WorldWideScience

Sample records for ge 2541

  1. 7 CFR 254.1 - General purpose.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 4 2010-01-01 2010-01-01 false General purpose. 254.1 Section 254.1 Agriculture... GENERAL REGULATIONS AND POLICIES-FOOD DISTRIBUTION ADMINISTRATION OF THE FOOD DISTRIBUTION PROGRAM FOR INDIAN HOUSEHOLDS IN OKLAHOMA § 254.1 General purpose. This part sets the requirement under which...

  2. 45 CFR 2541.250 - Program income.

    Science.gov (United States)

    2010-10-01

    ... 45 Public Welfare 4 2010-10-01 2010-10-01 false Program income. 2541.250 Section 2541.250 Public... Post-Award Requirements § 2541.250 Program income. (a) General. Grantees are encouraged to earn income to defray program costs. Program income includes income from fees for services performed, from the...

  3. 45 CFR 2541.330 - Supplies.

    Science.gov (United States)

    2010-10-01

    ... residual inventory of unused supplies exceeding $5,000 in total aggregate fair market value upon... 45 Public Welfare 4 2010-10-01 2010-10-01 false Supplies. 2541.330 Section 2541.330 Public Welfare..., Property and Subawards § 2541.330 Supplies. (a) Title. Title to supplies acquired under a grant or subgrant...

  4. 45 CFR 2541.410 - Financial reporting.

    Science.gov (United States)

    2010-10-01

    ... 45 Public Welfare 4 2010-10-01 2010-10-01 false Financial reporting. 2541.410 Section 2541.410... GOVERNMENTS Reports, Records, Retention and Enforcement § 2541.410 Financial reporting. (a) General. (1... time to time be authorized by OMB, for: (i) Submitting financial reports to Federal agencies; or (ii...

  5. 45 CFR 2541.260 - Non-Federal audit.

    Science.gov (United States)

    2010-10-01

    ... awards in a fiscal year, shall: (1) Determine whether State or local subgrantees have met the audit... 45 Public Welfare 4 2010-10-01 2010-10-01 false Non-Federal audit. 2541.260 Section 2541.260... GOVERNMENTS Post-Award Requirements § 2541.260 Non-Federal audit. (a) Basic rule. Grantees and subgrantees are...

  6. 45 CFR 2541.440 - Termination for convenience.

    Science.gov (United States)

    2010-10-01

    ... 45 Public Welfare 4 2010-10-01 2010-10-01 false Termination for convenience. 2541.440 Section 2541.440 Public Welfare Regulations Relating to Public Welfare (Continued) CORPORATION FOR NATIONAL AND... LOCAL GOVERNMENTS Reports, Records, Retention and Enforcement § 2541.440 Termination for convenience...

  7. 15 CFR 25.41 - Stay pending appeal.

    Science.gov (United States)

    2010-01-01

    ... 15 Commerce and Foreign Trade 1 2010-01-01 2010-01-01 false Stay pending appeal. 25.41 Section 25.41 Commerce and Foreign Trade Office of the Secretary of Commerce PROGRAM Fraud Civil Remedies § 25.41 Stay pending appeal. (a) An initial decision is stayed automatically pending disposition of a...

  8. 45 CFR 2541.200 - Standards for financial management systems.

    Science.gov (United States)

    2010-10-01

    ... 45 Public Welfare 4 2010-10-01 2010-10-01 false Standards for financial management systems. 2541... STATE AND LOCAL GOVERNMENTS Post-Award Requirements § 2541.200 Standards for financial management... violation of the restrictions and prohibitions of applicable statutes. (b) The financial management systems...

  9. Study of Ge loss during Ge condensation process

    International Nuclear Information System (INIS)

    Xue, Z.Y.; Di, Z.F.; Ye, L.; Mu, Z.Q.; Chen, D.; Wei, X.; Zhang, M.; Wang, X.

    2014-01-01

    Ge loss during Ge condensation process was investigated by transmission electron microscopy, Raman spectroscopy, secondary ion mass spectrometry and Rutherford backscattering spectrometry. This work reveals that Ge loss can be attributed to the Ge oxidation at SiO 2 /SiGe interface, Ge diffusion in SiO 2 layers and Ge trapped at buried SiO 2 /Si interface. During Ge condensation process, with the increase of the Ge content, the Si atoms become insufficient for selective oxidation at the oxide/SiGe interface. Consequently, the Si and Ge are oxidized simultaneously. When the Ge composition in SiGe layer increases further and approaches 100%, the Ge atoms begin to diffuse into the top SiO 2 layer and buried SiO 2 layer. However, the X-ray photoelectron spectrometry analysis manifests that the chemical states of the Ge in top SiO 2 layer are different from those in buried SiO 2 layer, as the Ge atoms diffused into top SiO 2 layer are oxidized to form GeO 2 in the subsequent oxidation step. With the increase of the diffusion time, a quantity of Ge atoms diffuse through buried SiO 2 layer and pile up at buried SiO 2 /Si interface due to the interfacial trapping. The SiO 2 /Si interface acts like a pump, absorbing Ge from a Ge layer continuously through a pipe-buried SiO 2 layer. With the progress of Ge condensation process, the quantity of Ge accumulated at SiO 2 /Si interface increases remarkably. - Highlights: • Ge loss during Ge condensation process is attributed to the Ge oxidation at SiO 2 /SiGe interface. • Ge diffusion in SiO 2 layers and Ge trapped at buried SiO 2 /Si interface • When Ge content in SiGe layer approaches 100%, Ge diffusion into the SiO 2 layer is observed. • Ge then gradually diffuses through buried SiO 2 layer and pile up at SiO 2 /Si interface

  10. Optical transitions in Ge/SiGe multiple quantum wells with Ge-rich barriers

    Science.gov (United States)

    Bonfanti, M.; Grilli, E.; Guzzi, M.; Virgilio, M.; Grosso, G.; Chrastina, D.; Isella, G.; von Känel, H.; Neels, A.

    2008-07-01

    Direct-gap and indirect-gap transitions in strain-compensated Ge/SiGe multiple quantum wells with Ge-rich SiGe barriers have been studied by optical transmission spectroscopy and photoluminescence experiments. An sp3d5s∗ tight-binding model has been adopted to interpret the experimental results. Photoluminescence spectra and their comparison with theoretical calculations prove the existence of type-I band alignment in compressively strained Ge quantum wells grown on relaxed Ge-rich SiGe buffers. The high quality of the transmission spectra opens up other perspectives for application of these structures in near-infrared optical modulators.

  11. Energy levels of germanium, Ge I through Ge XXXII

    International Nuclear Information System (INIS)

    Sugar, J.; Musgrove, A.

    1993-01-01

    Atomic energy levels of germanium have been compiled for all stages of ionization for which experimental data are available. No data have yet been published for Ge VIII through Ge XIII and Ge XXXII. Very accurate calculated values are compiled for Ge XXXI and XXXII. Experimental g-factors and leading percentages from calculated eigenvectors of levels are given. A value for the ionization energy, either experimental when available or theoretical, is included for the neutral atom and each ion. section

  12. HP Ge planar detectors

    International Nuclear Information System (INIS)

    Gornov, M.G.; Gurov, Yu.B.; Soldatov, A.M.; Osipenko, B.P.; Yurkowski, J.; Podkopaev, O.I.

    1989-01-01

    Parameters of planar detectors manufactured of HP Ge are presented. The possibilities to use multilayer spectrometers on the base of such semiconductor detectors for nuclear physics experiments are discussed. It is shown that the obtained detectors including high square ones have spectrometrical characteristics close to limiting possible values. 9 refs.; 3 figs.; 1 tab

  13. Si/Ge intermixing during Ge Stranski–Krastanov growth

    Directory of Open Access Journals (Sweden)

    Alain Portavoce

    2014-12-01

    Full Text Available The Stranski–Krastanov growth of Ge islands on Si(001 has been widely studied. The morphology changes of Ge islands during growth, from nucleation to hut/island formation and growth, followed by hut-to-dome island transformation and dislocation nucleation of domes, have been well described, even at the atomic scale, using techniques such as scanning tunneling microscopy and transmission electron microscopy. Although it is known that these islands do not consist of pure Ge (due to Si/Ge intermixing, the composition of the Ge islands is not precisely known. In the present work, atom probe tomography was used to study the composition of buried dome islands at the atomic scale, in the three-dimensional space. The core of the island was shown to contain about 55 atom % Ge, while the Ge composition surrounding this core decreases rapidly in all directions in the islands to reach a Ge concentration of about 15 atom %. The Ge distribution in the islands follows a cylindrical symmetry and Ge segregation is observed only in the {113} facets of the islands. The Ge composition of the wetting layer is not homogeneous, varying from 5 to 30 atom %.

  14. Ge/SiGe superlattices for nanostructured thermoelectric modules

    International Nuclear Information System (INIS)

    Chrastina, D.; Cecchi, S.; Hague, J.P.; Frigerio, J.; Samarelli, A.; Ferre–Llin, L.; Paul, D.J.; Müller, E.; Etzelstorfer, T.; Stangl, J.; Isella, G.

    2013-01-01

    Thermoelectrics are presently used in a number of applications for both turning heat into electricity and also for using electricity to produce cooling. Mature Si/SiGe and Ge/SiGe heteroepitaxial growth technology would allow highly efficient thermoelectric materials to be engineered, which would be compatible and integrable with complementary metal oxide silicon micropower circuits used in autonomous systems. A high thermoelectric figure of merit requires that electrical conductivity be maintained while thermal conductivity is reduced; thermoelectric figures of merit can be improved with respect to bulk thermoelectric materials by fabricating low-dimensional structures which enhance the density of states near the Fermi level and through phonon scattering at heterointerfaces. We have grown and characterized Ge-rich Ge/SiGe/Si superlattices for nanofabricated thermoelectric generators. Low-energy plasma-enhanced chemical vapor deposition has been used to obtain nanoscale-heterostructured material which is several microns thick. Crystal quality and strain control have been investigated by means of high resolution X-ray diffraction. High-resolution transmission electron microscopy images confirm the material and interface quality. Electrical conductivity has been characterized by the mobility spectrum technique. - Highlights: ► High-quality Ge/SiGe multiple quantum wells for thermoelectric applications ► Mobility spectra of systems featuring a large number of parallel conduction channels ► Competitive thermoelectric properties measured in single devices

  15. Structure of 78Ge from the 76Ge(t,p)78Ge reaction

    International Nuclear Information System (INIS)

    Ardouin, D.; Lebrun, C.; Guilbault, F.; Remaud, B.; Vergnes, M.N.; Rotbard, G.; Kumar, K.

    1978-01-01

    The 76 Ge(t,p) 78 Ge reaction has been performed at a bombarding energy of 17 MeV. Thirteen excited states below 3 MeV excitation are reported with Jsup(π) values obtained by comparison to DWBA analysis. A comparison to a dynamical deformation theory is made and the results suggest 78 Ge is a transitional nucleus nearing spherical shape due to the proximity of the N-50 closed shell

  16. Photoluminescence and electroluminescence from Ge/strained GeSn/Ge quantum wells

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Chung-Yi; Chang, Chih-Chiang [Department of Electrical Engineering, Graduate Institute of Photonics and Optoelectronics, National Taiwan University, Taipei 10617, Taiwan (China); Huang, Chih-Hsiung; Huang, Shih-Hsien [Department of Electrical Engineering, Graduate Institute of Electronics Engineering, National Taiwan University, Taipei 10617, Taiwan (China); Liu, C. W., E-mail: chee@cc.ee.ntu.edu.tw [Department of Electrical Engineering, Graduate Institute of Photonics and Optoelectronics, National Taiwan University, Taipei 10617, Taiwan (China); Department of Electrical Engineering, Graduate Institute of Electronics Engineering, National Taiwan University, Taipei 10617, Taiwan (China); National Nano Device Labs, Hsinchu 30077, Taiwan (China); Huang, Yi-Chiau; Chung, Hua; Chang, Chorng-Ping [Applied Materials Inc., Sunnyvale, California 94085 (United States)

    2016-08-29

    Ge/strained GeSn/Ge quantum wells are grown on a 300 mm Si substrate by chemical vapor deposition. The direct bandgap emission from strained GeSn is observed in the photoluminescence spectra and is enhanced by Al{sub 2}O{sub 3}/SiO{sub 2} passivation due to the field effect. The electroluminescence of the direct bandgap emission of strained GeSn is also observed from the Ni/Al{sub 2}O{sub 3}/GeSn metal-insulator-semiconductor tunneling diodes. Electroluminescence is a good indicator of GeSn material quality, since defects in GeSn layers degrade the electroluminescence intensity significantly. At the accumulation bias, the holes in the Ni gate electrode tunnel to the strained n-type GeSn layer through the ultrathin Al{sub 2}O{sub 3} and recombine radiatively with electrons. The emission wavelength of photoluminescence and electroluminescence can be tuned by the Sn content.

  17. 75 FR 47318 - GE Asset Management Incorporated and GE Investment Distributors, Inc.; Notice of Application and...

    Science.gov (United States)

    2010-08-05

    ...] GE Asset Management Incorporated and GE Investment Distributors, Inc.; Notice of Application and.... Applicants: GE Asset Management Incorporated (``GEAM'') and GE Investment Distributors, Inc. (``GEID... of Investment Management, Office of Investment Company Regulation). SUPPLEMENTARY INFORMATION: The...

  18. Ge-Au eutectic bonding of Ge (100) single crystals

    International Nuclear Information System (INIS)

    Knowlton, W.B.; Beeman, J.W.; Emes, J.H.; Loretto, D.; Itoh, K.M.; Haller, E.E.

    1993-01-01

    The author present preliminary results on the eutectic bonding between two (100) Ge single crystal surfaces using thin films of Au ranging from 900 angstrom/surface to 300 angstrom/surface and Pd (10% the thickness of Au). Following bonding, plan view optical microscopy (OM) of the cleaved interface of samples with Au thicknesses ≤ 500 angstrom/surface show a eutectic morphology more conducive to phonon transmission through the bond interface. High resolution transmission electron microscopy (HRTEM) cross sectional interface studies of a 300 angstrom/surface Au sample show epitaxial growth of Ge. In sections of the bond, lattice continuity of the Ge is apparent through the interface. TEM studies also reveal heteroepitaxial growth of Au with a Au-Ge lattice mismatch of less than 2%. Eutectic bonds with 200 angstrom/surface Au have been attained with characterization pending. An optical polishing technique for Ge has been optimized to insure intimate contact between the Ge surfaces prior to bonding. Interferometry analysis of the optically polished Ge surface shows that surface height fluctuations lie within ±150 angstrom across an interval of lmm. Characterization of phonon transmission through the interface is discussed with respect to low temperature detection of ballistic phonons

  19. 77 FR 2541 - Board Meeting

    Science.gov (United States)

    2012-01-18

    ... FARM CREDIT SYSTEM INSURANCE CORPORATION Board Meeting AGENCY: Farm Credit System Insurance Corporation Board; Regular Meeting. SUMMARY: Notice is hereby given of the regular meeting of the Farm Credit System Insurance Corporation Board (Board). DATE AND TIME: The meeting of the Board will be held at the...

  20. Si, Ge and SiGe wires for sensor application

    International Nuclear Information System (INIS)

    Druzhinin, A.A.; Khoverko, Yu.M.; Ostrovskii, I.P.; Nichkalo, S.I.; Nikolaeva, A.A.; Konopko, L.A.; Stich, I.

