high voltage. Another key to 12 GeV success is advanced fast electronics. Jlab will use custom 250 MHz and 125 MHz 12-bit analog to digital converters (ADCs) and time to digital converters (TDCs) all of which take advantage of VME Switched Serial (VXS) bus with its GB/s high bandwidth readout capability. These new technologies will be used to readout drift chambers, calorimeters, spectrometers and other particle detectors at Jlab once the 12 GeV upgrade is complete. The largest experiment at Jlab utilizing these components is GlueX - an experiment in the newly constructed Hall D that will study the photoproduction of light mesons in the search for hybrid mesons. The performance of these components and their respective detectors will be presented.

  14. 12 GeV detector technology at Jefferson Lab

    Energy Technology Data Exchange (ETDEWEB)

    Leckey, John P. [Indiana University, Bloomington, IN 47405 (United States); Collaboration: GlueX Collaboration

    2013-04-19

    The Thomas Jefferson National Accelerator Facility (JLab) is presently in the middle of an upgrade to increase the energy of its CW electron beam from 6 GeV to 12 GeV along with the addition of a fourth experimental hall. Driven both by necessity and availability, novel detectors and electronics modules have been used in the upgrade. One such sensor is the Silicon Photomultiplier (SiPM), specifically a Multi-Pixel Photon Counter (MPPC), which is an array of avalanche photodiode pixels operating in Geiger mode that are used to sense photons. The SiPMs replace conventional photomultiplier tubes and have several distinct advantages including the safe operation in a magnetic field and the lack of need for high voltage. Another key to 12 GeV success is advanced fast electronics. Jlab will use custom 250 MHz and 125 MHz 12-bit analog to digital converters (ADCs) and time to digital converters (TDCs) all of which take advantage of VME Switched Serial (VXS) bus with its GB/s high bandwidth readout capability. These new technologies will be used to readout drift chambers, calorimeters, spectrometers and other particle detectors at Jlab once the 12 GeV upgrade is complete. The largest experiment at Jlab utilizing these components is GlueX - an experiment in the newly constructed Hall D that will study the photoproduction of light mesons in the search for hybrid mesons. The performance of these components and their respective detectors will be presented.

  15. Status of the Germanium Detector Array (GERDA) in the search of neutrinoless ββ decays of 76Ge at LNGS

    Science.gov (United States)

    Schönert, S.; Abt, I.; Altmann, M.; Bakalyarov, A. M.; Barabanov, I.; Bauer, C.; Bauer, M.; Bellotti, E.; Belogurov, S.; Belyaev, S. T.; Bettini, A.; Bezrukov, L.; Brudanin, V.; Bolotsky, V. P.; Caldwell, A.; Cattadori, C.; Chirchenko, M. V.; Chkvorets, O.; Demidova, E.; di Vacri, A.; Eberth, J.; Egorov, V.; Farnea, E.; Gangapshev, A.; Gasparro, J.; Grabmayr, P.; Grigoriev, G. Y.; Gurentsov, V.; Gusev, K.; Hampel, W.; Heusser, G.; Heisel, M.; Hofmann, W.; Hult, M.; Inzhechik, L. V.; Jochum, J.; Junker, M.; Katulina, S.; Kiko, J.; Kirpichnikov, I. V.; Klimenko, A.; Knapp, M.; Knöpfle, K. T.; Kochetov, O.; Kornoukhov, V. N.; Kröninger, K.; Kuzminov, V. V.; Laubenstein, M.; Lebedev, V. I.; Liu, X.; Majorovits, B.; Marissens, G.; Nemchenok, I.; Pandola, L.; Peiffer, P.; Pullia, A.; Alvarez, C. R.; Sandukovsky, V.; Scholl, S.; Schreiner, J.; Schwan, U.; Schwingenheuer, B.; Simgen, H.; Smolnikov, A.; Stelzer, F.; Tikhomirov, A. V.; Tomei, C.; Ur, C. A.; Vasenko, A. A.; Vasiliev, S.; Weißhaar, D.; Wojcik, M.; Yanovich, E.; Yurkowski, J.; Zhukov, S. V.; Zocca, F.; Zuzel, G.

    2006-12-01

    The Germanium Detector Array (GERDA) in the search for neutrinoless ββ decays of 76Ge at LNGS will operate bare germanium diodes enriched in 76Ge in an (optional active) cryogenic fluid shield to investigate neutrinoless ββ decay with a sensitivity of T 1/2 > 2 × 1026 yr after an exposure of 100 kg yr. Recent progress includes the installation of the first underground infrastructures at Gran Sasso, the completion of the enrichment of 37.5 kg of germanium material for detector construction, prototyping of low-mass detector support and contacts, and front-end and DAQ electronics, as well as the preparation for construction of the cryogenic vessel and water tank.

  16. Autonomous, Cryogenic Leak Detector for Improving Launch Site Operations Project

    Data.gov (United States)

    National Aeronautics and Space Administration — For detecting leakage of cryogenic fluids in spaceport facilities and in spacebound vehicles, this project proposes to demonstrate the feasibility of an all-optical...

  17. Performance evaluation of a lossy transmission lines based diode detector at cryogenic temperature

    Science.gov (United States)

    Villa, E.; Aja, B.; de la Fuente, L.; Artal, E.

    2016-01-01

    This work is focused on the design, fabrication, and performance analysis of a square-law Schottky diode detector based on lossy transmission lines working under cryogenic temperature (15 K). The design analysis of a microwave detector, based on a planar gallium-arsenide low effective Schottky barrier height diode, is reported, which is aimed for achieving large input return loss as well as flat sensitivity versus frequency. The designed circuit demonstrates good sensitivity, as well as a good return loss in a wide bandwidth at Ka-band, at both room (300 K) and cryogenic (15 K) temperatures. A good sensitivity of 1000 mV/mW and input return loss better than 12 dB have been achieved when it works as a zero-bias Schottky diode detector at room temperature, increasing the sensitivity up to a minimum of 2200 mV/mW, with the need of a DC bias current, at cryogenic temperature.

  18. Performance evaluation of a lossy transmission lines based diode detector at cryogenic temperature.

    Science.gov (United States)

    Villa, E; Aja, B; de la Fuente, L; Artal, E

    2016-01-01

    This work is focused on the design, fabrication, and performance analysis of a square-law Schottky diode detector based on lossy transmission lines working under cryogenic temperature (15 K). The design analysis of a microwave detector, based on a planar gallium-arsenide low effective Schottky barrier height diode, is reported, which is aimed for achieving large input return loss as well as flat sensitivity versus frequency. The designed circuit demonstrates good sensitivity, as well as a good return loss in a wide bandwidth at Ka-band, at both room (300 K) and cryogenic (15 K) temperatures. A good sensitivity of 1000 mV/mW and input return loss better than 12 dB have been achieved when it works as a zero-bias Schottky diode detector at room temperature, increasing the sensitivity up to a minimum of 2200 mV/mW, with the need of a DC bias current, at cryogenic temperature.

  19. A repair station for HpGe detectors

    Science.gov (United States)

    Shearman, Robert; Lister, Christopher; Mitchell, A. J.; Copp, Patrick; Jepeal, Steven; Chowdhury, Partha

    2013-10-01

    Hyper-pure Germanium detectors (HpGe) offer the highest energy resolution for gamma-ray nuclear spectroscopy (about 1.5 keV @ 1 MeV), and are used in all the world's leading detector arrays such as GammaSphere, AGATA and GRETINA. The detector crystals are operated in cryostats at 100 K to reduce thermal noise. To maintain low leakage current and low operating temperatures, cryostat hygiene is very important. Detectors must be regularly maintained by using a high-vacuum, oil-free annealing station. At elevated temperatures above 373 K the process of pumping and baking can also anneal away neutron damage to the detector crystals. This poster will show the design and building of a new HpGe repair station at U. Mass Lowell, and make comparisons of results obtained from this new station to the Gammasphere annealing factory at Argonne. This research is funded by the DOE National Nuclear Safety Administration and the Office of Science.

  20. Radiation effects on a Ge:Ga photoconductive detector

    Science.gov (United States)

    Oda, N.; Lemke, D.; Wolf, J.

    1984-11-01

    Co-60 is the gamma-ray source employed in the present study of the effects of irradiation on a Ge:Ga photoconductive IR detector, at a low photon background level of 4 x 10 to the 8th ph/sq cm per sec which immediately induced NEP-degrading spike noises while gradually increasing responsivity. After cessation of the irradiation, the spikes disappeared but responsivity lingered over several hours. Responsivity change rate is smaller, both before and after the irradiation, for a higher bias voltage. A flashing procedure is used to establish the effectiveness of long term effect cure. The IR detector will be used by the German IR Laboratory.

  1. Two-phase Cryogenic Avalanche Detector with electroluminescence gap operated in argon doped with nitrogen

    CERN Document Server

    Bondar, A; Dolgov, A; Nosov, V; Shekhtman, L; Shemyakina, E; Sokolov, A

    2016-01-01

    A two-phase Cryogenic Avalanche Detector (CRAD) with electroluminescence (EL) gap, operated in argon doped with a minor (49$\\pm$7 ppm) admixture of nitrogen, has been studied. The EL gap was optically read out using cryogenic PMTs located on the perimeter of the gap. We present the results of the measurements of the N$_2$ content, detector sensitivity to X-ray-induced signals, EL gap yield and electron lifetime in the liquid. The detector sensitivity, at a drift field in liquid Ar of 0.6 kV/cm, was measured to be 9 and 16 photoelectrons recorded at the PMTs per keV of deposited energy at 23 and 88 keV respectively. Such two-phase detectors, with enhanced sensitivity to the S2 (ionization-induced) signal, are relevant in the field of argon detectors for dark matter search and low energy neutrino detection.

  2. Two-phase Cryogenic Avalanche Detector with electroluminescence gap operated in argon doped with nitrogen

    Science.gov (United States)

    Bondar, A.; Buzulutskov, A.; Dolgov, A.; Nosov, V.; Shekhtman, L.; Shemyakina, E.; Sokolov, A.

    2017-02-01

    A two-phase Cryogenic Avalanche Detector (CRAD) with electroluminescence (EL) gap, operated in argon doped with a minor (49±7 ppm) admixture of nitrogen, has been studied. The EL gap was optically read out using cryogenic PMTs located on the perimeter of the gap. We present the results of the measurements of the N2 content, detector sensitivity to X-ray-induced signals, EL gap yield and electron lifetime in the liquid. The detector sensitivity, at a drift field in liquid Ar of 0.6 kV/cm, was measured to be 9 and 16 photoelectrons recorded at the PMTs per keV of deposited energy at 23 and 88 keV respectively. Such two-phase detectors, with enhanced sensitivity to the S2 (ionization-induced) signal, are relevant in the field of argon detectors for dark matter search and low energy neutrino detection.

  3. Opto acoustical gravitational bar detector with cryogenic mirrors

    CERN Document Server

    Kulagin, V V; Popov, S M; Rudenko, V N; Skvortsov, M N; Yudin, I S

    2016-01-01

    Enhancing of sensitivity of the opto-acoustical gravitational wave (GW) antenna OGRAN installed in the underground facilities of Baksan Neutrino Observatory is analyzed. Calculations are presented showing a sensitivity improving on two orders of value after a cooling the solid body acoustical part of the antenna to the nitrogen temperature. A possibility of keeping of the same optical scheme of the antenna at low temperature is discussed. Design of modernized construction for cryogenic version of the antenna OGRAN is described. Test experiments with cooled pilot model carrying cryogenic mirrors illuminated by the optical pump up to 0.5 W are presented.

  4. A search for low-mass dark matter with the cryogenic dark matter search and the development of highly multiplexed phonon-mediated particle detectors

    Energy Technology Data Exchange (ETDEWEB)

    Moore, David Craig [California Inst. of Technology (CalTech), Pasadena, CA (United States)

    2012-01-01

    A wide variety of astrophysical observations indicate that approximately 85% of the matter in the universe is nonbaryonic and nonluminous. Understanding the nature of this "dark matter" is one of the most important outstanding questions in cosmology. Weakly Interacting Massive Particles (WIMPs) are a leading candidate for dark matter since they would be thermally produced in the early universe in the correct abundance to account for the observed relic density of dark matter. If WIMPs account for the dark matter, then rare interactions from relic WIMPs should be observable in terrestrial detectors. Recently, unexplained excess events in the DAMA/LIBRA, CoGeNT, and CRESST-II experiments have been interpreted as evidence of scattering from WIMPs with masses ~10 GeV and spin-independent scattering cross sections of 10-41-10-40 cm2. The Cryogenic Dark Matter Search (CDMS II) attempts to identify WIMP interactions using an array of cryogenic germanium and silicon particle detectors located at the Soudan Underground Laboratory in northern Minnesota. In this dissertation, data taken by CDMS II are reanalyzed using a 2 keV recoil energy threshold to increase the sensitivity to WIMPs with masses ~10 GeV. These data disfavor an explanation for the DAMA/LIBRA, CoGeNT, and CRESST-II results in terms of spin-independent elastic scattering of WIMPs with masses ≲12 GeV, under standard assumptions. At the time of publication, they provided the strongest constraints on spin-independent elastic scattering from 5-9 GeV, ruling out previously unexplored parameter space. To detect WIMPs or exclude the remaining parameter space favored by the most popular models will ultimately require detectors with target masses ≳1 ton, requiring an increase in mass by more than two orders of magnitude over CDMS II. For cryogenic detectors such as CDMS, scaling to such large target masses will require individual detector elements to be fabricated more quickly and cheaply, while

  5. International and national security applications of cryogenic detectors - mostly nuclear safeguards

    Energy Technology Data Exchange (ETDEWEB)

    Rabin, Michael W [Los Alamos National Laboratory

    2009-01-01

    As with science, so with security - in both arenas, the extraordinary sensitivity of cryogenic sensors enables high-confidence detection and high-precision measurement even of the faintest signals. Science applications are more mature, but several national and international security applications have been identified where cryogenic detectors have high potential payoff. International safeguards and nuclear forensics are areas needing new technology and methods to boost speed, sensitivity, precision and accuracy. Successfully applied, improved nuclear materials analysis will help constrain nuclear materials diversion pathways and contribute to treaty verification. Cryogenic microcalorimeter detectors for X-ray, gamma ray, neutron, and alpha particle spectrometry are under development with these aims in mind. In each case the unsurpassed energy resolution of microcalorimeters reveals previously invi sible spectral features of nuclear materials. Preliminary results of quantitative analysis indicate substantial improvements are still possible, but significant work will be required to fully understand the ultimate performance limits.

  6. Development of Blocked-Impurity-Band-Type Ge Detectors Fabricated with the Surface-Activated Wafer Bonding Method for Far-Infrared Astronomy

    Science.gov (United States)

    Hanaoka, M.; Kaneda, H.; Oyabu, S.; Yamagishi, M.; Hattori, Y.; Ukai, S.; Shichi, K.; Wada, T.; Suzuki, T.; Watanabe, K.; Nagase, K.; Baba, S.; Kochi, C.

    2016-07-01

    We report the current status of the development of our new detectors for far-infrared (FIR) astronomy. We develop Blocked-Impurity-Band (BIB)-type Ge detectors to realize large-format compact arrays covering a wide FIR wavelength range up to 200 \\upmu m. We fabricated Ge junction devices of different physical parameters with a BIB-type structure, using the room temperature, surface-activated wafer bonding (SAB) method. We measured the absolute responsivity and the spectral response curve of each device at low temperatures, using an internal blackbody source in a cryostat and a Fourier transform spectrometer, respectively. The results show that the SAB Ge junction devices have significantly higher absolute responsivities and longer cut-off wavelengths of the spectral response than the conventional bulk Ge:Ga device. Based upon the results, we discuss the optimum parameters of SAB Ge junction devices for FIR detectors. We conclude that SAB Ge junction devices possess a promising applicability to next-generation FIR detectors covering wavelengths up to ˜ 200 \\upmu m with high responsivity. As a next step, we plan to fabricate a BIB-type Ge array device in combination with a low-power cryogenic readout integrated circuit.

  7. Radiation hard position-sensitive cryogenic silicon detectors: the Lazarus effect

    Science.gov (United States)

    Palmieri, V. G.; Abreu, M. C.; Bell, W. H.; Berglund, P.; de Boer, W.; Borchi, E.; Borer, K.; Bruzzi, M.; Buontempo, S.; Casagrande, L.; Chapuy, S.; Cindro, V.; D'Ambrosio, N.; Viá, C. Da; Devine, S.; Dezillie, B.; Dimcovski, Z.; Eremin, V.; Esposito, A.; Granata, V.; Grigoriev, E.; Hauler, F.; Heijne, E.; Heising, S.; Janos, S.; Jungermann, L.; Konorov, I.; Li, Z.; Lourenço, C.; Mikuẑ, M.; Niinikoski, T. O.; O'Shea, V.; Pagano, S.; Paul, S.; Pirollo, S.; Pretzl, K.; Rato, P.; Ruggiero, G.; Smith, K.; Sonderegger, P.; Sousa, P.; Verbitskaya, E.; Watts, S.; Zavrtanik, M.; (RD39 Collaboration)

    2000-05-01

    The discovery of the so-called Lazarus effect, namely the recovery of the charge collection efficiency (CCE) of irradiated silicon detectors by means of cryogenic cooling has entailed an increasing interest in the behavior of silicon detectors at cryogenic temperatures. We have measured the CCE of a silicon p-i-n diode detector previously irradiated with an equivalent fluence of 1×10 15 n/ cm2 neutrons of 1 MeV energy. The charge collection efficiency has been measured at 77 K, showing that the low-temperature operation considerably decreases the bias current. This is also the case when forward voltage bias is applied, which then becomes a suitable option. In this condition, the sample shows a charge collection efficiency in excess of 65% at 250 V corresponding to a most probable signal for a minimum ionizing particle of 21 000 e-.

  8. Probing Sub-GeV Dark Matter with Conventional Detectors

    DEFF Research Database (Denmark)

    Kouvaris, Chris; Pradler, Josef

    2017-01-01

    The direct detection of dark matter particles with mass below the GeV scale is hampered by soft nuclear recoil energies and finite detector thresholds. For a given maximum relative velocity, the kinematics of elastic dark matter nucleus scattering sets a principal limit on detectability. Here, we...... propose to bypass the kinematic limitations by considering the inelastic channel of photon emission from bremsstrahlung in the nuclear recoil. Our proposed method allows us to set the first limits on dark matter below 500 MeV in the plane of dark matter mass and cross section with nucleons. In situations...... where a dark-matter-electron coupling is suppressed, bremsstrahlung may constitute the only path to probe low-mass dark matter awaiting new detector technologies with lowered recoil energy thresholds....

  9. Probing Sub-GeV Dark Matter with Conventional Detectors

    DEFF Research Database (Denmark)

    Kouvaris, Chris; Pradler, Josef

    2017-01-01

    The direct detection of dark matter particles with mass below the GeV scale is hampered by soft nuclear recoil energies and finite detector thresholds. For a given maximum relative velocity, the kinematics of elastic dark matter nucleus scattering sets a principal limit on detectability. Here, we...... propose to bypass the kinematic limitations by considering the inelastic channel of photon emission from bremsstrahlung in the nuclear recoil. Our proposed method allows us to set the first limits on dark matter below 500 MeV in the plane of dark matter mass and cross section with nucleons. In situations...... where a dark-matter-electron coupling is suppressed, bremsstrahlung may constitute the only path to probe low-mass dark matter awaiting new detector technologies with lowered recoil energy thresholds....

  10. Probing Sub-GeV Dark Matter with Conventional Detectors.

    Science.gov (United States)

    Kouvaris, Chris; Pradler, Josef

    2017-01-20

    The direct detection of dark matter particles with mass below the GeV scale is hampered by soft nuclear recoil energies and finite detector thresholds. For a given maximum relative velocity, the kinematics of elastic dark matter nucleus scattering sets a principal limit on detectability. Here, we propose to bypass the kinematic limitations by considering the inelastic channel of photon emission from bremsstrahlung in the nuclear recoil. Our proposed method allows us to set the first limits on dark matter below 500 MeV in the plane of dark matter mass and cross section with nucleons. In situations where a dark-matter-electron coupling is suppressed, bremsstrahlung may constitute the only path to probe low-mass dark matter awaiting new detector technologies with lowered recoil energy thresholds.

  11. Probing sub-GeV Dark Matter with conventional detectors

    CERN Document Server

    Kouvaris, Chris

    2016-01-01

    The direct detection of Dark Matter particles with mass below the GeV-scale is hampered by soft nuclear recoil energies and finite detector thresholds. For a given maximum relative velocity, the kinematics of elastic Dark Matter nucleus scattering sets a principal limit on detectability. Here we propose to bypass the kinematic limitations by considering the inelastic channel of photon emission in the nuclear recoil. Our proposed method allows to set the first limits on MeV-scale Dark Matter in the plane of Dark Matter mass and cross section with nucleons. In situations where a Dark Matter-electron coupling is suppressed, Bremsstrahlung may constitute the only path to probe low-mass Dark Matter awaiting new detector technologies with lowered recoil energy thresholds.

  12. Response function of semiconductor detectors, Ge and Si(Li); Funcao resposta de detectores semicondutores, Ge e Si(Li)

    Energy Technology Data Exchange (ETDEWEB)

    Zevallos Chavez, Juan Yury

    2003-07-01

    The Response Function (RF) for Ge and Si(Li) semiconductor detectors was obtained. The RF was calculated for five detectors, four Hp Ge with active volumes of 89 cm{sup 3} , 50 cm{sup 3} , 8 cm{sup 3} and 5 cm{sup 3}, and one Si(Li) with 0.143 cm{sup 3} of active volume. The interval of energy studied ranged from 6 keV up to 1.5 MeV. Two kinds of studies were done in this work. The first one was the RF dependence with the detection geometry. Here the calculation of the RF for a geometry named as simple and an extrapolation of that RF, were both done. The extrapolation process analyzed both, spectra obtained with a shielding geometry and spectra where the source-detector distance was modified. The second one was the RF dependence with the detection electronics. This study was done varying the shaping time of the pulse in the detection electronics. The purpose was to verify the effect of the ballistic deficit in the resolution of the detector. This effect was not observed. The RF components that describe the region of the total absorption of the energy of the incident photons, and the partial absorption of this energy, were both treated. In particular, empirical functions were proposed for the treatment of both, the multiple scattering originated in the detector (crystal), and the photon scattering originated in materials of the neighborhood of the crystal. Another study involving Monte Carlo simulations was also done in order to comprehend the photon scattering structures produced in an iron shield. A deconvolution method is suggested, for spectra related to scattered radiation in order to assess the dose delivered to the scatterer. (author)

  13. Reduction of thermal fluctuations in a cryogenic laser interferometric gravitational wave detector

    CERN Document Server

    Uchiyama, Takashi; Telada, Souichi; Yamamoto, Kazuhiro; Ohashi, Masatake; Agatsuma, Kazuhiro; Arai, Koji; Fujimoto, Masa-Katsu; Haruyama, Tomiyoshi; Kawamura, Seiji; Miyakawa, Osamu; Ohishi, Naoko; Saito, Takanori; Shintomi, Takakazu; Suzuki, Toshikazu; Takahashi, Ryutaro; Tatsumi, Daisuke

    2012-01-01

    The thermal fluctuation of mirror surfaces is the fundamental limitation for interferometric gravitational wave (GW) detectors. Here, we experimentally demonstrate for the first time a reduction in a mirror's thermal fluctuation in a GW detector with sapphire mirrors from the Cryogenic Laser Interferometer Observatory at 17\\,K and 18\\,K. The detector sensitivity, which was limited by the mirror's thermal fluctuation at room temperature, was improved in the frequency range of 90\\,Hz to 240\\,Hz by cooling the mirrors. The improved sensitivity reached a maximum of $2.2 \\times 10^{-19}\\,\\textrm{m}/\\sqrt{\\textrm{Hz}}$ at 165\\,Hz.

  14. A Cryogenic SiGe Low-noise Amplifier Optimized for Phased-array Feeds

    Science.gov (United States)

    Groves, Wavley M., III; Morgan, Matthew A.

    2017-08-01

    The growing number of phased-array feeds (PAF) being built for radio astronomy demonstrates an increasing need for low-noise amplifiers (LNA), which are designed for repeatability, low noise, and ease of manufacture. Specific design features that help to achieve these goals include the use of unpackaged transistors (for cryogenic operation); single-polarity biasing; straight plug-in radio frequency (RF) interfaces to facilitate installation and re-work; and the use of off-the-shelf components. The focal L-band array for the Green Bank Telescope (FLAG) is a cooperative effort by Brigham Young University and the National Radio Astronomy Observatory using warm dipole antennae and cryogenic Silicon Germanium Heterojunction Bipolar Transistor (SiGe HBT) LNAs. These LNAs have an in band gain average of 38 dB and 4.85 Kelvin average noise temperature. Although the FLAG instrument was the driving instrument behind this development, most of the key features of the design and the advantages they offer apply broadly to other array feeds, including independent-beam and phased, and for many antenna types such as horn, dipole, Vivaldi, connected-bowtie, etc. This paper focuses on the unique requirements array feeds have for low-noise amplifiers and how amplifier manufacturing can accommodate these needs.

  15. First Assessment of Reliability Data for the LHC Accelerator and Detector Cryogenic System Components

    CERN Document Server

    Perinic, G; Alonso-Canella, I; Balle, C; Barth, K; Bel, J F; Benda, V; Bremer, J; Brodzinski, K; Casas-Cubillos, J; Cuccuru, G; Cugnet, M; Delikaris, D; Delruelle, N; Dufay-Chanat, L; Fabre, C; Ferlin, G; Fluder, C; Gavard, E; Girardot, R; Haug, F; Herblin, L; Junker, S; Klabi , T; Knoops, S; Lamboy, J P; Legrand, D; Metselaar, J; Park, A; Perin, A; Pezzetti, M; Penacoba-Fernandez, G; Pirotte, O; Rogez, E; Suraci, A; Stewart, L; Tavian, L J; Tovar-Gonzalez, A; Van Weelderen, R; Vauthier, N; Vullierme, B; Wagner, U

    2012-01-01

    The Large Hadron Collider (LHC) cryogenic system comprises eight independent refrigeration and distribution systems that supply the eight 3.3 km long accelerator sectors with cryogenic refrigeration power as well as four refrigeration systems for the needs of the detectors ATLAS and CMS. In order to ensure the highest possible reliability of the installations, it is important to apply a reliability centred approach for the maintenance. Even though large scale cryogenic refrigeration exists since the mid 20th century, very little third party reliability data is available today. CERN has started to collect data with its computer aided maintenance management system (CAMMS) in 2009, when the accelerator has gone into normal operation. This paper presents the reliability observations from the operation and the maintenance side, as well as statistical data collected by the means of the CAMMS system.

  16. A Novel Low Background Cryogenic Detector for Radon in Gas

    Science.gov (United States)

    Wójcik, Marcin; Zuzel, Grzegorz

    2007-03-01

    A prototype of a new detector for measurements of radon in gases and radon emanation investigations is presented. It is based on the low-temperature collection of 222Rn on a stainless steel plate and the following counting of emitted alpha particles using a standard ORTEC semiconductor detector for alpha spectroscopy. A low background of the constructed system was achieved, in the order of 25 counts per day for the 222Rn energy window. Relatively high detection efficiency of 32 % in 2π geometry, and large volume of the detector allow radon concentration measurements at the level of 12 mBq/m3 with a 30 % accuracy. The detector can be also used to measure short-lived 220Rn. In the next step we plan to improve the system so that we could reach the sensitivity of 1 mBq/m3. This can be achieved by reducing the background, improving the detection efficiency and/or increasing the active volume of the detector (with respect to the prototype).

  17. Phonon Quasidiffusion in Cryogenic Dark Matter Search Large Germanium Detectors

    CERN Document Server

    Leman, S W; McCarthy, K A; Pyle, M; Resch, R; Sadoulet, B; Sundqvist, K M; Brink, P L; Cherry, M; Silva, E Do Couto E; Figueroa-Feliciano, E; Mirabolfathi, N; Serfass, B; Tomada, A

    2011-01-01

    We present results on quasidiffusion studies in large, 3 inch diameter, 1 inch thick [100] high purity germanium crystals, cooled to 50 mK in the vacuum of a dilution refrigerator, and exposed with 59.5 keV gamma-rays from an Am-241 calibration source. We compare data obtained in two different detector types, with different phonon sensor area coverage, with results from a Monte Carlo. The Monte Carlo includes phonon quasidiffusion and the generation of phonons created by charge carriers as they are drifted across the detector by ionization readout channels.

  18. Analysis of defect formation in semiconductor cryogenic bolometric detectors created by heavy dark matter

    CERN Document Server

    Lazanu, Ionel; Lazanu, Sorina

    2012-01-01

    The cryogenic detectors in the form of bolometers are presently used for different applications, in particular for very rare or hypothetical events associated with new forms of matter, specifically related to the existence of Dark Matter. In the detection of particles with a semiconductor as target and detector, usually two signals are measured: ionization and heat. The amplification of the thermal signal is obtained with the prescriptions from Luke-Neganov effect. The energy deposited in the semiconductor lattice as stable defects in the form of Frenkel pairs at cryogenic temperatures, following the interaction of a dark matter particle, is evaluated and consequences for measured quantities are discussed. This contribution is included in the energy balance of the Luke effect. Applying the present model to germanium and silicon, we found that for the same incident weakly interacting massive particle the energy deposited in defects in germanium is about twice the value for silicon.

  19. Mirror thermal noise in laser interferometer gravitational wave detectors operating at room and cryogenic temperature

    CERN Document Server

    Franc, Janyce; Flaminio, Raffaele; Nawrodt, Ronny; Martin, Iain; Cunningham, Liam; Cumming, Alan; Rowan, Sheila; Hough, James

    2009-01-01

    Mirror thermal noise is and will remain one of the main limitations to the sensitivity of gravitational wave detectors based on laser interferometers. We report about projected mirror thermal noise due to losses in the mirror coatings and substrates. The evaluation includes all kind of thermal noises presently known. Several of the envisaged substrate and coating materials are considered. The results for mirrors operated at room temperature and at cryogenic temperature are reported.

  20. Artificial neural network based pulse shape analysis in cryogenic detectors for rare event searches

    Energy Technology Data Exchange (ETDEWEB)

    Zoeller, Andreas [Physik Department E15, Technische Universitaet Muenchen, 85748 Garching (Germany); Collaboration: CRESST-Collaboration

    2015-07-01

    We present a method based on an Artificial Neural Network for a pulse shape analysis in cryogenic detectors. To train the neural network a huge amount of pulses with known properties are necessary. Therefore, a data-driven simulation used to generate these sets is explained. Furthermore, these simulations allow detailed studies, especially of the cut efficiency and the signal purity of the developed cut. First results are presented and compared with the performance of alternative algorithms.

  1. Radiation Tolerance of Cryogenic Beam Loss Monitor Detectors

    CERN Document Server

    Kurfuerst, C; Bartosik, M; Dehning, B; Eisel, T; Sapinski, M; Eremin, V; Verbitskaya, E; Fabjan, C; Griesmayer, E

    2013-01-01

    At the triplet magnets, close to the interaction regions of the LHC, the current Beam Loss Monitoring system is sensitive to the particle showers resulting from the collision of the two beams. For the future, with beams of higher energy and intensity resulting in higher luminosity, distinguishing between these interaction products and possible quench-provoking beam losses from the primary proton beams will be challenging. Investigations are therefore underway to optimise the system by locating the beam loss detectors as close as possible to the superconducting coils of the triplet magnets. This means putting detectors inside the cold mass in superfluid helium at 1.9 K. Previous tests have shown that solid state diamond and silicon detectors as well as liquid helium ionisation chambers are promising candidates. This paper will address the final open question of their radiation resistance for 20 years of nominal LHC operation, by reporting on the results from high irradiation beam tests carried out at CERN in a...

  2. Focal-plane optimization for detector noise limited performance in cryogenic Fourier transform spectrometer /FTS/ sensors

    Science.gov (United States)

    Mcguirk, M.; Logan, L.

    1980-01-01

    A study was performed to determine the optimum focal plane configuration including optics, filters and detector-preamplifier selection. The configuration was optimized particularly with respect to minimizing the noise level, but fabrication considerations for a cryogenic environment were also taken into account. The noise terms from source, background, detector electronics and charged particle radiation were quantitatively evaluated. It appears that noise equivalent spectral radiance less than 10 to the -11th W/sq cm per sr per kayser can be achieved between 2.5 and 20 microns.

  3. On the measurement of positron emitters with Ge detectors

    Energy Technology Data Exchange (ETDEWEB)

    Peyres, Virginia, E-mail: virginia.peyres@ciemat.e [Ciemat, Laboratorio de Metrologia de Radiaciones Ionizantes, Avda. Complutense 22, Madrid 28040 (Spain); Garcia-Torano, Eduardo [Ciemat, Laboratorio de Metrologia de Radiaciones Ionizantes, Avda. Complutense 22, Madrid 28040 (Spain)

    2011-05-01

    This paper discusses the problems related to the measurement of positron emitters with germanium detectors. Five positron emitters with important applications in nuclear medicine ({sup 22}Na, {sup 18}F, {sup 11}C, {sup 13}N and {sup 68}Ga) have been studied. Measurements and Monte Carlo simulations have been used to determine the optimal conditions of measurement in gamma-ray spectrometry systems. The results obtained indicate that adding adequate absorbers, detection efficiencies are close to those of gamma emitters of similar energy measured in the same conditions, which allows a rapid calibration of a Ge-based spectrometry system. More accurate results are also presented using a detailed Monte Carlo simulation. Comparison to experimental data shows a good agreement.

  4. Cryogenic temperature performance of heavily irradiated silicon detectors

    CERN Document Server

    Da Vià, C; Casagrande, L; Granata, V; Palmieri, V G

    1999-01-01

    The charge collection efficiency (CCE) of silicon detectors, previously irradiated with high neutron fluences, has been measured at 4.2, 77 and 195 K. The CCE recovery measured after 1.2x10 sup 1 sup 4 n/cm sup 2 is 100% at a bias voltage of 50 V. For 2x10 sup 1 sup 5 n/cm sup 2 the most probable signal collected for minimum ionising particles is 13 000 electrons, corresponding to 50% CCE, at a bias voltage of 250 V. Negligible difference has been observed between 77 and 4.2 K operation, while no recovery was measurable at 195 K. The timing of the signal was measured to be better than 5 ns. The samples were irradiated and stored at room temperature and cooled only when operated. Reproducible results were obtained after several weeks and several thermal cycles. (author)

  5. Characterization of photo-multiplier tubes for the Cryogenic Avalanche Detector

    CERN Document Server

    Bondar, A; Dolgov, A; Nosov, V; Shekhtman, L; Sokolov, A

    2015-01-01

    New Cryogenic Avalanche Detector (CRAD) with ultimate sensitivity, that will be able to detect one primary electron released in the cryogenic liquid, is under development in the Laboratory of Cosmology and Particle Physics of the Novosibirsk State University jointly with the Budker Institute of Nuclear Physics. The CRAD will use two sets of cryogenic PMTs in order to get trigger signal either from primary scintillations in liquid Ar or from secondary scintillations in high field gap above the liquid. Two types of cryogenic PMTs produced by Hamamatsu Photonics were tested and the results are presented in this paper. Low background 3 inch PMT R11065- 10 demonstrated excellent performance according to its specifications provided by the producer. The gain measured with single electron response (SER) in liquid Ar reached 10^7, dark count rate rate did not exceed 300 Hz and pulse height resolution of single electron signals was close to 50%(FWHM). However, two R11065-10 PMTs out of 7 tested stopped functioning afte...

  6. A single particle detector for electron-ion collision experiments in the Cryogenic Storage Ring

    Energy Technology Data Exchange (ETDEWEB)

    Spruck, Kaija; Mueller, Alfred; Schippers, Stefan [Institut fuer Atom- und Molekuelphysik, Justus-Liebig-Universitaet Giessen (Germany); Krantz, Claude; Becker, Arno; Vogel, Stephen; Wolf, Andreas [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany); Novotny, Oldrich [Columbia Astrophysics Laboratory, New York (United States)

    2014-07-01

    The study of ion chemistry in the interstellar medium requires, among others, knowledge about cross sections for the recombination of atomic and molecular ions with low temperature (∝10 K) electrons. Especially the database on singly charged atomic ions relevant to the chemistry of molecular clouds is incomplete in this respect. The electrostatic Cryogenic Storage Ring (CSR), currently being commissioned at the Max-Planck-Institute for Nuclear Physics in Heidelberg, will allow experiments with atomic, molecular and cluster ions at beam energies up to 300 keV per unit charge in a cryogenic extremely high vacuum (XHV) environment. Collisions of stored atomic ions with electrons provided by an electron cooler will lead to reaction products with charge states that differ from those of the parent particles. The detection of these products will be carried out behind a bending deflector of the storage ring by a high-efficiency movable single-particle detector, based on a secondary electron converter backed by heatable microchannel plates. The designs of the mechanical actuator and the detector are compatible with the cryogenic operating conditions at 10 K and a bakeout temperature of up to 530 K.

  7. Study of a Vuilleumier cycle cryogenic refrigerator for detector cooling on the limb scanning infrared radiometer

    Science.gov (United States)

    Russo, S. C.

    1976-01-01

    A program to detect and monitor the presence of trace constituents in the earth's atmosphere by using the Limb Scanning Infrared Radiometer (LSIR) is reported. The LSIR, which makes radiometric measurements of the earth's limb radiance profile from a space platform, contains a detector assembly that must be cooled to a temperature of 65 + or - 2 K. The feasibility of cooling the NASA-type detector package with Vuilleumier (VM) cryogenic refrigerator was investigated to develop a preliminary conceptual design of a VM refrigerator that is compatible with a flight-type LSIR instrument. The scope of the LSIR program consists of analytical and design work to establish the size, weight, power consumption, interface requirements, and other important characteristics of a cryogenic cooler that would meet the requirements of the LSIR. The cryogenic cooling requirements under the conditions that NASA specified were defined. Following this, a parametric performance analysis was performed to define the interrelationships between refrigeration characteristics and mission requirements. This effort led to the selection of an optimum refrigerator design for the LSIR mission.

  8. Operating Instructions for the Cryogenics in the Liquid Argon Detector at CIEMAT; Operacion de la Criogenia del Detector de Argon Liquido del CIEMAT

    Energy Technology Data Exchange (ETDEWEB)

    Romero, L.; Leal, M. D.; Prado, M. del; Ramirez, J. L.

    2009-12-19

    Ciemat has wide experience in designing and developing gaseous particle detectors. It has taken part in the building of experiments for CERN accelerators, constructing shares of the muon chambers for L3 experiment in LEP and CMS experiment in LHC. Recently, new concepts for particle detectors have been developed, as a natural evolution from the ones built at Ciemat. These new radiation detectors use liquefied noble gases as active media. A testing system for these kind of liquefied argon detectors has been built at Ciemat, and includes a supporting cryogenic system for the liquefaction and maintenance of the liquid argon needed for operating the detector. This document describes the technical features of this cryogenic system. Besides the documentation of the cryogenic system, this technical report can be of help for the management and upgrading of the detector. As well as an introduction, the report includes the following chapters: The second one is a description of the cryogenics and gas systems. The third chapter shows the controlling electronics. The fourth chapter deals with the important topic that is security, its systems and protocols. The fifth describes the cryogenic operations possible in this equipment. The report is completed with diagrams, schemes, pictures and tables for the easier management of the setup. (Author)

  9. Characterization of the room temperature payload prototype for the cryogenic interferometric gravitational wave detector KAGRA.

    Science.gov (United States)

    Peña Arellano, Fabián Erasmo; Sekiguchi, Takanori; Fujii, Yoshinori; Takahashi, Ryutaro; Barton, Mark; Hirata, Naoatsu; Shoda, Ayaka; van Heijningen, Joris; Flaminio, Raffaele; DeSalvo, Riccardo; Okutumi, Koki; Akutsu, Tomotada; Aso, Yoichi; Ishizaki, Hideharu; Ohishi, Naoko; Yamamoto, Kazuhiro; Uchiyama, Takashi; Miyakawa, Osamu; Kamiizumi, Masahiro; Takamori, Akiteru; Majorana, Ettore; Agatsuma, Kazuhiro; Hennes, Eric; van den Brand, Jo; Bertolini, Alessandro

    2016-03-01

    KAGRA is a cryogenic interferometric gravitational wave detector currently under construction in the Kamioka mine in Japan. Besides the cryogenic test masses, KAGRA will also rely on room temperature optics which will hang at the bottom of vibration isolation chains. The payload of each chain comprises an optic, a system to align it, and an active feedback system to damp the resonant motion of the suspension itself. This article describes the performance of a payload prototype that was assembled and tested in vacuum at the TAMA300 site at the NAOJ in Mitaka, Tokyo. We describe the mechanical components of the payload prototype and their functionality. A description of the active components of the feedback system and their capabilities is also given. The performance of the active system is illustrated by measuring the quality factors of some of the resonances of the suspension. Finally, the alignment capabilities offered by the payload are reported.

  10. A gamma- and X-ray detector for cryogenic, high magnetic field applications

    CERN Document Server

    Cooper, R L; Bales, M J; Bass, C D; Beise, E J; Breuer, H; Byrne, J; Chupp, T E; Coakley, K J; Dewey, M S; Fu, C; Gentile, T R; Mumm, H P; Nico, J S; O'Neill, B; Pulliam, K; Thompson, A K; Wietfeldt, F E

    2012-01-01

    As part of an experiment to measure the spectrum of photons emitted in beta-decay of the free neutron, we developed and operated a detector consisting of 12 bismuth germanate (BGO) crystals coupled to avalanche photodiodes (APDs). The detector was operated near liquid nitrogen temperature in the bore of a superconducting magnet and registered photons with energies from 5 keV to 1000 keV. To enlarge the detection range, we also directly detected soft X-rays with energies between 0.2 keV and 20 keV with three large area APDs. The construction and operation of the detector is presented, as well as information on operation of APDs at cryogenic temperatures.

  11. Development of cryogenic Si detectors by CERN RD39 Collaboration for ultra radiation hardness in SLHC environment

    CERN Document Server

    Li, Z; Anbinderis, P; Anbinderis, T; D’Ambrosio, N; de Boer, Wim; Borchi, E; Borer, K; Bruzzi, M; Buontempo, S; Chen, W; Cindro, V; Dierlamm, A; Eremin, V; Gaubas, E; Gorbatenko, V; Grigoriev, E; Hauler, F; Heijne, Erik H M; Heising, S; Hempel, O; Herzog, R; Härkönen, J; Ilyashenko, I; Janos, S; Jungermann, L; Kalesinskas, V; Kapturauskas, J; Laiho, R; Luukka, P; Mandic, I; De Masi, R; Menichelli, D; Mikuz, M; Militaru, O; Niinikosky, T O; O’Shea, V; Pagano, S; Paul, S; Piotrzkowski, K; Pretzl, K; Rato-Mendes, P; Rouby, X; Ruggiero, G; Smith, K; Sonderegger, P; Sousa, P; Tuominen, E; Tuovinen, E; Verbitskaya, E; Vaitkus, J; Wobst, E; Zavrtanik, M

    2007-01-01

    There are two key approaches in our CERN RD 39 Collaboration efforts to obtain ultra-radiation-hard Si detectors: (1) use of the charge/current injection to manipulate the detector internal electric field in such a way that it can be depleted at a modest bias voltage at cryogenic temperature range (150 K), and (2) freezing out of the trapping centers that affects the CCE at cryogenic temperatures lower than that of the liquid nitrogen (LN2) temperature. In our first approach, we have developed the advanced radiation hard detectors using charge or current injection, the current injected diodes (CID). In a CID, the electric field is controlled by injected current, which is limited by the space charge, yielding a nearly uniform electric field in the detector, independent of the radiation fluence. In our second approach, we have developed models of radiation-induced trapping levels and the physics of their freezing out at cryogenic temperatures.

  12. Neutron induced activity in natural and enriched {sup 70}Ge detectors

    Energy Technology Data Exchange (ETDEWEB)

    Naya, J.E. [Toulouse-3 Univ., 31 (France). Centre d`Etude Spatiale des Rayonnements]|[NASA/Goddard Space Flight Center, Greenbelt, MD 20771 (United States)]|[Universities Space Research Association, 7501 Forbes Blvd, 206, Seabrook, MD 20706-2253 (United States); Jean, P.; Albernhe, F.; Borrel, V.; Lavigne, J.M.; Vedrenne, G.; von Ballmoos, P. [Toulouse-3 Univ., 31 (France). Centre d`Etude Spatiale des Rayonnements; Barthelmy, S.D. [NASA/Goddard Space Flight Center, Greenbelt, MD 20771 (United States)]|[Universities Space Research Association, 7501 Forbes Blvd, 206, Seabrook, MD 20706-2253 (United States); Bartlett, L.M.; Gehrels, N.; Parsons, A.; Tueller, J. [NASA/Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Cordier, B. [Service d`Astrophysique du CEA, CEN de Saclay, 91191 Gif sur Yvette, Cedex (France); Leleux, P. [Institut de Physique Nucleaire, 2 chemin du Cyclotron, B-1348 Louvain-la-Neuve (Belgium); Teegarden, B.J. [Toulouse-3 Univ., 31 (France). Centre d`Etude Spatiale des Rayonnements]|[NASA/Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

    1997-09-11

    The results of irradiations of isotopically enriched and natural Ge detectors with a neutron beam are presented. The analysis of the gamma-ray lines generated by decay of neutron induced unstable nuclei have provided us with a direct measurement of relevant interaction cross sections. Within a factor of 2, measurements and predictions are in good agreement. These results have important implications for the instrumental background in astrophysical gamma-ray spectrometers using germanium detectors. We confirm the reduction of the {beta}-background component, which dominates the continuum background in the 0.1-1 MeV energy range, using {sup 70}Ge enriched detectors. We clearly identify {beta}{sup +} decays inside the detector as a significant source of continuum background in the 1-4 MeV energy range. This component is about 2 times more intense in {sup 70}Ge enriched detectors than in natural ones. This is mainly due to the enhanced yield of {sup 69}Ge and {sup 68}Ga isotopes. The choice of either natural or {sup 70}Ge enriched as optimum detector material depends on the energies of astrophysical interest. Detectors made of enriched {sup 70}Ge are more appropriate for studies at energies below 1 MeV. For higher energies natural germanium is slightly better. The possibility of rejecting most of {beta}-background component by applying alternative analysis techniques makes natural Ge an appropriate material for future gamma-ray spectrometers. (orig.). 15 refs.

  13. Detector Simulation and WIMP Search Analysis for the Cryogenic Dark Matter Search Experiment

    Energy Technology Data Exchange (ETDEWEB)

    McCarthy, Kevin [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    2013-06-01

    Astrophysical and cosmological measurements on the scales of galaxies, galaxy clusters, and the universe indicate that 85% of the matter in the universe is composed of dark matter, made up of non-baryonic particles that interact with cross-sections on the weak scale or lower. Hypothetical Weakly Interacting Massive Particles, or WIMPs, represent a potential solution to the dark matter problem, and naturally arise in certain Standard Model extensions. The Cryogenic Dark Matter Search (CDMS) collaboration aims to detect the scattering of WIMP particles from nuclei in terrestrial detectors. Germanium and silicon particle detectors are deployed in the Soudan Underground Laboratory in Minnesota. These detectors are instrumented with phonon and ionization sensors, which allows for discrimination against electromagnetic backgrounds, which strike the detector at rates orders of magnitude higher than the expected WIMP signal. This dissertation presents the development of numerical models of the physics of the CDMS detectors, implemented in a computational package collectively known as the CDMS Detector Monte Carlo (DMC). After substantial validation of the models against data, the DMC is used to investigate potential backgrounds to the next iteration of the CDMS experiment, known as SuperCDMS. Finally, an investigation of using the DMC in a reverse Monte Carlo analysis of WIMP search data is presented.

  14. Production, characterization and operation of {sup 76}Ge enriched BEGe detectors in GERDA

    Energy Technology Data Exchange (ETDEWEB)

    Agostini, M.; Bode, T.; Budjas, D.; Janicsko Csathy, J.; Lazzaro, A.; Schoenert, S. [Technische Universitaet Muenchen, Physik Department and Excellence Cluster Universe, Munich (Germany); Allardt, M.; Barros, N.; Domula, A.; Lehnert, B.; Wester, T.; Wilsenach, H.; Zuber, K. [Technische Universitaet Dresden, Institut fuer Kern- und Teilchenphysik, Dresden (Germany); Andreotti, E. [Institute for Reference Materials and Measurements, Geel (Belgium); Eberhard Karls Universitaet Tuebingen, Physikalisches Institut, Tuebingen (Germany); Bakalyarov, A.M.; Belyaev, S.T.; Lebedev, V.I.; Zhukov, S.V. [National Research Centre ' ' Kurchatov Institute' ' , Moscow (Russian Federation); Balata, M.; D' Andrea, V.; Ioannucci, L.; Junker, M.; Laubenstein, M.; Macolino, C.; Nisi, S.; Zavarise, P. [INFN Laboratori Nazionali del Gran Sasso and Gran Sasso Science Institute, Assergi (Italy); Barabanov, I.; Bezrukov, L.; Gurentsov, V.; Inzhechik, L.V.; Kazalov, V.; Kuzminov, V.V.; Lubsandorzhiev, B.; Yanovich, E. [Institute for Nuclear Research of the Russian Academy of Sciences, Moscow (Russian Federation); Baudis, L.; Benato, G.; Walter, M. [Physik Institut der Universitaet Zuerich, Zurich (Switzerland); Bauer, C.; Heisel, M.; Heusser, G.; Hofmann, W.; Kihm, T.; Kirsch, A.; Knoepfle, K.T.; Lindner, M.; Maneschg, W.; Salathe, M.; Schreiner, J.; Schwingenheuer, B.; Simgen, H.; Smolnikov, A.; Strecker, H.; Wagner, V.; Wegmann, A. [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany); Becerici-Schmidt, N.; Caldwell, A.; Liao, H.Y.; Majorovits, B.; O' Shaughnessy, C.; Palioselitis, D.; Schulz, O.; Vanhoefer, L. [Max-Planck-Institut fuer Physik, Munich (Germany); Bellotti, E.; Pessina, G. [Universita Milano Bicocca, Dipartimento di Fisica, Milan (Italy); INFN Milano Bicocca, Milan (Italy); Belogurov, S.; Kornoukhov, V.N. [Institute for Nuclear Research of the Russian Academy of Sciences, Moscow (Russian Federation); Institute for Theoretical and Experimental Physics, Moscow (Russian Federation); Bettini, A.; Brugnera, R.; Garfagnini, A.; Hemmer, S.; Sada, C.; Von Sturm, K. [Dipartimento di Fisica e Astronomia dell' Universita di Padova, Padua (Italy); INFN Padova, Padua (Italy); Borowicz, D. [Jagiellonian University, Institute of Physics, Cracow (Poland); Joint Institute for Nuclear Research, Dubna (Russian Federation); Brudanin, V.; Egorov, V.; Kochetov, O.; Nemchenok, I.; Rumyantseva, N.; Shevchik, E.; Zhitnikov, I.; Zinatulina, D. [Joint Institute for Nuclear Research, Dubna (Russian Federation); Cattadori, C.; Gotti, C. [INFN Milano Bicocca, Milan (Italy); Chernogorov, A.; Demidova, E.V.; Kirpichnikov, I.V.; Vasenko, A.A. [Institute for Theoretical and Experimental Physics, Moscow (Russian Federation); Falkenstein, R.; Freund, K.; Grabmayr, P.; Hegai, A.; Jochum, J.; Schmitt, C.; Schuetz, A.K. [Eberhard Karls Universitaet Tuebingen, Physikalisches Institut, Tuebingen (Germany); Frodyma, N.; Misiaszek, M.; Pelczar, K.; Wojcik, M.; Zuzel, G. [Jagiellonian University, Institute of Physics, Cracow (Poland); Gangapshev, A. [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany); Institute for Nuclear Research of the Russian Academy of Sciences, Moscow (Russian Federation); Gusev, K. [Joint Institute for Nuclear Research, Dubna (Russian Federation); National Research Centre ' ' Kurchatov Institute' ' , Moscow (Russian Federation); Technische Universitaet Muenchen, Physik Department and Excellence Cluster Universe, Munich (Germany); Hult, M.; Lutter, G. [Institute for Reference Materials and Measurements, Geel (Belgium); Klimenko, A.; Lubashevskiy, A. [Joint Institute for Nuclear Research, Dubna (Russian Federation); Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany); Lippi, I.; Stanco, L.; Ur, C.A. [INFN Padova, Padua (Italy); Pandola, L. [INFN Laboratori Nazionali del Sud, Catania (Italy); Pullia, A.; Riboldi, S. [Universita degli Studi di Milano, Dipartimento di Fisica, Milan (Italy); INFN Milano (Italy); Shirchenko, M. [Joint Institute for Nuclear Research, Dubna (Russian Federation); National Research Centre ' ' Kurchatov Institute' ' , Moscow (Russian Federation); Collaboration: GERDA Collaboration

    2015-02-01

    The GERmanium Detector Array (GERDA) at the Gran Sasso Underground Laboratory (LNGS) searches for the neutrinoless double beta decay (0νββ) of {sup 76}Ge. Germanium detectors made of material with an enriched {sup 76}Ge fraction act simultaneously as sources and detectors for this decay. During Phase I of the experiment mainly refurbished semi-coaxial Ge detectors from former experiments were used. For the upcoming Phase II, 30 new {sup 76}Ge enriched detectors of broad energy germanium (BEGe)- type were produced. A subgroup of these detectors has already been deployed in GERDA during Phase I. The present paper reviews the complete production chain of these BEGe detectors including isotopic enrichment, purification, crystal growth and diode production. The efforts in optimizing the mass yield and in minimizing the exposure of the {sup 76}Ge enriched germanium to cosmic radiation during processing are described. Furthermore, characterization measurements in vacuum cryostats of the first subgroup of seven BEGe detectors and their long-term behavior in liquid argon are discussed. The detector performance fulfills the requirements needed for the physics goals of GERDA Phase II. (orig.)

  15. MPPC versus MRS APD in two-phase Cryogenic Avalanche Detectors

    CERN Document Server

    Bondar, A; Dolgov, A; Shemyakina, E; Sokolov, A

    2015-01-01

    Two-phase Cryogenic Avalanche Detectors (CRADs) with combined THGEM/GAPD multiplier have become an emerging potential technique for dark matter search and coherent neutrino-nucleus scattering experiments. In such a multiplier the THGEM hole avalanches are optically recorded in the Near Infrared (NIR) using a matrix of Geiger-mode APDs (GAPDs). To select the proper sensor, the performances of six GAPD types manufactured by different companies, namely by Hamamatsu (MPPCs), CPTA (MRS APDs) and SensL (SiPMs), have been comparatively studied at cryogenic temperatures when operated in two-phase CRADs in Ar at 87 K. While the GAPDs with ceramic packages failed to operate properly at cryogenic temperatures, those with plastic packages, namely MPPC S10931-100P and MRS APD 149-35, showed satisfactory performances at 87 K. In addition, MPPC S10931-100P turned out to be superior in terms of the higher detection efficiency, lower nose rate, lower pixel quenching resistor and better characteristics reproducibility.

  16. Invited review article: physics and Monte Carlo techniques as relevant to cryogenic, phonon, and ionization readout of Cryogenic Dark Matter Search radiation detectors.

    Science.gov (United States)

    Leman, Steven W

    2012-09-01

    This review discusses detector physics and Monte Carlo techniques for cryogenic, radiation detectors that utilize combined phonon and ionization readout. A general review of cryogenic phonon and charge transport is provided along with specific details of the Cryogenic Dark Matter Search detector instrumentation. In particular, this review covers quasidiffusive phonon transport, which includes phonon focusing, anharmonic decay, and isotope scattering. The interaction of phonons in the detector surface is discussed along with the downconversion of phonons in superconducting films. The charge transport physics include a mass tensor which results from the crystal band structure and is modeled with a Herring-Vogt transformation. Charge scattering processes involve the creation of Neganov-Luke phonons. Transition-edge-sensor (TES) simulations include a full electric circuit description and all thermal processes including Joule heating, cooling to the substrate, and thermal diffusion within the TES, the latter of which is necessary to model normal-superconducting phase separation. Relevant numerical constants are provided for these physical processes in germanium, silicon, aluminum, and tungsten. Random number sampling methods including inverse cumulative distribution function (CDF) and rejection techniques are reviewed. To improve the efficiency of charge transport modeling, an additional second order inverse CDF method is developed here along with an efficient barycentric coordinate sampling method of electric fields. Results are provided in a manner that is convenient for use in Monte Carlo and references are provided for validation of these models.

  17. Invited Review Article: Physics and Monte Carlo techniques as relevant to cryogenic, phonon, and ionization readout of Cryogenic Dark Matter Search radiation detectors

    Energy Technology Data Exchange (ETDEWEB)

    Leman, Steven W. [Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)

    2012-09-15

    This review discusses detector physics and Monte Carlo techniques for cryogenic, radiation detectors that utilize combined phonon and ionization readout. A general review of cryogenic phonon and charge transport is provided along with specific details of the Cryogenic Dark Matter Search detector instrumentation. In particular, this review covers quasidiffusive phonon transport, which includes phonon focusing, anharmonic decay, and isotope scattering. The interaction of phonons in the detector surface is discussed along with the downconversion of phonons in superconducting films. The charge transport physics include a mass tensor which results from the crystal band structure and is modeled with a Herring-Vogt transformation. Charge scattering processes involve the creation of Neganov-Luke phonons. Transition-edge-sensor (TES) simulations include a full electric circuit description and all thermal processes including Joule heating, cooling to the substrate, and thermal diffusion within the TES, the latter of which is necessary to model normal-superconducting phase separation. Relevant numerical constants are provided for these physical processes in germanium, silicon, aluminum, and tungsten. Random number sampling methods including inverse cumulative distribution function (CDF) and rejection techniques are reviewed. To improve the efficiency of charge transport modeling, an additional second order inverse CDF method is developed here along with an efficient barycentric coordinate sampling method of electric fields. Results are provided in a manner that is convenient for use in Monte Carlo and references are provided for validation of these models.

  18. Detection of low energy solar neutrinos by a two-phase cryogenic e-bubble detector

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A new two-phase cryogenic neutrino detector using electron bubble (e-bubble) specifically in liquid helium is proposed and being developed for real time, high rate measurements of low-energy p-p reaction neutrinos from the sun. The e-bubble detector is a time projection chamber-like (TPC) tracking detector. The task of such a neutrino detector is to detect the ionization of the elastically scattered target electrons by incident neutrinos, and then to characterize their energy and direction and to distinguish them from radioactive backgrounds. The ionization signals are expected to be small and hence undergo avalanche amplification in the saturated vapor above the liquid phase by gas electron multipliers (GEMs) at high gain. Higher granularity and intrinsically suppressed ion feedback give a good spatial resolution and are the major advantages of this technology. It should be possible to construct such a detector to track charged particles down to 100―200 keV in a massive liquid helium target with fractional millimeter spatial resolution in three-dimensional space, using the GEM-based TPC with a high-resolution CCD camera, for both the electronic and light readout.

  19. Reliable cool-down of GridPix detectors for cryogenic applications

    Energy Technology Data Exchange (ETDEWEB)

    Schön, R., E-mail: rolfs@nikhef.nl [National Institute for Subatomic Physics Nikhef, Science Park 105, 1098XG Amsterdam (Netherlands); Schmitz, J.; Smits, S. [MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500AE Enschede (Netherlands); Bilevych, Y. [Physics Institute, University of Bonn, Nußallee 12, 53115 Bonn (Germany); Bakel, N. van [National Institute for Subatomic Physics Nikhef, Science Park 105, 1098XG Amsterdam (Netherlands)

    2015-04-21

    In this paper we present thermal cycling experiments of GridPix radiation imaging detectors, in view of a potential application in a cryogenic experiment. The robustness of the GridPix detector is studied for various grid designs, as well as various mechanical and thermal surroundings. The grid design variations had insignificant effect on the grid strength. A low cool-down rate as well as good thermal contact are crucial for the durability of the grid. Further, additional strengthening at the grid edges proved necessary to maintain the integrity of the structure during thermal cycling, which was done using globtop adhesive. The combination of these measures led to 100% survival rate after thermal cycling down to −130 °C.

  20. Impact of geometry on light collection efficiency of scintillation detectors for cryogenic rare event searches

    Energy Technology Data Exchange (ETDEWEB)

    Danevich, F.A.; Kobychev, V.V. [Institute for Nuclear Research, MSP 03680 Kyiv (Ukraine); Kobychev, R.V. [Institute for Nuclear Research, MSP 03680 Kyiv (Ukraine); National Technical University of Ukraine “Kyiv Polytechnic Institute”, 03056 Kyiv (Ukraine); Kraus, H. [Department of Physics, University of Oxford, Oxford OX1 3RH (United Kingdom); Mikhailik, V.B., E-mail: vmikhai@hotmail.com [Department of Physics, University of Oxford, Oxford OX1 3RH (United Kingdom); Diamond Light Source, Didcot OX11 0DE (United Kingdom); Mokina, V.M. [Institute for Nuclear Research, MSP 03680 Kyiv (Ukraine); Solsky, I.M. [Scientific Research Company CARAT, 79031 Lviv (Ukraine)

    2014-10-01

    Simulations of photon propagation in scintillation detectors were performed with the aim to find the optimal scintillator geometry, surface treatment, and shape of external reflector in order to achieve maximum light collection efficiency for detector configurations that avoid direct optical coupling, a situation that is commonly found in cryogenic scintillating bolometers in experimental searches for double beta decay and dark matter. To evaluate the light collection efficiency of various geometrical configurations we used the ZEMAX ray-tracing software. It was found that scintillators in the shape of a triangular prism with an external mirror shaped as truncated cone gives the highest light collection efficiency. The results of the simulations were confirmed by carrying out measurements of the light collection efficiencies of CaWO{sub 4} crystal scintillators. A comparison of simulated and measured values of light output shows good agreement.

  1. An Efficient, Movable Single-Particle Detector for Use in Cryogenic Ultra-High Vacuum Environments

    CERN Document Server

    Spruck, Kaija; Fellenberger, Florian; Grieser, Manfred; von Hahn, Robert; Klinkhamer, Vincent; Novotný, Oldřich; Schippers, Stefan; Vogel, Stephen; Wolf, Andreas; Krantz, Claude

    2014-01-01

    A compact, highly efficient single-particle counting detector for ions of keV/u kinetic energy, movable by a long-stroke mechanical translation stage, has been developed at the Max-Planck-Institut f\\"ur Kernphysik (Max Planck Institute for Nuclear Physics, MPIK). Both, detector and translation mechanics, can operate at ambient temperatures down to $\\sim$ 10 K and consist fully of ultra-high vacuum (UHV) compatible, high-temperature bakeable and non-magnetic materials. The set-up is designed to meet the technical demands of MPIK's Cryogenic Storage Ring (CSR). We present a series of functional tests that demonstrate full suitability for this application and characterise the set-up with regard to its particle detection efficiency.

  2. Characterization of photo-multiplier tubes for the Cryogenic Avalanche Detector

    Science.gov (United States)

    Bondar, A.; Buzulutskov, A.; Dolgov, A.; Nosov, V.; Shekhtman, L.; Sokolov, A.

    2015-10-01

    New Cryogenic Avalanche Detector (CRAD) with ultimate sensitivity, that will be able to detect one primary electron released in the cryogenic liquid, is under development in the Laboratory of Cosmology and Particle Physics of the Novosibirsk State University jointly with the Budker Institute of Nuclear Physics. The CRAD will use two sets of cryogenic PMTs in order to get trigger signal either from primary scintillations in liquid Ar or from secondary scintillations in high field gap above the liquid. Two types of cryogenic PMTs produced by Hamamatsu Photonics were tested and the results are presented in this paper. Low background 3 inch PMT R11065-10 demonstrated excellent performance according to its specifications provided by the producer. The gain measured with single electron response (SER) in liquid Ar reached 107, dark count rate rate did not exceed 300 Hz and pulse height resolution of single electron signals was close to 50%(FWHM). However, two R11065-10 PMTs out of 7 tested stopped functioning after several tens minutes of operation immersed completely into liquid Ar. The remaining 5 devices and one R11065-MOD were operated successfully for several hours each with all the parameters according to the producer specifications. Compact 2 inch PMT R6041-506-MOD with metal-channel dynode structure is a candidate for side wall PMT system that will look at electroluminescence in high field region above liquid. Four of these PMTs were tested in liquid Ar and demonstrated gain up to 2× 107, dark count rate rate below 100 Hz and pulse height resolution of single electron signals of about 110% (FWHM).

  3. Development of a Calibration System for Cryogenic Light Detectors in CUPID

    Science.gov (United States)

    Luo, Meng; Kolomensky, Yury; O'Donnell, Thomas; Schmidt, Benjamin; Cupid Collaboration

    2017-01-01

    If neutrino is a Majorana particle, it is possible to observe neutrinoless double beta decay (0 νββ), whose signature is a monochromatic line at the Q-value of the decay in the energy spectrum of the two electrons. Cryogenic Underground Observatory for Rare Events (CUORE) is an experiment which aims to search for 0 νββ in 130Te with TeO2 bolometers, whose background is dominated by α particles from natural radioactivity in the detector material. CUPID (CUORE Upgrade with Particle IDentification) is the next generation experiment proposed to distinguish 0 νββ events from those of α particles with Cherenkov radiation. An important part of CUPID R&D is to design, build and characterize a calibration system that can generate a known amount of light and transport that light to the dilution refrigerator at mK temperatures. We describe the design, implementation and performance of a calibration system developed for bolometric light detectors. Preparation work includes researching and selecting a light source (LED). A transport system (optical fiber) was developed to direct the light to the coldest part of the dilution refrigerator. Additionally, the light yield attenuation of optical fiber at cryogenic temperatures was measured. This project is supported by National Science Foundation and UC-Berkeley.

  4. Characterization and application of a GE amorphous silicon flat panel detector in a synchrotron light source

    Energy Technology Data Exchange (ETDEWEB)

    Lee, J.H. [XSD Advanced Photon Source, Argonne National Laboratory (United States)], E-mail: jlee@aps.anl.gov; Almer, J. [XSD Advanced Photon Source, Argonne National Laboratory (United States); Aydiner, C. [Los Alamos National Laboratory (United States); Bernier, J.; Chapman, K.; Chupas, P.; Haeffner, D. [XSD Advanced Photon Source, Argonne National Laboratory (United States); Kump, K. [GE Healthcare (United States); Lee, P.L.; Lienert, U.; Miceli, A. [XSD Advanced Photon Source, Argonne National Laboratory (United States); Vera, G. [GE Healthcare (United States)

    2007-11-11

    Characterization, in the language of synchrotron radiation, was performed on a GE Revolution 41RT flat panel detector using the X-ray light source at the Advanced Photon Source (APS). The detector has an active area of 41x41 cm{sup 2} with 200x200 {mu}m{sup 2} pixel size. The nominal working photon energy is around 80 keV. Modulation transfer function (MTF) was measured in terms of line spread function (LSF) using a 25 {mu}mx1 cm tungsten slit. Memory effects of the detector elements, called lag, were also measured. The large area and fast data capturing rate -8 fps in unbinned mode, 30 fps in binned or region of interest (ROI) mode-make the GE flat panel detector a unique and very versatile detector for synchrotron experiments. In particular, we present data from pair distribution function (PDF) measurements to demonstrate the special features of this detector.

  5. A HEMT-Based Cryogenic Charge Amplifier with sub-100 eVee Ionization Resolution for Massive Semiconductor Dark Matter Detectors

    CERN Document Server

    Phipps, A; Sadoulet, B; Serfass, B; Jin, Y

    2016-01-01

    We present the design and noise performance of a fully cryogenic (T=4 K) HEMT-based charge amplifier for readout of massive semiconductor dark matter detectors operating at sub-Kelvin temperatures. The amplifier has been developed to allow direct detection experiments such as CDMS and EDELWEISS to probe WIMP masses below 10 GeV/$c^2$ while retaining electromagnetic background discrimination. The amplifier dissipates only 1 mW of power and has a measured noise performance three times better than traditional JFET-based charge amplifiers. The predicted optimal filter baseline ionization energy resolution using the measured intrinsic amplifier noise performance and typical detector characteristics is $\\sigma_E \\approx 100 \\,\\text{eV}_{ee}$ (33 electrons). We have measured a calibrated baseline energy resolution of $\\sigma_E = 91\\,\\text{eV}_{ee}$ when coupled to a live CDMS II detector. To our knowledge, this is the best resolution achieved on such massive ($\\approx$150 pF capacitance) radiation detectors.

  6. New approach to calculate the true-coincidence effect of HpGe detector

    Energy Technology Data Exchange (ETDEWEB)

    Alnour, I. A., E-mail: aaibrahim3@live.utm.my, E-mail: ibrahim.elnour@yahoo.com [Department of Physics, Faculty of Pure and Applied Science, International University of Africa, 12223 Khartoum (Sudan); Wagiran, H. [Department of Physics, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Skudai,Johor (Malaysia); Ibrahim, N. [Faculty of Defence Science and Technology, National Defence University of Malaysia, Kem Sungai Besi, 57000 Kuala Lumpur (Malaysia); Hamzah, S.; Elias, M. S. [Malaysia Nuclear Agency (MNA), Bangi, 43000 Kajang, Selangor D.E. (Malaysia); Siong, W. B. [Chemistry Department, Faculty of Resource Science & Technology, Universiti Malaysia Sarawak, 94300 Kota Samarahan, Sarawak (Malaysia)

    2016-01-22

    The corrections for true-coincidence effects in HpGe detector are important, especially at low source-to-detector distances. This work established an approach to calculate the true-coincidence effects experimentally for HpGe detectors of type Canberra GC3018 and Ortec GEM25-76-XLB-C, which are in operation at neutron activation analysis lab in Malaysian Nuclear Agency (NM). The correction for true-coincidence effects was performed close to detector at distances 2 and 5 cm using {sup 57}Co, {sup 60}Co, {sup 133}Ba and {sup 137}Cs as standard point sources. The correction factors were ranged between 0.93-1.10 at 2 cm and 0.97-1.00 at 5 cm for Canberra HpGe detector; whereas for Ortec HpGe detector ranged between 0.92-1.13 and 0.95-100 at 2 and 5 cm respectively. The change in efficiency calibration curve of the detector at 2 and 5 cm after correction was found to be less than 1%. Moreover, the polynomial parameters functions were simulated through a computer program, MATLAB in order to find an accurate fit to the experimental data points.

  7. Cryogenic Loop Heat Pipes for the Cooling of Small Particle Detectors at CERN

    CERN Document Server

    Pereira, H; Silva, P; Wu, J; Koettig, T

    2010-01-01

    The loop heat pipe (LHP) is among the most effective heat transfer elements. Its principle is based on a continuous evaporation/condensation process and its passive nature does not require any mechanical devices such as pumps to circulate the cooling agent. Instead a porous wick structure in the evaporator provides the capillary pumping forces to drive the fluid [1]. Cryogenic LHP are investigated as potential candidates for the cooling of future small-scale particle detectors and upgrades of existing ones. A large spectrum of cryogenic temperatures can be covered by choosing appropriate working fluids. For high luminosity upgrades of existing experiments installed at the Large Hadron Collider (LHC) (TOTEM) and planned ones (FP420) [2-3] being in the design phase, radiation-hard solutions are studied with noble gases as working fluids to limit the radiolysis effect on molecules detrimental to the functioning of the LHP. The installation compactness requirement of experiments such as the CAST frame-store CCD d...

  8. Development of a cryogenic radiation detector for mapping radio frequency superconducting cavity field emissions

    Energy Technology Data Exchange (ETDEWEB)

    Danny Dotson; John Mammosser

    2005-05-01

    Field emissions in a super conducting helium cooled RF cavity and the production of radiation (mostly X-Rays) have been measured externally on cryomodules at Jefferson Lab since 1991. External measurements are limited to radiation energies above 100 keV due to shielding of the stainless steel cryogenic body. To measure the onset of and to map field emissions from a superconducting cavity requires the detecting instrument be inside the shield and within the liquid Helium. Two possible measurement systems are undergoing testing at JLab. A CsI detector array set on photodiodes and an X-Ray film camera with a fixed aperture. Several devices were tested in the cell with liquid Helium without success. The lone survivor, a CsI array, worked but saturated at high power levels due to backscatter. The array was encased in a lead shield with a slit opening set to measure the radiation emitted directly from the cell eliminating a large portion of the backscatter. This is a work in progress and te sting should be complete before the PAC 05. The second system being tested is passive. It is a shielded box with an aperture to expose radiation diagnostic film located inside to direct radiation from the cell. Developing a technique for mapping field emissions in cryogenic cells will assist scientists and engineers in pinpointing any surface imperfections for examination.

  9. Sapphire scintillation tests for cryogenic detectors in the Edelweiss dark matter search

    Energy Technology Data Exchange (ETDEWEB)

    Luca, M

    2007-07-15

    Identifying the matter in the universe is one of the main challenges of modern cosmology and astrophysics. An important part of this matter seems to be made of non-baryonic particles. Edelweiss is a direct dark matter search using cryogenic germanium bolometers in order to look for particles that interact very weakly with the ordinary matter, generically known as WIMPs (weakly interacting massive particles). An important challenge for Edelweiss is the radioactive background and one of the ways to identify it is to use a larger variety of target crystals. Sapphire is a light target which can be complementary to the germanium crystals already in use. Spectroscopic characterization studies have been performed using different sapphire samples in order to find the optimum doping concentration for good low temperature scintillation. Ti doped crystals with weak Ti concentrations have been used for systematic X ray excitation tests both at room temperature and down to 30 K. The tests have shown that the best Ti concentration for optimum room temperature scintillation is 100 ppm and 50 ppm at T = 45 K. All concentrations have been checked by optical absorption and fluorescence. After having shown that sapphire had interesting characteristics for building heat-scintillation detectors, we have tested if using a sapphire detector was feasible within a dark matter search. During the first commissioning tests of Edelweiss-II, we have proved the compatibility between a sapphire heat scintillation detector and the experimental setup. (author)

  10. Optimizing the design and analysis of cryogenic semiconductor dark matter detectors for maximum sensitivity

    Energy Technology Data Exchange (ETDEWEB)

    Pyle, Matt Christopher [Stanford Univ., CA (United States)

    2012-01-01

    In this thesis, we illustrate how the complex E- field geometry produced by interdigitated electrodes at alternating voltage biases naturally encodes 3D fiducial volume information into the charge and phonon signals and thus is a natural geometry for our next generation dark matter detectors. Secondly, we will study in depth the physics of import to our devices including transition edge sensor dynamics, quasi- particle dynamics in our Al collection fins, and phonon physics in the crystal itself so that we can both understand the performance of our previous CDMS II device as well as optimize the design of our future devices. Of interest to the broader physics community is the derivation of the ideal athermal phonon detector resolution and it's T3 c scaling behavior which suggests that the athermal phonon detector technology developed by CDMS could also be used to discover coherent neutrino scattering and search for non-standard neutrino interaction and sterile neutrinos. These proposed resolution optimized devices can also be used in searches for exotic MeV-GeV dark matter as well as novel background free searches for 8GeV light WIMPs.

  11. Split-Stirling, linear-resonant, cryogenic refrigerators for detector cooling

    Science.gov (United States)

    Lehrfeld, D.

    1983-01-01

    For the past decade, military IR systems have preferred to see cryogenic coolers provided as split units; separating the functions of compressor and cold-end for system packaging and vibration isolation reasons. A family of split-cycle coolers designed for long MTBF and in the final stages of development is the focus of the discussion. Their technological evolution, from multi-year-MTBF satellite system Stirling coolers developed in the U.S., and the UA 7011 cooler (the first all-linear, military, production cooler) developed in Holland, is explained. Two new split-cycle machines are discussed. They provided 1/4 watt and 1 watt (nominal capacity) at 80 K and 85 K respectively. These linear-resonant, free-displacer Stirling coolers are designed for thousands of hours of service-free operation. They are designed to be compatible with standard U.S. 60 element and 120/180 element detector/dewars, respectively.

  12. Advanced far infrared detector and double donor studies in Ge

    Energy Technology Data Exchange (ETDEWEB)

    Olsen, C.S.

    1994-12-01

    This has application to astronomy and astrophysics. Selenium in Ge has been studied with a doping technique which limits complex formation. Only one ionization level has been found to correspond to selenium, which presumably occupies a substitutional site. This level is extremely unstable and its concentration decreases after annealing at 400C. Future work is planned to anneal the fast neutron damage before much selenium has formed in the {sup 74/76}Ge samples. It is expected that the observed selenium level can be better characterized and the missing selenium level is more likely to be discovered if other defects are removed before {sup 77}Se formation.

  13. Efficiency calibration of an extended-range Ge detector by a detailed Monte Carlo simulation

    Energy Technology Data Exchange (ETDEWEB)

    Peyres, V. [Metrologia de Radiaciones Ionizantes, CIEMAT, Avda. Complutense 22, Madrid 28040 (Spain)], E-mail: Virginia.peyres@ciemat.es; Garcia-Torano, E. [Metrologia de Radiaciones Ionizantes, CIEMAT, Avda. Complutense 22, Madrid 28040 (Spain)

    2007-09-21

    A Monte Carlo simulation has been employed for calibrating an extended-range Ge detector in an energy range from 14 to 1800 keV. A set of sources from monoenergetic and multi-gamma emitters point were measured at 15 cm from the detector window and provided 26 experimental values to which the results of the simulations are compared. Discrepancies between simulated and experimental values are within 1 standard deviation, and relative differences are, in most cases, below 1%.

  14. The Cryogenic AntiCoincidence detector for ATHENA X-IFU: a program overview

    Science.gov (United States)

    Macculi, C.; Argan, A.; D'Andrea, M.; Lotti, S.; Laurenza, M.; Piro, L.; Biasotti, M.; Corsini, D.; Gatti, F.; Torrioli, G.; Fiorini, M.; Molendi, S.; Uslenghi, M.; Mineo, T.; Bulgarelli, A.; Fioretti, V.; Cavazzuti, E.

    2016-07-01

    The ATHENA observatory is the second large-class ESA mission, in the context of the Cosmic Vision 2015 - 2025, scheduled to be launched on 2028 at L2 orbit. One of the two on-board instruments is the X-IFU (X-ray Integral Field Unit): it is a TES-based kilo-pixels order array able to perform simultaneous high-grade energy spectroscopy (2.5 eV at 6 keV) and imaging over the 5 arcmin FoV. The X-IFU sensitivity is degraded by the particles background which is induced by primary protons of both solar and Cosmic Rays origin, and secondary electrons. The studies performed by Geant4 simulations depict a scenario where it is mandatory the use of reduction techniques that combine an active anticoincidence detector and a passive electron shielding to reduce the background expected in L2 orbit down to the goal level of 0.005 cts/cm2/s/keV, so enabling the characterization of faint or diffuse sources (e.g. WHIM or Galaxy cluster outskirts). From the detector point of view this is possible by adopting a Cryogenic AntiCoincidence (CryoAC) placed within a proper optimized environment surrounding the X-IFU TES array. It is a 4-pixels detector made of wide area Silicon absorbers sensed by Ir TESes, and put at a distance < 1 mm below the TES-array. On October 2015 the X-IFU Phase A program has been kicked-off, and about the CryoAC is at present foreseen on early 2017 the delivery of the DM1 (Demonstration Model 1) to the FPA development team for integration, which is made of 1 pixel "bridgessuspended" that will address the final design of the CryoAC. Both the background studies and the detector development work is on-going to provide confident results about the expected residual background at the TES-array level, and the single pixel design to produce a detector for testing activity on 2016/2017. Here we will provide an overview of the CryoAC program, discussing some details about the background assessment having impact on the CryoAC design, the last single pixel characterization

  15. The Cryogenic AntiCoincidence detector for ATHENA: the progress towards the final pixel design

    Science.gov (United States)

    Macculi, Claudio; Piro, Luigi; Cea, Donatella; Colasanti, Luca; Lotti, Simone; Natalucci, Lorenzo; Gatti, Flavio; Bagliani, Daniela; Biasotti, Michele; Corsini, Dario; Pizzigoni, Giulio; Torrioli, Guido; Barbera, Marco; Mineo, Teresa; Perinati, Emanuele

    2014-07-01

    "The Hot and Energetic Universe" is the scientific theme approved by the ESA SPC for a Large mission to be flown in the next ESA slot (2028th) timeframe. ATHENA is a space mission proposal tailored on this scientific theme. It will be the first X-ray mission able to perform the so-called "Integral field spectroscopy", by coupling a high-resolution spectrometer, the X-ray Integral Field Unit (X-IFU), to a high performance optics so providing detailed images of its field of view (5' in diameter) with an angular resolution of 5" and fine energy-spectra (2.5eV@E<7keV). The X-IFU is a kilo-pixel array based on TES (Transition Edge Sensor) microcalorimeters providing high resolution spectroscopy in the 0.2-12 keV range. Some goals is the detection of faint and diffuse sources as Warm Hot Intergalactic Medium (WHIM) or galaxies outskirts. To reach its challenging scientific aims, it is necessary to shield efficiently the X-IFU instrument against background induced by external particles: the goal is 0.005 cts/cm^2/s/keV. This scientific requirement can be met by using an active Cryogenic AntiCoincidence (CryoAC) detector placed very close to X-IFU (~ 1 mm below). This is shown by our GEANT4 simulation of the expected background at L2 orbit. The CryoAC is a TES based detector as the X-IFU sharing with it thermal and mechanical interfaces, so increasing the Technology Readiness Level (TRL) of the payload. It is a 2x2 array of microcalorimeter detectors made by Silicon absorber (each of about 80 mm^2 and 300 μm thick) and sensed by an Ir TES. This choice shows that it is possible to operate such a detector in the so-called athermal regime which gives a response faster than the X-IFU (< 30 μs), and low energy threshold (above few keV). Our consortium has developed and tested several samples, some of these also featured by the presence of Al-fins to efficiently collect the athermal phonons, and increased x-ray absorber area (up to 1 cm^2). Here the results of deep test

  16. The COSINUS project: Development of new NaI-based cryogenic detectors for direct dark matter search

    Science.gov (United States)

    Gütlein, A.; Angloher, G.; Gotti, C.; Hauff, D.; Maino, M.; Nagorny, S. S.; Pagnanini, L.; Pessina, G.; Petricca, F.; Pirro, S.; Pröbst, F.; Reindl, F.; Schäffner, K.; Schieck, J.; Seidel, W.

    2017-02-01

    The current results of direct dark matter searches are controversial. The long-standing dark-matter claim from the DAMA/LIBRA collaboration is excluded by null-results of several other experiments. However, a comparison of the results by experiments with different detector materials introduces model dependencies. The R&D project COSINUS (Cryogenic Observatory for SIgnatures seen in Next-generation Underground Searches) aims to develop cryogenic detectors based on (hygroscopic) sodium iodide (NaI). If successful, such detectors could be used in future experiments to investigate the origin of the annual modulation signal seen by the NaI-based scintillation detectors of the DAMA/LIBRA experiment. COSINUS detectors should be able to simultaneously detect phonons and scintillation light produced by a particle interaction inside the NaI crystal. This technique allows for an active suppression of β/γ backgrounds as well as detailed studies of a large variety of dark-matter models predicting nuclear interactions. For such kind of studies only moderate exposures of ≲ 100 kg-days are needed. In addition to the projected sensitivities of COSINUS detectors, we also show the result of first tests using (only mildly hygroscopic) caesium iodide (CsI) crystals as target material. For this measurement we achieved an energy threshold of ∼4.7 keV for nuclear recoils.

  17. Quality Control of CMS - GE1/1 Muon Detector Upgrade

    CERN Document Server

    Salem, Safaa

    2016-01-01

    This report summarizes the project I get assigned to as a CERN summer student from 27th of June 2016 to 19th of August 2016. It is mainly focused on Quality Control of CMS GE1/1 muon detector upgrade.

  18. An aerogel Cherenkov detector for multi-GeV photon detection with low sensitivity to neutrons

    CERN Document Server

    Maeda, Y; Masuda, T; Morii, H; Naito, D; Nakajima, Y; Nanjo, H; Nomura, T; Sasao, N; Seki, S; Shiomi, K; Sumida, T; Tajima, Y

    2014-01-01

    We describe a novel photon detector which operates under an intense flux of neutrons. It is composed of lead-aerogel sandwich counter modules. Its salient features are high photon detection efficiency and blindness to neutrons. As a result of Monte Carlo (MC) simulations, the efficiency for photons with the energy larger than 1 GeV is expected to be higher than 99.5% and that for 2 GeV/$c$ neutrons less than 1%. The performance on the photon detection under such a large flux of neutrons was measured for a part of the detector. It was confirmed that the efficiency to photons with the energy $>$1 GeV was consistent with the MC expectation within 8.2% uncertainty.

  19. Measurement of nuclear activity with Ge detectors and its uncertainty

    CERN Document Server

    Cortes, C A P

    1999-01-01

    presented in the fifth chapter and they are applied to establish the optimum conditions for the measurement of the activity of a gamma transmitter isolated radioactive source with a spectrometer with germanium detector. (Author) The objective of this work is to analyse the influence magnitudes which affect the activity measurement of gamma transmitter isolated radioactive sources. They prepared by means of the gravimetric method, as well as, determining the uncertainty of such measurement when this is carried out with a gamma spectrometer system with a germanium detector. This work is developed in five chapters: In the first one, named Basic principles it is made a brief description about the meaning of the word Measurement and its implications and the necessaries concepts are presented which are used in this work. In the second chapter it is exposed the gravimetric method used for the manufacture of the gamma transmitter isolated radioactive sources, it is tackled the problem to determine the main influence ...

  20. Testing the Ge detectors for the MAJORANA DEMONSTRATOR

    CERN Document Server

    Xu, W; Aguayo, E; Avignone, F T; Barabash, A S; Bertrand, F E; Boswell, M; Brudanin, V; Busch, M; Byram, D; Caldwell, A S; Chan, Y-D; Christofferson, C D; Combs, D C; Cuesta, C; Detwiler, J A; Doe, P J; Efremenko, Yu; Egorov, V; Ejiri, H; Elliott, S R; Fast, J E; Finnerty, P; Fraenkle, F M; Galindo-Uribarri, A; Giovanetti, G K; Goett, J; Green, M P; Gruszko, J; Guiseppe, V E; Gusev, K; Hallin, A L; Hazama, R; Hegai, A; Henning, R; Hoppe, E W; Howard, S; Howe, M A; Keeter, K J; Kidd, M F; Kochetov, O; Konovalov, S I; Kouzes, R T; LaFerriere, B D; Leon, J; Leviner, L E; Loach, J C; MacMullin, J; MacMullin, S; Martin, R D; Meijer, S; Mertens, S; Nomachi, M; Orrell, J L; O'Shaughnessy, C; Overman, N R; Phillips, D G; Poon, A W P; Pushkin, K; Radford, D C; Rager, J; Rielage, K; Robertson, R G H; Romero-Romero, E; Ronquest, M C; Schubert, A G; Shanks, B; Shima, T; Shirchenko, M; Snavely, K J; Snyder, N; Suriano, A M; Thompson, J; Timkin, V; Tornow, W; Trimble, J E; Varner, R L; Vasilyev, S; Vetter, K; Vorren, K; White, B R; Wilkerson, J F; Wiseman, C; Yakushev, E; Young, A R; Yu, C H; Yumatov, V

    2014-01-01

    High purity germanium (HPGe) crystals will be used for the MAJORANA DEMONSTRATOR, where they serve as both the source and the detector for neutrinoless double beta decay. It is crucial for the experiment to understand the performance of the HPGe crystals. A variety of crystal properties are being investigated, including basic properties such as energy resolution, efficiency, uniformity, capacitance, leakage current and crystal axis orientation, as well as more sophisticated properties, e.g. pulse shapes and dead layer and transition layer distributions. In this paper, we will present our measurements that characterize the HPGe crystals. We will also discuss our simulation package for the detector characterization setup, and show that additional information can be extracted from data-simulation comparisons.

  1. A search for particle dark matter using cryogenic germanium and silicon detectors in the one- and two- tower runs of CDMS-II at Soudan

    Energy Technology Data Exchange (ETDEWEB)

    Ogburn, IV, Reuben Walter [Stanford Univ., CA (United States)

    2008-06-01

    Images of the Bullet Cluster of galaxies in visible light, X-rays, and through gravitational lensing confirm that most of the matter in the universe is not composed of any known form of matter. The combined evidence from the dynamics of galaxies and clusters of galaxies, the cosmic microwave background, big bang nucleosynthesis, and other observations indicates that 80% of the universe's matter is dark, nearly collisionless, and cold. The identify of the dar, matter remains unknown, but weakly interacting massive particles (WIMPs) are a very good candidate. They are a natural part of many supersymmetric extensions to the standard model, and could be produced as a nonrelativistic, thermal relic in the early universe with about the right density to account for the missing mass. The dark matter of a galaxy should exist as a spherical or ellipsoidal cloud, called a 'halo' because it extends well past the edge of the visible galaxy. The Cryogenic Dark Matter Search (CDMS) seeks to directly detect interactions between WIMPs in the Milky Way's galactic dark matter halo using crystals of germanium and silicon. Our Z-sensitive ionization and phonon ('ZIP') detectors simultaneously measure both phonons and ionization produced by particle interactions. In order to find very rare, low-energy WIMP interactions, they must identify and reject background events caused by environmental radioactivity, radioactive contaminants on the detector,s and cosmic rays. In particular, sophisticated analysis of the timing of phonon signals is needed to eliminate signals caused by beta decays at the detector surfaces. This thesis presents the firs two dark matter data sets from the deep underground experimental site at the Soudan Underground Laboratory in Minnesota. These are known as 'Run 118', with six detectors (1 kg Ge, 65.2 live days before cuts) and 'Run 119', with twelve detectors (1.5 kg Ge, 74.5 live days before cuts). They have

  2. Carrier Transport and Related Effects in Detectors of the Cryogenic Dark Matter Search

    Energy Technology Data Exchange (ETDEWEB)

    Sundqvist, Kyle Michael [Univ. of California, Berkeley, CA (United States)

    2012-01-01

    The Cryogenic Dark Matter Search (CDMS) is searching for weakly-interacting massive particles (WIMPS), which could explain the dark matter problem in cosmology and particle physics. By simultaneously measuring signals from deposited charge and the energy in nonequilibrium phonons created by particle interactions in intrinsic germanium crystals at a temperature of 40 mK, a signature response for each event is produced. This response, combined with phonon pulse-shape information, allows CDMS to actively discriminate candidate WIMP interactions with nuclei from electromagnetic radioactive background which interacts with electrons. The challenges associated with these techniques are unique. Carrier scattering is dominated by the spontaneous emission of Luke-Neganov phonons due to zeropoint fluctuations of the lattice ions. Drift fields are maintained at only a few V/cm, else these emitted phonons would dominate the phonons of the original interaction. The dominant systematic issues with CDMS detectors are due to the effects of space charge accumulation. It has been an open question how space charge accrues, and by which of several potential recombination and ionization processes. In this work, we have simulated the transport of electrons and holes in germanium under CDMS conditions. We have implemented both a traditional Monte Carlo technique based on carrier energy, followed later by a novel Monte Carlo algorithm with scattering rates defined and sampled by vector momentum. This vector-based method provides for a full anisotropic simulation of carrier transport including free-fight acceleration with an anisotropic mass, and anisotropic scattering rates. With knowledge of steady state carrier dynamics as a function of applied field, the results of our Monte Carlo simulations allow us to make a wide variety of predictions for energy dependent processes for both electrons and holes. Such processes include carrier capture by charged impurities, neutral impurities, static

  3. Physical characteristics of GE Senographe Essential and DS digital mammography detectors.

    Science.gov (United States)

    Ghetti, Caterina; Borrini, Adriano; Ortenzia, Ornella; Rossi, Raffaella; Ordóñez, Pedro L

    2008-02-01

    The purpose of this study was to investigate physical characteristics of two full field digital mammography (FFDM) systems (GE Senographe Essential and DS). Both are indirect conversion (x ray to light) alpha-Si flat panels coupled with a CsI(Tl) scintillator. The examined systems have the same pixel size (100 microm) but a different field of view: a conventional size 23 x 19.2 cm2 and a large field 24 X 30.7 cm2, specifically designed to image large breasts. In the GE Senographe Essential model relevant improvements in flat panel design were implemented and new deposition tools for metal, alpha-Si, and CsI(Tl) were introduced by GE. These changes in detector design are expected to be beneficial for advanced applications such as breast tomosynthesis. The presampling modulation transfer function (MTF), normalized noise power spectrum (NNPS), and detective quantum efficiency (DQE) were measured for a wide range of exposure (25-240 microGy) with a RQA-M2 technique (28 kVp with a Mo/Mo target/filter combination and 2 mm of additional aluminum filtration). At 1, 2, and at 4 lp/mm MTF is equal to 0.9, 0.76, and 0.46 for the conventional field detector and to 0.85, 0.59, and 0.24 for the large field detector. The latter detector exhibits an improved NNPS due to a lower electronic noise and a better DQE that reaches 60%. In addition a contrast-detail analysis was performed with CDMAM 3.4 phantom and CDCOM software: GE Senographe DS showed statistically significant poorer detection ability in comparison with the GE Senographe Essential. These results could have been expected, at least qualitatively, considering the relative DQE of the two systems.

  4. An experimental study of antireflective coatings in Ge light detectors for scintillating bolometers

    Directory of Open Access Journals (Sweden)

    Mancuso M.

    2014-01-01

    Full Text Available Luminescent bolometers are double-readout devices able to measure simultaneously the phonon and the light yields after a particle interaction in the detector. This operation allows in some cases to tag the type of the interacting quantum, crucial issue for background control in rare event experiments such as the search for neutrinoless double beta decay and for interactions of particle dark matter candidates. The light detectors used in the LUCIFER and LUMINEU searches (projects aiming at the study of the double beta interesting candidates 82Se and 100Mo using ZnSe and ZnMoO4 scintillating bolometers consist of hyper-pure Ge thin slabs equipped with NTD thermistors. A substantial sensitivity improvement of the Ge light detectors can be obtained applying a proper anti-reflective coatings on the Ge side exposed to the luminescent bolometer. The present paper deals with the investigation of this aspect, proving and quantifying the positive effect of a SiO2 and a SiO coating and setting the experimental bases for future tests of other coating materials. The results confirm that an appropriate coating procedure helps in improving the sensitivity of bolometric light detectors by an important factor (in the range 20% – 35% and needs to be included in the recipe for the development of an optimized radio-pure scintillating bolometer.

  5. Development and Performance of Detectors for the Cryogenic Dark Matter Search Experiment with an Increased Sensitivity Based on a Maximum Likelihood Analysis of Beta Contamination

    Energy Technology Data Exchange (ETDEWEB)

    Driscoll, Donald D.; /Case Western Reserve U.

