WorldWideScience

Sample records for ge computers

  1. Computer generation of structural models of amorphous Si and Ge

    Science.gov (United States)

    Wooten, F.; Winer, K.; Weaire, D.

    1985-04-01

    We have developed and applied a computer algorithm that generates realistic random-network models of a-Si with periodic boundary conditions. These are the first models to have correlation functions that show no serious deiscrepancy with experiment. The algorithm provides a much-needed systematic approach to model construction that can be used to generate models of a large class of amorphous materials.

  2. Measurements with a Ge detector and Monte Carlo computations of dose rate yields due to cosmic muons.

    Science.gov (United States)

    Clouvas, A; Xanthos, S; Antonopoulos-Domis, M; Silva, J

    2003-02-01

    The present work shows how portable Ge detectors can be useful for measurements of the dose rate due to ionizing cosmic radiation. The methodology proposed converts the cosmic radiation induced background in a Ge crystal (energy range above 3 MeV) to the absorbed dose rate due to muons, which are responsible for 75% of the cosmic radiation dose rate at sea level. The key point is to observe in the high energy range (above 20 MeV) the broad muon peak resulting from the most probable energy loss of muons in the Ge detector. An energy shift of the muon peak was observed, as expected, for increasing dimensions of three Ge crystals (10%, 20%, and 70% efficiency). Taking into account the dimensions of the three detectors the location of the three muon peaks was reproduced by Monte Carlo computations using the GEANT code. The absorbed dose rate due to muons has been measured in 50 indoor and outdoor locations at Thessaloniki, the second largest town of Greece, with a portable Ge detector and converted to the absorbed dose rate due to muons in an ICRU sphere representing the human body by using a factor derived from Monte Carlo computations. The outdoor and indoor mean muon dose rate was 25 nGy h(-1) and 17.8 nGy h(-1), respectively. The shielding factor for the 40 indoor measurements ranges from 0.5 to 0.9 with a most probable value between 0.7-0.8.

  3. GE90-30PLC与监控计算机实现通信的技术应用%Technical application of communication between GE90-30PLC and supervision/control computer

    Institute of Scientific and Technical Information of China (English)

    蒋能璞

    2015-01-01

    An introduction was made on the technical application of communication between GE90-30PLC and su⁃pervision/control computer. When a GE90-30PLC equipped with CPU364 fails to communicate with the supervi⁃sion/control computer,the RS-422 serial port of CPU364 may be connected with the RS-232 port of computer. Hardware physical connection combined with programming by VersaPro software will permit the communication.%介绍了GE90-30PLC与监控计算机无法建立联系时,以CPU364型组态的PLC,利用CPU364的RS-422串口与监控计算机的RS-232串口用硬件物理连接,结合VersaPro编程软件实现通信的技术方法。

  4. Technology computer aided design for Si, SiGe and GaAs integrated circuits

    CERN Document Server

    Armstrong, GA

    2007-01-01

    The first book to deal with a broad spectrum of process and device design, and modelling issues related to semiconductor devices, bridging the gap between device modelling and process design using TCAD. Examples for types of Si-, SiGe-, GaAs- and InP-based heterostructure MOS and bipolar transistors are compared with experimental data from state-of-the-art devices. With various aspects of silicon heterostructures, this book presents a comprehensive perspective of emerging fields and covers topics ranging from materials to fabrication, devices, modelling and applications. Aimed at research-and-

  5. Computational Modeling of the Size Effects on the Optical Vibrational Modes of H-Terminated Ge Nanostructures

    Directory of Open Access Journals (Sweden)

    Miguel Cruz-Irisson

    2013-04-01

    Full Text Available The vibrational dispersion relations of porous germanium (pGe and germanium nanowires (GeNWs were calculated using the ab initio density functional perturbation theory with a generalized gradient approximation with norm-conserving pseudopotentials. Both pores and nanowires were modeled using the supercell technique. All of the surface dangling bonds were saturated with hydrogen atoms. To address the difference in the confinement between the pores and the nanowires, we calculated the vibrational density of states of the two materials. The results indicate that there is a slight shift in the highest optical mode of the Ge-Ge vibration interval in all of the nanostructures due to the phonon confinement effects. The GeNWs exhibit a reduced phonon confinement compared with the porous Ge due to the mixed Ge-dihydride vibrational modes around the maximum bulk Ge optical mode of approximately 300 cm−1; however, the general effects of such confinements could still be noticed, such as the shift to lower frequencies of the highest optical mode belonging to the Ge vibrations.

  6. CAG - computer-aid-georeferencing, or rapid sharing, restructuring and presentation of environmental data using remote-server georeferencing for the GE clients. Educational and scientific implications.

    Science.gov (United States)

    Hronusov, V. V.

    2006-12-01

    We suggest a method of using external public servers for rearranging, restructuring and rapid sharing of environmental data for the purpose of quick presentations in numerous GE clients. The method allows to add new philosophy for the presentation (publication) of the data (mostly static) stored in the public domain (e.g., Blue Marble, Visible Earth, etc). - The new approach is generated by publishing freely accessible spreadsheets which contain enough information and links to the data. Due to the fact that most of the large depositories of the data on the environmental monitoring have rather simple net address system as well as simple hierarchy mostly based on the date and type of the data, it is possible to develop the http-based link to the file which contains the data. Publication of new data on the server is recorded by a simple entering a new address into a cell in the spreadsheet. At the moment we use the EditGrid (www.editgrid.com) system as a spreadsheet platform. The generation of kml-codes is achieved on the basis of XML data and XSLT procedures. Since the EditGride environment supports "fetch" and similar commands, it is possible to create"smart-adaptive" KML generation on the fly based on the data streams from RSS and XML sources. The previous GIS-based methods could combine hi-definition data combined from various sources, but large- scale comparisons of dynamic processes have been usually out of reach of the technology. The suggested method allows unlimited number of GE clients to view, review and compare dynamic and static process of previously un-combinable sources, and on unprecedent scales. The ease of automated or computer-assisted georeferencing has already led to translation about 3000 raster public domain imagery, point and linear data sources into GE-language. In addition the suggested method allows a user to create rapid animations to demonstrate dynamic processes; roducts of high demand in education, meteorology, volcanology and

  7. Pseudomorphic GeSn/Ge (001) heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Tonkikh, A. A., E-mail: tonkikh@mpi-halle.de [Max Planck Institute of Microstructure Physics (Germany); Talalaev, V. G. [Martin Luther University Halle-Wittenberg, ZIK SiLi-nano (Germany); Werner, P. [Max Planck Institute of Microstructure Physics (Germany)

    2013-11-15

    The synthesis of pseudomorphic GeSn heterostructures on a Ge (001) substrate by molecular-beam epitaxy is described. Investigations by transmission electron microscopy show that the GeSn layers are defect free and possess cubic diamondlike structure. Photoluminescence spectroscopy reveals interband radiative recombination in the GeSn quantum wells, which is identified as indirect transitions between the subbands of heavy electrons and heavy holes. On the basis of experimental data and modeling of the band structure of pseudomorphic GeSn compounds, the lower boundary of the bowing parameter for the indirect band gap is estimated as b{sub L} {>=} 1.47 eV.

  8. The computational study of adsorption of carbon monoxide on pristine and Ge-doped (6,0 zigzag models of BNNTs

    Directory of Open Access Journals (Sweden)

    Mahdi Rezaei Sameti

    2014-07-01

    Full Text Available The aim of this research is studying the effects of Ge-doped on CO adsorption on the outer and inner surfaces of (6, 0 zigzag model of boron nitride nanotube (BNNTs by using DFT theory. For this purpose, eight models of CO adsorption on the surfaces of BNNTs are considered. At first step, all structures were optimized at B3LYP and 6-31G (d standard base set and then the electronic structure, adsorption energy, HOMO - LUMO orbitals, gap energy, quantum molecular descriptors, and NQR parameters were determined. The bond lengths neighborhood sites of Ge-doped of BNNTs at all models were increased and the bond angles decreased. The small ad-sorption energy value and large interaction distance show that the adsorption of CO on BNNTs is weakly physical adsorption due to weak Van der Waals interaction. Our calculated results show that the adsorption of CO on the surface of undoped models is more favorable than Ge-doped models. The NQR parameters of the first layer in all the models are larger than those other layers.

  9. GeSn/Ge multiquantum well photodetectors on Si substrates.

    Science.gov (United States)

    Oehme, M; Widmann, D; Kostecki, K; Zaumseil, P; Schwartz, B; Gollhofer, M; Koerner, R; Bechler, S; Kittler, M; Kasper, E; Schulze, J

    2014-08-15

    Vertical incidence GeSn/Ge multiquantum well (MQW) pin photodetectors on Si substrates were fabricated with a Sn concentration of 7%. The epitaxial structure was grown with a special low temperature molecular beam epitaxy process. The Ge barrier in the GeSn/Ge MQW was kept constant at 10 nm. The well width was varied between 6 and 12 nm. The GeSn/Ge MQW structures were grown pseudomorphically with the in-plane lattice constant of the Ge virtual substrate. The absorption edge shifts to longer wavelengths with thicker QWs in agreement with expectations from smaller quantization energies for the thicker QWs.

  10. Polycondensation-type Ge nanofractal assembly

    Directory of Open Access Journals (Sweden)

    Zhiwen Chen

    2011-03-01

    Full Text Available The group IV semiconductors such as silicon (Si and germanium (Ge are unique materials with a wide range of technological applications. A versatile integrated device for the semiconductor industry is highly desirable for advanced applications. Notwithstanding the widespread application of Ge its use is not as extensive as that of Si, and nebulous domains in our understanding of its precise technical functions still remain. Previous nanostructures have either been one-dimensional nanomaterials such as nanowires, nanorods, nanobelts/nanoribbons, nanotubes, two-dimensional nanoscale thin films, or zero-dimensional nanoparticles, which all have integer dimensions. Herein, the non-integer dimensional Ge nanostructures, referred to as nanofractals, were successfully assembled by high-vacuum thermal evaporation techniques. We have found that the thermodynamically driven assemblies of Ge nanocrystals possess amazing nanostructures such as polycondensation-type Ge nanofractals with non-integer dimensions, thick branches and smooth edges, metastable gamma-Au0.6Ge0.4 nanocrystals, and a variety of interesting micro/nanometer-sized features. The results of computer simulations using a ripening mechanism of non-uniform grains agree very well with the patterns formed in experiments.

  11. Compton profile study of V3Ge and Cr3Ge

    Indian Academy of Sciences (India)

    Y C Sharma; V Vyas; V Purvia; K B Joshi; B K Sharma

    2008-02-01

    In this paper the results of a Compton profile study of two polycrystalline A15 compounds, namely, V3Ge and Cr3Ge, have been reported. The measurements have been performed using 59.54 keV -rays from an 241Am source. The theoretical Compton profiles have been computed for both the compounds using ab-initio linear combination of atomic orbitals (LCAO) method employing CRYSTAL98. For both the A15 compounds, the isotropic experimental profiles are found to be in good overall agreement with the calculations. The comparison points out residual differences in V3Ge whereas for Cr3Ge the differences are within experimental error. The behaviour of valence electrons in the two iso-structural compounds has been examined on the scale of Fermi momentum. The valence electron distribution seems to be dominated by the metallic constituents rather than Ge and two compounds show covalent nature of bonding which is larger in V3Ge compared to Cr3Ge.

  12. COMPUTING

    CERN Multimedia

    M. Kasemann

    Overview In autumn the main focus was to process and handle CRAFT data and to perform the Summer08 MC production. The operational aspects were well covered by regular Computing Shifts, experts on duty and Computing Run Coordination. At the Computing Resource Board (CRB) in October a model to account for service work at Tier 2s was approved. The computing resources for 2009 were reviewed for presentation at the C-RRB. The quarterly resource monitoring is continuing. Facilities/Infrastructure operations Operations during CRAFT data taking ran fine. This proved to be a very valuable experience for T0 workflows and operations. The transfers of custodial data to most T1s went smoothly. A first round of reprocessing started at the Tier-1 centers end of November; it will take about two weeks. The Computing Shifts procedure was tested full scale during this period and proved to be very efficient: 30 Computing Shifts Persons (CSP) and 10 Computing Resources Coordinators (CRC). The shift program for the shut down w...

  13. COMPUTING

    CERN Multimedia

    M. Kasemann

    Overview During the past three months activities were focused on data operations, testing and re-enforcing shift and operational procedures for data production and transfer, MC production and on user support. Planning of the computing resources in view of the new LHC calendar in ongoing. Two new task forces were created for supporting the integration work: Site Commissioning, which develops tools helping distributed sites to monitor job and data workflows, and Analysis Support, collecting the user experience and feedback during analysis activities and developing tools to increase efficiency. The development plan for DMWM for 2009/2011 was developed at the beginning of the year, based on the requirements from the Physics, Computing and Offline groups (see Offline section). The Computing management meeting at FermiLab on February 19th and 20th was an excellent opportunity discussing the impact and for addressing issues and solutions to the main challenges facing CMS computing. The lack of manpower is particul...

  14. COMPUTING

    CERN Multimedia

    I. Fisk

    2011-01-01

    Introduction CMS distributed computing system performed well during the 2011 start-up. The events in 2011 have more pile-up and are more complex than last year; this results in longer reconstruction times and harder events to simulate. Significant increases in computing capacity were delivered in April for all computing tiers, and the utilisation and load is close to the planning predictions. All computing centre tiers performed their expected functionalities. Heavy-Ion Programme The CMS Heavy-Ion Programme had a very strong showing at the Quark Matter conference. A large number of analyses were shown. The dedicated heavy-ion reconstruction facility at the Vanderbilt Tier-2 is still involved in some commissioning activities, but is available for processing and analysis. Facilities and Infrastructure Operations Facility and Infrastructure operations have been active with operations and several important deployment tasks. Facilities participated in the testing and deployment of WMAgent and WorkQueue+Request...

  15. COMPUTING

    CERN Multimedia

    P. McBride

    The Computing Project is preparing for a busy year where the primary emphasis of the project moves towards steady operations. Following the very successful completion of Computing Software and Analysis challenge, CSA06, last fall, we have reorganized and established four groups in computing area: Commissioning, User Support, Facility/Infrastructure Operations and Data Operations. These groups work closely together with groups from the Offline Project in planning for data processing and operations. Monte Carlo production has continued since CSA06, with about 30M events produced each month to be used for HLT studies and physics validation. Monte Carlo production will continue throughout the year in the preparation of large samples for physics and detector studies ramping to 50 M events/month for CSA07. Commissioning of the full CMS computing system is a major goal for 2007. Site monitoring is an important commissioning component and work is ongoing to devise CMS specific tests to be included in Service Availa...

  16. Photoluminescence and electroluminescence from Ge/strained GeSn/Ge quantum wells

    Science.gov (United States)

    Lin, Chung-Yi; Huang, Chih-Hsiung; Huang, Shih-Hsien; Chang, Chih-Chiang; Liu, C. W.; Huang, Yi-Chiau; Chung, Hua; Chang, Chorng-Ping

    2016-08-01

    Ge/strained GeSn/Ge quantum wells are grown on a 300 mm Si substrate by chemical vapor deposition. The direct bandgap emission from strained GeSn is observed in the photoluminescence spectra and is enhanced by Al2O3/SiO2 passivation due to the field effect. The electroluminescence of the direct bandgap emission of strained GeSn is also observed from the Ni/Al2O3/GeSn metal-insulator-semiconductor tunneling diodes. Electroluminescence is a good indicator of GeSn material quality, since defects in GeSn layers degrade the electroluminescence intensity significantly. At the accumulation bias, the holes in the Ni gate electrode tunnel to the strained n-type GeSn layer through the ultrathin Al2O3 and recombine radiatively with electrons. The emission wavelength of photoluminescence and electroluminescence can be tuned by the Sn content.

  17. COMPUTING

    CERN Multimedia

    I. Fisk

    2013-01-01

    Computing activity had ramped down after the completion of the reprocessing of the 2012 data and parked data, but is increasing with new simulation samples for analysis and upgrade studies. Much of the Computing effort is currently involved in activities to improve the computing system in preparation for 2015. Operations Office Since the beginning of 2013, the Computing Operations team successfully re-processed the 2012 data in record time, not only by using opportunistic resources like the San Diego Supercomputer Center which was accessible, to re-process the primary datasets HTMHT and MultiJet in Run2012D much earlier than planned. The Heavy-Ion data-taking period was successfully concluded in February collecting almost 500 T. Figure 3: Number of events per month (data) In LS1, our emphasis is to increase efficiency and flexibility of the infrastructure and operation. Computing Operations is working on separating disk and tape at the Tier-1 sites and the full implementation of the xrootd federation ...

  18. Metastable Ge nanocrystalline in SiGe matrix for photodiode

    Energy Technology Data Exchange (ETDEWEB)

    Ouyang, Yao-Tsung; Su, Chien-Hao [Department of Chemical and Materials Engineering, National Central University, Taoyuan City 320, Taiwan (China); Chang, Jenq-Yang [Department of Optics and Photonics, National Central University, Taoyuan City 320, Taiwan (China); Cheng, Shao-Liang; Lin, Po-Chen [Department of Chemical and Materials Engineering, National Central University, Taoyuan City 320, Taiwan (China); Wu, Albert T., E-mail: atwu@ncu.edu.tw [Department of Chemical and Materials Engineering, National Central University, Taoyuan City 320, Taiwan (China)

    2015-09-15

    Highlights: • Amorphous Si{sub 1−x}Ge{sub x} films were prepared by co-sputtering by using rapid thermal annealing to form nanocrystal films. • Si–Ge alloy does not form total solid solution that is shown in phase diagram. • HRTEM images indicated that Ge atoms segregated and formed Ge clusters that are embedded in the amorphous Si–Ge matrix. • Ge segregation permitted high mobility; the grain size increased and the resistivity decreased with higher Ge content. • The rectifying property became stronger with the Ge fraction in the Si{sub 1−x}Ge{sub x} diodes. Si{sub 1−x}Ge{sub x} diodes are used as photodetectors, which provide a greater output current under illumination. - Abstract: Amorphous Si{sub 1−x}Ge{sub x} films were prepared by co-sputtering on an oxidized Si wafer, followed by rapid thermal annealing to form nanocrystal films. The formation of Ge nanocrystals was not at thermodynamic equilibrium formed in the amorphous Si{sub 1−x}Ge{sub x} matrix. High-resolution transmission electron microscopy was used to characterize the increase in the size of the grains in the Ge nanocrystals as the Ge content increased. The Ge nanocrystals have a greater absorption in the near-infrared region and higher carrier mobility than SiGe crystals, and the variation in their grain sizes can be used to tune the bandgap. This characteristic was exploited herein to fabricate n-Si{sub 1−x}Ge{sub x}/p-Si{sub 1−x}Ge{sub x} p–n diodes on insulating substrates, which were then examined by analyzing their current–voltage characteristics. The rectifying property became stronger as the fraction of Ge in the Si{sub 1−x}Ge{sub x} films increased. The Si{sub 1−x}Ge{sub x} diodes are utilized as photodetectors that have a large output current under illumination. This paper elucidates the correlations between the structural, optical and electrical properties and the p–n junction performance of the film.

  19. Computer

    CERN Document Server

    Atkinson, Paul

    2011-01-01

    The pixelated rectangle we spend most of our day staring at in silence is not the television as many long feared, but the computer-the ubiquitous portal of work and personal lives. At this point, the computer is almost so common we don't notice it in our view. It's difficult to envision that not that long ago it was a gigantic, room-sized structure only to be accessed by a few inspiring as much awe and respect as fear and mystery. Now that the machine has decreased in size and increased in popular use, the computer has become a prosaic appliance, little-more noted than a toaster. These dramati

  20. Germanene termination of Ge2Pt crystals on Ge(110)

    NARCIS (Netherlands)

    Bampoulis, Pantelis; Zhang, Lijie; Safaei, A.; van Gastel, Raoul; Poelsema, Bene; Zandvliet, Henricus J.W.

    2014-01-01

    We have investigated the growth of Pt on Ge(1 1 0) using scanning tunneling microscopy and spectroscopy. The deposition of several monolayers of Pt on Ge(1 1 0) followed by annealing at 1100 K results in the formation of 3D metallic Pt-Ge nanocrystals. The outermost layer of these crystals exhibits

  1. COMPUTING

    CERN Multimedia

    I. Fisk

    2010-01-01

    Introduction It has been a very active quarter in Computing with interesting progress in all areas. The activity level at the computing facilities, driven by both organised processing from data operations and user analysis, has been steadily increasing. The large-scale production of simulated events that has been progressing throughout the fall is wrapping-up and reprocessing with pile-up will continue. A large reprocessing of all the proton-proton data has just been released and another will follow shortly. The number of analysis jobs by users each day, that was already hitting the computing model expectations at the time of ICHEP, is now 33% higher. We are expecting a busy holiday break to ensure samples are ready in time for the winter conferences. Heavy Ion An activity that is still in progress is computing for the heavy-ion program. The heavy-ion events are collected without zero suppression, so the event size is much large at roughly 11 MB per event of RAW. The central collisions are more complex and...

  2. COMPUTING

    CERN Multimedia

    M. Kasemann P. McBride Edited by M-C. Sawley with contributions from: P. Kreuzer D. Bonacorsi S. Belforte F. Wuerthwein L. Bauerdick K. Lassila-Perini M-C. Sawley

    Introduction More than seventy CMS collaborators attended the Computing and Offline Workshop in San Diego, California, April 20-24th to discuss the state of readiness of software and computing for collisions. Focus and priority were given to preparations for data taking and providing room for ample dialog between groups involved in Commissioning, Data Operations, Analysis and MC Production. Throughout the workshop, aspects of software, operating procedures and issues addressing all parts of the computing model were discussed. Plans for the CMS participation in STEP’09, the combined scale testing for all four experiments due in June 2009, were refined. The article in CMS Times by Frank Wuerthwein gave a good recap of the highly collaborative atmosphere of the workshop. Many thanks to UCSD and to the organizers for taking care of this workshop, which resulted in a long list of action items and was definitely a success. A considerable amount of effort and care is invested in the estimate of the comput...

  3. COMPUTING

    CERN Multimedia

    I. Fisk

    2010-01-01

    Introduction The first data taking period of November produced a first scientific paper, and this is a very satisfactory step for Computing. It also gave the invaluable opportunity to learn and debrief from this first, intense period, and make the necessary adaptations. The alarm procedures between different groups (DAQ, Physics, T0 processing, Alignment/calibration, T1 and T2 communications) have been reinforced. A major effort has also been invested into remodeling and optimizing operator tasks in all activities in Computing, in parallel with the recruitment of new Cat A operators. The teams are being completed and by mid year the new tasks will have been assigned. CRB (Computing Resource Board) The Board met twice since last CMS week. In December it reviewed the experience of the November data-taking period and could measure the positive improvements made for the site readiness. It also reviewed the policy under which Tier-2 are associated with Physics Groups. Such associations are decided twice per ye...

  4. COMPUTING

    CERN Multimedia

    P. McBride

    It has been a very active year for the computing project with strong contributions from members of the global community. The project has focused on site preparation and Monte Carlo production. The operations group has begun processing data from P5 as part of the global data commissioning. Improvements in transfer rates and site availability have been seen as computing sites across the globe prepare for large scale production and analysis as part of CSA07. Preparations for the upcoming Computing Software and Analysis Challenge CSA07 are progressing. Ian Fisk and Neil Geddes have been appointed as coordinators for the challenge. CSA07 will include production tests of the Tier-0 production system, reprocessing at the Tier-1 sites and Monte Carlo production at the Tier-2 sites. At the same time there will be a large analysis exercise at the Tier-2 centres. Pre-production simulation of the Monte Carlo events for the challenge is beginning. Scale tests of the Tier-0 will begin in mid-July and the challenge it...

  5. COMPUTING

    CERN Multimedia

    M. Kasemann

    Introduction During the past six months, Computing participated in the STEP09 exercise, had a major involvement in the October exercise and has been working with CMS sites on improving open issues relevant for data taking. At the same time operations for MC production, real data reconstruction and re-reconstructions and data transfers at large scales were performed. STEP09 was successfully conducted in June as a joint exercise with ATLAS and the other experiments. It gave good indication about the readiness of the WLCG infrastructure with the two major LHC experiments stressing the reading, writing and processing of physics data. The October Exercise, in contrast, was conducted as an all-CMS exercise, where Physics, Computing and Offline worked on a common plan to exercise all steps to efficiently access and analyze data. As one of the major results, the CMS Tier-2s demonstrated to be fully capable for performing data analysis. In recent weeks, efforts were devoted to CMS Computing readiness. All th...

  6. COMPUTING

    CERN Multimedia

    M. Kasemann

    CCRC’08 challenges and CSA08 During the February campaign of the Common Computing readiness challenges (CCRC’08), the CMS computing team had achieved very good results. The link between the detector site and the Tier0 was tested by gradually increasing the number of parallel transfer streams well beyond the target. Tests covered the global robustness at the Tier0, processing a massive number of very large files and with a high writing speed to tapes.  Other tests covered the links between the different Tiers of the distributed infrastructure and the pre-staging and reprocessing capacity of the Tier1’s: response time, data transfer rate and success rate for Tape to Buffer staging of files kept exclusively on Tape were measured. In all cases, coordination with the sites was efficient and no serious problem was found. These successful preparations prepared the ground for the second phase of the CCRC’08 campaign, in May. The Computing Software and Analysis challen...

  7. COMPUTING

    CERN Multimedia

    I. Fisk

    2011-01-01

    Introduction It has been a very active quarter in Computing with interesting progress in all areas. The activity level at the computing facilities, driven by both organised processing from data operations and user analysis, has been steadily increasing. The large-scale production of simulated events that has been progressing throughout the fall is wrapping-up and reprocessing with pile-up will continue. A large reprocessing of all the proton-proton data has just been released and another will follow shortly. The number of analysis jobs by users each day, that was already hitting the computing model expectations at the time of ICHEP, is now 33% higher. We are expecting a busy holiday break to ensure samples are ready in time for the winter conferences. Heavy Ion The Tier 0 infrastructure was able to repack and promptly reconstruct heavy-ion collision data. Two copies were made of the data at CERN using a large CASTOR disk pool, and the core physics sample was replicated ...

  8. COMPUTING

    CERN Multimedia

    I. Fisk

    2012-01-01

    Introduction Computing continued with a high level of activity over the winter in preparation for conferences and the start of the 2012 run. 2012 brings new challenges with a new energy, more complex events, and the need to make the best use of the available time before the Long Shutdown. We expect to be resource constrained on all tiers of the computing system in 2012 and are working to ensure the high-priority goals of CMS are not impacted. Heavy ions After a successful 2011 heavy-ion run, the programme is moving to analysis. During the run, the CAF resources were well used for prompt analysis. Since then in 2012 on average 200 job slots have been used continuously at Vanderbilt for analysis workflows. Operations Office As of 2012, the Computing Project emphasis has moved from commissioning to operation of the various systems. This is reflected in the new organisation structure where the Facilities and Data Operations tasks have been merged into a common Operations Office, which now covers everything ...

  9. COMPUTING

    CERN Multimedia

    M. Kasemann

    Introduction More than seventy CMS collaborators attended the Computing and Offline Workshop in San Diego, California, April 20-24th to discuss the state of readiness of software and computing for collisions. Focus and priority were given to preparations for data taking and providing room for ample dialog between groups involved in Commissioning, Data Operations, Analysis and MC Production. Throughout the workshop, aspects of software, operating procedures and issues addressing all parts of the computing model were discussed. Plans for the CMS participation in STEP’09, the combined scale testing for all four experiments due in June 2009, were refined. The article in CMS Times by Frank Wuerthwein gave a good recap of the highly collaborative atmosphere of the workshop. Many thanks to UCSD and to the organizers for taking care of this workshop, which resulted in a long list of action items and was definitely a success. A considerable amount of effort and care is invested in the estimate of the co...

  10. Synthesis of Epitaxial Films Based on Ge-Si-Sn Materials with Ge/GeSn, Ge/GeSiSn, and GeSn/GeSiSn Heterojunctions

    Science.gov (United States)

    Timofeev, V. A.; Kokhanenko, A. P.; Nikiforov, A. I.; Mashanov, V. I.; Tuktamyshev, A. R.; Loshkarev, I. D.

    2015-11-01

    Results of investigations into the synthesis of heterostructures based on Ge-Si-Sn materials by the method of low-temperature molecular beam epitaxy are presented. The formation of epitaxial films during structure growth has been controlled by the reflection high-energy electron diffraction method. Films with Ge/GeSn, Ge/GeSiSn, and GeSn/GeSiSn heterojunctions are grown with Sn content changing from 2 to 10 % at temperatures in the interval 150-350°C. The stressed state, the composition, and the lattice parameter are studied by the x-ray diffraction method using Omega-scan curves and reciprocal space maps. A tensile strain in the Ge film during Ge/Ge0.9Sn0.1/Si structure growth has reached 0.86%.

  11. Monolithically Integrated Ge-on-Si Active Photonics

    OpenAIRE

    Jifeng Liu

    2014-01-01

    Monolithically integrated, active photonic devices on Si are key components in Si-based large-scale electronic-photonic integration for future generations of high-performance, low-power computation and communication systems. Ge has become an interesting candidate for active photonic devices in Si photonics due to its pseudo-direct gap behavior and compatibility with Si complementary metal oxide semiconductor (CMOS) processing. In this paper, we present a review of the recent progress in Ge-on...

  12. COMPUTING

    CERN Multimedia

    Matthias Kasemann

    Overview The main focus during the summer was to handle data coming from the detector and to perform Monte Carlo production. The lessons learned during the CCRC and CSA08 challenges in May were addressed by dedicated PADA campaigns lead by the Integration team. Big improvements were achieved in the stability and reliability of the CMS Tier1 and Tier2 centres by regular and systematic follow-up of faults and errors with the help of the Savannah bug tracking system. In preparation for data taking the roles of a Computing Run Coordinator and regular computing shifts monitoring the services and infrastructure as well as interfacing to the data operations tasks are being defined. The shift plan until the end of 2008 is being put together. User support worked on documentation and organized several training sessions. The ECoM task force delivered the report on “Use Cases for Start-up of pp Data-Taking” with recommendations and a set of tests to be performed for trigger rates much higher than the ...

  13. COMPUTING

    CERN Multimedia

    M. Kasemann

    Introduction A large fraction of the effort was focused during the last period into the preparation and monitoring of the February tests of Common VO Computing Readiness Challenge 08. CCRC08 is being run by the WLCG collaboration in two phases, between the centres and all experiments. The February test is dedicated to functionality tests, while the May challenge will consist of running at all centres and with full workflows. For this first period, a number of functionality checks of the computing power, data repositories and archives as well as network links are planned. This will help assess the reliability of the systems under a variety of loads, and identifying possible bottlenecks. Many tests are scheduled together with other VOs, allowing the full scale stress test. The data rates (writing, accessing and transfer¬ring) are being checked under a variety of loads and operating conditions, as well as the reliability and transfer rates of the links between Tier-0 and Tier-1s. In addition, the capa...

  14. COMPUTING

    CERN Multimedia

    P. MacBride

    The Computing Software and Analysis Challenge CSA07 has been the main focus of the Computing Project for the past few months. Activities began over the summer with the preparation of the Monte Carlo data sets for the challenge and tests of the new production system at the Tier-0 at CERN. The pre-challenge Monte Carlo production was done in several steps: physics generation, detector simulation, digitization, conversion to RAW format and the samples were run through the High Level Trigger (HLT). The data was then merged into three "Soups": Chowder (ALPGEN), Stew (Filtered Pythia) and Gumbo (Pythia). The challenge officially started when the first Chowder events were reconstructed on the Tier-0 on October 3rd. The data operations teams were very busy during the the challenge period. The MC production teams continued with signal production and processing while the Tier-0 and Tier-1 teams worked on splitting the Soups into Primary Data Sets (PDS), reconstruction and skimming. The storage sys...

  15. COMPUTING

    CERN Multimedia

    Contributions from I. Fisk

    2012-01-01

    Introduction The start of the 2012 run has been busy for Computing. We have reconstructed, archived, and served a larger sample of new data than in 2011, and we are in the process of producing an even larger new sample of simulations at 8 TeV. The running conditions and system performance are largely what was anticipated in the plan, thanks to the hard work and preparation of many people. Heavy ions Heavy Ions has been actively analysing data and preparing for conferences.  Operations Office Figure 6: Transfers from all sites in the last 90 days For ICHEP and the Upgrade efforts, we needed to produce and process record amounts of MC samples while supporting the very successful data-taking. This was a large burden, especially on the team members. Nevertheless the last three months were very successful and the total output was phenomenal, thanks to our dedicated site admins who keep the sites operational and the computing project members who spend countless hours nursing the...

  16. COMPUTING

    CERN Multimedia

    I. Fisk

    2012-01-01

      Introduction Computing activity has been running at a sustained, high rate as we collect data at high luminosity, process simulation, and begin to process the parked data. The system is functional, though a number of improvements are planned during LS1. Many of the changes will impact users, we hope only in positive ways. We are trying to improve the distributed analysis tools as well as the ability to access more data samples more transparently.  Operations Office Figure 2: Number of events per month, for 2012 Since the June CMS Week, Computing Operations teams successfully completed data re-reconstruction passes and finished the CMSSW_53X MC campaign with over three billion events available in AOD format. Recorded data was successfully processed in parallel, exceeding 1.2 billion raw physics events per month for the first time in October 2012 due to the increase in data-parking rate. In parallel, large efforts were dedicated to WMAgent development and integrati...

  17. COMPUTING

    CERN Document Server

    2010-01-01

    Introduction Just two months after the “LHC First Physics” event of 30th March, the analysis of the O(200) million 7 TeV collision events in CMS accumulated during the first 60 days is well under way. The consistency of the CMS computing model has been confirmed during these first weeks of data taking. This model is based on a hierarchy of use-cases deployed between the different tiers and, in particular, the distribution of RECO data to T1s, who then serve data on request to T2s, along a topology known as “fat tree”. Indeed, during this period this model was further extended by almost full “mesh” commissioning, meaning that RECO data were shipped to T2s whenever possible, enabling additional physics analyses compared with the “fat tree” model. Computing activities at the CMS Analysis Facility (CAF) have been marked by a good time response for a load almost evenly shared between ALCA (Alignment and Calibration tasks - highest p...

  18. COMPUTING

    CERN Multimedia

    I. Fisk

    2013-01-01

    Computing operation has been lower as the Run 1 samples are completing and smaller samples for upgrades and preparations are ramping up. Much of the computing activity is focusing on preparations for Run 2 and improvements in data access and flexibility of using resources. Operations Office Data processing was slow in the second half of 2013 with only the legacy re-reconstruction pass of 2011 data being processed at the sites.   Figure 1: MC production and processing was more in demand with a peak of over 750 Million GEN-SIM events in a single month.   Figure 2: The transfer system worked reliably and efficiently and transferred on average close to 520 TB per week with peaks at close to 1.2 PB.   Figure 3: The volume of data moved between CMS sites in the last six months   The tape utilisation was a focus for the operation teams with frequent deletion campaigns from deprecated 7 TeV MC GEN-SIM samples to INVALID datasets, which could be cleaned up...

  19. COMPUTING

    CERN Multimedia

    I. Fisk

    2011-01-01

    Introduction The Computing Team successfully completed the storage, initial processing, and distribution for analysis of proton-proton data in 2011. There are still a variety of activities ongoing to support winter conference activities and preparations for 2012. Heavy ions The heavy-ion run for 2011 started in early November and has already demonstrated good machine performance and success of some of the more advanced workflows planned for 2011. Data collection will continue until early December. Facilities and Infrastructure Operations Operational and deployment support for WMAgent and WorkQueue+Request Manager components, routinely used in production by Data Operations, are provided. The GlideInWMS and components installation are now deployed at CERN, which is added to the GlideInWMS factory placed in the US. There has been new operational collaboration between the CERN team and the UCSD GlideIn factory operators, covering each others time zones by monitoring/debugging pilot jobs sent from the facto...

  20. Characteristics of Sn segregation in Ge/GeSn heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Li, H.; Chang, C.; Chen, T. P.; Cheng, H. H., E-mail: hhcheng@ntu.edu.tw [Center for Condensed Matter Sciences and Graduate Institute of Electronics Engineering, National Taiwan University, Taipei 10617, Taiwan (China); Shi, Z. W.; Chen, H. [Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China)

    2014-10-13

    We report an investigation of Sn segregation in Ge/GeSn heterostructures occurred during the growth by molecular beam epitaxy. The measured Sn profile in the Ge layer shows that: (a) the Sn concentration decreases rapidly near the Ge/GeSn interface, and (b) when moving away from the interface, the Sn concentration reduced with a much slower rate. The 1/e decay lengths of the present system are much longer than those of the conventional group IV system of Ge segregation in the Si overlayer because of the smaller kinetic potential as modeled by a self-limited two-state exchange scheme. The demonstration of the Sn segregation shows the material characteristics of the heterostructure, which are needed for the investigation of its optical properties.

  1. Phonons in Ge/Si superlattices with Ge quantum dots

    CERN Document Server

    Milekhin, A G; Pchelyakov, O P; Schulze, S; Zahn, D R T

    2001-01-01

    Ge/Si superlattices with Ge quantum dots obtained by means of molecular-beam epitaxy were investigated by means of light Raman scattering under resonance conditions. These structures are shown to have oscillation properties of both two-dimensional and zero-dimensional objects. Within spectrum low-frequency range one observes twisted acoustic phonons (up to 15 order) typical for planar superlattices. Lines of acoustic phonons are overlapped with a wide band of continuous emission. Analysis of frequencies of Ge and Ge-Si optical phonons shows that Ge quantum dots are pseudoamorphous ones and mixing of Ge and Si atoms is a negligible one. One detected low-frequency shift of longitudinal optical phonons at laser excitation energy increase (2.54-2.71 eV)

  2. COMPUTING

    CERN Multimedia

    M. Kasemann

    CMS relies on a well functioning, distributed computing infrastructure. The Site Availability Monitoring (SAM) and the Job Robot submission have been very instrumental for site commissioning in order to increase availability of more sites such that they are available to participate in CSA07 and are ready to be used for analysis. The commissioning process has been further developed, including "lessons learned" documentation via the CMS twiki. Recently the visualization, presentation and summarizing of SAM tests for sites has been redesigned, it is now developed by the central ARDA project of WLCG. Work to test the new gLite Workload Management System was performed; a 4 times increase in throughput with respect to LCG Resource Broker is observed. CMS has designed and launched a new-generation traffic load generator called "LoadTest" to commission and to keep exercised all data transfer routes in the CMS PhE-DEx topology. Since mid-February, a transfer volume of about 12 P...

  3. A global Ge isotope budget

    Science.gov (United States)

    Baronas, J. Jotautas; Hammond, Douglas E.; McManus, James; Wheat, C. Geoffrey; Siebert, Christopher

    2017-04-01

    We present measurements of Ge isotope composition and ancillary data for samples of river water, low- and high-temperature hydrothermal fluids, and seawater. The dissolved δ74Ge composition of analyzed rivers ranges from 2.0 to 5.6‰, which is significantly heavier than previously determined values for silicate rocks (δ74Ge = 0.4-0.7‰, Escoube et al., Geostand. Geoanal. Res., 36(2), 2012) from which dissolved Ge is primarily derived. An observed negative correlation between riverine Ge/Si and δ74Ge signatures suggests that the primary δ74Ge fractionation mechanism during rock weathering is the preferential incorporation of light isotopes into secondary weathering products. High temperature (>150 °C) hydrothermal fluids analyzed in this study have δ74Ge of 0.7-1.6‰, most likely fractionated during fluid equilibration with quartz in the reaction zone. Low temperature (25-63 °C) hydrothermal fluids are heavier (δ74Ge between 2.9‰ and 4.1‰) and most likely fractionated during Ge precipitation with hydrothermal clays. Seawater from the open ocean has a δ74Gesw value of 3.2 ± 0.4‰, and is indistinguishable among the different ocean basins at the current level of precision. This value should be regulated over time by the isotopic balance of Ge sources and sinks, and a new compilation of these fluxes is presented, along with their estimated isotopic compositions. Assuming steady-state, non-opal Ge sequestration during sediment authigenesis likely involves isotopic fractionation Δ74Gesolid-solution that is -0.6 ± 1.8‰.

  4. Monolithically Integrated Ge-on-Si Active Photonics

    Directory of Open Access Journals (Sweden)

    Jifeng Liu

    2014-07-01

    Full Text Available Monolithically integrated, active photonic devices on Si are key components in Si-based large-scale electronic-photonic integration for future generations of high-performance, low-power computation and communication systems. Ge has become an interesting candidate for active photonic devices in Si photonics due to its pseudo-direct gap behavior and compatibility with Si complementary metal oxide semiconductor (CMOS processing. In this paper, we present a review of the recent progress in Ge-on-Si active photonics materials and devices for photon detection, modulation, and generation. We first discuss the band engineering of Ge using tensile strain, n-type doping, Sn alloying, and separate confinement of Γ vs. L electrons in quantum well (QW structures to transform the material towards a direct band gap semiconductor for enhancing optoelectronic properties. We then give a brief overview of epitaxial Ge-on-Si materials growth, followed by a summary of recent investigations towards low-temperature, direct growth of high crystallinity Ge and GeSn alloys on dielectric layers for 3D photonic integration. Finally, we review the most recent studies on waveguide-integrated Ge-on-Si photodetectors (PDs, electroabsorption modulators (EAMs, and laser diodes (LDs, and suggest possible future research directions for large-scale monolithic electronic-photonic integrated circuits on a Si platform.

  5. Ge/SiGe superlattices for nanostructured thermoelectric modules

    Energy Technology Data Exchange (ETDEWEB)

    Chrastina, D., E-mail: daniel@chrastina.net [L-NESS Politecnico di Milano, Polo di Como, via Anzani 42, 22100 Como (Italy); Cecchi, S. [L-NESS Politecnico di Milano, Polo di Como, via Anzani 42, 22100 Como (Italy); Hague, J.P. [Department of Physical Sciences, The Open University, Walton Hall, Milton Keynes, MK7 6AA (United Kingdom); Frigerio, J. [L-NESS Politecnico di Milano, Polo di Como, via Anzani 42, 22100 Como (Italy); Samarelli, A.; Ferre–Llin, L.; Paul, D.J. [School of Engineering, University of Glasgow, Oakfield Avenue, Glasgow, G12 8LT (United Kingdom); Müller, E. [Electron Microscopy ETH Zurich (EMEZ), ETH-Zürich, CH-8093 (Switzerland); Etzelstorfer, T.; Stangl, J. [Institut für Halbleiter und Festkörperphysik, Universität Linz, A-4040 Linz (Austria); Isella, G. [L-NESS Politecnico di Milano, Polo di Como, via Anzani 42, 22100 Como (Italy)

    2013-09-30

    Thermoelectrics are presently used in a number of applications for both turning heat into electricity and also for using electricity to produce cooling. Mature Si/SiGe and Ge/SiGe heteroepitaxial growth technology would allow highly efficient thermoelectric materials to be engineered, which would be compatible and integrable with complementary metal oxide silicon micropower circuits used in autonomous systems. A high thermoelectric figure of merit requires that electrical conductivity be maintained while thermal conductivity is reduced; thermoelectric figures of merit can be improved with respect to bulk thermoelectric materials by fabricating low-dimensional structures which enhance the density of states near the Fermi level and through phonon scattering at heterointerfaces. We have grown and characterized Ge-rich Ge/SiGe/Si superlattices for nanofabricated thermoelectric generators. Low-energy plasma-enhanced chemical vapor deposition has been used to obtain nanoscale-heterostructured material which is several microns thick. Crystal quality and strain control have been investigated by means of high resolution X-ray diffraction. High-resolution transmission electron microscopy images confirm the material and interface quality. Electrical conductivity has been characterized by the mobility spectrum technique. - Highlights: ► High-quality Ge/SiGe multiple quantum wells for thermoelectric applications ► Mobility spectra of systems featuring a large number of parallel conduction channels ► Competitive thermoelectric properties measured in single devices.

  6. DESIGN AND FABRICATION OF Si/SiGe PMOSFETs

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Based on theoretical analysis and computer-aided simulation, optimized design prin-ciples for Si/SiGe PMOSFET are given in this paper, which include choice of gate materials, determination of germanium percentage and profile in SiGe channel, optimization of thickness of dioxide and silicon cap layer, and adjustment of threshold voltage.In the light of these principles, a SiGe PMOSFET is designed and fabricated successfully.Measurement indicates that the SiGe PMOSFET's(L=2μ同洒45 mS/mm(300K) and 92 mS/mm(77K) ,while that is 33mS/mm (300K) and 39mS/mm (77K) in Si PMOSFET with the same structure.

  7. DESIGN AND FABRICATION OF Si/SiGe PMOSFETs

    Institute of Scientific and Technical Information of China (English)

    Yang Peifeng; Zhang Jing; Yi Qiang; Fan Zerui; Li Jingchun; Yu Qi; Wang Xiangzhan; Yang Mohua; He Lin; Li Kaicheng; Tan Kaizhou; Liu Daoguang

    2002-01-01

    Based on theoretical analysis and computer-aided simulation, optimized design principles for Si/SiGe PMOSFET are given in this paper, which include choice of gate materials,determination of germanium percentage and profile in SiGe channel, optimization of thickness of dioxide and silicon cap layer, and adjustment of threshold voltage. In the light of these principles,a SiGe PMOSFET is designed and fabricated successfully. Measurement indicates that the SiGe PMOSFET's (L=2μm) transconductance is 45 mS/mm (300K) and 92mS/mm (77K), while that is 33 mS/mm (300K) and 39mS/mm (77K) in Si PMOSFET with the same structure.

  8. Si1-yGey or Ge1-zSnz Source/Drain Stressors on Strained Si1-xGex-Channel P-Type Field-Effect Transistors: A Technology Computer-Aided Design Study

    Science.gov (United States)

    Eneman, Geert; De Keersgieter, An; Witters, Liesbeth; Mitard, Jerome; Vincent, Benjamin; Hikavyy, Andriy; Loo, Roger; Horiguchi, Naoto; Collaert, Nadine; Thean, Aaron

    2013-04-01

    The interaction between two stress techniques, strain-relaxed buffers (SRBs) and epitaxial source/drain stressors, is studied on short, Si1-xGex- and Ge-channel planar transistors. This work focuses on the longitudinal channel stress generated by these two techniques. Unlike for unstrained silicon-channel transistors, for strained channels on top of a strain-relaxed buffer a source/drain stressor without recess generates similar longitudinal channel stress than source/drain stressors with a deep recess. The least efficient stress transfer is obtained for source/drain stressors with a small recess that removes only the strained channel, not the substrate underneath. These trends are explained by a trade-off between elastic relaxation of the strained-channel during source/drain recess and the increased stress generation of thicker source/drain stressors. For Ge-channel pFETs, GeSn source/drains and Si1-xGex strain-relaxed buffers are efficient stressors for mobility enhancement. The former is more efficient for gate-last schemes than for gate-first, while the stress generated by the SRB is found to be independent of the gate-scheme.

  9. Isospin structure in 68Ge

    Institute of Scientific and Technical Information of China (English)

    BAI Hong-Bo; DONG Hong-Fei; ZHANG Jin-Fu; LU Li-Jun; CAO Wan-Cang; LI Xiao-Wei; WANg Yin

    2009-01-01

    The interacting boson model-3(IBM-3) has been used to study the low-energy level structure and electromagnetic transitions of 68Ge nucleus. The main components of the wave function for some states are also analyzed respectively. The theoretical calculations are in agreement with experimental data, and the 68Ge is in transition from U(5) to SU(3).

  10. 12 GeV Upgrade

    Energy Technology Data Exchange (ETDEWEB)

    None

    2017-01-01

    To expand the opportunity for discovery, Jefferson Lab is upgrading its facility by doubling the maximum energy of CEBAF's electron beam from 6 billion electron volts (GeV) to 12 billion electron volts (GeV), constructing a new experimental hall and upgrading its three existing experimental halls.

  11. Monolithically integrated Ge CMOS laser

    Science.gov (United States)

    Camacho-Aguilera, Rodolfo

    2014-02-01

    Ge-on-Si devices are explored for photonic integration. Through the development of better growth techniques, monolithic integration, laser design and prototypes, it was possible to probe Ge light emitters with emphasis on lasers. Preliminary worked shows thermal photonic behavior capable of enhancing lamination at high temperatures. Increase luminescence is observed up to 120°C from L-band contribution. Higher temperatures show contribution from Δ -band. The increase carrier thermal contribution suggests high temperature applications for Ge light emitters. A Ge electrically pumped laser was probed under 0.2% biaxial strain and doping concentration ~4.5×1019cm-3 n-type. Ge pnn lasers exhibit a gain >1000cm-1 with 8mW power output, presenting a spectrum range of over 200nm, making Ge the ideal candidate for Si photonics. Large temperatures fluctuations and process limit the present device. Theoretically a gain of >4000cm- gain is possible with a threshold of as low as 1kA/cm2. Improvements in Ge work

  12. Ge-on-Si optoelectronics

    Energy Technology Data Exchange (ETDEWEB)

    Liu Jifeng, E-mail: Jifeng.Liu@Dartmouth.edu [Thayer School of Engineering, Dartmouth College, Hanover, NH 03755 (United States); Camacho-Aguilera, Rodolfo; Bessette, Jonathan T.; Sun, Xiaochen [Microphotonics Center, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Wang Xiaoxin [Thayer School of Engineering, Dartmouth College, Hanover, NH 03755 (United States); Cai Yan; Kimerling, Lionel C.; Michel, Jurgen [Microphotonics Center, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States)

    2012-02-01

    Electronic-photonic synergy has become an increasingly clear solution to enhance the bandwidth and improve the energy efficiency of information systems. Monolithic integration of optoelectronic devices is the ideal solution for large-scale electronic-photonic synergy. Due to its pseudo-direct gap behavior in optoelectronic properties and compatibility with Si electronics, epitaxial Ge-on-Si has become an attractive solution for monolithic optoelectronics. In this paper we will review recent progress in Ge-on-Si optoelectronics, including photodetectors, electroabsorption modulators, and lasers. The performance of these devices has been enhanced by band-engineering such as tensile strain and n-type doping, which transforms Ge towards a direct gap material. Selective growth reduces defect density and facilitates monolithic integration at the same time. Ge-on-Si photodetectors have approached or exceeded the performance of their III-V counterparts, with bandwidth-efficiency product > 30 GHz for p-i-n photodiodes and bandwidth-gain product > 340 GHz for avalanche photodiodes. Enhanced Franz-Keldysh effect in tensile-strained Ge offers ultralow energy photonic modulation with < 30 fJ/bit energy consumption and > 100 GHz intrinsic bandwidth. Room temperature optically-pumped lasing as well as electroluminescence has also been achieved from the direct gap transition of band-engineered Ge-on-Si waveguides. These results indicate that band-engineered Ge-on-Si is promising to achieve monolithic active optoelectronic devices on a Si platform.

  13. Potential of asymmetrical Si/Ge and Ge/Si based hetero-junction transit time devices over homo-junction counterparts for generation of high power

    Institute of Scientific and Technical Information of China (English)

    Moumita Mukherjee; Pravash R. Tripathy; S. P. Pati

    2011-01-01

    Static and dynamic properties of both complementary n-Ge/p-Si and p-Ge/n-Si hetero-junction DoubleDrift IMPATT diodes have been investigated by an advanced and realistic computer simulation technique,developed by the authors,for operation in the Ka-,V- and W-band frequencies.The results are further compared with corresponding Si and Ge homo-junction devices.The study shows high values of device efficiency,such as 23%,22% and 21.5%,for n-Ge/p-Si IMPATTs at the Ka,V and W bands,respectively.The peak device negative conductances for n-Si/p-Ge and n-Ge/p-Si hetero-junction devices found to be 50.7 × 106 S/m2 and 71.3 × 106 S/m2,which are ~3-4 times better than their Si and Ge counterparts at the V-band.The computed values of RF powerdensity for n-Ge/p-Si hetero-junction IMPATTs are 1.0 × 109,1.1 × 109 and 1.4 × 109 W/m2,respectively,for Ka-,V- and W-band operation,which can be observed to be the highest when compared with Si,Ge and n-Si/p-Ge devices.Both of the hetero-junctions,especially the n-Ge/p-Si hetero-junction diode,can thus become a superior RF-power generator over a wide range of frequencies.The present study will help the device engineers to choose a suitable material pair for the development of high-power MM-wave IMPATT for applications in the civil and defense-related arena.

  14. <300> GeV team

    CERN Multimedia

    1971-01-01

    The 300 GeV team had been assembled. In the photograph are Hans Horisberger, Clemens Zettler, Roy Billinge, Norman Blackburne, John Adams, Hans-Otto Wuster, Lars Persson, Bas de Raad, Hans Goebel, Simon Van der Meer.

  15. Extended point defects in crystalline materials: Ge and Si.

    Science.gov (United States)

    Cowern, N E B; Simdyankin, S; Ahn, C; Bennett, N S; Goss, J P; Hartmann, J-M; Pakfar, A; Hamm, S; Valentin, J; Napolitani, E; De Salvador, D; Bruno, E; Mirabella, S

    2013-04-12

    B diffusion measurements are used to probe the basic nature of self-interstitial point defects in Ge. We find two distinct self-interstitial forms--a simple one with low entropy and a complex one with entropy ∼30  k at the migration saddle point. The latter dominates diffusion at high temperature. We propose that its structure is similar to that of an amorphous pocket--we name it a morph. Computational modeling suggests that morphs exist in both self-interstitial and vacancylike forms, and are crucial for diffusion and defect dynamics in Ge, Si, and probably many other crystalline solids.

  16. Epi-cleaning of Ge/GeSn heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Di Gaspare, L.; Sabbagh, D.; De Seta, M.; Sodo, A. [Dipartimento di Scienze, Università Roma Tre, Viale Marconi 446, 00146 Rome (Italy); Wirths, S.; Buca, D. [Peter Grünberg Institute 9 and JARA-Fundamentals of Future Information Technologies, Forschungszentrum Juelich, Juelich 52425 (Germany); Zaumseil, P. [IHP, Im Technologiepark 25, 15236 Frankfurt (Oder) (Germany); Schroeder, T. [IHP, Im Technologiepark 25, 15236 Frankfurt (Oder) (Germany); BTU Cottbus, Konrad-Zuse Str. 1, 03046 Cottbus (Germany); Capellini, G., E-mail: capellini@ihp-microelectronics.com [Dipartimento di Scienze, Università Roma Tre, Viale Marconi 446, 00146 Rome (Italy); IHP, Im Technologiepark 25, 15236 Frankfurt (Oder) (Germany)

    2015-01-28

    We demonstrate a very-low temperature cleaning technique based on atomic hydrogen irradiation for highly (1%) tensile strained Ge epilayers grown on metastable, partially strain relaxed GeSn buffer layers. Atomic hydrogen is obtained by catalytic cracking of hydrogen gas on a hot tungsten filament in an ultra-high vacuum chamber. X-ray photoemission spectroscopy, reflection high energy electron spectroscopy, atomic force microscopy, secondary ion mass spectroscopy, and micro-Raman showed that an O- and C-free Ge surface was achieved, while maintaining the same roughness and strain condition of the as-deposited sample and without any Sn segregation, at a process temperature in the 100–300 °C range.

  17. V-Ge-Cu system

    Energy Technology Data Exchange (ETDEWEB)

    Savitskij, E.M.; Efimov, Yu.V.; Bodak, O.I.; Kharchenko, O.I.; Shomova, N.A.; Frolova, T.M.

    By the methods of microscopic, X-ray phase analyses, X-ray spectral microanalysis as well as by measurement of Tsub(C) and phase lattice parameters the structure of the vanadium-region of the V-Ge ternary system (up to 40 at.%) - Cu(up to 90 at.%) is studied and isothermal cross section at 800 deg C is plotted. In the studied region solid solutions on the base of vanadium, copper and V/sub 3/Ge and V/sub 5/Ge/sub 3/ compounds are in phase equilibria. The solid solution on the vanadium base in ternary alloys practically does not possess superconductivity at the temperature over 4.2 K. Tsub(C) of V/sub 3/Ge saturated with copper decreases up to 5.3-5.6 K depending on treatment conditions and alloys composition. The superspeed quenching from molten state and the consequent low-temperature tempering of ternary alloys can increase V/sub 3/Ge Tsub(C) up to 6-6.7 K.

  18. Band calculation of lonsdaleite Ge

    Science.gov (United States)

    Chen, Pin-Shiang; Fan, Sheng-Ting; Lan, Huang-Siang; Liu, Chee Wee

    2017-01-01

    The band structure of Ge in the lonsdaleite phase is calculated using first principles. Lonsdaleite Ge has a direct band gap at the Γ point. For the conduction band, the Γ valley is anisotropic with the low transverse effective mass on the hexagonal plane and the large longitudinal effective mass along the c axis. For the valence band, both heavy-hole and light-hole effective masses are anisotropic at the Γ point. The in-plane electron effective mass also becomes anisotropic under uniaxial tensile strain. The strain response of the heavy-hole mass is opposite to the light hole.

  19. Demonstration of a Ge/GeSn/Ge quantum-well microdisk resonator on silicon: enabling high-quality Ge(Sn) materials for micro- and nanophotonics.

    Science.gov (United States)

    Chen, Robert; Gupta, Suyog; Huang, Yi-Chiau; Huo, Yijie; Rudy, Charles W; Sanchez, Errol; Kim, Yihwan; Kamins, Theodore I; Saraswat, Krishna C; Harris, James S

    2014-01-08

    We theoretically study and experimentally demonstrate a pseudomorphic Ge/Ge0.92Sn0.08/Ge quantum-well microdisk resonator on Ge/Si (001) as a route toward a compact GeSn-based laser on silicon. The structure theoretically exhibits many electronic and optical advantages in laser design, and microdisk resonators using these structures can be precisely fabricated away from highly defective regions in the Ge buffer using a novel etch-stop process. Photoluminescence measurements on 2.7 μm diameter microdisks reveal sharp whispering-gallery-mode resonances (Q > 340) with strong luminescence.

  20. Neutron transmutation doped Ge bolometers

    Science.gov (United States)

    Haller, E. E.; Kreysa, E.; Palaio, N. P.; Richards, P. L.; Rodder, M.

    1983-01-01

    Some conclusions reached are as follow. Neutron Transmutation Doping (NTD) of high quality Ge single crystals provides perfect control of doping concentration and uniformity. The resistivity can be tailored to any given bolometer operating temperature down to 0.1 K and probably lower. The excellent uniformity is advantaged for detector array development.

  1. Ab initio treatment of gas phase GeO{sup 2+} doubly charged ion

    Energy Technology Data Exchange (ETDEWEB)

    Mogren Al Mogren, M. [Chemistry Department, Faculty of Science, King Saud University, PO Box 2455, Riyadh 11451 (Saudi Arabia); Ben Abdallah, D. [Laboratoire de Spectroscopie Atomique, Moléculaire et Applications – LSAMA, Université de Tunis, Tunis (Tunisia); Department of General Studies, Riyadh Corporation of Technology, Technical and Vocational Training Corporation, PO Box 42826, Riyadh 11551 (Saudi Arabia); Hochlaf, M., E-mail: hochlaf@univ-mlv.fr [Université Paris-Est, Laboratoire Modélisation et Simulation Multi Echelle, MSME UMR 8208 CNRS, 5 bd Descartes, 77454 Marne-la-Vallée (France)

    2015-01-13

    Highlights: • Theoretical investigation of the novel gas-phase molecular species GeO{sup 2+}. • Spectroscopic parameters of this dication in its electronic ground and exited states. • Theoretical double ionization spectrum of GeO. - Abstract: Using multi reference configuration interaction methodology in connection with a large basis set, we show that GeO{sup 2+} is a metastable species either in the ground or in the electronically excited states. This confirms the observation of this dication in gas phase by mass spectrometry. In addition, we derived a set of accurate spectroscopic terms for GeO{sup 2+} bound states. At the MRCI/aug-cc-pV5Z level of theory, the adiabatic double ionization energy of GeO is computed to be ∼28.93 eV.

  2. Superconductivity in novel Ge-based skutterudites: {Sr,Ba}pt4Ge12.

    Science.gov (United States)

    Bauer, E; Grytsiv, A; Chen, Xing-Qiu; Melnychenko-Koblyuk, N; Hilscher, G; Kaldarar, H; Michor, H; Royanian, E; Giester, G; Rotter, M; Podloucky, R; Rogl, P

    2007-11-23

    Combining experiments and ab initio models we report on SrPt4Ge12 and BaPt4Ge12 as members of a novel class of superconducting skutterudites, where Sr or Ba atoms stabilize a framework entirely formed by Ge atoms. Below T(c)=5.35 and 5.10 K for BaPt4Ge12 and SrPt4Ge12, respectively, electron-phonon coupled superconductivity emerges, ascribed to intrinsic features of the Pt-Ge framework, where Ge-p states dominate the electronic structure at the Fermi energy.

  3. Evolution of Ge and SiGe Quantum Dots under Excimer Laser Annealing

    Institute of Scientific and Technical Information of China (English)

    HAN Gen-Quan; ZENG Yu-Gang; YU Jin-Zhong; CHENG Bu-Wen; YANG Hai-Tao

    2008-01-01

    We present different relaxation mechanisms of Ge and SiGe quantum dots under excimer laser annealing.Inyestigation of the coarsening and relaxation of the dots showS that the strain in Ge dots on Ge films is relaxed by dislocation since there is no interface between the Ge dots and the Ge layer,while the SiGe dots on Si0.77 Ge0.23film relax by lattice distortion to coherent dots which results from the obvious interface between the SiGe dots and the Si0.77Ge0.23 film.The results are suggested and sustained by Vanderbilt and Wickham's theory,and also demonstrate that no bulk diffusion Occurs during the excimer laser annealing.

  4. Understanding and engineering of NiGe/Ge junction formed by phosphorus ion implantation after germanidation

    Energy Technology Data Exchange (ETDEWEB)

    Oka, Hiroshi, E-mail: oka@asf.mls.eng.osaka-u.ac.jp; Minoura, Yuya; Hosoi, Takuji; Shimura, Takayoshi; Watanabe, Heiji [Department of Material and Life Science, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871 (Japan)

    2014-08-11

    Modulation of the effective electron Schottky barrier height (eSBH) of NiGe/Ge contacts induced by phosphorus ion implantation after germanide formation was investigated by considering local inhomogeneity in the eSBH. Systematic studies of NiGe/Ge contact devices having various germanide thicknesses and ion implantation areas indicated the threshold dopant concentration at the NiGe/Ge interface required for eSBH modulation and negligible dopant diffusion even at NiGe/Ge interface during drive-in annealing, leading to variation in the eSBH between the bottom and sidewall portions of the NiGe regions. Consequently, this method makes it possible to design source/drain contacts with low-resistivity Ohmic and ideal rectifying characteristics for future Ge-based transistors.

  5. Conversion Matrix Analysis of SiGe HBT Gilbert Cell Mixers

    DEFF Research Database (Denmark)

    Johansen, Tom Keinicke; Vidkjær, Jens; Krozer, Viktor

    2004-01-01

    The frequency response of SiGe HBT active mixers based on the Gilbert cell topology is analyzed theoretically. The time-varying operation of the Gilbert cell mixer is taken into account by applying conversion matrix analysis. The main bandwidth limiting mechanisms experienced in SiGe HBT Gilbert...... cell mixers performing frequency conversion of ultra-wideband signals is discussed. The analysis is verified by computer simulations using a realistic high-frequency large-signal SiGe HBT model. Design optimization steps towards ultra-wideband operation for Gilbert cell mixers is discussed....

  6. Ab initio treatment of gas phase GeO2+ doubly charged ion

    Science.gov (United States)

    Mogren Al Mogren, M.; Ben Abdallah, D.; Hochlaf, M.

    2015-01-01

    Using multi reference configuration interaction methodology in connection with a large basis set, we show that GeO2+ is a metastable species either in the ground or in the electronically excited states. This confirms the observation of this dication in gas phase by mass spectrometry. In addition, we derived a set of accurate spectroscopic terms for GeO2+ bound states. At the MRCI/aug-cc-pV5Z level of theory, the adiabatic double ionization energy of GeO is computed to be ∼28.93 eV.

  7. Preparation of Ga/Ni Solid Target for Cyclotron-Produced 68Ge by Electrodeposition

    OpenAIRE

    SHEN Yi-jia1,2;FU Hong-yu1;LUO Wen-bo1;DENG Xue-song1;LIU Yu-ping1;LI Guang1;XU Hong-wei1,2;WANG Gang1

    2014-01-01

    Germanium 68 is mainly used for preparation of the 68Ge-68Ga generator and the calibration of positron emission computed tomography. The low melting point of the target material in the production reaction 69Ga (p, 2n) 68Ge has limited the availability of Ge-68. In order to use the existing industrial cyclotron hardware to produce Germanium 68, the method of electrodepositing gallium-nickel alloy was set up in this study. Acidic requirements were met through the preparation of the gallium-nick...

  8. Germanium-tin interdiffusion in strained Ge/GeSn multiple-quantum-well structure

    Science.gov (United States)

    Wang, Wei; Dong, Yuan; Zhou, Qian; Tok, Eng Soon; Yeo, Yee-Chia

    2016-06-01

    The thermal stability and germanium-tin (Ge-Sn) interdiffusion properties were studied in epitaxial Ge/GeSn multiple-quantum-well (MQW) structure. No obvious interdiffusion was observed for annealing temperatures of 300 °C or below, while observable interdiffusion occurred for annealing temperatures of 380 °C and above. High-resolution x-ray diffraction was used to obtain the interdiffusion coefficient by analyzing the decrease rate of Ge/GeSn periodic satellite peaks. The interdiffusion coefficient is much higher, and the activation enthalpy of 1.21 eV is substantially lower in Ge/GeSn MQW structure than that previously reported in silicon-germanium (Si-Ge) systems. When the annealing temperature is increased to above 500 °C, Ge-Sn interdiffusion becomes severe. Some small pits appear on the surface, which should be related to Sn out-diffusion to the Ge cap layer, followed by Sn desorption from the top surface. This work provides insights into the Ge-Sn interdiffusion and Sn segregation behaviors in Ge/GeSn MQW structure, and the thermal budget that may be used for fabrication of devices comprising Ge/GeSn heterostructures.

  9. SPEIR: A Ge Compton Camera

    Energy Technology Data Exchange (ETDEWEB)

    Mihailescu, L; Vetter, K M; Burks, M T; Hull, E L; Craig, W W

    2004-02-11

    The SPEctroscopic Imager for {gamma}-Rays (SPEIR) is a new concept of a compact {gamma}-ray imaging system of high efficiency and spectroscopic resolution with a 4-{pi} field-of-view. The system behind this concept employs double-sided segmented planar Ge detectors accompanied by the use of list-mode photon reconstruction methods to create a sensitive, compact Compton scatter camera.

  10. Preparation of Ga/Ni Solid Target for Cyclotron-produced 68Ge by Electrodeposition

    Institute of Scientific and Technical Information of China (English)

    SHEN; Yi-jia; FU; Hong-yu; LUO; Wen-bo; DENG; Xue-song; LIU; Yu-ping; LI; Guang; XU; Hong-wei; WANG; Gang

    2013-01-01

    68Ga is mainly used for preparation of the 68Ge-68Ga generator and the calibration of Positron Emission Computed Tomography.The low melting point of the target material in the production reaction69Ga(p,2n)68Ge has limited the availability of 68Ga.In order to use the existing industrial cyclotron hardware to produce 68Ga,a method of electrodepositing gallium-nickel alloy was set up in this study.

  11. The effects of strain on indirect absorption in Ge/SiGe quantum wells

    Science.gov (United States)

    Lever, L.; Ikonić, Z.; Kelsall, R. W.

    2012-06-01

    We calculate the conduction band electron scattering rates from the Γ-valley into the indirect valleys in germanium, and use this to determine the strength of the indirect absorption in Ge/SiGe quantum well heterostructures. This is done as a function of the in-plane compressive strain in the Ge quantum wells, which results from pseudomorphic growth on a SiGe virtual substrate. This compressive strain results in the Δ valleys becoming available as destination states for scattering, which leads to a reduction in the Γ-valley lifetime. We calculate the indirect absorption and lifetime broadening of excitonic peaks, and show that indirect absorption decreases as the Ge fraction in the virtual substrate increases. We conclude that the Ge fraction of the SiGe virtual substrate should be approximately 95% or larger for optimum electroabsorption performance of Ge/SiGe quantum wells.

  12. Segregation of Ge in B and Ge codoped Czochralski-Si crystal growth

    Energy Technology Data Exchange (ETDEWEB)

    Arivanandhan, Mukannan, E-mail: rmarivu@ipc.shizuoka.ac.jp [Department of Electronics and Materials Science, Graduate School of Engineering, Shizuoka University, Johoku 3-5-1, Naka-Ku, Hamamatsu 432-8011 (Japan); Research Institute of Electronics, Shizuoka University, Johoku 3-5-1, Naka-Ku, Hamamatsu 432-8011 (Japan); Gotoh, Raira; Fujiwara, Kozo; Uda, Satoshi [Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan); Hayakawa, Yasuhiro [Department of Electronics and Materials Science, Graduate School of Engineering, Shizuoka University, Johoku 3-5-1, Naka-Ku, Hamamatsu 432-8011 (Japan); Research Institute of Electronics, Shizuoka University, Johoku 3-5-1, Naka-Ku, Hamamatsu 432-8011 (Japan)

    2015-08-05

    Highlights: • Effective segregation of Ge in B and Ge codoped Czochralski-Si crystal growth was analyzed. • The equilibrium segregation coefficient of Ge was calculated. • The experimentally results were analytically analyzed using partitioning theory. - Abstract: The segregation of Ge in B and Ge codoped Czochralski (CZ)-Si crystal growth was investigated. The concentration of Ge in heavily Ge codoped CZ-Si was measured by electron probe micro analysis (EPMA) and X-ray fluorescence spectroscopy. The effective segregation coefficient of Ge (k{sub eff}) was calculated by fitting the EPMA data to the normal freezing equation, and by taking the logarithmic ratio of the Ge concentrations at the seed and tail of the ingots (top to bottom approach). The k{sub eff} of Ge increased from 0.30 to 0.55, when the initial Ge concentration in the Si melt (C{sub L(o)}{sup Ge}) was increased from 3 × 10{sup 19} to 3 × 10{sup 21} cm{sup −3}. To avoid cellular growth, the crystal pulling rate was decreased for heavily Ge codoped crystal growth (C{sub L(o)}{sup Ge} > 3 × 10{sup 20} cm{sup −3}). The equilibrium segregation coefficient (k{sub 0}) of Ge was calculated by partitioning theory, and was smaller than the experimentally estimated k{sub eff}. The variation of k{sub eff} from k{sub 0} was discussed based on Ge clustering in the heavily Ge codoped crystal, which led to changes in the bonding and strain energies caused by the incorporation of Ge into Si.

  13. GeSn/Ge heterostructure short-wave infrared photodetectors on silicon.

    Science.gov (United States)

    Gassenq, A; Gencarelli, F; Van Campenhout, J; Shimura, Y; Loo, R; Narcy, G; Vincent, B; Roelkens, G

    2012-12-03

    A surface-illuminated photoconductive detector based on Ge0.91Sn0.09 quantum wells with Ge barriers grown on a silicon substrate is demonstrated. Photodetection up to 2.2µm is achieved with a responsivity of 0.1 A/W for 5V bias. The spectral absorption characteristics are analyzed as a function of the GeSn/Ge heterostructure parameters. This work demonstrates that GeSn/Ge heterostructures can be used to developed SOI waveguide integrated photodetectors for short-wave infrared applications.