    2011-01-01

    Resistance and magnetoresistance of Si, Ge and Si-Ge micro- and nanowires were studied in temperature range 4,2-300 K at magnetic fields up to 14 T. The wires diameters range from 200 nm to 20 μm. Ga-In gates were created to wires and ohmic I-U characteristics were observed in all temperature range. It was found high elastic strain for Ge nanowires (of about 0,7%) as well as high magnitude of magnetoresistance (of about 250% at 14 T), which was used to design multifunctional sensor of simultaneous measurements of strain and magnetic field intensity. (authors)

  1. Uniaxially stressed Ge:Ga and Ge:Be

    Energy Technology Data Exchange (ETDEWEB)

    Dubon, Jr., Oscar Danilo [Univ. of California, Berkeley, CA (United States)

    1992-12-01

    The application of a large uniaxial stress to p-type Ge single crystals changes the character of both the valence band and the energy levels associated with the acceptors. Changes include the splitting of the fourfold degeneracy of the valence band top and the reduction of the ionization energy of shallow acceptors. In order to study the effect of uniaxial stress on transport properties of photoexcited holes, a variable temperature photo-Hall effect system was built in which stressed Ge:Ga and Ge:Be could be characterized. Results indicate that stress increases the lifetime and Hall mobility of photoexcited holes. These observations may help further the understanding of fundamental physical processes that affect the performance of stressed Ge photoconductors including the capture of holes by shallow acceptors.

  2. Analysis of threshold current of uniaxially tensile stressed bulk Ge and Ge/SiGe quantum well lasers.

    Science.gov (United States)

    Jiang, Jialin; Sun, Junqiang; Gao, Jianfeng; Zhang, Ruiwen

    2017-10-30

    We propose and design uniaxially tensile stressed bulk Ge and Ge/SiGe quantum well lasers with the stress along direction. The micro-bridge structure is adapted for introducing uniaxial stress in Ge/SiGe quantum well. To enhance the fabrication tolerance, full-etched circular gratings with high reflectivity bandwidths of ~500 nm are deployed in laser cavities. We compare and analyze the density of state, the number of states between Γ- and L-points, the carrier injection efficiency, and the threshold current density for the uniaxially tensile stressed bulk Ge and Ge/SiGe quantum well lasers. Simulation results show that the threshold current density of the Ge/SiGe quantum well laser is much higher than that of the bulk Ge laser, even combined with high uniaxial tensile stress owing to the larger number of states between Γ- and L- points and extremely low carrier injection efficiency. Electrical transport simulation reveals that the reduced effective mass of the hole and the small conduction band offset cause the low carrier injection efficiency of the Ge/SiGe quantum well laser. Our theoretical results imply that unlike III-V material, uniaxially tensile stressed bulk Ge outperforms a Ge/SiGe quantum well with the same strain level and is a promising approach for Si-compatible light sources.

  3. Ge/graded-SiGe multiplication layers for low-voltage and low-noise Ge avalanche photodiodes on Si

    Science.gov (United States)

    Miyasaka, Yuji; Hiraki, Tatsurou; Okazaki, Kota; Takeda, Kotaro; Tsuchizawa, Tai; Yamada, Koji; Wada, Kazumi; Ishikawa, Yasuhiko

    2016-04-01

    A new structure is examined for low-voltage and low-noise Ge-based avalanche photodiodes (APDs) on Si, where a Ge/graded-SiGe heterostructure is used as the multiplication layer of a separate-absorption-carrier-multiplication structure. The Ge/SiGe heterojunction multiplication layer is theoretically shown to be useful for preferentially enhancing impact ionization for photogenerated holes injected from the Ge optical-absorption layer via the graded SiGe, reflecting the valence band discontinuity at the Ge/SiGe interface. This property is effective not only for the reduction of operation voltage/electric field strength in Ge-based APDs but also for the reduction of excess noise resulting from the ratio of the ionization coefficients between electrons and holes being far from unity. Such Ge/graded-SiGe heterostructures are successfully fabricated by ultrahigh-vacuum chemical vapor deposition. Preliminary pin diodes having a Ge/graded-SiGe multiplication layer act reasonably as photodetectors, showing a multiplication gain larger than those for diodes without the Ge/SiGe heterojunction.

  4. <300> GeV team

    CERN Multimedia

    CERN PhotoLab

    1971-01-01

    The 300 GeV team had been assembled. In the photograph are Hans Horisberger, Clemens Zettler, Roy Billinge, Norman Blackburne, John Adams, Hans-Otto Wuster, Lars Persson, Bas de Raad, Hans Goebel, Simon Van der Meer.

  5. Oxygen transport and GeO2 stability during thermal oxidation of Ge

    Science.gov (United States)

    da Silva, S. R. M.; Rolim, G. K.; Soares, G. V.; Baumvol, I. J. R.; Krug, C.; Miotti, L.; Freire, F. L.; da Costa, M. E. H. M.; Radtke, C.

    2012-05-01

    Oxygen transport during thermal oxidation of Ge and desorption of the formed Ge oxide are investigated. Higher oxidation temperatures and lower oxygen pressures promote GeO desorption. An appreciable fraction of oxidized Ge desorbs during the growth of a GeO2 layer. The interplay between oxygen desorption and incorporation results in the exchange of O originally present in GeO2 by O from the gas phase throughout the oxide layer. This process is mediated by O vacancies generated at the GeO2/Ge interface. The formation of a substoichiometric oxide is shown to have direct relation with the GeO desorption.

  6. Fabrication of multilayered Ge nanocrystals embedded in SiOxGeNy films

    International Nuclear Information System (INIS)

    Gao Fei; Green, Martin A.; Conibeer, Gavin; Cho, Eun-Chel; Huang Yidan; Perez-Wurfl, Ivan; Flynn, Chris

    2008-01-01

    Multilayered Ge nanocrystals embedded in SiO x GeN y films have been fabricated on Si substrate by a (Ge + SiO 2 )/SiO x GeN y superlattice approach, using a rf magnetron sputtering technique with a Ge + SiO 2 composite target and subsequent thermal annealing in N 2 ambient at 750 deg. C for 30 min. X-ray diffraction (XRD) measurement indicated the formation of Ge nanocrystals with an average size estimated to be 5.4 nm. Raman scattering spectra showed a peak of the Ge-Ge vibrational mode downward shifted to 299.4 cm -1 , which was caused by quantum confinement of phonons in the Ge nanocrystals. Transmission electron microscopy (TEM) revealed that Ge nanocrystals were confined in (Ge + SiO 2 ) layers. This superlattice approach significantly improved both the size uniformity of Ge nanocrystals and their uniformity of spacing on the 'Z' growth direction

  7. Toepassing geïntegreerde maatregelen geïnvestariseerd

    NARCIS (Netherlands)

    Heijne, B.

    2009-01-01

    Kennis over 'good practices' en 'best practices' van geïntegreerde bedrijfsstrategieën verspreidt zich snel over Europa. Dat is één van de conclusies van een inventarisatie binnen het project Endure. Het aanplanten van minder vatbare of resistente rassen blijkt weinig toegepast te worden in de

  8. Neutron transmutation doped Ge bolometers

    Science.gov (United States)

    Haller, E. E.; Kreysa, E.; Palaio, N. P.; Richards, P. L.; Rodder, M.

    1983-01-01

    Some conclusions reached are as follow. Neutron Transmutation Doping (NTD) of high quality Ge single crystals provides perfect control of doping concentration and uniformity. The resistivity can be tailored to any given bolometer operating temperature down to 0.1 K and probably lower. The excellent uniformity is advantaged for detector array development.

  9. GE Healthcare | College of Engineering & Applied Science

    Science.gov (United States)

    Olympiad Girls Who Code Club FIRST Tech Challenge NSF I-Corps Site of Southeastern Wisconsin UW-Milwaukee ; Talent GE Healthcare is the founding partner of the Center for Advanced Embedded Systems (CAES), formerly GE Healthcare's needs for talent. Business Corporate Partners ANSYS Institute GE Healthcare Catalyst

  10. Radiation emission from wrinkled SiGe/SiGe nanostructure

    Czech Academy of Sciences Publication Activity Database

    Fedorchenko, Alexander I.; Cheng, H. H.; Sun, G.; Soref, R. A.

    2010-01-01

    Roč. 96, č. 11 (2010), s. 113104-113107 ISSN 0003-6951 Institutional research plan: CEZ:AV0Z20760514 Keywords : SiGe wrinkled nanostructures * si-based optical emitter * synchrotron radiation Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.820, year: 2010 http://apl.aip.org/resource/1/applab/v96/i11/p113104_s1?isAuthorized=no

  11. Magnetic properties of ultrathin Co/Ge(111) and Co/Ge(100) films

    International Nuclear Information System (INIS)

    Cheng, W. C.; Tsay, J. S.; Yao, Y. D.; Lin, K. C.; Yang, C. S.; Lee, S. F.; Tseng, T. K.; Neih, H. Y.

    2001-01-01

    The orientation of the magnetization and the occurrence of interfacial ferromagnetic inactive layers for ultrathin Co films grown on Ge(111) and Ge(100) surfaces have been studied using the in situ surface magneto-optic Kerr effect. On a Ge(111) substrate, cobalt films (≤28 monolayers) with in-plane easy axis of magnetization have been observed; however, on a Ge(100) substrate, ultrathin Co films (14 - 16 monolayers) with canted out-of-plane easy axis of magnetization were measured. The ferromagnetic inactive layers were formed due to the intermixing of Co and Ge and lowering the Curie temperature by reducing Co film thickness. The Co - Ge compound inactive layers were 3.8 monolayers thick for Co films grown on Ge(111) and 6.2 monolayers thick for Co films deposited on Ge(100). This is attributed to the difference of the density of surface atoms on Ge(111) and Ge(100). [copyright] 2001 American Institute of Physics

  12. Dipole Resonances of 76Ge

    Science.gov (United States)

    Ilieva, R. S.; Cooper, N.; Werner, V.; Rusev, G.; Pietralla, N.; Kelly, J. H.; Tornow, W.; Yates, S. W.; Crider, B. P.; Peters, E.

    2013-10-01

    Dipole resonances in 76Ge have been studied using the method of Nuclear Resonance Fluorescence (NRF). The experiment was performed using the Free Electron Laser facility at HI γS/TUNL, which produced linearly polarised quasi-monoenergetic photons in the 4-9 MeV energy range. Photon strength, in particular dipole strength, is an important ingredient in nuclear reaction calculations, and recent interest in its study has been stimulated by observations of a pygmy dipole resonance near the neutron separation energy Sn of certain nuclei. Furthermore, 76Ge is a candidate for 0 ν 2 β -decay. The results are complimentary to a relevant experiment done at TU Darmstadt using Bremsstrahlung beams. Single-resonance parities and a preliminary estimate of the total photo-excitation cross section will be presented. This work was supported by the U.S. DOE under grant no. DE-FG02-91ER40609.

  13. Effects of C+ ion implantation on electrical properties of NiSiGe/SiGe contacts

    International Nuclear Information System (INIS)

    Zhang, B.; Yu, W.; Zhao, Q.T.; Buca, D.; Breuer, U.; Hartmann, J.-M.; Holländer, B.; Mantl, S.; Zhang, M.; Wang, X.

    2013-01-01

    We have investigated the morphology and electrical properties of NiSiGe/SiGe contact by C + ions pre-implanted into relaxed Si 0.8 Ge 0.2 layers. Cross-section transmission electron microscopy revealed that both the surface and interface of NiSiGe were improved by C + ions implantation. In addition, the effective hole Schottky barrier heights (Φ Bp ) of NiSiGe/SiGe were extracted. Φ Bp was observed to decrease substantially with an increase in C + ion implantation dose

  14. Enhanced charge storage capability of Ge/GeO2 core/shell nanostructure

    International Nuclear Information System (INIS)

    Yuan, C L; Lee, P S

    2008-01-01

    A Ge/GeO 2 core/shell nanostructure embedded in an Al 2 O 3 gate dielectrics matrix was produced. A larger memory window with good data retention was observed in the fabricated metal-insulator-semiconductor (MIS) capacitor for Ge/GeO 2 core/shell nanoparticles compared to Ge nanoparticles only, which is due to the high percentage of defects located on the surface and grain boundaries of the GeO 2 shell. We believe that the findings presented here provide physical insight and offer useful guidelines to controllably modify the charge storage properties of indirect semiconductors through defect engineering

  15. Enhanced charge storage capability of Ge/GeO(2) core/shell nanostructure.

    Science.gov (United States)

    Yuan, C L; Lee, P S

    2008-09-03

    A Ge/GeO(2) core/shell nanostructure embedded in an Al(2)O(3) gate dielectrics matrix was produced. A larger memory window with good data retention was observed in the fabricated metal-insulator-semiconductor (MIS) capacitor for Ge/GeO(2) core/shell nanoparticles compared to Ge nanoparticles only, which is due to the high percentage of defects located on the surface and grain boundaries of the GeO(2) shell. We believe that the findings presented here provide physical insight and offer useful guidelines to controllably modify the charge storage properties of indirect semiconductors through defect engineering.

  16. Effect of Ge Content on the Formation of Ge Nanoclusters in Magnetron-Sputtered GeZrOx-Based Structures.

    Science.gov (United States)

    Khomenkova, L; Lehninger, D; Kondratenko, O; Ponomaryov, S; Gudymenko, O; Tsybrii, Z; Yukhymchuk, V; Kladko, V; von Borany, J; Heitmann, J

    2017-12-01

    Ge-rich ZrO 2 films, fabricated by confocal RF magnetron sputtering of pure Ge and ZrO 2 targets in Ar plasma, were studied by multi-angle laser ellipsometry, Raman scattering, Auger electron spectroscopy, Fourier transform infrared spectroscopy, and X-ray diffraction for varied deposition conditions and annealing treatments. It was found that as-deposited films are homogeneous for all Ge contents, thermal treatment stimulated a phase separation and a formation of crystalline Ge and ZrO 2 . The "start point" of this process is in the range of 640-700 °C depending on the Ge content. The higher the Ge content, the lower is the temperature necessary for phase separation, nucleation of Ge nanoclusters, and crystallization. Along with this, the crystallization temperature of the tetragonal ZrO 2 exceeds that of the Ge phase, which results in the formation of Ge crystallites in an amorphous ZrO 2 matrix. The mechanism of phase separation is discussed in detail.

  17. Effect of Ge Content on the Formation of Ge Nanoclusters in Magnetron-Sputtered GeZrOx-Based Structures

    OpenAIRE

    Khomenkova, L.; Lehninger, D.; Kondratenko, O.; Ponomaryov, S.; Gudymenko, O.; Tsybrii, Z.; Yukhymchuk, V.; Kladko, V.; von Borany, J.; Heitmann, J.

    2017-01-01

    Ge-rich ZrO2 films, fabricated by confocal RF magnetron sputtering of pure Ge and ZrO2 targets in Ar plasma, were studied by multi-angle laser ellipsometry, Raman scattering, Auger electron spectroscopy, Fourier transform infrared spectroscopy, and X-ray diffraction for varied deposition conditions and annealing treatments. It was found that as-deposited films are homogeneous for all Ge contents, thermal treatment stimulated a phase separation and a formation of crystalline Ge and ZrO2. The ?...

  18. GE's advanced nuclear reactor designs

    International Nuclear Information System (INIS)

    Berglund, R.C.