    2004-01-01

    The Cryogenic Dark Matter Search (CDMS) uses cryogenically-cooled detectors made of germanium and silicon in an attempt to detect dark matter in the form of Weakly-Interacting Massive Particles (WIMPs). The expected interaction rate of these particles is on the order of 1/kg/day, far below the 200/kg/day expected rate of background interactions after passive shielding and an active cosmic ray muon veto. Our detectors are instrumented to make a simultaneous measurement of both the ionization energy and thermal energy deposited by the interaction of a particle with the crystal substrate. A comparison of these two quantities allows for the rejection of a background of electromagnetically-interacting particles at a level of better than 99.9%. The dominant remaining background at a depth of {approx} 11 m below the surface comes from fast neutrons produced by cosmic ray muons interacting in the rock surrounding the experiment. Contamination of our detectors by a beta emitter can add an unknown source of unrejected background. In the energy range of interest for a WIMP study, electrons will have a short penetration depth and preferentially interact near the surface. Some of the ionization signal can be lost to the charge contacts there and a decreased ionization signal relative to the thermal signal will cause a background event which interacts at the surface to be misidentified as a signal event. We can use information about the shape of the thermal signal pulse to discriminate against these surface events. Using a subset of our calibration set which contains a large fraction of electron events, we can characterize the expected behavior of surface events and construct a cut to remove them from our candidate signal events. This thesis describes the development of the 6 detectors (4 x 250 g Ge and 2 x 100 g Si) used in the 2001-2002 CDMS data run at the Stanford Underground Facility with a total of 119 livedays of data. The preliminary results presented are based on the

  6. Development and Performance of Detectors for the Cryogenic Dark Matter Search Experiment with an Increased Sensitivity Based on a Maximum Likelihood Analysis of Beta Contamination

    Energy Technology Data Exchange (ETDEWEB)

    Driscoll, Donald D [Case Western Reserve Univ., Cleveland, OH (United States)

    2004-05-01

    The Cryogenic Dark Matter Search (CDMS) uses cryogenically-cooled detectors made of germanium and silicon in an attempt to detect dark matter in the form of Weakly-Interacting Massive Particles (WIMPs). The expected interaction rate of these particles is on the order of 1/kg/day, far below the 200/kg/day expected rate of background interactions after passive shielding and an active cosmic ray muon veto. Our detectors are instrumented to make a simultaneous measurement of both the ionization energy and thermal energy deposited by the interaction of a particle with the crystal substrate. A comparison of these two quantities allows for the rejection of a background of electromagnetically-interacting particles at a level of better than 99.9%. The dominant remaining background at a depth of ~ 11 m below the surface comes from fast neutrons produced by cosmic ray muons interacting in the rock surrounding the experiment. Contamination of our detectors by a beta emitter can add an unknown source of unrejected background. In the energy range of interest for a WIMP study, electrons will have a short penetration depth and preferentially interact near the surface. Some of the ionization signal can be lost to the charge contacts there and a decreased ionization signal relative to the thermal signal will cause a background event which interacts at the surface to be misidentified as a signal event. We can use information about the shape of the thermal signal pulse to discriminate against these surface events. Using a subset of our calibration set which contains a large fraction of electron events, we can characterize the expected behavior of surface events and construct a cut to remove them from our candidate signal events. This thesis describes the development of the 6 detectors (4 x 250 g Ge and 2 x 100 g Si) used in the 2001-2002 CDMS data run at the Stanford Underground Facility with a total of 119 livedays of data. The preliminary results presented are based on the first use

  7. Development of cryogenic CMOS Readout ASICs for the Point-Contact HPGe Detectors for Dark Matter Search and Neutrino Experiments

    Science.gov (United States)

    Deng, Zhi; He, Li; Liu, Feng; Liu, Yinong; Xue, Tao; Li, Yulan; Yue, Qian

    2017-05-01

    The paper presents the developments of two cryogenic readout ASICs for the point-contact HPGe detectors for dark matter search and neutrino experiments. Extremely low noise readout electronics were demanded and the capability of working at cryogenic temperatures may bring great advantages. The first ASIC was a monolithic CMOS charge sensitive preamplifier with its noise optimized for ∼1 pF input capacitance. The second ASIC was a waveform recorder based on switched capacitor array. These two ASICs were fabricated in CMOS 350 nm and 180 nm processes respectively. The prototype chips were tested and showed promising results. Both ASICs worked well at low temperature. The preamplifier had achieved ENC of 10.3 electrons with 0.7 pF input capacitance and the SCA chip could run at 9 bit effective resolution and 25 MSPS sampling rate.

  8. HREM study on stacking structure of SiGe/Si infrared detector

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Stacking structure and defects in SiGe/P-Si infrared detector were studied by using localization high resolutionelectron microscopy (HREM). The photosensitive region in the detector consists of 3 P+-Si0.65 Ge0.35 layers and 2 UD-Si(undoped Si) layers. The interface between Si0.65 Ge0.35 and UD-Si is not sharp and has a transition zone with non-uniform contrast. The misfit stress of interface is distributed gradiently along the normal direction of the interface. Thereforethe crystal defects and serious lattice deformations on the interface have not been found. A defect area with a shape of in-verted triangle exists in the edge of photosensitive region. The main types of the defects in the area are stacking faults andmicrotwins. The stacking faults are on ( 1 11), and the thickness of the most microtwins is less than 4 interplanar spacingand the twin plane is (111). The Si0.65Ge0.35 and UD-Si layers on amorphous SiO2 layer consist of polycrystals grown byrandom nueleation, and are in wave

  9. Scintillator-Lucite sandwich detector for n/gamma separation in the GeV energy region

    CERN Document Server

    Watanabe, H; Harada, E; Inoue, S; Inagaki, T; Kobayashi, S; Kurilin, A S; Lim, G Y; Ogawa, I; Okuno, H; Omata, K; Sato, T; Shinkawa, T; Tsamalaidze, Z; Tsukamoto, T; Yoshimura, Y

    2002-01-01

    A Scintillator-Lucite Sandwich Detector (SLSD) has been developed for n/gamma separation in the GeV energy region. An efficient n/gamma separation is achieved by measuring a correlation between the scintillation and Cherenkov light yields. The basic performance of the detector has been tested with e, pi and p beams with momenta between 0.5 and 2.0 GeV/c; the results were compared with a Monte-Carlo simulation. The n/gamma separation capability of this detector has been studied by simulations in the energy range from 5 MeV to 12 GeV. The SLSD detector was successfully used for a beam survey of the new K sub L sup 0 beam line built for a K sub L sup 0-> pi sup 0 nu nu-bar experiment at the KEK 12-GeV proton synchrotron.

  10. A Study of Cooling Time Reduction of Interferometric Cryogenic Gravitational Wave Detectors Using a High-Emissivity Coating

    CERN Document Server

    Sakakibara, Y; Suzuki, T; Yamamoto, K; Chen, D; Koike, S; Tokoku, C; Uchiyama, T; Ohashi, M; Kuroda, K

    2013-01-01

    In interferometric cryogenic gravitational wave detectors, there are plans to cool mirrors and their suspension systems (payloads) in order to reduce thermal noise, that is, one of the fundamental noise sources. Because of the large payload masses (several hundred kg in total) and their thermal isolation, a cooling time of several months is required. Our calculation shows that a high-emissivity coating (e.g. a diamond-like carbon (DLC) coating) can reduce the cooling time effectively by enhancing radiation heat transfer. Here, we have experimentally verified the effect of the DLC coating on the reduction of the cooling time.

  11. Improvements to the Leake neutron detector II: Extension to 10 GeV energy

    Science.gov (United States)

    Leake, J. W.; Lowe, T.; Mason, R. S.

    2009-01-01

    We report on an improved design of neutron ambient dose equivalent (DE) detector, SNS-LINUS, consisting of a spherical polyethylene detector with internal shields of boron and lead based on the LINUS model thus extending the response to the GeV region. The computed Monte Carlo neutron ambient DE energy response is within a factor ±2.4 from 0.1 keV to 10 GeV with a detector weight of 7.8 kg that is significantly lower than other LINUS designs. The ambient DE response in the 50 keV-10 MeV range is within a factor ±1.36 (i.e. ±30%). The main applications are likely to be around particle accelerators, in aircraft or in spacecraft. The improved response in the 20 MeV energy region should make it attractive for use with fission sources. The computed responses of the SNS NGREM and LINUS detectors to pulsed neutrons and limits for their prudent use in portable monitors in such fields are given. The effect of large gamma bursts on the measurement of pulsed neutrons is discussed with recommendations made to enable operation up to 10 μGy of gamma radiation per burst. We propose a method of extending the dynamic range for pulsed neutron detection in which the neutron decay within the moderator is used to make measurements at a time at which the count rate losses are acceptable.

  12. Precision Electron-Beam Polarimetry at 1 GeV Using Diamond Microstrip Detectors

    Directory of Open Access Journals (Sweden)

    A. Narayan

    2016-02-01

    Full Text Available We report on the highest precision yet achieved in the measurement of the polarization of a low-energy, O(1  GeV, continuous-wave (CW electron beam, accomplished using a new polarimeter based on electron-photon scattering, in Hall C at Jefferson Lab. A number of technical innovations were necessary, including a novel method for precise control of the laser polarization in a cavity and a novel diamond microstrip detector that was able to capture most of the spectrum of scattered electrons. The data analysis technique exploited track finding, the high granularity of the detector, and its large acceptance. The polarization of the 180-μA, 1.16-GeV electron beam was measured with a statistical precision of <1% per hour and a systematic uncertainty of 0.59%. This exceeds the level of precision required by the Q_{weak} experiment, a measurement of the weak vector charge of the proton. Proposed future low-energy experiments require polarization uncertainty <0.4%, and this result represents an important demonstration of that possibility. This measurement is the first use of diamond detectors for particle tracking in an experiment. It demonstrates the stable operation of a diamond-based tracking detector in a high radiation environment, for two years.

  13. Improvements to the Leake neutron detector II: Extension to 10 GeV energy

    Energy Technology Data Exchange (ETDEWEB)

    Leake, J.W. [Sherwood Nutec Scientific, 23 Paddock Close, Wantage, Oxfordshire OX12 7EQ (United Kingdom)], E-mail: john5leake@vodafoneemail.co.uk; Lowe, T. [BAE Systems Ltd (United Kingdom); Mason, R.S. [Sherwood Nutec Scientific, 23 Paddock Close, Wantage, Oxfordshire OX12 7EQ (United Kingdom)

    2009-01-11

    We report on an improved design of neutron ambient dose equivalent (DE) detector, SNS-LINUS, consisting of a spherical polyethylene detector with internal shields of boron and lead based on the LINUS model thus extending the response to the GeV region. The computed Monte Carlo neutron ambient DE energy response is within a factor {+-}2.4 from 0.1 keV to 10 GeV with a detector weight of 7.8 kg that is significantly lower than other LINUS designs. The ambient DE response in the 50 keV-10 MeV range is within a factor {+-}1.36 (i.e. {+-}30%). The main applications are likely to be around particle accelerators, in aircraft or in spacecraft. The improved response in the 20 MeV energy region should make it attractive for use with fission sources. The computed responses of the SNS NGREM and LINUS detectors to pulsed neutrons and limits for their prudent use in portable monitors in such fields are given. The effect of large gamma bursts on the measurement of pulsed neutrons is discussed with recommendations made to enable operation up to 10 {mu}Gy of gamma radiation per burst. We propose a method of extending the dynamic range for pulsed neutron detection in which the neutron decay within the moderator is used to make measurements at a time at which the count rate losses are acceptable.

  14. Gamma-ray pulse height spectrum analysis on systems with multiple Ge detectors using spectrum summing

    Energy Technology Data Exchange (ETDEWEB)

    Killian, E.W. [Idaho National Engineering Lab., Idaho Falls, ID (United States)

    1997-11-01

    A technique has been developed at the Idaho National Engineering Laboratory to sum high resolution gamma-ray pulse spectra from systems with multiple Ge detectors. Lockheed Martin Idaho Technologies Company operates a multi-detector spectrometer configuration at the Stored Waste Examination Pilot Plant facility which is used to characterize the radionuclide contents in waste drums destined for shipment to Waste Isolation Pilot Plant. This summing technique was developed to increase the sensitivity of the system, reduce the count times required to properly quantify the radio-nuclides and provide a more consistent methodology for combining data collected from multiple detectors. In spectrometer systems with multiple detectors looking at non homogeneous waste forms it is often difficult to combine individual spectrum analysis results from each detector to obtain a meaningful result for the total waste container. This is particularly true when the counting statistics in each individual spectrum are poor. The spectrum summing technique adds the spectra collected by each detector into a single spectrum which has better counting statistics than each individual spectrum. A normal spectral analysis program can then be used to analyze the sum spectrum to obtain radio-nuclide values which have smaller errors and do not have to be further manipulated to obtain results for the total waste container. 2 refs., 2 figs.

  15. Background suppression in TeO{sub 2} bolometers with Neganov-Luke amplified cryogenic light detectors

    Energy Technology Data Exchange (ETDEWEB)

    Willers, Michael; Lanfranchi, Jean-Come; Oberauer, Lothar; Schoenert, Stefan [Technische Universitaet Muenchen, Physik Department E15, James Franck Strasse, 85748 Garching (Germany); Excellence Cluster Universe, Technische Universitaet Muenchen, Boltzmannstr. 2, 85748, Garching (Germany); Muenster, Andrea; Potzel, Walter; Roth, Sabine; Wawoczny, Stephan; Zoeller, Andreas [Technische Universitaet Muenchen, Physik Department E15, James Franck Strasse, 85748 Garching (Germany); Giuliani, Andrea [Centre de Sciences Nucleaires et de Sciences de la Matiere, 91405 Orsay Campus (France)

    2015-07-01

    The Neganov-Luke (NL) effect offers a promising way to increase the sensitivity of cryogenic light detectors at low energies. In this talk we show that a highly efficient discrimination between α and e{sup -}/γ induced events in TeO{sub 2} crystals (used in the search for the neutrinoless double beta decay) can be achieved by measuring the Cherenkov radiation emitted by high-energetic electrons within the crystal. By using NL amplified light detectors, a suppression of ∝99% of α-induced events with energies close to the Q-value of {sup 130}Te at ∝2.5 MeV has been achieved for the first time while simultaneously accepting 99.8% of all e{sup -}/γ-induced events.

  16. Monte Carlo simulations for the optimisation of low-background Ge detector designs

    Energy Technology Data Exchange (ETDEWEB)

    Hakenmueller, Janina; Heusser, Gerd; Maneschg, Werner; Schreiner, Jochen; Simgen, Hardy; Stolzenburg, Dominik; Strecker, Herbert; Weber, Marc; Westernmann, Jonas [Max-Planck-Institut fuer Kernphysik, Saupfercheckweg 1, 69117 Heidelberg (Germany); Laubenstein, Matthias [Laboratori Nazionali del Gran Sasso, Via G. Acitelli 22, 67100 Assergi L' Aquila (Italy)

    2015-07-01

    Monte Carlo simulations for the low-background Ge spectrometer Giove at the underground laboratory of MPI-K, Heidelberg, are presented. In order to reduce the cosmogenic background at the present shallow depth (15 m w.e.) the shielding of the spectrometer includes an active muon veto and a passive shielding (lead and borated PE layers). The achieved background suppression is comparable to Ge spectrometers operated in much greater depth. The geometry of the detector and the shielding were implemented using the Geant4-based toolkit MaGe. The simulations were successfully optimised by determining the correct diode position and active volume. With the help of the validated Monte Carlo simulation the contribution of the single components to the overall background can be examined. This includes a comparison between simulated results and measurements with different fillings of the sample chamber. Having reproduced the measured detector background in the simulation provides the possibility to improve the background by reverse engineering of the passive and active shield layers in the simulation.

  17. Detector development for Jefferson Lab’s 12 GeV Upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Qiang, Yi, E-mail: yqiang@jlab.org

    2015-05-01

    Jefferson Lab will soon finish its highly anticipated 12 GeV Upgrade. With doubled maximum energy, Jefferson Lab’s Continuous Electron Beam Accelerator Facility (CEBAF) will enable a new experimental program with substantial discovery potential, addressing important topics in nuclear, hadronic and electroweak physics. In order to take full advantage of the high energy, high luminosity beam, new detectors are being developed, designed and constructed to fit the needs of different physics topics. The paper will give an overview of various new detector technologies to be used for 12 GeV experiments. It will then focus on the development of two solenoid-based spectrometers, the GlueX and SoLID spectrometers. The GlueX experiment in Hall D will study the complex properties of gluons through exotic hybrid meson spectroscopy. The GlueX spectrometer, a hermetic detector package designed for spectroscopy and the associated partial wave analysis, is currently in the final stage of construction. Hall A, on the other hand, is developing the SoLID spectrometer to capture the 3D image of the nucleon from semi-inclusive processes and to study the intrinsic properties of quarks through mirror symmetry breaking. Such a spectrometer will have the capability to handle very high event rates while still maintaining a large acceptance in the forward region.

  18. Cryogenic Q-factor measurement of optical substrates for optimization of gravitational wave detectors

    Energy Technology Data Exchange (ETDEWEB)

    Nietzsche, S [Institut fuer Festkoerperphysik, Friedrich-Schiller-Universitaet Jena, Helmholtzweg 5, D-07743 Jena (Germany); Nawrodt, R [Institut fuer Festkoerperphysik, Friedrich-Schiller-Universitaet Jena, Helmholtzweg 5, D-07743 Jena (Germany); Zimmer, A [Institut fuer Festkoerperphysik, Friedrich-Schiller-Universitaet Jena, Helmholtzweg 5, D-07743 Jena (Germany); Schnabel, R [Max-Planck-Institut fuer Gravitationsphysik, Universitaet Hannover, Callinstrasse 38, D-30167 Hannover (Germany); Vodel, W [Institut fuer Festkoerperphysik, Friedrich-Schiller-Universitaet Jena, Helmholtzweg 5, D-07743 Jena (Germany); Seidel, P [Institut fuer Festkoerperphysik, Friedrich-Schiller-Universitaet Jena, Helmholtzweg 5, D-07743 Jena (Germany)

    2006-05-15

    Future generations of gravitational wave interferometers are likely to be operated at cryogenic temperatures because one of the sensitivity limiting factors of the present generation is the thermal noise of end mirrors and beam splitters that occurs in the optical substrates as well as in the dielectric coatings. A possible method for minimizing thermal noise is cooling to cryogenic temperatures, maximizing the mechanical quality factor Q, and maximizing the eigenfrequencies of the substrate. We present experimental details of a new cryogenic apparatus that is suitable for the measurement of the temperature-dependent Q-factor of reflective, transmissive as well as nano-structured grating optics down to 5 K. In particular, the SQUID-based and the optical interferometric approaches to the measurement of the amplitude of vibrating test bodies are compared and the method of ring-down recording is described.

  19. Task I: Dark Matter Search Experiments with Cryogenic Detectors: CDMS-I and CDMS-II Task II: Experimental Study of Neutrino Properties: EXO and KamLAND

    Energy Technology Data Exchange (ETDEWEB)

    Cabrera, Blas [Stanford Univ., CA (United States); Gratta, Giorgio [Stanford Univ., CA (United States)

    2013-08-30

    Dark Matter Search - During the period of performance, our group continued the search for dark matter in the form of weakly interacting massive particles or WIMPs. As a key member of the CDMS (Cryogenic Dark Matter Search) collaboration, we completed the CDMS II experiment which led the field in sensitivity for more than five years. We fabricated all detectors, and participated in detector testing and verification. In addition, we participated in the construction and operation of the facility at the Soudan Underground Laboratory and played key roles in the data acquisition and analysis. Towards the end of the performance period, we began operating the SuperCDMS Soudan experiment, which consists of 15 advanced Ge (9 kg) detectors. The advanced detector design called iZIP grew out of our earlier DOE Particle Detector R&D program which demonstrated the rejection of surface electrons to levels where they are no longer the dominant source of background. Our group invented this advanced design and these larger detectors were fabricated on the Stanford campus in collaboration with the SLAC CDMS group and the Santa Clara University group. The sensitivity reach is expected to be up to 5 times better than CDMS II after two years of operation. We will check the new limits on WIMPs set by XENON100, and we expect improved sensitivity for light mass WIMPs beyond that of any other existing experiment. Our group includes the Spokesperson for SuperCDMS and continues to make important contributions to improvements in the detector technology which are enabling the very low trigger thresholds used to explore the low mass WIMP region. We are making detailed measurements of the charge transport and trapping within Ge crystals, measuring the diffusive trapping distance of the quasiparticle excitations within the Al phonon collector fins on the detector surface, and we are contributing to the development of much improved detector Monte Carlos which are essential to guide the detector

  20. Design of the cryogenic systems for the Near and Far LAr-TPC detectors of the Short-Baseline Neutrino program (SBN) at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Geynisman, M. [Fermilab; Bremer, J. [CERN; Chalifour, M. [CERN; Delaney, M. [Fermilab; Dinnon, M. [Fermilab; Doubnik, R. [Fermilab; Hentschel, S. [Fermilab; Kim, M. J. [Fermilab; Montanari, C. [INFN, Pavia; Monatanari, D. [Fermilab; Nichols, T. [Fermilab; Norris, B. [Fermilab; Sarychev, M. [Fermilab; Schwartz, F. [Fermilab; Tillman, J. [Fermilab; Zuckerbrot, M. [Fermilab

    2017-08-31

    The Short-Baseline Neutrino (SBN) physics program at Fermilab and Neutrino Platform (NP) at CERN are part of the international Neutrino Program leading to the development of Long-Baseline Neutrino Facility/Deep Underground Neutrino Experiment (LBNF/DUNE) science project. The SBN program consisting of three Liquid Argon Time Projection Chamber (LAr-TPC) detectors positioned along the Booster Neutrino Beam (BNB) at Fermilab includes an existing detector known as MicroBooNE (170-ton LAr-TPC) plus two new experiments known as SBN’s Near Detector (SBND, ~260 tons) and SBN’s Far Detector (SBN-FD, ~760 tons). All three detectors have distinctly different design of their cryostats thus defining specific requirements for the cryogenic systems. Fermilab has already built two new facilities to house SBND and SBN-FD detectors. The cryogenic systems for these detectors are in various stages of design and construction with CERN and Fermilab being responsible for delivery of specific sub-systems. This contribution presents specific design requirements and typical implementation solutions for each sub-system of the SBND and SBN-FD cryogenic systems.

  1. Cryogenic silicon detectors and analysis of Primakoff contributions to the reaction {pi}{sup -}Pb {yields} {pi}{sup -}{pi}{sup -}{pi}{sup +}Pb at COMPASS

    Energy Technology Data Exchange (ETDEWEB)

    Grabmueller, Stefanie

    2012-09-25

    An important part of the physics programme of the COMPASS experiment at CERN is the measurement of reactions with hadron beam particles impinging on fixed targets at small momentum transfer. These measurements require tracking of charged particles with high precision, which is only reachable employing silicon microstrip detectors placed around the target, both as a part of the beam telescope and in the first part of the spectrometer. These detectors have been operated at a sensor temperature of 200 K starting with the 2009 beam time. They are cooled with liquid nitrogen in thin capillaries attached to the silicon sensors. For stable long-term operation, various extensions around the previously existing setup were required. Particularly the mechanical stability of the cooled detector modules concerning thermal deformation, as well as the cooling stability, have been improved to the level where installation in the experiment became feasible. The detector performance profits significantly from the cryogenic operation, so that a time resolution in the range of 1.4-1.8 ns and a spatial resolution of 4-6 {mu}m and 7-11 {mu}m (for two and one strips hit, respectively) is reached. This corresponds to an improvement of 15-20% with respect to the warm operation. Meson spectroscopy using a high-energetic pion beam impinging on heavy nuclear targets features both diffractive and Primakoff, i.e. electro-magnetic, production of the final state, the latter becoming competitive particularly at lowest momentum transfer t'. Four million exclusive {pi}{sup -}{pi}{sup -}{pi}{sup +} final state events, emerging from {pi}{sup -} beam scattering off a lead target, have been recorded during the COMPASS 2004 hadron run. About one million feature t' < 10{sup -3} GeV{sup 2}/c{sup 2}. Employing partial-wave analysis techniques, Primakoff-produced resonances, and the interference between Primakoff and diffractive production have been observed. Using the free decay of the kaon

  2. First look at Gamma-ray background lines in the SPI Ge detector spectra

    Science.gov (United States)

    Wunderer, C. B.; Weidenspointner, G.; Cordier, B.; Diehl, R.; Jean, P.; v. Kienlin, A.; Knoedlseder, J.; Leleux, P.; Lichti, G.; Roques, J.-P.; Schanne, S.; Schoenfelder, V.; Shrader, C.; Skinner, G.; Strong, A.; Sturner, S.; Teegarden, B.; Vedrenne, G.

    2003-03-01

    ESA's INTEGRAL observatory has been launched successfully on October 17, 2002. Since November 2002, the 19 Ge detectors comprising the camera of one of its main instruments, the Spectrometer SPI, have been recording data. They cover the energy range from ˜ 20 keV to ˜ 8 MeV. The spectrometer is particularly suited to the observations of gamma-ray line emission from astrophysical objects of interest. However, since many astrophysically interesting lines have energies very close to energies of some instrumental background lines, and since some astrophysically interesting radioactive isotopes are also produced within spacecraft and instrument materials by cosmic-ray activation, a detailed study of the gamma-ray background lines seen with the SPI Ge detectors is necessary. We present the first steps taken towards understanding the line components of the gamma-ray background observed with SPI. This includes both isotope identification and preliminary studies of temporal variations. Emphasis is placed on the energy regions of particular interest to astrophysics, especially around the 60Fe and 26Al lines. Preliminary sensitivity estimates for some astrophysically interesting lines will also be presented. This work has been supported by the DLR.

  3. Elemental boron-doped p(+)-SiGe layers grown by molecular beam epitaxy for infrared detector applications

    Science.gov (United States)

    Lin, T. L.; George, T.; Jones, E. W.; Ksendzov, A.; Huberman, M. L.

    1992-01-01

    SiGe/Si heterojunction internal photoemission (HIP) detectors have been fabricated utilizing molecular beam epitaxy of p(+)-SiGe layers on p(-)-Si substrates. Elemental boron from a high-temperature effusion cell was used as the dopant source during MBE growth, and high doping concentrations have been achieved. Strong infrared absorption, mainly by free-carrier absorption, was observed for the degenerately doped SiGe layers. The use of elemental boron as the dopant source allows a low MBE growth temperature, resulting in improved crystalline quality and smooth surface morphology of the Si(0.7)Ge(0.3) layers. Nearly ideal thermionic emission dark current characteristics have been obtained. Photoresponse of the HIP detectors in the long-wavelength infrared regime has been demonstrated.

  4. Cryogenic cavity detector for a large-scale cold dark-matter axion search

    CERN Document Server

    Peng, H; Daw, E; Golubev, N A; Hagmann, C A; Kinion, D; Laveigne, J; Moltz, D M; Nezrick, F A; Powell, J; Rosenberg, L J; Sikivie, P; Stoeffl, W; Sullivan, N S; Tanner, D B; Turner, M S; Bibber, K V

    2000-01-01

    An axion detector consisting of a tunable high-Q cavity, a superconducting magnet, and a superheterodyne receiver with an ultra-low noise pre-amplifier has been built to search for galactic halo axions in the mass range of 1.3-13 mu eV. The detector instrumentation, search process, and data analysis are described. For the first time, this class of detector has reached sufficient sensitivity to detect halo axions with high confidence.

  5. Design and construction of a cryogenic distillation device for removal of krypton for liquid xenon dark matter detectors.

    Science.gov (United States)

    Wang, Zhou; Bao, Lei; Hao, Xihuan; Ju, Yonglin

    2014-01-01

    Liquid xenon (Xe) is one of the commendable detecting media for the dark matter detections. However, the small content of radioactive krypton-85 ((85)Kr) always exists in the commercial xenon products. An efficient cryogenic distillation system to remove this krypton (Kr) from commercial xenon products has been specifically designed, developed, and constructed in order to meet the requirements of the dark matter experiments with high- sensitivity and low-background. The content of krypton in regular commercial xenon products can be reduced from 10(-9) to 10(-12), with 99% xenon collection efficiency at maximum flow rate of 5 kg/h (15SLPM). The purified xenon gases produced by this distillation system can be used as the detecting media in the project of Panda X, which is the first dark matter detector developed in China.

  6. First demonstration of THGEM/GAPD-matrix optical readout in two-phase Cryogenic Avalanche Detector in Ar

    CERN Document Server

    Bondar, A; Dolgov, A; Grebenuk, A; Shemyakina, E; Sokolov, A; Breskin, A; Thers, D

    2013-01-01

    The multi-channel optical readout of a THGEM multiplier coupled to a matrix of 3x3 Geiger-mode APDs (GAPDs) was demonstrated in a two-phase Cryogenic Avalanche Detector (CRAD) in Ar. The GAPDs recorded THGEM-hole avalanches in the Near Infrared (NIR). At an avalanche charge gain of 160, the yield of the combined THGEM/GAPD-matrix multiplier amounted at ~80 photoelectrons per 20 keV X-ray absorbed in the liquid phase. A spatial resolution of 2.5 mm (FWHM) has been measured for the impinging X-rays. This technique has potential applications in coherent neutrino-nucleus scattering and dark matter search experiments.

  7. First demonstration of THGEM/GAPD-matrix optical readout in a two-phase Cryogenic Avalanche Detector in Ar

    Energy Technology Data Exchange (ETDEWEB)

    Bondar, A. [Budker Institute of Nuclear Physics, 630090 Novosibirsk (Russian Federation); Novosibirsk State University, Pirogov Street 2, 630090 Novosibirsk (Russian Federation); Buzulutskov, A., E-mail: a.f.buzulutskov@inp.nsk.su [Budker Institute of Nuclear Physics, 630090 Novosibirsk (Russian Federation); Novosibirsk State University, Pirogov Street 2, 630090 Novosibirsk (Russian Federation); Dolgov, A. [Novosibirsk State University, Pirogov Street 2, 630090 Novosibirsk (Russian Federation); Grebenuk, A. [Budker Institute of Nuclear Physics, 630090 Novosibirsk (Russian Federation); Shemyakina, E.; Sokolov, A. [Budker Institute of Nuclear Physics, 630090 Novosibirsk (Russian Federation); Novosibirsk State University, Pirogov Street 2, 630090 Novosibirsk (Russian Federation); Breskin, A. [Weizmann Institute of Science, 76100 Rehovot (Israel); Thers, D. [SUBATECH, Ecole des Mines de Nantes, CNRS/In2p3, Université de Nantes, 44307 Nantes Cedex 3 (France)

    2013-12-21

    The multi-channel optical readout of a THGEM multiplier coupled to a matrix of 3×3 Geiger-mode APDs (GAPDs) was demonstrated in a two-phase Cryogenic Avalanche Detector (CRAD) in Ar. The GAPDs recorded THGEM-hole avalanches in the Near Infrared (NIR) spectral range. At an avalanche charge gain of 160, the yield of the combined THGEM/GAPD-matrix multiplier amounted to ∼80 photoelectrons per 20 keV X-ray absorbed in the liquid phase. A spatial resolution of 2.5 mm (FWHM) has been measured for the impinging X-rays. This technique has potential applications in coherent neutrino-nucleus scattering and in dark matter search experiments.

  8. An experiment to distinguish between diffusive and specular surfaces for thermal radiation in cryogenic gravitational-wave detectors

    Science.gov (United States)

    Sakakibara, Yusuke; Kimura, Nobuhiro; Suzuki, Toshikazu; Yamamoto, Kazuhiro; Tokoku, Chihiro; Uchiyama, Takashi; Kuroda, Kazuaki

    2015-07-01

    In cryogenic gravitational-wave detectors, one of the most important issues is the fast cooling of their mirrors and keeping them cool during operation to reduce thermal noise. For this purpose, the correct estimation of thermal-radiation heat transfer through the pipe-shaped radiation shield is vital to reduce the heat load on the mirrors. However, the amount of radiation heat transfer strongly depends on whether the surfaces reflect radiation rays diffusely or specularly. Here, we propose an original experiment to distinguish between diffusive and specular surfaces. This experiment has clearly shown that the examined diamond-like carbon-coated surface is specular. This result emphasizes the importance of suppressing the specular reflection of radiation in the pipe-shaped shield.

  9. Studies of Hadronic Event Structure in $e^+ e^-$ Annihilation from 30 GeV to 209 GeV with the L3 Detector

    CERN Document Server

    Achard, P; Aguilar-Benítez, M; Alcaraz, J; Alemanni, G; Allaby, James V; Aloisio, A; Alviggi, M G; Anderhub, H; Andreev, V P; Anselmo, F; Arefev, A; Azemoon, T; Aziz, T; Bagnaia, P; Bajo, A; Baksay, G; Baksay, L; Baldew, S V; Banerjee, S; Banerjee, Sw; Barczyk, A; Barillère, R; Bartalini, P; Basile, M; Batalova, N; Battiston, R; Bay, A; Becattini, F; Becker, U; Behner, F; Bellucci, L; Berbeco, R; Berdugo, J; Berges, P; Bertucci, B; Betev, B L; Biasini, M; Biglietti, M; Biland, A; Blaising, J J; Blyth, S C; Bobbink, Gerjan J; Böhm, A; Boldizsar, L; Borgia, B; Bottai, S; Bourilkov, D; Bourquin, Maurice; Braccini, S; Branson, J G; Brochu, F; Burger, J D; Burger, W J; Cai, X D; Capell, M; Cara Romeo, G; Carlino, G; Cartacci, A M; Casaus, J; Cavallari, F; Cavallo, N; Cecchi, C; Cerrada, M; Chamizo-Llatas, M; Chang, Y H; Chemarin, M; Chen, A; Chen, G; Chen, G M; Chen, H F; Chen, H S; Chiefari, G; Cifarelli, Luisa; Cindolo, F; Clare, I; Clare, R; Coignet, G; Colino, N; Costantini, S; de la Cruz, B; Cucciarelli, S; van Dalen, J A; De Asmundis, R; Déglon, P L; Debreczeni, J; Degré, A; Dehmelt, K; Deiters, K; Della Volpe, D; Delmeire, E; Denes, P; De Notaristefani, F; De Salvo, A; Diemoz, M; Dierckxsens, M; Dionisi, C; Dittmar, M; Doria, A; Dova, M T; Duchesneau, D; Duda, M; Echenard, B; Eline, A; El-Hage, A; El-Mamouni, H; Engler, A; Eppling, F J; Extermann, P; Falagán, M A; Falciano, S; Favara, A; Fay, J; Fedin, O; Felcini, M; Ferguson, T; Fesefeldt, H S; Fiandrini, E; Field, J H; Filthaut, F; Fisher, P H; Fisher, W; Fisk, I; Forconi, G; Freudenreich, Klaus; Furetta, C; Galaktionov, Yu; Ganguli, S N; García-Abia, P; Gataullin, M; Gentile, S; Giagu, S; Gong, Z F; Grenier, G; Grimm, O; Grünewald, M W; Guida, M; van Gulik, R; Gupta, V K; Gurtu, A; Gutay, L J; Haas, D; Hatzifotiadou, D; Hebbeker, T; Hervé, A; Hirschfelder, J; Hofer, H; Hohlmann, M; Holzner, G; Hou, S R; Hu, Y; Jin, B N; Jones, L W; de Jong, P; Josa-Mutuberria, I; Kaur, M; Kienzle-Focacci, M N; Kim, J K; Kirkby, Jasper; Kittel, E W; Klimentov, A; König, A C; Kopal, M; Koutsenko, V F; Kräber, M H; Krämer, R W; Krüger, A; Kunin, A; Ladrón de Guevara, P; Laktineh, I; Landi, G; Lebeau, M; Lebedev, A; Lebrun, P; Lecomte, P; Lecoq, P; Le Coultre, P; Le Goff, J M; Leiste, R; Levtchenko, M; Levchenko, P M; Li, C; Likhoded, S; Lin, C H; Lin, W T; Linde, Frank L; Lista, L; Liu, Z A; Lohmann, W; Longo, E; Lü, Y S; Luci, C; Luminari, L; Lustermann, W; Ma Wen Gan; Malgeri, L; Malinin, A; Maña, C; Mans, J; Martin, J P; Marzano, F; Mazumdar, K; McNeil, R R; Mele, S; Merola, L; Meschini, M; Metzger, W J; Mihul, A; Milcent, H; Mirabelli, G; Mnich, J; Mohanty, G B; Muanza, G S; Muijs, A J M; Musicar, B; Musy, M; Nagy, S; Natale, S; Napolitano, M; Nessi-Tedaldi, F; Newman, H; Nisati, A; Novák, T; Nowak, H; Ofierzynski, R A; Organtini, G; Pal, I; Palomares, C; Paolucci, P; Paramatti, R; Passaleva, G; Patricelli, S; Paul, T; Pauluzzi, M; Paus, C; Pauss, Felicitas; Pedace, M; Pensotti, S; Perret-Gallix, D; Petersen, B; Piccolo, D; Pierella, F; Pioppi, M; Piroué, P A; Pistolesi, E; Plyaskin, V; Pohl, M; Pozhidaev, V; Pothier, J; Prokofev, D; Prokofiev, D O; Quartieri, J; Rahal-Callot, G; Rahaman, M A; Raics, P; Raja, N; Ramelli, R; Rancoita, P G; Ranieri, R; Raspereza, A V; Razis, P A; Ren, D; Rescigno, M; Reucroft, S; Riemann, S; Riles, K; Roe, B P; Romero, L; Rosca, A; Rosemann, C; Rosenbleck, C; Rosier-Lees, S; Roth, S; Rubio, J A; Ruggiero, G; Rykaczewski, H; Sakharov, A; Saremi, S; Sarkar, S; Salicio, J; Sánchez, E; Schäfer, C; Shchegelskii, V; Schopper, Herwig Franz; Schotanus, D J; Sciacca, C; Servoli, L; Shevchenko, S; Shivarov, N; Shoutko, V; Shumilov, E; Shvorob, A V; Son, D; Souga, C; Spillantini, P; Steuer, M; Stickland, D P; Stoyanov, B; Strässner, A; Sudhakar, K; Sultanov, G G; Sun, L Z; Sushkov, S; Suter, H; Swain, J D; Szillási, Z; Tang, X W; Tarjan, P; Tauscher, Ludwig; Taylor, L; Tellili, B; Teyssier, D; Timmermans, C; Ting, Samuel C C; Ting, S M; Tonwar, S C; Tóth, J; Tully, C; Tung, K L; Ulbricht, J; Valente, E; Van de Walle, R T; Vásquez, R; Veszpremi, V; Vesztergombi, G; Vetlitskii, I; Vicinanza, D; Viertel, Gert M; Villa, S; Vivargent, M; Vlachos, S; Vodopyanov, I; Vogel, H; Vogt, H; Vorobev, I; Vorobyov, A A; Wadhwa, M; Wang, Q; Wang, X L; Wang, Z M; Weber, M; Wilkens, H; Wynhoff, S; Xia, L; Xu, Z Z; Yamamoto, J; Yang, B Z; Yang, C G; Yang, H J; Yang, M; Yeh, S C; Zalite, A; Zalite, Yu; Zhang, Z P; Zhao, J; Zhu, G Y; Zhu, R Y; Zhuang, H L; Zichichi, A; Zimmermann, B; Zöller, M

    2004-01-01

    In this Report, QCD results obtained from a study of hadronic event structure in high energy e^+e^- interactions with the L3 detector are presented. The operation of the LEP collider at many different collision energies from 91 GeV to 209 GeV offers a unique opportunity to test QCD by measuring the energy dependence of different observables. The main results concern the measurement of the strong coupling constant, \\alpha_s, from hadronic event shapes and the study of effects of soft gluon coherence through charged particle multiplicity and momentum distributions.

  10. Measurements with a Ge detector and Monte Carlo computations of dose rate yields due to cosmic muons.

    Science.gov (United States)

    Clouvas, A; Xanthos, S; Antonopoulos-Domis, M; Silva, J

    2003-02-01

    The present work shows how portable Ge detectors can be useful for measurements of the dose rate due to ionizing cosmic radiation. The methodology proposed converts the cosmic radiation induced background in a Ge crystal (energy range above 3 MeV) to the absorbed dose rate due to muons, which are responsible for 75% of the cosmic radiation dose rate at sea level. The key point is to observe in the high energy range (above 20 MeV) the broad muon peak resulting from the most probable energy loss of muons in the Ge detector. An energy shift of the muon peak was observed, as expected, for increasing dimensions of three Ge crystals (10%, 20%, and 70% efficiency). Taking into account the dimensions of the three detectors the location of the three muon peaks was reproduced by Monte Carlo computations using the GEANT code. The absorbed dose rate due to muons has been measured in 50 indoor and outdoor locations at Thessaloniki, the second largest town of Greece, with a portable Ge detector and converted to the absorbed dose rate due to muons in an ICRU sphere representing the human body by using a factor derived from Monte Carlo computations. The outdoor and indoor mean muon dose rate was 25 nGy h(-1) and 17.8 nGy h(-1), respectively. The shielding factor for the 40 indoor measurements ranges from 0.5 to 0.9 with a most probable value between 0.7-0.8.

  11. Background rejection capabilities of a Compton imaging telescope setup with a DSSD Ge planar detector and AGATA

    Energy Technology Data Exchange (ETDEWEB)

    Doncel, M., E-mail: doncel@usal.es [Laboratorio de Radiaciones Ionizantes, Universidad de Salamanca (Spain); Quintana, B. [Laboratorio de Radiaciones Ionizantes, Universidad de Salamanca (Spain); Gadea, A. [IFIC Valencia, Valencia (Spain); Recchia, F.; Farnea, E. [INFN sezione di Padova, Padova (Italy)

    2011-08-21

    In this work, we show the first Monte Carlo results about the performance of the Ge array which we propose for the DESPEC experiment at FAIR, when the background algorithm developed for AGATA is applied. The main objective of our study is to characterize the capabilities of the {gamma}-spectroscopy system, made up of AGATA detectors in a semi-spherical distribution covering a 1{pi} solid angle and a set of planar Ge detectors in a daisy configuration, to discriminate between {gamma} sources placed at different locations.

  12. BOLUX: A cryogenic electrical-substitution radiometer as high accuracy primary detector in the 150-11,000 eV range

    Science.gov (United States)

    Troussel, Ph.; Coron, N.

    2010-03-01

    We have measured the electrical and radiometric properties of a cryogenic absolute radiometer BOLUX (Bolomètre pour l'Utilisation dans le domaine de rayons X). BOLUX is intended for use as a primary detector standard for radiant power measurement of a synchrotron beam from EUV to X-ray spectral ranges. The absolute radiometer uses a composite bolometer with a built-in electrical heating element. The bolometer's absorber, optimized for beam diameter and for X-ray absorption, is coupled both to a Ge doped thermometer and to the electrical resistance calibrator with similar thermal paths so that electrical and radiant heating are equivalent. This device operates between 4 K the liquid helium temperature, and 1.25 K obtained by pumping helium. The main advantage of BOLUX over other radiometers is its portability (weight 12 kg) which means it can be used with any synchrotron beamline. The second advantage is its very small time constant (20 ms) compared with other apparatus (typically a few min). We can use it in DC mode or in AC mode and Alpha sources calibration experiments have already been realized. We have measured synchrotron radiant power at the laboratory of the Physikalisch- Technische Bundesanstalt (PTB) at the Berlin electron storage ring BESSY II. We reported experiments in DC mode and showed the possibility to study the drift and the temporal stability at the exit of a synchrotron beamline. For a helium bath temperature of 1.33 K and in the spectral range of 150 eV-11 keV, we have measured a high limit of detection (in 1 s integrated) to be 10 -10 W, with a DC responsivity of 1.3×10 5 V/W, spatial nonuniformity over 4 mm diameter below 1% and possibility to use over five decades between a few nW and 100 μW with a good linearity (<1%). Typically available radiant power of 50 nW can be measured with a standard uncertainty as low as 1%. BOLUX response has been directly compared with qualified photodiodes [1]; we have observed a standard deviation between

  13. Measurement of 15 MeV gamma-rays with the Ge cluster detectors of EUROBALL

    CERN Document Server

    Million, B; Camera, F; Brambilla, S; Gadea, A; Giugni, D; Herskind, B; Kmiecik, M; Isocrate, R; Leoni, S; Maj, A; Prelz, F; Wieland, O

    2000-01-01

    A measurement of the response to 15.1 MeV gamma-rays has been made for the Ge cluster detectors in the EUROBALL array. Each cluster detector consists of seven germanium capsules surrounded by a single anticompton shield of BGO. The reaction D( sup 1 sup 1 B,gamma) sup 1 sup 2 C+n at E sub b sub e sub a sub m =19.1 MeV has been employed. The 'adding-back' of signals simultaneously present in the capsules composing each cluster detector has been made on an event by event basis. The intensity in full-energy peak increases by a factor of three as compared to that of the spectrum obtained by summing the individual spectra of the 7 capsules. The pulse height to energy conversion is found to be very linear from few hundreds keV to 15 MeV. The efficiency is discussed relative to that of large volume BaF sub 2 scintillators.

  14. Force measurements of a superconducting-film actuator for a cryogenic interferometric gravitational-wave detector

    CERN Document Server

    Sato, N; Kanda, N; Kuroda, K; Miyoki, S; Ohashi, M; Saitô, Y; Shintomi, T; Suzuki, T; Tatsumi, D; Taylor, C; Tomaru, T; Uchiyama, T; Yamamoto, A

    2002-01-01

    We measured forces applied by an actuator with a YBCO film at near 77 K for the Large-scale Cryogenic Gravitational-wave Telescope (LCGT) project. An actuator consisting of both a YBCO film of 1.6 micrometers thickness and 0.81 square centimeters area and a solenoid coil exerted a force of up to 0.2 mN on a test mass. The presented actuator system can be used to displace the mirror of LCGT for fringe lock of the interferometer.

  15. Superconducting Thin-Film Interconnects for Cryogenic Photon Detector Arrays Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Advanced imaging spectrometers for x-ray astronomy will require significant improvements in the high density interconnects between the detector arrays and the first...

  16. Rich detector with a sodium fluoride radiator: /K identification up to 3 GeV/c

    Energy Technology Data Exchange (ETDEWEB)

    Arnold, R.; Guyonnet, J.L.; Giomataris, Y.; Petroff, P.; Seguinot, J.; Tocqueville, J.; Ypsilantis, T.

    1988-12-15

    The use of a single crystal of sodium fluoride (NaF) as a Cherenkov radiator has been investigated. Its transparency has been measured and found to be good for photon energies below 9.6 eV. Data on its index of refraction are well fitted to a single-pole Sellmeier resonance formula. These data allow a realistic Monte Carlo simulation of a proximity-focused ring imaging Cherenkov (RICH) system. The photon detector is a multiwire proportional chamber (MWPC) with pad readout. The photosensitive gases considered are tetrakis(dimethylamine)ethylene (TMAE) and triethylamine (TEA). The simulation shows that a system having 10 cm radial thickness and 12% of a radiation length of material would identify pions and kaons below 3 GeV/c momentum. The pad dimensions required are about 5 mm x 5 mm.

  17. Application of multiparameter coincidence spectrometry using a Ge detectors array to neutron activation analysis

    CERN Document Server

    Hatsukawa, Y; Hayakawa, T; Toh, Y; Shinohara, N

    2002-01-01

    The method of multiparameter coincidence spectrometry based on gamma-gamma coincidence is widely used for the nuclear structure studies, because of its high sensitivity to gamma-rays. In this study, feasibility of the method of multiparameter coincidence spectrometry for analytical chemistry was examined. Two reference igneous rock samples (JP-1, JB-1a) issued by the Geological Survey of Japan were irradiated at a research reactor, and the gamma-rays from the radioisotopes produced via neutron capture reactions were measured using an array of 12 Ge detectors with BGO Compton suppressors, GEMINI. Simultaneously 24 elements were analyzed without chemical separation. The observed smallest component was Eu contained in JP-1 with abundance of 4 ppb.

  18. Development of Low-Noise High Value Chromium Silicide Resistors for Cryogenic Detector Applications

    Science.gov (United States)

    Jhabvala, Murzy; Babu, Sachi; Monroy, Carlos; Darren, C.; Krebs, Carolyn A. (Technical Monitor)

    2001-01-01

    Extremely high sensitivity detectors, such as silicon bolometers are required in many NASA missions for detection of photons from the x-ray to the far infrared regions. Typically, these detectors are cooled to well below the liquid helium (LHe) temperature (4.2 K) to achieve the maximum detection performance. As photoconductors, they are generally operated with a load resistor and a pre-set bias voltage, which is then coupled to the input gate of a source-follower Field Effect Transistor (FET) circuit. It is imperative that the detector system signal to noise performance be limited by the noise of the detector and not by the noise of the external components. The load resistor value is selected to optimize the detector performance. These two criteria tend to be contradictory in that these detectors require load resistors in the hundreds of megaohms, which leads to a higher Johnson noise. Additionally, the physical size of the resistor must be small for device integration as required by such missions as the NASA High Resolution Airborne Wide-Band Camera (HAWC) instrument and the Submillimeter High Angular Resolution Camera (SHARC) for the Caltech Submillimeter Observatory (CSO). We have designed, fabricated and characterized thin film resistors using a CrSi/TiW/Al metal system on optical quality quartz substrates. The resistor values range from 100 megaohms to over 650 megaohms and are Johnson noise limited at LHe temperatures. The resistor film is sputtered with a sheet resistance ranging from 300 ohms to 1600 ohms and the processing sequence developed for these devices allows for chemically fine tuning the sheet resistance in-situ. The wafer fabrication process was of sufficiently high yield (>80%) providing clusters of good resistors for integrated multiple detector channels, a very important feature in the assembly of these two instruments.

  19. Summer program Report : Quality control and Aging study for the GE1/1 detectors in CMS Muon endcap upgrade

    CERN Document Server

    Rajan, Adithya

    2017-01-01

    In this report, I summarize the work I did during my tenure in the Summer program. The project started with conducting three quality controls -- gas leak test, High Voltage test and Gas gain test. These are necessary to check if the GE1/1 detectors pass the requirements necessary for its deployment in the CMS. Then, I explain how aging study of the detectors was conducted and how the data was analyzed to ascertain if the detector has undergone aging. Lastly, the ongoing process of setting up a further accelerated aging study within the GEM lab is explained, with some potential difficulties associated with it.

  20. Mathematical calibration of Ge detectors, and the instruments that use them

    Energy Technology Data Exchange (ETDEWEB)

    Bronson, F.L.; Young, B. [Canberra Industries, Meriden, CT (United States)

    1997-11-01

    Efficiency calibrations for Ge detectors are typically done with the use of multiple energy calibrations sources which are added to a bulk matrix intended to simulate the measurement sample, and then deposited in the sample container. This is rather easy for common laboratory samples. Bu, even there, for many environmental samples, waste assay samples, and operational health physics samples, accurate calibrations are difficult. For these situations, various mathematical corrections or direct calibration techniques are used at Canberra. EML has pioneered the use of mathematical calibrations following source-based detector characterization measurements for in situ measurements of environmental fallout. Canberra has expanded this by the use of MCNP for the source measurements required in EML. For other calibration situations, MCNP was used directly, as the primary calibration method. This is demonstrated to be at least as accurate as source based measurements, and probably better. Recently, a new method [ISOCS] has been developed and is nearing completion. This promises to be an easy to use calibration software that can be used by the customer for in situ gamma spectroscopy to accurately measure many large sized samples, such as boxes, drums, pipes, or to calibrate small laboratory-type samples. 8 refs., 8 figs., 5 tabs.

  1. Cryogenic Wide-Area Light Detectors for Neutrino and Dark Matter Searches

    Science.gov (United States)

    Di Domizio, S.; Bagni, R.; Battistelli, E. S.; Bellini, F.; Bucci, C.; Calvo, M.; Cardani, L.; Castellano, M. G.; Coppolecchia, A.; Cosmelli, C.; Cruciani, A.; D'Addabbo, A.; de Bernardis, P.; Masi, S.; Pinci, D.; Vignati, M.

    2014-09-01

    Large-mass arrays of bolometers proved to be good detectors for neutrinoless double beta decay (0DBD) and dark matter searches. CUORE and LUCIFER are bolometric 0DBD experiments that will start to take data in 2015 at Laboratori Nazionali del Gran Sasso in Italy. The sensitivity of CUORE could be increased by removing the background due to particles, by detecting the small amount of Čerenkov light (100 eV) emitted by the s' signal and not by s. LUCIFER could be extended to detect also dark matter, provided that the background from / particles (100 eV of scintillation light) is discriminated from nuclear recoils of about 10 keV energy (no light). We have recently started to develop light detectors for CUORE, LUCIFER and similar bolometric experiments. The aim is to obtain detectors with an active area of (the face of bolometric crystals), operating at 10 mK, and with an energy resolution at the baseline below 20 eV RMS. We have chosen to develop phonon-mediated detectors with KID sensors. We are currently testing the first prototypes.

  2. Extensive studies of MRS APDs for plastic scintillator muon veto detectors of cryogenic experiments

    Energy Technology Data Exchange (ETDEWEB)

    Falkenstein, R., E-mail: falkenst@pit.physik.uni-tuebingen.de [Kepler Center for Astro and Particle Physics, University of Tuebingen, Auf der Morgenstelle 14, 72076 Tuebingen (Germany); Bezrukov, L.B. [Institute for Nuclear Research of RAS, Moscow (Russian Federation); Freund, K. [Kepler Center for Astro and Particle Physics, University of Tuebingen, Auf der Morgenstelle 14, 72076 Tuebingen (Germany); Golovin, A.V.; Golovin, V.M. [Centre for Perspective Technology and Apparatus, Moscow (Russian Federation); Grabmayr, P.; Jochum, J. [Kepler Center for Astro and Particle Physics, University of Tuebingen, Auf der Morgenstelle 14, 72076 Tuebingen (Germany); Lubsandorzhiev, B.K. [Kepler Center for Astro and Particle Physics, University of Tuebingen, Auf der Morgenstelle 14, 72076 Tuebingen (Germany); Institute for Nuclear Research of RAS, Moscow (Russian Federation); Lubsandorzhiev, N.B.; Poleshuk, R.V. [Institute for Nuclear Research of RAS, Moscow (Russian Federation); Polyansky, I.N. [Centre for Perspective Technology and Apparatus, Moscow (Russian Federation); Ritter, F.; Sailer, C. [Kepler Center for Astro and Particle Physics, University of Tuebingen, Auf der Morgenstelle 14, 72076 Tuebingen (Germany); Shaibonov, B.A.M. [Institute for Nuclear Research of RAS, Moscow (Russian Federation)

    2012-12-11

    Low background experiments need active muon veto detectors to shield them from cosmic muons. Plastic scintillator panels with WLS fiber and multi-pixel Geiger-mode avalanche photodiodes readout are widely used in such experiments due to their compactness and robustness. In this paper, results from the study of the basic MRS APD parameters, such as breakdown voltages, quenching resistors, internal gain and dark count rates are presented, as well as temperature dependencies of some of these parameters. In a small fraction of the MRS APDs, some strange dips in the I-V curves just preceding the breakdown voltage point have been observed.

  3. Extensive studies of MRS APDs for plastic scintillator muon veto detectors of cryogenic experiments

    Science.gov (United States)

    Falkenstein, R.; Bezrukov, L. B.; Freund, K.; Golovin, A. V.; Golovin, V. M.; Grabmayr, P.; Jochum, J.; Lubsandorzhiev, B. K.; Lubsandorzhiev, N. B.; Poleshuk, R. V.; Polyansky, I. N.; Ritter, F.; Sailer, C.; Shaibonov, B. A. M.

    2012-12-01

    Low background experiments need active muon veto detectors to shield them from cosmic muons. Plastic scintillator panels with WLS fiber and multi-pixel Geiger-mode avalanche photodiodes readout are widely used in such experiments due to their compactness and robustness. In this paper, results from the study of the basic MRS APD parameters, such as breakdown voltages, quenching resistors, internal gain and dark count rates are presented, as well as temperature dependencies of some of these parameters. In a small fraction of the MRS APDs, some strange dips in the I-V curves just preceding the breakdown voltage point have been observed.

  4. An enhanced device simulation of heavily irradiated silicon detectors at cryogenic temperatures

    CERN Document Server

    Moscatelli, F; MacEvoy, B; Hall, G; Passeri, D; Merlani, R; Pignatel, Giogrio Umberto

    2004-01-01

    Radiation hardness is a critical design concern for present and future silicon detectors in high energy physics. Tracking systems at the CERN Large Hadron Collider (LHC) are expected to operate for ten years and to receive fast hadron fluences equivalent to 10/sup 15/ cm /sup -2/ 1MeV neutrons. Recently, low temperature operating conditions have been suggested as an effective means to mitigate the damaging effects of radiation on detector charge collection properties. In order to investigate this effect, simulations have been carried out using the ISE-TCAD DESSIS device simulator. The so- called "three-level" model has been used. A comprehensive analysis of the influence of the V/sub 2/, C/sub i/O/sub i/ and V/sub 2/O defect capture cross-sections on the effective doping concentration (N/sub eff/) as a function of temperature and fluence has been carried out. The capture cross sections have been varied in the range 10/sup -18 /-10/sup -12/ cm/sup 2/. The simulated results are compared with charge collection s...

  5. Comprehensive device Simulation modeling of heavily irradiated silicon detectors at cryogenic temperatures

    CERN Document Server

    Moscatelli, F; MacEvoy, B; Hall, G; Passeri, D; Petasecca, M; Pignatel, Giogrio Umberto

    2004-01-01

    Radiation hardness is a critical design concern for present and future silicon detectors in high energy physics. Tracking systems at the CERN Large Hadron Collider (LHC) are expected to operate for ten years and to receive fast hadron fluences equivalent to 10/sup 15/cm /sup -2/ 1-MeV neutrons. Recently, low temperature operating conditions have been suggested as a means of suppressing the negative effects of radiation damage on detector charge collection properties. To investigate this effect, simulations have been carried out using the ISE-TCAD DESSIS device simulator. The so-called "three-level model" has been used. A comprehensive analysis of the influence of the V/sub 2/, C/sub i/O/sub i/ and V/sub 2/O capture cross sections on the effective doping concentration (N/sub eff/) as a function of temperature and fluence has been carried out. The capture cross sections have been varied in the range 10/sup -18/-10/sup -12/ cm/sup 2/. The simulated results are compared with charge collection spectra obtained wit...

  6. SuperTIGER scintillator detector calibration with 30 GeV/nucleon Pb and its fragments

    Science.gov (United States)

    Sasaki, Makoto

    2016-07-01

    The SuperTIGER (Super Trans-Iron Galactic Element Recorder) long-duration balloon instrument has measured the abundances of galactic cosmic-ray elements to provide sensitive tests and clarification of the OB-association model of Galactic cosmic-ray origins. More than 600 nuclei with atomic number Z > 30 were observed on its first flight and the abundances of nuclei have been determined with clear individual element resolution and high statistical precision for 30 energy 30 GeV/nucleon Pb and its fragments to measure the saturation response of the scintillator detectors, which are essential to determine the abundances of nuclei with atomic number Z > 40. The beamtest results have been used to optimize the Geant4 simulation to represent the flight data, and will be used to interpret the flight data to extend the abundance determination to about _{60}Nd. SuperTIGER was developed by Washington University in St. Louis, NASA Goddard Flight Center, the California Institute of Technology, Jet Propulsion Laboratory, and the University of Minnesota.

  7. GELATIO: a general framework for modular digital analysis of high-purity Ge detector signals

    CERN Document Server

    Agostini, M; Zavarise, P; Volynets, O

    2011-01-01

    GELATIO is a new software framework for advanced data analysis and digital signal processing developed for the GERDA neutrinoless double beta decay experiment. The framework is tailored to handle the full analysis flow of signals recorded by high purity Ge detectors and photo-multipliers from the veto counters. It is designed to support a multi-channel modular and flexible analysis, widely customizable by the user either via human-readable initialization files or via a graphical interface. The framework organizes the data into a multi-level structure, from the raw data up to the condensed analysis parameters, and includes tools and utilities to handle the data stream between the different levels. GELATIO is implemented in C++. It relies upon ROOT and its extension TAM, which provides compatibility with PROOF, enabling the software to run in parallel on clusters of computers or many-core machines. It was tested on different platforms and benchmarked in several GERDA-related applications. A stable version is pr...

  8. Transition radiation detectors for electron identification beyond 1 GeV/ c

    Science.gov (United States)

    Appuhn, R. D.; Heinloth, K.; Lange, E.; Oedingen, R.; Schlösser, A.

    1988-01-01

    Transition radiation detectors (TRDs) have been tested for the separation of electrons from pions in the momentum range between 1 and 6 GeV/ c. Foams as well as fibres and foils served as radiator materials while two types of chambers, a longitudinal drift chamber (DC) and a multiwire proportional chamber (MWPC), both of 16 mm depth and dominantly filled with xenon, were used for detecting the transition radiation photons with a setup of four chambers. Analyzing the data we compared the methods of mean, truncated mean and of maximum likelihood of the total charge measurements and several methods of cluster analysis. As a result of the total charge measurements performed at test beams at CERN and DESY we obtained about 1% pion contamination at 90% electron efficiency for the polypropylene materials in the configuration of four modules with a total length of 40 cm. An improvement by a factor of about two for the electron/pion discrimination can be obtained in the case of a detailed analysis of the clusters.

  9. Modeling the detection efficiency of an HP-Ge detector for use in boron neutron capture therapy.

    Science.gov (United States)

    Nakamura, Satoshi; Wakita, Akihisa; Ito, Masashi; Okamoto, Hiroyuki; Nishioka, Shie; Iijima, Kotaro; Kobayashi, Kazuma; Nishio, Teiji; Igaki, Hiroshi; Itami, Jun

    2017-07-01

    The multi-foil method is commonly used to determine upon an energy spectrum of neutrons in boron neutron capture therapy. The method requires to measure the radioactivation of the foils. This study develops a simple modeling procedure of a high-purity Ge detector, which is used to measure the radioactivation, in order to calculate the detection efficiency with GEANT4. By changing four parameters from their manufacturing specifications of the detector, the simulated detection efficiency is able to reproduce the actual detection efficiency. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. CoGeNT: A Search for Low-Mass Dark Matter using p-type Point Contact Germanium Detectors

    CERN Document Server

    Aalseth, C E; Colaresi, J; Collar, J I; Leon, J Diaz; Fast, J E; Fields, N E; Hossbach, T W; Knecht, A; Kos, M S; Marino, M G; Miley, H S; Miller, M L; Orrell, J L; Yocum, K M

    2013-01-01

    CoGeNT employs p-type point-contact (PPC) germanium detectors to search for Weakly Interacting Massive Particles (WIMPs). By virtue of its low energy threshold and ability to reject surface backgrounds, this type of device allows an emphasis on low-mass dark matter candidates (WIMP mass around 10 GeV/c2). We report on the characteristics of the PPC detector presently taking data at the Soudan Underground Laboratory, elaborating on aspects of shielding, data acquisition, instrumental stability, data analysis, and background estimation. A detailed background model is used to investigate the low energy excess of events previously reported, and to assess the possibility of temporal modulations in the low-energy event rate. We conclude that the technique is ideally suited to search for the annual modulation signature expected from dark matter particle interactions in the region of WIMP mass and coupling favored by the DAMA/LIBRA claim.

  11. Measurement of $R$ between 1.84 and 3.05 GeV at the KEDR detector

    CERN Document Server

    Anashin, V V; Baldin, E M; Barladyan, A K; Barnyakov, A Yu; Barnyakov, M Yu; Baru, S E; Basok, I Yu; Batrakov, A M; Blinov, A E; Blinov, V E; Bobrov, A V; Bobrovnikov, V S; Bogomyagkov, A V; Bondar, A E; Buzykaev, A R; Eidelman, S I; Grigoriev, D N; Glukhovchenko, Yu M; Karnaev, S E; Karpov, G V; Karpov, S V; Kasyanenko, P V; Kharlamova, T A; Kiselev, V A; Kolmogorov, V V; Kononov, S A; Kotov, K Yu; Kravchenko, E A; Kudryavtsev, V N; Kulikov, V F; Kurkin, G Ya; Kuyanov, I A; Levichev, E B; Maksimov, D A; Malyshev, V M; Maslennikov, A L; Meshkov, O I; Mishnev, S I; Morozov, I I; Muchnoi, N Yu; Neufeld, V V; Nikitin, S A; Nikolaev, I B; Okunev, I N; Onuchin, A P; Oreshkin, S B; Osipov, A A; Ovtin, I V; Peleganchuk, S V; Pivovarov, S G; Piminov, P A; Petrov, V V; Prisekin, V G; Rezanova, O L; Ruban, A A; Sandyrev, V K; Savinov, G A; Shamov, A G; Shatilov, D N; Shwartz, B A; Simonov, E A; Sinyatkin, S V; Skrinsky, A N; Sokolov, A V; Sukharev, A M; Starostina, E V; Talyshev, A A; Tayursky, V A; Telnov, V I; Tikhonov, Yu A; Todyshev, K Yu; Tumaikin, G M; Usov, Yu V; Vorobiov, A I; Zhilich, V N; Zhulanov, V V; Zhuravlev, A N

    2016-01-01

    Using the KEDR detector at the VEPP-4M $e^+e^-$ collider, we have determined the values of $R$ at thirteen points of the center-of-mass energy between 1.84 and 3.05 GeV. The achieved accuracy is about or better than $3.9\\%$ at most of the energy points with a systematic uncertainty less than $2.4\\%$.

  12. Strangeness in Au+Au collisions at √sNN = 130 GeV observed with the STAR detector

    Science.gov (United States)

    Barnby, Lee S.; STAR Collaboration; Adler, C.; Ahammed, Z.; Allgower, C.; Amonett, J.; Anderson, B. D.; Anderson, M.; Averichev, G. S.; Balewski, J.; Barannikova, O.; Barnby, L. S.; Baudot, J.; Bekele, S.; Belaga, V. V.; Bellwied, R.; Berger, J.; Bichsel, H.; Bland, L. C.; Blyth, C. O.; Bonner, B. E.; Boucham, A.; Brandin, A.; Cadman, R. V.; Caines, H.; Calderón de la Barca Sánchez, M.; Cardenas, A.; Carroll, J.; Castillo, J.; Castro, M.; Cebra, D.; Chattopadhyay, S.; Chen, M. L.; Chen, Y.; Chernenko, S. P.; Cherney, M.; Chikanian, A.; Choi, B.; Christie, W.; Coffin, J. P.; Cormier, T. M.; Cramer, J. G.; Crawford, H. J.; Deng, W. S.; Derevschikov, A. A.; Didenko, L.; Draper, J. E.; Dunin, V. B.; Dunlop, J. C.; Eckardt, V.; Efimov, L. G.; Emelianov, V.; Engelage, J.; Eppley, G.; Erazmus, B.; Fachini, P.; Faine, V.; Filimonov, K.; Finch, E.; Fisyak, Y.; Flierl, D.; Foley, K. J.; Fu, J.; Gagliardi, C. A.; Gagunashvili, N.; Gans, J.; Gaudichet, L.; Germain, M.; Geurts, F.; Ghazikhanian, V.; Grabski, J.; Grachov, O.; Grigoriev, V.; Guedon, M.; Gushin, E.; Hallman, T. J.; Hardtke, D.; Harris, J. W.; Heffner, M.; Heppelmann, S.; Herston, T.; Hippolyte, B.; Hirsch, A.; Hjort, E.; Hoffmann, G. W.; Horsley, M.; Huang, H. Z.; Humanic, T. J.; Hümmler, H.; Igo, G.; Ishihara, A.; Ivanshin, Yu. I.; Jacobs, P.; Jacobs, W. W.; Janik, M.; Johnson, I.; Jones, P. G.; Judd, E. G.; Kaneta, M.; Kaplan, M.; Keane, D.; Kiryluk, J.; Kisiel, A.; Klay, J.; Klein, S. R.; Klyachko, A.; Konstantinov, A. S.; Kotchenda, L.; Kovalenko, A. D.; Kramer, M.; Kravtsov, P.; Krueger, K.; Kuhn, C.; Kulikov, A. I.; Kunde, G. J.; Kunz, C. L.; Kutuev, R. Kh.; Kuznetsov, A. A.; Lakehal-Ayat, L.; Lamont, M. A. C.; Landgraf, J. M.; Lange, S.; Lansdell, C. P.; Lasiuk, B.; Laue, F.; Lebedev, A.; Lednický, R.; Leontiev, V. M.; LeVine, M. J.; Li, Q.; Lindenbaum, S. J.; Lisa, M. A.; Liu, F.; Liu, L.; Liu, Z.; Liu, Q. J.; Ljubicic, T.; Llope, W. J.; Curto, G. Lo; Long, H.; Longacre, R. S.; Lopez-Noriega, M.; Love, W. A.; Lynn, D.; Majka, R.; Margetis, S.; Markert, C.; Martin, L.; Marx, J.; Matis, H. S.; Matulenko, Yu. A.; McShane, T. S.; Meissner, F.; Melnick, Yu.; Meschanin, A.; Messer, M.; Miller, M. L.; Milosevich, Z.; Minaev, N. G.; Mitchell, J.; Moiseenko, V. A.; Moore, C. F.; Morozov, V.; de Moura, M. M.; Munhoz, M. G.; Nelson, J. M.; Nevski, P.; Nikitin, V. A.; Nogach, L. V.; Norman, B.; Nurushev, S. B.; Odyniec, G.; Ogawa, A.; Okorokov, V.; Oldenburg, M.; Olson, D.; Paic, G.; Pandey, S. U.; Panebratsev, Y.; Panitkin, S. Y.; Pavlinov, A. I.; Pawlak, T.; Perevoztchikov, V.; Peryt, W.; Petrov, V. A.; Pluta, J.; Porile, N.; Porter, J.; Poskanzer, A. M.; Potrebenikova, E.; Prindle, D.; Pruneau, C.; Radomski, S.; Rai, G.; Ravel, O.; Ray, R. L.; Razin, S. V.; Reichhold, D.; Reid, J. G.; Retiere, F.; Ridiger, A.; Ritter, H. G.; Roberts, J. B.; Rogachevski, O. V.; Romero, J. L.; Roy, C.; Rykov, V.; Sakrejda, I.; Sandweiss, J.; Saulys, A. C.; Savin, I.; Schambach, J.; Scharenberg, R. P.; Schmitz, N.; Schroeder, L. S.; Schüttauf, A.; Schweda, K.; Seger, J.; Seliverstov, D.; Seyboth, P.; Shahaliev, E.; Shestermanov, K. E.; Shimanskii, S. S.; Shvetcov, V. S.; Skoro, G.; Smirnov, N.; Snellings, R.; Sorensen, P.; Sowinski, J.; Spinka, H. M.; Srivastava, B.; Stephenson, E. J.; Stock, R.; Stolpovsky, A.; Strikhanov, M.; Stringfellow, B.; Struck, C.; Suaide, A. A. P.; Sugarbaker, E.; Suire, C.; umbera, M.; Symons, T. J. M.; Szanto de Toledo, A.; Szarwas, P.; Tai, A.; Takahashi, J.; Tang, A. H.; Thomas, J. H.; Thompson, M.; Tikhomirov, V.; Tokarev, M.; Tonjes, M. B.; Trainor, T. A.; Trentalange, S.; Tribble, R. E.; Trofimov, V.; Tsai, O.; Turner, K.; Ullrich, T.; Underwood, D. G.; Van Buren, G.; Vander Molen, A. M.; Vasilevski, I. M.; Vasiliev, A. N.; Vigdor, S. E.; Voloshin, S. A.; Wang, F.; Ward, H.; Watson, J. W.; Wells, R.; Wenaus, T.; Westfall, G. D.; Whitten, C., Jr.; Wieman, H.; Willson, R.; Wissink, S. W.; Witt, R.; Wood, J.; Xu, N.; Xu, Z.; Yakutin, A. E.; Yamamoto, E.; Yang, J.; Yepes, P.; Yurevich, V. I.; Zanevski, Y. V.; Zborovský, I.; Zhang, H.; Zhang, W. M.; Zoulkarneev, R.; Zubarev, A. N.

    2002-07-01

    The STAR detector has made a variety of measurements of strange and other hadronic species in Au+Au collisions at √sNN = 130 GeV. A comparison of kaon and pion production enables an examination of the systematics of strangeness production with energy by comparing them to lower energy collisions. Anti-baryon to baryon ratios indicate a much reduced net-baryon density and transverse momentum spectra show that a picture of transverse expansion seems appropriate.

  13. TEM study on Si0.65Ge0.35/p-Si HIP infrared detector

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    Microstructure of P+ -Si0.65Ge0.35/p-Si HIP infrared detector has been studied by using localization cross-section transmission electron microscopy. The photosensitive region of the detector consists of 6 P+ -Si0.65Ge0.35 layers and 5 UD-Si layers, whichare flat and have thickness of 6 nm and 32 nm, respectively. A stress field exists on the interface between Si0.65Ge0.35 and UD-Si layers, but no any crystal defect has been found in this region, except the edges of this region. Both Si0.65Ge0.35 and UD-Si layers on amorphous SiO2 layer consist of polycrystals and are in wave. There is defect area in the edges of photosensitive region.The area appears in a shape of inverse triangle and the maximum width is less than 120 nm. The crystal defects are stacking faults and microtwins.

  14. Development of a cryogenic target system with optimal access to reaction detectors

    Energy Technology Data Exchange (ETDEWEB)

    Abd El-Bary Dewidar, M.M.

    2004-02-01

    A liquid hydrogen/deuterium target is used at COSY of the FZ-Juelich in the external experiments TOF, GEM and MOMO. The combination of 1mm diameter beam from COSY with the small target provides the necessary very well defined interaction vertex within few mm{sup 3}. The target liquid is made on a cooled condenser and guided through a central tube assisted by gravitation into the target cell. There the liquid is kept below boiling temperature by evaporation cooling. The vapor rises up to the condenser through a very well isolated concentric center tube. This circulation provides a stable dynamic equilibrium. The target container should have as small as possible material between the reaction volume and the detectors in order to minimize secondary interactions of reaction products. In order to reduce unnecessary material, a very thin target cell is fabricated by galvanization technique. An aluminum condenser is now used instead of copper. This decreased the material from 100 g to 20 g. It provides better thermal properties and performance. The cool down time from 300K to LH{sub 2}/LD{sub 2} is improved to 38 minutes instead of 52 minutes for copper. (orig.)

  15. Introduction to cryogenic engineering

    CERN Document Server

    CERN. Geneva; Vandoni, Giovanna; Niinikoski, Tapio O

    2005-01-01

    Cryogenic engineering is one of the key technologies at CERN. It is widely used in research and has many applications in industry and last but not least in medicine. In research cryogenic engineering and its applications are omnipresent from the smallest laboratories to fusion reactors, hughe detectors and accelerators. With the termination of the LHC, CERN will in fact become the world's largest cryogenic installation. This series of talks intends to introduce the non-cryogenist to the basic principles and challenges of cryogenic engineering and its applications. The course will also provide a basis for practical application as well as for further learning.

  16. A Novel Assembly Procedure of GE1\\slash1 Detectors for CMS High Luminosity Phase of the LHC

    CERN Document Server

    Shah, Aashaq

    2017-01-01

    A CMS muon group is investigating the possibility of enhancing muon tracking and triggering capabilities in the region 1.6$\\textless$$\\eta$$\\textless$2.18 of the CMS experiment at the LHC by instrumenting the end-cap muon system with large-area tipple GEM detectors. These GE1/1 detectors are considered as an important technology for High-Luminosity phase of LHC and contain a triple-GEM with a 3\\slash1\\slash2\\slash1 mm drift\\slash transfer-1\\slash transfer-2\\slash induction field gap configuration and the active readout area of 0.345\\slash0.409m$^{2}$ for the short/long chambers. We describe a novel assembly procedure of such detectors at LHC.

  17. New Results from the Cryogenic Dark Matter Search Experiment

    CERN Document Server

    Armel, M S; Baudis, L; Bauer, D A; Bolozdynya, A I; Brink, P L; Bunker, R; Cabrera, B; Caldwell, D O; Castle, J P; Chang, C L; Clarke, R M; Crisler, M B; Cushman, P B; Davies, A K; Dixon, R; Driscoll, D D; Duong, L; Emes, J; Ferril, R; Gaitskell, R J; Golwala, S R; Haldeman, M; Hellmig, J; Hennessey, M; Holmgren, D; Huber, M E; Kamat, S; Kurylowicz, M; Lu, A; Mahapatra, R; Mandic, V; Martinis, J M; Meunier, P; Mirabolfathi, N; Nam, S W; Nelson, H; Nelson, R; Ogburn, R W; Perales, J; Perera, T A; Perillo-Isaac, M C; Rau, W; Reisetter, A; Ross, R R; Saab, T; Sadoulet, B; Sander, J; Savage, C; Schnee, R W; Seitz, D N; Shutt, T A; Smith, G; Spadafora, A L; Thompson, J P F; Tomada, A; Wang, G; Yellin, S; Young, B A

    2003-01-01

    Using improved Ge and Si detectors, better neutron shielding, and increased counting time, the Cryogenic Dark Matter Search (CDMS) experiment has obtained stricter limits on the cross section of weakly interacting massive particles (WIMPs) elastically scattering from nuclei. Increased discrimination against electromagnetic backgrounds and reduction of neutron flux confirm WIMP-candidate events previously detected by CDMS were consistent with neutrons and give limits on spin-independent WIMP interactions which are >2X lower than previous CDMS results for high WIMP mass, and which exclude new parameter space for WIMPs with mass between 8-20 GeV/c^2.

  18. Design of Antenna-on-Chip, Antenna-on-Package and Detectors from RF, Microwave to THz Frequency Range in SiGe-C Technology

    NARCIS (Netherlands)

    Wane, S; Bardy, S.; Heijster, R.M.E.M. van; Goulet, F.; Gamand, P.

    2011-01-01

    Design solutions for on-chip signal detectors, Antenna-on- Chip and Antenna-on-Package (with Bond Wire elements), from RF, Microwave to THz frequency range, using state-of-theart SiGe BiCMOS technology are presented. Both CML and CMOS detectors are designed, fabricated and compared in terms of their

  19. FRIB Cryogenic Plant Status

    Energy Technology Data Exchange (ETDEWEB)

    Dixon, Kelly D. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Ganni, Venkatarao [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Knudsen, Peter N. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Casagranda, Fabio [Michigan State Univ., East Lansing, MI (United States)

    2015-12-01

    After practical changes were approved to the initial conceptual design of the cryogenic system for MSU FRIB and an agreement was made with JLab in 2012 to lead the design effort of the cryogenic plant, many activities are in place leading toward a cool-down of the linacs prior to 2018. This is mostly due to using similar equipment used at CHLII for the 12 GeV upgrade at JLab and an aggressive schedule maintained by the MSU Conventional Facilities department. Reported here is an updated status of the cryogenic plant, including the equipment procurement status, plant layout, facility equipment and project schedule.

  20. Neutrinoless double-{beta} decay of {sup 76}Ge: First results from the International Germanium Experiment (IGEX) with six isotopically enriched detectors

    Energy Technology Data Exchange (ETDEWEB)

    Aalseth, C.E.; Avignone, F.T. III; Collar, J.I.; Hasenbalg, F. [University of South Carolina, Columbia, South Carolina 29208 (United States); Brodzinski, R.L.; Hensley, W.K.; Miley, H.S.; Reeves, J.H. [Pacific Northwest National Laboratory, Richland, Washington 99352 (United States); Garcia, E.; Gonzalez, D.; Morales, A.; Morales, J.; Ortiz de Solorzano, A.; Puimedon, J.; Salinas, A.; Sarsa, M.L.; Villar, J.A. [University of Zaragoza, 50009 Zaragoza (Spain); Kirpichnikov, I.V.; Starostin, A.S.; Vasenko, A.A. [Institute for Theoretical and Experimental Physics, 117259 Moscow (Russia); Klimenko, A.A.; Osetrov, S.B.; Smolnikov, A.A.; Vasiliev, S.I. [Institute for Nuclear Research, Baksan Neutrino Observatory, 361609 Neutrino (Russia); Pogosov, V.S.; Tamanyan, A.G. [Yerevan Physical Institute, 375 036 Yerevan (Armenia)

    1999-04-01

    The International Germanium Experiment (IGEX) has six HPGe detectors, isotopically enriched to 86{percent} in {sup 76}Ge, containing approximately 90 active moles of {sup 76}Ge. Three detectors of 2 kg each operate in the Canfranc Underground Laboratory (Spain) with pulse-shape analysis electronics. One detector ({approximately}0.7 kg active volume) has been operating in the Baksan Low-Background Laboratory for several years, and two additional similar detectors will operate in Baksan. A maximum likelihood analysis of 74.84 active mole years of data yields a lower bound T{sub 1/2}{sup 0{nu}}{ge}0.8{times}10{sup 25}yr (90{percent} C.L.), corresponding to {l_angle}m{sub {nu}}{r_angle}{lt}(0.5{endash}1.5)eV, depending on the theoretical nuclear matrix elements used to extract the neutrino mass parameter. {copyright} {ital 1999} {ital The American Physical Society}

  1. Searching for Dark Matter with the CoGeNT and C-4 Detectors

    Science.gov (United States)

    Kos, Mark

    2012-10-01

    Recently published CoGeNT data shows an excess of events at energies below 1.2 keV. The excess at low energies is compatible with light-WIMP nucleon scattering. While it is hard to imagine a background model to explain the spectral and temporal characteristics of the CoGeNT data, a thorough simulation of the external backgrounds is needed to quantify their contribution. In this analysis we simulate both external cavern neutrons and muon induced spallation events inside the CoGeNT shielding. We also model radioactive backgrounds from the shielding materials. The resulting background distributions are compared with the CoGeNT data and we discuss how closely the backgrounds resemble the CoGeNT data. We also discuss plans for the next larger generation of CoGeNT, C4. We will discuss the expected WIMP sensitivity of C4 and contrast to current dark matter experiments. We will also show how we plan to improve upon the CoGeNT design to lower the backgrounds for C4.

  2. Búsqueda de charginos con el detector DELPHI de LEP a $E_{cm}=130 - 172 GeV$

    CERN Document Server

    Navas-Concha, S

    1997-01-01

    The goal of this work is the search for charginos using the data collected with the DELPHI detector at LEP during the years 1995~--~1996 at energies $ E_{cm} =$~130.4, 136.3, 161.4 and 172.4~GeV. In this thesis the methods used and the results obtained are described. This study has been performed within the theoretical framework of the Minimal Standard Supersymmetric Model (MSSM), assuming Grand Unification and $R$--parity conservation. Concerning the nature of the lightest supersymmetric particle, two cases have been treated: the ``NeutraliNO1LSP scenario'' and the ``Gravitino LSP scenario''.

  3. Measurement of Ruds and R between 3.12 and 3.72 GeV at the KEDR detector

    Directory of Open Access Journals (Sweden)

    V.V. Anashin

    2016-02-01

    Full Text Available Using the KEDR detector at the VEPP-4M e+e− collider, we have measured the values of Ruds and R at seven points of the center-of-mass energy between 3.12 and 3.72 GeV. The total achieved accuracy is about or better than 3.3% at most of energy points with a systematic uncertainty of about 2.1%. At the moment it is the most accurate measurement of R(s in this energy range.

  4. Ultra-Fast Image Sensor Using Ge on Insulator MIS/Schottky Detectors

    Science.gov (United States)

    2008-05-28

    14 m, respectively. These transitions result from the intraband transition of -doping well Fig. 7. The blueshift of the cutoff wavelength of the...m, respectively. The blueshift of the -QD sample may be due to the many body effect. The intraband transition in -doping quantum wells contributes...tively. The blueshift of the cutoff wavelength of the -SiGe01 sample is probably due to the additional quantum confinement of Si0.9Ge0.1 QW outside

  5. Verification tests of the GALLEX solar neutrino detector, with 71Ge produced in-situ from the beta-decay of 71As.

    Science.gov (United States)

    Hampel, W.; Handt, J.; Heusser, G.; Kaether, D.; Kiko, J.; Kirsten, T.; Laubenstein, M.; Neder, E.; Pernicka, E.; Rau, W.; Richter, H.; Ronn, U.; Schwan, U.; Wojcik, M.; Zakharov, Y.; von Ammon, R.; Ebert, K. H.; Fritsch, T.; Heidt, D.; Henrich, E.; Stieglitz, L.; Weirich, F.; Balata, M.; Hartmann, F. X.; Bellotti, E.; Cattadori, C.; Cremonesi, O.; Ferrari, N.; Fiorini, E.; Zanotti, L.; Altmann, M.; von Feilitzsch, F.; Mossbauer, R.; Berthomieu, G.; Schatzman, E.; Carmi, I.; Dostrovsky, I.; Bacci, C.; Belli, P.; Bernabei, R.; D'Angelo, S.; Paoluzi, L.; Cribier, M.; Rich, J.; Spiro, M.; Tao, C.; Vignaud, D.; Boger, J.; Hahn, R. L.; Rowley, J. K.; Stoenner, R. W.; Weneser, J.

    1998-09-01

    Previously, it was demonstrated that the GALLEX solar neutrino detector responds properly to low energy neutrinos, by exposing it to two intense 51Cr-neutrino sources; the recovery yield of the product 71Ge was reported to be 93%±8%. New experiments, in which known amounts of radioactive 71As have decayed to 71Ge in the full-scale gallium detector, strongly support this evidence. In several experiments, the gallium detector has been spiked with ≡105 71As atoms, under varying conditions of how the 71As was added (either carrier free, or with Ge carrier), how the gallium solution was mixed, and how long the 71Ge remained in the gallium. 71As decays by electron capture and positron emission to 71Ge, with a half life of 2.72 d. Hot atoms are produced by these decay modes with kinematics that mimic solar neutrino capture, although the 51Cr neutrino source provided a more perfect match. This relative disadvantage is offset by the much better statistics obtainable with the 71As. In all 71As experiments, the recovery of 71Ge from the gallium was 100%, with uncertainties of only ±1%. The combined results from the 51Cr sources and the 71As spikes rule out any loss mechanisms for 71Ge, including hot-atom chemical effects.

  6. Measurement of nuclear activity with Ge detectors and its uncertainty; Medicion de actividad nuclear con detectores de Ge y su incertidumbre

    Energy Technology Data Exchange (ETDEWEB)

    Cortes P, C.A

    1999-07-01

    The objective of this work is to analyse the influence magnitudes which affect the activity measurement of gamma transmitter isolated radioactive sources. They prepared by means of the gravimetric method, as well as, determining the uncertainty of such measurement when this is carried out with a gamma spectrometer system with a germanium detector. This work is developed in five chapters: In the first one, named Basic principles it is made a brief description about the meaning of the word Measurement and its implications and the necessaries concepts are presented which are used in this work. In the second chapter it is exposed the gravimetric method used for the manufacture of the gamma transmitter isolated radioactive sources, it is tackled the problem to determine the main influence magnitudes which affect in the measurement of their activity and the respective correction factors and their uncertainties are deduced. The third chapter describes the gamma spectrometry system which is used in this work for the measurement of the activity of isolated sources and also its performance and experimental arrangement that it is used. In the fourth chapter are applied the three previous items with the object of determining the uncertainty which would be obtained in the measurement of an isolated radioactive source elaborated with the gravimetric method in the experimental conditions less favourable predicted above the obtained results from the chapter two. The conclusions are presented in the fifth chapter and they are applied to establish the optimum conditions for the measurement of the activity of a gamma transmitter isolated radioactive source with a spectrometer with germanium detector. (Author)

  7. Development of twin Ge detector for high energy photon measurement and its performance

    Energy Technology Data Exchange (ETDEWEB)

    Shigetome, Yoshiaki; Harada, Hideo [Power Reactor and Nuclear Fuel Development Corp., Tokai, Ibaraki (Japan). Tokai Works

    1998-03-01

    Prototype twin HPGe detector composed of two large HPGe crystals was developed to obtain better detection efficiency ({epsilon}) and P/T ratio, which was required for high energy photon spectroscopy. In this work, the performances of the twin HPGe detector were evaluated by computer simulation employing EGS4 code. (author)

  8. Effect of prolonged annealing on the performance of coaxial Ge gamma-ray detectors

    NARCIS (Netherlands)

    Owens, A.; Brandenburg, S.; Buis, E. -J.; Kozorezov, A. G.; Kraft, S.; Ostendorf, R. W.; Quarati, F.

    2007-01-01

    The effects of prolonged annealing at elevated temperatures have been investigated in a 53 cm(3) closed-end coaxial high purity germanium detector in the reverse electrode configuration. The detector was multiply annealed at 100 degrees C in block periods of 7 days. After each anneal cycle it was co

  9. New constraints and discovery potential of sub-GeV dark matter with xenon detectors

    Science.gov (United States)

    McCabe, Christopher

    2017-08-01

    Existing xenon dark matter (DM) direct detection experiments can probe the DM-nucleon interaction of DM with a sub-GeV mass through a search for photon emission from the recoiling xenon atom. We show that LUX's constraints on sub-GeV DM, which utilize the scintillation (S1) and ionization (S2) signals, are approximately 3 orders of magnitude more stringent than previous xenon constraints in this mass range, derived from the XENON10 and XENON100 S2-only searches. The new LUX constraints provide the most stringent direct detection constraints for DM particles with a mass below 0.5 GeV. In addition, the photon emission signal in LUX and its successor LZ maintain the discrimination between background and signal events so that an unambiguous discovery of sub-GeV DM is possible. We show that LZ has the potential to reconstruct the DM mass with ≃20 % accuracy for particles lighter than 0.5 GeV.

  10. Crystal growth and detector performance of large size high-purity Ge crystals

    CERN Document Server

    Wang, Guojian; Mei, Hao; Mei, Dongming; Irmscher, Klaus; Guan, Yutong; Yang, Gang

    2015-01-01

    High-purity germanium crystals approximately 12 cm in diameter were grown in a hydrogen atmosphere using the Czochralski method. The dislocation density of the crystals was determined to be in the range of 2000 - 4200 cm-2, which meets a requirement for use as a radiation detector. The axial and radial distributions of impurities in the crystals were measured and are discussed. A planar detector was also fabricated from one of the crystals and then evaluated for electrical and spectral performance. Measurements of gamma-ray spectra from Cs-137 and Am-241 sources demonstrate that the detector has excellent energy resolution.

  11. 3D Active Edge Silicon Detector Tests With 120 GeV Muons

    CERN Document Server

    Da Via, Cinzia; Hasi, Jasmine; Kenney, Christopher; Kok, Angela; Parker, Sherwood; Watts, Stephen; Anelli, Giovanni; Avati, Valentina; Bassetti, Valerio; Boccone, Vittorio; Bozzo, Marco; Eggert, Karsten; Ferro, Fabrizio; Inyakin, Alexandre; Kaplon, Jan; Lozano Bahilo, Julio; Morelli, Aldo; Niewiadomski, Hubert; Noschis, Elias; Oljemark, Fredrik; Oriunno, Marco; Österberg, Kenneth; Ruggiero, Gennaro; Snoeys, Walter; Tapprogge, Stefan

    2009-01-01

    3D detectors with electrodes penetrating through the silicon wafer and covering the edges were tested in the SPS beam line X5 at CERN in autumn 2003. Detector parameters including efficiency, signal-to-noise ratio, and edge sensitivity were measured using a silicon telescope as a reference system. The measured sensitive width and the known silicon width were equal within less than 10 mum.

  12. Prototyping and tests for an MRPC-based time-of-flight detector for 1 GeV neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Yakorev, D. [Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden (Germany); Aumann, T. [GSI Helmholtz zentrum fuer Schwerionenforschung, Darmstadt (Germany); Technische Universitaet Darmstadt (Germany); Bemmerer, D., E-mail: d.bemmerer@hzdr.de [Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden (Germany); Boretzky, K. [GSI Helmholtz zentrum fuer Schwerionenforschung, Darmstadt (Germany); Caesar, C. [GSI Helmholtz zentrum fuer Schwerionenforschung, Darmstadt (Germany); Technische Universitaet Darmstadt (Germany); Ciobanu, M. [GSI Helmholtz zentrum fuer Schwerionenforschung, Darmstadt (Germany); Cowan, T.; Elekes, Z. [Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden (Germany); Elvers, M. [Universitaet zu Koeln (Germany); Gonzalez Diaz, D. [GSI Helmholtz zentrum fuer Schwerionenforschung, Darmstadt (Germany); Technische Universitaet Darmstadt (Germany); Tsinghua University, Beijing (China); Hannaske, R. [Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden (Germany); Hehner, J.; Heil, M. [GSI Helmholtz zentrum fuer Schwerionenforschung, Darmstadt (Germany); Kempe, M. [Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden (Germany); Maroussov, V. [Universitaet zu Koeln (Germany); Nusair, O. [GSI Helmholtz zentrum fuer Schwerionenforschung, Darmstadt (Germany); Al Balqa' Applied University, Salt (Jordan); Simon, H. [GSI Helmholtz zentrum fuer Schwerionenforschung, Darmstadt (Germany); Sobiella, M.; Stach, D.; Wagner, A. [Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden (Germany); and others

    2011-10-21

    The NeuLAND detector at the R{sup 3}B experiment at the future FAIR facility in Darmstadt aims to detect fast neutrons (0.2-1.0 GeV) with high time and spatial resolutions ({sigma}{sub t}<100ps,{sigma}{sub x,y,z}<1cm). This task can be performed either with a scintillator or based on the multigap resistive plate chamber (MRPC) technology. Here, prototyping and test for an MRPC-based solution are discussed. In order to reach 90% detection efficiency, the final detector must consist of 50 consecutive MRPC stacks. Each stack contains a 4 mm thick anode made of iron converter material, with an additional 4 mm of converter material between two stacks. The secondary charged particles stemming from hadronic interactions of the high energetic neutrons in the converter will be detected in the MRPCs. As part of the ongoing development effort, a number of prototypes for this detector have been developed and built. They have been tested in experiments with a single-electron beam with picosecond resolution at the superconducting linac ELBE (Dresden, Germany). The results of the tests are presented here, and an outlook is given.

  13. A multielement Ge detector with complete spectrum readout for x-ray fluorescence microprobe and microspectroscopy (abstract)

    Science.gov (United States)

    Rivers, Mark L.; Sutton, Stephen R.; Rarback, Harvey

    1995-02-01

    Multielement Ge and Si(Li) detectors have been used in recent years to improve the increase count rate capability and to improve the solid-angle efficiency in fluorescence x-ray absorption spectroscopy (XAS). Such systems have typically been equipped with one or more single-channel analyzers (SCAs) for each detector element. Such SCA-based electronics are sufficient when only the counts in one or two well-resolved peaks are of interest. For the fluorescence (XRF) microprobe at beamline X-26A at the NSLS, SCA-based electronics were not a satisfactory solution for two reasons: (1) for XRF experiments, the entire fluorescence spectrum is required; (2) for micro-XAS studies of trace elements in complex systems, the fluorescence peak often sits on a significant background or partially overlaps another fluorescence peak, requiring software background subtraction or peak deconvolution. An electronics system which permits collection of the entire fluorescence spectrum from each detector element has been designed. The system is made cost-effective by the use of analog multiplexors, reducing the number of analog-to-digital converters (ADCs) and multichannel analyzers (MCAs) required. The system was manufactured by Canberra Industries and consists of: (1) a 13 element Ge detector (11 mm diameter detector elements), (2) 13 NIM spectroscopy amplifiers with programmable gains, (3) four analog multiplexors with maximum of eight inputs each, (4) four ADCs with programmable offsets and gains and 800 ns conversion time, and (5) two MCAs with Ethernet communications ports and two ADC inputs each. The amplifiers have shaping times which are adjustable from 0.5 to 12 μs. The analog multiplexors were modified to perform pileup rejection. The analog multiplexing does not significantly reduce the count rate capability of the system, even at the shortest amplifier shaping times. The average detector resolution is 170 eV at 12 μs shaping time and 200 eV at 4 μs shaping time. The maximum

  14. Theoretical investigation of tensile strained GeSn waveguide with Si₃N₄ liner stressor for mid-infrared detector and modulator applications.