  14. Ge nanobelts with high compressive strain fabricated by secondary oxidation of self-assembly SiGe rings

    DEFF Research Database (Denmark)

    Lu, Weifang; Li, Cheng; Lin, Guangyang

    2015-01-01

    Curled Ge nanobelts were fabricated by secondary oxidation of self-assembly SiGe rings, which were exfoliated from the SiGe stripes on the insulator. The Ge-rich SiGe stripes on insulator were formed by hololithography and modified Ge condensation processes of Si0.82Ge0.18 on SOI substrate. Ge na...... nanobelts, which extrudes to Ge nanobelts in radial and tangent directions during the cooling process. This technique is promising for application in high-mobility Ge nano-scale transistors...

  15. Effect of Ge Content on the Formation of Ge Nanoclusters in Magnetron-Sputtered GeZrOx-Based Structures.

    Science.gov (United States)

    Khomenkova, L; Lehninger, D; Kondratenko, O; Ponomaryov, S; Gudymenko, O; Tsybrii, Z; Yukhymchuk, V; Kladko, V; von Borany, J; Heitmann, J

    2017-12-01

    Ge-rich ZrO2 films, fabricated by confocal RF magnetron sputtering of pure Ge and ZrO2 targets in Ar plasma, were studied by multi-angle laser ellipsometry, Raman scattering, Auger electron spectroscopy, Fourier transform infrared spectroscopy, and X-ray diffraction for varied deposition conditions and annealing treatments. It was found that as-deposited films are homogeneous for all Ge contents, thermal treatment stimulated a phase separation and a formation of crystalline Ge and ZrO2. The "start point" of this process is in the range of 640-700 °C depending on the Ge content. The higher the Ge content, the lower is the temperature necessary for phase separation, nucleation of Ge nanoclusters, and crystallization. Along with this, the crystallization temperature of the tetragonal ZrO2 exceeds that of the Ge phase, which results in the formation of Ge crystallites in an amorphous ZrO2 matrix. The mechanism of phase separation is discussed in detail.

  16. A study on NiGe-contacted Ge n+/p Ge shallow junction prepared by dopant segregation technique

    Science.gov (United States)

    Tsui, Bing-Yue; Shih, Jhe-Ju; Lin, Han-Chi; Lin, Chiung-Yuan

    2015-05-01

    In this work, the effect of dopant segregation on the NiGe/n-Ge contact is studied by experiments and first-principles calculations. Both Al-contacted and NiGe-contacted n+/p junctions were fabricated. Phosphorus and arsenic ions were Implanted Before Germanide (IBG) formation or Implanted After Germanide (IAG) formation. The NiGe-contacted junction always exhibit higher forward current than the Al-contacted junction due to dopant segregation. First principles calculations predict that phosphorus atoms tend to segregate on both NiGe side and Ge side while arsenic atoms tend to segregate at Ge side. Since phosphorus has higher activation level and lower diffusion coefficient than arsenic, we propose a phosphorus IBG + arsenic IAG process. Shallow n+/p junction with junction depth 90 nm below the NiGe/Ge interface is achieved. The lowest and average contact resistivity is 2 × 10-6 Ω cm2 and 6.7 × 10-6 Ω cm2, respectively. Methods which can further reduce the junction depth and contact resistivity are suggested.

  17. Mid- to long-wavelength infrared plasmonic-photonics using heavily doped n-Ge/Ge and n-GeSn/GeSn heterostructures.

    Science.gov (United States)

    Soref, Richard; Hendrickson, Joshua; Cleary, Justin W

    2012-02-13

    Heavily doped n-type Ge and GeSn are investigated as plasmonic conductors for integration with undoped dielectrics of Si, SiGe, Ge, and GeSn in order to create a foundry-based group IV plasmonics technology. N-type Ge1-xSnx with compositions of 0 ≤ x ≤ 0.115 are investigated utilizing effective-mass theory and Drude considerations. The plasma wavelengths, relaxation times, and complex permittivities are determined as functions of the free carrier concentration over the range of 10(10) to 10(21) cm-3. Basic plasmonic properties such as propagation loss and mode height are calculated and example numerical simulations are shown of a dielectric-conductor-dielectric ribbon waveguide structure are shown. Practical operation in the 2 to 20 μm wavelength range is predicted.

  18. Ge photocapacitive MIS infrared detectors

    Science.gov (United States)

    Binari, S. C.; Miller, W. E.; Tsuo, Y. H.; Miller, W. E.

    1979-01-01

    An undoped Ge photocapacitive detector is reported which has peak normalized detectivities at wavelengh 1.4 microns and chopping frequencies 13-1000 Hz of 9 x 10 to the 12th, 4 x 10 to the 9th cm Hz to the 1/2th/W operating respectively at temperatures 77, 195, and 295 K. The observed temperature, spectral, and frequency response of the signal and noise are explained in terms of the measured space charge and interface state properties of the device.

  19. Formation and function of vacancies in Si/Ge Clathrates: The importance of broken symmetries

    Science.gov (United States)

    Bhattacharya, Amrita; Carbogno, Christian; Scheffler, Matthias; Dr. Matthias Scheffler Team, Prof.

    2015-03-01

    One promising material class for improved thermoelectrics are the clathrates, i.e., semiconducting host lattices encapsulating guest atom. Even in simple clathrates, such as, Si46 and Ge46, the introduction of guests can result in important but not yet understood effects: In Si hosts, the addition of K (or Ba) results in defect-free K8Si46 (Ba8Si46) phases. In spite of their structural and electronic similitude, Ge hosts behave fundamentally different upon filling, where, the spontaneously formed framework vacancies completely (or partially) balance the electron donated by K (or Ba) guests leading to K8Ge44(orBa8Ge43) clathrates. In this work, we use density-functional theory, carefully validating the exchange correlation functional, to compute the formation energies of vacancies and vacancy complexes in Si- and Ge-hosts as function of the filling of guests. By taking into account of the structural disorder, geometric relaxations, and vibrational entropies, we verify the experimentally found vacancy concentration and the thermodynamic stabilities of these compounds. We can trace back the contrasting behaviour of Si/Ge clathrates upon filling to a curious, charged vacancy induced break in symmetry that occurs in Si but not in Ge hosts.

  20. Simulation of GeSn/Ge tunneling field-effect transistors for complementary logic applications

    Science.gov (United States)

    Liu, Lei; Liang, Renrong; Wang, Jing; Xiao, Lei; Xu, Jun

    2016-09-01

    GeSn/Ge tunneling field-effect transistors (TFETs) with different device configurations are comprehensively investigated by numerical simulation. The lateral PIN- and PNPN-type point-tunneling and vertical line-tunneling device structures are analyzed and compared. Both n- and p-type TFETs are optimized to construct GeSn complementary logic applications. Simulation results indicate that GeSn/Ge heterochannel and heterosource structures significantly improve the device characteristics of point- and line-TFETs, respectively. Device performance and subthreshold swing can be further improved by increasing the Sn composition. GeSn/Ge heterosource line-TFETs exhibit excellent device performance and superior inverter voltage-transfer characteristic, which make them promising candidates for GeSn complementary TFET applications.

  1. Femtosecond laser crystallization of amorphous Ge

    Science.gov (United States)

    Salihoglu, Omer; Kürüm, Ulaş; Yaglioglu, H. Gul; Elmali, Ayhan; Aydinli, Atilla

    2011-06-01

    Ultrafast crystallization of amorphous germanium (a-Ge) in ambient has been studied. Plasma enhanced chemical vapor deposition grown a-Ge was irradiated with single femtosecond laser pulses of various durations with a range of fluences from below melting to above ablation threshold. Extensive use of Raman scattering has been employed to determine post solidification features aided by scanning electron microscopy and atomic force microscopy measurements. Linewidth of the Ge optic phonon at 300 cm-1 as a function of laser fluence provides a signature for the crystallization of a-Ge. Various crystallization regimes including nanostructures in the form of nanospheres have been identified.

  2. The ternary germanides UMnGe and U2Mn3Ge

    Science.gov (United States)

    Hoffmann, Rolf-Dieter; Pöttgen, Rainer; Chevalier, Bernard; Gaudin, Etienne; Matar, Samir F.

    2013-07-01

    The title compounds were prepared by induction levitation melting of the elemental components and subsequent annealing. UMnGe (Pnma, a = 686.12(9), b = 425.49(6) and c = 736.5(1) pm) adopts the orthorhombic structure of TiNiSi and U2Mn3Ge (P63/mmc, a = 524.3(2) and c = 799.2(3) pm) possesses the hexagonal Mg2Cu3Si-type structure (ordered variant of the hexagonal Laves phase MgZn2). Both structures were refined from X-ray powder data to residuals of RI = 0.021 and 0.014 for UMnGe and U2Mn3Ge, respectively. The manganese and germanium atoms in UMnGe build up a three-dimensional [MnGe] network of ordered Mn3Ge3 hexagons with Mn-Ge distances ranging from 248 to 259 pm. The uranium atoms are coordinated by two tilted Mn3Ge3 hexagons. The manganese atoms in U2Mn3Ge build up Kagomé networks with 252 and 272 pm Mn-Mn distances which are connected via the germanium atoms (254 pm Mn-Ge) to a three-dimensional network. A remarkable feature of the U2Mn3Ge structure is a short U-U distance of 278 pm between adjacent cavities of the [Mn3Ge] network. From DFT based electronic structure calculations both germanides are found more cohesive than the Laves phase UMn2, thus underpinning the substantial role of Mn-Ge bonding. Calculations for both germanides show ferrimagnetic ground states with antiparallel spin alignments between U and Mn. The valence bands show bonding characteristics for interactions of atoms of different chemical natures and significant Mn-Mn bonding in U2Mn3Ge. Preliminary investigation of UMnGe by magnetization measurements confirms an antiferromagnetic arrangement below TN = 240 K.

  3. GeSn/SiGeSn photonic devices for mid-infrared applications: experiments and calculations

    Science.gov (United States)

    Han, Genquan; Zhang, Qingfang; Liu, Yan; Zhang, Chunfu; Hao, Yue

    2016-11-01

    In this work, a fully strained GeSn photodetector with Sn atom percent of 8% is fabricated on Ge buffer on Si(001) substrate. The wavelength λ of light signals with obvious optical response for Ge0.92Sn0.08 photodetector is extended to 2 μm. The impacts of compressive strain introduced during the epitaxial growth of GeSn on Ge/Si are studied by simulation. Besides, the tensile strain engineering of GeSn photonic devices is also investigated. Lattice-matched GeSn/SiGeSn double heterostructure light emitting diodes (LEDs) with Si3N4 tensile liner stressor are designed to promote the further mid-infrared applications of GeSn photonic devices. With the releasing of the residual stress in Si3N4 liner, a large biaxial tensile strain is induced in GeSn active layer. Under biaxial tensile strain, the spontaneous emission rate rsp and internal quantum efficiency ηIQE for GeSn/SiGeSn LED are significantly improved.

  4. Room Temperature Ferromagnetic Mn:Ge(001

    Directory of Open Access Journals (Sweden)

    George Adrian Lungu

    2013-12-01

    Full Text Available We report the synthesis of a room temperature ferromagnetic Mn-Ge system obtained by simple deposition of manganese on Ge(001, heated at relatively high temperature (starting with 250 °C. The samples were characterized by low energy electron diffraction (LEED, scanning tunneling microscopy (STM, high resolution transmission electron microscopy (HRTEM, X-ray photoelectron spectroscopy (XPS, superconducting quantum interference device (SQUID, and magneto-optical Kerr effect (MOKE. Samples deposited at relatively elevated temperature (350 °C exhibited the formation of ~5–8 nm diameter Mn5Ge3 and Mn11Ge8 agglomerates by HRTEM, while XPS identified at least two Mn-containing phases: the agglomerates, together with a Ge-rich MnGe~2.5 phase, or manganese diluted into the Ge(001 crystal. LEED revealed the persistence of long range order after a relatively high amount of Mn (100 nm deposited on the single crystal substrate. STM probed the existence of dimer rows on the surface, slightly elongated as compared with Ge–Ge dimers on Ge(001. The films exhibited a clear ferromagnetism at room temperature, opening the possibility of forming a magnetic phase behind a nearly ideally terminated Ge surface, which could find applications in integration of magnetic functionalities on semiconductor bases. SQUID probed the co-existence of a superparamagnetic phase, with one phase which may be attributed to a diluted magnetic semiconductor. The hypothesis that the room temperature ferromagnetic phase might be the one with manganese diluted into the Ge crystal is formulated and discussed.

  5. Modeling of GE Appliances: Final Presentation

    Energy Technology Data Exchange (ETDEWEB)

    Fuller, Jason C.; Vyakaranam, Bharat; Leistritz, Sean M.; Parker, Graham B.

    2013-01-31

    This report is the final in a series of three reports funded by U.S. Department of Energy Office of Electricity Delivery and Energy Reliability (DOE-OE) in collaboration with GE Appliances’ through a Cooperative Research and Development Agreement (CRADA) to describe the potential of GE Appliances’ DR-enabled appliances to provide benefits to the utility grid.

  6. The Ge(0 0 1) surface

    NARCIS (Netherlands)

    Zandvliet, Henricus J.W.

    2003-01-01

    Although germanium (Ge) (0 0 1) has a relatively small surface unit cell, this surface displays a wealth of fascinating phenomena. The Ge(0 0 1) surface is a prototypical example of a system possessing both a strong short-range interaction due to dimerization of the surface atoms, as well as an

  7. Si/SiGe MMIC's

    Science.gov (United States)

    Luy, Johann-Friedrich; Strohm, Karl M.; Sasse, Hans-Eckard; Schueppen, Andreas; Buechler, Josef; Wollitzer, Michael; Gruhle, Andreas; Schaeffler, Friedrich; Guettich, Ulrich; Klaassen, Andreas

    1995-04-01

    Silicon-based millimeter-wave integrated circuits (SIMMWIC's) can provide new solutions for near range sensor and communication applications in the frequency range above 50 GHz. This paper gives a survey on the state-of-the-art performance of this technology and on first applications. The key devices are IMPATT diodes for mm-wave power generation and detection in the self-oscillating mixer mode, p-i-n diodes for use in switches and phase shifters, and Schottky diodes in detector and mixer circuits. The silicon/silicon germanium heterobipolar transistor (SiGe HBT) with f(sub max) values of more than 90 GHz is now used for low-noise oscillators at Ka-band frequencies. First system applications are discussed.

  8. HV/CVD Grown Relaxed SiGe Buffer Layers for SiGe HMOSFETs

    Institute of Scientific and Technical Information of China (English)

    黄文韬; 罗广礼; 史进; 邓宁; 陈培毅; 钱佩信

    2003-01-01

    High-vacuum/chemical-vapor deposition (HV/CVD) system was used to grow relaxed SiGe buffer layers on Si substrates. Several methods were then used to analyze the quality of the SiGe films. X-ray diffraction and Raman spectroscopy showed that the upper layer was almost fully relaxed. Second ion mass spectroscopy showed that the Ge compositions were step-graded. Transmission electron microscopy showed that the misfit dislocations were restrained to the graded SiGe layers. Tests of the electrical properties of tensile-strained Si on relaxed SiGe buffer layers showed that their transconductances were higher than that of Si devices. These results verify the high quality of the relaxed SiGe buffer layer. The calculated critical layer thicknesses of the graded Si1-xGex layer on Si substrate and a Si layer on the relaxed SiGe buffer layer agree well with experimental results.

  9. Ge/GeSn heterostructures grown on Si (100) by molecular-beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Sadofyev, Yu. G., E-mail: sadofyev@hotmail.com; Martovitsky, V. P.; Bazalevsky, M. A.; Klekovkin, A. V. [Russian Academy of Sciences, Lebedev Physical Institute (Russian Federation); Averyanov, D. V.; Vasil’evskii, I. S. [National Research Nuclear University MEPhI (Russian Federation)

    2015-01-15

    The growth of GeSn layers by molecular-beam epitaxy on Si (100) wafers coated with a germanium buffer layer is investigated. The properties of the fabricated structures are controlled by reflection high-energy electron diffraction, atomic-force microscopy, X-ray diffractometry, Rutherford backscattering, and Raman scattering. It is shown that GeSn layers with thicknesses up to 0.5 μm and Sn molar fractions up to 0.073 manifest no sign of plastic relaxation upon epitaxy. The lattice constant of the GeSn layers within the growth plane is precisely the same as that of Ge. The effect of rapid thermal annealing on the conversion of metastable elastically strained GeSn layers into a plastically relaxed state is examined. Ge/GeSn quantum wells with Sn molar fraction up to 0.11 are obtained.

  10. Infrared photoresponse of GeSn/n-Ge heterojunctions grown by molecular beam epitaxy.

    Science.gov (United States)

    Kim, Sangcheol; Bhargava, Nupur; Gupta, Jay; Coppinger, Matthew; Kolodzey, James

    2014-05-05

    Heterojunction devices of Ge(1-x)Sn(x) / n-Ge were grown by solid source molecular beam epitaxy (MBE), and the mid-infrared (IR) photocurrent response was measured. With increasing Sn composition from 4% to 12%, the photocurrent spectra became red-shifted, suggesting that the bandgap of Ge(1-x)Sn(x) alloys was lowered compared to pure Ge. At a temperature of 100 K, the wavelengths of peak photocurrent were shifted from 1.42 µm for pure Ge (0% Sn) to 2.0 µm for 12% Sn. The bias dependence of the device response showed that the optimum reverse bias was > 0.5 volts for saturated photocurrent. The responsivity of the Ge(1-x)Sn(x) devices was estimated to be 0.17 A/W for 4% Sn. These results suggest that Ge(1-x)Sn(x) photodetectors may have practical applications in the near/mid IR wavelength regime.

  11. Pseudomorphic GeSn/Ge(001) quantum wells: Examining indirect band gap bowing

    Energy Technology Data Exchange (ETDEWEB)

    Tonkikh, Alexander A. [Max Planck Institute of Microstructure Physics, Weinberg 2 D-06120, Halle (Saale) (Germany); Institute for Physics of Microstructures RAS, GSP-105, Nizhniy Novgorod (Russian Federation); Eisenschmidt, Christian; Schmidt, Georg [Institute of Physics, Martin Luther University Halle-Wittenberg, Von-Danckelmann-Platz 3 D-01620, Halle (Saale) (Germany); Talalaev, Vadim G. [Max Planck Institute of Microstructure Physics, Weinberg 2 D-06120, Halle (Saale) (Germany); ZIK SiLi-Nano, Martin Luther University Halle-Wittenberg, Karl-Freiherr-von-Fritsch-Str. 3 D-06120, Halle (Saale) (Germany); Zakharov, Nikolay D.; Werner, Peter [Max Planck Institute of Microstructure Physics, Weinberg 2 D-06120, Halle (Saale) (Germany); Schilling, Joerg [ZIK SiLi-Nano, Martin Luther University Halle-Wittenberg, Karl-Freiherr-von-Fritsch-Str. 3 D-06120, Halle (Saale) (Germany)

    2013-07-15

    A study of the bandgap character of compressively strained GeSn{sub 0.060-0.091}/Ge(001) quantum wells grown by molecular beam epitaxy is reported. The built-in strain in GeSn wells leads to an increased separation between L and {Gamma} conduction band minima. The prevalent indirect interband transitions in GeSn were probed by photoluminescence spectroscopy. As a result we could simulate the L-valley bowing parameter in GeSn alloys, b{sub L} = 0.80 {+-} 0.06 eV at 10 K. From this we conclude that even compressively strained GeSn/Ge(001) alloys could become direct band gap semiconductors at the Sn-fraction higher than 17.0 at. %.

  12. Determination of Ge content in high concentration Ge-doped Czochralski Si single crystals by FTIR

    Institute of Scientific and Technical Information of China (English)

    JIANG Zhongwei; ZHANG Weilian; NIU Xinhuan

    2005-01-01

    SiGe single crystals with different Ge concentrations were measured by Fourier transform infrared (FTIR) spectroscopy at room temperature (RT) and 10 K. A new peak appears at the wave number of 710 cm-1 and the spectroscopy becomes clearer with an increase in Ge content. The absorption strength and wave sharp of the 710 cm-1 peak are independent of temperature. The relation of the absorption coefficient amax, the band width of half maximum (BWHM) W1/2 of the 710 cm-1 peak, and the Ge concentration is determined with the Ge content obtained by SEM-EDX. The conversion factor is k = 1.211 at 10 K. Therefore, the Ge content in high concentration Ge doped CZ-Si single crystals can be determined by FTIR.

  13. Structural origin of resistance drift in amorphous GeTe

    Science.gov (United States)

    Zipoli, Federico; Krebs, Daniel; Curioni, Alessandro

    2016-03-01

    We used atomistic simulations to study the origin of the change of resistance over time in the amorphous phase of GeTe, a prototypical phase-change material (PCM). Understanding the cause of resistance drift is one of the biggest challenges to improve multilevel storage technology. For this purpose, we generated amorphous structures via classical molecular-dynamics simulations under conditions as close as possible to the experimental operating ones of such memory devices. Moreover, we used the replica-exchange technique to generate structures comparable with those obtained in the experiment after long annealing that show an increase of resistance. This framework allowed us to overcome the main limitation of previous simulations, based on density-functional theory, that suffered from being computationally too expensive therefore limited to the nanosecond time scale. We found that resistance drift is caused by consumption of Ge atom clusters in which the coordination of at least one Ge atom differs from that of the crystalline phase and by removal of stretched bonds in the amorphous network, leading to a shift of the Fermi level towards the middle of the band gap. These results show that one route to design better memory devices based on current chalcogenide alloys is to reduce the resistance drift by increasing the rigidity of the amorphous network.

  14. From X-Rays to MRI: Physics in GE

    Science.gov (United States)

    Schmitt, Roland W.

    2004-03-01

    The GE Research Laboratory, founded in 1900, became the first laboratory of scientific research in U.S. industry. William Coolidge, a physicist, joined the laboratory in 1905 and produced two advances of immense importance. The first, ductile tungsten, is still the heart of every incandescent light bulb. The second, the "Coolidge" X-Ray tube, remains an essential tool of modern medicine. In the process, Coolidge explored two main approaches of physics in industry. One addresses a commercial problem or opportunity (better light bulbs) and finds interesting physics. The other explores interesting physics (X-rays) and creates a commercial opportunity. This paper addresses the mix of these approaches during GE's years as an "electric" (and therefore physics-based) company. Episodes include the following: the work of Irving Langmuir (1932 Nobel laureate in chemistry, but as much physicist as chemist); the post-World War II "golden age of industrial physics" when the endless frontier offered opportunities from nuclear power to diamond making to superconductivity; the Nobel-prize winning work of Ivar Giaever; and interdisciplinary efforts that enabled GE to become a world business leader in two medical diagnostic technologies it did not invent: computed tomography and magnetic resonance imaging. I will speculate on whether this mix of problem-driven and opportunity-driven effort is as relevant to the 21st century as it was to the 20th.

  15. Digital computers in action

    CERN Document Server

    Booth, A D

    1965-01-01

    Digital Computers in Action is an introduction to the basics of digital computers as well as their programming and various applications in fields such as mathematics, science, engineering, economics, medicine, and law. Other topics include engineering automation, process control, special purpose games-playing devices, machine translation and mechanized linguistics, and information retrieval. This book consists of 14 chapters and begins by discussing the history of computers, from the idea of performing complex arithmetical calculations to the emergence of a modern view of the structure of a ge

  16. Ferromagnetic germanide in Ge nanowire transistors for spintronics application.

    Science.gov (United States)

    Tang, Jianshi; Wang, Chiu-Yen; Hung, Min-Hsiu; Jiang, Xiaowei; Chang, Li-Te; He, Liang; Liu, Pei-Hsuan; Yang, Hong-Jie; Tuan, Hsing-Yu; Chen, Lih-Juann; Wang, Kang L

    2012-06-26

    To explore spintronics applications for Ge nanowire heterostructures formed by thermal annealing, it is critical to develop a ferromagnetic germanide with high Curie temperature and take advantage of the high-quality interface between Ge and the formed ferromagnetic germanide. In this work, we report, for the first time, the formation and characterization of Mn(5)Ge(3)/Ge/Mn(5)Ge(3) nanowire transistors, in which the room-temperature ferromagnetic germanide was found through the solid-state reaction between a single-crystalline Ge nanowire and Mn contact pads upon thermal annealing. The atomically clean interface between Mn(5)Ge(3) and Ge with a relatively small lattice mismatch of 10.6% indicates that Mn(5)Ge(3) is a high-quality ferromagnetic contact to Ge. Temperature-dependent I-V measurements on the Mn(5)Ge(3)/Ge/Mn(5)Ge(3) nanowire heterostructure reveal a Schottky barrier height of 0.25 eV for the Mn(5)Ge(3) contact to p-type Ge. The Ge nanowire field-effect transistors built on the Mn(5)Ge(3)/Ge/Mn(5)Ge(3) heterostructure exhibit a high-performance p-type behavior with a current on/off ratio close to 10(5), and a hole mobility of 150-200 cm(2)/(V s). Temperature-dependent resistance of a fully germanided Mn(5)Ge(3) nanowire shows a clear transition behavior near the Curie temperature of Mn(5)Ge(3) at about 300 K. Our findings of the high-quality room-temperature ferromagnetic Mn(5)Ge(3) contact represent a promising step toward electrical spin injection into Ge nanowires and thus the realization of high-efficiency spintronic devices for room-temperature applications.

  17. Theoretical study of the catalytic CO oxidation by Pt catalyst supported on Ge-doped grapheme.

    Science.gov (United States)

    Tang, Yanan; Yang, Zongxian; Dai, Xianqi; Lu, Zhansheng; Zhang, Yanxing; Fu, Zhaoming

    2014-09-01

    The geometry, electronic structure and catalytic properties of the anchored Pt atom on the Ge-doped graphene (Pt/Ge-graphene) substrates are investigated using the first-principles computations. It is found that Ge atoms can form strong covalent bonds with the carbon atoms at the vacancy site on the defective graphene. The Ge-graphene as substrate can effectively anchored Pt atoms and form supported Pt catalyst, which exhibits good catalytic activity for CO oxidation with a two-step route, starting with the Langmuir-Hinshelwood (LH) reaction followed by the Eley-Rideal (ER) reaction. The Ge dopant in graphene plays a vital role in enhancing the substrate-adsorbate interaction through facilitating the charge redistribution at their interfaces. The Ge-graphene can be used as the reactive support to control the stability and activity of the Pt catalysts. This work provides valuable guidance on fabricating carbon-based catalysts for CO oxidation, and validates the reactivity of single-atom catalyst for designing atomic-scale catalysts.

  18. ‘Symbiotic’ semiconductors: unusual and counter-intuitive Ge/Si/O interactions

    Science.gov (United States)

    George, T.; Li, P. W.; Chen, K. H.; Peng, K. P.; Lai, W. T.

    2017-03-01

    Since the inception of the first transistors in the 1940s, the immense body of work on the Group IV semiconductors, Si and Ge, has spearheaded spectacular advances in modern integrated-circuit (IC) technology that has enabled a vast landscape of device applications in logic, memory, and computing. Although initially Si supplanted Ge as the material of choice for metal–oxide–semiconductor field-effect transistors, Ge-based devices are now breaking new ground. Widespread and innovative Ge-based applications exist in optoelectronics, communications, microelectro-mechanical systems, and energy harvesting/savings. On the fundamental, materials science front, while it is well known that Ge and Si are fully miscible in each other, the nature and extent of their attraction for each other has largely been unexplored. In this paper, we report a rather curious interplay between Ge and Si that occurs at high temperature (~900 °C) and that can be best described as ‘symbiotic’. Each element appears to facilitate reactions in the other which would otherwise not be possible. Oxygen intersititials also appear to play a major role in these reactions. Our experimental work has allowed us to classify four distinct regimes where these reactions occur. We describe these conditions and provide the necessary theoretical explanations for these results.

  19. GeNemo: a search engine for web-based functional genomic data.

    Science.gov (United States)

    Zhang, Yongqing; Cao, Xiaoyi; Zhong, Sheng

    2016-07-08

    A set of new data types emerged from functional genomic assays, including ChIP-seq, DNase-seq, FAIRE-seq and others. The results are typically stored as genome-wide intensities (WIG/bigWig files) or functional genomic regions (peak/BED files). These data types present new challenges to big data science. Here, we present GeNemo, a web-based search engine for functional genomic data. GeNemo searches user-input data against online functional genomic datasets, including the entire collection of ENCODE and mouse ENCODE datasets. Unlike text-based search engines, GeNemo's searches are based on pattern matching of functional genomic regions. This distinguishes GeNemo from text or DNA sequence searches. The user can input any complete or partial functional genomic dataset, for example, a binding intensity file (bigWig) or a peak file. GeNemo reports any genomic regions, ranging from hundred bases to hundred thousand bases, from any of the online ENCODE datasets that share similar functional (binding, modification, accessibility) patterns. This is enabled by a Markov Chain Monte Carlo-based maximization process, executed on up to 24 parallel computing threads. By clicking on a search result, the user can visually compare her/his data with the found datasets and navigate the identified genomic regions. GeNemo is available at www.genemo.org.

  20. Formation, structure and properties of GeCn± and Ge2Cn± binary clusters

    Institute of Scientific and Technical Information of China (English)

    CAO Yali; LI Guoliang; TANG Zichao

    2005-01-01

    The binary cluster ions Ge2Cn+/Ge2Cn- and GeCn+ have been produced by laser ablation. The parity effect is present in the negative ions Ge2Cn-, though it is not very prominent. While the experiments tell that the parity effect is totally not shown in the positive ions Ge2Cn+. An extensive theoretical investigation on GeCn/GeCn+/GeCn-(n = 1-10) and Ge2Cn/Ge2Cn+/Ge2Cn-(n = 1-9) has been carried out by density functional theory at B3LPY level. The calculation shows that the low-lying states of GeCn/GeCn+/GeCn-(n = 1-10) and Ge2Cn/Ge2Cn+/Ge2Cn-(n = 1-9) are linear structure with germanium atoms locating at terminals respectively. The electronic distributions, ionization potential (IPad), electron affinity (EA) and increasing bonding energy reveal that the parity effect of neutral species is much stronger than that of ions, which is attributed to the valence π-electrons. It is explained that the differences between experiments and calculations are due to the kinetic factor in the formation of Ge2Cn±.

  1. Epitaxial Growth of GeGaAs.

    Science.gov (United States)

    1981-06-01

    liquid solvent for epitaxial growth of Ge. Because of the finite solubility of GaAs in Pb (7 x 10-4 atomic fraction at 500°C) relatively fast initial...mixture of Pb and Sn was used as a melt. The solubility of Ge in a PbSn eutetic mixture is significantly higher than the solubility of Ge in pure Pb...shallow donor acceptor levels. Addition of a deep level to the crystal lat- tice at this point would further pin the fermi level near mid-gap

  2. I8As21Ge25

    Directory of Open Access Journals (Sweden)

    2009-03-01

    Full Text Available Single crystals of octaiodine henacosarsenic pentacosagermanium were grown by chemical transport reactions. The structure is isotypic with the analogous clathrates-I. In this structure, the statistically occupied clathrand atoms (As,Ge46 form bonds in a distorted tetrahedral coordination and their arrangement can define two polyhedra of different sizes; one is an (As,Ge20 pentagonal dodecahedron, and the other is an (As,Ge24 tetrakaidecahedron. The guest atom (iodine resides inside these polyhedra with site symmetry m3 (Wyckoff position 2a and overline{4}2m (Wyckoff position 6d, respectively.

  3. Clebsch-Gordan coefficients for scattering processes in Si and Ge

    CSIR Research Space (South Africa)

    Kunert, HW

    2012-10-01

    Full Text Available Scattering matrix for two phonon processes at k = 0 in Si and Ge of O(sup7)(subh) symmetry is given. Also diagonalization of spin-orbit interaction Hamiltonian has been computed by means of Clebsh-Gordan coefficients. The authors have concluded...

  4. Monolithic Ge-on-Si lasers for large-scale electronic-photonic integration

    Science.gov (United States)

    Liu, Jifeng; Kimerling, Lionel C.; Michel, Jurgen

    2012-09-01

    A silicon-based monolithic laser source has long been envisioned as a key enabling component for large-scale electronic-photonic integration in future generations of high-performance computation and communication systems. In this paper we present a comprehensive review on the development of monolithic Ge-on-Si lasers for this application. Starting with a historical review of light emission from the direct gap transition of Ge dating back to the 1960s, we focus on the rapid progress in band-engineered Ge-on-Si lasers in the past five years after a nearly 30-year gap in this research field. Ge has become an interesting candidate for active devices in Si photonics in the past decade due to its pseudo-direct gap behavior and compatibility with Si complementary metal oxide semiconductor (CMOS) processing. In 2007, we proposed combing tensile strain with n-type doping to compensate the energy difference between the direct and indirect band gap of Ge, thereby achieving net optical gain for CMOS-compatible diode lasers. Here we systematically present theoretical modeling, material growth methods, spontaneous emission, optical gain, and lasing under optical and electrical pumping from band-engineered Ge-on-Si, culminated by recently demonstrated electrically pumped Ge-on-Si lasers with >1 mW output in the communication wavelength window of 1500-1700 nm. The broad gain spectrum enables on-chip wavelength division multiplexing. A unique feature of band-engineered pseudo-direct gap Ge light emitters is that the emission intensity increases with temperature, exactly opposite to conventional direct gap semiconductor light-emitting devices. This extraordinary thermal anti-quenching behavior greatly facilitates monolithic integration on Si microchips where temperatures can reach up to 80 °C during operation. The same band-engineering approach can be extended to other pseudo-direct gap semiconductors, allowing us to achieve efficient light emission at wavelengths previously

  5. Experimental determination of the Ta–Ge phase diagram

    Energy Technology Data Exchange (ETDEWEB)

    Araújo Pinto da Silva, Antonio Augusto, E-mail: aaaps@ppgem.eel.usp.br [EEL/USP – Escola de Engenharia de Lorena (EEL), Universidade de São Paulo (USP), Pólo Urbo-Industrial Gleba AI-6, 12602-810 Lorena, SP (Brazil); Coelho, Gilberto Carvalho [EEL/USP – Escola de Engenharia de Lorena (EEL), Universidade de São Paulo (USP), Pólo Urbo-Industrial Gleba AI-6, 12602-810 Lorena, SP (Brazil); UniFoa – Centro Universitário de Volta Redonda, Núcleo de Pesquisa, Campus Três Poços, Avenida Paulo Erlei Alves Abrantes, 1325, Bairro Três Poços, 27240-560 Volta Redonda, RJ (Brazil); Nunes, Carlos Angelo; Suzuki, Paulo Atsushi [EEL/USP – Escola de Engenharia de Lorena (EEL), Universidade de São Paulo (USP), Pólo Urbo-Industrial Gleba AI-6, 12602-810 Lorena, SP (Brazil); Fiorani, Jean Marc; David, Nicolas; Vilasi, Michel [Université de Lorraine, Institut Jean Lamour, Faculté des Sciences et Technologies, BP 70239, F-54506 Vandoeuvre-lès-Nancy (France)

    2013-11-05

    Highlights: •Ta–Ge phase diagram propose for the first time. •The phase αTa{sub 5}Ge{sub 3} was not observed in samples investigated in this work. •Three eutectics reactions where determined with the liquid compositions at 20.5; 28.0; 97.0 at.% Ge. -- Abstract: In the present work, the Ta–Ge phase diagram has been experimentally studied, considering the inexistence of a Ta–Ge phase diagram in the literature. The samples were prepared via arc melting and characterized by Scanning Electron Microscopy (SEM), Energy Dispersive Spectroscopy (EDS) and X-ray Diffraction (XRD). The intermetallics phases βTa{sub 3}Ge, αTa{sub 3}Ge, βTa{sub 5}Ge{sub 3} and TaGe{sub 2} where confirmed in this system. Three eutectics reactions where determined with the liquid compositions at 20.5; 28.0; 97.0 at.% Ge. The phases βTa{sub 3}Ge and βTa{sub 5}Ge{sub 3} solidifies congruently while TaGe{sub 2} is formed through a peritectic transformation. The temperature of the Ta-rich eutectic (L ↔ Ta{sub ss} + βTa{sub 3}Ge) was measured by the Pirani-Alterthum method at 2440 °C and the Ge-rich eutectic (L ↔ TaGe{sub 2} + Ge{sub ss}) by DTA at 937 °C.

  6. Density Functional Theory Study on Mechanism of Forming Spiro-Ge-heterocyclic Ring Compound from Me2Ge=Ge: and Acetaldehyde

    Institute of Scientific and Technical Information of China (English)

    Xiu-hui Lu; Yong-qing Li; Wei-jie Bao; Dong-ting Liu

    2013-01-01

    The H2Ge=Ge:,as well as and its derivatives (X2Ge=Ge:,X=H,Me,F,CI,Br,Ph,Ar,...)is a kind of new species.Its cycloaddition reactions is a new area for the study of germylene chemistry.The mechanism of the cycloaddition reaction between singlet Me2Ge=Ge:and acetaldehyde was investigated with the B3LYP/6-31G* method in this work.From the potential energy profile,it could be predicted that the reaction has one dominant reaction pathway.The reaction rule is that the two reactants firstly form a four-membered Ge-heterocyclic ring germylene through the [2+2] cycloaddition reaction.Because of the 4p unoccupied orbital of Ge:atom in the four-membered Ge-heterocyclic ring germylene and the π orbital of acetaldehyde forning a π-p donor-acceptor bond,the four-membered Ge-heterocyclic ring germylene further combines with acetaldehyde to form an intermediate.Because the Ge atom in intermediate happens sp3 hybridization after transition state,then,intermediate isomerizes to a spiro-Ge-heterocyclic ring compound via a transition state.The research result indicates the laws of cycloaddition reaction between Me2Ge=Ge:and acetaldehyde,and lays the theory foundation of the cycloaddition reaction between H2Ge=Ge:and its derivatives (X2Ge=Ge:,X=H,Me,F,Cl,Br,Ph,Ar) and asymmetric π-bonded compounds,which are significant for the synthesis of small-ring and spiro-Ge-heterocyclic ring compounds.

  7. I8Sb10Ge36

    Directory of Open Access Journals (Sweden)

    Mohammed Kars

    2010-06-01

    Full Text Available Single crystals of the title compound, octaiodide decaantimonate hexatriacontagermanide, were grown by chemical transport reactions. The structure is isotypic with the analogous clathrates-I. In this structure, the (Ge,Sb46 framework consists of statistically occupied Ge and Sb sites that atoms form bonds in a distorted tetrahedral arrangement. They form polyhedra that are covalently bonded to each other by shared faces. There are two polyhedra of different sizes, viz. a (Ge,Sb20 dodecahedron and a (Ge,Sb24 tetracosahedron in a 1:3 ratio. The guest atom (iodine resides inside these polyhedra with symmetry m3 (Wyckoff position 2a and overline{4}2m (Wyckoff position 2d, respectively.

  8. Ge Quantum Dot Infrared Imaging Camera Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Luna Innovations Incorporated proposes to develop a high performance Ge quantum dots-based infrared (IR) imaging camera on Si substrate. The high sensitivity, large...

  9. Acheivement of Nano-Scale SiGe Layer with Discrete Ge Mole Fraction Profile Using Batch-Type HVCVD

    Institute of Scientific and Technical Information of China (English)

    Gon-sub Lee; Tae-hun Shim; Jea-gun Park

    2004-01-01

    The strained Si grown on the relaxed SiGe-on-insulator C-MOSFET's is a promising device for the future system LSI devices with the design rule of sub-micron. The achievement of the discrete Ge mole fraction in the SiGe layer is a key engineering in low-temperature SiGe epitaxial growth using HVCVD. The pre-flow of GeH4 gas enhanced the Ge mole fraction and SiGe layer thickness. In addition, the Ge mole fraction and SiGe layer thickness increases with the gas ratio of GeH4/SiH4 + GeH4, process temperature, and gas flow time. However, the haze was produced if the Ge mole fraction is above 22wt%. The discrete-like Ge mole fraction with 22 wt% in 10 nm SiGe layer was obtained by the pre-flow of GeH4 for 10 s, the mixture gas ratio of GeH4/SiH4 + GeH4 of 67%, and the gas flow time for 150 s at the process temperature of 550 C.

  10. GeSn pin diodes: from pure Ge to direct-gap materials

    Science.gov (United States)

    Gallagher, James; Senaratne, Charutha; Xu, Chi; Aoki, Toshihiro; Kouvetakis, John; Menendez, Jose

    2015-03-01

    Complete n - i - p Ge1-ySny diode structures (y =0-0.09) were fabricated on Si substrates with Sn concentrations covering the entire range between pure Ge and direct-gap materials. The structures typically consist of a thick (>1 μm) n + + Ge buffer layer grown by Gas Source Molecular Epitaxy using Ge4H10 and either P(SiH3)3 or P(GeH3)3 , followed by a GeSn intrinsic layer (~ 500 nm), grown by Chemical Vapor Deposition (CVD) using Ge3H8 and SnD4, and a GeSn p-type top layer (~ 200 nm) grown by CVD using Ge3H8,SnD4andB2H6. Temperature-dependence of the I - V characteristics of these diodes as well as the forward-bias dependence of their electroluminescence (EL) signal were investigated, making it possible for the first time to extract the compositional dependence of parameters such as band gaps, activation energies, and dark currents. The EL spectra are dominated by direct-gap emission, which shifts from 1590 nm to 2300 nm, in agreement with photoluminescence results. DOD AFOSR FA9550-12-1-0208 and DOD AFOSR FA9550-13-1-0022.

  11. Development of dynamic simulation of TF34-GE-100 turbofan engine with post-stall capability

    Science.gov (United States)

    Krosel, S. M.

    1984-01-01

    This paper describes the development of a hybrid computer simulation of a TF34-GE-100 turbofan engine with post-stall capability. The simulation operates in real-time and will be used to test and evaluate stall recovery control modes for this engine. The simulation calculations are performed by an analog computer with a peripheral multivariable function generation unit used for computing bivariate functions. Tabular listings of simulation variables are obtained by interfacing to a digital computer and using a custom software package for data collection and display.

  12. Si/SiGe heterointerfaces in one-, two-, and three-dimensional nanostructures: their impact on SiGe light emission

    Science.gov (United States)

    Lockwood, David; Wu, Xiaohua; Baribeau, Jean-Marc; Mala, Selina; Wang, Xialou; Tsybeskov, Leonid

    2016-03-01

    Fast optical interconnects together with an associated light emitter that are both compatible with conventional Si-based complementary metal-oxide- semiconductor (CMOS) integrated circuit technology is an unavoidable requirement for the next-generation microprocessors and computers. Self-assembled Si/Si1-xGex nanostructures, which can emit light at wavelengths within the important optical communication wavelength range of 1.3 - 1.55 μm, are already compatible with standard CMOS practices. However, the expected long carrier radiative lifetimes observed to date in Si and Si/Si1-xGex nanostructures have prevented the attainment of efficient light-emitting devices including the desired lasers. Thus, the engineering of Si/Si1-xGex heterostructures having a controlled composition and sharp interfaces is crucial for producing the requisite fast and efficient photoluminescence (PL) at energies in the range 0.8-0.9 eV. In this paper we assess how the nature of the interfaces between SiGe nanostructures and Si in heterostructures strongly affects carrier mobility and recombination for physical confinement in three dimensions (corresponding to the case of quantum dots), two dimensions (corresponding to quantum wires), and one dimension (corresponding to quantum wells). The interface sharpness is influenced by many factors such as growth conditions, strain, and thermal processing, which in practice can make it difficult to attain the ideal structures required. This is certainly the case for nanostructure confinement in one dimension. However, we demonstrate that axial Si/Ge nanowire (NW) heterojunctions (HJs) with a Si/Ge NW diameter in the range 50 - 120 nm produce a clear PL signal associated with band-to-band electron-hole recombination at the NW HJ that is attributed to a specific interfacial SiGe alloy composition. For three-dimensional confinement, the experiments outlined here show that two quite different Si1-xGex nanostructures incorporated into a Si0.6Ge0.4 wavy

  13. Si/SiGe heterointerfaces in one-, two-, and three-dimensional nanostructures: their impact on SiGe light emission

    Directory of Open Access Journals (Sweden)

    David J. Lockwood

    2016-03-01

    Full Text Available Fast optical interconnects together with an associated light emitter that are both compatible with conventional Si-based complementary metal-oxide- semiconductor (CMOS integrated circuit technology is an unavoidable requirement for the next-generation microprocessors and computers. Self-assembled Si/Si1-xGex nanostructures, which can emit light at wavelengths within the important optical communication wavelength range of 1.3 – 1.55 μm, are already compatible with standard CMOS practices. However, the expected long carrier radiative lifetimes observed to date in Si and Si/Si1-xGex nanostructures have prevented the attainment of efficient light-emitting devices including the desired lasers. Thus, the engineering of Si/Si1-xGex heterostructures having a controlled composition and sharp interfaces is crucial for producing the requisite fast and efficient photoluminescence (PL at energies in the range 0.8-0.9 eV. In this paper we assess how the nature of the interfaces between SiGe nanostructures and Si in heterostructures strongly affects carrier mobility and recombination for physical confinement in three dimensions (corresponding to the case of quantum dots, two dimensions (corresponding to quantum wires, and one dimension (corresponding to quantum wells. The interface sharpness is influenced by many factors such as growth conditions, strain, and thermal processing, which in practice can make it difficult to attain the ideal structures required. This is certainly the case for nanostructure confinement in one dimension. However, we demonstrate that axial Si/Ge nanowire (NW heterojunctions (HJs with a Si/Ge NW diameter in the range 50 – 120 nm produce a clear PL signal associated with band-to-band electron-hole recombination at the NW HJ that is attributed to a specific interfacial SiGe alloy composition. For three-dimensional confinement, the experiments outlined here show that two quite different Si1-xGex nanostructures incorporated into a Si

  14. Analysis and Design of Wide-Band SiGe HBT Active Mixers

    DEFF Research Database (Denmark)

    Johansen, Tom Keinicke; Krozer, Viktor; Vidkjær, Jens

    2005-01-01

    performing frequency conversion of wide-band signals is discussed. The analysis is verified by computer simulations using a realistic high-frequency large-signal SiGe HBT model. An active mixer design based on the Gilbert cell topology modified for wide-band operation using emitter degenerated...... transconductance stage and shunt feedback load stage is discussed. Experimental results are given for an active mixer implemented in a 0.8-μm 35-GHz fT SiGe HBT BiCMOS process....

  15. Theoretical Electric Dipole Moments of SiH, GeH and SnH

    Science.gov (United States)

    Pettersson, Lars G. M.; Langhoff, Stephen R.

    1986-01-01

    Accurate theoretical dipole moments (mu(sub c) have been computed for the X(exp 2)Pi ground states of Si(-)H(+)(0.118 D), Ge(+)H(-)(0.085 D) and Sn(+)H(-)(0.357 D). The trend down the periodic table is regular and follows that expected from the electronegativities of the group IV atoms. The dipole moment of 1.24 +/- 0.1 D for GeH recently derived by Brown, Evenson and Sears from the relative intensities of electric and magnetic dipole transitions in the 10 microns spectrum of the X(exp 2)Pi state is seriously questioned.

  16. Search for Tetrahedral Symmetry in 70Ge

    Science.gov (United States)

    Le, Khanh; Haring-Kaye, R. A.; Elder, R. M.; Jones, K. D.; Morrow, S. I.; Tabor, S. L.; Tripathi, V.; Bender, P. C.; Allegro, P. R. P.; Medina, N. H.; Oliveira, J. R. B.; Doring, J.

    2014-09-01

    The even-even Ge isotopes have recently become an active testing ground for a variety of exotic structural characteristics, including the existence of tetrahedral symmetry (pyramid-like shapes). Although theoretical shape calculations predict the onset of tetrahedral symmetry near 72Ge, the experimental signatures (including vanishing quadrupole moments within high-spin bands) remain elusive. This study searched for possible experimental evidence of tetrahedral symmetry in 70Ge. Excited states in 70Ge were populated at Florida State University using the 55Mn(18O,p2n) fusion-evaporation reaction at 50 MeV. Prompt γ- γ coincidences were measured with a Compton-suppressed Ge array consisting of three Clover detectors and seven single-crystal detectors. The existing level scheme was enhanced through the addition of 20 new transitions and the rearrangement of five others based on the measured coincidence relations and relative intensities. Lifetimes of 24 states were measured using the Doppler-shift attenuation method, from which transition quadrupole moments were inferred. These results will be compared with those obtained from cranked Woods-Saxon calculations. The even-even Ge isotopes have recently become an active testing ground for a variety of exotic structural characteristics, including the existence of tetrahedral symmetry (pyramid-like shapes). Although theoretical shape calculations predict the onset of tetrahedral symmetry near 72Ge, the experimental signatures (including vanishing quadrupole moments within high-spin bands) remain elusive. This study searched for possible experimental evidence of tetrahedral symmetry in 70Ge. Excited states in 70Ge were populated at Florida State University using the 55Mn(18O,p2n) fusion-evaporation reaction at 50 MeV. Prompt γ- γ coincidences were measured with a Compton-suppressed Ge array consisting of three Clover detectors and seven single-crystal detectors. The existing level scheme was enhanced through the addition

  17. Material gain engineering in GeSn/Ge quantum wells integrated with an Si platform

    Science.gov (United States)

    Mączko, H. S.; Kudrawiec, R.; Gladysiewicz, M.

    2016-09-01

    It is shown that compressively strained Ge1‑xSnx/Ge quantum wells (QWs) grown on a Ge substrate with 0.1 ≤ x ≤ 0.2 and width of 8 nm ≤ d ≤ 14 nm are a very promising gain medium for lasers integrated with an Si platform. Such QWs are type-I QWs with a direct bandgap and positive transverse electric mode of material gain, i.e. the modal gain. The electronic band structure near the center of Brillouin zone has been calculated for various Ge1‑xSnx/Ge QWs with use of the 8-band kp Hamiltonian. To calculate the material gain for these QWs, occupation of the L valley in Ge barriers has been taken into account. It is clearly shown that this occupation has a lot of influence on the material gain in the QWs with low Sn concentrations (Sn  15%). However, for QWs with Sn > 20% the critical thickness of a GeSn layer deposited on a Ge substrate starts to play an important role. Reduction in the QW width shifts up the ground electron subband in the QW and increases occupation of the L valley in the barriers instead of the Γ valley in the QW region.

  18. Electronic structure and luminescence properties of Ca2Ge7O16:Dy3+

    Science.gov (United States)

    Leonidov, I. I.; Ishchenko, A. V.; Konstantinova, E. I.; Petrov, V. P.; Chernyshev, V. A.; Nikiforov, A. E.

    2016-12-01

    The present report represents an overview of the results of a combined experimental-computational study of electronic structure, thermoluminescence (TL) and afterglow properties of Ca2Ge7O16:Dy3+ synthesized for the first time. Afterglow curves of Ca2Ge7O16:Dy3+ at 575 nm showing persistent luminescence have been described in Becquerel law. The TL measurements reveal at least one TL band at 326 K and two luminescence bands at 475 and 535 nm. Persistent luminescence in Ca2Ge7O16:Dy3+ originates from relatively shallow charge traps with high probability of charge carriers recapture. The model of energy processes, configurations of traps and luminescence centers has been proposed with the aid of ab initio calculations performed using the LCAO approximation and several hybrid functionals.

  19. Performance Investigation of Nanoscale Strained Ge pMOSFETs with a GeSn Alloy Stressor.

    Science.gov (United States)

    Lee, Chang-Chun; Chang, Shu-Tong; Cheng, Sen-Wen; Chian, Bow-Tsin

    2015-11-01

    A germanium (Ge)-based substrate combined with germanium-tin (GeSn) alloy embedded in source/drain (S/D) regions has attracted significant attention because of its ability to satisfy the requirements of a high-mobility channel. Devices are shrunk in their geometries to meet the target of superior density in layout arrangement. Thus, determining the influences of devices on mobility gain is important. Accordingly, several designed factors, including gate width, S/D length, and Sn concentration of the GeSn stressor, are systematically analyzed in this study. A second-order formula composed of piezoresistance coefficients is derived and adopted to achieve a precise mobility gain estimation. A peak of the carrier mobility gain appears when a nanoscale geometry combination of 20 nm gate length and -200 nm gate width is used in the Ge channel, and 10% of the Sn mole proportion of the GeSn alloy is applied.

  20. Thermodynamic assessment of the Nb-Ge system

    Energy Technology Data Exchange (ETDEWEB)

    Geng Tai [School of Materials Science and Engineering, University of Science and Technology Beijing, Xueyuan Road, 30, Haidian District, Beijing 100083 (China); Li Changrong, E-mail: crli@mater.ustb.edu.cn [School of Materials Science and Engineering, University of Science and Technology Beijing, Xueyuan Road, 30, Haidian District, Beijing 100083 (China); Du Zhenmin; Guo Cuiping [School of Materials Science and Engineering, University of Science and Technology Beijing, Xueyuan Road, 30, Haidian District, Beijing 100083 (China); Zhao Xinqing; Xu Huibin [School of Materials Science and Engineering, Beijing University of Aeronautics and Astronautics, Beijing 100083 (China)

    2011-02-10

    Research highlights: > For the phases Nb{sub 3}Ge{sub 2} and Nb{sub 3}Ge, the reasonable sublattice models were constructed. > A set of thermodynamic parameters for the Nb-Ge system was obtained. > The optimized result can interpreter the vaporization of Ge during preparation. - Abstract: The Nb-Ge binary system has been thermodynamically assessed using the CALPHAD (Calculation of Phase Diagrams) approach on the basis of the experimental data of both the phase equilibria and the thermochemical properties. The reasonable models were constructed for all the phases of the system. The liquid and the terminal solid solution phases, Bcc-(Nb) and Diamond-(Ge), were described as the substitutional solutions with Redlich-Kister polynomials for the expressions of the excess Gibbs free energies. The intermediate phases (Nb{sub 3}Ge), (Nb{sub 5}Ge{sub 3}), (Nb{sub 3}Ge{sub 2}) and (NbGe{sub 2}) with homogeneity ranges were treated as the sublattice models Nb{sub 0.75}(Ge,Nb,Va){sub 0.25}, Nb{sub 0.5}(Nb,Ge){sub 0.125}(Ge,Va){sub 0.375}, (Nb,Ge){sub 0.222}(Nb,Ge){sub 0.333}Nb{sub 0.333}(Ge,Va){sub 0.111} and (Nb,Ge){sub 0.333}(Nb,Ge){sub 0.667} respectively based on their structure features of atom arrangements. A set of self-consistent thermodynamic parameters for the Nb-Ge system was obtained. Using the present thermodynamic data, the calculation results can reproduce the experimental data well.

  1. Dopage p par BI3 de couches Ge/Ge ET Ge/GaAs; caractérisationélectrique

    Science.gov (United States)

    Étienne, D.; Achargui, N.; Bougnot, G.

    1986-01-01

    B doped Ge layers were obtained by chemical vapor transport using a disproportionation reaction 2GeI2=Ge+GeI4. They were p-type and their electric parameters: resistivity ϱ, Hall mobility μH and carrier concentration p were studied as a function of substrate temperature, partial pressure of BI3 and hydrogen flow rate on BI3 source. The incorporation of B into monocrystalline layers is studied thermodynamically.

  2. Structure of glassy GeO2.

    Science.gov (United States)

    Salmon, Philip S; Barnes, Adrian C; Martin, Richard A; Cuello, Gabriel J

    2007-10-17

    The full set of partial structure factors for glassy germania, or GeO2, were accurately measured by using the method of isotopic substitution in neutron diffraction in order to elucidate the nature of the pair correlations for this archetypal strong glass former. The results show that the basic tetrahedral Ge(O1/2)4 building blocks share corners with a mean inter-tetrahedral Ge-Ô-Ge bond angle of 132(2)°. The topological and chemical ordering in the resultant network displays two characteristic length scales at distances greater than the nearest neighbour. One of these describes the intermediate range order, and manifests itself by the appearance of a first sharp diffraction peak in the measured diffraction patterns at a scattering vector kFSDP≈1.53 Å(-1), while the other describes so-called extended range order, and is associated with the principal peak at kPP = 2.66(1) Å(-1). We find that there is an interplay between the relative importance of the ordering on these length scales for tetrahedral network forming glasses that is dominated by the extended range ordering with increasing glass fragility. The measured partial structure factors for glassy GeO2 are used to reproduce the total structure factor measured by using high energy x-ray diffraction and the experimental results are also compared to those obtained by using classical and first principles molecular dynamics simulations.

  3. Quantum Computation Beyond the Circuit Model

    OpenAIRE

    Jordan, Stephen P.

    2008-01-01

    The quantum circuit model is the most widely used model of quantum computation. It provides both a framework for formulating quantum algorithms and an architecture for the physical construction of quantum computers. However, several other models of quantum computation exist which provide useful alternative frameworks for both discovering new quantum algorithms and devising new physical implementations of quantum computers. In this thesis, I first present necessary background material for a ge...

  4. Study of Si-Ge interdiffusion with phosphorus doping

    KAUST Repository

    Cai, Feiyang

    2016-10-28

    Si-Ge interdiffusion with phosphorus doping was investigated by both experiments and modeling. Ge/Si1-x Ge x/Ge multi-layer structures with 0.75Ge<1, a mid-1018 to low-1019 cm−3 P doping, and a dislocation density of 108 to 109 cm−2 range were studied. The P-doped sample shows an accelerated Si-Ge interdiffusivity, which is 2–8 times of that of the undoped sample. The doping dependence of the Si-Ge interdiffusion was modelled by a Fermi-enhancement factor. The results show that the Si-Ge interdiffusion coefficient is proportional to n2/n2i for the conditions studied, which indicates that the interdiffusion in a high Ge fraction range with n-type doping is dominated by V2− defects. The Fermi-enhancement factor was shown to have a relatively weak dependence on the temperature and the Ge fraction. The results are relevant to the structure and thermal processing condition design of n-type doped Ge/Si and Ge/SiGe based devices such as Ge/Si lasers.

  5. Clathrate formation in the systems Sr-Cu-Ge and {Ba,Sr}-Cu-Ge

    Science.gov (United States)

    Zeiringer, I.; Moser, R.; Kneidinger, F.; Podloucky, R.; Royanian, E.; Grytsiv, A.; Bauer, E.; Giester, G.; Falmbigl, M.; Rogl, P.

    2014-09-01

    In the ternary system Sr-Cu-Ge, a novel clathrate type-I phase was detected, Sr8CuxGe46-x (5.2≤xtemperature interval. Sr8Cu5.3Ge40.7 decomposes eutectoidally on cooling at 730±3 °C into (Ge), SrGe2 and τ1-SrCu2-xGe2+x. Phase equilibria at 700 °C have been established for the Ge rich part and are characterized by the appearance of only one ternary compound, τ1-SrCu2-xGe2+x, which crystallizes with the ThCr2Si2 structure type and forms a homogeneity range up to x=0.4 (a=0.42850(4), c=1.0370(1) nm). Additionally, the extent of the clathrate type-I solid solution Ba8-ySryCuxGe46-x (0≤y≤~5.6; 5.2≤x≤5.4, from as cast alloys) has been studied at various temperatures. The clathrate type-I crystal structure (space group Pm3barn) has been proven by X-ray single crystal diffraction on two single crystals with the composition (from refinement): Sr8Cu5.36Ge40.64 (a=1.06368(2) nm at 300 K) and Ba4.86Sr3.14Cu5.36Ge40.64 (a=1.06748(2) nm at 300 K) measured at 300, 200 and 100 K. From the temperature dependence of the lattice parameters and the atomic displacement parameters, thermal expansion coefficients, Debye- and Einstein-temperatures and the speed of sound have been determined. From heat capacity measurements of Sr8Cu5.3Ge40.7 at low temperatures the Sommerfeld coefficient (γ=24 mJ/mol K2) and the Debye temperature (ΘDLT=273 K) have been extracted. From a detailed analysis of these data at higher temperatures, Einstein branches of the phonon dispersion relation have been derived and compared to those obtained from the atomic displacement parameters. Electrical resistivity measurements of Sr8Cu5.3Ge40.7 reveal a rather metallic behavior in the low temperature range (<300 K). Density function theory calculations provide densities of states, electronic resistivity and Seebeck coefficient as well as the vibrational spectrum and specific heat.

  6. Hot Carrier Dynamics in the X Valley in Si and Ge Measured by Pump-IR-Probe Absorption Spectroscopy

    Science.gov (United States)

    Wang, W. B.; Cavicchia, M. A.; Alfano, R. R.

    1996-01-01

    Si is the semiconductor of choice for nanoelectronic roadmap into the next century for computer and other nanodevices. With growing interest in Si, Ge, and Si(sub m)Ge(sub n) strained superlattices, knowledge of the carrier relaxation processes in these materials and structures has become increasingly important. The limited time resolution for earlier studies of carrier dynamics in Ge and Si, performed using Nd:glass lasers, was not sufficient to observe the fast cooling processes. In this paper, we present a direct measurement of hot carrier dynamics in the satellite X valley in Si and Ge by time-resolved infrared(IR) absorption spectroscopy, and show the potential of our technique to identify whether the X valley is the lowest conduction valley in semiconductor materials and structures.

  7. Dimorphic HT- and LT-TbTiGe: Electronic and magnetic structures and bonding properties from first principles

    Energy Technology Data Exchange (ETDEWEB)

    Matar, Samir F., E-mail: samir.matar@icmcb.cnrs.fr; Chevalier, Bernard; Etourneau, Jean

    2016-01-01

    TbTiGe intermetallic compound is characterized by temperature dimorphism with different but related crystal structures with ferromagnetic high temperature (HT) form versus antiferromagnetic low temperature (LT) form. Such different structure properties and magnetic behaviors have been addressed based on DFT computations of cohesive energies, charge transfers, mechanical and chemical properties of the two structures. This is particularly illustrated by harder and less ductile LT-form with stronger Ti–Ge bond and larger charge transfer from Tb and Ti on one hand and Ge on the other hand. - Highlights: • Temperature induced dimorphism in TbTiGe (LT – HT) leads to different magnetic orders. • Long range ferromagnetic SPF and antiferromagnetic SPAF orders addressed within DFT. • SPAF-LT results from differentiated mechanical and chemical behaviors versus SPF-HT.

  8. Atomistic simulation of the thermal conductivity in amorphous SiO2 matrix/Ge nanocrystal composites

    Science.gov (United States)

    Kuryliuk, Vasyl V.; Korotchenkov, Oleg A.

    2017-04-01

    We use nonequilibrium molecular dynamics computer simulations with the Tersoff potential aiming to provide a comprehensive picture of the thermal conductivity of amorphous SiO2 (a-SiO2) matrix with embedded Ge nanocrystals (nc-Ge). The modelling predicts the a-SiO2 matrix thermal conductivity in a temperature range of 50 molecular dynamics simulations with the Tersoff potential are promising for computing the thermal conductivity of nanocomposites based on amorphous SiO2 and can be readily scaled to more complex composite structures with embedded nanoparticles, which thus help design nanocomposites with desired thermal properties.

  9. Multi-GeV Gluonic Mesons

    CERN Document Server

    Page, P R

    2001-01-01

    Lattice QCD gives reliable predictions for hybrid charmonium and multi-GeV glueball masses. Proton-antiproton annihilation may offer an excellent opportunity for the first observation of these states. There are two distinct possible programs: The search for J^PC-exotic and non-J^PC-exotic states. The latter program represents substantially higher cross sections and does not absolutely require partial wave analysis, two very attractive features. The program can be performed with a varying pbar energy <10 GeV and a fixed target.

  10. FMR study of thin film FeGe skyrmionic material

    Science.gov (United States)

    Bhallamudi, Vidya P.; Page, Michael R.; Gallagher, James; Purser, Carola; Schulze, Joseph; Yang, Fengyuan; Hammel, P. Chris

    Magnetic Skyrmions have attracted intense interest due to their novel topological properties and the potential for energy efficient computing. Magnetic dynamics play an important part in enabling some of these functionalities. Understanding these dynamics can shed light on the interplay of the various magnetic interactions that exist in these materials and lead to a rich magnetic phase diagram, including the Skyrmion phase. We have grown phase-pure FeGe epitaxial films on Si (111) and studied them using ferromagnetic resonance (FMR). FeGe has one of the highest recorded skyrmion transition temperatures, close to room temperature, and thin films are known to further stabilize the Skyrmion phase in the magnetic field-temperature space. We have performed cavity-based single frequency FMR from liquid nitrogen to room temperature on 120 nm thick films in both in-plane and out-of-plane geometries. The resulting complex spectra are consistent with those reported in literature for the bulk material and can be understood in terms of a conical model for the magnetism. Variable temperature broadband spectroscopy and measurements on thinner films, to better identify the various magnetic phases and their dynamic behavior, are ongoing and their progress will be discussed. Funding for this research was provided by the Center for Emergent Materials: an NSF MRSEC under Award Number DMR-1420451.

  11. Tensile-strained Ge/SiGe quantum-well photodetectors on silicon substrates with extended infrared response.

    Science.gov (United States)

    Chang, Guo-En; Chen, Shao-Wei; Cheng, H H

    2016-08-08

    We report on tensile-strained Ge/Si0.11Ge0.89 quantum-well (QW) metal-semiconductor-metal (MSM) photodetectors on Si substrates. A tensile strain of 0.21% is introduced into the Ge wells by growing the QW stack on in-situ annealed Ge-on-Si virtual substrates (VS). The optical characterization of Ge/Si0.11Ge0.89 QW MSM photodetectors indicates that the optical response increases to a wavelength of 1.5 μm or higher owing to the strain-induced direct bandgap shrinkage. Analysis of the band structure by using a k · p model suggests that by optimizing the tensile strain and Ge well width, tensile-strained Ge/SiGe QW photodetectors can be designed to cover the telecommunication C-band and beyond for optical telecommunications and on-chip interconnection.

  12. Ultra-smooth epitaxial Ge grown on Si(001) utilizing a thin C-doped Ge buffer layer

    KAUST Repository

    Mantey, J.

    2013-01-01

    Here, we present work on epitaxial Ge films grown on a thin buffer layer of C doped Ge (Ge:C). The growth rate of Ge:C is found to slow over time and is thus unsuitable for thick (>20 nm) layers. We demonstrate Ge films from 10 nm to >150 nm are possible by growing pure Ge on a thin Ge:C buffer. It is shown that this stack yields exceedingly low roughness levels (comparable to bulk Si wafers) and contains fewer defects and higher Hall mobility compared to traditional heteroepitaxial Ge. The addition of C at the interface helps reduce strain by its smaller atomic radius and its ability to pin defects within the thin buffer layer that do not thread to the top Ge layer. © 2013 AIP Publishing LLC.

  13. The Characterization of GeH_2 and GeH Using Matrix Isolation Infrared Spectroscopy

    Science.gov (United States)

    Amicangelo, Jay; Bailey, Christopher; Hoover, Madelyn; Huffman, Bruce

    2014-06-01

    Matrix isolation infrared spectroscopy was used to characterize the fundamental infrared peaks of the germanium hydride species GeH_2 and GeH in low temperature argon matrices that result from the vacuum-ultraviolet (VUV) photolysis of germane (GeH_4). Experiments were performed by depositing mixtures of GeH_4 with argon onto a CsI window cooled to 12 K while simultaneously photolyzing the mixture with 121 nm VUV radiation from a hydrogen resonance lamp. For GeH_2, the fundamental infrared peaks are observed at 1839.1 wn (νb{3}, antisymmetric stretch), 1816.6 wn (νb{1}, symmetric stretch) and 913.4 wn (νb{2}, bend). For GeH, the fundamental infrared stretching peak is observed at 1813.4 wn. The assignment of the observed peaks is established by performing experiments with isotopic germane (GeD_4), by performing matrix annealing experiments (warming to 25 - 35 K and refreezing to 12 K), by performing mercury-xenon lamp matrix photolysis experiments (200 - 900 nm), and by comparison to quantum chemical calculations performed at the B3LYP and MP2 levels of theory. This work corrects what appears to be incorrect assignments made in the earlier report of Smith and Guillory G. R. Smith and W. A. Guillory, J. Chem. Phys., 56, 1423 (1972).

  14. Novel Ge waveguide platform on Ge-on-insulator wafer for mid-infrared photonic integrated circuits.

    Science.gov (United States)

    Kang, Jian; Takenaka, Mitsuru; Takagi, Shinichi

    2016-05-30

    We present Ge rib waveguide devices fabricated on a Ge-on-insulator (GeOI) wafer as a proof-of-concept Ge mid-infrared photonics platform. Numerical analysis revealed that the driving current for a given optical attenuation in a carrier-injection Ge waveguide device at a 1.95 μm wavelength can be approximately five times smaller than that in a Si device, enabling in-line carrier-injection Ge optical modulators based on free-carrier absorption. We prepared a GeOI wafer with a 2-μm-thick buried oxide layer (BOX) by wafer bonding. By using the GeOI wafer, we fabricated Ge rib waveguides. The Ge rib waveguides were transparent to 2 μm wavelengths and the propagation loss was found to be 1.4 dB/mm, which may have been caused by sidewall scattering. We achieved a negligible bend loss in the Ge rib waveguide, even with a 5 μm bend radius, owing to the strong optical confinement in the GeOI structure. We also formed a lateral p-i-n junction along the Ge rib waveguide to explore the capability of absorption modulation by carrier injection. By injecting current through the lateral p-i-n junction, we achieved optical intensity modulation in the 2 μm band based on the free-carrier absorption in Ge.

  15. Study of a SiGeSn/GeSn/SiGeSn structure toward direct bandgap type-I quantum well for all group-IV optoelectronics.

    Science.gov (United States)

    Ghetmiri, Seyed Amir; Zhou, Yiyin; Margetis, Joe; Al-Kabi, Sattar; Dou, Wei; Mosleh, Aboozar; Du, Wei; Kuchuk, Andrian; Liu, Jifeng; Sun, Greg; Soref, Richard A; Tolle, John; Naseem, Hameed A; Li, Baohua; Mortazavi, Mansour; Yu, Shui-Qing

    2017-02-01

    A SiGeSn/GeSn/SiGeSn single quantum well structure was grown using an industry standard chemical vapor deposition reactor with low-cost commercially available precursors. The material characterization revealed the precisely controlled material growth process. Temperature-dependent photoluminescence spectra were correlated with band structure calculation for a structure accurately determined by high-resolution x-ray diffraction and transmission electron microscopy. Based on the result, a systematic study of SiGeSn and GeSn bandgap energy separation and barrier heights versus material compositions and strain was conducted, leading to a practical design of a type-I direct bandgap quantum well.

  16. Calibration of Ge gamma-ray spectrometers for complex sample geometries and matrices

    Energy Technology Data Exchange (ETDEWEB)

    Semkow, T.M., E-mail: thomas.semkow@health.ny.gov [Wadsworth Center, New York State Department of Health, Empire State Plaza, Albany, NY 12201 (United States); Department of Environmental Health Sciences, School of Public Health, University at Albany, State University of New York, Rensselaer, NY 12144 (United States); Bradt, C.J.; Beach, S.E.; Haines, D.K.; Khan, A.J.; Bari, A.; Torres, M.A.; Marrantino, J.C.; Syed, U.-F. [Wadsworth Center, New York State Department of Health, Empire State Plaza, Albany, NY 12201 (United States); Kitto, M.E. [Wadsworth Center, New York State Department of Health, Empire State Plaza, Albany, NY 12201 (United States); Department of Environmental Health Sciences, School of Public Health, University at Albany, State University of New York, Rensselaer, NY 12144 (United States); Hoffman, T.J. [Wadsworth Center, New York State Department of Health, Empire State Plaza, Albany, NY 12201 (United States); Curtis, P. [Kiltel Systems, Inc., Clyde Hill, WA 98004 (United States)

    2015-11-01

    A comprehensive study of the efficiency calibration and calibration verification of Ge gamma-ray spectrometers was performed using semi-empirical, computational Monte-Carlo (MC), and transfer methods. The aim of this study was to evaluate the accuracy of the quantification of gamma-emitting radionuclides in complex matrices normally encountered in environmental and food samples. A wide range of gamma energies from 59.5 to 1836.0 keV and geometries from a 10-mL jar to 1.4-L Marinelli beaker were studied on four Ge spectrometers with the relative efficiencies between 102% and 140%. Density and coincidence summing corrections were applied. Innovative techniques were developed for the preparation of artificial complex matrices from materials such as acidified water, polystyrene, ethanol, sugar, and sand, resulting in the densities ranging from 0.3655 to 2.164 g cm{sup −3}. They were spiked with gamma activity traceable to international standards and used for calibration verifications. A quantitative method of tuning MC calculations to experiment was developed based on a multidimensional chi-square paraboloid. - Highlights: • Preparation and spiking of traceable complex matrices in extended geometries. • Calibration of Ge gamma spectrometers for complex matrices. • Verification of gamma calibrations. • Comparison of semi-empirical, computational Monte Carlo, and transfer methods of Ge calibration. • Tuning of Monte Carlo calculations using a multidimensional paraboloid.