    1993-01-01

    The excess of US electrical generating capacity which has existed for the past 15 years is coming to an end as we enter the 1990s. Environmental and energy security issues associated with fossil fuels are kindling renewed interest in the nuclear option. The importance of these issues are underscored by the National Energy Strategy (NES) which calls for actions which open-quotes are designed to ensure that the nuclear power option is available to utilities.close quotes Utilities, utility associations, and nuclear suppliers, under the leadership of the Nuclear Power Oversight Committee (NPOC), have jointly developed a 14-point strategic plan aimed at establishing a predictable regulatory environment, standardized and pre-licensed Advanced Light Water Reactor (ALWR) nuclear plants, resolving the long-term waste management issue, and other open-quotes enabling conditions.close quotes GE is participating in this national effort and GE's family of advanced nuclear power plants feature two reactor designs, developed on a common technology base, aimed at providing a new generation of nuclear plants to provide safe, clean, economical electricity to the world's utilities in the 1990s and beyond. Together, the large-size (1300 MWe) Advanced Boiling Water Reactor (ABWR) and the small-size (600 MWe) Simplified Boiling Water Reactor (SBWR) are innovative, near-term candidates for expanding electrical generating capacity in the US and worldwide. Both possess the features necessary to do so safety, reliably, and economically

  19. Fabrication of SrGe2 thin films on Ge (100), (110), and (111) substrates

    Science.gov (United States)

    Imajo, T.; Toko, K.; Takabe, R.; Saitoh, N.; Yoshizawa, N.; Suemasu, T.

    2018-01-01

    Semiconductor strontium digermanide (SrGe2) has a large absorption coefficient in the near-infrared light region and is expected to be useful for multijunction solar cells. This study firstly demonstrates the formation of SrGe2 thin films via a reactive deposition epitaxy on Ge substrates. The growth morphology of SrGe2 dramatically changed depending on the growth temperature (300-700 °C) and the crystal orientation of the Ge substrate. We succeeded in obtaining single-oriented SrGe2 using a Ge (110) substrate at 500 °C. Development on Si or glass substrates will lead to the application of SrGe2 to high-efficiency thin-film solar cells.

  20. Room Temperature Ferromagnetic Mn:Ge(001

    Directory of Open Access Journals (Sweden)

    George Adrian Lungu

    2013-12-01

    Full Text Available We report the synthesis of a room temperature ferromagnetic Mn-Ge system obtained by simple deposition of manganese on Ge(001, heated at relatively high temperature (starting with 250 °C. The samples were characterized by low energy electron diffraction (LEED, scanning tunneling microscopy (STM, high resolution transmission electron microscopy (HRTEM, X-ray photoelectron spectroscopy (XPS, superconducting quantum interference device (SQUID, and magneto-optical Kerr effect (MOKE. Samples deposited at relatively elevated temperature (350 °C exhibited the formation of ~5–8 nm diameter Mn5Ge3 and Mn11Ge8 agglomerates by HRTEM, while XPS identified at least two Mn-containing phases: the agglomerates, together with a Ge-rich MnGe~2.5 phase, or manganese diluted into the Ge(001 crystal. LEED revealed the persistence of long range order after a relatively high amount of Mn (100 nm deposited on the single crystal substrate. STM probed the existence of dimer rows on the surface, slightly elongated as compared with Ge–Ge dimers on Ge(001. The films exhibited a clear ferromagnetism at room temperature, opening the possibility of forming a magnetic phase behind a nearly ideally terminated Ge surface, which could find applications in integration of magnetic functionalities on semiconductor bases. SQUID probed the co-existence of a superparamagnetic phase, with one phase which may be attributed to a diluted magnetic semiconductor. The hypothesis that the room temperature ferromagnetic phase might be the one with manganese diluted into the Ge crystal is formulated and discussed.

  1. The study on Ge-68 production

    International Nuclear Information System (INIS)

    Yang, Seung Dae; Kim, Sang Wook; Hur, Min Goo

    2009-06-01

    The Ge-68 is a correction source of PET and is used in radiopharmaceuticals synthesis. This project is mainly aimed to produce the Ge-68. Based on this project results, the local Ge-68 production can be possible and the revitalization of the radioisotope utilization research areas can be accomplished. The characteristics of the Ge-68 and Ga-68 are obtained and analyzed. The production conditions are also developed, and the domestic and overseas status of the art are considered. The stacked foil target is designed using Al disc and dried Ga 2 O 3 powder, and the irradiation target is also designed. The cross section of the nat. Ga(p,xn) 68 Ge reaction is obtained using the developed target. The separation experiment of cold Ge/Ga in the H 2 SO 4 -HCl solution are carried out as a simulation experiment of the radioactive Ge/Ga sources. The separation of Ge/Ga by liquid extraction of CCl 4 in 8M HCl is also accomplished. And the synthesis experiment of the Hematophorphyrin-Ga complex is performed

  2. Ultra-smooth epitaxial Ge grown on Si(001) utilizing a thin C-doped Ge buffer layer

    KAUST Repository

    Mantey, J.; Hsu, W.; James, J.; Onyegam, E. U.; Guchhait, S.; Banerjee, S. K.

    2013-01-01

    Here, we present work on epitaxial Ge films grown on a thin buffer layer of C doped Ge (Ge:C). The growth rate of Ge:C is found to slow over time and is thus unsuitable for thick (>20 nm) layers. We demonstrate Ge films from 10 nm to >150 nm

  3. Growth and characterization of isotopically enriched 70Ge and 74Ge single crystals

    International Nuclear Information System (INIS)

    Itoh, K.

    1992-10-01

    Isotopically enriched 70 Ge and 74 Ge single crystals were successfully gown by a newly developed vertical Bridgman method. The system allows us to reliably grow high purity Ge single crystals of approximately 1 cm 3 volume. To our knowledge, we have grown the first 70 Ge single crystal. The electrically active chemical impurity concentration for both crystals was found to be ∼2 x cm -3 which is two order of magnitude better that of 74 Ge crystals previously grown by two different groups. Isotopic enrichment of the 70 Ge and the 74 Ge crystals is 96.3% and 96.8%, respectively. The residual chemical impurities present in both crystals were identified as phosphorus, copper, aluminum, and indium. A wide variety of experiments which take advantage of the isotopic purity of our crystals are discussed

  4. Ge nanobelts with high compressive strain fabricated by secondary oxidation of self-assembly SiGe rings

    DEFF Research Database (Denmark)

    Lu, Weifang; Li, Cheng; Lin, Guangyang

    2015-01-01

    Curled Ge nanobelts were fabricated by secondary oxidation of self-assembly SiGe rings, which were exfoliated from the SiGe stripes on the insulator. The Ge-rich SiGe stripes on insulator were formed by hololithography and modified Ge condensation processes of Si0.82Ge0.18 on SOI substrate. Ge...... nanobelts under a residual compressive strain of 2% were achieved, and the strain should be higher before partly releasing through bulge islands and breakage of the curled Ge nanobelts during the secondary oxidation process. The primary factor leading to compressive strain is thermal shrinkage of Ge...... nanobelts, which extrudes to Ge nanobelts in radial and tangent directions during the cooling process. This technique is promising for application in high-mobility Ge nano-scale transistors...

  5. Nuclear energy outlook: a GE perspective

    International Nuclear Information System (INIS)

    Fuller, J.

    2006-01-01

    Full text: Full text: As one of the world's leading suppliers of power generation and energy delivery technologies, GE Energy provides comprehensive solutions for coal, oil, natural gas and nuclear energy; renewable resources such as wind, solar and biogas, along with other alternative fuels. With the ever increasing demand for energy and pressures to decrease greenhouse gas emissions, global trends indicate a move towards building more base line nuclear generation capacity. As a reliable, cost-competitive option for commercial power generation, nuclear energy also addresses many of the issues the world faces when it comes to the environment. Since developing nuclear reactor technology in the 1950s, GE's Boiling Water Reactor (BWR) technology accounts for more than 90 operating plants in the world today. Building on that success, GE's ABWR design is now the first and only Generation 111 nuclear reactor in operation today. This advanced reactor technology, coupled with current construction experience and a qualified global supply chain, make ESBWR, GE's Generation III+ reactor design, an attractive option for owners considering adding nuclear generation capacity. In pursuit of new technologies, GE has teamed with Silex to develop, commercialize and license third generation laser enrichment technology. By acquiring the exclusive rights to develop and commercialize this technology, GE is positioned to support the anticipated global demands for enriched uranium. At GE, we are continuing to develop imaginative ideas and investing in products that are cost effective, increase productivity, limit greenhouse gas emissions, and improve safety and security for our customers

  6. Growth of Ferromagnetic Epitaxial Film of Hexagonal FeGe on (111) Ge Surface

    Science.gov (United States)

    Kumar, Dushyant; Joshi, P. C.; Hossain, Z.; Budhani, R. C.

    2014-03-01

    The realization of semiconductors showing ferromagnetic order at easily accessible temperatures has been of interest due to their potential use in spintronic devices where long spin life times are of key interest. We have realized the growth of FeGe thin films on Ge (111) wafers using pulsed laser deposition (PLD). The stoichiometric and single phase FeGe target used in PLD chamber has been made by arc melting. A typical θ-2 θ diffraction spectra performed on 40 nm thick FeGe film suggests the stabilization of β-Ni2In (B82-type) hexagonal phase with an epitaxial orientation of (0001)FeGe ||(111)Ge and [11-20]FeGe ||[-110]Ge. SEM images shows a granular structure with the formation of very large grains of about 100 to 500 nm in lateral dimension. The magnetization vs. temperature data taken from SQUID reveal the TC of ~ 270K. Since, PLD technique makes it easier to stabilize the B82 (Ni2In) hexagonal phase in thin FeGe films, this work opens opportunities to reinvestigate many conflicting results on various properties of the FeGe system.

  7. Ge nitride formation in N-doped amorphous Ge2Sb2Te5

    International Nuclear Information System (INIS)

    Jung, M.-C.; Lee, Y. M.; Kim, H.-D.; Kim, M. G.; Shin, H. J.; Kim, K. H.; Song, S. A.; Jeong, H. S.; Ko, C. H.; Han, M.

    2007-01-01

    The chemical state of N in N-doped amorphous Ge 2 Sb 2 Te 5 (a-GST) samples with 0-14.3 N at. % doping concentrations was investigated by high-resolution x-ray photoelectron spectroscopy (HRXPS) and Ge K-edge x-ray absorption spectroscopy (XAS). HRXPS showed negligible change in the Te 4d and Sb 4d core-level spectra. In the Ge 3d core-level spectra, a Ge nitride (GeN x ) peak developed at the binding energy of 30.2 eV and increased in intensity as the N-doping concentration increased. Generation of GeN x was confirmed by the Ge K-edge absorption spectra. These results indicate that the N atoms bonded with the Ge atoms to form GeN x , rather than bonding with the Te or Sb atoms. It has been suggested that the formation of Ge nitride results in increased resistance and phase-change temperature

  8. Thermal conductivity of sputtered amorphous Ge films

    International Nuclear Information System (INIS)

    Zhan, Tianzhuo; Xu, Yibin; Goto, Masahiro; Tanaka, Yoshihisa; Kato, Ryozo; Sasaki, Michiko; Kagawa, Yutaka

    2014-01-01

    We measured the thermal conductivity of amorphous Ge films prepared by magnetron sputtering. The thermal conductivity was significantly higher than the value predicted by the minimum thermal conductivity model and increased with deposition temperature. We found that variations in sound velocity and Ge film density were not the main factors in the high thermal conductivity. Fast Fourier transform patterns of transmission electron micrographs revealed that short-range order in the Ge films was responsible for their high thermal conductivity. The results provide experimental evidences to understand the underlying nature of the variation of phonon mean free path in amorphous solids

  9. GeV electron microtron

    International Nuclear Information System (INIS)

    Anon.

    1980-01-01

    A strong consensus has developed recently in the nuclear physics community that research with electromagnetic probes in the 1 to 2 GeV range generated by a high current 100% duty factor electron accelerator represents an exciting new frontier. Because of this rapidly growing interest, a design group of 5 ANL physicists and accelerator specialists recently reviewed developments in accelerator technology and developed conceptual designs for technical evaluation and subsequent cost analysis. Exploratory designs were developed for two concepts, the linac-stretcher ring and a modified microtron system. These were used to make a critical comparison of the two conceptual designs along with an improved microtron design, the double-sided microtron. The results are presented in Table VIII-I. The double-sided microtron shows promise for development into a substantially less expensive facility than a linac-ring system, but its technical feasibility remains to be established. The potential savings in capital cost are large for the microtron system, perhaps $10 million. They dictate that in the absence of a major technical limitation the double-sided microtron is the preferred design

  10. Experimental determination of the Ta–Ge phase diagram

    Energy Technology Data Exchange (ETDEWEB)

    Araújo Pinto da Silva, Antonio Augusto, E-mail: aaaps@ppgem.eel.usp.br [EEL/USP – Escola de Engenharia de Lorena (EEL), Universidade de São Paulo (USP), Pólo Urbo-Industrial Gleba AI-6, 12602-810 Lorena, SP (Brazil); Coelho, Gilberto Carvalho [EEL/USP – Escola de Engenharia de Lorena (EEL), Universidade de São Paulo (USP), Pólo Urbo-Industrial Gleba AI-6, 12602-810 Lorena, SP (Brazil); UniFoa – Centro Universitário de Volta Redonda, Núcleo de Pesquisa, Campus Três Poços, Avenida Paulo Erlei Alves Abrantes, 1325, Bairro Três Poços, 27240-560 Volta Redonda, RJ (Brazil); Nunes, Carlos Angelo; Suzuki, Paulo Atsushi [EEL/USP – Escola de Engenharia de Lorena (EEL), Universidade de São Paulo (USP), Pólo Urbo-Industrial Gleba AI-6, 12602-810 Lorena, SP (Brazil); Fiorani, Jean Marc; David, Nicolas; Vilasi, Michel [Université de Lorraine, Institut Jean Lamour, Faculté des Sciences et Technologies, BP 70239, F-54506 Vandoeuvre-lès-Nancy (France)

    2013-11-05

    Highlights: •Ta–Ge phase diagram propose for the first time. •The phase αTa{sub 5}Ge{sub 3} was not observed in samples investigated in this work. •Three eutectics reactions where determined with the liquid compositions at 20.5; 28.0; 97.0 at.% Ge. -- Abstract: In the present work, the Ta–Ge phase diagram has been experimentally studied, considering the inexistence of a Ta–Ge phase diagram in the literature. The samples were prepared via arc melting and characterized by Scanning Electron Microscopy (SEM), Energy Dispersive Spectroscopy (EDS) and X-ray Diffraction (XRD). The intermetallics phases βTa{sub 3}Ge, αTa{sub 3}Ge, βTa{sub 5}Ge{sub 3} and TaGe{sub 2} where confirmed in this system. Three eutectics reactions where determined with the liquid compositions at 20.5; 28.0; 97.0 at.% Ge. The phases βTa{sub 3}Ge and βTa{sub 5}Ge{sub 3} solidifies congruently while TaGe{sub 2} is formed through a peritectic transformation. The temperature of the Ta-rich eutectic (L ↔ Ta{sub ss} + βTa{sub 3}Ge) was measured by the Pirani-Alterthum method at 2440 °C and the Ge-rich eutectic (L ↔ TaGe{sub 2} + Ge{sub ss}) by DTA at 937 °C.