    Science.gov (United States)

    Zhang, Qingfang; Liu, Yan; Yan, Jing; Zhang, Chunfu; Hao, Yue; Han, Genquan

    2015-03-23

    We theoretically investigate a tensile strained GeSn waveguide integrated with Si₃N₄ liner stressor for the applications in mid-infrared (MIR) detector and modulator. A substantial tensile strain is induced in a 1 × 1 μm² GeSn waveguide by the expansion of 500 nm Si₃N₄ liner stressor and the contour plots of strain are simulated by the finite element simulation. Under the tensile strain, the direct bandgap E(G,Γ) of GeSn is significantly reduced by lowering the Γ conduction valley in energy and lifting of degeneracy of valence bands. Absorption coefficients of tensile strained GeSn waveguides with different Sn compositions are calculated. As the Si₃N₄ liner stressor expands by 1%, the cut-off wavelengths of tensile strained Ge(0.97)Sn(0.03), Ge(0.95)Sn(0.05), and Ge(0.90)Sn(0.10) waveguide photodetectors are extended to 2.32, 2.69, and 4.06 μm, respectively. Tensile strained Ge(0.90)Sn(0.10) waveguide electro-absorption modulator based on Franz-Keldysh (FK) effect is demonstrated in theory. External electric field dependence of cut-off wavelength and propagation loss of tensile strained Ge(0.90)Sn(0.10) waveguide is observed, due to the FK effect.

  15. Neutrinoless double-β decay of76Ge: First results from the International Germanium Experiment (IGEX) with six isotopically enriched detectors

    Science.gov (United States)

    Aalseth, C. E.; Avignone, F. T.; Brodzinski, R. L.; Collar, J. I.; Garcia, E.; González, D.; Hasenbalg, F.; Hensley, W. K.; Kirpichnikov, I. V.; Klimenko, A. A.; Miley, H. S.; Morales, A.; Morales, J.; Ortiz de Solórzano, A.; Osetrov, S. B.; Pogosov, V. S.; Puimedón, J.; Reeves, J. H.; Salinas, A.; Sarsa, M. L.; Smolnikov, A. A.; Starostin, A. S.; Tamanyan, A. G.; Vasenko, A. A.; Vasiliev, S. I.; Villar, J. A.

    1999-04-01

    The International Germanium Experiment (IGEX) has six HPGe detectors, isotopically enriched to 86% in 76Ge, containing approximately 90 active moles of 76Ge. Three detectors of 2 kg each operate in the Canfranc Underground Laboratory (Spain) with pulse-shape analysis electronics. One detector (~0.7 kg active volume) has been operating in the Baksan Low-Background Laboratory for several years, and two additional similar detectors will operate in Baksan. A maximum likelihood analysis of 74.84 active mole years of data yields a lower bound T0ν1/2>=0.8×1025 yr (90% C.L.), corresponding to <(0.5-1.5) eV, depending on the theoretical nuclear matrix elements used to extract the neutrino mass parameter.

  16. SuperCDMS SNOLAB Low-Mass Detectors: Ultra-Sensitive Phonon Calorimeters for a Sub-GeV Dark Matter Search

    CERN Document Server

    Kurinsky, Noah; Partridge, Richard; Cabrera, Blas; Pyle, Matt

    2016-01-01

    We present the technical design for the SuperCDMS high-voltage, low-mass dark matter detectors, designed to be sensitive to dark matter down to 300 MeV/$c^2$ in mass and resolve individual electron-hole pairs from low-energy scattering events in high-purity Ge and Si crystals. In this paper we discuss some of the studies and technological improvements which have allowed us to design such a sensitive detector, including advances in phonon sensor design and detector simulation. With this design we expect to achieve better than 10 eV (5 eV) phonon energy resolution in our Ge (Si) detectors, and recoil energy resolution below 1eV by exploiting Luke-Neganov phonon generation of charges accelerated in high fields.

  17. The ν -cleus experiment: a gram-scale fiducial-volume cryogenic detector for the first detection of coherent neutrino-nucleus scattering

    Science.gov (United States)

    Strauss, R.; Rothe, J.; Angloher, G.; Bento, A.; Gütlein, A.; Hauff, D.; Kluck, H.; Mancuso, M.; Oberauer, L.; Petricca, F.; Pröbst, F.; Schieck, J.; Schönert, S.; Seidel, W.; Stodolsky, L.

    2017-08-01

    We discuss a small-scale experiment, called ν -cleus, for the first detection of coherent neutrino-nucleus scattering by probing nuclear-recoil energies down to the 10 eV regime. The detector consists of low-threshold CaWO_4 and Al_2O_3 calorimeter arrays with a total mass of about 10 g and several cryogenic veto detectors operated at millikelvin temperatures. Realizing a fiducial volume and a multi-element target, the detector enables active discrimination of γ , neutron and surface backgrounds. A first prototype Al_2O_3 device, operated above ground in a setup without shielding, has achieved an energy threshold of {˜ }20 eV and further improvements are in reach. A sensitivity study for the detection of coherent neutrino scattering at nuclear power plants shows a unique discovery potential (5σ ) within a measuring time of {\\lesssim }2 weeks. Furthermore, a site at a thermal research reactor and the use of a radioactive neutrino source are investigated. With this technology, real-time monitoring of nuclear power plants is feasible.

  18. Measuring symmetry of implosions in cryogenic Hohlraums at the NIF using gated x-ray detectors (invited).

    Science.gov (United States)

    Kyrala, G A; Dixit, S; Glenzer, S; Kalantar, D; Bradley, D; Izumi, N; Meezan, N; Landen, O L; Callahan, D; Weber, S V; Holder, J P; Glenn, S; Edwards, M J; Bell, P; Kimbrough, J; Koch, J; Prasad, R; Suter, L; Kline, J L; Kilkenny, J

    2010-10-01

    Ignition of imploding inertial confinement capsules requires, among other things, controlling the symmetry with high accuracy and fidelity. We have used gated x-ray imaging, with 10 μm and 70 ps resolution, to detect the x-ray emission from the imploded core of symmetry capsules at the National Ignition Facility. The measurements are used to characterize the time dependent symmetry and the x-ray bang time of the implosion from two orthogonal directions. These measurements were one of the primary diagnostics used to tune the parameters of the laser and Hohlraum to vary the symmetry and x-ray bang time of the implosion of cryogenically cooled ignition scale deuterium/helium filled plastic capsules. Here, we will report on the successful measurements performed with up to 1.2 MJ of laser energy in a fully integrated cryogenics gas-filled ignition-scale Hohlraum and capsule illuminated with 192 smoothed laser beams. We will describe the technique, the accuracy of the technique, and the results of the variation in symmetry with tuning parameters, and explain how that set was used to predictably tune the implosion symmetry as the laser energy, the laser cone wavelength separation, and the Hohlraum size were increased to ignition scales. We will also describe how to apply that technique to cryogenically layered tritium-hydrogen-deuterium capsules.

  19. The COMPASS sandwich veto detector and a first look at kaonic final states from a $\\pi^-$ (190 GeV} beam on a proton target

    CERN Document Server

    Schlüter, Tobias

    2011-01-01

    We introduce the sandwich veto detector that was built for the 2008 and 2009 hadron runs of the COMPASS experiment at CERN. During these beamtimes it was serving as a veto detector for neutral and charged particles outside the spectrometer acceptance, mostly thought to originate from reactions which excited the target. We also present first mass spectra from $\\pi^-(190\\,\\GeV) p \\to \\pi^- \\Kshort \\Kshort p$ that were measured in the 2008 hadron run.

  20. Analysis of the effect of true coincidence summing on efficiency calibration for an HP GE detector

    Energy Technology Data Exchange (ETDEWEB)

    Rodenas, J.; Gallardo, S.; Ballester, S.; Primault, V. [Valencia Univ. Politecnica, Dept. de Ingenieria Quimica y Nuclear (Spain); Ortiz, J. [Valencia Univ. Politecnica, Lab. de Radiactividad Ambiental (Spain)

    2006-07-01

    The H.P. (High Purity) Germanium detector is commonly used for gamma spectrometry in environmental radioactivity laboratories. The efficiency of the detector must be calibrated for each geometry considered. This calibration is performed using a standard solution containing gamma emitter sources. The usual goal is the obtaining of an efficiency curve to be used in the determination of the activity of samples with the same geometry. It is evident the importance of the detector calibration. However, the procedure presents some problems as it depends on the source geometry (shape, volume, distance to detector, etc.) and shall be repeated when these factors change. That means an increasing use of standard solutions and consequently an increasing generation of radioactive wastes. Simulation of the calibration procedure with a validated computer program is clearly an important auxiliary tool for environmental radioactivity laboratories. This simulation is useful for both optimising calibration procedures and reducing the amount of radioactivity wastes produced. The M.C.N.P. code, based on the Monte Carlo method, has been used in this work for the simulation of detector calibration. A model has been developed for the detector as well as for the source contained in a Petri box. The source is a standard solution that contains the following radionuclides: {sup 241}Am, {sup 109}Cd, {sup 57}Co, {sup 139}Ce, {sup 203}Hg, {sup 113}Sn, {sup 85}Sr, {sup 137}Cs, {sup 88}Y and {sup 60}Co; covering a wide energy range (50 to 2000 keV). However, there are two radionuclides in the solution ({sup 60}Co and {sup 88}Y) that emit gamma rays in true coincidence. The effect of the true coincidence summing produces a distortion of the calibration curve at higher energies. To decrease this effect some measurements have been performed at increasing distances between the source and the detector. As the true coincidence effect is observed in experimental measurements but not in the Monte Carlo

  1. A rich detector with a sodium fluoride radiator:. pi. /K identification up to 3 GeV/c

    Energy Technology Data Exchange (ETDEWEB)

    Arnold, R.; Guyonnet, J.L.; Giomataris, Y.; Petroff, P.; Seguinot, J.; Tocqueville, J.; Ypsilantis, T.

    1987-10-01

    The use of a single crystal of sodium fluoride (NaF) as a Cherenkov radiator has been investigated. Its transparency has been measured and found to be good for photon energies below 9.8 eV. Data on its index of refraction are well fitted to a single-pole Sellmeier resonance formula. These data allow a realistic Monte Carlo simulation of a proximity-focused ring imaging Cherenkov (RICH) system. The photon detector is a multiwire proportional chamber (MWPC) with pad readout. The photosensitive gases considered are tetrakis(dimethylamine)ethylene (TMAE) and triethylamine (TEA). The simulation shows that system having 10 cm radial thickness and 10% of a radiation length of material would identify pions and kaons below 3 GeV/c momentum. The pad dimensions required are about 5 mm /times/ 5 mm. 4 refs., 10 figs.

  2. CERN-RD39 collaboration activities aimed at cryogenic silicon detector application in high-luminosity Large Hadron Collider

    CERN Document Server

    Li, Zheng; Verbitskaya, Elena; Dehning, Bernd; Sapinski, Mariusz; Bartosik, Marcin R; Alexopoulos, Andreas; Kurfürst, Christoph; Härkönen, Jaakko

    2016-01-01

    Beam Loss Monitors (BLM) made of silicon are new devices for monitoring of radiation environment in the vicinity of superconductive magnets of the Large Hadron Collider. The challenge of BLMs is extreme radiation hardness, up to 10 16 protons/cm 2 while placed in superfluid helium (temperature of 1.9 K). CERN BE-BI-BL group, together with CERN-RD39 collaboration, has developed prototypes of BLMs and investigated their device physics. An overview of this development—results of the in situ radiation tests of planar silicon detectors at 1.9 K, performed in 2012 and 2014—is presented. Our main finding is that silicon detectors survive under irradiation to 1×10 16 p/cm 2 at 1.9 K. In order to improve charge collection, current injection into the detector sensitive region (Current Injection Detector (CID)) was tested. The results indicate that the detector signal increases while operated in CID mode.

  3. CERN-RD39 collaboration activities aimed at cryogenic silicon detector application in high-luminosity Large Hadron Collider

    Science.gov (United States)

    Li, Zheng; Eremin, Vladimir; Verbitskaya, Elena; Dehning, Bernd; Sapinski, Mariusz; Bartosik, Marcin R.; Alexopoulos, Andreas; Kurfürst, Christoph; Härkönen, Jaakko

    2016-07-01

    Beam Loss Monitors (BLM) made of silicon are new devices for monitoring of radiation environment in the vicinity of superconductive magnets of the Large Hadron Collider. The challenge of BLMs is extreme radiation hardness, up to 1016 protons/cm2 while placed in superfluid helium (temperature of 1.9 K). CERN BE-BI-BL group, together with CERN-RD39 collaboration, has developed prototypes of BLMs and investigated their device physics. An overview of this development-results of the in situ radiation tests of planar silicon detectors at 1.9 K, performed in 2012 and 2014-is presented. Our main finding is that silicon detectors survive under irradiation to 1×1016 p/cm2 at 1.9 K. In order to improve charge collection, current injection into the detector sensitive region (Current Injection Detector (CID)) was tested. The results indicate that the detector signal increases while operated in CID mode.

  4. An empirical formula for the efficiency detection of Ge detectors for cylindrical radioactive sources

    Energy Technology Data Exchange (ETDEWEB)

    Alfassi, Z.B. [Department of Nuclear Engineering Ben Gurion University, Il-84105 Beer Sheva (Israel)]. E-mail: alfassi@bgu.ac.il; Groppi, F. [LASA, Universita degli Studi and INFN of Milano, Laboratory of Radiochemistry, via F.lli Cervi 201, 20090 Segrate (Italy)

    2007-05-01

    An empirical equation was developed for the count rate of a cylindrical radioactive source by an HPGe detector as a function of the volume and the height of the source. The equation can be used to calculate the height of the cylinder, which will yield maximum count rate for a known volume of environmental source.

  5. ATLAS experiment first 900 GeV Collision Events in Stable-Beam Conditions with Inner Detector Fully Powered, December 6, 2009

    CERN Multimedia

    the ATLAS experiment; Neal Hartman; Phil Owen; Joao Pequenao

    2009-01-01

    On Sunday morning, December 6th, 2009, the LHC achieved for the first time 900 GeV collisions under stable-beam conditions. This allowed ATLAS to fully ramp the high voltage of the inner most pixel and silicon-strip tracking detectors.

  6. A tracking detector to study O(1 GeV) νμ CC interactions

    Science.gov (United States)

    Bernardini, P.; Cecchini, S.; Cindolo, F.; D'Antone, I.; Degli Esposti, L.; Lax, I.; Mandrioli, G.; Marsella, G.; Mauri, N.; Pasqualini, L.; Patrizii, L.; Pozzato, M.; Sirri, G.; Surdo, A.; Tenti, M.

    2017-03-01

    A tracking system composed of planes of triangular shape scintillator bars coupled to Silicon PhotoMultipliers in analog mode read-out has been developed for applications in neutrino experiments. A spatial resolution of O(1 mm) is required for the determination of momentum and charge of muons produced in νμ CC interactions at few GeV energy scale. The performance of the system has been studied by exposing it to charged particle beams at the CERN-PS. Preliminary results are discussed.

  7. Si based mid-infrared GeSn photo detectors and light emitters

    Science.gov (United States)

    Du, Wei; Pham, Thach; Margetis, Joe; Tran, Huong; Ghetmiri, Seyed A.; Mosleh, Aboozar; Sun, Greg; Soref, Richard A.; Tolle, John; Naseem, Hameed A.; Li, Baohua; Yu, Shui-Qing

    2015-08-01

    In this work, high performance GeSn photoconductor and light emitting diodes (LED) have been demonstrated. For the photoconductor, the high responsivity was achieved due to high photoconductive gain, which is attributed to the novel optical and electrical design. The longwave cutoff at 2.4 μm was also observed at room temperature. For LED, temperature-dependent study was conducted. The electroluminescence (EL) spectra at different temperatures were obtained and EL peak shift was observed. Moreover, the emission power at different temperatures was measured. High power emission at 2.1 μm was achieved.

  8. A neutron dose detector with REM response to 1 GeV

    Energy Technology Data Exchange (ETDEWEB)

    Sun, R.K.; Krebs, G.F.; Smith, A.R. (Lawrence Berkeley Lab., CA (United States)); Hsu, H.H. (Los Alamos National Lab., NM (United States))

    1992-07-01

    The limitation of current remmeters, which do not measure neutron dose equivalents above about 15 MeV, is a serious problem at high-energy accelerator facilities, where a much wider range of neutron energies exist. The purpose of this work was to measure the response of a modified Anderson-Braun (A-B) remmeter to neutron energies up to 1 GeV. The modifications to the standard A-B remmeter were based on the experimental results of Pb(n,xn) reactions.

  9. CERN-RD39 collaboration activities aimed at cryogenic silicon detector application in high-luminosity Large Hadron Collider

    Energy Technology Data Exchange (ETDEWEB)

    Li, Zheng [National-Provincial Laboratory of Special Function Thin Film Materials, School of Material Sciences and Engineering, Xiangtan University, Xiangtan, Hunan 411105 (China); Eremin, Vladimir [Ioffe Institute, 26 Politekhnicheskaya str., St. Petersburg 194021 (Russian Federation); Verbitskaya, Elena, E-mail: elena.verbitskaya@cern.ch [Ioffe Institute, 26 Politekhnicheskaya str., St. Petersburg 194021 (Russian Federation); Dehning, Bernd; Sapinski, Mariusz; Bartosik, Marcin R.; Alexopoulos, Andreas [CERN, CH-1211, Geneva 23 (Switzerland); Kurfürst, Christoph [Technische Universität, Universitätsring 1, 1010 Wien (Austria); Härkönen, Jaakko [Helsinki Institute of Physics, Gustaf Hällströminkatu, 200014 Helsingin yliopisto (Finland)

    2016-07-11

    Beam Loss Monitors (BLM) made of silicon are new devices for monitoring of radiation environment in the vicinity of superconductive magnets of the Large Hadron Collider. The challenge of BLMs is extreme radiation hardness, up to 10{sup 16} protons/cm{sup 2} while placed in superfluid helium (temperature of 1.9 K). CERN BE-BI-BL group, together with CERN-RD39 collaboration, has developed prototypes of BLMs and investigated their device physics. An overview of this development—results of the in situ radiation tests of planar silicon detectors at 1.9 K, performed in 2012 and 2014—is presented. Our main finding is that silicon detectors survive under irradiation to 1×10{sup 16} p/cm{sup 2} at 1.9 K. In order to improve charge collection, current injection into the detector sensitive region (Current Injection Detector (CID)) was tested. The results indicate that the detector signal increases while operated in CID mode. - Highlights: • Activities aimed at upgrading of Beam Loss Monitors (BLM) at HL-LHC are described. • Overview of in situ radiation tests of silicon BLMs immersed in LHe is presented. • Silicon detectors with 300 and 100 μm thickness survived radiation at 1.9 K. • Current injection is still effective at 1.9 K for radiation hardness improvement. • Si detectors are currently installed on the magnets for their operation as BLMs.

  10. Ionizing Radiation Detectors Based on Ge-Doped Optical Fibers Inserted in Resonant Cavities

    Directory of Open Access Journals (Sweden)

    Saverio Avino

    2015-02-01

    Full Text Available The measurement of ionizing radiation (IR is a crucial issue in different areas of interest, from environmental safety and industrial monitoring to aerospace and medicine. Optical fiber sensors have recently proven good candidates as radiation dosimeters. Here we investigate the effect of IR on germanosilicate optical fibers. A piece of Ge-doped fiber enclosed between two fiber Bragg gratings (FBGs is irradiated with gamma radiation generated by a 6 MV medical linear accelerator. With respect to other FBG-based IR dosimeters, here the sensor is only the bare fiber without any special internal structure. A near infrared laser is frequency locked to the cavity modes for high resolution measurement of radiation induced effects on the fiber optical parameters. In particular, we observe a variation of the fiber thermo-optic response with the radiation dose delivered, as expected from the interaction with Ge defect centers, and demonstrate a detection limit of 360 mGy. This method can have an impact in those contexts where low radiation doses have to be measured both in small volumes or over large areas, such as radiation therapy and radiation protection, while bare optical fibers are cheap and disposable.

  11. The Cryogenic AntiCoincidence Detector for the ATHENA X-IFU: Design Aspects by Geant4 Simulation and Preliminary Characterization of the New Single Pixel

    Science.gov (United States)

    Macculi, C.; Argan, A.; D'Andrea, M.; Lotti, S.; Piro, L.; Biasotti, M.; Corsini, D.; Gatti, F.; Orlando, A.; Torrioli, G.

    2016-08-01

    The ATHENA observatory is the second large-class ESA mission, in the context of the Cosmic Vision 2015-2025, scheduled to be launched on 2028 at L2 orbit. One of the two planned focal plane instruments is the X-ray Integral Field Unit (X-IFU), which will be able to perform simultaneous high-grade energy spectroscopy and imaging over the 5 arcmin FoV by means of a kilo-pixel array of transition-edge sensor (TES) microcalorimeters, coupled to a high-quality X-ray optics. The X-IFU sensitivity is degraded by the particle background, induced by primary protons of both solar and cosmic rays' origin and secondary electrons. A Cryogenic AntiCoincidence (CryoAC) TES-based detector, located sensed by Iridium TESs. We currently achieve a TRL = 3-4 at the single-pixel level. We have designed and developed two further prototypes in order to reach TRL = 4. The design of the CryoAC has been also optimized using the Geant4 simulation tool. Here we will describe some results from the Geant4 simulations performed to optimize the design and preliminary test results from the first of the two detectors, 1 cm2 area, made of 65 Ir TESs.

  12. Particle tracking at 4 K: The Fast Annihilation Cryogenic Tracking (FACT) detector for the AEgIS antimatter gravity experiment

    Energy Technology Data Exchange (ETDEWEB)

    Storey, J., E-mail: james.storey@cern.ch [Albert Einstein Center for Fundamental Physics, Laboratory for High Energy Physics, University of Bern, 3012 Bern (Switzerland); Canali, C. [University of Zurich, Physics Institute, Winterthurerstrasse 190, 8057 Zurich (Switzerland); Aghion, S. [Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano (Italy); Istituto Nazionale di Fisica Nucleare, Sez. di Milano, Via Celoria 16, 20133 Milano (Italy); Ahlén, O. [European Organisation for Nuclear Research, Physics Department, 1211 Geneva 23 (Switzerland); Amsler, C.; Ariga, A.; Ariga, T. [Albert Einstein Center for Fundamental Physics, Laboratory for High Energy Physics, University of Bern, 3012 Bern (Switzerland); Belov, A.S. [Institute for Nuclear Research of the Russian Academy of Sciences, Moscow 117312 (Russian Federation); Bonomi, G. [University of Brescia, Department of Mechanical and Industrial Engineering, Via Branze 38, 25133 Brescia (Italy); Istituto Nazionale di Fisica Nucleare, Sez. di Pavia, Via Agostino Bassi 6, 27100 Pavia (Italy); Bräunig, P. [University of Heidelberg, Kirchhoff Institute for Physics, Im Neuenheimer Feld 227, 69120 Heidelberg (Germany); Bremer, J. [European Organisation for Nuclear Research, Physics Department, 1211 Geneva 23 (Switzerland); Brusa, R.S. [Dipartimento di Fisica, Università di Trento and INFN, Gruppo Collegato di Trento, Via Sommarive 14, 38050 Povo, Trento (Italy); Burghart, G. [European Organisation for Nuclear Research, Physics Department, 1211 Geneva 23 (Switzerland); Cabaret, L. [Laboratoire Aimé Cotton, CNRS, Université Paris Sud, ENS Cachan, Bâtiment 505, Campus d' Orsay, 91405 Orsay Cedex (France); Carante, M. [Istituto Nazionale di Fisica Nucleare, Sez. di Pavia, Via Agostino Bassi 6, 27100 Pavia (Italy); Caravita, R. [University of Milano, Department of Physics, Via Celoria 16, 20133 Milano (Italy); and others

    2013-12-21

    The AEgIS experiment is an international collaboration with the main goal of performing the first direct measurement of the Earth's gravitational acceleration on antimatter. Critical to the success of AEgIS is the production of cold antihydrogen (H{sup ¯}) atoms. The FACT detector is used to measure the production and temperature of the H{sup ¯} atoms and for establishing the formation of a H{sup ¯} beam. The operating requirements for this detector are very challenging: it must be able to identify each of the thousand or so annihilations in the 1 ms period of pulsed H{sup ¯} production, operate at 4 K inside a 1 T solenoidal field and not produce more than 10 W of heat. The FACT detector consists of two concentric cylindrical layers of 400 scintillator fibres with a 1 mm diameter and a 0.6 mm pitch. The scintillating fibres are coupled to clear fibres which transport the scintillation light to 800 silicon photomultipliers. Each silicon photomultiplier signal is connected to a linear amplifier and a fast discriminator, the outputs of which are sampled continuously by Field Programmable Gate Arrays (FPGAs). In the course of the developments for the FACT detector we have established the performance of scintillating fibres at 4 K by means of a cosmic-ray tracker operating in a liquid helium cryostat. The FACT detector was installed in the AEgIS apparatus in December 2012 and will be used to study the H{sup ¯} formation when the low energy antiproton physics programs resume at CERN in the Summer of 2014. This paper presents the design requirements and construction methods of the FACT detector and provides the first results of the detector commissioning.

  13. Effect of SiO2 coating in bolometric Ge light detectors for rare event searches

    CERN Document Server

    Beeman, J W; Giuliani, A; Mancuso, M; Pessina, G; Plantevin, O; Rusconi, C

    2012-01-01

    In germanium-based light detectors for scintillating bolometers, a SiO$_2$ anti-reflective coating is often applied on the side of the germanium wafer exposed to light with the aim to improve its light collection efficiency. In this paper, we report about a measurement, performed in the temperature range 25-35 mK, of the light-collection increase obtained thanks to this method, which resulted to be of the order of 20%. The procedure followed has been carefully selected in order to minimize systematic effects. The employed light sources have the same spectral features (peaking at $\\sim 630$ nm wavelength) that will characterise future neutrinoless double beta decay experiments on the isotope $^{82}$Se and based on ZnSe crystals, such as LUCIFER. The coupling between source and light detector reproduces the configuration used in scintillating bolometers. The present measurement clarifies the role of SiO$_2$ coating and describes a method and a set-up that can be extended to the study of other types of coatings ...

  14. The Cryogenic Anti-Coincidence detector for ATHENA X-IFU: pulse analysis of the AC-S7 single pixel prototype

    Science.gov (United States)

    D'Andrea, M.; Argan, A.; Lotti, S.; Macculi, C.; Piro, L.; Biasotti, M.; Corsini, D.; Gatti, F.; Torrioli, G.

    2016-07-01

    The ATHENA observatory is the second large-class mission in ESA Cosmic Vision 2015-2025, with a launch foreseen in 2028 towards the L2 orbit. The mission addresses the science theme "The Hot and Energetic Universe", by coupling a high-performance X-ray Telescope with two complementary focal-plane instruments. One of these is the X-ray Integral Field Unit (X-IFU): it is a TES based kilo-pixel order array able to provide spatially resolved high-resolution spectroscopy (2.5 eV at 6 keV) over a 5 arcmin FoV. The X-IFU sensitivity is degraded by the particles background expected at L2 orbit, which is induced by primary protons of both galactic and solar origin, and mostly by secondary electrons. To reduce the background level and enable the mission science goals, a Cryogenic Anticoincidence (CryoAC) detector is placed sensed by Ir:Au TESes. The CryoAC development schedule foresees by Q1 2017 the delivery of a Demonstration Model (DM) to the X-IFU FPA development team. The DM is a single-pixel detector that will address the final design of the CryoAC. It will verify some representative requirements at single-pixel level, especially the detector operation at 50 mK thermal bath and the threshold energy at 20 keV. To reach the final DM design we have developed and tested the AC-S7 prototype, with 1 cm2 absorber area sensed by 65 Ir TESes. Here we will discuss the pulse analysis of this detector, which has been illuminated by the 60 keV line from a 241Am source. First, we will present the analysis performed to investigate pulses timings and spectrum, and to disentangle the athermal component of the pulses from the thermal one. Furthermore, we will show the application to our dataset of an alternative method of pulse processing, based upon Principal Component Analysis (PCA). This kind of analysis allow us to recover better energy spectra than achievable with traditional methods, improving the evaluation of the detector threshold energy, a fundamental parameter characterizing

  15. Search for non-baryonic dark matter with cryogenic detectors based on ionisation and heat detection. Analysis of experimental data from the Edelweiss-I experiment; Recherche de la matiere noire non-baryonique a l'aide de detecteurs cryogeniques a double composante ionisation et chaleur: Analyse et Interpretation des donnees de l'experience EDELWEISS-I

    Energy Technology Data Exchange (ETDEWEB)

    Sanglard, V

    2005-11-15

    The method of direct detection of WIMPs (weakly interactive massive particles) that are present in the halo of our galaxy rests on the detection of their interaction with a target nucleus. The Edelweiss experiment uses this technique with 3 cryogenic detectors operating on 2 modes ionization and heat. Each detector is made of a 320 g germanium crystal with 2 faces equipped with electrodes. In order to improve the collection of charges, an amorphous layer of Ge or Si is laid between the crystal surface and the electrodes. The validation of the detector system has been made with Co{sup 57} and Cs{sup 137} gamma sources and a Cf{sup 252} neutron source. We present a comparison with simulation results and experimental data for the validation of the response to nuclear recoils. The whole experimental data collected by Edelweiss-I from 2000 till 2003 has been analysed. 40 events have been selected, 6 among them with an energy over 30 keV. Limits for the interaction cross-section between a WIMP and a nucleon have been deduced from the experimental data. The Yellin method has enabled us to determine a limit without knowing the background noise. The best sensitivity appears to be 1.5*10{sup -6} pb for a WIMP's mass of 80 GeV/c{sup 2} and a confidence level of 90 per cent. In terms of events, the limit for an energy range of 30 - 100 keV is 0.12 events per kg and per day. (A.C.)

  16. Investigation of a direction sensitive sapphire detector stack at the 5 GeV electron beam at DESY-II

    Science.gov (United States)

    Karacheban, O.; Afanaciev, K.; Hempel, M.; Henschel, H.; Lange, W.; Leonard, J. L.; Levy, I.; Lohmann, W.; Schuwalow, S.

    2015-08-01

    Extremely radiation hard sensors are needed in particle physics experiments to instrument the region near the beam pipe. Examples are beam halo and beam loss monitors at the Large Hadron Collider, FLASH or XFEL. Currently artificial diamond sensors are widely used. In this paper single crystal sapphire sensors are considered as a promising alternative. Industrially grown sapphire wafers are available in large sizes, are of low cost and, like diamond sensors, can be operated without cooling. Here we present results of an irradiation study done with sapphire sensors in a high intensity low energy electron beam. Then, a multichannel direction-sensitive sapphire detector stack is described. It comprises 8 sapphire plates of 1 cm2 size and 525 μ m thickness, metallized on both sides, and apposed to form a stack. Each second metal layer is supplied with a bias voltage, and the layers in between are connected to charge-sensitive preamplifiers. The performance of the detector was studied in a 5 GeV electron beam. The charge collection efficiency measured as a function of the bias voltage rises with the voltage, reaching about 10% at 095 V. The signal size obtained from electrons crossing the stack at this voltage is about 02200 e, where e is the unit charge. The signal size is measured as a function of the hit position, showing variations of up to 20% in the direction perpendicular to the beam and to the electric field. The measurement of the signal size as a function of the coordinate parallel to the electric field confirms the prediction that mainly electrons contribute to the signal. Also evidence for the presence of a polarisation field was observed.

  17. Measurement of the running of the fine structure constant below 1 GeV with the KLOE detector

    CERN Document Server

    CERN. Geneva

    2017-01-01

    Precision physics requires appropriate inclusion of higher order effects and the knowledge of very precise input parameters of the electroweak Standard Model. One of the basic input parameters is the effective QED coupling constant α(s) which depends on the energy scale because of charge screening by vacuum polarization. Hadronic non-perturbative effects limits the accuracy of α(s) from low energy to the Z mass scale. We present the measurement of the running of the QED coupling constant in the time-like region 0.6 < √s < 0.975 GeV with the KLOE detector at DAΦNE , using the ISR differential cross section dσ(e+e− → μ+μ− γ)/d√s. The result shows a clear contribution of the ρ−ω resonances to the photon propagator with a significance of the hadronic contribution to the running of α(s) of more than 5σ. It represents the first measurement of th...

  18. Measurement of the running of the fine structure constant below 1 GeV with the KLOE Detector

    CERN Document Server

    :,; Babusci, D; Bencivenni, G; Berlowski, M; Bloise, C; Bossi, F; Branchini, P; Budano, A; Balkeståhl, L Caldeira; Cao, B; Ceradini, F; Ciambrone, P; Curciarello, F; Czerwiński, E; D'Agostini, G; Dané, E; De Leo, V; De Lucia, E; De Santis, A; De Simone, P; Di Cicco, A; Di Domenico, A; Di Salvo, R; Domenici, D; D'Uffizi, A; Fantini, A; Felici, G; Fiore, S; Gajos, A; Gauzzi, P; Giardina, G; Giovannella, S; Graziani, E; Happacher, F; Heijkenskjöld, L; Johansson, T; Kamińska, D; Krzemien, W; Kupsc, A; Loffredo, S; Lukin, P A; Mandaglio, G; Martini, M; Mascolo, M; Messi, R; Miscetti, S; Morello, G; Moricciani, D; Moskal, P; Papenbrock, M; Passeri, A; Patera, V; del Rio, E Perez; Ranieri, A; Santangelo, P; Sarra, I; Schioppa, M; Silarski, M; Sirghi, F; Tortora, L; Venanzoni, G; Wiślicki, W; Wolke, M; Jegerlehner, F

    2016-01-01

    We have measured the running of the effective QED coupling constant $\\alpha(s)$ in the time-like region $0.6<\\sqrt s< 0.975$ GeV with the KLOE detector at DA$\\Phi$NE using the Initial State Radiation process $e^+e^-\\to\\mu^+ \\mu^-\\gamma$. It represents the first measurement of the running of $\\alpha(s)$ in this energy region. Our results show a more than 5$\\sigma$ significance of the hadronic contribution to the running of $\\alpha(s)$, which is the strongest direct evidence both in time- and space-like regions achieved in a single measurement. By using the $e^+e^-\\to\\pi^+\\pi^-$ cross section measured by KLOE, the real and imaginary part of the shift $\\Delta\\alpha(s)$ has been extracted. By a fit of the real part of $\\Delta\\alpha(s)$ and assuming the lepton universality the branching ratio $BR(\\omega\\to\\mu^+\\mu^-) = (6.6\\pm1.4_{stat}\\pm1.7_{syst})\\cdot 10^{-5} $ has been determined.

  19. Measurement of the running of the fine structure constant below 1 GeV with the KLOE detector

    Directory of Open Access Journals (Sweden)

    A. Anastasi

    2017-04-01

    Full Text Available We have measured the running of the effective QED coupling constant α(s in the time-like region 0.6GeV with the KLOE detector at DAΦNE using the Initial-State Radiation process e+e−→μ+μ−γ. It represents the first measurement of the running of α(s in this energy region. Our results show a more than 5σ significance of the hadronic contribution to the running of α(s, which is the strongest direct evidence both in time- and space-like regions achieved in a single measurement. By using the e+e−→π+π− cross section measured by KLOE, the real and imaginary parts of the shift Δα(s have been extracted. From a fit of the real part of Δα(s and assuming the lepton universality the branching ratio BR(ω→μ+μ−=(6.6±1.4stat±1.7syst⋅10−5 has been determined.

  20. Particle tracking at 4K: The Fast Annihilation Cryogenic Tracking (FACT) detector for the AEgIS antimatter gravity experiment

    CERN Document Server

    Storey, J; Ahlén, O; Amsler, C; Ariga, A; Ariga, T; Belov, A.S; Bonomi, G; Bräunig, P; Bremer, J; Brusa, R.S; Burghart, G; Cabaret, L; Canali, C; Carante, M; Caravita, R; Castelli, F; Cerchiari, G; Cialdi, S; Comparat, D; Consolati, G; Dassa, L; Di Domizio, S; Di Noto, L; Doser, M; Dudarev, A; Ereditato, A; Ferragut, R; Fontana, A; Genova, P; Giammarchi, M; Gligorova, A; Gninenko, S.N; Haider, S; Hogan, S.D; Huse, T; Jordan, E; Jørgensen, L.V; Kaltenbacher, T; Kawada, J; Kellerbauer, A; Kimura, M; Knecht, A; Krasnický, D; Lagomarsino, V; Magnani, A; Mariazzi, S; Matveev, V.A; Merkt, F; Moia, F; Nebbia, G; Nédélec, P; Oberthaler, M.K; Pacifico, N; Petrácek, V; Pistillo, C; Prelz, F; Prevedelli, M; Regenfus, C; Riccardi, C; Røhne, O; Rotondi, A; Sandaker, H; Scampoli, P; Spacek, M; Subieta Vasquez, M.A; Testera, G; Trezzi, D; Vaccarone, R; Zavatarelli, S

    2013-01-01

    The AEgIS experiment is an international collaboration with the main goal of performing the fi rst direct measurement of the Earth ' s gravitational acceleration on antimatter. Critical to the success of AEgIS is the production of cold antihydrogen ( H) atoms. The FACT detector is used to measure the production and temperature of the H atoms and for establishing the formation of a H beam. The operating requirements for this detector are very challenging: it must be able to identify each of the thousand or so annihilations in the 1 ms period of pulsed H production, operate at 4 K inside a 1 T solenoidal fi eld and not produce more than 10 W of heat. The FACT detector consists of two concentric cylindrical layers of 400 scintillator fi bres with a 1 mm diameter and a 0.6 mm pitch. The scintillating fi bres are coupled to clear fi bres which transport the scintillation light to 800 silicon photomultipliers. Each silicon photomultiplier signal is connected to a linear ampli fi er and a fast discriminator, the out...

  1. Study of the process $e^+e^-\\to\\omega\\eta\\pi^0$ in the energy range $\\sqrt{s} <2$ GeV with the SND detector

    CERN Document Server

    Achasov, M N; Barnyakov, A Yu; Beloborodov, K I; Berdyugin, A V; Berkaev, D E; Bogdanchikov, A G; Botov, A A; Dimova, T V; Druzhinin, V P; Golubev, V B; Kardapoltsev, L V; Kharlamov, A G; Koop, I A; Korol, A A; Kovrizhin, D P; Koshuba, S V; Kupich, A S; Lysenko, A P; Melnikova, N A; Martin, K A; Pakhtusova, E V; Obrazovsky, A E; Perevedentsev, E A; Rogovsky, Yu A; Serednyakov, S I; Silagadze, Z K; Shatunov, Yu M; Shatunov, P Yu; Shtol, D A; Skrinsky, A N; Surin, I K; Tikhonov, Yu A; Usov, Yu V; Vasiljev, A V; Zemlyansky, I M

    2016-01-01

    The process $e^+e^-\\to\\omega\\eta\\pi^0$ is studied in the energy range $1.45-2.00$ GeV using data with an integrated luminosity of 33 pb$^{-1}$ accumulated by the SND detector at the $e^+e^-$ collider VEPP-2000. The $e^+e^-\\to\\omega\\eta\\pi^0$ cross section is measured for the first time. The cross section has a threshold near 1.75 GeV. Its value is about 2 nb in the energy range $1.8-2.0$ GeV. The dominant intermediate state for the process $e^+e^- \\to \\omega\\eta\\pi^0$ is found to be $\\omega a_0(980)$.

  2. Study of the Solar Anisotropy for Cosmic Ray Primaries of about 200 GeV Energy with the L3+C Muon Detector

    CERN Document Server

    Achard, P; Aguilar-Benitez, M; van den Akker, M; Alcaraz, J; Alemanni, G; Allaby, J; Aloisio, A; Alviggi, M G; Anderhub, H; Andreev, Valery P; Anselmo, F; Arefev, A; Azemoon, T; Aziz, T; Bagnaia, P; Bajo, A; Baksay, G; Baksay, L; Bahr, J; Baldew, S V; Banerjee, S; Banerjee, Sw; Barczyk, A; Barillere, R; Bartalini, P; Basile, M; Batalova, N; Battiston, R; Bay, A; Becattini, F; Becker, U; Behner, F; Bellucci, L; Berbeco, R; Berdugo, J; Berges, P; Bertucci, B; Betev, B L; Biasini, M; Biglietti, M; Biland, A; Blaising, J J; Blyth, S C; Bobbink, G J; Bohm, A; Boldizsar, L; Borgia, B; Bottai, S; Bourilkov, D; Bourquin, M; Braccini, S; Branson, J G; Brochu, F; Burger, J D; Burger, W J; Cai, X D; Capell, M; Cara Romeo, G; Carlino, G; Cartacci, A; Casaus, J; Cavallari, F; Cavallo, N; Cecchi, C; Cerrada, M; Chamizo, M; Chiarusi, T; Chang, Y H; Chemarin, M; Chen, A; Chen, G; Chen, G M; Chen, H F; Chen, H S; Chiefari, G; Cifarelli, L; Cindolo, F; Clare, I; Clare, R; Coignet, G; Colino, N; Costantini, S; de la Cruz, B; Cucciarelli, S; van Dalen, J; de Asmundis, R; Deglon, P; Debreczeni, J; Degre, A; Dehmelt, K; Deiters, K; della Volpe, D; Delmeire, E; Denes, P; DeNotaristefani, F; De Salvo, A; Diemoz, M; Dierckxsens, M; Ding, L K; Dionisi, C; Dittmar, M; Doria, A; Dova, M T; Duchesneau, D; Duda, M; Duran, I; Echenard, B; Eline, A; El Hage, A; El Mamouni, H; Engler, A; Eppling, F J; Extermann, P; Faber, G; Falagan, M A; Falciano, S; Favara, A; Fay, J; Fedin, O; Felcini, M; Ferguson, T; Fesefeldt, H; Fiandrini, E; Field, J H; Filthaut, F; Fisher, W; Fisk, I; Forconi, G; Freudenreich, K; Furetta, C; Galaktionov, Iouri; Ganguli, S N; Garcia-Abia, Pablo; Gataullin, M; Gentile, S; Giagu, S; Gong, Z F; Grabosch, H J; Grenier, G; Grimm, O; Groenstege, H; Gruenewald, M W; Guida, M; Guo, Y N; Gupta, S; Gupta, V K; Gurtu, A; Gutay, L J; Haas, D; Haller, Ch; Hatzifotiadou, D; Hayashi, Y; He, Z X; Hebbeker, T; Herve, Alain; Hirschfelder, J; Hofer, H; Hohlmann, M; Holzner, G; Hou, S R; Huo, A X; Hu, Y; Ito, N; Jin, B N; Jing, C L; Jones, Lawrence W; de Jong, P; Josa-Mutuberria, I; Kantserov, V; Kaur, M; Kawakami, S; Kienzle-Focacci, M N; Kim, J K; Kirkby, Jasper; Kittel, W; Klimentov, A; Konig, A C; Kok, E; Korn, A; Kopal, M; Koutsenko, V; Kraber, M; Kuang, H H; Kraemer, R W; Kruger, A; Kuijpers, J; Kunin, A; Ladron de Guevara, P; Laktineh, I; Landi, G; Lebeau, M; Lebedev, A; Lebrun, P; Lecomte, P; Lecoq, P; Le Coultre, P; Le Goff, J M; Lei, Y; Leich, H; Leiste, R; Levtchenko, M; Levtchenko, P; Li, C; Li, L; Li, Z C; Likhoded, S; Lin, C H; Lin, W T; Linde, F L; Lista, L; Liu, Z A; Lohmann, W; Longo, E; Lu, Y S; Luci, C; Luminari, L; Lustermann, W; Ma, W G; Ma, X H; Ma, Y Q; Malgeri, L; Malinin, A; Mana, C; Mans, J; Martin, J P; Marzano, F; Mazumdar, K; McNeil, R R; Mele, S; Meng, X W; Merola, L; Meschini, M; Metzger, W J; Mihul, A; van Mil, A; Milcent, H; Mirabelli, G; Mnich, J; Mohanty, G B; Monteleoni, B; Muanza, y G S; Muijs, A J M; Musicar, B; Musy, M; Nagy, S; Nahnhauer, R; Naumov, V A; Natale, S; Napolitano, M; Nessi-Tedaldi, F; Newman, H; Nisati, A; Novak, T; Kluge, Hannelies; Ofierzynski, R; Organtini, G; Pal, I; Palomares, C; Paolucci, P; Paramatti, R; Parriaud, J -F; Passaleva, G; Patricelli, S; Paul, Thomas Cantzon; Pauluzzi, M; Paus, C; Pauss, F; Pedace, M; Pensotti, S; Perret-Gallix, D; Petersen, B; Piccolo, D; Pierella, F; Pieri, M; Pioppi, M; Piroue, P A; Pistolesi, E; Plyaskin, V; Pohl, M; Pojidaev, V; Pothier, J; Prokofev, D; Quartieri, J; Qing, C R; Rahal-Callot, G; Rahaman, Mohammad Azizur; Raics, P; Raja, N; Ramelli, R; Rancoita, P G; Ranieri, R; Raspereza, A; Ravindran, K C; Razis, P; Ren, D; Rescigno, M; Reucroft, S; Rewiersma, P; Riemann, y S; Riles, Keith; Roe, B P; Rojkov, A; Romero, L; Rosca, A; Rosemann, C; Rosenbleck, C; Rosier-Lees, S; Roth, Stefan; Rubio, J A; Ruggiero, G; Rykaczewski, H; Saidi, R; Sakharov, A; Saremi, S; Sarkar, S; Salicio, J; Sanchez, E; Schafer, C; Schegelsky, V; Schmitt, V; Schoeneich, B; Schopper, H; Schotanus, D J; Sciacca, C; Servoli, L; Shen, C Q; Shevchenko, S; Shivarov, N; Shoutko, V; Shumilov, E; Shvorob, A; Son, D; Souga, C; Spillantini, P; Steuer, M; Stickland, D P; Stoyanov, B; Straessner, A; Sudhakar, K; Sulanke, H; Sultanov, G; Sun, L Z; Sushkov, S; Suter, H; Swain, J D; Szillasi, Z; Tang, X W; Tarjan, P; Tauscher, L; Taylor, L; Tellili, B; Teyssier, D; Timmermans, Charles; Ting, Samuel C C; Ting, S M; Tonwar, S C; Toth, J; Trowitzsch, G; Tully, C; Tung, K L; Ulbricht, J; Unger, M; Valente, E; Verkooijen, H; Van de Walle, R T; Vasquez, R; Veszpremi, V; Vesztergombi, G; Vetlitsky, I; Vicinanza, D; Viertel, G; Villa, S; Vivargent, M; Vlachos, S; Vodopianov, I; Vogel, H; Vogt, H; Vorobev, I; Vorobyov, A A; Wadhwa, M; Wang, R G; Wang, Q; Wang, X L; Wang, X W; Wang, Z M; Weber, M; van Wijk, R; Wijnen, T A M; Wilkens, H; Wynhoff, S; Xia, L; Xu, Y P; Xu, J S; Xu, Z Z; Yamamoto, J; Yang, B Z; Yang, C G; Yang, H J; Yang, M; Yang, X F; Yao, Z G; Yeh, S C; Yu, Z Q; Zalite, An; Zalite, Yu; Zhang, C; Zhang, F; Zhang, J; Zhang, S; Zhang, Z P; Zhao, J; Zhou, S J; Zhu, G Y; Zhu, R Y; Zhuang, H L; Zhu, Q Q; Zichichi, A; Zimmermann, B; Zoller, M; Zwart, A N M

    2008-01-01

    Primary cosmic rays experience multiple deflections in the nonuniform galactic and heliospheric magnetic fields which may generate anisotropies. A study of anisotropies in the energy range between 100 and 500 GeV is performed. This energy range is not yet well explored. The L3 detector at the CERN electron-positron collider, LEP, is used for a study of the angular distribution of atmospheric muons with energies above 20 GeV. This distribution is used to investigate the isotropy of the time-dependent intensity of the primary cosmic-ray flux with a Fourier analysis. A small deviation from isotropy at energies around 200 GeV is observed for the second harmonics at the solar frequency. No sidereal anisotropy is found at a level above 10^-4. The measurements have been performed in the years 1999 and 2000.

  3. First Results from the Cryogenic Dark Matter Search in the Soudan Underground Lab

    CERN Document Server

    Akerib, D S; Armel-Funkhouser, M S; Attisha, M J; Baudis, L; Bauer, D A; Beaty, J; Brink, P L; Bunker, R; Cabrera, B; Caldwell, D O; Callahan, D; Castle, J P; Chang, C L; Choate, R; Crisler, M B; Cushman, P; Dixon, R; Dragowsky, M R; Driscoll, D D; Duong, L; Emes, J; Ferril, R; Filippini, J; Gaitskell, R J; Haldeman, M; Hale, D; Holmgren, D; Huber, M E; Johnson, B; Johnson, W; Kamat, S; Kozlovsky, M; Kula, L; Kyre, S; Lambin, B; Lu, A; Mahapatra, R; Manalaysay, A G; Mandic, V; May, J; McDonald, R; Merkel, B; Meunier, P; Mirabolfathi, N; Morrison, S; Nelson, H; Nelson, R; Novak, L; Ogburn, R W; Orr, S; Perera, T A; Perillo-Isaac, M C; Ramberg, E; Rau, W; Reisetter, A; Ross, R R; Saab, T; Sadoulet, B; Sander, J; Savage, C; Schmitt, R L; Schnee, R W; Seitz, D N; Serfass, B; Smith, A; Smith, G; Spadafora, A L; Sundqvist, K; Thompson, J P F; Tomada, A; Wang, G; Williams, J; Yellin, S; Young, B A

    2004-01-01

    We report the first results from a search for weakly interacting massive particles (WIMPs) in the Cryogenic Dark Matter Search (CDMS) experiment at the Soudan Underground Laboratory. Four Ge and two Si detectors were operated for 52.6 live days, providing 19.4 kg-d of Ge net exposure after cuts for recoil energies between 10-100 keV. A blind analysis was performed using only calibration data to define the energy threshold and selection criteria for nuclear-recoil candidates. These data set the world's lowest exclusion limits on the coherent WIMP-nucleon scalar cross-section for all WIMP masses above 15 GeV, ruling out a significant range of neutralino supersymmetric models. The minimum of the limit curve at the 90% C.L. is 4 x 10^{-43} cm^2 at a WIMP mass of 60 GeV.

  4. Performance of Hamamatsu R11410-20 PMTs under intense illumination in a two-phase cryogenic emission detector

    Science.gov (United States)

    Akimov, D. Yu.; Belov, V. A.; Bolozdynya, A. I.; Kaplin, V. A.; Khromov, A. V.; Kozlova, E. S.; Maklyaev, E. F.; Melikyan, Yu. A.; Shakirov, A. V.; Sosnovtsev, V. V.

    2016-12-01

    Hamamatsu R11410-20 PMTs are used in the RED-100 two-phase xenon emission detector built to search for the rare process of coherent elastic neutrino-nucleus scattering using intense artificial neutrino flux. We demonstrate how to adapt the PMTs for their operation under strong illumination caused by electroluminescent signals from gamma and cosmogenic muon backgrounds which are significant at shallow depth experimental sites. The PMT linearity is demonstrated for signals in the dynamic range from 1 to 2*104 photoelectrons. Impact of a photoelectric effect at the PMT first dynode to the capabilities of the RED-100 photodetection system is studied and quantified.

  5. Monte Carlo Comparisons to a Cryogenic Dark Matter Search Detector with low Transition-Edge-Sensor Transition Temperature

    CERN Document Server

    Leman, S W; Brink, P L; Cabrera, B; Cherry, M; Silva, E Do Couto E; Figueroa-Feliciano, E; Kim, P; Mirabolfathi, N; Pyle, M; Resch, R; Sadoulet, B; Serfass, B; Sundqvist, K M; Tomada, A; Young, B A

    2011-01-01

    We present results on phonon quasidiffusion and Transition Edge Sensor (TES) studies in a large, 3 inch diameter, 1 inch thick [100] high purity germanium crystal, cooled to 50 mK in the vacuum of a dilution refrigerator, and exposed with 59.5 keV gamma-rays from an Am-241 calibration source. We compare calibration data with results from a Monte Carlo which includes phonon quasidiffusion and the generation of phonons created by charge carriers as they are drifted across the detector by ionization readout channels. The phonon energy is then parsed into TES based phonon readout channels and input into a TES simulator.

  6. Magnetic Microcalorimeter Gamma Detectors for High-Precision Non-Destructive Analysis, FY14 Extended Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Friedrich, S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-02-06

    Cryogenic gamma (γ) detectors with operating temperatures of ~0.1 K or below offer 10× better energy resolution than conventional high-purity germanium detectors that are currently used for non-destructive analysis (NDA) of nuclear materials. This can greatly increase the accuracy of NDA, especially at low-energies where gamma rays often have similar energies and cannot be resolved by Ge detectors. We are developing cryogenic γ–detectors based on metallic magnetic calorimeters (MMCs), which have the potential of higher resolution, faster count rates and better linearity than other cryogenic detector technologies. High linearity is essential to add spectra from different pixels in detector arrays that are needed for high sensitivity. Here we discuss the fabrication of a new generation of MMC γ–detectors in FY2014, and the resulting improvements in energy resolution and linearity of the new design. As an example of the type of NDA that cryogenic detectors enable, we demonstrate the direct detection of Pu-242 emissions with our MMC γ–detectors in the presence of Pu-240, and show that a quantitative NDA analysis agrees with the mass spectrometry

  7. Helium cryogenics

    CERN Document Server

    Van Sciver, Steven W

    2012-01-01

    Twenty five years have elapsed since the original publication of Helium Cryogenics. During this time, a considerable amount of research and development involving helium fluids has been carried out culminating in several large-scale projects. Furthermore, the field has matured through these efforts so that there is now a broad engineering base to assist the development of future projects. Helium Cryogenics, 2nd edition brings these advances in helium cryogenics together in an updated form. As in the original edition, the author's approach is to survey the field of cryogenics with emphasis on helium fluids. This approach is more specialized and fundamental than that contained in other cryogenics books, which treat the associated range of cryogenic fluids. As a result, the level of treatment is more advanced and assumes a certain knowledge of fundamental engineering and physics principles, including some quantum mechanics. The goal throughout the work is to bridge the gap between the physics and engineering aspe...

  8. Detection of antihydrogen with a Si- mu -strip and CsI-crystal detector at cryogenic temperature

    CERN Document Server

    Regenfus, C

    2001-01-01

    ATHENA, one of 3 experiments at the new low energy antiproton facility at CERN (AD), is designed for testing fundamental physic principles (CPT, Gravitation) to a high degree of precision by comparing cold antihydrogen to hydrogen. To monitor the production of the antihydrogen atoms and their spectroscopic response, a new detector dedicated for the endproducts of antihydrogen annihilations was developed. To meet the requirements of low temperature operation (77 K) in a high magnetic field, compact size, low power consumption and high granularity, a combination of two layers of each 16 double sided Si- mu -strip modules (16 cm long) was chosen, surrounded by 192 pure-CsI crystals (each approximately= 4 cm/sup 3/), which are read by UV sensitive photo diodes. The frontend electronics (working point 77 K), realised in VLSI CMOS technique, features a self triggering capability of independent sub modules.

  9. Cryogenic exciter

    Science.gov (United States)

    Bray, James William [Niskayuna, NY; Garces, Luis Jose [Niskayuna, NY

    2012-03-13

    The disclosed technology is a cryogenic static exciter. The cryogenic static exciter is connected to a synchronous electric machine that has a field winding. The synchronous electric machine is cooled via a refrigerator or cryogen like liquid nitrogen. The static exciter is in communication with the field winding and is operating at ambient temperature. The static exciter receives cooling from a refrigerator or cryogen source, which may also service the synchronous machine, to selected areas of the static exciter and the cooling selectively reduces the operating temperature of the selected areas of the static exciter.

  10. The search for Higgs boson production in the four-jet channel at $192 < \\sqrt{s} < 202$ GeV with the ALEPH detector at LEP

    CERN Document Server

    Smith, D H

    2001-01-01

    A search for neutral Higgs boson production in e sup + e sup - collisions using data collected by the ALEPH detector at the LEP accelerator is presented. Approximately 413 pb sup - sup 1 of data collected at centre of mass energies between 188.6 and 201.6 GeV during 1998 and 1999 is used. The selection of candidates is described and the results of the search are presented and interpreted. Particular attention is given to the selection of the final states with four hadronic jets. No evidence of Higgs boson production is found. In the context of the Standard Model the lower limit on the Higgs boson mass is set at 105.2 GeV/c sup 2 at the 95% confidence level. A search for neutral Higgs boson production in e+e- collisions using data collected by the ALEPH detector and the LEP accelerator is presented. Approximately 413pb-1 of data collected at centre-of-mass energies between 188.6 and 201.6GeV during 1998 and 1999 is used. The selection of candidates is described and the results of the search are presented and i...

  11. The Cryogenic Dark Matter Search: First 5-Tower Data and Improved Understanding of Ionization Collection

    Energy Technology Data Exchange (ETDEWEB)

    Bailey, Catherine N. [Case Western Reserve Univ., Cleveland, OH (United States)

    2010-01-01

    The Cryogenic Dark Matter Search (CDMS) is searching for Weakly Interacting Massive Particles (WIMPs) with cryogenic particle detectors. These detectors have the ability to discriminate between nuclear recoil candidate and electron recoil background events by collecting both phonon and ionization energy from recoils in the detector crystals. The CDMS-II experiment has completed analysis of the first data runs with 30 semiconductor detectors at the Soudan Underground Laboratory, resulting in a world leading WIMP-nucleon spin-independent cross section limit for WIMP masses above 44 GeV/c2. As CDMS aims to achieve greater WIMP sensitivity, it is necessary to increase the detector mass and discrimination between signal and background events. Incomplete ionization collection results in the largest background in the CDMS detectors as this causes electron recoil background interactions to appear as false candidate events. Two primary causes of incomplete ionization collection are surface and bulk trapping. Recent work has been focused on reducing surface trapping through the modification of fabrication methods for future detectors. Analyzing data taken with test devices has shown that hydrogen passivation of the amorphous silicon blocking layer worsens surface trapping. Additional data has shown that the iron-ion implantation used to lower the critical temperature of the tungsten transition-edge sensors causes a degradation of the ionization collection. Using selective implantation on future detectors may improve ionization collection for events near the phonon side detector surface. Bulk trapping is minimized by neutralizing ionized lattice impurities. Detector investigations at testing facilities and in situ at the experimental site have provided methods to optimize the neutralization process and monitor running conditions to maintain full ionization collection. This work details my contribution to the 5-tower data taking, monitoring, and analysis effort as

  12. Cross section and couplings measurements with the ATLAS detector for the 125 GeV Higgs Boson

    CERN Document Server

    Herde, Hannah; The ATLAS collaboration

    2017-01-01

    Detailed measurements of the properties of the 125 GeV Higgs boson are fundamental for the understanding of the electroweak symmetry breaking mechanism. Measurements of the Higgs boson allow to study the gauge, loop induced and Yukawa couplings of the Higgs boson both in production and decay modes. This talk summarizes recent ATLAS measurements of the 125 GeV Higgs boson.

  13. MCP-based Photodetectors for Cryogenic Applications

    CERN Document Server

    Dharmapalan, Ranjan; Byrum, Karen; Demarteau, Marcel; Elam, Jeffrey; May, Edward; Wagner, Robert; Walters, Dean; Xia, Lei; Xie, Junqi; Zhao, Huyue; Wang, J

    2016-01-01

    The Argonne MCP-based photo detector is an offshoot of the Large Area Pico-second Photo Detector (LAPPD) project, wherein 6 cm x 6 cm sized detectors are made at Argonne National Laboratory. We have successfully built and tested our first detectors for pico-second timing and few mm spatial resolution. We discuss our efforts to customize these detectors to operate in a cryogenic environment. Initial plans aim to operate in liquid argon. We are also exploring ways to mitigate wave length shifting requirements and also developing bare-MCP photodetectors to operate in a gaseous cryogenic environment.

  14. A New 76Ge Double Beta Decay Experiment at LNGS

    CERN Document Server

    Abt, I; Bakalyarov, A; Barabanov, I; Bauer, C; Bellotti, E; Belyaev, S T; Bezrukov, L; Brudanin, V; Buettner, C; Bolotsky, V P; Caldwell, A; Cattadori, C; Clement, H; Vacri, A D; Eberth, J; Egorov, V; Grigoriev, G V; Gurentsov, V I; Gusev, K; Hampel, W; Heusser, G; Hofmann, W; Jochum, J; Junker, M; Kiko, J; Kirpichnikov, I V; Klimenko, A; Knöpfle, K T; Kornoukhov, V N; Laubenstein, M; Lebedev, V; Liu, X; Nemchenok, I B; Pandola, L; Sandukovsky, V; Schönert, S; Scholl, S; Schwingenheuer, B; Simgen, H; Smolnikov, A A; Tikhomirov, A; Vasenko, A A; Vasilev, S; Weisshaar, D; Yanovich, E A; Yurkovski, J; Zhukov, S; Zuzel, G

    2004-01-01

    This Letter of Intent has been submitted to the Scientific Committee of the INFN Laboratori Nazionali del Gran Sasso (LNGS) in March 2004. It describes a novel facility at the LNGS to study the double beta decay of 76Ge using an (optionally active) cryogenic fluid shield. The setup will allow to scrutinize with high significance on a short time scale the current evidence for neutrinoless double beta decay of 76Ge using the existing 76Ge diodes from the previous Heidelberg-Moscow and IGEX experiments. An increase in the lifetime limit can be achieved by adding more enriched detectors, remaining thereby background-free up to a few 100 kg-years of exposure.

  15. Measurement of K+ production cross section by 8 GeV protons using high energy neutrino interactions in the SciBooNE detector

    CERN Document Server

    Cheng, G

    2011-01-01

    The SciBooNE Collaboration reports K+ production cross section and rate measurements using high energy daughter muon neutrino scattering data off the SciBar polystyrene (C8H8) target in the SciBooNE detector. The K+ mesons are produced by 8 GeV protons striking a beryllium target in Fermilab Booster Neutrino Beam line (BNB). Using observed neutrino and antineutrino events in SciBooNE, we measure d2{\\sigma}/dpd{\\Omega} = (5.34 \\times 0.76) mb/(GeV/c \\times sr) for p + Be -> K+ + X at mean K+ energy of 3.9 GeV and angle (with respect to the proton beam direction) of 3.7 degrees, corresponding to the selected K+ sample. Compared to Monte Carlo predictions using previous higher energy K+ production measurements, this measurement, which uses the NUANCE neutrino interaction generator, is consistent with a normalization factor of 0.85\\times0.12. This agreement is evidence that the extrapolation of the higher energy K+ measurements to an 8 GeV beam energy using Feynman scaling is valid. This measurement reduces the e...

  16. Status and Performance of New Silicon Stripixel Detector for the PHENIX Experiment at RHIC Beta Source, Cosmic-rays and Proton Beam at 120 GeV

    CERN Document Server

    Nouicer, Rachid

    2009-01-01

    We are constructing a Silicon Vertex Tracker detector (VTX) for the PHENIX experiment at RHIC. Our main motivation is to enable measurements of heavy flavor production (charm and beauty) in p+p, p+d and A+A collisions. Such data will illuminate the properties of the matter created in high-energy heavy-ion collisions. The measurements also will reveal the distribution of gluons in protons from p+p collisions. The VTX detector consists of four layers of barrel detectors and covers |eta|< 1.2, and almost a 2pi in azimuth. The inner two silicon barrels consist of silicon pixel sensors; their technology accords with that of the ALICE1LHCB sensor-readout hybrid. The outer two barrels are silicon stripixel detectors with a new "spiral" design, and a single-sided sensor with 2-dimensional (X, U) readout. In this paper, we describe the silicon stripixel detector and discuss its performance, including its response to electrons from a beta source (90Sr), muons from cosmic-rays, and a 120 GeV proton beam. The results ...

  17. Study of the muon-pair production at centre-of-mass energies from 20 to 136 GeV with the ALEPH detector

    CERN Document Server

    Barate, R; Décamp, D; Ghez, P; Goy, C; Lees, J P; Lucotte, A; Minard, M N; Nief, J Y; Odier, P; Pietrzyk, B; Casado, M P; Chmeissani, M; Comas, P; Crespo, J M; Delfino, M C; Fernández, E; Fernández-Bosman, M; Garrido, L; Juste, A; Martínez, M; Orteu, S; Padilla, C; Park, I C; Pascual, A; Perlas, J A; Riu, I; Sánchez, F; Teubert, F; Colaleo, A; Creanza, D; De Palma, M; Gelao, G; Iaselli, Giuseppe; Maggi, G; Maggi, M; Marinelli, N; Nuzzo, S; Ranieri, A; Raso, G; Ruggieri, F; Selvaggi, G; Silvestris, L; Tempesta, P; Tricomi, A; Zito, G; Huang, X; Lin, J; Ouyang, Q; Wang, T; Xie, Y; Xu, R; Xue, S; Zhang, J; Zhang, L; Zhao, W; Abbaneo, D; Alemany, R; Bazarko, A O; Bright-Thomas, P G; Cattaneo, M; Cerutti, F; Drevermann, H; Forty, Roger W; Frank, M; Hagelberg, R; Harvey, J; Janot, P; Jost, B; Kneringer, E; Knobloch, J; Lehraus, Ivan; Lutters, G; Mato, P; Minten, Adolf G; Miquel, R; Mir, L M; Moneta, L; Oest, T; Pacheco, A; Pusztaszeri, J F; Ranjard, F; Rensing, P E; Rizzo, G; Rolandi, Luigi; Schlatter, W D; Schmelling, M; Schmitt, M; Schneider, O; Tejessy, W; Tomalin, I R; Venturi, A; Wachsmuth, H W; Wagner, A; Ajaltouni, Ziad J; Barrès, A; Boyer, C; Falvard, A; Ferdi, C; Gay, P; Guicheney, C; Henrard, P; Jousset, J; Michel, B; Monteil, S; Montret, J C; Pallin, D; Perret, P; Podlyski, F; Proriol, J; Rosnet, P; Rossignol, J M; Fearnley, Tom; Hansen, J B; Hansen, J D; Hansen, J R; Hansen, P H; Nilsson, B S; Rensch, B; Wäänänen, A; Daskalakis, G; Kyriakis, A; Markou, C; Simopoulou, Errietta; Vayaki, Anna; Zachariadou, K; Blondel, A; Brient, J C; Machefert, F P; Rougé, A; Rumpf, M; Valassi, Andrea; Videau, H L; Focardi, E; Parrini, G; Corden, M; Georgiopoulos, C H; Jaffe, D E; Antonelli, A; Bencivenni, G; Bologna, G; Bossi, F; Campana, P; Capon, G; Casper, David William; Chiarella, V; Felici, G; Laurelli, P; Mannocchi, G; Murtas, F; Murtas, G P; Passalacqua, L; Pepé-Altarelli, M; Curtis, L; Dorris, S J; Halley, A W; Knowles, I G; Lynch, J G; O'Shea, V; Raine, C; Scarr, J M; Smith, K; Teixeira-Dias, P; Thompson, A S; Thomson, E; Thomson, F; Turnbull, R M; Becker, U; Geweniger, C; Graefe, G; Hanke, P; Hansper, G; Hepp, V; Kluge, E E; Putzer, A; Schmidt, M; Sommer, J; Tittel, K; Werner, S; Wunsch, M; Beuselinck, R; Binnie, David M; Cameron, W; Dornan, Peter J; Girone, M; Goodsir, S M; Martin, E B; Morawitz, P; Moutoussi, A; Nash, J; Sedgbeer, J K; Stacey, A M; Williams, M D; Dissertori, G; Girtler, P; Kuhn, D; Rudolph, G; Betteridge, A P; Bowdery, C K; Colrain, P; Crawford, G; Finch, A J; Foster, F; Hughes, G; Jones, R W L; Sloan, Terence; Whelan, E P; Williams, M I; Hoffmann, C; Jakobs, K; Kleinknecht, K; Quast, G; Renk, B; Rohne, E; Sander, H G; Van Gemmeren, P; Zeitnitz, C; Aubert, Jean-Jacques; Benchouk, C; Bonissent, A; Bujosa, G; Calvet, D; Carr, J; Coyle, P; Diaconu, C A; Konstantinidis, N P; Leroy, O; Payre, P; Rousseau, D; Talby, M; Sadouki, A; Thulasidas, M; Tilquin, A; Trabelsi, K; Aleppo, M; Ragusa, F; Berlich, R; Blum, Walter; Büscher, V; Dietl, H; Dydak, Friedrich; Ganis, G; Gotzhein, C; Kroha, H; Lütjens, G; Lutz, Gerhard; Männer, W; Moser, H G; Richter, R H; Rosado-Schlosser, A; Schael, S; Settles, Ronald; Seywerd, H C J; Saint-Denis, R; Stenzel, H; Wiedenmann, W; Wolf, G; Boucrot, J; Callot, O; Chen, S; Cordier, A; Davier, M; Duflot, L; Grivaz, J F; Heusse, P; Höcker, A; Jacholkowska, A; Jacquet, M; Kim, D W; Le Diberder, F R; Lefrançois, J; Lutz, A M; Nikolic, I A; Park, H J; Schune, M H; Simion, S; Veillet, J J; Videau, I; Zerwas, D; Azzurri, P; Bagliesi, G; Batignani, G; Bettarini, S; Bozzi, C; Calderini, G; Carpinelli, M; Ciocci, M A; Ciulli, V; Dell'Orso, R; Fantechi, R; Ferrante, I; Giassi, A; Gregorio, A; Ligabue, F; Lusiani, A; Marrocchesi, P S; Messineo, A; Palla, Fabrizio; Sanguinetti, G; Sciabà, A; Spagnolo, P; Steinberger, Jack; Tenchini, Roberto; Tonelli, G; Vannini, C; Verdini, P G; Blair, G A; Bryant, L M; Chambers, J T; Gao, Y; Green, M G; Medcalf, T; Perrodo, P; Strong, J A; Von Wimmersperg-Töller, J H; Botterill, David R; Clifft, R W; Edgecock, T R; Haywood, S; Maley, P; Norton, P R; Thompson, J C; Wright, A E; Bloch-Devaux, B; Colas, P; Kozanecki, Witold; Lançon, E; Lemaire, M C; Locci, E; Pérez, P; Rander, J; Renardy, J F; Roussarie, A; Schuller, J P; Schwindling, J; Trabelsi, A; Vallage, B; Black, S N; Dann, J H; Kim, H Y; Litke, A M; McNeil, M A; Taylor, G; Booth, C N; Boswell, R; Brew, C A J; Cartwright, S L; Combley, F; Kelly, M S; Lehto, M H; Newton, W M; Reeve, J; Thompson, L F; Affholderbach, K; Böhrer, A; Brandt, S; Cowan, G D; Grupen, Claus; Saraiva, P; Smolik, L; Stephan, F; Apollonio, M; Bosisio, L; Della Marina, R; Giannini, G; Gobbo, B; Musolino, G; Pütz, J; Rothberg, J E; Wasserbaech, S R; Williams, R W; Armstrong, S R; Elmer, P; Feng, Z; Ferguson, D P S; Gao, Y S; González, S; Grahl, J; Greening, T C; Hayes, O J; Hu, H; McNamara, P A; Nachtman, J M; Orejudos, W; Pan, Y B; Saadi, Y; Scott, I J; Walsh, J; Wu Sau Lan; Wu, X; Yamartino, J M; Zheng, M; Zobernig, G

    1997-01-01

    The total cross section and the forward-backward asymmetry for the process $e^+ e^- \\rightarrow \\mu^+ \\mu^- (n \\gamma)$ are measured in the energy range 20-136 GeV by reconstructing the effective centre-of-mass energy after initial state radiation. The analysis is based on the data recorded with the ALEPH detector at LEP between 1990 and 1995, corresponding to a total integrated luminosity of 143.5 $\\mathrm{pb}^{-1}$. Two different approaches are used: in the first one an exclusive selection of events with hard initial state radiation in the energy range 20-88 GeV is directly compared with the Standard Model predictions showing good agreement. In the second one, all events are used to obtain a precise measurement of the energy dependence of $\\sigma^0$ and $A_{\\mathrm{FB}}^0$ from a model independent fit, enabling constraints to be placed on models with extra Z bosons.

  18. Measurement of sigma(e+ e- -> pi+ pi-) from threshold to 0.85 GeV^2 using Initial State Radiation with the KLOE detector

    CERN Document Server

    Ambrosino, F; Antonelli, M; Archilli, F; Beltrame, P; Bencivenni, G; Bini, C; Bloise, C; Bocchetta, S; Bossi, F; Branchini, P; Capon, G; Capussela, T; Ceradini, F; Ciambrone, P; De Lucia, E; De Santis, A; De Simone, P; De Zorzi, G; Denig, A; Di Domenico, A; Di Donato, C; Di Micco, B; Dreucci, M; Felici, G; Fiore, S; Franzini, P; Gatti, C; Gauzzi, P; Giovannella, S; Graziani, E; Jacewicz, M; Kluge, W; Lee-Franzini, J; Leone, D; Martini, M; Massarotti, P; Meola, S; Miscetti, S; Moulson, M; Müller, S; Murtas, F; Napolitano, M; Nguyen, F; Palutan, M; Passeri, A; Patera, V; Santangelo, P; Sciascia, B; Spadaro, T; Taccini, C; Tortora, L; Valente, P; Venanzoni, G; Versaci, R

    2010-01-01

    We have measured the cross section of the radiative process e+e- -> pi+pi-gamma with the KLOE detector at the Frascati phi-factory DAPHNE, from events taken at a CM energy W=1 GeV. Initial state radiation allows us to obtain the cross section for e+e- -> pi+pi-, the pion form factor |F_pi|^2 and the dipion contribution to the muon magnetic moment anomaly, Delta a_mu^{pipi} = (478.5+-2.0_{stat}+-4.8_{syst}+-2.9_{th}) x 10^{-10} in the range 0.1 < M_{pipi}^2 < 0.85 GeV^2. The discrepancy between the Standard Model evaluation of a_mu and the value measured by the Muon g-2 collaboration at BNL is confirmed.

  19. Search for GeV gamma-ray bursts with the ARGO-YBJ detector: summary of eight years of observations

    Energy Technology Data Exchange (ETDEWEB)

    Bartoli, B.; Catalanotti, S.; Piazzoli, B. D' Ettorre; Di Girolamo, T. [Dipartimento di Fisica dell' Università di Napoli " Federico II," Complesso Universitario di Monte Sant' Angelo, via Cinthia, I-80126 Napoli (Italy); Bernardini, P.; D' Amone, A.; De Mitri, I. [Dipartimento Matematica e Fisica " Ennio De Giorgi," Università del Salento, via per Arnesano, I-73100 Lecce (Italy); Bi, X. J.; Cao, Z.; Chen, S. Z. [Key Laboratory of Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Sciences, P.O. Box 918, 100049 Beijing (China); Branchini, P.; Budano, A. [Istituto Nazionale di Fisica Nucleare, Sezione di Roma Tre, via della Vasca Navale 84, I-00146 Roma (Italy); Camarri, P. [Dipartimento di Fisica dell' Università di Roma " Tor Vergata," via della Ricerca Scientifica 1, I-00133 Roma (Italy); Cardarelli, R.; Sciascio, G. Di [Istituto Nazionale di Fisica Nucleare, Sezione di Roma Tor Vergata, via della Ricerca Scientifica 1, I-00133 Roma (Italy); Chen, T. L.; Danzengluobu [Tibet University, 850000 Lhasa, Xizang (China); Creti, P. [Istituto Nazionale di Fisica Nucleare, Sezione di Lecce, via per Arnesano, I-73100 Lecce (Italy); Cui, S. W. [Hebei Normal University, Shijiazhuang 050016, Hebei (China); Dai, B. Z., E-mail: digirola@na.infn.it, E-mail: Piero.Vallania@to.infn.it, E-mail: vigorito@to.infn.it [Yunnan University, 2 North Cuihu Rd., 650091 Kunming, Yunnan (China); Collaboration: ARGO-YBJ Collaboration; and others

    2014-10-10

    The search for gamma-ray burst (GRB) emission in the energy range of 1-100 GeV in coincidence with the satellite detection has been carried out using the Astrophysical Radiation with Ground-based Observatory at YangBaJing (ARGO-YBJ) experiment. The high-altitude location (4300 m a.s.l.), the large active surface (∼6700 m{sup 2} of Resistive Plate Chambers), the wide field of view (∼2 sr, limited only by the atmospheric absorption), and the high duty cycle (>86%) make the ARGO-YBJ experiment particularly suitable to detect short and unexpected events like GRBs. With the scaler mode technique, i.e., counting all the particles hitting the detector with no measurement of the primary energy and arrival direction, the minimum threshold of ∼1 GeV can be reached, overlapping the direct measurements carried out by satellites. During the experiment lifetime from 2004 December 17 to 2013 February 7, a total of 206 GRBs occurring within the ARGO-YBJ field of view (zenith angle θ ≤ 45°) have been analyzed. This is the largest sample of GRBs investigated with a ground-based detector. Two light curve models have been assumed and since in both cases no significant excess has been found, the corresponding fluence upper limits in the 1-100 GeV energy region have been derived, with values as low as 10{sup –5} erg cm{sup –2}. The analysis of a subset of 24 GRBs with known redshift has been used to constrain the fluence extrapolation to the GeV region together with possible cutoffs under different assumptions on the spectrum.

  20. Curves for the response of a Ge(Li) detector to gamma rays in the energy range up to 11 MeV

    DEFF Research Database (Denmark)

    Kopecký, J.; Ratyński, W.; Warming, Inge Elisabeth

    1967-01-01

    The response function of a Ge(Li) coaxial detector with a sensitive volume of 17 cm3 for gamma rays of energies ranging from 2.23 to 10.83 MeV has been determined. The measurements were carried out with an experimental set-up using the neutron beam from the DR 3 reactor ar Risö and the (n, γ......) reaction as gamma-ray source. The important features of the spectra are discussed, and the double-escape peak efficiency is determined....

  1. Measurement of $R_{\\text{uds}}$ and $R$ between 3.12 and 3.72 GeV at the KEDR detector

    CERN Document Server

    Anashin, V V; Baldin, E M; Barladyan, A K; Barnyakov, A Yu; Barnyakov, M Yu; Baru, S E; Basok, I Yu; Batrakov, A M; Blinov, A E; Blinov, V E; Bobrov, A V; Bobrovnikov, V S; Bogomyagkov, A V; Bondar, A E; Buzykaev, A R; Eidelman, S I; Grigoriev, D N; Glukhovchenko, Yu M; Karnaev, S E; Karpov, G V; Karpov, S V; Kasyanenko, P V; Kharlamova, T A; Kiselev, V A; Kolmogorov, V V; Kononov, S A; Kotov, K Yu; Kravchenko, E A; Kudryavtsev, V N; Kulikov, V F; Kurkin, G Ya; Kuyanov, I A; Levichev, E B; Maksimov, D A; Malyshev, V M; Maslennikov, A L; Meshkov, O I; Mishnev, S I; Morozov, I I; Muchnoi, N Yu; Neufeld, V V; Nikitin, S A; Nikolaev, I B; Okunev, I N; Onuchin, A P; Oreshkin, S B; Osipov, A A; Ovtin, I V; Peleganchuk, S V; Pivovarov, S G; Piminov, P A; Petrov, V V; Prisekin, V G; Rezanova, O L; Ruban, A A; Sandyrev, V K; Savinov, G A; Shamov, A G; Shatilov, D N; Shwartz, B A; Simonov, E A; Sinyatkin, S V; Skrinsky, A N; Sokolov, A V; Sukharev, A M; Starostina, E V; Talyshev, A A; Tayursky, V A; Telnov, V I; Tikhonov, Yu A; Todyshev, K Yu; Tumaikin, G M; Usov, Yu V; Vorobiov, A I; Zhilich, V N; Zhulanov, V V; Zhuravlev, A N

    2016-01-01

    Using the KEDR detector at the VEPP-4M $e^+e^-$ collider, we have measured the values of $R_{\\text{uds}}$ and $R$ at seven points of the center-of-mass energy between 3.12 and 3.72 GeV. The total achieved accuracy is about or better than $3.3\\%$ at most of energy points with a systematic uncertainty of about $2.1\\%$. At the moment it is the most accurate measurement of $R(s)$ in this energy range.

  2. Application of the Monte Carlo method to the analysis of measurement geometries for the calibration of a HP Ge detector in an environmental radioactivity laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Rodenas, Jose [Departamento de Ingenieria Quimica y Nuclear, Universidad Politecnica de Valencia, Apartado 22012, E-46071 Valencia (Spain)], E-mail: jrodenas@iqn.upv.es; Gallardo, Sergio; Ballester, Silvia; Primault, Virginie [Departamento de Ingenieria Quimica y Nuclear, Universidad Politecnica de Valencia, Apartado 22012, E-46071 Valencia (Spain); Ortiz, Josefina [Laboratorio de Radiactividad Ambiental, Universidad Politecnica de Valencia, Apartado 22012, E-46071 Valencia (Spain)

    2007-10-15

    A gamma spectrometer including an HP Ge detector is commonly used for environmental radioactivity measurements. The efficiency of the detector should be calibrated for each geometry considered. Simulation of the calibration procedure with a validated computer program is an important auxiliary tool for environmental radioactivity laboratories. The MCNP code based on the Monte Carlo method has been applied to simulate the detection process in order to obtain spectrum peaks and determine the efficiency curve for each modelled geometry. The source used for measurements was a calibration mixed radionuclide gamma reference solution, covering a wide energy range (50-2000 keV). Two measurement geometries - Marinelli beaker and Petri boxes - as well as different materials - water, charcoal, sand - containing the source have been considered. Results obtained from the Monte Carlo model have been compared with experimental measurements in the laboratory in order to validate the model.

  3. Results of charged pions cross-section in proton carbon interaction at 31 GeV/c measured with the NA61/SHINE detector

    CERN Document Server

    Murphy, Sebastien

    2011-01-01

    Among other goals, the NA61/SHINE (SHINE=SPS Heavy Ion and Neutrino Experiment) detector at CERN SPS aims at precision hadro-production measurements to characterise the neutrino beam of the T2K experiment at J-PARC. These measurements are performed using a 31 GeV/c proton beam produced at the SPS with a thin carbon target and a full T2K replica target. Spectra of charged pion inclusive inelastic cross section were obtained from pilot data collected in 2007 1 with a 2 cm thick target (4% of the interaction length). The SHINE detector and its particle identification capabilities are described and the analysis techniques are briefly discussed.

  4. The response of TL lithium fluoride detectors to 24 GeV/c protons for doses ranging up to 1 MGy

    CERN Document Server

    Obryk, B; Olko, P; Pajor, A; Glaser, M; Budzanowski, M; Bilski, P

    2010-01-01

    A new method of thermoluminescent (TL) measurement of radiation doses ranging from micrograys up to a megagray has been recently developed at IFJ. This method is based on a newly discovered behavior of LiF:Mg,Cu,P detectors at doses exceeding 1 kGy. Significant changes in their glow-curves are observed at higher doses; of special importance is occurrence of a new, well separated peak for doses above 50 kGy, thus these detectors can be used for measurements of doses at ultra-high dose range. In order to check the glow-curve features in the high dose region for different types of LiF:Mg,Cu,P and LiF:Mg,Ti detectors after irradiation with heavy charged particles, tests at the 24 GeV/c proton beam of IRRAD1 irradiation zone at the CERN Proton Synchrotron accelerator up to 1 MGy were performed. The occurrence of the high dose peak in the glow-curve of LiF:Mg,Cu,P detectors resulting from heavy particles irradiation was confirmed. Results of this investigation are presented in this paper. (C) 2010 Elsevier Ltd. All...

  5. Method for converting in-situ gamma ray spectra of a portable Ge detector to an incident photon flux energy distribution based on Monte Carlo simulation

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    A matrix stripping method for the conversion of in-situ gamma ray spectrum, obtained with portable Ge detector, to photon flux energy distribution is proposed. The detector response is fully described by its stripping matrix and full absorption efficiency curve. A charge collection efficiency function is introduced in the simulation to take into account the existence of a transition zone of increasing charge collection after the inactive Ge layer. Good agreement is obtained between simulated and experimental full absorption efficiencies. The characteristic stripping matrix is determined by Monte Carlo simulation for different incident photon energies using the Geant4 toolkit system. The photon flux energy distribution is deduced by stripping the measured spectrum of the partial absorption and cosmic ray events and then applying the full absorption efficiency curve. The stripping method is applied to a measured in-situ spectrum. The value of the absorbed dose rate in air deduced from the corresponding flux energy distribution agrees well with the value measured directly in-situ.

  6. Space Detectors for Gamma Rays (100 MeV-100 GeV): from Egret to Fermi LAT

    Science.gov (United States)

    Thompson, David J.

    2015-01-01

    The design of spaceborne high-energy (E is greater than 100 MeV) gamma-ray detectors depends on two principal factors: (1) the basic physics of detecting and measuring the properties of the gamma rays; and (2) the constraints of operating such a detector in space for an extended period. Improvements in technology have enabled major advances in detector performance, as illustrated by two successful instruments, EGRET on the Compton Gamma Ray Observatory and LAT on the Fermi Gamma-ray Space Telescope.

  7. Cryogenic Systems

    Science.gov (United States)

    Hosoyama, Kenji

    2002-02-01

    In this lecture we discuss the principle of method of cooling to a very low temperature, i.e. cryogenic. The "gas molecular model" will be introduced to explain the mechanism cooling by the expansion engine and the Joule-Thomson expansion valve. These two expansion processes are normally used in helium refrigeration systems to cool the process gas to cryogenic temperature. The reverse Carnot cycle will be discussed in detail as an ideal refrigeration cycle. First the fundamental process of liquefaction and refrigeration cycles will be discussed, and then the practical helium refrigeration system. The process flow of the system and the key components; -compressor, expander, and heat exchanger- will be discussed. As an example of an actual refrigeration system, we will use the cryogenic system for the KEKB superconducting RF cavity. We will also discuss the liquid helium distribution system, which is very important, especially for the cryogenic systems used in accelerator applications. 1 Principles of Cooling and Fundamental Cooling Cycle 2 Expansion engine, Joule-Thomson expansion, kinetic molecular theory, and enthalpy 3 Liquefaction Systems 4 Refrigeration Systems 5 Practical helium liquefier/refrigeration system 6 Cryogenic System for TRISTAN Superconducting RF Cavity

  8. Production of D* mesons in photon-photon collisions at $\\sqrt{s}_{ee}$ = 183 GeV and 189 GeV using the OPAL detector at LEP

    CERN Document Server

    Patt, J

    2000-01-01

    The inclusive production of D*/sup +or-/ mesons in photon-photon collisions has been measured using the OPAL detector at LEP at e/sup +/e/sup -/ centre-of-mass energies square root (s/sub ee/) of 183 and 189 GeV. The D*/sup +/ mesons are reconstructed in their decay to D /sup 0/ pi /sup +/ with the D/sup 0/ observed in the two decay modes K/sup -/ pi /sup +/ and K/sup -/ pi /sup +/ pi /sup -/ pi /sup +/. After background subtraction, 121+or-14 (stat.) D*/sup +or-/ events have been selected. Jets are reconstructed using a cone jet finding algorithm to separate direct and single-resolved events. Differential cross-sections d sigma /dp/sub T//sup D/* and d sigma /d eta /sup D /* as functions of the D*/sup +or-/ transverse momentum p/sub T//sup D/* and pseudorapidity eta /sup D/* are presented in the kinematic region 2

    GeV and eta /sup D/*<1.5. They are compared to next-to-leading order (NLO) perturbative QCD calculations. The total cross-section for the process e/sup +/e/sup - / to ...

  9. Prompt emission from GRB 150915A in the GeV energy range detected at ground by the New-Tupi detector

    CERN Document Server

    Augusto, C R A; de Oliveira, M N; Nepomuceno, A A; Kopenkin, V; Sinzi, T

    2016-01-01

    Since 2014, a new detector (New-Tupi) consisting of four plastic scintillators ($150 \\times 75 \\times 5 cm^3$) placed in pairs and located in Niteroi, Rio de Janeiro, Brazil, has been used for the search of transient solar events and photomuons from gamma-ray bursts (GRBs). On September 15, 2015, at 21:18:24 UT, the Swift Burst Alert Telescope (BAT) triggered and located GRB 150915A (trigger 655721). The GRB light curve shows a weak complex structure of long duration $T_{90}=164.7 \\pm 49.7 $ sec, and a fluence in the 15-150 keV band of $8.0 \\pm 1.8 \\times 10^{-7}erg/cm^2$. GRB 150915A was fortuitously located in the field of view of the New-Tupi detector, and a search for prompt emission in the GeV energy range is presented here. The analysis was made using the "scaler" or "single-particle" technique. The New-Tupi detector registered a muon excess peak of 6.1s duration with a signal significance $6.9\\sigma$, the signal was within the T90 duration of the Swift BAT GRB, with an estimated fluence $4.8 \\times 10^...

  10. Characterization of a broad energy germanium detector and application to neutrinoless double beta decay search in Ge-76

    CERN Document Server

    Agostini, M; Brugnera, R; Cattadori, C M; D'Andragora, A; di Vacri, A; Garfagnini, A; Laubenstein, M; Pandola, L; Ur, C A

    2010-01-01

    The performance of a 630 g commercial broad energy germanium (BEGe) detector has been systematically investigated. Energy resolution, linearity, stability vs. high-voltage (HV) bias, thickness and uniformity of dead layers have been measured and found to be excellent. Special attention has been dedicated to the study of the detector response as a function of bias HV. The nominal depletion voltage being 3000 V, the detector under investigation shows a peculiar behavior for biases around 2000 V: in a narrow range of about 100 V the charge collection is strongly reduced. The detector seems to be composed by two parts: a small volume around the HV contact where charges are efficiently collected as at higher voltage, and a large volume where charges are poorly collected. A qualitative explanation of this behavior is presented. An event-by-event pulse shape analysis based on A/E (maximum amplitude of the current pulse over the total energy released in the detector) has been applied to events in different energy reg...