  17. Vertical Ge and GeSn heterojunction gate-all-around tunneling field effect transistors

    Science.gov (United States)

    Schulze, Jörg; Blech, Andreas; Datta, Arnab; Fischer, Inga A.; Hähnel, Daniel; Naasz, Sandra; Rolseth, Erlend; Tropper, Eva-Maria

    2015-08-01

    We present experimental results on the fabrication and characterization of vertical Ge and GeSn heterojunction Tunneling Field Effect Transistors (TFETs). A gate-all-around process with mesa diameters down to 70 nm is used to reduce leakage currents and improve electrostatic control of the gate over the transistor channel. An ION = 88.4 μA/μm at VDS = VG = -2 V is obtained for a TFET with a 10 nm Ge0.92Sn0.08 layer at the source/channel junction. We discuss further possibilities for device improvements.

  18. Ratio of Jet Cross Sections at s = 630 GeV and 1800 GeV

    Science.gov (United States)

    Abbott, B.; Abolins, M.; Abramov, V.; Acharya, B. S.; Adams, D. L.; Adams, M.; Alves, G. A.; Amos, N.; Anderson, E. W.; Baarmand, M. M.; Babintsev, V. V.; Babukhadia, L.; Baden, A.; Baldin, B.; Balm, P. W.; Banerjee, S.; Bantly, J.; Barberis, E.; Baringer, P.; Bartlett, J. F.; Bassler, U.; Bean, A.; Begel, M.; Belyaev, A.; Beri, S. B.; Bernardi, G.; Bertram, I.; Besson, A.; Bezzubov, V. A.; Bhat, P. C.; Bhatnagar, V.; Bhattacharjee, M.; Blazey, G.; Blessing, S.; Boehnlein, A.; Bojko, N. I.; Borcherding, F.; Brandt, A.; Breedon, R.; Briskin, G.; Brock, R.; Brooijmans, G.; Bross, A.; Buchholz, D.; Buehler, M.; Buescher, V.; Burtovoi, V. S.; Butler, J. M.; Canelli, F.; Carvalho, W.; Casey, D.; Casilum, Z.; Castilla-Valdez, H.; Chakraborty, D.; Chan, K. M.; Chekulaev, S. V.; Cho, D. K.; Choi, S.; Chopra, S.; Christenson, J. H.; Chung, M.; Claes, D.; Clark, A. R.; Cochran, J.; Coney, L.; Connolly, B.; Cooper, W. E.; Coppage, D.; Cummings, M. A.; Cutts, D.; Dahl, O. I.; Davis, G. A.; Davis, K.; de, K.; del Signore, K.; Demarteau, M.; Demina, R.; Demine, P.; Denisov, D.; Denisov, S. P.; Desai, S.; Diehl, H. T.; Diesburg, M.; di Loreto, G.; Doulas, S.; Draper, P.; Ducros, Y.; Dudko, L. V.; Duensing, S.; Dugad, S. R.; Dyshkant, A.; Edmunds, D.; Ellison, J.; Elvira, V. D.; Engelmann, R.; Eno, S.; Eppley, G.; Ermolov, P.; Eroshin, O. V.; Estrada, J.; Evans, H.; Evdokimov, V. N.; Fahland, T.; Feher, S.; Fein, D.; Ferbel, T.; Fisk, H. E.; Fisyak, Y.; Flattum, E.; Fleuret, F.; Fortner, M.; Frame, K. C.; Fuess, S.; Gallas, E.; Galyaev, A. N.; Gartung, P.; Gavrilov, V.; Genik, R. J.; Genser, K.; Gerber, C. E.; Gershtein, Y.; Gibbard, B.; Gilmartin, R.; Ginther, G.; Gómez, B.; Gómez, G.; Goncharov, P. I.; González Solís, J. L.; Gordon, H.; Goss, L. T.; Gounder, K.; Goussiou, A.; Graf, N.; Graham, G.; Grannis, P. D.; Green, J. A.; Greenlee, H.; Grinstein, S.; Groer, L.; Grudberg, P.; Grünendahl, S.; Gupta, A.; Gurzhiev, S. N.; Gutierrez, G.; Gutierrez, P.; Hadley, N. J.; Haggerty, H.; Hagopian, S.; Hagopian, V.; Hahn, K. S.; Hall, R. E.; Hanlet, P.; Hansen, S.; Hauptman, J. M.; Hays, C.; Hebert, C.; Hedin, D.; Heinson, A. P.; Heintz, U.; Heuring, T.; Hirosky, R.; Hobbs, J. D.; Hoeneisen, B.; Hoftun, J. S.; Hou, S.; Huang, Y.; Ito, A. S.; Jerger, S. A.; Jesik, R.; Johns, K.; Johnson, M.; Jonckheere, A.; Jones, M.; Jöstlein, H.; Juste, A.; Kahn, S.; Kajfasz, E.; Karmanov, D.; Karmgard, D.; Kehoe, R.; Kim, S. K.; Klima, B.; Klopfenstein, C.; Knuteson, B.; Ko, W.; Kohli, J. M.; Kostritskiy, A. V.; Kotcher, J.; Kotwal, A. V.; Kozelov, A. V.; Kozlovsky, E. A.; Krane, J.; Krishnaswamy, M. R.; Krzywdzinski, S.; Kubantsev, M.; Kuleshov, S.; Kulik, Y.; Kunori, S.; Kuznetsov, V. E.; Landsberg, G.; Leflat, A.; Lehner, F.; Li, J.; Li, Q. Z.; Lima, J. G.; Lincoln, D.; Linn, S. L.; Linnemann, J.; Lipton, R.; Lucotte, A.; Lueking, L.; Lundstedt, C.; Maciel, A. K.; Madaras, R. J.; Manankov, V.; Mao, H. S.; Marshall, T.; Martin, M. I.; Martin, R. D.; Mauritz, K. M.; May, B.; Mayorov, A. A.; McCarthy, R.; McDonald, J.; McMahon, T.; Melanson, H. L.; Meng, X. C.; Merkin, M.; Merritt, K. W.; Miao, C.; Miettinen, H.; Mihalcea, D.; Mincer, A.; Mishra, C. S.; Mokhov, N.; Mondal, N. K.; Montgomery, H. E.; Moore, R. W.; Mostafa, M.; da Motta, H.; Nagy, E.; Nang, F.; Narain, M.; Narasimham, V. S.; Neal, H. A.; Negret, J. P.; Negroni, S.; Norman, D.; Oesch, L.; Oguri, V.; Olivier, B.; Oshima, N.; Padley, P.; Pan, L. J.; Para, A.; Parashar, N.; Partridge, R.; Parua, N.; Paterno, M.; Patwa, A.; Pawlik, B.; Perkins, J.; Peters, M.; Peters, O.; Piegaia, R.; Piekarz, H.; Pope, B. G.; Popkov, E.; Prosper, H. B.; Protopopescu, S.; Qian, J.; Quintas, P. Z.; Raja, R.; Rajagopalan, S.; Ramberg, E.; Rapidis, P. A.; Reay, N. W.; Reucroft, S.; Rha, J.; Rijssenbeek, M.; Rockwell, T.; Roco, M.; Rubinov, P.; Ruchti, R.; Rutherfoord, J.; Santoro, A.; Sawyer, L.; Schamberger, R. D.; Schellman, H.; Schwartzman, A.; Sculli, J.; Sen, N.; Shabalina, E.; Shankar, H. C.; Shivpuri, R. K.; Shpakov, D.; Shupe, M.; Sidwell, R. A.; Simak, V.; Singh, H.; Singh, J. B.; Sirotenko, V.; Slattery, P.; Smith, E.; Smith, R. P.; Snihur, R.; Snow, G. R.; Snow, J.; Snyder, S.; Solomon, J.; Sorín, V.; Sosebee, M.; Sotnikova, N.; Soustruznik, K.; Souza, M.; Stanton, N. R.; Steinbrück, G.; Stephens, R. W.; Stevenson, M. L.; Stichelbaut, F.; Stoker, D.; Stolin, V.; Stoyanova, D. A.; Strauss, M.; Streets, K.; Strovink, M.; Stutte, L.; Sznajder, A.; Taylor, W.; Tentindo-Repond, S.; Thompson, J.; Toback, D.; Tripathi, S. M.; Trippe, T. G.; Turcot, A. S.; Tuts, P. M.; van Gemmeren, P.; Vaniev, V.; van Kooten, R.; Varelas, N.; Volkov, A. A.; Vorobiev, A. P.; Wahl, H. D.; Wang, H.; Wang, Z.-M.; Warchol, J.; Watts, G.; Wayne, M.; Weerts, H.; White, A.; White, J. T.; Whiteson, D.; Wightman, J. A.; Wijngaarden, D. A.; Willis, S.; Wimpenny, S. J.; Wirjawan, J. V.; Womersley, J.; Wood, D. R.; Yamada, R.; Yamin, P.; Yasuda, T.; Yip, K.; Youssef, S.; Yu, J.; Yu, Z.; Zanabria, M.; Zheng, H.; Zhou, Z.; Zhu, Z. H.; Zielinski, M.; Zieminska, D.; Zieminski, A.; Zutshi, V.; Zverev, E. G.; Zylberstejn, A.

    2001-03-01

    The D0 Collaboration has measured the inclusive jet cross section in p¯p collisions at s = 630 GeV. The results for pseudorapidities η<0.5 are combined with our previous results at s = 1800 GeV to form a ratio of cross sections with smaller uncertainties than either individual measurement. Next-to-leading-order QCD predictions show excellent agreement with the measurement at 630 GeV; agreement is also satisfactory for the ratio. Specifically, despite a 10% to 15% difference in the absolute magnitude, the dependence of the ratio on jet transverse momentum is very similar for data and theory.

  19. Distribution and Substitution Mechanism of Ge in a Ge-(Fe-Bearing Sphalerite

    Directory of Open Access Journals (Sweden)

    Nigel J. Cook

    2015-03-01

    Full Text Available The distribution and substitution mechanism of Ge in the Ge-rich sphalerite from the Tres Marias Zn deposit, Mexico, was studied using a combination of techniques at μm- to atomic scales. Trace element mapping by Laser Ablation Inductively Coupled Mass Spectrometry shows that Ge is enriched in the same bands as Fe, and that Ge-rich sphalerite also contains measurable levels of several other minor elements, including As, Pb and Tl. Micron- to nanoscale heterogeneity in the sample, both textural and compositional, is revealed by investigation using Focused Ion Beam-Scanning Electron Microscopy (FIB-SEM combined with Synchrotron X-ray Fluorescence mapping and High-Resolution Transmission Electron Microscopy imaging of FIB-prepared samples. Results show that Ge is preferentially incorporated within Fe-rich sphalerite with textural complexity finer than that of the microbeam used for the X-ray Absorption Near Edge Structure (XANES measurements. Such heterogeneity, expressed as intergrowths between 3C sphalerite and 2H wurtzite on  zones, could be the result of either a primary growth process, or alternatively, polystage crystallization, in which early Fe-Ge-rich sphalerite is partially replaced by Fe-Ge-poor wurtzite. FIB-SEM imaging shows evidence for replacement supporting the latter. Transformation of sphalerite into wurtzite is promoted by (111* twinning or lattice-scale defects, leading to a heterogeneous ZnS sample, in which the dominant component, sphalerite, can host up to ~20% wurtzite. Ge K-edge XANES spectra for this sphalerite are identical to those of the germanite and argyrodite standards and the synthetic chalcogenide glasses GeS2 and GeSe2, indicating the Ge formally exists in the tetravalent form in this sphalerite. Fe K-edge XANES spectra for the same sample indicate that Fe is present mainly as Fe2+, and Cu K-edge XANES spectra are characteristic for Cu+. Since there is no evidence for coupled substitution involving a monovalent

  20. The low temperature epitaxy of Ge on Si (1 0 0) substrate using two different precursors of GeH4 and Ge2H6

    Science.gov (United States)

    Kil, Yeon-Ho; Yuk, Sim-Hoon; Kim, Joung Hee; Kim, Taek Sung; Kim, Yong Tae; Choi, Chel-Jong; Shim, Kyu-Hwan

    2016-10-01

    We have investigated the initial stage of low temperature epitaxy (LTE) of Ge on 8″-dia. Si (1 0 0) substrate using a rapid thermal chemical vapor deposition (RTCVD) with two different precursors of GeH4 and Ge2H6. The quality of LTE Ge films such as surface morphology, defects and crystallinity were analyzed using SEM, AFM and TEM. Experimental results confirmed that the LTE Ge using Ge2H6 precursor was much more beneficial than the LTE using GeH4 in terms of growth rate (×10), stress relaxation (85% at surface), and crystal quality (low TDDs). The discrepancy looks originated from the weak Gesbnd Ge bonds requiring their dissociation energy small compared to the Gesbnd H bonds in GeH4 precursors, and the abundant supply of GeH3 molecules should stimulate chemical reactions at free surface sites. Our LTE technology would be promising for very thin Ge virtual substrate as well as be beneficial for nano-micro electronic devices in need of low temperature processes below 300-500 °C.

  1. Synthesis and Structural Characterization of the New Clathrates K8Cd4Ge42, Rb8Cd4Ge42, and Cs8Cd4Ge42

    Directory of Open Access Journals (Sweden)

    Marion C. Schäfer

    2016-03-01

    Full Text Available This paper presents results from our exploratory work in the systems K-Cd-Ge, Rb-Cd-Ge, and Cs-Cd-Ge, which yielded the novel type-I clathrates with refined compositions K8Cd3.77(7Ge42.23, Rb8Cd3.65(7Ge42.35, and Cs7.80(1Cd3.65(6Ge42.35. The three compounds represent rare examples of clathrates of germanium with the alkali metals, where a d10 element substitutes a group 14 element. The three structures, established by single-crystal X-ray diffraction, indicate that the framework-building Ge atoms are randomly substituted by Cd atoms on only one of the three possible crystallographic sites. This and several other details of the crystal chemistry are elaborated.

  2. Interfacial processes in the Pd/a-Ge:H system

    Science.gov (United States)

    Edelman, F.; Cytermann, C.; Brener, R.; Eizenberg, M.; Weil, R.; Beyer, W.

    1993-06-01

    The kinetics of phase transformation has been studied in a two-layer structure of Pd/a-Ge:H after vacuum annealing at temperatures from 180 to 500°C. The a-Ge:H was deposited at 250°C on both c-Si and cleaved NaCl substrates in an RF glow discharge from a GeH 4/H 2 mixture. It was found that, similarly to the Pd/c-Ge and the Pd/a-Ge (e-gun deposited) systems, in the case of 0.15-0.2 μm Pd/0.6-1.0 μm a-Ge:H interfacial germanides formed first through the production of Pd 2Ge (plus a small amount of PdGe), and then PdGe was produced. The growth of both compounds was found to be diffusion-controlled. The nonreacted a-Ge:H layer beneath the germanide overlayer crystallized at 400-500°C. A reverse sequence of germanides formation was revealed in the case of 50 nm Pd/30 nm a-Ge:H, studied by in situ heat treatment in the TEM utilizing non-supported samples. The first germanide detected was PdGe and then, as a result of PdGe and Ge reaction or the PdGe decomposition, Pd 2Ge formed. The temperature dependence of the incubation time before the first ˜ 10 nm PdGe grains formed, followed an Arrhenius curve with an activation energy of 1.45 eV.

  3. (Si)GeSn nanostructures for light emitters

    Science.gov (United States)

    Rainko, D.; Stange, D.; von den Driesch, N.; Schulte-Braucks, C.; Mussler, G.; Ikonic, Z.; Hartmann, J. M.; Luysberg, M.; Mantl, S.; Grützmacher, D.; Buca, D.

    2016-05-01

    Energy-efficient integrated circuits for on-chip or chip-to-chip data transfer via photons could be tackled by monolithically grown group IV photonic devices. The major goal here is the realization of fully integrated group IV room temperature electrically driven lasers. An approach beyond the already demonstrated optically-pumped lasers would be the introduction of GeSn/(Si)Ge(Sn) heterostructures and exploitation of quantum mechanical effects by reducing the dimensionality, which affects the density of states. In this contribution we present epitaxial growth, processing and characterization of GeSn/(Si)Ge(Sn) heterostructures, ranging from GeSn/Ge multi quantum wells (MQWs) to GeSn quantum dots (QDs) embedded in a Ge matrix. Light emitting diodes (LEDs) were fabricated based on the MQW structure and structurally analyzed via TEM, XRD and RBS. Moreover, EL measurements were performed to investigate quantum confinement effects in the wells. The GeSn QDs were formed via Sn diffusion /segregation upon thermal annealing of GeSn single quantum wells (SQW) embedded in Ge layers. The evaluation of the experimental results is supported by band structure calculations of GeSn/(Si)Ge(Sn) heterostructures to investigate their applicability for photonic devices.

  4. Vertical self-organization of Ge1-xMnx nanocolumn multilayers grown on Ge(001) substrates

    Science.gov (United States)

    Le, Thi Giang; Dau, Minh Tuan

    2016-07-01

    High-resolution transmission electron microscopy (HR-TEM) has been used to investigate the structural properties of GeMn/Ge nanocolumns multilayer samples grown on Ge(001) substrates by means of molecular beam epitaxy (MBE) system. Four bilayers with the spacer thickness in the range between 6 nm and 15 nm and 10 periods of bilayers of Ge0.94Mn0.06/Ge nanocolumn are presented. A simplified 2D model based on the theory of elastic constant interactions has been used to provide reasonable explanations to the vertical self-organization of GeMn nanocolumns in multilayers.

  5. Compositional dependence of optical interband transition energies in GeSn and GeSiSn alloys

    Science.gov (United States)

    Xu, Chi; Senaratne, Charutha L.; Kouvetakis, John; Menéndez, José

    2015-08-01

    The dielectric functions of GeSn and GeSiSn alloys were measured in the 1-6 eV energy range using spectroscopic ellipsometry. The contributions from the E1, E1 + Δ1, E0‧, E2, and E1‧ critical points in the joint density of electronic states were enhanced by computing numerical second derivatives of the measured dielectric function, and the resulting lineshapes were fitted with model expressions from which the critical point energies, amplitudes, broadenings, and phases were determined. A detailed analysis of the compositional dependence of the different transition energies is presented. By describing this dependence in terms of quadratic polynomials, the bowing parameter (quadratic coefficient) for each transition is determined. It is shown that the bowing parameters in the ternary alloy follow a distinct chemical trend, in which the ternary is well described in terms of bowing parameters for the underlying binary alloys, and these bowing parameters increase as a function of the size and electronegativity mismatch of the alloy constituents.

  6. Thermal Expansion in YbGaGe

    OpenAIRE

    Bobev, Svilen; Williams, Darrick J.; Thompson, J.D.; Sarrao, J L

    2004-01-01

    Thermal expansion and magnetic susceptibility measurements as a function of temperature are reported for YbGaGe. Despite the fact that this material has been claimed to show zero thermal expansion over a wide temperature range, we observe thermal expansion typical of metals and Pauli paramagnetic behavior, which perhaps indicates strong sample dependence in this system.

  7. Analytical response function for planar Ge detectors

    Science.gov (United States)

    García-Alvarez, Juan A.; Maidana, Nora L.; Vanin, Vito R.; Fernández-Varea, José M.

    2016-04-01

    We model the response function (RF) of planar HPGe x-ray spectrometers for photon energies between around 10 keV and 100 keV. The RF is based on the proposal of Seltzer [1981. Nucl. Instrum. Methods 188, 133-151] and takes into account the full-energy absorption in the Ge active volume, the escape of Ge Kα and Kβ x-rays and the escape of photons after one Compton interaction. The relativistic impulse approximation is employed instead of the Klein-Nishina formula to describe incoherent photon scattering in the Ge crystal. We also incorporate a simple model for the continuous component of the spectrum produced by the escape of photo-electrons from the active volume. In our calculations we include external interaction contributions to the RF: (i) the incoherent scattering effects caused by the detector's Be window and (ii) the spectrum produced by photo-electrons emitted in the Ge dead layer that reach the active volume. The analytical RF model is compared with pulse-height spectra simulated using the PENELOPE Monte Carlo code.

  8. Platinum germanium ordering in UPtGe

    Science.gov (United States)

    Hoffmann, Rolf-Dieter; Pöttgen, Rainer; Lander, Gerry H.; Rebizant, Jean

    2001-09-01

    The non-centrosymmetric structure of UPtGe was investigated by X-ray diffraction on both powders and single crystals: EuAuGe type, Imm2, a=432.86(5), b=718.81(8), c=751.66(9) pm, wR2=0.0738 for 399 F2 values and 22 variables. The platinum and germanium atoms form two-dimensional layers of puckered Pt 3Ge 3 hexagons with short PtGe intralayer distances of 252 and 253 pm. These condensed two-dimensionally infinite nets are interconnected to each other via weak PtPt contacts with bond distances of 300 pm. The two crystallographically independent uranium atoms are situated above and below the six-membered platinum-germanium rings. The U1 atoms have six closer germanium neighbors while the U2 atoms have six closer platinum neighbors. The group-subgroup relation with the KHg 2 type structure is presented.

  9. Ge doping of FeGa3

    Science.gov (United States)

    Alvarez-Quiceno, J. C.; Cabrera-Baez, M.; Munévar, J.; Micklitz, H.; Bittar, E. M.; Baggio-Saitovitch, E.; Ribeiro, R. A.; Avila, M. A.; Dalpian, G. M.; Osorio-Guillén, J. M.

    2015-03-01

    The intermetallic narrow-gap semiconductor FeGa3 is one of the few Fe-based diamagnetic materials. Experimentally, Ge doping induces a ferromagnetic (FM) state. The mechanism responsible for this FM response is still unestablished, but there are proposals of itinerant magnetism to explain this behavior. Our DFT simulations show that inserting holes induces a delocalized FM response, while inserting electrons induces a localized FM response around some Fe atoms. We also modeled different distributions of Ge substitution and observe that the FM response depends on the Ge concentration and also on the Ge distribution on the Ga sites. We observed that the extra electrons become localized in some specific Fe atoms, rather than delocalized over the entire crystal lattice, as expected from an itinerant model. For experimental probing of this scenario, we have performed 57Fe Mössbauer spectroscopy on flux-grown singlecrystalline samples. The resulting resonance peak shape supports a localized model for ferromagnetism, since it is possible to resolve the presence of two distinct Fe isomer shifts (despite a single crystallographic site), expected to correspond to Fe atoms with high and low magnetic moments. The authors thank Capes, CNPQ and FAPESP for financial support.

  10. Parametrized dielectric functions of amorphous GeSn alloys

    Science.gov (United States)

    D'Costa, Vijay Richard; Wang, Wei; Schmidt, Daniel; Yeo, Yee-Chia

    2015-09-01

    We obtained the complex dielectric function of amorphous Ge1-xSnx (0 ≤ x ≤ 0.07) alloys using spectroscopic ellipsometry from 0.4 to 4.5 eV. Amorphous GeSn films were formed by room-temperature implantation of phosphorus into crystalline GeSn alloys grown by molecular beam epitaxy. The optical response of amorphous GeSn alloys is similar to amorphous Ge and can be parametrized using a Kramers-Kronig consistent Cody-Lorentz dispersion model. The parametric model was extended to account for the dielectric functions of amorphous Ge0.75Sn0.25 and Ge0.50Sn0.50 alloys from literature. The compositional dependence of band gap energy Eg and parameters associated with the Lorentzian oscillator have been determined. The behavior of these parameters with varying x can be understood in terms of the alloying effect of Sn on Ge.

  11. Dicalcium heptagermanate Ca(2)Ge(7)O(16) revised.

    Science.gov (United States)

    Redhammer, Günther J; Roth, Georg; Amthauer, Georg

    2007-07-01

    The structure of dicalcium heptagermanate, previously described with an orthorhombic space group, has been redetermined in the tetragonal space group P(overline4)b2. It contains three Ge positions (site symmetry 1, ..2 and 2.22, respectively), one Ca position (..2) and four O atoms, all on general 8i positions (site symmetry 1). A sheet of four-membered rings of Ge tetrahedra (with Ge on the 8i position) and isolated Ge tetrahedra (Ge on the 4g position) alternate with a sheet of Ge octahedra (Ge on the 2d position) and eightfold-coordinated Ca sites along the c direction in an ABABA... sequence. The three-dimensional framework of Ge sites displays a channel-like structure, evident in a projection on to the ab plane.

  12. Atomically flat Ge buffer layers and alternating shutter growth of CaGe2 for large area germanane

    Science.gov (United States)

    Xu, Jinsong; Katoch, Jyoti; Ahmed, Adam; Pinchuk, Igor; Williams, Robert; McComb, David; Kawakami, Roland

    Germanane (GeH), which is converted from CaGe2 by soaking in HCl acid, has recently attracted interest because of its novel properties, such as large band gap (1.56eV), spin orbit coupling and predictions of high mobility (18000 cm2/Vs). Previously CaGe2 was successfully grown on Ge(111) substrates by molecular beam epitaxy (MBE) growth. But there were cracks between µm-sized islands, which is not desirable for scientific study and application, and limits the material quality. By growing atomically flat Ge buffer layers and using alternating shutter MBE growth, we are able to grow crack-free, large area films of CaGe2 films. Reflection high energy electron diffraction (RHEED) patterns of Ge buffer layer and CaGe2 indicates high quality two dimensional surfaces, which is further confirmed by atomic force microscopy (AFM), showing atomically flat and uniform Ge buffer layer and CaGe2. The appearance of Laue oscillation in X-ray diffraction (XRD) and Kiessig fringes in X-ray reflectivity (XRR) proves the uniformity of CaGe2 film and the smoothness of the interface. The high quality of CaGe2 film makes it promising to explore novel properties of GeH. Funded by NSF MRSEC DMR-1420451.

  13. TEM characterization of Ge precipitates in an Al-1.6 at% Ge alloy

    Energy Technology Data Exchange (ETDEWEB)

    Kaneko, K. [Department of Material Science and Engineering, Kyushu University, 744 Motooka, Nishi, Fukuoka 819-0395 (Japan)], E-mail: kaneko@zaiko.kyushu-u.ac.jp; Inoke, K. [FEI Company Japan Ltd., 13-34 Kohnan 2, Minato, Tokyo 108-0075 (Japan); Sato, K.; Kitawaki, K.; Higashida, H. [Department of Material Science and Engineering, Kyushu University, 744 Motooka, Nishi, Fukuoka 819-0395 (Japan); Arslan, I.; Midgley, P.A. [Department of Material Science and Metallurgy, University of Cambridge, Pembroke Street, Cambridge CB2 3QZ (United Kingdom)

    2008-02-15

    The growth mechanism and morphology of Ge precipitates in an Al-Ge alloy was characterized by a combination of in-situ transmission electron microscopy, high-resolution transmission electron microscopy and three-dimensional electron tomography. Anisotropic growth of rod-shaped Ge precipitates was observed by in-situ transmission electron microscopy over different time periods, and faceting of the precipitates was clearly seen using high-resolution transmission electron microscopy and three-dimensional electron tomography. This anisotropic growth of rod-shaped Ge precipitates was enhanced by vacancy concentration as proposed previously, but also by surface diffusion as observed during the in-situ experiment. Furthermore, a variety of precipitate morphologies was identified by three-dimensional electron tomography.

  14. Bi surfactant mediated growth for fabrication of Si/Ge nanostructures and investigation of Si/Ge intermixing by STM

    Energy Technology Data Exchange (ETDEWEB)

    Paul, N.

    2007-10-26

    In the thesis work presented here, we show that Bi is more promising surfactant material than Sb. We demonstrate that by using Bi as a terminating layer on Ge/Si surface, it is possible to distinguish between Si and Ge in Scanning tunnelling microscope (STM). Any attempt to utilize surfactant mediated growth must be preceded by a thorough study of its effect on the the system being investigated. Thus, the third chapter of this thesis deals with an extensive study of the Bi surfactant mediated growth of Ge on Si(111) surface as a function of Ge coverage. The growth is investigated from the single bilayer Ge coverage till the Ge coverage of about 15 BL when the further Ge deposition leads to two-dimensional growth. In the fourth chapter, the unique property of Bi terminating layer on Ge/Si surface to result in an STM height contrast between Si and Ge is explained with possible explanations given for the reason of this apparent height contrast. The controlled fabrication of Ge/Si nanostructures such as nanowires and nanorings is demonstrated. A study on Ge-Si diffusion in the surface layers by a direct method such as STM was impossible previously because of the similar electronic structure of Ge and Si. Since with the Bi terminating surface layer, one is able to distinguish between Ge and Si, the study of intermixing between them is also possible using STM. This method to distinguish between Si and Ge allows one to study intermixing on the nanoscale and to identify the fundamental diffusion processes giving rise to the intermixing. In Chapter 5 we discuss how this could prove useful especially as one could get a local probe over a very narrow Ge-Si interface. A new model is proposed to estimate change in the Ge concentration in the surface layer with time. The values of the activation energies of Ge/Si exchange and Si/Ge exchange are estimated by fitting the experimental data with the model. The Ge/Si intermixing has been studied on a surface having 1 ML Bi ({radical

  15. Fabrication and ferromagnetism of Si-SiGe/MnGe core-shell nanopillars

    Science.gov (United States)

    Wang, Liming; Liu, Tao; Wang, Shuguang; Zhong, Zhenyang; Jia, Quanjie; Jiang, Zuimin

    2016-10-01

    Si-Si0.5Ge0.5/Mn0.08Ge0.92 core-shell nanopillar samples were fabricated on ordered Si nanopillar patterned substrates by molecular beam epitaxy at low temperatures. The magnetic properties of the samples are found to depend heavily on the growth temperature of the MnGe layer. The sample grown at a moderate temperature of 300 °C has the highest Curie temperature of 240 K as well as the strongest ferromagnetic signals. On the basis of the microstructural results, the ferromagnetic properties of the samples are believed to come from the intrinsic Mn-doped amorphous or crystalline Ge ferromagnetic phase rather than any intermetallic ferromagnetic compounds of Mn and Ge. After being annealed at a temperature of 500 °C, all the samples exhibit the same Curie temperature of 220 K, which is in sharp contrast to the different Curie temperature for the as-grown samples, and the ferromagnetism for the annealed samples comes from Mn5GeSi2 compounds which are formed during the annealing.

  16. Doping and strain dependence of the electronic band structure in Ge and GeSn alloys

    Science.gov (United States)

    Xu, Chi; Gallagher, James; Senaratne, Charutha; Brown, Christopher; Fernando, Nalin; Zollner, Stefan; Kouvetakis, John; Menendez, Jose

    2015-03-01

    A systematic study of the effect of dopants and strain on the electronic structure of Ge and GeSn alloys is presented. Samples were grown by UHV-CVD on Ge-buffered Si using Ge3H8 and SnD4 as the sources of Ge and Sn, and B2H6/P(GeH3)3 as dopants. High-energy critical points in the joint-density of electronic states were studied using spectroscopic ellipsometry, which yields detailed information on the strain and doping dependence of the so-called E1, E1 +Δ1 , E0' and E2 transitions. The corresponding dependencies of the lowest direct band gap E0 and the fundamental indirect band gap Eindwere studied via room-T photoluminescence spectroscopy. Of particular interest for this work were the determination of deformation potentials, band gap renormalization effects, Burstein-Moss shifts due to the presence of carriers at band minima, and the dependence of other critical point parameters, such as amplitudes and phase angles, on the doping concentration. The selective blocking of transitions due to high doping makes it possible to investigate the precise k-space location of critical points. These studies are complemented with detailed band-structure calculations within a full-zone k-dot- p approach. Supported by AFOSR under DOD AFOSR FA9550-12-1-0208 and DOD AFOSR FA9550-13-1-0022.

  17. Reactivity of diaminogermylenes with ruthenium carbonyl: Ru3Ge3 and RuGe2 derivatives.

    Science.gov (United States)

    Cabeza, Javier A; García-Álvarez, Pablo; Polo, Diego

    2011-07-04

    The nature of the products of the reactions of [Ru(3)(CO)(12)] with diaminogermylenes depends upon the volume and the cyclic or acyclic structure of the latter. Thus, the triruthenium cluster [Ru(3){μ-Ge(NCH(2)CMe(3))(2)C(6)H(4)}(3)(CO)(9)], which has a planar Ru(3)Ge(3) core and an overall C(3h) symmetry, has been prepared in quantitative yield by treating [Ru(3)(CO)(12)] with an excess of the cyclic 1,3-bis(neo-pentyl)-2-germabenzimidazol-2-ylidene in toluene at 100 °C, but under analogous reaction conditions, the acyclic and bulkier Ge(HMDS)(2) (HMDS = N(SiMe(3))(2)) quantitatively leads to the mononuclear ruthenium(0) derivative [Ru{Ge(HMDS)(2)}(2)(CO)(3)]. Mixtures of products have been obtained from the reactions of [Ru(3)(CO)(12)] with the cyclic and very bulky 1,3-bis(tert-butyl)-2-germaimidazol-2-ylidene under various reaction conditions. The Ru(3)Ge(3) and RuGe(2) products reported in this paper are the first ruthenium complexes containing diaminogermylene ligands.

  18. High efficiency low cost GaAs/Ge cell technology

    Science.gov (United States)

    Ho, Frank

    1990-01-01

    Viewgraphs on high efficiency low cost GaAs/Ge cell technology are presented. Topics covered include: high efficiency, low cost GaAs/Ge solar cells; advantages of Ge; comparison of typical production cells for space applications; panel level comparisons; and solar cell technology trends.

  19. Electrical characterization of p-GeSn/n-Ge diodes with interface traps under dc and ac regimes

    Science.gov (United States)

    Baert, B.; Gupta, S.; Gencarelli, F.; Loo, R.; Simoen, E.; Nguyen, N. D.

    2015-08-01

    In this work, the electrical properties of p-GeSn/n-Ge diodes are investigated in order to assess the impact of defects at the interface between Ge and GeSn using temperature-dependent current-voltage and capacitance-voltage measurements. These structures are made from GeSn epitaxial layers grown by CVD on Ge with in situ doping by Boron. As results, an average ideality factor of 1.2 has been determined and an activation energy comprised between 0.28 eV and 0.30 eV has been extracted from the temperature dependence of the reverse-bias current. Based on the comparison with numerical results obtained from device simulations, we explain this activation energy by the presence of traps located near the GeSn/Ge interface.

  20. Theoretical prediction for several important equilibrium Ge isotope fractionation factors

    Science.gov (United States)

    Tang, M.; Li, X.; Liu, Y.

    2008-12-01

    As a newly emerging field, the stable isotope geochemistry of germanium (Ge) needs basic equilibrium fractionation factors to explore its unknown world. In this study, the Ge isotope fractionations between systems including the aqueous Ge(OH)4 and GeO(OH)3- which are the dominant Ge species in seawater, the Ge-bearing organic complexes (e.g. Ge-catechol, Ge-oxalic acid and Ge-citric acid), the quartz- (or opal- ), albite-, K-feldspar- and olivine- like mineral structures are studied. It is the first time that some geologically important equilibrium Ge isotope fractionation factors are reported. Surprisingly, up to 5 per mil large isotopic fractionations between these Ge isotope systems are found at 25 degree. These results suggest a potentially broad application for the Ge isotope geochemistry. Our theoretical calculations are based on the Urey model (or Bigeleisen-Mayer equation) and high level quantum chemistry calculations. The B3LYP/6-311+G(d,p) level quantum chemistry method and the explicit solvent model ("water droplet" method) are used. Many different conformers are also used for the aqueous complexes in order to reduce the possible errors coming from the differences of configurations in solution. The accuracy of our calculation of the Ge isotopic fractionations is estimated about 0.2 per mil. Our results show quartz-like or opal-like structure can enrich most heavy Ge isotopes. Relative to quartz (or opal), some Ge isotopic fractionations are (at 25 C): quartz-organic Ge = 4-5,quartz-Ge(OH)4 =0.9,quartz-GeO(OH)3- =1.5,quartz-albite=0.6,quartz-K-feldspar=0.4 and quartz-olivine=3.9 per mil. The large fractionations between inorganic Ge complexes and organic Ge ones could be used to distinguish the possible bio-involving processes. Our results suggest a good explanation to the experimental observations of Siebert et al. (2006) and Rouxel et al. (2006) and provide important constraints to the study of Ge cycle in ocean.

  1. Standard molar enthalpy of formation of FeGe(s) and FeGe{sub 2}(s) intermetallic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Phapale, S. [Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India); Mishra, R., E-mail: mishrar@barc.gov.in [Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India); Chattaraj, D.; Samui, P. [Product Development Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India); Sengupta, P. [Material Science Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India); Mishra, P.K. [Technical Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India)

    2014-04-05

    Highlights: • FeGe(s) and FeGe{sub 2}(s) have been synthesized and characterized. • The heat of dissolutions of Fe(s), Ge(s), FeGe(s) and FeGe2(s) in liquid tin have been measured. • Δ{sub f}H{sub 298}{sup °} of FeGe, FeGe{sub 2} were found to be to −15.56 ± 0.92 and −36.89 ± 1.17 kJ mol{sup −1}, respectively. -- Abstract: Thermodynamics plays an important role in predicting long term stability of the materials under different reactive conditions. The present paper describes determination of standard molar enthalpies of formation of FeGe(s) and FeGe{sub 2}(s) compounds employing a high temperature solution calorimeter. The reaction enthalpies of Fe(s), Ge(s), FeGe(s) and FeGe{sub 2}(s) in liquid Sn at 986 K were measured using a Calvet calorimeter. The standard molar enthalpy of formation of the compounds at 298 K (Δ{sub f}H{sub 298}{sup °}) were calculated using the measured reaction enthalpy data. The values of Δ{sub f}H{sub 298}{sup °} of FeGe(s) and FeGe{sub 2}(s) at 298 K were found to −15.56 ± 0.92 and −36.89 ± 1.17 kJ mol{sup −1}, respectively. The standard molar enthalpy of formation of FeGe(s) and FeGe{sub 2}(s) at 298 K obtained experimentally has been compared with the calculated values derived using Vienna ab initio simulation package (VASP)

  2. Structural Changes of Amorphous GeTe2 Films by Annealing (Formation of Metastable Crystalline GeTe2 Films)

    Science.gov (United States)

    Fukumoto, Hirofumi; Tsunetomo, Keiji; Imura, Takeshi; Osaka, Yukio

    1987-01-01

    Amorphous GeTe2 films with the thickness ˜0.5 μm, prepared by sputtering technique, transform into the crystalline GeTe2 films with the isomorphic structure to β-cristobalite, cubic SiO2, at Ta(annealing temperature){=}200°C. The cubic phase of GeTe2 is metastable and decomposes into the mixed crystal of GeTe and Te at Ta{=}250°C.

  3. Strong anisotropy and magnetostriction in the two-dimensional Stoner ferromagnet Fe3GeTe2

    Science.gov (United States)

    Zhuang, Houlong L.; Kent, P. R. C.; Hennig, Richard G.

    2016-04-01

    Computationally characterizing magnetic properies of novel two-dimensional (2D) materials serves as an important first step of exploring possible applications. Using density-functional theory, we show that single-layer Fe3GeTe2 is a potential 2D material with sufficiently low formation energy to be synthesized by mechanical exfoliation from the bulk phase with a van der Waals layered structure. In addition, we calculated the phonon dispersion demonstrating that single-layer Fe3GeTe2 is dynamically stable. Furthermore, we find that similar to the bulk phase, 2D Fe3GeTe2 exhibits a magnetic moment that originates from a Stoner instability. In contrast to other 2D materials, we find that single-layer Fe3GeTe2 exhibits a significant uniaxial magnetocrystalline anisotropy energy of 920 μ eV per Fe atom originating from spin-orbit coupling. Finally, we show that applying biaxial tensile strains enhances the anisotropy energy, which reveals strong magnetostriction in single-layer Fe3GeTe2 with a sizable magneostrictive coefficient. Our results indicate that single-layer Fe3GeTe2 is potentially useful for magnetic storage applications.

  4. Layer-controlled band alignment, work function and optical properties of few-layer GeSe

    Science.gov (United States)

    Song, Xiufeng; Zhou, Wenhan; Liu, Xuhai; Gu, Yu; Zhang, Shengli

    2017-08-01

    The electronic properties, such as the layer-dependent behavior of the band structure, band gap, work function alignment and dielectric properties of the few-layer GeSe are systematically investigated via gradient-corrected density functional theory computations, inspired by the experimentally observation of two-dimension materials such as graphene, phosphorene, MoS2 and BN. The results indicate that the few-layer GeSe presents a robust direct band gap, which decreases with increasing the thickness from bilayer (1.15 eV) to six-layer (1.00 eV) around the X point. Furthermore, the work function increases rapidly from monolayer (4.44 eV) to trilayer (4.95 eV). The robust direct band gap characteristics and the layer-dependent band gap suggest that the few-layer GeSe is a promising material for efficient solar energy harvesting applications. The layer dependence of the GeSe work function offers a practical route to tune the Schottky barrier in GeSe based electronic devices. Our results provide new insights on utilizing the layer-controlled band gap of the atomic layers of GeSe.

  5. Microstructural changes and fractal Ge nanocrystallites in polycrystalline Au/amorphous Ge thin bilayer films upon annealing

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Z W; Lai, J K L; Shek, C H [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong (China)

    2006-11-07

    Microstructural changes and fractal Ge nanocrystallites in polycrystalline Au/amorphous Ge thin bilayer films upon annealing have been investigated by scanning electron microscopy, transmission electron microscopy observations and x-ray energy-dispersive spectroscopy (EDS). Experimental results indicated that the microstructure of the metal Au film plays an important role in metal-induced crystallization for Au/Ge thin bilayer films upon annealing. Interestingly, we found the position exchange of Au and Ge films and the formation of the fractal Ge nanocrystallites induced by annealing. EDS microanalysis indicated that although there is lateral interdiffusion of Au and Ge atoms, the thickness of the fractal region and the matrix remain nearly the same. At the same time, EDS shows that there are also Au aggregates extending out of the films. It is suggested that, besides the preferred nucleation at the Au/Ge interface, the breaking of Ge-Ge bonds may stimulate the crystallization of amorphous Ge, so that the crystallization temperature of Au/Ge system is much lower than that of the isolated amorphous Ge system.

  6. Microstructural changes and fractal Ge nanocrystallites in polycrystalline Au/amorphous Ge thin bilayer films upon annealing

    Science.gov (United States)

    Chen, Z. W.; Lai, J. K. L.; Shek, C. H.

    2006-11-01

    Microstructural changes and fractal Ge nanocrystallites in polycrystalline Au/amorphous Ge thin bilayer films upon annealing have been investigated by scanning electron microscopy, transmission electron microscopy observations and x-ray energy-dispersive spectroscopy (EDS). Experimental results indicated that the microstructure of the metal Au film plays an important role in metal-induced crystallization for Au/Ge thin bilayer films upon annealing. Interestingly, we found the position exchange of Au and Ge films and the formation of the fractal Ge nanocrystallites induced by annealing. EDS microanalysis indicated that although there is lateral interdiffusion of Au and Ge atoms, the thickness of the fractal region and the matrix remain nearly the same. At the same time, EDS shows that there are also Au aggregates extending out of the films. It is suggested that, besides the preferred nucleation at the Au/Ge interface, the breaking of Ge-Ge bonds may stimulate the crystallization of amorphous Ge, so that the crystallization temperature of Au/Ge system is much lower than that of the isolated amorphous Ge system.

  7. Ternary and quaternary Ni(Si)Ge(Sn) contact formation for highly strained Ge p- and n-MOSFETs

    Science.gov (United States)

    Wirths, S.; Troitsch, R.; Mussler, G.; Hartmann, J.-M.; Zaumseil, P.; Schroeder, T.; Mantl, S.; Buca, D.

    2015-05-01

    The formation of new ternary NiGeSn and quaternary NiSiGeSn alloys has been investigated to fabricate metallic contacts on high Sn content, potentially direct bandgap group IV semiconductors. (Si)GeSn layers were pseudomorphically grown on Ge buffered Si(001) by reduced pressure chemical vapor deposition. Ni, i.e. the metal of choice for source/drain metallization in Si nanoelectronics, is employed for the stano-(silicon)-germanidation of highly strained (Si)GeSn alloys. We show that NiGeSn on GeSn layers change phase from well-oriented Ni5(GeSn)3 to poly-crystalline Ni1(GeSn)1 at very low annealing temperatures. A large range of GeSn compositions with Sn concentrations up to 12 at.%, and SiGeSn ternaries with large Si and Sn compositions from 18%/3% to 4%/11% are investigated. In addition, the sheet resistance, of importance for electronic or optoelectronic device contacts, is quantified. The incorporation of Si extends the thermal stability of the resulting low resistive quaternary phase compared to their NiGeSn counterparts.

  8. Photoreflectance Spectroscopy Characterization of Ge/Si0.16Ge0.84 Multiple Quantum Wells on Ge Virtual Substrate

    Directory of Open Access Journals (Sweden)

    Hung-Pin Hsu

    2013-01-01

    Full Text Available We report a detailed characterization of a Ge/Si0.16Ge0.84 multiple quantum well (MQW structure on Ge-on-Si virtual substrate (VS grown by ultrahigh vacuum chemical vapor deposition by using temperature-dependent photoreflectance (PR in the temperature range from 10 to 300 K. The PR spectra revealed a wide range of optical transitions from the MQW region as well as transitions corresponding to the light-hole and heavy-hole splitting energies of Ge-on-Si VS. A detailed comparison of PR spectral line shape fits and theoretical calculation led to the identification of various quantum-confined interband transitions. The temperature-dependent PR spectra of Ge/Si0.16Ge0.84 MQW were analyzed using Varshni and Bose-Einstein expressions. The parameters that describe the temperature variations of various quantum-confined interband transition energies were evaluated and discussed.

  9. ATLAS 750 GeV Analysis

    CERN Document Server

    Wang, Fuquan; The ATLAS collaboration

    2016-01-01

    These slides are for BEACH 2016 presentation about 750 GeV searches at the ATLAS experiment with the 3.2 $\\text{fb}^{-1}$ $\\sqrt{s}$=13 TeV data collected in year 2015. The results from $\\gamma\\gamma$ and $Z\\gamma$ final states are summarized. For $\\gamma\\gamma$ analysis, the local significance is 3.9 $\\sigma$ for the spin-0 selection and 3.8 $\\sigma$ for spin-2 selection at 750 GeV, with global significance both at 2.1 $\\sigma$. For the $Z\\gamma$ analysis, both the leptonic and hadronic decays of the $Z$ boson are studied and no excess at the signal region is observed.

  10. Booster 6-GeV study

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Xi; Ankenbrandt, Charles M.; Pellico, William A.; Lackey, James; Padilla, Rene; /Fermilab; Norem, J.; /Argonne

    2004-12-01

    Since a wider aperture has been obtained along the Booster beam line, this opens the opportunity for Booster running a higher intensity beam than ever before. Sooner or later, the available RF accelerating voltage will become a new limit for the beam intensity. Either by increasing the RFSUM or by reducing the accelerating rate can achieve the similar goal. The motivation for the 6-GeV study is to gain the relative accelerating voltage via a slower acceleration.

  11. Heteroepitaxy of Ge-Si{sub 1{minus}x}Ge{sub x} superlattices on Si (100) substrates by GeH{sub 4}-Si MBE

    Energy Technology Data Exchange (ETDEWEB)

    Orlov, L.K.; Tolomasov, V.A.; Potapov, A.V.; Drozdov, Yu.N. [Russian Academy of Sciences, Nizhny Novgorod (Russian Federation). Inst. for Physics of Microstructures; Vdovin, V.I. [Inst. for Rare Metals Giredmet, Moscow (Russian Federation)

    1996-12-31

    The authors applied GeH{sub 4}-SI MBE for growing Ge-Si{sub 1{minus}x}Ge{sub x} superlattices on Si(100). They investigated the distribution and the structure of defects inside heteroepitaxial Si{sub 1{minus}x}Ge{sub x} layers grown on Si(100). It was shown that the system has unique peculiarities of a dislocation structure formation. They found out that the plastic deformation on a layer-substrate heteroboundary eliminates strong elastic deformation inside the grown layer.

  12. New approach to calculate the true-coincidence effect of HpGe detector

    Energy Technology Data Exchange (ETDEWEB)

    Alnour, I. A., E-mail: aaibrahim3@live.utm.my, E-mail: ibrahim.elnour@yahoo.com [Department of Physics, Faculty of Pure and Applied Science, International University of Africa, 12223 Khartoum (Sudan); Wagiran, H. [Department of Physics, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Skudai,Johor (Malaysia); Ibrahim, N. [Faculty of Defence Science and Technology, National Defence University of Malaysia, Kem Sungai Besi, 57000 Kuala Lumpur (Malaysia); Hamzah, S.; Elias, M. S. [Malaysia Nuclear Agency (MNA), Bangi, 43000 Kajang, Selangor D.E. (Malaysia); Siong, W. B. [Chemistry Department, Faculty of Resource Science & Technology, Universiti Malaysia Sarawak, 94300 Kota Samarahan, Sarawak (Malaysia)

    2016-01-22

    The corrections for true-coincidence effects in HpGe detector are important, especially at low source-to-detector distances. This work established an approach to calculate the true-coincidence effects experimentally for HpGe detectors of type Canberra GC3018 and Ortec GEM25-76-XLB-C, which are in operation at neutron activation analysis lab in Malaysian Nuclear Agency (NM). The correction for true-coincidence effects was performed close to detector at distances 2 and 5 cm using {sup 57}Co, {sup 60}Co, {sup 133}Ba and {sup 137}Cs as standard point sources. The correction factors were ranged between 0.93-1.10 at 2 cm and 0.97-1.00 at 5 cm for Canberra HpGe detector; whereas for Ortec HpGe detector ranged between 0.92-1.13 and 0.95-100 at 2 and 5 cm respectively. The change in efficiency calibration curve of the detector at 2 and 5 cm after correction was found to be less than 1%. Moreover, the polynomial parameters functions were simulated through a computer program, MATLAB in order to find an accurate fit to the experimental data points.

  13. Amorphous inclusions during Ge and GeSn epitaxial growth via chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Gencarelli, F., E-mail: federica.gencarelli@imec.be [imec, Kapeldreef 75, 3001 Leuven (Belgium); Dept. of Metallurgy and Materials Engineering, KU Leuven, B-3001 Leuven (Belgium); Shimura, Y. [imec, Kapeldreef 75, 3001 Leuven (Belgium); Nuclear and Radiation Physics Section, KU Leuven, B-3001 Leuven (Belgium); Kumar, A. [imec, Kapeldreef 75, 3001 Leuven (Belgium); Nuclear and Radiation Physics Section, KU Leuven, B-3001 Leuven (Belgium); Vincent, B.; Moussa, A.; Vanhaeren, D.; Richard, O.; Bender, H. [imec, Kapeldreef 75, 3001 Leuven (Belgium); Vandervorst, W. [imec, Kapeldreef 75, 3001 Leuven (Belgium); Nuclear and Radiation Physics Section, KU Leuven, B-3001 Leuven (Belgium); Caymax, M.; Loo, R. [imec, Kapeldreef 75, 3001 Leuven (Belgium); Heyns, M. [imec, Kapeldreef 75, 3001 Leuven (Belgium); Dept. of Metallurgy and Materials Engineering, KU Leuven, B-3001 Leuven (Belgium)

    2015-09-01

    In this work, we discuss the characteristics of particular island-type features with an amorphous core that are developed during the low temperature epitaxial growth of Ge and GeSn layers by means of chemical vapor deposition with Ge{sub 2}H{sub 6}. Although further investigations are needed to unambiguously identify the origin of these features, we suggest that they are originated by the formation of clusters of H and/or contaminants atoms during growth. These would initially cause the formation of pits with crystalline rough facets over them, resulting in ring-shaped islands. Then, when an excess surface energy is overcome, an amorphous phase would nucleate inside the pits and fill them. Reducing the pressure and/or increasing the growth temperature can be effective ways to prevent the formation of these features, likely due to a reduction of the surface passivation from H and/or contaminant atoms. - Highlights: • Island features with amorphous cores develop during low T Ge(Sn) CVD with Ge{sub 2}H{sub 6.} • These features are thoroughly characterized in order to understand their origin. • A model is proposed to describe the possible evolution of these features. • Lower pressures and/or higher temperatures avoid the formation of these features.

  14. Ternary germanides RERhGe2 (RE = Y, Gd-Ho) - New representatives of the YIrGe2 type

    Science.gov (United States)

    Voßwinkel, Daniel; Heletta, Lukas; Hoffmann, Rolf-Dieter; Pöttgen, Rainer

    2016-11-01

    The YIrGe2 type ternary germanides RERhGe2 (RE = Y, Gd-Ho) were synthesized from the elements by arc-melting and characterized by powder X-ray diffraction. The structure of DyRhGe2 was refined from single crystal X-ray diffractometer data: Immm, a = 426.49(9), b = 885.0(2), c = 1577.4(3) pm, wR2 = 0.0533, 637 F2 values, 30 variables (300 K data). The structure contains two crystallographically independent dysprosium atoms in pentagonal prismatic and hexagonal prismatic coordination. The three-dimensional [RhGe2] polyanion is stabilized through covalent Rh-Ge (243-261 pm) and Ge-Ge (245-251 pm) bonding. The close structural relationship with the slightly rhodium-poorer germanides RE5Rh4Ge10 (≡ RERh0.8Ge2) is discussed. Temperature-dependent magnetic susceptibility measurements reveal Pauli paramagnetism for YRhGe2 and Curie-Weiss paramagnetism for RERhGe2 with RE = Gd, Tb, Dy and Ho. These germanides order antiferromagnetically at TN = 7.2(5), 10.6(5), 8.1(5), and 6.4(5) K, respectively.

  15. Relaxed SiGe-on-insulator fabricated by dry oxidation of sandwiched Si/SiGe/Si structure

    Energy Technology Data Exchange (ETDEWEB)

    Di Zengfeng [Research Center of Semiconductor Functional Film Engineering Technology and State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology (SIMIT), Chinese Academy of Sciences (CAS), Shanghai 200050 (China); Department of Physics and Material Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong (China); Zhang Miao [Research Center of Semiconductor Functional Film Engineering Technology and State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology (SIMIT), Chinese Academy of Sciences (CAS), Shanghai 200050 (China); Liu Weili [Research Center of Semiconductor Functional Film Engineering Technology and State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology (SIMIT), Chinese Academy of Sciences (CAS), Shanghai 200050 (China); Zhu Ming [Research Center of Semiconductor Functional Film Engineering Technology and State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology (SIMIT), Chinese Academy of Sciences (CAS), Shanghai 200050 (China); Department of Physics and Material Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong (China); Lin Chenglu [Research Center of Semiconductor Functional Film Engineering Technology and State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology (SIMIT), Chinese Academy of Sciences (CAS), Shanghai 200050 (China); Chu, Paul K. [Department of Physics and Material Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong (China)]. E-mail: paul.chu@cityu.edu.hk

    2005-12-05

    An improved technique is demonstrated to fabricate silicon-germanium on insulator (SGOI) starting with a sandwiched structure of Si/SiGe/Si. After oxidation of the sandwiched structure and successive annealing, a relaxed SiGe-on-insulator (SGOI) structure is produced. Our results indicate that the added Si cap layer is advantageous in suppressing Ge loss at the initial stage of SiGe oxidation and the subsequent annealing process homogenizes the Ge fraction. Raman measurements reveal that the strain in the SiGe layer is fully relaxed at high oxidation temperature ({approx}1150 deg. C) without generating any threading dislocations and crosshatch patterns, which generally exist in the relaxed SiGe layer on bulk Si substrate.

  16. Fabrication of Multilevel Switching High Density Phase Change Data Recording Using Stacked GeTe/GeSbTe Structure

    Science.gov (United States)

    Hong, Sung-Hoon; Lee, Heon; Kim, Kang-In; Choi, Yunjung; Lee, Young-Kook

    2011-08-01

    The multilevel switching characteristics of stacked phase change materials with the structures of Ge2Sb2Te5, AgInSbTe/Ge2Sb2Te5, and GeTe/Ge2Sb2Te5 were investigated at the nano scale using nanoimprint lithography and conductive atomic force microscopy. Stacked phase change materials devices consisting of nano pillars 200 nm in diameter were fabricated using nanoimprint lithography, and their electrical characteristics were evaluated using conductive atomic force microscopy, with a pulse generator and a voltage source. The stacked GeTe/Ge2Sb2Te5 phase change materials exhibited three levels of resistance with a difference of 2 orders in magnitude between them, while the single-layer and stacked phase change materials with similar electrical resistances, such as Ge2Sb2Te5/AgInSbTe exhibited only bi level switching characteristics.

  17. Density and Capture Cross-Section of Interface Traps in GeSnO2 and GeO2 Grown on Heteroepitaxial GeSn.

    Science.gov (United States)

    Gupta, Somya; Simoen, Eddy; Loo, Roger; Madia, Oreste; Lin, Dennis; Merckling, Clement; Shimura, Yosuke; Conard, Thierry; Lauwaert, Johan; Vrielinck, Henk; Heyns, Marc

    2016-06-01

    An imperative factor in adapting GeSn as the channel material in CMOS technology, is the gate-oxide stack. The performance of GeSn transistors is degraded due to the high density of traps at the oxide-semiconductor interface. Several oxide-gate stacks have been pursued, and a midgap Dit obtained using the ac conductance method, is found in literature. However, a detailed signature of oxide traps like capture cross-section, donor/acceptor behavior and profile in the bandgap, is not yet available. We investigate the transition region between stoichiometric insulators and strained GeSn epitaxially grown on virtual Ge substrates. Al2O3 is used as high-κ oxide and either Ge1-xSnxO2 or GeO2 as interfacial layer oxide. The interface trap density (Dit) profile in the lower half of the bandgap is measured using deep level transient spectroscopy, and the importance of this technique for small bandgap materials like GeSn, is explained. Our results provide evidence for two conclusions. First, an interface traps density of 1.7 × 10(13) cm(-2)eV(-1) close to the valence band edge (Ev + 0.024 eV) and a capture cross-section (σp) of 1.7 × 10(-18) cm(2) is revealed for GeSnO2. These traps are associated with donor states. Second, it is shown that interfacial layer passivation of GeSn using GeO2 reduces the Dit by 1 order of magnitude (2.6 × 10(12) cm(-2)eV(-1)), in comparison to GeSnO2. The results are cross-verified using conductance method and saturation photovoltage technique. The Dit difference is associated with the presence of oxidized (Sn(4+)) and elemental Sn in the interfacial layer oxide.

  18. Electric and Magnetic Field Tunable Rectification and Magnetoresistance in FexGe1-x/Ge Heterojunction Diodes

    Institute of Scientific and Technical Information of China (English)

    QIN Yu-Feng; CHEN Yan-Xue; MEI Liang-Mo; ZHANG Ze; YAN Shi-Shen; KANG Shi-Shou; XIAO Shu-Qin; LI Qiang; DAI Zheng-Kun; SHEN Ting-Ting; DAI You-Yong; LIU Guo-Lei

    2011-01-01

    Fex Ge1- x/Ge amorphous heterojunction diodes with p-Fex Ge1-x ferromagnetic semiconductor layers are grown on single-crystal Ge substrates of p-type,n-type and intrinsic semiconductors,respectively.The I-V curves of pFe0.4 Ge0.6 /p-Ge diodes only show slight changes with temperature or with magnetic field.For the p-Fe0.4 Ge0.6 /nGe diode,good rectification is maintained at room temperature.More interestingly,the I-V curve of the pFe0.4Ge0.6/i-Ge diode can be tuned by the magnetic field,indicating a large positive magnetoresistance.The resistances of the junctions decrease with the increasing temperature,suggesting a typical semiconductor transport behavior.The origin of the positive magnetoresistance is discussed based on the effect of the electric and magnetic field on the energy band structures of the interface.In the past decades,ferromagnetic semiconductors (FMSs),which can be used as spin current sources,have received much attention due to their potential application in the next generation of information technology.In 1996,Ohno et a/.… reported molecular beam epitaxial (Ga,Mn)As FMSs,which show a wellaligned ferromagnetic order and an anomalous Halleffect.In 2002,Park et al.[2]%FexGe1-x/Ge amorphous heterojunction diodes with p-FexGe1-x ferromagnetic semiconductor layers are grown on single-crystal Ge substrates of p-type, n-type and intrinsic semiconductors, respectively. The I-V curves of p-Fe0.4Geo.6/p-Ge diodes only show slight changes with temperature or with magnetic field. For the p-Fe0.4Ge0.6/n-Ge diode, good rectification is maintained at room temperature. More interestingly, the I-V curve of the p-Fe0.4Ge0.6/I-Ge diode can be tuned by the magnetic field, indicating a large positive magnetoresistance. The resistances of the junctions decrease with the increasing temperature, suggesting a typical semiconductor transport behavior. The origin of the positive magnetoresistance is discussed based on the effect of the electric and magnetic field on the

  19. Formation of ζ phase in Cu-Ge peritectic alloys

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Rapid growth behavior of ζ phase has been investigated in the undercooling experiments of Cu-14%Ge, Cu-15%Ge, Cu-18.5%Ge and Cu-22%Ge alloys. Alloys of the four compositions obtain the maximum undercoolings of 202 K(0.17TL), 245 K(0.20TL), 223 K(0.20TL) and 176 K(0.17TL), respectively. As the content of Ge increases, the microstructural transition of "α(Cu) dendrite + ζ peritectic phase → ζ peritectic phase → ζ dendrite + (ε+ζ ) eutectic" takes place in the alloy at small undercooling, while the microstructural transition of "fragmented α (Cu) dendrite +ζperitectic phase → ζ peritectic phase → ζ dendrite + ε phase" happens in the alloy at large undercooling. EDS analysis of the Ge content in ζ peritectic phase indicates that undercooling enlarges the solid solubility of α dendrite, which leads to a decrease in the Ge content in ζ phase as undercooling increases. In the Cu-18.5%Ge alloy composed of ζ peritectic phase, the Ge content in ζ phase increases when undercooling increases, which is due to the restraint of the Ge enrichment on the grain boundaries by high undercooling effect.

  20. Structural transformation of Ge dimers on Ge(001) surfaces induced by bias voltage

    Institute of Scientific and Technical Information of China (English)

    Qin Zhi-Hui; Shi Dong-Xia; Gao Hong-Jun

    2008-01-01

    Scanning tunnelling microscopy is utilized to investigate the local bias voltage tunnelling dependent transformation between (2×1) and c(4×2) structures on Ge(001) surfaces, which is reversibly observed at room temperature and a critical bias voltage of -0.80 V. Similar transformation is also found on an epitaxial Ge islands but at a slightly different critical bias voltage of -1.00V. It is found that the interaction between the topmost atoms on the STM tip and the atoms of the dimers, and the pinning effect induced by Sb atoms, the vacancies or the epitaxial clusters, can drive the structural transformation at the critical bias voltage.

  1. Walking from 750 GeV to 950 GeV in the technipion zoo

    Science.gov (United States)

    Matsuzaki, Shinya; Yamawaki, Koichi

    2016-06-01

    If the 750-GeV diphoton excess is identified with the color-singlet isosinglet technipion P0 (750) in the one-family walking technicolor model, as in our previous paper, then there should exist another color-singlet technipion-isotriplet one, P±,3, predicted at around 950 GeV independently of the dynamical details. The P±,3(950 ) are produced at the LHC via vector-boson and photon-fusion processes, predominantly decaying to W γ and γ γ , respectively. Those walking technicolor signals can be explored at run 2 or 3, which would further open the door for a plethora of other (colored) technipions.

  2. Design of Ge/SiGe quantum-confined Stark effect modulators for CMOS compatible photonics

    Science.gov (United States)

    Lever, Leon; Ikonić, Zoran; Valavanis, Alex; Kelsall, Robert W.

    2010-02-01

    A simulation technique for modeling optical absorption in Ge/SiGe multiple quantum well (MQW) heterostructures is described, based on a combined 6 × 6 k • p hole wave-function a one-band effective mass electron wavefunction calculation. Using this model, we employ strain engineering to target a specific applications-oriented wavelength, namely 1310 nm, and arrive at a design for a MQW structure to modulate light at this wavelength. The modal confinement in a proposed device is then found using finite-element modeling, and we estimate the performance of a proposed waveguide-integrated electroabsorption modulator.

  3. Electronic structure of Ge-2 and Ge-2 and thermodynamic properties of Ge-2 from all electron ab initio investigations and Knudsen effusion mass spectroscopic measurements

    DEFF Research Database (Denmark)

    Shim, Irene; Baba, M. Sai; Gingerich, K.A.

    2002-01-01

    excited states are presented. Thermal functions based on the theoretically determined molecular parameters were used to derive the thermodynamic properties of the Ge-2 molecule from new mass spectrometric equilibrium data. The literature value for the dissociation energy of Ge-2 has been re...

  4. Room Temperature Electroluminescence from Tensile-Strained Si0.13Ge0.87/Ge Multiple Quantum Wells on a Ge Virtual Substrate

    Directory of Open Access Journals (Sweden)

    Guangyang Lin

    2016-09-01

    Full Text Available Direct band electroluminescence (EL from tensile-strained Si0.13Ge0.87/Ge multiple quantum wells (MQWs on a Ge virtual substrate (VS at room temperature is reported herein. Due to the competitive result of quantum confinement Stark effect and bandgap narrowing induced by tensile strain in Ge wells, electroluminescence from Γ1-HH1 transition in 12-nm Ge wells was observed at around 1550 nm. As injection current density increases, additional emission shoulders from Γ2-HH2 transition in Ge wells and Ge VS appeared at around 1300–1400 nm and 1600–1700 nm, respectively. The peak energy of EL shifted to the lower energy side superquadratically with an increase of injection current density as a result of the Joule heating effect. During the elevation of environmental temperature, EL intensity increased due to a reduction of energy between L and Γ valleys of Ge. Empirical fitting of the relationship between the integrated intensity of EL (L and injection current density (J with L~Jm shows that the m factor increased with injection current density, suggesting higher light emitting efficiency of the diode at larger injection current densities, which can be attributed to larger carrier occupations in the Γ valley and the heavy hole (HH valance band at higher temperatures.

  5. MELCOR 1.8.3 assessment: GE large vessel blowdown and level swell experiments

    Energy Technology Data Exchange (ETDEWEB)

    Kmetyk, L.N.

    1994-07-01

    MELCOR is a fully integrated, engineering-level computer code, being developed at Sandia National Laboratories for the USNRC, that models the entire spectrum of severe accident phenomena in a unified framework for both BWRs and PWRS. As part of an ongoing assessment program, the MELCOR computer code has been used to analyze a series of blowdown tests performed in the early 1980s at General Electric. The GE large vessel blowdown and level swell experiments are a set of primary system thermal/hydraulic separate effects tests studying the level swell phenomenon for BWR transients and LOCAS; analysis of these GE tests is intended to validate the new implicit bubble separation algorithm added since the release of MELCOR 1.8.2. Basecase MELCOR results are compared to test data, and a number of sensitivity studies on input modelling parameters and options have been done. MELCOR results for these experiments also are compared to MAAP and TRAC-B qualification analyses for the same tests. Time-step and machine-dependency calculations were done to identify whether any numeric effects exist in our GE large vessel blowdown and level swell assessment analyses.

  6. Group V adsorbate structures on vicinal Ge(001) surfaces determined from the optical spectrum

    Science.gov (United States)

    Banerjee, S.; Patterson, C. H.; McGilp, J. F.

    2017-06-01

    Vicinal Ge(001) is the standard substrate for the fabrication of high-performance solar cells by metal-organic vapour phase epitaxy, where growth of the III-V material on single domain Ge surfaces, with a single dimer orientation, minimizes the formation of anti-phase domain defects. Reflectance anisotropy spectroscopy has proved to be a powerful and sensitive optical probe of such anisotropic surface structures, but moving beyond fingerprinting to atomic structure determination from the optical spectra has been held back by the high computational cost. It is shown that an empirical, local-orbital-based hybrid density functional theory approach produces very good agreement between the theory and the experiment for (2 × 1)-As and (2 × 1)-Sb structures grown on vicinal Ge(001). These results, when taken together with previous work on Si interfaces, show that this computationally efficient approach is likely to prove to be an important general technique for determining the structure of anisotropic semiconductor surfaces and interfaces by comparing the experimental and calculated optical spectrum.

  7. Growth Mechanism and Surface Structure of Ge Nanocrystals Prepared by Thermal Annealing of Cosputtered GeSiO Ternary Precursor

    Directory of Open Access Journals (Sweden)

    Bo Zhang

    2014-01-01

    Full Text Available Ge nanocrystals (Ge-ncs embedded in a SiO2 superlattice structure were prepared by magnetron cosputtering and postdeposition annealing. The formation of spherical nanocrystals was confirmed by transmission electron microscopy and their growth process was studied by a combination of spectroscopic techniques. The crystallinity volume fraction of Ge component was found to increase with crystallite size, but its overall low values indicated a coexistence of crystalline and noncrystalline phases. A reduction of Ge-O species was observed in the superlattice during thermal annealing, accompanied by a transition from oxygen-deficient silicon oxide to silicon dioxide. A growth mechanism involving phase separation of Ge suboxides (GeOx was then proposed to explain these findings and supplement the existing growth models for Ge-ncs in SiO2 films. Further analysis of the bonding structure of Ge atoms suggested that Ge-ncs are likely to have a core-shell structure with an amorphous-like surface layer, which is composed of GeSiO ternary complex. The surface layer thickness was extracted to be a few angstroms and equivalent to several atomic layer thicknesses.

  8. Radiation-modified structure of Ge25Sb15S60 and Ge35Sb5S60 glasses.

    Science.gov (United States)

    Kavetskyy, T; Shpotyuk, O; Kaban, I; Hoyer, W

    2008-06-28

    Atomic structures of Ge(25)Sb(15)S(60) and Ge(35)Sb(5)S(60) glasses are investigated in the gamma-irradiated and annealed after gamma-irradiation states by means of high-energy synchrotron x-ray diffraction technique. The first sharp diffraction peak (FSDP) is detected at around 1.1 A(-1) in the structure factors of both alloys studied. The FSDP position is found to be stable for radiation/annealing treatment of the samples, while the FSDP intensity shows some changes between gamma-irradiated and annealed states. The peaks in the pair distribution functions observed between 2 and 4 A are related to the Ge-S, Ge-Sb, and Sb-Sb first neighbor correlations and Ge-Ge second neighbor correlations in the edge-shared GeS(42) tetrahedra, and S-S and/or Ge-Ge second neighbor correlations in the corner-shared GeS(42) tetrahedra. Three mechanisms of the radiation-/annealing-induced changes are discussed in the framework of coordination topological defect formation and bond-free solid angle concepts.