  11. Investigation on the dominant key to achieve superior Ge surface passivation by GeOx based on the ozone oxidation

    International Nuclear Information System (INIS)

    Wang, Xiaolei; Xiang, Jinjuan; Wang, Wenwu; Xiong, Yuhua; Zhang, Jing; Zhao, Chao

    2015-01-01

    Highlights: • The dominant key to achieve superior Ge passivation by GeO x is investigated. • The interface state density decreases with increasing the GeO x thickness. • The Ge 3+ oxide component is the dominant key to passivate the Ge surface. • The atomic structure at the GeO x /Ge interface is built by XPS. - Abstract: The dominant key to achieve superior Ge surface passivation by GeO x interfacial layer is investigated based on ozone oxidation. The interface state density (D it ) measured from low temperature conduction method is found to decrease with increasing the GeO x thickness (0.26–1.06 nm). The X-ray photoelectron spectroscopy (XPS) is employed to demonstrate the interfacial structure of GeO x /Ge with different GeO x thicknesses. And the XPS results show that Ge 3+ oxide component is responsible to the decrease of the D it due to the effective passivation of Ge dangling bonds. Therefore, the formation of Ge 3+ component is the dominant key to achieve low D it for Ge gate stacks. Our work confirms that the same physical mechanism determines the Ge surface passivation by the GeO x regardless of the oxidation methods to grow the GeO x interfacial layer. As a result, to explore a growth process that can realize sufficient Ge 3+ component in the GeO x interlayer as thin as possible is important to achieve both equivalent oxide thickness scaling and superior interfacial property simultaneously. This conclusion is helpful to engineer the optimization of the Ge gate stacks.

  12. Isothermal cross-sections of Sr-Al-Ge and Ba-Al-Ge systems at 673 K

    International Nuclear Information System (INIS)

    Kutsenok, N.L.; Yanson, T.I.

    1987-01-01

    X-ray and microstructural analyses are used to study phase equilibria in Sr-Al-Ge and Ba-Al-Ge systems. Existence of SrAl 2 Ge 2 , Sr(Al, Ge) 2 Ba(Al, Ge) 2 , Sr 3 Al 2 Ge 2 , Ba 3 Al 2 Ge 2 ternary compounds is confirmed, a new BaGe 4 binary compound and also new ternary compounds of approximate composition Sr 57 Al 30 Ge 13 and Ba 20 Al 40 Ge 40 , which crystal structure is unknown, are detected. Aluminium solubility in SrAl 4 and BaAl 4 binary compounds (0.05 atomic fraction) is determined. Ba(Al, Ge) 2 compound homogeneity region is defined more exactly (aluminium content varies from 0.27 to 0.51 at. fractions)

  13. Effect of Ge atoms on crystal structure and optoelectronic properties of hydrogenated Si-Ge films

    Science.gov (United States)

    Li, Tianwei; Zhang, Jianjun; Ma, Ying; Yu, Yunwu; Zhao, Ying

    2017-07-01

    Optoelectronic and structural properties of hydrogenated microcrystalline silicon-germanium (μc-Si1-xGex:H) alloys prepared by radio-frequency plasma-enhanced chemical vapor deposition (RF-PECVD) were investigated. When the Ge atoms were predominantly incorporated in amorphous matrix, the dark and photo-conductivity decreased due to the reduced crystalline volume fraction of the Si atoms (XSi-Si) and the increased Ge dangling bond density. The photosensitivity decreased monotonously with Ge incorporation under higher hydrogen dilution condition, which was attributed to the increase in both crystallization of Ge and the defect density.

  14. Inspecting the microstructure of electrically active defects at the Ge/GeOx interface

    Science.gov (United States)

    Fanciulli, Marco; Baldovino, Silvia; Molle, Alessandro

    2012-02-01

    High mobility substrates are important key elements in the development of advanced devices targeting a vast range of functionalities. Among them, Ge showed promising properties promoting it as valid candidate to replace Si in CMOS technology. However, the electrical quality of the Ge/oxide interface is still a problematic issue, in particular for the observed inversion of the n-type Ge surface, attributed to the presence of dangling bonds inducing a severe band bending [1]. In this scenario, the identification of electrically active defects present at the Ge/oxide interface and the capability to passivate or anneal them becomes a mandatory issue aiming at an electrically optimized interface. We report on the application of highly sensitive electrically detected magnetic resonance (EDMR) techniques in the investigation of defects at the interface between Ge and GeO2 (or GeOx), including Ge dangling bonds and defects in the oxide [2]. In particular we will investigate how different surface orientations, e.g. the (001) against the (111) Ge surface, impacts the microstructure of the interface defects. [1] P. Tsipas and A. Dimoulas, Appl. Phys. Lett. 94, 012114 (2009) [2] S. Baldovino, A. Molle, and M. Fanciulli, Appl. Phys. Lett. 96, 222110 (2010)

  15. Electron Transport Properties of Ge nanowires

    Science.gov (United States)

    Hanrath, Tobias; Khondaker, Saiful I.; Yao, Zhen; Korgel, Brian A.

    2003-03-01

    Electron Transport Properties of Ge nanowires Tobias Hanrath*, Saiful I. Khondaker, Zhen Yao, Brian A. Korgel* *Dept. of Chemical Engineering, Dept. of Physics, Texas Materials Institute, and Center for Nano- and Molecular Science and Technology University of Texas at Austin, Austin, Texas 78712-1062 e-mail: korgel@mail.che.utexas.edu Germanium (Ge) nanowires with diameters ranging from 6 to 50 nm and several micrometer in length were grown via a supercritical fluid-liquid-solid synthesis. Parallel electron energy loss spectroscopy (PEELS) was employed to study the band structure and electron density in the Ge nanowires. The observed increase in plasmon peak energy and peak width with decreasing nanowire diameter is attributed to quantum confinement effects. For electrical characterization, Ge nanowires were deposited onto a patterned Si/SiO2 substrate. E-beam lithography was then used to form electrode contacts to individual nanowires. The influence of nanowire diameter, surface chemistry and crystallographic defects on electron transport properties were investigated and the comparison of Ge nanowire conductivity with respect to bulk, intrinsic Ge will be presented.

  16. Ge extraction from gasification fly ash

    Energy Technology Data Exchange (ETDEWEB)

    Oriol Font; Xavier Querol; Angel Lopez-Soler; Jose M. Chimenos; Ana I. Fernandez; Silvia Burgos; Francisco Garcia Pena [Institute of Earth Sciences ' Jaume Almera' , Barcelona (Spain)

    2005-08-01

    Water-soluble germanium species (GeS{sub 2}, GeS and hexagonal-GeO{sub 2}) are generated during coal gasification and retained in fly ash. This fact together with the high market value of this element and the relatively high contents in the fly ashes of the Puertollano Integrated Gasification in Combined Cycle (IGCC) plant directed our research towards the development of an extraction process for this element. Major objectives of this research was to find a low cost and environmentally suitable process. Several water based extraction tests were carried out using different Puertollano IGCC fly ash samples, under different temperatures, water/fly ash ratios, and extraction times. High Ge extraction yields (up to 84%) were obtained at room temperature (25{sup o}C) but also high proportions of other trace elements (impurities) were simultaneously extracted. Increasing the extraction temperature to 50, 90 and 150{sup o}C, Ge extraction yields were kept at similar levels, while reducing the content of impurities, the water/fly ash ratio and extraction time. The experimental data point out the influence of chloride, calcium and sulphide dissolutions on the Ge extraction. 16 refs., 9 figs., 6 tabs.

  17. Synthesis and characterization of Ge–Cr-based intermetallic compounds: GeCr3, GeCCr3, and GeNCr3

    International Nuclear Information System (INIS)

    Lin, S.; Tong, P.; Wang, B.S.; Huang, Y.N.; Song, W.H.; Sun, Y.P.

    2014-01-01

    Highlights: • Polycrystalline samples of GeCr 3 , GeCCr 3 , and GeNCr 3 are synthesized by using solid state reaction method. • A good quality of our samples is verified by the Rietveld refinement and electrical transport measurement. • We present a comprehensive understanding of physical properties of GeCr 3 , GeCCr 3 , and GeNCr 3 . -- Abstract: We report the synthesis of GeCr 3 , GeCCr 3 , and GeNCr 3 polycrystalline compounds, and present a systematic study of this series by the measurements of X-ray diffraction (XRD), magnetism, electrical/thermal transport, specific heat, and Hall coefficient. Good quality of our samples is verified by quite small value of residual resistivity and considerably large residual resistivity ratio. Based on the Rietveld refinement of XRD data, the crystallographic parameters are obtained, and, correspondingly, the sketches of crystal structure are plotted for all the samples. The ground states of GeCr 3 , GeCCr 3 , and GeNCr 3 are paramagnetic/antiferromagnetic metal, and even a Fermi-liquid behavior is observed in electrical transport at low temperatures. Furthermore, the analysis of the thermal conductivity data suggests the electron thermal conductivity plays a major role in total thermal conductivity for GeCr 3 at low temperatures, while the phonon thermal conductivity is dominant for GeCCr 3 and GeNCr 3 at high temperatures. The negative value of Seebeck coefficient and Hall coefficient indicate that the charge carriers are electron-type for GeCr 3 , GeCCr 3 , and GeNCr 3

  18. One-step Ge/Si epitaxial growth.

    Science.gov (United States)

    Wu, Hung-Chi; Lin, Bi-Hsuan; Chen, Huang-Chin; Chen, Po-Chin; Sheu, Hwo-Shuenn; Lin, I-Nan; Chiu, Hsin-Tien; Lee, Chi-Young

    2011-07-01

    Fabricating a low-cost virtual germanium (Ge) template by epitaxial growth of Ge films on silicon wafer with a Ge(x)Si(1-x) (0 deposition method in one step by decomposing a hazardousless GeO(2) powder under hydrogen atmosphere without ultra-high vacuum condition and then depositing in a low-temperature region. X-ray diffraction analysis shows that the Ge film with an epitaxial relationship is along the in-plane direction of Si. The successful growth of epitaxial Ge films on Si substrate demonstrates the feasibility of integrating various functional devices on the Ge/Si substrates.

  19. Self organized formation of Ge nanocrystals in multilayers

    OpenAIRE

    Zschintzsch-Dias, Manuel

    2012-01-01

    The aim of this work is to create a process which allows the tailored growth of Ge nanocrystals for use in photovoltic applications. The multilayer systems used here provide a reliable method to control the Ge nanocrystal size after phase separation. In this thesis, the deposition of GeOx/SiO2 and Ge:SiOx~ 2/SiO2 multilayers via reactive dc magnetron sputtering and the self-ordered Ge nanocrystal formation within the GeOx and Ge:SiOx~ 2 sublayers during subsequent annealing is investigated...

  20. Pseudomorphic GeSiSn, SiSn and Ge layers in strained heterostructures

    Science.gov (United States)

    Timofeev, V. A.; Nikiforov, A. I.; Tuktamyshev, A. R.; Mashanov, V. I.; Loshkarev, I. D.; Bloshkin, A. A.; Gutakovskii, A. K.

    2018-04-01

    The GeSiSn, SiSn layer growth mechanisms on Si(100) were investigated and the kinetic diagrams of the morphological GeSiSn, SiSn film states in the temperature range of 150 °C-450 °C at the tin content from 0% to 35% were built. The phase diagram of the superstructural change on the surface of Sn grown on Si(100) in the annealing temperature range of 0 °C-850 °C was established. The specular beam oscillations were first obtained during the SiSn film growth from 150 °C to 300 °C at the Sn content up to 35%. The transmission electron microscopy and x-ray diffractometry data confirm the crystal perfection and the pseudomorphic GeSiSn, SiSn film state, and also the presence of smooth heterointerfaces between GeSiSn or SiSn and Si. The photoluminescence for the multilayer periodic GeSiSn/Si structures in the range of 0.6-0.8 eV was detected. The blue shift with the excitation power increase is observed suggesting the presence of a type II heterostructure. The creation of tensile strained Ge films, which are pseudomorphic to the underlying GeSn layer, is confirmed by the results of the formation and analysis of the reciprocal space map in the x-ray diffractometry. The tensile strain in the Ge films reached the value in the range of 0.86%-1.5%. The GeSn buffer layer growth in the Sn content range from 8% to 12% was studied. The band structure of heterosystems based on pseudomorphic GeSiSn, SiSn and Ge layers was calculated and the valence and conduction band subband position dependences on the Sn content were built. Based on the calculation, the Sn content range in the GeSiSn, SiSn, and GeSn layers, which corresponds to the direct bandgap GeSiSn, SiSn, and Ge material, was obtained.

  1. Thermal transport through Ge-rich Ge/Si superlattices grown on Ge(0 0 1)

    Science.gov (United States)

    Thumfart, L.; Carrete, J.; Vermeersch, B.; Ye, N.; Truglas, T.; Feser, J.; Groiss, H.; Mingo, N.; Rastelli, A.

    2018-01-01

    The cross-plane thermal conductivities of Ge-rich Si/Ge superlattices have been measured using both time-domain thermoreflectance and the differential 3ω method. The superlattices were grown by molecular beam epitaxy on Ge(0 0 1) substrates. Crystal quality and structural information were investigated by x-ray diffractometry and transmission electron microscopy. The influence of segregation during growth on the composition profiles was modeled using the experimental growth temperatures and deposition rates. Those profiles were then employed to obtain parameter-free theoretical estimates of the thermal conductivity by combining first-principles calculations, Boltzmann transport theory and phonon Green’s functions. Good agreement between theory and experiment is observed. The thermal conductivity shows a strong dependence on the composition and the thickness of the samples. Moreover, the importance of the composition profile is reflected in the fact that the thermal conductivity of the superlattices is considerably lower than predicted values for alloys with the same average composition and thickness. Measurement on different samples with the same Si layer thickness and number of periods, but different Ge layer thickness, show that the thermal resistance is only weakly dependent on the Ge layers. We analyze this phenomenon based on the first-principles mode, and build an approximate parametrization showing that, in this regime, the resistivity of a SL is roughly linear on the amount of Si.

  2. 45 CFR 2541.360 - Procurement.

    Science.gov (United States)

    2010-10-01

    ... foster greater economy and efficiency, grantees and subgrantees are encouraged to enter into State and... procured, and when necessary, shall set forth those minimum essential characteristics and standards to... grantee or subgrantee desires to have the review accomplished after a solicitation has been developed, the...

  3. 16 CFR 254.1 - Definitions.

    Science.gov (United States)

    2010-01-01

    ... corporate charter to operate or license to do business as a school and should not be used unless the represented “approval” has been affirmatively required or authorized by State or Federal law. (c) Industry...

  4. 45 CFR 2541.210 - Payment.

    Science.gov (United States)

    2010-10-01

    ... grantee's or subgrantee's actual rate of disbursement. (e) Working capital advances. If a grantee cannot... capital, the awarding agency may provide cash on a working capital advance basis. Under this procedure the... reimburse the grantee for its actual cash disbursements. The working capital advance method of payment shall...

  5. 45 CFR 2541.320 - Equipment.

    Science.gov (United States)

    2010-10-01

    ... replacement equipment, the grantee or subgrantee may use the equipment to be replaced as a trade-in or sell... replacement equipment), whether acquired in whole or in part with grant funds, until disposition takes place... ensure the highest possible return. (e) Disposition. When original or replacement equipment acquired...

  6. 45 CFR 2541.40 - Applicability.

    Science.gov (United States)

    2010-10-01

    ... Assistance (title IV-E of the Act); (iv) Aid to the Aged, Blind, and Disabled (titles I, X, XIV, and XVI-AABD... following programs of The National School Lunch Act (42 U.S.C. 1751 et seq.): (i) School Lunch (section 4 of... Nutrition Act of 1966: (i) Special Milk (section 3 of the Act); and (ii) School Breakfast (section 4 of the...

  7. 45 CFR 2541.220 - Allowable costs.

    Science.gov (United States)

    2010-10-01

    ... accounting standards that comply with cost principles acceptable to the Federal agency. ... the grantee or subgrantee. (b) Applicable cost principles. For each kind of organization, there is a set of Federal principles for determining allowable costs. Allowable costs will be determined in...