  11. Charged-particle multiplicities in $pp$ interactions at $\\sqrt{s}$ = 900 GeV measured with the ATLAS detector at the LHC

    CERN Document Server

    Aad, G; Abbott, B; Abdallah, J; Abdelalim, A A; Abdesselam, A; Abdinov, O; Abi, B; Abolins, M; Abramowicz, H; Abreu, H; Acerbi, E; Acharya, B S; Ackers, M; Adams, D L; Addy, T N; Adelman, J; Aderholz, M; Adorisio, C; Adragna, P; Adye, T; Aefsky, S; Aguilar-Saavedra, J A; Aharrouche, M; Ahlen, S P; Ahles, F; Ahmad, A; Ahmed, H; Ahsan, M; Aielli, G; Akdogan, T; Åkesson, P F; Åkesson, T P A; Akimoto, G; Akimov, A V; Aktas, A; Alam, M S; Alam, M A; Albert, J; Albrand, S; Aleksa, M; Aleksandrov, I N; Aleppo, M; Alessandria, F; Alexa, C; Alexander, G; Alexandre, G; Alexopoulos, T; Alhroob, M; Aliev, M; Alimonti, G; Alison, J; Aliyev, M; Allport, P P; Allwood-Spiers, S E; Almond, J; Aloisio, A; Alon, R; Alonso, A; Alonso, J; Alviggi, M G; Amako, K; Amaral, P; Ambrosini, G; Ambrosio, G; Amelung, C; Ammosov, V V; Amorim, A; Amoros, G; Amram, N; Anastopoulos, C; Andeen, T; Anders, C F; Anderson, K J; Andreazza, A; Andrei, V; Andrieux, M L; Anduaga, X S; Angerami, A; Anghinolfi, F; Anjos, N; Annovi, A; Antonaki, A; Antonelli, M; Antonelli, S; Antos, J; Antunovic, B; Anulli, F; Aoun, S; Arabidze, G; Aracena, I; Arai, Y; Arce, A T H; Archambault, J P; Arfaoui, S; Arguin, J F; Argyropoulos, T; Arik, E; Arik, M; Armbruster, A J; Arms, K E; Armstrong, S R; Arnaez, O; Arnault, C; Artamonov, A; Arutinov, D; Asai, M; Asai, S; Asfandiyarov, R; Ask, S; Åsman, B; Asner, D; Asquith, L; Assamagan, K; Astbury, A; Astvatsatourov, A; Athar, B; Atoian, G; Aubert, B; Auerbach, B; Auge, E; Augsten, K; Aurousseau, M; Austin, N; Avolio, G; Avramidou, R; Axen, D; Ay, C; Azuelos, G; Azuma, Y; Baak, M A; Baccaglioni, G; Bacci, C; Bach, A M; Bachacou, H; Bachas, K; Bachy, G; Backes, M; Badescu, E; Bagnaia, P; Bai, Y; Bailey, D C; Bain, T; Baines, J T; Baker, O K; Baker, M D; Baker, S; Baltasar Dos Santos Pedrosa, F; Banas, E; Banerjee, P; Banerjee, S; Banfi, D; Bangert, A; Bansal, V; Baranov, S P; Baranov, S; Barashkou, A; Barber, T; Barberio, E L; Barberis, D; Barbero, M; Bardin, D Y; Barillari, T; Barisonzi, M; Barklow, T; Barlow, N; Barnett, B M; Barnett, R M; Baroncelli, A; Barone, M; Barr, A J; Barreiro, F; Barreiro Guimaraes da Costa, J; Barrillon, P; Bartheld, V; Bartko, H; Bartoldus, R; Bartsch, D; Bates, R L; Bathe, S; Batkova, L; Batley, J R; Battaglia, A; Battistin, M; Battistoni, G; Bauer, F; Bawa, H S; Bazalova, M; Beare, B; Beau, T; Beauchemin, P H; Beccherle, R; Becerici, N; Bechtle, P; Beck, G A; Beck, H P; Beckingham, M; Becks, K H; Beddall, A J; Beddall, A; Bednyakov, V A; Bee, C; Begel, M; Behar Harpaz, S; Behera, P K; Beimforde, M; Belanger, G A N; Belanger-Champagne, C; Belhorma, B; Bell, P J; Bell, W H; Bella, G; Bellagamba, L; Bellina, F; Bellomo, G; Bellomo, M; Belloni, A; Belotskiy, K; Beltramello, O; Belymam, A; Ben Ami, S; Benary, O; Benchekroun, D; Benchouk, C; Bendel, M; Benedict, B H; Benekos, N; Benhammou, Y; Benincasa, G P; Benjamin, D P; Benoit, M; Bensinger, J R; Benslama, K; Bentvelsen, S; Beretta, M; Berge, D; Bergeaas Kuutmann, E; Berger, N; Berghaus, F; Berglund, E; Beringer, J; Bernardet, K; Bernat, P; Bernhard, R; Bernius, C; Berry, T; Bertin, A; Bertinelli, F; Bertolucci, S; Besana, M I; Besson, N; Bethke, S; Bianchi, R M; Bianco, M; Biebel, O; Bieri, M; Biesiada, J; Biglietti, M; Bilokon, H; Binder, M; Bindi, M; Binet, S; Bingul, A; Bini, C; Biscarat, C; Bischof, R; Bitenc, U; Black, K M; Blair, R E; Blanch, O; Blanchard, J B; Blanchot, G; Blocker, C; Blocki, J; Blondel, A; Blum, W; Blumenschein, U; Boaretto, C; Bobbink, G J; Bocci, A; Bocian, D; Bock, R; Boehler, M; Boehm, M; Boek, J; Boelaert, N; Böser, S; Bogaerts, J A; Bogouch, A; Bohm, C; Bohm, J; Boisvert, V; Bold, T; Boldea, V; Boldyrev, A; Bondarenko, V G; Bondioli, M; Bonino, R; Boonekamp, M; Boorman, G; Boosten, M; Booth, C N; Booth, P S L; Booth, P; Booth, J R A; Bordoni, S; Borer, C; Borer, K; Borisov, A; Borissov, G; Borjanovic, I; Borroni, S; Bos, K; Boscherini, D; Bosman, M; Boterenbrood, H; Botterill, D; Bouchami, J; Boudreau, J; Bouhova-Thacker, E V; Boulahouache, C; Bourdarios, C; Boveia, A; Boyd, J; Boyer, B H; Boyko, I R; Bozhko, N I; Bozovic-Jelisavcic, I; Braccini, S; Bracinik, J; Braem, A; Brambilla, E; Branchini, P; Brandenburg, G W; Brandt, A; Brandt, A; Brandt, G; Brandt, O; Bratzler, U; Brau, B; Brau, J E; Braun, H M; Bravo, S; Brelier, B; Bremer, J; Brenner, R; Bressler, S; Breton, D; Brett, N D; Bright-Thomas, P G; Britton, D; Brochu, F M; Brock, I; Brock, R; Brodbeck, T J; Brodet, E; Broggi, F; Bromberg, C; Brooijmans, G; Brooks, W K; Brown, G; Brubaker, E; Bruckman de Renstrom, P A; Bruncko, D; Bruneliere, R; Brunet, S; Bruni, A; Bruni, G; Bruschi, M; Buanes, T; Bucci, F; Buchanan, J; Buchanan, N J; Buchholz, P; Buckley, A G; Budagov, I A; Budick, B; Büscher, V; Bugge, L; Buira-Clark, D; Buis, E J; Bujor, F; Bulekov, O; Bunse, M; Buran, T; Burckhart, H; Burdin, S; Burgess, T; Burke, S; Busato, E; Bussey, P; Buszello, C P; Butin, F; Butler, B; Butler, J M; Buttar, C M; Butterworth, J M; Byatt, T; Caballero, J; Cabrera Urban, S; Caccia, M; Caforio, D; Cakir, O; Calafiura, P; Calderini, G; Calfayan, P; Calkins, R; Caloba, L P; Caloi, R; Calvet, D; Camard, A; Camarri, P; Cambiaghi, M; Cameron, D; Cammin, J; Campana, S; Campanelli, M; Canale, V; Canelli, F; Canepa, A; Cantero, J; Capasso, L; Capeans Garrido, M D M; Caprini, I; Caprini, M; Caprio, M; Capua, M; Caputo, R; Caramarcu, C; Cardarelli, R; Cardiel Sas, L; Carli, T; Carlino, G; Carminati, L; Caron, B; Caron, S; Carpentieri, C; Carrillo Montoya, G D; Carron Montero, S; Carter, A A; Carter, J R; Carvalho, J; Casadei, D; Casado, M P; Cascella, M; Caso, C; Castaneda Hernadez, A M; Castaneda-Miranda, E; Castillo Gimenez, V; Castro, N F; Castrovillari, F; Cataldi, G; Cataneo, F; Catinaccio, A; Catmore, J R; Cattai, A; Cattani, G; Caughron, S; Cauz, D; Cavallari, A; Cavalleri, P; Cavalli, D; Cavalli-Sforza, M; Cavasinni, V; Cazzato, A; Ceradini, F; Cerna, C; Cerqueira, A S; Cerri, A; Cerrito, L; Cerutti, F; Cervetto, M; Cetin, S A; Cevenini, F; Chafaq, A; Chakraborty, D; Chan, K; Chapman, J D; Chapman, J W; Chareyre, E; Charlton, D G; Charron, S; Chatterjii, S; Chavda, V; Cheatham, S; Chekanov, S; Chekulaev, S V; Chelkov, G A; Chen, H; Chen, L; Chen, S; Chen, T; Chen, X; Cheng, S; Cheplakov, A; Chepurnov, V F; Cherkaoui El Moursli, R; Tcherniatine, V; Chesneanu, D; Cheu, E; Cheung, S L; Chevalier, L; Chevallier, F; Chiarella, V; Chiefari, G; Chikovani, L; Childers, J T; Chilingarov, A; Chiodini, G; Chizhov, V; Choudalakis, G; Chouridou, S; Christiansen, T; Christidi, I A; Christov, A; Chromek-Burckhart, D; Chu, M L; Chudoba, J; Ciapetti, G; Cicalini, E; Ciftci, A K; Ciftci, R; Cinca, D; Cindro, V; Ciobotaru, M D; Ciocca, C; Ciocio, A; Cirilli, M; Citterio, M; Clark, A; Clark, Philip James; Cleland, W; Clemens, J C; Clement, B; Clement, C; Clements, D; Clifft, R W; Coadou, Y; Cobal, M; Coccaro, A; Cochran, J; Coco, R; Coe, P; Coelli, S; Coggeshall, J; Cogneras, E; Cojocaru, C D; Colas, J; Cole, B; Colijn, A P; Collard, C; Collins, N J; Collins-Tooth, C; Collot, J; Colon, G; Coluccia, R; Comune, G; Conde Muino, P; Coniavitis, E; Consonni, M; Constantinescu, S; Conta, C; Conventi, F; Cook, J; Cooke, M; Cooper, B D; Cooper-Sarkar, A M; Cooper-Smith, N J; Copic, K; Cornelissen, T; Corradi, M; Correard, S; Corriveau, F; Corso-Radu, A; Cortes-Gonzalez, A; Cortiana, G; Costa, G; Costa, M J; Costanzo, D; Costin, T; Cote, D; Coura Torres, R; Courneyea, L; Couyoumtzelis, C; Cowan, G; Cowden, C; Cox, B E; Cranmer, K; Cranshaw, J; Cristinziani, M; Crosetti, G; Crupi, R; Crepe-Renaudin, S; Cuenca Almenar, C; Cuhadar Donszelmann, T; Cuneo, S; Cunha, A; Curatolo, M; Curtis, C J; Cwetanski, P; Czyczula, Z; D'Auria, S; D'Onofrio, M; D'Orazio, A; Da Rocha Gesualdi Mello, A; Da Silva, P V M; Da Via, C; Dabrowski, W; Dahlhoff, A; Dai, T; Dallapiccola, C; Dallison, S J; Dalmau, J; Daly, C H; Dam, M; Dameri, M; Danielsson, H O; Dankers, R; Dannheim, D; Dao, V; Darbo, G; Darlea, G L; Daum, C; Dauvergne, J P; Davey, W; Davidek, T; Davidson, D W; Davidson, N; Davidson, R; Davies, M; Davison, A R; Dawson, I; Dawson, J W; Daya, R K; De, K; de Asmundis, R; De Castro, S; De Castro Faria Salgado, P E; De Cecco, S; de Graat, J; De Groot, N; de Jong, P; De La Cruz-Burelo, E; De La Taille, C; De Lotto, B; De Mora, L; De Oliveira Branco, M; De Pedis, D; de Saintignon, P; De Salvo, A; De Sanctis, U; De Santo, A; De Vivie De Regie, J B; De Zorzi, G; Dean, S; Deberg, H; Dedes, G; Dedovich, D V; Defay, P O; Degenhardt, J; Dehchar, M; Deile, M; Del Papa, C; Del Peso, J; Del Prete, T; Dell'Acqua, A; Dell'Asta, L; Della Pietra, M; della Volpe, D; Delmastro, M; Delpierre, P; Delruelle, N; Delsart, P A; Deluca, C; Demers, S; Demichev, M; Demirkoz, B; Deng, J; Deng, W; Denisov, S P; Dennis, C; Derkaoui, J E; Derue, F; Dervan, P; Desch, K; Deviveiros, P O; Dewhurst, A; DeWilde, B; Dhaliwal, S; Dhullipudi, R; Di Ciaccio, A; Di Ciaccio, L; Di Domenico, A; Di Girolamo, A; Di Girolamo, B; Di Luise, S; Di Mattia, A; Di Nardo, R; Di Simone, A; Di Sipio, R; Diaz, M A; Diaz Gomez, M M; Diblen, F; Diehl, E B; Dietl, H; Dietrich, J; Dietzsch, T A; Diglio, S; Dindar Yagci, K; Dingfelder, D J; Dionisi, C; Dipanjan, R; Dita, P; Dita, S; Dittus, F; Djama, F; Djilkibaev, R; Djobava, T; do Vale, M A B; Do Valle Wemans, A; Doan, T K O; Dobbs, M; Dobinson, R; Dobos, D; Dobson, E; Dobson, M; Dodd, J; Dogan, O B; Doglioni, C; Doherty, T; Doi, Y; Dolejsi, J; Dolenc, I; Dolezal, Z; Dolgoshein, B A; Dohmae, T; Domingo, E; Donega, M; Donini, J; Dopke, J; Doria, A; Dos Anjos, A; Dosil, M; Dotti, A; Dova, M T; Dowell, J D; Doxiadis, A; Doyle, A T; Dragic, J; Drakoulakos, D; Drasal, Z; Drees, J; Dressnandt, N; Drevermann, H; Driouichi, C; Dris, M; Drohan, J G; Dubbert, J; Dubbs, T; Duchovni, E; Duckeck, G; Dudarev, A; Dudziak, F; Dührssen, M; Dür, H; Duerdoth, I P; Duflot, L; Dufour, M A; Dunford, M; Duran Yildiz, H; Dushkin, A; Duxfield, R; Dwuznik, M; Dydak, F; Dzahini, D; Düren, M; Ebenstein, W L; Ebke, J; Eckert, S; Eckweiler, S; Edmonds, K; Edwards, C A; Efthymiopoulos, I; Egorov, K; Ehrenfeld, W; Ehrich, T; Eifert, T; Eigen, G; Einsweiler, K; Eisenhandler, E; Ekelof, T; El Kacimi, M; Ellert, M; Elles, S; Ellinghaus, F; Ellis, K; Ellis, N; Elmsheuser, J; Elsing, M; Ely, R; Emeliyanov, D; Engelmann, R; Engl, A; Epp, B; Eppig, A; Erdmann, J; Ereditato, A; Eremin, V; Eriksson, D; Ermoline, I; Ernst, J; Ernst, M; Ernwein, J; Errede, D; Errede, S; Ertel, E; Escalier, M; Escobar, C; Espinal Curull, X; Esposito, B; Etienne, F; Etienvre, A I; Etzion, E; Evans, H; Evdokimov, V N; Fabbri, L; Fabre, C; Facius, K; Fakhrutdinov, R M; Falciano, S; Falou, A C; Fang, Y; Fanti, M; Farbin, A; Farilla, A; Farley, J; Farooque, T; Farrington, S M; Farthouat, P; Fassnacht, P; Fassouliotis, D; Fatholahzadeh, B; Fayard, L; Fayette, F; Febbraro, R; Federic, P; Fedin, O L; Fedorko, I; Fedorko, W; Feligioni, L; Felzmann, C U; Feng, C; Feng, E J; Fenyuk, A B; Ferencei, J; Ferland, J; Fernandes, B; Fernando, W; Ferrag, S; Ferrando, J; Ferrara, V; Ferrari, A; Ferrari, P; Ferrari, R; Ferrer, A; Ferrer, M L; Ferrere, D; Ferretti, C; Ferro, F; Fiascaris, M; Fichet, S; Fiedler, F; Filipcic, A; Filippas, A; Filthaut, F; Fincke-Keeler, M; Fiolhais, M C N; Fiorini, L; Firan, A; Fischer, G; Fischer, P; Fisher, M J; Fisher, S M; Flacher, H F; Flammer, J; Fleck, I; Fleckner, J; Fleischmann, P; Fleischmann, S; Fleuret, F; Flick, T; Flores Castillo, L R; Flowerdew, M J; Föhlisch, F; Fokitis, M; Fonseca Martin, T; Fopma, J; Forbush, D A; Formica, A; Forti, A; Fortin, D; Foster, J M; Fournier, D; Foussat, A; Fowler, A J; Fowler, K; Fox, H; Francavilla, P; Franchino, S; Francis, D; Franklin, M; Franz, S; Fraternali, M; Fratina, S; Freestone, J; French, S T; Froeschl, R; Froidevaux, D; Frost, J A; Fukunaga, C; Fullana Torregrosa, E; Fuster, J; Gabaldon, C; Gabizon, O; Gadfort, T; Gadomski, S; Gagliardi, G; Gagnon, P; Galea, C; Gallas, E J; Gallas, M V; Gallo, V; Gallop, B J; Gallus, P; Galyaev, E; Gan, K K; Gao, Y S; Gapienko, V A; Gaponenko, A; Garcia-Sciveres, M; Garcia, C; Garcia Navarro, J E; Garde, V; Gardner, R W; Garelli, N; Garitaonandia, H; Garonne, V; Garvey, J; Gatti, C; Gaudio, G; Gaumer, O; Gauzzi, P; Gavrilenko, I L; Gay, C; Gaycken, G; Gayde, J C; Gazis, E N; Ge, P; Gee, C N P; Geich-Gimbel, C; Gellerstedt, K; Gemme, C; Genest, M H; Gentile, S; Georgatos, F; George, S; Gerlach, P; Gershon, A; Geweniger, C; Ghazlane, H; Ghez, P; Ghodbane, N; Giacobbe, B; Giagu, S; Giakoumopoulou, V; Giangiobbe, V; Gianotti, F; Gibbard, B; Gibson, A; Gibson, S M; Gieraltowski, G F; Gilbert, L M; Gilchriese, M; Gildemeister, O; Gilewsky, V; Gillman, A R; Gingrich, D M; Ginzburg, J; Giokaris, N; Giordani, M P; Giordano, R; Giorgi, F M; Giovannini, P; Giraud, P F; Girtler, P; Giugni, D; Giusti, P; Gjelsten, B K; Gladilin, L K; Glasman, C; Glazov, A; Glitza, K W; Glonti, G L; Gnanvo, K G; Godfrey, J; Godlewski, J; Goebel, M; Göpfert, T; Goeringer, C; Gössling, C; Göttfert, T; Goggi, V; Goldfarb, S; Goldin, D; Goldschmidt, N; Golling, T; Gollub, N P; Golovnia, S N; Gomes, A; Gomez Fajardo, L S; Goncalo, R; Gonella, L; Gong, C; Gonidec, A; Gonzalez de la Hoz, S; Gonzalez Silva, M L; Gonzalez-Pineiro, B; Gonzalez-Sevilla, S; Goodson, J J; Goossens, L; Gorbounov, P A; Gordon, H A; Gorelov, I; Gorfine, G; Gorini, B; Gorini, E; Gorisek, A; Gornicki, E; Gorokhov, S A; Gorski, B T; Goryachev, V N; Gosdzik, B; Gosselink, M; Gostkin, M I; Gouanere, M; Gough Eschrich, I; Gouighri, M; Goujdami, D; Goulette, M P; Goussiou, A G; Goy, C; Grabowska-Bold, I; Grabski, V; Grafström, P; Grah, C; Grahn, K J; Grancagnolo, F; Grancagnolo, S; Grassi, V; Gratchev, V; Grau, N; Gray, H M; Gray, J A; Graziani, E; Green, B; Greenfield, D; Greenshaw, T; Greenwood, Z D; Gregor, I M; Grenier, P; Grewal, A; Griesmayer, E; Griffiths, J; Grigalashvili, N; Grillo, A A; Grimaldi, F; Grimm, K; Grinstein, S; Gris, P L Y; Grishkevich, Y V; Groer, L S; Grognuz, J; Groh, M; Groll, M; Gross, E; Grosse-Knetter, J; Groth-Jensen, J; Gruwe, M; Grybel, K; Guarino, V J; Guescini, F; Guicheney, C; Guida, A; Guillemin, T; Guler, H; Gunther, J; Guo, B; Gupta, A; Gusakov, Y; Gushchin, V N; Gutierrez, A; Gutierrez, P; Guttman, N; Gutzwiller, O; Guyot, C; Gwenlan, C; Gwilliam, C B; Haas, A; Haas, S; Haber, C; Haboubi, G; Hackenburg, R; Hadavand, H K; Hadley, D R; Haeberli, C; Haefner, P; Härtel, R; Hahn, F; Haider, S; Hajduk, Z; Hakobyan, H; Hakobyan, R H; Haller, J; Hallewell, G D; Hamacher, K; Hamilton, A; Hamilton, S; Han, H; Han, L; Hanagaki, K; Hance, M; Handel, C; Hanke, P; Hansen, C J; Hansen, J R; Hansen, J B; Hansen, J D; Hansen, P H; Hansl-Kozanecka, T; Hansson, P; Hara, K; Hare, G A; Harenberg, T; Harper, R; Harrington, R D; Harris, O M; Harrison, K; Hart, J C; Hartert, J; Hartjes, F; Haruyama, T; Harvey, A; Hasegawa, S; Hasegawa, Y; Hashemi, K; Hassani, S; Hatch, M; Hauff, D; Haug, S; Hauschild, M; Hauser, R; Havranek, M; Hawes, B M; Hawkes, C M; Hawkings, R J; Hawkins, D; Hayakawa, T; Hayward, H S; Haywood, S J; Hazen, E; He, M; He, Y P; Head, S J; Hedberg, V; Heelan, L; Heim, S; Heinemann, B; Heinemann, F E W; Heisterkamp, S; Helary, L; Heldmann, M; Heller, M; Hellman, S; Helsens, C; Hemperek, T; Henderson, R C W; Hendriks, P J; Henke, M; Henrichs, A; Henriques Correia, A M; Henrot-Versille, S; Henry-Couannier, F; Hensel, C; Henss, T; Hernandez Jimenez, Y; Hershenhorn, A D; Herten, G; Hertenberger, R; Hervas, L; Hess, M; Hessey, N P; Hidvegi, A; Higon-Rodriguez, E; Hill, D; Hill, J C; Hill, N; Hiller, K H; Hillert, S; Hillier, S J; Hinchliffe, I; Hindson, D; Hines, E; Hirose, M; Hirsch, F; Hirschbuehl, D; Hobbs, J; Hod, N; Hodgkinson, M C; Hodgson, P; Hoecker, A; Hoeferkamp, M R; Hoffman, J; Hoffmann, D; Hohlfeld, M; Holder, M; Hollins, T I; Hollyman, G; Holmes, A; Holmgren, S O; Holy, T; Holzbauer, J L; Homer, R J; Homma, Y; Horazdovsky, T; Hori, T; Horn, C; Horner, S; Horvat, S; Hostachy, J Y; Hott, T; Hou, S; Houlden, M A; Hoummada, A; Howe, T; Howell, D F; Hrivnac, J; Hruska, I; Hryn'ova, T; Hsu, P J; Hsu, S C; Huang, G S; Hubacek, Z; Hubaut, F; Huegging, F; Huffman, B T; Hughes, E W; Hughes, G; Hughes-Jones, R E; Hurst, P; Hurwitz, M; Husemann, U; Huseynov, N; Huston, J; Huth, J; Iacobucci, G; Iakovidis, G; Ibbotson, M; Ibragimov, I; Ichimiya, R; Iconomidou-Fayard, L; Idarraga, J; Idzik, M; Iengo, P; Igonkina, O; Ikegami, Y; Ikeno, M; Ilchenko, Y; Iliadis, D; Imbault, D; Imhaeuser, M; Imori, M; Ince, T; Inigo-Golfin, J; Ioannou, P; Iodice, M; Ionescu, G; Irles Quiles, A; Ishii, K; Ishikawa, A; Ishino, M; Ishizawa, Y; Ishmukhametov, R; Isobe, T; Issakov, V; Issever, C; Istin, S; Itoh, Y; Ivashin, A V; Iwanski, W; Iwasaki, H; Izen, J M; Izzo, V; Jackson, B; Jackson, J; Jackson, J N; Jackson, P; Jaekel, M R; Jahoda, M; Jain, V; Jakobs, K; Jakobsen, S; Jakubek, J; Jana, D; Jansen, E; Jantsch, A; Janus, M; Jared, R C; Jarlskog, G; Jeanty, L; Jelen, K; Jen-La Plante, I; Jenni, P; Jeremie, A; Jez, P; Jezequel, S; Ji, W; Jia, J; Jiang, Y; Jimenez Belenguer, M; Jin, G; Jin, S; Jinnouchi, O; Joffe, D; Johansen, L G; Johansen, M; Johansson, K E; Johansson, P; Johnert, S; Johns, K A; Jon-And, K; Jones, A; Jones, G; Jones, M; Jones, R W L; Jones, T W; Jones, T J; Jonsson, O; Joo, K K; Joos, D; Joram, C; Jorge, P M; Jorgensen, S; Juranek, V; Jussel, P; Kabachenko, V V; Kabana, S; Kaci, M; Kaczmarska, A; Kado, M; Kagan, H; Kagan, M; Kagawa, S; Kaiser, S; Kajomovitz, E; Kalinin, S; Kalinovskaya, L V; Kalinowski, A; Kama, S; Kambara, H; Kanaya, N; Kaneda, M; Kantserov, V A; Kanzaki, J; Kaplan, B; Kapliy, A; Kaplon, J; Karagounis, M; Karagoz Unel, M; Karr, K; Kartvelishvili, V; Karyukhin, A N; Kashif, L; Kasmi, A; Kass, R D; Kastanas, A; Kastoryano, M; Kataoka, M; Kataoka, Y; Katsoufis, E; Katzy, J; Kaushik, V; Kawagoe, K; Kawamoto, T; Kawamura, G; Kayl, M S; Kayumov, F; Kazanin, V A; Kazarinov, M Y; Kazi, S I; Keates, J R; Keeler, R; Keener, P T; Kehoe, R; Keil, M; Kekelidze, G D; Kelly, M; Kennedy, J; Kenyon, M; Kepka, O; Kerschen, N; Kersevan, B P; Kersten, S; Kessoku, K; Ketterer, C; Khakzad, M; Khalil-zada, F; Khandanyan, H; Khanov, A; Kharchenko, D; Khodinov, A; Kholodenko, A G; Khomich, A; Khoriauli, G; Khovanskiy, N; Khovanskiy, V; Khramov, E; Khubua, J; Kilvington, G; Kim, H; Kim, M S; Kim, P C; Kim, S H; Kind, O; Kind, P; King, B T; Kirk, J; Kirsch, G P; Kirsch, L E; Kiryunin, A E; Kisielewska, D; Kisielewski, B; Kittelmann, T; Kiver, A M; Kiyamura, H; Kladiva, E; Klaiber-Lodewigs, J; Klein, M; Klein, U; Kleinknecht, K; Klemetti, M; Klier, A; Klimentov, A; Klimkovich, T; Klingenberg, R; Klinkby, E B; Klioutchnikova, T; Klok, P F; Klous, S; Kluge, E E; Kluge, T; Kluit, P; Klute, M; Kluth, S; Knecht, N S; Kneringer, E; Knobloch, J; Ko, B R; Kobayashi, T; Kobel, M; Koblitz, B; Kocian, M; Kocnar, A; Kodys, P; Köneke, K; König, A C; Koenig, S; König, S; Köpke, L; Koetsveld, F; Koevesarki, P; Koffas, T; Koffeman, E; Kohn, F; Kohout, Z; Kohriki, T; Kokott, T; Kolachev, G M; Kolanoski, H; Kolesnikov, V; Koletsou, I; Koll, J; Kollar, D; Kollefrath, M; Kolos, S; Kolya, S D; Komar, A A; Komaragiri, J R; Kondo, T; Kono, T; Kononov, A I; Konoplich, R; Konovalov, S P; Konstantinidis, N; Kootz, A; Koperny, S; Kopikov, S V; Korcyl, K; Kordas, K; Koreshev, V; Korn, A; Korolkov, I; Korolkova, E V; Korotkov, V A; Korsmo, H; Kortner, O; Kostka, P; Kostyukhin, V V; Kotamäki, M J; Kotchetkov, D; Kotov, S; Kotov, V M; Kotov, K Y; Koupilova, Z; Kourkoumelis, C; Koutsman, A; Kovar, S; Kowalewski, R; Kowalski, H; Kowalski, T Z; Kozanecki, W; Kozhin, A S; Kral, V; Kramarenko, V A; Kramberger, G; Kramer, A; Krasel, O; Krasny, M W; Krasznahorkay, A; Kreisel, A; Krejci, F; Kretzschmar, J; Krieger, N; Krieger, P; Krivkova, P; Krobath, G; Kroeninger, K; Kroha, H; Kroll, J; Kroseberg, J; Krstic, J; Kruchonak, U; Krüger, H; Krumshteyn, Z V; Kubota, T; Kuehn, S; Kugel, A; Kuhl, T; Kuhn, D; Kukhtin, V; Kulchitsky, Y; Kuleshov, S; Kummer, C; Kuna, M; Kundu, N; Kunkle, J; Kupco, A; Kurashige, H; Kurata, M; Kurchaninov, L L; Kurochkin, Y A; Kus, V; Kuykendall, W; Kuzhir, P; Kuznetsova, E; Kvasnicka, O; Kwee, R; La Rotonda, L; Labarga, L; Labbe, J; Lacasta, C; Lacava, F; Lacker, H; Lacour, D; Lacuesta, V R; Ladygin, E; Lafaye, R; Laforge, B; Lagouri, T; Lai, S; Lamanna, M; Lambacher, M; Lampen, C L; Lampl, W; Lancon, E; Landgraf, U; Landon, M P J; Landsman, H; Lane, J L; Lankford, A J; Lanni, F; Lantzsch, K; Lanza, A; Lapin, V V; Laplace, S; Lapoire, C; Laporte, J F; Lari, T; Larionov, A V; Larner, A; Lasseur, C; Lassnig, M; Lau, W; Laurelli, P; Lavorato, A; Lavrijsen, W; Laycock, P; Lazarev, A B; Lazzaro, A; Le Dortz, O; Le Guirriec, E; Le Maner, C; Le Menedeu, E; Le Vine, M; Leahu, M; Lebedev, A; Lebel, C; Lechowski, M; LeCompte, T; Ledroit-Guillon, F; Lee, H; Lee, J S H; Lee, S C; Lefebvre, M; Legendre, M; Leger, A; LeGeyt, B C; Legger, F; Leggett, C; Lehmacher, M; Lehmann Miotto, G; Lehto, M; Lei, X; Leitner, R; Lellouch, D; Lellouch, J; Leltchouk, M; Lendermann, V; Leney, K J C; Lenz, T; Lenzen, G; Lenzi, B; Leonhardt, K; Lepidis, J; Leroy, C; Lessard, J R; Lesser, J; Lester, C G; Leung Fook Cheong, A; Leveque, J; Levin, D; Levinson, L J; Levitski, M S; Levonian, S; Lewandowska, M; Leyton, M; Li, H; Li, S; Li, X; Liang, Z; Liang, Z; Liberti, B; Lichard, P; Lichtnecker, M; Lie, K; Liebig, W; Lifshitz, R; Lilley, J N; Lim, H; Limosani, A; Limper, M; Lin, S C; Linde, F; Linnemann, J T; Lipeles, E; Lipinsky, L; Lipniacka, A; Liss, T M; Lissauer, D; Lister, A; Litke, A M; Liu, C; Liu, D; Liu, H; Liu, J B; Liu, M; Liu, S; Liu, T; Liu, Y; Livan, M; Lleres, A; Lloyd, S L; Lobkowicz, F; Lobodzinska, E; Loch, P; Lockman, W S; Lockwitz, S; Loddenkoetter, T; Loebinger, F K; Loginov, A; Loh, C W; Lohse, T; Lohwasser, K; Lokajicek, M; Loken, J; Long, R E; Lopes, L; Lopez Mateos, D; Losada, M; Loscutoff, P; Losty, M J; Lou, X; Lounis, A; Loureiro, K F; Love, J; Love, P A; Lowe, A J; Lu, F; Lu, J; Lu, L; Lubatti, H J; Lucas, S; Luci, C; Lucotte, A; Ludwig, A; Ludwig, D; Ludwig, I; Ludwig, J; Luehring, F; Luijckx, G; Luisa, L; Lumb, D; Luminari, L; Lund, E; Lund-Jensen, B; Lundberg, B; Lundberg, J; Lundquist, J; Lupi, A; Lutz, G; Lynn, D; Lynn, J; Lys, J; Lytken, E; Ma, H; Ma, L L; Maassen, M; Macana Goia, J A; Maccarrone, G; Macchiolo, A; Macek, B; Machado Miguens, J; Macina, D; Mackeprang, R; Macpherson, A; MacQueen, D; Madaras, R J; Mader, W F; Maenner, R; Maeno, T; Mättig, P; Mättig, S; Magalhaes Martins, P J; Magass, C; Magradze, E; Magrath, C A; Mahalalel, Y; Mahboubi, K; Mahmood, A; Mahout, G; Maiani, C; Maidantchik, C; Maio, A; Mair, G M; Majewski, S; Makida, Y; Makouski, M; Makovec, N; Malecki, P; Malecki, P; Maleev, V P; Malek, F; Mallik, U; Malon, D; Maltezos, S; Malyshev, V; Malyukov, S; Mambelli, M; Mameghani, R; Mamuzic, J; Manabe, A; Manara, A; Manca, G; Mandelli, L; Mandic, I; Mandrysch, R; Maneira, J; Mangeard, P S; Mangin-Brinet, M; Manjavidze, I D; Mann, W A; Manning, P M; Manolopoulos, S; Manousakis-Katsikakis, A; Mansoulie, B; Manz, A; Mapelli, A; Mapelli, L; March, L; Marchand, J F; Marchese, F; Marchesotti, M; Marchiori, G; Marcisovsky, M; Marin, A; Marino, C P; Marroquim, F; Marshall, R; Marshall, Z; Martens, F K; Marti-Garcia, S; Martin, A J; Martin, A J; Martin, B; Martin, B; Martin, F F; Martin, J P; Martin, Ph; Martin, T A; Martin dit Latour, B; Martinez, M; Martinez Outschoorn, V; Martini, A; Martins, J; Martynenko, V; Martyniuk, A C; Marzano, F; Marzin, A; Masetti, L; Mashimo, T; Mashinistov, R; Masik, J; Maslennikov, A L; Mass, M; Massa, I; Massaro, G; Massol, N; Mastroberardino, A; Masubuchi, T; Mathes, M; Matricon, P; Matsumoto, H; Matsunaga, H; Matsushita, T; Mattravers, C; Maugain, J M; Maxfield, S J; May, E N; Mayer, J K; Mayne, A; Mazini, R; Mazur, M; Mazzanti, M; Mazzoni, E; Mazzucato, F; McDonald, J; McKee, S P; McCarn, A; McCarthy, R L; McCubbin, N A; McFarlane, K W; McGarvie, S; McGlone, H; Mchedlidze, G; McLaren, R A; McMahon, S J; McMahon, T R; McMahon, T J; McPherson, R A; Meade, A; Mechnich, J; Mechtel, M; Medinnis, M; Meera-Lebbai, R; Meguro, T M; Mehdiyev, R; Mehlhase, S; Mehta, A; Meier, K; Meinhardt, J; Meirose, B; Meirosu, C; Melachrinos, C; Mellado Garcia, B R; Mendez, P; Mendoza Navas, L; Meng, Z; Menke, S; Menot, C; Meoni, E; Merkl, D; Mermod, P; Merola, L; Meroni, C; Merritt, F S; Messina, A M; Messmer, I; Metcalfe, J; Mete, A S; Meuser, S; Meyer, J P; Meyer, J; Meyer, J; Meyer, T C; Meyer, W T; Miao, J; Michal, S; Micu, L; Middleton, R P; Miele, P; Migas, S; Migliaccio, A; Mijovic, L; Mikenberg, G; Mikestikova, M; Mikulec, B; Mikus, M; Miller, D W; Miller, R J; Mills, W J; Mills, C M; Milov, A; Milstead, D A; Milstein, D; Mima, S; Minaenko, A A; Minano, M; Minashvili, I A; Mincer, A I; Mindur, B; Mineev, M; Ming, Y; Mir, L M; Mirabelli, G; Miralles Verge, L; Misawa, S; Miscetti, S; Misiejuk, A; Mitra, A; Mitrevski, J; Mitrofanov, G Y; Mitsou, V A; Miyagawa, P S; Miyazaki, Y; Mjörnmark, J U; Mladenov, D; Moa, T; Moch, M; Mockett, P; Moed, S; Moeller, V; Mönig, K; Möser, N; Mohn, B; Mohr, W; Mohrdieck-Möck, S; Moisseev, A M; Moles-Valls, R; Molina-Perez, J; Moll, A; Moneta, L; Monk, J; Monnier, E; Montarou, G; Montesano, S; Monticelli, F; Moore, R W; Moore, T B; Moorhead, G F; Mora Herrera, C; Moraes, A; Morais, A; Morel, J; Morello, G; Moreno, D; Moreno Llacer, M; Morettini, P; Morgan, D; Morii, M; Morin, J; Morita, Y; Morley, A K; Mornacchi, G; Morone, M C; Morozov, S V; Morris, J D; Moser, H G; Mosidze, M; Moss, J; Moszczynski, A; Mount, R; Mountricha, E; Mouraviev, S V; Moye, T H; Moyse, E J W; Mudrinic, M; Mueller, F; Mueller, J; Mueller, K; Müller, T A; Muenstermann, D; Muijs, A; Muir, A; Munar, A; Munday, D J; Munwes, Y; Murakami, K; Murillo Garcia, R; Murray, W J; Mussche, I; Musto, E; Myagkov, A G; Myska, M; Nadal, J; Nagai, K; Nagano, K; Nagasaka, Y; Nairz, A M; Naito, D; Nakamura, K; Nakano, I; Nakatsuka, H; Nanava, G; Napier, A; Nash, M; Nasteva, I; Nation, N R; Nattermann, T; Naumann, T; Nauyock, F; Navarro, G; Nderitu, S K; Neal, H A; Nebot, E; Nechaeva, P; Negri, A; Negri, G; Negroni, S; Nektarijevic, S; Nelson, A; Nelson, T K; Nemecek, S; Nemethy, P; Nepomuceno, A A; Nessi, M; Nesterov, S Y; Neubauer, M S; Neukermans, L; Neusiedl, A; Neves, R N; Nevski, P; Newcomer, F M; Nicholson, C; Nickerson, R B; Nicolaidou, R; Nicolas, L; Nicoletti, G; Nicquevert, B; Niedercorn, F; Nielsen, J; Niinikoski, T; Niinimaki, M J; Nikiforov, A; Nikolaev, K; Nikolic-Audit, I; Nikolopoulos, K; Nilsen, H; Nilsson, B S; Nilsson, P; Nisati, A; Nishiyama, T; Nisius, R; Nodulman, L; Nomachi, M; Nomidis, I; Nomoto, H; Nordberg, M; Nordkvist, B; Norniella Francisco, O; Norton, P R; Notz, D; Novakova, J; Nozaki, M; Nosicka, M; Nugent, I M; Nuncio-Quiroz, A E; Nunes, R; Nunes Hanninger, G; Nunnemann, T; Nurse, E; Nyman, T; O'Neale, S W; O'Neil, D C; O'Shea, V; Oakham, F G; Oberlack, H; Obermaier, M; Oberson, P; Ochi, A; Oda, S; Odaka, S; Odier, J; Odino, G A; Ogren, H; Oh, A; Oh, S H; Ohm, C C; Ohshima, T; Ohshita, H; Ohska, T K; Ohsugi, T; Okada, S; Okawa, H; Okumura, Y; Okuyama, T; Olcese, M; Olchevski, A G; Oliveira, M; Oliveira Damazio, D; Oliver, C; Oliver, J; Oliver Garcia, E; Olivito, D; Olivo Gomez, M; Olszewski, A; Olszowska, J; Omachi, C; Onea, A; Onofre, A; Onyisi, P U E; Oram, C J; Ordonez, G; Oreglia, M J; Orellana, F; Oren, Y; Orestano, D; Orlov, I; Oropeza Barrera, C; Orr, R S; Orsini, F; Ortega, E O; Osborne, L S; Osculati, B; Ospanov, R; Osuna, C; Ottersbach, J P; Ottewell, B; Ould-Saada, F; Ouraou, A; Ouyang, Q; Owen, M; Owen, S; Oyarzun, A; Øye, O K; Ozcan, V E; Ozone, K; Ozturk, N; Pacheco Pages, A; Padilla Aranda, C; Paganis, E; Pahl, C; Paige, F; Pajchel, K; Pal, A; Palestini, S; Palla, J; Pallin, D; Palma, A; Palmer, J D; Palmer, M J; Pan, Y B; Panagiotopoulou, E; Panes, B; Panikashvili, N; Panin, V N; Panitkin, S; Pantea, D; Panuskova, M; Paolone, V; Paoloni, A; Papadopoulos, I; Papadopoulou, Th D; Park, S J; Park, W; Parker, M A; Parker, S I; Parodi, F; Parsons, J A; Parzefall, U; Pasqualucci, E; Passeri, A; Pastore, F; Pastore, Fr; Pasztor, G; Pataraia, S; Pater, J R; Patricelli, S; Patwa, A; Pauly, T; Peak, L S; Pecsy, M; Pedraza Morales, M I; Peeters, S J M; Peez, M; Peleganchuk, S V; Peng, H; Pengo, R; Penson, A; Penwell, J; Perantoni, M; Perez, K; Perez Codina, E; Perez Garcia-Estan, M T; Perez Reale, V; Peric, I; Perini, L; Pernegger, H; Perrino, R; Perrodo, P; Persembe, S; Perus, P; Peshekhonov, V D; Petereit, E; Peters, O; Petersen, B A; Petersen, J; Petersen, T C; Petit, E; Petridou, C; Petrolo, E; Petrucci, F; Petschull, D; Petteni, M; Pezoa, R; Pfeifer, B; Phan, A; Phillips, A W; Piacquadio, G; Piccinini, M; Pickford, A; Piegaia, R; Pilcher, J E; Pilkington, A D; Pimenta Dos Santos, M A; Pina, J; Pinamonti, M; Pinfold, J L; Ping, J; Pinto, B; Pinzon, G; Pirotte, O; Pizio, C; Placakyte, R; Plamondon, M; Plano, W G; Pleier, M A; Pleskach, A V; Poblaguev, A; Poddar, S; Podlyski, F; Poffenberger, P; Poggioli, L; Pohl, M; Polci, F; Polesello, G; Policicchio, A; Polini, A; Poll, J; Polychronakos, V; Pomarede, D M; Pomeroy, D; Pommes, K; Pontecorvo, L; Pope, B G; Popescu, R; Popovic, D S; Poppleton, A; Popule, J; Portell Bueso, X; Porter, R; Posch, C; Pospelov, G E; Pospichal, P; Pospisil, S; Potekhin, M; Potrap, I N; Potter, C J; Potter, C T; Potter, K P; Poulard, G; Pousada, A; Poveda, J; Prabhu, R; Pralavorio, P; Prasad, S; Prata, M; Pravahan, R; Pretzl, K; Pribyl, L; Price, D; Price, L E; Price, M J; Prichard, P M; Prieur, D; Primavera, M; Primor, D; Prokofiev, K; Prokoshin, F; Protopopescu, S; Proudfoot, J; Prudent, X; Przysiezniak, H; Psoroulas, S; Ptacek, E; Puigdengoles, C; Purdham, J; Purohit, M; Puzo, P; Pylypchenko, Y; Qi, M; Qian, J; Qian, W; Qian, Z; Qin, Z; Qing, D; Quadt, A; Quarrie, D R; Quayle, W B; Quinonez, F; Raas, M; Radeka, V; Radescu, V; Radics, B; Rador, T; Ragusa, F; Rahal, G; Rahimi, A M; Rahm, C; Raine, C; Raith, B; Rajagopalan, S; Rajek, S; Rammensee, M; Rammer, H; Rammes, M; Ramstedt, M; Ratoff, P N; Rauscher, F; Rauter, E; Raymond, M; Read, A L; Rebuzzi, D M; Redelbach, A; Redlinger, G; Reece, R; Reeves, K; Rehak, M; Reichold, A; Reinherz-Aronis, E; Reinsch, A; Reisinger, I; Reljic, D; Rembser, C; Ren, Z L; Renkel, P; Rensch, B; Rescia, S; Rescigno, M; Resconi, S; Resende, B; Rezaie, E; Reznicek, P; Rezvani, R; Richards, A; Richards, R A; Richter, D; Richter, R; Richter-Was, E; Ridel, M; Rieke, S; Rijpstra, M; Rijssenbeek, M; Rimoldi, A; Rinaldi, L; Rios, R R; Risler, C; Riu, I; Rivoltella, G; Rizatdinova, F; Rizvi, E; Roa Romero, D A; Robertson, S H; Robichaud-Veronneau, A; Robins, S; Robinson, D; Robinson, J E M; Robinson, M; Robson, A; Rocha de Lima, J G; Roda, C; Roda Dos Santos, D; Rodier, S; Rodriguez, D; Rodriguez Garcia, Y; Roe, S; Röhne, O; Rojo, V; Rolli, S; Romaniouk, A; Romanov, V M; Romeo, G; Romero Maltrana, D; Roos, L; Ros, E; Rosati, S; Rosenbaum, F; Rosenbaum, G A; Rosenberg, E I; Rosselet, L; Rossetti, V; Rossi, L P; Rossi, L; Rotaru, M; Rothberg, J; Rottländer, I; Rousseau, D; Royon, C R; Rozanov, A; Rozen, Y; Ruan, X; Ruckert, B; Ruckstuhl, N; Rud, V I; Rudolph, G; Rühr, F; Ruggieri, F; Ruiz-Martinez, A; Rulikowska-Zarebska, E; Rumiantsev, V; Rumyantsev, L; Runge, K; Runolfsson, O; Rurikova, Z; Rusakovich, N A; Rust, D R; Rutherfoord, J P; Ruwiedel, C; Ruzicka, P; Ryabov, Y F; Ryadovikov, V; Ryan, P; Rybkin, G; Rzaeva, S; Saavedra, A F; Sadrozinski, H F W; Sadykov, R; Sakamoto, H; Sala, P; Salamanna, G; Salamon, A; Saleem, M S; Salihagic, D; Salnikov, A; Salt, J; Salto Bauza, O; Salvachua Ferrando, B M; Salvatore, D; Salvatore, F; Salvucci, A; Salzburger, A; Sampsonidis, D; Samset, B H; Sanchez Sanchez, C A; Sanchis Lozano, M A; Sandaker, H; Sander, H G; Sanders, M P; Sandhoff, M; Sandhu, P; Sandstroem, R; Sandvoss, S; Sankey, D P C; Sanny, B; Sansoni, A; Santamarina Rios, C; Santoni, C; Santonico, R; Saraiva, J G; Sarangi, T; Sarkisyan-Grinbaum, E; Sarri, F; Sasaki, O; Sasaki, T; Sasao, N; Satsounkevitch, I; Sauvage, G; Savard, P; Savine, A Y; Savinov, V; Savoy-Navarro, A; Savva, P; Sawyer, L; Saxon, D H; Says, L P; Sbarra, C; Sbrizzi, A; Scannicchio, D A; Schaarschmidt, J; Schacht, P; Schäfer, U; Schaetzel, S; Schaffer, A C; Schaile, D; Schaller, M; Schamberger, R D; Schamov, A G; Schegelsky, V A; Scheirich, D; Schernau, M; Scherzer, M I; Schiavi, C; Schieck, J; Schioppa, M; Schlager, G; Schlenker, S; Schlereth, J L; Schmid, P; Schmidt, M P; Schmieden, K; Schmitt, C; Schmitz, M; Scholte, R C; Schott, M; Schouten, D; Schovancova, J; Schram, M; Schreiner, A; Schricker, A; Schroeder, C; Schroer, N; Schroers, M; Schroff, D; Schuh, S; Schuler, G; Schultes, J; Schultz-Coulon, H C; Schumacher, J W; Schumacher, M; Schumm, B A; Schune, Ph; Schwanenberger, C; Schwartzman, A; Schweiger, D; Schwemling, Ph; Schwienhorst, R; Schwierz, R; Schwindling, J; Scott, W G; Searcy, J; Sedykh, E; Segura, E; Seidel, S C; Seiden, A; Seifert, F; Seixas, J M; Sekhniaidze, G; Seliverstov, D M; Sellden, B; Seman, M; Semprini-Cesari, N; Serfon, C; Serin, L; Seuster, R; Severini, H; Sevior, M E; Sfyrla, A; Shabalina, E; Shah, T P; Shamim, M; Shan, L Y; Shank, J T; Shao, Q T; Shapiro, M; Shatalov, P B; Shaver, L; Shaw, C; Shaw, K; Sherman, D; Sherwood, P; Shibata, A; Shield, P; Shimojima, M; Shin, T; Shmeleva, A; Shochet, M J; Shupe, M A; Sicho, P; Sidhu, J; Sidoti, A; Siebel, A; Siebel, M; Siegert, F; Siegrist, J; Sijacki, D; Silbert, O; Silva, J; Silver, Y; Silverstein, D; Silverstein, S B; Simak, V; Simic, L; Simion, S; Simmons, B; Simonyan, M; Sinervo, P; Sinev, N B; Sipica, V; Siragusa, G; Sisakyan, A N; Sivoklokov, S Yu; Sjoelin, J; Sjursen, T B; Skovpen, K; Skubic, P; Skvorodnev, N; Slater, M; Slattery, P; Slavicek, T; Sliwa, K; Sloan, T J; Sloper, J; Sluka, T; Smakhtin, V; Small, A; Smirnov, S Yu; Smirnov, Y; Smirnova, L N; Smirnova, O; Smith, B C; Smith, D; Smith, K M; Smizanska, M; Smolek, K; Snesarev, A A; Snow, S W; Snow, J; Snuverink, J; Snyder, S; Soares, M; Sobie, R; Sodomka, J; Soffer, A; Solans, C A; Solar, M; Solc, J; Solfaroli Camillocci, E; Solodkov, A A; Solovyanov, O V; Soluk, R; Sondericker, J; Sopko, V; Sopko, B; Sorbi, M; Sosebee, M; Soukharev, A; Spagnolo, S; Spano, F; Speckmayer, P; Spencer, E; Spighi, R; Spigo, G; Spila, F; Spiriti, E; Spiwoks, R; Spogli, L; Spousta, M; Spreitzer, T; Spurlock, B; St Denis, R D; Stahl, T; Stahlman, J; Stamen, R; Stancu, S N; Stanecka, E; Stanek, R W; Stanescu, C; Stapnes, S; Starchenko, E A; Stark, J; Staroba, P; Starovoitov, P; Stastny, J; Staude, A; Stavina, P; Stavropoulos, G; Steele, G; Stefanidis, E; Steinbach, P; Steinberg, P; Stekl, I; Stelzer, B; Stelzer, H J; Stelzer-Chilton, O; Stenzel, H; Stevenson, K; Stewart, G; Stewart, T D; Stiller, W; Stockmanns, T; Stockton, M C; Stodulski, M; Stoerig, K; Stoicea, G; Stonjek, S; Strachota, P; Stradling, A R; Straessner, A; Strandberg, J; Strandberg, S; Strandlie, A; Strauss, M; Striegel, D; Strizenec, P; Ströhmer, R; Strom, D M; Strong, J A; Stroynowski, R; Strube, J; Stugu, B; Stumer, I; Soh, D A; Su, D; Subramania, S; Sugaya, Y; Sugimoto, T; Suhr, C; Suk, M; Sulin, V V; Sultansoy, S; Sumida, T; Sun, X H; Sundermann, J E; Suruliz, K; Sushkov, S; Susinno, G; Sutton, M R; Suzuki, T; Suzuki, Y; Sviridov, Yu M; Sykora, I; Sykora, T; Szczygiel, R R; Szeless, B; Szymocha, T; Sanchez, J; Ta, D; Taboada Gameiro, S; Tackmann, K; Taffard, A; Tafirout, R; Taga, A; Takahashi, Y; Takai, H; Takashima, R; Takeda, H; Takeshita, T; Talby, M; Talyshev, A; Tamsett, M C; Tanaka, J; Tanaka, R; Tanaka, S; Tanaka, S; Tanaka, Y; Tappern, G P; Tapprogge, S; Tardif, D; Tarem, S; Tarrade, F; Tartarelli, G F; Tas, P; Tasevsky, M; Tassi, E; Tatarkhanov, M; Tayalati, Y; Taylor, C; Taylor, F E; Taylor, G; Taylor, G N; Taylor, R P; Taylor, W; Teixeira-Dias, P; Ten Kate, H; Teng, P K; Tennenbaum-Katan, Y D; Ter-Antonyan, R; Terada, S; Terashi, K; Terron, J; Terwort, M; Testa, M; Teuscher, R J; Tevlin, C M; Thadome, J; Thioye, M; Thoma, S; Thomas, A; Thomas, J P; Thompson, E N; Thompson, P D; Thompson, P D; Thompson, R J; Thompson, A S; Thomson, E; Thun, R P; Tic, T; Tikhomirov, V O; Tikhonov, Y A; Timm, S; Timmermans, C J W P; Tipton, P; Tique Aires Viegas, F J; Tisserant, S; Tobias, J; Toczek, B; Todorov, T; Todorova-Nova, S; Toggerson, B; Tojo, J; Tokar, S; Tokushuku, K; Tollefson, K; Tomasek, L; Tomasek, M; Tomoto, M; Tompkins, D; Tompkins, L; Toms, K; Tonazzo, A; Tong, G; Tonoyan, A; Topfel, C; Topilin, N D; Torrence, E; Torro Pastor, E; Toth, J; Touchard, F; Tovey, D R; Trefzger, T; Treis, J; Tremblet, L; Tricoli, A; Trigger, I M; Trilling, G; Trincaz-Duvoid, S; Trinh, T N; Tripiana, M F; Triplett, N; Trischuk, W; Trivedi, A; Trka, Z; Trocme, B; Troncon, C; Trzupek, A; Tsarouchas, C; Tseng, J C L; Tsiakiris, M; Tsiareshka, P V; Tsionou, D; Tsipolitis, G; Tsiskaridze, V; Tskhadadze, E G; Tsukerman, I I; Tsulaia, V; Tsung, J W; Tsuno, S; Tsybychev, D; Tuggle, J M; Turala, M; Turecek, D; Turk Cakir, I; Turlay, E; Tuts, P M; Twomey, M S; Tylmad, M; Tyndel, M; Typaldos, D; Tyrvainen, H; Tzamarioudaki, E; Tzanakos, G; Uchida, K; Ueda, I; Ugland, M; Uhlenbrock, M; Uhrmacher, M; Ukegawa, F; Unal, G; Underwood, D G; Undrus, A; Unel, G; Unno, Y; Urbaniec, D; Urkovsky, E; Urquijo, P; Urrejola, P; Usai, G; Uslenghi, M; Vacavant, L; Vacek, V; Vachon, B; Vahsen, S; Valderanis, C; Valenta, J; Valente, P; Valentinetti, S; Valkar, S; Valladolid Gallego, E; Vallecorsa, S; Valls Ferrer, J A; Van Berg, R; van der Graaf, H; van der Kraaij, E; van der Poel, E; Van Der Ster, D; Van Eijk, B; van Eldik, N; van Gemmeren, P; van Kesteren, Z; van Vulpen, I; Vandelli, W; Vandoni, G; Vaniachine, A; Vankov, P; Vannucci, F; Varela Rodriguez, F; Vari, R; Varnes, E W; Varouchas, D; Vartapetian, A; Varvell, K E; Vasilyeva, L; Vassilakopoulos, V I; Vazeille, F; Vegni, G; Veillet, J J; Vellidis, C; Veloso, F; Veness, R; Veneziano, S; Ventura, A; Ventura, D; Ventura, S; Venturi, M; Venturi, N; Vercesi, V; Verducci, M; Verkerke, W; Vermeulen, J C; Vertogardov, L; Vetterli, M C; Vichou, I; Vickey, T; Viehhauser, G H A; Villa, M; Villani, E G; Villaplana Perez, M; Vilucchi, E; Vincent, P; Vincter, M G; Vinek, E; Vinogradov, V B; Virchaux, M; Viret, S; Virzi, J; Vitale, A; Vitells, O; Vivarelli, I; Vives Vaque, F; Vlachos, S; Vlasak, M; Vlasov, N; Vogel, A; Vogt, H; Vokac, P; Vollmer, C F; Volpi, M; Volpini, G; von der Schmitt, H; von Loeben, J; von Radziewski, H; von Toerne, E; Vorobel, V; Vorobiev, A P; Vorwerk, V; Vos, M; Voss, K C; Voss, R; Voss, T T; Vossebeld, J H; Vovenko, A S; Vranjes, N; Vranjes Milosavljevic, M; Vrba, V; Vreeswijk, M; Vu Anh, T; Vuaridel, B; Vudragovic, D; Vuillermet, R; Vukotic, I; Waananen, A; Wagner, P; Wahlen, H; Walbersloh, J; Walder, J; Walker, R; Walkowiak, W; Wall, R; Walsh, S; Wang, C; Wang, H; Wang, J; Wang, J C; Wang, M W; Wang, S M; Wappler, F; Warburton, A; Ward, C P; Warsinsky, M; Wastie, R; Watkins, P M; Watson, A T; Watson, M F; Watts, G; Watts, S; Waugh, A T; Waugh, B M; Webel, M; Weber, G; Weber, J; Weber, M D; Weber, M; Weber, M S; Weber, P; Weidberg, A R; Weingarten, J; Weiser, C; Wellenstein, H; Wellisch, H P; Wells, P S; Wen, M; Wenaus, T; Wendler, S; Wengler, T; Wenig, S; Wermes, N; Werner, M; Werner, P; Werth, M; Werthenbach, U; Wessels, M; Whalen, K; Wheeler-Ellis, S J; Whitaker, S P; White, A; White, M J; White, S; Whitehead, S R; Whiteson, D; Whittington, D; Wicek, F; Wicke, D; Wickens, F J; Wiedenmann, W; Wielers, M; Wienemann, P; Wiesmann, M; Wiesmann, M; Wiglesworth, C; Wiik, L A M; Wildauer, A; Wildt, M A; Wilhelm, I; Wilkens, H G; Williams, E; Williams, H H; Willis, W; Willocq, S; Wilson, J A; Wilson, M G; Wilson, A; Wingerter-Seez, I; Winklmeier, F; Wittgen, M; Woehrling, E; Wolter, M W; Wolters, H; Wosiek, B K; Wotschack, J; Woudstra, M J; Wraight, K; Wright, C; Wright, D; Wrona, B; Wu, S L; Wu, X; Wuestenfeld, J; Wulf, E; Wunstorf, R; Wynne, B M; Xaplanteris, L; Xella, S; Xie, S; Xie, Y; Xu, D; Xu, G; Xu, N; Yamada, M; Yamamoto, A; Yamamoto, K; Yamamoto, S; Yamamura, T; Yamaoka, J; Yamazaki, T; Yamazaki, Y; Yan, Z; Yang, H; Yang, S; Yang, U K; Yang, Y; Yang, Z; Yao, W M; Yao, Y; Yarradoddi, K; Yasu, Y; Ye, J; Ye, S; Yilmaz, M; Yoosoofmiya, R; Yorita, K; Yoshida, H; Yoshida, R; Young, C; Youssef, S P; Yu, D; Yu, J; Yuan, J; Yuan, L; Yurkewicz, A; Zaets, V G; Zaidan, R; Zaitsev, A M; Zajacova, Z; Zalite, Yo K; Zambrano, V; Zanello, L; Zarzhitsky, P; Zaytsev, A; Zdrazil, M; Zeitnitz, C; Zeller, M; Zema, P F; Zemla, A; Zendler, C; Zenin, A V; Zenin, O; Zenis, T; Zenonos, Z; Zenz, S; Zerwas, D; Zevi della Porta, G; Zhan, Z; Zhang, H; Zhang, J; Zhang, Q; Zhang, X; Zhao, L; Zhao, T; Zhao, Z; Zhemchugov, A; Zheng, S; Zhong, J; Zhou, B; Zhou, N; Zhou, Y; Zhu, C G; Zhu, H; Zhu, Y; Zhuang, X; Zhuravlov, V; Zilka, B; Zimmermann, R; Zimmermann, S; Zimmermann, S; Ziolkowski, M; Zitoun, R; Zivkovic, L; Zmouchko, V V; Zobernig, G; Zoccoli, A; Zolnierowski, Y; Zsenei, A; zur Nedden, M; Zutshi, V

    2010-01-01

    The first measurements from proton-proton collisions recorded with the ATLAS detector at the LHC are presented. Data were collected in December 2009 using a minimum-bias trigger during collisions at a centre-of-mass energy of 900 GeV. The charged-particle multiplicity, its dependence on transverse momentum and pseudorapidity, and the relationship between mean transverse momentum and charged-particle multiplicity are measured for events with at least one charged particle in the kinematic range |eta|500 MeV. The measurements are compared to Monte Carlo models of proton-proton collisions and to results from other experiments at the same centre-of-mass energy. The charged-particle multiplicity per event and unit of pseudorapidity at eta = 0 is measured to be 1.333 +/- 0.003 (stat.) +/- 0.040 (syst.), which is 5-15% higher than the Monte Carlo models predict.

  12. Charged-particle multiplicities in $pp$ interactions at $\\sqrt{s}$ = 900 GeV measured with the ATLAS detector at the LHC

    CERN Document Server

    Aad, G.; Abbott, B.; Abdallah, J.; Abdelalim, A.A.; Abdesselam, A.; Abdinov, O.; Abi, B.; Abolins, M.; Abramowicz, H.; Abreu, H.; Acerbi, E.; Acharya, B.S.; Ackers, M.; Adams, D.L.; Addy, T.N.; Adelman, J.; Aderholz, M.; Adorisio, C.; Adragna, P.; Adye, T.; Aefsky, S.; Aguilar-Saavedra, J.A.; Aharrouche, M.; Ahlen, S.P.; Ahles, F.; Ahmad, A.; Ahmed, H.; Ahsan, M.; Aielli, G.; Akdogan, T.; Akesson, P.F.; Akesson, T.P.A.; Akimoto, G.; Akimov, A.V.; Aktas, A.; Alam, M.S.; Alam, M.A.; Albert, J.; Albrand, S.; Aleksa, M.; Aleksandrov, I.N.; Aleppo, M.; Alessandria, F.; Alexa, C.; Alexander, G.; Alexandre, G.; Alexopoulos, T.; Alhroob, M.; Aliev, M.; Alimonti, G.; Alison, J.; Aliyev, M.; Allport, P.P.; Allwood-Spiers, S.E.; Almond, J.; Aloisio, A.; Alon, R.; Alonso, A.; Alonso, J.; Alviggi, M.G.; Amako, K.; Amaral, P.; Ambrosini, G.; Ambrosio, G.; Amelung, C.; Ammosov, V.V.; Amorim, A.; Amoros, G.; Amram, N.; Anastopoulos, C.; Andeen, T.; Anders, C.F.; Anderson, K.J.; Andreazza, A.; Andrei, V.; Andrieux, M.L.; Anduaga, X.S.; Angerami, A.; Anghinolfi, F.; Anjos, N.; Annovi, A.; Antonaki, A.; Antonelli, M.; Antonelli, S.; Antos, J.; Antunovic, B.; Anulli, F.; Aoun, S.; Arabidze, G.; Aracena, I.; Arai, Y.; Arce, A.T.H.; Archambault, J.P.; Arfaoui, S.; Arguin, J.F.; Argyropoulos, T.; Arik, E.; Arik, M.; Armbruster, A.J.; Arms, K.E.; Armstrong, S.R.; Arnaez, O.; Arnault, C.; Artamonov, A.; Arutinov, D.; Asai, M.; Asai, S.; Asfandiyarov, R.; Ask, S.; Asman, B.; Asner, D.; Asquith, L.; Assamagan, K.; Astbury, A.; Astvatsatourov, A.; Athar, B.; Atoian, G.; Aubert, B.; Auerbach, B.; Auge, E.; Augsten, K.; Aurousseau, M.; Austin, N.; Avolio, G.; Avramidou, R.; Axen, D.; Ay, C.; Azuelos, G.; Azuma, Y.; Baak, M.A.; Baccaglioni, G.; Bacci, C.; Bach, A.M.; Bachacou, H.; Bachas, K.; Bachy, G.; Backes, M.; Badescu, E.; Bagnaia, P.; Bai, Y.; Bailey, D.C.; Bain, T.; Baines, J.T.; Baker, O.K.; Baker, M.D.; Baker, S.; Baltasar Dos Santos Pedrosa, F.; Banas, E.; Banerjee, P.; Banerjee, S.; Banfi, D.; Bangert, A.; Bansal, V.; Baranov, S.P.; Baranov, S.; Barashkou, A.; Barber, T.; Barberio, E.L.; Barberis, D.; Barbero, M.; Bardin, D.Y.; Barillari, T.; Barisonzi, M.; Barklow, T.; Barlow, N.; Barnett, B.M.; Barnett, R.M.; Baroncelli, A.; Barone, M.; Barr, A.J.; Barreiro, F.; Barreiro Guimaraes da Costa, J.; Barrillon, P.; Bartheld, V.; Bartko, H.; Bartoldus, R.; Bartsch, D.; Bates, R.L.; Bathe, S.; Batkova, L.; Batley, J.R.; Battaglia, A.; Battistin, M.; Battistoni, G.; Bauer, F.; Bawa, H.S.; Bazalova, M.; Beare, B.; Beau, T.; Beauchemin, P.H.; Beccherle, R.; Becerici, N.; Bechtle, P.; Beck, G.A.; Beck, H.P.; Beckingham, M.; Becks, K.H.; Beddall, A.J.; Beddall, A.; Bednyakov, V.A.; Bee, C.; Begel, M.; Behar Harpaz, S.; Behera, P.K.; Beimforde, M.; Belanger, G.A.N.; Belanger-Champagne, C.; Belhorma, B.; Bell, P.J.; Bell, W.H.; Bella, G.; Bellagamba, L.; Bellina, F.; Bellomo, G.; Bellomo, M.; Belloni, A.; Belotskiy, K.; Beltramello, O.; Belymam, A.; Ben Ami, S.; Benary, O.; Benchekroun, D.; Benchouk, C.; Bendel, M.; Benedict, B.H.; Benekos, N.; Benhammou, Y.; Benincasa, G.P.; Benjamin, D.P.; Benoit, M.; Bensinger, J.R.; Benslama, K.; Bentvelsen, S.; Beretta, M.; Berge, D.; Bergeaas Kuutmann, E.; Berger, N.; Berghaus, F.; Berglund, E.; Beringer, J.; Bernardet, K.; Bernat, P.; Bernhard, R.; Bernius, C.; Berry, T.; Bertin, A.; Bertinelli, F.; Bertolucci, S.; Besana, M.I.; Besson, N.; Bethke, S.; Bianchi, R.M.; Bianco, M.; Biebel, O.; Bieri, M.; Biesiada, J.; Biglietti, M.; Bilokon, H.; Binder, M.; Bindi, M.; Binet, S.; Bingul, A.; Bini, C.; Biscarat, C.; Bischof, R.; Bitenc, U.; Black, K.M.; Blair, R.E.; Blanch, O.; Blanchard, J.B.; Blanchot, G.; Blocker, C.; Blocki, J.; Blondel, A.; Blum, W.; Blumenschein, U.; Boaretto, C.; Bobbink, G.J.; Bocci, A.; Bocian, D.; Bock, R.; Boehler, M.; Boehm, M.; Boek, J.; Boelaert, N.; Boser, S.; Bogaerts, J.A.; Bogouch, A.; Bohm, C.; Bohm, J.; Boisvert, V.; Bold, T.; Boldea, V.; Boldyrev, A.; Bondarenko, V.G.; Bondioli, M.; Bonino, R.; Boonekamp, M.; Boorman, G.; Boosten, M.; Booth, C.N.; Booth, P.S.L.; Booth, P.; Booth, J.R.A.; Bordoni, S.; Borer, C.; Borer, K.; Borisov, A.; Borissov, G.; Borjanovic, I.; Borroni, S.; Bos, K.; Boscherini, D.; Bosman, M.; Boterenbrood, H.; Botterill, D.; Bouchami, J.; Boudreau, J.; Bouhova-Thacker, E.V.; Boulahouache, C.; Bourdarios, C.; Boveia, A.; Boyd, J.; Boyer, B.H.; Boyko, I.R.; Bozhko, N.I.; Bozovic-Jelisavcic, I.; Braccini, S.; Bracinik, J.; Braem, A.; Brambilla, E.; Branchini, P.; Brandenburg, G.W.; Brandt, A.; Brandt, A.; Brandt, G.; Brandt, O.; Bratzler, U.; Brau, B.; Brau, J.E.; Braun, H.M.; Bravo, S.; Brelier, B.; Bremer, J.; Brenner, R.; Bressler, S.; Breton, D.; Brett, N.D.; Bright-Thomas, P.G.; Britton, D.; Brochu, F.M.; Brock, I.; Brock, R.; Brodbeck, T.J.

    2010-01-01

    The first measurements from proton-proton collisions recorded with the ATLAS detector at the LHC are presented. Data were collected in December 2009 using a minimum-bias trigger during collisions at a centre-of-mass energy of 900 GeV. The charged-particle multiplicity, its dependence on transverse momentum and pseudorapidity, and the relationship between mean transverse momentum and charged-particle multiplicity are measured for events with at least one charged particle in the kinematic range |eta|500 MeV. The measurements are compared to Monte Carlo models of proton-proton collisions and to results from other experiments at the same centre-of-mass energy. The charged-particle multiplicity per event and unit of pseudorapidity at eta = 0 is measured to be 1.333 +/- 0.003 (stat.) +/- 0.040 (syst.), which is 5-15% higher than the Monte Carlo models predict.

  13. Superconducting nanowire single photon detectors fabricated from an amorphous Mo{sub 0.75}Ge{sub 0.25} thin film

    Energy Technology Data Exchange (ETDEWEB)

    Verma, V. B.; Lita, A. E.; Vissers, M. R.; Marsili, F.; Pappas, D. P.; Mirin, R. P.; Nam, S. W. [National Institute of Standards and Technology, 325 Broadway, Boulder, Colorado 80305 (United States)

    2014-07-14

    We present the characteristics of superconducting nanowire single photon detectors (SNSPDs) fabricated from amorphous Mo{sub 0.75}Ge{sub 0.25} thin-films. Fabricated devices show a saturation of the internal detection efficiency at temperatures below 1 K, with system dark count rates below 500 cps. Operation in a closed-cycle cryocooler at 2.5 K is possible with system detection efficiencies exceeding 20% for SNSPDs which have not been optimized for high detection efficiency. Jitter is observed to vary between 69 ps at 250 mK and 187 ps at 2.5 K using room temperature amplifiers.

  14. Positronium production in cryogenic environments

    Science.gov (United States)

    Cooper, B. S.; Alonso, A. M.; Deller, A.; Liszkay, L.; Cassidy, D. B.

    2016-03-01

    We report measurements of positronium (Ps) formation following positron irradiation of mesoporous SiO2 films and Ge(100) single crystals at temperatures ranging from 12-700 K. As both of these materials generate Ps atoms via nonthermal processes, they are able to function as positron-positronium converters at cryogenic temperatures. Our data show that such Ps formation is possibly provided the targets are not compromised by adsorption of residual gas. In the case of SiO2 films, we observe a strong reduction in the Ps formation efficiency following irradiation with UV laser light (λ =243.01 nm) below 250 K, in accordance with previous observations of radiation-induced surface paramagnetic centers. Conversely, Ps emission from Ge is enhanced by irradiation with visible laser light (λ =532 nm) via a photoemission process that persists at cryogenic temperatures. Both mesoporous SiO2 films and Ge crystals were found to produce Ps efficiently in cryogenic environments. Accordingly, these materials are likely to prove useful in several areas of research, including Ps mediated antihydrogen formation conducted in the cold bore of a superconducting magnet, the production of Rydberg Ps for experiments in which the effects of black-body radiation must be minimized, and the utilization of mesoporous structures that have been modified to produce cold Ps atoms.

  15. The cryogenic challenge: status of the KAGRA project

    Science.gov (United States)

    Flaminio, Raffaele; KAGRA Collaboration

    2016-05-01

    The KAGRA project is building a gravitational wave detector inside the Kamioka mine (Japan). The detector is based on a laser interferometer with arms 3 km in length. In addition to its underground location the detector will be characterized by its mirrors made of sapphire and operated at cryogenic temperature. This paper describes the status of the construction at the site and gives an overview of the developments ongoing to prepare the cryogenic operation.

  16. Search for An Annual Modulation in Three Years of CoGeNT Dark Matter Detector Data

    CERN Document Server

    Aalseth, C E; Colaresi, J; Collar, J I; Leon, J Diaz; Fast, J E; Fields, N E; Hossbach, T W; Knecht, A; Kos, M S; Marino, M G; Miley, H S; Miller, M L; Orrell, J L; Yocum, K M

    2014-01-01

    Weakly Interacting Massive Particles (WIMPs) are well-established dark matter candidates. WIMP interactions with sensitive detectors are expected to display a characteristic annual modulation in rate. We release a dataset spanning 3.4 years of operation from a low-background germanium detector, designed to search for this signature. A previously reported modulation persists, concentrated in a region of the energy spectrum populated by an exponential excess of unknown origin. Its phase and period agree with phenomenological expectations, but its amplitude is a factor $\\sim$4-7 larger than predicted for a standard WIMP galactic halo. We consider the possibility of a non-Maxwellian local halo velocity distribution as a plausible explanation, able to help reconcile recently reported WIMP search anomalies.

  17. Low Mass Dimuon Production in p-A Collisions at 400 GeV/c with the NA60 Detector

    CERN Document Server

    Uras, Antonio; De Falco, Alessandro

    2011-01-01

    The NA60 experiment has studied low-mass muon pair production in proton-nucleus collisions with a system of Be, Cu, In, W, Pb and U targets using a 400 GeV/c proton beam at the CERN SPS. The mass spectrum is well described by the superposition of the two-body and Dalitz decays of the light neutral mesons eta, rho, omega, eta' and phi. A new measurement of the electromagnetic transition form factors of the eta and omega was performed. The values found agree with the previous available measurements, improving their uncertainty thanks to the higher statistics, and confirm the discrepancy with the prediction of the Vector Meson Dominance (VMD) model in the case of the electromagnetic form factor of the omega meson; for this latter, the comparison of the data to an improved calculation including also a direct point-like term is discussed. The pT spectra for the omega and phi mesons are studied in the full pT range accessible, up to pT = 2 GeV/c. The pT spectrum of the eta meson is also considered, starting from pT...

  18. CRYOGENIC MAGNETS

    Science.gov (United States)

    Post, R.F.; Taylor, C.E.

    1963-05-21

    A cryogenic magnet coil is described for generating magnetic fields of the order of 100,000 gauss with a minimum expenditure of energy lost in resistive heating of the coil inductors and energy lost irreversibly in running the coil refrigeration plant. The cryogenic coil comprises a coil conductor for generating a magnetic field upon energization with electrical current, and refrigeration means disposed in heat conductive relation to the coil conductor for cooling to a low temperature. A substantial reduction in the power requirements for generating these magnetic fields is attained by scaling the field generating coil to large size and particular dimensions for a particular conductor, and operating the coil at a particular optimum temperature commensurate with minimum overall power requirements. (AEC)

  19. Cryogenics; Criogenia

    Energy Technology Data Exchange (ETDEWEB)

    Gutierrez R, C.; Jimenez D, J.; Cejudo A, J.; Hernandez M, V. [Instituto Nacional de Investigaciones Nucleares, A.P. 18-1027, 11801 Mexico D.F. (Mexico)

    1997-07-01

    Cryogenics is one of these technologies which contributes to scientific research that supports to the industry in the following benefits: 1. Storage ability and a great quantity of dense gases with cryogenic liquid which is found at high pressure. 2. Production ability at low cost with high purity gases through distillation or condensation. 3. Ability to use low temperatures in the refrigerating materials or alteration of the physical properties. This technology is used for reprocessing of those short and long half life radioactive wastes which always have been required that to be separated with classical methods. In this text we report the radioactive wastes separation by more sophisticated methods but more quickly and reliable. (Author)

  20. Display of a high-pT H → ZZ* → eeμμ decay (mH = 130 GeV), after full simulation and reconstruction in the ATLAS detector

    CERN Multimedia

    ATLAS, Experiment

    2014-01-01

    The four leptons and the recoiling jet with ET = 135 GeV are clearly visible. Hits in the Inner Detector are shown in green for the four reconstructed leptons, both for the precision tracker (pixel and silicon micro-strip detectors) at the inner radii and for the transition radiation tracker at the outer radii. The other tracks reconstructed with pT > 0.5 GeV in the Inner Detector are shown in blue. The two electrons are depicted as reconstructed tracks in yellow and their energy deposits in each layer of the electromagnetic LAr calorimeter are shown in red. The two muons are shown as combined reconstructed tracks in orange, with the hit strips in the resistive-plate chambers and the hit drift tubes in the monitored drift-tube chambers visible as white lines in the barrel muon stations. The energy deposits from the muons in the barrel tile calorimeter can also be seen in purple.

  1. Signals induced by charge-trapping in EDELWEISS FID detectors: analytical modeling and applications

    Science.gov (United States)

    Arnaud, Q.; Armengaud, E.; Augier, C.; Benoît, A.; Bergé, L.; Billard, J.; Blümer, J.; de Boissière, T.; Broniatowski, A.; Camus, P.; Cazes, A.; Chapellier, M.; Charlieux, F.; Dumoulin, L.; Eitel, K.; Foerster, N.; Fourches, N.; Gascon, J.; Giuliani, A.; Gros, M.; Hehn, L.; Heuermann, G.; De Jésus, M.; Jin, Y.; Juillard, A.; Kleifges, M.; Kozlov, V.; Kraus, H.; Kéfélian, C.; Kudryavtsev, V. A.; Le-Sueur, H.; Marnieros, S.; Navick, X.-F.; Nones, C.; Olivieri, E.; Pari, P.; Paul, B.; Piro, M.-C.; Poda, D.; Queguiner, E.; Rozov, S.; Sanglard, V.; Schmidt, B.; Scorza, S.; Siebenborn, B.; Tcherniakhovski, D.; Vagneron, L.; Weber, M.; Yakushev, E.

    2016-10-01

    The EDELWEISS-III direct dark matter search experiment uses cryogenic HP-Ge detectors Fully covered with Inter-Digitized electrodes (FID). They are operated at low fields (FID detectors based on the Shockley-Ramo theorem. It is used to demonstrate that veto electrodes, initially designed for the sole purpose of surface event rejection, can be used to provide a sensitivity to the depth of the energy deposits, characterize the trapping in the crystals, perform heat and ionization energy corrections and improve the ionization baseline resolutions. These procedures are applied successfully to actual data.

  2. The Cryogenic Dark Matter Search

    Science.gov (United States)

    Sander, Joel

    2004-05-01

    The Cryogenic Dark Matter Search (CDMS) is an experiment to search for Weakly Interacting Massive Particles (WIMPs). The experiment initially was deployed at a shallow underground site, and is currently deployed at a deep underground site at the Soudan Mine in Minnesota. The detectors operate at cryogenic temperature, and are capable of distinguishing nuclear recoils from WIMP interactions from various backgrounds. The detectors are shielded from background by both active and passive elements. We will describe the components of the overall experiment, and focus on the novel data acquisition system that has been develop to control and monitor the experiment via the World Wide Web. Preliminary signals from the operation at Soudan will be discussed.

  3. The CLAS12 Torus Detector Magnet at Jefferson Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Luongo, Cesar [Jefferson Lab; Ballard, Joshua [Jefferson Lab; Biallas, George [Jefferson Lab; Elouadrhiri, Latifa [Jefferson Lab; Fair, Ruben [Jefferson Lab; Ghoshal, Probir [Jefferson Lab; Kashy, Dave [Jefferson Lab; Legg, Robert [Jefferson Lab; Pastor, Orlando [Jefferson Lab; Rajput-Ghoshal, Renuka [Jefferson Lab; Rode, Claus [Jefferson Lab; Wiseman, Mark [Jefferson Lab; Young, Glenn [Jefferson Lab; Elementi, Luciano [Fermilab; Krave, Steven [Fermilab; Makarov, Alexander [Fermilab; Nobrega, Fred [Fermilab; Velev, George [Fermilab

    2015-12-17

    The CLAS12 Torus is a toroidal superconducting magnet, which is part of the detector for the 12-GeV accelerator upgrade at Jefferson Laboratory (JLab). The coils were wound/fabricated by Fermilab, with JLab responsible for all other parts of the project scope, including design, integration, cryostating the individual coils, installation, cryogenics, I&C, etc. This paper provides an overview of the CLAS12 Torus magnet features and serves as a status report of its installation in the experimental hall. Completion and commissioning of the magnet is expected in 2016.

  4. Investigation of a direction sensitive sapphire detector stack at the 5 GeV electron beam at DESY-II

    CERN Document Server

    Karacheban, O; Hempel, M; Henschel, H; Lange, W; Leonard, J L; Levy, I; Lohmann, W; Schuwalow, S

    2015-01-01

    Extremely radiation hard sensors are needed in particle physics experiments to instrument the region near the beam pipe. Examples are beam halo and beam loss monitoring systems at the Large Hadron Collider, FLASH or XFEL. Artificial diamond sensors are currently widely used as sensors in these systems. In this paper single crystal sapphire sensors are considered as a promising alternative. Industrially grown sapphire wafers are available in large sizes, are of low cost and, like diamond sensors, can be operated without cooling. Here we present results of an irradiation study done with sapphire sensors in a high intensity low energy electron beam. Then, a multichannel direction-sensitive sapphire detector stack is described. It comprises 8 sapphire plates of 1 cm^2 size and 525 micrometer thickness, metallized on both sides, and apposed to form a stack. Each second metal layer is supplied with a bias voltage, and the layers in between are connected to charge-sensitive preamplifiers. The performance of the dete...

  5. Performance and stability tests of bare high purity germanium detectors in liquid argon for the GERDA experiment

    Energy Technology Data Exchange (ETDEWEB)

    Barnabe Heider, Marik

    2009-05-27

    GERDA will search for neutrinoless double beta decay of {sup 76}Ge by using a novel approach of bare germanium detectors in liquid argon (LAr). Enriched germanium detectors from the previous Heidelberg-Moscow and IGEX experiments have been reprocessed and will be deployed in GERDA Phase-I. At the center of this thesis project is the study of the performance of bare germanium detectors in cryogenic liquids. Identical detector performance as in vacuum cryostats (2.2 keV FWHM at 1.3 MeV) was achieved in cryogenic liquids with a new low-mass detector assembly and contacts. One major result is the discovery of a radiation induced leakage current (LC) increase when operating bare detectors with standard passivation layers in LAr. Charge collection and build-up on the passivation layer were identified as the origin of the LC increase. It was found that diodes without passivation do not exhibit this feature. Three month-long stable operation in LAr at {proportional_to} 5 pA LC under periodic gamma irradiation demonstrated the suitability of the modi ed detector design. Based on these results, all Phase-I detectors were reprocessed without passivation layer and subsequently successfully characterized in LAr in the GERDA underground Detector Laboratory. The mass loss during the reprocessing was {proportional_to}300 g out of 17.9 kg and the exposure above ground {proportional_to} 5 days. This results in a negligible cosmogenic background increase of {proportional_to} 5.10{sup -4} cts/(keV.kg.y) at {sup 76}Ge Q{sub {beta}}{sub {beta}} for {sup 60}Co and {sup 68}Ge. (orig.)

  6. Measurement of underlying event characteristics using charged particles in $pp$ collisions at $\\sqrt{s}$ = 900 GeV and 7 TeV with the ATLAS Detector