  9. Elasticity, Hardness and Thermal Conductivity of Si-Ge-Based Oxynitrides (SiGeN2O)

    Science.gov (United States)

    Ding, Yingchun; Chen, Min; Wu, Wenjuan; Xu, Ming

    2017-01-01

    Capitalizing on density functional theory, the novel Si-Ge-based oxynitrides (SiGeN2O) have been studied in terms of mechanical and thermal properties. Regarding α- or β-SiGeN2O, the SiGeN2O exhibits smaller mechanical moduli, suggesting a compressible and soft material. Our calculated lattice constants of two SiGeN2O phases are very consistent with other values. In addition, the hardness for SiGeN2O is investigated in details according to different semi-empirical methods. The results indicate a small hardness of two phases of SiGeN2O. Furthermore, the mechanical anisotropy, Debye temperature and the minimum thermal conductivity of two SiGeN2O compounds are clearly estimated for both SiGeN2O compounds. It is found that the SiGeN2O compounds show low thermal conductivity, which is suitable to be used as a thermal barrier coating.

  10. Elasticity, Hardness and Thermal Conductivity of Si-Ge-Based Oxynitrides (SiGeN2O)

    Science.gov (United States)

    Ding, Yingchun; Chen, Min; Wu, Wenjuan; Xu, Ming

    2016-09-01

    Capitalizing on density functional theory, the novel Si-Ge-based oxynitrides (SiGeN2O) have been studied in terms of mechanical and thermal properties. Regarding α- or β-SiGeN2O, the SiGeN2O exhibits smaller mechanical moduli, suggesting a compressible and soft material. Our calculated lattice constants of two SiGeN2O phases are very consistent with other values. In addition, the hardness for SiGeN2O is investigated in details according to different semi-empirical methods. The results indicate a small hardness of two phases of SiGeN2O. Furthermore, the mechanical anisotropy, Debye temperature and the minimum thermal conductivity of two SiGeN2O compounds are clearly estimated for both SiGeN2O compounds. It is found that the SiGeN2O compounds show low thermal conductivity, which is suitable to be used as a thermal barrier coating.

  11. Carbon Chains Containing Group IV Elements: Rotational Detection of GeC_4 and GeC_5

    Science.gov (United States)

    McCarthy, Michael C.; Martin-Drumel, Marie-Aline; Thorwirth, Sven

    2017-06-01

    Following the recent discovery of T-shaped GeC_2 by chirped-pulse FT microwave spectroscopy, evidence has been found for two longer carbon chains, GeC_4 and GeC_5, guided by high-level quantum chemical calculations of their molecular structure. Like their isovalent Si-bearing counterparts, those with an even number of carbon atoms are predicted to possess ^1Σ ground states, while odd-numbered carbon chains have low-lying ^3Σ linear isomers; all are predicted to be highly polar. With the exception of ^{73}Ge, rotational lines of the other four Ge isotopic species have been observed between 6 and 18 GHz. From these measurements, the Ge-C bond length has been determined to high precision, and can be compared to that found in other Ge species, such as GeC [1] and GeC_3Ge [2] studied previously at rotational resolution. Somewhat surprisingly, the spectrum of GeC_5 very closely resembles that of ^1Σ molecule, presumably owing to the very large spin-orbit constant of atomic Ge, which is manifest as an equally large spin-spin constant in the chain. A comparison between the production of SiC_n and GeC_n chains by laser ablation, including the absence of those with n=3, will be given. [1] C. R. Brazier and J. I. Ruiz, J. Mol. Spectrosc., 270, 26-32 (2011). [2] S. Thorwirth et al., J. Phys. Chem. A, 120, 254-259 (2016).

  12. High-pressure structural behavior of nanocrystalline Ge

    DEFF Research Database (Denmark)

    Wang, H.; Liu, J. F.; Yan, H.;

    2007-01-01

    The equation of state and the pressure of the I-II transition have been studied for nanocrystalline Ge using synchrotron x-ray diffraction. The bulk modulus and the transition pressure increase with decreasing particle size for both Ge-I and Ge-II, but the percentage volume collapse at the transi......The equation of state and the pressure of the I-II transition have been studied for nanocrystalline Ge using synchrotron x-ray diffraction. The bulk modulus and the transition pressure increase with decreasing particle size for both Ge-I and Ge-II, but the percentage volume collapse...... at the transition remains constant. Simplified models for the high-pressure structural behaviour are presented, based on the assumption that a large fraction of the atoms reside in grain boundary regions of the nanocrystalline material. The interface structure plays a significant role in affecting the transition...

  13. SiGe HBTs Optimization for Wireless Power Amplifier Applications

    Directory of Open Access Journals (Sweden)

    Pierre-Marie Mans

    2010-01-01

    Full Text Available This paper deals with SiGe HBTs optimization for power amplifier applications dedicated to wireless communications. In this work, we investigate the fT-BVCEO tradeoff by various collector optimization schemes such as epilayer thickness and dopant concentration, and SIC and CAP characteristics. Furthermore, a new trapezoidal base Germanium (Ge profile is proposed. Thanks to this profile, precise control of Ge content at the metallurgical emitter-base junction is obtained. Gain stability is obtained for a wide range of temperatures through tuning the emitter-base junction Ge percent. Finally, a comprehensive investigation of Ge introduction into the collector (backside Ge profile is conducted in order to improve the fT values at high injection levels.

  14. Nanoscale electrical properties of epitaxial Cu3Ge film

    Science.gov (United States)

    Wu, Fan; Cai, Wei; Gao, Jia; Loo, Yueh-Lin; Yao, Nan

    2016-07-01

    Cu3Ge has been pursued as next-generation interconnection/contact material due to its high thermal stability, low bulk resistivity and diffusion barrier property. Improvements in electrical performance and structure of Cu3Ge have attracted great attention in the past decades. Despite the remarkable progress in Cu3Ge fabrication on various substrates by different deposition methods, polycrystalline films with excess Ge were frequently obtained. Moreover, the characterization of nanoscale electrical properties remains challenging. Here we show the fabrication of epitaxial Cu3Ge thin film and its nanoscale electrical properties, which are directly correlated with localized film microstructures and supported by HRTEM observations. The average resistivity and work function of epitaxial Cu3Ge thin film are measured to be 6 ± 1 μΩ cm and ~4.47 ± 0.02 eV respectively, qualifying it as a good alternative to Cu.

  15. Nanoscale electrical properties of epitaxial Cu3Ge film

    Science.gov (United States)

    Wu, Fan; Cai, Wei; Gao, Jia; Loo, Yueh-Lin; Yao, Nan

    2016-01-01

    Cu3Ge has been pursued as next-generation interconnection/contact material due to its high thermal stability, low bulk resistivity and diffusion barrier property. Improvements in electrical performance and structure of Cu3Ge have attracted great attention in the past decades. Despite the remarkable progress in Cu3Ge fabrication on various substrates by different deposition methods, polycrystalline films with excess Ge were frequently obtained. Moreover, the characterization of nanoscale electrical properties remains challenging. Here we show the fabrication of epitaxial Cu3Ge thin film and its nanoscale electrical properties, which are directly correlated with localized film microstructures and supported by HRTEM observations. The average resistivity and work function of epitaxial Cu3Ge thin film are measured to be 6 ± 1 μΩ cm and ~4.47 ± 0.02 eV respectively, qualifying it as a good alternative to Cu. PMID:27363582

  16. Phase segregation in Pb:GeSbTe chalcogenide system

    Science.gov (United States)

    Kumar, J.; Ahmad, M.; Chander, R.; Thangaraj, R.; Sathiaraj, T. S.

    2008-01-01

    Effect of Pb substitution on the amorphous-crystalline transformation temperature, optical band gap and crystalline structure of Ge{2}Sb{2}Te{5} has been studied. In Pb:GeSbTe chalcogenide films prepared by thermal evaporation, an amorphous to crystallization transition is observed at 124, 129, 136 and 138 °C in Pb{0}Ge{20}Sb{24}Te{56}, Pb{1.6}Ge{19}Sb{26}Te{54}, Pb{3}Ge{17}Sb{28}Te{53} and Pb{5}Ge{12}Sb{28}Te{55} respectively. XRD investigations of annealed samples reveal that Pb substitution retains NaCl type crystalline structure of GST but expands the lattice due to large atomic radii. The increase in amorphous-crystalline transformation temperature is followed with the increase in phase segregation. The optical gap shows marginal variations with composition.

  17. Impacts of plasma-induced damage due to UV light irradiation during etching on Ge fin fabrication and device performance of Ge fin field-effect transistors

    Science.gov (United States)

    Mizubayashi, Wataru; Noda, Shuichi; Ishikawa, Yuki; Nishi, Takashi; Kikuchi, Akio; Ota, Hiroyuki; Su, Ping-Hsun; Li, Yiming; Samukawa, Seiji; Endo, Kazuhiko

    2017-02-01

    We investigated the impacts of plasma-induced damage due to UV light irradiation during etching on Ge fin fabrication and the device performance of Ge fin field-effect transistors (Ge FinFETs). UV light irradiation during etching affected the shape of the Ge fin and the surface roughness of the Ge fin sidewall. A vertical and smooth Ge fin could be fabricated by neutral beam etching without UV light irradiation. The performances of Ge FinFETs fabricated by neutral beam etching were markedly improved as compared to those of Ge FinFETs fabricated by inductively coupled plasma etching, in which the UV light has an impact.

  18. 500 GeV ILC Operating Scenarios

    CERN Document Server

    Brau, James E; Barklow, T; Brau, J; Fujii, K; Gao, J; List, J; Walker, N; Yokoya, K

    2015-01-01

    The ILC Technical Design Report documents the design of a 500 GeV linear collider, but does not specify the center-of-mass energy steps of operation for the collider. The ILC Parameters Joint Working Group has studied possible running scenarios, including a realistic estimate of the real time accumulation of integrated luminosity based on ramp-up and upgrade processes, and considered the evolution of the physics outcomes. These physics goals include Higgs precision measurements, top quark measurements and searches for new physics. We present an "optimized" operating scenario and the anticipated evolution of the precision of the ILC measurements.

  19. Dislocation-templated amorphization of Ge2Sb2Te5 nanowires under electric pulses: A theoretical model

    Science.gov (United States)

    Ji, Xiang-Ying; Feng, Xi-Qiao

    2013-06-01

    Owing to their unique phase change property, GeSbTe alloys hold promise for applications as a candidate material for nonvolatile electronic data storage. In this paper, we theoretically investigate the dislocation mechanisms underlying the phase change phenomenon of GeSbTe alloys under electric pulses. On the basis of the recent experiments by Nam et al. (Science 336, 1561-1566 (2012)), a theoretical model is presented to rationalize the dislocation-templated amorphization process under the action of electric pulses. The physical mechanisms of the nucleation, movement, and multiplication of dislocations in the electric field are analyzed. Using the model, the evolutions of temperature and dislocation density in a Ge2Sb2Te5 nanowire under electric pulses are computed and the critical voltage of amorphization is predicted.

  20. Native point defects and doping in ZnGeN2

    Science.gov (United States)

    Skachkov, Dmitry; Punya Jaroenjittichai, Atchara; Huang, Ling-yi; Lambrecht, Walter R. L.

    2016-04-01

    A computational study within the framework of density functional theory in the local density approximation (LDA) is presented for native defects and doping in ZnGeN2. Gap corrections are taken into account using an LDA+U approach and finite size corrections for charged defects are evaluated in terms of an effective charge model, introduced in this paper. The donor or acceptor characteristics of each of the cation and N vacancies and the two cation antisite defects are determined as well as their energies of formation under different chemical potential conditions. These are then used to determine defect concentrations and Fermi level pinning self-consistently. The cation antisite defects are found to have significantly lower formation energy than the cation vacancies. At a typical growth temperature of 1200 K, the charge neutrality condition pins the Fermi level close to the crossing of the formation energies of the ZnGe-1 acceptor with the GeZn2 + shallow donor. Since this point lies closer to the valence-band maximum (VBM), intrinsic p -type doping would result at the growth temperature and will persist at room temperature if the defect concentrations are frozen in. It is the highest and of order 1016cm-3 for the most Ge-poor condition. On the other hand, for the most Ge-poor condition, it drops to 1013cm-3 at 1200 K and to almost zero at 300 K because then the Fermi level is too close to the middle of the gap. Oxygen impurities are found to strongly prefer the ON substitutional site and are found to be shallow donors with a very low energy of formation. It can only be suppressed by strongly reducing the oxygen partial pressure relative to that of nitrogen. At high temperatures, however, introduction of oxygen will be accompanied by compensating ZnGe-2 acceptors and would lead to negligible net doping. The prospects for Ga base p -type doping are evaluated. While good solubility is expected, site competition between Zn and Ge sites is found to lead to a

  1. Ab-initio studies of Au-induced atomic wires on Ge(001)

    Energy Technology Data Exchange (ETDEWEB)

    Sauer, Simeon [Institut fuer Festkoerpertheorie und -optik, Universitaet Jena, D-07743 Jena (Germany); Physikalisches Institut, Universitaet Freiburg, D-79104 Freiburg (Germany); Fuchs, Frank; Bechstedt, Friedhelm [Institut fuer Festkoerpertheorie und -optik, Universitaet Jena, D-07743 Jena (Germany); Blumenstein, Christian; Schaefer, Joerg [Physikalisches Institut, Universitaet Wuerzburg, D-97074 Wuerzburg (Germany)

    2010-07-01

    Au-induced atomic wires on Ge(001) are a promising model system to study the physics of one-dimensional electron liquids. However, the results of scanning tunneling microscopy (STM) experiments do not permit to unambiguously determine the arrangement of surface atoms. Several questions remain unresolved: Are the observed protrusions formed by Au atoms only or do they incorporate Ge as well? What is their absolute height? Therefore, we theoretically investigate possible atomic geometries of the surface in the framework of density functional theory. For each model, features like surface energy, STM images, and band structure are calculated. The computed properties are compared to experimental data and used to evaluate the different models. Due to the large variety of possible geometries no final statement about the atomic structure of the surface can be made. However, the calculations give good indications towards the correct geometry, e.g. ruling out models proposed in literature or identifying stabilizing building blocks.

  2. Modification to the Klein-Nishina cross section for Ge electrons at high statistics limit

    Energy Technology Data Exchange (ETDEWEB)

    Wang, T.F.

    1995-11-03

    Modification factors for the Klein-Nishina cross-sections for gamma-ray with energies between 50 keV and 250 keV incident on Ge electrons have been obtained at the high statistics limit. In this limit, the Ge electrons can then be treated as they are obtained from the self-consistent augmented plane wave calculations, without considering the orientation of crystal lattice with respect to incident photons. The kinematics corrections (i.e. outgoing momenta), on the other hand, have to be taken into account on an event by event basis. Even so, the computing time has been reduced dramatically since the relativistic calculation of the modifications to the Klein-Nishina cross sections is the most tedious one. The modification factors are almost linear with respect to incident photon energy in the interesting energy range with respect to a given photon outgoing angle.

  3. Short Range Order Signature in Crystalline and Amorphous GeSbTe Xanes Spectra

    Science.gov (United States)

    Raty, Jean-Yves; Otjacques, C. Éline; Pekoz, Rengin; Bichara, Christophe; Lordi, Vince

    2011-03-01

    A new implementation of XANES spectra calculations within DFT and PAW potentials is used to compute the XANES spectra of various amorphous and crystalline GeSbTe structures. A clear correlation between the local order, either tetrahedral or distorted octahedral, and the shape of the XANES signal is observed. These calculations provide a new interpretation of past XANES measurements, relating essentially the phase change mechanism to a moderate modification of the local environment of the Ge atoms. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. This work was supported by the Belgian PAI 3/42 program and the FNRS-FRFC.

  4. Theoretical Study on the Structures and Isomerization of Germylenoid GeH2LiCl

    Institute of Scientific and Technical Information of China (English)

    ZHU Yue-Feng; FANG Yu-Zhen; ZHOU Jian-Hua; MA Wan-Yong

    2007-01-01

    Using geometrical optimization and DFT method at the B3LYP/6-311++G (3df,3pd) level, four equilibrium geometries and one transition state of GeH2LiCl were identified, and the structures at the MP2/6-311++G(3df,3pd) level were calculated simultaneously. We also studied the solvent effects on the structures of Germylenoid GeH2LiCl at the B3LYP/6-311++G (3df,3pd) level. The two more stable forms are suggested to be the p-complex and three-membered ring. The vibrational frequencies and infrared intensities were computed at the B3LYP/6-311++G (3df,3pd) level.

  5. Commissioning and Operation of 12 GeV CEBAF

    Energy Technology Data Exchange (ETDEWEB)

    Freyberger, Arne P. [Jefferson Lab., Newport News, VA (United States)

    2015-09-01

    The Continuous Electron Beam Accelerator Facility (CEBAF) located at the Thomas Jefferson National Accelerator Laboratory (JLab) has been recently upgraded to deliver continuous electron beams to the experimental users at a maximum energy of 12 GeV, three times the original design energy of 4 GeV. This paper will present an overview of the upgrade, referred to as the 12GeV upgrade, and highlights from recent beam commissioning results.

  6. Optical phonons in Ge quantum dots obtained on Si(111)

    CERN Document Server

    Talochkin, A B

    2002-01-01

    The light combination scattering on the optical phonons in the Ge quantum dots, obtained on the Si surface of the (111) orientation through the molecular-beam epitaxy, is studied. The series of lines, connected with the phonon spectrum quantization, was observed. It is shown, that the phonon modes frequencies are well described by the elastic properties and dispersion of the voluminous Ge optical phonons. The value of the Ge quantum dots deformation is determined

  7. Surface reactivity of Ge[111] for organic functionalization by means of a radical-initiated reaction: A DFT study

    Energy Technology Data Exchange (ETDEWEB)

    Rubio-Pereda, Pamela, E-mail: rubio.pereda@gmail.com [Centro de Investigación Científica y de Educación Superior de Ensenada 3918, Código Postal 22860, Ensenada, Baja California (Mexico); Takeuchi, Noboru, E-mail: takeuchi@cnyn.unam.mx [Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Apartado Postal 14, Código Postal 22800, Ensenada, Baja California (Mexico)

    2016-08-30

    Highlights: • The surface reactivity of the Ge [111] surface is studied with DFT for the attachment of organic molecules by means of a radical-initiated reaction. • A hydrogen vacancy in the hydrogen terminated Ge [111] surface exhibits an accumulation of charge and electron pairing. • These characteristics make the hydrogen vacancy less reactive for the attachment of unsaturated organic molecules. • The adsorption of acetylene is probable to occur while the adsorption of ethylene and styrene is substantially less probable to occur. • The hydrogen terminated Ge [111] surface is found to be less reactive than its two-dimensional analogue, the hydrogen-terminated germanene. - Abstract: The study of interfacial chemistry at semiconductor surfaces has become an important area of research. Functionalities such as molecular recognition, biocompatibility of surfaces, and molecular computing, could be achieved by the combinations of organic chemistry with the semiconductor technology. One way to accomplish this goal is by means of organic functionalization of semiconductor surfaces such as the bulk-terminated germanium surfaces, more specifically the Ge[111]. In this work, we theoretically study, by applying density functional theory, the surface reactivity of the bulk-terminated Ge[111] surface for organic functionalization by means of a radical-initiated reaction of unsaturated molecules such as acetylene, ethylene and styrene with a hydrogen vacancy on a previously hydrogen-terminated Ge[111] surface. Results derived from this work are compared with those obtained in our previous calculations on the germanene surface, following the same chemical route. Our calculations show an accumulation of electronic charge at the H-vacancy having as a result electron pairing due to strong lattice-electron coupling and therefore a diminished surface reactivity. Calculation of the transition states for acetylene and ethylene indicates that the surface reactivity of the

  8. The Proposed Majorana 76Ge Double-Beta Decay Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Aalseth, Craig E; Anderson, Dale N; Arthur, Richard J; Avignone, Frank; Baktash, Cryus; Ball, Thedore; Barabash, Alexander S; Bertrand, F; Brodzinski, Ronald L; Brudanin, V; Bugg, William; Champagne, A E; Chan, Yuen-Dat; Cianciolo, Thomas V; Collar, J I; Creswick, R W; Descovich, M; Di Marco, Marie; Doe, P J; Dunham, Glen C; Efremenko, Yuri; Egerov, V; Ejiri, H; Elliott, Steven R; Emanuel, A; Fallon, Paul; Farach, H A; Gaitskell, R J; Gehman, Victor; Grzywacz, Robert; Hallin, A; Hazma, R; Henning, R; Hime, Andrew; Hossbach, Todd W; Jordan, David V; Kazkaz, K; Kephart, Jeremy; King, G S; Kochetov, Oleg; Konovalov, S; Kouzes, Richard T; Lesko, Kevin; Luke, P; Luzum, M; Macchiavelli, A O; McDonald, A; Mei, Dongming; Miley, Harry S; Mills, G B; Mokhtarani, A; Nomachi, Masaharu; Orrell, John L; Palms, John M; Poon, Alan; Radford, D C; Reeves, James H; Robertson, R G. H.; Runkle, Robert C; Rykaczewski, Krzysztof P; Saburov, Konstantin; Sandukovsky, Viatcheslav; Sonnenschein, Andrew; Tornow, W; Tull, C; van de Water, R G; Vanushin, Igor; Vetter, Kai; Warner, Ray A; Wilkerson, John F; Wouters, Jan M; Young, A R; Yumatov, V

    2005-01-01

    The proposed Majorana experiment is based on an array of segmented intrinsic Ge detectors with a total mass of 500 kg of Ge isotopically enriched to 86% in 76Ge. Background reduction will be accomplished by: material selection, detector segmentation, pulse shape analysis, electro-formation of copper parts, and granularity of detector spacing. The predicted experimental sensitivity for measurement of the neutrinoless double-beta decay mode of 76Ge, over a data acquisition period of 5000 kg•y, is ~ 4 x 1027 y.

  9. Growth of Ge films by cluster beam deposition

    CERN Document Server

    Xu, J L; Feng, J Y

    2002-01-01

    Ge epitaxial layers with reasonable quality were grown on the Si(1 1 1) substrates by cluster beam deposition (CBD) process. The growth temperature plays a dominant role in the epitaxial growth of Ge films. The substrate temperature for epitaxial growth is about 500 deg. C, which is lower than the reported critical temperature of Ge epitaxial growth by MBE and CVD. A stress induced phase transition of Ge lattice from cubic to tetragonal is also observed in the CBD process, and the mechanism is discussed.

  10. Impacts of excimer laser annealing on Ge epilayer on Si

    Science.gov (United States)

    Huang, Zhiwei; Mao, Yichen; Yi, Xiaohui; Lin, Guangyang; Li, Cheng; Chen, Songyan; Huang, Wei; Wang, Jianyuan

    2017-02-01

    The impacts of excimer laser annealing on the crystallinity of Ge epilayers on Si substrate grown by low- and high-temperature two-step approach in an ultra-high vacuum chemical vapor deposition system were investigated. The samples were treated by excimer laser annealing (ELA) at various laser power densities with the temperature above the melting point of Ge, while below that of Si, resulting in effective reduction of point defects and dislocations in the Ge layer with smooth surface. The full-width at half-maximum (FWHM) of X-ray diffraction patterns of the low-temperature Ge epilayer decreases with the increase in laser power density, indicating the crystalline improvement and negligible effect of Ge-Si intermixing during ELA processes. The short laser pulse time and large cooling rate cause quick melting and recrystallization of Ge epilayer on Si in the non-thermal equilibrium process, rendering tensile strain in Ge epilayer as calculated quantitatively with thermal mismatch between Si and Ge. The FWHM of X-ray diffraction patterns is significantly reduced for the two-step grown samples after treated by a combination of ELA and conventional furnace thermal annealing, indicating that the crystalline of Ge epilayer is improved more effectively with pre- annealing by excimer laser.

  11. On the macroscopic formation length for GeV photons

    CERN Document Server

    Thomsen, H D; Kirsebom, K; Knudsen, H; Uggerhøj, E; Uggerhøj1, U I; Sona, P; Mangiarotti, A; Ketel, T J; Dizdar, A; Dalton, M M; Ballestrero, S; Connell, S H

    2009-01-01

    Experimental results for the radiative energy loss of 206 and 234 GeV electrons in 5–10 μm thin Ta targets are presented. An increase in radiation emission probability at low photon energies compared to a 100 μm thick target is observed. This increase is due to the formation length of the GeV photons exceeding the thickness of the thin foils, the so-called Ternovskii–Shul'ga–Fomin (TSF) effect. The formation length of GeV photons from a multi-hundred GeV projectile is through the TSF effect shown directly to be a factor 1010 longer than their wavelength.

  12. Non-Selective SiGe Graphic Epitaxial by MBE

    Institute of Scientific and Technical Information of China (English)

    Qian Zhou; Chun Han; Jing-Chun Li

    2007-01-01

    To handle the thermal budget in SiGe BiCMOS process, a nonselective graphic epitaxial technology using molecular beam epitaxial (MBE) has been developed. SEM, AFM, XRD, and dislocation density measurements are carried out. The SiGe film's RMS roughness is 0.45nm, and dislocation density is 0.3×103cm2~1.2×103cm2. No dislocation accumulation exists on the boundary of the windows; this indicates the high quality of the SiGe film. The experiment results show that the technology presented in this paper meets the fabrication requirements of SiGe BiCMOS.

  13. Formation of extended defects in SiGe/Si heterostructures with SiGeC intermediate layers

    Energy Technology Data Exchange (ETDEWEB)

    Vdovin, V.I.; Reznik, V.Ya. [Institute for Chemical Problems of Microelectronics, Moscow (Russian Federation); Torack, T.A.; Fei, Lu [MEMC Inc, St Peters, MO (United States); Mil' vidskii, M.G. [Institute of Rare Metals ' Giredmet' , Moscow (Russian Federation); Falster, R. [MEMC Electronic Materials SpA, Novara (Italy)

    2007-07-01

    The generation of misfit dislocations (MDs) and stacking faults (SFs) was studied by TEM and preferential chemical etching in multilayer Si(001)/SiGe/SiGeC(10 nm)/SiGe/Si heterostructures grown by CVD at 650 C. Prior to growth of Si layer, the other part of heterostructure was annealed at 950 C in the growth chamber to get relaxed buffer layers and strained Si layer free of extended defects. We used SiGe alloys with Ge content of 24 at.% and C content of 0.5 at.%. Carbon in the strained SiGe matrix was found to promote high rates of strain relaxation through the nucleation of perfect dislocation loops close to the interface with Si substrate. For Si layer thickness >10 nm, threading dislocations split in these layers under tensile strain to form SFs. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  14. Investigation of Ge1-xSnx/Ge with high Sn composition grown at low-temperature

    Directory of Open Access Journals (Sweden)

    I. S. Yu

    2011-12-01

    Full Text Available We report on experimental investigations of the growth of Ge1-xSnx film with thickness above the critical thickness using Molecular Beam Epitaxy. A series of Ge1-xSnx films with various Sn compositions up to 14% are deposited on a Ge buffer layer for growth at low temperatures close to the melting point of Sn. Analysis of various measurements shows that the Ge1-xSnx film is defect free in the XTEM image and that Sn is distributed almost uniformly in the film for Sn compositions up to 9.3%. The Sn composition of the films is higher than the Sn composition that is theoretically predicted to cause the energy band of Ge to change from an indirect to a direct bandgap; thus, the present investigation provides a method for growing direct bandgap GeSn film, which is desired for use in applications involving optoelectronic devices.

  15. GeSn p-i-n photodetectors with GeSn layer grown by magnetron sputtering epitaxy

    Science.gov (United States)

    Zheng, Jun; Wang, Suyuan; Liu, Zhi; Cong, Hui; Xue, Chunlai; Li, Chuanbo; Zuo, Yuhua; Cheng, Buwen; Wang, Qiming

    2016-01-01

    We report an investigation of normal-incidence GeSn-based p-i-n photodetectors (PDs) with a Ge0.94Sn0.06 active layer grown using sputter epitaxy on a Ge(100) substrate. A low dark current density of 0.24 A/cm2 was obtained at a reverse bias of 1 V. A high optical responsivity of the Ge0.94Sn0.06/Ge p-i-n PDs at zero bias was achieved, with an optical response wavelength extending to 1985 nm. The temperature-dependent optical-response measurement was performed, and a clear redshift absorption edge was observed. This work presents an approach for developing efficient and cost-effective GeSn-based infrared devices.

  16. Gamma bandgap determination in pseudomorphic GeSn layers grown on Ge with up to 15% Sn content

    Science.gov (United States)

    Gassenq, A.; Milord, L.; Aubin, J.; Guilloy, K.; Tardif, S.; Pauc, N.; Rothman, J.; Chelnokov, A.; Hartmann, J. M.; Reboud, V.; Calvo, V.

    2016-12-01

    Adding Tin (Sn) to Germanium (Ge) can turn it into a direct bandgap group IV semiconductor emitting in the mid-infrared wavelength range. Several approaches are currently being investigated to improve the GeSn devices. It has been theoretically predicted that the strain can improve their optical properties. However, the impact of strain on band parameters has not yet been measured for really high Sn contents (i.e., above 11%). In this work, we have used the photocurrent and photoluminescence spectroscopy to measure the gamma bandgap in compressively strained GeSn layers grown on Ge buffers. A good agreement is found with the modeling and the literature. We show here that the conventional GeSn deformation potentials used in the literature for smaller Sn contents can be applied up to 15% Sn. This gives a better understanding of strained-GeSn for future laser designs.

  17. In-situ Ga doping of fully strained Ge1-xSnx heteroepitaxial layers grown on Ge(001) substrates

    DEFF Research Database (Denmark)

    Shimura, Y.; Takeuchi, S.; Nakatsuka, O.;

    2012-01-01

    to the introduction of dislocations, due to the increase in the strain of the Ge1-xSnx layers. We achieved the growth of a fully strained Ge0.922Sn0.078 layer on Ge with a Ga concentration of 5.5×1019 /cm3 without any dislocations and stacking faults. The resistivity of the Ga-doped Ge1-xSnx layer decreased as the Sn...... content was increased. This decrease was due to an increase in the carrier concentration, with an increase in the activation level of Ga atoms in the Ge1-xSnx epitaxial layers being induced by the introduction of Sn. As a result, we found that the resistivity for the Ge0.950Sn0.050 layer annealed at 600°C...

  18. Magneto-transport properties of MnGeP2 and MnGeAs2 films

    Directory of Open Access Journals (Sweden)

    Yunki Kim

    2016-12-01

    Full Text Available MnGeAs2 and MnGeP2 thin films were deposited on GaAs and Si substrates. For these film samples, roomtemperature ferromagnetism was observed from magnetization and resistance measurements and verified from hysteresis in magnetization measurements. Hysteresis as well as anomalous behavior in Hall effect measurements was found in the deposited MnGeAs2 and MnGeP2 films, implying spin polarization of the mobile carriers in the films. The Hall resistance measurements above the ferromagnetic transition temperature showed that the carriers are n-type in MnGeAs2 and p-type in MnGeP2.

  19. Structural and phonon transmission study of Ge-Au-Ge eutectically bonded interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Knowlton, W.B. [Univ. of California, Berkeley, CA (United States). Dept. of Materials Science and Mineral Engineering]|[Lawrence Berkeley Lab., CA (United States). Materials Sciences Div.

    1995-07-01

    This thesis presents a structural analysis and phonon transparency investigation of the Ge-Au-Ge eutectic bond interface. Interface development was intended to maximize the interfacial ballistic phonon transparency to enhance the detection of the dark matter candidate WIMPs. The process which was developed provides an interface which produces minimal stress, low amounts of impurities, and insures Ge lattice continuity through the interface. For initial Au thicknesses of greater than 1,000 {angstrom} Au per substrate side, eutectic epitaxial growth resulted in a Au dendritic structure with 95% cross sectional and 90% planar Au interfacial area coverages. In sections in which Ge bridged the interface, lattice continuity across the interface was apparent. Epitaxial solidification of the eutectic interface with initial Au thicknesses < 500 A per substrate side produced Au agglomerations thereby reducing the Au planar interfacial area coverage to as little as 30%. The mechanism for Au coalescence was attributed to lateral diffusion of Ge and Au in the liquid phase during solidification. Phonon transmission studies were performed on eutectic interfaces with initial Au thicknesses of 1,000 {angstrom}, 500 {angstrom}, and 300 {angstrom} per substrate side. Phonon imaging of eutectically bonded samples with initial Au thicknesses of 300 {angstrom}/side revealed reproducible interfacial percent phonon transmissions from 60% to 70%. Line scan phonon imaging verified the results. Phonon propagation TOF spectra distinctly showed the predominant phonon propagation mode was ballistic. This was substantiated by phonon focusing effects apparent in the phonon imaging data. The degree of interface transparency to phonons and resulting phonon propagation modes correlate with the structure of the interface following eutectic solidification. Structural studies of samples with initial Au thickness of 1,000 {angstrom}/side appear to correspond with the phonon transmission study.

  20. Elastic phases of Ge(x)Sb(x)Se(100-2x) ternary glasses driven by topology.

    Science.gov (United States)

    Gunasekera, Kapila; Boolchand, P; Micoulaut, M

    2013-08-29

    Topology offers a practical set of computational tools to accurately predict certain physical and chemical properties of materials including transformations under deformation. In network glasses with increased cross-linking three generic elastic phases are observed. We examine ternary Ge(x)Sb(x)Se(100-2x) glasses in Raman scattering, modulated DSC and volumetric measurements, and observe the rigidity transition, x = x(c)(1) = 14.9% that separates the flexible phase from the Intermediate phase, and the stress transition, x = x(c)(2) = 17.5% that separate the intermediate phase from the stressed rigid one. Raman scattering provides evidence of the structural motifs populated in these networks. Using size increasing cluster agglomeration, we have calculated the rigidity and stress transitions to occur near x(c)(1)(t) = 15.2% and x(c)(2)(t) = 17.5%, respectively. Theory predicts and experiments confirm that these two transitions will coalesce if edge-sharing Ge-tetrahedral motifs were absent in the structure, a circumstance that prevails in the Ge-deficient Ge7Sb(x)Se(93-x) ternary, underscoring the central role played by topology in network glasses. We have constructed a global elastic phase diagram of the Ge-Sb-Se ternary that provides a roadmap to network functionality. In this diagram, regions labeled A, B, and C comprise networks that are flexible, rigid but unstressed, and stressed-rigid, respectively.

  1. Multi-GeV Electron Spectrometer

    CERN Document Server

    Faccini, R; Bacci, A; Batani, D; Bellaveglia, M; Benocci, R; Benedetti, C; Cacciotti, L; Cecchetti, C A; Clozza, A; Cultrera, L; Di~Pirro, G; Drenska, N; Anelli, F; Ferrario, M; Filippetto, D; Fioravanti, S; Gallo, A; Gamucci, A; Gatti, G; Ghigo, A; Giulietti, A; Giulietti, D; Gizzi, L A; Koester, P; Labate, L; Levato, T; Lollo, V; Londrillo, P; Martellotti, S; Pace, E; Patack, N; Rossi, A; Tani, F; Serafini, L; Turchetti, G; Vaccarezza, C; Valente, P

    2010-01-01

    The advance in laser plasma acceleration techniques pushes the regime of the resulting accelerated particles to higher energies and intensities. In particular the upcoming experiments with the FLAME laser at LNF will enter the GeV regime with almost 1pC of electrons. From the current status of understanding of the acceleration mechanism, relatively large angular and energy spreads are expected. There is therefore the need to develop a device capable to measure the energy of electrons over three orders of magnitude (few MeV to few GeV) under still unknown angular divergences. Within the PlasmonX experiment at LNF a spectrometer is being constructed to perform these measurements. It is made of an electro-magnet and a screen made of scintillating fibers for the measurement of the trajectories of the particles. The large range of operation, the huge number of particles and the need to focus the divergence present unprecedented challenges in the design and construction of such a device. We will present the design ...

  2. A 100 GeV SLAC Linac

    Energy Technology Data Exchange (ETDEWEB)

    Farkas, Zoltan D

    2002-03-07

    The SLAC beam energy can be increased from the current 50 GeV to 100 GeV, if we change the operating frequency from the present 2856 MHz to 11424 MHz, using technology developed for the NLC. We replace the power distribution system with a proposed NLC distribution system as shown in Fig. 1. The four 3 meter s-band 820 nS fill time accelerator sections are replaced by six 2 meter x-band 120 nS fill time sections. Thus the accelerator length per klystron retains the same length, 12 meters. The 4050 65MW-3.5 {micro}S klystrons are replaced by 75MW-1.5 {micro}S permanent magnet klystrons developed here and in Japan. The present input to the klystrons would be multiplied by a factor of 4 and possibly amplified. The SLED [1] cavities have to be replaced. The increase in beam voltage is due to the higher elastance to group velocity ratio, higher compression ratio and higher unloaded to external Q ratio of the new SLED cavities. The average power input is reduced because of the narrower klystron pulse width and because the klystron electro-magnets are replaced by permanent magnets.

  3. Towards simultaneous achievement of carrier activation and crystallinity in Ge and GeSn with heated phosphorus ion implantation: An optical study

    Science.gov (United States)

    D'Costa, Vijay Richard; Wang, Lanxiang; Wang, Wei; Lim, Sin Leng; Chan, Taw Kuei; Chua, Lye Hing; Henry, Todd; Zou, Wei; Hatem, Christopher; Osipowicz, Thomas; Tok, Eng Soon; Yeo, Yee-Chia

    2014-09-01

    We have investigated the optical properties of Ge and GeSn alloys implanted with phosphorus ions at 400 °C by spectroscopic ellipsometry from far-infrared to ultraviolet. The dielectric response of heated GeSn implants displays structural and transport properties similar to those of heated Ge implants. The far-infrared dielectric function of as-implanted Ge and GeSn shows the typical free carrier response which can be described by a single Drude oscillator. Bulk Ge-like critical points E1, E1 + Δ1, E0', and E2 are observed in the visible-UV dielectric function of heated Ge and GeSn indicating single crystalline quality of the as-implanted layers. Although the implantation at 400 °C recovers crystallinity in both Ge and GeSn, an annealing step is necessary to enhance the carrier activation.

  4. Strong room temperature electroluminescence from lateral p-SiGe/i-Ge/n-SiGe heterojunction diodes on silicon-on-insulator substrate

    Science.gov (United States)

    Lin, Guangyang; Yi, Xiaohui; Li, Cheng; Chen, Ningli; Zhang, Lu; Chen, Songyan; Huang, Wei; Wang, Jianyuan; Xiong, Xihuan; Sun, Jiaming

    2016-10-01

    A lateral p-Si0.05Ge0.95/i-Ge/n-Si0.05Ge0.95 heterojunction light emitting diode on a silicon-on-insulator (SOI) substrate was proposed, which is profitable to achieve higher luminous extraction compared to vertical junctions. Due to the high carrier injection ratio of heterostructures and optical reflection at the SiO2/Si interface of the SOI, strong room temperature electroluminescence (EL) at around 1600 nm from the direct bandgap of i-Ge with 0.30% tensile strain was observed. The EL peak intensity of the lateral heterojunction is enhanced by ˜4 folds with a larger peak energy than that of the vertical Ge p-i-n homojunction, suggesting that the light emitting efficiency of the lateral heterojunction is effectively improved. The EL peak intensity of the lateral heterojunction, which increases quadratically with injection current density, becomes stronger for diodes with a wider i-Ge region. The CMOS compatible fabrication process of the lateral heterojunctions paves the way for the integration of the light source with the Ge metal-oxide-semiconductor field-effect-transistor.

  5. Magnetic and electrical properties of epitaxial GeMn

    Energy Technology Data Exchange (ETDEWEB)

    Ahlers, Stefan

    2009-01-15

    In this work, GeMn magnetic semiconductors will be investigated. The fabrication of GeMn thin films with Mn contents up to 11.7% was realised with molecular beam epitaxy. At a fabrication temperature of 60 C, the suppression of Mn{sub x}Ge{sub y} phases could reproducibly be obtained. Dislocation free epitaxy of diamond-lattice type GeMn thin films was observed. In all fabrication conditions where Mn{sub x}Ge{sub y} suppression was feasible, an inhomogeneous dispersion of Mn was observed in form of a self-assembly of nanometre sized, Mn rich regions in a Ge rich matrix. Each Mn rich region exhibits ferromagnetic coupling with high Curie temperatures exceeding, in part, room temperature. The local ferromagnetic ordering leads to the formation of large, spatially separated magnetic moments, which induce a superparamagnetic behaviour of the GeMn thin films. At low temperatures {<=} 20 K, remanent behaviour was found to emerge. X-ray absorption experiments revealed a similarity of the Mn incorporation in diamond-lattice type GeMn thin films and in the hexagonal lattice of the intermetallic Mn{sub 5}Ge{sub 3} phase, respectively. These tetrahedra represent building blocks of the Mn{sub 5}Ge{sub 3} unit cell. The incorporation of Mn{sub 5}Ge{sub 3} building blocks was found to be accompanied by local structural disorder. The electrical properties of GeMn thin films were addressed by transport measurements. It was shown that by using a n-type Ge substrate, a pn energy barrier between epilayers and substrate to suppress parallel substrate conduction paths can be introduced. With the pn barrier concept, first results on the magnetotransport behaviour of GeMn thin films were obtained. GeMn was found to be p-type, but of high resistivity. a series of GeMn thin films was fabricated, where intermetallic Mn{sub x}Ge{sub y} phase separation was supported in a controlled manner. Phase separation was found to result in the formation of partially coherent, nanometre sized Mn{sub 5

  6. Fabrication of GeSn-multiple quantum wells by overgrowth of Sn on Ge by using molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, F. [Institute for Semiconductor Engineering, University of Stuttgart, 70569 Stuttgart (Germany); Centre of Physics, University of Minho, Campus de Gualtar, 4710-057 Braga (Portugal); Fischer, I. A.; Schulze, J. [Institute for Semiconductor Engineering, University of Stuttgart, 70569 Stuttgart (Germany); Benedetti, A. [CACTI, Univ. de Vigo, Campus Universitario Lagoas Marcosende 15, Vigo (Spain); Zaumseil, P. [IHP GmbH, Innovations for High Performance Microelectronics, Leibniz-Institut für innovative Mikroelektronik, Im Technologiepark 25, 15236 Frankfurt (Oder) (Germany); Cerqueira, M. F.; Vasilevskiy, M. I. [Centre of Physics, University of Minho, Campus de Gualtar, 4710-057 Braga (Portugal); Stefanov, S.; Chiussi, S. [Dpto. Fisica Aplicada, Univ. de Vigo, Rua Maxwell s/n, Campus Universitario Lagoas Marcosende, Vigo (Spain)

    2015-12-28

    We report on the fabrication and structural characterization of epitaxially grown ultra-thin layers of Sn on Ge virtual substrates (Si buffer layer overgrown by a 50 nm thick Ge epilayer followed by an annealing step). Samples with 1 to 5 monolayers of Sn on Ge virtual substrates were grown using solid source molecular beam epitaxy and characterized by atomic force microscopy. We determined the critical thickness at which the transition from two-dimensional to three-dimensional growth occurs. This transition is due to the large lattice mismatch between Ge and Sn (≈14.7%). By depositing Ge on top of Sn layers, which have thicknesses at or just below the critical thickness, we were able to fabricate ultra-narrow GeSn multi-quantum-well structures that are fully embedded in Ge. We report results on samples with one and ten GeSn wells separated by 5 and 10 nm thick Ge spacer layers that were characterized by high resolution transmission electron microscopy and X-ray diffraction. We discuss the structure and material intermixing observed in the samples.

  7. Room-temperature direct-bandgap photoluminescence from strain-compensated Ge/SiGe multiplequantum wells on silicon

    Institute of Scientific and Technical Information of China (English)

    Hu Wei-Xuan; Cheng Bu-Wen; Xue Chun-Lai; Zhang Guang-Ze; Su Shao-Jian; Zuo Yu-Hua; Wang Qi-Ming

    2012-01-01

    Strain-compensated Ge/Si0.15Ge0.s5 multiple quantum wells were grown on an Si0.1Ge0.9 virtual substrate using ultrahigh vacuum chemical vapor deposition technology on an n+-Si(001) substrate.Photoluminescence measurements were performed at room temperature,and the quantum confinement effect of the direct-bandgap transitions of a Ge quantum well was observed,which is in good agreement with the calculated results.The luminescence mechanism was discussed by recombination rate analysis and the temperature dependence of the luminescence spectrum.

  8. Low temperature growth of heavy boron-doped hydrogenated Ge epilayers and its application in Ge/Si photodetectors

    Science.gov (United States)

    Kuo, Wei-Cheng; Lee, Ming Jay; Wu, Mount-Learn; Lee, Chien-Chieh; Tsao, I.-Yu; Chang, Jenq-Yang

    2017-04-01

    In this study, heavily boron-doped hydrogenated Ge epilayers are grown on Si substrates at a low growth temperature (220 °C). The quality of the boron-doped epilayers is dependent on the hydrogen flow rate. The optical emission spectroscopic, X-ray diffraction and Hall measurement results demonstrate that better quality boron-doped Ge epilayers can be obtained at low hydrogen flow rates (0 sccm). This reduction in quality is due to an excess of hydrogen in the source gas, which breaks one of the Ge-Ge bonds on the Ge surface, leading to the formation of unnecessary dangling bonds. The structure of the boron doped Ge epilayers is analyzed by transmission electron microscopy and atomic force microscopy. In addition, the performance, based on the I-V characteristics, of Ge/Si photodetectors fabricated with boron doped Ge epilayers produced under different hydrogen flow rates was examined. The photodetectors with boron doped Ge epilayers produced with a low hydrogen flow rate (0 sccm) exhibited a higher responsivity of 0.144 A/W and a lower dark current of 5.33 × 10-7 A at a reverse bias of 1 V.

  9. Solid state synthesis of Mn5Ge3 in Ge/Ag/Mn trilayers: Structural and magnetic studies

    Science.gov (United States)

    Myagkov, V. G.; Bykova, L. E.; Matsynin, A. A.; Volochaev, M. N.; Zhigalov, V. S.; Tambasov, I. A.; Mikhlin, Yu L.; Velikanov, D. A.; Bondarenko, G. N.

    2017-02-01

    The thin-film solid-state reaction between elemental Ge and Mn across chemically inert Ag layers with thicknesses of (0, 0.3, 1 and 2.2 μm) in Ge/Ag/Mn trilayers was studied for the first time. The initial samples were annealed at temperatures between 50 and 500 °C at 50 °C intervals for 1 h. The initiation temperature of the reaction for Ge/Mn (without a Ag barrier layer) was 120 °C and increased slightly up to 250 °C when the Ag barrier layer thickness increased up to 2.2 μm. In spite of the Ag layer, only the ferromagnetic Mn5Ge3 compound and the Nowotny phase were observed in the initial stage of the reaction after annealing at 500 °C. The cross-sectional studies show that during Mn5Ge3 formation the Ge is the sole diffusing species. The magnetic and cross-sectional transmission electron microscopy (TEM) studies show an almost complete transfer of Ge atoms from the Ge film, via a 2.2 μm Ag barrier layer, into the Mn layer. We attribute the driving force of the long-range transfer to the long-range chemical interactions between reacting Mn and Ge atoms.

  10. Photoconductivity of ultra-thin Ge(GeSn) layers grown in Si by low-temperature molecular beam epitaxy

    Science.gov (United States)

    Talochkin, A. B.; Chistokhin, I. B.; Mashanov, V. I.

    2016-04-01

    Photoconductivity (PC) spectra of Si/Ge(GeSn)/Si structures with the ultra-thin (1.0-2.3 nm) Ge and GeSn alloy layers grown by the low-temperature (T = 100 °C) molecular beam epitaxy are studied. Photoresponse in the range of 1.2-0.4 eV related to light absorption in the buried Ge(GeSn) layer is observed. It is shown that in case of lateral PC, a simple diffusion model can be used to determine the absorption coefficient of this layer α ˜ 105 cm-1. This value is 100 times larger than that of a single Ge quantum dot layer and is reached significantly above the band gap of most bulk semiconductors. The observed absorption is caused by optical transitions between electron and hole states localized at the interfaces. The anomalous high value of α can be explained by the unusual state of Ge(GeSn) layer with high concentration of dangling bonds, the optical properties of which have been predicted theoretically by Knief and von Niessen (Phys. Rev. B 59, 12940 (1999)).

  11. Fabrication of GeSn-multiple quantum wells by overgrowth of Sn on Ge by using molecular beam epitaxy

    Science.gov (United States)

    Oliveira, F.; Fischer, I. A.; Benedetti, A.; Zaumseil, P.; Cerqueira, M. F.; Vasilevskiy, M. I.; Stefanov, S.; Chiussi, S.; Schulze, J.

    2015-12-01

    We report on the fabrication and structural characterization of epitaxially grown ultra-thin layers of Sn on Ge virtual substrates (Si buffer layer overgrown by a 50 nm thick Ge epilayer followed by an annealing step). Samples with 1 to 5 monolayers of Sn on Ge virtual substrates were grown using solid source molecular beam epitaxy and characterized by atomic force microscopy. We determined the critical thickness at which the transition from two-dimensional to three-dimensional growth occurs. This transition is due to the large lattice mismatch between Ge and Sn (≈14.7%). By depositing Ge on top of Sn layers, which have thicknesses at or just below the critical thickness, we were able to fabricate ultra-narrow GeSn multi-quantum-well structures that are fully embedded in Ge. We report results on samples with one and ten GeSn wells separated by 5 and 10 nm thick Ge spacer layers that were characterized by high resolution transmission electron microscopy and X-ray diffraction. We discuss the structure and material intermixing observed in the samples.

  12. Ge/SiGe quantum confined Stark effect electro-absorption modulation with low voltage swing at λ = 1550 nm.

    Science.gov (United States)

    Dumas, D C S; Gallacher, K; Rhead, S; Myronov, M; Leadley, D R; Paul, D J

    2014-08-11

    Low-voltage swing (≤1.0 V) high-contrast ratio (6 dB) electro-absorption modulation covering 1460 to 1560 nm wavelength has been demonstrated using Ge/SiGe quantum confined Stark effect (QCSE) diodes grown on a silicon substrate. The heterolayers for the devices were designed using an 8-band k.p Poisson-Schrödinger solver which demonstrated excellent agreement with the experimental results. Modelling and experimental results demonstrate that by changing the quantum well width of the device, low power Ge/SiGe QCSE modulators can be designed to cover the S- and C-telecommunications bands.

  13. Li-Ge-H system: Hydrogenation and structural properties of LiGeHx (0

    Science.gov (United States)

    Pavlyuk, V.; Ciesielski, W.; Kulawik, D.; Prochwicz, W.; Rożdżyńska-Kiełbik, B.

    2016-11-01

    The synthesis, isothermal section at 450 °C of the Li-Ge-H system in the concentration region from 40 at.% Li to 70 at.% Li and structural characterizations of the observed phases are reported. The hydrogenation and structural properties of the LiGeHx (0 < x < 0.25) phase were studied by volumetric analysis and X-ray diffraction. The absorption of hydrogen by LiGe binary compound produce the ternary hydride phase LiGeHx (0 < x < 0.25), thus the volume tetragonal unit cell increases on 1.8 Å3. The LiGeHx solid solution is formed by means of the insertion of hydrogen atoms into tetrahedral voids of parent LiGe structure. The extension of homogeneity range of LiGeHx (0 < x < 0.25) phase and its crystal structure were more precisely refined using X-ray diffraction data. Electronic structure calculations reveal an increased occupation of electronic states at the Fermi level for LiGeHx in comparison to LiGe.

  14. Structural and optical properties of GaAs-based heterostructures with Ge and Ge/InGaAs quantum wells

    Energy Technology Data Exchange (ETDEWEB)

    Aleshkin, V. Ya.; Dubinov, A. A., E-mail: sanya@ipm.sci-nnov.ru; Drozdov, M. N. [Russian Academy of Sciences, Institute for Physics of Microstructures (Russian Federation); Zvonkov, B. N. [Nizhni Novgorod State University, Research Physical Technical Institute (Russian Federation); Kudryavtsev, K. E.; Tonkikh, A. A.; Yablonskiy, A. N. [Russian Academy of Sciences, Institute for Physics of Microstructures (Russian Federation); Werner, P. [Max Planck Institute of Microstructure Physics (Germany)

    2013-05-15

    GaAs-based heterostructures with Ge and Ge/InGaAs quantum wells are grown by laser-assisted sputtering. Structural and optical studies of the heterostructures are carried out. A broad photoluminescence line is observed in the wavelength range from 1300 to 1650 nm. The line corresponds to indirect transitions in the momentum space of the Ge quantum wells and to transitions between the In{sub 0.28}Ga{sub 0.72}As and Ge layers, indirect in coordinate space, but direct in momentum space.

  15. Early effect of SiGe heterojunction bipolar transistors

    Science.gov (United States)

    Xu, Xiao-Bo; Zhang, He-Ming; Hu, Hui-Yong; Qu, Jiang-Tao

    2012-06-01

    The standard Early voltage of the SGP model is generalized for SiGe NPN heterojunction bipolar transistors (HBTs). A new compact formulation of the Early voltage compatible with the SGP model is presented. The impact of the Ge profile on Early effect is shown and validated by experiments. The model can be applied to the SGP model for circuit simulation.

  16. GeGI (Germanium Gamma Imager) Performance: Maritime Interdiction Operation

    Energy Technology Data Exchange (ETDEWEB)

    Dreyer, Jonathan G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Burks, Morgan T. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Trombino, Dave [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2014-09-23

    The Gamma Ray Imager (GeGI) was demonstrated during the Maritime Interdiction Operation at Point Alameda, the site of the former Naval Air Station, in Alameda, CA. During this exercise GeGI was used to localize sources within an abandoned building and a cargo ship, the Admiral Callaghan.

  17. Parametrized dielectric functions of amorphous GeSn alloys

    Energy Technology Data Exchange (ETDEWEB)

    D' Costa, Vijay Richard, E-mail: elevrd@nus.edu.sg; Wang, Wei; Yeo, Yee-Chia, E-mail: eleyeoyc@nus.edu.sg [Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583 (Singapore); Schmidt, Daniel [Singapore Synchrotron Light Source, National University of Singapore, Singapore 117603 (Singapore)

    2015-09-28

    We obtained the complex dielectric function of amorphous Ge{sub 1−x}Sn{sub x} (0 ≤ x ≤ 0.07) alloys using spectroscopic ellipsometry from 0.4 to 4.5 eV. Amorphous GeSn films were formed by room-temperature implantation of phosphorus into crystalline GeSn alloys grown by molecular beam epitaxy. The optical response of amorphous GeSn alloys is similar to amorphous Ge and can be parametrized using a Kramers-Kronig consistent Cody-Lorentz dispersion model. The parametric model was extended to account for the dielectric functions of amorphous Ge{sub 0.75}Sn{sub 0.25} and Ge{sub 0.50}Sn{sub 0.50} alloys from literature. The compositional dependence of band gap energy E{sub g} and parameters associated with the Lorentzian oscillator have been determined. The behavior of these parameters with varying x can be understood in terms of the alloying effect of Sn on Ge.

  18. Synthesis of Ge nanocrystals embedded in a Si host matrix

    Science.gov (United States)

    Ngiam, Shih-Tung; Jensen, Klavs F.; Kolenbrander, K. D.

    1994-12-01

    The synthesis of a composite material consisting of Ge nanoclusters (greater than or equal to 2 nm in diameter) embedded in a Si host matrix is reported. The Ge nanoparticles are produced by pulsed laser ablation and are codeposited in a Si film simultaneously grown by chemical beam epitaxy using disilane. Scanning transmission electron microscopy, combined with energy-dispersive x-ray measurements, show that discrete Ge particles (greater than or equal to 2 nm diameter) are deposited within a polycrystalline Si host matrix. High-resolution transmission electron microscopy reveals that the paricles are crystalline with a lattice spacing corresponding to that of Ge. The enhancement of Si deposition rates from silanes in the presence of Ge, previously demonstrated in chemical vapor deposition of Si(1 - x)Ge(x) alloys, is shown to facilitate the growth of a Si layer around the Ge nanocrystals. The overall composition of the Ge cluster/Si host composite material is determined by Rutherford backscattering measurements.

  19. Replacement of Ge in GeTe by [Ag +Sb] and rare earths: effect on thermoelectric properties

    Science.gov (United States)

    Levin, E. M.; Hanson, M.; Hanus, R.; Schmidt-Rohr, K.

    2013-03-01

    High-efficiency p-type Te-Sb-Ge-Ag (TAGS) thermoelectric materials are based on the GeTe narrow-band self-dopant semiconductor where Ge can be replaced by up to 16 at.% [Ag +Sb]. To understand the effect of Ge replacement by 4 at.% [Ag +Sb] as well as rare earths atoms, we have synthesized and studied XRD, thermopower, electrical resistivity, thermal conductivity, and 125Te NMR of GeTe and Ag2Sb2Ge46-xRxTe50 with R =Gd, Dy and x = 1, 2. At 700 K, GeTe exhibits a thermopower of +146 μVK-1 and a large power factor, 42 μWcm-1K-2. Replacement of Ge by [Ag +Sb] and rare earths enhances the thermopower, but slightly reduces the power factor due to an increase in electrical resistivity. The thermal conductivity at 300 K of all alloys studied is reduced by a factor of two compared to GeTe. 125Te NMR spin-lattice relaxation time and resonance frequency reflect changes in carrier concentration. However, decrease of thermal conductivity due to carriers and increase of electrical resistivity are mostly due to a reduction of carrier mobility and indicate strong scattering produced by [Ag +Sb] and rare earth atoms. At 700 K, the thermoelectric figure of merit of GeTe is 0.8, whereas that in Ag2Sb2Ge45Dy1Te50 is much larger, 1.2, due to a reduction in thermal conductivity. Enhancement of thermopower is discussed within a model of energy filtering.

  20. Undoped and in-situ B doped GeSn epitaxial growth on Ge by atmospheric pressure-chemical vapor deposition

    DEFF Research Database (Denmark)

    Vincent, B.; Gencarelli, F.; Bender, H.

    2011-01-01

    In this letter, we propose an atmospheric pressure-chemical vapor deposition technique to grow metastable GeSn epitaxial layers on Ge. We report the growth of defect free fully strained undoped and in-situ B doped GeSn layers on Ge substrates with Sit contents up to 8%. Those metastable layers stay...

  1. 3 GeV Injector Design Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Wiedemann, H.; /SLAC, SSRL

    2009-12-16

    This Design Handbook is intended to be the main reference book for the specifications of the 3 GeV SPEAR booster synchrotron project. It is intended to be a consistent description of the project including design criteria, key technical specifications as well as current design approaches. Since a project is not complete till it's complete changes and modifications of early conceptual designs must be expected during the duration of the construction. Therefore, this Design Handbook is issued as a loose leaf binder so that individual sections can be replaced as needed. Each page will be dated to ease identification with respect to latest revisions. At the end of the project this Design Handbook will have become the 'as built' reference book of the injector for operations and maintenance personnel.

  2. Phase diagram of UCoGe

    Science.gov (United States)

    Mineev, V. P.

    2017-03-01

    The temperature-pressure phase diagram of ferromagnetic superconductor UCoGe includes four phase transitions. They are between the paramagnetic and the ferromagnetic states with the subsequent transition in the superconducting ferromagnetic state and between the normal and the superconducting states after which the transition to the superconducting ferromagnetic state has to occur. Here we have developed the Landau theory description of the phase diagram and established the specific ordering arising at each type of transition. The phase transitions to the ferromagnetic superconducting state are inevitably accompanied by the emergence of screening currents. The corresponding magnetostatics considerations allow for establishing the significant difference between the transition from the ferromagnetic to the ferromagnetic superconducting state and the transition from the superconducting to the ferromagnetic superconducting state.

  3. CW SRF Electron Linac for Nuclear Physics Research: CEBAF 4 GeV, 6 GeV, and 12 GeV

    CERN Document Server

    Reece, Charles E

    2016-01-01

    CEBAF, the Continuous Electron Beam Accelerator Facility, has been actively serving the nuclear physics research community as a unique forefront international resource since 1995. This CW electron linear accelerator (linac) at the U.S. Department of Energy's Thomas Jefferson National Accelerator Facility (Jefferson Lab) has continued to evolve as a precision tool for discerning the structure and dynamics within nuclei. Superconducting RF (SRF) technology has been the essential foundation for CEBAF, first as a 4 GeV machine, then 6 GeV, and currently capable of 12 GeV. We review the development, implementation, and performance of SRF systems for CEBAF from its early beginnings to the commissioning of the 12 GeV era.

  4. GeNF - experimental report 2003

    Energy Technology Data Exchange (ETDEWEB)

    Schreyer, A.; Vollbrandt, J.; Willumeit, R. (eds.) [GKSS-Forschungszentrum Geesthacht GmbH (Germany). Inst. for Materials Research

    2004-07-01

    At the Geesthacht Neutron Facility GeNF about 210 experiments were performed in 2003 by GKSS and by or for external users, partners or contractors. In most cases the measurements were performed and analysed in cooperation by the guest and by the GKSS staff or by the permanent external user group staff. The activities, which are based on a proposal procedure and on the in house R and D program, are reported in 76 contributions in the present annual experimental report for the year 2003. The contributions may contain one or also several combined experiments. During 2003 the GKSS research reactor FRG-1 achieved an operation time of 252 days at the full 5 MW reactor power providing a neutron flux of ca. 1,4 x 10{sup 14} thermal neutrons / cm{sup 2} s. The cold neutron source was available during the complete operation time. The focus of the in house R and D work at GeNF instruments was the characterisation of metal alloys, the analysis of stresses in welds and technical structures at ARES, FSS, DCD and SANS-2, the structural investigation of hydrogen containing substances such as polymers, colloids and biological macromolecules at SANS-1 as well as the characterisation of magnetic thin films at PNR and ROeDI. The reflectomer TOREMA was thoroughly upgraded to the instrument NeRo and now offers new measurement possibilities. In the appendices the progress of the project REFSANS at FRM-II is reported as well as the experimental activities of the newly installed GKSS outstation HARWI-II at DESY. (orig.)

  5. GeNF - Experimental report 2006

    Energy Technology Data Exchange (ETDEWEB)

    Pranzas, P.K.; Schreyer, A.; Willumeit, R. (eds.) [GKSS-Forschungszentrum Geesthacht GmbH (Germany). Inst. of Materials Research

    2007-07-01

    At the Geesthacht Neutron Facility GeNF about 212 experiments were performed in 2006 by GKSS and by or for external users, partners or contractors. In most cases the measurements were performed and analysed in cooperation by the guests and by the GKSS staff or by the permanent external user group staff. The activities, which are based on a proposal procedure and on the in house R and D program, are reported in 71 contributions in the present annual experimental report for the year 2006. The contributions may contain one or also several combined experiments. During 2006 the GKSS research reactor FRG-1 achieved an operation time of 197 days at the full 5 MW reactor power providing a neutron flux of ca. 1.4 x 10{sup 14} thermal neutrons/cm{sup 2}s. The cold neutron source was available during the complete operation time. The focus of the in house R and D work at GeNF instruments was the characterisation of nanostructures in engineering materials, the analysis of stresses and textures in welds and technical structures at ARES-2, TEX-2, DCD and SANS-2, the structural investigation of hydrogen containing substances such as polymers, colloids and biological macromolecules at SANS-1 as well as the characterisation of magnetic thin films at PNR, NeRo, POLDI and ROeDI. The thoroughly upgraded residual stress diffractomer ARES-2 went in full operation in spring 2006 as well as the new neutron tomography device at GENRA-3. The installation of modern experiment control hardware and software based on LabView was completed on all designated instruments. In the appendices I and II the experimental reports of REFSANS at FRM II are attached as well as of the GKSS outstation HARWI-II at DESY. Both instruments started full operation in 2006. (orig.)

  6. Good NEWS for GeV Dark Matter Searches

    CERN Document Server

    Profumo, Stefano

    2015-01-01

    The proposed NEWS apparatus, a spherical detector with a small central electrode sensor operating as a proportional counter, promises to explore new swaths of the direct detection parameter space in the GeV and sub-GeV Dark Matter particle mass range by employing very light nuclear targets, such as H and He, and by taking advantage of a very low (sub-keV) energy threshold. Here we discuss and study two example classes of Dark Matter models that will be tested with NEWS: GeV-scale millicharged Dark Matter, and a GeV-Dirac Fermion Dark Matter model with a light (MeV-GeV) scalar or vector mediator, and indicate the physical regions of parameter space the experiment can probe.

  7. GeV dark matter searches with the NEWS detector

    Science.gov (United States)

    Profumo, Stefano

    2016-03-01

    The proposed NEWS apparatus, a spherical detector with a small central electrode sensor operating as a proportional counter, promises to explore new swaths of the direct detection parameter space in the GeV and sub-GeV dark matter particle mass range by employing very light nuclear targets, such as H and He, and by taking advantage of a very low (sub-keV) energy threshold. Here we discuss and study two example classes of dark matter models that will be tested with NEWS: GeV-scale millicharged dark matter, and a GeV-Dirac Fermion dark matter model with a light (MeV-GeV) scalar or vector mediator, and indicate the physical regions of parameter space the experiment can probe.

  8. Polarized Proton Collisions at 205GeV at RHIC

    Science.gov (United States)

    Bai, M.; Roser, T.; Ahrens, L.; Alekseev, I. G.; Alessi, J.; Beebe-Wang, J.; Blaskiewicz, M.; Bravar, A.; Brennan, J. M.; Bruno, D.; Bunce, G.; Courant, E.; Drees, A.; Fischer, W.; Gardner, C.; Gill, R.; Glenn, J.; Haeberli, W.; Huang, H.; Jinnouchi, O.; Kewisch, J.; Luccio, A.; Luo, Y.; Nakagawa, I.; Okada, H.; Pilat, F.; Mackay, W. W.; Makdisi, Y.; Montag, C.; Ptitsyn, V.; Satogata, T.; Stephenson, E.; Svirida, D.; Tepikian, S.; Trbojevic, D.; Tsoupas, N.; Wise, T.; Zelenski, A.; Zeno, K.; Zhang, S. Y.

    2006-05-01

    The Brookhaven Relativistic Heavy Ion Collider (RHIC) has been providing collisions of polarized protons at a beam energy of 100 GeV since 2001. Equipped with two full Siberian snakes in each ring, polarization is preserved during acceleration from injection to 100 GeV. However, the intrinsic spin resonances beyond 100 GeV are about a factor of 2 stronger than those below 100 GeV making it important to examine the impact of these strong intrinsic spin resonances on polarization survival and the tolerance for vertical orbit distortions. Polarized protons were first accelerated to the record energy of 205 GeV in RHIC with a significant polarization measured at top energy in 2005. This Letter presents the results and discusses the sensitivity of the polarization survival to orbit distortions.

  9. Carrier transport in Ge nanowires / Si substrate heterojunction

    Science.gov (United States)

    Lee, E.-K.; Kamenev, B.; Tsybeskov, L.; Sharma, S.; Kamins, T. I.

    2006-03-01

    Semiconductor nanowires (NWs) attached to lattice-mismatched single-crystal substrates form quasi-one-dimensional (QOD) heterojunctions (HJs) where efficient structural relaxation might occur due to high surface-to-volume ratio. Current-voltage characteristics in Ge NW/(p+)Si samples with nearly micron-long Ge NWs exhibit metal-type conductivity with ohmic behavior and little conductivity temperature dependence. In contrast, Ge NW/(n+)Si samples display significant change in conductivity as a function of temperature with an activation energy up to 200 meV. In a narrow temperature interval near 150 K we observed current instabilities and oscillations for Ge NW/(n+)Si. At higher temperatures we find negative differential photoconductivity at low forward biases. Our experimental results are explained using a model of nearly ideal Si substrate/Ge NW hetero-interfaces.

  10. First evidence of low energy enhancement in Ge isotopes

    Directory of Open Access Journals (Sweden)

    Renstrøm T.

    2015-01-01

    Full Text Available The γ-strength functions and level densities of 73,74Ge have been extracted from particle-γ coincidence data using the Oslo method. In addition the γ-strength function of 74Ge above the neutron separation threshold, Sn = 10.196 MeV has been extracted from photoneutron measurements. When combined, these two experiments give a γ-strength function covering the energy range of ∼1-13 MeV for 74Ge. This thorough investigation of 74Ge is a part of an international campaign to study the previously reported low energy enhancement in this mass region in the γ-strength function from ∼3MeV towards lower γ energies. The obtained data show that both 73,74Ge display an increase in strength at low γ energies.

  11. Plasmon-assisted photoresponse in Ge-coated bowtie nanojunctions

    CERN Document Server

    Evans, Kenneth M; Natelson, Douglas

    2016-01-01

    We demonstrate plasmon-enhanced photoconduction in Au bowtie nanojunctions containing nanogaps overlaid with an amorphous Ge film. The role of plasmons in the production of nanogap photocurrent is verified by studying the unusual polarization dependence of the photoresponse. With increasing Ge thickness, the nanogap polarization of the photoresponse rotates 90 degrees, indicating a change in the dominant relevant plasmon mode, from the resonant transverse plasmon at low thicknesses to the nonresonant "lightning rod" mode at higher thicknesses. To understand the plasmon response in the presence of the Ge overlayer and whether the Ge degrades the Au plasmonic properties, we investigate the photothermal response (from the temperature-dependent Au resistivity) in no-gap nanowire structures, as a function of Ge film thickness and nanowire geometry. The film thickness and geometry dependence are modeled using a cross-sectional, finite element simulation. The no-gap structures and the modeling confirm that the strik...

  12. Anisotropic Differential Reflectance Spectroscopy of Thin GeSe

    Science.gov (United States)

    Matson, Joseph; Woods, Grace; Churchill, Hugh

    2017-01-01

    Atomically thin monochalcogenides are predicted to exhibit a two-dimensional structural phase transition. This phase transition could be useful for designing new phase change memory devices. The critical temperature is dependent on the material as well as the thickness, and is predicted to occur just above room temperature for monolayer GeSe. We used differential reflectance spectroscopy on thin samples of GeSe to measure changes in the optical anisotropy with temperature as a signature of this phase transition. We constructed an apparatus for temperature-depedendent spectroscopy of micro-scale GeSe samples, and measured anisotropic optical absorption of thin GeSe. We observed a decrease in optical anisotropy of GeSe at elevated temperatures, which may be a first indication of the continuous transition from a rectangular to a square lattice in that material. This work was supported by NSF REU Grant #EEC-1359306.

  13. Barrier enhancement of Ge MSM IR photodetector with Ge layer optimization

    Science.gov (United States)

    Asar, Tarık; Özçelik, Süleyman

    2015-12-01

    Germanium thin films were deposited on n-type Silicon substrates with three different sputter power by using DC magnetron sputtering system at room temperature. The structural and morphological properties of the samples have been obtained by means of X-ray diffraction and atomic force microscopy measurements. Then, Germanium metal-semiconductor-metal infrared photodetectors were fabricated on these structures. The carrier recombination lifetime and the diffusion length of the devices were also calculated by using the carrier density and mobility data was obtained from the room temperature Hall Effect measurements. The dark current-voltage measurements of devices were achieved at room temperature. The electrical parameters such as ideality factor, Schottky barrier height, saturation current and series resistance were extracted from dark current-voltage characteristics. Finally, it has been shown that the barrier enhancement of Ge MSM IR photodetector can be achieved by Ge layer optimization.

  14. Walking from 750 GeV to 950 GeV in the Technipion Zoo

    CERN Document Server

    Matsuzaki, Shinya

    2016-01-01

    If the 750 GeV diphoton excess is identified with the color-singlet isosinglet-technipion, $P^0$ (750), in the one-family walking technicolor, as in our previous paper, then there should exist another color-singlet technipion, isotriplet one, $P^{\\pm,3}$, definitely predicted at around 950 GeV independently of the dynamical details. The $P^{\\pm,3}(950)$ are produced at the LHC via vector boson and photon fusion processes, predominantly decaying to $W \\gamma$, and $\\gamma\\gamma$, respectively. Those walking technicolor signals can be explored at the Run 2, or 3, which would further open a way to a plethora of yet other (colored) technipions.