  8. 2541-IJBCS-Article-Nwozo Sarah Onyenib

    African Journals Online (AJOL)

    hp

    Due to high cost of protein relative to other major nutrients, as part of search for cheaper alternative source for good quality protein for dietary purposes, we evaluated Detarium senegalense seed meal by comparing growth ..... oxidative stress are shown on Tables 5 and 6 ..... metabolism and biochemical regulation in the.

  9. 45 CFR 2541.500 - Closeout.

    Science.gov (United States)

    2010-10-01

    ..., Federal agencies may extend this time frame. These may include but are not limited to: (1) Final... Reimbursement for Construction Programs (SF-271) (as applicable); (3) Final request for payment (SF-270) (if applicable); (4) Invention disclosure (if applicable); (5) Federally-owned property report. In accordance...

  10. Electromigration techniques for Ge(II) and Ge(IV) separation in germanium thio compounds

    Energy Technology Data Exchange (ETDEWEB)

    Facetti, J F; Vallejos, A [Asuncion Naciona Univ. (Paraguay). Inst. de Ciencias

    1971-01-01

    Using H.V. electromigration techniques, a good separation of the Ge(II) and Ge(IV) was achieved. The procedure was carried out in alkaline medium. And the final position of the separated species was established by, either neutron activation of the papa strips or chromatic reactions.

  11. The Role of Ge Wetting Layer and Ge Islands in Si MSM Photodetectors

    International Nuclear Information System (INIS)

    Mahmodi, H.; Hashim, M. R.

    2010-01-01

    In this work, Ge thin films were deposited on silicon substrates by radio frequency magnetron sputtering to form Ge islands from Ge layer on Si substrate during post-growth rapid thermal annealing (RTA). The size of the islands decreases from 0.6 to 0.1 as the rapid thermal annealing time increases from 30 s to 60 s at 900 deg. C. Not only that the annealing produces Ge islands but also wetting layer. Energy Dispersive X-ray Spectroscopy (EDX) and Scanning Electron Microscopy (SEM) were employed for structural analysis of Ge islands. Metal-Semiconductor-Metal photodetectors (MSM PDs) were fabricated on Ge islands (and wetting layer)/Si. The Ge islands and wetting layer between the contacts of the fabricated devices are etched in order to see their effects on the device. The performance of the Ge islands MSM-PD was evaluated by dark and photo current-voltage (I-V) measurements at room temperature (RT). It was found that the device with island and wetting layer significantly enhance the current gain (ratio of photo current to dark current) of the device.

  12. Electromigration techniques for Ge(II) and Ge(IV) separation in germanium thio compounds

    International Nuclear Information System (INIS)

    Facetti, J.F.; Vallejos, A.

    1971-01-01

    Using H.V. electromigration techniques, a good separation of the Ge(II) and Ge(IV) was achieved. The procedure was carried out in alkaline medium. And the final position of the separated species was established by, either neutron activation of the papa strips or chromatic reactions

  13. Precipitation and strengthening phenomena in Al-Si-Ge and Al-Cu-Si-Ge alloys

    International Nuclear Information System (INIS)

    Mitlin, D.; Morris, J.W.; Dahmen, U.; Radmilovic, V.

    2000-01-01

    The objective of this work was to determine whether Al rich Al-Si-Ge and 2000 type Al-Cu-Si-Ge alloys have sufficient hardness to be useful for structural applications. It is shown that in Al-Si-Ge it is not possible to achieve satisfactory hardness through a conventional heat treatment. This result is explained in terms of sluggish precipitation of the diamond-cubic Si-Ge phase coupled with particle coarsening. However, Al-Cu-Si-Ge displayed a uniquely fast aging response, a high peak hardness and a good stability during prolonged aging. The high hardness of the Cu containing alloy is due to the dense and uniform distribution of fine θ' precipitates (metastable Al 2 Cu) which are heterogeneously nucleated on the Si-Ge particles. High resolution TEM demonstrated that in both alloys all the Si-Ge precipitates start out, and remain multiply twinned throughout the aging treatment. Since the twinned section of the precipitate does not maintain a low index interface with the matrix, the Si-Ge precipitates are equiaxed in morphology. Copyright (2000) AD-TECH - International Foundation for the Advancement of Technology Ltd

  14. Enhanced formation of Ge nanocrystals in Ge : SiO2 layers by swift heavy ions

    International Nuclear Information System (INIS)

    Antonova, I V; Volodin, V A; Marin, D M; Skuratov, V A; Smagulova, S A; Janse van Vuuren, A; Neethling, J; Jedrzejewski, J; Balberg, I

    2012-01-01

    In this paper we report the ability of swift heavy Xe ions with an energy of 480 MeV and a fluence of 10 12 cm -2 to enhance the formation of Ge nanocrystals within SiO 2 layers with variable Ge contents. These Ge-SiO 2 films were fabricated by the co-sputtering of Ge and quartz sources which followed various annealing procedures. In particular, we found that the irradiation of the Ge : SiO 2 films with subsequent annealing at 500 °C leads to the formation of a high concentration of nanocrystals (NCs) with a size of 2-5 nm, whereas without irradiation only amorphous inclusions were observed. This effect, as evidenced by Raman spectra, is enhanced by pre-irradiation at 550 °C and post-irradiation annealing at 600 °C, which also leads to the observation of room temperature visible photoluminescence. (paper)

  15. The gastroesophageal (GE) scintiscan in detection of GE reflux and pulmonary aspiration in children

    International Nuclear Information System (INIS)

    Arasu, T.S.; Franken, E.A.; Wyllie, R.; Eigen, H.; Grosfeld, J.L.; Siddiqui, A.R.; Fitzgerald, J.F.

    1980-01-01

    Gastroesophageal scintiscans and barium examinations were performed on 30 children with documented GE reflux and 13 control patients. After instillation of 2 mCi of Tc99m sulfur colloid into the stomach, serial images of the abdomen and thorax were obtained. The GE scintiscan was positive in 17 of 30 with GE reflux; the barium study was positive in 15 of 30. A positive scintiscan and/or barium study was found in 21 of 30 patients with reflux, and none of the controls. Pulmonay aspiration of gastric contents was not detected by either method. We conclude that the GE scintiscan is complementary to barium studies in the diagnosis of GE reflux, and neither study approaches the accuracy of more sophisticated tests [fr

  16. 70Ge, 72Ge, 74Ge, 76Ge(d,3He)69Ga, 71Ga, 73Ga, 75Ga reactions at 26 MeV

    International Nuclear Information System (INIS)

    Rotbard, G.; La Rana, G.; Vergnes, M.; Berrier, G.; Kalifa, J.; Guilbaut, G.; Tamisier, R.

    1978-01-01

    The 70 Ge, 72 Ge, 74 Ge, 76 Ge(d, 3 He) 69 Ga, 71 Ga, 73 Ga, 75 Ga reactions have been studied at 26 MeV with 15 keV resolution (F.W.H.M), using the Orsay MP tandem accelerator and a split pole magnetic spectrometer. The spectroscopic factors are determined for 15 levels in 69 Ga and 11 levels in each of the 3 other Ga isotopes. Level schemes are proposed for the practically unknown 73 Ga and 75 Ga. Very simple model wave functions previously proposed for Ge nuclei are seen to reproduce quite well the measured occupation numbers for the proton orbitals. Anomalies in these occupation numbers are observed between Z=31 and 32 and between N=40 and 42, this last one corresponding to the structural transition observed recently in a comparison of the (p,t) and (t,p) reactions. These anomalies could be related to changes in the nuclear shape

  17. Single-fabrication-step Ge nanosphere/SiO2/SiGe heterostructures: a key enabler for realizing Ge MOS devices

    Science.gov (United States)

    Liao, P. H.; Peng, K. P.; Lin, H. C.; George, T.; Li, P. W.

    2018-05-01

    We report channel and strain engineering of self-organized, gate-stacking heterostructures comprising Ge-nanosphere gate/SiO2/SiGe-channels. An exquisitely-controlled dynamic balance between the concentrations of oxygen, Si, and Ge interstitials was effectively exploited to simultaneously create these heterostructures in a single oxidation step. Process-controlled tunability of the channel length (5–95 nm diameters for the Ge-nanospheres), gate oxide thickness (2.5–4.8 nm), as well as crystal orientation, chemical composition and strain engineering of the SiGe-channel was achieved. Single-crystalline (100) Si1‑x Ge x shells with Ge content as high as x = 0.85 and with a compressive strain of 3%, as well as (110) Si1‑x Ge x shells with Ge content of x = 0.35 and corresponding compressive strain of 1.5% were achieved. For each crystal orientation, our high Ge-content, highly-stressed SiGe shells feature a high degree of crystallinity and thus, provide a core ‘building block’ required for the fabrication of Ge-based MOS devices.

  18. Magnetic properties of TbTiGe

    International Nuclear Information System (INIS)

    Prokes, K.; Tegus, O.; Brueck, E.; Gortenmulder, T.J.; Boer, F.R. de; Buschow, K.H.J.

    2001-01-01

    We have studied the magnetic properties of the compound TbTiGe by means of neutron diffraction in the temperature range 1.7-310 K. We also report on magnetization measurements made at different temperatures and fields. The compound TbTiGe adopts the tetragonal CeFeSi-structure type and orders antiferromagnetically at T N =286 K. The structure is collinear antiferromagnetic in the whole temperature range below T N , with the magnetic moments aligned along the tetragonal c-axis. The uncommon shape of the temperature dependence of the magnetization observed in our sample is attributed to small amounts of the ferromagnetic low-temperature modification of TbTiGe

  19. Study of Si-Ge interdiffusion with phosphorus doping

    KAUST Repository

    Cai, Feiyang; Anjum, Dalaver H.; Zhang, Xixiang; Xia, Guangrui

    2016-01-01

    Si-Ge interdiffusion with phosphorus doping was investigated by both experiments and modeling. Ge/Si1-x Ge x/Ge multi-layer structures with 0.75Ge<1, a mid-1018 to low-1019 cm−3 P doping, and a dislocation density of 108 to 109 cm−2 range were studied. The P-doped sample shows an accelerated Si-Ge interdiffusivity, which is 2–8 times of that of the undoped sample. The doping dependence of the Si-Ge interdiffusion was modelled by a Fermi-enhancement factor. The results show that the Si-Ge interdiffusion coefficient is proportional to n2/n2i for the conditions studied, which indicates that the interdiffusion in a high Ge fraction range with n-type doping is dominated by V2− defects. The Fermi-enhancement factor was shown to have a relatively weak dependence on the temperature and the Ge fraction. The results are relevant to the structure and thermal processing condition design of n-type doped Ge/Si and Ge/SiGe based devices such as Ge/Si lasers.

  20. Study of Si-Ge interdiffusion with phosphorus doping

    KAUST Repository

    Cai, Feiyang

    2016-10-28

    Si-Ge interdiffusion with phosphorus doping was investigated by both experiments and modeling. Ge/Si1-x Ge x/Ge multi-layer structures with 0.75Ge<1, a mid-1018 to low-1019 cm−3 P doping, and a dislocation density of 108 to 109 cm−2 range were studied. The P-doped sample shows an accelerated Si-Ge interdiffusivity, which is 2–8 times of that of the undoped sample. The doping dependence of the Si-Ge interdiffusion was modelled by a Fermi-enhancement factor. The results show that the Si-Ge interdiffusion coefficient is proportional to n2/n2i for the conditions studied, which indicates that the interdiffusion in a high Ge fraction range with n-type doping is dominated by V2− defects. The Fermi-enhancement factor was shown to have a relatively weak dependence on the temperature and the Ge fraction. The results are relevant to the structure and thermal processing condition design of n-type doped Ge/Si and Ge/SiGe based devices such as Ge/Si lasers.

  1. GE will finance 614-MW cogeneration plant

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    The General Electric Power Funding Corporation, a unit of GE Capital, will provide up to $870 million in construction and permanent financing, and letters of credit to Cogen Technologies of Houston, Texas. The agreement will fund the construction of a 614-megawatt (MW), combined-cycle cogeneration plant to be built in Linden, New Jersey, and for the purchase of gas properties. The plant will be owned by Cogen Technologies. The financing is one of the largest packages ever for a cogeneration plant, GE said

  2. Phase diagram of the Ge-rich of the Ba–Ge system and characterisation of single-phase BaGe4

    International Nuclear Information System (INIS)

    Prokofieva, Violetta K.; Pavlova, Lydia M.

    2014-01-01

    Highlights: • The Ba-Ge phase diagram for the range 50–100 at.% Ge was constructed. • Single-phase BaGe 4 grown by the Czochralski method was characterised. • A phenomenological model for a liquid-liquid phase transition is proposed. - Abstract: The Ba–Ge binary system has been investigated by several authors, but some uncertainties remain regarding phases with Ba/Ge ⩽ 2. The goal of this work was to resolve the uncertainty about the current phase diagram of Ba–Ge by performing DTA, X-ray powder diffraction, metallographic and chemical analyses, and measurements of the electrical conductivity and viscosity. The experimental Ba–Ge phase diagram over the composition range of 50–100 at.% Ge was constructed from the cooling curves and single-phase BaGe 4 grown by the Czochralski crystal pulling method was characterised. Semiconducting BaGe 4 crystallised peritectically from the liquid phase near the eutectic. In the liquid state, the caloric effects were observed in the DTA curves at 1050 °C where there are no definite phase lines in the Ba–Ge phase diagram. These effects are confirmed by significant changes in the viscosity and electrical conductivity of a Ba–Ge alloy with eutectic composition at this temperature. A phenomenological model based on two different approaches, a phase approach and a chemical approach, is proposed to explain the isothermal liquid–liquid phase transition observed in the Ba–Ge system from the Ge side. Our results suggest that this transition is due to the peritectic reactions in the liquid phase. This reversible phase transition results in the formation of precursors of various metastable clathrate phases and is associated with sudden changes in the structure of Ba–Ge liquid alloys. Characteristics of both first- and second-order phase transitions are observed. Charge transfer appears to play an important role in this transition

  3. Preparation of special purity Ge - S - I and Ge - Se - I glasses

    Science.gov (United States)

    Velmuzhov, A. P.; Sukhanov, M. V.; Shiryaev, V. S.; Kotereva, T. V.; Snopatin, G. E.; Churbanov, M. F.

    2017-05-01

    The paper considers the new approaches for the production of special pure Ge - S - I and Ge - Se - I glasses via the germanium(IV) iodide, germanium(II) sulfide, as well as the Ge2S3, Ge2S3I2 and Ge2Se3I2 glassy alloys. The glass samples containing 0.03-0.17 ppm(wt) hydrogen impurity in the form of SH-group, 0.04-0.15 ppm(wt) hydrogen impurity in the form of SeH-group, and 0.5-7.8 ppm(wt) oxygen impurity in the form of Ge-O were produced. Using a crucible technique, the single-index [GeSe4]95I5 glass fibers of 300-400 μm diameter were drawn. The minimum optical losses in the best fiber were 1.7 dB/m at a wavelength of 5.5 μm; the background optical losses were within 2-3 dB/m in the spectral range of 2.5-8 μm.

  4. Molecules for materials: germanium hydride neutrals and anions. Molecular structures, electron affinities, and thermochemistry of GeHn/GeHn- (n = 0-4) and Ge2Hn/Ge2Hn(-) (n = 0-6).