    CERN Document Server

    Aad, Georges; Abdallah, Jalal; Abdelalim, Ahmed Ali; Abdesselam, Abdelouahab; Abdinov, Ovsat; Abi, Babak; Abolins, Maris; Abramowicz, Halina; Abreu, Henso; Acerbi, Emilio; Acharya, Bobby Samir; Ackers, Mario; Adams, David; Addy, Tetteh; Adelman, Jahred; Aderholz, Michael; Adomeit, Stefanie; Adragna, Paolo; Adye, Tim; Aefsky, Scott; Aguilar-Saavedra, Juan Antonio; Aharrouche, Mohamed; Ahlen, Steven; Ahles, Florian; Ahmad, Ashfaq; Ahmed, Hossain; Ahsan, Mahsana; Aielli, Giulio; Akdogan, Taylan; Åkesson, Torsten Paul Ake; Akimoto, Ginga; Akimov, Andrei; Alam, Mohammad; Alam, Muhammad Aftab; Albrand, Solveig; Aleksa, Martin; Aleksandrov, Igor; Aleppo, Mario; Alessandria, Franco; Alexa, Calin; Alexander, Gideon; Alexandre, Gauthier; Alexopoulos, Theodoros; Alhroob, Muhammad; Aliev, Malik; Alimonti, Gianluca; Alison, John; Aliyev, Magsud; Allport, Phillip; Allwood-Spiers, Sarah; Almond, John; Aloisio, Alberto; Alon, Raz; Alonso, Alejandro; Alonso, Jose; Alviggi, Mariagrazia; Amako, Katsuya; Amaral, Pedro; Amelung, Christoph; Ammosov, Vladimir; Amorim, Antonio; Amorós, Gabriel; Amram, Nir; Anastopoulos, Christos; Andeen, Timothy; Anders, Christoph Falk; Anderson, Kelby; Andreazza, Attilio; Andrei, George Victor; Andrieux, Marie-Laure; Anduaga, Xabier; Angerami, Aaron; Anghinolfi, Francis; Anjos, Nuno; Annovi, Alberto; Antonaki, Ariadni; Antonelli, Mario; Antonelli, Stefano; Antos, Jaroslav; Antunovic, Bijana; Anulli, Fabio; Aoun, Sahar; Apolle, Rudi; Arabidze, Giorgi; Aracena, Ignacio; Arai, Yasuo; Arce, Ayana; Archambault, John-Paul; Arfaoui, Samir; Arguin, Jean-Francois; Argyropoulos, Theodoros; Arik, Engin; Arik, Metin; Armbruster, Aaron James; Arms, Kregg; Armstrong, Stephen Randolph; Arnaez, Olivier; Arnault, Christian; Artamonov, Andrei; Arutinov, David; Asai, Shoji; Silva, José; Asfandiyarov, Ruslan; Ask, Stefan; Åsman, Barbro; Asquith, Lily; Assamagan, Ketevi; Astbury, Alan; Astvatsatourov, Anatoli; Atoian, Grigor; Aubert, Bernard; Auerbach, Benjamin; Auge, Etienne; Augsten, Kamil; Aurousseau, Mathieu; Austin, Nicholas; Avramidou, Rachel Maria; Axen, David; Ay, Cano; Azuelos, Georges; Azuma, Yuya; Baak, Max; Baccaglioni, Giuseppe; Bacci, Cesare; Bach, Andre; Bachacou, Henri; Bachas, Konstantinos; Bachy, Gerard; Backes, Moritz; Badescu, Elisabeta; Bagnaia, Paolo; Bai, Yu; Bailey, David; Bain, Travis; Baines, John; Baker, Oliver Keith; Baker, Sarah; Baltasar Dos Santos Pedrosa, Fernando; Banas, Elzbieta; Banerjee, Piyali; Banerjee, Swagato; Banfi, Danilo; Bangert, Andrea Michelle; Bansal, Vikas; Bansil, Hardeep Singh; Barak, Liron; Baranov, Sergei; Barashkou, Andrei; Barbaro Galtieri, Angela; Barber, Tom; Barberio, Elisabetta Luigia; Barberis, Dario; Barbero, Marlon; Bardin, Dmitri; Barillari, Teresa; Barisonzi, Marcello; Barklow, Timothy; Barlow, Nick; Barnett, Bruce; Barnett, Michael; Baroncelli, Antonio; Barr, Alan; Barreiro, Fernando; Barreiro Guimarães da Costa, João; Barrillon, Pierre; Bartoldus, Rainer; Barton, Adam Edward; Bartsch, Detlef; Bates, Richard; Batkova, Lucia; Batley, Richard; Battaglia, Andreas; Battistin, Michele; Battistoni, Giuseppe; Bauer, Florian; Bawa, Harinder Singh; Beare, Brian; Beau, Tristan; Beauchemin, Pierre-Hugues; Beccherle, Roberto; Bechtle, Philip; Beck, Hans Peter; Beckingham, Matthew; Becks, Karl-Heinz; Beddall, Andrew; Beddall, Ayda; Bednyakov, Vadim; Bee, Christopher; Begel, Michael; Behar Harpaz, Silvia; Behera, Prafulla; Beimforde, Michael; Belanger-Champagne, Camille; Belhorma, Bouchra; Bell, Paul; Bell, William; Bella, Gideon; Bellagamba, Lorenzo; Bellina, Francesco; Bellomo, Giovanni; Bellomo, Massimiliano; Belloni, Alberto; Belotskiy, Konstantin; Beltramello, Olga; Ben Ami, Sagi; Benary, Odette; Benchekroun, Driss; Benchouk, Chafik; Bendel, Markus; Benedict, Brian Hugues; Benekos, Nektarios; Benhammou, Yan; Benjamin, Douglas; Benoit, Mathieu; Bensinger, James; Benslama, Kamal; Bentvelsen, Stan; Berge, David; Bergeaas Kuutmann, Elin; Berger, Nicolas; Berghaus, Frank; Berglund, Elina; Beringer, Jürg; Bernardet, Karim; Bernat, Pauline; Bernhard, Ralf; Bernius, Catrin; Berry, Tracey; Bertin, Antonio; Bertinelli, Francesco; Bertolucci, Federico; Besana, Maria Ilaria; Besson, Nathalie; Bethke, Siegfried; Bhimji, Wahid; Bianchi, Riccardo-Maria; Bianco, Michele; Biebel, Otmar; Biesiada, Jed; Biglietti, Michela; Bilokon, Halina; Bindi, Marcello; Bingul, Ahmet; Bini, Cesare; Biscarat, Catherine; Bischof, Reinhard; Bitenc, Urban; Black, Kevin; Blair, Robert; Blanchard, Jean-Baptiste; Blanchot, Georges; Blocker, Craig; Blocki, Jacek; Blondel, Alain; Blum, Walter; Blumenschein, Ulrike; Boaretto, Christian; Bobbink, Gerjan; Bobrovnikov, Victor; Bocci, Andrea; Bock, Rudolf; Boddy, Christopher Richard; Boehler, Michael; Boek, Jennifer; Boelaert, Nele; Böser, Sebastian; Bogaerts, Joannes Andreas; Bogdanchikov, Alexander; Bogouch, Andrei; Bohm, Christian; Boisvert, Veronique; Bold, Tomasz; Boldea, Venera; Boonekamp, Maarten; Boorman, Gary; Booth, Chris; Booth, Peter; Booth, Richard; Bordoni, Stefania; Borer, Claudia; Borisov, Anatoly; Borissov, Guennadi; Borjanovic, Iris; Borroni, Sara; Bos, Kors; Boscherini, Davide; Bosman, Martine; Boterenbrood, Hendrik; Botterill, David; Bouchami, Jihene; Boudreau, Joseph; Bouhova-Thacker, Evelina Vassileva; Boulahouache, Chaouki; Bourdarios, Claire; Bousson, Nicolas; Boveia, Antonio; Boyd, James; Boyko, Igor; Bozhko, Nikolay; Bozovic-Jelisavcic, Ivanka; Braccini, Saverio; Bracinik, Juraj; Braem, André; Brambilla, Elena; Branchini, Paolo; Brandenburg, George; Brandt, Andrew; Brandt, Gerhard; Brandt, Oleg; Bratzler, Uwe; Brau, Benjamin; Brau, James; Braun, Helmut; Brelier, Bertrand; Bremer, Johan; Brenner, Richard; Bressler, Shikma; Breton, Dominique; Brett, Nicolas; Bright-Thomas, Paul; Britton, Dave; Brochu, Frederic; Brock, Ian; Brock, Raymond; Brodbeck, Timothy; Brodet, Eyal; Broggi, Francesco; Bromberg, Carl; Brooijmans, Gustaaf; Brooks, William; Brown, Gareth; Brubaker, Erik; Bruckman de Renstrom, Pawel; Bruncko, Dusan; Bruneliere, Renaud; Brunet, Sylvie; Bruni, Alessia; Bruni, Graziano; Bruschi, Marco; Buanes, Trygve; Bucci, Francesca; Buchanan, James; Buchanan, Norman; Buchholz, Peter; Buckingham, Ryan; Buckley, Andrew; Buda, Stelian Ioan; Budagov, Ioulian; Budick, Burton; Büscher, Volker; Bugge, Lars; Buira-Clark, Daniel; Buis, Ernst-Jan; Bulekov, Oleg; Bunse, Moritz; Buran, Torleiv; Burckhart, Helfried; Burdin, Sergey; Burgess, Thomas; Burke, Stephen; Busato, Emmanuel; Bussey, Peter; Buszello, Claus-Peter; Butin, François; Butler, Bart; Butler, John; Buttar, Craig; Butterworth, Jonathan; Buttinger, William; Byatt, Tom; Cabrera Urbán, Susana; Caccia, Massimo; Caforio, Davide; Cakir, Orhan; Calafiura, Paolo; Calderini, Giovanni; Calfayan, Philippe; Calkins, Robert; Caloba, Luiz; Caloi, Rita; Calvet, David; Calvet, Samuel; Camard, Arnaud; Camarri, Paolo; Cambiaghi, Mario; Cameron, David; Cammin, Jochen; Campana, Simone; Campanelli, Mario; Canale, Vincenzo; Canelli, Florencia; Canepa, Anadi; Cantero, Josu; Capasso, Luciano; Capeans Garrido, Maria Del Mar; Caprini, Irinel; Caprini, Mihai; Caprio, Mario; Capriotti, Daniele; Capua, Marcella; Caputo, Regina; Caramarcu, Costin; Cardarelli, Roberto; Carli, Tancredi; Carlino, Gianpaolo; Carminati, Leonardo; Caron, Bryan; Caron, Sascha; Carpentieri, Carmen; Carrillo Montoya, German D; Carron Montero, Sebastian; Carter, Antony; Carter, Janet; Carvalho, João; Casadei, Diego; Casado, Maria Pilar; Cascella, Michele; Caso, Carlo; Castaneda Hernandez, Alfredo Martin; Castaneda-Miranda, Elizabeth; Castillo Gimenez, Victoria; Castro, Nuno Filipe; Cataldi, Gabriella; Cataneo, Fernando; Catinaccio, Andrea; Catmore, James; Cattai, Ariella; Cattani, Giordano; Caughron, Seth; Cavallari, Alvise; Cavalleri, Pietro; Cavalli, Donatella; Cavalli-Sforza, Matteo; Cavasinni, Vincenzo; Cazzato, Antonio; Ceradini, Filippo; Cerna, Cedric; Cerqueira, Augusto Santiago; Cerri, Alessandro; Cerrito, Lucio; Cerutti, Fabio; Cervetto, Mario; Cetin, Serkant Ali; Cevenini, Francesco; Chafaq, Aziz; Chakraborty, Dhiman; Chan, Kevin; Chapleau, Bertrand; Chapman, John Derek; Chapman, John Wehrley; Chareyre, Eve; Charlton, Dave; Chavda, Vikash; Cheatham, Susan; Chekanov, Sergei; Chekulaev, Sergey; Chelkov, Gueorgui; Chen, Hucheng; Chen, Li; Chen, Shenjian; Chen, Tingyang; Chen, Xin; Cheng, Shaochen; Cheplakov, Alexander; Chepurnov, Vladimir; Cherkaoui El Moursli, Rajaa; Tcherniatine, Valeri; Cheu, Elliott; Cheung, Sing-Leung; Chevalier, Laurent; Chevallier, Florent; Chiefari, Giovanni; Chikovani, Leila; Childers, John Taylor; Chilingarov, Alexandre; Chiodini, Gabriele; Chizhov, Mihail; Choudalakis, Georgios; Chouridou, Sofia; Christidi, Illectra-Athanasia; Christov, Asen; Chromek-Burckhart, Doris; Chu, Ming-Lee; Chudoba, Jiri; Ciapetti, Guido; Ciftci, Abbas Kenan; Ciftci, Rena; Cinca, Diane; Cindro, Vladimir; Ciobotaru, Matei Dan; Ciocca, Claudia; Ciocio, Alessandra; Cirilli, Manuela; Clark, Allan G; Clark, Philip; Cleland, Bill; Clemens, Jean-Claude; Clement, Benoit; Clement, Christophe; Clifft, Roger; Coadou, Yann; Cobal, Marina; Coccaro, Andrea; Cochran, James H; Coe, Paul; Cogan, Joshua Godfrey; Coggeshall, James; Cogneras, Eric; Cojocaru, Claudiu; Colas, Jacques; Colijn, Auke-Pieter; Collard, Caroline; Collins, Neil; Collins-Tooth, Christopher; Collot, Johann; Colon, German; Coluccia, Rita; Comune, Gianluca; Conde Muiño, Patricia; Coniavitis, Elias; Conidi, Maria Chiara; Consonni, Michele; Constantinescu, Serban; Conta, Claudio; Conventi, Francesco; Cook, James; Cooke, Mark; Cooper, Ben; Cooper-Sarkar, Amanda; Cooper-Smith, Neil; Copic, Katherine; Cornelissen, Thijs; Corradi, Massimo; Correard, Sebastien; Corriveau, Francois; Cortes-Gonzalez, Arely; Cortiana, Giorgio; Costa, Giuseppe; Costa, María José; Costanzo, Davide; Costin, Tudor; Côté, David; Coura Torres, Rodrigo; Courneyea, Lorraine; Cowan, Glen; Cowden, Christopher; Cox, Brian; Cranmer, Kyle; Cristinziani, Markus; Crosetti, Giovanni; Crupi, Roberto; Crépé-Renaudin, Sabine; Cuenca Almenar, Cristóbal; Cuhadar Donszelmann, Tulay; Cuneo, Stefano; Curatolo, Maria; Curtis, Chris; Cwetanski, Peter; Czirr, Hendrik; Czyczula, Zofia; D'Auria, Saverio; D'Onofrio, Monica; D'Orazio, Alessia; Da Rocha Gesualdi Mello, Aline; Da Silva, Paulo Vitor; Da Via, Cinzia; Dabrowski, Wladyslaw; Dahlhoff, Andrea; Dai, Tiesheng; Dallapiccola, Carlo; Dallison, Steve; Dam, Mogens; Dameri, Mauro; Damiani, Daniel; Danielsson, Hans Olof; Dankers, Reinier; Dannheim, Dominik; Dao, Valerio; Darbo, Giovanni; Darlea, Georgiana Lavinia; Daum, Cornelis; Dauvergne, Jean-Pierre; Davey, Will; Davidek, Tomas; Davidson, Nadia; Davidson, Ruth; Davies, Merlin; Davison, Adam; Dawe, Edmund; Dawson, Ian; Dawson, John; Daya, Rozmin; De, Kaushik; de Asmundis, Riccardo; De Castro, Stefano; De Cecco, Sandro; de Graat, Julien; De Groot, Nicolo; de Jong, Paul; De La Cruz-Burelo, Eduard; De La Taille, Christophe; De Lotto, Barbara; De Mora, Lee; De Nooij, Lucie; De Oliveira Branco, Miguel; De Pedis, Daniele; de Saintignon, Paul; De Salvo, Alessandro; De Sanctis, Umberto; De Santo, Antonella; De Vivie De Regie, Jean-Baptiste; Dean, Simon; Dedes, George; Dedovich, Dmitri; Degenhardt, James; Dehchar, Mohamed; Deile, Mario; Del Papa, Carlo; Del Peso, Jose; Del Prete, Tarcisio; Dell'Acqua, Andrea; Dell'Asta, Lidia; Della Pietra, Massimo; della Volpe, Domenico; Delmastro, Marco; Delpierre, Pierre; Delruelle, Nicolas; Delsart, Pierre-Antoine; Deluca, Carolina; Demers, Sarah; Demichev, Mikhail; Demirkoz, Bilge; Deng, Jianrong; Denisov, Sergey; Dennis, Chris; Derendarz, Dominik; Derkaoui, Jamal Eddine; Derue, Frederic; Dervan, Paul; Desch, Klaus Kurt; Deviveiros, Pier-Olivier; Dewhurst, Alastair; DeWilde, Burton; Dhaliwal, Saminder; Dhullipudi, Ramasudhakar; Di Ciaccio, Anna; Di Ciaccio, Lucia; Di Girolamo, Alessandro; Di Girolamo, Beniamino; Di Luise, Silvestro; Di Mattia, Alessandro; Di Nardo, Roberto; Di Simone, Andrea; Di Sipio, Riccardo; Diaz, Marco Aurelio; Diaz Gomez, Manuel Maria; Diblen, Faruk; Diehl, Edward; Dietl, Hans; Dietrich, Janet; Dietzsch, Thorsten; Diglio, Sara; Dindar Yagci, Kamile; Dingfelder, Jochen; Dionisi, Carlo; Dita, Petre; Dita, Sanda; Dittus, Fridolin; Djama, Fares; Djilkibaev, Rashid; Djobava, Tamar; do Vale, Maria Aline Barros; Do Valle Wemans, André; Doan, Thi Kieu Oanh; Dobbs, Matt; Dobinson, Robert; Dobos, Daniel; Dobson, Ellie; Dobson, Marc; Dodd, Jeremy; Dogan, Ozgen Berkol; Doglioni, Caterina; Doherty, Tom; Doi, Yoshikuni; Dolejsi, Jiri; Dolenc, Irena; Dolezal, Zdenek; Dolgoshein, Boris; Dohmae, Takeshi; Donadelli, Marisilvia; Donega, Mauro; Donini, Julien; Dopke, Jens; Doria, Alessandra; Dos Anjos, Andre; Dosil, Mireia; Dotti, Andrea; Dova, Maria-Teresa; Dowell, John; Doxiadis, Alexander; Doyle, Tony; Drasal, Zbynek; Drees, Jürgen; Dressnandt, Nandor; Drevermann, Hans; Driouichi, Chafik; Dris, Manolis; Drohan, Janice; Dubbert, Jörg; Dubbs, Tim; Dube, Sourabh; Duchovni, Ehud; Duckeck, Guenter; Dudarev, Alexey; Dudziak, Fanny; Dührssen, Michael; Duerdoth, Ian; Duflot, Laurent; Dufour, Marc-Andre; Dunford, Monica; Duran Yildiz, Hatice; Duxfield, Robert; Dwuznik, Michal; Dydak, Friedrich; Dzahini, Daniel; Düren, Michael; Ebke, Johannes; Eckert, Simon; Eckweiler, Sebastian; Edmonds, Keith; Edwards, Clive; Efthymiopoulos, Ilias; Ehrenfeld, Wolfgang; Ehrich, Thies; Eifert, Till; Eigen, Gerald; Einsweiler, Kevin; Eisenhandler, Eric; Ekelof, Tord; El Kacimi, Mohamed; Ellert, Mattias; Elles, Sabine; Ellinghaus, Frank; Ellis, Katherine; Ellis, Nicolas; Elmsheuser, Johannes; Elsing, Markus; Ely, Robert; Emeliyanov, Dmitry; Engelmann, Roderich; Engl, Albert; Epp, Brigitte; Eppig, Andrew; Erdmann, Johannes; Ereditato, Antonio; Eriksson, Daniel; Ernst, Jesse; Ernst, Michael; Ernwein, Jean; Errede, Deborah; Errede, Steven; Ertel, Eugen; Escalier, Marc; Escobar, Carlos; Espinal Curull, Xavier; Esposito, Bellisario; Etienne, Francois; Etienvre, Anne-Isabelle; Etzion, Erez; Evangelakou, Despoina; Evans, Hal; Fabbri, Laura; Fabre, Caroline; Facius, Katrine; Fakhrutdinov, Rinat; Falciano, Speranza; Falou, Alain; Fang, Yaquan; Fanti, Marcello; Farbin, Amir; Farilla, Addolorata; Farley, Jason; Farooque, Trisha; Farrington, Sinead; Farthouat, Philippe; Fasching, Damon; Fassnacht, Patrick; Fassouliotis, Dimitrios; Fatholahzadeh, Baharak; Fayard, Louis; Fazio, Salvatore; Febbraro, Renato; Federic, Pavol; Fedin, Oleg; Fedorko, Ivan; Fedorko, Woiciech; Fehling-Kaschek, Mirjam; Feligioni, Lorenzo; Felzmann, Ulrich; Feng, Cunfeng; Feng, Eric; Fenyuk, Alexander; Ferencei, Jozef; Ferguson, Douglas; Ferland, Jonathan; Fernandes, Bruno; Fernando, Waruna; Ferrag, Samir; Ferrando, James; Ferrara, Valentina; Ferrari, Arnaud; Ferrari, Pamela; Ferrari, Roberto; Ferrer, Antonio; Ferrer, Maria Lorenza; Ferrere, Didier; Ferretti, Claudio; Ferretto Parodi, Andrea; Ferro, Fabrizio; Fiascaris, Maria; Fiedler, Frank; Filipčič, Andrej; Filippas, Anastasios; Filthaut, Frank; Fincke-Keeler, Margret; Fiolhais, Miguel; Fiorini, Luca; Firan, Ana; Fischer, Gordon; Fischer, Peter; Fisher, Matthew; Fisher, Steve; Flammer, Joachim; Flechl, Martin; Fleck, Ivor; Fleckner, Johanna; Fleischmann, Philipp; Fleischmann, Sebastian; Flick, Tobias; Flores Castillo, Luis; Flowerdew, Michael; Föhlisch, Florian; Fokitis, Manolis; Fonseca Martin, Teresa; Fopma, Johan; Forbush, David Alan; Formica, Andrea; Forti, Alessandra; Fortin, Dominique; Foster, Joe; Fournier, Daniel; Foussat, Arnaud; Fowler, Andrew; Fowler, Ken; Fox, Harald; Francavilla, Paolo; Franchino, Silvia; Francis, David; Frank, Tal; Franklin, Melissa; Franz, Sebastien; Fraternali, Marco; Fratina, Sasa; French, Sky; Froeschl, Robert; Froidevaux, Daniel; Frost, James; Fukunaga, Chikara; Fullana Torregrosa, Esteban; Fuster, Juan; Gabaldon, Carolina; Gabizon, Ofir; Gadfort, Thomas; Gadomski, Szymon; Gagliardi, Guido; Gagnon, Pauline; Galea, Cristina; Gallas, Elizabeth; Gallas, Manuel; Gallo, Valentina Santina; Gallop, Bruce; Gallus, Petr; Galyaev, Eugene; Gan, KK; Gao, Yongsheng; Gapienko, Vladimir; Gaponenko, Andrei; Garberson, Ford; Garcia-Sciveres, Maurice; García, Carmen; García Navarro, José Enrique; Gardner, Robert; Garelli, Nicoletta; Garitaonandia, Hegoi; Garonne, Vincent; Garvey, John; Gatti, Claudio; Gaudio, Gabriella; Gaumer, Olivier; Gaur, Bakul; Gauthier, Lea; Gavrilenko, Igor; Gay, Colin; Gaycken, Goetz; Gayde, Jean-Christophe; Gazis, Evangelos; Ge, Peng; Gee, Norman; Geich-Gimbel, Christoph; Gellerstedt, Karl; Gemme, Claudia; Genest, Marie-Hélène; Gentile, Simonetta; Georgatos, Fotios; George, Simon; Gerlach, Peter; Gershon, Avi; Geweniger, Christoph; Ghazlane, Hamid; Ghez, Philippe; Ghodbane, Nabil; Giacobbe, Benedetto; Giagu, Stefano; Giakoumopoulou, Victoria; Giangiobbe, Vincent; Gianotti, Fabiola; Gibbard, Bruce; Gibson, Adam; Gibson, Stephen; Gieraltowski, Gerry; Gilbert, Laura; Gilchriese, Murdock; Gildemeister, Otto; Gilewsky, Valentin; Gillberg, Dag; Gillman, Tony; Gingrich, Douglas; Ginzburg, Jonatan; Giokaris, Nikos; Giordano, Raffaele; Giorgi, Francesco Michelangelo; Giovannini, Paola; Giraud, Pierre-Francois; Giugni, Danilo; Giusti, Paolo; Gjelsten, Børge Kile; Gladilin, Leonid; Glasman, Claudia; Glatzer, Julian; Glazov, Alexandre; Glitza, Karl-Walter; Glonti, George; Godfrey, Jennifer; Godlewski, Jan; Goebel, Martin; Göpfert, Thomas; Goeringer, Christian; Gössling, Claus; Göttfert, Tobias; Goldfarb, Steven; Goldin, Daniel; Golling, Tobias; Gollub, Nils Peter; Golovnia, Serguei; Gomes, Agostinho; Gomez Fajardo, Luz Stella; Gonçalo, Ricardo; Gonella, Laura; Gong, Chenwei; Gonidec, Allain; Gonzalez, Saul; González de la Hoz, Santiago; Gonzalez Silva, Laura; Gonzalez-Sevilla, Sergio; Goodson, Jeremiah Jet; Goossens, Luc; Gorbounov, Petr Andreevich; Gordon, Howard; Gorelov, Igor; Gorfine, Grant; Gorini, Benedetto; Gorini, Edoardo; Gorišek, Andrej; Gornicki, Edward; Gorokhov, Serguei; Gorski, Boguslaw Tomasz; Goryachev, Vladimir; Gosdzik, Bjoern; Gosselink, Martijn; Gostkin, Mikhail Ivanovitch; Gouanère, Michel; Gough Eschrich, Ivo; Gouighri, Mohamed; Goujdami, Driss; Goulette, Marc Phillippe; Goussiou, Anna; Goy, Corinne; Grabowska-Bold, Iwona; Grabski, Varlen; Grafström, Per; Grah, Christian; Grahn, Karl-Johan; Grancagnolo, Francesco; Grancagnolo, Sergio; Grassi, Valerio; Gratchev, Vadim; Grau, Nathan; Gray, Heather; Gray, Julia Ann; Graziani, Enrico; Grebenyuk, Oleg; Greenfield, Debbie; Greenshaw, Timothy; Greenwood, Zeno Dixon; Gregor, Ingrid-Maria; Grenier, Philippe; Griesmayer, Erich; Griffiths, Justin; Grigalashvili, Nugzar; Grillo, Alexander; Grimm, Kathryn; Grinstein, Sebastian; Grishkevich, Yaroslav; Grivaz, Jean-Francois; Grognuz, Joel; Groh, Manfred; Gross, Eilam; Grosse-Knetter, Joern; Groth-Jensen, Jacob; Gruwe, Magali; Grybel, Kai; Guarino, Victor; Guicheney, Christophe; Guida, Angelo; Guillemin, Thibault; Guindon, Stefan; Guler, Hulya; Gunther, Jaroslav; Guo, Bin; Guo, Jun; Gupta, Ambreesh; Gusakov, Yury; Gushchin, Vladimir; Gutierrez, Andrea; Gutierrez, Phillip; Guttman, Nir; Gutzwiller, Olivier; Guyot, Claude; Gwenlan, Claire; Gwilliam, Carl; Haas, Andy; Haas, Stefan; Haber, Carl; Hackenburg, Robert; Hadavand, Haleh Khani; Hadley, David; Haefner, Petra; Härtel, Roland; Hahn, Ferdinand; Haider, Stefan; Hajduk, Zbigniew; Hakobyan, Hrachya; Haller, Johannes; Hamacher, Klaus; Hamilton, Andrew; Hamilton, Samuel; Han, Hongguang; Han, Liang; Hanagaki, Kazunori; Hance, Michael; Handel, Carsten; Hanke, Paul; Hansen, Christian Johan; Hansen, John Renner; Hansen, Jørgen Beck; Hansen, Jorn Dines; Hansen, Peter Henrik; Hansson, Per; Hara, Kazuhiko; Hare, Gabriel; Harenberg, Torsten; Harper, Devin; Harper, Robert; Harrington, Robert; Harris, Orin; Harrison, Karl; Hart, John; Hartert, Jochen; Hartjes, Fred; Haruyama, Tomiyoshi; Harvey, Alex; Hasegawa, Satoshi; Hasegawa, Yoji; Hassani, Samira; Hatch, Mark; Hauff, Dieter; Haug, Sigve; Hauschild, Michael; Hauser, Reiner; Havranek, Miroslav; Hawes, Brian; Hawkes, Christopher; Hawkings, Richard John; Hawkins, Donovan; Hayakawa, Takashi; Hayward, Helen; Haywood, Stephen; Hazen, Eric; He, Mao; Head, Simon; Hedberg, Vincent; Heelan, Louise; Heim, Sarah; Heinemann, Beate; Heisterkamp, Simon; Helary, Louis; Heldmann, Michael; Heller, Mathieu; Hellman, Sten; Helsens, Clement; Henderson, Robert; Hendriks, Patrick John; Henke, Michael; Henrichs, Anna; Henriques Correia, Ana Maria; Henrot-Versille, Sophie; Henry-Couannier, Frédéric; Hensel, Carsten; Henß, Tobias; Hernández Jiménez, Yesenia; Hershenhorn, Alon David; Herten, Gregor; Hertenberger, Ralf; Hervas, Luis; Hessey, Nigel; Hidvegi, Attila; Higón-Rodriguez, Emilio; Hill, Daniel; Hill, John; Hill, Norman; Hiller, Karl Heinz; Hillert, Sonja; Hillier, Stephen; Hinchliffe, Ian; Hindson, Daniel; Hines, Elizabeth; Hirose, Minoru; Hirsch, Florian; Hirschbuehl, Dominic; Hobbs, John; Hod, Noam; Hodgkinson, Mark; Hodgson, Paul; Hoecker, Andreas; Hoeferkamp, Martin; Hoffman, Julia; Hoffmann, Dirk; Hohlfeld, Marc; Holder, Martin; Hollins, Ivan; Holmes, Alan; Holmgren, Sven-Olof; Holy, Tomas; Holzbauer, Jenny; Homer, Jim; Homma, Yasuhiro; Horazdovsky, Tomas; Horn, Claus; Horner, Stephan; Horton, Katherine; Hostachy, Jean-Yves; Hott, Thomas; Hou, Suen; Houlden, Michael; Hoummada, Abdeslam; Howarth, James; Howell, David; Hristova, Ivana; Hrivnac, Julius; Hruska, Ivan; Hryn'ova, Tetiana; Hsu, Pai-hsien Jennifer; Hsu, Shih-Chieh; Huang, Guang Shun; Hubacek, Zdenek; Hubaut, Fabrice; Huegging, Fabian; Huffman, Todd Brian; Hughes, Emlyn; Hughes, Gareth; Hughes-Jones, Richard; Huhtinen, Mika; Hurst, Peter; Hurwitz, Martina; Husemann, Ulrich; Huseynov, Nazim; Huston, Joey; Huth, John; Iacobucci, Giuseppe; Iakovidis, Georgios; Ibbotson, Michael; Ibragimov, Iskander; Ichimiya, Ryo; Iconomidou-Fayard, Lydia; Idarraga, John; Idzik, Marek; Iengo, Paolo; Igonkina, Olga; Ikegami, Yoichi; Ikeno, Masahiro; Ilchenko, Yuri; Iliadis, Dimitrios; Imbault, Didier; Imhaeuser, Martin; Imori, Masatoshi; Ince, Tayfun; Inigo-Golfin, Joaquin; Ioannou, Pavlos; Iodice, Mauro; Ionescu, Gelu; Irles Quiles, Adrian; Ishii, Koji; Ishikawa, Akimasa; Ishino, Masaya; Ishmukhametov, Renat; Isobe, Tadaaki; Issever, Cigdem; Istin, Serhat; Itoh, Yuki; Ivashin, Anton; Iwanski, Wieslaw; Iwasaki, Hiroyuki; Izen, Joseph; Izzo, Vincenzo; Jackson, Brett; Jackson, John; Jackson, Paul; Jaekel, Martin; Jain, Vivek; Jakobs, Karl; Jakobsen, Sune; Jakubek, Jan; Jana, Dilip; Jankowski, Ernest; Jansen, Eric; Jantsch, Andreas; Janus, Michel; Jarlskog, Göran; Jeanty, Laura; Jelen, Kazimierz; Jen-La Plante, Imai; Jenni, Peter; Jeremie, Andrea; Jež, Pavel; Jézéquel, Stéphane; Ji, Haoshuang; Ji, Weina; Jiang, Yi; Jimenez Belenguer, Marcos; Jin, Ge; Jin, Shan; Jinnouchi, Osamu; Joergensen, Morten Dam; Joffe, David; Johansen, Lars; Johansen, Marianne; Johansson, Erik; Johansson, Per; Johnert, Sebastian; Johns, Kenneth; Jon-And, Kerstin; Jones, Graham; Jones, Mark; Jones, Roger; Jones, Tegid; Jones, Tim; Jonsson, Ove; Joo, Kwang; Joram, Christian; Jorge, Pedro; Jorgensen, Sigrid; Joseph, John; Ju, Xiangyang; Juranek, Vojtech; Jussel, Patrick; Kabachenko, Vasily; Kabana, Sonja; Kaci, Mohammed; Kaczmarska, Anna; Kadlecik, Peter; Kado, Marumi; Kagan, Harris; Kagan, Michael; Kaiser, Steffen; Kajomovitz, Enrique; Kalinin, Sergey; Kalinovskaya, Lidia; Kama, Sami; Kanaya, Naoko; Kaneda, Michiru; Kanno, Takayuki; Kantserov, Vadim; Kanzaki, Junichi; Kaplan, Benjamin; Kapliy, Anton; Kaplon, Jan; Kar, Deepak; Karagoz, Muge; Karnevskiy, Mikhail; Karr, Kristo; Kartvelishvili, Vakhtang; Karyukhin, Andrey; Kashif, Lashkar; Kasmi, Azzedine; Kass, Richard; Kastanas, Alex; Kataoka, Mayuko; Kataoka, Yousuke; Katsoufis, Elias; Katzy, Judith; Kaushik, Venkatesh; Kawagoe, Kiyotomo; Kawamoto, Tatsuo; Kawamura, Gen; Kayl, Manuel; Kazanin, Vassili; Kazarinov, Makhail; Kazi, Sandor Istvan; Keates, James Robert; Keeler, Richard; Kehoe, Robert; Keil, Markus; Kekelidze, George; Kelly, Marc; Kennedy, John; Kenney, Christopher John; Kenyon, Mike; Kepka, Oldrich; Kerschen, Nicolas; Kerševan, Borut Paul; Kersten, Susanne; Kessoku, Kohei; Ketterer, Christian; Khakzad, Mohsen; Khalil-zada, Farkhad; Khandanyan, Hovhannes; Khanov, Alexander; Kharchenko, Dmitri; Khodinov, Alexander; Kholodenko, Anatoli; Khomich, Andrei; Khoo, Teng Jian; Khoriauli, Gia; Khovanskiy, Nikolai; Khovanskiy, Valery; Khramov, Evgeniy; Khubua, Jemal; Kilvington, Graham; Kim, Hyeon Jin; Kim, Min Suk; Kim, Peter; Kim, Shinhong; Kimura, Naoki; Kind, Oliver; King, Barry; King, Matthew; King, Robert Steven Beaufoy; Kirk, Julie; Kirsch, Guillaume; Kirsch, Lawrence; Kiryunin, Andrey; Kisielewska, Danuta; Kittelmann, Thomas; Kiver, Andrey; Kiyamura, Hironori; Kladiva, Eduard; Klaiber-Lodewigs, Jonas; Klein, Max; Klein, Uta; Kleinknecht, Konrad; Klemetti, Miika; Klier, Amit; Klimentov, Alexei; Klingenberg, Reiner; Klinkby, Esben; Klioutchnikova, Tatiana; Klok, Peter; Klous, Sander; Kluge, Eike-Erik; Kluge, Thomas; Kluit, Peter; Kluth, Stefan; Kneringer, Emmerich; Knobloch, Juergen; Knue, Andrea; Ko, Byeong Rok; Kobayashi, Tomio; Kobel, Michael; Koblitz, Birger; Kocian, Martin; Kocnar, Antonin; Kodys, Peter; Köneke, Karsten; König, Adriaan; Koenig, Sebastian; König, Stefan; Köpke, Lutz; Koetsveld, Folkert; Koevesarki, Peter; Koffas, Thomas; Koffeman, Els; Kohn, Fabian; Kohout, Zdenek; Kohriki, Takashi; Koi, Tatsumi; Kokott, Thomas; Kolachev, Guennady; Kolanoski, Hermann; Kolesnikov, Vladimir; Koletsou, Iro; Koll, James; Kollar, Daniel; Kollefrath, Michael; Kolya, Scott; Komar, Aston; Komaragiri, Jyothsna Rani; Kondo, Takahiko; Kono, Takanori; Kononov, Anatoly; Konoplich, Rostislav; Konstantinidis, Nikolaos; Kootz, Andreas; Koperny, Stefan; Kopikov, Sergey; Korcyl, Krzysztof; Kordas, Kostantinos; Koreshev, Victor; Korn, Andreas; Korol, Aleksandr; Korolkov, Ilya; Korolkova, Elena; Korotkov, Vladislav; Kortner, Oliver; Kortner, Sandra; Kostyukhin, Vadim; Kotamäki, Miikka Juhani; Kotov, Serguei; Kotov, Vladislav; Kourkoumelis, Christine; Koutsman, Alex; Kowalewski, Robert Victor; Kowalski, Tadeusz; Kozanecki, Witold; Kozhin, Anatoly; Kral, Vlastimil; Kramarenko, Viktor; Kramberger, Gregor; Krasel, Olaf; Krasny, Mieczyslaw Witold; Krasznahorkay, Attila; Kraus, James; Kreisel, Arik; Krejci, Frantisek; Kretzschmar, Jan; Krieger, Nina; Krieger, Peter; Krobath, Gernot; Kroeninger, Kevin; Kroha, Hubert; Kroll, Joe; Kroseberg, Juergen; Krstic, Jelena; Kruchonak, Uladzimir; Krüger, Hans; Krumshteyn, Zinovii; Kruth, Andre; Kubota, Takashi; Kuehn, Susanne; Kugel, Andreas; Kuhl, Thorsten; Kuhn, Dietmar; Kukhtin, Victor; Kulchitsky, Yuri; Kuleshov, Sergey; Kummer, Christian; Kuna, Marine; Kundu, Nikhil; Kunkle, Joshua; Kupco, Alexander; Kurashige, Hisaya; Kurata, Masakazu; Kurochkin, Yurii; Kus, Vlastimil; Kuykendall, William; Kuze, Masahiro; Kuzhir, Polina; Kvasnicka, Ondrej; Kwee, Regina; La Rosa, Alessandro; La Rotonda, Laura; Labarga, Luis; Labbe, Julien; Lacasta, Carlos; Lacava, Francesco; Lacker, Heiko; Lacour, Didier; Lacuesta, Vicente Ramón; Ladygin, Evgueni; Lafaye, Rémi; Laforge, Bertrand; Lagouri, Theodota; Lai, Stanley; Laisne, Emmanuel; Lamanna, Massimo; Lambacher, Marion; Lampen, Caleb; Lampl, Walter; Lancon, Eric; Landgraf, Ulrich; Landon, Murrough; Landsman, Hagar; Lane, Jenna; Lange, Clemens; Lankford, Andrew; Lanni, Francesco; Lantzsch, Kerstin; Lapin, Vladimir; Laplace, Sandrine; Lapoire, Cecile; Laporte, Jean-Francois; Lari, Tommaso; Larionov, Anatoly; Larner, Aimee; Lasseur, Christian; Lassnig, Mario; Lau, Wing; Laurelli, Paolo; Lavorato, Antonia; Lavrijsen, Wim; Laycock, Paul; Lazarev, Alexandre; Lazzaro, Alfio; Le Dortz, Olivier; Le Guirriec, Emmanuel; Le Maner, Christophe; Le Menedeu, Eve; Leahu, Marius; Lebedev, Alexander; Lebel, Céline; Lechowski, Matthieu; LeCompte, Thomas; Ledroit-Guillon, Fabienne Agnes Marie; Lee, Hurng-Chun; Lee, Jason; Lee, Shih-Chang; Lee JR, Lawrence; Lefebvre, Michel; Legendre, Marie; Leger, Annie; LeGeyt, Benjamin; Legger, Federica; Leggett, Charles; Lehmacher, Marc; Lehmann Miotto, Giovanna; Lehto, Mark; Lei, Xiaowen; Leite, Marco Aurelio Lisboa; Leitner, Rupert; Lellouch, Daniel; Lellouch, Jeremie; Leltchouk, Mikhail; Lendermann, Victor; Leney, Katharine; Lenz, Tatiana; Lenzen, Georg; Lenzi, Bruno; Leonhardt, Kathrin; Lepidis, Johannes; Leroy, Claude; Lessard, Jean-Raphael; Lesser, Jonas; Lester, Christopher; Leung Fook Cheong, Annabelle; Levêque, Jessica; Levin, Daniel; Levinson, Lorne; Levitski, Mikhail; Lewandowska, Marta; Leyton, Michael; Li, Bo; Li, Haifeng; Li, Shu; Li, Xuefei; Liang, Zhihua; Liang, Zhijun; Liberti, Barbara; Lichard, Peter; Lichtnecker, Markus; Lie, Ki; Liebig, Wolfgang; Lifshitz, Ronen; Lilley, Joseph; Lim, Heuijin; Limosani, Antonio; Limper, Maaike; Lin, Simon; Linde, Frank; Linnemann, James; Lipeles, Elliot; Lipinsky, Lukas; Lipniacka, Anna; Liss, Tony; Lister, Alison; Litke, Alan; Liu, Chuanlei; Liu, Dong; Liu, Hao; Liu, Jianbei; Liu, Minghui; Liu, Shengli; Liu, Yanwen; Livan, Michele; Livermore, Sarah; Lleres, Annick; Lloyd, Stephen; Lobodzinska, Ewelina; Loch, Peter; Lockman, William; Lockwitz, Sarah; Loddenkoetter, Thomas; Loebinger, Fred; Loginov, Andrey; Loh, Chang Wei; Lohse, Thomas; Lohwasser, Kristin; Lokajicek, Milos; Loken, James; Long, Robin Eamonn; Lopes, Lourenco; Lopez Mateos, David; Losada, Marta; Loscutoff, Peter; Losty, Michael; Lou, Xinchou; Lounis, Abdenour; Loureiro, Karina; Lovas, Lubomir; Love, Jeremy; Love, Peter; Lowe, Andrew; Lu, Feng; Lu, Jiansen; Lu, Liang; Lubatti, Henry; Luci, Claudio; Lucotte, Arnaud; Ludwig, Andreas; Ludwig, Dörthe; Ludwig, Inga; Ludwig, Jens; Luehring, Frederick; Luijckx, Guy; Lumb, Debra; Luminari, Lamberto; Lund, Esben; Lund-Jensen, Bengt; Lundberg, Björn; Lundberg, Johan; Lundquist, Johan; Lungwitz, Matthias; Lupi, Anna; Lutz, Gerhard; Lynn, David; Lynn, James; Lys, Jeremy; Lytken, Else; Ma, Hong; Ma, Lian Liang; Maaßen, Michael; Macana Goia, Jorge Andres; Maccarrone, Giovanni; Macchiolo, Anna; Maček, Boštjan; Machado Miguens, Joana; Macina, Daniela; Mackeprang, Rasmus; Madaras, Ronald; Mader, Wolfgang; Maenner, Reinhard; Maeno, Tadashi; Mättig, Peter; Mättig, Stefan; Magalhaes Martins, Paulo Jorge; Magnoni, Luca; Magradze, Erekle; Magrath, Caroline; Mahalalel, Yair; Mahboubi, Kambiz; Mahout, Gilles; Maiani, Camilla; Maidantchik, Carmen; Maio, Amélia; Majewski, Stephanie; Makida, Yasuhiro; Makouski, Mikhail; Makovec, Nikola; Mal, Prolay; Malecki, Pawel; Malecki, Piotr; Maleev, Victor; Malek, Fairouz; Mallik, Usha; Malon, David; Maltezos, Stavros; Malyshev, Vladimir; Malyukov, Sergei; Mameghani, Raphael; Mamuzic, Judita; Manabe, Atsushi; Mandelli, Luciano; Mandić, Igor; Mandrysch, Rocco; Maneira, José; Mangeard, Pierre-Simon; Mangin-Brinet, Mariane; Manjavidze, Ioseb; Mann, Alexander; Mann, Anthony; Manning, Peter; Manousakis-Katsikakis, Arkadios; Mansoulie, Bruno; Manz, Andreas; Mapelli, Alessandro; Mapelli, Livio; March, Luis; Marchand, Jean-Francois; Marchese, Fabrizio; Marchesotti, Marco; Marchiori, Giovanni; Marcisovsky, Michal; Marin, Alexandru; Marino, Christopher; Marroquim, Fernando; Marshall, Robin; Marshall, Zach; Martens, Kalen; Marti-Garcia, Salvador; Martin, Andrew; Martin, Brian; Martin, Brian; Martin, Franck Francois; Martin, Jean-Pierre; Martin, Philippe; Martin, Tim; Martin dit Latour, Bertrand; Martinez, Mario; Martinez Outschoorn, Verena; Martyniuk, Alex; Marx, Marilyn; Marzano, Francesco; Marzin, Antoine; Masetti, Lucia; Mashimo, Tetsuro; Mashinistov, Ruslan; Masik, Jiri; Maslennikov, Alexey; Maß, Martin; Massa, Ignazio; Massaro, Graziano; Massol, Nicolas; Mastroberardino, Anna; Masubuchi, Tatsuya; Mathes, Markus; Matricon, Pierre; Matsumoto, Hiroshi; Matsunaga, Hiroyuki; Matsushita, Takashi; Mattravers, Carly; Maugain, Jean-Marie; Maxfield, Stephen; May, Edward; Mayne, Anna; Mazini, Rachid; Mazur, Michael; Mazzanti, Marcello; Mazzoni, Enrico; Mc Kee, Shawn Patrick; McCarn, Allison; McCarthy, Robert; McCarthy, Tom; McCubbin, Norman; McFarlane, Kenneth; Mcfayden, Josh; McGarvie, Scott; McGlone, Helen; Mchedlidze, Gvantsa; McLaren, Robert Andrew; Mclaughlan, Tom; McMahon, Steve; McMahon, Tania; McMahon, Tom; McPherson, Robert; Meade, Andrew; Mechnich, Joerg; Mechtel, Markus; Medinnis, Mike; Meera-Lebbai, Razzak; Meguro, Tatsuma; Mehdiyev, Rashid; Mehlhase, Sascha; Mehta, Andrew; Meier, Karlheinz; Meinhardt, Jens; Meirose, Bernhard; Melachrinos, Constantinos; Mellado Garcia, Bruce Rafael; Mendoza Navas, Luis; Meng, Zhaoxia; Mengarelli, Alberto; Menke, Sven; Menot, Claude; Meoni, Evelin; Merkl, Doris; Mermod, Philippe; Merola, Leonardo; Meroni, Chiara; Merritt, Frank; Messina, Andrea; Metcalfe, Jessica; Mete, Alaettin Serhan; Meuser, Stefan; Meyer, Carsten; Meyer, Jean-Pierre; Meyer, Jochen; Meyer, Joerg; Meyer, Thomas Christian; Meyer, W Thomas; Miao, Jiayuan; Michal, Sebastien; Micu, Liliana; Middleton, Robin; Miele, Paola; Migas, Sylwia; Migliaccio, Agostino; Mijović, Liza; Mikenberg, Giora; Mikestikova, Marcela; Mikulec, Bettina; Mikuž, Marko; Miller, David; Miller, Robert; Mills, Bill; Mills, Corrinne; Milov, Alexander; Milstead, David; Milstein, Dmitry; Minaenko, Andrey; Miñano, Mercedes; Minashvili, Irakli; Mincer, Allen; Mindur, Bartosz; Mineev, Mikhail; Ming, Yao; Mir, Lluisa-Maria; Mirabelli, Giovanni; Miralles Verge, Lluis; Miscetti, Stefano; Misiejuk, Andrzej; Mitra, Ankush; Mitrevski, Jovan; Mitrofanov, Gennady; Mitsou, Vasiliki A; Mitsui, Shingo; Miyagawa, Paul; Miyazaki, Kazuki; Mjörnmark, Jan-Ulf; Moa, Torbjoern; Mockett, Paul; Moed, Shulamit; Moeller, Victoria; Mönig, Klaus; Möser, Nicolas; Mohapatra, Soumya; Mohn, Bjarte; Mohr, Wolfgang; Mohrdieck-Möck, Susanne; Moisseev, Artemy; Moles-Valls, Regina; Molina-Perez, Jorge; Moneta, Lorenzo; Monk, James; Monnier, Emmanuel; Montesano, Simone; Monticelli, Fernando; Monzani, Simone; Moore, Roger; Moorhead, Gareth; Mora Herrera, Clemencia; Moraes, Arthur; Morais, Antonio; Morange, Nicolas; Morel, Julien; Morello, Gianfranco; Moreno, Deywis; Moreno Llácer, María; Morettini, Paolo; Morii, Masahiro; Morin, Jerome; Morita, Youhei; Morley, Anthony Keith; Mornacchi, Giuseppe; Morone, Maria-Christina; Morris, John; Moser, Hans-Guenther; Mosidze, Maia; Moss, Josh; Mount, Richard; Mountricha, Eleni; Mouraviev, Sergei; Moye, Tamsin; Moyse, Edward; Mudrinic, Mihajlo; Mueller, Felix; Mueller, James; Mueller, Klemens; Müller, Thomas; Muenstermann, Daniel; Muijs, Sandra; Muir, Alex; Munwes, Yonathan; Murakami, Koichi; Murray, Bill; Mussche, Ido; Musto, Elisa; Myagkov, Alexey; Myska, Miroslav; Nadal, Jordi; Nagai, Koichi; Nagano, Kunihiro; Nagasaka, Yasushi; Nairz, Armin Michael; Nakamura, Koji; Nakano, Itsuo; Nanava, Gizo; Napier, Austin; Nash, Michael; Nasteva, Irina; Nation, Nigel; Nattermann, Till; Naumann, Thomas; Nauyock, Farah; Navarro, Gabriela; Neal, Homer; Nebot, Eduardo; Nechaeva, Polina; Negri, Andrea; Negri, Guido; Nektarijevic, Snezana; Nelson, Andrew; Nelson, Silke; Nelson, Timothy Knight; Nemecek, Stanislav; Nemethy, Peter; Nepomuceno, Andre Asevedo; Nessi, Marzio; Nesterov, Stanislav; Neubauer, Mark; Neukermans, Lionel; Neusiedl, Andrea; Neves, Ricardo; Nevski, Pavel; Newman, Paul; Nicholson, Caitriana; Nickerson, Richard; Nicolaidou, Rosy; Nicolas, Ludovic; Nicquevert, Bertrand; Niedercorn, Francois; Nielsen, Jason; Niinikoski, Tapio; Nikiforov, Andriy; Nikolaenko, Vladimir; Nikolaev, Kirill; Nikolic-Audit, Irena; Nikolopoulos, Konstantinos; Nilsen, Henrik; Nilsson, Paul; Ninomiya, Yoichi; Nisati, Aleandro; Nishiyama, Tomonori; Nisius, Richard; Nodulman, Lawrence; Nomachi, Masaharu; Nomidis, Ioannis; Nomoto, Hiroshi; Nordberg, Markus; Nordkvist, Bjoern; Norniella Francisco, Olga; Norton, Peter; Novakova, Jana; Nozaki, Mitsuaki; Nožička, Miroslav; Nugent, Ian Michael; Nuncio-Quiroz, Adriana-Elizabeth; Nunes Hanninger, Guilherme; Nunnemann, Thomas; Nurse, Emily; Nyman, Tommi; O'Neale, Steve; O'Neil, Dugan; O'Shea, Val; Oakham, Gerald; Oberlack, Horst; Ocariz, Jose; Ochi, Atsuhiko; Oda, Susumu; Odaka, Shigeru; Odier, Jerome; Odino, Gian Andrea; Ogren, Harold; Oh, Alexander; Oh, Seog; Ohm, Christian; Ohshima, Takayoshi; Ohshita, Hidetoshi; Ohska, Tokio Kenneth; Ohsugi, Takashi; Okada, Shogo; Okawa, Hideki; Okumura, Yasuyuki; Okuyama, Toyonobu; Olcese, Marco; Olchevski, Alexander; Oliveira, Miguel Alfonso; Oliveira Damazio, Denis; Oliver, Concepcion; Oliver Garcia, Elena; Olivito, Dominick; Olszewski, Andrzej; Olszowska, Jolanta; Omachi, Chihiro; Onofre, António; Onyisi, Peter; Oram, Christopher; Ordonez, Gustavo; Oreglia, Mark; Orellana, Frederik; Oren, Yona; Orestano, Domizia; Orlov, Iliya; Oropeza Barrera, Cristina; Orr, Robert; Ortega, Eduardo; Osculati, Bianca; Ospanov, Rustem; Osuna, Carlos; Otero y Garzon, Gustavo; Ottersbach, John; Ottewell, Brian; Ouchrif, Mohamed; Ould-Saada, Farid; Ouraou, Ahmimed; Ouyang, Qun; Owen, Mark; Owen, Simon; Oyarzun, Alejandro; Øye, Ola; Ozcan, Veysi Erkcan; Ozone, Kenji; Ozturk, Nurcan; Pacheco Pages, Andres; Padilla Aranda, Cristobal; Paganis, Efstathios; Paige, Frank; Pajchel, Katarina; Palestini, Sandro; Pallin, Dominique; Palma, Alberto; Palmer, Jody; Palmer, Matt; Pan, Yibin; Panagiotopoulou, Evgenia; Panes, Boris; Panikashvili, Natalia; Panitkin, Sergey; Pantea, Dan; Panuskova, Monika; Paolone, Vittorio; Paoloni, Alessandro; Papadopoulou, Theodora; Paramonov, Alexander; Park, Su-Jung; Park, Woochun; Parker, Andy; Parodi, Fabrizio; Parsons, John; Parzefall, Ulrich; Pasqualucci, Enrico; Passeri, Antonio; Pastore, Fernanda; Pastore, Francesca; Pásztor, Gabriella; Pataraia, Sophio; Patel, Nikhul; Pater, Joleen; Patricelli, Sergio; Pauly, Thilo; Pecsy, Martin; Pedraza Morales, Maria Isabel; Peeters, Simon Jan Marie; Peleganchuk, Sergey; Peng, Haiping; Pengo, Ruggero; Penson, Alexander; Penwell, John; Perantoni, Marcelo; Perez, Kerstin; Perez Cavalcanti, Tiago; Perez Codina, Estel; Pérez García-Estañ, María Teresa; Perez Reale, Valeria; Peric, Ivan; Perini, Laura; Pernegger, Heinz; Perrino, Roberto; Perrodo, Pascal; Persembe, Seda; Perus, Antoine; Peshekhonov, Vladimir; Petereit, Emil; Peters, Onne; Petersen, Brian; Petersen, Jorgen; Petersen, Troels; Petit, Elisabeth; Petridis, Andreas; Petridou, Chariclia; Petrolo, Emilio; Petrucci, Fabrizio; Petschull, Dennis; Petteni, Michele; Pezoa, Raquel; Phan, Anna; Phillips, Alan; Phillips, Peter William; Piacquadio, Giacinto; Piccaro, Elisa; Piccinini, Maurizio; Pickford, Andrew; Piegaia, Ricardo; Pilcher, James; Pilkington, Andrew; Pina, João Antonio; Pinamonti, Michele; Pinfold, James; Ping, Jialun; Pinto, Belmiro; Pirotte, Olivier; Pizio, Caterina; Placakyte, Ringaile; Plamondon, Mathieu; Plano, Will; Pleier, Marc-Andre; Pleskach, Anatoly; Poblaguev, Andrei; Poddar, Sahill; Podlyski, Fabrice; Poggioli, Luc; Poghosyan, Tatevik; Pohl, Martin; Polci, Francesco; Polesello, Giacomo; Policicchio, Antonio; Polini, Alessandro; Poll, James; Polychronakos, Venetios; Pomarede, Daniel Marc; Pomeroy, Daniel; Pommès, Kathy; Pontecorvo, Ludovico; Pope, Bernard; Popeneciu, Gabriel Alexandru; Popovic, Dragan; Poppleton, Alan; Portell Bueso, Xavier; Porter, Robert; Posch, Christoph; Pospelov, Guennady; Pospisil, Stanislav; Potrap, Igor; Potter, Christina; Potter, Christopher; Poulard, Gilbert; Poveda, Joaquin; Prabhu, Robindra; Pralavorio, Pascal; Prasad, Srivas; Pravahan, Rishiraj; Prell, Soeren; Pretzl, Klaus Peter; Pribyl, Lukas; Price, Darren; Price, Lawrence; Price, Michael John; Prichard, Paul; Prieur, Damien; Primavera, Margherita; Prokofiev, Kirill; Prokoshin, Fedor; Protopopescu, Serban; Proudfoot, James; Prudent, Xavier; Przysiezniak, Helenka; Psoroulas, Serena; Ptacek, Elizabeth; Purdham, John; Purohit, Milind; Puzo, Patrick; Pylypchenko, Yuriy; Qian, Jianming; Qian, Zuxuan; Qin, Zhonghua; Quadt, Arnulf; Quarrie, David; Quayle, William; Quinonez, Fernando; Raas, Marcel; Radescu, Voica; Radics, Balint; Rador, Tonguc; Ragusa, Francesco; Rahal, Ghita; Rahimi, Amir; Rajagopalan, Srinivasan; Rajek, Silke; Rammensee, Michael; Rammes, Marcus; Ramstedt, Magnus; Randrianarivony, Koloina; Ratoff, Peter; Rauscher, Felix; Rauter, Emanuel; Raymond, Michel; Read, Alexander Lincoln; Rebuzzi, Daniela; Redelbach, Andreas; Redlinger, George; Reece, Ryan; Reeves, Kendall; Reichold, Armin; Reinherz-Aronis, Erez; Reinsch, Andreas; Reisinger, Ingo; Reljic, Dusan; Rembser, Christoph; Ren, Zhongliang; Renkel, Peter; Rensch, Bertram; Rescigno, Marco; Resconi, Silvia; Resende, Bernardo; Reznicek, Pavel; Rezvani, Reyhaneh; Richards, Alexander; Richter, Robert; Richter-Was, Elzbieta; Ridel, Melissa; Rieke, Stefan; Rijpstra, Manouk; Rijssenbeek, Michael; Rimoldi, Adele; Rinaldi, Lorenzo; Rios, Ryan Randy; Riu, Imma; Rivoltella, Giancesare; Rizatdinova, Flera; Rizvi, Eram; Roa Romero, Diego Alejandro; Robertson, Steven; Robichaud-Veronneau, Andree; Robinson, Dave; Robinson, James; Robinson, Mary; Robson, Aidan; Rocha de Lima, Jose Guilherme; Roda, Chiara; Roda Dos Santos, Denis; Rodier, Stephane; Rodriguez, Diego; Rodriguez Garcia, Yohany; Roe, Adam; Roe, Shaun; Røhne, Ole; Rojo, Victoria; Rolli, Simona; Romaniouk, Anatoli; Romanov, Victor; Romeo, Gaston; Romero Maltrana, Diego; Roos, Lydia; Ros, Eduardo; Rosati, Stefano; Rose, Matthew; Rosenbaum, Gabriel; Rosenberg, Eli; Rosendahl, Peter Lundgaard; Rosselet, Laurent; Rossetti, Valerio; Rossi, Elvira; Rossi, Leonardo Paolo; Rossi, Lucio; Rotaru, Marina; Roth, Itamar; Rothberg, Joseph; Rottländer, Iris; Rousseau, David; Royon, Christophe; Rozanov, Alexander; Rozen, Yoram; Ruan, Xifeng; Rubinskiy, Igor; Ruckert, Benjamin; Ruckstuhl, Nicole; Rud, Viacheslav; Rudolph, Gerald; Rühr, Frederik; Ruggieri, Federico; Ruiz-Martinez, Aranzazu; Rulikowska-Zarebska, Elzbieta; Rumiantsev, Viktor; Rumyantsev, Leonid; Runge, Kay; Runolfsson, Ogmundur; Rurikova, Zuzana; Rusakovich, Nikolai; Rust, Dave; Rutherfoord, John; Ruwiedel, Christoph; Ruzicka, Pavel; Ryabov, Yury; Ryadovikov, Vasily; Ryan, Patrick; Rybkin, Grigori; Ryder, Nick; Rzaeva, Sevda; Saavedra, Aldo; Sadeh, Iftach; Sadrozinski, Hartmut; Sadykov, Renat; Safai Tehrani, Francesco; Sakamoto, Hiroshi; Salamanna, Giuseppe; Salamon, Andrea; Saleem, Muhammad; Salihagic, Denis; Salnikov, Andrei; Salt, José; Salvachua Ferrando, Belén; Salvatore, Daniela; Salvatore, Pasquale Fabrizio; Salvucci, Antonio; Salzburger, Andreas; Sampsonidis, Dimitrios; Samset, Björn Hallvard; Sandaker, Heidi; Sander, Heinz Georg; Sanders, Michiel; Sandhoff, Marisa; Sandhu, Pawan; Sandoval, Tanya; Sandstroem, Rikard; Sandvoss, Stephan; Sankey, Dave; Sansoni, Andrea; Santamarina Rios, Cibran; Santoni, Claudio; Santonico, Rinaldo; Santos, Helena; Saraiva, João; Sarangi, Tapas; Sarkisyan-Grinbaum, Edward; Sarri, Francesca; Sartisohn, Georg; Sasaki, Osamu; Sasaki, Takashi; Sasao, Noboru; Satsounkevitch, Igor; Sauvage, Gilles; Savard, Pierre; Savinov, Vladimir; Savva, Panagiota; Sawyer, Lee; Saxon, David; Says, Louis-Pierre; Sbarra, Carla; Sbrizzi, Antonio; Scallon, Olivia; Scannicchio, Diana; Schaarschmidt, Jana; Schacht, Peter; Schäfer, Uli; Schaetzel, Sebastian; Schaffer, Arthur; Schaile, Dorothee; Schamberger, R~Dean; Schamov, Andrey; Scharf, Veit; Schegelsky, Valery; Scheirich, Daniel; Scherzer, Max; Schiavi, Carlo; Schieck, Jochen; Schioppa, Marco; Schlenker, Stefan; Schlereth, James; Schmidt, Evelyn; Schmidt, Michael; Schmieden, Kristof; Schmitt, Christian; Schmitz, Martin; Schöning, André; Schott, Matthias; Schouten, Doug; Schovancova, Jaroslava; Schram, Malachi; Schreiner, Alexander; Schroeder, Christian; Schroer, Nicolai; Schroers, Marcel; Schuh, Silvia; Schuler, Georges; Schultes, Joachim; Schultz-Coulon, Hans-Christian; Schumacher, Jan; Schumacher, Markus; Schumm, Bruce; Schune, Philippe; Schwanenberger, Christian; Schwartzman, Ariel; Schweiger, Dietmar; Schwemling, Philippe; Schwienhorst, Reinhard; Schwierz, Rainer; Schwindling, Jerome; Scott, Bill; Searcy, Jacob; Sedykh, Evgeny; Segura, Ester; Seidel, Sally; Seiden, Abraham; Seifert, Frank; Seixas, José; Sekhniaidze, Givi; Seliverstov, Dmitry; Sellden, Bjoern; Sellers, Graham; Seman, Michal; Semprini-Cesari, Nicola; Serfon, Cedric; Serin, Laurent; Seuster, Rolf; Severini, Horst; Sevior, Martin; Sfyrla, Anna; Shabalina, Elizaveta; Shamim, Mansoora; Shan, Lianyou; Shank, James; Shao, Qi Tao; Shapiro, Marjorie; Shatalov, Pavel; Shaver, Leif; Shaw, Christian; Shaw, Kate; Sherman, Daniel; Sherwood, Peter; Shibata, Akira; Shimizu, Shima; Shimojima, Makoto; Shin, Taeksu; Shmeleva, Alevtina; Shochet, Mel; Short, Daniel; Shupe, Michael; Sicho, Petr; Sidoti, Antonio; Siebel, Anca-Mirela; Siegert, Frank; Siegrist, James; Sijacki, Djordje; Silbert, Ohad; Silver, Yiftah; Silverstein, Daniel; Silverstein, Samuel; Simak, Vladislav; Simic, Ljiljana; Simion, Stefan; Simmons, Brinick; Simonyan, Margar; Sinervo, Pekka; Sinev, Nikolai; Sipica, Valentin; Siragusa, Giovanni; Sisakyan, Alexei; Sivoklokov, Serguei; Sjölin, Jörgen; Sjursen, Therese; Skinnari, Louise Anastasia; Skovpen, Kirill; Skubic, Patrick; Skvorodnev, Nikolai; Slater, Mark; Slavicek, Tomas; Sliwa, Krzysztof; Sloan, Terrence; Sloper, John erik; Smakhtin, Vladimir; Smirnov, Sergei; Smirnova, Lidia; Smirnova, Oxana; Smith, Ben Campbell; Smith, Douglas; Smith, Kenway; Smizanska, Maria; Smolek, Karel; Snesarev, Andrei; Snow, Steve; Snow, Joel; Snuverink, Jochem; Snyder, Scott; Soares, Mara; Sobie, Randall; Sodomka, Jaromir; Soffer, Abner; Solans, Carlos; Solar, Michael; Solc, Jaroslav; Soldevila, Urmila; Solfaroli Camillocci, Elena; Solodkov, Alexander; Solovyanov, Oleg; Sondericker, John; Soni, Nitesh; Sopko, Vit; Sopko, Bruno; Sorbi, Massimo; Sosebee, Mark; Soukharev, Andrey; Spagnolo, Stefania; Spanò, Francesco; Spighi, Roberto; Spigo, Giancarlo; Spila, Federico; Spiriti, Eleuterio; Spiwoks, Ralf; Spousta, Martin; Spreitzer, Teresa; Spurlock, Barry; St Denis, Richard Dante; Stahl, Thorsten; Stahlman, Jonathan; Stamen, Rainer; Stanecka, Ewa; Stanek, Robert; Stanescu, Cristian; Stapnes, Steinar; Starchenko, Evgeny; Stark, Jan; Staroba, Pavel; Starovoitov, Pavel; Staude, Arnold; Stavina, Pavel; Stavropoulos, Georgios; Steele, Genevieve; Stefanidis, Efstathios; Steinbach, Peter; Steinberg, Peter; Stekl, Ivan; Stelzer, Bernd; Stelzer, Harald Joerg; Stelzer-Chilton, Oliver; Stenzel, Hasko; Stevenson, Kyle; Stewart, Graeme; Stockmanns, Tobias; Stockton, Mark; Stodulski, Marek; Stoerig, Kathrin; Stoicea, Gabriel; Stonjek, Stefan; Strachota, Pavel; Stradling, Alden; Straessner, Arno; Strandberg, Jonas; Strandberg, Sara; Strandlie, Are; Strang, Michael; Strauss, Emanuel; Strauss, Michael; Strizenec, Pavol; Ströhmer, Raimund; Strom, David; Strong, John; Stroynowski, Ryszard; Strube, Jan; Stugu, Bjarne; Stumer, Iuliu; Stupak, John; Sturm, Philipp; Soh, Dart-yin; Su, Dong; Subramania, Siva; Sugaya, Yorihito; Sugimoto, Takuya; Suhr, Chad; Suita, Koichi; Suk, Michal; Sulin, Vladimir; Sultansoy, Saleh; Sumida, Toshi; Sun, Xiaohu; Sundermann, Jan Erik; Suruliz, Kerim; Sushkov, Serge; Susinno, Giancarlo; Sutton, Mark; Suzuki, Yu; Sviridov, Yuri; Swedish, Stephen; Sykora, Ivan; Sykora, Tomas; Szeless, Balazs; Sánchez, Javier; Ta, Duc; Tackmann, Kerstin; Taffard, Anyes; Tafirout, Reda; Taga, Adrian; Taiblum, Nimrod; Takahashi, Yuta; Takai, Helio; Takashima, Ryuichi; Takeda, Hiroshi; Takeshita, Tohru; Talby, Mossadek; Talyshev, Alexey; Tamsett, Matthew; Tanaka, Junichi; Tanaka, Reisaburo; Tanaka, Satoshi; Tanaka, Shuji; Tanaka, Yoshito; Tani, Kazutoshi; Tannoury, Nancy; Tappern, Geoffrey; Tapprogge, Stefan; Tardif, Dominique; Tarem, Shlomit; Tarrade, Fabien; Tartarelli, Giuseppe Francesco; Tas, Petr; Tasevsky, Marek; Tassi, Enrico; Tatarkhanov, Mous; Taylor, Christopher; Taylor, Frank; Taylor, Gary; Taylor, Geoffrey; Taylor, Wendy; Teixeira Dias Castanheira, Matilde; Teixeira-Dias, Pedro; Temming, Kim Katrin; Ten Kate, Herman; Teng, Ping-Kun; Tennenbaum-Katan, Yaniv-David; Terada, Susumu; Terashi, Koji; Terron, Juan; Terwort, Mark; Testa, Marianna; Teuscher, Richard; Tevlin, Christopher; Thadome, Jocelyn; Therhaag, Jan; Theveneaux-Pelzer, Timothée; Thioye, Moustapha; Thoma, Sascha; Thomas, Juergen; Thompson, Emily; Thompson, Paul; Thompson, Peter; Thompson, Stan; Thomson, Evelyn; Thomson, Mark; Thun, Rudolf; Tic, Tomas; Tikhomirov, Vladimir; Tikhonov, Yury; Timmermans, Charles; Tipton, Paul; Tique Aires Viegas, Florbela De Jes; Tisserant, Sylvain; Tobias, Jürgen; Toczek, Barbara; Todorov, Theodore; Todorova-Nova, Sharka; Toggerson, Brokk; Tojo, Junji; Tokár, Stanislav; Tokunaga, Kaoru; Tokushuku, Katsuo; Tollefson, Kirsten; Tomoto, Makoto; Tompkins, Lauren; Toms, Konstantin; Tonazzo, Alessandra; Tong, Guoliang; Tonoyan, Arshak; Topfel, Cyril; Topilin, Nikolai; Torchiani, Ingo; Torrence, Eric; Torró Pastor, Emma; Toth, Jozsef; Touchard, Francois; Tovey, Daniel; Traynor, Daniel; Trefzger, Thomas; Treis, Johannes; Tremblet, Louis; Tricoli, Alesandro; Trigger, Isabel Marian; Trincaz-Duvoid, Sophie; Trinh, Thi Nguyet; Tripiana, Martin; Triplett, Nathan; Trischuk, William; Trivedi, Arjun; Trocmé, Benjamin; Troncon, Clara; Trottier-McDonald, Michel; Trzupek, Adam; Tsarouchas, Charilaos; Tseng, Jeffrey; Tsiakiris, Menelaos; Tsiareshka, Pavel; Tsionou, Dimitra; Tsipolitis, Georgios; Tsiskaridze, Vakhtang; Tskhadadze, Edisher; Tsukerman, Ilya; Tsulaia, Vakhtang; Tsung, Jieh-Wen; Tsuno, Soshi; Tsybychev, Dmitri; Tua, Alan; Tuggle, Joseph; Turala, Michal; Turecek, Daniel; Turk Cakir, Ilkay; Turlay, Emmanuel; Tuts, Michael; Tylmad, Maja; Tyndel, Mike; Typaldos, Dimitrios; Tyrvainen, Harri; Tzanakos, George; Uchida, Kirika; Ueda, Ikuo; Ueno, Ryuichi; Ugland, Maren; Uhlenbrock, Mathias; Uhrmacher, Michael; Ukegawa, Fumihiko; Unal, Guillaume; Underwood, David; Undrus, Alexander; Unel, Gokhan; Unno, Yoshinobu; Urbaniec, Dustin; Urkovsky, Evgeny; Urquijo, Phillip; Urrejola, Pedro; Usai, Giulio; Uslenghi, Massimiliano; Vacavant, Laurent; Vacek, Vaclav; Vachon, Brigitte; Vahsen, Sven; Valderanis, Chrysostomos; Valenta, Jan; Valente, Paolo; Valentinetti, Sara; Valkar, Stefan; Valladolid Gallego, Eva; Vallecorsa, Sofia; Valls Ferrer, Juan Antonio; van der Graaf, Harry; van der Kraaij, Erik; van der Poel, Egge; van der Ster, Daniel; Van Eijk, Bob; van Eldik, Niels; van Gemmeren, Peter; van Kesteren, Zdenko; van Vulpen, Ivo; Vandelli, Wainer; Vandoni, Giovanna; Vaniachine, Alexandre; Vankov, Peter; Vannucci, Francois; Varela Rodriguez, Fernando; Vari, Riccardo; Varnes, Erich; Varouchas, Dimitris; Vartapetian, Armen; Varvell, Kevin; Vassilakopoulos, Vassilios; Vazeille, Francois; Vegni, Guido; Veillet, Jean-Jacques; Vellidis, Constantine; Veloso, Filipe; Veness, Raymond; Veneziano, Stefano; Ventura, Andrea; Ventura, Daniel; Ventura, Silvia; Venturi, Manuela; Venturi, Nicola; Vercesi, Valerio; Verducci, Monica; Verkerke, Wouter; Vermeulen, Jos; Vertogardov, Leonid; Vetterli, Michel; Vichou, Irene; Vickey, Trevor; Viehhauser, Georg; Viel, Simon; Villa, Mauro; Villaplana Perez, Miguel; Vilucchi, Elisabetta; Vincter, Manuella; Vinek, Elisabeth; Vinogradov, Vladimir; Virchaux, Marc; Viret, Sébastien; Virzi, Joseph; Vitale, Antonio; Vitells, Ofer; Vivarelli, Iacopo; Vives Vaque, Francesc; Vlachos, Sotirios; Vlasak, Michal; Vlasov, Nikolai; Vogel, Adrian; Vokac, Petr; Volpi, Matteo; Volpini, Giovanni; von der Schmitt, Hans; von Loeben, Joerg; von Radziewski, Holger; von Toerne, Eckhard; Vorobel, Vit; Vorobiev, Alexander; Vorwerk, Volker; Vos, Marcel; Voss, Rudiger; Voss, Thorsten Tobias; Vossebeld, Joost; Vovenko, Anatoly; Vranjes, Nenad; Vranjes Milosavljevic, Marija; Vrba, Vaclav; Vreeswijk, Marcel; Vu Anh, Tuan; Vuillermet, Raphael; Vukotic, Ilija; Wagner, Wolfgang; Wagner, Peter; Wahlen, Helmut; Wahrmund, Sebastian; Wakabayashi, Jun; Walbersloh, Jorg; Walch, Shannon; Walder, James; Walker, Rodney; Walkowiak, Wolfgang; Wall, Richard; Waller, Peter; Wang, Chiho; Wang, Haichen; Wang, Jin; Wang, Joshua C; Wang, Song-Ming; Warburton, Andreas; Ward, Patricia; Warsinsky, Markus; Wastie, Roy; Watkins, Peter; Watson, Alan; Watson, Miriam; Watts, Gordon; Watts, Stephen; Waugh, Anthony; Waugh, Ben; Weber, Jens; Weber, Marc; Weber, Michele; Weber, Pavel; Weidberg, Anthony; Weingarten, Jens; Weiser, Christian; Wellenstein, Hermann; Wells, Phillippa; Wen, Mei; Wenaus, Torre; Wendler, Shanti; Weng, Zhili; Wengler, Thorsten; Wenig, Siegfried; Wermes, Norbert; Werner, Matthias; Werner, Per; Werth, Michael; Wessels, Martin; Whalen, Kathleen; Wheeler-Ellis, Sarah Jane; Whitaker, Scott; White, Andrew; White, Martin; Whitehead, Samuel Robert; Whiteson, Daniel; Whittington, Denver; Wicek, Francois; Wicke, Daniel; Wickens, Fred; Wiedenmann, Werner; Wielers, Monika; Wienemann, Peter; Wiglesworth, Craig; Wiik, Liv Antje Mari; Wildauer, Andreas; Wildt, Martin Andre; Wilhelm, Ivan; Wilkens, Henric George; Will, Jonas Zacharias; Williams, Eric; Williams, Hugh; Willis, William; Willocq, Stephane; Wilson, John; Wilson, Michael Galante; Wilson, Alan; Wingerter-Seez, Isabelle; Winkelmann, Stefan; Winklmeier, Frank; Wittgen, Matthias; Wolter, Marcin Wladyslaw; Wolters, Helmut; Wooden, Gemma; Wosiek, Barbara; Wotschack, Jorg; Woudstra, Martin; Wraight, Kenneth; Wright, Catherine; Wrona, Bozydar; Wu, Sau Lan; Wu, Xin; Wulf, Evan; Wunstorf, Renate; Wynne, Benjamin; Xaplanteris, Leonidas; Xella, Stefania; Xie, Song; Xie, Yigang; Xu, Chao; Xu, Da; Xu, Guofa; Yabsley, Bruce; Yamada, Miho; Yamamoto, Akira; Yamamoto, Kyoko; Yamamoto, Shimpei; Yamamura, Taiki; Yamaoka, Jared; Yamazaki, Takayuki; Yamazaki, Yuji; Yan, Zhen; Yang, Haijun; Yang, Stephanie; Yang, Un-Ki; Yang, Yi; Yang, Yi; Yang, Zhaoyu; Yanush, Serguei; Yao, Weiming; Yao, Yushu; Yasu, Yoshiji; Ye, Jingbo; Ye, Shuwei; Yilmaz, Metin; Yoosoofmiya, Reza; Yorita, Kohei; Yoshida, Riktura; Young, Charles; Youssef, Saul; Yu, Dantong; Yu, Jaehoon; Yu, Jie; Yuan, Li; Yurkewicz, Adam; Zaets, Vassilli; Zaidan, Remi; Zaitsev, Alexander; Zajacova, Zuzana; Zalite, Youris; Zanello, Lucia; Zarzhitsky, Pavel; Zaytsev, Alexander; Zdrazil, Marian; Zeitnitz, Christian; Zeller, Michael; Zema, Pasquale Federico; Zemla, Andrzej; Zendler, Carolin; Zenin, Anton; Zenin, Oleg; Ženiš, Tibor; Zenonos, Zenonas; Zenz, Seth; Zerwas, Dirk; Zevi della Porta, Giovanni; Zhan, Zhichao; Zhang, Huaqiao; Zhang, Jinlong; Zhang, Xueyao; Zhang, Zhiqing; Zhao, Long; Zhao, Tianchi; Zhao, Zhengguo; Zhemchugov, Alexey; Zheng, Shuchen; Zhong, Jiahang; Zhou, Bing; Zhou, Ning; Zhou, Yue; Zhu, Cheng Guang; Zhu, Hongbo; Zhu, Yingchun; Zhuang, Xuai; Zhuravlov, Vadym; Zieminska, Daria; Zilka, Branislav; Zimmermann, Robert; Zimmermann, Simone; Zimmermann, Stephanie; Ziolkowski, Michael; Zitoun, Robert; Živković, Lidija; Zmouchko, Viatcheslav; Zobernig, Georg; Zoccoli, Antonio; Zolnierowski, Yves; Zsenei, Andras; zur Nedden, Martin; Zutshi, Vishnu; Zwalinski, Lukasz

    2011-01-01

    Measurements of charged particle distributions, sensitive to the underlying event, have been performed with the ATLAS detector at the LHC. The measurements are based on data collected using a minimum-bias trigger to select proton{proton collisions at center-of-mass energies of 900 GeV and 7 TeV. The "underlying event" is defined as those aspects of a hadronic interaction attributed not to the hard scattering process, but rather to the accompanying interactions of the rest of the proton. Three regions are defined in azimuthal angle with respect to the the highest-$p_T$ charged particle in the event, such that the region transverse to the dominant momentum-flow is most sensitive to the underlying event. In each of these regions, distributions of the charged particle multiplicity, $p_T$ density, and average $p_T$ are measured. The data show a higher underlying event activity than that predicted by Monte Carlo models tuned to pre-LHC data.

  7. Measurement of underlying event characteristics using charged particles in $pp$ collisions at $\\sqrt{s}$ = 900 GeV and 7 TeV with the ATLAS Detector

    CERN Document Server

    Aad, Georges; Abdallah, Jalal; Abdelalim, Ahmed Ali; Abdesselam, Abdelouahab; Abdinov, Ovsat; Abi, Babak; Abolins, Maris; Abramowicz, Halina; Abreu, Henso; Acerbi, Emilio; Acharya, Bobby Samir; Ackers, Mario; Adams, David; Addy, Tetteh; Adelman, Jahred; Aderholz, Michael; Adomeit, Stefanie; Adragna, Paolo; Adye, Tim; Aefsky, Scott; Aguilar-Saavedra, Juan Antonio; Aharrouche, Mohamed; Ahlen, Steven; Ahles, Florian; Ahmad, Ashfaq; Ahmed, Hossain; Ahsan, Mahsana; Aielli, Giulio; Akdogan, Taylan; Åkesson, Torsten Paul Ake; Akimoto, Ginga; Akimov, Andrei; Alam, Mohammad; Alam, Muhammad Aftab; Albrand, Solveig; Aleksa, Martin; Aleksandrov, Igor; Aleppo, Mario; Alessandria, Franco; Alexa, Calin; Alexander, Gideon; Alexandre, Gauthier; Alexopoulos, Theodoros; Alhroob, Muhammad; Aliev, Malik; Alimonti, Gianluca; Alison, John; Aliyev, Magsud; Allport, Phillip; Allwood-Spiers, Sarah; Almond, John; Aloisio, Alberto; Alon, Raz; Alonso, Alejandro; Alonso, Jose; Alviggi, Mariagrazia; Amako, Katsuya; Amaral, Pedro; Amelung, Christoph; Ammosov, Vladimir; Amorim, Antonio; Amorós, Gabriel; Amram, Nir; Anastopoulos, Christos; Andeen, Timothy; Anders, Christoph Falk; Anderson, Kelby; Andreazza, Attilio; Andrei, George Victor; Andrieux, Marie-Laure; Anduaga, Xabier; Angerami, Aaron; Anghinolfi, Francis; Anjos, Nuno; Annovi, Alberto; Antonaki, Ariadni; Antonelli, Mario; Antonelli, Stefano; Antos, Jaroslav; Antunovic, Bijana; Anulli, Fabio; Aoun, Sahar; Apolle, Rudi; Arabidze, Giorgi; Aracena, Ignacio; Arai, Yasuo; Arce, Ayana; Archambault, John-Paul; Arfaoui, Samir; Arguin, Jean-Francois; Argyropoulos, Theodoros; Arik, Engin; Arik, Metin; Armbruster, Aaron James; Arms, Kregg; Armstrong, Stephen Randolph; Arnaez, Olivier; Arnault, Christian; Artamonov, Andrei; Arutinov, David; Asai, Shoji; Silva, José; Asfandiyarov, Ruslan; Ask, Stefan; Åsman, Barbro; Asquith, Lily; Assamagan, Ketevi; Astbury, Alan; Astvatsatourov, Anatoli; Atoian, Grigor; Aubert, Bernard; Auerbach, Benjamin; Auge, Etienne; Augsten, Kamil; Aurousseau, Mathieu; Austin, Nicholas; Avramidou, Rachel Maria; Axen, David; Ay, Cano; Azuelos, Georges; Azuma, Yuya; Baak, Max; Baccaglioni, Giuseppe; Bacci, Cesare; Bach, Andre; Bachacou, Henri; Bachas, Konstantinos; Bachy, Gerard; Backes, Moritz; Badescu, Elisabeta; Bagnaia, Paolo; Bai, Yu; Bailey, David; Bain, Travis; Baines, John; Baker, Oliver Keith; Baker, Sarah; Baltasar Dos Santos Pedrosa, Fernando; Banas, Elzbieta; Banerjee, Piyali; Banerjee, Swagato; Banfi, Danilo; Bangert, Andrea Michelle; Bansal, Vikas; Bansil, Hardeep Singh; Barak, Liron; Baranov, Sergei; Barashkou, Andrei; Barbaro Galtieri, Angela; Barber, Tom; Barberio, Elisabetta Luigia; Barberis, Dario; Barbero, Marlon; Bardin, Dmitri; Barillari, Teresa; Barisonzi, Marcello; Barklow, Timothy; Barlow, Nick; Barnett, Bruce; Barnett, Michael; Baroncelli, Antonio; Barr, Alan; Barreiro, Fernando; Barreiro Guimarães da Costa, João; Barrillon, Pierre; Bartoldus, Rainer; Barton, Adam Edward; Bartsch, Detlef; Bates, Richard; Batkova, Lucia; Batley, Richard; Battaglia, Andreas; Battistin, Michele; Battistoni, Giuseppe; Bauer, Florian; Bawa, Harinder Singh; Beare, Brian; Beau, Tristan; Beauchemin, Pierre-Hugues; Beccherle, Roberto; Bechtle, Philip; Beck, Hans Peter; Beckingham, Matthew; Becks, Karl-Heinz; Beddall, Andrew; Beddall, Ayda; Bednyakov, Vadim; Bee, Christopher; Begel, Michael; Behar Harpaz, Silvia; Behera, Prafulla; Beimforde, Michael; Belanger-Champagne, Camille; Belhorma, Bouchra; Bell, Paul; Bell, William; Bella, Gideon; Bellagamba, Lorenzo; Bellina, Francesco; Bellomo, Giovanni; Bellomo, Massimiliano; Belloni, Alberto; Belotskiy, Konstantin; Beltramello, Olga; Ben Ami, Sagi; Benary, Odette; Benchekroun, Driss; Benchouk, Chafik; Bendel, Markus; Benedict, Brian Hugues; Benekos, Nektarios; Benhammou, Yan; Benjamin, Douglas; Benoit, Mathieu; Bensinger, James; Benslama, Kamal; Bentvelsen, Stan; Berge, David; Bergeaas Kuutmann, Elin; Berger, Nicolas; Berghaus, Frank; Berglund, Elina; Beringer, Jürg; Bernardet, Karim; Bernat, Pauline; Bernhard, Ralf; Bernius, Catrin; Berry, Tracey; Bertin, Antonio; Bertinelli, Francesco; Bertolucci, Federico; Besana, Maria Ilaria; Besson, Nathalie; Bethke, Siegfried; Bhimji, Wahid; Bianchi, Riccardo-Maria; Bianco, Michele; Biebel, Otmar; Biesiada, Jed; Biglietti, Michela; Bilokon, Halina; Bindi, Marcello; Bingul, Ahmet; Bini, Cesare; Biscarat, Catherine; Bischof, Reinhard; Bitenc, Urban; Black, Kevin; Blair, Robert; Blanchard, Jean-Baptiste; Blanchot, Georges; Blocker, Craig; Blocki, Jacek; Blondel, Alain; Blum, Walter

    2011-01-01

    Measurements of charged particle distributions, sensitive to the underlying event, have been performed with the ATLAS detector at the LHC. The measurements are based on data collected using a minimum-bias trigger to select proton{proton collisions at center-of-mass energies of 900 GeV and 7 TeV. The "underlying event" is defined as those aspects of a hadronic interaction attributed not to the hard scattering process, but rather to the accompanying interactions of the rest of the proton. Three regions are defined in azimuthal angle with respect to the the highest-$p_T$ charged particle in the event, such that the region transverse to the dominant momentum-flow is most sensitive to the underlying event. In each of these regions, distributions of the charged particle multiplicity, $p_T$ density, and average $p_T$ are measured. The data show a higher underlying event activity than that predicted by Monte Carlo models tuned to pre-LHC data.

  8. CRYOGENIC DEWAR

    Science.gov (United States)

    Chamberlain, W.H.; Maseck, H.E.

    1964-01-28

    This patent relates to a dewar for storing cryogenic gase and is of the type having aii inner flask surrounded by a vacuum jacket and having a vent spout through which evaporating gas escapes. Heretofore substantial gas loss has resulted from the radiation of heat towards the flask from the warmer outer elements of the dewar. In this invention, the mask is surrounded by a thermally conducting shield which is disposed in the vacuum space between the flask and the outer elements of the dewar. The shield contacts only the vent spout, which is cooled by the evaporating gas, and thus is maintained at a temperature very close to that of the flask itself. Accordingly, heat radiated toward the flask is intercepted and conducted to the evaporating gas rather than being re-radiated towards the hask. In a liquid helium dewar of typical configniration the mention reduces the boil-off rate by approximately one-half.(AEC)

  9. Search for scalar diphoton resonances in the mass range 65-600 GeV with the ATLAS detector in pp collision data at √s = 8 TeV

    NARCIS (Netherlands)

    Aad, G.; et al., [Unknown; Aben, R.; Angelozzi, I.; Beemster, L.J.; Bentvelsen, S.; Berge, D.; Bobbink, G.J.; Bos, K.; Boterenbrood, H.; Butti, P.; Castelli, A.; Colijn, A.P.; de Jong, P.; de Nooij, L.; Deigaard, I.; Deluca, C.; Deviveiros, P.O.; Dhaliwal, S.; Ferrari, P.; Gadatsch, S.; Geerts, D.A.A.; Hartjes, F.; Hessey, N.P.; Hod, N.; Igonkina, O.; Kluit, P.; Koffeman, E.; Lee, H.; Linde, F.; Mahlstedt, J.; Mechnich, J.; Oussoren, K.P.; Pani, P.; Salek, D.; Valencic, N.; van den Wollenberg, W.; van der Deijl, P.C.; van der Geer, R.; van der Graaf, H.; van der Leeuw, R.; van Vulpen, I.; Verkerke, W.; Vermeulen, J.C.; Vranjes Milosavljevic, M.; Vreeswijk, M.; Weits, H.

    2014-01-01

    A search for scalar particles decaying via narrow resonances into two photons in the mass range 65-600 GeV is performed using 20.3  fb−1 of √s=8  TeV pp collision data collected with the ATLAS detector at the Large Hadron Collider. The recently discovered Higgs boson is treated as a background. No s

  10. Ge(Li) detector gamma-ray spectrometer system for measurement of the spectra and production cross sections of. gamma. -rays produced by 14 MeV neutron nonelastic interaction with nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Shen Ronglin; Shi Xiamin; Wu Yongshun; Xing Jinjiang; Ding Dazhao

    1982-02-01

    A 42 cm/sup 3/ Ge(Li) detector gamma-ray spectrometer system for measuring the spectra and the production cross sections of ..gamma..-rays produced by fast neutron nonelastic interaction with nuclei is described in this paper. The incident neutrons are produced by T(d,n)/sup 4/He reaction in an high tension set with the incident deuteron energy of 200 keV. The time of flight technique is used to discriminate between the scattered neutrons and gamma-rays resulting from nonelastic interaction. The ..cap alpha..-particles are picked up by a Si(Au) surface barrier detector and the ARC timing discriminaters are used in both Si(Au) and Ge(Li) channels. The overall time resolution (FWHM) of this system is 4.1 ns typically for energy selection threshold at 400keV. The block diagram of spectrometer system is described in detail. The complex complete shielding damage of Ge(Li) detector in this fast neutron field is well discussed.

  11. A prototype detector for the CRESST-III low-mass dark matter search

    Science.gov (United States)

    Strauss, R.; Angloher, G.; Bauer, P.; Defay, X.; Erb, A.; Feilitzsch, F. v.; Iachellini, N. Ferreiro; Hampf, R.; Hauff, D.; Kiefer, M.; Lanfranchi, J.-C.; Langenkämper, A.; Mondragon, E.; Münster, A.; Oppenheimer, C.; Petricca, F.; Potzel, W.; Pröbst, F.; Reindl, F.; Rothe, J.; Schönert, S.; Seidel, W.; Steiger, H.; Stodolsky, L.; Tanzke, A.; Thi, H. H. Trinh; Ulrich, A.; Wawoczny, S.; Willers, M.; Wüstrich, M.; Zöller, A.

    2017-02-01

    The CRESST-III experiment which is dedicated to low-mass dark matter search uses scintillating CaWO4 crystals operated as cryogenic particle detectors. Background discrimination is achieved by exploiting the scintillating light signal of CaWO4 and by a novel active detector holder presented in this paper. In a test setup above ground, a nuclear-recoil energy threshold of Eth =(190.6 ± 5.2) eV is reached with a 24 g prototype detector, which corresponds to an estimated threshold of ∼50 eV when being operated in the low-noise CRESST cryostat. This is the lowest threshold reported for direct dark matter searches. For CRESST-III phase 1, ten such detector modules were installed in the cryostat which have the potential to improve significantly the sensitivity to scatterings of dark matter particles with masses down to ∼0.1 GeV/c2.

  12. Results From The Two-tower Run Of The Cryogenic Dark Matter Search

    CERN Document Server

    Reisetter, A J

    2005-01-01

    The Cryogenic Dark Matter Search has completed two runs at the Soudan Underground Laboratory In the second, two towers of detectors were operated from March to August 2004. CDMS used Ge and Si ZIP (Z-sensitive, Ionization, and Phonon) detectors, operated at 50mK, to look for Weakly Interacting Massive Particles (WIMPS) which may make up most of the dark matter in our universe. These detectors are surrounded by lead and polyethylene shielding as well as an active muon veto. These shields, as well as the overburden of Soudan rock, provide a low background environment for the detectors. The ZIP detectors record the ratio of ionization signal to phonon signal to discriminate between nuclear recoils, characteristic of WIMPS and neutrons, and electron recoils, characteristic of gamma and beta backgrounds. They also provide timing information from the four phonon channels that is used to reject surface events, for which ionization collection is poor. A blind analysis, defined using calibration data taken in situ thr...

  13. Space charge sign inversion and electric field reconstruction in 24 GeV/c proton-irradiated MCz Si p$^+$-n(TD)-n$^+$ detectors processed via thermal donor introduction

    CERN Document Server

    Li, Z; Carini, G; Chen, W; Eremin, V; Gul, R; Harkonen, J; Li, M

    2009-01-01

    The aim of this study is the evaluation of radiation effects in detectors based on p-type magnetic czochralski (MCz) Si that was converted to n-type by thermal donor (TD) introduction. As-processed p+-p-n+ detectors were annealed at 430 °C resulting in p+-n(TD)-n+ structures. The space charge sign and the electric field distribution E(x) in MCz Si p+-n(TD)-n+ detectors irradiated by 24 GeV/c protons were analyzed using the data on the current pulse response and the Double Peak (DP) electric field distribution model for heavily irradiated detectors. The approach considers an irradiated detector as a structure with three regions in which the electric field depends on the coordinate, and the induced current pulse response arises from the drift process of free carriers in the detector with variable electric field. Reconstruction of the E(x) profile from the pulse response shapes is performed employing a new method for DP electric field reconstruction. This method includes: (a) a direct extraction of charge loss ...

  14. Noble Gas Detectors

    CERN Document Server

    Aprile, Elena; Bolozdynya, Alexander I; Doke, Tadayoshi

    2006-01-01

    This book discusses the physical properties of noble fluids, operational principles of detectors based on these media, and the best technical solutions to the design of these detectors. Essential attention is given to detector technology: purification methods and monitoring of purity, information readout methods, electronics, detection of hard ultra-violet light emission, selection of materials, cryogenics etc.The book is mostly addressed to physicists and graduate students involved in the preparation of fundamental next generation experiments, nuclear engineers developing instrumentation

  15. Development of cryogenic low background detector based on enriched zinc molybdate crystal scintillators to search for neutrinoless double beta decay of $^{100}$Mo

    CERN Document Server

    Chernyak, Dmitry

    2015-01-01

    ZnMoO$_4$ scintillators with a mass of $\\sim$ 0.3 kg, as well as Zn$^{100}$MoO$_4$ crystals enriched in the isotope $^{100}$Mo were produced for the first time by using the low-thermal-gradient Czochralski technique. The optical and luminescent properties of the produced crystals were studied to estimate the progress in crystal growth quality. The low-temperature tests with a 313 g ZnMoO$_4$ and two enriched Zn$^{100}$MoO$_4$ crystals were performed aboveground in the Centre de Sciences Nucl\\'eaires et de Sciences de la Mati\\`ere. The low background measurements with a three ZnMoO$_4$ and two enriched detectors installed in the EDELWEISS set-up at the Laboratoire Souterrain de Modane were carried out. To optimize the light collection in ZnMoO$_4$ scintillating bolometers, we have simulated the collection of scintillation photons in a detector module for different geometries by Monte Carlo method using the GEANT4 package. Response to the 2$\

  16. Cryogenic Propulsion Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The storage of cryogenic propellants is challenging because heat leaks into the cryogenic storage tanks no matter how good the insulation, resulting in a necessity...

  17. Cryogenics a textbook

    CERN Document Server

    Thipse, S S

    2013-01-01

    A Textbook covers lucidly various cryogenic applications including cryogenic engines and space and electronic applications. Importance of cryogenic engines in space propulsion, complete thermodynamic analysis of cryogenic systems with special emphasis on cryogenic cycles, Dewar vessels used to store cryogenic fluids and their applications in various industries have also been discussed in detail. Explanation of Superconductivity and its applications with a description of various Cryocoolers used in industry has also been provided with extensive details. Further technical information on cryogens has been specified alongwith the vacuum technology which has been sufficiently described with examples. Science of Cryonics has been elaborated and all aspects of technology related to functioning of cryogenic plants and their construction including valves, pipes has been incorporated in this book.

  18. Energy Efficient Cryogenics

    Science.gov (United States)

    Meneghelli, Barry J.; Notardonato, William; Fesmire, James E.

    2016-01-01

    The Cryogenics Test Laboratory, NASA Kennedy Space Center, works to provide practical solutions to low-temperature problems while focusing on long-term technology targets for the energy-efficient use of cryogenics on Earth and in space.

  19. Cryogenic immersion microscope

    Science.gov (United States)

    Le Gros, Mark; Larabell, Carolyn A.

    2010-12-14

    A cryogenic immersion microscope whose objective lens is at least partially in contact with a liquid reservoir of a cryogenic liquid, in which reservoir a sample of interest is immersed is disclosed. When the cryogenic liquid has an index of refraction that reduces refraction at interfaces between the lens and the sample, overall resolution and image quality are improved. A combination of an immersion microscope and x-ray microscope, suitable for imaging at cryogenic temperatures is also disclosed.

  20. Academic Training: Introduction to cryogenic Engineering

    CERN Multimedia

    Françoise Benz

    2005-01-01

    2005-2006 ACADEMIC TRAINING PROGRAMME LECTURE SERIES 5, 6, 7, 8 and 9 December from 11:00 to 12:00 - Main Auditorium, bldg. 500 Introduction to cryogenic Engineering by G. Perinic - CERN-AT Cryogenic engineering is one of the key technologies at CERN. It is widely used in research and has many applications in industry and last but not least in medicine. In research cryogenic engineering and its applications are omnipresent from the smallest laboratories to fusion reactors, hughe detectors and accelerators. With the termination of the LHC, CERN will in fact become the world's largest cryogenic installation. This series of talks intends to introduce the non-cryogenist to the basic principles and challenges of cryogenic engineering and its applications. The course will also provide a basis for practical application as well as for further learning. From history to modern refrigeration cycles (1/5) Refrigerants, standard cryostats, cryogenic design (2/5) Heat transfer and insulation (3/5) Safety in cryoge...

  1. Academic Training: Introduction to cryogenic Engineering

    CERN Multimedia

    Françoise Benz

    2005-01-01

    2005-2006 ACADEMIC TRAINING PROGRAMME LECTURE SERIES 5, 6, 7, 8 and 9 December from 11:00 to 12:00 - Main Auditorium, bldg. 500 Introduction to cryogenic Engineering by G. Perinic - CERN-AT Cryogenic engineering is one of the key technologies at CERN. It is widely used in research and has many applications in industry and last but not least in medicine. In research cryogenic engineering and its applications are omnipresent from the smallest laboratories to fusion reactors, huge detectors and accelerators. With the termination of the LHC, CERN will in fact become the world’s largest cryogenic installation. This series of talks intends to introduce the non-cryogenist to the basic principles and challenges of cryogenic engineering and its applications. The course will also provide a basis for practical application as well as for further learning. Monday 5.12.2005 Introduction: From History to Modern Refrigeration Cycles (Goran Perinic) Tuesday 6.12.2005 Refrigerants, Standard Cryostats, Cryogenic Des...

  2. Search for a Standard Model Higgs boson in the mass range 200-600 GeV in the $H \\to ZZ \\to l^+l^-q\\bar{q}$ decay channel with the ATLAS detector

    CERN Document Server

    Aad, Georges; Abdallah, Jalal; Abdel Khalek, Samah; Abdelalim, Ahmed Ali; Abdinov, Ovsat; Abi, Babak; Abolins, Maris; AbouZeid, Ossama; Abramowicz, Halina; Abreu, Henso; Acerbi, Emilio; Acharya, Bobby Samir; Adamczyk, Leszek; Adams, David; Addy, Tetteh; Adelman, Jahred; Adomeit, Stefanie; Adragna, Paolo; Adye, Tim; Aefsky, Scott; Aguilar-Saavedra, Juan Antonio; Agustoni, Marco; Aharrouche, Mohamed; Ahlen, Steven; Ahles, Florian; Ahmad, Ashfaq; Ahsan, Mahsana; Aielli, Giulio; Akdogan, Taylan; Åkesson, Torsten Paul Ake; Akimoto, Ginga; Akimov, Andrei; Alam, Mohammad; Alam, Muhammad Aftab; Albert, Justin; Albrand, Solveig; Aleksa, Martin; Aleksandrov, Igor; Alessandria, Franco; Alexa, Calin; Alexander, Gideon; Alexandre, Gauthier; Alexopoulos, Theodoros; Alhroob, Muhammad; Aliev, Malik; Alimonti, Gianluca; Alison, John; Allbrooke, Benedict; Allport, Phillip; Allwood-Spiers, Sarah; Almond, John; Aloisio, Alberto; Alon, Raz; Alonso, Alejandro; Alvarez Gonzalez, Barbara; Alviggi, Mariagrazia; Amako, Katsuya; Amelung, Christoph; Ammosov, Vladimir; Amorim, Antonio; Amram, Nir; Anastopoulos, Christos; Ancu, Lucian Stefan; Andari, Nansi; Andeen, Timothy; Anders, Christoph Falk; Anders, Gabriel; Anderson, Kelby; Andreazza, Attilio; Andrei, George Victor; Anduaga, Xabier; Anger, Philipp; Angerami, Aaron; Anghinolfi, Francis; Anisenkov, Alexey; Anjos, Nuno; Annovi, Alberto; Antonaki, Ariadni; Antonelli, Mario; Antonov, Alexey; Antos, Jaroslav; Anulli, Fabio; Aoun, Sahar; Aperio Bella, Ludovica; Apolle, Rudi; Arabidze, Giorgi; Aracena, Ignacio; Arai, Yasuo; Arce, Ayana; Arfaoui, Samir; Arguin, Jean-Francois; Arik, Engin; Arik, Metin; Armbruster, Aaron James; Arnaez, Olivier; Arnal, Vanessa; Arnault, Christian; Artamonov, Andrei; Artoni, Giacomo; Arutinov, David; Asai, Shoji; Asfandiyarov, Ruslan; Ask, Stefan; Åsman, Barbro; Asquith, Lily; Assamagan, Ketevi; Astbury, Alan; Aubert, Bernard; Auge, Etienne; Augsten, Kamil; Aurousseau, Mathieu; Avolio, Giuseppe; Avramidou, Rachel Maria; Axen, David; Azuelos, Georges; Azuma, Yuya; Baak, Max; Baccaglioni, Giuseppe; Bacci, Cesare; Bach, Andre; Bachacou, Henri; Bachas, Konstantinos; Backes, Moritz; Backhaus, Malte; Badescu, Elisabeta; Bagnaia, Paolo; Bahinipati, Seema; Bai, Yu; Bailey, David; Bain, Travis; Baines, John; Baker, Oliver Keith; Baker, Mark; Baker, Sarah; Banas, Elzbieta; Banerjee, Piyali; Banerjee, Swagato; Banfi, Danilo; Bangert, Andrea Michelle; Bansal, Vikas; Bansil, Hardeep Singh; Barak, Liron; Baranov, Sergei; Barbaro Galtieri, Angela; Barber, Tom; Barberio, Elisabetta Luigia; Barberis, Dario; Barbero, Marlon; Bardin, Dmitri; Barillari, Teresa; Barisonzi, Marcello; Barklow, Timothy; Barlow, Nick; Barnett, Bruce; Barnett, Michael; Baroncelli, Antonio; Barone, Gaetano; Barr, Alan; Barreiro, Fernando; Barreiro Guimarães da Costa, João; Barrillon, Pierre; Bartoldus, Rainer; Barton, Adam Edward; Bartsch, Valeria; Bates, Richard; Batkova, Lucia; Batley, Richard; Battaglia, Andreas; Battistin, Michele; Bauer, Florian; Bawa, Harinder Singh; Beale, Steven; Beau, Tristan; Beauchemin, Pierre-Hugues; Beccherle, Roberto; Bechtle, Philip; Beck, Hans Peter; Becker, Anne Kathrin; Becker, Sebastian; Beckingham, Matthew; Becks, Karl-Heinz; Beddall, Andrew; Beddall, Ayda; Bedikian, Sourpouhi; Bednyakov, Vadim; Bee, Christopher; Begel, Michael; Behar Harpaz, Silvia; Beimforde, Michael; Belanger-Champagne, Camille; Bell, Paul; Bell, William; Bella, Gideon; Bellagamba, Lorenzo; Bellina, Francesco; Bellomo, Massimiliano; Belloni, Alberto; Beloborodova, Olga; Belotskiy, Konstantin; Beltramello, Olga; Benary, Odette; Benchekroun, Driss; Bendtz, Katarina; Benekos, Nektarios; Benhammou, Yan; Benhar Noccioli, Eleonora; Benitez Garcia, Jorge-Armando; Benjamin, Douglas; Benoit, Mathieu; Bensinger, James; Benslama, Kamal; Bentvelsen, Stan; Berge, David; Bergeaas Kuutmann, Elin; Berger, Nicolas; Berghaus, Frank; Berglund, Elina; Beringer, Jürg; Bernat, Pauline; Bernhard, Ralf; Bernius, Catrin; Berry, Tracey; Bertella, Claudia; Bertin, Antonio; Bertolucci, Federico; Besana, Maria Ilaria; Besjes, Geert-Jan; Besson, Nathalie; Bethke, Siegfried; Bhimji, Wahid; Bianchi, Riccardo-Maria; Bianco, Michele; Biebel, Otmar; Bieniek, Stephen Paul; Bierwagen, Katharina; Biesiada, Jed; Biglietti, Michela; Bilokon, Halina; Bindi, Marcello; Binet, Sebastien; Bingul, Ahmet; Bini, Cesare; Biscarat, Catherine; Bitenc, Urban; Black, Kevin; Blair, Robert; Blanchard, Jean-Baptiste; Blanchot, Georges; Blazek, Tomas; Blocker, Craig; Blocki, Jacek; Blondel, Alain; Blum, Walter; Blumenschein, Ulrike; Bobbink, Gerjan

    2012-01-01

    A search for a heavy Standard Model Higgs boson decaying via $H \\to ZZ \\to l^+l^-q\\bar{q}$, where $l=e$ or $\\mu$, is presented. The search uses a data set of pp collisions at $\\sqrt{s}$ = 7 TeV, corresponding to an integrated luminosity of 4.7 fb$^{-1}$ collected in 2011 by the ATLAS detector at the CERN LHC. No significant excess of events above the estimated background is found. Upper limits at 95% confidence level on the production cross section of a Higgs boson with a mass in the range between 200 and 600 GeV are derived. A Standard Model Higgs boson with a mass in the range 300 $\\le m_H \\le$ 322 GeV or 353 $\\le m_H \\le$ 410 GeV is excluded at 95% CL. The corresponding expected exclusion range is 351 $\\le m_H \\le$ 404 GeV at 95% CL.