  15. A frontier in fast computing

    CERN Document Server

    von der Schmitt, Hans; The ATLAS collaboration

    2012-01-01

    The primary mission of particle physics is fundamental science. Big apparatus is required however to do such science: accelerators, detectors, and computing. Also the methodology used forms a trinity: experiment, theory, and simulation. This talk has a focus on computing and simulation. The worldwide Grid computing allows us to analyze all data within days after they are recorded at the experiment and to get to physics results quickly, as in the case of the recently discovered Higgs-like boson at 126 GeV mass. Developments in simulation, computing, accelerators and detectors all provided valuable technical results to society, e.g. the WWW, hadron therapy and medical imaging. The technology aspect and the fundamental science aspect of particle physics, and of other fields of physics, are both important for the role of science in the third millenium.

  16. Effect of asymmetric concentration profile on thermal conductivity in Ge/SiGe superlattices

    Energy Technology Data Exchange (ETDEWEB)

    Hahn, Konstanze R., E-mail: konstanze.hahn@dsf.unica.it [Department of Physics, University of Cagliari, Cittadella Universitaria, 09042 Monserrato (Italy); Cecchi, Stefano [Department of Epitaxy, Paul-Drude-Institut für Festkörperelektronik, Hausvogteiplatz 5-7, 10117 Berlin (Germany); Colombo, Luciano [Department of Physics, University of Cagliari, Cittadella Universitaria, 09042 Monserrato (Italy); Institut de Cieǹcia de Materials de Barcelona (ICMAB-CSIC), Campus UAB, Bellaterra, 08193 Barcelona (Spain); Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona Institute of Science and Technology, Campus UAB, Bellaterra, 08193 Barcelona (Spain)

    2016-05-16

    The effect of the chemical composition in Si/Ge-based superlattices on their thermal conductivity has been investigated using molecular dynamics simulations. Simulation cells of Ge/SiGe superlattices have been generated with different concentration profiles such that the Si concentration follows a step-like, a tooth-saw, a Gaussian, and a gamma-type function in direction of the heat flux. The step-like and tooth-saw profiles mimic ideally sharp interfaces, whereas Gaussian and gamma-type profiles are smooth functions imitating atomic diffusion at the interface as obtained experimentally. Symmetry effects have been investigated comparing the symmetric profiles of the step-like and the Gaussian function to the asymmetric profiles of the tooth-saw and the gamma-type function. At longer sample length and similar degree of interdiffusion, the thermal conductivity is found to be lower in asymmetric profiles. Furthermore, it is found that with smooth concentration profiles where atomic diffusion at the interface takes place the thermal conductivity is higher compared to systems with atomically sharp concentration profiles.

  17. Effect of asymmetric concentration profile on thermal conductivity in Ge/SiGe superlattices

    Science.gov (United States)

    Hahn, Konstanze R.; Cecchi, Stefano; Colombo, Luciano

    2016-05-01

    The effect of the chemical composition in Si/Ge-based superlattices on their thermal conductivity has been investigated using molecular dynamics simulations. Simulation cells of Ge/SiGe superlattices have been generated with different concentration profiles such that the Si concentration follows a step-like, a tooth-saw, a Gaussian, and a gamma-type function in direction of the heat flux. The step-like and tooth-saw profiles mimic ideally sharp interfaces, whereas Gaussian and gamma-type profiles are smooth functions imitating atomic diffusion at the interface as obtained experimentally. Symmetry effects have been investigated comparing the symmetric profiles of the step-like and the Gaussian function to the asymmetric profiles of the tooth-saw and the gamma-type function. At longer sample length and similar degree of interdiffusion, the thermal conductivity is found to be lower in asymmetric profiles. Furthermore, it is found that with smooth concentration profiles where atomic diffusion at the interface takes place the thermal conductivity is higher compared to systems with atomically sharp concentration profiles.

  18. Towards Resonant-State THz Laser Based on Strained p-Ge and SiGe QW Structures

    Science.gov (United States)

    2006-07-01

    achieve intra-center population inversion for deep acceptors, such as copper, in p-Ge. 10. The technique, which allows us to solve Schroedinger ...strained Ge. 2. By using the developed method of solving Schroedinger equation with Luttinger Hamiltonian for complex valence band structure and the

  19. Effect of GeO2 deposition temperature in atomic layer deposition on electrical properties of Ge gate stack

    Science.gov (United States)

    Kanematsu, Masayuki; Shibayama, Shigehisa; Sakashita, Mitsuo; Takeuchi, Wakana; Nakatsuka, Osamu; Zaima, Shigeaki

    2016-08-01

    We investigated the effect of GeO2 deposition temperature (T depo) on electronic properties of Al/Al2O3/GeO2/Ge MOS capacitors. Capacitance-voltage characteristics show frequency dispersions under depletion and strong inversion conditions, which can be attributed from the interface states at the atomic layer deposition (ALD)-GeO2/Ge interface and from the defect states in the quasi-neutral region in the Ge substrate, respectively. We found that the interface state density (D it) shows similar values and energy distributions as T depo decreases to 200 from 300 °C, while a higher D it is observed at a T depo of 150 °C. Also, from the temperature dependence of conductance, the frequency dispersion under the strong inversion condition can be related to the minority carrier diffusion to the quasi-neutral region of the Ge substrate. The frequency dependence of conductance reveals that the undesirable increment of the bulk defect density can be suppressed by decreasing T depo. In this study, the bulk defect density in a MOS capacitor prepared at a T depo of 200 °C decreases one tenth compared with that at a T depo of 300 °C. The ALD of GeO2 at a low temperature of around 200 °C is effective for both obtaining a low D it and preventing the undesirable introduction of bulk defect density.

  20. Tunneling spectroscopy of a phosphorus impurity atom on the Ge(111)-(2 × 1) surface

    Energy Technology Data Exchange (ETDEWEB)

    Savinov, S. V.; Oreshkin, A. I., E-mail: oreshkin@spmlab.phys.msu.su, E-mail: oreshkin@spmlab.ru [Moscow State University (Russian Federation); Oreshkin, S. I. [Moscow State University, Sternberg Astronomical Institute (Russian Federation); Haesendonck, C. van [Laboratorium voor Stoffysica en Magnetisme (Belgium)

    2015-06-15

    We numerically model the Ge(111)-(2 × 1) surface electronic properties in the vicinity of a P donor impurity atom located near the surface. We find a notable increase in the surface local density of states (LDOS) around the surface dopant near the bottom of the empty surface state band π*, which we call a split state due to its limited spatial extent and energetic position inside the band gap. We show that despite the well-established bulk donor impurity energy level position at the very bottom of the conduction band, a surface donor impurity on the Ge(111)-(2 × 1) surface might produce an energy level below the Fermi energy, depending on the impurity atom local environment. It is demonstrated that the impurity located in subsurface atomic layers is visible in a scanning tunneling microscope (STM) experiment on the Ge(111)-(2 × 1) surface. The quasi-1D character of the impurity image, observed in STM experiments, is confirmed by our computer simulations with a note that a few π-bonded dimer rows may be affected by the presence of the impurity atom. We elaborate a model that allows classifying atoms on the experimental low-temperature STM image. We show the presence of spatial oscillations of the LDOS by the density-functional theory method.

  1. Low-frequency conductance fluctuations in Si:P and Ge:P δ-layers

    Science.gov (United States)

    Shamim, Saquib; Mahapatra, Suddhasatta; Scappucci, Giordano; Klesse, W. M.; Simmons, Michelle Y.; Ghosh, Arindam

    Delta doped Si:P and Ge:P devices offer a formidable platform for application towards quantum computation. The fabrication of single donor devices by STM-lithography takes us forward to address the solid state quantum bits. The atomic scale control however makes the devices extremely sensitive to fluctuations and disorder which affect their long term stability. Hence, a study of low frequency 1/f noise for these devices is desirable. We measure 1/f noise in Si:P and Ge:P δ-layers of varying doping density. Fluctuations in conductivity arise due to fluctuations in mobility and the Hooge parameter scales inversely with mobility as 1 /μ3 for all devices. For highly doped Ge:P δ-layer, the noise magnitude in a perpendicular magnetic field (B⊥) reduces by factors of two at the phase breaking breaking field and the Zeeman field indicating universal conductance fluctuations (UCF). The phase breaking length lϕUCF extracted by fitting the B⊥ dependence of noise to the crossover function matches well with lϕWL extracted from weak localization (WL) fits to magnetoconductivity indicating that both UCF and WL are governed by same scattering rates. Present Address: QuTech, Delft University of Technology, P.O. Box 5046, 2600 GA Delft, The Netherlands.

  2. Superconducting single electron transistor for charge sensing in Si/SiGe-based quantum dots

    Science.gov (United States)

    Yang, Zhen

    Si-based quantum devices, including Si/SiGe quantum dots (QD), are promising candidates for spin-based quantum bits (quits), which are a potential platform for quantum information processing. Meanwhile, qubit readout remains a challenging task related to semiconductor-based quantum computation. This thesis describes two readout devices for Si/SiGe QDs and the techniques for developing them from a traditional single electron transistor (SET). By embedding an SET in a tank circuit and operating it in the radio-frequency (RF) regime, a superconducting RF-SET has quick response as well as ultra high charge sensitivity and can be an excellent charge sensor for the QDs. We demonstrate such RF-SETs for QDs in a Si/SiGe heterostructure. Characterization of the SET in magnetic fields is studied for future exploration of advanced techniques such as spin detection and spin state manipulation. By replacing the tank circuit with a high-quality-factor microwave cavity, the embedded SET will be operated in the supercurrent regime as a single Cooper pair transistor (CPT) to further increase the charge sensitivity and reduce any dissipation. The operating principle and implementation of the cavity-embedded CPT (cCPT) will be introduced.

  3. Mechanism of GeSbTe phase change materials: an ab initio molecular dynamics study

    Science.gov (United States)

    Raty, Jean-Yves; Otjacques, Céline; Gaspard, Jean-Pierre; Bichara, Christophe

    2008-03-01

    Among phase change materials, Ge2Sb2Te5 (225) is one of the most successfully used in applications. Accepted models are based on EXAFS spectra and suppose a complete reorganization of bonds during amorphization, with Ge changing from sixfold to tetrahedral coordination. We perform ab initio MD simulations of the (225), (124) and (415) liquid alloys. We show that the crystalline, liquid and amorphous structure of these systems are similar, with very little sp3 hybridization around Ge atoms and a majority of p-sigma bonds. Using a set of quenched liquid configurations we reproduce the EXAFS measurements on the (225) composition and explain how the static Debye Waller factor due to the vacancies in the crystal phase leads to a cancellation of individual neighbors contribution to the EXAFS signal while in the amorphous, a larger coherence occurs, enhancing the EXAFS signal. The computed electrical conductivities of the three phases (cubic solid, liquid and amorphous) prove to be very different, accordingly with the experiment.

  4. Study of intersubband transitions in GaN-ZnGeN2 coupled quantum wells

    Science.gov (United States)

    Han, Lu; Lieberman, Colin; Zhao, Hongping

    2017-03-01

    In this work, we design and analyze a closely lattice-matched wide bandgap GaN-ZnGeN2 coupled quantum well (QW) structure targeting for near-infrared (IR) (λ ≤ 3 um) intersubband transition for quantum cascade laser applications. The coupled quantum well structure comprised two GaN wells separated by a thin ZnGeN2 barrier layer. The QW active region is surrounded by thick ZnGeN2 layers as barriers. The computations of the electron-phonon and electron-photon scattering rates are carried out by employing the Fermi's golden rule for transitions. The calculation takes into consideration the conservation of energy and momentum in scattering processes. The coupled QW structure is optimized through tuning the confined subband energy levels in the conduction band to achieve (1) electron-LO phonon resonant scattering when the energy separation between the first and second conduction subband levels matches the phonon energy of GaN (92 meV); and (2) dominant electron-photon transition in near-IR between the third and second conduction subband levels.

  5. Preparation of Ga/Ni Solid Target for Cyclotron-Produced 68Ge by Electrodeposition

    Directory of Open Access Journals (Sweden)

    SHEN Yi-jia1,2;FU Hong-yu1;LUO Wen-bo1;DENG Xue-song1;LIU Yu-ping1;LI Guang1;XU Hong-wei1,2;WANG Gang1

    2014-02-01

    Full Text Available Germanium 68 is mainly used for preparation of the 68Ge-68Ga generator and the calibration of positron emission computed tomography. The low melting point of the target material in the production reaction 69Ga (p, 2n 68Ge has limited the availability of Ge-68. In order to use the existing industrial cyclotron hardware to produce Germanium 68, the method of electrodepositing gallium-nickel alloy was set up in this study. Acidic requirements were met through the preparation of the gallium-nickel alloy targets and by optimizing the plating bath composition and electrodepositing conditions, finally confirmed by adjustment of the electro-deposition process, and preparation of the gallium-nickel alloy targets with a gallium content of 75%. After three time irradiation tests, the process was certified to produce targets of Germanium 68. This process is user-friendly, the preparation of the targets is of stable quality, and it can be applied to the cyclotron production of Germanium 68.

  6. WiGeR: WiFi-Based Gesture Recognition System

    Directory of Open Access Journals (Sweden)

    Mohammed Abdulaziz Aide Al-qaness

    2016-06-01

    Full Text Available Recently, researchers around the world have been striving to develop and modernize human–computer interaction systems by exploiting advances in modern communication systems. The priority in this field involves exploiting radio signals so human–computer interaction will require neither special devices nor vision-based technology. In this context, hand gesture recognition is one of the most important issues in human–computer interfaces. In this paper, we present a novel device-free WiFi-based gesture recognition system (WiGeR by leveraging the fluctuations in the channel state information (CSI of WiFi signals caused by hand motions. We extract CSI from any common WiFi router and then filter out the noise to obtain the CSI fluctuation trends generated by hand motions. We design a novel and agile segmentation and windowing algorithm based on wavelet analysis and short-time energy to reveal the specific pattern associated with each hand gesture and detect duration of the hand motion. Furthermore, we design a fast dynamic time warping algorithm to classify our system’s proposed hand gestures. We implement and test our system through experiments involving various scenarios. The results show that WiGeR can classify gestures with high accuracy, even in scenarios where the signal passes through multiple walls.

  7. TEM studies of Ge nanocrystal formation in PECVD grown SiO2:Ge/SiO2 multilayers

    Science.gov (United States)

    Agan, S.; Dana, A.; Aydinli, A.

    2006-06-01

    We investigate the effect of annealing on the Ge nanocrystal formation in multilayered germanosilicate-oxide films grown on Si substrates by plasma enhanced chemical vapour deposition (PECVD). The multilayered samples were annealed at temperatures ranging from 750 to 900 °C for 5 min under nitrogen atmosphere. The onset of formation of Ge nanocrystals, at 750 °C, can be observed via high resolution TEM micrographs. The diameters of Ge nanocrystals were observed to be between 5 and 14 nm. As the annealing temperature is raised to 850 °C, a second layer of Ge nanocrystals forms next to the original precipitation band, positioning itself closer to the substrate SiO2 interface. High resolution cross section TEM images, electron diffraction and electron energy-loss spectroscopy as well as energy-dispersive x-ray analysis (EDAX) data all indicate that Ge nanocrystals are present in each layer.

  8. Segregation of Sb in Ge epitaxial layers and its usage for the selective doping of Ge-based structures

    Energy Technology Data Exchange (ETDEWEB)

    Antonov, A. V.; Drozdov, M. N.; Novikov, A. V., E-mail: anov@ipmras.ru; Yurasov, D. V. [Institute for Physics of Microstructures of the Russian Academy of Sciences (Russian Federation)

    2015-11-15

    The segregation of Sb in Ge epitaxial layers grown by the method of molecular beam epitaxy on Ge (001) substrates is investigated. For a growth temperature range of 180–325°C, the temperature dependence is determined for the segregation ratio of Sb in Ge, which shows a sharp increase (by more than three orders of magnitude) with increasing temperature. The strong dependence of the segregation properties of Sb on the growth temperature makes it possible to adapt a method based on the controlled use of segregation developed previously for the doping of Si structures for the selective doping of Ge structures with a donor impurity. Using this method selectively doped Ge:Sb structures, in which the bulk impurity concentration varies by an order of magnitude at distances of 3–5 nm, are obtained.

  9. Software Tools for Emittance Measurement and Matching for 12 GeV CEBAF

    Energy Technology Data Exchange (ETDEWEB)

    Turner, Dennis L. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)

    2016-05-01

    This paper discusses model-driven setup of the Continuous Electron Beam Accelerator Facility (CEBAF) for the 12GeV era, focusing on qsUtility. qsUtility is a set of software tools created to perform emittance measurements, analyze those measurements, and compute optics corrections based upon the measurements.qsUtility was developed as a toolset to facilitate reducing machine configuration time and reproducibility by way of an accurate accelerator model, and to provide Operations staff with tools to measure and correct machine optics with little or no assistance from optics experts.

  10. Electroweak Precision Observables, New Physics and the Nature of a 126 GeV Higgs Boson

    CERN Document Server

    Ciuchini, Marco; Mishima, Satoshi; Silvestrini, Luca

    2013-01-01

    We perform the fit of electroweak precision observables within the Standard Model with a 126 GeV Higgs boson, compare the results with the theoretical predictions and discuss the impact of recent experimental and theoretical improvements. We introduce New Physics contributions in a model-independent way and fit for the S, T and U parameters, for the $\\epsilon_{1,2,3,b}$ ones, for modified $Zb\\bar{b}$ couplings and for a modified Higgs coupling to vector bosons. We point out that composite Higgs models are very strongly constrained. Finally, we compute the bounds on dimension-six operators relevant for the electroweak fit.

  11. Revisiting light stringy states in view of the 750 GeV diphoton excess

    Science.gov (United States)

    Anastasopoulos, Pascal; Bianchi, Massimo

    2016-10-01

    We investigate light massive string states that appear at brane intersections. They replicate the massless spectrum in a richer fashion and may be parametrically lighter than standard Regge excitations. We identify the first few physical states and determine their BRST invariant vertex operators. In the supersymmetric case we reconstruct the super-multiplet structure. We then compute some simple interactions, such as the decay rate of a massive scalar or vector into two massless fermions. Finally we suggest an alternative interpretation of the 750 GeV diphoton excess at LHC in terms of a light massive string state, a replica of the Standard Model Higgs.

  12. Highly tuneable hole quantum dots in Ge-Si core-shell nanowires

    Science.gov (United States)

    Brauns, Matthias; Ridderbos, Joost; Li, Ang; van der Wiel, Wilfred G.; Bakkers, Erik P. A. M.; Zwanenburg, Floris A.

    2016-10-01

    We define single quantum dots of lengths varying from 60 nm up to nearly half a micron in Ge-Si core-shell nanowires. The charging energies scale inversely with the quantum dot length between 18 and 4 meV. Subsequently, we split up a long dot into a double quantum dot with a separate control over the tunnel couplings and the electrochemical potential of each dot. Both single and double quantum dot configurations prove to be very stable and show excellent control over the electrostatic environment of the dots, making this system a highly versatile platform for spin-based quantum computing.

  13. Unexpected Ge-Ge Contacts in the Two-Dimensional Ge4 Se3 Te Phase and Analysis of Their Chemical Cause with the Density of Energy (DOE) Function.

    Science.gov (United States)

    Küpers, Michael; Konze, Philipp M; Maintz, Stefan; Steinberg, Simon; Mio, Antonio M; Cojocaru-Mirédin, Oana; Zhu, Min; Müller, Merlin; Luysberg, Martina; Mayer, Joachim; Wuttig, Matthias; Dronskowski, Richard

    2017-08-14

    A hexagonal phase in the ternary Ge-Se-Te system with an approximate composition of GeSe0.75 Te0.25 has been known since the 1960s but its structure has remained unknown. We have succeeded in growing single crystals by chemical transport as a prerequisite to solve and refine the Ge4 Se3 Te structure. It consists of layers that are held together by van der Waals type weak chalcogenide-chalcogenide interactions but also display unexpected Ge-Ge contacts, as confirmed by electron microscopy analysis. The nature of the electronic structure of Ge4 Se3 Te was characterized by chemical bonding analysis, in particular by the newly introduced density of energy (DOE) function. The Ge-Ge bonding interactions serve to hold electrons that would otherwise go into antibonding Ge-Te contacts. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Ion beam synthesis of SiGe alloy layers

    Energy Technology Data Exchange (ETDEWEB)

    Im, Seongil [Univ. of California, Berkeley, CA (United States)

    1994-05-01

    Procedures required for minimizing structural defects generated during ion beam synthesis of SiGe alloy layers were studied. Synthesis of 200 mm SiGe alloy layers by implantation of 120-keV Ge ions into <100> oriented Si wafers yielded various Ge peak concentrations after the following doses, 2 x 1016cm-2, 3 x 1016cm-2 (mid), and 5 x 1016cm-2 (high). Following implantation, solid phase epitaxial (SPE) annealing in ambient N2 at 800C for 1 hr. resulted in only slight redistribution of the Ge. Two kinds of extended defects were observed in alloy layers over 3 x l016cm-2cm dose at room temperature (RT): end-of-range (EOR) dislocation loops and strain-induced stacking faults. Density of EOR dislocation loops was much lower in alloys produced by 77K implantation than by RT implantation. Decreasing the dose to obtain 5 at% peak Ge concentration prevents strain relaxation, while those SPE layers with more than 7 at% Ge peak show high densities of misfit- induced stacking faults. Sequential implantation of C following high dose Ge implantation (12 at% Ge peak concentration in layer) brought about a remarkable decrease in density of misfit-induced stacking faults. For peak implanted C > 0.55 at%, stacking fault generation in the epitaxial layer was suppressed, owing to strain compensation by C atoms in the SiGe lattice. A SiGe alloy layer with 0.9 at% C peak concentration under a 12 at% Ge peak exhibited the best microstructure. Results indicate that optimum Ge/C ratio for strain compensation is between 11 and 22. The interface between amorphous and regrown phases (a/c interface) had a dramatic morphology change during its migration to the surface. Initial <100> planar interface decomposes into a <111> faceted interface, changing the growth kinetics; this is associated with strain relaxation by stacking fault formation on (111) planes in the a/c interface.

  15. Study of the interaction{pi}{sup +}p at 1.2 GeV/c {pi}{sup +} laboratory momentum; Estudio de la inteeraccion {pi}{sup +} p a 1,2 GeV/c

    Energy Technology Data Exchange (ETDEWEB)

    Ladron de Guevara, P.

    1973-07-01

    We present the main results of a 0.33 events/urban experiment of {pi}{sup +} interactions in hydrogen at 1.2 GeV/c, using the 80 cm Saclay bubble chamber. the partial cross sections of the different reactions and the elastic differential cross section are computed by normalizing to the total cross section obtained by other groups. (Author) 34 refs.

  16. The Effects of Annealing Temperatures on Composition and Strain in SixGe1−x Obtained by Melting Growth of Electrodeposited Ge on Si (100

    Directory of Open Access Journals (Sweden)

    Mastura Shafinaz Zainal Abidin

    2014-02-01

    Full Text Available The effects of annealing temperatures on composition and strain in SixGe1−x, obtained by rapid melting growth of electrodeposited Ge on Si (100 substrate were investigated. Here, a rapid melting process was performed at temperatures of 1000, 1050 and 1100 °C for 1 s. All annealed samples show single crystalline structure in (100 orientation. A significant appearance of Si-Ge vibration mode peak at ~400 cm−1 confirms the existence of Si-Ge intermixing due to out-diffusion of Si into Ge region. On a rapid melting process, Ge melts and reaches the thermal equilibrium in short time. Si at Ge/Si interface begins to dissolve once in contact with the molten Ge to produce Si-Ge intermixing. The Si fraction in Si-Ge intermixing was calculated by taking into account the intensity ratio of Ge-Ge and Si-Ge vibration mode peaks and was found to increase with the annealing temperatures. It is found that the strain turns from tensile to compressive as the annealing temperature increases. The Si fraction dependent thermal expansion coefficient of SixGe1−x is a possible cause to generate such strain behavior. The understanding of compositional and strain characteristics is important in Ge/Si heterostructure as these properties seem to give significant effects in device performance.

  17. Electrical characterization of SiGeSn grown on Ge substrate using ultra high vacuum chemical vapor deposition

    Science.gov (United States)

    Ahoujja, Mo; Kang, S.; Hamilton, M.; Yeo, Y. K.; Kouvetakis, J.; Menendez, J.

    2012-02-01

    There has been recently considerable interest in growing SiyGe1-x-ySnx alloys for the fabrication of photonic devices that could be integrated with Si technologies. We report temperature dependent Hall (TDH) measurements of the hole concentration and mobility from high quality p-type doped Si0.08Ge0.90Sn0.02 layers grown on p-type doped Ge substrates using ultra high vacuum chemical vapor deposition. The TDH measurements show the hole sheet density remains constant at low temperatures before slightly decreasing and dipping at ˜ 125 K. It then exponentially increases with temperature due to the activation of shallow acceptors. At temperatures above ˜ 450 K, the hole sheet density increases sharply indicating the onset of intrinsic conduction in the SiGeSn and/or Ge layers. To extract the electrical properties of the SiGeSn layer alone, a parametric fit using a multi layer conducting model is applied to the measured hole concentration and mobility data. The analysis yields boron and gallium doping concentrations of 3x10^17 cm-3 and 1x10^18 cm-3 with activation energies of 10 meV and 11 meV for the SiGeSn layer and Ge substrate, respectively. Furthermore, a temperature independent hole sheet concentration of ˜5x10^15 cm-2 with a mobility of ˜250 cm^2/Vs, which is believed to be due to an interfacial layer between the SiGeSn layer and the Ge substrate, is also determined.

  18. 750 GeV composite axion as the LHC diphoton resonance

    Directory of Open Access Journals (Sweden)

    Neil D. Barrie

    2016-04-01

    Full Text Available We propose that the 750 GeV resonance, presumably observed in the early LHC Run 2 data, could be a heavy composite axion that results from condensation of a hypothetical quark in a high-colour representation of conventional QCD. The model, motivated by a recently proposed solution to the strong CP problem, is very economical and is essentially defined by the properties of the additional quark – its colour charge, hypercharge and mass. The axion mass and its coupling to two photons (via axial anomaly can be computed in terms of these parameters. The axion is predominantly produced via photon fusion (γγ→A which is followed by Z vector boson fusion and associated production at the LHC. We find that the total diphoton cross section of the axion can be fitted with the observed excess. Combining the requirement on the cross-section, such that it reproduces the diphoton excess events, with the bounds on the total width (Γtot⩽45 GeV, we obtain the effective coupling in the range 1.6×10−4 GeV−1≳CA≳6.5×10−5 GeV−1. Within this window of allowed couplings the model favours a narrow width resonance and yQ2∼O(10. In addition, we observe that the associated production qq¯→Aγ→γγγ can potentially produce a sizeable number of three photon events at future LHC. However, the rare decay Z→A⁎γ→γγγ is found to be too small to be probed at the LHC and e+e− colliders.

  19. 750 GeV composite axion as the LHC diphoton resonance

    Science.gov (United States)

    Barrie, Neil D.; Kobakhidze, Archil; Talia, Matthew; Wu, Lei

    2016-04-01

    We propose that the 750 GeV resonance, presumably observed in the early LHC Run 2 data, could be a heavy composite axion that results from condensation of a hypothetical quark in a high-colour representation of conventional QCD. The model, motivated by a recently proposed solution to the strong CP problem, is very economical and is essentially defined by the properties of the additional quark - its colour charge, hypercharge and mass. The axion mass and its coupling to two photons (via axial anomaly) can be computed in terms of these parameters. The axion is predominantly produced via photon fusion (γγ → A) which is followed by Z vector boson fusion and associated production at the LHC. We find that the total diphoton cross section of the axion can be fitted with the observed excess. Combining the requirement on the cross-section, such that it reproduces the diphoton excess events, with the bounds on the total width (Γtot ⩽ 45 GeV), we obtain the effective coupling in the range 1.6 ×10-4 GeV-1 ≳CA ≳ 6.5 ×10-5 GeV-1. Within this window of allowed couplings the model favours a narrow width resonance and yQ2 ∼ O (10). In addition, we observe that the associated production q q bar → Aγ → γγγ can potentially produce a sizeable number of three photon events at future LHC. However, the rare decay Z →A* γ → γγγ is found to be too small to be probed at the LHC and e+e- colliders.

  20. Quantum Dot TiO2-Ge Solar Cells

    Science.gov (United States)

    Church, Carena; Muthuswamy, Elayaraja; Kauzlarich, Susan; Carter, Sue

    2014-03-01

    Colloidal germanium (Ge) quantum dots (CQDs) are attractive solar materials due to their low toxicity compared to Pb- or Cd- based nanocrystals (NC), low cost, and optimal, tunable bandgap for both increased IR response and potential power conversion efficiency (η) boosts from Multiple Exciton Generation (MEG). We report on the successful fabrication and characterization of spun-cast donor/acceptor type TiO2-Ge CQD solar cells utilizing Ge colloidal quantum dots (CQD) synthesized via a facile microwave method as the active layer. We find that our Ge QD size performance-related trends are similar to other QD systems studied. Additionally, our best heterojunction devices achieved short circuit currents (JSC) of 450 μA and open circuit voltages (VOC) of 0.335 V, resulting in η = 0.022 %. While this represents significant increases over previous Ge CQD PV (85 % over hybrid Ge-P3HT PV, 350 % over Ge NC PV), our photocurrents are still much lower than other NC systems. Analysis of intensity-dependent J-V characteristics reveal that our currents are limited by a space-charge region that forms leading to unbalanced charge extraction. We conclude by discussing a variety of film treatments and device structures we have tested to increase JSC.

  1. Photoluminescence of phosphorus atomic layer doped Ge grown on Si

    Science.gov (United States)

    Yamamoto, Yuji; Nien, Li-Wei; Capellini, Giovanni; Virgilio, Michele; Costina, Ioan; Schubert, Markus Andreas; Seifert, Winfried; Srinivasan, Ashwyn; Loo, Roger; Scappucci, Giordano; Sabbagh, Diego; Hesse, Anne; Murota, Junichi; Schroeder, Thomas; Tillack, Bernd

    2017-10-01

    Improvement of the photoluminescence (PL) of Phosphorus (P) doped Ge by P atomic layer doping (ALD) is investigated. Fifty P delta layers of 8 × 1013 cm‑2 separated by 4 nm Ge spacer are selectively deposited at 300 °C on a 700 nm thick P-doped Ge buffer layer of 1.4 × 1019 cm‑3 on SiO2 structured Si (100) substrate. A high P concentration region of 1.6 × 1020 cm‑3 with abrupt P delta profiles is formed by the P-ALD process. Compared to the P-doped Ge buffer layer, a reduced PL intensity is observed, which might be caused by a higher density of point defects in the P delta doped Ge layer. The peak position is shifted by ∼0.1 eV towards lower energy, indicating an increased active carrier concentration in the P-delta doped Ge layer. By introducing annealing at 400 °C to 500 °C after each Ge spacer deposition, P desorption and diffusion is observed resulting in relatively uniform P profiles of ∼2 × 1019 cm‑3. Increased PL intensity and red shift of the PL peak are observed due to improved crystallinity and higher active P concentration.

  2. B electrical activation in crystalline and preamorphized Ge

    Energy Technology Data Exchange (ETDEWEB)

    Bruno, E. [MATIS CNR-INFM and Dipartimento di Fisica e Astronomia, Universita di Catania, Via S. Sofia 64, 95123 Catania (Italy); Impellizzeri, G. [MATIS CNR-INFM and Dipartimento di Fisica e Astronomia, Universita di Catania, Via S. Sofia 64, 95123 Catania (Italy)], E-mail: giuliana.impellizzeri@ct.infn.it; Mirabella, S.; Piro, A.M.; Irrera, A.; Grimaldi, M.G. [MATIS CNR-INFM and Dipartimento di Fisica e Astronomia, Universita di Catania, Via S. Sofia 64, 95123 Catania (Italy)

    2008-12-05

    In this work we compare the B electrical activity in crystalline (c-Ge) and preamorphized Ge (PAI-Ge), in order to elucidate the activation mechanisms involved in the two cases and evidence the possible advantages of an approach over to the other. With this aim, we independently measured the hole fluence and the sheet resistance, thus extracting the carrier mobility, as a function of the implanted B fluence. In particular, we evidenced that it is possible to reproduce the metastability of the PAI process implanting B in c-Ge at very high fluences. However, by properly choosing the implantation conditions in c-Ge, in such a way to disable dynamic annealing during implantation, the activation of B can be raised up to the level attainable in PAI-Ge also for lower B fluences. Finally, the thermal evolution of the formed junction was tested, evidencing a high stability under annealing up to 550 deg. C in both c- and PAI-Ge.

  3. GeNF - Experimental report 2007

    Energy Technology Data Exchange (ETDEWEB)

    Pranzas, P.K.; Schreyer, A.; Willumeit, R. (eds.) [GKSS-Forschungszentrum Geesthacht GmbH (Germany). Inst. fuer Materialforschung

    2008-11-05

    At the Geesthacht Neutron Facility GeNF about 203 experiments were performed in 2007 by GKSS and by or for external users, partners or contractors. In most cases the measurements were performed and analysed in cooperation by the guests and by the GKSS staff or by the permanent external user group staff. The activities, which are based on a proposal procedure and on the in house R and D program, are reported in 70 contributions in the present annual experimental report for the year 2007. The contributions may contain one or also several combined experiments. During 2007 the GKSS research reactor FRG-1 achieved an operation time of 204 days at the full 5 MW reactor power providing a neutron flux of ca. 1.4 x 10{sup 14} thermal neutrons/cm{sup 2}s. In May/June 2007 the FRG-1 was upgraded with a new cold neutron source yielding a flux increase at the five instruments using cold neutrons of up to 40 %. The focus of the in house R and D work at GeNF instruments in 2007 was the characterisation of nano-structures in engineering materials, the analysis of stresses and textures in welds and technical structures at SANS-2, DCD, ARES-2 and TEX-2, the structural investigation of hydrogen containing substances such as polymers, colloids and biological macromolecules at SANS-1 as well as the characterisation of magnetic thin films at NeRo, PNR, POLDI and ROeDI. The modern experiment control hardware and software based on LabView was continuously improved on all instruments. In the appendices I and II the experimental reports of the GKSS outstation at the FRM II are attached as well as of the GKSS outstation at DESY. At the neutron reflectometer REFSANS at FRM II measurements are possible using a broad range of the scattering vector with reflectivities up to 10{sup -7}. Three reports show the activities of GKSS in the field of texture measurement at the instrument STRESS-SPEC. The instrument HARWI II at DESY is accepted very well by the community and is overbooked in all fields

  4. GeNF - Experimental report 2008

    Energy Technology Data Exchange (ETDEWEB)

    Pranzas, Philipp Klaus; Mueller, Martin; Willumeit, Regine; Schreyer, Andreas (eds.) [GKSS-Forschungszentrum Geesthacht GmbH (Germany). Inst. fuer Materialforschung

    2009-12-11

    At the Geesthacht Neutron Facility GeNF about 182 experiments were performed in 2008 by GKSS and by or for external users, partners or contractors. In most cases the measurements were performed and analysed in cooperation by the guests, by GKSS staff or by the permanent external user group staff. The activities, which are based on a proposal procedure and on the in house R and D program, are reported in 76 contributions in the present annual experimental report for the year 2008. The contributions may contain several combined experiments. During 2008 the GKSS research reactor FRG-1 achieved an operation time of 175 days at the full 5 MW reactor power providing a neutron flux of ca. 1.4.10{sup 14} thermal neutrons/cm{sup 2} s. The focus of the in house R and D work at GeNF instruments in 2008 was the characterisation of nanostructures in engineering materials, the analysis of stresses and textures in welds and technical structures at SANS-2, DCD, ARES-2 and TEX-2, the structural investigation of hydrogen containing substances such as polymers, colloids and biological macromolecules at SANS-1 as well as the characterisation of magnetic thin films at NeRo, PNR, POLDI and ROeDI. The modern experiment control hardware (e.g. sample environments, like magnets, cryostats or furnaces) and software based on LabView was continuously improved on all instruments. In the appendices I and II the experimental reports of the GKSS outstation at the FRM II are attached as well as of the GKSS outstation at DESY. The massive activity at the FRM II outstation is documented by the increasing number of REFSANS reports, accumulated to nine. Three reports show the activities of GKSS in the field of texture measurement at the instrument STRESS-SPEC. The instrument HARWI II at the synchrotron storage ring DORIS III at DESY is accepted very well by the community and is heavily overbooked in all fields (tomography, diffraction, etc.). After an 8-month shutdown period for an upgrade in the frame

  5. Interpreting 750 GeV diphoton excess in plain NMSSM

    Directory of Open Access Journals (Sweden)

    Marcin Badziak

    2016-09-01

    Full Text Available NMSSM has enough ingredients to explain the diphoton excess at 750 GeV: singlet-like (pseudo scalar (a s and higgsinos as heavy vector-like fermions. We consider the production of the 750 GeV singlet-like pseudo scalar a from a decay of the doublet-like pseudo scalar A, and the subsequent decay of a into two photons via higgsino loop. We demonstrate that this cascade decay of the NMSSM Higgs bosons can explain the diphoton excess at 750 GeV.

  6. Interpreting 750 GeV diphoton excess in plain NMSSM

    Science.gov (United States)

    Badziak, Marcin; Olechowski, Marek; Pokorski, Stefan; Sakurai, Kazuki

    2016-09-01

    NMSSM has enough ingredients to explain the diphoton excess at 750 GeV: singlet-like (pseudo) scalar (a) s and higgsinos as heavy vector-like fermions. We consider the production of the 750 GeV singlet-like pseudo scalar a from a decay of the doublet-like pseudo scalar A, and the subsequent decay of a into two photons via higgsino loop. We demonstrate that this cascade decay of the NMSSM Higgs bosons can explain the diphoton excess at 750 GeV.

  7. Spin-polarized photoemission from SiGe heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Ferrari, A.; Bottegoni, F.; Isella, G.; Cecchi, S.; Chrastina, D.; Finazzi, M.; Ciccacci, F. [LNESS-Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano (Italy)

    2013-12-04

    We apply the principles of Optical Orientation to measure by Mott polarimetry the spin polarization of electrons photoemitted from different group-IV heterostructures. The maximum measured spin polarization, obtained from a Ge/Si{sub 0.31}Ge{sub 0.69} strained film, undoubtedly exceeds the maximum value of 50% attainable in bulk structures. The explanation we give for this result lies in the enhanced band orbital mixing between light hole and split-off valence bands as a consequence of the compressive strain experienced by the thin Ge layer.

  8. The Majorana Ge-76 Double-Beta Decay Project

    CERN Document Server

    Aalseth, C E; Barabash, A S; Bowyer, T W; Brodzinski, R L; Brudanin, V B; Collar, J I; Doe, P J; Egorov, S; Elliott, S R; Farach, H A; Gaitskell, R J; Jordan, D; Kochetov, O I; Konovalov, S V; Kouzes, R T; Miley, H S; Pitts, W K; Reeves, J H; Robertson, R G H; Sandukovsky, V G; Smith, E; Stekhanov, V; Thompson, R C; Tornow, W; Umatov, V I; Warner, R A; Webb, J; Wilkerson, J F; Young, A

    2002-01-01

    The Majorana Experiment is a next-generation Ge-76 double-beta decay search. It will employ 500 kg of Ge, isotopically enriched to 86% in Ge-76, in the form of 200 detectors in a close-packed array for high granularity. Each crystal will be electronically segmented, with each region fitted with pulse-shape analysis electronics. A half-life sensitivity is predicted of 4.2e27 y or < 0.02-0.07 eV, depending on the nuclear matrix elements used to interpret the data.

  9. A New 76Ge Double Beta Decay Experiment at LNGS

    OpenAIRE

    Abt, I.; Altmann, M; Bakalyarov, A.; Barabanov, I.; Bauer, C; Bellotti, E.(Dipartimento di Fisica, Università Milano Bicocca, Milan, Italy); Belyaev, S. T.(National Research Centre “Kurchatov Institute”, Moscow, Russia); Bezrukov, L.(Institute for Nuclear Research of the Russian Academy of Sciences, Moscow, Russia); Brudanin, V.; Buettner, C.; Bolotsky, V. P.; Caldwell, A.; Cattadori, C.; Clement, H.; di Vacri, A.

    2004-01-01

    This Letter of Intent has been submitted to the Scientific Committee of the INFN Laboratori Nazionali del Gran Sasso (LNGS) in March 2004. It describes a novel facility at the LNGS to study the double beta decay of 76Ge using an (optionally active) cryogenic fluid shield. The setup will allow to scrutinize with high significance on a short time scale the current evidence for neutrinoless double beta decay of 76Ge using the existing 76Ge diodes from the previous Heidelberg-Moscow and IGEX expe...

  10. GeSn/Si Avalanche Photodetectors on Si substrates

    Science.gov (United States)

    2016-09-16

    Photodetectors on Si substrates Report Title In this project, firstly, the material growth of GeSn by chemical vapor deposition (CVD) system has been...between GeSn and other market dominating IR detectors in short-IR wavelength (First time reported the D* of a GeSn detector in the world). The D* of...Standard Form 298 (Rev 8/98) Prescribed by ANSI Std. Z39.18 Final Report W911NF-13-1-0196 64461-EL-DRP.43 479-575-7265 a. REPORT 14. ABSTRACT 16

  11. Improvement on Frequency Performance of SOI SiGe HBT

    Institute of Scientific and Technical Information of China (English)

    DAI Guang-hao; WANG Sheng-rong; LI Wen-jie

    2006-01-01

    Based on the advantages of SOI technology,the frequency performance of SiGe HBT with SOI structure has been simulated. Compared with bulk SiGe HBT,the results show that the buried oxide layer(BOX) can reduce collector-base capacitance CCB with the maximum value 89.3%,substrate-base capacitance CSB with 94.6%,and the maximum oscillation frequency is improved by 2.7. The SOI structure improves the frequency performance of SiGe HBT,which is adaptable to high-speed and high power applications.

  12. Gadolinium scandium germanide, Gd2Sc3Ge4

    Directory of Open Access Journals (Sweden)

    Sumohan Misra

    2009-04-01

    Full Text Available Gd2Sc3Ge4 adopts the orthorhombic Pu5Rh4-type structure. The crystal structure contains six sites in the asymmetric unit: two sites are statistically occupied by rare-earth atoms with Gd:Sc ratios of 0.967 (4:0.033 (4 and 0.031 (3:0.969 (3, one site (.m. symmetry is occupied by Sc atoms, and three distinct sites (two of which with .m. symmetry are occupied by Ge atoms. The rare-earth atoms form two-dimensional slabs with Ge atoms occupying the trigonal-prismatic voids.

  13. Structural evolution of Ge-rich Si{sub 1−x}Ge{sub x} films deposited by jet-ICPCVD

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yu; Yang, Meng; Wang, Gang [Key Laboratory of Advanced Photonic and Electronic Materials and School of Electronic Science and Engineering, Nanjing University, Nanjing 210093 (China); Wei, Xiaoxu; Wang, Junzhuan; Li, Yun; Zheng, Youdou; Shi, Yi, E-mail: yshi@nju.edu.cn [Key Laboratory of Advanced Photonic and Electronic Materials and School of Electronic Science and Engineering, Nanjing University, Nanjing 210093 (China); Collaborative Innovation Center of Advanced Micro-structures, Nanjing University, Nanjing 210093 (China); Zou, Zewen [College of Physics and Electronics Information, Anhui Normal University, Wuhu 241000 (China)

    2015-11-15

    Amorphous Ge-rich Si{sub 1−x}Ge{sub x} films with local Ge-clustering were deposited by dual-source jet-type inductively coupled plasma chemical-vapor deposition (jet-ICPCVD). The structural evolution of the deposited films annealed at various temperatures (Ta) is investigated. Experimental results indicate that the crystallization occurs to form Ge and Si clusters as Ta = 500 °C. With raising Ta up to 900 °C, Ge clusters percolate together and Si diffuses and redistributes to form a Ge/SiGe core/shell structure, and some Ge atoms partially diffuse to the surface as a result of segregation. The present work will be helpful in understanding the structural evolution process of a hybrid SiGe films and beneficial for further optimizing the microstructure and properties.

  14. Optical absorption in highly strained Ge/SiGe quantum wells: The role of Γ→ Δ scattering

    Science.gov (United States)

    Lever, L.; Ikonić, Z.; Valavanis, A.; Kelsall, R. W.; Myronov, M.; Leadley, D. R.; Hu, Y.; Owens, N.; Gardes, F. Y.; Reed, G. T.

    2012-12-01

    We report the observation of the quantum-confined Stark effect in Ge/SiGe multiple quantum well heterostructures grown on Si0.22Ge0.78 virtual substrates. The large compressive strain in the Ge quantum well layers caused by the lattice mismatch with the virtual substrate results in a blue shift of the direct absorption edge, as well as a reduction in the Γ-valley scattering lifetime because of strain-induced splittings of the conduction band valleys. We investigate theoretically the Γ-valley carrier lifetimes by evaluating the Γ →L and Γ →Δ scattering rates in strained Ge/SiGe semiconductor heterostructures. These scattering rates are used to determine the lifetime broadening of excitonic peaks and the indirect absorption in simulated absorption spectra, which are compared with measured absorption spectra for quantum well structures with systematically varied dimensions. We find that Γ →Δ scattering is significant in compressively strained Ge quantum wells and that the Γ-valley electron lifetime is less than 50 fs in the highly strained structures reported here, where Γ →Δ scattering accounted for approximately half of the total scattering rate.

  15. Lowering the effective work function via oxygen vacancy formation on the GeO2/Ge interface

    Science.gov (United States)

    Lee, Tae In; Seo, Yujin; Moon, Jungmin; Ahn, Hyun Jun; Yu, Hyun-Young; Hwang, Wan Sik; Cho, Byung Jin

    2017-04-01

    The use of a GeO2 interfacial layer (IL) between a high-k dielectric and a Ge substrate helps to reduce the interface state density in Ge MOS devices. We report that the presence of the GeO2 IL changes the effective work function (eWF) of the gate stack when annealed after high-k dielectric deposition. The eWF is reduced from 4.31 eV to 3.98 eV for TaN and from 5.00 eV to 4.44 eV for Ni. Consequently, the threshold voltage (Vth) decreases from 0.69 V to 0.21 V for Ni after post deposition annealing. Our investigation confirms that the generation of oxygen vacancies in the GeO2 IL near the Ge substrate is the main cause of the eWF modulation. In addition, the reliability of the GeO2 IL is investigated via the conductance method and a constant-current stress test.

  16. Band alignments at strained Ge1‑x Sn x /relaxed Ge1‑y Sn y heterointerfaces

    Science.gov (United States)

    Lan, H.-S.; Liu, C. W.

    2017-04-01

    Type-I, type-II, reverse type-I, and reverse type-II band alignments are found theoretically in strained Ge1‑x Sn x (0  ⩽  x  ⩽  0.3) grown on relaxed Ge1‑y Sn y substrates (0  ⩽  y  ⩽  0.3) using the model-solid theory. The prerequisite bandgaps, and energy difference between the top valence band edge and the average valence band position of GeSn are obtained by the nonlocal empirical pseudopotential method. For the indirect-gap (L valleys) Ge1‑x Sn x on relaxed Ge1‑y Sn y , the band alignments are type-I and reverse type-I under biaxial compressive strain (x  >  y) and biaxial tensile strain (x  <  y), respectively. For the direct-gap (Γ valley) Ge1‑x Sn x on relaxed Ge1‑y Sn y , the biaxial compressive strain yields type-I and type-II alignment, while the biaxial tensile strain yields reverse type-I and reverse type-II alignments.

  17. Reduction of threading dislocation density in Ge/Si using a heavily As-doped Ge seed layer

    Directory of Open Access Journals (Sweden)

    Kwang Hong Lee

    2016-02-01

    Full Text Available High quality germanium (Ge epitaxial film is grown directly on silicon (001 substrate with 6° off-cut using a heavily arsenic (As doped Ge seed layer. The growth steps consists of (i growth of a heavily As-doped Ge seed layer at low temperature (LT, at 400 °C, (ii Ge growth with As gradually reduced to zero at high temperature (HT, at 650 °C, (iii pure Ge growth at HT. This is followed by thermal cyclic annealing in hydrogen at temperature ranging from 600 to 850 °C. Analytical characterization have shown that the Ge epitaxial film with a thickness of ∼1.5 µm experiences thermally induced tensile strain of 0.20% with a treading dislocation density (TDD of mid 106/cm2 which is one order of magnitude lower than the control group without As doping and surface roughness of 0.37 nm. The reduction in TDD is due to the enhancement in velocity of dislocations in an As-doped Ge film.

  18. Luminescence of one dimensional ZnO, GeO{sub 2}–Zn{sub 2}GeO{sub 4} nanostructure through thermal evaporation of Zn and Ge powder mixture

    Energy Technology Data Exchange (ETDEWEB)

    Pham, Vuong-Hung, E-mail: vuong.phamhung@hust.edu.vn; Kien, Vu Trung; Tam, Phuong Dinh; Huy, Pham Thanh

    2016-07-15

    Graphical abstract: - Highlights: • ZnO and GeO{sub 2}–ZnGeO{sub 4} nanowires were fabricated by thermal evaporation of Zn and Ge powder mixture. • Morphology of specimens were observed to have a nanowire structure to rod-like morphology. • Strong NBE emission band with suppressed visible green emission band were observed on the dominant ZnO nanowires. • Strong emission of ∼530 nm were observed on the GeO{sub 2}–Zn{sub 2}GeO{sub 4} nanowires. - Abstract: This paper reports the first attempt for fabrication of thermal evaporated Zn–Ge powder mixture to achieve near-band-edge (NBE) emission of ZnO and visible emission of GeO{sub 2}–Zn{sub 2}GeO{sub 4} nanowires with controllable intensities. The nanowires were fabricated by thermal evaporation of Zn and Ge powder mixture, particularly, by using different Zn:Ge ratio, temperature and evaporated times. The morphology of nanowires was depended on the Zn and Ge ratio that was observed to have a nanowire structure to rod-like morphology. The thermal evaporation of Zn:Ge powder mixture resulted in formation of dominant ZnO or GeO{sub 2}–Zn{sub 2}GeO{sub 4} nanowires as a function of evaporated parameters. These results suggest that the application of thermal evaporation of Zn and Ge mixture for potential application in synthesis of ZnO or GeO{sub 2}–Zn{sub 2}GeO{sub 4} nanowires for optoelectronic field.

  19. Sn-based Ge/Ge0.975Sn0.025/Ge p-i-n photodetector operated with back-side illumination

    Science.gov (United States)

    Chang, C.; Li, H.; Huang, S. H.; Cheng, H. H.; Sun, G.; Soref, R. A.

    2016-04-01

    We report an investigation of a GeSn-based p-i-n photodetector grown on a Ge wafer that collects light signal from the back of the wafer. Temperature dependent absorption measurements performed over a wide temperature range (300 K down to 25 K) show that (a) absorption starts at the indirect bandgap of the active GeSn layer and continues up to the direct bandgap of the Ge wafer, and (b) the peak responsivity increases rapidly at first with decreasing temperature, then increases more slowly, followed by a decrease at the lower temperatures. The maximum responsivity happens at 125 K, which can easily be achieved with the use of liquid nitrogen. The temperature dependence of the photocurrent is analyzed by taking into consideration of the temperature dependence of the electron and hole mobility in the active layer, and the analysis result is in reasonable agreement with the data in the temperature regime where the rapid increase occurs. This investigation demonstrates the feasibility of a GeSn-based photodiode that can be operated with back-side illumination for applications in image sensing systems.

  20. Computer Engineers.

    Science.gov (United States)

    Moncarz, Roger

    2000-01-01

    Looks at computer engineers and describes their job, employment outlook, earnings, and training and qualifications. Provides a list of resources related to computer engineering careers and the computer industry. (JOW)

  1. The Ratio of Jet Cross Sections at s**(1/2)=630 GeV and 1800 GeV

    CERN Document Server

    Abbott, B; Abramov, V; Acharya, B S; Adams, D L; Adams, M; Alves, G A; Amos, N; Anderson, E W; Baarmand, M M; Babintsev, V V; Babukhadia, L R; Baden, A; Baldin, B Yu; Balm, P W; Banerjee, S; Bantly, J; Barberis, E; Baringer, P; Bartlett, J F; Bassler, U; Bean, A; Begel, M; Belyaev, A; Beri, S B; Bernardi, G; Bertram, I; Besson, A; Bezzubov, V A; Bhat, P C; Bhatnagar, V; Bhattacharjee, M; Blazey, G C; Blessing, S; Böhnlein, A; Bozhko, N; Borcherding, F; Brandt, A; Breedon, R; Briskin, G M; Brock, R; Brooijmans, G; Bross, A; Buchholz, D; Bühler, M; Büscher, V; Burtovoi, V S; Butler, J M; Canelli, F; Carvalho, W S; Casey, D; Casilum, Z; Castilla-Valdez, H; Chakraborty, D; Chan, K M; Chekulaev, S V; Cho, D K; Choi, S; Chopra, S; Christenson, J H; Chung, M; Claes, D; Clark, A R; Cochran, J; Coney, L; Connolly, B; Cooper, W E; Coppage, D; Cummings, M A C; Cutts, D; Dahl, O I; Davis, G A; Davis, K; De, K; Del Signore, K; Demarteau, M; Demina, R; Demine, P; Denisov, D S; Denisov, S P; Desai, S V; Diehl, H T; Diesburg, M; DiLoreto, G; Doulas, S; Draper, P; Ducros, Y; Dudko, L V; Duensing, S; Dugad, S R; Dyshkant, A; Edmunds, D L; Ellison, J; Elvira, V D; Engelmann, R; Eno, S; Eppley, G; Ermolov, P; Eroshin, O V; Estrada, J K; Evans, H; Evdokimov, V N; Fahland, T; Fehér, S; Fein, D; Ferbel, T; Fisk, H E; Fisyak, Yu; Flattum, E M; Fleuret, F; Fortner, M R; Frame, K C; Fuess, S; Gallas, E J; Galjaev, A N; Gartung, P E; Gavrilov, V; Genik, R J; Genser, K; Gerber, C E; Gershtein, Yu; Gibbard, B; Gilmartin, R; Ginther, G; Gómez, B; Gómez, G; Goncharov, P I; González-Solis, J L; Gordon, H; Goss, L T; Gounder, K; Goussiou, A; Graf, N; Graham, G; Grannis, P D; Green, J A; Greenlee, H; Grinstein, S; Groer, L S; Grudberg, P M; Grünendahl, S; Sen-Gupta, A; Gurzhev, S N; Gutíerrez, G; Gutíerrez, P; Hadley, N J; Haggerty, H; Hagopian, S L; Hagopian, V; Hahn, K S; Hall, R E; Hanlet, P; Hansen, S; Hauptman, J M; Hays, C; Hebert, C; Hedin, D; Heinson, A P; Heintz, U; Heuring, T C; Hirosky, R; Hobbs, J D; Hoeneisen, B; Hoftun, J S; Hou, S; Huang, Y; Ito, A S; Jerger, S A; Jesik, R; Johns, K; Johnson, M; Jonckheere, A M; Jones, M; Jöstlein, H; Juste, A; Kahn, S; Kajfasz, E; Karmanov, D E; Karmgard, D J; Kehoe, R; Kim, S K; Klima, B; Klopfenstein, C; Knuteson, B; Ko, W; Kohli, J M; Kostritskii, A V; Kotcher, J; Kotwal, A V; Kozelov, A V; Kozlovskii, E A; Krane, J; Krishnaswamy, M R; Krzywdzinski, S; Kubantsev, M A; Kuleshov, S; Kulik, Y; Kunori, S; Kuznetsov, V E; Landsberg, G L; Leflat, A; Lehner, F; Li, J; Li, Q Z; Lima, J G R; Lincoln, D; Linn, S L; Linnemann, J T; Lipton, R; Lucotte, A; Lueking, L H; Lundstedt, C; Maciel, A K A; Madaras, R J; Manankov, V; Mao, H S; Marshall, T; Martin, M I; Martin, R D; Mauritz, K M; May, B; Mayorov, A A; McCarthy, R; McDonald, J; McMahon, T; Melanson, H L; Meng, X C; Merkin, M; Merritt, K W B; Miao, C; Miettinen, H; Mihalcea, D; Mincer, A; Mishra, C S; Mokhov, N V; Mondal, N K; Montgomery, H E; Moore, R W; Mostafa, M A; Da Motta, H; Nagy, E; Nang, F; Narain, M; Narasimham, V S; Neal, H A; Negret, J P; Negroni, S; Norman, D; Oesch, L H; Oguri, V; Olivier, B; Oshima, N; Padley, P; Pan, L J; Para, A; Parashar, N; Partridge, R; Parua, N; Paterno, M; Patwa, A; Pawlik, B; Perkins, J; Peters, M; Peters, O; Piegaia, R; Piekarz, H; Pope, B G; Popkov, E; Prosper, H B; Protopopescu, S D; Qian, J; Quintas, P Z; Raja, R; Rajagopalan, S; Ramberg, E; Rapidis, P A; Reay, N W; Reucroft, S; Rha, J; Rijssenbeek, M; Rockwell, T; Roco, M T; Rubinov, P M; Ruchti, R C; Rutherfoord, John P; Santoro, A F S; Sawyer, L; Schamberger, R D; Schellman, H; Schwartzman, A; Scully, J R; Sen, N; Shabalina, E; Shankar, H C; Shivpuri, R K; Shpakov, D; Shupe, M A; Sidwell, R A; Simák, V; Singh, H; Singh, J B; Sirotenko, V I; Slattery, P F; Smith, E; Smith, R P; Snihur, R; Snow, G A; Snow, J; Snyder, S; Solomon, J; Sorin, V; Sosebee, M; Sotnikova, N; Soustruznik, K; Souza, M; Stanton, N R; Steinbruck, G; Stephens, R W; Stevenson, M L; Stichelbaut, F; Stoker, D; Stolin, V; Stoyanova, D A; Strauss, M; Streets, K; Strovink, M; Stutte, L; Sznajder, A; Taylor, W; Tentindo-Repond, S; Thompson, J; Toback, D; Tripathi, S M; Trippe, T G; Turcot, A S; Tuts, P M; Van Gemmeren, P; Vaniev, V; Van Kooten, R; Varelas, N; Volkov, A A; Vorobev, A P; Wahl, H D; Wang, H; Wang, Z M; Warchol, J; Watts, G; Wayne, M; Weerts, H; White, A; White, J T; Whiteson, D; Wightman, J A; Wijngaarden, D A; Willis, S; Wimpenny, S J; Wirjawan, J V D; Womersley, J; Wood, D R; Yamada, R; Yamin, P; Yasuda, T; Yip, K; Youssef, S; Yu, J; Yu, Z; Zanabria, M E; Zheng, H; Zhou, Z; Zhu, Z H; Zielinski, M; Zieminska, D; Zieminski, A; Zutshi, V; Zverev, E G; Zylberstejn, A

    2001-01-01

    The DO Collaboration has measured the inclusive jet cross section in proton-antiproton collisions at s**2 = 630 GeV. The results for pseudorapidities -0.5 to 0.5 are combined with our previous results at s**2 = 1800 GeV to form a ratio of cross sections with smaller uncertainties than either individual measurement. Next-to-leading-order QCD predictions show excellent agreement with the measurement at 630 GeV; agreement is also satisfactory for the ratio. Specifically, despite a 10% to 15% difference in the absolute normalization, the dependence of the ratio on jet transverse momentum is very similar for data and theory.

  2. Temperature spectra of conductance of Ge/Si p-i-n structures with Ge quantum dots

    Science.gov (United States)

    Izhnin, Ihor I.; Fitsych, Olena I.; Pishchagin, Anton A.; Kokhanenko, Andrei P.; Voitsekhovskii, Alexander V.; Dzyadukh, Stanislav M.; Nikiforov, Alexander I.

    2017-02-01

    This work presents results of investigation of Ge/Si p-i-n structures with Ge quantum dots in the i-region by the method of admittance spectroscopy. The structures contain multiple layers with Ge quantum dots separated by thin 5 nm layers of Si in the intrinsic region. Two peaks are observed on the temperature dependences of conductance of the investigated heterostructures. It is revealed that the second peak is broadened and corresponds to a system of closely lying energy levels.

  3. Hard-photon emission from 150-GeV electrons incident on Si and Ge single crystals near axial directions

    Energy Technology Data Exchange (ETDEWEB)

    Medenwaldt, R.; Moller, S.P.; Sorensen, A.H.; Tang-Petersen, S.; Uggerhoj, E. (Institute of Physics, University of Aarhus, DK-8000 Aarhus C, Denmark (DK)); Elsener, K. (European Organization for Nuclear Research (CERN), CH-1211 Geneva 23, Switzerland (CH)); Hage-Ali, M.; Siffert, P.; Stoquert, J. (Centre de Recherches Nucleaires, F-67037 Strasbourg CEDEX, France (FR)); Maier, K. (The Max-Planck Institut fuer Metallforschung, D-7000 Stuttgart 80, Federal Republic of Germany (DE))

    1989-12-25

    The emission of high-energy photons from 150-GeV electrons traversing single crystals near axial directions is studied experimentally for Ge and, for the first time, also for Si. Enhancements relative to random up to 2 orders of magnitude are observed. For incident angles much less than the critical channeling angle {psi}{sub 1} a pronounced peak appears in the photon spectra near {similar to}85% of the electron energy for both the Si and the Ge crystals. The peak disappears for incident angles larger than {similar to}0.3{psi}{sub 1}. The experimental findings are compared to theoretical results.

  4. Computer Music

    Science.gov (United States)

    Cook, Perry R.

    This chapter covers algorithms, technologies, computer languages, and systems for computer music. Computer music involves the application of computers and other digital/electronic technologies to music composition, performance, theory, history, and the study of perception. The field combines digital signal processing, computational algorithms, computer languages, hardware and software systems, acoustics, psychoacoustics (low-level perception of sounds from the raw acoustic signal), and music cognition (higher-level perception of musical style, form, emotion, etc.).

  5. Prediction study of the elastic and thermodynamic properties of the newly discovered tetragonal SrPd 2Ge 2 phase

    Science.gov (United States)

    Ghebouli, M. A.; Bouhemadou, A.; Ghebouli, B.; Fatmi, M.; Bin-Omran, S.

    2011-07-01

    Density functional theory pseudo-potential plane-wave calculations are performed in order to predict the structural, elastic and thermodynamic properties of the newly discovered tetragonal intermetallic SrPd 2Ge 2. The computed equilibrium lattice constants and the internal parameter are in good agreement with the experimental findings. The effect of high pressure, up to 40 GPa, on the lattice constants shows that the contraction along the c axis is higher than along the a axis. The single-crystal elastic constants and related properties are calculated using the static finite strain technique. We predicted the bulk modulus, shear modulus, Young's modulus and Poisson's ratio for ideal polycrystalline SrPd 2Ge 2 aggregates, using the Voigt-Reuss-Hill approximations. We estimated the Debye temperature and minimum thermal conductivity of SrPd 2Ge 2 from the average sound velocity. Through the quasi-harmonic Debye model, in which the phononic effects are considered, the temperature and pressure effects on the primitive cell volume, bulk modulus, thermal expansion coefficient, heat capacity and Debye temperature are investigated. This is the first quantitative theoretical prediction of the elastic and thermodynamic properties of the SrPd 2Ge 2 compound, and it still awaits experimental confirmation.

  6. A Study on Self-Heating and Mutual Thermal Coupling in SiGe Multi-Finger HBTs

    Science.gov (United States)

    Dwivedi, A. D. D.; D'Esposito, Rosario; Sahoo, Amit Kumar; Fregonese, Sebastien; Zimmer, Thomas

    2016-11-01

    In this paper, the self-heating and mutual thermal coupling in a state-of-the-art SiGe:C multi-finger heterojunction bipolar transistor (HBT) was investigated in static dc operation conditions. Multi-finger HBT structure was created using Sentaurus structure editor with dimensions similar to the layout of SiGe:C multi-finger HBTs in ST-Microelectronics BiCMOS55 (B55) technology ( f T > 300 GHz, f max > 400 GHz) as per ST's BiCMOS55 process design kit guidelines. Three-dimensional thermal technology computer aided design (TCAD) simulations were carried out to obtain the temperature distribution in static dc operation. The lattice temperature ( T Lattice) and heat flux ( F Heat) distribution inside the device were studied. The impact of back-end-of-line (BEOL) layers on static thermal behavior of the state-of-the-art SiGe:C multi finger HBTs was also investigated. The temperature dependent thermal resistance of different fingers of the trench isolated SiGe multi-finger HBT was extracted without and with back-end-of-line (BEOL) effect. An electro-thermal dc compact model of self-heating and mutual thermal coupling in multi-finger HBTs was proposed and applied to compare the modeling results with the TCAD simulation results. Very good agreement was achieved between results obtained from TCAD simulation and those obtained from compact model-based simulation.

  7. Surface reactivity of Ge[111] for organic functionalization by means of a radical-initiated reaction: A DFT study

    Science.gov (United States)

    Rubio-Pereda, Pamela; Takeuchi, Noboru

    2016-08-01

    The study of interfacial chemistry at semiconductor surfaces has become an important area of research. Functionalities such as molecular recognition, biocompatibility of surfaces, and molecular computing, could be achieved by the combinations of organic chemistry with the semiconductor technology. One way to accomplish this goal is by means of organic functionalization of semiconductor surfaces such as the bulk-terminated germanium surfaces, more specifically the Ge[111]. In this work, we theoretically study, by applying density functional theory, the surface reactivity of the bulk-terminated Ge[111] surface for organic functionalization by means of a radical-initiated reaction of unsaturated molecules such as acetylene, ethylene and styrene with a hydrogen vacancy on a previously hydrogen-terminated Ge[111] surface. Results derived from this work are compared with those obtained in our previous calculations on the germanene surface, following the same chemical route. Our calculations show an accumulation of electronic charge at the H-vacancy having as a result electron pairing due to strong lattice-electron coupling and therefore a diminished surface reactivity. Calculation of the transition states for acetylene and ethylene indicates that the surface reactivity of the hydrogen-terminated Ge[111] surface is less promising than its two-dimensional analogue, the hydrogen-terminated germanene.

  8. Ge-Photodetectors for Si-Based Optoelectronic Integration

    Directory of Open Access Journals (Sweden)

    Sungjoo Lee

    2011-01-01

    Full Text Available High speed photodetectors are a key building block, which allow a large wavelength range of detection from 850 nm to telecommunication standards at optical fiber band passes of 1.3–1.55 µm. Such devices are key components in several applications such as local area networks, board to board, chip to chip and intrachip interconnects. Recent technological achievements in growth of high quality SiGe/Ge films on Si wafers have opened up the possibility of low cost Ge-based photodetectors for near infrared communication bands and high resolution spectral imaging with high quantum efficiencies. In this review article, the recent progress in the development and integration of Ge-photodetectors on Si-based photonics will be comprehensively reviewed, along with remaining technological issues to be overcome and future research trends.

  9. Nanoscale elemental quantification in heterostructured SiGe nanowires.

    Science.gov (United States)

    Hourani, W; Periwal, P; Bassani, F; Baron, T; Patriarche, G; Martinez, E

    2015-05-14

    The nanoscale chemical characterization of axial heterostructured Si1-xGex nanowires (NWs) has been performed using scanning Auger microscopy (SAM) through local spectroscopy, line-scan and depth profile measurements. Local Auger profiles are realized with sufficient lateral resolution to resolve individual nanowires. Axial and radial composition heterogeneities are highlighted. Our results confirm the phenomenon of Ge radial growth forming a Ge shell around the nanowire. Moreover, quantification is performed after verifying the absence of preferential sputtering of Si or Ge on a bulk SiGe sample. Hence, reliable results are obtained for heterostructured NW diameters higher than 100 nm. However, for smaller sizes, we have noticed that the sensitivity factors evaluated from bulk samples cannot be used because of edge effects occurring for highly topographical features and a modified contribution of backscattered electrons.

  10. High Temperature Stable Nanocrystalline SiGe Thermoelectric Material

    Science.gov (United States)

    Yang, Sherwin (Inventor); Matejczyk, Daniel Edward (Inventor); Determan, William (Inventor)

    2013-01-01

    A method of forming a nanocomposite thermoelectric material having microstructural stability at temperatures greater than 1000 C. The method includes creating nanocrystalline powder by cryomilling. The method is particularly useful in forming SiGe alloy powder.

  11. THE EFFECT OF Ge-132 ON ULTRASTRUCTURE OF CULTURED MELANOCYTES

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Objective To elucidate the effect of Ge-132 on the growth of melanocytes. Mothods Melanocyes from epidermis were cultured and purified ;the second generation of the cell was used for study ;the cells were divided into two groups randomly,to group A, Ge-132 was added to the media at 0.04mg/L ;to group B ,common culturing method was used without Ge-132. After 5d, the cells were seperated by digestion for study by transmission electronic micro- scope. Results Compared to group B, the vacuioes of the cells were increased,mitochondria distended, endoplasmic reticulum dilated and the number of melanosome declined in the group A. Conclusion Ge-132 can inhibit the melanocyte's growth at a certain concentration and might be used for treating pigmented diseases.

  12. Si-Ge-metal ternary phase diagram calculations

    Science.gov (United States)

    Fleurial, J. P.; Borshchevsky, A.

    1990-01-01

    Solution crystal growth and doping conditions of Si-Ge alloys used for high-temperature thermoelectric generation are determined here. Liquid-phase epitaxy (LPE) has been successfully employed recently to obtain single-crystalline homogeneous layers of Si-Ge solid solutions from a liquid metal solvent. Knowledge of Si-Ge-metallic solvent ternary phase diagrams is essential for further single-crystal growth development. Consequently, a thermodynamic equilibrium model was used to calculate the phase diagrams of the Si-Ge-M systems, including solid solubilities, where M is Al, Ga, In, Sn, Pb, Sb, or Bi. Good agreement between calculated liquidus and solidus data and experimental DTA and microprobe results was obtained. The results are used to compare the suitability of the different systems for crystal growth (by LPE-type process).

  13. Atomistic simulation of damage accumulation and amorphization in Ge

    Energy Technology Data Exchange (ETDEWEB)

    Gomez-Selles, Jose L., E-mail: joseluis.gomezselles@imdea.org; Martin-Bragado, Ignacio [IMDEA Materials Institute, Eric Kandel 2, 28906 Getafe, Madrid (Spain); Claverie, Alain [CEMES/CNRS, 29 rue J. Marvig, 31055 Toulouse Cedex (France); Sklenard, Benoit [CEA, LETI, 17 rue des Martyrs, 38054 Grenoble Cedex 9 (France); Benistant, Francis [GLOBALFOUNDRIES Singapore Pte Ltd., 60 Woodlands Industrial Park D Street 2, Singapore 738406 (Singapore)

    2015-02-07

    Damage accumulation and amorphization mechanisms by means of ion implantation in Ge are studied using Kinetic Monte Carlo and Binary Collision Approximation techniques. Such mechanisms are investigated through different stages of damage accumulation taking place in the implantation process: from point defect generation and cluster formation up to full amorphization of Ge layers. We propose a damage concentration amorphization threshold for Ge of ∼1.3 × 10{sup 22} cm{sup −3} which is independent on the implantation conditions. Recombination energy barriers depending on amorphous pocket sizes are provided. This leads to an explanation of the reported distinct behavior of the damage generated by different ions. We have also observed that the dissolution of clusters plays an important role for relatively high temperatures and fluences. The model is able to explain and predict different damage generation regimes, amount of generated damage, and extension of amorphous layers in Ge for different ions and implantation conditions.