    Science.gov (United States)

    Li, Qian-Shu; Lü, Rui-Hua; Xie, Yaoming; Schaefer, Henry F

    2002-12-01

    The GeH(n) (n = 0-4) and Ge(2)H(n) (n = 0-6) systems have been studied systematically by five different density functional methods. The basis sets employed are of double-zeta plus polarization quality with additional s- and p-type diffuse functions, labeled DZP++. For each compound plausible energetically low-lying structures were optimized. The methods used have been calibrated against a comprehensive tabulation of experimental electron affinities (Chemical Reviews 102, 231, 2002). The geometries predicted in this work include yet unknown anionic species, such as Ge(2)H(-), Ge(2)H(2)(-), Ge(2)H(3)(-), Ge(2)H(4)(-), and Ge(2)H(5)(-). In general, the BHLYP method predicts the geometries closest to the few available experimental structures. A number of structures rather different from the analogous well-characterized hydrocarbon radicals and anions are predicted. For example, a vinylidene-like GeGeH(2) (-) structure is the global minimum of Ge(2)H(2) (-). For neutral Ge(2)H(4), a methylcarbene-like HGë-GeH(3) is neally degenerate with the trans-bent H(2)Ge=GeH(2) structure. For the Ge(2)H(4) (-) anion, the methylcarbene-like system is the global minimum. The three different neutral-anion energy differences reported in this research are: the adiabatic electron affinity (EA(ad)), the vertical electron affinity (EA(vert)), and the vertical detachment energy (VDE). For this family of molecules the B3LYP method appears to predict the most reliable electron affinities. The adiabatic electron affinities after the ZPVE correction are predicted to be 2.02 (Ge(2)), 2.05 (Ge(2)H), 1.25 (Ge(2)H(2)), 2.09 (Ge(2)H(3)), 1.71 (Ge(2)H(4)), 2.17 (Ge(2)H(5)), and -0.02 (Ge(2)H(6)) eV. We also reported the dissociation energies for the GeH(n) (n = 1-4) and Ge(2)H(n) (n = 1-6) systems, as well as those for their anionic counterparts. Our theoretical predictions provide strong motivation for the further experimental study of these important germanium hydrides. Copyright 2002 Wiley

  5. Strain distribution of confined Ge/GeO2 core/shell nanoparticles engineered by growth environments

    Science.gov (United States)

    Wei, Wenyan; Yuan, Cailei; Luo, Xingfang; Yu, Ting; Wang, Gongping

    2016-02-01

    The strain distributions of Ge/GeO2 core/shell nanoparticles confined in different host matrix grown by surface oxidation are investigated. The simulated results by finite element method demonstrated that the strains of the Ge core and the GeO2 shell strongly depend on the growth environments of the nanoparticles. Moreover, it can be found that there is a transformation of the strain on Ge core from tensile to compressive strain during the growth of Ge/GeO2 core/shell nanoparticles. And, the transformation of the strain is closely related with the Young's modulus of surrounding materials of Ge/GeO2 core/shell nanoparticles.

  6. The effect of Ge precursor on the heteroepitaxy of Ge1-x Sn x epilayers on a Si (001) substrate

    Science.gov (United States)

    Jahandar, Pedram; Weisshaupt, David; Colston, Gerard; Allred, Phil; Schulze, Jorg; Myronov, Maksym

    2018-03-01

    The heteroepitaxial growth of Ge1-x Sn x on a Si (001) substrate, via a relaxed Ge buffer, has been studied using two commonly available commercial Ge precursors, Germane (GeH4) and Digermane (Ge2H6), by means of chemical vapour deposition at reduced pressures (RP-CVD). Both precursors demonstrate growth of strained and relaxed Ge1-x Sn x epilayers, however Sn incorporation is significantly higher when using the more reactive Ge2H6 precursor. As Ge2H6 is significantly more expensive, difficult to handle or store than GeH4, developing high Sn content epilayers using the latter precursor is of great interest. This study demonstrates the key differences between the two precursors and offers routes to process optimisation which will enable high Sn content alloys at relatively low cost.

  7. Thermal transport property of Ge34 and d-Ge investigated by molecular dynamics and the Slack's equation

    International Nuclear Information System (INIS)

    Han-Fu, Wang; Wei-Guo, Chu; Yan-Jun, Guo; Hao, Jin

    2010-01-01

    In this study, we evaluate the values of lattice thermal conductivity κ L of type II Ge clathrate (Ge 34 ) and diamond phase Ge crystal (d-Ge) with the equilibrium molecular dynamics (EMD) method and the Slack's equation. The key parameters of the Slack's equation are derived from the thermodynamic properties obtained from the lattice dynamics (LD) calculations. The empirical Tersoff's potential is used in both EMD and LD simulations. The thermal conductivities of d-Ge calculated by both methods are in accordance with the experimental values. The predictions of the Slack's equation are consistent with the EMD results above 250 K for both Ge 34 and d-Ge. In a temperature range of 200–1000 K, the κ L value of d-Ge is about several times larger than that of Ge 34 . (condensed matter: structure, thermal and mechanical properties)

  8. Ultra-smooth epitaxial Ge grown on Si(001) utilizing a thin C-doped Ge buffer layer

    KAUST Repository

    Mantey, J.

    2013-01-01

    Here, we present work on epitaxial Ge films grown on a thin buffer layer of C doped Ge (Ge:C). The growth rate of Ge:C is found to slow over time and is thus unsuitable for thick (>20 nm) layers. We demonstrate Ge films from 10 nm to >150 nm are possible by growing pure Ge on a thin Ge:C buffer. It is shown that this stack yields exceedingly low roughness levels (comparable to bulk Si wafers) and contains fewer defects and higher Hall mobility compared to traditional heteroepitaxial Ge. The addition of C at the interface helps reduce strain by its smaller atomic radius and its ability to pin defects within the thin buffer layer that do not thread to the top Ge layer. © 2013 AIP Publishing LLC.

  9. Interfacial sharpness and intermixing in a Ge-SiGe multiple quantum well structure

    Science.gov (United States)

    Bashir, A.; Gallacher, K.; Millar, R. W.; Paul, D. J.; Ballabio, A.; Frigerio, J.; Isella, G.; Kriegner, D.; Ortolani, M.; Barthel, J.; MacLaren, I.

    2018-01-01

    A Ge-SiGe multiple quantum well structure created by low energy plasma enhanced chemical vapour deposition, with nominal well thickness of 5.4 nm separated by 3.6 nm SiGe spacers, is analysed quantitatively using scanning transmission electron microscopy. Both high angle annular dark field imaging and electron energy loss spectroscopy show that the interfaces are not completely sharp, suggesting that there is some intermixing of Si and Ge at each interface. Two methods are compared for the quantification of the spectroscopy datasets: a self-consistent approach that calculates binary substitutional trends without requiring experimental or computational k-factors from elsewhere and a standards-based cross sectional calculation. Whilst the cross section approach is shown to be ultimately more reliable, the self-consistent approach provides surprisingly good results. It is found that the Ge quantum wells are actually about 95% Ge and that the spacers, whilst apparently peaking at about 35% Si, contain significant interdiffused Ge at each side. This result is shown to be not just an artefact of electron beam spreading in the sample, but mostly arising from a real chemical interdiffusion resulting from the growth. Similar results are found by use of X-ray diffraction from a similar area of the sample. Putting the results together suggests a real interdiffusion with a standard deviation of about 0.87 nm, or put another way—a true width defined from 10%-90% of the compositional gradient of about 2.9 nm. This suggests an intrinsic limit on how sharp such interfaces can be grown by this method and, whilst 95% Ge quantum wells (QWs) still behave well enough to have good properties, any attempt to grow thinner QWs would require modifications to the growth procedure to reduce this interdiffusion, in order to maintain a composition of ≥95% Ge.

  10. Magnetic behavior of Si-Ge bond in SixGe4-x nano-clusters

    Science.gov (United States)

    Nahali, Masoud; Mehri, Ali

    2018-06-01

    The structure of SixGe4-x nano-clusters were optimized by MPW1B95 level of theory using MG3S and SDB-aug-cc-PVTZ basis set. The agreement of the calculated ionization and dissociation energies with experimental values validates the reported structures of nano-clusters and justifies the use of hybrid meta density functional method. Since the Si-Si bond is stronger than Si-Ge and Ge-Ge bonds, the Si-Si, Si-Ge, and Ge-Ge diagonal bonds determine the precedence of the stability in these nano-clusters. The hybrid meta density functional calculations were carried out to investigate the adsorption of CO on all possible SixGe4-x nano-clusters. It was found that the silicon atom generally makes a stronger bond with CO than germanium and thereby preferentially affects the shape of structures having higher multiplicity. In Si-Ge structures with higher spin more than 95% of spins accumulate on positions with less bonds to other atoms of the cluster. Through CO adsorption on these clusters bridge structures are made that behave as spin bridge which conduct the spin from the nano-cluster surface to the adsorbate atoms. A better understanding of bridged structures was achieved upon introducing the 'spin bridge' concept. Based on exhaustive spin density analysis, it was found that the reason for the extra negative charge on oxygen in the bridged structures is the relocation of spin from the surface through the bridge.

  11. Distribution and Substitution Mechanism of Ge in a Ge-(Fe-Bearing Sphalerite

    Directory of Open Access Journals (Sweden)

    Nigel J. Cook

    2015-03-01

    Full Text Available The distribution and substitution mechanism of Ge in the Ge-rich sphalerite from the Tres Marias Zn deposit, Mexico, was studied using a combination of techniques at μm- to atomic scales. Trace element mapping by Laser Ablation Inductively Coupled Mass Spectrometry shows that Ge is enriched in the same bands as Fe, and that Ge-rich sphalerite also contains measurable levels of several other minor elements, including As, Pb and Tl. Micron- to nanoscale heterogeneity in the sample, both textural and compositional, is revealed by investigation using Focused Ion Beam-Scanning Electron Microscopy (FIB-SEM combined with Synchrotron X-ray Fluorescence mapping and High-Resolution Transmission Electron Microscopy imaging of FIB-prepared samples. Results show that Ge is preferentially incorporated within Fe-rich sphalerite with textural complexity finer than that of the microbeam used for the X-ray Absorption Near Edge Structure (XANES measurements. Such heterogeneity, expressed as intergrowths between 3C sphalerite and 2H wurtzite on  zones, could be the result of either a primary growth process, or alternatively, polystage crystallization, in which early Fe-Ge-rich sphalerite is partially replaced by Fe-Ge-poor wurtzite. FIB-SEM imaging shows evidence for replacement supporting the latter. Transformation of sphalerite into wurtzite is promoted by (111* twinning or lattice-scale defects, leading to a heterogeneous ZnS sample, in which the dominant component, sphalerite, can host up to ~20% wurtzite. Ge K-edge XANES spectra for this sphalerite are identical to those of the germanite and argyrodite standards and the synthetic chalcogenide glasses GeS2 and GeSe2, indicating the Ge formally exists in the tetravalent form in this sphalerite. Fe K-edge XANES spectra for the same sample indicate that Fe is present mainly as Fe2+, and Cu K-edge XANES spectra are characteristic for Cu+. Since there is no evidence for coupled substitution involving a monovalent

  12. Shallow acceptors in strained Ge/Ge1-xSix heterostructures with quantum wells

    International Nuclear Information System (INIS)

    Aleshkin, V.Ya.; Andreev, B.A.; Gavrilenko, V.I.; Erofeeva, I.V.; Kozlov, D.V.; Kuznetsov, O.A.

    2000-01-01

    Dependence of acceptor localized state energies in quantum wells (strained layers of Ge in heterostructures Ge/Ge 1-x Si x ) on the width of quantum well and position in it was studied theoretically. Spectrum of impurity absorption in the far infrared range was calculated. Comparison of the results calculated and observed photoconductivity spectra permits estimating acceptor distribution over quantum well and suggesting conclusion that acceptors can be largely concentrated near heteroboundaries. Absorption spectrum was calculated bearing in mind resonance impurity states, which permits explaining the observed specific features in the photoconductivity spectrum short-wave range by transition to resonance energy levels, bound to upper subzones of dimensional quantization [ru

  13. Isobaric analogue states of 73Ge via 72Ge(3He,d)73As reaction

    International Nuclear Information System (INIS)

    Ramaswamy, C.R.; Puttaswamy, N.G.; Sarma, N.

    1974-01-01

    The 72 Ge( 3 He,d) 73 As reaction has been studied at 20 MeV incident 3 He energy using an MP tandem and a multigap spectrograph. The energy spectrum of deuterons in the region between 9 to 10.5 MeV excitation energy of 73 As shows analogue states corresponding to G.S., 570, 673, 805, 900, 1050, and 1350 KeV states of 73 Ge. Angular distributions for the analogue states and 1-values of the transferred protons are extracted. The results are compared with available data on the levels of 73 Ge. (author)

  14. Interfacial processes in the Pd/a-Ge:H system

    Science.gov (United States)

    Edelman, F.; Cytermann, C.; Brener, R.; Eizenberg, M.; Weil, R.; Beyer, W.

    1993-06-01

    The kinetics of phase transformation has been studied in a two-layer structure of Pd/a-Ge:H after vacuum annealing at temperatures from 180 to 500°C. The a-Ge:H was deposited at 250°C on both c-Si and cleaved NaCl substrates in an RF glow discharge from a GeH 4/H 2 mixture. It was found that, similarly to the Pd/c-Ge and the Pd/a-Ge (e-gun deposited) systems, in the case of 0.15-0.2 μm Pd/0.6-1.0 μm a-Ge:H interfacial germanides formed first through the production of Pd 2Ge (plus a small amount of PdGe), and then PdGe was produced. The growth of both compounds was found to be diffusion-controlled. The nonreacted a-Ge:H layer beneath the germanide overlayer crystallized at 400-500°C. A reverse sequence of germanides formation was revealed in the case of 50 nm Pd/30 nm a-Ge:H, studied by in situ heat treatment in the TEM utilizing non-supported samples. The first germanide detected was PdGe and then, as a result of PdGe and Ge reaction or the PdGe decomposition, Pd 2Ge formed. The temperature dependence of the incubation time before the first ˜ 10 nm PdGe grains formed, followed an Arrhenius curve with an activation energy of 1.45 eV.

  15. Metastability and relaxation in tensile SiGe on Ge(001) virtual substrates

    International Nuclear Information System (INIS)

    Frigerio, Jacopo; Lodari, Mario; Chrastina, Daniel; Mondiali, Valeria; Isella, Giovanni; Bollani, Monica

    2014-01-01

    We systematically study the heteroepitaxy of SiGe alloys on Ge virtual substrates in order to understand strain relaxation processes and maximize the tensile strain in the SiGe layer. The degree of relaxation is measured by high-resolution x-ray diffraction, and surface morphology is characterized by atomic force microscopy. The results are analyzed in terms of a numerical model, which considers dislocation nucleation, multiplication, thermally activated glide, and strain-dependent blocking. Relaxation is found to be sensitive to growth rate and substrate temperature as well as epilayer misfit and thickness, and growth parameters are found which allow a SiGe film with over 4 GPa of tensile stress to be obtained.

  16. Shallow acceptors in Ge/GeSi heterostructures with quantum wells in magnetic field

    International Nuclear Information System (INIS)

    Aleshkin, V.Ya.; Antonov, A.V.; Veksler, D.B.; Gavrilenko, V.I.; Erofeeva, I.V.; Ikonnikov, A.V.; Kozlov, D.V.; Spirin, K.E.; Kuznetsov, O.A.