  3. Search for a Standard Model Higgs boson in the mass range 200-600 GeV in the $H \\to ZZ \\to l^+l^-q\\bar{q}$ decay channel with the ATLAS detector

    CERN Document Server

    Aad, Georges; Abdallah, Jalal; Abdel Khalek, Samah; Abdelalim, Ahmed Ali; Abdinov, Ovsat; Abi, Babak; Abolins, Maris; AbouZeid, Ossama; Abramowicz, Halina; Abreu, Henso; Acerbi, Emilio; Acharya, Bobby Samir; Adamczyk, Leszek; Adams, David; Addy, Tetteh; Adelman, Jahred; Adomeit, Stefanie; Adragna, Paolo; Adye, Tim; Aefsky, Scott; Aguilar-Saavedra, Juan Antonio; Agustoni, Marco; Aharrouche, Mohamed; Ahlen, Steven; Ahles, Florian; Ahmad, Ashfaq; Ahsan, Mahsana; Aielli, Giulio; Akdogan, Taylan; Å kesson, Torsten Paul Ake; Akimoto, Ginga; Akimov, Andrei; Alam, Mohammad; Alam, Muhammad Aftab; Albert, Justin; Albrand, Solveig; Aleksa, Martin; Aleksandrov, Igor; Alessandria, Franco; Alexa, Calin; Alexander, Gideon; Alexandre, Gauthier; Alexopoulos, Theodoros; Alhroob, Muhammad; Aliev, Malik; Alimonti, Gianluca; Alison, John; Allbrooke, Benedict; Allport, Phillip; Allwood-Spiers, Sarah; Almond, John; Aloisio, Alberto; Alon, Raz; Alonso, Alejandro; Alvarez Gonzalez, Barbara; Alviggi, Mariagrazia; Amako, Katsuya; Amelung, Christoph; Ammosov, Vladimir; Amorim, Antonio; Amram, Nir; Anastopoulos, Christos; Ancu, Lucian Stefan; Andari, Nansi; Andeen, Timothy; Anders, Christoph Falk; Anders, Gabriel; Anderson, Kelby; Andreazza, Attilio; Andrei, George Victor; Anduaga, Xabier; Anger, Philipp; Angerami, Aaron; Anghinolfi, Francis; Anisenkov, Alexey; Anjos, Nuno; Annovi, Alberto; Antonaki, Ariadni; Antonelli, Mario; Antonov, Alexey; Antos, Jaroslav; Anulli, Fabio; Aoun, Sahar; Aperio Bella, Ludovica; Apolle, Rudi; Arabidze, Giorgi; Aracena, Ignacio; Arai, Yasuo; Arce, Ayana; Arfaoui, Samir; Arguin, Jean-Francois; Arik, Engin; Arik, Metin; Armbruster, Aaron James; Arnaez, Olivier; Arnal, Vanessa; Arnault, Christian; Artamonov, Andrei; Artoni, Giacomo; Arutinov, David; Asai, Shoji; Asfandiyarov, Ruslan; Ask, Stefan; Å sman, Barbro; Asquith, Lily; Assamagan, Ketevi; Astbury, Alan; Aubert, Bernard; Auge, Etienne; Augsten, Kamil; Aurousseau, Mathieu; Avolio, Giuseppe; Avramidou, Rachel Maria; Axen, David; Azuelos, Georges; Azuma, Yuya; Baak, Max; Baccaglioni, Giuseppe; Bacci, Cesare; Bach, Andre; Bachacou, Henri; Bachas, Konstantinos; Backes, Moritz; Backhaus, Malte; Badescu, Elisabeta; Bagnaia, Paolo; Bahinipati, Seema; Bai, Yu; Bailey, David; Bain, Travis; Baines, John; Baker, Oliver Keith; Baker, Mark; Baker, Sarah; Banas, Elzbieta; Banerjee, Piyali; Banerjee, Swagato; Banfi, Danilo; Bangert, Andrea Michelle; Bansal, Vikas; Bansil, Hardeep Singh; Barak, Liron; Baranov, Sergei; Barbaro Galtieri, Angela; Barber, Tom; Barberio, Elisabetta Luigia; Barberis, Dario; Barbero, Marlon; Bardin, Dmitri; Barillari, Teresa; Barisonzi, Marcello; Barklow, Timothy; Barlow, Nick; Barnett, Bruce; Barnett, Michael; Baroncelli, Antonio; Barone, Gaetano; Barr, Alan; Barreiro, Fernando; Barreiro Guimarães da Costa, João; Barrillon, Pierre; Bartoldus, Rainer; Barton, Adam Edward; Bartsch, Valeria; Bates, Richard; Batkova, Lucia; Batley, Richard; Battaglia, Andreas; Battistin, Michele; Bauer, Florian; Bawa, Harinder Singh; Beale, Steven; Beau, Tristan; Beauchemin, Pierre-Hugues; Beccherle, Roberto; Bechtle, Philip; Beck, Hans Peter; Becker, Anne Kathrin; Becker, Sebastian; Beckingham, Matthew; Becks, Karl-Heinz; Beddall, Andrew; Beddall, Ayda; Bedikian, Sourpouhi; Bednyakov, Vadim; Bee, Christopher; Begel, Michael; Behar Harpaz, Silvia; Beimforde, Michael; Belanger-Champagne, Camille; Bell, Paul; Bell, William; Bella, Gideon; Bellagamba, Lorenzo; Bellina, Francesco; Bellomo, Massimiliano; Belloni, Alberto; Beloborodova, Olga; Belotskiy, Konstantin; Beltramello, Olga; Benary, Odette; Benchekroun, Driss; Bendtz, Katarina; Benekos, Nektarios; Benhammou, Yan; Benhar Noccioli, Eleonora; Benitez Garcia, Jorge-Armando; Benjamin, Douglas; Benoit, Mathieu; Bensinger, James; Benslama, Kamal; Bentvelsen, Stan; Berge, David; Bergeaas Kuutmann, Elin; Berger, Nicolas; Berghaus, Frank; Berglund, Elina; Beringer, Jürg; Bernat, Pauline; Bernhard, Ralf; Bernius, Catrin; Berry, Tracey; Bertella, Claudia; Bertin, Antonio; Bertolucci, Federico; Besana, Maria Ilaria; Besjes, Geert-Jan; Besson, Nathalie; Bethke, Siegfried; Bhimji, Wahid; Bianchi, Riccardo-Maria; Bianco, Michele; Biebel, Otmar; Bieniek, Stephen Paul; Bierwagen, Katharina; Biesiada, Jed; Biglietti, Michela; Bilokon, Halina; Bindi, Marcello; Binet, Sebastien; Bingul, Ahmet; Bini, Cesare; Biscarat, Catherine; Bitenc, Urban; Black, Kevin; Blair, Robert; Blanchard, Jean-Baptiste; Blanchot, Georges; Blazek, Tomas; Blocker, Craig; Blocki, Jacek; Blondel, Alain; Blum, Walter; Blumenschein, Ulrike; Bobbink, Gerjan

    2012-01-01

    A search for a heavy Standard Model Higgs boson decaying via $H \\to ZZ \\to l^+l^-q\\bar{q}$, where $l=e$ or $\\mu$, is presented. The search uses a data set of pp collisions at $\\sqrt{s}$ = 7 TeV, corresponding to an integrated luminosity of 4.7 fb$^{-1}$ collected in 2011 by the ATLAS detector at the CERN LHC. No significant excess of events above the estimated background is found. Upper limits at 95% confidence level on the production cross section of a Higgs boson with a mass in the range between 200 and 600 GeV are derived. A Standard Model Higgs boson with a mass in the range 300 $\\le m_H \\le$ 322 GeV or 353 $\\le m_H \\le$ 410 GeV is excluded at 95% CL. The corresponding expected exclusion range is 351 $\\le m_H \\le$ 404 GeV at 95% CL.

  4. Cryogenic heat transfer

    CERN Document Server

    Barron, Randall F

    2016-01-01

    Cryogenic Heat Transfer, Second Edition continues to address specific heat transfer problems that occur in the cryogenic temperature range where there are distinct differences from conventional heat transfer problems. This updated version examines the use of computer-aided design in cryogenic engineering and emphasizes commonly used computer programs to address modern cryogenic heat transfer problems. It introduces additional topics in cryogenic heat transfer that include latent heat expressions; lumped-capacity transient heat transfer; thermal stresses; Laplace transform solutions; oscillating flow heat transfer, and computer-aided heat exchanger design. It also includes new examples and homework problems throughout the book, and provides ample references for further study.

  5. Cryogen Safety Course 8876

    Energy Technology Data Exchange (ETDEWEB)

    Glass, George [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-06-13

    Cryogenics (from the Greek word κρvoζ, meaning frost or icy cold) is the study of the behavior of matter at very cold temperatures. The purpose of this course is to provide trainees with an introduction to cryogen use, the hazards and potential accidents related to cryogen systems, cryogen safety components, and the requirements that govern the design and use of cryogen systems at Los Alamos National Laboratory (LANL). The knowledge you gain will help you keep your workplace safe for yourself and your coworkers.

  6. The cryogenic storage ring project

    Energy Technology Data Exchange (ETDEWEB)

    Hahn, Robert von; Blaum, Klaus; Becker, Arno; Fellenberger, Florian; George, Sebastian; Grieser, Manfred; Grussie, Florian; Herwig, Philipp; Krantz, Claude; Kreckel, Holger; Lange, Michael; Menk, Sebastian; Repnow, Roland; Vogel, Stephen; Wolf, Andreas [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany); Spruck, Kaija [Justus-Liebig-Universitaet, Giessen (Germany)

    2014-07-01

    At MPIK the electrostatic cryogenic storage ring CSR is nearing completion. At beam energies of 20 to 300 keV per charge unit and 35 m circumference the CSR will allow experiments in a cryogenic environment providing conditions of extremely low vacuum and heat radiation. By using liquid helium at 2 K for cryopumping, the projected vacuum (confirmed at a prototype) lies at 1E-13 mbar or below, ensuring long storage times for slow singly charged and highly charged ions, molecules and clusters. Moreover, phase space cooling by electrons will be implemented. The internal quantum states of molecular and cluster ions can be cooled to low temperature, yielding well defined vibrational and for smaller systems also rotational structures. In the CSR construction, the cryogenic ion beam vacuum system has been set up. Extensive tests confirming the criteria on heat flow, alignment and high-voltage stability were successfully completed on the first quadrant. In addition beam diagnostic units for electric pickup signals and spatial profiles, detectors for neutral and charged fragments, the injection beam line, and an electron cooling device are under construction.

  7. Cross section and coupling measurements with the ATLAS detector for the 125 GeV Higgs Boson in the fermion decay channels

    CERN Document Server

    Gregersen, Kristian; The ATLAS collaboration

    2017-01-01

    Detailed measurements of the properties of the 125 GeV Higgs boson are fundamental for the understanding of the electroweak symmetry breaking mechanism. Measurements of the Higgs boson in fermion final states allow to study the Yukawa couplings of the Higgs boson through the decay mode and the gauge couplings of the Higgs boson through the production mode. This talk summarizes ATLAS measurements of the 125 GeV Higgs boson in decays involving b, tau and mu.

  8. Results on light dark matter particles with a low-threshold CRESST-II detector

    Energy Technology Data Exchange (ETDEWEB)

    Angloher, G.; Iachellini, N.F.; Hauff, D.; Kiefer, M.; Petricca, F.; Proebst, F.; Seidel, W.; Stodolsky, L.; Strauss, R.; Tanzke, A.; Wuestrich, M. [Max-Planck-Institut fuer Physik, Munich (Germany); Bento, A. [Universidade de Coimbra, Departamento de Fisica, Coimbra (Portugal); Bucci, C.; Canonica, L.; Gorla, P.; Pagliarone, C.; Schaeffner, K. [INFN, Laboratori Nazionali del Gran Sasso, Assergi (Italy); Defay, X.; Feilitzsch, F. von; Lanfranchi, J.C.; Muenster, A.; Potzel, W.; Schoenert, S.; Trinh Thi, H.H.; Ulrich, A.; Wawoczny, S.; Willers, M.; Zoeller, A. [Technische Universitaet Muenchen, Physik-Department and Excellence Cluster Universe, Garching (Germany); Erb, A. [Technische Universitaet Muenchen, Physik-Department and Excellence Cluster Universe, Garching (Germany); Walther-Meissner-Institut fuer Tieftemperaturforschung, Garching (Germany); Guetlein, A.; Kluck, H.; Schieck, J.; Tuerkoglu, C. [Institut fuer Hochenergiephysik der Oesterreichischen Akademie der Wissenschaften, Wien (Austria); Atominstitut, Vienna University of Technology, Wien (Austria); Jochum, J.; Loebell, J.; Strandhagen, C.; Uffinger, M.; Usherov, I. [Eberhard-Karls-Universitaet Tuebingen, Tuebingen (Germany); Kraus, H. [University of Oxford, Department of Physics, Oxford (United Kingdom); Reindl, F. [Max-Planck-Institut fuer Physik, Munich (Germany)

    2016-01-15

    The CRESST-II experiment uses cryogenic detectors to search for nuclear recoil events induced by the elastic scattering of dark matter particles in CaWO{sub 4} crystals. Given the low energy threshold of our detectors in combination with light target nuclei, low mass dark matter particles can be probed with high sensitivity. In this letter we present the results from data of a single detector module corresponding to 52 kg live days. A blind analysis is carried out. With an energy threshold for nuclear recoils of 307 eV we substantially enhance the sensitivity for light dark matter. Thereby, we extend the reach of direct dark matter experiments to the sub- GeV/c{sup 2} region and demonstrate that the energy threshold is the key parameter in the search for low mass dark matter particles. (orig.)

  9. A cryogenic test facility

    Science.gov (United States)

    Veenendaal, Ian

    The next generation, space-borne instruments for far infrared spectroscopy will utilize large diameter, cryogenically cooled telescopes in order to achieve unprecedented sensitivities. Low background, ground-based cryogenic facilities are required for the cryogenic testing of materials, components and subsystems. The Test Facility Cryostat (TFC) at the University of Lethbridge is a large volume, closed cycle, 4K cryogenic facility, developed for this purpose. This thesis discusses the design and performance of the facility and associated external instrumentation. An apparatus for measuring the thermal properties of materials is presented, and measurements of the thermal expansion and conductivity of carbon fibre reinforced polymers (CFRPs) at cryogenic temperatures are reported. Finally, I discuss the progress towards the design and fabrication of a demonstrator cryogenic, far infrared Fourier transform spectrometer.

  10. Measurement of the reaction {gamma}p{yields}K{sup 0}{sigma}{sup +} for photon energies up to 2.65 GeV with the SAPHIR detector at ELSA; Messung der Reaktion {gamma}p {yields} K{sup 0}{sigma}{sup +} fuer Photonenergien bis 2.65 GeV mit dem SAPHIR-Detektor an ELSA

    Energy Technology Data Exchange (ETDEWEB)

    Lawall, R.

    2004-01-01

    The reaction {gamma}p {yields} K{sup 0}{sigma}{sup +} was measured with the SAPHIR-detector at ELSA during the run periods 1997 and 1998. Results were obtained for cross sections in the photon energy range from threshold up to 2.65 GeV for all production angles and for the {sigma}{sup +}-polarization. Emphasis has been put on the determination and reduction of the contributions of background reactions and the comparison with other measurements and theoretical predictions. (orig.)

  11. Inclusive D meson production with the Mark II detector at SPEAR. [3. 9 to 7. 4 GeV (c. m. )

    Energy Technology Data Exchange (ETDEWEB)

    Coles, M.W.

    1980-09-01

    Neutral and charged D meson production cross sections were measured at center-of-mass energies between 3.9 GeV and 7.4 GeV. The quantity R/sub D/(=(sigma/sub D/sup +/+D/sup -// + sigma/sub D/sup 0/+ anti D/sup 0//)/2 sigma/sub ..mu../sup +/..mu../sup -//) is equal to 2 at 4 GeV and 4.4 GeV and about equal to 1 elsewhere. R/sub D/ + 2.5 approximately equals R (sigma/sub hadrons//sigma/sub ..mu../sup +/..mu../sup -//) at all energies. The exclusive cross sections for e/sup +/e/sup -/ annihilation into D anti D, D* anti D, and D* anti D* were measured at center-of-mass energies between 3.9 GeV and 4.3 GeV. sigma/sub D* anti D*/ decreases with increasing center-of-mass energy from 6.6 +- 1.3 nb near 4 GeV to 3.6 +- .9 nb near 4.3 GeV. sigma/sub D* anti D/ also decreases from 4.2 +- .9 nb to 1.8 +- .6 nb over the same energy region. sigma/sub D anti D/ is less than 0.5 +- .3 nb at all energies. The branching fractions for D*/sup +/ and D* decay were measured. B/sub D*/sup 0/..-->..D/sup 0/..pi../sup 0// = 0.5 +- .09, B/sub D*/sup +/..-->..D/sup 0/..pi../sup +// = 0.44 +- .10, and B/sub D*/sup +/..-->..D/sup +/..pi../sup 0// = 0.31 +- .07. At 5.2 GeV, the D meson differential cross section is well described by phase space for e/sup +/e/sup -/ ..-->.. D anti D..pi pi.. or D* anti D*..pi pi... Sd sigma/dz was parameterized as A(1-z)/sup n/ with n = 0.9 +- .4. Quasi-two-body production accounts for less than 20% of the total D cross section. No evidence was found for associated charmed baryon-D meson production. An upper limit of 0.4 nb (90% confidence level) was determined for associated production. 41 figures, 12 tables.

  12. Toward Single Electron Resolution Phonon Mediated Ionization Detectors

    CERN Document Server

    Mirabolfathi, Nader; Mahapatra, Rupak; Sundqvist, Kyle; Jastram, Andrew; Serfass, Bruno; Faiez, Dana; Sadoulet, Bernard

    2015-01-01

    Experiments seeking to detect rare event interactions such as dark matter or coherent elastic neutrino nucleus scattering are striving for large mass detectors with very low detection threshold. Using Neganov-Luke phonon amplification effect, the Cryogenic Dark Matter Search (CDMS) experiment is reaching unprecedented RMS resolutions of ~ 14 eV$_{ee}$ . CDMSlite is currently the most sensitive experiment to WIMPs of mass $\\sim$5 GeV/c$^{2}$ but is limited in achieving higher phonon gains due to an early onset of leakage current into Ge crystals. The contact interface geometry is particularly weak for blocking hole injection from the metal, and thus a new design is demonstrated that allows high voltage bias via vacuum separated electrode. With an increased bias voltage and a $\\times$ 2 Luke phonon gain, world best RMS resolution of sigma $\\sim$7 eV$_{ee}$ for 0.25 kg (d=75 mm, h=1 cm) Ge detectors was achieved. Since the leakage current is a function of the field and the phonon gain is a function of the applie...

  13. A Cryogenic Flow Sensor Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Advanced Technologies Group, Inc. proposes the development of a Cryogenic Flow Sensor (CFS) for determining mass flow of cryogens in spacecraft propellant...

  14. Cross section and coupling measurements with the ATLAS detector for the 125 GeV Higgs Boson in the diboson decay channels

    CERN Document Server

    Dai, Tiesheng; The ATLAS collaboration

    2017-01-01

    To understand the electroweak symmetry breaking mechanism, the detailed measurements of the properties of the 125 GeV Higgs boson are essential. The Higgs boson decaying into the diboson final states allow to study the gauge and loop induced couplings of the Higgs boson both in production and decay modes. This talk summarizes ATLAS measurements of the 125 GeV Higgs boson cross-sections and couplings from final diboson state involving W, Z or photons based on 36.1 fb-1 ATLAS 13 Tev data.

  15. 暗物质探测器的液氙低温精馏系统研制%Design and Construction of a Cryogenic Distillation System of Liquid Xenon for Dark Matter Detector

    Institute of Scientific and Technical Information of China (English)

    王舟; 张华; 巨永林

    2013-01-01

    To reduce the radio krypton-85 concentration in liquid xenon,which is one of the commendable detecting media for dark matter detection,an efficient cryogenic distillation system to remove the krypton from the commercially available xenon was specifically designed,developed and constructed by using the McCabe-Thiele (M-T) method,mass conservation and energy conservation.The core of the distillation system is the packing tower which is 4 m high and 80 mm in diameter where a kind of efficient new structured packing PACK-13C was used.This distillation system can reduce the krypton in the xenon from 10-9to 10-12 with 99% of Xe collection efficiency (i.e.,the amount of Xe rejected is only 1%) at a maximum flow rate of 5 kg/h (15SLPM),which is crucial for the dark matter detector with a high-sensitivity and low-background.%针对暗物质探测器中降低介质液氙中放射性氪-85含量可获得高纯度氙的问题,通过Mc-Cabe-Thiele(M-T)法及质量、能量守恒,设计并研制出一种将氪从氙中提取出且可获得高纯度氙气的高效低温精馏系统.该精馏系统中的主要结构精馏塔采用填料塔形式,填料为高效新型规整填料PACK-13C,塔高4m,直径80 mm,其中精馏段1.9m,提馏段2.1m.该精馏系统可以在回收率为99%的情况下,以5 kg/h(15SLPM)的速率将氙中氪的含量从10-9降低到10-12,这对要求高精度、高灵敏度、低本底的大型暗物质探测器的研制至关重要.

  16. The role of superconductivity and cryogenics in the neutrinofactory

    Energy Technology Data Exchange (ETDEWEB)

    Green, M.A.; Black, E.L.; Gupta, R.C.; Iarocci, M.A.; Lebedev,V.; Miller, J.R.; Palmer, R.B.; Padamsee, H.S.; Parker, B.L.; Prestemon,S.; Weggel, R.J.

    2001-05-06

    The proposed neutrino factory will produce a defined beam of neutrinos from the decay of muons in a storage ring[1,2,3]. The storage ring will be oriented so that the neutrinos can be detected at one or more detectors several thousand kilometers from the storage ring. This report presents an overview of the proposed neutrino factory and its subsystems that use cryogenics. Superconducting magnets will be used in the following ways in the neutrino factory; (1) the outsert solenoid for the 20 T pion capture system, (2) the decay channel where pions decay to muons, (3) the muon phase rotation system, (4) the muon cooling system, (5) focusing during the first stage of muon acceleration, (6) bending and focusing magnets in the re-circulating linac accelerator and (7) bending and focusing magnets in the muon storage ring where the neutrino beams are generated. Low temperature superconducting RF cavities will be used to accelerate the muons from about 200 MeV to 20 GeV. The muon cooling system uses liquid hydrogen absorbers at 20 K to reduce the emittance of the muon beam before it is accelerated to full energy.

  17. Signal processing in cryogenic particle detection

    Energy Technology Data Exchange (ETDEWEB)

    Yuryev, Y.N. [Department of Physics and Astronomy, Seoul National University, Seoul (Korea, Republic of); Korea Research Institute of Standards and Science (KRISS), Daejeon (Korea, Republic of); Jang, Y.S. [Korea Research Institute of Standards and Science (KRISS), Daejeon (Korea, Republic of); Kim, S.K. [Department of Physics and Astronomy, Seoul National University, Seoul (Korea, Republic of); Lee, K.B.; Lee, M.K. [Korea Research Institute of Standards and Science (KRISS), Daejeon (Korea, Republic of); Lee, S.J. [Department of Physics and Astronomy, Seoul National University, Seoul (Korea, Republic of); Korea Research Institute of Standards and Science (KRISS), Daejeon (Korea, Republic of); Yoon, W.S. [Korea Research Institute of Standards and Science (KRISS), Daejeon (Korea, Republic of); Kim, Y.H., E-mail: yhkim@kriss.re.k [Korea Research Institute of Standards and Science (KRISS), Daejeon (Korea, Republic of)

    2011-04-11

    We describe a signal-processing program for a data acquisition system for cryogenic particle detectors. The program is based on an optimal-filtering method for high-resolution measurement of calorimetric signals with a significant amount of noise of unknown origin and non-stationary behavior. The program was applied to improve the energy resolution of the alpha particle spectrum of an {sup 241}Am source.

  18. Hyperon production in proton-nucleus collisions at a center-of-mass energy of {radical}(s{sub NN}) = 41.6 GeV at HERA-B and design of silicon microstrip detectors for tracking at LHCb

    Energy Technology Data Exchange (ETDEWEB)

    Agari, Michaela

    2006-07-01

    The topics of this thesis are the measurements of hyperon production in protonnucleus collisions at {radical}(s)=41.6 GeV with the Hera-B detector located at DESY, Hamburg (Germany), and the design of silicon microstrip sensors for the LHCb experiment at CERN, Geneva (Switzerland). {lambda}, {xi} and {omega} hyperons and their antiparticles were reconstructed from 113.5 . 10{sup 6} inelastic collisions of protons with fixed carbon, titanium and tungsten targets. With these samples, antiparticle-to-particle ratios, cross sections integrated for the accessible kinematic region of Hera-B and single differential cross sections as function of transverse momentum, d{sigma}/dp{sub T}{sup 2} (for {lambda} and {xi}) and rapidity, d{sigma}/dy (for {lambda} only), have been been measured as well as the dependence of these quantities on the atomic number of the target nucleus, as parameterized using the Glauber model. The obtained ratios follow the same trend as found for the energy dependence of measurements from nucleus-nucleus collisions. Silicon microstrip sensors have been designed for the tracking system of the LHCb detector. Evaluating the performance in beam tests at CERN, the strip geometry and sensor thickness were varied optimizing for a large signal-to-noise ratio, a small number of read-out channels and a low occupancy. The detector is currently being built to be operational for first proton-proton collisions in autumn 2007. (orig.)

  19. Cryogenic semiconductor high-intensity radiation monitors

    CERN Document Server

    Palmieri, V G; Borer, K; Casagrande, L; Da Vià, C; Devine, S R H; Dezillie, B; Esposito, A; Granata, V; Hauler, F; Jungermann, L; Li, Z; Lourenço, C; Niinikoski, T O; O'Shea, V

    2003-01-01

    This paper describes a novel technique to monitor high-intensity particle beams by means of a semiconductor detector. It consists of cooling a semiconductor detector down to cryogenic temperature to suppress the thermally generated leakage current and to precisely measure the integrated ionization signal. It will be shown that such a device provides very good linearity and a dynamic range wider than is possible with existing techniques. Moreover, thanks to the Lazarus effect, extreme radiation hardness can be achieved providing in turn absolute intensity measurements against precise calibration of the device at low beam flux.

  20. Measurement of the pion form factor for M_{pipi}^2 between 0.1 and 0.85 GeV^2 with the KLOE detector

    CERN Document Server

    ,

    2009-01-01

    The KLOE experiment at the phi-factory DA$\\Phi$NE has measured the pion form factor in the range between 0.1 < M_{pipi}^2 < 0.85 GeV^2 using events taken at sqrt{s}= 1 GeV with a photon emitted at large polar angles in the initial state. This measurement extends the M_{pipi}^2 region covered by KLOE ISR measurements of the pion form factor down to the two pion production threshold. The value obtained in this measurement of the dipion contribution to the muon anomalous magnetic moment of \\Delta a_mu^{pipi} = (478.5+-2.0_{stat}+-4.8_{syst}+-2.9_{theo}) 10^{-10} further confirms the discrepancy between the Standard Model evaluation for a_mu and the experimental value measured by the (g-2) collaboration at BNL.

  1. Cryogenics for HL-LHC

    CERN Document Server

    Tavian, L; Claudet, S; Ferlin, G; Wagner, U; van Weelderen, R

    2015-01-01

    The discovery of a Higgs boson at CERN in 2012 is the start of a major program of work to measure this particle's properties with the highest possible precision for testing the validity of the Standard Model and to search for further new physics at the energy frontier. The LHC is in a unique position to pursue this program. Europe's top priority is the exploitation of the full potential of the LHC, including the high-luminosity upgrade of the machine and detectors with an objective to collect ten times more data than in the initial design, by around 2030. To reach this objective, the LHC cryogenic system must be upgraded to withstand higher beam current and higher luminosity at top energy while keeping the same operation availability by improving the collimation system and the protection of electronics sensitive to radiation. This chapter will present the conceptual design of the cryogenic system upgrade with recent updates in performance requirements, the corresponding layout and architecture of the system a...

  2. Polymers at cryogenic temperatures

    CERN Document Server

    Fu, Shao-Yun

    2013-01-01

    Kalia and Fu's novel monograph covers cryogenic treatment, properties and applications of cryo-treated polymer materials. Written by numerous international experts, the twelve chapters in this book offer the reader a comprehensive picture of the latest findings and developments, as well as an outlook on the field. Cryogenic technology has seen remarkable progress in the past few years and especially cryogenic properties of polymers are attracting attention through new breakthroughs in space, superconducting, magnetic and electronic techniques. This book is a valuable resource for researchers, educators, engineers and graduate students in the field and at technical institutions.

  3. SNS Cryogenic Systems Commissioning

    Science.gov (United States)

    Hatfield, D.; Casagrande, F.; Campisi, I.; Gurd, P.; Howell, M.; Stout, D.; Strong, H.; Arenius, D.; Creel, J.; Dixon, K.; Ganni, V.; Knudsen, P.

    2006-04-01

    The Spallation Neutron Source (SNS) is under construction at Oak Ridge National Laboratory. The cold section of the Linac consists of 81 superconducting radio frequency cavities cooled to 2.1K by a 2400 watt cryogenic refrigeration system. The major cryogenic system components include warm helium compressors with associated oil removal and gas management, 4.5K cold box, 7000L liquid helium dewar, 2.1K cold box (consisting of 4 stages of cold compressors), gaseous helium storage, helium purification and gas impurity monitoring system, liquid nitrogen storage and the cryogenic distribution transfer line system. The overall system commissioning and future plans will be presented.

  4. SNS Cryogenic Systems Commissioning

    Energy Technology Data Exchange (ETDEWEB)

    D. Hatfield; F. Casagrande; I. Campisi; P. Gurd; M. Howell; D. Stout; H. Strong; D. Arenius; J. Creel; K. Dixon; V. Ganni; and P. Knudsen

    2005-08-29

    The Spallation Neutron Source (SNS) is under construction at Oak Ridge National Laboratory. The cold section of the Linac consists of 81 superconducting radio frequency cavities cooled to 2.1K by a 2400 watt cryogenic refrigeration system. The major cryogenic system components include warm helium compressors with associated oil removal and gas management, 4.5K cold box, 7000L liquid helium dewar, 2.1K cold box (consisting of 4 stages of cold compressors), gaseous helium storage, helium purification and gas impurity monitoring system, liquid nitrogen storage and the cryogenic distribution transfer line system. The overall system commissioning and future plans will be presented.

  5. Fundamentals of cryogenic engineering

    CERN Document Server

    Mukhopadhyay, Mamata

    2014-01-01

    The author, with her vast and varied experience in teaching and allied fields, clearly enunciates the behaviour and various properties of common cryogenic fluids, methods of liquefaction, and separation and applications of cryogens with thermodynamic analysis for process selection. This profusely illustrated study with clear-cut diagrams and process charts, should serve not only as a textbook for students but also as an excellent reference for researchers and practising engineers on design of cryogenic refrigeration, and liquefaction and separation process plants for various applications.

  6. Search for scalar diphoton resonances in the mass range 65-600 GeV with the ATLAS detector in pp collision data at √s=8 TeV.

    Science.gov (United States)

    Aad, G; Abbott, B; Abdallah, J; Abdel Khalek, S; Abdinov, O; Aben, R; Abi, B; Abolins, M; AbouZeid, O S; Abramowicz, H; Abreu, H; Abreu, R; Abulaiti, Y; Acharya, B S; Adamczyk, L; Adams, D L; Adelman, J; Adomeit, S; Adye, T; Agatonovic-Jovin, T; Aguilar-Saavedra, J A; Agustoni, M; Ahlen, S P; Ahmadov, F; Aielli, G; Akerstedt, H; Akesson, T P A; Akimoto, G; Akimov, A V; Alberghi, G L; Albert, J; Albrand, S; Alconada Verzini, M J; Aleksa, M; Aleksandrov, I N; Alexa, C; Alexander, G; Alexandre, G; Alexopoulos, T; Alhroob, M; Alimonti, G; Alio, L; Alison, J; Allbrooke, B M M; Allison, L J; Allport, P P; Almond, J; Aloisio, A; Alonso, A; Alonso, F; Alpigiani, C; Altheimer, A; Alvarez Gonzalez, B; Alviggi, M G; Amako, K; Amaral Coutinho, Y; Amelung, C; Amidei, D; Amor Dos Santos, S P; Amorim, A; Amoroso, S; Amram, N; Amundsen, G; Anastopoulos, C; Ancu, L S; Andari, N; Andeen, T; Anders, C F; Anders, G; Anderson, K J; Andreazza, A; Andrei, V; Anduaga, X S; Angelidakis, S; Angelozzi, I; Anger, P; Angerami, A; Anghinolfi, F; Anisenkov, A V; Anjos, N; Annovi, A; Antonaki, A; Antonelli, M; Antonov, A; Antos, J; Anulli, F; Aoki, M; Aperio Bella, L; Apolle, R; Arabidze, G; Aracena, I; Arai, Y; Araque, J P; Arce, A T H; Arguin, J-F; Argyropoulos, S; Arik, M; Armbruster, A J; Arnaez, O; Arnal, V; Arnold, H; Arratia, M; Arslan, O; Artamonov, A; Artoni, G; Asai, S; Asbah, N; Ashkenazi, A; Asman, B; Asquith, L; Assamagan, K; Astalos, R; Atkinson, M; Atlay, N B; Auerbach, B; Augsten, K; Aurousseau, M; Avolio, G; Azuelos, G; Azuma, Y; Baak, M A; Baas, A; Bacci, C; Bachacou, H; Bachas, K; Backes, M; Backhaus, M; Backus Mayes, J; Badescu, E; Bagiacchi, P; Bagnaia, P; Bai, Y; Bain, T; Baines, J T; Baker, O K; Balek, P; Balli, F; Banas, E; Banerjee, Sw; Bannoura, A A E; Bansal, V; Bansil, H S; Barak, L; Baranov, S P; Barberio, E L; Barberis, D; Barbero, M; Barillari, T; Barisonzi, M; Barklow, T; Barlow, N; Barnett, B M; Barnett, R M; Barnovska, Z; Baroncelli, A; Barone, G; Barr, A J; Barreiro, F; Barreiro Guimarães da Costa, J; Bartoldus, R; Barton, A E; Bartos, P; Bartsch, V; Bassalat, A; Basye, A; Bates, R L; Batley, J R; Battaglia, M; Battistin, M; Bauer, F; Bawa, H S; Beattie, M D; Beau, T; Beauchemin, P H; Beccherle, R; Bechtle, P; Beck, H P; Becker, K; Becker, S; Beckingham, M; Becot, C; Beddall, A J; Beddall, A; Bedikian, S; Bednyakov, V A; Bee, C P; Beemster, L J; Beermann, T A; Begel, M; Behr, K; Belanger-Champagne, C; Bell, P J; Bell, W H; Bella, G; Bellagamba, L; Bellerive, A; Bellomo, M; Belotskiy, K; Beltramello, O; Benary, O; Benchekroun, D; Bendtz, K; Benekos, N; Benhammou, Y; Benhar Noccioli, E; Benitez Garcia, J A; Benjamin, D P; Bensinger, J R; Benslama, K; Bentvelsen, S; Berge, D; Bergeaas Kuutmann, E; Berger, N; Berghaus, F; Beringer, J; Bernard, C; Bernat, P; Bernius, C; Bernlochner, F U; Berry, T; Berta, P; Bertella, C; Bertoli, G; Bertolucci, F; Bertsche, C; Bertsche, D; Besana, M I; Besjes, G J; Bessidskaia, O; Bessner, M; Besson, N; Betancourt, C; Bethke, S; Bhimji, W; Bianchi, R M; Bianchini, L; Bianco, M; Biebel, O; Bieniek, S P; Bierwagen, K; Biesiada, J; Biglietti, M; Bilbao De Mendizabal, J; Bilokon, H; Bindi, M; Binet, S; Bingul, A; Bini, C; Black, C W; Black, J E; Black, K M; Blackburn, D; Blair, R E; Blanchard, J-B; Blazek, T; Bloch, I; Blocker, C; Blum, W; Blumenschein, U; Bobbink, G J; Bobrovnikov, V S; Bocchetta, S S; Bocci, A; Bock, C; Boddy, C R; Boehler, M; Boek, T T; Bogaerts, J A; Bogdanchikov, A G; Bogouch, A; Bohm, C; Bohm, J; Boisvert, V; Bold, T; Boldea, V; Boldyrev, A S; Bomben, M; Bona, M; Boonekamp, M; Borisov, A; Borissov, G; Borri, M; Borroni, S; Bortfeldt, J; Bortolotto, V; Bos, K; Boscherini, D; Bosman, M; Boterenbrood, H; Boudreau, J; Bouffard, J; Bouhova-Thacker, E V; Boumediene, D; Bourdarios, C; Bousson, N; Boutouil, S; Boveia, A; Boyd, J; Boyko, I R; Bracinik, J; Brandt, A; Brandt, G; Brandt, O; Bratzler, U; Brau, B; Brau, J E; Braun, H M; Brazzale, S F; Brelier, B; Brendlinger, K; Brennan, A J; Brenner, R; Bressler, S; Bristow, K; Bristow, T M; Britton, D; Brochu, F M; Brock, I; Brock, R; Bromberg, C; Bronner, J; Brooijmans, G; Brooks, T; Brooks, W K; Brosamer, J; Brost, E; Brown, J; Bruckman de Renstrom, P A; Bruncko, D; Bruneliere, R; Brunet, S; Bruni, A; Bruni, G; Bruschi, M; Bryngemark, L; Buanes, T; Buat, Q; Bucci, F; Buchholz, P; Buckingham, R M; Buckley, A G; Buda, S I; Budagov, I A; Buehrer, F; Bugge, L; Bugge, M K; Bulekov, O; Bundock, A C; Burckhart, H; Burdin, S; Burghgrave, B; Burke, S; Burmeister, I; Busato, E; Büscher, D; Büscher, V; Bussey, P; Buszello, C P; Butler, B; Butler, J M; Butt, A I; Buttar, C M; Butterworth, J M; Butti, P; Buttinger, W; Buzatu, A; Byszewski, M; Cabrera Urbán, S; Caforio, D; Cakir, O; Calafiura, P; Calandri, A; Calderini, G; Calfayan, P; Calkins, R; Caloba, L P; Calvet, D; Calvet, S; Camacho Toro, R; Camarda, S; Cameron, D; Caminada, L M; Caminal Armadans, R; Campana, S; Campanelli, M; Campoverde, A; Canale, V; Canepa, A; Cano Bret, M; Cantero, J; Cantrill, R; Cao, T; Capeans Garrido, M D M; Caprini, I; Caprini, M; Capua, M; Caputo, R; Cardarelli, R; Carli, T; Carlino, G; Carminati, L; Caron, S; Carquin, E; Carrillo-Montoya, G D; Carter, J R; Carvalho, J; Casadei, D; Casado, M P; Casolino, M; Castaneda-Miranda, E; Castelli, A; Castillo Gimenez, V; Castro, N F; Catastini, P; Catinaccio, A; Catmore, J R; Cattai, A; Cattani, G; Caughron, S; Cavaliere, V; Cavalli, D; Cavalli-Sforza, M; Cavasinni, V; Ceradini, F; Cerio, B; Cerny, K; Cerqueira, A S; Cerri, A; Cerrito, L; Cerutti, F; Cerv, M; Cervelli, A; Cetin, S A; Chafaq, A; Chakraborty, D; Chalupkova, I; Chang, P; Chapleau, B; Chapman, J D; Charfeddine, D; Charlton, D G; Chau, C C; Chavez Barajas, C A; Cheatham, S; Chegwidden, A; Chekanov, S; Chekulaev, S V; Chelkov, G A; Chelstowska, M A; Chen, C; Chen, H; Chen, K; Chen, L; Chen, S; Chen, X; Chen, Y; Chen, Y; Cheng, H C; Cheng, Y; Cheplakov, A; Cherkaoui El Moursli, R; Chernyatin, V; Cheu, E; Chevalier, L; Chiarella, V; Chiefari, G; Childers, J T; Chilingarov, A; Chiodini, G; Chisholm, A S; Chislett, R T; Chitan, A; Chizhov, M V; Chouridou, S; Chow, B K B; Chromek-Burckhart, D; Chu, M L; Chudoba, J; Chwastowski, J J; Chytka, L; Ciapetti, G; Ciftci, A K; Ciftci, R; Cinca, D; Cindro, V; Ciocio, A; Cirkovic, P; Citron, Z H; Citterio, M; Ciubancan, M; Clark, A; Clark, P J; Clarke, R N; Cleland, W; Clemens, J C; Clement, C; Coadou, Y; Cobal, M; Coccaro, A; Cochran, J; Coffey, L; Cogan, J G; Coggeshall, J; Cole, B; Cole, S; Colijn, A P; Collot, J; Colombo, T; Colon, G; Compostella, G; Conde Muiño, P; Coniavitis, E; Conidi, M C; Connell, S H; Connelly, I A; Consonni, S M; Consorti, V; Constantinescu, S; Conta, C; Conti, G; Conventi, F; Cooke, M; Cooper, B D; Cooper-Sarkar, A M; Cooper-Smith, N J; Copic, K; Cornelissen, T; Corradi, M; Corriveau, F; Corso-Radu, A; Cortes-Gonzalez, A; Cortiana, G; Costa, G; Costa, M J; Costanzo, D; Côté, D; Cottin, G; Cowan, G; Cox, B E; Cranmer, K; Cree, G; Crépé-Renaudin, S; Crescioli, F; Cribbs, W A; Crispin Ortuzar, M; Cristinziani, M; Croft, V; Crosetti, G; Cuciuc, C-M; Cuhadar Donszelmann, T; Cummings, J; Curatolo, M; Cuthbert, C; Czirr, H; Czodrowski, P; Czyczula, Z; D'Auria, S; D'Onofrio, M; Da Cunha Sargedas De Sousa, M J; Da Via, C; Dabrowski, W; Dafinca, A; Dai, T; Dale, O; Dallaire, F; Dallapiccola, C; Dam, M; Daniells, A C; Dano Hoffmann, M; Dao, V; Darbo, G; Darmora, S; Dassoulas, J A; Dattagupta, A; Davey, W; David, C; Davidek, T; Davies, E; Davies, M; Davignon, O; Davison, A R; Davison, P; Davygora, Y; Dawe, E; Dawson, I; Daya-Ishmukhametova, R K; De, K; de Asmundis, R; De Castro, S; De Cecco, S; De Groot, N; de Jong, P; De la Torre, H; De Lorenzi, F; De Nooij, L; De Pedis, D; De Salvo, A; De Sanctis, U; De Santo, A; De Vivie De Regie, J B; Dearnaley, W J; Debbe, R; Debenedetti, C; Dechenaux, B; Dedovich, D V; Deigaard, I; Del Peso, J; Del Prete, T; Deliot, F; Delitzsch, C M; Deliyergiyev, M; Dell'Acqua, A; Dell'Asta, L; Dell'Orso, M; Della Pietra, M; Della Volpe, D; Delmastro, M; Delsart, P A; Deluca, C; Demers, S; Demichev, M; Demilly, A; Denisov, S P; Derendarz, D; Derkaoui, J E; Derue, F; Dervan, P; Desch, K; Deterre, C; Deviveiros, P O; Dewhurst, A; Dhaliwal, S; Di Ciaccio, A; Di Ciaccio, L; Di Domenico, A; Di Donato, C; Di Girolamo, A; Di Girolamo, B; Di Mattia, A; Di Micco, B; Di Nardo, R; Di Simone, A; Di Sipio, R; Di Valentino, D; Dias, F A; Diaz, M A; Diehl, E B; Dietrich, J; Dietzsch, T A; Diglio, S; Dimitrievska, A; Dingfelder, J; Dionisi, C; Dita, P; Dita, S; Dittus, F; Djama, F; Djobava, T; do Vale, M A B; Do Valle Wemans, A; Doan, T K O; Dobos, D; Doglioni, C; Doherty, T; Dohmae, T; Dolejsi, J; Dolezal, Z; Dolgoshein, B A; Donadelli, M; Donati, S; Dondero, P; Donini, J; Dopke, J; Doria, A; Dova, M T; Doyle, A T; Dris, M; Dubbert, J; Dube, S; Dubreuil, E; Duchovni, E; Duckeck, G; Ducu, O A; Duda, D; Dudarev, A; Dudziak, F; Duflot, L; Duguid, L; Dührssen, M; Dunford, M; Duran Yildiz, H; Düren, M; Durglishvili, A; Dwuznik, M; Dyndal, M; Ebke, J; Edson, W; Edwards, N C; Ehrenfeld, W; Eifert, T; Eigen, G; Einsweiler, K; Ekelof, T; El Kacimi, M; Ellert, M; Elles, S; Ellinghaus, F; Ellis, N; Elmsheuser, J; Elsing, M; Emeliyanov, D; Enari, Y; Endner, O C; Endo, M; Engelmann, R; Erdmann, J; Ereditato, A; Eriksson, D; Ernis, G; Ernst, J; Ernst, M; Ernwein, J; Errede, D; Errede, S; Ertel, E; Escalier, M; Esch, H; Escobar, C; Esposito, B; Etienvre, A I; Etzion, E; Evans, H; Ezhilov, A; Fabbri, L; Facini, G; Fakhrutdinov, R M; Falciano, S; Falla, R J; Faltova, J; Fang, Y; Fanti, M; Farbin, A; Farilla, A; Farooque, T; Farrell, S; Farrington, S M; Farthouat, P; Fassi, F; Fassnacht, P; Fassouliotis, D; Favareto, A; Fayard, L; Federic, P; Fedin, O L; Fedorko, W; Fehling-Kaschek, M; Feigl, S; Feligioni, L; Feng, C; Feng, E J; Feng, H; Fenyuk, A B; Fernandez Perez, S; Ferrag, S; Ferrando, J; Ferrari, A; Ferrari, P; Ferrari, R; Ferreira de Lima, D E; Ferrer, A; Ferrere, D; Ferretti, C; Ferretto Parodi, A; Fiascaris, M; Fiedler, F; Filipčič, A; Filipuzzi, M; Filthaut, F; Fincke-Keeler, M; Finelli, K D; Fiolhais, M C N; Fiorini, L; Firan, A; Fischer, A; Fischer, J; Fisher, W C; Fitzgerald, E A; Flechl, M; Fleck, I; Fleischmann, P; Fleischmann, S; Fletcher, G T; Fletcher, G; Flick, T; Floderus, A; Flores Castillo, L R; Florez Bustos, A C; Flowerdew, M J; Formica, A; Forti, A; Fortin, D; Fournier, D; Fox, H; Fracchia, S; Francavilla, P; Franchini, M; Franchino, S; Francis, D; Franconi, L; Franklin, M; Franz, S; Fraternali, M; French, S T; Friedrich, C; Friedrich, F; Froidevaux, D; Frost, J A; Fukunaga, C; Fullana Torregrosa, E; Fulsom, B G; Fuster, J; Gabaldon, C; Gabizon, O; Gabrielli, A; Gabrielli, A; Gadatsch, S; Gadomski, S; Gagliardi, G; Gagnon, P; Galea, C; Galhardo, B; Gallas, E J; Gallo, V; Gallop, B J; Gallus, P; Galster, G; Gan, K K; Gao, J; Gao, Y S; Garay Walls, F M; Garberson, F; García, C; García Navarro, J E; Garcia-Sciveres, M; Gardner, R W; Garelli, N; Garonne, V; Gatti, C; Gaudio, G; Gaur, B; Gauthier, L; Gauzzi, P; Gavrilenko, I L; Gay, C; Gaycken, G; Gazis, E N; Ge, P; Gecse, Z; Gee, C N P; Geerts, D A A; Geich-Gimbel, Ch; Gellerstedt, K; Gemme, C; Gemmell, A; Genest, M H; Gentile, S; George, M; George, S; Gerbaudo, D; Gershon, A; Ghazlane, H; Ghodbane, N; Giacobbe, B; Giagu, S; Giangiobbe, V; Giannetti, P; Gianotti, F; Gibbard, B; Gibson, S M; Gilchriese, M; Gillam, T P S; Gillberg, D; Gilles, G; Gingrich, D M; Giokaris, N; Giordani, M P; Giordano, R; Giorgi, F M; Giorgi, F M; Giraud, P F; Giugni, D; Giuliani, C; Giulini, M; Gjelsten, B K; Gkaitatzis, S; Gkialas, I; Gladilin, L K; Glasman, C; Glatzer, J; Glaysher, P C F; Glazov, A; Glonti, G L; Goblirsch-Kolb, M; Goddard, J R; Godfrey, J; Godlewski, J; Goeringer, C; Goldfarb, S; Golling, T; Golubkov, D; Gomes, A; Gomez Fajardo, L S; Gonçalo, R; Goncalves Pinto Firmino Da Costa, J; Gonella, L; González de la Hoz, S; Gonzalez Parra, G; Gonzalez-Sevilla, S; Goossens, L; Gorbounov, P A; Gordon, H A; Gorelov, I; Gorini, B; Gorini, E; Gorišek, A; Gornicki, E; Goshaw, A T; Gössling, C; Gostkin, M I; Gouighri, M; Goujdami, D; Goulette, M P; Goussiou, A G; Goy, C; Gozpinar, S; Grabas, H M X; Graber, L; Grabowska-Bold, I; Grafström, P; Grahn, K-J; Gramling, J; Gramstad, E; Grancagnolo, S; Grassi, V; Gratchev, V; Gray, H M; Graziani, E; Grebenyuk, O G; Greenwood, Z D; Gregersen, K; Gregor, I M; Grenier, P; Griffiths, J; Grillo, A A; Grimm, K; Grinstein, S; Gris, Ph; Grishkevich, Y V; Grivaz, J-F; Grohs, J P; Grohsjean, A; Gross, E; Grosse-Knetter, J; Grossi, G C; Groth-Jensen, J; Grout, Z J; Guan, L; Guescini, F; Guest, D; Gueta, O; Guicheney, C; Guido, E; Guillemin, T; Guindon, S; Gul, U; Gumpert, C; Gunther, J; Guo, J; Gupta, S; Gutierrez, P; Gutierrez Ortiz, N G; Gutschow, C; Guttman, N; Guyot, C; Gwenlan, C; Gwilliam, C B; Haas, A; Haber, C; Hadavand, H K; Haddad, N; Haefner, P; Hageböck, S; Hajduk, Z; Hakobyan, H; Haleem, M; Hall, D; Halladjian, G; Hamacher, K; Hamal, P; Hamano, K; Hamer, M; Hamilton, A; Hamilton, S; Hamity, G N; Hamnett, P G; Han, L; Hanagaki, K; Hanawa, K; Hance, M; Hanke, P; Hanna, R; Hansen, J B; Hansen, J D; Hansen, P H; Hara, K; Hard, A S; Harenberg, T; Hariri, F; Harkusha, S; Harper, D; Harrington, R D; Harris, O M; Harrison, P F; Hartjes, F; Hasegawa, M; Hasegawa, S; Hasegawa, Y; Hasib, A; Hassani, S; Haug, S; Hauschild, M; Hauser, R; Havranek, M; Hawkes, C M; Hawkings, R J; Hawkins, A D; Hayashi, T; Hayden, D; Hays, C P; Hayward, H S; Haywood, S J; Head, S J; Heck, T; Hedberg, V; Heelan, L; Heim, S; Heim, T; Heinemann, B; Heinrich, L; Hejbal, J; Helary, L; Heller, C; Heller, M; Hellman, S; Hellmich, D; Helsens, C; Henderson, J; Henderson, R C W; Heng, Y; Hengler, C; Henrichs, A; Henriques Correia, A M; Henrot-Versille, S; Hensel, C; Herbert, G H; Hernández Jiménez, Y; Herrberg-Schubert, R; Herten, G; Hertenberger, R; Hervas, L; Hesketh, G G; Hessey, N P; Hickling, R; Higón-Rodriguez, E; Hill, E; Hill, J C; Hiller, K H; Hillert, S; Hillier, S J; Hinchliffe, I; Hines, E; Hirose, M; Hirschbuehl, D; Hobbs, J; Hod, N; Hodgkinson, M C; Hodgson, P; Hoecker, A; Hoeferkamp, M R; Hoenig, F; Hoffman, J; Hoffmann, D; Hofmann, J I; Hohlfeld, M; Holmes, T R; Hong, T M; Hooft van Huysduynen, L; Hostachy, J-Y; Hou, S; Hoummada, A; Howard, J; Howarth, J; Hrabovsky, M; Hristova, I; Hrivnac, J; Hryn'ova, T; Hsu, C; Hsu, P J; Hsu, S-C; Hu, D; Hu, X; Huang, Y; Hubacek, Z; Hubaut, F; Huegging, F; Huffman, T B; Hughes, E W; Hughes, G; Huhtinen, M; Hülsing, T A; Hurwitz, M; Huseynov, N; Huston, J; Huth, J; Iacobucci, G; Iakovidis, G; Ibragimov, I; Iconomidou-Fayard, L; Ideal, E; Iengo, P; Igonkina, O; Iizawa, T; Ikegami, Y; Ikematsu, K; Ikeno, M; Ilchenko, Y; Iliadis, D; Ilic, N; Inamaru, Y; Ince, T; Ioannou, P; Iodice, M; Iordanidou, K; Ippolito, V; Irles Quiles, A; Isaksson, C; Ishino, M; Ishitsuka, M; Ishmukhametov, R; Issever, C; Istin, S; Iturbe Ponce, J M; Iuppa, R; Ivarsson, J; Iwanski, W; Iwasaki, H; Izen, J M; Izzo, V; Jackson, B; Jackson, M; Jackson, P; Jaekel, M R; Jain, V; Jakobs, K; Jakobsen, S; Jakoubek, T; Jakubek, J; Jamin, D O; Jana, D K; Jansen, E; Jansen, H; Janssen, J; Janus, M; Jarlskog, G; Javadov, N; Javůrek, T; Jeanty, L; Jejelava, J; Jeng, G-Y; Jennens, D; Jenni, P; Jentzsch, J; Jeske, C; Jézéquel, S; Ji, H; Jia, J; Jiang, Y; Jimenez Belenguer, M; Jin, S; Jinaru, A; Jinnouchi, O; Joergensen, M D; Johansson, K E; Johansson, P; Johns, K A; Jon-And, K; Jones, G; Jones, R W L; Jones, T J; Jongmanns, J; Jorge, P M; Joshi, K D; Jovicevic, J; Ju, X; Jung, C A; Jungst, R M; Jussel, P; Juste Rozas, A; Kaci, M; Kaczmarska, A; Kado, M; Kagan, H; Kagan, M; Kajomovitz, E; Kalderon, C W; Kama, S; Kamenshchikov, A; Kanaya, N; Kaneda, M; Kaneti, S; Kantserov, V A; Kanzaki, J; Kaplan, B; Kapliy, A; Kar, D; Karakostas, K; Karastathis, N; Karnevskiy, M; Karpov, S N; Karpova, Z M; Karthik, K; Kartvelishvili, V; Karyukhin, A N; Kashif, L; Kasieczka, G; Kass, R D; Kastanas, A; Kataoka, Y; Katre, A; Katzy, J; Kaushik, V; Kawagoe, K; Kawamoto, T; Kawamura, G; Kazama, S; Kazanin, V F; Kazarinov, M Y; Keeler, R; Kehoe, R; Keil, M; Keller, J S; Kempster, J J; Keoshkerian, H; Kepka, O; Kerševan, B P; Kersten, S; Kessoku, K; Keung, J; Khalil-Zada, F; Khandanyan, H; Khanov, A; Khodinov, A; Khomich, A; Khoo, T J; Khoriauli, G; Khoroshilov, A; Khovanskiy, V; Khramov, E; Khubua, J; Kim, H Y; Kim, H; Kim, S H; Kimura, N; Kind, O; King, B T; King, M; King, R S B; King, S B; Kirk, J; Kiryunin, A E; Kishimoto, T; Kisielewska, D; Kiss, F; Kittelmann, T; Kiuchi, K; Kladiva, E; Klein, M; Klein, U; Kleinknecht, K; Klimek, P; Klimentov, A; Klingenberg, R; Klinger, J A; Klioutchnikova, T; Klok, P F; Kluge, E-E; Kluit, P; Kluth, S; Kneringer, E; Knoops, E B F G; Knue, A; Kobayashi, D; Kobayashi, T; Kobel, M; Kocian, M; Kodys, P; Koevesarki, P; Koffas, T; Koffeman, E; Kogan, L A; Kohlmann, S; Kohout, Z; Kohriki, T; Koi, T; Kolanoski, H; Koletsou, I; Koll, J; Komar, A A; Komori, Y; Kondo, T; Kondrashova, N; Köneke, K; König, A C; König, S; Kono, T; Konoplich, R; Konstantinidis, N; Kopeliansky, R; Koperny, S; Köpke, L; Kopp, A K; Korcyl, K; Kordas, K; Korn, A; Korol, A A; Korolkov, I; Korolkova, E V; Korotkov, V A; Kortner, O; Kortner, S; Kostyukhin, V V; Kotov, V M; Kotwal, A; Kourkoumelis, C; Kouskoura, V; Koutsman, A; Kowalewski, R; Kowalski, T Z; Kozanecki, W; Kozhin, A S; Kral, V; Kramarenko, V A; Kramberger, G; Krasnopevtsev, D; Krasny, M W; Krasznahorkay, A; Kraus, J K; Kravchenko, A; Kreiss, S; Kretz, M; Kretzschmar, J; Kreutzfeldt, K; Krieger, P; Kroeninger, K; Kroha, H; Kroll, J; Kroseberg, J; Krstic, J; Kruchonak, U; Krüger, H; Kruker, T; Krumnack, N; Krumshteyn, Z V; Kruse, A; Kruse, M C; Kruskal, M; Kubota, T; Kuday, S; Kuehn, S; Kugel, A; Kuhl, A; Kuhl, T; Kukhtin, V; Kulchitsky, Y; Kuleshov, S; Kuna, M; Kunkle, J; Kupco, A; Kurashige, H; Kurochkin, Y A; Kurumida, R; Kus, V; Kuwertz, E S; Kuze, M; Kvita, J; La Rosa, A; La Rotonda, L; Lacasta, C; Lacava, F; Lacey, J; Lacker, H; Lacour, D; Lacuesta, V R; Ladygin, E; Lafaye, R; Laforge, B; Lagouri, T; Lai, S; Laier, H; Lambourne, L; Lammers, S; Lampen, C L; Lampl, W; Lançon, E; Landgraf, U; Landon, M P J; Lang, V S; Lankford, A J; Lanni, F; Lantzsch, K; Laplace, S; Lapoire, C; Laporte, J F; Lari, T; Lassnig, M; Laurelli, P; Lavrijsen, W; Law, A T; Laycock, P; Le Dortz, O; Le Guirriec, E; Le Menedeu, E; LeCompte, T; Ledroit-Guillon, F; Lee, C A; Lee, H; Lee, J S H; Lee, S C; Lee, L; Lefebvre, G; Lefebvre, M; Legger, F; Leggett, C; Lehan, A; Lehmacher, M; Lehmann Miotto, G; Lei, X; Leight, W A; Leisos, A; Leister, A G; Leite, M A L; Leitner, R; Lellouch, D; Lemmer, B; Leney, K J C; Lenz, T; Lenzen, G; Lenzi, B; Leone, R; Leone, S; Leonhardt, K; Leonidopoulos, C; Leontsinis, S; Leroy, C; Lester, C G; Lester, C M; Levchenko, M; Levêque, J; Levin, D; Levinson, L J; Levy, M; Lewis, A; Lewis, G H; Leyko, A M; Leyton, M; Li, B; Li, B; Li, H; Li, H L; Li, L; Li, L; Li, S; Li, Y; Liang, Z; Liao, H; Liberti, B; Lichard, P; Lie, K; Liebal, J; Liebig, W; Limbach, C; Limosani, A; Lin, S C; Lin, T H; Linde, F; Lindquist, B E; Linnemann, J T; Lipeles, E; Lipniacka, A; Lisovyi, M; Liss, T M; Lissauer, D; Lister, A; Litke, A M; Liu, B; Liu, D; Liu, J B; Liu, K; Liu, L; Liu, M; Liu, M; Liu, Y; Livan, M; Livermore, S S A; Lleres, A; Llorente Merino, J; Lloyd, S L; Lo Sterzo, F; Lobodzinska, E; Loch, P; Lockman, W S; Loddenkoetter, T; Loebinger, F K; Loevschall-Jensen, A E; Loginov, A; Lohse, T; Lohwasser, K; Lokajicek, M; Lombardo, V P; Long, B A; Long, J D; Long, R E; Lopes, L; Lopez Mateos, D; Lopez Paredes, B; Lopez Paz, I; Lorenz, J; Lorenzo Martinez, N; Losada, M; Loscutoff, P; Lou, X; Lounis, A; Love, J; Love, P A; Lowe, A J; Lu, F; Lu, N; Lubatti, H J; Luci, C; Lucotte, A; Luehring, F; Lukas, W; Luminari, L; Lundberg, O; Lund-Jensen, B; Lungwitz, M; Lynn, D; Lysak, R; Lytken, E; Ma, H; Ma, L L; Maccarrone, G; Macchiolo, A; Machado Miguens, J; Macina, D; Madaffari, D; Madar, R; Maddocks, H J; Mader, W F; Madsen, A; Maeno, M; Maeno, T; Magradze, E; Mahboubi, K; Mahlstedt, J; Mahmoud, S; Maiani, C; Maidantchik, C; Maier, A A; Maio, A; Majewski, S; Makida, Y; Makovec, N; Mal, P; Malaescu, B; Malecki, Pa; Maleev, V P; Malek, F; Mallik, U; Malon, D; Malone, C; Maltezos, S; Malyshev, V M; Malyukov, S; Mamuzic, J; Mandelli, B; Mandelli, L; Mandić, I; Mandrysch, R; Maneira, J; Manfredini, A; Manhaes de Andrade Filho, L; Manjarres Ramos, J A; Mann, A; Manning, P M; Manousakis-Katsikakis, A; Mansoulie, B; Mantifel, R; Mapelli, L; March, L; Marchand, J F; Marchiori, G; Marcisovsky, M; Marino, C P; Marjanovic, M; Marques, C N; Marroquim, F; Marsden, S P; Marshall, Z; Marti, L F; Marti-Garcia, S; Martin, B; Martin, B; Martin, T A; Martin, V J; Martin Dit Latour, B; Martinez, H; Martinez, M; Martin-Haugh, S; Martyniuk, A C; Marx, M; Marzano, F; Marzin, A; Masetti, L; Mashimo, T; Mashinistov, R; Masik, J; Maslennikov, A L; Massa, I; Massa, L; Massol, N; Mastrandrea, P; Mastroberardino, A; Masubuchi, T; Mättig, P; Mattmann, J; Maurer, J; Maxfield, S J; Maximov, D A; Mazini, R; Mazzaferro, L; Mc Goldrick, G; Mc Kee, S P; McCarn, A; McCarthy, R L; McCarthy, T G; McCubbin, N A; McFarlane, K W; Mcfayden, J A; Mchedlidze, G; McMahon, S J; McPherson, R A; Meade, A; Mechnich, J; Medinnis, M; Meehan, S; Mehlhase, S; Mehta, A; Meier, K; Meineck, C; Meirose, B; Melachrinos, C; Mellado Garcia, B R; Meloni, F; Mengarelli, A; Menke, S; Meoni, E; Mercurio, K M; Mergelmeyer, S; Meric, N; Mermod, P; Merola, L; Meroni, C; Merritt, F S; Merritt, H; Messina, A; Metcalfe, J; Mete, A S; Meyer, C; Meyer, C; Meyer, J-P; Meyer, J; Middleton, R P; Migas, S; Mijović, L; Mikenberg, G; Mikestikova, M; Mikuž, M; Milic, A; Miller, D W; Mills, C; Milov, A; Milstead, D A; Milstein, D; Minaenko, A A; Minashvili, I A; Mincer, A I; Mindur, B; Mineev, M; Ming, Y; Mir, L M; Mirabelli, G; Mitani, T; Mitrevski, J; Mitsou, V A; Mitsui, S; Miucci, A; Miyagawa, P S; Mjörnmark, J U; Moa, T; Mochizuki, K; Mohapatra, S; Mohr, W; Molander, S; Moles-Valls, R; Mönig, K; Monini, C; Monk, J; Monnier, E; Montejo Berlingen, J; Monticelli, F; Monzani, S; Moore, R W; Moraes, A; Morange, N; Moreno, D; Moreno Llácer, M; Morettini, P; Morgenstern, M; Morii, M; Moritz, S; Morley, A K; Mornacchi, G; Morris, J D; Morvaj, L; Moser, H G; Mosidze, M; Moss, J; Motohashi, K; Mount, R; Mountricha, E; Mouraviev, S V; Moyse, E J W; Muanza, S; Mudd, R D; Mueller, F; Mueller, J; Mueller, K; Mueller, T; Mueller, T; Muenstermann, D; Munwes, Y; Murillo Quijada, J A; Murray, W J; Musheghyan, H; Musto, E; Myagkov, A G; Myska, M; Nackenhorst, O; Nadal, J; Nagai, K; Nagai, R; Nagai, Y; Nagano, K; Nagarkar, A; Nagasaka, Y; Nagel, M; Nairz, A M; Nakahama, Y; Nakamura, K; Nakamura, T; Nakano, I; Namasivayam, H; Nanava, G; Narayan, R; Nattermann, T; Naumann, T; Navarro, G; Nayyar, R; Neal, H A; Nechaeva, P Yu; Neep, T J; Nef, P D; Negri, A; Negri, G; Negrini, M; Nektarijevic, S; Nelson, A; Nelson, T K; Nemecek, S; Nemethy, P; Nepomuceno, A A; Nessi, M; Neubauer, M S; Neumann, M; Neves, R M; Nevski, P; Newman, P R; Nguyen, D H; Nickerson, R B; Nicolaidou, R; Nicquevert, B; Nielsen, J; Nikiforou, N; Nikiforov, A; Nikolaenko, V; Nikolic-Audit, I; Nikolics, K; Nikolopoulos, K; Nilsson, P; Ninomiya, Y; Nisati, A; Nisius, R; Nobe, T; Nodulman, L; Nomachi, M; Nomidis, I; Norberg, S; Nordberg, M; Novgorodova, O; Nowak, S; Nozaki, M; Nozka, L; Ntekas, K; Nunes Hanninger, G; Nunnemann, T; Nurse, E; Nuti, F; O'Brien, B J; O'grady, F; O'Neil, D C; O'Shea, V; Oakham, F G; Oberlack, H; Obermann, T; Ocariz, J; Ochi, A; Ochoa, M I; Oda, S; Odaka, S; Ogren, H; Oh, A; Oh, S H; Ohm, C C; Ohman, H; Okamura, W; Okawa, H; Okumura, Y; Okuyama, T; Olariu, A; Olchevski, A G; Olivares Pino, S A; Oliveira Damazio, D; Oliver Garcia, E; Olszewski, A; Olszowska, J; Onofre, A; Onyisi, P U E; Oram, C J; Oreglia, M J; Oren, Y; Orestano, D; Orlando, N; Oropeza Barrera, C; Orr, R S; Osculati, B; Ospanov, R; Otero Y Garzon, G; Otono, H; Ouchrif, M; Ouellette, E A; Ould-Saada, F; Ouraou, A; Oussoren, K P; Ouyang, Q; Ovcharova, A; Owen, M; Ozcan, V E; Ozturk, N; Pachal, K; Pacheco Pages, A; Padilla Aranda, C; Pagáčová, M; Pagan Griso, S; Paganis, E; Pahl, C; Paige, F; Pais, P; Pajchel, K; Palacino, G; Palestini, S; Palka, M; Pallin, D; Palma, A; Palmer, J D; Pan, Y B; Panagiotopoulou, E; Panduro Vazquez, J G; Pani, P; Panikashvili, N; Panitkin, S; Pantea, D; Paolozzi, L; Papadopoulou, Th D; Papageorgiou, K; Paramonov, A; Paredes Hernandez, D; Parker, M A; Parodi, F; Parsons, J A; Parzefall, U; Pasqualucci, E; Passaggio, S; Passeri, A; Pastore, F; Pastore, Fr; Pásztor, G; Pataraia, S; Patel, N D; Pater, J R; Patricelli, S; Pauly, T; Pearce, J; Pedersen, M; Pedraza Lopez, S; Pedro, R; Peleganchuk, S V; Pelikan, D; Peng, H; Penning, B; Penwell, J; Perepelitsa, D V; Perez Codina, E; Pérez García-Estañ, M T; Perez Reale, V; Perini, L; Pernegger, H; Perrino, R; Peschke, R; Peshekhonov, V D; Peters, K; Peters, R F Y; Petersen, B A; Petersen, T C; Petit, E; Petridis, A; Petridou, C; Petrolo, E; Petrucci, F; Pettersson, N E; Pezoa, R; Phillips, P W; Piacquadio, G; Pianori, E; Picazio, A; Piccaro, E; Piccinini, M; Piegaia, R; Pignotti, D T; Pilcher, J E; Pilkington, A D; Pina, J; Pinamonti, M; Pinder, A; Pinfold, J L; Pingel, A; Pinto, B; Pires, S; Pitt, M; Pizio, C; Plazak, L; Pleier, M-A; Pleskot, V; Plotnikova, E; Plucinski, P; Poddar, S; Podlyski, F; Poettgen, R; Poggioli, L; Pohl, D; Pohl, M; Polesello, G; Policicchio, A; Polifka, R; Polini, A; Pollard, C S; Polychronakos, V; Pommès, K; Pontecorvo, L; Pope, B G; Popeneciu, G A; Popovic, D S; Poppleton, A; Portell Bueso, X; Pospisil, S; Potamianos, K; Potrap, I N; Potter, C J; Potter, C T; Poulard, G; Poveda, J; Pozdnyakov, V; Pralavorio, P; Pranko, A; Prasad, S; Pravahan, R; Prell, S; Price, D; Price, J; Price, L E; Prieur, D; Primavera, M; Proissl, M; Prokofiev, K; Prokoshin, F; Protopapadaki, E; Protopopescu, S; Proudfoot, J; Przybycien, M; Przysiezniak, H; Ptacek, E; Puddu, D; Pueschel, E; Puldon, D; Purohit, M; Puzo, P; Qian, J; Qin, G; Qin, Y; Quadt, A; Quarrie, D R; Quayle, W B; Queitsch-Maitland, M; Quilty, D; Qureshi, A; Radeka, V; Radescu, V; Radhakrishnan, S K; Radloff, P; Rados, P; Ragusa, F; Rahal, G; Rajagopalan, S; Rammensee, M; Randle-Conde, A S; Rangel-Smith, C; Rao, K; Rauscher, F; Rave, T C; Ravenscroft, T; Raymond, M; Read, A L; Readioff, N P; Rebuzzi, D M; Redelbach, A; Redlinger, G; Reece, R; Reeves, K; Rehnisch, L; Reisin, H; Relich, M; Rembser, C; Ren, H; Ren, Z L; Renaud, A; Rescigno, M; Resconi, S; Rezanova, O L; Reznicek, P; Rezvani, R; Richter, R; Ridel, M; Rieck, P; Rieger, J; Rijssenbeek, M; Rimoldi, A; Rinaldi, L; Ritsch, E; Riu, I; Rizatdinova, F; Rizvi, E; Robertson, S H; Robichaud-Veronneau, A; Robinson, D; Robinson, J E M; Robson, A; Roda, C; Rodrigues, L; Roe, S; Røhne, O; Rolli, S; Romaniouk, A; Romano, M; Romero Adam, E; Rompotis, N; Ronzani, M; Roos, L; Ros, E; Rosati, S; Rosbach, K; Rose, M; Rose, P; Rosendahl, P L; Rosenthal, O; Rossetti, V; Rossi, E; Rossi, L P; Rosten, R; Rotaru, M; Roth, I; Rothberg, J; Rousseau, D; Royon, C R; Rozanov, A; Rozen, Y; Ruan, X; Rubbo, F; Rubinskiy, I; Rud, V I; Rudolph, C; Rudolph, M S; Rühr, F; Ruiz-Martinez, A; Rurikova, Z; Rusakovich, N A; Ruschke, A; Rutherfoord, J P; Ruthmann, N; Ryabov, Y F; Rybar, M; Rybkin, G; Ryder, N C; Saavedra, A F; Sacerdoti, S; Saddique, A; Sadeh, I; Sadrozinski, H F-W; Sadykov, R; Safai Tehrani, F; Sakamoto, H; Sakurai, Y; Salamanna, G; Salamon, A; Saleem, M; Salek, D; Sales De Bruin, P H; Salihagic, D; Salnikov, A; Salt, J; Salvatore, D; Salvatore, F; Salvucci, A; Salzburger, A; Sampsonidis, D; Sanchez, A; Sánchez, J; Sanchez Martinez, V; Sandaker, H; Sandbach, R L; Sander, H G; Sanders, M P; Sandhoff, M; Sandoval, T; Sandoval, C; Sandstroem, R; Sankey, D P C; Sansoni, A; Santoni, C; Santonico, R; Santos, H; Santoyo Castillo, I; Sapp, K; Sapronov, A; Saraiva, J G; Sarrazin, B; Sartisohn, G; Sasaki, O; Sasaki, Y; Sauvage, G; Sauvan, E; Savard, P; Savu, D O; Sawyer, C; Sawyer, L; Saxon, D H; Saxon, J; Sbarra, C; Sbrizzi, A; Scanlon, T; Scannicchio, D A; Scarcella, M; Scarfone, V; Schaarschmidt, J; Schacht, P; Schaefer, D; Schaefer, R; Schaepe, S; Schaetzel, S; Schäfer, U; Schaffer, A C; Schaile, D; Schamberger, R D; Scharf, V; Schegelsky, V A; Scheirich, D; Schernau, M; Scherzer, M I; Schiavi, C; Schieck, J; Schillo, C; Schioppa, M; Schlenker, S; Schmidt, E; Schmieden, K; Schmitt, C; Schmitt, S; Schneider, B; Schnellbach, Y J; Schnoor, U; Schoeffel, L; Schoening, A; Schoenrock, B D; Schorlemmer, A L S; Schott, M; Schouten, D; Schovancova, J; Schramm, S; Schreyer, M; Schroeder, C; Schuh, N; Schultens, M J; Schultz-Coulon, H-C; Schulz, H; Schumacher, M; Schumm, B A; Schune, Ph; Schwanenberger, C; Schwartzman, A; Schwegler, Ph; Schwemling, Ph; Schwienhorst, R; Schwindling, J; Schwindt, T; Schwoerer, M; Sciacca, F G; Scifo, E; Sciolla, G; Scott, W G; Scuri, F; Scutti, F; Searcy, J; Sedov, G; Sedykh, E; Seidel, S C; Seiden, A; Seifert, F; Seixas, J M; Sekhniaidze, G; Sekula, S J; Selbach, K E; Seliverstov, D M; Sellers, G; Semprini-Cesari, N; Serfon, C; Serin, L; Serkin, L; Serre, T; Seuster, R; Severini, H; Sfiligoj, T; Sforza, F; Sfyrla, A; Shabalina, E; Shamim, M; Shan, L Y; Shang, R; Shank, J T; Shapiro, M; Shatalov, P B; Shaw, K; Shehu, C Y; Sherwood, P; Shi, L; Shimizu, S; Shimmin, C O; Shimojima, M; Shiyakova, M; Shmeleva, A; Shochet, M J; Short, D; Shrestha, S; Shulga, E; Shupe, M A; Shushkevich, S; Sicho, P; Sidiropoulou, O; Sidorov, D; Sidoti, A; Siegert, F; Sijacki, Dj; Silva, J; Silver, Y; Silverstein, D; Silverstein, S B; Simak, V; Simard, O; Simic, Lj; Simion, S; Simioni, E; Simmons, B; Simoniello, R; Simonyan, M; Sinervo, P; Sinev, N B; Sipica, V; Siragusa, G; Sircar, A; Sisakyan, A N; Sivoklokov, S Yu; Sjölin, J; Sjursen, T B; Skottowe, H P; Skovpen, K Yu; Skubic, P; Slater, M; Slavicek, T; Sliwa, K; Smakhtin, V; Smart, B H; Smestad, L; Smirnov, S Yu; Smirnov, Y; Smirnova, L N; Smirnova, O; Smith, K M; Smizanska, M; Smolek, K; Snesarev, A A; Snidero, G; Snyder, S; Sobie, R; Socher, F; Soffer, A; Soh, D A; Solans, C A; Solar, M; Solc, J; Soldatov, E Yu; Soldevila, U; Solodkov, A A; Soloshenko, A; Solovyanov, O V; Solovyev, V; Sommer, P; Song, H Y; Soni, N; Sood, A; Sopczak, A; Sopko, B; Sopko, V; Sorin, V; Sosebee, M; Soualah, R; Soueid, P; Soukharev, A M; South, D; Spagnolo, S; Spanò, F; Spearman, W R; Spettel, F; Spighi, R; Spigo, G; Spiller, L A; Spousta, M; Spreitzer, T; Spurlock, B; St Denis, R D; Staerz, S; Stahlman, J; Stamen, R; Stamm, S; Stanecka, E; Stanek, R W; Stanescu, C; Stanescu-Bellu, M; Stanitzki, M M; Stapnes, S; Starchenko, E A; Stark, J; Staroba, P; Starovoitov, P; Staszewski, R; Stavina, P; Steinberg, P; Stelzer, B; Stelzer, H J; Stelzer-Chilton, O; Stenzel, H; Stern, S; Stewart, G A; Stillings, J A; Stockton, M C; Stoebe, M; Stoicea, G; Stolte, P; Stonjek, S; Stradling, A R; Straessner, A; Stramaglia, M E; Strandberg, J; Strandberg, S; Strandlie, A; Strauss, E; Strauss, M; Strizenec, P; Ströhmer, R; Strom, D M; Stroynowski, R; Stucci, S A; Stugu, B; Styles, N A; Su, D; Su, J; Subramaniam, R; Succurro, A; Sugaya, Y; Suhr, C; Suk, M; Sulin, V V; Sultansoy, S; Sumida, T; Sun, S; Sun, X; Sundermann, J E; Suruliz, K; Susinno, G; Sutton, M R; Suzuki, Y; Svatos, M; Swedish, S; Swiatlowski, M; Sykora, I; Sykora, T; Ta, D; Taccini, C; Tackmann, K; Taenzer, J; Taffard, A; Tafirout, R; Taiblum, N; Takai, H; Takashima, R; Takeda, H; Takeshita, T; Takubo, Y; Talby, M; Talyshev, A A; Tam, J Y C; Tan, K G; Tanaka, J; Tanaka, R; Tanaka, S; Tanaka, S; Tanasijczuk, A J; Tannenwald, B B; Tannoury, N; Tapprogge, S; Tarem, S; Tarrade, F; Tartarelli, G F; Tas, P; Tasevsky, M; Tashiro, T; Tassi, E; Tavares Delgado, A; Tayalati, Y; Taylor, F E; Taylor, G N; Taylor, W; Teischinger, F A; Teixeira Dias Castanheira, M; Teixeira-Dias, P; Temming, K K; Ten Kate, H; Teng, P K; Teoh, J J; Terada, S; Terashi, K; Terron, J; Terzo, S; Testa, M; Teuscher, R J; Therhaag, J; Theveneaux-Pelzer, T; Thomas, J P; Thomas-Wilsker, J; Thompson, E N; Thompson, P D; Thompson, P D; Thompson, R J; Thompson, A S; Thomsen, L A; Thomson, E; Thomson, M; Thong, W M; Thun, R P; Tian, F; Tibbetts, M J; Tikhomirov, V O; Tikhonov, Yu A; Timoshenko, S; Tiouchichine, E; Tipton, P; Tisserant, S; Todorov, T; Todorova-Nova, S; Toggerson, B; Tojo, J; Tokár, S; Tokushuku, K; Tollefson, K; Tomlinson, L; Tomoto, M; Tompkins, L; Toms, K; Topilin, N D; Torrence, E; Torres, H; Torró Pastor, E; Toth, J; Touchard, F; Tovey, D R; Tran, H L; Trefzger, T; Tremblet, L; Tricoli, A; Trigger, I M; Trincaz-Duvoid, S; Tripiana, M F; Trischuk, W; Trocmé, B; Troncon, C; Trottier-McDonald, M; Trovatelli, M; True, P; Trzebinski, M; Trzupek, A; Tsarouchas, C; Tseng, J C-L; Tsiareshka, P V; Tsionou, D; Tsipolitis, G; Tsirintanis, N; Tsiskaridze, S; Tsiskaridze, V; Tskhadadze, E G; Tsukerman, I I; Tsulaia, V; Tsuno, S; Tsybychev, D; Tudorache, A; Tudorache, V; Tuna, A N; Tupputi, S A; Turchikhin, S; Turecek, D; Turk Cakir, I; Turra, R; Tuts, P M; Tykhonov, A; Tylmad, M; Tyndel, M; Uchida, K; Ueda, I; Ueno, R; Ughetto, M; Ugland, M; Uhlenbrock, M; Ukegawa, F; Unal, G; Undrus, A; Unel, G; Ungaro, F C; Unno, Y; Unverdorben, C; Urbaniec, D; Urquijo, P; Usai, G; Usanova, A; Vacavant, L; Vacek, V; Vachon, B; Valencic, N; Valentinetti, S; Valero, A; Valery, L; Valkar, S; Valladolid Gallego, E; Vallecorsa, S; Valls Ferrer, J A; Van Den Wollenberg, W; Van Der Deijl, P C; van der Geer, R; van der Graaf, H; Van Der Leeuw, R; van der Ster, D; van Eldik, N; van Gemmeren, P; Van Nieuwkoop, J; van Vulpen, I; van Woerden, M C; Vanadia, M; Vandelli, W; Vanguri, R; Vaniachine, A; Vankov, P; Vannucci, F; Vardanyan, G; Vari, R; Varnes, E W; Varol, T; Varouchas, D; Vartapetian, A; Varvell, K E; Vazeille, F; Vazquez Schroeder, T; Veatch, J; Veloso, F; Veneziano, S; Ventura, A; Ventura, D; Venturi, M; Venturi, N; Venturini, A; Vercesi, V; Verducci, M; Verkerke, W; Vermeulen, J C; Vest, A; Vetterli, M C; Viazlo, O; Vichou, I; Vickey, T; Vickey Boeriu, O E; Viehhauser, G H A; Viel, S; Vigne, R; Villa, M; Villaplana Perez, M; Vilucchi, E; Vincter, M G; Vinogradov, V B; Virzi, J; Vivarelli, I; Vives Vaque, F; Vlachos, S; Vladoiu, D; Vlasak, M; Vogel, A; Vogel, M; Vokac, P; Volpi, G; Volpi, M; von der Schmitt, H; von Radziewski, H; von Toerne, E; Vorobel, V; Vorobev, K; Vos, M; Voss, R; Vossebeld, J H; Vranjes, N; Vranjes Milosavljevic, M; Vrba, V; Vreeswijk, M; Vu Anh, T; Vuillermet, R; Vukotic, I; Vykydal, Z; Wagner, P; Wagner, W; Wahlberg, H; Wahrmund, S; Wakabayashi, J; Walder, J; Walker, R; Walkowiak, W; Wall, R; Waller, P; Walsh, B; Wang, C; Wang, C; Wang, F; Wang, H; Wang, H; Wang, J; Wang, J; Wang, K; Wang, R; Wang, S M; Wang, T; Wang, X; Wanotayaroj, C; Warburton, A; Ward, C P; Wardrope, D R; Warsinsky, M; Washbrook, A; Wasicki, C; Watkins, P M; Watson, A T; Watson, I J; Watson, M F; Watts, G; Watts, S; Waugh, B M; Webb, S; Weber, M S; Weber, S W; Webster, J S; Weidberg, A R; Weigell, P; Weinert, B; Weingarten, J; Weiser, C; Weits, H; Wells, P S; Wenaus, T; Wendland, D; Weng, Z; Wengler, T; Wenig, S; Wermes, N; Werner, M; Werner, P; Wessels, M; Wetter, J; Whalen, K; White, A; White, M J; White, R; White, S; Whiteson, D; Wicke, D; Wickens, F J; Wiedenmann, W; Wielers, M; Wienemann, P; Wiglesworth, C; Wiik-Fuchs, L A M; Wijeratne, P A; Wildauer, A; Wildt, M A; Wilkens, H G; Will, J Z; Williams, H H; Williams, S; Willis, C; Willocq, S; Wilson, A; Wilson, J A; Wingerter-Seez, I; Winklmeier, F; Winter, B T; Wittgen, M; Wittig, T; Wittkowski, J; Wollstadt, S J; Wolter, M W; Wolters, H; Wosiek, B K; Wotschack, J; Woudstra, M J; Wozniak, K W; Wright, M; Wu, M; Wu, S L; Wu, X; Wu, Y; Wulf, E; Wyatt, T R; Wynne, B M; Xella, S; Xiao, M; Xu, D; Xu, L; Yabsley, B; Yacoob, S; Yakabe, R; Yamada, M; Yamaguchi, H; Yamaguchi, Y; Yamamoto, A; Yamamoto, K; Yamamoto, S; Yamamura, T; Yamanaka, T; Yamauchi, K; Yamazaki, Y; Yan, Z; Yang, H; Yang, H; Yang, U K; Yang, Y; Yanush, S; Yao, L; Yao, W-M; Yasu, Y; Yatsenko, E; Yau Wong, K H; Ye, J; Ye, S; Yeletskikh, I; Yen, A L; Yildirim, E; Yilmaz, M; Yoosoofmiya, R; Yorita, K; Yoshida, R; Yoshihara, K; Young, C; Young, C J S; Youssef, S; Yu, D R; Yu, J; Yu, J M; Yu, J; Yuan, L; Yurkewicz, A; Yusuff, I; Zabinski, B; Zaidan, R; Zaitsev, A M; Zaman, A; Zambito, S; Zanello, L; Zanzi, D; Zeitnitz, C; Zeman, M; Zemla, A; Zengel, K; Zenin, O; Zeniš, T; Zerwas, D; Zevi Della Porta, G; Zhang, D; Zhang, F; Zhang, H; Zhang, J; Zhang, L; Zhang, X; Zhang, Z; Zhao, Z; Zhemchugov, A; Zhong, J; Zhou, B; Zhou, L; Zhou, N; Zhu, C G; Zhu, H; Zhu, J; Zhu, Y; Zhuang, X; Zhukov, K; Zibell, A; Zieminska, D; Zimine, N I; Zimmermann, C; Zimmermann, R; Zimmermann, S; Zimmermann, S; Zinonos, Z; Ziolkowski, M; Zobernig, G; Zoccoli, A; Zur Nedden, M; Zurzolo, G; Zutshi, V; Zwalinski, L

    2014-10-24

    A search for scalar particles decaying via narrow resonances into two photons in the mass range 65-600 GeV is performed using 20.3  fb(-1) of √s 8 TeV pp collision data collected with the ATLAS detector at the Large Hadron Collider. The recently discovered Higgs boson is treated as a background. No significant evidence for an additional signal is observed. The results are presented as limits at the 95% confidence level on the production cross section of a scalar boson times branching ratio into two photons, in a fiducial volume where the reconstruction efficiency is approximately independent of the event topology. The upper limits set extend over a considerably wider mass range than previous searches.