  14. Laser ablation and growth of Si and Ge

    Energy Technology Data Exchange (ETDEWEB)

    Yap, Seong Shan, E-mail: seong.yap@ntnu.no [Department of Physics, Norwegian University of Science and Technology, 7491 Trondheim (Norway); Siew, Wee Ong; Nee, Chen Hon [Faculty of Engineering, Multimedia University, 63100 Cyberjaya, Selangor (Malaysia); Reenaas, Turid Worren [Department of Physics, Norwegian University of Science and Technology, 7491 Trondheim (Norway); Tou, Teck Yong [Faculty of Engineering, Multimedia University, 63100 Cyberjaya, Selangor (Malaysia)

    2012-02-01

    In this work, we investigated the laser ablation and deposition of Si and Ge at room temperature in vacuum by employing nanosecond lasers of 248 nm, 355 nm, 532 nm and 1064 nm. Time-integrated optical emission spectra were obtained for neutrals and ionized Ge and Si species in the plasma at laser fluences from 0.5 to 11 J/cm{sup 2}. The deposited films were characterized by using Raman spectroscopy, scanning electron microscopy and atomic force microscopy. Amorphous Si and Ge films, micron-sized crystalline droplets and nano-sized particles were deposited. The results suggested that ionized species in the plasma promote the process of subsurface implantation for both Si and Ge films while large droplets were produced from the superheated and melted layer of the target. The dependence of the properties of the materials on laser wavelength and fluence were discussed.

  15. Aerial view of the 28 GeV Protron Synchrotron

    CERN Multimedia

    CERN PhotoLab

    1965-01-01

    The underground ring of the 28 GeV proton synchrotron in 1965. Left, the South and North experimental halls. Top right, part of the East hall. Bottom right, the main generator room and the cooling condensers.

  16. Growth strategies to control tapering in Ge nanowires

    Directory of Open Access Journals (Sweden)

    P. Periwal

    2014-04-01

    Full Text Available We report the effect of PH3 on the morphology of Au catalyzed Ge nanowires (NWs. Ge NWs were grown on Si (111 substrate at 400 °C in the presence of PH3, using vapor-liquid-solid method by chemical vapor deposition. We show that high PH3/GeH4 ratio causes passivation at NW surface. At high PH3 concentration phosphorous atoms attach itself on NW surface and form a self-protection coating that prevents conformal growth and leads to taper free nanostructures. However, in case of low PH3 flux the combination of axial and radial growth mechanism occurs resulting in conical structure. We have also investigated axial PH3-intrinsic junctions in Ge NWs. The unusual NW shape is attributed to a combination of catalyzed, uncatalyzed and diffusion induced growth.

  17. NQR study of chalcogenide glasses Ge-As-Se.

    Science.gov (United States)

    Glotova, Olga; Korneva, Irina; Sinyavsky, Nikolay; Ostafin, Michal; Nogaj, Boleslaw

    2011-07-01

    A three-component Ge-As-Se system is studied by the nuclear quadrupole resonance (NQR) method on (75)As nuclei and by the nutation NQR spectroscopy. The NQR (75)As spectra of the glasses Ge(0.021) As(0.375) Se(0.604), Ge(0.043) As(0.348) Se(0.609) and Ge(0.068) As(0.318) Se(0.614) reveal broad lines with two peaks assigned to the main structural unit of As(2)Se(3). With increasing average coordination number ( ̅r), the spectrum signals are shifted towards higher frequencies. At ̅r > 2.54, the spectrum becomes complex, which is a consequence of formation of more complex molecular structures in the glasses of high content of germanium. At fixed frequencies the asymmetry parameter η of the samples studied is determined.

  18. On the macroscopic formation length for GeV photons

    Energy Technology Data Exchange (ETDEWEB)

    Thomsen, H.D.; Esberg, J.; Kirsebom, K.; Knudsen, H.; Uggerhoj, E. [Department of Physics and Astronomy, University of Aarhus (Denmark); Uggerhoj, U.I. [Department of Physics and Astronomy, University of Aarhus (Denmark)], E-mail: ulrik@phys.au.dk; Sona, P. [University of Florence, Florence (Italy); Mangiarotti, A. [LIP, Universidade de Coimbra (Portugal); Ketel, T.J. [Free University, Amsterdam (Netherlands); Dizdar, A. [University of Istanbul, Istanbul (Turkey); Dalton, M.M.; Ballestrero, S.; Connell, S.H. [University of Johannesburg, Johannesburg (South Africa)

    2009-03-02

    Experimental results for the radiative energy loss of 206 and 234 GeV electrons in 5-10 {mu}m thin Ta targets are presented. An increase in radiation emission probability at low photon energies compared to a 100 {mu}m thick target is observed. This increase is due to the formation length of the GeV photons exceeding the thickness of the thin foils, the so-called Ternovskii-Shul'ga-Fomin (TSF) effect. The formation length of GeV photons from a multi-hundred GeV projectile is through the TSF effect shown directly to be a factor 10{sup 10} longer than their wavelength.

  19. Mathematics and Computation in Music

    DEFF Research Database (Denmark)

    on contemporary mathematical approaches to creative systems), Emilia Gómez (who spoke on music technologies in classical orchestral music concerts), Gareth Loy (who spoke on steps toward a theory of musical interest), and Ge Wang (who spoke on the art of designing computer music), and a film (From Circles...... Sciences. As the flagship conference of the Society for Mathematics and Computation in Music (SMCM), MCM 2015 provided a dedicated platform for the communication and exchange of ideas among researchers in mathematics, informatics, music theory, composition, musicology, and related disciplines. It brought...... together researchers from around the world who combine mathematics or computation with music theory, music analysis, composition, and performance. This year’s program – full details at http://mcm2015.qmul.ac.uk – featured a number of distinguished keynote speakers, including Andrée Ehresmann (who spoke...

  20. 3 GeV RCS at the JKJ

    Science.gov (United States)

    Noda, Fumiaki

    2002-12-01

    3GeV RCS at the JAERI-KEK joint project (JKJ) is a rapid cycling synchrotron designed for high intensity proton beam. The designed output power is 1MW with a repetition rate of 25 Hz. In this paper, the outline of 3GeV RCS, key issues to achieve the goal, R&D status and time schedule of construction are reported.

  1. Tandlæge Lene Skak-Iversen

    DEFF Research Database (Denmark)

    Kjær, Inger

    2013-01-01

    Det var med stor sorg, at vi modtog meddelelsen om, at Lene Skak-Iversen var død efter kort tids sygdom, 66 år gammel. Dermed sluttede et fagligt enestående livsforløb, delt i tre forskellige perioder. Lene Skak-Iversen blev tandlæge i 1971. Hun fungerede i en årrække dels som børnetandlæge i Køb...

  2. On the DAMA and CoGeNT Modulations

    DEFF Research Database (Denmark)

    Frandsen, Mads Toudal; Kahlhoefer, Felix; March-Russell, John;

    2011-01-01

    DAMA observes an annual modulation in their event rate, as might be expected from dark matter scatterings, while CoGeNT has reported evidence for a similar modulation. The simplest interpretation of these findings in terms of dark matter-nucleus scatterings is excluded by other direct detection...... constraints, while inelasticity enhances the annual modulation fraction of the signal, bringing the CoGeNT and CDMS results into better agreement....

  3. Improvements to the Leake neutron detector II: Extension to 10 GeV energy

    Science.gov (United States)

    Leake, J. W.; Lowe, T.; Mason, R. S.

    2009-01-01

    We report on an improved design of neutron ambient dose equivalent (DE) detector, SNS-LINUS, consisting of a spherical polyethylene detector with internal shields of boron and lead based on the LINUS model thus extending the response to the GeV region. The computed Monte Carlo neutron ambient DE energy response is within a factor ±2.4 from 0.1 keV to 10 GeV with a detector weight of 7.8 kg that is significantly lower than other LINUS designs. The ambient DE response in the 50 keV-10 MeV range is within a factor ±1.36 (i.e. ±30%). The main applications are likely to be around particle accelerators, in aircraft or in spacecraft. The improved response in the 20 MeV energy region should make it attractive for use with fission sources. The computed responses of the SNS NGREM and LINUS detectors to pulsed neutrons and limits for their prudent use in portable monitors in such fields are given. The effect of large gamma bursts on the measurement of pulsed neutrons is discussed with recommendations made to enable operation up to 10 μGy of gamma radiation per burst. We propose a method of extending the dynamic range for pulsed neutron detection in which the neutron decay within the moderator is used to make measurements at a time at which the count rate losses are acceptable.

  4. Improvements to the Leake neutron detector II: Extension to 10 GeV energy

    Energy Technology Data Exchange (ETDEWEB)

    Leake, J.W. [Sherwood Nutec Scientific, 23 Paddock Close, Wantage, Oxfordshire OX12 7EQ (United Kingdom)], E-mail: john5leake@vodafoneemail.co.uk; Lowe, T. [BAE Systems Ltd (United Kingdom); Mason, R.S. [Sherwood Nutec Scientific, 23 Paddock Close, Wantage, Oxfordshire OX12 7EQ (United Kingdom)

    2009-01-11

    We report on an improved design of neutron ambient dose equivalent (DE) detector, SNS-LINUS, consisting of a spherical polyethylene detector with internal shields of boron and lead based on the LINUS model thus extending the response to the GeV region. The computed Monte Carlo neutron ambient DE energy response is within a factor {+-}2.4 from 0.1 keV to 10 GeV with a detector weight of 7.8 kg that is significantly lower than other LINUS designs. The ambient DE response in the 50 keV-10 MeV range is within a factor {+-}1.36 (i.e. {+-}30%). The main applications are likely to be around particle accelerators, in aircraft or in spacecraft. The improved response in the 20 MeV energy region should make it attractive for use with fission sources. The computed responses of the SNS NGREM and LINUS detectors to pulsed neutrons and limits for their prudent use in portable monitors in such fields are given. The effect of large gamma bursts on the measurement of pulsed neutrons is discussed with recommendations made to enable operation up to 10 {mu}Gy of gamma radiation per burst. We propose a method of extending the dynamic range for pulsed neutron detection in which the neutron decay within the moderator is used to make measurements at a time at which the count rate losses are acceptable.

  5. Quantum devices using SiGe/Si heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Karunasiri, R.P.G.; Wang, K.L. (Univ. of California, Los Angeles (United States))

    Strained-layer Si{sub 1-x}Ge{sub x}/Si heterostructures have created a great deal of interest due to the potential of integration with the conventional silicon very large scale integrated technology. With the current advances in silicon molecular beam epitaxy (Si-MBE) and other low-temperature epitaxial techniques, many Si{sub 1-x}Ge{sub x}/Si heterojunction devices have been realized. For example, among those realized are avalanche photodiodes, modulation-doped field-effect transistors, heterojunction bipolar transistors, and more recently, resonant tunneling structures, hot-carrier transistors, and quantum well metal-oxide-semiconductor field-effect transistors. In this paper several quantum size effects in strained Si{sub 1-x}Ge{sub x} layers and their potential in device applications will be reviewed. Among those to be discussed are resonant tunneling, miniband transport, and intersubband absorption in Si{sub 1-x}Ge{sub x}/Si superlattice structures, optical properties of monolayer Si{sub m}Ge{sub n} superlattices, and observation of large Stark effect associated with interband transition between quantized states in Si{sub 1-x}Ge{sub x}/Si quantum well structures.

  6. Investigation of Room temperature Ferromagnetism in Mn doped Ge

    Science.gov (United States)

    Colakerol Arslan, Leyla; Toydemir, Burcu; Onel, Aykut Can; Ertas, Merve; Doganay, Hatice; Gebze Inst of Tech Collaboration; Research Center Julich Collaboration

    2014-03-01

    We present a systematic investigation of structural, magnetic and electronic properties of MnxGe1 -x single crystals. MnxGe1-x films were grown by sequential deposition of Ge and Mn by molecular-beam epitaxy at low substrate temperatures in order to avoid precipitation of ferromagnetic Ge-Mn intermetallic compounds. Reflected high energy electron diffraction and x-ray diffraction observations revealed that films are epitaxially grown on Si (001) substrates from the initial stage without any other phase formation. Magnetic measurements carried out using a physical property measurement system showed that all samples exhibited ferromagnetism at room temperature. Electron spin resonance indicates the presence of magnetically ordered localized spins of divalent Mn ions. X-ray absorption measurements at the Mn L-edge confirm significant substitutional doping of Mn into Ge-sites. The ferromagnetism was mainly induced by Mn substitution for Ge site, and indirect exchange interaction of these magnetic ions with the intrinsic charge carriers is the origin of ferromagnetism. The magnetic interactions were better understood by codoping with nonmagnetic impurities. This work was supported by Marie-Curie Reintegration Grant (PIRG08-GA-2010-276973).

  7. Pseudodynamic imaging of the temporomandibular joint: SE versus GE sequences

    Energy Technology Data Exchange (ETDEWEB)

    Masui, Takayuki; Isoda, Haruo; Mochizuki, Takao [Hamamatsu Univ. School of Medicine, Hamamatsu City (Japan)] [and others

    1996-05-01

    Pseudodynamic MR imaging of the temporomandibular joints (TMJs) has been used for the evaluation of the functional aspects of the TMJs. To evaluate the value of T1-weighted spin-echo (SE) and gradient-echo (GE) techniques, both techniques were performed in 9 asymptomatic (mean 25.7 years, 22-32 years), and 25 symptomatic (mean 44.9 years, 20-71 years) subjects with signs and symptoms of internal derangement or osteoarthrosis of the TMJs. The imaging time for the SE (180 ms / 15 ms / 110{degrees} repetition time / echo time /flip angle) and GE (fast low angle shot; FLASH, 90 ms / 12 ms / 40{degrees}) sequences was 27 and 28 s, respectively. In asymptomatic and symptomatic subjects, the confidence of the identification of the meniscal position was better on SE than GE images (3.6 {+-} 0.6 vs. 2.9 {+-} 0.9, p < 0.01, 3.2 {+-} 0.8 vs. 2.8 {+-} 0.8, p < 0.05), respectively and the sizes of the menisci were bigger on SE than GE images. The delineation of the condylar cortex was better on GE than SE images. For pseudodynamic imaging display of the TMJs, the SE images might be better than GE images to provide the stable recognition of the menisci. 17 refs., 7 figs., 5 tabs.

  8. Thermodynamic optimization of Co–Ge binary system

    Energy Technology Data Exchange (ETDEWEB)

    Dong, S.S.; Liu, S.G. [School of Materials Science and Engineering, Central South University, Changsha, Hunan 410083 (China); Tao, X.M. [College of Physical Science and Technology, Guangxi University, Nanning, Guangxi 530004 (China); Xiao, F.H.; Huang, L.H.; Yang, F.; He, Y.; Chen, Q. [School of Materials Science and Engineering, Central South University, Changsha, Hunan 410083 (China); Liu, H.S., E-mail: hsliu@csu.edu.cn [School of Materials Science and Engineering, Central South University, Changsha, Hunan 410083 (China); Jin, Z.P. [School of Materials Science and Engineering, Central South University, Changsha, Hunan 410083 (China)

    2013-11-20

    Graphical abstract: - Highlights: • The Co–Ge binary system was reassessed and optimized. • The first-principle approach was employed to calculate formation enthalpies of two compounds. • A self-consistent set of thermodynamic parameters was obtained. • The experimental data were well reproduced in the present optimization. - Abstract: Phase diagram of Co–Ge binary system was thermodynamically assessed by using CALPHAD approach in this study. The excess Gibbs energy of the solution phases, liquid, α(Co) and ε(Co), were modeled with Redlich–Kister polynomial. Magnetic contribution to the Gibbs energy was also taken into account for α(Co) and ε(Co). Considering its crystal structure and solubility range, the intermetallic compound βCo{sub 5}Ge{sub 3}, with B8{sub 2}-structure, was particularly described with a three-sublattice model, (Co,Va){sub 1}:(Co){sub 4}:(Co,Ge){sub 3}. And the compound CoGe was described with two-sublattice model according to its crystal structure. Other intermetallic compounds were described as stoichiometric phases because of their narrow homogeneity ranges or unknown crystal structure. In order to obtain a reasonable description of several Co–Ge compounds, first-principle calculations were performed before optimization to determine their formation enthalpies. Finally, a set of thermodynamic parameters was finally obtained so that most data of phase boundaries and thermodynamic properties of various phases were reproduced in present optimization.

  9. LArGe. A liquid argon scintillation veto for GERDA

    Energy Technology Data Exchange (ETDEWEB)

    Heisel, Mark

    2011-04-13

    LArGe is a GERDA low-background test facility to study novel background suppression methods in a low-background environment, for possible applications in the GERDA experiment. GERDA searches for the neutrinoless double-beta decay in {sup 76}Ge, by operating naked germanium detectors submersed into 65 m{sup 3} of liquid argon. Similarly, LArGe runs Ge-detectors in 1 m{sup 3} (1.4 tons) of liquid argon, which in addition is instrumented with photomultipliers to detect argon scintillation light. The light is used in anti-coincidence with the germanium detectors, to effectively suppress background events that deposit energy in the liquid argon. This work adresses the design, construction, and commissioning of LArGe. The background suppression efficiency has been studied in combination with a pulse shape discrimination (PSD) technique for various sources, which represent characteristic backgrounds to GERDA. Suppression factors of a few times 10{sup 3} have been achieved. First background data of LArGe (without PSD) yield a background index of (0.12-4.6).10{sup -2} cts/(keV.kg.y) (90% c.l.), which is at the level of the Gerda phase I design goal. Furthermore, for the first time we measure the natural {sup 42}Ar abundance (in parallel to Gerda), and have indication for the 2{nu}{beta}{beta}-decay in natural germanium. (orig.)

  10. Research progress of self-organized Ge quantum dots on Si substrate

    Institute of Scientific and Technical Information of China (English)

    HUANG Changjun; YU Jinzhong; WANG Qiming

    2004-01-01

    A review is presented on recent research development of self-organized Ge/Si quantum dots (QDs).Emphasis is put on the morphological evolution of the Ge quantum dots grown on Si (001) substrate,the structure analysis of multilayer Ge QDs,the optical and electronic properties of these nanostructures,and the approaches to fabricating ordered Ge quantum dots.

  11. 77 FR 4587 - GE Asset Management Incorporated, et al.; Notice of Application and Temporary Order

    Science.gov (United States)

    2012-01-30

    ... Fund Service Activities. GE Funding CMS is an indirect, wholly-owned subsidiary of General Electric Company (``GE''), which also directly or indirectly wholly-owns the other Applicants. GE is a large and... any other company of which GE Funding CMS is or may become an affiliated person within the meaning...

  12. The 750 GeV Diphoton Excess May Not Imply a 750 GeV Resonance

    CERN Document Server

    Cho, Won Sang; Kong, Kyoungchul; Lim, Sung Hak; Matchev, Konstantin T; Park, Jong-Chul; Park, Myeonghun

    2015-01-01

    We discuss non-standard interpretations of the 750 GeV diphoton excess recently reported by the ATLAS and CMS Collaborations which do not involve a new, relatively broad, resonance with a mass near 750 GeV. Instead, we consider the sequential cascade decay of a much heavier, possibly quite narrow, resonance into two photons along with one or more invisible particles. The resulting diphoton invariant mass signal is generically rather broad, as suggested by the data. We examine three specific event topologies - the antler, the sandwich, and the 2-step cascade decay, and show that they all can provide a good fit to the observed published data. In each case, we delineate the preferred mass parameter space selected by the best fit. In spite of the presence of invisible particles in the final state, the measured missing transverse energy is moderate, due to its anti- correlation with the diphoton invariant mass. We comment on the future prospects of discriminating with higher statistics between our scenarios, as we...

  13. The JLab TMD Program at 6 GeV and 11 GeV

    Energy Technology Data Exchange (ETDEWEB)

    Puckett, Andrew J. [Univ. of Connecticut, Storrs, CT (United States)

    2016-05-01

    The precise mapping of the nucleon’s transverse momentum dependent parton distributions (TMDs) in the valence quark region has emerged as one of the flagship physics programs of the recently upgraded Continuous Electron Beam Accelerator Facility (CEBAF) at Jefferson Lab (JLab). The TMDs describe the three-dimensional, spin-correlated densities of quarks and gluons in the nucleon in momentum space, and are accessible experimentally through detailed studies of the Semi-Inclusive Deep Inelastic Scattering (SIDIS) process, N ( e ; e 0 h ) X . The already unrivaled intensity, polarization and duty factor performance of CEBAF will combine with the dramatic expansion of its kinematic reach embodied by the recent near-doubling of the maximum beam energy to enable the first fully differential precision measurements of SIDIS structure functions in the valence region. In this paper, I will review the existing and forthcoming SIDIS results from the 6 GeV era of CEBAF operations and present an overview of the planned JLab SIDIS program at 11 GeV beam energy

  14. Using a computer-controlled simulated digestion system to predict the energetic value of corn for ducks.

    Science.gov (United States)

    Zhao, F; Zhang, L; Mi, B M; Zhang, H F; Hou, S S; Zhang, Z Y

    2014-06-01

    Two experiments were conducted to develop a computer-controlled digestion system to simulate the digestion process of duck for predicting the concentration of ME and the metabolizability of gross energy (GE) in corn. In a calibration experiment, 30 corn-based calibration samples with a previously published ME concentration in 2008 were used to develop the prediction models for in vivo energetic values. The linear relationships were established between in vivo ME concentration and in vitro digestible energy (IVDE) concentration, and between in vivo metabolizability of GE (ME/GE) and in vitro digestibility of GE (IVDE/GE), respectively. In a validation experiment, 6 sources of corn with previously published ME concentration in 2008 randomly selected from the primary corn-growing regions of China were used to validate the prediction models established in the calibration experiment. The results showed that in calibration samples, the IVDE concentration was positively correlated with the AME (r = 0.9419), AMEn (r = 0.9480), TME (r = 0.9403), and TMEn concentration (r = 0.9473). Similarly, the IVDE/GE was positively correlated with the AME/GE (r = 0.95987), AMEn/GE (r = 0.9641), TME/GE (r = 0.9588), and TMEn/GE (r = 0.9637). The coefficient of determination greater than 0.88 and 0.91, and residual SD less than 45 kcal/kg of DM and 1.01% were observed in the prediction models for ME concentrations and ME/GE, respectively. Twenty-nine out of 30 calibration samples showed differences less than 100 kcal/kg of DM and 2.4% between determined and predicted values for 4 ME (AME, AMEn, TME, and TMEn) and for 4 ME/GE (AME/GE, AMEn/GE, TME/GE, and TMEn/GE), respectively. Using prediction models developed from 30 calibration samples, 6 validation samples further showed differences less than 100 kcal/kg of DM and 2% between determined and predicted values for ME and ME/GE, respectively. Therefore, the computer-controlled simulated digestion system can be used to predict the ME and ME/GE

  15. Ferro electrical properties of GeSbTe thin films; Propiedades ferroelectricas de peliculas delgadas de GeSbTe

    Energy Technology Data Exchange (ETDEWEB)

    Gervacio A, J. J.; Prokhorov, E.; Espinoza B, F. J., E-mail: jgervacio@qro.cinvestav.m [IPN, Centro de Investigacion y de Estudios Avanzados, Unidad Queretaro, Libramiento Norponiente No. 2000, Juriquilla, 76230 Queretaro (Mexico)

    2011-07-01

    The aim of this work is to investigate and compare ferro electrical properties of thin GeSbTe films with composition Ge{sub 4}Sb{sub 1}Te{sub 5} (with well defined ferro electrical properties) and Ge{sub 2}Sb{sub 2}Te{sub 5} using impedance, optical reflection, XRD, DSc and Piezo response Force Microscopy techniques. The temperature dependence of the capacitance in both materials shows an abrupt change at the temperature corresponding to ferroelectric-paraelectric transition and the Curie-Weiss dependence. In Ge{sub 2}Sb{sub 2}Te{sub 5} films this transition corresponds to the end from a NaCl-type to a hexagonal transformation. Piezo response Force Microscopy measurements found ferroelectric domains with dimension approximately equal to the dimension of grains. (Author)

  16. Biaxial stress evaluation in GeSn film epitaxially grown on Ge substrate by oil-immersion Raman spectroscopy

    Science.gov (United States)

    Takeuchi, Kazuma; Suda, Kohei; Yokogawa, Ryo; Usuda, Koji; Sawamoto, Naomi; Ogura, Atsushi

    2016-09-01

    GeSn is being paid much attention as a next-generation channel material. In this work, we performed the excitation of forbidden transverse optical (TO) phonons from strained GeSn, as well as longitudinal optical (LO) phonons, under the backscattering geometry from the (001) surface by oil-immersion Raman spectroscopy. Using the obtained LO/TO phonons, we derived the phonon deformation potentials (PDPs), which play an important role in the stress evaluation, of the strained Ge1- x Sn x for the first time. The results suggest that PDPs are almost constant for the Ge1- x Sn x (x < 0.032). Biaxial stress calculated using the derived PDPs reasonably indicated the isotropic states.

  17. Role of Ge Switch in Phase Transition: Approach using Atomically Controlled GeTe/Sb2Te3 Superlattice

    Science.gov (United States)

    Tominaga, Juniji; Fons, Paul; Kolobov, Alexander; Shima, Takayuki; Chong, Tow Chong; Zhao, Rong; Koon Lee, Hock; Shi, Luping

    2008-07-01

    Germanium-antimony-tellurite (GST) is a very attractive material not only for rewritable optical media but also for realizing solid state devices. Recently, the study of the switching mechanism between the amorphous and crystal states has actively been carried out experimentally and theoretically. Now, the role of the flip-flop transition of a Ge atom in a distorted simple-cubic unit cell is the center of discussion. Turning our viewpoint towards a much wider region beyond a unit cell, we can understand that GeSbTe consists of two units: one is a Sb2Te3 layer and the other is a Ge2Te2 layer. On the based of this simple model, we fabricated the superlattice of GST alloys and estimated their thermal properties by differential scanning calorimetry (DSC). In this paper, we discuss the proof of the Ge switch on the basis of thermo-histories.

  18. Experiments and Modeling of Si-Ge Interdiffusion with Partial Strain Relaxation in Epitaxial SiGe Heterostructures

    KAUST Repository

    Dong, Y.

    2014-07-26

    Si-Ge interdiffusion and strain relaxation were studied in a metastable SiGe epitaxial structure. With Ge concentration profiling and ex-situ strain analysis, it was shown that during thermal anneals, both Si-Ge interdiffusion and strain relaxation occurred. Furthermore, the time evolutions of both strain relaxation and interdiffusion were characterized. It showed that during the ramp-up stage of thermal anneals at higher temperatures (800°C and 840°C), the degree of relaxation, R, reached a “plateau”, while interdiffusion was negligible. With the approximation that the R value is constant after the ramp-up stage, a quantitative interdiffusivity model was built to account for both the effect of strain relaxation and the impact of the relaxation induced dislocations, which gave good agreement with the experiment data.

  19. Closely packed Ge quantum dots in ITO matrix: influence of Ge crystallization on optical and electrical properties

    Science.gov (United States)

    Car, Tihomir; Nekić, Nikolina; Jerčinović, Marko; Salamon, Krešimir; Bogdanović-Radović, Iva; Delač Marion, Ida; Dasović, Jasna; Dražić, Goran; Ivanda, Mile; Bernstorff, Sigrid; Pivac, Branko; Kralj, Marko; Radić, Nikola; Buljan, Maja

    2016-06-01

    In the present work, a method for the low-temperature production of the material consisting of closely packed Ge QDs embedded in ITO matrix is described. The films are produced by magnetron sputtering deposition followed by thermal annealing. It is shown that the conductivity and optical properties of the films depend on the structure, Ge content in the ITO matrix as well as on the annealing conditions. The conductivity of the films changes up to seven orders of magnitude in dependence on the annealing conditions, and it shows transformation from semiconductor to metallic behavior. The optical properties are also strongly affected by the preparation and annealing conditions, so both conductivity and optical properties can be controllably manipulated. In addition, the crystallization of Ge is found to occur already at 300 °C, which is significantly lower than the crystallization temperature of Ge produced by the same method in silica and alumina matrices.

  20. Study of effective atomic number and electron density for tissues from human organs in the energy range of 1 keV-100 GeV.

    Science.gov (United States)

    Manjunatha, H C; Rudraswamy, B

    2013-02-01

    Effective atomic numbers' (Z(eff)) effective electron density (N(el)) for human organs and tissues have been computed in the energy region of 1 keV to 100 GeV using WinXCOM. The computed data of Z(eff) and N(el) are tabulated. The computed values are compared with previous results. The computed data of Z(eff)and N(el)for almost all tissues (34 tissues of different human organs) in the given energy range are not available in literature and find application in radiotherapy and dosimetry.

  1. Kesterite Cu2Zn(Sn,Ge)(S,Se)4 thin film with controlled Ge-doping for photovoltaic application

    Science.gov (United States)

    Zhao, Wangen; Pan, Daocheng; Liu, Shengzhong (Frank)

    2016-05-01

    Cu2ZnSn(S,Se)4 (CZTSSe) semiconductors have been a focus of extensive research effort owing to low-toxicity, high abundance and low material cost. Yet, the CZTSSe thin film solar cell has a low open-circuit voltage value that presents challenges. Herein, using GeSe2 as a new Ge source material, we have achieved a wider band gap CZTSSe-based semiconductor absorber layer with its band-gap controlled by adjusting the ratio of SnS2 : GeSe2 used. In addition, the Cu2Zn(Sn,Ge)(S,Se)4 thin films were prepared with optimal Ge doping (30%) and solar cells were fabricated to attain a respectable power conversion efficiency of 4.8% under 1.5 AM with an active area of 0.19 cm2 without an anti-reflection layer.Cu2ZnSn(S,Se)4 (CZTSSe) semiconductors have been a focus of extensive research effort owing to low-toxicity, high abundance and low material cost. Yet, the CZTSSe thin film solar cell has a low open-circuit voltage value that presents challenges. Herein, using GeSe2 as a new Ge source material, we have achieved a wider band gap CZTSSe-based semiconductor absorber layer with its band-gap controlled by adjusting the ratio of SnS2 : GeSe2 used. In addition, the Cu2Zn(Sn,Ge)(S,Se)4 thin films were prepared with optimal Ge doping (30%) and solar cells were fabricated to attain a respectable power conversion efficiency of 4.8% under 1.5 AM with an active area of 0.19 cm2 without an anti-reflection layer. Electronic supplementary information (ESI) available: The XRD patterns, chemical component analysis, top-view and cross-sectional images, and XPS of CZTGSSe thin films with different Ge content are exhibited. See DOI: 10.1039/c6nr00959j

  2. Local Structure of Ge/Si(100) Self-Assembled Quantum Dot

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Local structure of uncapped and Si-capped Ge quantum dots grownon Si(100) has been probed by X-ray absorption fine structure spectroscopy. It is found that the uncapped Ge dots are partially oxidized and partially alloyed with Si. The amount of Ge present in the Ge phase is found to be about 20-30%. In the Si-capped sample, Ge is found to be dissolved in silicon, the fraction of Ge atoms existing as pure Ge phase being not more than 10%.

  3. Properties of Si{sub n}, Ge{sub n}, and Si{sub n}Ge{sub n} clusters

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Yi; Rehman, Habib ur; Springborg, Michael [Physical and Theoretical Chemistry, University of Saarland, 66123 Saarbrücken (Germany)

    2015-01-22

    The structures of Si{sub n}, Ge{sub n}, and Si{sub n}Ge{sub n} clusters with up to 44 atoms have been determined theoretically using an unbiased structure-optimization method in combination with a parametrized, density-functional description of the total energy for a given structure. By analyzing the total energy in detail, particularly stable clusters are identified. Moreover, general trends in the structures are identified with the help of specifically constructed descriptors.

  4. Performance of a magnetized total absorption calorimeter between 15 GeV and 140 GeV

    CERN Document Server

    Holder, M; Devaux, B; Dorth, W; Dydak, F; Eisele, F; Flottmann, T; Geweniger, C; Grimm, M; Hepp, V; Kleinknecht, K; Knobloch, J; Maillard, J; May, J; Navarria, Francesco Luigi; Paar, H P; Palazzi, P; Peyaud, B; Rander, J; Savoy-Navarro, A; Schlatter, W D; Spahn, G; Steinberger, J; Suter, H; Tittel, K; Turlay, René; Wahl, H; Williams, E G H; Willutzki, H J; Wotschack, J

    1978-01-01

    The authors have calibrated a magnetized iron-scintillator sandwich calorimeter in a hadron beam, finding an energy resolution equal to 16% fwhm at 140 GeV with 4 cm sampling. The hadron energy resolution (fwhm/mean) improves as E/sup -1/2/ between 15 and 140 GeV. No effect due to the magnetic field was observed. Longitudinal and lateral shower containment were also investigated. (15 refs).

  5. Radiation from 170 GeV electrons and positrons traversing thin Si and Ge crystals near the <110> axis

    Energy Technology Data Exchange (ETDEWEB)

    Bak, J.F.; Moeller, S.P.; Petersen, J.B.B.; Soerensen, A.H.; Uggerhoej, E.; Barberis, D.; Elsener, K.; Brodbeck, T.J.; Newton, D.; Wilson, G.W.

    1988-10-20

    The first results from a broad angular beam experiment on emission of high-energy photons from 170 GeV electrons and positrons are presented. The targets were 0.5 mm thick Si and Ge crystals. A dramatic enhancement in the emitted radiation is found for angles of incidence close to the <110> axis. The experimental results are compared to a constant-field cascade calculation.

  6. Computer Virus

    Institute of Scientific and Technical Information of China (English)

    高振桥

    2002-01-01

    If you work with a computer,it is certain that you can not avoid dealing, with at least one computer virus.But how much do you know about it? Well,actually,a computer virus is not a biological' one as causes illnesses to people.It is a kind of computer program

  7. Grid Computing

    Indian Academy of Sciences (India)

    2016-05-01

    A computing grid interconnects resources such as high performancecomputers, scientific databases, and computercontrolledscientific instruments of cooperating organizationseach of which is autonomous. It precedes and is quitedifferent from cloud computing, which provides computingresources by vendors to customers on demand. In this article,we describe the grid computing model and enumerate themajor differences between grid and cloud computing.

  8. Insights into microstructural evolution and polycrystalline compounds formation from Pd Ge thin films

    Science.gov (United States)

    Chen, Zhiwen; Shek, C. H.; Lai, J. K. L.

    2005-04-01

    Polycrystalline Pd-Ge thin films, prepared on freshly cleaved single crystal NaCl (1 0 0) substrate by evaporation techniques, were characterized for their composition, morphologies, and crystalline structure by transmission electron microscopy (TEM). The experimental results indicated that the formation of Pd 2Ge and PdGe compounds dominated at low annealing temperatures, and it also affected the crystallization of amorphous Ge. The reactions of Pd and Ge are sensitively dependent on the annealing temperatures and the thickness ratio of Pd and Ge films. The crystallization of amorphous Ge and the reactions of Pd and Ge are mutually competitive in polycrystalline Pd-Ge thin films. The grain nucleation, growth, and aggregation in Pd-Ge thin films during processing are discussed in terms of the fundamental kinetic processes.

  9. Insights into microstructural evolution and polycrystalline compounds formation from Pd-Ge thin films

    Energy Technology Data Exchange (ETDEWEB)

    Chen Zhiwen [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong (China)]. E-mail: cnzwchen@yahoo.com.cn; Shek, C.H. [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong (China); Lai, J.K.L. [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong (China)

    2005-04-15

    Polycrystalline Pd-Ge thin films, prepared on freshly cleaved single crystal NaCl (1 0 0) substrate by evaporation techniques, were characterized for their composition, morphologies, and crystalline structure by transmission electron microscopy (TEM). The experimental results indicated that the formation of Pd{sub 2}Ge and PdGe compounds dominated at low annealing temperatures, and it also affected the crystallization of amorphous Ge. The reactions of Pd and Ge are sensitively dependent on the annealing temperatures and the thickness ratio of Pd and Ge films. The crystallization of amorphous Ge and the reactions of Pd and Ge are mutually competitive in polycrystalline Pd-Ge thin films. The grain nucleation, growth, and aggregation in Pd-Ge thin films during processing are discussed in terms of the fundamental kinetic processes.

  10. Analog computing

    CERN Document Server

    Ulmann, Bernd

    2013-01-01

    This book is a comprehensive introduction to analog computing. As most textbooks about this powerful computing paradigm date back to the 1960s and 1970s, it fills a void and forges a bridge from the early days of analog computing to future applications. The idea of analog computing is not new. In fact, this computing paradigm is nearly forgotten, although it offers a path to both high-speed and low-power computing, which are in even more demand now than they were back in the heyday of electronic analog computers.

  11. Computational composites

    DEFF Research Database (Denmark)

    Vallgårda, Anna K. A.; Redström, Johan

    2007-01-01

    Computational composite is introduced as a new type of composite material. Arguing that this is not just a metaphorical maneuver, we provide an analysis of computational technology as material in design, which shows how computers share important characteristics with other materials used in design...... and architecture. We argue that the notion of computational composites provides a precise understanding of the computer as material, and of how computations need to be combined with other materials to come to expression as material. Besides working as an analysis of computers from a designer’s point of view......, the notion of computational composites may also provide a link for computer science and human-computer interaction to an increasingly rapid development and use of new materials in design and architecture....

  12. The rotational spectra, potential function, Born-Oppenheimer breakdown, and hyperfine structure of GeSe and GeTe

    Science.gov (United States)

    Giuliano, Barbara M.; Bizzocchi, Luca; Sanchez, Raquel; Villanueva, Pablo; Cortijo, Vanessa; Sanz, M. Eugenia; Grabow, Jens-Uwe

    2011-08-01

    The pure rotational spectra of 18 and 21 isotopic species of GeSe and GeTe have been measured in the frequency range 5-24 GHz using a Fabry-Pérot-type resonator pulsed-jet Fourier-transform microwave spectrometer. Gaseous samples of both chalcogenides were prepared by a combined dc discharge/laser ablation technique and stabilized in supersonic jets of Ne. Global multi-isotopologue analyses of the derived rotational data, together with literature high-resolution infrared data, produced very precise Dunham parameters, as well as rotational constant Born-Oppenheimer breakdown (BOB) coefficients (δ01) for Ge, Se, and Te. A direct fit of the same datasets to an appropriate radial Hamiltonian yielded analytic potential-energy functions and BOB radial functions for the X1Σ+ electronic state of both GeSe and GeTe. Additionally, the electric quadrupole and magnetic hyperfine interactions produced by the nuclei 73Ge, 77Se, and 125Te were observed, yielding much improved quadrupole coupling constants and first determinations of the spin-rotation parameters.

  13. Computational chemistry

    OpenAIRE

    2000-01-01

    Computational chemistry has come of age. With significant strides in computer hardware and software over the last few decades, computational chemistry has achieved full partnership with theory and experiment as a tool for understanding and predicting the behavior of a broad range of chemical, physical, and biological phenomena. The Nobel Prize award to John Pople and Walter Kohn in 1998 highlighted the importance of these advances in computational chemistry. With massively parallel computers ...

  14. Hydrostatic strain enhancement in laterally confined SiGe nanostripes

    Science.gov (United States)

    Vanacore, G. M.; Chaigneau, M.; Barrett, N.; Bollani, M.; Boioli, F.; Salvalaglio, M.; Montalenti, F.; Manini, N.; Caramella, L.; Biagioni, P.; Chrastina, D.; Isella, G.; Renault, O.; Zani, M.; Sordan, R.; Onida, G.; Ossikovski, R.; Drouhin, H.-J.; Tagliaferri, A.

    2013-09-01

    Strain engineering in SiGe nanostructures is fundamental for the design of optoelectronic devices at the nanoscale. Here we explore a new strategy, where SiGe structures are laterally confined by the Si substrate, to obtain high tensile strain yet avoid the use of external stressors, thus improving the scalability. Spectromicroscopy techniques, finite element method simulations, and ab initio calculations are used to investigate the strain state of laterally confined Ge-rich SiGe nanostripes. Strain information is obtained by tip-enhanced Raman spectroscopy with an unprecedented lateral resolution of ˜30 nm. The nanostripes exhibit a large tensile hydrostatic strain component, which is maximal at the center of the top free surface and becomes very small at the edges. The maximum lattice deformation is larger than the typical values of thermally relaxed Ge/Si(001) layers. This strain enhancement originates from a frustrated relaxation in the out-of-plane direction, resulting from the combination of the lateral confinement induced by the substrate side walls and the plastic relaxation of the misfit strain in the (001) plane at the SiGe/Si interface. The effect of this tensile lattice deformation at the stripe surface is probed by work function mapping, which is performed with a spatial resolution better than 100 nm using x-ray photoelectron emission microscopy. The nanostripes exhibit a positive work function shift with respect to a bulk SiGe alloy, quantitatively confirmed by electronic structure calculations of tensile-strained configurations. The present results have a potential impact on the design of optoelectronic devices at a nanometer-length scale.

  15. Effects of Ge-132 and GeO2 on seed germination and seedling growth of Oenothera biennis L. under NaCl stress.

    Science.gov (United States)

    Liu, Yan; Hou, Long-Yu; Li, Qing-Mei; Jiang, Ze-Ping; Gao, Wei-Dong; Zhu, Yan; Zhang, Hai-Bo

    2017-01-01

    To investigate the effects of β-carboxyethyl germanium sequioxide (Ge-132) and germanium dioxide (GeO2) on improving salt tolerance of evening primrose (Oenothera biennis L.), seed germination, seedling growth, antioxidase and malondialdehyde (MDA) were observed under treatments of various concentrations (0, 5, 10, 20, 30 μM) of Ge in normal condition and in 50 mM NaCl solution. The results showed that both Ge-132 and GeO2 treatments significantly increased seed germination percentage and shoot length in dose-dependent concentrations but inhibited early root elongation growth. 5-30 μM Ge-132 and 10, 20 μM GeO2 treatments could significantly mitigate even eliminate harmful influence of salt, representing increased percentage of seed germination, root length, ratio between length of root and shoot, and decreased shoot length. These treatments also significantly decreased peroxidase (POD) and catalase (CAT) activities and MDA content. The mechanism is likely that Ge scavenges reactive oxygen species - especially hydrogen peroxide (H2O2) - by its electron configuration 4S(2)4P(2) so as to reduce lipid peroxidation. This is the first report about the comparison of bioactivity effect of Ge-132 and GeO2 on seed germination and seedling growth under salt stress. We conclude that Ge-132 is better than GeO2 on promoting salt tolerance of seed and seedling.

  16. High quality Ge epilayer on Si (1 0 0) with an ultrathin Si1-x Ge x /Si buffer layer by RPCVD

    Science.gov (United States)

    Chen, Da; Guo, Qinglei; Zhang, Nan; Xu, Anli; Wang, Bei; Li, Ya; Wang, Gang

    2017-07-01

    The authors report a method to grow high quality strain-relaxed Ge epilayer on a combination of low temperature Ge seed layer and Si1-x Ge x /Si superlattice buffer layer by reduced pressure chemical vapor deposition system without any subsequent annealing treatment. Prior to the growth of high quality Ge epilayer, an ultrathin Si1-x Ge x /Si superlattice buffer layer with the thickness of 50 nm and a 460 nm Ge seed layer were deposited successively at low temperature. Then an 840 nm Ge epilayer was grown at high deposition rate with the surface root-mean-square roughness of 0.707 nm and threading dislocation density of 2.5  ×  106 cm-2, respectively. Detailed investigations of the influence of ultrathin low-temperature Si1-x Ge x /Si superlattice buffer layer on the quality of Ge epilayer were performed, which indicates that the crystalline quality of Ge epilayer can be significantly improved by enhancing the Ge concentration of Si1-x Ge x /Si superlattice buffer layer.

  17. Duality Computing in Quantum Computers

    Institute of Scientific and Technical Information of China (English)

    LONG Gui-Lu; LIU Yang

    2008-01-01

    In this letter, we propose a duality computing mode, which resembles particle-wave duality property when a quantum system such as a quantum computer passes through a double-slit. In this mode, computing operations are not necessarily unitary. The duality mode provides a natural link between classical computing and quantum computing. In addition, the duality mode provides a new tool for quantum algorithm design.

  18. Very low-temperature epitaxial growth of Mn{sub 5}Ge{sub 3} and Mn{sub 5}Ge{sub 3}C{sub 0.2} films on Ge(111) using molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Petit, Matthieu, E-mail: matthieu.petit@univ-amu.fr [Aix-Marseille Université, CNRS, CINaM UMR 7325, 13288 Marseille (France); Michez, Lisa [Aix-Marseille Université, CNRS, CINaM UMR 7325, 13288 Marseille (France); Dutoit, Charles-Emmanuel; Bertaina, Sylvain; Dolocan, Voicu O. [Aix-Marseille Université, CNRS, IM2NP UMR7334, 13397 Cedex 20 Marseille (France); Heresanu, Vasile [Aix-Marseille Université, CNRS, CINaM UMR 7325, 13288 Marseille (France); Stoffel, Mathieu [Université de Lorraine, UMR CNRS 7198, Institut Jean Lamour, BP 70239, 54506 Vandeuvre-lès-Nancy (France); Le Thanh, Vinh [Aix-Marseille Université, CNRS, CINaM UMR 7325, 13288 Marseille (France)

    2015-08-31

    C-doped Mn{sub 5}Ge{sub 3} compound is ferromagnetic at temperature up to 430 K. Hence it is a potential spin injector into group-IV semiconductors. Segregation and diffusion of Mn at the Mn{sub 5}Ge{sub 3}/Ge interface could severely hinder the efficiency of the spin injection. To avoid these two phenomena we investigate the growth of Mn{sub 5}Ge{sub 3} and C-doped Mn{sub 5}Ge{sub 3} films on Ge(111) substrates by molecular beam epitaxy at room-temperature. The reactive deposition epitaxy method is used to deposit these films. Reflection high energy electron diffraction, X-ray diffraction analysis, transmission electron microscopy and atomic force microscopy indicate that the crystalline quality is very high. Magnetic characterizations by superconducting quantum interference device and ferromagnetic resonance reinforce the structural analysis results on the thin film quality. - Highlights: • Epitaxial Mn{sub 5}Ge{sub 3} and C-doped Mn{sub 5}Ge{sub 3} films grown on Ge(111) at room temperature. • Mn{sub 5}Ge{sub 3} and C-doped Mn{sub 5}Ge{sub 3} films grown by reactive deposition epitaxy. • RHEED, XRD and TEM measurements show a very high crystallinity. • Magnetic measurements support the structural analysis in the crystalline quality. • Ferromagnetic resonance linewidth is very narrow (3.5 mT at RT)

  19. Formation of Ge{sup 0} and GeO{sub x} nanoclusters in Ge{sup +}-implanted SiO{sub 2}/Si thin-film heterostructures under rapid thermal annealing

    Energy Technology Data Exchange (ETDEWEB)

    Zatsepin, A.F., E-mail: a.f.zatsepin@urfu.ru [Institute of Physics and Technology, Ural Federal University, Mira Str. 19, 620002 Yekaterinburg (Russian Federation); Zatsepin, D.A. [Institute of Physics and Technology, Ural Federal University, Mira Str. 19, 620002 Yekaterinburg (Russian Federation); Institute of Metal Physics, Russian Academy of Sciences – Ural Division, S. Kovalevskoi Str. 18, 620990 Yekaterinburg (Russian Federation); Institute of Physics, Polish Academy of Science, 02-668 Warsaw (Poland); Zhidkov, I.S. [Institute of Physics and Technology, Ural Federal University, Mira Str. 19, 620002 Yekaterinburg (Russian Federation); Kurmaev, E.Z. [Institute of Physics and Technology, Ural Federal University, Mira Str. 19, 620002 Yekaterinburg (Russian Federation); Institute of Metal Physics, Russian Academy of Sciences – Ural Division, S. Kovalevskoi Str. 18, 620990 Yekaterinburg (Russian Federation); Fitting, H.-J. [Institute of Physics, University of Rostock, D-18051 Rostock (Germany); Schmidt, B. [Institute of Ion Beam Physics, Research Center Dresden-Rossendorf, POB 510119, 01314 Dresden (Germany); Mikhailovich, A.P. [Institute of Physics and Technology, Ural Federal University, Mira Str. 19, 620002 Yekaterinburg (Russian Federation); Lawniczak-Jablonska, K. [Institute of Physics, Polish Academy of Science, 02-668 Warsaw (Poland)

    2015-09-15

    Highlights: • Results of XPS for valence and core levels of Ge implanted SiO{sub 2} films are presented. • Chemical-state transformation of the host-matrix composition and Ge ions is performed. • The rapid thermal annealing strongly affects the oxidation states of Ge-atoms. • The formation of Ge{sup 0} and GeO{sub x} clusters within subsurface layer is observed. - Abstract: The results of X-ray photoelectron spectra (XPS valence band and core levels) measurements for Ge{sup +} implanted SiO{sub 2}/Si heterostructures are presented. These heterostructures have a 30 nm thick Ge{sup +} ion implanted amorphous SiO{sub 2} layer on p-type Si. The chemical-state transformation of the host-matrix composition after Ge{sup +} ion implantation and rapid thermal annealing (RTA) are discussed. The XPS-analysis performed allows to conclude the formation of Ge{sup 0} and GeO{sub x} clusters within the samples under study. It was established, that the annealing time strongly affects the degree of oxidation states of Ge-atoms.

  20. A proposal to measure polarization in pp, pi- p and pi+ p elastic scattering at 50, 100, and 150 GeV/c at the National Accelerator Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Hill, D.; Koehler, P.; Novey, T.B.; Yokosawa, A.; Spinka, H.; /Argonne; Brown, C.; Law, M.E.; Lichtenstein, C.; Pipkin, F.; Sanderson, J.; /Harvard U.; Chamberlain, O.; Shapiro, G.; Steiner, H.; /LBL, Berkeley; Burleson, G.; /Northwestern U.; Rebka, G.A.; /Wyoming U.; Ehrlich, R.; Hughes, V.W.; Lu, D.C.; Mori, S.; Thompson, P.A.; Zeller, M.E.; /Yale

    1970-06-01

    The authors propose to measure the polarization parameter in pp, {pi}{sup -}p, and {pi}{sup +}p scattering at incident momenta of 50, 100, and 150 GeV/c over the range 0.15 {le} -t {le} 1.5 (GeV/c){sup 2}. The apparatus consists of a polarized proton target, two spectrometer arms which determine the angles and momenta of both outgoing particles, and an on-line computer. The detectors are designed to operate at incident beam rates of up to 10{sup 8} beam particles/pulse. They anticipate an error in the polarization parameter P of .005 {le} {Delta}P {le} .01 over the range .15 {le} -t {le} .8 (GeV/c){sup 2} in 100 shifts of data taking and background studies.

  1. Computational manufacturing

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    This paper presents a general framework for computational manufacturing. The methodology of computational manufacturing aims at integrating computational geometry, machining principle, sensor information fusion, optimization, computational intelligence and virtual prototyping to solve problems of the modeling, reasoning, control, planning and scheduling of manufacturing processes and systems. There are three typical problems in computational manufacturing, i.e., scheduling (time-domain), geometric reasoning (space-domain) and decision- making (interaction between time-domain and space-domain). Some theoretical fundamentals of computational manufacturing are also discussed.

  2. Theoretical Investigations of Si-Ge Alloys in P42/ncm Phase: First-Principles Calculations

    Science.gov (United States)

    Ma, Zhenyang; Liu, Xuhong; Yu, Xinhai; Shi, Chunlei; Yan, Fang

    2017-01-01

    The structural, mechanical, anisotropic, electronic and thermal properties of Si, Si0.667Ge0.333, Si0.333Ge0.667 and Ge in P42/ncm phase are investigated in this work. The calculations have been performed with an ultra-soft pseudopotential by using the generalized gradient approximation and local density approximation in the framework of density functional theory. The achieved results for the lattice constants and band gaps of P42/ncm-Si and P42/ncm-Ge in this research have good accordance with other results. The calculated elastic constants and elastic moduli of the Si, Si0.667Ge0.333, Si0.333Ge0.667 and Ge in P42/ncm phase are better than that of the Si, Si0.667Ge0.333, Si0.333Ge0.667 and Ge in P42/mnm phase. The Si, Si0.667Ge0.333, Si0.333Ge0.667 and Ge in P42/ncm phase exhibit varying degrees of mechanical anisotropic properties in Poisson’s ratio, shear modulus, Young’s modulus, and universal anisotropic index. The band structures of the Si, Si0.667Ge0.333, Si0.333Ge0.667 and Ge in P42/ncm phase show that they are all indirect band gap semiconductors with band gap of 1.46 eV, 1.25 eV, 1.36 eV and 1.00 eV, respectively. In addition, we also found that the minimum thermal conductivity κmin of the Si, Si0.667Ge0.333, Si0.333Ge0.667 and Ge in P42/ncm phase exhibit different degrees of anisotropic properties in (001), (010), (100) and (01¯0) planes. PMID:28772964

  3. Theoretical Investigations of Si-Ge Alloys in P42/ncm Phase: First-Principles Calculations

    Directory of Open Access Journals (Sweden)

    Zhenyang Ma

    2017-05-01

    Full Text Available The structural, mechanical, anisotropic, electronic and thermal properties of Si, Si0.667Ge0.333, Si0.333Ge0.667 and Ge in P42/ncm phase are investigated in this work. The calculations have been performed with an ultra-soft pseudopotential by using the generalized gradient approximation and local density approximation in the framework of density functional theory. The achieved results for the lattice constants and band gaps of P42/ncm-Si and P42/ncm-Ge in this research have good accordance with other results. The calculated elastic constants and elastic moduli of the Si, Si0.667Ge0.333, Si0.333Ge0.667 and Ge in P42/ncm phase are better than that of the Si, Si0.667Ge0.333, Si0.333Ge0.667 and Ge in P42/mnm phase. The Si, Si0.667Ge0.333, Si0.333Ge0.667 and Ge in P42/ncm phase exhibit varying degrees of mechanical anisotropic properties in Poisson’s ratio, shear modulus, Young’s modulus, and universal anisotropic index. The band structures of the Si, Si0.667Ge0.333, Si0.333Ge0.667 and Ge in P42/ncm phase show that they are all indirect band gap semiconductors with band gap of 1.46 eV, 1.25 eV, 1.36 eV and 1.00 eV, respectively. In addition, we also found that the minimum thermal conductivity κmin of the Si, Si0.667Ge0.333, Si0.333Ge0.667 and Ge in P42/ncm phase exhibit different degrees of anisotropic properties in (001, (010, (100 and (01¯0 planes.

  4. Structural, Dynamic, and Vibrational Properties during Heat Transfer in Si/Ge Superlattices: A Car-Parrinello Molecular Dynamics Study

    CERN Document Server

    Ji, Pengfei; Yang, Mo

    2016-01-01

    The structural, dynamic, and vibrational properties during the heat transfer process in Si/Ge superlattices, are studied by analyzing the trajectories generated by the ab initio Car-Parrinello molecular dynamics simulation. The radial distribution functions and mean square displacements are calculated and further discussions are made to explain and probe the structural changes relating to the heat transfer phenomenon. Furthermore, the vibrational density of states of the two layers (Si/Ge) are computed and plotted to analyze the contributions of phonons with different frequencies to the heat conduction. Coherent heat conduction of the low frequency phonons is found and their contributions to facilitate heat transfer are confirmed. The Car-Parrinello molecular dynamics simulation outputs in the work show reasonable thermophysical results of the thermal energy transport process and shed light on the potential applications of treating the heat transfer in the superlattices of semiconductor materials from a quant...

  5. Multiperipheral cross-sectional substructure of non-elastic proton interactions at high energies. [Below 20 GeV/c

    Energy Technology Data Exchange (ETDEWEB)

    Koltochnik, S.N.; Konovalenko, A.I.; Kuchin, I.A.

    1974-01-01

    A computation is made of the partial contributions of eight primary multiperipheral diagrams in a broad interval of momenta from 1 to 400 GeV/c. It was shown that the complete cross section of an inelastic pp-interaction at momenta of P/sub L/ greater than 20 GeV/c can be reproduced with regard to complete cross sections of peak ..pi pi.. and ..pi..N-interactions. There is a correspondence to both analysis data on reactions forming one to two mesons as well as to the results of multiperipheral bootstrap. The results are compared to data obtained by the method based on the integral Bethe-Salpeter equation. 7 illustrations, Bibliography: 9 titles.

  6. CV characteristics of polycrystalline sige films with low GE concentration

    Energy Technology Data Exchange (ETDEWEB)

    Teixeira, Ricardo Cotrin [School of Electrical and Computer Engineering (FEEC) and Center for Semiconductor Components(CCS), State University of Campinas - UNICAMP, Cidade Universitaria Zeferino Vaz, Rua Pandia Calogeras, 90, Caixa Postal 6061, CEP: 13083-870, Campinas-SP (Brazil); Doi, Ioshiaki [School of Electrical and Computer Engineering (FEEC) and Center for Semiconductor Components(CCS), State University of Campinas - UNICAMP, Cidade Universitaria Zeferino Vaz, Rua Pandia Calogeras, 90, Caixa Postal 6061, CEP: 13083-870, Campinas-SP (Brazil)]. E-mail: doi@led.unicamp.br; Diniz, Jose Alexandre [School of Electrical and Computer Engineering (FEEC) and Center for Semiconductor Components(CCS), State University of Campinas - UNICAMP, Cidade Universitaria Zeferino Vaz, Rua Pandia Calogeras, 90, Caixa Postal 6061, CEP: 13083-870, Campinas-SP (Brazil); Swart, Jacobus Willibrordus [School of Electrical and Computer Engineering (FEEC) and Center for Semiconductor Components(CCS), State University of Campinas - UNICAMP, Cidade Universitaria Zeferino Vaz, Rua Pandia Calogeras, 90, Caixa Postal 6061, CEP: 13083-870, Campinas-SP (Brazil); Pinto Zakia, Maria Beny [Center for Semiconductor Components (CCS), State University of Campinas (UNICAMP), Cidade Universitaria Zeferino Vaz, Rua Pandia Calogeras, 90, Caixa Postal 6061, CEP: 13083-870, Campinas-SP (Brazil)

    2006-12-15

    SiGe alloys are currently used for HBT and MOS as epitaxial layers for base or strained channel, respectively. In the poly phase, SiGe has been studied as a replacement for poly-Si in MOS gates due to its lower thermal budget and gate depletion and also due to the Workfunction Engineering for V {sub t} adjustments. However, for application to CMOS technology as poly-SiGe gates, others constrains emerge such as quality of the oxide interface and etch chemistry. For both applications, the Ge fraction normally lies between 20% and 40%. In this study, authors use a low Ge contents (1%) poly-SiGe thin films aiming for MOS gate electrode. The Ge fraction was determined by RBS analysis. 230 nm thick samples were deposited onto 10 nm thermally oxidized <1 0 0>, p-type Si substrates using silane and germane. Films were deposited in the temperature of 500 deg. C and total pressure of 667 Pa (5 Torr) by vertical LPCVD. The samples were doped using {sup 31}P{sup +} ion implantation from 5 x 10{sup 14} cm{sup -2} up to 2 x 10{sup 16} cm{sup -2} and annealed by RTP (40 s) from 500 deg. C up to 900 deg. C. R {sub s} values were obtained by 4-point probe technique and CV curves were extracted from nMOS capacitors with 200 {mu}m diameter. The same processing steps were used to fabricate similar poly-Si samples and capacitors for comparison. The poly-SiGe samples presented R {sub s} values one order of magnitude lower than poly-Si and CV analysis of nMOS capacitors showed very good characteristics. The 1% Ge in the alloy ensures a low thermal budget for the overall process. Although a relatively high annealing temperature (800 deg. C) must be used to reduce oxide charge and interface traps, the temperature is well below the necessary for poly-Si processing and can allow formation of the shallow junctions needed for next technological nodes.

  7. Anisotropic phase separation through the metal-insulator transition in amorphous Mo-Ge and Fe-Ge alloys

    Energy Technology Data Exchange (ETDEWEB)

    Regan, M.J.

    1993-12-01

    Since an amorphous solid is often defined as that which lacks long-range order, the atomic structure is typically characterized in terms of the high-degree of short-range order. Most descriptions of vapor-deposited amorphous alloys focus on characterizing this order, while assuming that the material is chemically homogeneous beyond a few near neighbors. By coupling traditional small-angle x-ray scattering which probes spatial variations of the electron density with anomalous dispersion which creates a species-specific contrast, one can discern cracks and voids from chemical inhomogeneity. In particular, one finds that the chemical inhomogeneities which have been previously reported in amorphous Fe{sub x}Ge{sub 1-x} and Mo{sub x}Ge{sub 1-x} are quite anisotropic, depending significantly on the direction of film growth. With the addition of small amounts of metal atoms (x<0.2), no films appear isotropic nor homogeneous through the metal/insulator transition. The results indicate that fluctuations in the growth direction play a pivotal role in preventing simple growth models of a columnar structure or one that evolves systematically as it grows. The anomalous scattering measurements identify the metal atoms (Fe or Mo) as the source of the anisotropy, with the Ge atoms distributed homogeneously. The author has developed a method for using these measurements to determine the compositions of the phase-separating species. The results indicate phase separation into an amorphous Ge and an intermetallic phase of stoichiometry close to FeGe{sub 2} or MoGe{sub 3}. Finally, by manipulating the deposited power flux and rates of growth, Fe{sub x}Ge{sub 1-x} films which have the same Fe composition x can be grown to different states of phase separation. These results may help explain the difficulty workers have had in isolating the metal/insulator transition for these and other vapor-deposited amorphous alloys.

  8. Formation mechanisms of nano and microcones by laser radiation on surfaces of Si, Ge, and SiGe crystals.

    Science.gov (United States)

    Medvid, Artur; Onufrijevs, Pavels; Jarimaviciute-Gudaitiene, Renata; Dauksta, Edvins; Prosycevas, Igoris

    2013-06-04

    In this work we study the mechanisms of laser radiation interaction with elementary semiconductors such as Si and Ge and their solid solution SiGe. As a result of this investigation, the mechanisms of nanocones and microcones formation on a surface of semiconductor were proposed. We have shown the possibility to control the size and the shape of cones both by the laser. The main reason for the formation of nanocones is the mechanical compressive stresses due to the atoms' redistribution caused by the gradient of temperature induced by strongly absorbed laser radiation. According to our investigation, the nanocone formation mechanism in semiconductors is characterized by two stages. The first stage is characterized by formation of a p-n junction for elementary semiconductors or of a Ge/Si heterojunction for SiGe solid solution. The generation and redistribution of intrinsic point defects in elementary semiconductors and Ge atoms concentration on the irradiated surface of SiGe solid solution in temperature gradient field take place at this stage due to the thermogradient effect which is caused by strongly absorbed laser radiation. The second stage is characterized by formation of nanocones due to mechanical plastic deformation of the compressed Ge layer on Si. Moreover, a new 1D-graded band gap structure in elementary semiconductors due to quantum confinement effect was formed. For the formation of microcones Ni/Si structure was used. The mechanism of the formation of microcones is characterized by two stages as well. The first stage is the melting of Ni film after irradiation by laser beam and formation of Ni islands due to surface tension force. The second step is the melting of Ni and subsequent manifestations of Marangoni effect with the growth of microcones.

  9. MBE growth of Ge quantum dot structures in oxide windows

    Energy Technology Data Exchange (ETDEWEB)

    Karmous, A; Kirfel, O; Oehme, M; Kasper, E; Schulze, J, E-mail: karmous@iht.uni-stuttgart.de [Institut fuer Halbleitertechnik - Universitaet Stuttgart, Pfaffenwaldring 47, D-70569 Stuttgart (Germany)

    2009-11-15

    The implementation of Quantum Dots (QDs) in devices allows novel electronic and opto-electronic functions. Strain driven Stranski-Krastanov growth mode enables the formation of nanometric islands (on wetting layer) whose density and geometry depend on growth conditions (temperature, rate) and surface structure (cleaning). The island positions are random. However, they can be influenced by surface patterning. In this work, the MBE growth of self-organized Ge QD structures in oxide windows is investigated. The studied Ge QD structures are composed by either a single Ge layer directly grown on a Si substrate, or double layer formed by a Ge QD layer on top of a Si buffer layer. Different surface preparation (dry etching with and without anisotropic wet etching) and cleaning (HF dip or RCA cleaning) schemes have been used. It is found that the cleaning and the Si buffer layer growth have strong influence on island nucleation. Preferred nucleation at the window edge and/or nucleation at the window center is observed under certain conditions. Interestingly, negligible influence (this is needed for most device works) is found only if Ge is grown directly on the RCA cleaned window.

  10. Structural study of Ge/GaAs thin films

    Science.gov (United States)

    Lazarov, V. K.; Lari, L.; Lytvyn, P. M.; Kholevchuk, V. V.; Mitin, V. F.

    2012-07-01

    Ge/GaAs heterostructure research is largely motivated by the application of this material in solar cells, metal-oxide-semiconductor field-effect transistors, mm-wave mixer diodes, temperature sensors and photodetectors. Therefore, understanding of how the properties of Ge/GaAs heterostructure depend on its preparation (growth) is of importance for various high-efficiency devices. In this work, by using thermal Ge evaporation on GaAs(100), we studied structural properties of these films as a function of the deposition rate. Film grains size and morphology show strong dependence of the deposition rate. Low deposition rates results in films with large crystal grains and rough surface. At high deposition rates films become flatter and their crystal grains size decreases, while at very high deposition rates films become amorphous. Cross-sectional TEM of the films show that the Ge films are granular single crystal epitaxially grown on GaAs. The Ge/GaAs interface is atomically abrupt and free from misfit dislocations. Stacking faults along the [111] directions that originate at the interface were also observed. Finally by using the Kelvin probe microscopy we show that work function changes are related to the grain structure of the film.

  11. Poly-SiGe for MEMS-above-CMOS sensors

    CERN Document Server

    Gonzalez Ruiz, Pilar; Witvrouw, Ann

    2014-01-01

    Polycrystalline SiGe has emerged as a promising MEMS (Microelectromechanical Systems) structural material since it provides the desired mechanical properties at lower temperatures compared to poly-Si, allowing the direct post-processing on top of CMOS. This CMOS-MEMS monolithic integration can lead to more compact MEMS with improved performance. The potential of poly-SiGe for MEMS above-aluminum-backend CMOS integration has already been demonstrated. However, aggressive interconnect scaling has led to the replacement of the traditional aluminum metallization by copper (Cu) metallization, due to its lower resistivity and improved reliability. Poly-SiGe for MEMS-above-CMOS sensors demonstrates the compatibility of poly-SiGe with post-processing above the advanced CMOS technology nodes through the successful fabrication of an integrated poly-SiGe piezoresistive pressure sensor, directly fabricated above 0.13 m Cu-backend CMOS. Furthermore, this book presents the first detailed investigation on the influence o...

  12. Ion implantation damage and crystalline-amorphous transition in Ge

    Energy Technology Data Exchange (ETDEWEB)

    Impellizzeri, G.; Mirabella, S.; Grimaldi, M.G. [Universita di Catania, MATIS IMM-CNR (Italy); Dipartimento di Fisica e Astronomia, Catania (Italy)

    2011-05-15

    Experimental studies on the damage produced in (100) Ge substrates by implantation of Ge{sup +} ions at different energies (from 25 to 600 keV), fluences (from 2 x 10{sup 13} to 4 x 10{sup 14} cm{sup -2}) and temperature (room temperature, RT, or liquid-nitrogen temperature, LN{sub 2}T) have been performed by using the Rutherford backscattering spectrometry technique. We demonstrated that the higher damage rate of Ge with respect to Si is due to both the high stopping power of germanium atoms and the low mobility of point defects within the collision cascades. The amorphization of Ge has been modeled by employing the critical damage energy density model in a large range of implantation energies and fluences both at RT and LN{sub 2}T. The experimental results for implantation at LN{sub 2}T were fitted using a critical damage energy density of {proportional_to}1 eV/atom. A fictitious value of {proportional_to}5 eV/atom was obtained for the samples implanted at RT, essentially because at RT the damage annihilation plays a non-negligible role against the crystalline-amorphous transition phase. The critical damage energy density model was found to stand also for other ions implanted in crystalline Ge (Ar{sup +} and Ga{sup +}). (orig.)

  13. Tensile strained Ge tunnel field-effect transistors: k · p material modeling and numerical device simulation

    Energy Technology Data Exchange (ETDEWEB)

    Kao, Kuo-Hsing; De Meyer, Kristin [IMEC, Kapeldreef 75, 3001 Leuven (Belgium); Department of Electrical Engineering, Katholieke Universiteit Leuven, 3000 Leuven (Belgium); Verhulst, Anne S. [IMEC, Kapeldreef 75, 3001 Leuven (Belgium); Van de Put, Maarten; Soree, Bart; Magnus, Wim [IMEC, Kapeldreef 75, 3001 Leuven (Belgium); Department of Physics, Universiteit Antwerpen, 2000 Antwerpen (Belgium); Vandenberghe, William G. [Department of Materials Science and Engineering, University of Texas at Dallas, Richardson, Texas 75080 (United States)

    2014-01-28

    Group IV based tunnel field-effect transistors generally show lower on-current than III-V based devices because of the weaker phonon-assisted tunneling transitions in the group IV indirect bandgap materials. Direct tunneling in Ge, however, can be enhanced by strain engineering. In this work, we use a 30-band k · p method to calculate the band structure of biaxial tensile strained Ge and then extract the bandgaps and effective masses at Γ and L symmetry points in k-space, from which the parameters for the direct and indirect band-to-band tunneling (BTBT) models are determined. While transitions from the heavy and light hole valence bands to the conduction band edge at the L point are always bridged by phonon scattering, we highlight a new finding that only the light-hole-like valence band is strongly coupling to the conduction band at the Γ point even in the presence of strain based on the 30-band k · p analysis. By utilizing a Technology Computer Aided Design simulator equipped with the calculated band-to-band tunneling BTBT models, the electrical characteristics of tensile strained Ge point and line tunneling devices are self-consistently computed considering multiple dynamic nonlocal tunnel paths. The influence of field-induced quantum confinement on the tunneling onset is included. Our simulation predicts that an on-current up to 160 (260) μA/μm can be achieved along with on/off ratio > 10{sup 6} for V{sub DD} = 0.5 V by the n-type (p-type) line tunneling device made of 2.5% biaxial tensile strained Ge.

  14. Contextual Computing

    CERN Document Server

    Porzel, Robert

    2011-01-01

    This book uses the latest in knowledge representation and human-computer interaction to address the problem of contextual computing in artificial intelligence. It uses high-level context to solve some challenging problems in natural language understanding.

  15. Computer Algebra.

    Science.gov (United States)

    Pavelle, Richard; And Others

    1981-01-01

    Describes the nature and use of computer algebra and its applications to various physical sciences. Includes diagrams illustrating, among others, a computer algebra system and flow chart of operation of the Euclidean algorithm. (SK)

  16. Computational dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Siebert, B.R.L.; Thomas, R.H.

    1996-01-01

    The paper presents a definition of the term ``Computational Dosimetry`` that is interpreted as the sub-discipline of computational physics which is devoted to radiation metrology. It is shown that computational dosimetry is more than a mere collection of computational methods. Computational simulations directed at basic understanding and modelling are important tools provided by computational dosimetry, while another very important application is the support that it can give to the design, optimization and analysis of experiments. However, the primary task of computational dosimetry is to reduce the variance in the determination of absorbed dose (and its related quantities), for example in the disciplines of radiological protection and radiation therapy. In this paper emphasis is given to the discussion of potential pitfalls in the applications of computational dosimetry and recommendations are given for their avoidance. The need for comparison of calculated and experimental data whenever possible is strongly stressed.

  17. Computational Medicine

    DEFF Research Database (Denmark)

    Nygaard, Jens Vinge

    2017-01-01

    The Health Technology Program at Aarhus University applies computational biology to investigate the heterogeneity of tumours......The Health Technology Program at Aarhus University applies computational biology to investigate the heterogeneity of tumours...