    2005-01-01

    One investigated both theoretically and experimentally into shallow acceptors in Ge/GeSi heterostructures with quantum wells (QW) in a magnetic field. It is shown that alongside with lines of cyclotron resonance in magnetoabsorption spectra one observes transitions from the ground state of acceptor to the excited ones associated with the Landau levels from the first and the second subbands of dimensional quantization, and resonance caused by ionization of A + -centres. To describe impurity transitions in Ge/GeSi heterostructures with QW in a magnetic field and to interpret the experiment results in detail one uses numerical method of calculation based on expansion of wave function of acceptor in terms of basis of wave functions of holes in QW in the absence of magnetic field [ru

  17. Ge interactions on HfO2 surfaces and kinetically driven patterning of Ge nanocrystals on HfO2

    International Nuclear Information System (INIS)

    Stanley, Scott K.; Joshi, Sachin V.; Banerjee, Sanjay K.; Ekerdt, John G.

    2006-01-01

    Germanium interactions are studied on HfO 2 surfaces, which are prepared through physical vapor deposition (PVD) and by atomic layer deposition. X-ray photoelectron spectroscopy and temperature-programed desorption are used to follow the reactions of germanium on HfO 2 . Germanium chemical vapor deposition at 870 K on HfO 2 produces a GeO x adhesion layer, followed by growth of semiconducting Ge 0 . PVD of 0.7 ML Ge (accomplished by thermally cracking GeH 4 over a hot filament) also produces an initial GeO x layer, which is stable up to 800 K. PVD above 2.0 ML deposits semiconducting Ge 0 . Temperature programed desorption experiments of ∼1.0 ML Ge from HfO 2 at 400-1100 K show GeH 4 desorption below 600 K and GeO desorption above 850 K. These results are compared to Ge on SiO 2 where GeO desorption is seen at 550 K. Exploiting the different reactivity of Ge on HfO 2 and SiO 2 allows a kinetically driven patterning scheme for high-density Ge nanoparticle growth on HfO 2 surfaces that is demonstrated

  18. Bi surfactant mediated growth for fabrication of Si/Ge nanostructures and investigation of Si/Ge intermixing by STM

    Energy Technology Data Exchange (ETDEWEB)

    Paul, N.

    2007-10-26

    In the thesis work presented here, we show that Bi is more promising surfactant material than Sb. We demonstrate that by using Bi as a terminating layer on Ge/Si surface, it is possible to distinguish between Si and Ge in Scanning tunnelling microscope (STM). Any attempt to utilize surfactant mediated growth must be preceded by a thorough study of its effect on the the system being investigated. Thus, the third chapter of this thesis deals with an extensive study of the Bi surfactant mediated growth of Ge on Si(111) surface as a function of Ge coverage. The growth is investigated from the single bilayer Ge coverage till the Ge coverage of about 15 BL when the further Ge deposition leads to two-dimensional growth. In the fourth chapter, the unique property of Bi terminating layer on Ge/Si surface to result in an STM height contrast between Si and Ge is explained with possible explanations given for the reason of this apparent height contrast. The controlled fabrication of Ge/Si nanostructures such as nanowires and nanorings is demonstrated. A study on Ge-Si diffusion in the surface layers by a direct method such as STM was impossible previously because of the similar electronic structure of Ge and Si. Since with the Bi terminating surface layer, one is able to distinguish between Ge and Si, the study of intermixing between them is also possible using STM. This method to distinguish between Si and Ge allows one to study intermixing on the nanoscale and to identify the fundamental diffusion processes giving rise to the intermixing. In Chapter 5 we discuss how this could prove useful especially as one could get a local probe over a very narrow Ge-Si interface. A new model is proposed to estimate change in the Ge concentration in the surface layer with time. The values of the activation energies of Ge/Si exchange and Si/Ge exchange are estimated by fitting the experimental data with the model. The Ge/Si intermixing has been studied on a surface having 1 ML Bi ({radical

  19. Tailoring the spin polarization in Ge/SiGe multiple quantum wells

    International Nuclear Information System (INIS)

    Giorgioni, Anna; Pezzoli, Fabio; Gatti, Eleonora; Grilli, Emanuele; Guzzi, Mario; Bottegoni, Federico; Cecchi, Stefano; Ciccacci, Franco; Isella, Giovanni; Trivedi, Dhara; Song, Yang; Li, Pengki; Dery, Hanan

    2013-01-01

    We performed spin-resolved photoluminescence measurements on Ge/SiGe multiple quantum wells with different well thickness and using different exciting power densities. The polarization of the direct emission strongly depends on the relative weight of electrons photoexcited from the light and the heavy hole subbands. The study of the polarization as a function of the exciting power highlights the role of the carrier-carrier interactions in determining spin depolarization

  20. Thin SiGe virtual substrates for Ge heterostructures integration on silicon

    International Nuclear Information System (INIS)

    Cecchi, S.; Chrastina, D.; Frigerio, J.; Isella, G.; Gatti, E.; Guzzi, M.; Müller Gubler, E.; Paul, D. J.

    2014-01-01

    The possibility to reduce the thickness of the SiGe virtual substrate, required for the integration of Ge heterostructures on Si, without heavily affecting the crystal quality is becoming fundamental in several applications. In this work, we present 1 μm thick Si 1−x Ge x buffers (with x > 0.7) having different designs which could be suitable for applications requiring a thin virtual substrate. The rationale is to reduce the lattice mismatch at the interface with the Si substrate by introducing composition steps and/or partial grading. The relatively low growth temperature (475 °C) makes this approach appealing for complementary metal-oxide-semiconductor integration. For all the investigated designs, a reduction of the threading dislocation density compared to constant composition Si 1−x Ge x layers was observed. The best buffer in terms of defects reduction was used as a virtual substrate for the deposition of a Ge/SiGe multiple quantum well structure. Room temperature optical absorption and photoluminescence analysis performed on nominally identical quantum wells grown on both a thick graded virtual substrate and the selected thin buffer demonstrates a comparable optical quality, confirming the effectiveness of the proposed approach

  1. Temperature dependence of the interband critical points of bulk Ge and strained Ge on Si

    Science.gov (United States)

    Fernando, Nalin S.; Nunley, T. Nathan; Ghosh, Ayana; Nelson, Cayla M.; Cooke, Jacqueline A.; Medina, Amber A.; Zollner, Stefan; Xu, Chi; Menendez, Jose; Kouvetakis, John

    2017-11-01

    Epitaxial Ge layers on a Si substrate experience a tensile biaxial stress due to the difference between the thermal expansion coefficients of the Ge epilayer and the Si substrate, which can be measured using asymmetric X-ray diffraction reciprocal space maps. This stress depends on temperature and affects the band structure, interband critical points, and optical spectra. This manuscripts reports careful measurements of the temperature dependence of the dielectric function and the interband critical point parameters of bulk Ge and Ge epilayers on Si using spectroscopic ellipsometry from 80 to 780 K and from 0.8 to 6.5 eV. The authors find a temperature-dependent redshift of the E1 and E1 + Δ1 critical points in Ge on Si (relative to bulk Ge). This redshift can be described well with a model based on thermal expansion coefficients, continuum elasticity theory, and the deformation potential theory for interband transitions. The interband transitions leading to E0‧ and E2 critical points have lower symmetry and therefore are not affected by the stress.

  2. Addition of Mn to Ge quantum dot surfaces—interaction with the Ge QD {105} facet and the Ge(001) wetting layer

    International Nuclear Information System (INIS)

    Nolph, C A; Kassim, J K; Floro, J A; Reinke, P

    2013-01-01

    The interaction of Mn with Ge quantum dots (QD), which are bounded by {105} facets, and the strained Ge wetting layer (WL), terminated by a (001) surface, is investigated with scanning tunneling microscopy (STM). These surfaces constitute the growth surfaces in the growth of Mn-doped QDs. Mn is deposited on the Ge QD and WL surface in sub-monolayer concentrations, and subsequently annealed up to a temperature of 400 ° C. The changes in bonding and surface topography are measured with STM during the annealing process. Mn forms flat islands on the Ge{105} facet, whose shape and position are guided by the rebonded step reconstruction of the facet. Voltage-dependent STM images reflect the Mn-island interaction with the empty and filled states of the Ge{105} reconstruction. Scanning tunneling spectra (STS) of the Ge{105} facet and as-deposited Mn-islands show a bandgap of 0.8 eV, and the Mn-island spectra are characterized by an additional empty state at about 1.4 eV. A statistical analysis of Mn-island shape and position on the QD yields a slight preference for edge positions, whereas the QD strain field does not impact Mn-island position. However, the formation of ultra-small Mn-clusters dominates on the Ge(001) WL, which is in contrast to Mn interaction with unstrained Ge(001) surfaces. Annealing to T 5 Ge 3 from a mass balance analysis. This reaction is accompanied by the disappearance of the original Mn-surface structures and de-wetting of Mn is complete. This study unravels the details of Mn–Ge interactions, and demonstrates the role of surface diffusion as a determinant in the growth of Mn-doped Ge materials. Surface doping of Ge-nanostructures at lower temperatures could provide a pathway to control magnetism in the Mn–Ge system. (paper)

  3. High-pressure structural behavior of nanocrystalline Ge

    DEFF Research Database (Denmark)

    Wang, H.; Liu, J. F.; Yan, H.

    2007-01-01

    The equation of state and the pressure of the I-II transition have been studied for nanocrystalline Ge using synchrotron x-ray diffraction. The bulk modulus and the transition pressure increase with decreasing particle size for both Ge-I and Ge-II, but the percentage volume collapse at the transi...

  4. Giant magnetocaloric effect in isostructural MnNiGe-CoNiGe system by establishing a Curie-temperature window

    KAUST Repository

    Liu, E. K.; Zhang, H. G.; Xu, G. Z.; Zhang, X. M.; Ma, R. S.; Wang, W. H.; Chen, J. L.; Zhang, H. W.; Wu, G. H.; Feng, L.; Zhang, Xixiang

    2013-01-01

    An effective scheme of isostructural alloying was applied to establish a Curie-temperature window in isostructural MnNiGe-CoNiGe system. With the simultaneous accomplishment of decreasing structural-transition temperature and converting

  5. Fabrication of Ge-on-insulator wafers by Smart-CutTM with thermal management for undamaged donor Ge wafers

    Science.gov (United States)

    Kim, Munho; Cho, Sang June; Jayeshbhai Dave, Yash; Mi, Hongyi; Mikael, Solomon; Seo, Jung-Hun; Yoon, Jung U.; Ma, Zhenqiang

    2018-01-01

    Newly engineered substrates consisting of semiconductor-on-insulator are gaining much attention as starting materials for the subsequent transfer of semiconductor nanomembranes via selective etching of the insulating layer. Germanium-on-insulator (GeOI) substrates are critically important because of the versatile applications of Ge nanomembranes (Ge NMs) toward electronic and optoelectronic devices. Among various fabrication techniques, the Smart-CutTM technique is more attractive than other methods because a high temperature annealing process can be avoided. Another advantage of Smart-CutTM is the reusability of the donor Ge wafer. However, it is very difficult to realize an undamaged Ge wafer because there exists a large mismatch in the coefficient of thermal expansion among the layers. Although an undamaged donor Ge wafer is a prerequisite for its reuse, research related to this issue has not yet been reported. Here we report the fabrication of 4-inch GeOI substrates using the direct wafer bonding and Smart-CutTM process with a low thermal budget. In addition, a thermo-mechanical simulation of GeOI was performed by COMSOL to analyze induced thermal stress in each layer of GeOI. Crack-free donor Ge wafers were obtained by annealing at 250 °C for 10 h. Raman spectroscopy and x-ray diffraction (XRD) indicated similarly favorable crystalline quality of the Ge layer in GeOI compared to that of bulk Ge. In addition, Ge p-n diodes using transferred Ge NM indicate a clear rectifying behavior with an on and off current ratio of 500 at ±1 V. This demonstration offers great promise for high performance transferrable Ge NM-based device applications.

  6. Gate-stack engineering for self-organized Ge-dot/SiO2/SiGe-shell MOS capacitors

    Directory of Open Access Journals (Sweden)

    Wei-Ting eLai

    2016-02-01

    Full Text Available We report the first-of-its-kind, self-organized gate-stack heterostructure of Ge-dot/SiO2/SiGe-shell on Si fabricated in a single step through the selective oxidation of a SiGe nano-patterned pillar over a Si3N4 buffer layer on a Si substrate. Process-controlled tunability of the Ge-dot size (7.5−90 nm, the SiO2 thickness (3−4 nm, and as well the SiGe-shell thickness (2−15 nm has been demonstrated, enabling a practically-achievable core building block for Ge-based metal-oxide-semiconductor (MOS devices. Detailed morphologies, structural, and electrical interfacial properties of the SiO2/Ge-dot and SiO2/SiGe interfaces were assessed using transmission electron microscopy, energy dispersive x-ray spectroscopy, and temperature-dependent high/low-frequency capacitance-voltage measurements. Notably, NiGe/SiO2/SiGe and Al/SiO2/Ge-dot/SiO2/SiGe MOS capacitors exhibit low interface trap densities of as low as 3-5x10^11 cm^-2·eV^-1 and fixed charge densities of 1-5x10^11 cm^-2, suggesting good-quality SiO2/SiGe-shell and SiO2/Ge-dot interfaces. In addition, the advantage of having single-crystalline Si1-xGex shell (x > 0.5 in a compressive stress state in our self-aligned gate-stack heterostructure has great promise for possible SiGe (or Ge MOS nanoelectronic and nanophotonic applications.

  7. Effect of ultrathin GeOx interfacial layer formed by thermal oxidation on Al2O3 capped Ge

    International Nuclear Information System (INIS)

    Han Le; Zhang Xiong; Wang Sheng-Kai; Xue Bai-Qing; Liu Hong-Gang; Wu Wang-Ran; Zhao Yi

    2014-01-01

    We propose a modified thermal oxidation method in which an Al 2 O 3 capping layer is used as an oxygen blocking layer (OBL) to form an ultrathin GeO x interfacial layer, and obtain a superior Al 2 O 3 /GeO x /Ge gate stack. The GeO x interfacial layer is formed in oxidation reaction by oxygen passing through the Al 2 O 3 OBL, in which the Al 2 O 3 layer could restrain the oxygen diffusion and suppress the GeO desorption during thermal treatment. The thickness of the GeO x interfacial layer would dramatically decrease as the thickness of Al 2 O 3 OBL increases, which is beneficial to achieving an ultrathin GeO x interfacial layer to satisfy the demand for small equivalent oxide thickness (EOT). In addition, the thickness of the GeO x interfacial layer has little influence on the passivation effect of the Al 2 O 3 /Ge interface. Ge (100) p-channel metal–oxide–semiconductor field-effect transistors (pMOSFETs) using the Al 2 O 3 /GeO x /Ge gate stacks exhibit excellent electrical characteristics; that is, a drain current on-off (I on /I off ) ratio of above 1×10 4 , a subthreshold slope of ∼ 120 mV/dec, and a peak hole mobility of 265 cm 2 /V·s are achieved. (condensed matter: structural, mechanical, and thermal properties)

  8. Photoreflectance Spectroscopy Characterization of Ge/Si0.16Ge0.84 Multiple Quantum Wells on Ge Virtual Substrate

    Directory of Open Access Journals (Sweden)

    Hung-Pin Hsu

    2013-01-01

    Full Text Available We report a detailed characterization of a Ge/Si0.16Ge0.84 multiple quantum well (MQW structure on Ge-on-Si virtual substrate (VS grown by ultrahigh vacuum chemical vapor deposition by using temperature-dependent photoreflectance (PR in the temperature range from 10 to 300 K. The PR spectra revealed a wide range of optical transitions from the MQW region as well as transitions corresponding to the light-hole and heavy-hole splitting energies of Ge-on-Si VS. A detailed comparison of PR spectral line shape fits and theoretical calculation led to the identification of various quantum-confined interband transitions. The temperature-dependent PR spectra of Ge/Si0.16Ge0.84 MQW were analyzed using Varshni and Bose-Einstein expressions. The parameters that describe the temperature variations of various quantum-confined interband transition energies were evaluated and discussed.