  7. Search for Scalar Diphoton Resonances in the Mass Range $65-600$ GeV with the ATLAS Detector in $pp$ Collision Data at $\\sqrt{s}$ = 8 $TeV$

    CERN Document Server

    Aad, Georges; Abdallah, Jalal; Abdel Khalek, Samah; Abdinov, Ovsat; Aben, Rosemarie; Abi, Babak; AbouZeid, Ossama; Abramowicz, Halina; Abreu, Henso; Abreu, Ricardo; Abulaiti, Yiming; Acharya, Bobby Samir; Adamczyk, Leszek; Adams, David; Adelman, Jahred; Adomeit, Stefanie; Adye, Tim; Agatonovic-Jovin, Tatjana; Aguilar-Saavedra, Juan Antonio; Agustoni, Marco; Ahlen, Steven; Ahmadov, Faig; Aielli, Giulio; Akerstedt, Henrik; Åkesson, Torsten Paul Ake; Akimoto, Ginga; Akimov, Andrei; Alberghi, Gian Luigi; Albert, Justin; Albrand, Solveig; Alconada Verzini, Maria Josefina; Aleksa, Martin; Aleksandrov, Igor; Alexa, Calin; Alexander, Gideon; Alexandre, Gauthier; Alexopoulos, Theodoros; Alhroob, Muhammad; Alimonti, Gianluca; Alio, Lion; Alison, John; Allbrooke, Benedict; Allison, Lee John; Allport, Phillip; Aloisio, Alberto; Alonso, Alejandro; Alonso, Francisco; Alpigiani, Cristiano; Altheimer, Andrew David; Alvarez Gonzalez, Barbara; Alviggi, Mariagrazia; Amaral Coutinho, Yara; Amelung, Christoph; Amidei, Dante; Amor Dos Santos, Susana Patricia; Amoroso, Simone; Amram, Nir; Amundsen, Glenn; Anastopoulos, Christos; Ancu, Lucian Stefan; Andari, Nansi; Andeen, Timothy; Anders, Christoph Falk; Anders, Gabriel; Anderson, Kelby; Andreazza, Attilio; Andrei, George Victor; Anduaga, Xabier; Angelidakis, Stylianos; Angelozzi, Ivan; Anger, Philipp; Angerami, Aaron; Anisenkov, Alexey; Anjos, Nuno; Annovi, Alberto; Antonaki, Ariadni; Antonelli, Mario; Antonov, Alexey; Antos, Jaroslav; Anulli, Fabio; Aoki, Masato; Aperio Bella, Ludovica; Apolle, Rudi; Arabidze, Giorgi; Aracena, Ignacio; Arai, Yasuo; Araque, Juan Pedro; Arce, Ayana; Arduh, Francisco Anuar; Arguin, Jean-Francois; Argyropoulos, Spyridon; Arik, Metin; Armbruster, Aaron James; Arnaez, Olivier; Arnal, Vanessa; Arnold, Hannah; Arratia, Miguel; Arslan, Ozan; Artamonov, Andrei; Artoni, Giacomo; Asai, Shoji; Asbah, Nedaa; Ashkenazi, Adi; Åsman, Barbro; Asquith, Lily; Assamagan, Ketevi; Astalos, Robert; Atkinson, Markus; Atlay, Naim Bora; Auerbach, Benjamin; Augsten, Kamil; Aurousseau, Mathieu; Avolio, Giuseppe; Azuelos, Georges; Azuma, Yuya; Baak, Max; Baas, Alessandra; Bachacou, Henri; Bachas, Konstantinos; Backes, Moritz; Backhaus, Malte; Backus Mayes, John; Badescu, Elisabeta; Bagiacchi, Paolo; Bagnaia, Paolo; Bai, Yu; Bain, Travis; Baines, John; Baker, Oliver Keith; Balek, Petr; Balli, Fabrice; Banas, Elzbieta; Banerjee, Swagato; Bannoura, Arwa A E; Bansil, Hardeep Singh; Barak, Liron; Barberio, Elisabetta Luigia; Barberis, Dario; Barbero, Marlon; Barillari, Teresa; Barisonzi, Marcello; Barklow, Timothy; Barlow, Nick; Barnes, Sarah Louise; Barnett, Bruce; Barnett, Michael; Barnovska, Zuzana; Baroncelli, Antonio; Barone, Gaetano; Barr, Alan; Barreiro, Fernando; Barreiro Guimarães da Costa, João; Bartoldus, Rainer; Barton, Adam Edward; Bartos, Pavol; Bartsch, Valeria; Bassalat, Ahmed; Basye, Austin; Bates, Richard; Batley, Richard; Battaglia, Marco; Battistin, Michele; Bauer, Florian; Bawa, Harinder Singh; Beattie, Michael David; Beau, Tristan; Beauchemin, Pierre-Hugues; Bechtle, Philip; Beck, Hans Peter; Becker, Anne Kathrin; Becker, Sebastian; Beckingham, Matthew; Becot, Cyril; Beddall, Andrew; Beddall, Ayda; Bedikian, Sourpouhi; Bednyakov, Vadim; Bee, Christopher; Beemster, Lars; Beermann, Thomas; Begel, Michael; Behr, Katharina; Belanger-Champagne, Camille; Bell, Paul; Bell, William; Bella, Gideon; Bellagamba, Lorenzo; Bellerive, Alain; Bellomo, Massimiliano; Belotskiy, Konstantin; Beltramello, Olga; Benary, Odette; Benchekroun, Driss; Bendtz, Katarina; Benekos, Nektarios; Benhammou, Yan; Benhar Noccioli, Eleonora; Benitez Garcia, Jorge-Armando; Benjamin, Douglas; Bensinger, James; Bentvelsen, Stan; Berge, David; Bergeaas Kuutmann, Elin; Berger, Nicolas; Berghaus, Frank; Beringer, Jürg; Bernard, Clare; Bernat, Pauline; Bernius, Catrin; Bernlochner, Florian Urs; Berry, Tracey; Berta, Peter; Bertella, Claudia; Bertoli, Gabriele; Bertolucci, Federico; Bertsche, Carolyn; Bertsche, David; Besana, Maria Ilaria; Besjes, Geert-Jan; Bessidskaia, Olga; Bessner, Martin Florian; Besson, Nathalie; Betancourt, Christopher; Bethke, Siegfried; Bhimji, Wahid; Bianchi, Riccardo-Maria; Bianchini, Louis; Bianco, Michele; Biebel, Otmar; Bieniek, Stephen Paul; Bierwagen, Katharina; Biesiada, Jed; Biglietti, Michela; Bilbao De Mendizabal, Javier; Bilokon, Halina; Bindi, Marcello; Binet, Sebastien; Bingul, Ahmet; Bini, Cesare; Black, Curtis; Black, James; Black, Kevin; Blackburn, Daniel; Blair, Robert; Blanchard, Jean-Baptiste; Blazek, Tomas; Bloch, Ingo; Blocker, Craig; Blumenschein, Ulrike; Bobbink, Gerjan; Bobrovnikov, Victor; Bocchetta, Simona Serena; Bocci, Andrea; Bock, Christopher; Boddy, Christopher Richard; Boehler, Michael; Boek, Thorsten Tobias; Bogdanchikov, Alexander; Bohm, Christian; Boisvert, Veronique; Bold, Tomasz; Boldyrev, Alexey; Bomben, Marco; Bona, Marcella; Boonekamp, Maarten; Borisov, Anatoly; Borissov, Guennadi; Borri, Marcello; Borroni, Sara; Bortfeldt, Jonathan; Bortolotto, Valerio; Boscherini, Davide; Bosman, Martine; Boterenbrood, Hendrik; Boudreau, Joseph; Bouffard, Julian; Bouhova-Thacker, Evelina Vassileva; Boumediene, Djamel Eddine; Bourdarios, Claire; Bousson, Nicolas; Boutouil, Sara; Boveia, Antonio; Boyd, James; Boyko, Igor; Bozic, Ivan; Bracinik, Juraj; Brandt, Andrew; Brandt, Gerhard; Brandt, Oleg; Bratzler, Uwe; Brau, Benjamin; Brau, James; Brazzale, Simone Federico; Brelier, Bertrand; Brendlinger, Kurt; Brennan, Amelia Jean; Brenner, Richard; Bressler, Shikma; Bristow, Kieran; Bristow, Timothy Michael; Britton, Dave; Brochu, Frederic; Brock, Ian; Brock, Raymond; Bronner, Johanna; Brooijmans, Gustaaf; Brooks, Timothy; Brooks, William; Brosamer, Jacquelyn; Brost, Elizabeth; Brown, Jonathan; Bruckman de Renstrom, Pawel; Bruncko, Dusan; Bruneliere, Renaud; Brunet, Sylvie; Bruni, Alessia; Bruni, Graziano; Bruschi, Marco; Bryngemark, Lene; Buanes, Trygve; Buat, Quentin; Bucci, Francesca; Buchholz, Peter; Buckley, Andrew; Buda, Stelian Ioan; Budagov, Ioulian; Buehrer, Felix; Bugge, Lars; Bugge, Magnar Kopangen; Bulekov, Oleg; Bundock, Aaron Colin; Burdin, Sergey; Burghgrave, Blake; Burke, Stephen; Burmeister, Ingo; Busato, Emmanuel; Büscher, Daniel; Büscher, Volker; Bussey, Peter; Buszello, Claus-Peter; Butler, Bart; Butler, John; Butt, Aatif Imtiaz; Buttar, Craig; Butterworth, Jonathan; Butti, Pierfrancesco; Buttinger, William; Buzatu, Adrian; Byszewski, Marcin; Cabrera Urbán, Susana; Caforio, Davide; Cakir, Orhan; Calafiura, Paolo; Calandri, Alessandro; Calderini, Giovanni; Calfayan, Philippe; Calkins, Robert; Caloba, Luiz; Calvet, David; Calvet, Samuel; Camacho Toro, Reina; Camarda, Stefano; Cameron, David; Caminada, Lea Michaela; Caminal Armadans, Roger; Campana, Simone; Campanelli, Mario; Campoverde, Angel; Canale, Vincenzo; Canepa, Anadi; Cano Bret, Marc; Cantero, Josu; Cantrill, Robert; Cao, Tingting; Capeans Garrido, Maria Del Mar; Caprini, Irinel; Caprini, Mihai; Capua, Marcella; Caputo, Regina; Cardarelli, Roberto; Carli, Tancredi; Carlino, Gianpaolo; Carminati, Leonardo; Caron, Sascha; Carquin, Edson; Carrillo-Montoya, German D; Carter, Janet; Casadei, Diego; Casado, Maria Pilar; Casolino, Mirkoantonio; Castaneda-Miranda, Elizabeth; Castelli, Angelantonio; Castillo Gimenez, Victoria; Castro, Nuno Filipe; Catastini, Pierluigi; Catinaccio, Andrea; Catmore, James; Cattai, Ariella; Cattani, Giordano; Caudron, Julien; Cavaliere, Viviana; Cavalli, Donatella; Cavalli-Sforza, Matteo; Cavasinni, Vincenzo; Ceradini, Filippo; Cerio, Benjamin; Cerny, Karel; Cerqueira, Augusto Santiago; Cerri, Alessandro; Cerrito, Lucio; Cerutti, Fabio; Cerv, Matevz; Cervelli, Alberto; Cetin, Serkant Ali; Chafaq, Aziz; Chakraborty, Dhiman; Chalupkova, Ina; Chang, Philip; Chapleau, Bertrand; Chapman, John Derek; Charfeddine, Driss; Charlton, Dave; Chau, Chav Chhiv; Chavez Barajas, Carlos Alberto; Cheatham, Susan; Chegwidden, Andrew; Chekanov, Sergei; Chekulaev, Sergey; Chelkov, Gueorgui; Chelstowska, Magda Anna; Chen, Chunhui; Chen, Hucheng; Chen, Karen; Chen, Liming; Chen, Shenjian; Chen, Xin; Chen, Ye; Cheng, Hok Chuen; Cheng, Yangyang; Cheplakov, Alexander; Cherkaoui El Moursli, Rajaa; Cheu, Elliott; Chevalier, Laurent; Chiarella, Vitaliano; Chiefari, Giovanni; Childers, John Taylor; Chilingarov, Alexandre; Chiodini, Gabriele; Chisholm, Andrew; Chislett, Rebecca Thalatta; Chitan, Adrian; Chizhov, Mihail; Chouridou, Sofia; Chow, Bonnie Kar Bo; Chudoba, Jiri; Chwastowski, Janusz; Chytka, Ladislav; Ciftci, Abbas Kenan; Ciftci, Rena; Cinca, Diane; Cindro, Vladimir; Ciocio, Alessandra; Citron, Zvi Hirsh; Ciubancan, Mihai; Clark, Allan G; Clark, Philip James; Clarke, Robert; Clemens, Jean-Claude; Clement, Christophe; Coadou, Yann; Cobal, Marina; Coccaro, Andrea; Cochran, James H; Coffey, Laurel; Cogan, Joshua Godfrey; Cole, Brian; Cole, Stephen; Colijn, Auke-Pieter; Collot, Johann; Colombo, Tommaso; Compostella, Gabriele; Conde Muiño, Patricia; Coniavitis, Elias; Connell, Simon Henry; Connelly, Ian; Consonni, Sofia Maria; Consorti, Valerio; Constantinescu, Serban; Conti, Geraldine; Conventi, Francesco; Cooke, Mark; Cooper, Ben; Cooper-Sarkar, Amanda; Cooper-Smith, Neil; Copic, Katherine; Cornelissen, Thijs; Corradi, Massimo; Corriveau, Francois; Cortes-Gonzalez, Arely; Cortiana, Giorgio; Costa, Giuseppe; Costa, María José; Costanzo, Davide; Côté, David; Cottin, Giovanna; Cowan, Glen; Cox, Brian; Cranmer, Kyle; Cree, Graham; Crépé-Renaudin, Sabine; Crescioli, Francesco; Cribbs, Wayne Allen; Crispin Ortuzar, Mireia; Cristinziani, Markus; Croft, Vince; Crosetti, Giovanni; Cuciuc, Constantin-Mihai; Cuhadar Donszelmann, Tulay; Cummings, Jane; Curatolo, Maria; Cuthbert, Cameron; Czirr, Hendrik; Czodrowski, Patrick; D'Auria, Saverio; D'Onofrio, Monica; Da Cunha Sargedas De Sousa, Mario Jose; Da Via, Cinzia; Dabrowski, Wladyslaw; Dafinca, Alexandru; Dai, Tiesheng; Dale, Orjan; Dallaire, Frederick; Dallapiccola, Carlo; Dam, Mogens; Daniells, Andrew Christopher; Dano Hoffmann, Maria; Dao, Valerio; Darbo, Giovanni; Darmora, Smita; Dassoulas, James; Dattagupta, Aparajita; Davey, Will; David, Claire; Davidek, Tomas; Davies, Eleanor; Davies, Merlin; Davignon, Olivier; Davison, Adam; Davison, Peter; Davygora, Yuriy; Dawe, Edmund; Dawson, Ian; Daya-Ishmukhametova, Rozmin; De, Kaushik; de Asmundis, Riccardo; De Castro, Stefano; De Cecco, Sandro; De Groot, Nicolo; de Jong, Paul; De la Torre, Hector; De Lorenzi, Francesco; De Nooij, Lucie; De Pedis, Daniele; De Salvo, Alessandro; De Sanctis, Umberto; De Santo, Antonella; De Vivie De Regie, Jean-Baptiste; Dearnaley, William James; Debbe, Ramiro; Debenedetti, Chiara; Dechenaux, Benjamin; Dedovich, Dmitri; Deigaard, Ingrid; Del Peso, Jose; Deliot, Frederic; Delitzsch, Chris Malena; Deliyergiyev, Maksym; Dell'Acqua, Andrea; Dell'Asta, Lidia; Dell'Orso, Mauro; Della Pietra, Massimo; della Volpe, Domenico; Delmastro, Marco; Delsart, Pierre-Antoine; Deluca, Carolina; Demers, Sarah; Demichev, Mikhail; Demilly, Aurelien; Denisov, Sergey; Derendarz, Dominik; Derkaoui, Jamal Eddine; Derue, Frederic; Dervan, Paul; Desch, Klaus Kurt; Deterre, Cecile; Deviveiros, Pier-Olivier; Dewhurst, Alastair; Dhaliwal, Saminder; Di Ciaccio, Anna; Di Ciaccio, Lucia; Di Domenico, Antonio; Di Donato, Camilla; Di Girolamo, Alessandro; Di Girolamo, Beniamino; Di Mattia, Alessandro; Di Micco, Biagio; Di Nardo, Roberto; Di Simone, Andrea; Di Sipio, Riccardo; Di Valentino, David; Dias, Flavia; Diaz, Marco Aurelio; Diehl, Edward; Dietrich, Janet; Dietzsch, Thorsten; Diglio, Sara; Dimitrievska, Aleksandra; Dingfelder, Jochen; Dita, Petre; Dita, Sanda; Dittus, Fridolin; Djama, Fares; Djobava, Tamar; do Vale, Maria Aline Barros; Dobos, Daniel; Doglioni, Caterina; Doherty, Tom; Dohmae, Takeshi; Dolejsi, Jiri; Dolezal, Zdenek; Donadelli, Marisilvia; Donati, Simone; Dondero, Paolo; Donini, Julien; Dopke, Jens; Doria, Alessandra; Dova, Maria-Teresa; Doyle, Tony; Dris, Manolis; Dubbert, Jörg; Dube, Sourabh; Dubreuil, Emmanuelle; Duchovni, Ehud; Duckeck, Guenter; Ducu, Otilia Anamaria; Duda, Dominik; Dudarev, Alexey; Dudziak, Fanny; Duflot, Laurent; Duguid, Liam; Dührssen, Michael; Dunford, Monica; Duran Yildiz, Hatice; Düren, Michael; Durglishvili, Archil; Dwuznik, Michal; Dyndal, Mateusz; Ebke, Johannes; Edson, William; Edwards, Nicholas Charles; Ehrenfeld, Wolfgang; Eifert, Till; Eigen, Gerald; Einsweiler, Kevin; Ekelof, Tord; El Kacimi, Mohamed; Ellert, Mattias; Elles, Sabine; Ellinghaus, Frank; Ellis, Nicolas; Elmsheuser, Johannes; Elsing, Markus; Emeliyanov, Dmitry; Enari, Yuji; Endner, Oliver Chris; Endo, Masaki; Erdmann, Johannes; Ereditato, Antonio; Ernis, Gunar; Ernst, Jesse; Ernst, Michael; Ernwein, Jean; Errede, Deborah; Errede, Steven; Ertel, Eugen; Escalier, Marc; Esch, Hendrik; Escobar, Carlos; Esposito, Bellisario; Etienvre, Anne-Isabelle; Etzion, Erez; Evans, Hal; Ezhilov, Alexey; Fabbri, Laura; Facini, Gabriel; Fakhrutdinov, Rinat; Falciano, Speranza; Falla, Rebecca Jane; Faltova, Jana; Fang, Yaquan; Fanti, Marcello; Farbin, Amir; Farilla, Addolorata; Farooque, Trisha; Farrell, Steven; Farrington, Sinead; Farthouat, Philippe; Fassi, Farida; Fassnacht, Patrick; Fassouliotis, Dimitrios; Favareto, Andrea; Fayard, Louis; Federic, Pavol; Fedin, Oleg; Fedorko, Wojciech; Feigl, Simon; Feligioni, Lorenzo; Feng, Cunfeng; Feng, Eric; Feng, Haolu; Fenyuk, Alexander; Fernandez Perez, Sonia; Ferrag, Samir; Ferrando, James; Ferrari, Arnaud; Ferrari, Pamela; Ferrari, Roberto; Ferreira de Lima, Danilo Enoque; Ferrer, Antonio; Ferrere, Didier; Ferretti, Claudio; Ferretto Parodi, Andrea; Fiascaris, Maria; Fiedler, Frank; Filipčič, Andrej; Filipuzzi, Marco; Filthaut, Frank; Fincke-Keeler, Margret; Finelli, Kevin Daniel; Fiolhais, Miguel; Fiorini, Luca; Firan, Ana; Fischer, Adam; Fischer, Julia; Fisher, Wade Cameron; Fitzgerald, Eric Andrew; Flechl, Martin; Fleck, Ivor; Fleischmann, Philipp; Fleischmann, Sebastian; Fletcher, Gareth Thomas; Fletcher, Gregory; Flick, Tobias; Floderus, Anders; Flores Castillo, Luis; Flowerdew, Michael; Formica, Andrea; Forti, Alessandra; Fortin, Dominique; Fournier, Daniel; Fox, Harald; Fracchia, Silvia; Francavilla, Paolo; Franchini, Matteo; Franchino, Silvia; Francis, David; Franconi, Laura; Franklin, Melissa; Fraternali, Marco; French, Sky; Friedrich, Conrad; Friedrich, Felix; Froidevaux, Daniel; Frost, James; Fukunaga, Chikara; Fullana Torregrosa, Esteban; Fulsom, Bryan Gregory; Fuster, Juan; Gabaldon, Carolina; Gabizon, Ofir; Gabrielli, Alessandro; Gabrielli, Andrea; Gadatsch, Stefan; Gadomski, Szymon; Gagliardi, Guido; Gagnon, Pauline; Galea, Cristina; Galhardo, Bruno; Gallas, Elizabeth; Gallop, Bruce; Gallus, Petr; Galster, Gorm Aske Gram Krohn; Gan, KK; Gao, Jun; Gao, Yongsheng; Garay Walls, Francisca; Garberson, Ford; García, Carmen; García Navarro, José Enrique; Garcia-Sciveres, Maurice; Gardner, Robert; Garelli, Nicoletta; Garonne, Vincent; Gatti, Claudio; Gaudio, Gabriella; Gaur, Bakul; Gauthier, Lea; Gavrilenko, Igor; Gay, Colin; Gaycken, Goetz; Gazis, Evangelos; Ge, Peng; Gecse, Zoltan; Gee, Norman; Geerts, Daniël Alphonsus Adrianus; Geich-Gimbel, Christoph; Gemme, Claudia; Gemmell, Alistair; Genest, Marie-Hélène; Gentile, Simonetta; George, Matthias; George, Simon; Gerbaudo, Davide; Gershon, Avi; Ghodbane, Nabil; Giacobbe, Benedetto; Giagu, Stefano; Giangiobbe, Vincent; Giannetti, Paola; Gianotti, Fabiola; Gibson, Stephen; Gillam, Thomas; Gillberg, Dag; Gilles, Geoffrey; Gingrich, Douglas; Giokaris, Nikos; Giordani, MarioPaolo; Giordano, Raffaele; Giorgi, Filippo Maria; Giorgi, Francesco Michelangelo; Giraud, Pierre-Francois; Giugni, Danilo; Giuliani, Claudia; Giulini, Maddalena; Gjelsten, Børge Kile; Gkaitatzis, Stamatios; Gkialas, Ioannis; Gkougkousis, Evangelos Leonidas; Gladilin, Leonid; Glasman, Claudia; Glatzer, Julian; Glaysher, Paul; Glazov, Alexandre; Glonti, George; Goblirsch-Kolb, Maximilian; Goddard, Jack Robert; Godlewski, Jan; Goeringer, Christian; Goldfarb, Steven; Golling, Tobias; Golubkov, Dmitry; Gomes, Agostinho; Gomez Fajardo, Luz Stella; Gonçalo, Ricardo; Goncalves Pinto Firmino Da Costa, Joao; Gonella, Laura; González de la Hoz, Santiago; Gonzalez Parra, Garoe; Gonzalez-Sevilla, Sergio; Goossens, Luc; Gorbounov, Petr Andreevich; Gordon, Howard; Gorelov, Igor; Gorini, Benedetto; Gorini, Edoardo; Gorišek, Andrej; Gornicki, Edward; Goshaw, Alfred; Gössling, Claus; Gostkin, Mikhail Ivanovitch; Gouighri, Mohamed; Goujdami, Driss; Goulette, Marc Phillippe; Goussiou, Anna; Goy, Corinne; Grabas, Herve Marie Xavier; Graber, Lars; Grabowska-Bold, Iwona; Grafström, Per; Grahn, Karl-Johan; Gramling, Johanna; Gramstad, Eirik; Grancagnolo, Sergio; Grassi, Valerio; Gratchev, Vadim; Gray, Heather; Graziani, Enrico; Grebenyuk, Oleg; Greenwood, Zeno Dixon; Gregersen, Kristian; Gregor, Ingrid-Maria; Grenier, Philippe; Griffiths, Justin; Grillo, Alexander; Grimm, Kathryn; Grinstein, Sebastian; Gris, Philippe Luc Yves; Grishkevich, Yaroslav; Grivaz, Jean-Francois; Grohs, Johannes Philipp; Grohsjean, Alexander; Gross, Eilam; Grosse-Knetter, Joern; Grossi, Giulio Cornelio; Groth-Jensen, Jacob; Grout, Zara Jane; Guan, Liang; Guescini, Francesco; Guest, Daniel; Gueta, Orel; Guicheney, Christophe; Guido, Elisa; Guillemin, Thibault; Guindon, Stefan; Gul, Umar; Gumpert, Christian; Gunther, Jaroslav; Guo, Jun; Gupta, Shaun; Gutierrez, Phillip; Gutierrez Ortiz, Nicolas Gilberto; Gutschow, Christian; Guttman, Nir; Guyot, Claude; Gwenlan, Claire; Gwilliam, Carl; Haas, Andy; Haber, Carl; Hadavand, Haleh Khani; Haddad, Nacim; Haefner, Petra; Hageböck, Stephan; Hakobyan, Hrachya; Haleem, Mahsana; Hall, David; Halladjian, Garabed; Hallewell, Gregory David; Hamacher, Klaus; Hamal, Petr; Hamano, Kenji; Hamer, Matthias; Hamilton, Andrew; Hamilton, Samuel; Hamity, Guillermo Nicolas; Hamnett, Phillip George; Han, Liang; Hanagaki, Kazunori; Hanawa, Keita; Hance, Michael; Hanke, Paul; Hanna, Remie; Hansen, Jørgen Beck; Hansen, Jorn Dines; Hansen, Peter Henrik; Hara, Kazuhiko; Hard, Andrew; Harenberg, Torsten; Hariri, Faten; Harkusha, Siarhei; Harper, Devin; Harrington, Robert; Harris, Orin; Harrison, Paul Fraser; Hasegawa, Makoto; Hasegawa, Satoshi; Hasegawa, Yoji; Hasib, A; Hassani, Samira; Haug, Sigve; Hauschild, Michael; Hauser, Reiner; Havranek, Miroslav; Hawkes, Christopher; Hawkings, Richard John; Hawkins, Anthony David; Hayashi, Takayasu; Hayden, Daniel; Hays, Chris; Hayward, Helen; Haywood, Stephen; Head, Simon; Heck, Tobias; Hedberg, Vincent; Heelan, Louise; Heim, Sarah; Heim, Timon; Heinemann, Beate; Heinrich, Lukas; Hejbal, Jiri; Helary, Louis; Heller, Claudio; Heller, Matthieu; Hellman, Sten; Hellmich, Dennis; Helsens, Clement; Henderson, James; Henderson, Robert; Heng, Yang; Hengler, Christopher; Henrichs, Anna; Henriques Correia, Ana Maria; Henrot-Versille, Sophie; Herbert, Geoffrey Henry; Hernández Jiménez, Yesenia; Herrberg-Schubert, Ruth; Herten, Gregor; Hertenberger, Ralf; Hervas, Luis; Hesketh, Gavin Grant; Hessey, Nigel; Hickling, Robert; Higón-Rodriguez, Emilio; Hill, Ewan; Hill, John; Hiller, Karl Heinz; Hillier, Stephen; Hinchliffe, Ian; Hines, Elizabeth; Hirose, Minoru; Hirschbuehl, Dominic; Hobbs, John; Hod, Noam; Hodgkinson, Mark; Hodgson, Paul; Hoecker, Andreas; Hoeferkamp, Martin; Hoenig, Friedrich; Hoffmann, Dirk; Hofmann, Julia Isabell; Hohlfeld, Marc; Holmes, Tova Ray; Hong, Tae Min; Hooft van Huysduynen, Loek; Hopkins, Walter; Horii, Yasuyuki; Hostachy, Jean-Yves; Hou, Suen; Hoummada, Abdeslam; Howard, Jacob; Howarth, James; Hrabovsky, Miroslav; Hristova, Ivana; Hrivnac, Julius; Hryn'ova, Tetiana; Hsu, Catherine; Hsu, Pai-hsien Jennifer; Hsu, Shih-Chieh; Hu, Diedi; Hu, Xueye; Huang, Yanping; Hubacek, Zdenek; Hubaut, Fabrice; Huegging, Fabian; Huffman, Todd Brian; Hughes, Emlyn; Hughes, Gareth; Huhtinen, Mika; Hülsing, Tobias Alexander; Hurwitz, Martina; Huseynov, Nazim; Huston, Joey; Huth, John; Iacobucci, Giuseppe; Iakovidis, Georgios; Ibragimov, Iskander; Iconomidou-Fayard, Lydia; Ideal, Emma; Idrissi, Zineb; Iengo, Paolo; Igonkina, Olga; Iizawa, Tomoya; Ikegami, Yoichi; Ikematsu, Katsumasa; Ikeno, Masahiro; Ilchenko, Iurii; Iliadis, Dimitrios; Ilic, Nikolina; Inamaru, Yuki; Ince, Tayfun; Ioannou, Pavlos; Iodice, Mauro; Iordanidou, Kalliopi; Ippolito, Valerio; Irles Quiles, Adrian; Isaksson, Charlie; Ishino, Masaya; Ishitsuka, Masaki; Ishmukhametov, Renat; Issever, Cigdem; Istin, Serhat; Iturbe Ponce, Julia Mariana; Iuppa, Roberto; Ivarsson, Jenny; Iwanski, Wieslaw; Iwasaki, Hiroyuki; Izen, Joseph; Izzo, Vincenzo; Jackson, Brett; Jackson, Matthew; Jackson, Paul; Jaekel, Martin; Jain, Vivek; Jakobs, Karl; Jakobsen, Sune; Jakoubek, Tomas; Jakubek, Jan; Jamin, David Olivier; Jana, Dilip; Jansen, Eric; Jansen, Hendrik; Janssen, Jens; Janus, Michel; Jarlskog, Göran; Javadov, Namig; Javůrek, Tomáš; Jeanty, Laura; Jejelava, Juansher; Jeng, Geng-yuan; Jennens, David; Jenni, Peter; Jentzsch, Jennifer; Jeske, Carl; Jézéquel, Stéphane; Ji, Haoshuang; Jia, Jiangyong; Jiang, Yi; Jimenez Belenguer, Marcos; Jin, Shan; Jinaru, Adam; Jinnouchi, Osamu; Joergensen, Morten Dam; Johansson, Erik; Johansson, Per; Johns, Kenneth; Jon-And, Kerstin; Jones, Graham; Jones, Roger; Jones, Tim; Jongmanns, Jan; Jorge, Pedro; Joshi, Kiran Daniel; Jovicevic, Jelena; Ju, Xiangyang; Jung, Christian; Jungst, Ralph Markus; Jussel, Patrick; Juste Rozas, Aurelio; Kaci, Mohammed; Kaczmarska, Anna; Kado, Marumi; Kagan, Harris; Kagan, Michael; Kajomovitz, Enrique; Kalderon, Charles William; Kama, Sami; Kamenshchikov, Andrey; Kanaya, Naoko; Kaneda, Michiru; Kaneti, Steven; Kantserov, Vadim; Kanzaki, Junichi; Kaplan, Benjamin; Kapliy, Anton; Kar, Deepak; Karakostas, Konstantinos; Karastathis, Nikolaos; Kareem, Mohammad Jawad; Karnevskiy, Mikhail; Karpov, Sergey; Karpova, Zoya; Karthik, Krishnaiyengar; Kartvelishvili, Vakhtang; Karyukhin, Andrey; Kashif, Lashkar; Kasieczka, Gregor; Kass, Richard; Kastanas, Alex; Kataoka, Yousuke; Katre, Akshay; Katzy, Judith; Kaushik, Venkatesh; Kawagoe, Kiyotomo; Kawamoto, Tatsuo; Kawamura, Gen; Kazama, Shingo; Kazanin, Vassili; Kazarinov, Makhail; Keeler, Richard; Kehoe, Robert; Keller, John; Kempster, Jacob Julian; Keoshkerian, Houry; Kepka, Oldrich; Kerševan, Borut Paul; Kersten, Susanne; Kessoku, Kohei; Keung, Justin; Keyes, Robert; Khalil-zada, Farkhad; Khandanyan, Hovhannes; Khanov, Alexander; Khodinov, Alexander; Khoo, Teng Jian; Khoriauli, Gia; Khovanskiy, Valery; Khramov, Evgeniy; Khubua, Jemal; Kim, Hee Yeun; Kim, Hyeon Jin; Kim, Shinhong; Kimura, Naoki; Kind, Oliver; King, Barry; King, Matthew; King, Robert Steven Beaufoy; King, Samuel Burton; Kirk, Julie; Kiryunin, Andrey; Kishimoto, Tomoe; Kisielewska, Danuta; Kiss, Florian; Kiuchi, Kenji; Kladiva, Eduard; Klein, Max; Klein, Uta; Kleinknecht, Konrad; Klimek, Pawel; Klimentov, Alexei; Klingenberg, Reiner; Klinger, Joel Alexander; Klioutchnikova, Tatiana; Kluge, Eike-Erik; Kluit, Peter; Kluth, Stefan; Kneringer, Emmerich; Knoops, Edith; Knue, Andrea; Kobayashi, Dai; Kobayashi, Tomio; Kobel, Michael; Kocian, Martin; Kodys, Peter; Koffas, Thomas; Koffeman, Els; Kogan, Lucy Anne; Kohlmann, Simon; Kohout, Zdenek; Kohriki, Takashi; Koi, Tatsumi; Kolanoski, Hermann; Koletsou, Iro; Koll, James; Komori, Yuto; Kondo, Takahiko; Kondrashova, Nataliia; Köneke, Karsten; König, Adriaan; König, Sebastian; Kono, Takanori; Konoplich, Rostislav; Konstantinidis, Nikolaos; Kopeliansky, Revital; Koperny, Stefan; Köpke, Lutz; Kopp, Anna Katharina; Korcyl, Krzysztof; Kordas, Kostantinos; Korn, Andreas; Korol, Aleksandr; Korolkov, Ilya; Korolkova, Elena; Korotkov, Vladislav; Kortner, Oliver; Kortner, Sandra; Kostyukhin, Vadim; Kotov, Vladislav; Kotwal, Ashutosh; Kourkoumeli-Charalampidi, Athina; Kourkoumelis, Christine; Kouskoura, Vasiliki; Koutsman, Alex; Kowalewski, Robert Victor; Kowalski, Tadeusz; Kozanecki, Witold; Kozhin, Anatoly; Kramarenko, Viktor; Kramberger, Gregor; Krasnopevtsev, Dimitriy; Krasny, Mieczyslaw Witold; Krasznahorkay, Attila; Kraus, Jana; Kravchenko, Anton; Kreiss, Sven; Kretz, Moritz; Kretzschmar, Jan; Kreutzfeldt, Kristof; Krieger, Peter; Kroeninger, Kevin; Kroha, Hubert; Kroll, Joe; Kroseberg, Juergen; Krstic, Jelena; Kruchonak, Uladzimir; Krüger, Hans; Kruker, Tobias; Krumnack, Nils; Krumshteyn, Zinovii; Kruse, Amanda; Kruse, Mark; Kruskal, Michael; Kubota, Takashi; Kuday, Sinan; Kuehn, Susanne; Kugel, Andreas; Kuhl, Andrew; Kuhl, Thorsten; Kukhtin, Victor; Kulchitsky, Yuri; Kuleshov, Sergey; Kuna, Marine; Kunigo, Takuto; Kupco, Alexander; Kurashige, Hisaya; Kurochkin, Yurii; Kurumida, Rie; Kus, Vlastimil; Kuwertz, Emma Sian; Kuze, Masahiro; Kvita, Jiri; La Rosa, Alessandro; La Rotonda, Laura; Lacasta, Carlos; Lacava, Francesco; Lacey, James; Lacker, Heiko; Lacour, Didier; Lacuesta, Vicente Ramón; Ladygin, Evgueni; Lafaye, Remi; Laforge, Bertrand; Lagouri, Theodota; Lai, Stanley; Laier, Heiko; Lambourne, Luke; Lammers, Sabine; Lampen, Caleb; Lampl, Walter; Lançon, Eric; Landgraf, Ulrich; Landon, Murrough; Lang, Valerie Susanne; Lankford, Andrew; Lanni, Francesco; Lantzsch, Kerstin; Laplace, Sandrine; Lapoire, Cecile; Laporte, Jean-Francois; Lari, Tommaso; Lasagni Manghi, Federico; Lassnig, Mario; Laurelli, Paolo; Lavrijsen, Wim; Law, Alexander; Laycock, Paul; Le Dortz, Olivier; Le Guirriec, Emmanuel; Le Menedeu, Eve; LeCompte, Thomas; Ledroit-Guillon, Fabienne Agnes Marie; Lee, Claire, Alexandra; Lee, Hurng-Chun; Lee, Jason; Lee, Shih-Chang; Lee, Lawrence; Lefebvre, Guillaume; Lefebvre, Michel; Legger, Federica; Leggett, Charles; Lehan, Allan; Lehmann Miotto, Giovanna; Lei, Xiaowen; Leight, William Axel; Leisos, Antonios; Leister, Andrew Gerard; Leite, Marco Aurelio Lisboa; Leitner, Rupert; Lellouch, Daniel; Lemmer, Boris; Leney, Katharine; Lenz, Tatjana; Lenzi, Bruno; Leone, Robert; Leone, Sandra; Leonidopoulos, Christos; Leontsinis, Stefanos; Leroy, Claude; Lester, Christopher; Lester, Christopher Michael; Levchenko, Mikhail; Levêque, Jessica; Levin, Daniel; Levinson, Lorne; Levy, Mark; Lewis, Adrian; Lewis, George; Leyko, Agnieszka; Leyton, Michael; Li, Bing; Li, Bo; Li, Haifeng; Li, Ho Ling; Li, Lei; Li, Liang; Li, Shu; Li, Yichen; Liang, Zhijun; Liao, Hongbo; Liberti, Barbara; Lie, Ki; Liebal, Jessica; Liebig, Wolfgang; Limbach, Christian; Limosani, Antonio; Lin, Simon; Lin, Tai-Hua; Lindquist, Brian Edward; Linnemann, James; Lipeles, Elliot; Lipniacka, Anna; Lisovyi, Mykhailo; Liss, Tony; Lister, Alison; Litke, Alan; Liu, Bo; Liu, Dong; Liu, Jianbei; Liu, Kun; Liu, Lulu; Liu, Miaoyuan; Liu, Minghui; Liu, Yanwen; Livan, Michele; Lleres, Annick; Llorente Merino, Javier; Lloyd, Stephen; Lo Sterzo, Francesco; Lobodzinska, Ewelina; Loch, Peter; Lockman, William; Loddenkoetter, Thomas; Loebinger, Fred; Loevschall-Jensen, Ask Emil; Loginov, Andrey; Lohse, Thomas; Lohwasser, Kristin; Lokajicek, Milos; Lombardo, Vincenzo Paolo; Long, Brian Alexander; Long, Jonathan; Long, Robin Eamonn; Lopes, Lourenco; Lopez Mateos, David; Lopez Paredes, Brais; Lopez Paz, Ivan; Lorenz, Jeanette; Lorenzo Martinez, Narei; Losada, Marta; Loscutoff, Peter; Lou, XinChou; Lounis, Abdenour; Love, Jeremy; Love, Peter; Lu, Feng; Lu, Nan; Lubatti, Henry; Luci, Claudio; Lucotte, Arnaud; Luehring, Frederick; Lukas, Wolfgang; Luminari, Lamberto; Lundberg, Olof; Lund-Jensen, Bengt; Lungwitz, Matthias; Lynn, David; Lysak, Roman; Lytken, Else; Ma, Hong; Ma, Lian Liang; Maccarrone, Giovanni; Macchiolo, Anna; Machado Miguens, Joana; Macina, Daniela; Madaffari, Daniele; Madar, Romain; Maddocks, Harvey Jonathan; Mader, Wolfgang; Madsen, Alexander; Maeno, Mayuko; Maeno, Tadashi; Maevskiy, Artem; Magradze, Erekle; Mahboubi, Kambiz; Mahlstedt, Joern; Mahmoud, Sara; Maiani, Camilla; Maidantchik, Carmen; Maier, Andreas Alexander; Maio, Amélia; Majewski, Stephanie; Makida, Yasuhiro; Makovec, Nikola; Mal, Prolay; Malaescu, Bogdan; Malecki, Pawel; Maleev, Victor; Malek, Fairouz; Mallik, Usha; Malon, David; Malone, Caitlin; Maltezos, Stavros; Malyshev, Vladimir; Malyukov, Sergei; Mamuzic, Judita; Mandelli, Beatrice; Mandić, Igor; Mandrysch, Rocco; Maneira, José; Manfredini, Alessandro; Manhaes de Andrade Filho, Luciano; Manjarres Ramos, Joany Andreina; Mann, Alexander; Manning, Peter; Manousakis-Katsikakis, Arkadios; Mansoulie, Bruno; Mantifel, Rodger; Mapelli, Livio; March, Luis; Marchand, Jean-Francois; Marchiori, Giovanni; Marcisovsky, Michal; Marino, Christopher; Marjanovic, Marija; Marroquim, Fernando; Marsden, Stephen Philip; Marshall, Zach; Marti, Lukas Fritz; Marti-Garcia, Salvador; Martin, Brian; Martin, Brian; Martin, Tim; Martin, Victoria Jane; Martin dit Latour, Bertrand; Martinez, Homero; Martinez, Mario; Martin-Haugh, Stewart; Martyniuk, Alex; Marx, Marilyn; Marzin, Antoine; Masetti, Lucia; Mashimo, Tetsuro; Mashinistov, Ruslan; Masik, Jiri; Maslennikov, Alexey; Massa, Ignazio; Massa, Lorenzo; Massol, Nicolas; Mastrandrea, Paolo; Mastroberardino, Anna; Masubuchi, Tatsuya; Mättig, Peter; Mattmann, Johannes; Maurer, Julien; Maxfield, Stephen; Maximov, Dmitriy; Mazini, Rachid; Mazzaferro, Luca; Mc Goldrick, Garrin; Mc Kee, Shawn Patrick; McCarn, Allison; McCarthy, Robert; McCarthy, Tom; Mcfayden, Josh; Mchedlidze, Gvantsa; McMahon, Steve; McPherson, Robert; Mechnich, Joerg; Medinnis, Michael; Meehan, Samuel; Mehlhase, Sascha; Mehta, Andrew; Meier, Karlheinz; Meineck, Christian; Meirose, Bernhard; Melachrinos, Constantinos; Mellado Garcia, Bruce Rafael; Meloni, Federico; Mengarelli, Alberto; Menke, Sven; Meoni, Evelin; Mercurio, Kevin Michael; Mergelmeyer, Sebastian; Meric, Nicolas; Mermod, Philippe; Merola, Leonardo; Meroni, Chiara; Merritt, Frank; Merritt, Hayes; Messina, Andrea; Metcalfe, Jessica; Mete, Alaettin Serhan; Meyer, Carsten; Meyer, Christopher; Meyer, Jean-Pierre; Meyer, Jochen; Middleton, Robin; Migas, Sylwia; Mijović, Liza; Mikenberg, Giora; Mikestikova, Marcela; Mikuž, Marko; Milic, Adriana; Miller, David; Mills, Corrinne; Milov, Alexander; Milstead, David; Minaenko, Andrey; Minami, Yuto; Minashvili, Irakli; Mincer, Allen; Mindur, Bartosz; Mineev, Mikhail; Ming, Yao; Mir, Lluisa-Maria; Mitani, Takashi; Mitrevski, Jovan; Mitsou, Vasiliki A; Miucci, Antonio; Miyagawa, Paul; Mjörnmark, Jan-Ulf; Moa, Torbjoern; Mochizuki, Kazuya; Mohapatra, Soumya; Molander, Simon; Moles-Valls, Regina; Mönig, Klaus; Monini, Caterina; Monk, James; Monnier, Emmanuel; Montejo Berlingen, Javier; Monticelli, Fernando; Monzani, Simone; Moore, Roger; Morange, Nicolas; Moreno, Deywis; Moreno Llácer, María; Morettini, Paolo; Morgenstern, Marcus; Morii, Masahiro; Morisbak, Vanja; Moritz, Sebastian; Morley, Anthony Keith; Mornacchi, Giuseppe; Morris, John; Morton, Alexander; Morvaj, Ljiljana; Moser, Hans-Guenther; Mosidze, Maia; Moss, Josh; Motohashi, Kazuki; Mount, Richard; Mountricha, Eleni; Moyse, Edward; Muanza, Steve; Mudd, Richard; Mueller, Felix; Mueller, James; Mueller, Klemens; Mueller, Thibaut; Mueller, Timo; Muenstermann, Daniel; Munwes, Yonathan; Murillo Quijada, Javier Alberto; Murray, Bill; Musheghyan, Haykuhi; Musto, Elisa; Myagkov, Alexey; Myska, Miroslav; Nackenhorst, Olaf; Nadal, Jordi; Nagai, Koichi; Nagai, Ryo; Nagai, Yoshikazu; Nagano, Kunihiro; Nagarkar, Advait; Nagasaka, Yasushi; Nagata, Kazuki; Nagel, Martin; Nairz, Armin Michael; Nakahama, Yu; Nakamura, Koji; Nakamura, Tomoaki; Nakano, Itsuo; Namasivayam, Harisankar; Nanava, Gizo; Naranjo Garcia, Roger Felipe; Narayan, Rohin; Nattermann, Till; Naumann, Thomas; Navarro, Gabriela; Nayyar, Ruchika; Neal, Homer; Nechaeva, Polina; Neep, Thomas James; Nef, Pascal Daniel; Negri, Andrea; Negri, Guido; Negrini, Matteo; Nektarijevic, Snezana; Nellist, Clara; Nelson, Andrew; Nelson, Timothy Knight; Nemecek, Stanislav; Nemethy, Peter; Nepomuceno, Andre Asevedo; Nessi, Marzio; Neubauer, Mark; Neumann, Manuel; Neves, Ricardo; Newman, Paul; Nguyen, Duong Hai; Nickerson, Richard; Nicolaidou, Rosy; Nielsen, Jason; Nikiforou, Nikiforos; Nikiforov, Andriy; Nikolaenko, Vladimir; Nikolic-Audit, Irena; Nikolics, Katalin; Nikolopoulos, Konstantinos; Nilsson, Paul; Ninomiya, Yoichi; Nisati, Aleandro; Nisius, Richard; Nobe, Takuya; Nodulman, Lawrence; Nomachi, Masaharu; Nomidis, Ioannis; Norberg, Scarlet; Nordberg, Markus; Novgorodova, Olga; Nowak, Sebastian; Nozaki, Mitsuaki; Nozka, Libor; Ntekas, Konstantinos; Nunes Hanninger, Guilherme; Nunnemann, Thomas; Nurse, Emily; Nuti, Francesco; O'Brien, Brendan Joseph; O'grady, Fionnbarr; O'Neil, Dugan; O'Shea, Val; Oakham, Gerald; Oberlack, Horst; Obermann, Theresa; Ocariz, Jose; Ochi, Atsuhiko; Ochoa, Ines; Oda, Susumu; Odaka, Shigeru; Oh, Alexander; Oh, Seog; Ohm, Christian; Ohman, Henrik; Oide, Hideyuki; Okamura, Wataru; Okawa, Hideki; Okumura, Yasuyuki; Okuyama, Toyonobu; Olariu, Albert; Olivares Pino, Sebastian Andres; Oliveira Damazio, Denis; Oliver Garcia, Elena; Olszewski, Andrzej; Olszowska, Jolanta; Onofre, António; Onyisi, Peter; Oreglia, Mark; Oren, Yona; Orestano, Domizia; Orlando, Nicola; Oropeza Barrera, Cristina; Orr, Robert; Osculati, Bianca; Ospanov, Rustem; Otero y Garzon, Gustavo; Otono, Hidetoshi; Ouchrif, Mohamed; Ouellette, Eric; Ould-Saada, Farid; Ouraou, Ahmimed; Oussoren, Koen Pieter; Ouyang, Qun; Ovcharova, Ana; Owen, Mark; Ozcan, Veysi Erkcan; Ozturk, Nurcan; Pachal, Katherine; Pacheco Pages, Andres; Padilla Aranda, Cristobal; Pagáčová, Martina; Pagan Griso, Simone; Paganis, Efstathios; Pahl, Christoph; Paige, Frank; Pais, Preema; Pajchel, Katarina; Palacino, Gabriel; Palestini, Sandro; Palka, Marek; Pallin, Dominique; Palma, Alberto; Palmer, Jody; Pan, Yibin; Panagiotopoulou, Evgenia; Panduro Vazquez, William; Pani, Priscilla; Panitkin, Sergey; Pantea, Dan; Paolozzi, Lorenzo; Papadopoulou, Theodora; Papageorgiou, Konstantinos; Paramonov, Alexander; Paredes Hernandez, Daniela; Parker, Michael Andrew; Parodi, Fabrizio; Parsons, John; Parzefall, Ulrich; Pasqualucci, Enrico; Passaggio, Stefano; Pastore, Francesca; Pásztor, Gabriella; Pataraia, Sophio; Patel, Nikhul; Pater, Joleen; Patricelli, Sergio; Pauly, Thilo; Pearce, James; Pedersen, Lars Egholm; Pedersen, Maiken; Pedraza Lopez, Sebastian; Pedro, Rute; Peleganchuk, Sergey; Pelikan, Daniel; Peng, Haiping; Penning, Bjoern; Penwell, John; Perepelitsa, Dennis; Perez Codina, Estel; Pérez García-Estañ, María Teresa; Perini, Laura; Pernegger, Heinz; Perrella, Sabrina; Peschke, Richard; Peshekhonov, Vladimir; Peters, Krisztian; Peters, Yvonne; Petersen, Brian; Petersen, Troels; Petit, Elisabeth; Petridis, Andreas; Petridou, Chariclia; Petrolo, Emilio; Petrucci, Fabrizio; Pettersson, Nora Emilia; Pezoa, Raquel; Phillips, Peter William; Piacquadio, Giacinto; Pianori, Elisabetta; Picazio, Attilio; Piccaro, Elisa; Piccinini, Maurizio; Piegaia, Ricardo; Pignotti, David; Pilcher, James; Pilkington, Andrew; Pinamonti, Michele; Pinder, Alex; Pinfold, James; Pingel, Almut; Pinto, Belmiro; Pires, Sylvestre; Pitt, Michael; Pizio, Caterina; Plazak, Lukas; Pleier, Marc-Andre; Pleskot, Vojtech; Plotnikova, Elena; Plucinski, Pawel; Pluth, Daniel; Poddar, Sahill; Podlyski, Fabrice; Poettgen, Ruth; Poggioli, Luc; Pohl, David-leon; Pohl, Martin; Polesello, Giacomo; Policicchio, Antonio; Polifka, Richard; Polini, Alessandro; Pollard, Christopher Samuel; Polychronakos, Venetios; Pommès, Kathy; Pontecorvo, Ludovico; Popeneciu, Gabriel Alexandru; Popovic, Dragan; Portell Bueso, Xavier; Pospisil, Stanislav; Potamianos, Karolos; Potrap, Igor; Potter, Christina; Potter, Christopher; Poveda, Joaquin; Pozdnyakov, Valery; Pralavorio, Pascal; Pranko, Aliaksandr; Prasad, Srivas; Pravahan, Rishiraj; Prell, Soeren; Price, Darren; Price, Joe; Primavera, Margherita; Proissl, Manuel; Prokofiev, Kirill; Prokoshin, Fedor; Protopapadaki, Eftychia-sofia; Protopopescu, Serban; Proudfoot, James; Przybycien, Mariusz; Przysiezniak, Helenka; Ptacek, Elizabeth; Puddu, Daniele; Pueschel, Elisa; Puldon, David; Purohit, Milind; Puzo, Patrick; Qian, Jianming; Qin, Gang; Qin, Yang; Quadt, Arnulf; Quayle, William; Queitsch-Maitland, Michaela; Quilty, Donnchadha; Qureshi, Anum; Radescu, Voica; Radhakrishnan, Sooraj Krishnan; Radloff, Peter; Rados, Pere; Ragusa, Francesco; Rahal, Ghita; Rajagopalan, Srinivasan; Rammensee, Michael; Rangel-Smith, Camila; Rao, Kanury; Rauscher, Felix; Rave, Tobias Christian; Ravenscroft, Thomas; Raymond, Michel; Read, Alexander Lincoln; Readioff, Nathan Peter; Rebuzzi, Daniela; Redelbach, Andreas; Redlinger, George; Reece, Ryan; Reeves, Kendall; Rehnisch, Laura; Reisin, Hernan; Relich, Matthew; Rembser, Christoph; Ren, Huan; Renaud, Adrien; Rescigno, Marco; Resconi, Silvia; Rezanova, Olga; Reznicek, Pavel; Rezvani, Reyhaneh; Richter, Robert; Ridel, Melissa; Rieck, Patrick; Rieger, Julia; Rijssenbeek, Michael; Rimoldi, Adele; Rinaldi, Lorenzo; Ritsch, Elmar; Riu, Imma; Rizatdinova, Flera; Rizvi, Eram; Robertson, Steven; Robichaud-Veronneau, Andree; Robinson, Dave; Robinson, James; Robson, Aidan; Roda, Chiara; Rodrigues, Luis; Roe, Shaun; Røhne, Ole; Romaniouk, Anatoli; Romano, Marino; Romero Adam, Elena; Rompotis, Nikolaos; Ronzani, Manfredi; Roos, Lydia; Ros, Eduardo; Rosati, Stefano; Rosbach, Kilian; Rose, Matthew; Rose, Peyton; Rosendahl, Peter Lundgaard; Rosenthal, Oliver; Rossetti, Valerio; Rossi, Elvira; Rossi, Leonardo Paolo; Rosten, Rachel; Rotaru, Marina; Roth, Itamar; Rothberg, Joseph; Rousseau, David; Royon, Christophe; Rozanov, Alexandre; Rozen, Yoram; Ruan, Xifeng; Rubbo, Francesco; Rubinskiy, Igor; Rud, Viacheslav; Rudolph, Christian; Rudolph, Matthew Scott; Rühr, Frederik; Ruiz-Martinez, Aranzazu; Rurikova, Zuzana; Rusakovich, Nikolai; Ruschke, Alexander; Rutherfoord, John; Ruthmann, Nils; Ryabov, Yury; Rybar, Martin; Rybkin, Grigori; Ryder, Nick; Saavedra, Aldo; Sabato, Gabriele; Sacerdoti, Sabrina; Saddique, Asif; Sadeh, Iftach; Sadrozinski, Hartmut; Sadykov, Renat; Safai Tehrani, Francesco; Sakamoto, Hiroshi; Sakurai, Yuki; Salamanna, Giuseppe; Salamon, Andrea; Saleem, Muhammad; Salek, David; Sales De Bruin, Pedro Henrique; Salihagic, Denis; Salnikov, Andrei; Salt, José; Salvatore, Daniela; Salvatore, Pasquale Fabrizio; Salvucci, Antonio; Salzburger, Andreas; Sampsonidis, Dimitrios; Sanchez, Arturo; Sánchez, Javier; Sanchez Martinez, Victoria; Sandaker, Heidi; Sandbach, Ruth Laura; Sander, Heinz Georg; Sanders, Michiel; Sandhoff, Marisa; Sandoval, Tanya; Sandoval, Carlos; Sandstroem, Rikard; Sankey, Dave; Sansoni, Andrea; Santoni, Claudio; Santos, Helena; Santoyo Castillo, Itzebelt; Sapp, Kevin; Sapronov, Andrey; Saraiva, João; Sarrazin, Bjorn; Sartisohn, Georg; Sasaki, Osamu; Sasaki, Yuichi; Sauvan, Emmanuel; Savard, Pierre; Savu, Dan Octavian; Sawyer, Craig; Sawyer, Lee; Saxon, James; Sbarra, Carla; Sbrizzi, Antonio; Scanlon, Tim; Scannicchio, Diana; Scarcella, Mark; Scarfone, Valerio; Schaarschmidt, Jana; Schacht, Peter; Schaefer, Douglas; Schaefer, Ralph; Schaepe, Steffen; Schaetzel, Sebastian; Schäfer, Uli; Schaffer, Arthur; Schaile, Dorothee; Schamberger, R~Dean; Scharf, Veit; Schegelsky, Valery; Scheirich, Daniel; Schernau, Michael; Scherzer, Max; Schiavi, Carlo; Schieck, Jochen; Schillo, Christian; Schioppa, Marco; Schlenker, Stefan; Schmidt, Evelyn; Schmieden, Kristof; Schmitt, Christian; Schmitt, Sebastian; Schneider, Basil; Schnellbach, Yan Jie; Schnoor, Ulrike; Schoeffel, Laurent; Schoening, Andre; Schoenrock, Bradley Daniel; Schorlemmer, Andre Lukas; Schott, Matthias; Schouten, Doug; Schovancova, Jaroslava; Schramm, Steven; Schreyer, Manuel; Schroeder, Christian; Schuh, Natascha; Schultens, Martin Johannes; Schultz-Coulon, Hans-Christian; Schulz, Holger; Schumacher, Markus; Schumm, Bruce; Schune, Philippe; Schwanenberger, Christian; Schwartzman, Ariel; Schwarz, Thomas Andrew; Schwegler, Philipp; Schwemling, Philippe; Schwienhorst, Reinhard; Schwindling, Jerome; Schwindt, Thomas; Schwoerer, Maud; Sciacca, Gianfranco; Scifo, Estelle; Sciolla, Gabriella; Scuri, Fabrizio; Scutti, Federico; Searcy, Jacob; Sedov, George; Sedykh, Evgeny; Seema, Pienpen; Seidel, Sally; Seiden, Abraham; Seifert, Frank; Seixas, José; Sekhniaidze, Givi; Sekula, Stephen; Selbach, Karoline Elfriede; Seliverstov, Dmitry; Sellers, Graham; Semprini-Cesari, Nicola; Serfon, Cedric; Serin, Laurent; Serkin, Leonid; Serre, Thomas; Seuster, Rolf; Severini, Horst; Sfiligoj, Tina; Sforza, Federico; Sfyrla, Anna; Shabalina, Elizaveta; Shamim, Mansoora; Shan, Lianyou; Shang, Ruo-yu; Shank, James; Shapiro, Marjorie; Shatalov, Pavel; Shaw, Kate; Shehu, Ciwake Yusufu; Sherwood, Peter; Shi, Liaoshan; Shimizu, Shima; Shimmin, Chase Owen; Shimojima, Makoto; Shiyakova, Mariya; Shmeleva, Alevtina; Shoaleh Saadi, Diane; Shochet, Mel; Short, Daniel; Shrestha, Suyog; Shulga, Evgeny; Shupe, Michael; Shushkevich, Stanislav; Sicho, Petr; Sidiropoulou, Ourania; Sidorov, Dmitri; Sidoti, Antonio; Siegert, Frank; Sijacki, Djordje; Silva, José; Silver, Yiftah; Silverstein, Daniel; Silverstein, Samuel; Simak, Vladislav; Simard, Olivier; Simic, Ljiljana; Simion, Stefan; Simioni, Eduard; Simmons, Brinick; Simoniello, Rosa; Sinervo, Pekka; Sinev, Nikolai; Siragusa, Giovanni; Sircar, Anirvan; Sivoklokov, Serguei; Sjölin, Jörgen; Sjursen, Therese; Skottowe, Hugh Philip; Skovpen, Kirill; Skubic, Patrick; Slater, Mark; Slavicek, Tomas; Slawinska, Magdalena; Sliwa, Krzysztof; Smakhtin, Vladimir; Smart, Ben; Smestad, Lillian; Smirnov, Sergei; Smirnov, Yury; Smirnova, Lidia; Smirnova, Oxana; Smizanska, Maria; Smolek, Karel; Snesarev, Andrei; Snidero, Giacomo; Snyder, Scott; Sobie, Randall; Socher, Felix; Soffer, Abner; Soh, Dart-yin; Solans, Carlos; Solar, Michael; Solc, Jaroslav; Soldatov, Evgeny; Soldevila, Urmila; Solodkov, Alexander; Soloshenko, Alexei; Solovyanov, Oleg; Solovyev, Victor; Sommer, Philip; Song, Hong Ye; Soni, Nitesh; Sood, Alexander; Sopczak, Andre; Sopko, Bruno; Sopko, Vit; Sorin, Veronica; Sosebee, Mark; Soualah, Rachik; Soueid, Paul; Soukharev, Andrey; South, David; Spagnolo, Stefania; Spanò, Francesco; Spearman, William Robert; Spettel, Fabian; Spighi, Roberto; Spigo, Giancarlo; Spiller, Laurence Anthony; Spousta, Martin; Spreitzer, Teresa; St Denis, Richard Dante; Staerz, Steffen; Stahlman, Jonathan; Stamen, Rainer; Stamm, Soren; Stanecka, Ewa; Stanek, Robert; Stanescu, Cristian; Stanescu-Bellu, Madalina; Stanitzki, Marcel Michael; Stapnes, Steinar; Starchenko, Evgeny; Stark, Jan; Staroba, Pavel; Starovoitov, Pavel; Staszewski, Rafal; Steinberg, Peter; Stelzer, Bernd; Stelzer, Harald Joerg; Stelzer-Chilton, Oliver; Stenzel, Hasko; Stern, Sebastian; Stewart, Graeme; Stillings, Jan Andre; Stockton, Mark; Stoebe, Michael; Stoicea, Gabriel; Stolte, Philipp; Stonjek, Stefan; Stradling, Alden; Straessner, Arno; Stramaglia, Maria Elena; Strandberg, Jonas; Strandberg, Sara; Strauss, Emanuel; Strauss, Michael; Strizenec, Pavol; Ströhmer, Raimund; Strom, David; Stroynowski, Ryszard; Strubig, Antonia; Stucci, Stefania Antonia; Stugu, Bjarne; Styles, Nicholas Adam; Su, Dong; Su, Jun; Subramaniam, Rajivalochan; Succurro, Antonella; Sugaya, Yorihito; Suhr, Chad; Suk, Michal; Sulin, Vladimir; Sultansoy, Saleh; Sumida, Toshi; Sun, Siyuan; Sun, Xiaohu; Sundermann, Jan Erik; Suruliz, Kerim; Sutton, Mark; Suzuki, Yu; Svatos, Michal; Swedish, Stephen; Swiatlowski, Maximilian; Sykora, Ivan; Sykora, Tomas; Ta, Duc; Taccini, Cecilia; Tackmann, Kerstin; Taenzer, Joe; Taffard, Anyes; Tafirout, Reda; Taiblum, Nimrod; Takai, Helio; Takashima, Ryuichi; Takeda, Hiroshi; Takeshita, Tohru; Takubo, Yosuke; Talby, Mossadek; Talyshev, Alexey; Tam, Jason; Tan, Kong Guan; Tanaka, Junichi; Tanaka, Reisaburo; Tanaka, Shuji; Tanasijczuk, Andres Jorge; Tannenwald, Benjamin Bordy; Tannoury, Nancy; Tapprogge, Stefan; Tarem, Shlomit; Tarrade, Fabien; Tartarelli, Giuseppe Francesco; Tas, Petr; Tasevsky, Marek; Tashiro, Takuya; Tassi, Enrico; Tavares Delgado, Ademar; Tayalati, Yahya; Taylor, Frank; Taylor, Geoffrey; Taylor, Wendy; Teischinger, Florian Alfred; Teixeira Dias Castanheira, Matilde; Teixeira-Dias, Pedro; Temming, Kim Katrin; Ten Kate, Herman; Teng, Ping-Kun; Teoh, Jia Jian; Terada, Susumu; Terashi, Koji; Terron, Juan; Terzo, Stefano; Testa, Marianna; Teuscher, Richard; Therhaag, Jan; Theveneaux-Pelzer, Timothée; Thomas, Juergen; Thomas-Wilsker, Joshuha; Thompson, Emily; Thompson, Paul; Thompson, Peter; Thompson, Stan; Thomsen, Lotte Ansgaard; Thomson, Evelyn; Thomson, Mark; Thong, Wai Meng; Tian, Feng; Tibbetts, Mark James; Tikhomirov, Vladimir; Tikhonov, Yury; Timoshenko, Sergey; Tiouchichine, Elodie; Tipton, Paul; Tisserant, Sylvain; Todorov, Theodore; Todorova-Nova, Sharka; Tojo, Junji; Tokár, Stanislav; Tokushuku, Katsuo; Tollefson, Kirsten; Tolley, Emma; Tomlinson, Lee; Tomoto, Makoto; Tompkins, Lauren; Toms, Konstantin; Torrence, Eric; Torres, Heberth; Torró Pastor, Emma; Toth, Jozsef; Touchard, Francois; Tovey, Daniel; Tran, Huong Lan; Trefzger, Thomas; Tremblet, Louis; Tricoli, Alessandro; Trigger, Isabel Marian; Trincaz-Duvoid, Sophie; Tripiana, Martin; Trischuk, William; Trocmé, Benjamin; Troncon, Clara; Trottier-McDonald, Michel; Trovatelli, Monica; True, Patrick; Trzebinski, Maciej; Trzupek, Adam; Tsarouchas, Charilaos; Tseng, Jeffrey; Tsiareshka, Pavel; Tsionou, Dimitra; Tsipolitis, Georgios; Tsirintanis, Nikolaos; Tsiskaridze, Shota; Tsiskaridze, Vakhtang; Tskhadadze, Edisher; Tsukerman, Ilya; Tsulaia, Vakhtang; Tsuno, Soshi; Tsybychev, Dmitri; Tudorache, Alexandra; Tudorache, Valentina; Tuna, Alexander Naip; Tupputi, Salvatore; Turchikhin, Semen; Turecek, Daniel; Turra, Ruggero; Turvey, Andrew John; Tuts, Michael; Tykhonov, Andrii; Tylmad, Maja; Uchida, Kirika; Ueda, Ikuo; Ueno, Ryuichi; Ughetto, Michael; Ugland, Maren; Uhlenbrock, Mathias; Ukegawa, Fumihiko; Unal, Guillaume; Undrus, Alexander; Unel, Gokhan; Ungaro, Francesca; Unno, Yoshinobu; Unverdorben, Christopher; Urban, Jozef; Urbaniec, Dustin; Urquijo, Phillip; Usai, Giulio; Usanova, Anna; Vacavant, Laurent; Vacek, Vaclav; Vachon, Brigitte; Valencic, Nika; Valentinetti, Sara; Valero, Alberto; Valery, Loic; Valkar, Stefan; Valladolid Gallego, Eva; Vallecorsa, Sofia; Valls Ferrer, Juan Antonio; Van Den Wollenberg, Wouter; Van Der Deijl, Pieter; van der Geer, Rogier; van der Graaf, Harry; Van Der Leeuw, Robin; van der Ster, Daniel; van Eldik, Niels; van Gemmeren, Peter; Van Nieuwkoop, Jacobus; van Vulpen, Ivo; van Woerden, Marius Cornelis; Vanadia, Marco; Vandelli, Wainer; Vanguri, Rami; Vaniachine, Alexandre; Vankov, Peter; Vannucci, Francois; Vardanyan, Gagik; Vari, Riccardo; Varnes, Erich; Varol, Tulin; Varouchas, Dimitris; Vartapetian, Armen; Varvell, Kevin; Vazeille, Francois; Vazquez Schroeder, Tamara; Veatch, Jason; Veloso, Filipe; Veneziano, Stefano; Ventura, Andrea; Ventura, Daniel; Venturi, Manuela; Venturi, Nicola; Venturini, Alessio; Vercesi, Valerio; Verducci, Monica; Verkerke, Wouter; Vermeulen, Jos; Vest, Anja; Vetterli, Michel; Viazlo, Oleksandr; Vichou, Irene; Vickey, Trevor; Vickey Boeriu, Oana Elena; Viehhauser, Georg; Viel, Simon; Vigne, Ralph; Villa, Mauro; Villaplana Perez, Miguel; Vilucchi, Elisabetta; Vincter, Manuella; Vinogradov, Vladimir; Virzi, Joseph; Vivarelli, Iacopo; Vives Vaque, Francesc; Vlachos, Sotirios; Vladoiu, Dan; Vlasak, Michal; Vogel, Adrian; Vogel, Marcelo; Vokac, Petr; Volpi, Guido; Volpi, Matteo; von der Schmitt, Hans; von Radziewski, Holger; von Toerne, Eckhard; Vorobel, Vit; Vorobev, Konstantin; Vos, Marcel; Voss, Rudiger; Vossebeld, Joost; Vranjes, Nenad; Vranjes Milosavljevic, Marija; Vrba, Vaclav; Vreeswijk, Marcel; Vuillermet, Raphael; Vukotic, Ilija; Vykydal, Zdenek; Wagner, Peter; Wagner, Wolfgang; Wahlberg, Hernan; Wahrmund, Sebastian; Wakabayashi, Jun; Walder, James; Walker, Rodney; Walkowiak, Wolfgang; Wall, Richard; Waller, Peter; Walsh, Brian; Wang, Chao; Wang, Chiho; Wang, Fuquan; Wang, Haichen; Wang, Hulin; Wang, Jike; Wang, Jin; Wang, Kuhan; Wang, Rui; Wang, Song-Ming; Wang, Tan; Wang, Xiaoxiao; Wanotayaroj, Chaowaroj; Warburton, Andreas; Ward, Patricia; Wardrope, David Robert; Washbrook, Andrew; Wasicki, Christoph; Watkins, Peter; Watson, Alan; Watson, Ian; Watson, Miriam; Watts, Gordon; Watts, Stephen; Waugh, Ben; Webb, Samuel; Weber, Michele; Weber, Stefan Wolf; Webster, Jordan S; Weidberg, Anthony; Weinert, Benjamin; Weingarten, Jens; Weiser, Christian; Weits, Hartger; Wells, Phillippa; Wenaus, Torre; Wendland, Dennis; Weng, Zhili; Wengler, Thorsten; Wenig, Siegfried; Wermes, Norbert; Werner, Matthias; Werner, Per; Wessels, Martin; Wetter, Jeffrey; Whalen, Kathleen; White, Andrew; White, Martin; White, Ryan; Whiteson, Daniel; Wickens, Fred; Wiedenmann, Werner; Wielers, Monika; Wienemann, Peter; Wiglesworth, Craig; Wiik-Fuchs, Liv Antje Mari; Wijeratne, Peter Alexander; Wildauer, Andreas; Wildt, Martin Andre; Wilkens, Henric George; Williams, Hugh; Williams, Sarah; Willis, Christopher; Willocq, Stephane; Wilson, Alan; Wilson, John; Wingerter-Seez, Isabelle; Winklmeier, Frank; Winter, Benedict Tobias; Wittgen, Matthias; Wittig, Tobias; Wittkowski, Josephine; Wollstadt, Simon Jakob; Wolter, Marcin Wladyslaw; Wolters, Helmut; Wosiek, Barbara; Wotschack, Jorg; Woudstra, Martin; Wozniak, Krzysztof; Wright, Michael; Wu, Mengqing; Wu, Sau Lan; Wu, Xin; Wu, Yusheng; Wulf, Evan; Wyatt, Terry Richard; Wynne, Benjamin; Xella, Stefania; Xiao, Meng; Xu, Da; Xu, Lailin; Yabsley, Bruce; Yacoob, Sahal; Yakabe, Ryota; Yamada, Miho; Yamaguchi, Hiroshi; Yamaguchi, Yohei; Yamamoto, Akira; Yamamoto, Shimpei; Yamamura, Taiki; Yamanaka, Takashi; Yamauchi, Katsuya; Yamazaki, Yuji; Yan, Zhen; Yang, Haijun; Yang, Hongtao; Yang, Un-Ki; Yang, Yi; Yanush, Serguei; Yao, Liwen; Yao, Weiming; Yasu, Yoshiji; Yatsenko, Elena; Yau Wong, Kaven Henry; Ye, Jingbo; Ye, Shuwei; Yeletskikh, Ivan; Yen, Andy L; Yildirim, Eda; Yilmaz, Metin; Yoosoofmiya, Reza; Yorita, Kohei; Yoshida, Rikutaro; Yoshihara, Keisuke; Young, Charles; Young, Christopher John; Youssef, Saul; Yu, David Ren-Hwa; Yu, Jaehoon; Yu, Jiaming; Yu, Jie; Yuan, Li; Yurkewicz, Adam; Yusuff, Imran; Zabinski, Bartlomiej; Zaidan, Remi; Zaitsev, Alexander; Zaman, Aungshuman; Zambito, Stefano; Zanzi, Daniele; Zeitnitz, Christian; Zeman, Martin; Zemla, Andrzej; Zengel, Keith; Zenin, Oleg; Ženiš, Tibor; Zerwas, Dirk; Zevi della Porta, Giovanni; Zhang, Dongliang; Zhang, Fangzhou; Zhang, Jinlong; Zhang, Lei; Zhang, Ruiqi; Zhang, Xueyao; Zhang, Zhiqing; Zhao, Yongke; Zhao, Zhengguo; Zhemchugov, Alexey; Zhong, Jiahang; Zhou, Bing; Zhou, Lei; Zhou, Ning; Zhu, Cheng Guang; Zhu, Hongbo; Zhu, Junjie; Zhu, Yingchun; Zhuang, Xuai; Zhukov, Konstantin; Zibell, Andre; Zieminska, Daria; Zimine, Nikolai; Zimmermann, Christoph; Zimmermann, Robert; Zimmermann, Simone; Zimmermann, Stephanie; Zinonos, Zinonas; Ziolkowski, Michael; Zobernig, Georg; Zoccoli, Antonio; zur Nedden, Martin; Zurzolo, Giovanni; Zutshi, Vishnu; Zwalinski, Lukasz

    2014-01-01

    A search for scalar particles decaying via narrow resonances into two photons in the mass range $65-600$ GeV is performed using 20.3 fb$^{-1}$ of $\\sqrt{s}$ = 8 TeV $pp$ collision data collected with the ATLAS detector at the Large Hadron Collider. The recently discovered Higgs boson is treated as a background. No significant evidence for an additional signal is observed. The results are presented as limits at the 95 % confidence level on the production cross-section of a scalar boson times branching ratio into two photons, in a fiducial volume where the reconstruction efficiency is approximately independent of the event topology. The upper limits set extend over a considerably wider mass range than previous searches.

  8. Studies of topological distributions of inclusive three- and four-jet events in p¯p collisions at s=1800 GeV with the D0 detector

    Science.gov (United States)

    Abachi, S.; Abbott, B.; Abolins, M.; Acharya, B. S.; Adam, I.; Adams, D. L.; Adams, M.; Ahn, S.; Aihara, H.; Alitti, J.; Álvarez, G.; Alves, G. A.; Amidi, E.; Amos, N.; Anderson, E. W.; Aronson, S. H.; Astur, R.; Avery, R. E.; Baden, A.; Balamurali, V.; Balderston, J.; Baldin, B.; Bantly, J.; Bartlett, J. F.; Bazizi, K.; Bendich, J.; Beri, S. B.; Bertram, I.; Bezzubov, V. A.; Bhat, P. C.; Bhatnagar, V.; Bhattacharjee, M.; Bischoff, A.; Biswas, N.; Blazey, G.; Blessing, S.; Bloom, P.; Boehnlein, A.; Bojko, N. I.; Borcherding, F.; Borders, J.; Boswell, C.; Brandt, A.; Brock, R.; Bross, A.; Buchholz, D.; Burtovoi, V. S.; Butler, J. M.; Carvalho, W.; Casey, D.; Castilla-Valdez, H.; Chakraborty, D.; Chang, S.-M.; Chekulaev, S. V.; Chen, L.-P.; Chen, W.; Chevalier, L.; Chopra, S.; Choudhary, B. C.; Christenson, J. H.; Chung, M.; Claes, D.; Clark, A. R.; Cobau, W. G.; Cochran, J.; Cooper, W. E.; Cretsinger, C.; Cullen-Vidal, D.; Cummings, M. A.; Cutts, D.; Dahl, O. I.; de, K.; Demarteau, M.; Demina, R.; Denisenko, K.; Denisenko, N.; Denisov, D.; Denisov, S. P.; Dharmaratna, W.; Diehl, H. T.; Diesburg, M.; di Loreto, G.; Dixon, R.; Draper, P.; Drinkard, J.; Ducros, Y.; Dugad, S. R.; Durston-Johnson, S.; Edmunds, D.; Ellison, J.; Elvira, V. D.; Engelmann, R.; Eno, S.; Eppley, G.; Ermolov, P.; Eroshin, O. V.; Evdokimov, V. N.; Fahey, S.; Fahland, T.; Fatyga, M.; Fatyga, M. K.; Featherly, J.; Feher, S.; Fein, D.; Ferbel, T.; Finocchiaro, G.; Fisk, H. E.; Fisyak, Y.; Flattum, E.; Forden, G. E.; Fortner, M.; Frame, K. C.; Franzini, P.; Fuess, S.; Gallas, E.; Galyaev, A. N.; Gao, S. G.; Geld, T. L.; Genik, R. J.; Genser, K.; Gerber, C. E.; Gibbard, B.; Glebov, V.; Glenn, S.; Gobbi, B.; Goforth, M.; Goldschmidt, A.; Gómez, B.; Goncharov, P. I.; González Solís, J. L.; Gordon, H.; Goss, L. T.; Graf, N.; Grannis, P. D.; Green, D. R.; Green, J.; Greenlee, H.; Griffin, G.; Grossman, N.; Grudberg, P.; Grünendahl, S.; Gu, W. X.; Guglielmo, G.; Guida, J. A.; Guida, J. M.; Guryn, W.; Gurzhiev, S. N.; Gutierrez, P.; Gutnikov, Y. E.; Hadley, N. J.; Haggerty, H.; Hagopian, S.; Hagopian, V.; Hahn, K. S.; Hall, R. E.; Hansen, S.; Hatcher, R.; Hauptman, J. M.; Hedin, D.; Heinson, A. P.; Heintz, U.; Hernández-Montoya, R.; Heuring, T.; Hirosky, R.; Hobbs, J. D.; Hoeneisen, B.; Hoftun, J. S.; Hsieh, F.; Hu, Tao; Hu, Ting; Hu, Tong; Huehn, T.; Igarashi, S.; Ito, A. S.; James, E.; Jaques, J.; Jerger, S. A.; Jiang, J. Z.; Joffe-Minor, T.; Johari, H.; Johns, K.; Johnson, M.; Johnstad, H.; Jonckheere, A.; Jones, M.; Jöstlein, H.; Jun, S. Y.; Jung, C. K.; Kahn, S.; Kalbfleisch, G.; Kang, J. S.; Kehoe, R.; Kelly, M. L.; Kernan, A.; Kerth, L.; Kim, C. L.; Kim, S. K.; Klatchko, A.; Klima, B.; Klochkov, B. I.; Klopfenstein, C.; Klyukhin, V. I.; Kochetkov, V. I.; Kohli, J. M.; Koltick, D.; Kostritskiy, A. V.; Kotcher, J.; Kourlas, J.; Kozelov, A. V.; Kozlovski, E. A.; Krishnaswamy, M. R.; Krzywdzinski, S.; Kunori, S.; Lami, S.; Landsberg, G.; Lebrat, J.-F.; Leflat, A.; Li, H.; Li, J.; Li, Y. K.; Li-Demarteau, Q. Z.; Lima, J. G.; Lincoln, D.; Linn, S. L.; Linnemann, J.; Lipton, R.; Liu, Y. C.; Lobkowicz, F.; Loken, S. C.; Lökös, S.; Lueking, L.; Lyon, A. L.; Maciel, A. K.; Madaras, R. J.; Madden, R.; Mandrichenko, I. V.; Mangeot, Ph.; Mani, S.; Mansoulié, B.; Mao, H. S.; Margulies, S.; Markeloff, R.; Markosky, L.; Marshall, T.; Martin, M. I.; Marx, M.; May, B.; Mayorov, A. A.; McCarthy, R.; McKibben, T.; McKinley, J.; McMahon, T.; Melanson, H. L.; de Mello Neto, J. R.; Merritt, K. W.; Miettinen, H.; Milder, A.; Mincer, A.; de Miranda, J. M.; Mishra, C. S.; Mohammadi-Baarmand, M.; Mokhov, N.; Mondal, N. K.; Montgomery, H. E.; Mooney, P.; Mudan, M.; Murphy, C.; Murphy, C. T.; Nang, F.; Narain, M.; Narasimham, V. S.; Narayanan, A.; Neal, H. A.; Negret, J. P.; Neis, E.; Nemethy, P.; NešiĆ, D.; Nicola, M.; Norman, D.; Oesch, L.; Oguri, V.; Oltman, E.; Oshima, N.; Owen, D.; Padley, P.; Pang, M.; Para, A.; Park, C. H.; Park, Y. M.; Partridge, R.; Parua, N.; Paterno, M.; Perkins, J.; Peryshkin, A.; Peters, M.; Piekarz, H.; Pischalnikov, Y.; Pluquet, A.; Podstavkov, V. M.; Pope, B. G.; Prosper, H. B.; Protopopescu, S.; Pušeljić, D.; Qian, J.; Quintas, P. Z.; Raja, R.; Rajagopalan, S.; Ramirez, O.; Rao, M. V.; Rapidis, P. A.; Rasmussen, L.; Read, A. L.; Reucroft, S.; Rijssenbeek, M.; Rockwell, T.; Roe, N. A.; Rubinov, P.; Ruchti, R.; Rusin, S.; Rutherfoord, J.; Santoro, A.; Sawyer, L.; Schamberger, R. D.; Schellman, H.; Sculli, J.; Shabalina, E.; Shaffer, C.; Shankar, H. C.; Shao, Y. Y.; Shivpuri, R. K.; Shupe, M.; Singh, J. B.; Sirotenko, V.; Smart, W.; Smith, A.; Smith, R. P.; Snihur, R.; Snow, G. R.; Snyder, S.; Solomon, J.; Sood, P. M.; Sosebee, M.; Souza, M.; Spadafora, A. L.; Stephens, R. W.; Stevenson, M. L.; Stewart, D.; Stoianova, D. A.; Stoker, D.; Streets, K.; Strovink, M.; Sznajder, A.; Taketani, A.; Tamburello, P.; Tarazi, J.; Tartaglia, M.; Taylor, T. L.; Teiger, J.; Thompson, J.; Trippe, T. G.; Tuts, P. M.; Varelas, N.; Varnes, E. W.; Virador, P. R.; Vititoe, D.; Volkov, A. A.; Vorobiev, A. P.; Wahl, H. D.; Wang, G.; Wang, J.; Warchol, J.; Wayne, M.; Weerts, H.; Wen, F.; Wenzel, W. A.; White, A.; White, J. T.; Wightman, J. A.; Wilcox, J.; Willis, S.; Wimpenny, S. J.; Wirjawan, J. V.; Womersley, J.; Won, E.; Wood, D. R.; Xu, H.; Yamada, R.; Yamin, P.; Yanagisawa, C.; Yang, J.; Yasuda, T.; Yoshikawa, C.; Youssef, S.; Yu, J.; Yu, Y.; Zhang, D. H.; Zhang, Y.; Zhu, Q.; Zhu, Z. H.; Zieminska, D.; Zieminski, A.; Zylberstejn, A.

    1996-06-01

    The global topologies of inclusive three- and four-jet events produced in p¯p interactions are described. The three- and four-jet events are selected from data recorded by the D0 detector at the Fermilab Tevatron Collider operating at a center-of-mass energy of √s=1800 GeV. The measured, normalized distributions of various topological variables are compared with parton-level predictions of tree-level QCD calculations. The parton-level QCD calculations are found to be in good agreement with the data. The studies also show that the topological distributions of the different subprocesses involving different numbers of quarks are very similar and reproduce the measured distributions well. The parton-shower Monte Carlo generators provide a less satisfactory description of the topologies of the three- and four-jet events.

  9. Studies of topological distributions of the three- and four-jet events in {bar p}p collisions at {radical}s = 1800 GeV with the D0 detector

    Energy Technology Data Exchange (ETDEWEB)

    Abachi, S.; D0 Collaboration

    1995-07-01

    The global topologies of three- and four-jet events produced in {bar p}p interactions are described. the three- and four-jet events are selected from data recorded by the D0 detector at the Tevatron Collider operating at a center-of-mass energy of {radical}s = 1800 GeV. the measured normalized distributions of various topological variables are compared with parton-level predictions of the tree- level QCD calculations. The parton-level QCD calculations are found to be in good agreement with the data. The studies also show that the topological distributions of the different subprocesses involving different numbers of quarks are very similar and reproduce the measured distributions well.

  10. Development of segmented germanium detectors for neutrinoless double beta decay experiments

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jing

    2009-06-09

    The results from neutrino oscillation experiments indicate that at least two neutrinos have mass. However, the value of the masses and whether neutrinos and anti-neutrinos are identical, i.e., Majorana particles, remain unknown. Neutrinoless double beta decay experiments can help to improve our understanding in both cases and are the only method currently possible to tackle the second question. The GERmanium Detector Array (GERDA) experiment, which will search for the neutrinoless double beta decay of {sup 76}Ge, is currently under construction in Hall A of the INFN Gran Sasso National Laboratory (LNGS), Italy. In order to achieve an extremely low background level, segmented germanium detectors are considered to be operated directly in liquid argon which serves simultaneously as cooling and shielding medium. Several test cryostats were built at the Max-Planck-Institut fuer Physik in Muenchen to operate segmented germanium detectors both in vacuum and submerged in cryogenic liquid. The performance and the background discrimination power of segmented germanium detectors were studied in detail. It was proven for the first time that segmented germanium detectors can be operated stably over long periods submerged in a cryogenic liquid. It was confirmed that the segmentation scheme employed does well in the identification of photon induced background and demonstrated for the first time that also neutron interactions can be identified. The C++ Monte Carlo framework, MaGe (Majorana-GERDA), is a joint development of the Majorana and GERDA collaborations. It is based on GEANT4, but tailored especially to simulate the response of ultra-low background detectors to ionizing radiation. The predictions of the simulation were veri ed to be accurate for a wide range of conditions. Some shortcomings were found and corrected. Pulse shape analysis is complementary to segmentation in identifying background events. Its efficiency can only be correctly determined using reliable pulse

  11. GeSn/Ge heterostructure short-wave infrared photodetectors on silicon.

    Science.gov (United States)

    Gassenq, A; Gencarelli, F; Van Campenhout, J; Shimura, Y; Loo, R; Narcy, G; Vincent, B; Roelkens, G

    2012-12-03

    A surface-illuminated photoconductive detector based on Ge0.91Sn0.09 quantum wells with Ge barriers grown on a silicon substrate is demonstrated. Photodetection up to 2.2µm is achieved with a responsivity of 0.1 A/W for 5V bias. The spectral absorption characteristics are analyzed as a function of the GeSn/Ge heterostructure parameters. This work demonstrates that GeSn/Ge heterostructures can be used to developed SOI waveguide integrated photodetectors for short-wave infrared applications.

  12. A Search for Lepton-Flavor-Violating Decays of the 125 GeV Higgs Boson with Hadronically Decaying Tau Leptons in the 20.3 inverse fembtobarns using the $\\sqrt{s}=8$ TeV Dataset Collected in 2012 by the ATLAS Detector at the Large Hadron Collider

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00287453

    A Search for Lepton-Flavor-Violating Decays of the 125 GeV Higgs Boson with Hadronically Decaying Tau Leptons in the $20.3 fb^1$ proton-proton $\\sqrt{s}= 8$ TeV Dataset collected in 2012 by the ATLAS Detector at the Large Hadron Collider is reported.

  13. Cryogenics for LHC experiments

    CERN Multimedia

    2001-01-01

    Cryogenic systems will be used by LHC experiments to maximize their performance. Institutes around the world are collaborating with CERN in the construction of these very low temperature systems. The cryogenic test facility in hall 180 for ATLAS magnets. High Energy Physics experiments have frequently adopted cryogenic versions of their apparatus to achieve optimal performance, and those for the LHC will be no exception. The two largest experiments for CERN's new flagship accelerator, ATLAS and CMS, will both use large superconducting magnets operated at 4.5 Kelvin - almost 270 degrees below the freezing point of water. ATLAS also includes calorimeters filled with liquid argon at 87 Kelvin. For the magnets, the choice of a cryogenic version was dictated by a combination economy and transparency to emerging particles. For the calorimeters, liquid argon was selected as the fluid best suited to the experiment's physics requirements. High Energy Physics experiments are the result of worldwide collaborations and...

  14. Advances in Cryogenic Principles

    Science.gov (United States)

    Barron, R. F.

    During the past 50 years, the use of digital computers has significantly influenced the design and analysis of cryogenic systems. At the time when the first Cryogenic Engineering Conference was held, thermodynamic data were presented in graphical or tabular form (the "steam table" format), whereas thermodynamic data for cryogenic system design is computer generated today. The thermal analysis of cryogenic systems in the 1950s involved analytical solutions, graphical solutions, and relatively simple finite-difference approaches. These approaches have been supplanted by finite-element numerical programs which readily solve complicated thermal problems that could not be solved easily using the methods of the 1950s. In distillation column design, the use of the McCabe-Thiele graphical method for determination of the number of theoretical plates has been replaced by numerical methods that allow consideration of several different components in the feed and product streams.

  15. Electro-magnetic physics studies at RHIC: Neutral pion production, direct photon HBT, photon elliptic flow in gold-gold collisions at sqrt(s_NN) = 200 GeV and the Muon Telescope Detector simulation

    Science.gov (United States)

    Lin, Guoji

    Electro-magnetic (E&M) probes such as direct photons and muons (mu) are important tools to study the properties of the extremely hot and dense matter created in heavy ion collisions at the Relativistic Heavy Ion Collider (RHIC). In this thesis, several topics of E&M physics will be addressed, including neutral pion (pi0) production, direct photon HBT, and photon elliptic flow (v2) in Au+Au collisions at sNN = 200 GeV. A discussion on the simulation study of the new Muon Telescope Detector (MTD) will also be presented. The pi0 production is a fundamental measurement of hadron production and prerequisite for the background study of direct photons. Neutral pions are reconstructed using the photons detected by the STAR Barrel Electro-magnetic Calorimeter (BEMC) and the Time Projection Chamber (TPC). Spectra of pi 0 are measured at transverse momentum 1 information of the system size throughout the whole collision. A first attempt of direct photon HBT study at RHIC in 200 GeV Au+Au collisions is done using photons detected by the STAR BEMC and TPC. All unknown correlation at small Qinv is observed, whose magnitude is much larger than the expected HBT signal, and possible causes of the correlation will be discussed. Direct photon elliptic flow (v2) at intermediate to high pT is sensitive to the source of direct photon production. Results of inclusive photon v2 in 200 GeV Au+Au collisions are presented. The v2 of pi0 decay photons is calculated from the previously published pi results. The comparison between inclusive and decay photon v 2 indicates that direct photon v2 is small. A new large-area Muon Telescope Detector at mid-rapidity at RHIC is proposed and under investigation, using the Long-strip Multi-Gap Resistive Plate Chamber (Long-MRPC). Simulations indicate that the MTD can effectively identify mu and reject hadron backgrounds, and it can serve as a mu trigger. A beam test result of the Long-MRPC at Fermi National Accelerator Laboratory (FNAL) is also discussed.

  16. Signals induced by charge-trapping in EDELWEISS FID detectors: analytical modeling and applications

    CERN Document Server

    Arnaud, Q; Augier, C; Benoît, A; Bergé, L; Billard, J; Blümer, J; de Boissière, T; Broniatowski, A; Camus, P; Cazes, A; Chapellier, M; Charlieux, F; Dumoulin, L; Eitel, K; Foerster, N; Fourches, N; Gascon, J; Giuliani, A; Gros, M; Hehn, L; Heuermann, G; Juillard, A; De Jésus, M; Kleifges, M; Kozlov, V; Kraus, H; Kudryavtsev, V A; Kéfélian, C; Le-Sueur, H; Lin, J; Marnieros, S; Navick, X -F; Nones, C; Olivieri, E; Pari, P; Paul, B; Piro, M -C; Poda, D; Queguiner, E; Rozov, S; Sanglard, V; Schmidt, B; Scorza, S; Siebenborn, B; Tcherniakhovski, D; Vagneron, L; Weber, M; Yakushev, E

    2016-01-01

    The EDELWEISS-III direct dark matter search experiment uses cryogenic HP-Ge detectors Fully covered with Inter-Digitized electrodes (FID). They are operated at low fields ($<1\\;\\mathrm{V/cm}$), and as a consequence charge-carrier trapping significantly affects both the ionization and heat energy measurements. This paper describes an analytical model of the signals induced by trapped charges in FID detectors based on the Shockley-Ramo theorem. It is used to demonstrate that veto electrodes, initially designed for the sole purpose of surface event rejection, can be used to provide a sensitivity to the depth of the energy deposits, characterize the trapping in the crystals, perform heat and ionization energy corrections and improve the ionization baseline resolutions. These procedures are applied successfully to actual data.

  17. Measurement of the cosmogenic activation of germanium detectors in EDELWEISS-III

    CERN Document Server

    Armengaud, E; Augier, C; Benoît, A; Bergé, L; Billard, J; Blümer, J; de Boissière, T; Broniatowski, A; Camus, P; Cazes, A; Chapellier, M; Charlieux, F; De Jésus, M; Dumoulin, L; Eitel, K; Foerster, N; Gascon, J; Giuliani, A; Gros, M; Hehn, L; Heuermann, G; Jin, Y; Juillard, A; Kéfélian, C; Kleifges, M; Kozlov, V; Kraus, H; Kudryavtsev, V A; Le-Sueur, H; Marnieros, S; Navick, X -F; Nones, C; Olivieri, E; Pari, P; Paul, B; Piro, M -C; Poda, D; Queguiner, E; Rozov, S; Sanglard, V; Schmidt, B; Scorza, S; Siebenborn, B; Tcherniakhovski, D; Vagneron, L; Weber, M; Yakushev, E

    2016-01-01

    We present a measurement of the cosmogenic activation in the germanium cryogenic detectors of the EDELWEISS III direct dark matter search experiment. The decay rates measured in detectors with different exposures to cosmic rays above ground are converted into production rates of different isotopes. The measured production rates in units of nuclei/kg/day are 82 $\\pm$ 21 for $^3$H, 2.8 $\\pm$ 0.6 for $^{49}$V, 4.6 $\\pm$ 0.7 for $^{55}$Fe, and 106 $\\pm$ 13 for $^{65}$Zn. These results are the most accurate for these isotopes. A lower limit on the production rate of $^{68}$Ge of 74 nuclei/kg/day is also presented. They are compared to model predictions present in literature and to estimates calculated with the ACTIVIA code.

  18. Results on low mass WIMPs using an upgraded CRESST-II detector

    CERN Document Server

    Angloher, G; Bucci, C; Canonica, L; Erb, A; Feilitzsch, F v; Iachellini, N Ferreiro; Gorla, P; Gütlein, A; Hauff, D; Huff, P; Jochum, J; Kiefer, M; Kister, C; Kluck, H; Kraus, H; Lanfranchi, J -C; Loebell, J; Münster, A; Petricca, F; Potzel, W; Pröbst, F; Reindl, F; Roth, S; Rottler, K; Sailer, C; Schäffner, K; Schieck, J; Schmaler, J; Scholl, S; Schönert, S; Seidel, W; Sivers, M v; Stodolsky, L; Strandhagen, C; Strauss, R; Tanzke, A; Uffinger, M; Ulrich, A; Usherov, I; Wüstrich, M; Wawoczny, S; Willers, M; Zöller, A

    2014-01-01

    The CRESST-II cryogenic dark matter search aims for the detection of WIMPs via elastic scattering off nuclei in CaWO$_4$ crystals. We present results from a low-threshold analysis of a single upgraded detector module. This module efficiently vetoes low energy backgrounds induced by $\\alpha$-decays on inner surfaces of the detector. With an exposure of 29.35 kg live days collected in 2013 we set a limit on spin-independent WIMP-nucleon scattering which probes a new region of parameter space for WIMP masses below 3 GeV/c$^2$, previously not covered in direct detection searches. A possible excess over background discussed for the previous run (from 2009 to 2011) is not confirmed.

  19. Demonstration of Surface Electron Rejection with Interleaved Germanium Detectors for Dark Matter Search

    CERN Document Server

    Agnese, R; Balakishiyeva, D; Thakur, R Basu; Bauer, D A; Borgland, A; Brandt, D; Brink, P L; Bunker, R; Cabrera, B; Caldwell, D O; Cerdeno, D G; Chagani, H; Cherry, M; Cooley, J; Cornell, B; Crewdson, C H; Cushman, P; Daal, M; Di Stefano, P C F; Silva, E Do Couto E; Doughty, T; Esteban, L; Fallows, S; Figueroa-Feliciano, E; Fox, J; Fritts, M; Godfrey, G L; Golwala, S R; Hall, J; Harris, H R; Hasi, J; Hertel, S A; Hines, B A; Hofer, T; Holmgren, D; Hsu, L; Huber, M E; Jastram, A; Kamaev, O; Kara, B; Kelsey, M H; Kenany, S A; Kennedy, A; Kenney, C J; Kiveni, M; Koch, K; Loer, B; Asamar, E Lopez; Mahapatra, R; Mandic, V; Martinez, C; McCarthy, K A; Mirabolfathi, N; Moffatt, R A; Moore, D C; Nadeau, P; Nelson, R H; Novak, L; Page, K; Partridge, R; Pepin, M; Phipps, A; Prasad, K; Pyle, M; Qiu, H; Radpour, R; Rau, W; Redl, P; Reisetter, A; Resch, R W; Ricci, Y; Saab, T; Sadoulet, B; Sander, J; Schmitt, R; Schneck, K; Schnee, R W; Scorza, S; Seitz, D; Serfass, B; Shank, B; Speller, D; Tomada, A; Villano, A N; Welliver, B; Wright, D H; Yellin, S; Yen, J J; Young, B A; Zhang, J

    2013-01-01

    SuperCDMS, a direct search for WIMPs, is currently operating a 9-kg array of cryogenic germanium (Ge) detectors in the Soudan Underground Laboratory. These detectors, known as iZIPs, use ionization and phonon sensors placed symmetrically on both sides of a Ge crystal to measure both charge and athermal phonons from each particle interaction. The information from each event provides excellent discrimination between electron recoils and nuclear recoils, as well as discrimination between events on the detector surface and those in the interior. To demonstrate the surface electron rejection capabilities, two $^{210}$Pb sources were installed facing detectors, producing $\\sim$130 beta decays/hr. In $\\sim$800 live hours, no events leaked into the WIMP signal region in the recoil energy range 8--115 keVr, providing an upper limit to the surface event leakage fraction of $1.7 \\times 10^{-5}$ at 90% C.L. This rejection factor demonstrates that surface electrons would produce $< 0.6$ event background in the 0.3 ton-...

  20. Optimization of light collection from crystal scintillators for cryogenic experiments

    Energy Technology Data Exchange (ETDEWEB)

    Danevich, F.A., E-mail: danevich@kinr.kiev.ua [Institute for Nuclear Research, MSP 03680, Kyiv (Ukraine); Kobychev, R.V. [Institute for Nuclear Research, MSP 03680, Kyiv (Ukraine); National Technical University of Ukraine “Kyiv Polytechnic Institute”, 03056 Kyiv (Ukraine); Kobychev, V.V. [Institute for Nuclear Research, MSP 03680, Kyiv (Ukraine); Kyungpook National University, Daegu 702-701 (Korea, Republic of); Kraus, H. [Department of Physics, University of Oxford, Keble Road, Oxford OX1 3RH (United Kingdom); Mikhailik, V.B. [Department of Physics, University of Oxford, Keble Road, Oxford OX1 3RH (United Kingdom); Diamond Light Source, Harwell Science Campus, Didcot, OX11 0DE (United Kingdom); Mokina, V.M. [Institute for Nuclear Research, MSP 03680, Kyiv (Ukraine)

    2014-04-21

    High light collection efficiency is an important requirement in any application of scintillation detectors. The purpose of this study is to investigate the possibility for improving this parameter in cryogenic scintillation bolometers, which can be considered as promising detectors in experiments investigating neutrinoless double beta decay and dark matter. Energy resolutions and relative pulse amplitudes of scintillation detectors using ZnWO{sub 4} scintillation crystals of different shapes (cylinder ∅ 20×20 mm and hexagonal prism with diagonal 20 mm and height 20 mm), reflector materials and shapes, optical contact and surface properties (polished and diffused) were measured at room temperature. Propagation of optical photons in these experimental conditions was simulated using Geant4 and ZEMAX codes. The results of the simulations are found to be in good agreement with each other and with direct measurements of the crystals. This could be applied to optimize the geometry of scintillation detectors used in the cryogenic experiments.

  1. Search for the 125 GeV Higgs boson in the ttH production mode with the ATLAS detector (ID#99)

    CERN Document Server

    Hu, Shuyang; The ATLAS collaboration

    2017-01-01

    This poster presents the results of a combined ttH search in the γγ, multilepton and bb decay channels using up to 13.3 fb-1 of proton-proton collison data at sqrt(s)=13 TeV collected with the ATLAS detector at the LHC. The poster is to be shown at PANIC17, which will be held in Beijing from Sep 1st to Sep 5th.

  2. Overview of RICOR tactical cryogenic refrigerators for space missions

    Science.gov (United States)

    Riabzev, Sergey; Filis, Avishai; Livni, Dorit; Regev, Itai; Segal, Victor; Gover, Dan

    2016-05-01

    Cryogenic refrigerators represent a significant enabling technology for Earth and Space science enterprises. Many of the space instruments require cryogenic refrigeration to enable the use of advanced detectors to explore a wide range of phenomena from space. RICOR refrigerators involved in various space missions are overviewed in this paper, starting in 1994 with "Clementine" Moon mission, till the latest ExoMars mission launched in 2016. RICOR tactical rotary refrigerators have been incorporated in many space instruments, after passing qualification, life time, thermal management testing and flight acceptance. The tactical to space customization framework includes an extensive characterization and qualification test program to validate reliability, the design of thermal interfacing with a detector, vibration export control, efficient heat dissipation in a vacuum environment, robustness, mounting design, compliance with outgassing requirements and strict performance screening. Current RICOR development is focused on dedicated ultra-long-life, highly reliable, space cryogenic refrigerator based on a Pulse Tube design

  3. Depth Requirements for a Tonne-scale 76Ge Neutrinoless Double-beta Decay Experiment

    CERN Document Server

    Aguayo, E; Back, H O; Barabash, A S; Bergevin, M; Bertrand, F E; Boswell, M; Brudanin, V; Busch, M; Chan, Y-D; Christofferson, C D; Collar, J I; Combs, D C; Cooper, R J; Detwiler, J A; Doe, P J; Efremenko, Yu; Egorov, V; Ejiri, H; Elliott, S R; Esterline, J; Fast, J E; Fields, N; Finnerty, P; Fraenkle, F M; Gehman, V M; Giovanetti, G K; Green, M P; Guiseppe, V E; Gusey, K; Hallin, A L; Hazama, R; Henning, R; Hime, A; Hoppe, E W; Horton, M; Howard, S; Howe, M A; Johnson, R A; Keeter, K J; Keillor, M E; Keller, C; Kephart, J D; Kidd, M F; Knecht, A; Kochetov, O; Konovalov, S I; Kouzes, R T; LaFerriere, B D; LaRoque, B H; Leon, J; Leviner, L E; Loach, J C; MacMullin, S; Marino, M G; Martin, R D; Mei, D -M; Merriman, J H; Miller, M L; Mizouni, L; Nomachi, M; Orrell, J L; Overman, N R; Phillips, D G; Poon, A W P; Perumpilly, G; Prior, G; Radford, D C; Rielage, K; Robertson, R G H; Ronquest, M C; Schubert, A G; Shima, T; Shirchenko, M; Snavely, K J; Sobolev, V; Steele, D; Strain, J; Thomas, K; Timkin, V; Tornow, W; Vanyushin, I; Varner, R L; Vetter, K; Vorren, K; Wilkerson, J F; Wolfe, B A; Yakushev, E; Young, A R; Yu, C -H; Yumatov, V; Zhang, C

    2011-01-01

    Neutrinoless double-beta decay experiments can potentially determine the Majorana or Dirac nature of the neutrino, and aid in understanding the neutrino absolute mass scale and hierarchy. Future 76Ge-based searches target a half-life sensitivity of >10^27 y to explore the inverted neutrino mass hierarchy. Reaching this sensitivity will require a background rate of ~5200 meters water equivalent is required for a tonne-scale experiment with a compact shield similar to the planned 40-kg MAJORANA DEMONSTRATOR. The required overburden is highly dependent on the chosen shielding configuration and could be relaxed significantly if, for example, a liquid cryogen and water shield, or an active neutron shield were employed. Operation of the MAJORANA DEMONSTRATOR and GERDA detectors will serve to reduce the uncertainties on cosmic-ray background rates and will impact the choice of shielding style and location for a future tonne-scale experiment.

  4. The two sides of silicon detectors

    CERN Document Server

    Devine, S R

    2001-01-01

    /p/n sup + and essentially two p-n junctions within one device. With increasing bias voltage, as the electric field is extending into the detector bulk from opposite sides of the silicon detector, there are two distinct depletion regions that collect charge signal independently. Summing the signal charge from the two regions, one is able to reconstruct the initial energy of the incident particle. From Transient Current measurements it is apparent that E-field manipulation is possible by excess carrier injection, enabling a high enough E-field to extend across the width of the detector, allowing for efficient charge collection. Results are presented on in situ irradiation of silicon detector's at cryogenic temperature. The results show that irradiation at cryogenic temperatures does not detrimentally effect a silicon detectors performance when compared to its irradiation at room temperature. Operation of silicon devices at cryogenic temperatures offers the advantage of reducing radiation-induced leakage curren...