  18. Quantum computing

    OpenAIRE

    Li, Shu-Shen; Long, Gui-lu; Bai, Feng-Shan; Feng, Song-Lin; Zheng, Hou-Zhi

    2001-01-01

    Quantum computing is a quickly growing research field. This article introduces the basic concepts of quantum computing, recent developments in quantum searching, and decoherence in a possible quantum dot realization.

  19. Green Computing

    Directory of Open Access Journals (Sweden)

    K. Shalini

    2013-01-01

    Full Text Available Green computing is all about using computers in a smarter and eco-friendly way. It is the environmentally responsible use of computers and related resources which includes the implementation of energy-efficient central processing units, servers and peripherals as well as reduced resource consumption and proper disposal of electronic waste .Computers certainly make up a large part of many people lives and traditionally are extremely damaging to the environment. Manufacturers of computer and its parts have been espousing the green cause to help protect environment from computers and electronic waste in any way.Research continues into key areas such as making the use of computers as energy-efficient as Possible, and designing algorithms and systems for efficiency-related computer technologies.

  20. Fabrication of quantum dots in undoped Si/Si0.8Ge0.2 heterostructures using a single metal-gate layer

    Science.gov (United States)

    Lu, T. M.; Gamble, J. K.; Muller, R. P.; Nielsen, E.; Bethke, D.; Ten Eyck, G. A.; Pluym, T.; Wendt, J. R.; Dominguez, J.; Lilly, M. P.; Carroll, M. S.; Wanke, M. C.

    2016-08-01

    Enhancement-mode Si/SiGe electron quantum dots have been pursued extensively by many groups for their potential in quantum computing. Most of the reported dot designs utilize multiple metal-gate layers and use Si/SiGe heterostructures with Ge concentration close to 30%. Here, we report the fabrication and low-temperature characterization of quantum dots in the Si/Si0.8Ge0.2 heterostructures using only one metal-gate layer. We find that the threshold voltage of a channel narrower than 1 μm increases as the width decreases. The higher threshold can be attributed to the combination of quantum confinement and disorder. We also find that the lower Ge ratio used here leads to a narrower operational gate bias range. The higher threshold combined with the limited gate bias range constrains the device design of lithographic quantum dots. We incorporate such considerations in our device design and demonstrate a quantum dot that can be tuned from a single dot to a double dot. The device uses only a single metal-gate layer, greatly simplifying device design and fabrication.

  1. A note on the reactions in the Ti-Ge system

    Directory of Open Access Journals (Sweden)

    Joshua Pelleg

    2012-09-01

    Full Text Available Formations of germanides in thin films of the Ti-Ge system were investigated by XRD after furnace annealing for 1 hour. Ti6Ge5 seems to be the first phase formed while TiGe2 is the end phase with the lowest resistivity. The existence of the phase Ti5Ge3 was confirmed which forms at higher temperatures than Ti6Ge5. The presence of a thin TiO2 layer was observed by TEM. Which of the phase exists or is missed depends on composition of the constituents comprising the film, their thickness and temperature of reaction. Three phases are observed to coexist on the Ge substrate, which are Ti5Ge3, Ti6Ge5 and TiGe2. A schematic suggestion is presented for explaining the coexistence of two or more phases. The concept of formation and coexistence of two phases at lower temperatures is also proposed.

  2. The origin of the resistance change in GeSbTe films

    Science.gov (United States)

    Jang, Moon Hyung; Park, Seung Jong; Park, Sung Jin; Cho, Mann-Ho; Kurmaev, E. Z.; Finkelstein, L. D.; Chang, Gap Soo

    2010-10-01

    Amorphous Ge2Sb2Te5 (a-GST) films were deposited by ion beam sputtering deposition. Extended x-ray absorption fine structure (EXAFS) data confirmed the existence of the Ge-Ge homopolar bonds in the films. Raman spectra also indicated that the Ge tetrahedral coordination in the a-GST film disappeared after an annealing treatment above 220 °C. Resonantly excited Ge L2,3 x-ray emission spectra (which probe occupied Ge 3d4s-electronic states) show that the phase change from the amorphous to crystalline state is accompanied by a reduction in the Ge I(L2)/I(L3) intensity ratio due to a L2L3N Coster-Kronig transition, indicating that the number of carriers is increased in the Ge 4sp valence state. These findings constitute direct evidence for the contribution of the Ge electronic states to the resistivity change.

  3. The microstructure of Ge/Si layers grown at low temperature

    Science.gov (United States)

    Roddatis, V. V.; Vasiliev, A. L.; Kovalchuk, M. V.

    2013-11-01

    Multilayer Si/Ge heterostructures with the thickness of Ge layers varying from 2 to 12 monolayers (ML) were formed by molecular beam epitaxy (MBE) on the (001) Si substrates at 300°C (Ge) and 450°C (Si). The study of the Si/Ge heterostructures was performed by transmission and Cs corrected scanning transmission electron microscopy (STEM). It was shown that the growth of Ge layers up to thickness of 5 ML occurs through the Frank - van der Merwe mechanism. For thicker Ge layers the growth mechanism of the Si-Ge heterostructure changes to Stranski - Krastanov with Si-Ge islands having the shape of inverted pyramids. The Si-Ge layer intermixing was discussed.

  4. Magnetic ordering of Hf3Ni2Si3-type {Sm, Tb, Er}3Co2Ge3 and {Tb, Ho}3Ni2Ge3 compounds

    Science.gov (United States)

    Morozkin, A. V.; Yapaskurt, V. O.; Nirmala, R.; Quezado, S.; Malik, S. K.; Mozharivskyj, Y.; Isnard, O.

    2017-02-01

    The magnetic ordering of Hf3Ni2Si3-type {Sm, Tb, Er}3Co2Ge3 and {Tb, Ho}3Ni2Ge3 compounds (space group Cmcm, oC32) was investigated via magnetization measurements and neutron diffraction study in a zero-applied field. {Sm, Tb, Er}3Co2Ge3 and Ho3Ni2Ge3 exhibit field sensitive complex antiferromagnetic orderings with TN=51 K, Tm=10 K for Sm3Co2Ge3, TN=34 K, Tm=13 K for Tb3Co2Ge3, TN=7 K for Er3Co2Ge3 and TN=11 K for Ho3Ni2Ge3. At 2 K and above the critical field of 5 kOe, 20 kOe, 4 kOe and 7 kOe for Sm3Co2Ge3, Tb3Co2Ge3, Er3Co2Ge3 and Ho3Ni2Ge3, respectively, saturation magnetizations per rare-earth atom are 6.5 μB for Tb3Co2Ge3, 7.0 μB for Er3Co2Ge3 and 8.0 μB for Ho3Ni2Ge3 in the field of 140 kOe, whereas magnetization of Sm3Co2Ge3 has an antiferromagnetic behaviour. The isothermal magnetic entropy change, ΔSm, indicates a field-induced ferromagnetic ordering in Sm3Co2Ge3, Tb3Co2Ge3, Er3Co2Ge3 and Ho3Ni2Ge3 with a maximal ΔSm value of -10.9 J/kg K for Ho3Ni2Ge3 at 11 K for a field change of 50 kOe. In a zero-applied magnetic field, below TN=33 K and down to TmND=15 K Tb3Ni2Ge3 shows an ac-antiferromagnetic ordering with the C2‧/c magnetic space group, a K0=[0, 0, 0] propagation vector and a aTb3Ni2Ge3×bTb3Ni2Ge3×cTb3Ni2Ge3 magnetic unit cell. Below TmND=15 K, its magnetic structure is a sum of the ac-antiferromagnetic component with the C2‧/c magnetic space group of the K0 vector and a sine-modulated a-antiferromagnetic component of the K1=[0, 0, ±1/3] propagation vector (the magnetic unit cell is aTb3Ni2Ge3×bTb3Ni2Ge3×3cTb3Ni2Ge3). The magnetic structure is made from the 'Tb2 - 2Tb1‧ clusters of the Tb1 8f and Tb2 4c sublattices with a dominant role of the Tb2 sublattices in the magnetic ordering of Tb3Ni2Ge3.

  5. Computable models

    CERN Document Server

    Turner, Raymond

    2009-01-01

    Computational models can be found everywhere in present day science and engineering. In providing a logical framework and foundation for the specification and design of specification languages, Raymond Turner uses this framework to introduce and study computable models. In doing so he presents the first systematic attempt to provide computational models with a logical foundation. Computable models have wide-ranging applications from programming language semantics and specification languages, through to knowledge representation languages and formalism for natural language semantics. They are al

  6. Phenomenological Computation?

    DEFF Research Database (Denmark)

    Brier, Søren

    2014-01-01

    Open peer commentary on the article “Info-computational Constructivism and Cognition” by Gordana Dodig-Crnkovic. Upshot: The main problems with info-computationalism are: (1) Its basic concept of natural computing has neither been defined theoretically or implemented practically. (2. It cannot en...... cybernetics and Maturana and Varela’s theory of autopoiesis, which are both erroneously taken to support info-computationalism....

  7. Growth mechanism of Ge-doped CZTSSe thin film by sputtering method and solar cells.

    Science.gov (United States)

    Li, Jinze; Shen, Honglie; Chen, Jieyi; Li, Yufang; Yang, Jiale

    2016-10-19

    Ge-doped CZTSSe thin films were obtained by covering a thin Ge layer on CZTS precursors, followed by a selenization process. The effect of the Ge layer thickness on the morphologies and structural properties of Ge-doped CZTSSe thin films were studied. It was found that Ge doping could promote grain growth to form a compact thin film. The lattice shrank in the top-half of the film due to the smaller atomic radius of Ge, leading to the formation of tensile stress. According to thermodynamic analysis, Sn was easier to be selenized than Ge. Thus, Ge preferred to remain on the surface and increased the surface roughness when the Ge layer was thin. CZTSe was easier to form than Ge-doped CZTSe, which caused difficulty in Ge doping. These results offered a theoretical and experimental guide for preparing Ge-doped CZTSSe thin films for the potential applications in low-cost solar cells. With a 10 nm Ge layer on the top of the precursor, the conversion efficiency of the solar cell improved to 5.38% with an open-circuit voltage of 403 mV, a short-circuit current density of 28.51 mA cm(-2) and a fill factor of 46.83% after Ge doping.

  8. Generation of AuGe nanocomposites by co-sparking technique and their photoluminescence properties

    Energy Technology Data Exchange (ETDEWEB)

    Kala, Shubhra, E-mail: shubkala@gmail.com [National Physical Laboratory (India); Theissmann, Ralf; Kruis, Frank Einar [University of Duisburg-Essen, Institute for Nanostructures and Technology, Faculty of Engineering Science, and CENIDE (Center for Nanointegration Duisburg-Essen) (Germany)

    2013-09-15

    The feasibility of spark discharge technique for preparing metal-semiconductor nanocomposites is demonstrated. In the AuGe system, Au shows only 10{sup -3} atomic percent solid solubility in Ge, whereas 3.1 at.% Ge is soluble in Au. During the co-sparking, Au is used as anode material; the cathode is composed of Ge. The relative atomic percent of Au and Ge in the initially generated mixture can be changed by changing the charging current to the capacitor used to trigger the sparking. Depending upon the atomic ratio of Au and Ge in the initial mixture, AuGe agglomerates form AuGe composite nanoparticles on subsequent sintering, in which AuGe alloy nanoparticles are found dispersed in a Ge matrix. The size of the dispersed AuGe alloy nanoparticles depend on the relative atomic concentration of Au and Ge in the initial mixture as well as on the sintering temperature. AuGe alloy nanoparticles dispersed in the Ge matrix are observed to exhibit an intense photoluminescence between 550 and 600 nm.

  9. Structural and magnetic properties of GeMn layers; High Curie temperature ferromagnetism induced by self organized GeMn nano-columns

    Energy Technology Data Exchange (ETDEWEB)

    Devillers, T.; Jamet, M.; Barski, A.; Poydenot, V.; Dujardin, R.; Bayle Guillemaud, P.; Bellet Amalric, E.; Mattana, R. [Departement de Recherche Fondamentale sur la Matiere Condensee, Service de Physique des Materiaux et Microstructures, CEA Grenoble, 17 avenue des Martyrs, 38054 Grenoble Cedex (France); Rothman, J. [Laboratoire d' Electronique de Technologie de l' Information, Laboratoire Infrarouge, CEA Grenoble, 17 avenue des Martyrs, 38054 Grenoble Cedex (France); Cibert, J. [Laboratoire Louis Neel, CNRS, BP166, 38042 Grenoble Cedex 9 (France); Tatarenko, S. [Laboratoire de Spectrometrie Physique, BP 87, 38402 Saint-Martin d' Heres (France)

    2007-01-15

    In this paper we report on the structural and magnetic properties of GeMn layers grown on Ge(001). We show that for the optimized Mn concentration (6%) and for optimized growth temperature (close to 130 C), GeMn samples exhibit a high Curie temperature (higher than 400 K) and Anomalous Hall Effect up to room temperature. Our GeMn layers grown at low temperature (70 C to 130 C) are composed of vertical Mn-rich nano-columns. Samples grown at temperatures higher than 130 C contain GeMn nanoclusters. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  10. Computing fundamentals introduction to computers

    CERN Document Server

    Wempen, Faithe

    2014-01-01

    The absolute beginner's guide to learning basic computer skills Computing Fundamentals, Introduction to Computers gets you up to speed on basic computing skills, showing you everything you need to know to conquer entry-level computing courses. Written by a Microsoft Office Master Instructor, this useful guide walks you step-by-step through the most important concepts and skills you need to be proficient on the computer, using nontechnical, easy-to-understand language. You'll start at the very beginning, getting acquainted with the actual, physical machine, then progress through the most common

  11. Quantum Computing for Computer Architects

    CERN Document Server

    Metodi, Tzvetan

    2011-01-01

    Quantum computers can (in theory) solve certain problems far faster than a classical computer running any known classical algorithm. While existing technologies for building quantum computers are in their infancy, it is not too early to consider their scalability and reliability in the context of the design of large-scale quantum computers. To architect such systems, one must understand what it takes to design and model a balanced, fault-tolerant quantum computer architecture. The goal of this lecture is to provide architectural abstractions for the design of a quantum computer and to explore

  12. Computational Complexity

    Directory of Open Access Journals (Sweden)

    J. A. Tenreiro Machado

    2017-02-01

    Full Text Available Complex systems (CS involve many elements that interact at different scales in time and space. The challenges in modeling CS led to the development of novel computational tools with applications in a wide range of scientific areas. The computational problems posed by CS exhibit intrinsic difficulties that are a major concern in Computational Complexity Theory. [...

  13. Computational Composites

    DEFF Research Database (Denmark)

    Vallgårda, Anna K. A.

    of the new microprocessors and network technologies. However, the understanding of the computer represented within this program poses a challenge for the intentions of the program. The computer is understood as a multitude of invisible intelligent information devices which confines the computer as a tool...

  14. Distributed Computing.

    Science.gov (United States)

    Ryland, Jane N.

    1988-01-01

    The microcomputer revolution, in which small and large computers have gained tremendously in capability, has created a distributed computing environment. This circumstance presents administrators with the opportunities and the dilemmas of choosing appropriate computing resources for each situation. (Author/MSE)

  15. Computational vision

    CERN Document Server

    Wechsler, Harry

    1990-01-01

    The book is suitable for advanced courses in computer vision and image processing. In addition to providing an overall view of computational vision, it contains extensive material on topics that are not usually covered in computer vision texts (including parallel distributed processing and neural networks) and considers many real applications.

  16. Phenomenological Computation?

    DEFF Research Database (Denmark)

    Brier, Søren

    2014-01-01

    Open peer commentary on the article “Info-computational Constructivism and Cognition” by Gordana Dodig-Crnkovic. Upshot: The main problems with info-computationalism are: (1) Its basic concept of natural computing has neither been defined theoretically or implemented practically. (2. It cannot en...

  17. Computer Ease.

    Science.gov (United States)

    Drenning, Susan; Getz, Lou

    1992-01-01

    Computer Ease is an intergenerational program designed to put an Ohio elementary school's computer lab, software library, staff, and students at the disposal of older adults desiring to become computer literate. Three 90-minute instructional sessions allow seniors to experience 1-to-1 high-tech instruction by enthusiastic, nonthreatening…

  18. Collectivity at N=50: 82Ge and 84Se

    CERN Document Server

    Gade, A; Bazin, D; Brown, B A; Campbell, C M; Glasmacher, T; Grinyer, G F; Honma, M; McDaniel, S; Meharchand, R; Otsuka, T; Ratkiewicz, A; Tostevin, J A; Walsh, K A; Weisshaar, D

    2010-01-01

    The neutron-rich N=50 isotones 82Ge and 84Se were investigated using intermediate-energy Coulomb excitation on a 197Au target and inelastic scattering on 9Be. As typical for intermediate-energy Coulomb excitation with projectile energies exceeding 70 MeV/nucleon, only the first 2^+ states were excited in 82Ge and 84Se. However, in the inelastic scattering on a 9Be target, a strong population of the first 4^+ state was observed for 84Se, while there is no indication of a similarly strong excitation of the corresponding state in the neighboring even-even isotone 82Ge. The results are discussed in the framework of systematics and shell-model calculations using three different effective interactions.

  19. Large rectification magnetoresistance in nonmagnetic Al/Ge/Al heterojunctions.

    Science.gov (United States)

    Zhang, Kun; Li, Huan-Huan; Grünberg, Peter; Li, Qiang; Ye, Sheng-Tao; Tian, Yu-Feng; Yan, Shi-Shen; Lin, Zhao-Jun; Kang, Shi-Shou; Chen, Yan-Xue; Liu, Guo-Lei; Mei, Liang-Mo

    2015-09-21

    Magnetoresistance and rectification are two fundamental physical properties of heterojunctions and respectively have wide applications in spintronics devices. Being different from the well known various magnetoresistance effects, here we report a brand new large magnetoresistance that can be regarded as rectification magnetoresistance: the application of a pure small sinusoidal alternating-current to the nonmagnetic Al/Ge Schottky heterojunctions can generate a significant direct-current voltage, and this rectification voltage strongly varies with the external magnetic field. We find that the rectification magnetoresistance in Al/Ge Schottky heterojunctions is as large as 250% at room temperature, which is greatly enhanced as compared with the conventional magnetoresistance of 70%. The findings of rectification magnetoresistance open the way to the new nonmagnetic Ge-based spintronics devices of large rectification magnetoresistance at ambient temperature under the alternating-current due to the simultaneous implementation of the rectification and magnetoresistance in the same devices.

  20. A New 76Ge Double Beta Decay Experiment at LNGS

    CERN Document Server

    Abt, I; Bakalyarov, A; Barabanov, I; Bauer, C; Bellotti, E; Belyaev, S T; Bezrukov, L; Brudanin, V; Buettner, C; Bolotsky, V P; Caldwell, A; Cattadori, C; Clement, H; Vacri, A D; Eberth, J; Egorov, V; Grigoriev, G V; Gurentsov, V I; Gusev, K; Hampel, W; Heusser, G; Hofmann, W; Jochum, J; Junker, M; Kiko, J; Kirpichnikov, I V; Klimenko, A; Knöpfle, K T; Kornoukhov, V N; Laubenstein, M; Lebedev, V; Liu, X; Nemchenok, I B; Pandola, L; Sandukovsky, V; Schönert, S; Scholl, S; Schwingenheuer, B; Simgen, H; Smolnikov, A A; Tikhomirov, A; Vasenko, A A; Vasilev, S; Weisshaar, D; Yanovich, E A; Yurkovski, J; Zhukov, S; Zuzel, G

    2004-01-01

    This Letter of Intent has been submitted to the Scientific Committee of the INFN Laboratori Nazionali del Gran Sasso (LNGS) in March 2004. It describes a novel facility at the LNGS to study the double beta decay of 76Ge using an (optionally active) cryogenic fluid shield. The setup will allow to scrutinize with high significance on a short time scale the current evidence for neutrinoless double beta decay of 76Ge using the existing 76Ge diodes from the previous Heidelberg-Moscow and IGEX experiments. An increase in the lifetime limit can be achieved by adding more enriched detectors, remaining thereby background-free up to a few 100 kg-years of exposure.

  1. Electrical conduction mechanism in GeSeSb chalcogenide glasses

    Indian Academy of Sciences (India)

    Vandana Kumari; Anusaiya Kaswan; D Patidar; Kananbala Sharma; N S Saxena

    2016-02-01

    Electrical conductivity of chalcogenide glassy system Ge$_{30−x}$Se$_{70}$Sb$_{x}$ ( = 10, 15, 20 and 25) prepared by melt quenching has been determined at different temperatures in bulk through the $I$–$V$ characteristic curves. It is quite evident from results that Poole–Frenkel conduction mechanisms hold good for conduction in these glasses in a given temperature range. The variation in electrical conductivity with composition was attributed to the Se–Sb bond concentration in the Se–Ge–Sb system. Results indicated that Ge$_5$Se$_{70}$Sb$_{25}$ showed the minimum resistance. In view of this the composition Ge$_5$Se$_{70}$Sb$_{25}$ may be coined as ‘critical composition’ in the proposed series. Also the activation energies of conduction of these glassy alloys have been calculated in higher and lower temperature range using the Arrhenius equation.

  2. Study on Gd-Si-Ge Alloys Using Domestic Gd

    Institute of Scientific and Technical Information of China (English)

    吴卫; 卢定伟

    2004-01-01

    To evaluate the possibility of using Gd-Si-Ge alloys in magnetic refrigerators,samples of Gd-Si-Ge alloys were made of domestic Gd.The magnetocaloric effect of samples was estimated by magnetic entropy change (-ΔSm) calculated from M-H curves according to Maxwell relation.The first order phase transformation was destroyed due to the impurities in the commercial Gd,so that no giant magnetocaloric effect was found.The samples made of purified Gd exhibit first order phase transformation,and the -ΔSm is basically consistent with the published data of Ames laboratory,USA.This work proves that Gd-Si-Ge alloys made of domestic Gd can be utilized in magnetic refrigerators.

  3. S5 0716+714 : GeV variability study

    CERN Document Server

    Rani, B; Lott, B; Fuhrmann, L; Zensus, J A

    2013-01-01

    The GeV observations by Fermi-LAT give us the opportunity to characterize the high-energy emission (100 MeV - 300 GeV) variability properties of the BL Lac object S5 0716+714. In this study, we performed flux and spectral analysis of more than 3 year long (August 2008 to April 2012) Fermi-LAT data of the source. During this period, the source exhibits two different modes of flux variability with characteristic timescales of ~75 and ~140 days, respectively. We also notice that the flux variations are characterized by a weak spectral hardening. The GeV spectrum of the source shows a clear deviation from a simple power law, and is better explained by a broken power law. Similar to other bright Fermi blazars, the break energy does not vary with the source flux during the different activity states. We discuss several possible scenarios to explain the observed spectral break.

  4. Reducing 68Ge Background in Dark Matter Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Kouzes, Richard T.; Orrell, John L.

    2011-03-01

    Experimental searches for dark matter include experiments with sub-0.5 keV-energy threshold high purity germanium detectors. Experimental efforts, in partnership with the CoGeNT Collaboration operating at the Soudan Underground Laboratory, are focusing on energy threshold reduction via noise abatement, reduction of backgrounds from cosmic ray generated isotopes, and ubiquitous environmental radioactive sources. The most significant cosmic ray produced radionuclide is 68Ge. This paper evaluates reducing this background by freshly mining and processing germanium ore. The most probable outcome is a reduction of the background by a factor of two, and at most a factor of four. A very cost effective alternative is to obtain processed Ge as soon as possible and store it underground for 18 months.

  5. Franz-Keldysh effect in GeSn pin photodetectors

    Energy Technology Data Exchange (ETDEWEB)

    Oehme, M., E-mail: oehme@iht.uni-stuttgart.de; Kostecki, K.; Schmid, M.; Kaschel, M.; Gollhofer, M.; Ye, K.; Widmann, D.; Koerner, R.; Bechler, S.; Kasper, E.; Schulze, J. [Institut für Halbleitertechnik, Universität Stuttgart, Pfaffenwaldring 47, 70569 Stuttgart (Germany)

    2014-04-21

    The optical properties and the Franz-Keldysh effect at the direct band gap of GeSn alloys with Sn concentrations up to 4.2% at room temperature were investigated. The GeSn material was embedded in the intrinsic region of a Ge heterojunction photodetector on Si substrates. The layer structure was grown by means of ultra-low temperature molecular beam epitaxy. The absorption coefficient as function of photon energy and the direct bandgap energies were determined. In all investigated samples, the Franz-Keldysh effect can be observed. A maximum absorption ratio of 1.5 was determined for 2% Sn for a voltage swing of 3 V.

  6. Ge-on-Si laser operating at room temperature.

    Science.gov (United States)

    Liu, Jifeng; Sun, Xiaochen; Camacho-Aguilera, Rodolfo; Kimerling, Lionel C; Michel, Jurgen

    2010-03-01

    Monolithic lasers on Si are ideal for high-volume and large-scale electronic-photonic integration. Ge is an interesting candidate owing to its pseudodirect gap properties and compatibility with Si complementary metal oxide semiconductor technology. Recently we have demonstrated room-temperature photoluminescence, electroluminescence, and optical gain from the direct gap transition of band-engineered Ge-on-Si using tensile strain and n-type doping. Here we report what we believe to be the first experimental observation of lasing from the direct gap transition of Ge-on-Si at room temperature using an edge-emitting waveguide device. The emission exhibited a gain spectrum of 1590-1610 nm, line narrowing and polarization evolution from a mixed TE/TM to predominantly TE with increasing gain, and a clear threshold behavior.

  7. Reducing 68Ge Background in Dark Matter Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Kouzes, Richard T.; Orrell, John L.

    2011-03-01

    Experimental searches for dark matter include experiments with sub-0.5 keV-energy threshold high purity germanium detectors. Experimental efforts, in partnership with the CoGeNT Collaboration operating at the Soudan Underground Laboratory, are focusing on energy threshold reduction via noise abatement, reduction of backgrounds from cosmic ray generated isotopes, and ubiquitous environmental radioactive sources. The most significant cosmic ray produced radionuclide is 68Ge. This paper evaluates reducing this background by freshly mining and processing germanium ore. The most probable outcome is a reduction of the background by a factor of two, and at most a factor of four. A very cost effective alternative is to obtain processed Ge as soon as possible and store it underground for 18 months.

  8. Characterising the 750 GeV diphoton excess

    Energy Technology Data Exchange (ETDEWEB)

    Bernon, Jérémy [Laboratoire de Physique Subatomique et de Cosmologie, Université Grenoble-Alpes, CNRS/IN2P3,53 Avenue des Martyrs, Grenoble, F-38026 (France); Goudelis, Andreas [Institute of High Energy Physics, Austrian Academy of Sciences,Nikolsdorfergasse 18, Vienna, 1050 (Austria); Kraml, Sabine [Laboratoire de Physique Subatomique et de Cosmologie, Université Grenoble-Alpes, CNRS/IN2P3,53 Avenue des Martyrs, Grenoble, F-38026 (France); Mawatari, Kentarou [Laboratoire de Physique Subatomique et de Cosmologie, Université Grenoble-Alpes, CNRS/IN2P3,53 Avenue des Martyrs, Grenoble, F-38026 (France); Theoretische Natuurkunde and IIHE/ELEM, Vrije Universiteit Brussel, and International Solvay Institutes, Pleinlaan 2, Brussels, B-1050 (Belgium); Sengupta, Dipan [Laboratoire de Physique Subatomique et de Cosmologie, Université Grenoble-Alpes, CNRS/IN2P3,53 Avenue des Martyrs, Grenoble, F-38026 (France)

    2016-05-23

    We study kinematic distributions that may help characterise the recently observed excess in diphoton events at 750 GeV at the LHC Run 2. Several scenarios are considered, including spin-0 and spin-2 750 GeV resonances that decay directly into photon pairs as well as heavier parent resonances that undergo three-body or cascade decays. We find that combinations of the distributions of the diphoton system and the leading photon can distinguish the topology and mass spectra of the different scenarios, while patterns of QCD radiation can help differentiate the production mechanisms. Moreover, missing energy is a powerful discriminator for the heavy parent scenarios if they involve (effectively) invisible particles. While our study concentrates on the current excess at 750 GeV, the analysis is general and can also be useful for characterising other potential diphoton signals in the future.

  9. The 6 GeV TMD Program at Jefferson Lab

    Energy Technology Data Exchange (ETDEWEB)

    Puckett, Andrew J. [Univ. of Connecticut, Storrs, CT (United States); Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)

    2015-01-01

    The study of the transverse momentum dependent parton distributions (TMDs) of the nucleon in semi-inclusive deep-inelastic scattering (SIDIS) has emerged as one of the major physics motivations driving the experimental program using the upgraded 11 GeV electron beam at Jefferson Lab’s Continuous Electron Beam Accelerator Facility (CEBAF). The accelerator construction phase of the CEBAF upgrade is essentially complete and commissioning of the accelerator has begun as of April, 2014. As the new era of CEBAF operations begins, it is appropriate to review the body of published and forthcoming results on TMDs from the 6 GeV era of CEBAF operations, discuss what has been learned, and discuss the key challenges and opportunities for the 11 GeV SIDIS program of CEBAF.

  10. Flat Ge-doped optical fibres for food irradiation dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Noor, N. Mohd; Jusoh, M. A. [Department of Imaging, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor (Malaysia); Razis, A. F. Abdull [Food Safety Research Centre, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor (Malaysia); Laboratory of UPM-MAKNA Cancer Research, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor (Malaysia); Alawiah, A. [Faculty of Engineering and Technology, Multimedia University, 75450 Malacca (Malaysia); Bradley, D. A. [Department of Physics, University of Surrey, Guildford, Surrey GU2 7XH (United Kingdom); Department of Physics, University of Malaya, 50603 Kuala Lumpur (Malaysia)

    2015-04-24

    Exposing food to radiation can improve hygiene quality, germination control, retard sprouting, and enhance physical attributes of the food product. To provide for food safety, radiation dosimetry in irradiated food is required. Herein, fabricated germanium doped (Ge-doped) optical fibres have been used. The fibres have been irradiated using a gamma source irradiator, doses in the range 1 kGy to 10 kGy being delivered. Using Ge-doped optical fibres of variable size, type and dopant concentration, study has been made of linearity, reproducibility, and fading. The thermoluminescence (TL) yield of the fibres were obtained and compared. The fibres exhibit a linear dose response over the investigated range of doses, with mean reproducibility to within 2.69 % to 8.77 %, exceeding the dose range of all commercial dosimeters used in evaluating high doses for the food irradiation industry. TL fading of the Ge-doped flat fibres has been found to be < 13%.

  11. CEBAF SRF Performance during Initial 12 GeV Commissioning

    Energy Technology Data Exchange (ETDEWEB)

    Bachimanchi, Ramakrishna; Allison, Trent; Daly, Edward; Drury, Michael; Hovater, J; Lahti, George; Mounts, Clyde; Nelson, Richard; Plawski, Tomasz

    2015-09-01

    The Continuous Electron Beam Accelerator Facility (CEBAF) energy upgrade from 6 GeV to 12 GeV includes the installation of eleven new 100 MV cryomodules (88 cavities). The superconducting RF cavities are designed to operate CW at an accelerating gradient of 19.3 MV/m with a QL of 3×107. Not all the cavities were operated at the minimum gradient of 19.3 MV/m with the beam. Though the initial 12 GeV milestones were achieved during the initial commissioning of CEBAF, there are still some issues to be addressed for long term reliable operation of these modules. This paper reports the operational experiences during the initial commissioning and the path forward to improve the performance of C100 (100 MV) modules.

  12. Structure of a passivated Ge surface prepared from aqueous solution.

    Energy Technology Data Exchange (ETDEWEB)

    Lyman, P. F.; Sakata, O.; Marasco, D, L.; Lee, T.-L.; Breneman, K. D.; Keane, D. T.; Bedzyk, M. J.; Materials Science Division; Northwestern Univ.; Univ. of Wisconsin at Milwaukee

    2000-08-10

    The structure of a passivating sulfide layer on Ge(001) was studied using X-ray standing waves and X-ray fluorescence. The sulfide layer was formed by reacting clean Ge substrates in (NH{sub 4}){sub 2}S solutions of various concentrations at 80{sup o}C. For each treatment, a sulfide layer containing approximately two to three monolayers (ML) of S was formed on the surface, and an ordered structure was found at the interface that contained approximately 0.4 ML of S. Our results suggest the rapid formation of a glassy GeS{sub x} layer containing 1.5-2.5 ML S residing atop a partially ordered interfacial layer of bridge-bonded S. The passivating reaction appears to be self-limited to 2-3 ML at this reaction temperature.

  13. Characterising the 750 GeV diphoton excess

    Science.gov (United States)

    Bernon, Jérémy; Goudelis, Andreas; Kraml, Sabine; Mawatari, Kentarou; Sengupta, Dipan

    2016-05-01

    We study kinematic distributions that may help characterise the recently observed excess in diphoton events at 750 GeV at the LHC Run 2. Several scenarios are considered, including spin-0 and spin-2 750 GeV resonances that decay directly into photon pairs as well as heavier parent resonances that undergo three-body or cascade decays. We find that combinations of the distributions of the diphoton system and the leading photon can distinguish the topology and mass spectra of the different scenarios, while patterns of QCD radiation can help differentiate the production mechanisms. Moreover, missing energy is a powerful discriminator for the heavy parent scenarios if they involve (effectively) invisible particles. While our study concentrates on the current excess at 750 GeV, the analysis is general and can also be useful for characterising other potential diphoton signals in the future.

  14. Characterising the 750 GeV diphoton excess

    CERN Document Server

    Bernon, Jérémy; Kraml, Sabine; Mawatari, Kentarou; Sengupta, Dipan

    2016-01-01

    We study kinematic distributions that may help characterise the recently observed excess in diphoton events at 750 GeV at the LHC Run 2. Several scenarios are considered, including spin-0 and spin-2 750 GeV resonances that decay directly into photon pairs as well as heavier parent resonances that undergo three-body or cascade decays. We find that combinations of the distributions of the diphoton system and the leading photon can distinguish the topology and mass spectra of the different scenarios, while patterns of QCD radiation can help differentiate the production mechanisms. Moreover, missing energy is a powerful discriminator for the heavy parent scenarios if they involve (effectively) invisible particles. While our study concentrates on the current excess at 750 GeV, the analysis is general and can also be useful for characterising other potential diphoton signals in the future.

  15. Ge laser-generated plasma for ion implantation

    Science.gov (United States)

    Giuffrida, L.; Torrisi, L.; Czarnecka, A.; Wołowski, J.; Quarta, Ge; Calcagnile, L.; Lorusso, A.; Nassisi, V.

    Laser-generated plasma obtained by Ge ablation in vacuum was investigated with the aim to implant energetic Ge ions in light substrates (C, Si, SiO2). Different intensities of laser sources were employed for these experiments: Nd:Yag of Catania-LNS; Nd:Yag of Warsaw-IPPL; excimer laser of Lecce-INFN; iodine laser of Prague-PALS. Different experimental setups were used to generate multiple ion stream emissions, multiple ion energetic distributions, high implantation doses, thin film deposition and post-acceleration effects. `On line' measurements of ion energy were obtained with ion collectors and ion energy analyzer in time-of-flight configuration. `Off line' measurement of Ge implants were obtained with 2.25 MeV helium beam in Rutherford backscattering spectrometry. Results indicated that ion implants show typical deep profiles only for substrates placed along the normal to the target surface at which the ion energy is maximum.

  16. Sub-5 nm, globally aligned graphene nanoribbons on Ge(001)

    Energy Technology Data Exchange (ETDEWEB)

    Kiraly, Brian [Center for Nanoscale Materials, Argonne National Laboratory, 9700 South Cass Avenue, Building 440, Argonne, Illinois 60439, USA; Department of Materials Science and Engineering, Northwestern University, 2220 Campus Drive, Evanston, Illinois 60208, USA; Mannix, Andrew J. [Center for Nanoscale Materials, Argonne National Laboratory, 9700 South Cass Avenue, Building 440, Argonne, Illinois 60439, USA; Department of Materials Science and Engineering, Northwestern University, 2220 Campus Drive, Evanston, Illinois 60208, USA; Jacobberger, Robert M. [Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA; Fisher, Brandon L. [Center for Nanoscale Materials, Argonne National Laboratory, 9700 South Cass Avenue, Building 440, Argonne, Illinois 60439, USA; Arnold, Michael S. [Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA; Hersam, Mark C. [Department of Materials Science and Engineering, Northwestern University, 2220 Campus Drive, Evanston, Illinois 60208, USA; Department of Chemistry, Northwestern University, 2220 Campus Drive, Evanston, Illinois 60208, USA; Guisinger, Nathan P. [Center for Nanoscale Materials, Argonne National Laboratory, 9700 South Cass Avenue, Building 440, Argonne, Illinois 60439, USA

    2016-05-23

    Graphene nanoribbons (GNRs) hold great promise for future electronics because of their edge and width dependent electronic bandgaps and exceptional transport properties. While significant progress toward such devices has been made, the field has been limited by difficulties achieving narrow widths, global alignment, and atomically pristine GNR edges on technologically relevant substrates. A recent advance has challenged these limits by using Ge(001) substrates to direct the bottom-up growth of GNRs with nearly pristine armchair edges and widths near ~10 nm via atmospheric pressure chemical vapor deposition. In this work, we extend the growth of GNRs on Ge(001) to ultra-high vacuum conditions and realize GNRs narrower than 5 nm. Armchair graphene nanoribbons directed along the Ge <110> surface directions are achieved with excellent width control and relatively large bandgaps. The bandgap magnitude and electronic uniformity make these new materials excellent candidates for future developments in nanoelectronics.

  17. Electrical properties of a-GeSe100-

    Indian Academy of Sciences (India)

    Abdolali Zolanvari; Navdeep Goyal; S K Tripathi

    2004-09-01

    In general, the conductivity in chalcogenide glasses at higher tempratures is dominated by band conduction (DC conduction). But, at lower tempratures, hoping conduction dominates over band conduction. A study at lower temprature can, eventually, provide useful information about the conduction mechanism and the defect states in the material. Therefore, the study of electrical properties of GeSe100- in the lower temperature region (room temperature) is interesting. Temperature and frequency dependence of GeSe100- ( = 15, 20 and 25) have been studied over different range of temperatures and frequencies. Am agreement between experimental and theoretical results suggested that the behaviour of germanium selenium system (GeSe100-) have been successfully explained by correlated barrier hopping (CBH) model.

  18. Low-temperature strain relaxation in SiGe/Si heterostructures implanted with Ge{sup +} ions

    Energy Technology Data Exchange (ETDEWEB)

    Avrutin, V.S.; Izyumskaya, N.F.; Vyatkin, A.F.; Zinenko, V.I.; Agafonov, Yu.A.; Irzhak, D.V.; Roshchupkin, D.V.; Steinman, E.A.; Vdovin, V.I.; Yugova, T.G

    2003-06-15

    Pseudomorphic Si{sub 0.76}Ge{sub 0.24}/Si heterostructures grown by molecular beam epitaxy were implanted with Ge{sup +} ions at 400 deg. C in such a way that an ion-damaged region was located below the SiGe/Si interface. The effect of Ge{sup +}-ion irradiation on strain-relaxation rate and defect structure in the heterostructures was studied by transmission electron microscopy (TEM), X-ray diffraction (XRD), atomic force microscopy (AFM), and low-temperature photoluminescence (PL). It was found that annealing at a temperature as low as 600 deg. C resulted in very high degree of strain relaxation, while density of threading dislocations was low (<10{sup 5} cm{sup -2}). The enhanced strain relaxation was attributed to the fact that complexes of point defects produced by the heavy-ion implantation at the elevated temperature acted as nucleation sites for dislocations. The obtained results allowed us to propose a method for preparation of thin highly relaxed SiGe layer with low threading dislocation density and good surface morphology.

  19. Tight-binding calculation of optical gain in tensile strained [001]-Ge/SiGe quantum wells

    Energy Technology Data Exchange (ETDEWEB)

    Pizzi, Giovanni [NEST-CNR-INFM and Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56127 Pisa (Italy); Virgilio, Michele; Grosso, Giuseppe, E-mail: g.pizzi@sns.it [NEST-CNR-INFM and Dipartimento di Fisica ' E. Fermi' , Universita di Pisa, Largo Pontecorvo 3, I-56127 Pisa (Italy)

    2010-02-05

    It is known that under a tensile strain of about 2% of the lattice constant, the energy of the bottom conduction state of bulk Ge at the {Gamma} point falls below the minimum at the L point, leading to a direct gap material. In this paper we investigate how the same condition is realized in tensile strained Ge quantum wells. By means of a tight-binding sp{sup 3}d{sup 5}s* model, we study tensile strained Ge/Si{sub 0.2}Ge{sub 0.8} multiple quantum well (MQW) heterostructures grown on a relaxed SiGeSn alloy buffer along the [001] direction. We focus on values of the strain fields at the crossover between the indirect and direct gap regime of the MQWs, and calculate band edge alignments, electronic band structures, and density of states. We also provide a numerical evaluation of the MQW material gain spectra for TE and TM polarization under realistic carrier injection levels, taking into account the leakages related to the occupation of the electronic states at the L point. The analysis of the different orbital contributions to the near-gap states of the complete structure allows us to give a clear interpretation of the numerical results for the strain-dependent TM/TE gain ratio. Our calculations demonstrate the effectiveness of the structures under consideration for light amplification.

  20. Emission of direct-gap band in germanium with Ge-GeSn layers on one-dimensional structure

    Science.gov (United States)

    Huang, Zhong-Mei; Huang, Wei-Qi; Liu, Shi-Rong; Dong, Tai-Ge; Wang, Gang; Wu, Xue-Ke; Qin, Cao-Jian

    2016-04-01

    In our experiment, it was observed that the emission of direct-gap band in germanium with Ge-GeSn layers on one-dimensional (1D) structure. The results of experiment and calculation demonstrate that the uniaxial tensile strain in the (111) and (110) direction can efficiently transform Ge to a direct bandgap material with the bandgap energy useful for technological application. It is interested that under the tensile strain from Ge-GeSn layers on 1D structure in which the uniaxial strain could be obtained by curved layer (CL) effect, the two bandgaps EΓg and ELg in the (111) direction become nearly equal at 0.83 eV related to the emission of direct-gap band near 1500 nm in the experiments. It is discovered that the red-shift of the peaks from 1500 nm to 1600 nm occurs with change of the uniaxial tensile strain, which proves that the peaks come from the emission of direct-gap band.

  1. Ion Beam Synthesis of Ge Nanowires. rev. ed.

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, T.

    2001-01-01

    The formation of Ge nanowires in V-grooves has been studied experimentally as well as theoretically. As substrate oxide covered Si V-grooves were used formed by anisotropic etching of (001)Si wafers and subsequent oxidation of their surface. Implantation of 1 x 10{sup 17} Ge{sup +}cm{sup -2} at 70 keV was carried out into the oxide layer covering the V-grooves. Ion irradiation induces shape changes of the V-grooves, which are captured in a novel continuum model of surface evolution. It describes theoretically the effects of sputtering, redeposition of sputtered atoms, and swelling. Thereby, the time evolution of the target surface is determined by a nonlinear integro-differential equation, which was solved numerically for the V-groove geometry. A very good agreement is achieved for the predicted surface shape and the shape observed in XTEM images. Surprisingly, the model predicts material (Si, O, Ge) transport into the V-groove bottom which also suggests an Ge accumulation there proven by STEM-EDX investigations. In this Ge rich bottom region, subsequent annealing in N{sub 2} atmosphere results in the formation of a nanowire by coalescence of Ge precipitates shown by XTEM images. The process of phase separation during the nanowire growth was studied by means of kinetic 3D lattice Monte-Carlo simulations. These simulations also indicate the disintegration of continuous wires into droplets mediated by thermal fluctuations. Energy considerations have identified a fragmentation threshold and a lower boundary for the droplet radii which were confirmed by the Monte Carlo simulation. The here given results indicate the possibility of achieving nanowires being several nanometers wide by further growth optimizations as well as chains of equally spaced clusters with nearly uniform diameter. (orig.)

  2. Computed tomography of the human developing anterior skull base

    NARCIS (Netherlands)

    J. van Loosen (J.); A.I.J. Klooswijk (A. I J); D. van Velzen (D.); C.D.A. Verwoerd (Carel)

    1990-01-01

    markdownabstractAbstract The ossification of the anterior skull base, especially the lamina cribrosa, has been studied by computed tomography and histopathology. Sixteen human fetuses, (referred to our laboratory for pathological examination after spontaneous abortion between 18 and 32 weeks of ge

  3. Experimental observation of motion of edge dislocations in Ge/Ge x Si1- x /Si(001) ( x = 0.2-0.6) heterostructures

    Science.gov (United States)

    Bolkhovityanov, Yu. B.; Gutakovskii, A. K.; Deryabin, A. S.; Sokolov, L. V.

    2016-11-01

    The Ge/Ge x Si1- x /Si(001) ( x = 0.2-0.6) heterostructures grown by the molecular epitaxy method are analyzed using high-resolution electron microscopy with atomic resolution. The thickness of the Ge x Si1- x buffer layer is 7-35 nm. It is shown that such heterostructures relax in two stages: an ordered network of edge dislocations is formed during their growth (500°C) at the Ge/GeSi interface and then, contrary to the generally accepted opinion concerning their immobility, some of the edge dislocations move through the buffer GeSi layer to the GeSi/Si(001) interface during annealing at higher temperatures and x > 0.3. It is found that plastic relaxation of the GeSi buffer layer occurs due to motion of dislocation complexes of the edge type, consisting of a pair of complementary 60° dislocations with the ends of {111} extra planes located approximately at a distance from 2 to 12 interplanar spacings. It is shown that the penetration of dislocation complexes into the GeSi buffer layer and further to the GeSi/Si interface is intensified with increasing annealing temperature (600-800°C) and the fraction of Ge in the buffer layer.

  4. 70 °C synthesis of high-Sn content (25%) GeSn on insulator by Sn-induced crystallization of amorphous Ge

    Energy Technology Data Exchange (ETDEWEB)

    Toko, K., E-mail: toko@bk.tsukuba.ac.jp; Oya, N.; Suemasu, T. [Institute of Applied Physics, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573 (Japan); Saitoh, N.; Yoshizawa, N. [Electron Microscope Facility, TIA, AIST, 16-1 Onogawa, Tsukuba 305-8569 (Japan)

    2015-02-23

    Polycrystalline GeSn thin films are fabricated on insulating substrates at low temperatures by using Sn-induced crystallization of amorphous Ge (a-Ge). The Sn layer stacked on the a-Ge layer (100-nm thickness each) had two roles: lowering the crystallization temperature of a-Ge and composing GeSn. Slow annealing at an extremely low temperature of 70 °C allowed for a large-grained (350 nm) GeSn layer with a lattice constant of 0.590 nm, corresponding to a Sn composition exceeding 25%. The present investigation paves the way for advanced electronic optical devices integrated on a flexible plastic substrate as well as on a Si platform.

  5. Human Computation

    CERN Document Server

    CERN. Geneva

    2008-01-01

    What if people could play computer games and accomplish work without even realizing it? What if billions of people collaborated to solve important problems for humanity or generate training data for computers? My work aims at a general paradigm for doing exactly that: utilizing human processing power to solve computational problems in a distributed manner. In particular, I focus on harnessing human time and energy for addressing problems that computers cannot yet solve. Although computers have advanced dramatically in many respects over the last 50 years, they still do not possess the basic conceptual intelligence or perceptual capabilities...

  6. Computer science

    CERN Document Server

    Blum, Edward K

    2011-01-01

    Computer Science: The Hardware, Software and Heart of It focuses on the deeper aspects of the two recognized subdivisions of Computer Science, Software and Hardware. These subdivisions are shown to be closely interrelated as a result of the stored-program concept. Computer Science: The Hardware, Software and Heart of It includes certain classical theoretical computer science topics such as Unsolvability (e.g. the halting problem) and Undecidability (e.g. Godel's incompleteness theorem) that treat problems that exist under the Church-Turing thesis of computation. These problem topics explain in

  7. Strained Si/SiGe MOS transistor model

    Directory of Open Access Journals (Sweden)

    Tatjana Pešić-Brđanin

    2009-06-01

    Full Text Available In this paper we describe a new model of surfacechannel strained-Si/SiGe MOSFET based on the extension of non-quasi-static (NQS circuit model previously derived for bulk-Si devices. Basic equations of the NQS model have been modified to account for the new physical parameters of strained-Si and relaxed-SiGe layers. From the comparisons with measurements, it is shown that a modified NQS MOS including steady-state self heating can accurately predict DC characteristics of Strained Silicon MOSFETs.

  8. Hidden GeV-scale interactions of quarks.

    Science.gov (United States)

    Dobrescu, Bogdan A; Frugiuele, Claudia

    2014-08-01

    We explore quark interactions mediated by new gauge bosons of masses in the 0.3-50 GeV range. A tight upper limit on the gauge coupling of light Z(') bosons is imposed by the anomaly cancellation conditions in conjunction with collider bounds on new charged fermions. Limits from quarkonium decays are model dependent, while electroweak constraints are mild. We derive the limits for a Z(') boson coupled to baryon number and then construct a Z(') model with relaxed constraints, allowing quark couplings as large as 0.2 for a mass of a few GeV.

  9. Itinerant magnetism in metallic CuFe2Ge2.

    Science.gov (United States)

    Shanavas, K V; Singh, David J

    2015-01-01

    Theoretical calculations are performed to understand the electronic structure and magnetic properties of CuFe2Ge2. The band structure reveals large electron density N(EF) at the Fermi level suggesting a strong itinerant character of magnetism. The Fermi surface is dominated by two dimensional sheet like structures, with potentially strong nesting between them. The magnetic ground state appears to be ferromagnetic along a and antiferromagnetic in other directions. These results show that CuFe2Ge2 is an antiferromagnetic metal, with similarities to the Fe-based superconductors; such as magnetism with substantial itinerant character and coupling between magnetic order and electrons at the Fermi energy.

  10. Multifragmentation with GeV light-ion beams

    CERN Document Server

    Kwiatkowski, K; Wang, G; Lefort, T; Bracken, D S; Cornell, E; Foxford, E R; Ginger, D S; Viola, V E; Yoder, N R; Korteling, R G; Pollacco, E C; Legrain, R; Volant, C; Gimeno-Nogues, F; Laforest, R; Martin, E; Ramakrishnan, E; Rowland, D; Ruangma, A; Winchester, E M; Yennello, S J; Lynch, W G; Tsang, M B; Xi, H; Breuer, H; Morley, K B; Gushue, S; Remsberg, L P; Pienkowski, L; Brzychczyk, J; Botvina, A; Friedman, W A

    1999-01-01

    Multifragmentation studies with GeV light-ion beams indicate that for the most violent collisions, complex fragments are emitted during expansion of the hot source, followed by near simultaneous breakup of the system near rho/rho sub o approx ((1)/(3)). The results are compared with hybrid INC/EES and INC/SMM models. Preliminary data for the 8 GeV/c pi sup - and p-bar reactions on sup 1 sup 9 sup 7 Au show enhanced deposition energy for the antiproton beam.

  11. Wise Bareheaded Ge You Appears Slow-Witted

    Institute of Scientific and Technical Information of China (English)

    2004-01-01

    <正>Feng Xiaogang recently has disputes with Cui Yongyuan due to his film Cell Phone. Each has his reason against the opposite. But nobody knows what result will come out. Maybe it is another trick Feng has made.As one of the key persons involving the event, Ge You, who has played a bit role for dozens of years, is an overwhelming person. It was until the film Mischievous Master that Ge aroused the attention of the film circle.His mother and younger sister has written a new book to tell his story.

  12. Magnetoelastic behaviour of Gd sub 5 Ge sub 4

    CERN Document Server

    Magen, C; Algarabel, P A; Marquina, C; Ibarra, M R

    2003-01-01

    A complete investigation of the complex magnetic behaviour of Gd sub 5 Ge sub 4 by means of linear thermal expansion and magnetostriction measurements (5-300 K, 0-120 kOe) has been carried out. Our results support the suggested existence in this system of a coupled crystallographic-magnetic transition from a Gd sub 5 Ge sub 4 -type Pnma (antiferromagnetic) to a Gd sub 5 Si sub 4 -type Pnma (ferromagnetic) state. Strong magnetoelastic effects are observed at the field-induced first-order magnetic-martensitic transformation. A revised magnetic and crystallographic H- T phase diagram is proposed.

  13. Substrate Effects in Wideband SiGe HBT Mixer Circuits

    DEFF Research Database (Denmark)

    Johansen, Tom Keinicke; Vidkjær, Jens; Krozer, Viktor

    2005-01-01

    In this paper, the influence from substrate effects on the performance of wideband SiGe HBT mixer circuits is investigated. Equivalent circuit models including substrate networks are extracted from on-wafer test structures and compared with electromagnetic simulations. Electromagnetic simulations...... are also applied to predict short distance substrate coupling effects. Simulation results using extracted equivalent circuit models and substrate coupling networks are compared with experimental results obtained on a wideband mixer circuit implemented in a 0.35 μm, 60 GHz ft SiGe HBT BiCMOS process....

  14. Barrierer for at øge markedsorienteret aktivitet

    DEFF Research Database (Denmark)

    Bisp, Søren

    2000-01-01

    Undersøgelsen, der referes i denne artikel, har til formål at bidrage med ny viden om forøgelse af markedsorienteret aktivitet. Dette gøres ved at undersøge, hvilke faktorer der hæmmer tiltag til at øge markedsorienteret aktivitet og specielt, hvordan sådanne faktorer er forbundet og interagerer....... tidshorisont, at der i virksomheden er ledere med bestemte hæmmende personlighedstræk, at man ikke har professionel baggrund i marketing, samt at beslutninger træffes på baggrund af intuition og erfaring....

  15. A 130 GeV Gamma Ray Signal from Supersymmetry

    CERN Document Server

    Shakya, Bibhushan

    2012-01-01

    The viability of neutralino dark matter as an explanation of the 130 GeV gamma ray signal from the Galactic Center recently observed by the Fermi Large Area Telescope is examined. It is found that the signal can be compatible with a sharp feature from internal bremsstrahlung from a mostly bino dark matter particle of mass around 145 GeV, augmented by a contribution from annihilation into gamma+Z via a small wino admixture. This scenario circumvents the problematic overproduction of lower energy continuum photons that plague line interpretations of this signal. Sleptons approximately degenerate in mass with the neutralino are required to enhance the internal bremsstrahlung feature.

  16. Lattice position and thermal stability of diluted As in Ge

    CERN Document Server

    Decoster, S; Cottenier, S; Correia, JG; Mendonça, T; Amorim, LM; Pereira, LMC; Vantomme, A

    2012-01-01

    We present a lattice location study of the n-type dopant arsenic after ion implantation into germanium. By means of electron emission channeling experiments, we have observed that the implanted As atoms substitute the Ge host atoms. However, in contrast to several implanted metal impurities in Ge, no significant fraction of As is found on interstitial sites. The substitutional As impurities are found to be thermally stable up to 600°C. After 700°C annealing a strong reduction of emission channeling effects was observed, in full accordance with the expected diffusion-induced broadening of the As profile.

  17. Advanced far infrared detector and double donor studies in Ge

    Energy Technology Data Exchange (ETDEWEB)

    Olsen, C.S.

    1994-12-01

    This has application to astronomy and astrophysics. Selenium in Ge has been studied with a doping technique which limits complex formation. Only one ionization level has been found to correspond to selenium, which presumably occupies a substitutional site. This level is extremely unstable and its concentration decreases after annealing at 400C. Future work is planned to anneal the fast neutron damage before much selenium has formed in the {sup 74/76}Ge samples. It is expected that the observed selenium level can be better characterized and the missing selenium level is more likely to be discovered if other defects are removed before {sup 77}Se formation.

  18. Structural and Compositional Properties of Strain-Symmetrized SiGe/Si Heterostructures

    Science.gov (United States)

    Ross, I. M.; Gass, M.; Walther, T.; Bleloch, A.; Cullis, A. G.; Lever, L.; Ikonic, Z.; Califano, M.; Kelsall, R. W.; Zhang, J.; Paul, D. J.

    In this study, we have utilised conventional and aberration corrected (scanning) transmission electron microscopy to examine the Ge concentration across a series of technologically significant SiGe/Si prototype heterostructures. Electron energy loss line profiles show that the Ge concentration within the SiGe quantum wells approaches the nominal values. However, the Ge concentration profile shows that the interfaces are not abrupt and that the narrow 0.8nm barrier layer does not reach the nominal pure Si composition. Speculation as to the presence of Ge interdiffusion, surface segregation or interface roughness is discussed.

  19. Nature of defects and gap states in GeTe model phase change materials

    Science.gov (United States)

    Huang, B.; Robertson, J.

    2012-03-01

    The electrical storage mechanism in GeSbTe phase change materials is discussed in terms of their gap states using GeTe as a model system. The lowest energy defect in crystalline rhombohedral GeTe phase is the Ge vacancy, because it reconstructs along the resonant bonding directions. The lowest energy in amorphous GeTe is the divalent Te atom, which creates overlapping band-tail states that pin Fermi level EF near midgap. In contrast, the lowest cost defect in disordered phase in GeSbTe superlattices is the Te interstitial whose negative correlation energy pins EF near midgap.

  20. What caused the GeV flare of PSR B1259-63 ?

    CERN Document Server

    Dubus, G

    2013-01-01

    PSR B1259-63 is a gamma-ray binary system composed of a high spindown pulsar and a massive star. Non-thermal emission up to TeV energies is observed near periastron passage, attributed to emission from high energy e+e- pairs accelerated at the shock with the circumstellar material from the companion star, resulting in a small-scale pulsar wind nebula. Weak gamma-ray emission was detected by the Fermi/LAT at the last periastron passage, unexpectedly followed 30 days later by a strong flare, limited to the GeV band, during which the luminosity nearly reached the spindown power of the pulsar. The origin of this GeV flare remains mysterious. We investigate whether the flare could have been caused by pairs, located in the vicinity of the pulsar, up-scattering X-ray photons from the surrounding pulsar wind nebula rather than UV stellar photons, as usually assumed. Such a model is suggested by the geometry of the interaction region at the time of the flare. We compute the gamma-ray lightcurve for this scenario, base...

  1. Resonances from QCD bound states and the 750 GeV diphoton excess

    Science.gov (United States)

    Kats, Yevgeny; Strassler, Matthew J.

    2016-05-01

    Pair production of colored particles is in general accompanied by production of QCD bound states (onia) slightly below the pair-production threshold. Bound state annihilation leads to resonant signals, which in some cases are easier to see than the decays of the pair-produced constituents. In a previous paper ( arXiv:1204.1119 URL"/> ) we estimated the bound state signals, at leading order and in the Coulomb approximation, for particles with various spins, color representations and electric charges, and used 7 TeV ATLAS and CMS resonance searches to set rough limits. Here we update our results to include 8 and 13 TeV data. We find that the recently reported diphoton excesses near 750 GeV could indeed be due to a bound state of this kind. A narrow resonance of the correct size could be obtained for a color-triplet scalar with electric charge -4/3 and mass near 375GeV, if (as a recent lattice computation suggests) the wave function at the origin is somewhat larger than anticipated. Pair production of this particle could have evaded detection up to now. Other candidates may include a triplet scalar of charge 5/3, a triplet fermion of charge -4/3, and perhaps a sextet scalar of charge -2/3.

  2. Resonances from QCD bound states and the 750 GeV diphoton excess

    CERN Document Server

    Kats, Yevgeny

    2016-01-01

    Pair production of colored particles is in general accompanied by production of QCD bound states (onia) slightly below the pair-production threshold. Bound state annihilation leads to resonant signals, which in some cases are easier to see than the decays of the pair-produced constituents. In a previous paper (arXiv:1204.1119) we estimated the bound state signals, at leading order and in the Coulomb approximation, for particles with various spins, color representations and electric charges, and used 7 TeV ATLAS and CMS resonance searches to set rough limits. Here we update our results to include 8 and 13 TeV data. We find that the recently reported diphoton excesses near 750 GeV could indeed be due to a bound state of this kind. A narrow resonance of the correct size could be obtained for a color-triplet scalar with electric charge -4/3 and mass near 375 GeV, if (as a recent lattice computation suggests) the wave function at the origin is somewhat larger than anticipated. Pair production of this particle coul...

  3. Design and Characterization of the Ge/Ga2S3 Heterojunction

    Science.gov (United States)

    Al Garni, S. E.; Qasrawi, A. F.

    2017-08-01

    In this work, the formation and properties of Ga2S3 thin films deposited onto polycrystalline Ge substrates are studied by means of scanning electron microscopy, energy dispersive x-ray analyzer, Raman spectroscopy, x-ray diffraction techniques, ultraviolet-visible light spectrophotometry in the range of 300-1100 nm and by ac signal power spectroscopy in the range of 0.2-3.0 GHz. The first four techniques allowed the determining of the stoichiometry, the vibrational frequencies, the lattice parameters, the plane orientations, the strain and the defect density for the interface. In addition, it was observed that the Ge/Ga2S3 interface exhibited conduction and valence band offsets of 0.83 eV and 0.82 eV, respectively, and the real part of the dielectric spectra experimentally exhibited four resonance peaks centered at frequencies above 357 THz. Moreover, the computational analysis of the imaginary part of the dielectric constant via the Drude-Lorentz model has shown that the interface wave filtering properties are controlled by the electron-plasmon coupling with plasma frequencies in the range of 1.33-2.30 GHz. The drift mobility of electrons in this range was found to be 15.61 cm2/Vs. The real ability of the interface to control wave propagation was confirmed with ac signals propagating tests. The plasmonic features of the interface nominate it for use in microwave cavities and as wireless terahertz receivers.

  4. 750 GeV Composite Axion as the LHC Diphoton Resonance

    CERN Document Server

    Barrie, Neil D; Talia, Matthew; Wu, Lei

    2016-01-01

    We propose that the 750 GeV resonance, presumably observed in the early LHC Run 2 data, could be a heavy composite axion that results from condensation of a hypothetical quark in a high-colour representation of conventional QCD. The model, motivated by a recently proposed solution to the strong CP problem, is very economical and is essentially defined by the properties of the additional quark - its colour charge, hypercharge and mass. The axion mass and its coupling to two photons (via axial anomaly) can be computed in terms of these parameters. The axion is predominantly produced via photon fusion ($\\gamma\\gamma \\to {\\cal A}$) which is followed by $ Z $ vector boson fusion and associated production at the LHC. We find that the total diphoton cross section of the axion can be fitted with the observed excess. Combining the requirement on the cross-section, such that it reproduces the diphoton excess events, with the bounds on the total width ($\\Gamma_{tot} \\leqslant 45$ GeV), we obtain the effective coupling i...

  5. Computer Science Research: Computation Directorate

    Energy Technology Data Exchange (ETDEWEB)

    Durst, M.J. (ed.); Grupe, K.F. (ed.)

    1988-01-01

    This report contains short papers in the following areas: large-scale scientific computation; parallel computing; general-purpose numerical algorithms; distributed operating systems and networks; knowledge-based systems; and technology information systems.

  6. Computer software.

    Science.gov (United States)

    Rosenthal, L E

    1986-10-01

    Software is the component in a computer system that permits the hardware to perform the various functions that a computer system is capable of doing. The history of software and its development can be traced to the early nineteenth century. All computer systems are designed to utilize the "stored program concept" as first developed by Charles Babbage in the 1850s. The concept was lost until the mid-1940s, when modern computers made their appearance. Today, because of the complex and myriad tasks that a computer system can perform, there has been a differentiation of types of software. There is software designed to perform specific business applications. There is software that controls the overall operation of a computer system. And there is software that is designed to carry out specialized tasks. Regardless of types, software is the most critical component of any computer system. Without it, all one has is a collection of circuits, transistors, and silicone chips.

  7. Computer sciences

    Science.gov (United States)

    Smith, Paul H.

    1988-01-01

    The Computer Science Program provides advanced concepts, techniques, system architectures, algorithms, and software for both space and aeronautics information sciences and computer systems. The overall goal is to provide the technical foundation within NASA for the advancement of computing technology in aerospace applications. The research program is improving the state of knowledge of fundamental aerospace computing principles and advancing computing technology in space applications such as software engineering and information extraction from data collected by scientific instruments in space. The program includes the development of special algorithms and techniques to exploit the computing power provided by high performance parallel processors and special purpose architectures. Research is being conducted in the fundamentals of data base logic and improvement techniques for producing reliable computing systems.

  8. Properties of slow traps of ALD Al{sub 2}O{sub 3}/GeO{sub x}/Ge nMOSFETs with plasma post oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Ke, M., E-mail: kiramn@mosfet.t.u-tokyo.ac.jp; Yu, X.; Chang, C.; Takenaka, M.; Takagi, S. [Department of Electrical Engineering and Information Systems, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan and JST-CREST, K' s Gobancho 6F, 7 Gobancho, Chiyoda-ku, Tokyo 102-0076 (Japan)

    2016-07-18

    The realization of Ge gate stacks with a small amount of slow trap density as well as thin equivalent oxide thickness and low interface state density (D{sub it}) is a crucial issue for Ge CMOS. In this study, we examine the properties of slow traps, particularly the location of slow traps, of Al{sub 2}O{sub 3}/GeO{sub x}/n-Ge and HfO{sub 2}/Al{sub 2}O{sub 3}/GeO{sub x}/n-Ge MOS interfaces with changing the process and structural parameters, formed by atomic layer deposition (ALD) of Al{sub 2}O{sub 3} and HfO{sub 2}/Al{sub 2}O{sub 3} combined with plasma post oxidation. It is found that the slow traps can locate in the GeO{sub x} interfacial layer, not in the ALD Al{sub 2}O{sub 3} layer. Furthermore, we study the time dependence of channel currents in the Ge n-MOSFETs with 5-nm-thick Al{sub 2}O{sub 3}/GeO{sub x}/Ge gate stacks, with changing the thickness of GeO{sub x}, in order to further clarify the position of slow traps. The time dependence of the current drift and the effective time constant of slow traps do not change among the MOSFETs with the different thickness GeO{sub x}, demonstrating that the slow traps mainly exist near the interfaces between Ge and GeO{sub x}.

  9. Giant magnetocaloric effect in isostructural MnNiGe-CoNiGe system by establishing a Curie-temperature window

    KAUST Repository

    Liu, E. K.

    2013-03-28

    An effective scheme of isostructural alloying was applied to establish a Curie-temperature window in isostructural MnNiGe-CoNiGe system. With the simultaneous accomplishment of decreasing structural-transition temperature and converting antiferromagnetic martensite to ferromagnetic state, a 200 K Curie-temperature window was established between Curie temperatures of austenite and martensite phases. In the window, a first-order magnetostructural transition between paramagnetic austenite and ferromagnetic martensite occurs with a sharp jump in magnetization, showing a magnetic entropy change as large as −40 J kg−1 K−1 in a 50 kOe field change. This giant magnetocaloric effect enables Mn1− x Co x NiGe to become a potential magnetic refrigerant.

  10. Computer Literacy: Teaching Computer Ethics.

    Science.gov (United States)

    Troutner, Joanne

    1986-01-01

    Suggests learning activities for teaching computer ethics in three areas: (1) equal access; (2) computer crime; and (3) privacy. Topics include computer time, advertising, class enrollments, copyright law, sabotage ("worms"), the Privacy Act of 1974 and the Freedom of Information Act of 1966. (JM)

  11. Performance enhancement in uniaxially tensile stressed GeSn n-channel fin tunneling field-effect transistor: Impact of stress direction

    Science.gov (United States)

    Wang, Hongjuan; Han, Genquan; Jiang, Xiangwei; Liu, Yan; Zhang, Chunfu; Zhang, Jincheng; Hao, Yue

    2017-04-01

    In this work, the boosting effect on the performance of GeSn n-channel fin tunneling FET (nFinTFET) enabled by uniaxial tensile stress is investigated theoretically. As the fin rotates within the (001) plane, the uniaxial tensile stress is always along its direction. The electrical characteristics of tensile-stressed GeSn nFinTFETs with point and line tunneling modes are computed utilizing the technology computer aided design (TCAD) simulator in which the dynamic nonlocal band-to-band tunneling (BTBT) algorithm is employed. In comparison with the relaxed devices, tensile-stressed GeSn nFinTFETs achieve a substantial enhancement in band-to-band tunneling generation rate (G BTBT) and on-state current I ON owing to the reduced bandgap E G induced by the tensile stress. Performance improvement of GeSn nFinTFETs induced by tensile stress demonstrates a strong dependence on channel direction and tunneling modes. Under the same magnitude of stress, line-nFinTFETs obtain a more pronounced I ON enhancement over the transistors with point tunneling mode.

  12. Optical and structural investigations of self-assembled Ge/Si bi-layer containing Ge QDs

    Energy Technology Data Exchange (ETDEWEB)

    Samavati, Alireza, E-mail: alireza.samavati@yahoo.com [Ibn Sina Institute for Fundamental Science Studies, Universiti Teknologi Malaysia, Skudai 81310, Johor (Malaysia); Othaman, Z., E-mail: zulothaman@gmail.com [Ibn Sina Institute for Fundamental Science Studies, Universiti Teknologi Malaysia, Skudai 81310, Johor (Malaysia); Ghoshal, S.K.; Dousti, M.R. [Advanced Optical Material Research Group, Department of Physics, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor (Malaysia)

    2014-10-15

    We report the influence of Si spacer thickness variation (10–40 nm) on structural and optical properties of Ge quantum dots (QDs) in Ge/Si(1 0 0) bi-layer grown by radio frequency magnetron sputtering. AFM images reveal the spacer dependent width, height, root mean square roughness and number density of QDs vary in the range of ∼12–25 nm, ∼2–6 nm, ∼1.95–1.05 nm and ∼0.55×10{sup 11}–2.1×10{sup 11} cm{sup −2}, respectively. XRD patterns exhibit the presence of poly-oriented structures of Ge with preferred growth along (1 1 1) direction accompanied by a reduction in strain from 4.9% to 1.2% (estimated from Williamson–Hall plot) due to bi-layering. The room temperature luminescence displays strong blue–violet peak associated with a blue shift as much as 0.05 eV upon increasing the thickness of Si spacer. This shift is attributed to the quantum size effect, the material intermixing and the strain mediation. Raman spectra for both mono and bi-layer samples show intense Ge–Ge optical phonon mode that is shifted towards higher frequency. Furthermore, the first order features of Raman spectra affirm the occurrence of interfacial intermixing and phase formation during deposition. The excellent features of the results suggest that our systematic method may constitute a basis for the tunable growth of Ge QDs suitable in nanophotonics. - Highlights: • High quality bilayered hetero-structure Ge/Si using economic and easy rf magnetron sputtering fabrication method. • The role of phonon-confinement and strain relaxation mechanisms. • Influence of bilayering on evolutionary growth dynamics. • Band gap shift of visible PL upon bilayering.

  13. Thermal oxidation of Ge-implanted Si: Role of defects

    Science.gov (United States)

    Dedyulin, S. N.; Goncharova, L. V.