  5. A Mueller bridge set for cryogenic temperature measurements

    DEFF Research Database (Denmark)

    Diamond, J.M.

    1966-01-01

    An a.c. Mueller bridge set for resistance thermometry at cryogenic temperature is described. A commercial tuned null detector is used at an operating frequency of 1025 c/s. The set includes a high stability oscillator, line reject filter, phase shifter, Q multiplier and selector box. The latter p...

  6. First Results from the Cryogenic Dark Matter Search Experiment at the Deep Site

    Energy Technology Data Exchange (ETDEWEB)

    Mandic, Vuk [Univ. of California, Berkeley, CA (United States)

    2004-06-01

    The Cryogenic Dark Matter Search (CDMS) experiment is designed to search for dark matter in the form of the Weakly Interacting Massive Particles (WIMPs). For this purpose, CDMS uses detectors based on crystals of Ge and Si, operated at the temperature of 20 mK, and providing a two-fold signature of an interaction: the ionization and the athermal phonon signals. The two signals, along with the passive and active shielding of the experimental setup, and with the underground experimental sites, allow very effective suppression and rejection of different types of backgrounds. This dissertation presents the commissioning and the results of the first WIMP-search run performed by the CDMS collaboration at the deep underground site at the Soudan mine in Minnesota. We develop different methods of suppressing the dominant background due to the electron-recoil events taking place at the detector surface and we apply these algorithms to the data set. These results place the world's most sensitive limits on the WIMP-nucleon spin-independent elastic-scattering cross-section. Finally, they examine the compatibility of the supersymmetric WIMP-models with the direct-detection experiments (such as CDMS) and discuss the implications of the new CDMS result on these models.

  7. A Cryogenic Radiometry Based Spectral Responsivity Scale at the National Metrology Centre

    Science.gov (United States)

    Xu, Gan; Huang, Xuebo

    This paper describes the spectral responsivity scale established at the National Metrology Centre (NMC) based on cryogenic radiometry. A primary standard - a mechanically pumped cryogenic radiometer together with a set of intensity-stabilised lasers provides traceability for optical power measurement with an uncertainty in the order of 10-4 at 14 discrete wavelengths in the spectral range from 350 nm to 800 nm. A silicon trap detector, with its absolute responsivity calibrated against the cryogenic radiometer is used as a transfer standard for the calibration of other detectors using a specially built spectral comparator. The relative spectral responsivity of a detector at other wavelengths can be determined through the use of a cavity pyroelectric detector and the extrapolation technique. With this scale, NMC is capable to calibrate the spectral responsivity of different type of photo detectors from 250 nm to 1640 nm with an uncertainty range from 3.7% to 0.3%.

  8. Ge well detector calibration by means of a trial and error procedure using the dead layers as a unique parameter in a Monte Carlo simulation

    Energy Technology Data Exchange (ETDEWEB)

    Courtine, Fabien; Pilleyre, Thierry; Sanzelle, Serge [Laboratoire de Physique Corpusculaire, IN2P3-CNRS, Universite Blaise Pascal, F-63177 Aubiere Cedex (France); Miallier, Didier [Laboratoire de Physique Corpusculaire, IN2P3-CNRS, Universite Blaise Pascal, F-63177 Aubiere Cedex (France)], E-mail: miallier@clermont.in2p3.fr

    2008-11-01

    The project aimed at modelling an HPGe well detector in view to predict its photon-counting efficiency by means of the Monte Carlo simulation code GEANT4. Although a qualitative and quantitative description of the crystal and housing was available, uncertainties were associated to parameters controlling the detector response. This induced poor agreement between the efficiency calculated on the basis of nominal data and the actual efficiency experimentally measured with a {sup 137}Cs point source. It was then decided to improve the model, by parameterization of a trial and error method. The distribution of the dead layers was adopted as a unique parameter, in order to explore the possibilities and pertinence of this parameter. In the course of the work, it appeared necessary to introduce the possibility that the thickness of the dead layers was not uniform for a given surface. At the end of the process, the results allowed to conclude that the approach was able to give a model adapted to practical application with a satisfactory precision in the calculated efficiency. The pattern of the 'dead layers' that was obtained is characterized by a variable thickness which seems to be physically relevant. It implicitly and partly accounts for effects that are not originated from actual dead layers, such as incomplete charge collection. But, such effects, which are uneasily accounted for, can, in a first approximation, be represented by 'dead layers'; this is an advantage of the parameterization that was adopted.

  9. Neutron transmutation doped Ge bolometers

    Science.gov (United States)

    Haller, E. E.; Kreysa, E.; Palaio, N. P.; Richards, P. L.; Rodder, M.

    1983-01-01

    Some conclusions reached are as follow. Neutron Transmutation Doping (NTD) of high quality Ge single crystals provides perfect control of doping concentration and uniformity. The resistivity can be tailored to any given bolometer operating temperature down to 0.1 K and probably lower. The excellent uniformity is advantaged for detector array development.

  10. Germanium detector test-stands at the Max Planck Institute for Physics and alpha interactions on passivated surfaces

    Science.gov (United States)

    Gooch, C.; Garbini, L.; Abt, I.; Schulz, O.; Palermo, M.; Majorovits, B.; Liao, H.-Y.; Liu, X.; Seitz, H.

    2015-05-01

    The GeDetgroup at the Max Planck Institute for Physics in Munich, Germany, operates a number of test stands in order to conduct research on novel germanium detectors. The test stands are of a unique design and construction that provide the ability to probe the properties of new detector types. The GALATEA test stand was especially designed for surface scans, specifically a-induced surface events, a problem faced in low background experiments due to unavoidable surface contamination of detectors. A special 19-fold segmented coaxial prototype detector has already been investigated inside GALATEA with an a-source. A top surface scan provided insight into the physics underneath the passivation layer. Detector segmentation provides a direct path towards background identification and characterisation. With this in mind, a 4-fold segmentation scheme was implemented on a broad-energy point-contact detector and is being investigated inside the groups K1 test stand. A cryogenic test-stand where detectors can be submerged directly in liquid nitrogen or argon is also available. The goal is to establish segmentation as a viable option to reduce background in future large scale experiments.

  11. Recent developments in semiconductor gamma-ray detectors

    Energy Technology Data Exchange (ETDEWEB)

    Luke, Paul N.; Amman, Mark; Tindall, Craig; Lee, Julie S.

    2003-10-28

    The successful development of lithium-drifted Ge detectors in the 1960's marked the beginning of the significant use of semiconductor crystals for direct detection and spectroscopy of gamma rays. In the 1970's, high-purity Ge became available, which enabled the production of complex detectors and multi-detector systems. In the following decades, the technology of semiconductor gamma-ray detectors continued to advance, with significant developments not only in Ge detectors but also in Si detectors and room-temperature compound-semiconductor detectors. In recent years, our group at Lawrence Berkeley National Laboratory has developed a variety of gamma ray detectors based on these semiconductor materials. Examples include Ge strip detectors, lithium-drifted Si strip detectors, and coplanar-grid CdZnTe detectors. These advances provide new capabilities in the measurement of gamma rays, such as the ability to perform imaging and the realization of highly compact spectroscopy systems.

  12. Photocapacitive MIS infrared detectors

    Science.gov (United States)

    Sher, A.; Lu, S. S.-M.; Moriarty, J. A.; Crouch, R. K.; Miller, W. E.

    1978-01-01

    A new class of room-temperature infrared detectors has been developed through use of metal-insulator-semiconductor (MIS) or metal-insulator-semiconductor-insulator-metal (MISIM) slabs. The detectors, which have been fabricated from Si, Ge and GaAs, rely for operation on the electrical capacitance variations induced by modulated incident radiation. The peak detectivity for a 1000-A Si MISIM detector is comparable to that of a conventional Si detector functioning in the photovoltaic mode. Optimization of the photocapacitive-mode detection sensitivity is discussed.

  13. Cryogenic Hybrid Magnetic Bearing

    Science.gov (United States)

    Meeks, Crawford R.; Dirusso, Eliseo; Brown, Gerald V.

    1994-01-01

    Cryogenic hybrid magnetic bearing is example of class of magnetic bearings in which permanent magnets and electromagnets used to suspend shafts. Electromagnets provide active control of position of shaft. Bearing operates at temperatures from -320 degrees F (-196 degrees C) to 650 degrees F (343 degrees C); designed for possible use in rocket-engine turbopumps, where effects of cryogenic environment and fluid severely limit lubrication of conventional ball bearings. This and similar bearings also suitable for terrestrial rotating machinery; for example, gas-turbine engines, high-vacuum pumps, canned pumps, precise gimbals that suspend sensors, and pumps that handle corrosive or gritty fluids.

  14. Cryogenic regenerative heat exchangers

    CERN Document Server

    Ackermann, Robert A

    1997-01-01

    An in-depth survey of regenerative heat exchangers, this book chronicles the development and recent commercialization of regenerative devices for cryogenic applications. Chapters cover historical background, concepts, practical applications, design data, and numerical solutions, providing the latest information for engineers to develop advanced cryogenic machines. The discussions include insights into the operation of a regenerator; descriptions of the cyclic and fluid temperature distributions in a regenerator; data for various matrix geometries and materials, including coarse and fine bronze, stainless steel-woven wire mesh screens, and lead spheres; and unique operating features of cryocoolers that produce deviations from ideal regenerator theory.

  15. Detectors and cooling technology for direct spectroscopic biosignature characterization

    CERN Document Server

    Rauscher, Bernard J; Moseley, S H; Sadleir, John E; Stevenson, Thomas

    2016-01-01

    Direct spectroscopic biosignature characterization (hereafter "biosignature characterization") will be a major focus for future space observatories equipped with coronagraphs or starshades. Our aim in this article is to provide an introduction to potential detector and cooling technologies for biosignature characterization. We begin by reviewing the needs. These include nearly noiseless photon detection at flux levels as low as $<0.001~\\textrm{photons}~s^{-1}~\\textrm{pixel}^{-1}$ in the visible and near-IR. We then discuss potential areas for further testing and/or development to meet these needs using non-cryogenic detectors (EMCCD, HgCdTe array, HgCdTe APD array), and cryogenic single photon detectors (MKID arrays and TES microcalorimeter arrays). Non-cryogenic detectors are compatible with the passive cooling that is strongly preferred by coronagraphic missions, but would add non-negligible noise. Cryogenic detectors would require active cooling, but in return deliver nearly quantum limited performance....

  16. The Proposed Majorana 76Ge Double-Beta Decay Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Aalseth, Craig E; Anderson, Dale N; Arthur, Richard J; Avignone, Frank; Baktash, Cryus; Ball, Thedore; Barabash, Alexander S; Bertrand, F; Brodzinski, Ronald L; Brudanin, V; Bugg, William; Champagne, A E; Chan, Yuen-Dat; Cianciolo, Thomas V; Collar, J I; Creswick, R W; Descovich, M; Di Marco, Marie; Doe, P J; Dunham, Glen C; Efremenko, Yuri; Egerov, V; Ejiri, H; Elliott, Steven R; Emanuel, A; Fallon, Paul; Farach, H A; Gaitskell, R J; Gehman, Victor; Grzywacz, Robert; Hallin, A; Hazma, R; Henning, R; Hime, Andrew; Hossbach, Todd W; Jordan, David V; Kazkaz, K; Kephart, Jeremy; King, G S; Kochetov, Oleg; Konovalov, S; Kouzes, Richard T; Lesko, Kevin; Luke, P; Luzum, M; Macchiavelli, A O; McDonald, A; Mei, Dongming; Miley, Harry S; Mills, G B; Mokhtarani, A; Nomachi, Masaharu; Orrell, John L; Palms, John M; Poon, Alan; Radford, D C; Reeves, James H; Robertson, R G. H.; Runkle, Robert C; Rykaczewski, Krzysztof P; Saburov, Konstantin; Sandukovsky, Viatcheslav; Sonnenschein, Andrew; Tornow, W; Tull, C; van de Water, R G; Vanushin, Igor; Vetter, Kai; Warner, Ray A; Wilkerson, John F; Wouters, Jan M; Young, A R; Yumatov, V

    2005-01-01

    The proposed Majorana experiment is based on an array of segmented intrinsic Ge detectors with a total mass of 500 kg of Ge isotopically enriched to 86% in 76Ge. Background reduction will be accomplished by: material selection, detector segmentation, pulse shape analysis, electro-formation of copper parts, and granularity of detector spacing. The predicted experimental sensitivity for measurement of the neutrinoless double-beta decay mode of 76Ge, over a data acquisition period of 5000 kg•y, is ~ 4 x 1027 y.

  17. An introduction to closed cycle cryogenic coolers

    Science.gov (United States)

    Chellis, F. F.

    1980-01-01

    Closed cycle cryogenic coolers are used extensively for cooling infrared detectors and other specialized electronic devices. Because of the special requirements of each electro-optical system it is generally necessary to custom design the cryocooler to fit the requirements. Early and close cooperation between the electro-optical systems designer and the cryocooler manufacturer is important to the successful marriage of the cryocooler with the total electro-optical system. Limitations of various cryocooling techniques are presented, and consideration for cryocooling integration are addressed.

  18. Cryogenics Research and Engineering Experience

    Science.gov (United States)

    Toro Medina, Jaime A.

    2013-01-01

    Energy efficient storage, transfer and use of cryogens and cryogenic propellants on Earth and in space have a direct impact on NASA, government and commercial programs. Research and development on thermal insulation, propellant servicing, cryogenic components, material properties and sensing technologies provides industry, government and research institutions with the cross-cutting technologies to manage low-temperature applications. Under the direction of the Cryogenic Testing Lab at Kennedy Space Center, the work experience acquired allowed me to perform research, testing, design and analysis of current and future cryogenic technologies to be applied in several projects.

  19. Status of the KEDR detector

    CERN Document Server

    Anashin, V V; Baibusinov, B O; Balashov, V; Baldin, E M; Barkov, L M; Barladyan, A K; Barnyakov, M Y; Baru, S E; Bedny, I; Beilin, D M; Blinov, A E; Blinov, V E; Bondarev, D V; Bondar, A E; Buzykaev, A R; Cantoni, P; Chilingarov, A G; Dneprovsky, L V; Eidelman, S I; Epifanov, D A; Frabetti, P L; Gaidarev, P B; Groshev, V R; Karpov, S V; Kiselev, V A; Klimenko, S G; Kolachev, G M; Kononov, S A; Kozlov, V N; Kravchenko, E A; Kulikov, V F; Kurdadze, L M; Kuzmin, A S; Kuznecov, S A; Lanni, F; Lelchuk, M Y; Leontiev, L A; Levichev, E B; Malyshev, V M; Manfredi, P F; Maslennikov, A L; Minakov, G D; Nagaslaev, V P; Naumenkov, A I; Nikitin, S A; Nomerotski, A; Onuchin, A P; Oreshkin, S B; Ovechkin, R; Palombo, F; Peleganchuk, S V; Petrosyan, S S; Pivovarov, S V; Poluektov, A O; Pospelov, G E; Protopopov, I Ya; Re, V; Romanov, L V; Root, N I; Ruban, A A; Savinov, G A; Shamov, A G; Shatilov, D; Shubin, M A; Shusharo, A I; Shwartz, B A; Sidorov, V A; Skovpen, Y I; Smakhtin, V P; Snopkov, R G; Sokolov, A V; Soukharev, A M; Talyshev, A A; Tayursky, V A; Telnov, V I; Tikhonov, Yu A; Todyshev, K Y; Usov, Y V; Vorobyev, A I; Yushkov, A N; Zatcepin, A V; Zhilich, V N

    2002-01-01

    KEDR is a general-purpose detector for experiments at the VEPP-4M e sup + e sup - -collider in the energy range 2E=2.0-12 GeV. All detector subsystems (except the aerogel Cherenkov counters) have been installed into the detector at VEPP-4M. Some preliminary data have been taken in the energy region of the J/PSI meson. The tuning of the detector and the VEPP-4M collider is in progress. Preliminary results on the detector performance are presented. The future experimental program for the KEDR detector is discussed.

  20. Status of the KEDR detector

    Energy Technology Data Exchange (ETDEWEB)

    Anashin, V.V.; Aulchenko, V.M.; Baibusinov, B.O.; Balashov, V.; Baldin, E.M.; Barkov, L.M.; Barladyan, A.K.; Barnyakov, M.Yu.; Baru, S.E.; Bedny, I.V.; Beilin, D.M.; Blinov, A.E.; Blinov, V.E.; Bondarev, D.V.; Bondar, A.E.; Buzykaev, A.R.; Cantoni, P.; Chilingarov, A.G.; Dneprovsky, L.V.; Eidelman, S.I.; Epifanov, D.A.; Frabetti, P.L.; Gaidarev, P.B.; Groshev, V.R.; Karpov, S.V.; Kiselev, V.A.; Klimenko, S.G.; Kolachev, G.M.; Kononov, S.A.; Kozlov, V.N.; Kravchenko, E.A.; Kulikov, V.F.; Kurdadze, L.M.; Kuzmin, A.S.; Kuznecov, S.A.; Lanni, F.; Lelchuk, M.Yu.; Leontiev, L.A.; Levichev, E.B.; Malyshev, V.M.; Manfredi, P.F.; Maslennikov, A.L.; Minakov, G.D.; Nagaslaev, V.P.; Naumenkov, A.; Nikitin, S.A.; Nomerotsky, A.; Onuchin, A.P.; Oreshkin, S.B.; Ovechkin, R.; Palombo, F.; Peleganchuk, S.V.; Petrosyan, S.S.; Pivovarov, S.V.; Poluektov, A.O.; Pospelov, G.E.; Protopopov, I.Ya.; Re, V.; Romanov, L.V.; Root, N.I.; Ruban, A.A.; Savinov, G.A.; Shamov, A.G.; Shatilov, D.; Shubin, M.A.; Shusharo, A.I.; Shwartz, B.A.; Sidorov, V.A.; Skovpen, Yu.I.; Smakhtin, V.P.; Snopkov, R.G.; Sokolov, A.V.; Soukharev, A.M.; Talyshev, A.A.; Tayursky, V.A.; Telnov, V.I.; Tikhonov, Yu.A. E-mail: tikhonov@cppm.in2p3.fr; Todyshev, K.Yu.; Usov, Yu.V.; Vorobyev, A.I.; Yushkov, A.N.; Zatcepin, A.V.; Zhilich, V.N

    2002-02-01

    KEDR is a general-purpose detector for experiments at the VEPP-4M e{sup +}e{sup -}-collider in the energy range 2E=2.0-12 GeV. All detector subsystems (except the aerogel Cherenkov counters) have been installed into the detector at VEPP-4M. Some preliminary data have been taken in the energy region of the J/{psi} meson. The tuning of the detector and the VEPP-4M collider is in progress. Preliminary results on the detector performance are presented. The future experimental program for the KEDR detector is discussed.

  1. Seals For Cryogenic Turbomachines

    Science.gov (United States)

    Hendricks, Robert C.; Tam, L. T.; Braun, M. J.; Vlcek, B. L.

    1988-01-01

    Analysis considers effects of seals on stability. Report presents method of calculation of flows of cryogenic fluids through shaft seals. Key to stability is local average velocity in seal. Local average velocity strongly influenced by effects of inlet and outlet and injection of fluid.

  2. High Power Cryogenic Targets

    Energy Technology Data Exchange (ETDEWEB)

    Gregory Smith

    2011-08-01

    The development of high power cryogenic targets for use in parity violating electron scattering has been a crucial ingredient in the success of those experiments. As we chase the precision frontier, the demands and requirements for these targets have grown accordingly. We discuss the state of the art, and describe recent developments and strategies in the design of the next generation of these targets.

  3. Cryogenic current leads

    Energy Technology Data Exchange (ETDEWEB)

    Zizek, F.

    1982-01-01

    Theoretical, technical and design questions are examined of cryogenic current leads for SP of magnetic systems. Simplified mathematical models are presented for the current leads. To illustrate modeling, the calculation is made of the real current leads for 500 A and three variants of current leads for 1500 A for the enterprise ''Shkoda.''

  4. CRYOGENIC SYSTEM FOR PRECISE CALIBRATION OF TEMPERATURE SENSORS

    Directory of Open Access Journals (Sweden)

    A. N. Solovyev

    2016-09-01

    Full Text Available A calibration technique for cryogenic temperature sensors is proposed and implemented. The experimental setup is based on the helium cryogenerator, providing calibration of the temperature sensors of various types in wide temperature range, including cryogenic band (25-100K. A condensation thermometer with hydrogen, neon, argon and xenon as working gases is used as a reference sensor. The experimental setup was successfully used for precise (0.1K precision calibration of platinum resistive temperature detectors (Pt-100 for international nuclear physics experiments MuSun and PolFusion. The setup can also be used for calibration of temperature sensors of the other types.

  5. A 4$\\pi$ Solid Angle Detector for the SPS used as a Proton-Antiproton Collider at a Centre of Mass Energy of 540 GeV

    CERN Multimedia

    2002-01-01

    In the first phase of operation of the UA1 experiment, 700 $ nb ^- ^{1} $ of integrated luminosity were accumulated at the Sp$\\bar{p}$S collider up to the end of 1985. Published results include first observation and measurements of W and Z bosons, significant limits on the top quark, heavy lepton and supersymmetric particle masses, observation of $ B \\bar{B} $ mixing, studies of b~quark production and tests of QCD using jet, intermediate boson and photon production.\\\\ \\\\ For the second phase of operation the following items were upgraded for the high luminosity 1988 and 1989 collider runs: the muon detection system was improved by extra iron shielding, partly magnetised and instrumented with Iarocci tubes; the data acquisition system was redesigned using VME to prov speed and second level trigger capacity followed by a farm of 318E emulators for on-line event reconstruction and selection; the central detector was equipped with a laser calibration system. A total of 5 $ pb ^- ^{1} $ of mainly muon-triggered da...

  6. Optimization of the pion beam for the HADES detector and determination of the {eta} form factor in proton-proton reactions at 2.2 GeV; Optimierung des Pionenstrahls zum HADES-Detektor und Bestimmung des {eta}-Formfaktors in Proton-Proton-Reaktionen bei 2.2 GeV

    Energy Technology Data Exchange (ETDEWEB)

    Spruck, Bjoern

    2008-02-08

    This thesis contains two tasks. The first part focuses on the development and optimization of the pion beam facility for the HADES experiment. The second part describes the measurement of the electromagnetic transition form factor of the {eta} meson in proton-proton reactions. To investigate pion-nucleon reaction, a secondary pion beam is required. The pions are produced by a heavy ion beam impinging on a beryllium target. In order to determine the profile of the beam focus, two scintillating fiber detectors have been built as part of this thesis and are read out with recently developed electronics. The measured size of the beam focus appeared to be not acceptable, which can be attributed to the achromatic magnetic focusing in the beam line. Simulations have shown, that an additional quadrupole magnet directly in front of HADES would solve this problem and improve the beam quality. A test experiment including this new quadrupole has been performed and the analysis is still in progress. Preliminary results show a significant reduction of the momentum dependency of the focus. The size of the actual beam spot has been deduced to 14 mm by using an indirect tracking approach. For deducing the electromagnetic structure of hadrons, a first step has been done by analyzing the {eta} Dalitz decay in p+p reactions at 2.2 GeV kinetic energy to determine the electromagnetic transition form factor of the {eta} meson. A fit to the data leads to a form factor slope of b=2.2{sub -1.4}{sup +1.2} GeV{sup -2}. This corresponds to a pole mass of {lambda}=680{sub -130}{sup +460} MeV/c{sup 2}. It has been shown, that a semi-exclusive analysis of the {eta} Dalitz decay within the event hypothesis framework including a kinematical fit is feasible. (orig.)

  7. Hyperon production in proton-nucleus collisions at a center-of-mass energy of $\\sqrt(S_NN)=41.6 GeV$ at HERA-B and design of silicon microstrip detectors for tracking at LHCb

    CERN Document Server

    Agari, M

    2006-01-01

    The topics of this thesis are the measurements of hyperon production in protonnucleus collisions at ps = 41.6 GeV with the Hera-B detector located at DESY, Hamburg (Germany), and the design of silicon microstrip sensors for the LHCb experiment at CERN, Geneva (Switzerland), and hyperons and their antiparticles were reconstructed from 113.5A.106 inelastic collisions of protons with fixed carbon, titanium and tungsten targets. With these samples, antiparticle-to-particle ratios, cross sections integrated for the accessible kinematic region of Hera-B and single differential cross sections as function of transverse momentum, $d\\sigma /dp^{2}_{T}$ (for and) and rapidity, $d\\sigma /dy$ (for only), have been been measured as well as the dependence of these quantities on the atomic number of the target nucleus, as parameterized using the Glauber model. The obtained ratios follow the same trend as found for the energy dependence of measurements from nucleus-nucleus collisions. Silicon microstrip sensors have been desi...

  8. 一种带新型功率检测电路的SiGe功率放大器设计%SiGe Power Amplifier with A Novel Power Detector

    Institute of Scientific and Technical Information of China (English)

    陈春青; 郝明丽; 郭瑞; 陈晓哲; 杨浩

    2013-01-01

    A two-stage SiGe power amplifier was designed for the protocol of ISO/IEC 18000-6C and could be used for handheld ultra high frequency radio frequency identification devices (UHF RFID)reader.Basing on the requirement of maximum output power,a novel method was used to reckon the emitter area needed for the power amplifier with reference value for the design based on the heterojunction bipolar transistots (HBTs) technology.Also a novel self-biased power detector was introduced,can save the die size occupation of the power detector and guarantee the performance at the same time.With a supply voltage of 3.3 V,the test results show that the output power can reach 24.1 dBm at the 1 dB compression point with a power added efficiency of 26.6% and the output voltage of the power detector is 2.63 V.The chip size included all the pads is 0.6 mm × 0.72 mm.%针对ISO/IEC 18000-6C协议的应用要求,设计了一款应用于手持超高频无线射频识别(UHF RFID)读写器输出端的两级SiGe功率放大器.在设计中采用了一种新型的晶体管面积推算方法,能够根据最大输出功率的要求,较准确的推算出所需要的晶体管发射极面积,对于基于异质结双极晶体管(HBT)工艺的功率放大器设计有一定的参考价值.此外还提出了一种新型的自偏置功率检测电路结构,在保证检测性能的同时减小了芯片面积.实际测试结果显示,在3.3V的偏压下,功率放大器在1 dB压缩点处的输出功率可以达到24.1 dBm,对应的功率附加效率为26.6%,功率检测电平为2.63 V.整体芯片面积为0.6 mm×0.72 mm.

  9. Cryogenic Q-factor measurement of optical substrate materials

    Energy Technology Data Exchange (ETDEWEB)

    Nietzsche, S; Nawrodt, R; Zimmer, A; Thuerk, M; Vodel, W; Seidel, P [Institut fuer Festkoerperphysik, Friedrich-Schiller-Universitaet Jena, Helmholtzweg 5, 07743 Jena (Germany)

    2006-03-02

    Upcoming generations of interferometric gravitational wave detectors are likely to be operated at cryogenic temperatures because one of the sensitivity limiting factors of the present generation is the thermal noise of optical components (e.g. end mirrors, cavity couplers, beam splitters). The main contributions to this noise are due to the substrate, the optical coating, and the suspension. The thermal noise can be reduced by cooling to cryogenic temperatures. In addition the overall mechanical quality factor should preferable increase at low temperatures. The experimental details of a new cryogenic apparatus for investigations of the temperature dependency of the Q-factor of several substrate materials in the range of 5 to 300 K are presented. To perform a ring down recording an electrostatic mode excitation of the samples and an interferometric read-out of the amplitude of the vibrations was used.

  10. SRF Test Areas Cryogenic System Controls Graphical User Interface

    Energy Technology Data Exchange (ETDEWEB)

    DeGraff, B.D.; Ganster, G.; Klebaner, A.; Petrov, A.D.; Soyars, W.M.; /Fermilab

    2011-06-09

    Fermi National Accelerator Laboratory has constructed a superconducting 1.3 GHz cavity test facility at Meson Detector Building (MDB) and a superconducting 1.3 GHz cryomodule test facility located at the New Muon Lab Building (NML). The control of these 2K cryogenic systems is accomplished by using a Synoptic graphical user interface (GUI) to interact with the underlying Fermilab Accelerator Control System. The design, testing and operational experience of employing the Synoptic client-server system for graphical representation will be discussed. Details on the Synoptic deployment to the MDB and NML cryogenic sub-systems will also be discussed. The implementation of the Synoptic as the GUI for both NML and MDB has been a success. Both facilities are currently fulfilling their individual roles in SCRF testing as a result of successful availability of the cryogenic systems. The tools available for creating Synoptic pages will continue to be developed to serve the evolving needs of users.

  11. Gamma astronomy above 30 GeV. A new method for identifying cosmic gamma rays from the ground based detector Celeste; Astronomie gamma au-dessus de 30 GeV. Une nouvelle methode d'identification des rayons gamma cosmiques a partir du sol avec le detecteur CELESTE

    Energy Technology Data Exchange (ETDEWEB)

    Manseri, H

    2004-03-15

    Celeste is an atmospheric Cherenkov telescope based on the reconversion of the Themis solar facility, located in the Eastern Pyrenees. The mirrors, named heliostats, recover the Cherenkov light emitted by the electromagnetic shower created by gamma-rays in the atmosphere. The Celeste experiment was designed during the 90's to cover the 30-300 GeV energy range and to fill the gap between satellites and imaging atmospheric Cherenkov telescopes. In 2000, we attained our goal with the detection of the Crab Nebula and those of the active galactic nucleus Markarian 421. This thesis presents the work accomplished since then to improve the sensitivity of our instrument by studying the detector and by developing a new analysis. Despite the very bad weather conditions, a new detection of the Crab Nebula is presented here which validates the principle of the new analysis. This manuscript ends with the study of the data sample taken on two Active Galactic Nuclei, the blazars Markarian 421 and 1ES1426+428. (author)

  12. Cryogenic treatment of gas

    Science.gov (United States)

    Bravo, Jose Luis [Houston, TX; Harvey, III, Albert Destrehan; Vinegar, Harold J [Bellaire, TX

    2012-04-03

    Systems and methods of treating a gas stream are described. A method of treating a gas stream includes cryogenically separating a first gas stream to form a second gas stream and a third stream. The third stream is cryogenically contacted with a carbon dioxide stream to form a fourth and fifth stream. A majority of the second gas stream includes methane and/or molecular hydrogen. A majority of the third stream includes one or more carbon oxides, hydrocarbons having a carbon number of at least 2, one or more sulfur compounds, or mixtures thereof. A majority of the fourth stream includes one or more of the carbon oxides and hydrocarbons having a carbon number of at least 2. A majority of the fifth stream includes hydrocarbons having a carbon number of at least 3 and one or more of the sulfur compounds.

  13. Cryogenic Control System

    Energy Technology Data Exchange (ETDEWEB)

    Goloborod' ko, S.; /Fermilab

    1989-02-27

    The control system (CS) for the cryogenic arrangement of the DO Liquid Argon Calorimeter consists of a Texas instruments 560/565 Programmable Logical Controller (PLC), two remote bases with Remote Base Controllers and a corresponding set of input/output (I/O) modules, and a PC AST Premium 286 (IBM AT Compatible). The PLC scans a set of inputs and provides a set of outputs based on a ladder logic program and PID control loops. The inputs are logic or analog (current, voltage) signals from equipment status switches or transducers. The outputs are logic or analog (current or voltage) signals for switching solenoids and positioning pneumatic actuators. Programming of the PLC is preformed by using the TISOFT2/560/565 package, which is installed in the PC. The PC communicates to the PLC through a serial RS232 port and provides operator interface to the cryogenic process using Xpresslink software.

  14. Cryogenic treatment of gas

    Energy Technology Data Exchange (ETDEWEB)

    Bravo, Jose Luis [Houston, TX; Harvey, III, Albert Destrehan (Kingwood, TX); Vinegar, Harold J [Bellaire, TX

    2012-04-03

    Systems and methods of treating a gas stream are described. A method of treating a gas stream includes cryogenically separating a first gas stream to form a second gas stream and a third stream. The third stream is cryogenically contacted with a carbon dioxide stream to form a fourth and fifth stream. A majority of the second gas stream includes methane and/or molecular hydrogen. A majority of the third stream includes one or more carbon oxides, hydrocarbons having a carbon number of at least 2, one or more sulfur compounds, or mixtures thereof. A majority of the fourth stream includes one or more of the carbon oxides and hydrocarbons having a carbon number of at least 2. A majority of the fifth stream includes hydrocarbons having a carbon number of at least 3 and one or more of the sulfur compounds.

  15. Cryogenic Selective Surfaces

    Science.gov (United States)

    Youngquist, Robert; Nurge, Mark; Gibson, Tracy; Johnson, Wesley

    2017-01-01

    The NASA Innovative Advanced Concept (NIAC) program has been funding work at KSC on a novel coating that should allow cryogenic materials to be stored in deep space. The NIAC Symposium will be the last week of September and it is a requirement that the funded material be presented both orally and at a poster session. This DAA submission is requesting approval to go public with both the presentation and the poster.

  16. Cryogenic Test Technology 1984.

    Science.gov (United States)

    1985-04-01

    aircraft configuration Pathfinder II (Figure 16) made of Vascomax 200, a set of six bodies of revolution (Figure 17) made from 6061 aluminium alloy, a...iron and aluminium alloys appear to be viable candidates. AS loads increase the number of avail- able alloys is severely constrained by toughness...using A-286 screws in four steels and one aluminium alloy. In the absence of loads cryogenic cycling gene- rally produced decreases in breakaway

  17. Advances in Helium Cryogenics

    Science.gov (United States)

    Sciver, S. W. Van

    This review provides a survey of major advances that have occurred in recent years in the area of helium cryogenics. Helium-temperature cryogenics is the enabling technology for a substantial and growing number of low-temperature systems from superconducting magnets to space-based experimental facilities. In recent years there have been many advances in the technology of low-temperature helium, driven mostly by new applications. However, to keep the review from being too broad, this presentation focuses mainly on three of the most significant advances. These are: (1) the development of large-scale recuperative refrigeration systems mainly for superconducting magnet applications in accelerators and other research facilities; (2) the use of stored superfluid helium (He II) as a coolant for spacebased astrophysics experiments; and (3) the application of regenerative cryocoolers operating at liquid helium temperatures primarily for cooling superconducting devices. In each case, the reader should observe that critical technologies were developed to facilitate these applications. In addition to these three primary advances, other significant helium cryogenic technologies are briefly reviewed at the end of this chapter, along with some vision for future developments in these areas.

  18. Two-Dimensional Spatial Imaging of Charge Transport in Germanium Crystals at Cryogenic Temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Moffatt, Robert [Stanford U.

    2016-01-01

    In this dissertation, I describe a novel apparatus for studying the transport of charge in semiconductors at cryogenic temperatures. The motivation to conduct this experiment originated from an asymmetry observed between the behavior of electrons and holes in the germanium detector crystals used by the Cryogenic Dark Matter Search (CDMS). This asymmetry is a consequence of the anisotropic propagation of electrons in germanium at cryogenic temperatures. To better model our detectors, we incorporated this effect into our Monte Carlo simulations of charge transport. The purpose of the experiment described in this dissertation is to test those models in detail. Our measurements have allowed us to discover a shortcoming in our most recent Monte Carlo simulations of electrons in germanium. This discovery would not have been possible without the measurement of the full, two-dimensional charge distribution, which our experimental apparatus has allowed for the first time at cryogenic temperatures.

  19. Cryogenic Cooling for Myriad Applications-A STAR Is Born

    Science.gov (United States)

    2006-01-01

    Cryogenics, the science of generating extremely low temperatures, has wide applicability throughout NASA. The Agency employs cryogenics for rocket propulsion, high-pressure gas supply, breathable air in space, life support equipment, electricity, water, food preservation and packaging, medicine, imaging devices, and electronics. Cryogenic liquid oxygen and liquid hydrogen systems are also replacing solid rocket motor propulsion systems in most of the proposed launch systems, a reversion to old-style liquid propellants. In the late 1980s, NASA wanted a compact linear alternator/motor with reduced size and mass, as well as high efficiency, that had unlimited service life for use in a thermally driven power generator for space power applications. Prior development work with free-piston Stirling converters (a Stirling engine integrated with a linear actuator that produces electrical power output) had shown the promise of that technology for high-power space applications. A dual use for terrestrial applications exists for compact Stirling converters for onsite combined heat and power units. The Stirling cycle is also usable in reverse as a refrigeration cycle suitable for cryogenic cooling, so this Stirling converter work promised double benefits as well as dual uses. The uses for cryogenic coolers within NASA abound; commercial applications are similarly wide-ranging, from cooling liquid oxygen and nitrogen, to cryobiology and bio-storage, cryosurgery, instrument and detector cooling, semiconductor manufacturing, and support service for cooled superconducting power systems.

  20. Detectors for Tomorrow's Instruments

    Science.gov (United States)

    Moseley, Harvey

    2009-01-01

    Cryogenically cooled superconducting detectors have become essential tools for a wide range of measurement applications, ranging from quantum limited heterodyne detection in the millimeter range to direct searches for dark matter with superconducting phonon detectors operating at 20 mK. Superconducting detectors have several fundamental and practical advantages which have resulted in their rapid adoption by experimenters. Their excellent performance arises in part from reductions in noise resulting from their low operating temperatures, but unique superconducting properties provide a wide range of mechanisms for detection. For example, the steep dependence of resistance with temperature on the superconductor/normal transition provides a sensitive thermometer for calorimetric and bolometric applications. Parametric changes in the properties of superconducting resonators provides a mechanism for high sensitivity detection of submillimeter photons. From a practical point of view, the use of superconducting detectors has grown rapidly because many of these devices couple well to SQUID amplifiers, which are easily integrated with the detectors. These SQUID-based amplifiers and multiplexers have matured with the detectors; they are convenient to use, and have excellent noise performance. The first generation of fully integrated large scale superconducting detection systems are now being deployed. I will discuss the prospects for a new generation of instruments designed to take full advantage of the revolution in detector technology.

  1. CERN experience and strategy for the maintenance of cryogenic plants and distribution systems

    CERN Document Server

    Serio, L; Claudet, S; Delikaris, D; Ferlin, G; Pezzetti, M; Pirotte, O; Tavian, L; Wagner, U

    2015-01-01

    CERN operates and maintains the world largest cryogenic infrastructure ranging from ageing installations feeding detectors, test facilities and general services, to the state-of-the-art cryogenic system serving the flagship LHC machine complex. After several years of exploitation of a wide range of cryogenic installations and in particular following the last two years major shutdown to maintain and consolidate the LHC machine, we have analysed and reviewed the maintenance activities to implement an efficient and reliable exploitation of the installations. We report the results, statistics and lessons learned on the maintenance activities performed and in particular the required consolidations and major overhauling, the organization, management and methodologies implemented.

  2. 900-L liquid xenon cryogenic system operation for the MEG experiment

    CERN Document Server

    Haruyama, T; Mihara, S; Hisamatsu, Y; Iawamoto, W; Mori, T; Nishiguchi, H; Otani, W; Sawada, R; Uchiyama, Y; Nishitani, T

    2009-01-01

    A cryogenic system for the MEG (muon rare decay) experiment has started operation at the Paul Sherrer Institute in Zurich. The main part of the MEG detector is the 900-L liquid xenon calorimeter for gamma ray detection, equipped with 850 photo multipliers directly immersed in liquid xenon. A 200 W pulse tube cryocooler enabled LN2-free operation of this calorimeter. A liquid purification system; using a liquid pump and a zero boil-off 1000-L cryogenic buffer dewar is also included in the system. The first entire engineering run was carried out in November-December 2007 and satisfactory cryogenic performances were confirmed.

  3. An FPGA-based Instrumentation Platform for use at Deep Cryogenic Temperatures

    CERN Document Server

    Lamb, I D Conway; Hornibrook, J M; Pauka, S J; Waddy, S J; Frechtling, M K; Reilly, D J

    2015-01-01

    We describe the operation of a cryogenic instrumentation platform incorporating commercially- available field-programmable gate arrays (FPGAs). The functionality of the FPGAs at temperatures approaching 4 kelvin enables signal routing, multiplexing, and complex digital signal processing in close proximity to cooled devices or detectors within the cryostat. The performance of the FPGAs in a cryogenic environment is evaluated, including clock speed, error rates, and power consumption. Although constructed for the purpose of controlling and reading out quantum computing devices with low latency, the instrument is generic enough to be of broad use in a range of cryogenic applications.

  4. An FPGA-based instrumentation platform for use at deep cryogenic temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Conway Lamb, I. D.; Colless, J. I.; Hornibrook, J. M.; Pauka, S. J.; Waddy, S. J.; Reilly, D. J., E-mail: david.reilly@sydney.edu.au [ARC Centre of Excellence for Engineered Quantum Systems, School of Physics, The University of Sydney, Sydney NSW 2006 (Australia); Microsoft Station Q Sydney, The University of Sydney, Sydney NSW 2006 (Australia); Frechtling, M. K. [Microsoft Station Q Sydney, The University of Sydney, Sydney NSW 2006 (Australia); School of Electrical Engineering, The University of Sydney, Sydney NSW 2006 (Australia)

    2016-01-15

    We describe the operation of a cryogenic instrumentation platform incorporating commercially available field-programmable gate arrays (FPGAs). The functionality of the FPGAs at temperatures approaching 4 K enables signal routing, multiplexing, and complex digital signal processing in close proximity to cooled devices or detectors within the cryostat. The performance of the FPGAs in a cryogenic environment is evaluated, including clock speed, error rates, and power consumption. Although constructed for the purpose of controlling and reading out quantum computing devices with low latency, the instrument is generic enough to be of broad use in a range of cryogenic applications.

  5. CERN experience and strategy for the maintenance of cryogenic plants and distribution systems

    Science.gov (United States)

    Serio, L.; Bremer, J.; Claudet, S.; Delikaris, D.; Ferlin, G.; Pezzetti, M.; Pirotte, O.; Tavian, L.; Wagner, U.

    2015-12-01

    CERN operates and maintains the world largest cryogenic infrastructure ranging from ageing installations feeding detectors, test facilities and general services, to the state-of-the-art cryogenic system serving the flagship LHC machine complex. After several years of exploitation of a wide range of cryogenic installations and in particular following the last two years major shutdown to maintain and consolidate the LHC machine, we have analysed and reviewed the maintenance activities to implement an efficient and reliable exploitation of the installations. We report the results, statistics and lessons learned on the maintenance activities performed and in particular the required consolidations and major overhauling, the organization, management and methodologies implemented.

  6. Germanium Blocked Impurity Band (BIB) detectors

    Science.gov (United States)

    Haller, E. E.; Baumann, H.; Beeman, J. W.; Hansen, W. L.; Luke, P. N.; Lutz, M.; Rossington, C. S.; Wu, I. C.

    1989-01-01

    Information is given in viewgraph form. The advantages of the Si blocked impurity band (BIB) detector invented by M. D. Petroff and M. G. Stabelbroek are noted: smaller detection volume leading to a reduction of cosmic ray interference, extended wavelength response because of dopant wavefunction overlap, and photoconductive gain of unity. It is argued that the stated advantages of Si BIB detectors should be realizable for Ge BIB detectors. Information is given on detector development, subtrate choice and preparation, wafer polising, epitaxy, characterization of epi layers, and preliminary Ge BIB detector test results.

  7. Aerogel Insulation to Support Cryogenic Technologies Project

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA is seeking a high performance thermal insulation material for cryogenic applications in space launch development. Many of the components in cryogenic...

  8. Cryogenic Propellant Storage and Transfer Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Cryogenic Propellant Storage and Transfer project will demonstrate the capability to safely and efficiently store, transfer and measure cryogenic propellants,...

  9. A New 76Ge Double Beta Decay Experiment at LNGS

    OpenAIRE

    Abt, I.; Altmann, M; Bakalyarov, A.; Barabanov, I.; Bauer, C; Bellotti, E.(Dipartimento di Fisica, Università Milano Bicocca, Milan, Italy); Belyaev, S. T.(National Research Centre “Kurchatov Institute”, Moscow, Russia); Bezrukov, L.(Institute for Nuclear Research of the Russian Academy of Sciences, Moscow, Russia); Brudanin, V.; Buettner, C.; Bolotsky, V. P.; Caldwell, A.; Cattadori, C.; Clement, H.; di Vacri, A.

    2004-01-01

    This Letter of Intent has been submitted to the Scientific Committee of the INFN Laboratori Nazionali del Gran Sasso (LNGS) in March 2004. It describes a novel facility at the LNGS to study the double beta decay of 76Ge using an (optionally active) cryogenic fluid shield. The setup will allow to scrutinize with high significance on a short time scale the current evidence for neutrinoless double beta decay of 76Ge using the existing 76Ge diodes from the previous Heidelberg-Moscow and IGEX expe...

  10. A lens-coupled scintillation counter in cryogenic environment

    CERN Document Server

    Stoykov, A; Amato, A; Bartkowiak, M; Konter, J A; Rodriguez, J; Sedlak, K

    2011-01-01

    In this work we present an elegant solution for a scintillation counter to be integrated into a cryogenic system. Its distinguishing feature is the absence of a continuous light guide coupling the scintillation and the photodetector parts, operating at cryogenic and room temperatures respectively. The prototype detector consists of a plastic scintillator with glued-in wavelength-shifting fiber located inside a cryostat, a Geiger-mode Avalanche Photodiode (G-APD) outside the cryostat, and a lens system guiding the scintillation light re-emitted by the fiber to the G-APD through optical windows in the cryostat shields. With a 0.8mm diameter multiclad fiber and a 1mm active area G-APD the coupling efficiency of the "lens light guide" is about 50%. A reliable performance of the detector down to 3K is demonstrated.

  11. Proposed cryogenic Q-factor measurement of mirror substrates

    Energy Technology Data Exchange (ETDEWEB)

    Nietzsche, Sandor; Zimmer, Anja; Vodel, Wolfgang; Thuerk, Matthias; Schmidl, Frank; Seidel, Paul [Institut fuer Festkoerperphysik, Friedrich-Schiller-Universitaet Jena, Helmholtzweg 5, 07743 Jena (Germany)

    2004-03-07

    The thermal noise of optical components (e.g., end mirrors, beam splitters) is one of the limiting factors of the sensitivity of most of the present interferometric gravitational wave detectors, and it will be limiting in the advanced detectors now being designed. This thermal noise occurs mainly in the optical substrates and their mirror coatings. One possible method for minimizing thermal noise is cooling to cryogenic temperatures, maximizing the mechanical Q and maximizing the eigenfrequencies of the substrate. A new cryogenic apparatus for investigations of the temperature dependency of the Q-factor of several substrate materials down to 4.2 K is proposed. Possible methods of mode excitation and ring down measurement are discussed.

  12. A lens-coupled scintillation counter in cryogenic environment

    Energy Technology Data Exchange (ETDEWEB)

    Stoykov, A; Scheuermann, R; Amato, A; Bartkowiak, M; Konter, J A; Rodriguez, J; Sedlak, K, E-mail: alexey.stoykov@psi.ch [Paul Scherrer Institut, CH-5232 Villigen PSI (Switzerland)

    2011-02-01

    In this work we present an elegant solution for a scintillation counter to be integrated into a cryogenic system. Its distinguishing feature is the absence of a continuous light guide coupling the scintillation and the photodetector parts, operating at cryogenic and room temperatures respectively. The prototype detector consists of a plastic scintillator with glued-in wavelength-shifting fiber located inside a cryostat, a Geiger-mode Avalanche Photodiode (G-APD) outside the cryostat, and a lens system guiding the scintillation light re-emitted by the fiber to the G-APD through optical windows in the cryostat shields. With a 0.8 mm diameter multiclad fiber and a 1 mm active area G-APD the coupling efficiency of the 'lens light guide' is about 50%. A reliable performance of the detector down to 3 K is demonstrated.

  13. SPEIR: A Ge Compton Camera

    Energy Technology Data Exchange (ETDEWEB)

    Mihailescu, L; Vetter, K M; Burks, M T; Hull, E L; Craig, W W

    2004-02-11

    The SPEctroscopic Imager for {gamma}-Rays (SPEIR) is a new concept of a compact {gamma}-ray imaging system of high efficiency and spectroscopic resolution with a 4-{pi} field-of-view. The system behind this concept employs double-sided segmented planar Ge detectors accompanied by the use of list-mode photon reconstruction methods to create a sensitive, compact Compton scatter camera.

  14. Single-particle detection of products from atomic and molecular reactions in a cryogenic ion storage ring

    Science.gov (United States)

    Krantz, C.; Novotný, O.; Becker, A.; George, S.; Grieser, M.; Hahn, R. von; Meyer, C.; Schippers, S.; Spruck, K.; Vogel, S.; Wolf, A.

    2017-04-01

    We have used a single-particle detector system, based on secondary electron emission, for counting low-energetic (∼keV/u) massive products originating from atomic and molecular ion reactions in the electrostatic Cryogenic Storage Ring (CSR). The detector is movable within the cryogenic vacuum chamber of CSR, and was used to measure production rates of a variety of charged and neutral daughter particles. In operation at a temperature of ∼ 6 K , the detector is characterised by a high dynamic range, combining a low dark event rate with good high-rate particle counting capability. On-line measurement of the pulse height distributions proved to be an important monitor of the detector response at low temperature. Statistical pulse-height analysis allows to infer the particle detection efficiency of the detector, which has been found to be close to unity also in cryogenic operation at 6 K.

  15. Installation and commissioning of a cryogen distribution system for the TPS project

    Science.gov (United States)

    Tsai, H. H.; Hsiao, F. Z.; Li, H. C.; Lin, M. C.; Wang, C.; Liao, W. R.; Lin, T. F.; Chiou, W. S.; Chang, S. H.; Chuang, P. S. D.

    2016-07-01

    A cryogen distribution system was installed and commissioned to transfer liquid nitrogen (LN2) and liquid helium (LHe) from storage dewars to superconducting radio-frequency (SRF) cavities for the 3-GeV Taiwan Photon Source (TPS) project. The cryogen distribution system comprises one distribution valve box (DVB), four control valve boxes (CVB) and seven sections of multichannel transfer line (MCL). The DVB distributes the LHe and LN2 to the CVB, and then to the SRF cavities through independent vacuum-jacketed transfer lines. The vaporized GHe and GN2 from the cryomodules are collected via the MCL. The cryogen distribution system was installed and commissioned from October 2014 to the end of March 2015. This paper presents the installation, pre-commissioning and commissioning of the cryogen distribution system, and describes the heat load test. Thermal acoustic oscillation (TAO) was found in the GHe process line; this phenomenon and its solution are also presented and discussed.

  16. The CUORE cryostat and its bolometric detector

    Energy Technology Data Exchange (ETDEWEB)

    Santone, D.; Alduino, C.; Alfonso, K.; Artusa, D. R.; III, F. T. Avignone; Azzolini, O.; Banks, T. I.; Bari, G.; Beeman, J. W.; Bellini, F.; Bersani, A.; Biassoni, M.; Branca, A.; Brofferio, C.; Bucci, C.; Camacho, A.; Caminata, A.; Canonica, L.; Cao, X. G.; Capelli, S.; Cappelli, L.; Carbone, L.; Cardani, L.; Carniti, P.; Casali, N.; Cassina, L.; Chiesa, D.; Chott, N.; Clemenza, M.; Copello, S.; Cosmelli, C.; Cremonesi, O.; Creswick, R. J.; Cushman, J. S.; D' Addabbo, A.; Dafinei, I.; Davis, C. J.; Dell' Oro, S.; Deninno, M. M.; Domizio, S. Di; Vacri, M. L. Di; Drobizhev, A.; Fang, D. Q.; Faverzani, M.; Fernandes, G.; Ferri, E.; Ferroni, F.; Fiorini, E.; Franceschi, M. A.; Freedman, S. J.; Fujikawa, B. K.; Giachero, A.; Gironi, L.; Giuliani, A.; Gladstone, L.; Gorla, P.; Gotti, C.; Gutierrez, T. D.; Haller, E. E.; Han, K.; Hansen, E.; Heeger, K. M.; Hennings-Yeomans, R.; Hickerson, K. P.; Huang, H. Z.; Kadel, R.; Keppel, G.; Kolomensky, Yu. G.; Leder, A.; Ligi, C.; Lim, K. E.; Liu, X.; Ma, Y. G.; Maino, M.; Marini, L.; Martinez, M.; Maruyama, R. H.; Mei, Y.; Moggi, N.; Morganti, S.; Mosteiro, P. J.; Napolitano, T.; Nones, C.; Norman, E. B.; Novati, V.; Nucciotti, A.; O' Donnell, T.; Orio, F.; Ouellet, J. L.; Pagliarone, C. E.; Pallavicini, M.; Palmieri, V.; Pattavina, L.; Pavan, M.; Pessina, G.; Pettinacci, V.; Piperno, G.; Pira, C.; Pirro, S.; Pozzi, S.; Previtali, E.; Rosenfeld, C.; Rusconi, C.; Sangiorgio, S.; Scielzo, N. D.; Singh, V.; Sisti, M.; Smith, A. R.; Taffarello, L.; Tenconi, M.; Terranova, F.; Tomei, C.; Trentalange, S.; Vignati, M.; Wagaarachchi, S. L.; Wang, B. S.; Wang, H. W.; Wilson, J.; Winslow, L. A.; Wise, T.; Woodcraft, A.; Zanotti, L.; Zhang, G. Q.; Zhu, B. X.; Zimmermann, S.; Zucchelli, S.

    2017-02-01

    CUORE is a cryogenic detector that will be operated at LNGS to search for neutrinoless double beta decay (0νββ) of 130Te. The detector installation was completed in summer 2016. Before the installation, several cold runs were done to test the cryogenic system performance. In the last cold run the base temperature of 6.3 mK was reached in stable condition. CUORE-0, a CUORE prototype, has proven the feasibility of CUORE, demonstrating that the target background of 0.01 counts/keV/kg/y and the energy resolution of 5 keV are within reach.

  17. Search for light scalar Dark Matter candidate with AURIGA detector

    CERN Document Server

    Branca, Antonio; Cerdonio, Massimo; Conti, Livia; Falferi, Paolo; Marin, Francesco; Mezzena, Renato; Ortolan, Antonello; Prodi, Giovanni A; Taffarello, Luca; Vedovato, Gabriele; Vinante, Andrea; Vitale, Stefano; Zendri, Jean-Pierre

    2016-01-01

    A search for a new scalar field, called moduli, has been performed using the cryogenic resonant-mass AURIGA detector. Predicted by string theory, moduli may provide a significant contribution to the dark matter (DM) component of our universe. If this is the case, the interaction of ordinary matter with the local DM moduli, forming the Galaxy halo, will cause an oscillation of solid bodies with a frequency corresponding to the mass of moduli. In the sensitive band of AURIGA, some $100\\,\\mathrm{Hz}$ at around $1\\,\\mathrm{kHz}$, the expected signal, with a $Q=\\tfrac{\\triangle f}{f}\\sim10^{6}$, is a narrow peak, $\\triangle f\\sim1\\,\\mathrm{mHz}$. Here the detector strain sensitivity is $h_{s}\\sim2\\times10^{-21}\\,\\mathrm{Hz^{-1/2}}$, within a factor of $2$. These numbers translate to upper limits at $95\\%\\,C.L.$ on the moduli coupling to ordinary matter $d_{e}\\lesssim10^{-5}$ around masses $m_{\\phi}=3.6\\cdot10^{-12}\\,\\mathrm{eV}$, for the standard DM halo model with $\\rho_{DM}=0.3\\,\\mathrm{GeV/cm^{3}}$.

  18. W. K. H. Panofsky Prize Talk: The Search for WIMP Dark Matter: CDMS Detectors

    Science.gov (United States)

    Cabrera, Blas

    2013-04-01

    As described in the accompanying talk by Bernard Sadoulet, the CDMS (cryogenic dark matter search) program has succeeded in pushing down by several orders of magnitude the sensitivity in the search for dark matter in the form of weakly interacting particles or WIMPs. In this talk we describe the technology that has enabled the CDMS detectors made of Ge and Si crystals to discriminate on an event by event basis electron recoils (most backgrounds from gammas) from nuclear recoils (the expected WIMP signal and neutrons). This rejection is accomplished by simultaneously measuring the ionization (electrons and holes in the semiconductor) and the phonons (lattice heat). To achieve the phonon measurement, the crystals are cooled to 0.05 K which allows the use of ultra low noise superconducting circuits. The phonon energy is collected at the surface of the crystals using Al films which absorb athermal phonons and produce quasiparticle excitations from the dissociated Cooper pairs. These excitations diffuse until the are trapped in superconducting tungsten transition edge sensors (TESs). The major advance of voltage biased TESs which are self biased in their transition region through negative feedback has been adopted very successfully for xray spectroscopy, gamma ray spectroscopy and CMB (cosmic microwave background) instruments. The most recent advance detectors called iZIPs (interleaved z-dependent ionization and phonon) provide a large improvement in surface electron rejection and remove that background for the next 200 kg Ge experiment and even for future ton scale experiments.

  19. The lead-liquid argon sampling calorimeter of the SLD detector

    Energy Technology Data Exchange (ETDEWEB)

    Axen, D.; Bougerolle, S.; Sobie, R. (Univ. British Columbia, Vancouver, BC (Canada)); Eigen, G.; De Jongh, F.; Hitlin, D.; Kelsey, M.; Klein, M.; Mincer, A.; Wisniewski, W.; Wolf, R. (California Inst. of Technology, Pasadena, CA (United States)); Arroyo, C.; Au, Y.; Baltay, C.; Bolton, T.; Bazarko, A.; Camilleri, L.; Hyatt, E.; Manly, S.; Rabinowitz, S.; Rowson, P.C.; Seligman, S.; Shaevitz, M.H.; Smith, S.; Steiner, R.V. (Columbia Univ., Nevis Lab., Irvington, NY (United States)); Abt, I.; Alzofon, D.; Arnett, D.; Barrera, F.; Bell, R.; Bes, S.C.; Bogart, J.; Breidenbach, M.; Candia, A.; Claus, R.; Cutler, H.; Davis, R.; Dubois, R.; Foss, M.; Fox, J.; Fox, M.; Gioumousis, A.; Grebenyuk, A.; Haller, G.; Hamilton, V.; Hodgson, J.; Huffer, M.; Junk, T.; Kim, P.; Labs, J.; Neal, H.; Nelson, D.; Nordby, M.; Paffrath, L.; Putallaz, G.; Rogers, H.; Russell, J.J.; Saez, P.; Seward, P.; Sherden, D.; Skarpaas, K.; Schindler, R.H.; Waite, A.P.; Watt, R. (Stanford Linear Accelerator Center, CA

    1993-05-01

    The lead-liquid argon sampling calorimeter of the SLD detector is one of the largest detectors employing cryogenic liquids now in operation. This paper details the design and performance considerations, the mechanical and cryogenic systems, the absorber design and tower segmentation, the data acquisition electronics, and the control systems of the detector. The initial operational performance of the device is discussed. Detailed resolution studies will be presented in a later paper. (orig.).

  20. Cryogenic Piezoelectric Actuator

    Science.gov (United States)

    Jiang, Xiaoning; Cook, William B.; Hackenberger, Wesley S.

    2009-01-01

    In this paper, PMN-PT single crystal piezoelectric stack actuators and flextensional actuators were designed, prototyped and characterized for space optics applications. Single crystal stack actuators with footprint of 10 mm x10 mm and the height of 50 mm were assembled using 10 mm x10mm x0.15mm PMN-PT plates. These actuators showed stroke > 65 - 85 microns at 150 V at room temperature, and > 30 microns stroke at 77 K. Flextensional actuators with dimension of 10mm x 5 mm x 7.6 mm showed stroke of >50 microns at room temperature at driving voltage of 150 V. A flextensional stack actuator with dimension of 10 mm x 5 mm x 47 mm showed stroke of approx. 285 microns at 150 V at room temperature and > 100 microns at 77K under driving of 150 V should be expected. The large cryogenic stroke and high precision of these actuators are promising for cryogenic optics applications.

  1. Responsivity Calibration of Pyroelectric Terahertz Detectors

    CERN Document Server

    Berry, Christopher W; Jarrahi, Mona

    2014-01-01

    There has been a significant advancement in terahertz radiation sources in the past decade, making milliwatt terahertz power levels accessible in both continuous-wave and pulsed operation. Such high-power terahertz radiation sources circumvent the need for cryogenic-cooled terahertz detectors such as semiconductor bolometers and necessitate the need for new types of calibrated, room-temperature terahertz detectors. Among various types of room-temperature terahertz detectors, pyroelectric detectors are one of the most widely used detectors, which can offer wide dynamic range, broad detection bandwidth, and high sensitivity levels. In this article, we describe the calibration process of a commercially available pyroelectric detector (Spectrum Detector, Inc, SPI-A-65 THz), which incorporates a 5 mm diameter LiTaO3 detector with an organic terahertz absorber coating.

  2. CMOS reliability issues for emerging cryogenic Lunar electronics applications

    Science.gov (United States)

    Chen, Tianbing; Zhu, Chendong; Najafizadeh, Laleh; Jun, Bongim; Ahmed, Adnan; Diestelhorst, Ryan; Espinel, Gustavo; Cressler, John D.

    2006-06-01

    We investigate the reliability issues associated with the application of CMOS devices contained within an advanced SiGe HBT BiCMOS technology to emerging cryogenic space electronics (e.g., down to 43 K, for Lunar missions). Reduced temperature operation improves CMOS device performance (e.g., transconductance, carrier mobility, subthreshold swing, and output current drive), as expected. However, operation at cryogenic temperatures also causes serious device reliability concerns, since it aggravates hot-carrier effects, effectively decreasing the inferred device lifetime significantly, especially at short gate lengths. In the paper, hot-carrier effects are demonstrated to be a stronger function of the device gate length than the temperature, suggesting that significant trade-offs between the gate length and the operational temperature must be made in order to ensure safe and reliable operation over typical projected mission lifetimes in these hostile environments.

  3. Exclusion limits on the WIMP-nucleon cross section from the first run of the Cryogenic Dark Matter Search in the Soudan Underground Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Armel-Funkhouser, M.S.; /UC, Berkeley; Attisha, M.J.; /Case Western Reserve U.; Bailey, C.N.; /Case Western Reserve U.; Baudis, L.; /Florida U.; Bauer, Daniel A.; /Fermilab; Brink, P.L.; /Case Western Reserve U.; Bunker, R.; /UC, Santa Barbara; Cabrera, B.; /Case Western Reserve U.; Caldwell, D.O.; /UC, Santa Barbara; Chang, C.L.; /Case Western Reserve U.; Crisler, M.B.; /Fermilab; Cushman, P.; /Minnesota U.; Daal, M.; /UC, Berkeley; Dixon, R.; /Fermilab; Dragowsky, M.R.; Driscoll, D.D.; /Case Western Reserve U.; Duong, L.; /Minnesota U.; Ferril, R.; /UC, Santa Barbara; Filippini, J.; /UC, Berkeley; Gaitskell, R.J.; /Case Western Reserve U.; Hennings-Yeomans, R.; /Case Western Reserve U. /Fermilab /Case Western Reserve

    2005-07-01

    The Cryogenic Dark Matter Search (CDMS-II) employs low-temperature Ge and Si detectors to seek Weakly Interacting Massive Particles (WIMPs) via their elastic scattering interactions with nuclei. Simultaneous measurements of both ionization and phonon energy provide discrimination against interactions of background particles. For recoil energies above 10 keV, events due to background photons are rejected with > 99.99% efficiency. Electromagnetic events very near the detector surface can mimic nuclear recoils because of reduced charge collection, but these surface events are rejected with > 96% efficiency by using additional information from the phonon pulse shape. Efficient use of active and passive shielding, combined with the 2090 m.w.e. overburden at the experimental site in the Soudan mine, makes the background from neutrons negligible for this first exposure. All cuts are determined in a blind manner from in situ calibrations with external radioactive sources without any prior knowledge of the event distribution in the signal region. Resulting efficiencies are known to {approx}10%. A single event with a recoil of 64 keV passes all of the cuts and is consistent with the expected misidentification rate of surface-electron recoils. Under the assumptions for a standard dark matter halo, these data exclude previously unexplored parameter space for both spin-independent and spin-dependent WIMP-nucleon elastic scattering. The resulting limit on the spin-independent WIMP-nucleon elastic-scattering cross-section has a minimum of 4 x 10{sup -43} cm{sup 2} at a WIMP mass of 60 GeV c{sup -2}. The minimum of the limit for the spin-dependent WIMP-neutron elastic-scattering cross-section is 2 x 10{sup -37} cm{sup 2} at a WIMP mass of 50 GeV c{sup -2}.

  4. A modified detector concept for SuperCDMS: The HiZIP and its charge performance

    Energy Technology Data Exchange (ETDEWEB)

    Page, Kedar Mohan [Queen' s U.

    2013-01-01

    SuperCDMS (Super Cryogenic Dark Matter Search) is a leading direct dark mat-ter search experiment which uses solid state detectors (Ge crystals) at milliKelvintemperatures to look for nuclear recoils caused by dark matter interactions in the de-tector. `Weakly Interacting Massive Particles' (WIMPs) are the most favoured darkmatter candidate particles. SuperCDMS, like many other direct dark matter searchexperiments, primarily looks for WIMPs. The measurement of both the ionizationand the lattice vibration (phonon) signals from an interaction in the detector allow itto discriminate against electron recoils which are the main source of background forWIMP detection.SuperCDMS currently operates about 9 kg of Ge detectors at the Soudan under-ground lab in northern Minnesota. In its next phase, SuperCDMS SNOLAB plansto use 100-200 kg of target mass (Ge) which would allow it to probe more of theinteresting and and as of yet unexplored parameter space for WIMPs predicted bytheoretical models. The SuperCDMS Queen's Test Facility is a detector test facilitywhich is intended to serve as detector testing and detector research and developmentpurposes for the SuperCDMS experiment.A modifed detector called the HiZIP (Half-iZIP), which is reduced in complex-ity in comparison to the currently used iZIP (interleaved Z-sensitive Ionization and Phonon mediated) detectors, is studied in this thesis. The HiZIP detector designalso serves to discriminate against background from multiple scatter events occurringclose to the surfaces in a single detector. Studies carried out to compare the surfaceevent leakage in the HiZIP detector using limited information from iZIP data takenat SuperCDMS test facility at UC Berkley produce a highly conservative upper limitof 5 out of 10,000 events at 90% condence level. This upper limit is the best amongmany different HiZIP congurations that were investigated and is comparable to theupper limit calculated for an HiZIP detector in the same way

  5. The Cryogenic Dark Matter Search and Background Rejection with Event Position Information

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Gensheng [Case Western Reserve Univ., Cleveland, OH (United States). Dept. of Physics

    2005-01-01

    Evidence from observational cosmology and astrophysics indicates that about one third of the universe is matter, but that the known baryonic matter only contributes to the universe at 4%. A large fraction of the universe is cold and non-baryonic matter, which has important role in the universe structure formation and its evolution. The leading candidate for the non-baryonic dark matter is Weakly Interacting Massive Particles (WIMPs), which naturally occurs in the supersymmetry theory in particle physics. The Cryogenic Dark Matter Search (CDMS) experiment is searching for evidence of a WIMP interaction off an atomic nucleus in crystals of Ge and Si by measuring simultaneously the phonon energy and ionization energy of the interaction in the CDMS detectors. The WIMP interaction energy is from a few keV to tens of keV with a rate less than 0.1 events/kg/day. To reach the goal of WIMP detection, the CDMS experiment has been conducted in the Soudan mine with an active muon veto and multistage passive background shields. The CDMS detectors have a low energy threshold and background rejection capabilities based on ionization yield. However, betas from contamination and other radioactive sources produce surface interactions, which have low ionization yield, comparable to that of bulk nuclear interactions. The low-ionization surface electron recoils must be removed in the WIMP search data analysis. An emphasis of this thesis is on developing the method of the surface-interaction rejection using location information of the interactions, phonon energy distributions and phonon timing parameters. The result of the CDMS Soudan run118 92.3 live day WIMP search data analysis is presented, and represents the most sensitive search yet performed.

  6. Nanodielectrics for Cryogenic Applications

    Energy Technology Data Exchange (ETDEWEB)

    Tuncer, Enis [ORNL; Sauers, Isidor [ORNL; James, David Randy [ORNL; Ellis, Alvin R [ORNL; Pace, Marshall O [ORNL; More, Karren [Oak Ridge National Laboratory (ORNL); Sathyamurthy, Srivatsan [University of Tennessee, Knoxville (UTK); Woodward, Jonathan [ORNL; Rondinone, Adam Justin [ORNL

    2009-01-01

    In this paper we report the recent advances in nanodielectrics that were developed and tested for cryogenic dielectric applications. The systems studied are composed of nanometer size particles. Particles were produced using either an ex-situ or in-situ technique. It is observed that there are clear differences in the structural properties of materials produced using these two approaches. Either no significant degradation or improvement in the electrical insulation properties were observed for ex-situ nano-particle samples processed with an ultrasonic processor and in-situ nano-particle samples. Nanodielectrics have the potential to be tailored with better thermal and mechanical properties without losing their electrical insulation characteristics.

  7. Cryogenic Cam Butterfly Valve

    Science.gov (United States)

    McCormack, Kenneth J. (Inventor)

    2016-01-01

    A cryogenic cam butterfly valve has a body that includes an axially extending fluid conduit formed there through. A disc lug is connected to a back side of a valve disc and has a circular bore that receives and is larger than a cam of a cam shaft. The valve disc is rotatable for a quarter turn within the body about a lug axis that is offset from the shaft axis. Actuating the cam shaft in the closing rotational direction first causes the camming side of the cam of the cam shaft to rotate the disc lug and the valve disc a quarter turn from the open position to the closed position. Further actuating causes the camming side of the cam shaft to translate the valve disc into sealed contact with the valve seat. Opening rotational direction of the cam shaft reverses these motions.

  8. SPICA sub-Kelvin cryogenic chains

    Science.gov (United States)

    Duband, L.; Duval, J. M.; Luchier, N.; Prouve, T.

    2012-04-01

    SPICA, a Japanese led mission, is part of the JAXA future science program and is planned for launch in 2018. SPICA will perform imaging and spectroscopic observations in the mid- and far-IR waveband, and is developing instrumentation spanning the 5-400 μm range. The SPICA payload features several candidate instruments, some of them requiring temperature down to 50 mK. This is currently the case for SAFARI, a core instrument developed by a European-based consortium, and BLISS proposed by CALTECH/JPL in the US. SPICA's distinctive feature is to actively cool its telescope to below 6 K. In addition, SPICA is a liquid cryogen free satellite and all the cooling will be provided by radiative cooling (L2 orbit) down to 30 K and by mechanical coolers for lower temperatures. The satellite will launch warm and slowly equilibrate to its operating temperatures once in orbit. This warm launch approach makes it possible to eliminate a large liquid cryogen tank and to use the mass saved to launch a large diameter telescope (3.2 m). This 4 K cooled telescope significantly reduces its own thermal radiation, offering superior sensitivity in the infrared region. The cryogenic system that enables this warm launch/cooled telescope concept is a key issue of the mission. This cryogenic chain features a number of cooling stages comprising passive radiators, Stirling coolers and several Joule Thomson loops, offering cooling powers at typically 20, 4.5, 2.5 and 1.7 K. The SAFARI and BLISS detectors require cooling to temperatures as low as 50 mK. The instrument coolers will be operated from these heat sinks. They are composed of a small demagnetization refrigerator (ADR) pre cooled by either a single or a double sorption cooler, respectively for SAFARI and BLISS. The BLISS cooler maintains continuous cooling at 300 mK and thus suppresses the thermal equilibrium time constant of the large focal plane. These hybrid architectures allow designing low weight coolers able to reach 50 mK. Because

  9. A Cryogenic Flow Sensor Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Based on the success of the phase I effort, Advanced Technologies Group, Inc. proposes the development of a Cryogenic Flow Sensor (CFS) for determining mass flow of...

  10. Cryogenic Acoustic Suppression Testing Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed project will explore and test the feasibility and effectiveness of using a cryogenic fluid (liquid nitrogen) to facilitate acoustic suppression in a...

  11. Cryogenic MEMS Pressure Sensor Project

    Data.gov (United States)

    National Aeronautics and Space Administration — A directly immersible cryogenic MEMS pressure sensor will be developed. Each silicon die will contain a vacuum-reference and a tent-like membrane. Offsetting thermal...

  12. Lightweight Inflatable Cryogenic Tank Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal describes the development of an inflatable and lightweight polymer-fabric structured pressure vessel designed for the containment of cryogenic fluids....

  13. Cryogenic Systems and Superconductive Power

    Science.gov (United States)

    The report defines, investigates, and experimentally evaluates the key elements of a representative crogenic turborefrigerator subsystem suitable for providing reliable long-lived cryogenic refrigeration for a superconductive ship propulsion system.

  14. First concept for the E-ELT cryogenic infrastructure

    Science.gov (United States)

    Lizon, J. L.; Gonzalez, J. C.; Monroe, C.; Bryson, I.; Montgomery, D.

    2010-07-01

    The start of the new generation of giant telescopes opens a good opportunity to re-assess the cryogenic cooling of the instruments and detectors. An analysis has been carried out comparing three different technologies: Mechanical cryocoolers, helium forced flow and open liquid nitrogen cooling. The most different aspects from the running cost to the reliability and technology readiness have been compared in order to establish a fair ranking. The first part of the paper will present in detail the result of this analysis. Based on this study and the various experiences collected over more than 25 years and a large number of cryogenic instruments, a strategy is elaborated for the cryogenic cooling of the E-ELT (European Extremely Large Telescope) instrument suite. The challenge consists in providing various cryogenic temperatures (from 10 K to 240 K) at various locations. This should be done in the most efficient way with the minimum of disturbances (low vibration, low thermal dissipation...). A discussion presents the advantages of the selected solution.

  15. A Piezoelectric Cryogenic Heat Switch

    Science.gov (United States)

    Jahromi, Amir E.; Sullivan, Dan F.

    2014-01-01

    We have measured the thermal conductance of a mechanical heat switch actuated by a piezoelectric positioner, the PZHS (PieZo electric Heat Switch), at cryogenic temperatures. The thermal conductance of the PZHS was measured between 4 K and 10 K, and on/off conductance ratios greater than 100 were achieved when the positioner applied its maximum force of 8 N. We discuss the advantages of using this system in cryogenic applications, and estimate the ultimate performance of an optimized PZHS.

  16. Performance of a proximity cryogenic system for the ATLAS central solenoid magnet

    CERN Document Server

    Doi, Y; Makida, Y; Kondo, Y; Kawai, M; Aoki, K; Haruyama, T; Kondo, T; Mizumaki, S; Wachi, Y; Mine, S; Haug, F; Delruelle, N; Passardi, Giorgio; ten Kate, H H J

    2002-01-01

    The ATLAS central solenoid magnet has been designed and constructed as a collaborative work between KEK and CERN for the ATLAS experiment in the LHC project The solenoid provides an axial magnetic field of 2 Tesla at the center of the tracking volume of the ATLAS detector. The solenoid is installed in a common cryostat of a liquid-argon calorimeter in order to minimize the mass of the cryostat wall. The coil is cooled indirectly by using two-phase helium flow in a pair of serpentine cooling line. The cryogen is supplied by the ATLAS cryogenic plant, which also supplies helium to the Toroid magnet systems. The proximity cryogenic system for the solenoid has two major components: a control dewar and a valve unit In addition, a programmable logic controller, PLC, was prepared for the automatic operation and solenoid test in Japan. This paper describes the design of the proximity cryogenic system and results of the performance test. (7 refs).

  17. Pseudomorphic GeSn/Ge (001) heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Tonkikh, A. A., E-mail: tonkikh@mpi-halle.de [Max Planck Institute of Microstructure Physics (Germany); Talalaev, V. G. [Martin Luther University Halle-Wittenberg, ZIK SiLi-nano (Germany); Werner, P. [Max Planck Institute of Microstructure Physics (Germany)

    2013-11-15

    The synthesis of pseudomorphic GeSn heterostructures on a Ge (001) substrate by molecular-beam epitaxy is described. Investigations by transmission electron microscopy show that the GeSn layers are defect free and possess cubic diamondlike structure. Photoluminescence spectroscopy reveals interband radiative recombination in the GeSn quantum wells, which is identified as indirect transitions between the subbands of heavy electrons and heavy holes. On the basis of experimental data and modeling of the band structure of pseudomorphic GeSn compounds, the lower boundary of the bowing parameter for the indirect band gap is estimated as b{sub L} {>=} 1.47 eV.

  18. Optimization of the Clustering and Tracking Algorithms of the Silicon Microstrip Detectors for the COMPASS Experiment

    CERN Document Server

    Leeb, Michael

    The COMPASS experiment at CERN uses silicon microstrip detectors for beam defini- tion and during hadron program also for the reconstruction of the primary interaction point. In the year 2009 these detectors were operated continuously at cryogenic temper- atures of 200 K for the first time. The objec- tive of this thesis is the optimization of the data reconstruction algorithms used for the silicon microstrip detectors. The clustering algorithm is extended to increase the capa- bility of resolving several particles in close proximity with respect to each other. Fur- thermore improvements on the simulation of the detector response are presented. In addition, the requirements on the detector alignment in order to make full use of the detector capability are studied. Based on a precise alignment, results on the perfor- mance during cryogenic operation are given and compared to the non-cryogenic detector characteristics.

  19. Characterization of SiPM for cryogenic applications

    Energy Technology Data Exchange (ETDEWEB)

    Cervi, T. [Dipartimento di Fisica, Università di Pavia (Italy); INFN Sezione di Pavia, Pavia (Italy); Bonesini, M. [INFN Sezione di Milano Bicocca, Dipartimento di Fisica G. Occhialini, Milano (Italy); Falcone, A.; Menegolli, A. [Dipartimento di Fisica, Università di Pavia (Italy); INFN Sezione di Pavia, Pavia (Italy); Raselli, G.L.; Rossella, M.; Simonetta, M. [INFN Sezione di Pavia, Pavia (Italy); Torti, M. [Dipartimento di Fisica, Università di Pavia (Italy); INFN Sezione di Pavia, Pavia (Italy)

    2016-07-11

    The development of detectors based on liquefied noble gas (LAr, LXe) is mandatory for experiments dedicated to study physics beyond the Standard Model. For this purpose, it is fundamental to detect the Vacuum Ultra Violet (VUV) scintillation light, produced after the passage of ionizing particles inside the detector sensitive volume, to be used for trigger, timing and calorimetric purposes. Besides the traditional cryogenic Photo-Multiplier Tubes (PMTs), one possibility is to adopt Silicon Photo-Multipliers (SiPMs). We present a comparison of the performance of a SiPM (mod. ASD-NUV3S-P Low Afterpulse) at various cryogenic temperatures, from 60 K up to room temperature, with particular emphasis on the LAr and LXe temperatures. SiPM were characterized in terms of breakdown voltage, gain, pulse shape response, dark count rate and correlated noise. - Highlights: • SiPM characterization at cryogenic temperature. • Breakdown voltage, pulse shape, gain and noise of a SiPM. • Gain measurement at different temperatures.

  20. Low-Mass Dark Matter Search Results and Radiogenic Backgrounds for the Cryogenic Dark Matter Search

    Energy Technology Data Exchange (ETDEWEB)

    Pepin, Mark David [Univ. of Minnesota, Minneapolis, MN (United States)

    2016-12-01

    An ever-increasing amount of evidence suggests that approximately one quarter of the energy in the universe is composed of some non-luminous, and hitherto unknown, “dark matter”. Physicists from numerous sub-fields have been working on and trying to solve the dark matter problem for decades. The common solution is the existence of some new type of elementary particle with particular focus on weakly interacting massive particles (WIMPs). One avenue of dark matter research is to create an extremely sensitive particle detector with the goal of directly observing the interaction of WIMPs with standard matter. The Cryogenic Dark Matter Search (CDMS) project operated at the Soudan Underground Laboratory from 2003–2015, under the CDMS II and SuperCDMS Soudan experiments, with this goal of directly detecting dark matter. The next installation, SuperCDMS SNOLAB, is planned for near-future operation. The reason the dark-matter particle has not yet been observed in traditional particle physics experiments is that it must have very small cross sections, thus making such interactions extremely rare. In order to identify these rare events in the presence of a background of known particles and interactions, direct detection experiments employ various types and amounts of shielding to prevent known backgrounds from reaching the instrumented detector(s). CDMS utilized various gamma and neutron shielding to such an effect that the shielding, and other experimental components, themselves were sources of background. These radiogenic backgrounds must be understood to have confidence in any WIMP-search result. For this dissertation, radiogenic background studies and estimates were performed for various analyses covering CDMS II, SuperCDMS Soudan, and SuperCDMS SNOLAB. Lower-mass dark matter t c2 inent in the past few years. The CDMS detectors can be operated in an alternative, higher-biased, mode v to decrease their energy thresholds and correspondingly increase their sensitivity

  1. A detector module with highly efficient surface-alpha event rejection operated in CRESST-II Phase 2

    Energy Technology Data Exchange (ETDEWEB)

    Strauss, R. [Max-Planck-Institut fuer Physik, Munich (Germany); Technische Universitaet Muenchen, Physik-Department, Garching (Germany); Angloher, G.; Ferreiro, N.; Hauff, D.; Kiefer, M.; Petricca, F.; Proebst, F.; Reindl, F.; Seidel, W.; Stodolsky, L.; Tanzke, A.; Wuestrich, M. [Max-Planck-Institut fuer Physik, Munich (Germany); Bento, A. [Universidade de Coimbra, CIUC, Departamento de Fisica, Coimbra (Portugal); Bucci, C.; Canonica, L.; Gorla, P.; Schaeffner, K. [Laboratori Nazionali del Gran Sasso, INFN, Assergi (Italy); Erb, A. [Technische Universitaet Muenchen, Physik-Department, Garching (Germany); Walther-Meissner-Institut fuer Tieftemperaturforschung, Garching (Germany); Feilitzsch, F. von; Guetlein, A.; Lanfranchi, J.C.; Muenster, A.; Potzel, W.; Roth, S.; Schoenert, S.; Stanger, M.; Ulrich, A.; Wawoczny, S.; Willers, M.; Zoeller, A. [Technische Universitaet Muenchen, Physik-Department, Garching (Germany); Jochum, J.; Loebell, J.; Rottler, K.; Sailer, C.; Scholl, S.; Strandhagen, C.; Uffinger, M.; Usherov, I. [Eberhard-Karls-Universitaet Tuebingen, Physikalisches Institut, Tuebingen (Germany); Kluck, H. [Institut fuer Hochenergiephysik der Oesterreichischen Akademie der Wissenschaften, Wien (Austria); Vienna University of Technology, Atominstitut, Wien (Austria); Kraus, H. [University of Oxford, Department of Physics, Oxford (United Kingdom); Schieck, J. [Institut fuer Hochenergiephysik der Oesterreichischen Akademie der Wissenschaften, Wien (Austria); Sivers, M. von [Technische Universitaet Muenchen, Physik-Department, Garching (Germany); University of Bern, Albert Einstein Center for Fundamental Physics, Bern (Switzerland)

    2015-08-15

    The cryogenic dark matter experiment CRESSTII aims at the direct detection of WIMPs via elastic scattering off nuclei in scintillating CaWO{sub 4} crystals. We present a new, highly improved, detector design installed in the current run of CRESST-II Phase 2 with an efficient active rejection of surface-alpha backgrounds. Using CaWO{sub 4} sticks instead of metal clamps to hold the target crystal, a detector housing with fully-scintillating inner surface could be realized. The presented detector (TUM40) provides an excellent threshold of ∝0.60 keV and a resolution of σ ∼ 0.090 keV (at 2.60 keV).With significantly reduced background levels, TUM40 sets stringent limits on the spin-independent WIMP nucleon scattering cross section and probes a new region of parameter space for WIMP masses below 3GeV/c{sup 2}. In this paper, we discuss the novel detector design and the surface-alpha event rejection in detail. (orig.)

  2. A detector module with highly efficient surface-alpha event rejection operated in CRESST-II Phase 2

    CERN Document Server

    Strauss, R; Bento, A; Bucci, C; Canonica, L; Erb, A; Feilitzsch, F v; Ferreiro, N; Gorla, P; Gütlein, A; Hauff, D; Jochum, J; Kiefer, M; Kluck, H; Kraus, H; Lanfranchi, J -C; Loebell, J; Münster, A; Petricca, F; Potzel, W; Pröbst, F; Reindl, F; Roth, S; Rottler, K; Sailer, C; Schäffner, K; Schieck, J; Scholl, S; Schönert, S; Seidel, W; Sivers, M v; Stanger, M; Stodolsky, L; Strandhagen, C; Tanzke, A; Uffinger, M; Ulrich, A; Usherov, I; Wawoczny, S; Willers, M; Wüstrich, M; Zöller, A

    2014-01-01

    The cryogenic dark matter experiment CRESST-II aims at the direct detection of WIMPs via elastic scattering off nuclei in scintillating CaWO$_4$ crystals. We present a new, highly improved, detector design installed in the current run of CRESST-II Phase 2 with an efficient active rejection of surface-alpha backgrounds. Using CaWO$_4$ sticks to hold the target crystal a detector housing with fully-scintillating inner surface could be realized. The presented detector (TUM40) provides an excellent threshold of ${\\sim}\\,0.60\\,$keV and a resolution of $\\sigma\\,{\\approx}\\,0.090\\,$keV (at 2.60$\\,$keV). With significantly reduced background levels, TUM40 sets stringent limits on the spin-independent WIMP-nucleon scattering cross section and probes a new region of parameter space for WIMP masses below 3$\\,$GeV/c$^2$. In this paper, we discuss the novel detector design and the surface-alpha event rejection in detail.

  3. Search for Tetrahedral Symmetry in 70Ge

    Science.gov (United States)

    Le, Khanh; Haring-Kaye, R. A.; Elder, R. M.; Jones, K. D.; Morrow, S. I.; Tabor, S. L.; Tripathi, V.; Bender, P. C.; Allegro, P. R. P.; Medina, N. H.; Oliveira, J. R. B.; Doring, J.

    2014-09-01

    The even-even Ge isotopes have recently become an active testing ground for a variety of exotic structural characteristics, including the existence of tetrahedral symmetry (pyramid-like shapes). Although theoretical shape calculations predict the onset of tetrahedral symmetry near 72Ge, the experimental signatures (including vanishing quadrupole moments within high-spin bands) remain elusive. This study searched for possible experimental evidence of tetrahedral symmetry in 70Ge. Excited states in 70Ge were populated at Florida State University using the 55Mn(18O,p2n) fusion-evaporation reaction at 50 MeV. Prompt γ- γ coincidences were measured with a Compton-suppressed Ge array consisting of three Clover detectors and seven single-crystal detectors. The existing level scheme was enhanced through the addition of 20 new transitions and the rearrangement of five others based on the measured coincidence relations and relative intensities. Lifetimes of 24 states were measured using the Doppler-shift attenuation method, from which transition quadrupole moments were inferred. These results will be compared with those obtained from cranked Woods-Saxon calculations. The even-even Ge isotopes have recently become an active testing ground for a variety of exotic structural characteristics, including the existence of tetrahedral symmetry (pyramid-like shapes). Although theoretical shape calculations predict the onset of tetrahedral symmetry near 72Ge, the experimental signatures (including vanishing quadrupole moments within high-spin bands) remain elusive. This study searched for possible experimental evidence of tetrahedral symmetry in 70Ge. Excited states in 70Ge were populated at Florida State University using the 55Mn(18O,p2n) fusion-evaporation reaction at 50 MeV. Prompt γ- γ coincidences were measured with a Compton-suppressed Ge array consisting of three Clover detectors and seven single-crystal detectors. The existing level scheme was enhanced through the addition

  4. Advanced Si IR detectors using molecular beam epitaxy

    Science.gov (United States)

    Lin, T. L.; Jones, E. W.; George, T.; Ksendzov, A.; Huberman, M. L.

    1991-01-01

    SiGe/Si heterojunction internal photoemission (HIP) long wavelength infrared (LWIR) detectors have been fabricated by MBE. The SiGe/Si HIP detector offers a tailorable spectral response in the long wavelength infrared regime by varying the SiGe/Si heterojunction barrier. Degenerately doped p(+) SiGe layers were grown using elemental boron, as the dopant source allows a low growth temperature. Good crystalline quality was achieved for boron-doped SiGe due to the reduced growth temperature. The dark current density of the boron-doped HIP detectors was found to be thermionic emission limited. HIP detectors with a 0.066 eV were fabricated and characterized using activation energy analysis, corresponding to a 18 micron cutoff wavelength. Photoresponse of the detectors at wavelengths ranging from 2 to 12 microns has been characterized with corresponding quantum efficiencies of 5 - 0.1 percent.

  5. A Low-Threshold Analysis of Data from the Cryogenic Dark Matter Search Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Bunker, Raymond [Univ. of California, Santa Barbara, CA (United States)

    2011-12-01

    Although dark matter appears to constitute over 80% of the matter in the Universe, its composition is a mystery. Astrophysical observations suggest that the luminous portions of the Galaxy are embedded in a halo of darkmatter particles. Weakly Interacting Massive Particles (WIMPs) are the most studied class of dark-matter candidates and arise naturally within the context of many weak-scale supersymmetric theories. Direct-detection experiments like the Cryogenic Dark Matter Search (CDMS) strive to discern the kinetic energy of recoiling nuclei resulting from WIMP interactions with terrestrial matter. This is a considerable challenge in which the low (expected) rate of WIMP interactions must be distinguished from an overwhelming rate due to known types of radiation. An incontrovertible positive detection has remained elusive. However, a few experiments have recorded data that appear consistent with a low-mass WIMP. This thesis describes an attempt to probe the favored parameter space. To increase sensitivity to low-mass WIMPs, a low-threshold technique with improved sensitivity to small energy depositions is applied to CDMS shallowsite data. Four germanium and two silicon detectors were operated between December 2001 and June 2002, yielding 118 days of exposure. By sacrificing some of the CDMS detectors’ ability to discriminate signal from background, energy thresholds of ~1 and ~2 keV were achieved for three of the germanium and both silicon detectors, respectively. A large number of WIMP candidate events are observed, most of which can be accounted for by misidentification of background sources. No conclusive evidence for a low-mass WIMP signal is found. The observed event rates are used to set upper limits on the WIMPnucleon scattering cross section as a function of WIMP mass. Interesting parameter space is excluded for WIMPs with masses below ~9GeV/c2. Under standard assumptions, the parameter space favored by interpretations of other experiments

  6. Cryogenic holographic distortion testing

    Science.gov (United States)

    Michel, David G.

    1994-06-01

    Hughes cryogenic holographic test facility allows for the rapid characterization of optical components and mechanical structures at elevated and reduced temperatures. The facility consists of a 1.6 meter diameter thermal vacuum chamber, vibration isolated experiment test platform, and a holographic camera assembly. Temperatures as low as 12 Kelvin and as high as 350 Kelvin have been demonstrated. Complex aspheric mirrors are tested without the need for auxiliary null lenses and may be tested in either the polished or unpolished state. Structural elements such as optical benches, solar array panels, and spacecraft antennas have been tested. Types of materials tested include beryllium, silicon carbide, aluminum, graphite epoxy, silicon/aluminum matrix material and injection molded plastics. Sizes have ranged from 7 cm X 15 cm to 825 cm X 1125 cm and have weighed as little as 0.2 Kg and as much as 130 Kg. Surface figure changes as little as (lambda) /10 peak-to-valley ((lambda) equals .514 micrometers ) are routinely measured.

  7. Dual Cryogenic Capacitive Density Sensor

    Science.gov (United States)

    Youngquist, Robert; Mata, Carlos; Vokrot, Peter; Cox, Robert

    2009-01-01

    A dual cryogenic capacitive density sensor has been developed. The device contains capacitive sensors that monitor two-phase cryogenic flow density to within 1% accuracy, which, if temperature were known, could be used to determine the ratio of liquid to gas in the line. Two of these density sensors, located a known distance apart, comprise the sensor, providing some information on the velocity of the flow. This sensor was constructed as a proposed mass flowmeter with high data acquisition rates. Without moving parts, this device is capable of detecting the density change within a two-phase cryogenic flow more than 100 times a second. Detection is enabled by a series of two sets of five parallel plates with stainless steel, cryogenically rated tubing. The parallel plates form the two capacitive sensors, which are measured by electrically isolated digital electronics. These capacitors monitor the dielectric of the flow essentially the density of the flow and can be used to determine (along with temperature) the ratio of cryogenic liquid to gas. Combining this information with the velocity of the flow can, with care, be used to approximate the total two-phase mass flow. The sensor can be operated at moderately high pressures and can be lowered into a cryogenic bath. The electronics have been substantially improved over the older sensors, incorporating a better microprocessor, elaborate ground loop protection and noise limiting circuitry, and reduced temperature sensitivity. At the time of this writing, this design has been bench tested at room temperature, but actual cryogenic tests are pending

  8. Gram-scale cryogenic calorimeters for rare-event searches

    Science.gov (United States)

    Strauss, R.; Rothe, J.; Angloher, G.; Bento, A.; Gütlein, A.; Hauff, D.; Kluck, H.; Mancuso, M.; Oberauer, L.; Petricca, F.; Pröbst, F.; Schieck, J.; Schönert, S.; Seidel, W.; Stodolsky, L.

    2017-07-01

    The energy threshold of a cryogenic calorimeter can be lowered by reducing its size. This is of importance since the resulting increase in signal rate enables new approaches in rare-event searches, including the detection of MeV mass dark matter and coherent scattering of reactor or solar neutrinos. A scaling law for energy threshold vs detector size is given. We analyze the possibility of lowering the threshold of a gram-scale cryogenic calorimeter to the few eV regime. A prototype 0.5 g Al2 O3 device achieved an energy threshold of Eth=(19.7 ±0.9 ) eV , the lowest value reported for a macroscopic calorimeter.

  9. Distributed Cooling in Cryogenics with Miniaturized Fluid Circuits

    CERN Document Server

    Grohmann, Steffen

    This work presents the development of miniaturized cryogenic fluid circuits for cooling of low temperature tracking detectors in High Energy Physics (HEPI. The system development comprises the circuit layout and control, and the design of major circuit components. It includes the development of a prototype cryogenic micropump compatible with cooling powers of about l0 W to l00 W, and capable of producing pressure heads of several bars. Focus is given to the design of microtube heat exchangers for direct evaporative cooling of sensors and electronic devices. Extensive experimental investigations on heat transfer in microtubes of 250 $\\mu m$ and 500 $\\mu m$ diameter are presented, carried out with argon at about 120 K. A new relative roughness parameter is introduced to model the effect of macroscopic surface roughness on convective heat transfer. An extension of the diameter function in the VDI Heat Atlas correlation for nucleate boiling in vertical tubes is proposed. Besides HEP, potential applications are es...

  10. Investigation of Mechanical Properties of Cryogenically Treated Music Wire

    CERN Document Server

    Heptonstall, A; Robertson, N A

    2015-01-01

    It has been reported that treating music wire (high carbon steel wire) by cooling to cryogenic temperatures can enhance its mechanical properties with particular reference to those properties important for musical performance. We use such wire for suspending many of the optics in Advanced LIGO, the upgrade to LIGO - the Laser Interferometric Gravitational-Wave Observatory. Two properties that particularly interest us are mechanical loss and breaking strength. A decrease in mechanical loss would directly reduce the thermal noise associated with the suspension, thus enhancing the noise performance