    2012-02-01

    Thermal oxidation of Ge-implanted Si (SiGe) was carried out in dry O at 1073, 1173, and 1273 K for various times. Rutherford backscattering spectrometry in random and channeling geometry was used to characterize the SiO thickness and composition of the Si (dry oxidation) [3,4,8,9,13-17] or by bubbling N/O through HO (wet oxidation) [5-7,9-12,18]. In these studies SiGe thin films were obtained by different growth techniques such as chemical vapor deposition (CVD) [4-6,19,12], molecular beam epitaxy (MBE) [7,8,14,19,21-23], physical evaporation [3,18] as well as Ge ion implantation in Si [9-11,13,15-17]. Despite the great differences in the preparation of SiGe samples and oxidation procedures, the main features of SiGe thermal oxidation may be summarized by the following: Pure SiO was formed during oxidation: Ge atoms that were rejected from the growing silicon oxide piled up at the interface. This was observed in all cases, unless the temperature was low enough (⩽973 K)[24], or the oxidation pressure was high [6,19], or the Ge concentration, x, in the alloy satisfied x⩾0.5[7,8], or the oxidation time was very short [22,23]. All these conditions prevent Ge diffusion away from the reacting interface. The oxidation rate of SiGe in a wet atmosphere was enhanced in comparison to pure Si [4,5,9-12,18,25], while there was no enhancement in the dry O[9,16,22,25] (unless the sample was first pre-enriched with Ge to form approximately one monolayer of Ge at the interface [9]). Oxidation rate enhancement occurs during an initial linear regime of oxide growth [10]. SiGe oxidation rate enhancement has been explained by: (i) the weaker Si-Ge bond [11], (ii) Ge catalytic role for oxidation reaction [12], and (iii) changes in defect generation at the reacting interface [12]. It was shown for Ge ion implanted samples that the Deal and Grove model (DG model) for Si oxidation can still be applied with the linear B/ A constant modified to take into account enhanced oxidation

  14. Theoretical prediction for several important equilibrium Ge isotope fractionation factors and geological implications

    Science.gov (United States)

    Li, Xuefang; Zhao, Hui; Tang, Mao; Liu, Yun

    2009-09-01

    This study estimates equilibrium fractionation factors in the Ge isotope system, including the dominant aqueous Ge(OH) 4 and GeO(OH) 3- species in seawater, Ge-bearing organic complexes (e.g. Ge-catechol, Ge-oxalic acid and Ge-citric acid), and Ge in quartz- (or opal-), albite-, K-feldspar-, olivine- and sphalerite-like structures. Estimations are based on Urey model (or Bigeleisen-Mayer equation) and high level quantum chemistry calculations. All calculations are made at B3LYP/6-311 + G(d,p) theory level. Solvation effects are treated by explicit solvent model ("water-droplet" method), and mineral structures are simulated using cluster models, in which the clusters are cut from the X-ray structures of those minerals. In addition, a number of different conformers are used for aqueous complexes in order to reduce the possible errors coming from the differences of configurations in solution. The "salt effect" on GeO(OH) 3-(aq) species is also carefully evaluated. We estimate the accuracy of these fractionation calculations at about ± 0.3‰. Excitedly, very large isotope fractionations are found between many Ge isotope systems. The Ge-containing sulfides (e.g. sphalerite) can extremely enrich light Ge isotopes (more than 10‰) compared with 4-coordinated Ge-O compounds (e.g. Ge(OH) 4(aq) or quartz). The fractionations between Ge(OH) 4(aq) and 6-coordinated Ge-bearing organic complexes can be also up to 4‰ at 25 °C. These results give a good explanation for the experimental observations of Rouxel et al. (2006). It also suggests a great potential for broad application of Ge isotope method in various geological systems.

  15. First-principles calculations on the origin of ferromagnetism in transition-metal doped Ge

    Science.gov (United States)

    Shinya, Hikari; Fukushima, Tetsuya; Masago, Akira; Sato, Kazunori; Katayama-Yoshida, Hiroshi

    2017-09-01

    Many researchers have shown an interest in Ge-based dilute magnetic semiconductors (DMSs) due to potential advantages for semiconductor spintronics applications. There has been great discussion about mechanisms of experimentally observed ferromagnetism in (Ge,Fe) and (Ge,Mn). We investigate the electronic structures, structural stabilities, magnetic exchange coupling constants, and Curie temperature of Ge-based DMSs, and clarify origins of the ferromagnetism, on the basis of density functional theory calculations. In both the (Ge,Fe) and (Ge,Mn) cases, the inhomogeneous distribution of the magnetic impurities plays an important role to determine the magnetic states; however, physical mechanisms of the ferromagnetism in these two materials are completely different. By the spinodal nanodecomposition, the Fe impurities in Ge gather together with keeping the diamond structure, so that the number of the first-nearest-neighbor Fe pairs with strong ferromagnetic interaction increases. Therefore, the Curie temperature drastically increases with the progress of the annealing. Our cluster expansion method clearly reveals that the other ordered compounds with different crystal structures such as Ge3Mn5 and Ge8Mn11 are easily generated in the (Ge,Mn) system. The estimated Curie temperature of Ge3Mn5 is in agreement with the observed Curie temperature in experiments. It should be considered that the precipitation of the ferromagnetic Ge3Mn5 clusters is an origin of high Curie temperature in (Ge,Mn).

  16. Network and computing infrastructure for scientific applications in Georgia

    Science.gov (United States)

    Kvatadze, R.; Modebadze, Z.

    2016-09-01

    Status of network and computing infrastructure and available services for research and education community of Georgia are presented. Research and Educational Networking Association - GRENA provides the following network services: Internet connectivity, network services, cyber security, technical support, etc. Computing resources used by the research teams are located at GRENA and at major state universities. GE-01-GRENA site is included in European Grid infrastructure. Paper also contains information about programs of Learning Center and research and development projects in which GRENA is participating.

  17. Measurement of muon-pair production at 50 GeV < √s < 86 GeV at LEP

    Science.gov (United States)

    Acciarri, M.; Adam, A.; Adriani, O.; Aguilar-Benitez, M.; Ahlen, S.; Alpat, B.; Alcaraz, J.; Alemanni, G.; Allaby, J.; Aloisio, A.; Alverson, G.; Alviggi, M. G.; Ambrosi, G.; Anderhub, H.; Andreev, V. P.; Angelescu, T.; Antreasyan, D.; Arefiev, A.; Azemoon, T.; Aziz, T.; Bagnaia, P.; Baksay, L.; Ball, R. C.; Banerjee, S.; Banicz, K.; Barillère, R.; Barone, L.; Bartalini, P.; Baschirotto, A.; Basile, M.; Battiston, R.; Bay, A.; Becattini, F.; Becker, U.; Behner, F.; Berdugo, J.; Berges, P.; Bertucci, B.; Betev, B. L.; Biasini, M.; Biland, A.; Bilei, G. M.; Blaising, J. J.; Blyth, S. C.; Bobbink, G. J.; Bock, R.; Böhm, A.; Borgia, B.; Boucham, A.; Bourilkov, D.; Bourquin, M.; Boutigny, D.; Brambilla, E.; Branson, J. G.; Brigljevic, V.; Brock, I. C.; Buijs, A.; Bujak, A.; Burger, J. D.; Burger, W. J.; Busenitz, J.; Buytenhuijs, A.; Cai, X. D.; Campanelli, M.; Capell, M.; Cara Romeo, G.; Caria, M.; Carlino, G.; Cartacci, A. M.; Casaus, J.; Castellini, G.; Castello, R.; Cavallari, F.; Cavallo, N.; Cecchi, C.; Cerrada, M.; Cesaroni, F.; Chamizo, M.; Chan, A.; Chang, Y. H.; Chaturvedi, U. K.; Chemarin, M.; Chen, A.; Chen, C.; Chen, G.; Chen, G. M.; Chen, H. F.; Chen, H. S.; Chen, M.; Chiefari, G.; Chien, C. Y.; Choi, M. T.; Cifarelli, L.; Cindolo, F.; Civinini, C.; Clare, I.; Clare, R.; Cohn, H. O.; Coignet, G.; Colijn, A. P.; Colino, N.; Commichau, V.; Costantini, S.; Cotorobai, F.; de la Cruz, B.; Dai, T. S.; D'Alessandro, R.; de Asmundis, R.; De Boeck, H.; Degré, A.; Deiters, K.; Denes, P.; DeNotaristefani, F.; DiBitonto, D.; Diemoz, M.; van Dierendonck, D.; Di Lodovico, F.; Dionisi, C.; Dittmar, M.; Dominguez, A.; Doria, A.; Dorne, I.; Dova, M. T.; Drago, E.; Duchesneau, D.; Duinker, P.; Duran, I.; Dutta, S.; Easo, S.; Efremenko, Yu.; El Mamouni, H.; Engler, A.; Eppling, F. J.; Erné, F. C.; Ernenwein, J. P.; Extermann, P.; Fabre, M.; Faccini, R.; Falciano, S.; Favara, A.; Fay, J.; Felcini, M.; Ferguson, T.; Fernandez, D.; Ferroni, F.; Fesefeldt, H.; Fiandrini, E.; Field, J. H.; Filthaut, F.; Fisher, P. H.; Forconi, G.; Fredj, L.; Freudenreich, K.; Galaktionov, Yu.; Ganguli, S. N.; Gau, S. S.; Gentile, S.; Gerald, J.; Gheordanescu, N.; Giagu, S.; Goldfarb, S.; Goldstein, J.; Gong, Z. F.; Gougas, A.; Gratta, G.; Gruenewald, M. W.; Gupta, V. K.; Gurtu, A.; Gutay, L. J.; Hangarter, K.; Hartmann, B.; Hasan, A.; He, J. T.; Hebbeker, T.; Hervé, A.; van Hoek, W. C.; Hofer, H.; Hoorani, H.; Hou, S. R.; Hu, G.; Ilyas, M. M.; Innocente, V.; Janssen, H.; Jin, B. N.; Jones, L. W.; de Jong, P.; Josa-Mutuberria, I.; Kasser, A.; Khan, R. A.; Kamyshkov, Yu.; Kapinos, P.; Kapustinsky, J. S.; Karyotakis, Y.; Kaur, M.; Kienzle-Focacci, M. N.; Kim, D.; Kim, J. K.; Kim, S. C.; Kim, Y. G.; Kinnison, W. W.; Kirkby, A.; Kirkby, D.; Kirkby, J.; Kittel, W.; Klimentov, A.; König, A. C.; Köngeter, A.; Korolko, I.; Koutsenko, V.; Koulbardis, A.; Kraemer, R. W.; Kramer, T.; Krenz, W.; Kuijten, H.; Kunin, A.; Ladron de Guevara, P.; Landi, G.; Lapoint, C.; Lassila-Perini, K.; Lebeau, M.; Lebedev, A.; Lebrun, P.; Lecomte, P.; Lecoq, P.; Le Coultre, P.; Lee, J. S.; Lee, K. Y.; Leggett, C.; Le Goff, J. M.; Leiste, R.; Lenti, M.; Leonardi, E.; Levtchenko, P.; Li, C.; Lieb, E.; Lin, W. T.; Linde, F. L.; Lindemann, B.; Lista, L.; Liu, Z. A.; Lohmann, W.; Longo, E.; Lu, W.; Lu, Y. S.; Lübelsmeyer, K.; Luci, C.; Luckey, D.; Ludovici, L.; Luminari, L.; Lustermann, W.; Ma, W. G.; Macchiolo, A.; Maity, M.; Majumder, G.; Malgeri, L.; Malinin, A.; Maña, C.; Mangla, S.; Marchesini, P.; Marin, A.; Martin, J. P.; Marzano, F.; Massaro, G. G. G.; Mazumdar, K.; McNally, D.; Mele, S.; Merola, L.; Meschini, M.; Metzger, W. J.; von der Mey, M.; Mi, Y.; Mihul, A.; van Mil, A. J. W.; Mirabelli, G.; Mnich, J.; Möller, M.; Monteleoni, B.; Moore, R.; Morganti, S.; Mount, R.; Müller, S.; Muheim, F.; Nagy, E.; Nahn, S.; Napolitano, M.; Nessi-Tedaldi, F.; Newman, H.; Nippe, A.; Nowak, H.; Organtini, G.; Ostonen, R.; Pandoulas, D.; Paoletti, S.; Paolucci, P.; Park, H. K.; Pascale, G.; Passaleva, G.; Patricelli, S.; Paul, T.; Pauluzzi, M.; Paus, C.; Pauss, F.; Peach, D.; Pei, Y. J.; Pensotti, S.; Perret-Gallix, D.; Petrak, S.; Pevsner, A.; Piccolo, D.; Pieri, M.; Pinto, J. C.; Piroué, P. A.; Pistolesi, E.; Plyaskin, V.; Pohl, M.; Pojidaev, V.; Postema, H.; Produit, N.; Raghavan, R.; Rahal-Callot, G.; Rancoita, P. G.; Rattaggi, M.; Raven, G.; Razis, P.; Read, K.; Redaelli, M.; Ren, D.; Rescigno, M.; Reucroft, S.; Ricker, A.; Riemann, S.; Riemers, B. C.; Riles, K.; Rind, O.; Ro, S.; Robohm, A.; Rodin, J.; Rodriguez, F. J.; Roe, B. P.; Röhner, S.; Romero, L.; Rosier-Lees, S.; Rosselet, Ph.; van Rossum, W.; Roth, S.; Rubio, J. A.; Rykaczewski, H.; Salicio, J.; Sanchez, E.; Santocchia, A.; Sarakinos, M. E.; Sarkar, S.; Sassowsky, M.; Sauvage, G.; Schäfer, C.; Schegelsky, V.; Schmidt-Kaerst, S.; Schmitz, D.; Schmitz, P.; Schneegans, M.; Schoeneich, B.; Scholz, N.; Schopper, H.; Schotanus, D. J.; Schulte, R.; Schultze, K.; Schwenke, J.; Schwering, G.; Sciacca, C.; Sciarrino, D.; Sens, J. C.; Servoli, L.; Shevchenko, S.; Shivarov, N.; Shoutko, V.; Shukla, J.; Shumilov, E.; Siedenburg, T.; Son, D.; Sopczak, A.; Soulimov, V.; Smith, B.; Spillantini, P.; Steuer, M.; Stickland, D. P.; Sticozzi, F.; Stone, H.; Stoyanov, B.; Straessner, A.; Strauch, K.; Sudhakar, K.; Sultanov, G.; Sun, L. Z.; Susinno, G. F.; Suter, H.; Swain, J. D.; Tang, X. W.; Tauscher, L.; Taylor, L.; Ting, Samuel C. C.; Ting, S. M.; Toker, O.; Tonisch, F.; Tonutti, M.; Tonwar, S. C.; Tóth, J.; Tsaregorodtsev, A.; Tully, C.; Tuchscherer, H.; Tung, K. L.; Ulbricht, J.; Uwer, U.; Valente, E.; Van de Walle, R. T.; Vetlitsky, I.; Viertel, G.; Vivargent, M.; Völkert, R.; Vogel, H.; Vogt, H.; Vorobiev, I.; Vorobyov, A. A.; Vorobyov, An. A.; Vorvolakos, A.; Wadhwa, M.; Wallraff, W.; Wang, J. C.; Wang, X. L.; Wang, Y. F.; Wang, Z. M.; Weber, A.; Wittgenstein, F.; Wu, S. X.; Wynhoff, S.; Xu, J.; Xu, Z. Z.; Yang, B. Z.; Yang, C. G.; Yao, X. Y.; Ye, J. B.; Yeh, S. C.; You, J. M.; Zaccardelli, C.; Zalite, An.; Zemp, P.; Zeng, J. Y.; Zeng, Y.; Zhang, Z.; Zhang, Z. P.; Zhou, B.; Zhou, G. J.; Zhou, Y.; Zhu, G. Y.; Zhu, R. Y.; Zichichi, A.; L3 Collaboration

    1996-02-01

    Using the data recorded with the L3 detector at LEP, we study the process e +e - → μ+μ-( γ) for events with hard initial-state photon radiation. The effective centre-of-mass energies of the muons range from 50 GeV to 86 GeV. The data sample corresponds to an integrated luminosity of 103.5 pb -1 and yields 293 muon-pair events with a hard photon along the beam direction. The events are used to determine the cross sections and the forward-backward charge asymmetries at centre-of-mass energies below the Z resonance.

  18. Search for Spontaneous R-parity violation at $\\sqrt{s}$ = 183 GeV and 189 GeV

    CERN Document Server

    Abreu, P.; Adye, T.; Adzic, P.; Albrecht, Z.; Alderweireld, T.; Alekseev, G.D.; Alemany, R.; Allmendinger, T.; Allport, P.P.; Almehed, S.; Amaldi, U.; Amapane, N.; Amato, S.; Anashkin, E.; Anassontzis, E.G.; Andersson, P.; Andreazza, A.; Andringa, S.; Anjos, N.; Antilogus, P.; Apel, W.D.; Arnoud, Y.; Esman, B.; Augustin, J.E.; Augustinus, A.; Baillon, P.; Ballestrero, A.; Bambade, P.; Barao, F.; Barbiellini, G.; Barbier, R.; Bardin, D.Y.; Barker, G.J.; Baroncelli, A.; Battaglia, M.; Baubillier, M.; Becks, K.H.; Begalli, M.; Behrmann, A.; Belokopytov, Yu.; Belous, K.; Benekos, N.C.; Benvenuti, A.C.; Berat, C.; Berggren, M.; Berntzon, L.; Bertrand, D.; Besancon, M.; Besson, N.; Bilenky, Mikhail S.; Bloch, D.; Blom, H.M.; Bol, L.; Bonesini, M.; Boonekamp, M.; Booth, P.S.L.; Borisov, G.; Bosio, C.; Botner, O.; Boudinov, E.; Bouquet, B.; Bowcock, T.J.V.; Boyko, I.; Bozovic, I.; Bozzo, M.; Bracko, M.; Branchini, P.; Brenner, R.A.; Brodet, E.; Bruckman, P.; Brunet, J.M.; Bugge, L.; Buschmann, P.; Caccia, M.; Calvi, M.; Camporesi, T.; Canale, V.; Carena, F.; Carroll, L.; Caso, C.; Castillo Gimenez, M.V.; Cattai, A.; Cavallo, F.R.; Chapkin, M.; Charpentier, Ph.; Checchia, P.; Chelkov, G.A.; Chierici, R.; Chliapnikov, P.; Chochula, P.; Chorowicz, V.; Chudoba, J.; Cieslik, K.; Collins, P.; Contri, R.; Cortina, E.; Cosme, G.; Cossutti, F.; Costa, M.; Crawley, H.B.; Crennell, D.; Croix, J.; Cuevas Maestro, J.; Czellar, S.; D'Hondt, J.; Dalmau, J.; Davenport, M.; Da Silva, W.; Della Ricca, G.; Delpierre, P.; Demaria, N.; De Angelis, A.; De Boer, W.; De Clercq, C.; De Lotto, B.; De Min, A.; De Paula, L.; Dijkstra, H.; Di Ciaccio, L.; Doroba, K.; Dracos, M.; Drees, J.; Dris, M.; Eigen, G.; Ekelof, T.; Ellert, M.; Elsing, M.; Engel, J.P.; Espirito Santo, M.C.; Fanourakis, G.; Fassouliotis, D.; Feindt, M.; Fernandez, J.; Ferrer, A.; Ferrer-Ribas, E.; Ferro, F.; Firestone, A.; Flagmeyer, U.; Foeth, H.; Fokitis, E.; Fontanelli, F.; Franek, B.; Frodesen, A.G.; Fruhwirth, R.; Fulda-Quenzer, F.; Fuster, J.; Gamba, D.; Gamblin, S.; Gandelman, M.; Garcia, C.; Gaspar, C.; Gaspar, M.; Gasparini, U.; Gavillet, Ph.; Gazis, Evangelos; Gele, D.; Geralis, T.; Ghodbane, N.; Gil Botella, Ines; Glege, F.; Gokieli, R.; Golob, B.; Gomez-Ceballos, G.; Goncalves, P.; Gonzalez Caballero, I.; Gopal, G.; Gorn, L.; Gouz, Yu.; Gracco, V.; Grahl, J.; Graziani, E.; Grosdidier, G.; Grzelak, K.; Guy, J.; Haag, C.; Hahn, F.; Hahn, S.; Haider, S.; Hallgren, A.; Hamacher, K.; Hamilton, K.; Hansen, J.; Harris, F.J.; Haug, S.; Hauler, F.; Hedberg, V.; Heising, S.; Hernandez, J.J.; Herquet, P.; Herr, H.; Hertz, O.; Higon, E.; Holmgren, S.O.; Holt, P.J.; Hoorelbeke, S.; Houlden, M.; Hrubec, J.; Hughes, G.J.; Hultqvist, K.; Jackson, John Neil; Jacobsson, R.; Jalocha, P.; Jarlskog, Ch.; Jarlskog, G.; Jarry, P.; Jean-Marie, B.; Jeans, D.; Johansson, Erik Karl; Jonsson, P.; Joram, C.; Juillot, P.; Jungermann, L.; Kapusta, Frederic; Karafasoulis, K.; Katsanevas, S.; Katsoufis, E.C.; Keranen, R.; Kernel, G.; Kersevan, B.P.; Khokhlov, Yu.A.; Khomenko, B.A.; Khovanski, N.N.; Kiiskinen, A.; King, B.; Kinvig, A.; Kjaer, N.J.; Klapp, O.; Kluit, P.; Kokkinias, P.; Kostioukhine, V.; Kourkoumelis, C.; Kouznetsov, O.; Krammer, M.; Kriznic, E.; Krumstein, Z.; Kubinec, P.; Kucharczyk, M.; Kurowska, J.; Lamsa, J.W.; Laugier, J.P.; Leder, G.; Ledroit, Fabienne; Leinonen, L.; Leisos, A.; Leitner, R.; Lenzen, G.; Lepeltier, V.; Lesiak, T.; Lethuillier, M.; Libby, J.; Liebig, W.; Liko, D.; Lipniacka, A.; Lippi, I.; Loken, J.G.; Lopes, J.H.; Lopez, J.M.; Lopez-Fernandez, R.; Loukas, D.; Lutz, P.; Lyons, L.; MacNaughton, J.; Mahon, J.R.; Maio, A.; Malek, A.; Maltezos, S.; Malychev, V.; Mandl, F.; Marco, J.; Marco, R.; Marechal, B.; Margoni, M.; Marin, J.C.; Mariotti, C.; Markou, A.; Martinez-Rivero, C.; Marti i Garcia, S.; Masik, J.; Mastroyiannopoulos, N.; Matorras, F.; Matteuzzi, C.; Matthiae, G.; Mazzucato, F.; Mazzucato, M.; McCubbin, M.; McKay, R.; McNulty, R.; Merle, E.; Meroni, C.; Meyer, W.T.; Miagkov, A.; Migliore, E.; Mirabito, L.; Mitaroff, W.A.; Mjoernmark, U.; Moa, T.; Moch, M.; Monig, Klaus; Monge, M.R.; Montenegro, J.; Moraes, D.; Morettini, P.; Morton, G.; Mueller, U.; Muenich, K.; Mulders, M.; Mundim, L.M.; Murray, W.J.; Muryn, B.; Myatt, G.; Myklebust, T.; Nassiakou, M.; Navarria, F.L.; Nawrocki, K.; Negri, P.; Nemecek, S.; Neufeld, N.; Nicolaidou, R.; Niezurawski, P.; Nikolenko, M.; Nomokonov, V.; Nygren, A.; Obraztsov, V.; Olshevski, A.G.; Onofre, A.; Orava, R.; Osterberg, K.; Ouraou, A.; Oyanguren, A.; Paganoni, M.; Paiano, S.; Pain, R.; Paiva, R.; Palacios, J.; Palka, H.; Papadopoulou, Th.D.; Pape, L.; Parkes, C.; Parodi, F.; Parzefall, U.; Passeri, A.; Passon, O.; Peralta, L.; Perepelitsa, V.; Pernicka, M.; Perrotta, A.; Petridou, C.; Petrolini, A.; Phillips, H.T.; Pierre, F.; Pimenta, M.; Piotto, E.; Podobnik, T.; Poireau, V.; Pol, M.E.; Polok, G.; Poropat, P.; Pozdniakov, V.; Privitera, P.; Pukhaeva, N.; Pullia, A.; Radojicic, D.; Ragazzi, S.; Rahmani, H.; Read, Alexander L.; Rebecchi, P.; Redaelli, Nicola Giuseppe; Regler, M.; Rehn, J.; Reid, D.; Reinhardt, R.; Renton, P.B.; Resvanis, L.K.; Richard, F.; Ridky, J.; Rinaudo, G.; Ripp-Baudot, Isabelle; Romero, A.; Ronchese, P.; Rosenberg, E.I.; Rosinsky, P.; Roudeau, P.; Rovelli, T.; Ruhlmann-Kleider, V.; Ruiz, A.; Saarikko, H.; Sacquin, Y.; Sadovsky, A.; Sajot, G.; Salmi, L.; Salt, J.; Sampsonidis, D.; Sannino, M.; Savoy-Navarro, A.; Schwanda, C.; Schwemling, Ph.; Schwering, B.; Schwickerath, U.; Scuri, Fabrizio; Sedykh, Y.; Segar, A.M.; Sekulin, R.; Sette, G.; Shellard, R.C.; Siebel, M.; Simard, L.; Simonetto, F.; Sisakian, A.N.; Smadja, G.; Smirnova, O.; Smith, G.R.; Sokolov, A.; Solovianov, O.; Sopczak, A.; Sosnowski, R.; Spassov, T.; Spiriti, E.; Squarcia, S.; Stanescu, C.; Stanitzki, M.; Stocchi, A.; Strauss, J.; Strub, R.; Stugu, B.; Szczekowski, M.; Szeptycka, M.; Tabarelli, T.; Taffard, A.; Tegenfeldt, F.; Terranova, F.; Timmermans, Jan; Tinti, N.; Tkatchev, L.G.; Tobin, M.; Todorova, S.; Tome, B.; Tonazzo, A.; Tortora, L.; Tortosa, P.; Treille, D.; Tristram, G.; Trochimczuk, M.; Troncon, C.; Turluer, M.L.; Tyapkin, I.A.; Tyapkin, P.; Tzamarias, S.; Ullaland, O.; Uvarov, V.; Valenti, G.; Vallazza, E.; Van Dam, Piet; Van den Boeck, W.; Van Eldik, J.; Van Lysebetten, A.; van Remortel, N.; Van Vulpen, I.; Vegni, G.; Ventura, L.; Venus, W.; Verbeure, F.; Verdier, P.; Verlato, M.; Vertogradov, L.S.; Verzi, V.; Vilanova, D.; Vitale, L.; Vlasov, E.; Vodopianov, A.S.; Voulgaris, G.; Vrba, V.; Wahlen, H.; Washbrook, A.J.; Weiser, C.; Wicke, D.; Wickens, J.H.; Wilkinson, G.R.; Winter, M.; Witek, M.; Wolf, G.; Yi, J.; Yushchenko, O.; Zalewska, A.; Zalewski, P.; Zavrtanik, D.; Zevgolatakos, E.; Zimine, N.I.; Zintchenko, A.; Zoller, Ph.; Zumerle, G.; Zupan, M.

    2001-01-01

    Searches for spontaneous $R$-parity violating signals at $\\sqrt{s}=183$\\,GeV and \\mbox{$\\sqrt{s}=189$\\,GeV} have been performed using 1997 and 1998 DELPHI data, under the assumption of $R$-parity breaking in the third lepton family. The expected topology for the decay of a pair of charginos into two acoplanar taus plus missing energy was investigated and no evidence for a signal was found. The results were used to derive a limit on the chargino mass and to constrain the allowed domains of the MSSM parameter sp.

  19. Effect of deformation on the valence shell occupancies of 74Ge, 76Ge, 76Se and 78Se

    Science.gov (United States)

    Elsharkawy, H. M.; Saleh Yousef, M.

    2017-03-01

    The set of BCS equations have been solved using both realistic and schematic separable forces to calculate the occupation probability amplitudes for protons and neutrons in the valence shells of 74Ge, 76Ge, 76Se and 78Se deformed nuclei. A comparison between the calculated occupation probabilities with the experimental measured values is introduced. A big difference is found between the occupation probabilities of protons with the experimental values, while for neutrons the agreement with the experimental values at high deformations is satisfactory.

  20. QCD studies in $e^{+}e^{-}$ annihilation from 30 GeV to 189 GeV

    CERN Document Server

    Acciarri, M; Adriani, O; Aguilar-Benítez, M; Alcaraz, J; Alemanni, G; Allaby, James V; Aloisio, A; Alviggi, M G; Ambrosi, G; Anderhub, H; Andreev, V P; Angelescu, T; Anselmo, F; Arefev, A; Azemoon, T; Aziz, T; Bagnaia, P; Bajo, A; Baksay, L; Balandras, A; Baldew, S V; Banerjee, S; Banerjee, Sw; Barczyk, A; Barillère, R; Barone, L; Bartalini, P; Basile, M; Battiston, R; Bay, A; Becattini, F; Becker, U; Behner, F; Bellucci, L; Berbeco, R; Berdugo, J; Berges, P; Bertucci, B; Betev, B L; Bhattacharya, S; Biasini, M; Biland, A; Blaising, J J; Blyth, S C; Bobbink, Gerjan J; Böhm, A; Boldizsar, L; Borgia, B; Bourilkov, D; Bourquin, Maurice; Braccini, S; Branson, J G; Brigljevic, V; Brochu, F; Buffini, A; Buijs, A; Burger, J D; Burger, W J; Cai, X D; Campanelli, M; Capell, M; Cara Romeo, G; Carlino, G; Cartacci, A M; Casaus, J; Castellini, G; Cavallari, F; Cavallo, N; Cecchi, C; Cerrada-Canales, M; Cesaroni, F; Chamizo-Llatas, M; Chang, Y H; Chaturvedi, U K; Chemarin, M; Chen, A; Chen, G; Chen, G M; Chen, H F; Chen, H S; Chiefari, G; Cifarelli, Luisa; Cindolo, F; Civinini, C; Clare, I; Clare, R; Coignet, G; Colino, N; Costantini, S; Cotorobai, F; de la Cruz, B; Csilling, Akos; Cucciarelli, S; Dai, T S; van Dalen, J A; D'Alessandro, R; De Asmundis, R; Déglon, P L; Degré, A; Deiters, K; Della Volpe, D; Delmeire, E; Denes, P; De Notaristefani, F; De Salvo, A; Diemoz, M; Dierckxsens, M; Van Dierendonck, D N; Di Lodovico, F; Dionisi, C; Dittmar, Michael; Dominguez, A; Doria, A; Dova, M T; Duchesneau, D; Dufournaud, D; Duinker, P; Durán, I; El-Mamouni, H; Engler, A; Eppling, F J; Erné, F C; Extermann, Pierre; Fabre, M; Faccini, R; Falagán, M A; Falciano, S; Favara, A; Fay, J; Fedin, O; Felcini, Marta; Ferguson, T; Ferroni, F; Fesefeldt, H S; Fiandrini, E; Field, J H; Filthaut, Frank; Fisher, P H; Fisk, I; Forconi, G; Freudenreich, Klaus; Furetta, C; Galaktionov, Yu; Ganguli, S N; García-Abia, P; Gataullin, M; Gau, S S; Gentile, S; Gheordanescu, N; Giagu, S; Gong, Z F; Grenier, G; Grimm, O; Grünewald, M W; Guida, M; van Gulik, R; Gupta, V K; Gurtu, A; Gutay, L J; Haas, D; Hasan, A; Hatzifotiadou, D; Hebbeker, T; Hervé, A; Hidas, P; Hirschfelder, J; Hofer, H; Holzner, G; Hoorani, H; Hou, S R; Hu, Y; Iashvili, I; Jin, B N; Jones, L W; de Jong, P; Josa-Mutuberria, I; Khan, R A; Kaur, M; Kienzle-Focacci, M N; Kim, D; Kim, J K; Kirkby, Jasper; Kiss, D; Kittel, E W; Klimentov, A; König, A C; Kopp, A; Koutsenko, V F; Kräber, M H; Krämer, R W; Krenz, W; Krüger, A; Kunin, A; Ladrón de Guevara, P; Laktineh, I; Landi, G; Lassila-Perini, K M; Lebeau, M; Lebedev, A; Lebrun, P; Lecomte, P; Lecoq, P; Le Coultre, P; Lee, H J; Le Goff, J M; Leiste, R; Leonardi, E; Levchenko, P M; Li Chuan; Likhoded, S A; Lin, C H; Lin, W T; Linde, Frank L; Lista, L; Liu, Z A; Lohmann, W; Longo, E; Lü, Y S; Lübelsmeyer, K; Luci, C; Luckey, D; Lugnier, L; Luminari, L; Lustermann, W; Ma Wen Gan; Maity, M; Malgeri, L; Malinin, A; Maña, C; Mangeol, D J J; Mans, J; Marchesini, P A; Marian, G; Martin, J P; Marzano, F; Mazumdar, K; McNeil, R R; Mele, S; Merola, L; Meschini, M; Metzger, W J; Von der Mey, M; Mihul, A; Milcent, H; Mirabelli, G; Mnich, J; Mohanty, G B; Molnár, P; Moulik, T; Muanza, G S; Muijs, A J M; Musicar, B; Musy, M; Napolitano, M; Nessi-Tedaldi, F; Newman, H; Niessen, T; Nisati, A; Nowak, H; Organtini, G; Oulianov, A; Palomares, C; Pandoulas, D; Paoletti, S; Paolucci, P; Paramatti, R; Park, H K; Park, I H; Passaleva, G; Patricelli, S; Paul, T; Pauluzzi, M; Paus, C; Pauss, Felicitas; Pedace, M; Pensotti, S; Perret-Gallix, D; Petersen, B; Piccolo, D; Pierella, F; Pieri, M; Piroué, P A; Pistolesi, E; Plyaskin, V; Pohl, M; Pozhidaev, V; Postema, H; Pothier, J; Prokofiev, D O; Prokofev, D; Quartieri, J; Rahal-Callot, G; Rahaman, M A; Raics, P; Raja, N; Ramelli, R; Rancoita, P G; Raspereza, A V; Raven, G; Razis, P A; Ren, D; Rescigno, M; Reucroft, S; Riemann, S; Riles, K; Robohm, A; Rodin, J; Roe, B P; Romero, L; Rosca, A; Rosier-Lees, S; Rubio, Juan Antonio; Ruggiero, G; Ruschmeier, D; Rykaczewski, H; Saremi, S; Sarkar, S; Salicio, J; Sánchez, E; Sanders, M P; Sarakinos, M E; Schäfer, C; Shchegelskii, V; Schmidt-Kärst, S; Schmitz, D; Schopper, Herwig Franz; Schotanus, D J; Schwering, G; Sciacca, C; Sciarrino, D; Seganti, A; Servoli, L; Shevchenko, S; Shivarov, N; Shoutko, V; Shumilov, E; Shvorob, A V; Siedenburg, T; Son, D; Smith, B; Spillantini, P; Steuer, M; Stickland, D P; Stone, A; Stoyanov, B; Strässner, A; Sudhakar, K; Sultanov, G G; Sun, L Z; Suter, H; Swain, J D; Szillási, Z; Sztaricskai, T; Tang, X W; Tauscher, Ludwig; Taylor, L; Tellili, B; Timmermans, C; Ting, Samuel C C; Ting, S M; Tonwar, S C; Tóth, J; Tully, C; Tung, K L; Uchida, Y; Ulbricht, J; Valente, E; Vesztergombi, G; Vetlitskii, I; Vicinanza, D; Viertel, Gert M; Villa, S; Vivargent, M; Vlachos, S; Vodopyanov, I; Vogel, H; Vogt, H; Vorobev, I; Vorobyov, A A; Vorvolakos, A; Wadhwa, M; Wallraff, W; Wang, M; Wang, X L; Wang, Z M; Weber, A; Weber, M; Wienemann, P; Wilkens, H; Wu, S X; Wynhoff, S; Xia, L; Xu, Z Z; Yamamoto, J; Yang, B Z; Yang, C G; Yang, H J; Yang, M; Ye, J B; Yeh, S C; Zalite, A; Zalite, Yu; Zhang, Z P; Zhu, G Y; Zhu, R Y; Zichichi, A; Zilizi, G; Zöller, M

    2000-01-01

    We present results obtained from a study of the structure of hadronic events recorded by the L3 detector at various centre-of-mass energies.The distributions of event shape variables and the energy dependence of their mean values are measured from 30 GeV to 189 GeV and compared with various QCD models. The energy dependence of the moments of event shape variables is used to test a power law ansatz for the non-perturbativecomponent. We obtain a universal value of the non-perturbative parameter$\\alpha_{0}$ = 0.537 $\\pm$ 0.073. From a comparison with resummed$\\cal{O}

  1. Computer programming and computer systems

    CERN Document Server

    Hassitt, Anthony

    1966-01-01

    Computer Programming and Computer Systems imparts a "reading knowledge? of computer systems.This book describes the aspects of machine-language programming, monitor systems, computer hardware, and advanced programming that every thorough programmer should be acquainted with. This text discusses the automatic electronic digital computers, symbolic language, Reverse Polish Notation, and Fortran into assembly language. The routine for reading blocked tapes, dimension statements in subroutines, general-purpose input routine, and efficient use of memory are also elaborated.This publication is inten

  2. Theoretical and experimental investigations of the properties of Ge2Sb2Te5 and indium-doped Ge2Sb2Te5 phase change material

    Science.gov (United States)

    Singh, Gurinder; Kaura, Aman; Mukul, Monika; Singh, Janpreet; Tripathi, S. K.

    2014-06-01

    We have carried out comprehensive computational and experimental study on the face-centered cubic Ge2Sb2Te5 (GST) and indium (In)-doped GST phase change materials. Structural calculations, total density of states and crystal orbital Hamilton population have been calculated using first-principle calculation. 5 at.% doping of In weakens the Ge-Te, Sb-Te and Te-Te bond lengths. In element substitutes Sb to form In-Te-like structure in the GST system. In-Te has a weaker bond strength compared with the Sb-Te bond. However, both GST and doped alloy remain in rock salt structure. It is more favorable to replace Sb with In than with any other atomic position. X-ray diffraction (XRD) analysis has been carried out on thin film of In-doped GST phase change materials. XRD graph reveals that In-doped phase change materials have rock salt structure with the formation of In2Te3 crystallites in the material. Temperature dependence of impedance spectra has been calculated for thin films of GST and doped material. Thickness of the as-deposited films is calculated from Swanepoel method. Absorption coefficient (α) has been calculated for amorphous and crystalline thin films of the alloys. The optical gap (indirect band gap) energy of the amorphous and crystalline thin films has also been calculated by the equation α hν = β (hν - E_{{g }} )2 . Optical contrast (C) of pure and doped phase change materials have also been calculated. Sufficient optical contrast has been found for pure and doped phase change materials.

  3. Effective mass measurement: the influence of hole band nonparabolicity in SiGe/Ge quantum wells

    Science.gov (United States)

    Rössner, Benjamin; von Känel, Hans; Chrastina, Daniel; Isella, Giovanni; Batlogg, Bertram

    2007-01-01

    We show that the common practice of identifying effective masses derived from Shubnikov-de Haas (SdH) and cyclotron resonance measurements with zero-field effective density of states (DOS) masses must be scrutinized when nonparabolicity effects come into play. To this end, the temperature dependence of theoretical SdH oscillations expected for strained-Ge quantum wells is explicitly simulated from calculations of the Landau level structure, giving rise to theoretical masses in exact analogy to a SdH measurement. The calculations are performed within a 6 × 6 envelope function approximation (EFA). The same method is used to calculate the zero-field DOS mass. Our analysis shows that the pronounced nonparabolicity of the heavy hole band leads to a nonlinear magnetic field dependence of Landau level energies invalidating the assumption of equal cyclotron and DOS masses. In particular, we show that at high carrier density the DOS mass is significantly underestimated in a SdH measurement.

  4. 750 GeV diphoton resonance and electric dipole moments

    Science.gov (United States)

    Choi, Kiwoon; Im, Sang Hui; Kim, Hyungjin; Mo, Doh Young

    2016-09-01

    We examine the implication of the recently observed 750 GeV diphoton excess for the electric dipole moments of the neutron and electron. If the excess is due to a spin zero resonance which couples to photons and gluons through the loops of massive vector-like fermions, the resulting neutron electric dipole moment can be comparable to the present experimental bound if the CP-violating angle α in the underlying new physics is of O (10-1). An electron EDM comparable to the present bound can be achieved through a mixing between the 750 GeV resonance and the Standard Model Higgs boson, if the mixing angle itself for an approximately pseudoscalar resonance, or the mixing angle times the CP-violating angle α for an approximately scalar resonance, is of O (10-3). For the case that the 750 GeV resonance corresponds to a composite pseudo-Nambu-Goldstone boson formed by a QCD-like hypercolor dynamics confining at ΛHC, the resulting neutron EDM can be estimated with α ∼(750 GeV /ΛHC) 2θHC, where θHC is the hypercolor vacuum angle.

  5. Promising interpretation of diphoton resonance at 750 GeV

    Science.gov (United States)

    Bi, Xiao-Jun; Ding, Ran; Fan, Yizhou; Huang, Li; Li, Chuang; Li, Tianjun; Raza, Shabbar; Wang, Xiao-Chuan; Zhu, Bin

    2016-07-01

    Recently, an excess of events in diphoton channel with invariant mass of about 750 GeV has been reported by the ATLAS and CMS Collaborations. Considering it as a tantalizing hint for new physics beyond the Standard Model (SM), we propose a simple extension of the SM with an additional doublet Higgs H' and a singlet s . We consider the neutral component H0' of H' as the 750 GeV resonance and assume that s is lighter than 2.6 GeV. In particular, H0' can be produced at tree level via q q ¯ production and decay into a pair of s at tree level. Then s can decay into a pair of collimated photons, which cannot be distinguished at the LHC. We show that the diphoton production cross section can be from 3 to 13 fb, the decay width of H0' can be from 30 to 60 GeV, and all the current experimental constraints including dijet constraint can be satisfied.

  6. 750 GeV diphoton resonance and electric dipole moments

    Directory of Open Access Journals (Sweden)

    Kiwoon Choi

    2016-09-01

    Full Text Available We examine the implication of the recently observed 750 GeV diphoton excess for the electric dipole moments of the neutron and electron. If the excess is due to a spin zero resonance which couples to photons and gluons through the loops of massive vector-like fermions, the resulting neutron electric dipole moment can be comparable to the present experimental bound if the CP-violating angle α in the underlying new physics is of O(10−1. An electron EDM comparable to the present bound can be achieved through a mixing between the 750 GeV resonance and the Standard Model Higgs boson, if the mixing angle itself for an approximately pseudoscalar resonance, or the mixing angle times the CP-violating angle α for an approximately scalar resonance, is of O(10−3. For the case that the 750 GeV resonance corresponds to a composite pseudo-Nambu–Goldstone boson formed by a QCD-like hypercolor dynamics confining at ΛHC, the resulting neutron EDM can be estimated with α∼(750 GeV/ΛHC2θHC, where θHC is the hypercolor vacuum angle.

  7. GeV C. W. electron microtron design report

    Energy Technology Data Exchange (ETDEWEB)

    1982-05-01

    Rising interest in the nuclear physics community in a GeV C.W. electron accelerator reflects the growing importance of high-resolution short-range nuclear physics to future advances in the field. In this report major current problems are reviewed and the details of prospective measurements which could be made with a GeV C.W. electron facility are discussed, together with their impact on an understanding of nuclear forces and the structure of nuclear matter. The microtron accelerator has been chosen as the technology to generate the electron beams required for the research discussed because of the advantages of superior beam quality, low capital and operating cost and capability of furnishing beams of several energies and intensities simultaneously. A complete technical description of the conceptual design for a 2 GeV double-sided C.W. electron microtron is presented. The accelerator can furnish three beams with independently controlled energy and intensity. The maximum current per beam is 100 ..mu..amps. Although the precise objective for maximum beam energy is still a subject of debate, the design developed in this study provides the base technology for microtron accelerators at higher energies (2 to 6 GeV) using multi-sided geometries.

  8. Thermoelectric Properties of Czochralski GeSi Crystal

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    In order to discuss the application possibility of SiGe crystal in thermoelectric materials, we investigated the thermoelectric properties of several silicon-germanium alloys with different content, orientation and electric conductive type. As discussed in the experiment result, the absolute value of Seebeck coefficient fluctuates from 300 to 600 μV/K in the whole temperature range. In the present paper, the relationship of Seebeck coefficient against content, orientation and electric conductive type is summarized in detail. The Seebeck coefficient of the sample with 〈111〉orientation is smaller than that in 〈100〉 at the same temperature. Absolute value of P-type is larger than that of N-type except pure Ge. But as the temperature increases, the absolute value of pure Ge decreases many times as quickly as that of other specimens. In addition, the specimens of bulk GeSi alloy crystals for experiment were grown by the Czochralski method through varying the pulling rate during the growing process.

  9. Tilflyttere til nybyggeri i Køge Kommune

    DEFF Research Database (Denmark)

    Haagerup, Christian Deichmann; Ærø, Thorkild

    2009-01-01

    I rapporten er udviklet metoder og redskaber, som den kommunale planlægning kan benytte i håndteringen af demografi ske og kommunaløkonomiske udfordringer i fremtiden. Rapporten belyser, ved hjælp af spørgeskemaundersøgelse og fokusgruppeinterviews, tilflytterne til nybyggeri i Køge Kommune samt ...

  10. The JLAB 12 GeV Energy Upgrade of CEBAF

    Energy Technology Data Exchange (ETDEWEB)

    Harwood, Leigh H. [JLAB

    2013-12-01

    This presentation should describe the progress of the 12GeV Upgrade of CEBAF at Jefferson Lab. The status of the upgrade should be presented as well as details on the construction, procurement, installation and commissioning of the magnet and SRF components of the upgrade.

  11. CMS event at 900 GeV - 5 May 2015

    CERN Multimedia

    CMS, Collaboration

    2015-01-01

    This proton collision di-jet event was detected at the CMS detector. The red bars represent the energy deposited in the electromagnetic calorimeter and the blue represent the energy in the hadronic calorimeter. The total hadronic and electromagnetic energy is approximately 30 GeV in each jet. The back-to-back jet cones can be clearly seen emanating from the vertex.

  12. Demand Response Performance of GE Hybrid Heat Pump Water Heater

    Energy Technology Data Exchange (ETDEWEB)

    Widder, Sarah H.; Parker, Graham B.; Petersen, Joseph M.; Baechler, Michael C.

    2013-07-01

    This report describes a project to evaluate and document the DR performance of HPWH as compared to ERWH for two primary types of DR events: peak curtailments and balancing reserves. The experiments were conducted with GE second-generation “Brillion”-enabled GeoSpring hybrid water heaters in the PNNL Lab Homes, with one GE GeoSpring water heater operating in “Standard” electric resistance mode to represent the baseline and one GE GeoSpring water heater operating in “Heat Pump” mode to provide the comparison to heat pump-only demand response. It is expected that “Hybrid” DR performance, which would engage both the heat pump and electric elements, could be interpolated from these two experimental extremes. Signals were sent simultaneously to the two water heaters in the side-by-side PNNL Lab Homes under highly controlled, simulated occupancy conditions. This report presents the results of the evaluation, which documents the demand-response capability of the GE GeoSpring HPWH for peak load reduction and regulation services. The sections describe the experimental protocol and test apparatus used to collect data, present the baselining procedure, discuss the results of the simulated DR events for the HPWH and ERWH, and synthesize key conclusions based on the collected data.

  13. Energy relaxation in optically excited Si and Ge nanocrystals

    NARCIS (Netherlands)

    S. Saeed

    2014-01-01

    The scientific objective of the research presented in this thesis is to explore energy relaxation processes of optically excited Si and Ge nanocrystals. The identification and deeper understanding of unique energy relaxation paths in these materials will open a new window of opportunity for these ma

  14. Anomalous activation of shallow B+ implants in Ge

    DEFF Research Database (Denmark)

    Yates, B.R.; Darby, B.L.; Rudawski, N.G.;

    2011-01-01

    The electrical activation of B+ implantation at 2 keV to doses of 5.0×1013-5.0×1015 cm-2 in crystalline and pre-amorphized Ge following annealing at 400 °C for 1.0 h was studied using micro Hall effect measurements. Preamorphization improved activation for all samples with the samples implanted...... to a dose of 5.0×1015 cm-2 displaying an estimated maximum active B concentration of 4.0×1020 cm-3 as compared to 2.0×1020 cm-3 for the crystalline sample. However, incomplete activation was observed for all samples across the investigated dose range. For the sample implanted to a dose of 5.0×1013 cm -2......, activation values were 7% and 30%, for c-Ge and PA-Ge, respectively. The results suggest the presence of an anomalous clustering phenomenon of shallow B+ implants in Ge. © 2011 Elsevier B.V. All rights reserved....

  15. Tunable thermal hysteresis in MnFe(P,Ge) compounds

    NARCIS (Netherlands)

    Trung, N.T.; Ou, Z.Q.; Gortenmulder, T.J.; Tegus, O.; Buschow, K.H.J.; Brück, E.

    2009-01-01

    Structural, magnetic, and magnetocaloric properties of the MnFe(P,Ge) compounds were systematically studied on both bulk alloys and melt-spun ribbons. The experimental results show that the critical behavior of the phase transition can be controlled by changing either the compositions or the anneali

  16. Impurity and defect interactions during laser thermal annealing in Ge

    Energy Technology Data Exchange (ETDEWEB)

    Milazzo, R., E-mail: ruggero.milazzo@unipd.it; De Salvador, D.; Carnera, A.; Napolitani, E. [CNR-IMM MATIS and Dipartimento di Fisica e Astronomia, Università di Padova, Via Marzolo 8, 35131 Padova (Italy); Impellizzeri, G.; Privitera, V. [CNR-IMM MATIS and Dipartimento di Fisica e Astronomia, Università di Catania, Via S. Sofia 64, 95123 Catania (Italy); Piccinotti, D. [CNR-IMM MATIS and Dipartimento di Fisica e Astronomia, Università di Padova, Via Marzolo 8, 35131 Padova (Italy); IM2NP, CNRS-Universités d' Aix-Marseille et de Toulon, Case 142, 13397 Marseille Cedex 20 (France); La Magna, A. [CNR-IMM, Z.I. VIII Strada 5, 95121 Catania (Italy); Fortunato, G. [CNR-IMM, Via del Fosso del Cavaliere 100, 00133 Roma (Italy); Portavoce, A.; Mangelinck, D. [IM2NP, CNRS-Universités d' Aix-Marseille et de Toulon, Case 142, 13397 Marseille Cedex 20 (France)

    2016-01-28

    The microscopic mechanisms involving dopants, contaminants, and defects in Ge during pulsed melting laser thermal annealing (LTA) are investigated in detail. Samples both un-implanted and implanted with As or B are processed by LTA as well as characterized in terms of chemical (1D and 3D), electrical, and strain profiling. The clustering of As is directly measured by 3D chemical profiling and correlated with its partial electrical activation along with a reduction of the lattice strain induced by As atoms. A semi-quantitative microscopic model involving the interaction with mobile As-vacancy (AsV) complexes is proposed to describe the clustering mechanism. Boron is shown to follow different clustering behavior that changes with depth and marked by completely different strain levels. Oxygen penetrates from the surface into all the samples as a result of LTA and, only in un-implanted Ge, it occupies an interstitial position inducing also positive strain in the lattice. On the contrary, data suggest that the presence of As or B forces O to assume different configurations with negligible strain, through O-V or O-B interactions for the two dopant species, respectively. These data suggest that LTA does not inject a significant amount of vacancies in Ge, at variance with Si, unless As atoms or possibly other n-type dopants are present. These results have to be carefully considered for modeling the LTA process in Ge and its implementation in technology.

  17. Mechanical properties of bismuth implanted amorphous Ge film

    Energy Technology Data Exchange (ETDEWEB)

    Juhasz, A.; Szommer, P.; Lendvai, J.; Vertesy, Z.; Peto, G. E-mail: peto@mfa.kfki.hu

    1999-01-02

    Mechanical properties of Bi ion implanted a-Ge film were studied by dynamic microhardness tests and compared to those of unimplanted a-Ge film. 400 nm thick films were evaporated in units of 30 nm thick layers and bombarded with Bi ions at 60 keV energy and 2 {mu}A/cm{sup 2} current. Cyclic load-unload indentation tests and indentation creep tests were performed to determine the hardness and ductility of the ion implanted and unimplanted specimens, respectively. The brittleness of the materials was characterised by scanning electron microscopic observation of crack formation around the Vickers indentations. The dynamic hardness was much larger, the ductility lower, the crack formation was significantly larger in the case of the unimplanted than in the ion bombarded specimens. The observed differences in the mechanical properties indicate structural differences between the two types of a-Ge are in agreement with the earlier reported formation of a new amorphous phase of Ge induced by ion implantation (G. Peto, J. Kanski, U. Sodervall, Phys. Lett. 124 (1987) 510)

  18. Mechanical properties of bismuth implanted amorphous Ge film

    Science.gov (United States)

    Juhász, A.; Szommer, P.; Lendvai, J.; Vértesy, Z.; Pető, G.

    1999-01-01

    Mechanical properties of Bi ion implanted a-Ge film were studied by dynamic microhardness tests and compared to those of unimplanted a-Ge film. 400 nm thick films were evaporated in units of 30 nm thick layers and bombarded with Bi ions at 60 keV energy and 2 μA/cm 2 current. Cyclic load-unload indentation tests and indentation creep tests were performed to determine the hardness and ductility of the ion implanted and unimplanted specimens, respectively. The brittleness of the materials was characterised by scanning electron microscopic observation of crack formation around the Vickers indentations. The dynamic hardness was much larger, the ductility lower, the crack formation was significantly larger in the case of the unimplanted than in the ion bombarded specimens. The observed differences in the mechanical properties indicate structural differences between the two types of a-Ge are in agreement with the earlier reported formation of a new amorphous phase of Ge induced by ion implantation (G. Pető, J. Kanski, U. Sodervall, Phys. Lett. 124 (1987) 510 [6]).

  19. 7-GeV Advanced Photon Source Conceptual Design Report

    Energy Technology Data Exchange (ETDEWEB)

    1987-04-01

    During the past decade, synchrotron radiation emitted by circulating electron beams has come into wide use as a powerful, versatile source of x-rays for probing the structure of matter and for studying various physical processes. Several synchrotron radiation facilities with different designs and characteristics are now in regular operation throughout the world, with recent additions in this country being the 0.8-GeV and 2.5-GeV rings of NSLS at Brookhaven National Laboratory. However, none of the operating facilities has been designed to use a low-emittance, high-energy stored beam, together with modern undulator devices, to produce a large number of hard x-ray beams of extremely high brilliance. This document is a proposal to the Department of Energy to construct and operate high-energy synchrotron radiation facility at Argonne National Laboratory. We have now chosen to set the design energy of this facility at 7.0 GeV, with the capability to operate at up to 7.5 GeV.

  20. Ge post-acceleration from laser-generated plasma

    Science.gov (United States)

    Giuffrida, L.; Torrisi, L.; Calcagnile, L.; Rosinski, M.

    2010-11-01

    An Nd:YAG laser, 1064 nm wavelength, 9 ns pulse width, 300-900 mJ pulse energy and 10 10 W/cm 2 intensity is employed to ablate a solid Ge target placed in high vacuum. Ions are produced in vacuum and are emitted mainly along the normal to the target surface. The free ion expansion process occurs in a constant-potential chamber placed at 30 kV positive voltage with respect to the ground. The post-acceleration system permits to extract Ge ions with energy proportional to the charge state. Ion Energy Analyzer (IEA) is employed to measure the energy-to-charge ratio of the Ge ions without and with the use of the post-acceleration system. The ion energy distribution can be measured from time-of-flight measurements. Multi-energetic ion implantation has been performed on Silicon substrates. Ge depth profiles, measured through RBS analysis are in good agreement with IEA spectroscopy measurements.

  1. Ge post-acceleration from laser-generated plasma

    Energy Technology Data Exchange (ETDEWEB)

    Giuffrida, L., E-mail: lorenzogiuffrida@lns.infn.i [INFN-LNS di Catania, Via S. Sofia 62, 95123 Catania (Italy) and Dipartimento di Fisica, Universita di Messina, Ctr. Papardo 31, 98166 S. Agata, Messina (Italy); Torrisi, L. [INFN-LNS di Catania, Via S. Sofia 62, 95123 Catania (Italy); Dipartimento di Fisica, Universita di Messina, Ctr. Papardo 31, 98166 S. Agata, Messina (Italy); Calcagnile, L. [CEDAD, Dip.to di Ing. dell' Innov., Universita di Lecce, Via Monteroni, 73100, Lecce (Italy); Rosinski, M. [Institute of Plasma Physics and Laser Microfusion, 23 Hery Str. 01-497 Warsaw (Poland)

    2010-11-11

    An Nd:YAG laser, 1064 nm wavelength, 9 ns pulse width, 300-900 mJ pulse energy and 10{sup 10} W/cm{sup 2} intensity is employed to ablate a solid Ge target placed in high vacuum. Ions are produced in vacuum and are emitted mainly along the normal to the target surface. The free ion expansion process occurs in a constant-potential chamber placed at 30 kV positive voltage with respect to the ground. The post-acceleration system permits to extract Ge ions with energy proportional to the charge state. Ion Energy Analyzer (IEA) is employed to measure the energy-to-charge ratio of the Ge ions without and with the use of the post-acceleration system. The ion energy distribution can be measured from time-of-flight measurements. Multi-energetic ion implantation has been performed on Silicon substrates. Ge depth profiles, measured through RBS analysis are in good agreement with IEA spectroscopy measurements.

  2. Geïntegreerde bestrijding van cicaden in de glastuinbouw

    NARCIS (Netherlands)

    Pijnakker, J.; Ramakers, P.M.J.; Slooten, van M.A.; Kok, L.W.; Leman, A.; Bulle, A.A.E.

    2008-01-01

    Op verzoek van de werkgroep Strateeg van LTO Groeiservice en met financiering van het Productschap Tuinbouw begon Wageningen UR Glastuinbouw in mei 2005 met een onderzoek aan cicaden in kassen. De voorkomende soorten werden geïnventariseerd, en mogelijkhedenvoor zowel biologsiche als chemische bestr

  3. Magnetic structure at low temperatures in FeGe2

    Science.gov (United States)

    Babu, P. D.; Mishra, P. K.; Dube, V.; Mishra, R.; Sastry, P. U.; Ravikumar, G.

    2014-04-01

    Magnetic phase of FeGe2 intermetallic is studied using low-temperature neutron diffraction and DC magnetization. Zero-magnetic-field neutron scattering data shows the presence of an antiferromagnetic phase in the low temperature range. We find the evidence of the presence of a ferromagnetic order overriding on the predominantly antiferromagnetic phase at low temperatures.

  4. Giant missing row reconstruction of Au on Ge(001)

    NARCIS (Netherlands)

    van Houselt, Arie; Fischer, Marinus; Poelsema, Bene; Zandvliet, Henricus J.W.

    2008-01-01

    We report on a giant missing row reconstruction emerging upon the adsorption and subsequent annealing of (sub)monolayer amounts of Au on Ge(001). The emerging microfacets are of (111) type and reminiscent of those in the well-known (2×1) missing row reconstruction of the clean (110) surfaces of the

  5. Tunable thermal hysteresis in MnFe(P,Ge) compounds

    NARCIS (Netherlands)

    Trung, N.T.; Ou, Z.Q.; Gortenmulder, T.J.; Tegus, O.; Buschow, K.H.J.; Brück, E.

    2009-01-01

    Structural, magnetic, and magnetocaloric properties of the MnFe(P,Ge) compounds were systematically studied on both bulk alloys and melt-spun ribbons. The experimental results show that the critical behavior of the phase transition can be controlled by changing either the compositions or the anneali

  6. USA hiiglane GE Healthcare korraldab meditsiinis revolutsiooni / Andrew Jack

    Index Scriptorium Estoniae

    Jack, Andrew

    2006-01-01

    General Electricu tütarettevõte GE Healthcare võttis üle Briti diagnostika- ja bioteaduse uurimisfirma Amersham, firma strateegia tuum on võimsa skaneerimistehnoloogia ja meditsiinilise diagnostika üksteisele lähendamine. Lisa: Aeg sorteerida andmeid infotehnoloogia abil

  7. 12 GeV detector technology at Jefferson Lab

    Science.gov (United States)

    Leckey, John P.; GlueX Collaboration

    2013-04-01

    The Thomas Jefferson National Accelerator Facility (JLab) is presently in the middle of an upgrade to increase the energy of its CW electron beam from 6 GeV to 12 GeV along with the addition of a fourth experimental hall. Driven both by necessity and availability, novel detectors and electronics modules have been used in the upgrade. One such sensor is the Silicon Photomultiplier (SiPM), specifically a Multi-Pixel Photon Counter (MPPC), which is an array of avalanche photodiode pixels operating in Geiger mode that are used to sense photons. The SiPMs replace conventional photomultiplier tubes and have several distinct advantages including the safe operation in a magnetic field and the lack of need for high voltage. Another key to 12 GeV success is advanced fast electronics. Jlab will use custom 250 MHz and 125 MHz 12-bit analog to digital converters (ADCs) and time to digital converters (TDCs) all of which take advantage of VME Switched Serial (VXS) bus with its GB/s high bandwidth readout capability. These new technologies will be used to readout drift chambers, calorimeters, spectrometers and other particle detectors at Jlab once the 12 GeV upgrade is complete. The largest experiment at Jlab utilizing these components is GlueX - an experiment in the newly constructed Hall D that will study the photoproduction of light mesons in the search for hybrid mesons. The performance of these components and their respective detectors will be presented.

  8. Antilocalization of Coulomb Blockade in a Ge-Si Nanowire

    DEFF Research Database (Denmark)

    Higginbotham, Andrew P.; Kuemmeth, Ferdinand; Larsen, Thorvald Wadum

    2014-01-01

    The distribution of Coulomb blockade peak heights as a function of magnetic field is investigated experimentally in a Ge-Si nanowire quantum dot. Strong spin-orbit coupling in this hole-gas system leads to antilocalization of Coulomb blockade peaks, consistent with theory. In particular, the peak...

  9. Sputtering of Ge(001): transition between dynamic scaling regimes

    DEFF Research Database (Denmark)

    Smilgies, D.-M.; Eng, P.J.; Landemark, E.;

    1997-01-01

    We have studied the dynamic behavior of the Ge(001) surface during sputtering in situ and in real time using synchrotron X-ray diffraction. We find two dynamic regimes as a function of surface temperature and sputter current which are separated by a sharp transition. The boundary between these two...

  10. 12 GeV detector technology at Jefferson Lab

    Energy Technology Data Exchange (ETDEWEB)

    Leckey, John P. [Indiana U.

    2013-04-01

    The Thomas Jefferson National Accelerator Facility (JLab) is presently in the middle of an upgrade to increase the energy of its CW electron beam from 6 GeV to 12 GeV along with the addition of a fourth experimental hall. Driven both by necessity and availability, novel detectors and electronics modules have been used in the upgrade. One such sensor is the Silicon Photomultiplier (SiPM), specifically a Multi-Pixel Photon Counter (MPPC), which is an array of avalanche photodiode pixels operating in Geiger mode that are used to sense photons. The SiPMs replace conventional photomultiplier tubes and have several distinct advantages including the safe operation in a magnetic field and the lack of need for high voltage. Another key to 12 GeV success is advanced fast electronics. Jlab will use custom 250 MHz and 125 MHz 12-bit analog to digital converters (ADCs) and time to digital converters (TDCs) all of which take advantage of VME Switched Serial (VXS) bus with its GB/s high bandwidth readout capability. These new technologies will be used to readout drift chambers, calorimeters, spectrometers and other particle detectors at Jlab once the 12 GeV upgrade is complete. The largest experiment at Jlab utilizing these components is GlueX - an experiment in the newly constructed Hall D that will study the photoproduction of light mesons in the search for hybrid mesons. The performance of these components and their respective detectors will be presented.

  11. 12 GeV detector technology at Jefferson Lab

    Energy Technology Data Exchange (ETDEWEB)

    Leckey, John P. [Indiana University, Bloomington, IN 47405 (United States); Collaboration: GlueX Collaboration

    2013-04-19

    The Thomas Jefferson National Accelerator Facility (JLab) is presently in the middle of an upgrade to increase the energy of its CW electron beam from 6 GeV to 12 GeV along with the addition of a fourth experimental hall. Driven both by necessity and availability, novel detectors and electronics modules have been used in the upgrade. One such sensor is the Silicon Photomultiplier (SiPM), specifically a Multi-Pixel Photon Counter (MPPC), which is an array of avalanche photodiode pixels operating in Geiger mode that are used to sense photons. The SiPMs replace conventional photomultiplier tubes and have several distinct advantages including the safe operation in a magnetic field and the lack of need for high voltage. Another key to 12 GeV success is advanced fast electronics. Jlab will use custom 250 MHz and 125 MHz 12-bit analog to digital converters (ADCs) and time to digital converters (TDCs) all of which take advantage of VME Switched Serial (VXS) bus with its GB/s high bandwidth readout capability. These new technologies will be used to readout drift chambers, calorimeters, spectrometers and other particle detectors at Jlab once the 12 GeV upgrade is complete. The largest experiment at Jlab utilizing these components is GlueX - an experiment in the newly constructed Hall D that will study the photoproduction of light mesons in the search for hybrid mesons. The performance of these components and their respective detectors will be presented.

  12. Electrical and Optical Characterization of Si-Ge-Sn

    Science.gov (United States)

    2012-03-01

    the typical mounting brackets were too large to hold the samples. The FTIR uses a Michelson -type interferometer. The optical path difference is...al., "Tensile-strained, n-type Ge as a Gain Medium for Monolithic Laser Integration on Si," Optical Express 15 (18), 11272 (2007). 32. W. C. Dash

  13. Combined wet and dry cleaning of SiGe(001)

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sang Wook; Kaufman-Osborn, Tobin; Kim, Hyonwoong [Materials Science and Engineering Program, University of California, San Diego, La Jolla, California 92093 (United States); Siddiqui, Shariq; Sahu, Bhagawan [TD Research, GLOBALFOUNDRIES USA, Inc., 257 Fuller Road, Albany, New York 12203 (United States); Yoshida, Naomi; Brandt, Adam [Applied Materials, Inc., Santa Clara, California 95054 (United States); Kummel, Andrew C., E-mail: akummel@ucsd.edu [Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093 (United States)

    2015-07-15

    Combined wet and dry cleaning via hydrofluoric acid (HF) and atomic hydrogen on Si{sub 0.6}Ge{sub 0.4}(001) surface was studied at the atomic level using ultrahigh vacuum scanning tunneling microscopy (STM), scanning tunneling spectroscopy (STS), and x-ray photoelectron spectroscopy to understand the chemical transformations of the surface. Aqueous HF removes native oxide, but residual carbon and oxygen are still observed on Si{sub 0.6}Ge{sub 0.4}(001) due to hydrocarbon contamination from post HF exposure to ambient. The oxygen contamination can be eliminated by shielding the sample from ambient via covering the sample in the HF cleaning solution until the sample is introduced to the vacuum chamber or by transferring the sample in an inert environment; however, both processes still leave carbon contaminant. Dry in-situ atomic hydrogen cleaning above 330 °C removes the carbon contamination on the surface consistent with a thermally activated atomic hydrogen reaction with surface hydrocarbon. A postdeposition anneal at 550 °C induces formation of an atomically flat and ordered SiGe surface observed by STM. STS verifies that the wet and dry cleaned surface has an unpinned Fermi level with no states between the conduction and valence band edge comparable to sputter cleaned SiGe surfaces.

  14. Structure and Photoluminescence of Mullite.Ge Nanocomposite

    Institute of Scientific and Technical Information of China (English)

    GAO Le; WANG Hao; WANG Weimin; FU Zhengyi

    2008-01-01

    Al12Si3.75Ge0.25O26 ceramic powder was prepared by sol-gel method using Al(NO3)3,Si(OC2H5)4 and Cl3GeCH2-CH2COOH as precursors.The structural formation of Al12Si3.75Ge0.25O26 ceramic powder was analyzed by XRD.After reduction by flowing H2/Ar mixture gas,strong room temperature photoluminescence (PL) can be observed at 565 nm,613 nm,682 nm,731 nm and 777 nm,respectively.The PL intensity scarcely depends on the reduction temperature and duration,while the sample reduced at 500 ℃ for 3 hours has the highest PL intensity.Before and after reduction at 500 ℃,the volume of unit cell of mullite solid solution decreases to 0.4699 (A)3.Based on the analysis of XPS and Raman spectra,it can be approved that the PL phenomenon at room temperature is caused by the embedded Ge nanoparticles with the average size of about 1.95 nm.

  15. USA hiiglane GE Healthcare korraldab meditsiinis revolutsiooni / Andrew Jack

    Index Scriptorium Estoniae

    Jack, Andrew

    2006-01-01

    General Electricu tütarettevõte GE Healthcare võttis üle Briti diagnostika- ja bioteaduse uurimisfirma Amersham, firma strateegia tuum on võimsa skaneerimistehnoloogia ja meditsiinilise diagnostika üksteisele lähendamine. Lisa: Aeg sorteerida andmeid infotehnoloogia abil

  16. Inclusive hadron production at 10 GeV

    Science.gov (United States)

    Waldi, R.

    1989-12-01

    Recent results of the ARGUS collaboration on inclusive momentum and angular distributions of charged hadrons produced in direct Υ(1S) decays and nonresonant e+e- annihilation at 10 GeV are presented, which allow investigation of quark and gluon fragmentation. The data demonstrate some of the shortcomings of present fragmentation models.

  17. Development of an improved performance SiGe unicouple

    Science.gov (United States)

    Nakahara, Jan F.; Franklin, Brian; DeFillipo, Lawrence E.

    1995-01-01

    This paper describes the fabrication of unicouples with improved SiGe alloys. Based on laboratory measurements of the thermoelectric properties the improved materials provide about a 10% improvement in the figure-of-merit between 573 and 1273 K compared to standard coarse grain unicouple materials. The improved materials are p-type Si0.796Ge0.199B0.005 fabricated at Martin Marietta Astro Space by the Vacuum casting/hot pressing method and n-type Si0.784Ge0.196Ga0.005P0.015 fabricated at Ames Laboratory by the mechanical alloying/hot isostatic pressing method. The standard unicouple bonding process was adjusted to accommodate the lower melting temperature of the SiGe/GaP material. A two-step diffusion bonding process was developed such that the p-type material is bonded to the SiMo hot shoe first at 1594 K followed by the lower melting point n-type material between 1518 and 1520 K. Standard procedures were used to silicon nitride coat the thermoelectric pellets and to attach the cold side CTE transition and heat rejection components to produce unicouples. Two unicouples successfully withstood simulated rivet operations as would be experienced in the fabrication of a Radioisotope Thermoelectric Generator (RTG) converter to verify the integrity of the tungsten cold shoe to thermoelectric material interface. The performance of these unicouples will be further evaluated in an 18-couple test module.

  18. SiGe Building Blocks for Microwave Frequency Synthesizers

    OpenAIRE

    Vaucher, Cicero S.; Apostolidou, M; Farrugia, Andrew; Praamsma, Louis

    2004-01-01

    Implementations of Ku- and Ka-band PLL building blocks in the Philips QUBiC4G SiGe technology are presented: a 10 GHz fully-integrated low-phase-noise differential Colpttis oscillator, a 25 GHz low-power adaptive prescaler, and a 18 GHz truly-modular fully-programmable frequency divider.

  19. Characterization of Ge-nanocrystal films with photoelectron spectroscopy

    CERN Document Server

    Bostedt, C; Willey, T M; Nelson, A J; Franco, N; Möller, T; Terminello, L J

    2003-01-01

    The Ge 3d core-levels of germanium nanocrystal films have been investigated by means of photoelectron spectroscopy. The experiments indicate bulk-like coordinated atoms in the nanocrystals and suggest structured disorder on the nanoparticle surface. The results underline the importance of the surface on the overall electronic structure of this class of nanostructured materials.

  20. The phase diagram of annealed Ge(111)/Ga

    DEFF Research Database (Denmark)

    Molinàs-Mata, P.; Böhringer, M.; Artacho, E.;

    1995-01-01

    A study of the annealed phases of Ge(111)/Ga for coverages above 0.05 ML is presented. The surfaces are investigated by low-energy electron diffraction, scanning tunneling microscopy, and partly by photoemission and surface X-ray diffraction using synchrotron radiation. For Ga coverages beyond 0....