  9. Electronic structure of Ge-2 and Ge-2 and thermodynamic properties of Ge-2 from all electron ab initio investigations and Knudsen effusion mass spectroscopic measurements

    DEFF Research Database (Denmark)

    Shim, Irene; Baba, M. Sai; Gingerich, K.A.

    2002-01-01

    The low-lying states of the molecule Ge-2 and of the ion Ge-2(-) have been investigated by all electron ab initio multiconfiguration self-consistent field (CASSCF) and multi-reference configuration interaction (MRCI) calculations. The relativistic corrections for the Darwin contact term and for t......The low-lying states of the molecule Ge-2 and of the ion Ge-2(-) have been investigated by all electron ab initio multiconfiguration self-consistent field (CASSCF) and multi-reference configuration interaction (MRCI) calculations. The relativistic corrections for the Darwin contact term...... excited states are presented. Thermal functions based on the theoretically determined molecular parameters were used to derive the thermodynamic properties of the Ge-2 molecule from new mass spectrometric equilibrium data. The literature value for the dissociation energy of Ge-2 has been re...

  10. Solute trapping of Ge in Al

    International Nuclear Information System (INIS)

    Smith, P.M.; West, J.A.; Aziz, M.J.

    1992-01-01

    This paper reports on partitioning during rapid solidification of dilute Al-Ge alloys. Implanted thin films of Al have been pulsed-laser melted to obtain solidification at velocities in the range of 0.01 ms to 3.3 m/s, as measured by the transient conductance technique. Previous and subsequent Rutherford Backscattering depth profiling of the Ge solute in the Al alloys has been used to determine the nonequilibrium partition coefficient k. A significant degree of lateral film growth during solidification confines determination of k to the placing of an upper bound of 0.22 on k for solidification velocities in this range. The authors place a lower limit of 10 m/s on the diffusive velocity, which locates the transition from solute partitioning to solute trapping in the Continuous Growth Model

  11. The 400 GeV proton synchrotron

    International Nuclear Information System (INIS)

    1976-05-01

    A general account is given of the 400-GeV proton synchrotron, known as Super Proton Synchrotron (SPS), of the European Organization for Nuclear Research (CERN) at Geneva. A brief chapter on the history of the project covers the steps leading to the earlier plan for a 300-GeV accelerator at a new CERN laboratory elsewhere in Europe, abandoned in 1971 in favour of the present machine, and the progress of construction of the latter. The general features of the SPS design are outlined, illustrated by an aerial view of the CERN site, a plan of the SPS, and interior views of the SPS ring tunnel and main control room. (WSN)

  12. Europe at 400 GeV

    International Nuclear Information System (INIS)

    Walgate, R.

    1977-01-01

    The inaugural opening of the 400 GeV proton accelerator at CERN took place on 7 May 1977. A review of difficulties encountered during the 14 years since the SPS was first proposed is given and experiments already underway are outlined. The advantages of this facility over Fermilab and the type of experiment which can now be undertaken to answer some of the questions left open by Fermilab are discussed. (U.K.)

  13. GRETEL, Ge(Li) Gamma Spectra Unfolding

    International Nuclear Information System (INIS)

    1975-01-01

    1 - Nature of physical problem solved: The program performs the quantitative analysis of gamma-ray spectra obtained by Ge(Li) detectors, using special libraries which are prepared for each particular problem. 2 - Method of solution: The computer routines which detect and evaluate peak areas perform the following operations: - local smoothing of the spectrum; - first derivative of the smoothed spectrum, - peak location according to the change of sign of the first derivative; - computation of the net area of each peak found

  14. Photoreflectance Spectroscopy Characterization of Ge/Si0.16Ge0.84 Multiple Quantum Wells on Ge Virtual Substrate

    OpenAIRE

    Hsu, Hung-Pin; Yang, Pong-Hong; Huang, Jeng-Kuang; Wu, Po-Hung; Huang, Ying-Sheng; Li, Cheng; Huang, Shi-Hao; Tiong, Kwong-Kau

    2013-01-01

    We report a detailed characterization of a Ge/Si0.16Ge0.84 multiple quantum well (MQW) structure on Ge-on-Si virtual substrate (VS) grown by ultrahigh vacuum chemical vapor deposition by using temperature-dependent photoreflectance (PR) in the temperature range from 10 to 300 K. The PR spectra revealed a wide range of optical transitions from the MQW region as well as transitions corresponding to the light-hole and heavy-hole splitting energies of Ge-on-Si VS. A detailed comparison of PR spec...

  15. Strain relaxation of germanium-tin (GeSn) fins

    Science.gov (United States)

    Kang, Yuye; Huang, Yi-Chiau; Lee, Kwang Hong; Bao, Shuyu; Wang, Wei; Lei, Dian; Masudy-Panah, Saeid; Dong, Yuan; Wu, Ying; Xu, Shengqiang; Tan, Chuan Seng; Gong, Xiao; Yeo, Yee-Chia

    2018-02-01

    Strain relaxation of biaxially strained Ge1-xSnx layer when it is patterned into Ge1-xSnx fin structures is studied. Ge1-xSnx-on-insulator (GeSnOI) substrate was realized using a direct wafer bonding (DWB) technique and Ge1-xSnx fin structures were formed by electron beam lithography (EBL) patterning and dry etching. The strain in the Ge1-xSnx fins having fin widths (WFin) ranging from 1 μm down to 80 nm was characterized using micro-Raman spectroscopy. Raman measurements show that the strain relaxation increases with decreasing WFin. Finite element (FE) simulation shows that the strain component in the transverse direction relaxes with decreasing WFin, while the strain component along the fin direction remains unchanged. For various Ge1-xSnx fin widths, transverse strain relaxation was further extracted using micro-Raman spectroscopy, which is consistent with the simulation results.

  16. High spin states in 66,68Ge

    International Nuclear Information System (INIS)

    Hermkens, U.; Becker, F.; Eberth, J.; Freund, S.; Mylaeus, T.; Skoda, S.; Teichert, W.; Werth, A. v.d.

    1992-01-01

    High spin states of 66,68 Ge have been investigated at the FN Tandem accelerator of the University of Koeln via the reactions 40 Ca( 32 S,α2p,4p) 66,68 Ge at a beam energy of 100 MeV and 58 Ni( 16 O,α2p) 68 Ge at 65 MeV. The OSIRIS spectrometer with 12 escape suppressed Ge detectors was used to measure γγ coincidences and γ-ray angular distributions. In 66 Ge ( 68 Ge) 33 (22) new levels were found and 63 (62) new γ-transitions were placed in the level scheme. Both nuclei show a rather complicated but similar excitation pattern, ruled by the interplay of quasiparticle and collective degrees of freedom. The results are compared to the recently published EXVAM calculations for 68 Ge. (orig.)

  17. Phase formation and texture of thin nickel germanides on Ge(001) and Ge(111)

    Energy Technology Data Exchange (ETDEWEB)

    De Schutter, B., E-mail: deschutter.bob@ugent.be; Detavernier, C. [Department of Solid-State Sciences, Ghent University, Krijgslaan 281/S1, 9000 Ghent (Belgium); Van Stiphout, K.; Santos, N. M.; Vantomme, A. [Instituut voor Kern- en Stralingsfysica, KU Leuven, Celestijnenlaan 200 D, B-3001 Leuven (Belgium); Bladt, E.; Bals, S. [Electron Microscopy for Materials Research (EMAT), University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp (Belgium); Jordan-Sweet, J.; Lavoie, C. [IBM T.J. Watson Research Center, Yorktown Heights, New York 10598 (United States); Comrie, C. M. [Department of Physics, University of Cape Town, Rondebosch 7700 (South Africa)

    2016-04-07

    We studied the solid-phase reaction between a thin Ni film and a single crystal Ge(001) or Ge(111) substrate during a ramp anneal. The phase formation sequence was determined using in situ X-ray diffraction and in situ Rutherford backscattering spectrometry (RBS), while the nature and the texture of the phases were studied using X-ray pole figures and transmission electron microscopy. The phase sequence is characterized by the formation of a single transient phase before NiGe forms as the final and stable phase. X-ray pole figures were used to unambiguously identify the transient phase as the ϵ-phase, a non-stoichiometric Ni-rich germanide with a hexagonal crystal structure that can exist for Ge concentrations between 34% and 48% and which forms with a different epitaxial texture on both substrate orientations. The complementary information gained from both RBS and X-ray pole figure measurements revealed a simultaneous growth of both the ϵ-phase and NiGe over a small temperature window on both substrate orientations.

  18. The coarsening process of Ge precipitates in an Al-4 wt.% Ge alloy

    Energy Technology Data Exchange (ETDEWEB)

    Deaf, G.H

    2004-05-01

    In this paper the results of a quantitative transmission electron microscopy (TEM) investigation of the precipitation process of Ge in an Al-4 wt.% Ge alloy are described. Two crystallographic orientation relationships between the irregular germanium precipitate and aluminum matrix were found to be [1 0 0]{sub Ge} || [1 1 0]{sub Al} and [1 1 4]{sub Ge} || [1 0 0]{sub Al}. The irregular germanium precipitates formed on [0 0 1]{sub Al} habit planes. The origin of the irregular shape is due to the existence of a highly anisotropic interfacial energy as well as in an isotropic growth rate along <1 1 0>{sub A1} directions. Particles sizes were determined for variety of isothermal ageing times at 348, 423 and 523 K. The coarsening of the different morphologies of Ge precipitates was found to obey Ostwald ripening kinetics. The TEM results showed that the coarsening of irregular particles was due to the interfacial coalescence between these particles. Nine different morphologies have been distinguished in the form of (i) irregular particles, (ii) spheres, (iii) hexagonal plates, (iv) rods, (v) triangular plates, (vi) laths, (vii) small tetrahedra, (viii) rectangular plates, and (ix) Lamellae shape.

  19. Amorphous inclusions during Ge and GeSn epitaxial growth via chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Gencarelli, F., E-mail: federica.gencarelli@imec.be [imec, Kapeldreef 75, 3001 Leuven (Belgium); Dept. of Metallurgy and Materials Engineering, KU Leuven, B-3001 Leuven (Belgium); Shimura, Y. [imec, Kapeldreef 75, 3001 Leuven (Belgium); Nuclear and Radiation Physics Section, KU Leuven, B-3001 Leuven (Belgium); Kumar, A. [imec, Kapeldreef 75, 3001 Leuven (Belgium); Nuclear and Radiation Physics Section, KU Leuven, B-3001 Leuven (Belgium); Vincent, B.; Moussa, A.; Vanhaeren, D.; Richard, O.; Bender, H. [imec, Kapeldreef 75, 3001 Leuven (Belgium); Vandervorst, W. [imec, Kapeldreef 75, 3001 Leuven (Belgium); Nuclear and Radiation Physics Section, KU Leuven, B-3001 Leuven (Belgium); Caymax, M.; Loo, R. [imec, Kapeldreef 75, 3001 Leuven (Belgium); Heyns, M. [imec, Kapeldreef 75, 3001 Leuven (Belgium); Dept. of Metallurgy and Materials Engineering, KU Leuven, B-3001 Leuven (Belgium)

    2015-09-01

    In this work, we discuss the characteristics of particular island-type features with an amorphous core that are developed during the low temperature epitaxial growth of Ge and GeSn layers by means of chemical vapor deposition with Ge{sub 2}H{sub 6}. Although further investigations are needed to unambiguously identify the origin of these features, we suggest that they are originated by the formation of clusters of H and/or contaminants atoms during growth. These would initially cause the formation of pits with crystalline rough facets over them, resulting in ring-shaped islands. Then, when an excess surface energy is overcome, an amorphous phase would nucleate inside the pits and fill them. Reducing the pressure and/or increasing the growth temperature can be effective ways to prevent the formation of these features, likely due to a reduction of the surface passivation from H and/or contaminant atoms. - Highlights: • Island features with amorphous cores develop during low T Ge(Sn) CVD with Ge{sub 2}H{sub 6.} • These features are thoroughly characterized in order to understand their origin. • A model is proposed to describe the possible evolution of these features. • Lower pressures and/or higher temperatures avoid the formation of these features.

  20. Theoretical scenarios for 103 GeV to 1019 GeV

    International Nuclear Information System (INIS)

    Kaul, R.K.

    1996-01-01

    Basic dogmas of particle physics are reviewed. Some of their implications beyond the standard model are explored. Higgs sector of the standard model of electroweak interactions is the weakest link in the model. Elementary Higgs field makes the model unnatural beyond about 10 3 GeV. Supersymmetry provides the most attractive framework where in this problem can be addressed. This new symmetry, relating fermions and bosons, is expected to be operative at about 10 3 GeV. In addition, grand unification of the fundamental interactions can be studied consistently only within a supersymmetric formulation. Inclusion of gravity with other interactions leads to supergravity theories, which should emerge as a low energy description of a more fundamental theory, the string-theory. Supersymmetry again is an essential feature of such a theory. Quantum gravity, with its characteristic scale of 10 19 GeV, may well be described by a superstring theory. (author). 28 refs., 1 fig

  1. Electron-electron interaction in p-SiGe/Ge quantum wells

    International Nuclear Information System (INIS)

    Roessner, Benjamin; Kaenel, Hans von; Chrastina, Daniel; Isella, Giovanni; Batlogg, Bertram

    2005-01-01

    The temperature dependent magnetoresistance of high mobility p-SiGe/Ge quantum wells is studied with hole densities ranging from 1.7 to 5.9 x 10 11 cm -2 . At magnetic fields below the onset of quantum oscillations that reflect the high mobility values (up to 75000 cm 2 /Vs), we observe the clear signatures of electron-electron interaction. We compare our experiment with the theory of electron-electron interaction including the Zeeman band splitting. The observed magnetoresistance is well explained as a superposition of band structure induced positive magnetoresistance and the negative magntoresistance due to the electron-electron interaction effect

  2. Background components of Ge(Li) and GeHP-detectors in the passive shield

    International Nuclear Information System (INIS)

    Buraeva, E.A.; Davydov, M.G.; Zorina, L.V.; Stasov, V.V.

    2007-01-01

    The gamma-spectrometer Ge(Li)- and the extra pure Ge-detector background components in a specially designed passive shield were subjected to investigation in the land-based laboratory in 1996-2006. The measurement time period varied from 45 up to 240 hours. The detector background is caused by the radionuclides in the shield material, in the shield cells and in the detector materials. The prominence was given to the study of the revealed time dependence of 222 Rn daughter product background including '2 10 Pb 46.5 keV peak [ru

  3. Effect of Ge surface termination on oxidation behavior

    Science.gov (United States)

    Lee, Younghwan; Park, Kibyung; Cho, Yong Soo; Lim, Sangwoo

    2008-09-01

    Sulfur-termination was formed on the Ge(1 0 0) surface using (NH 4) 2S solution. Formation of Ge-S and the oxidation of the S-terminated Ge surface were monitored with multiple internal reflection Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. In the 0.5, 5, or 20% (NH 4) 2S solution, H-termination on the Ge(1 0 0) surface was substituted with S-termination in 1 min. When the S-terminated Ge(1 0 0) surface was exposed in air ambient, the oxidation was retarded for about 3600 min. The preservation time of the oxide layer up to one monolayer of S-terminated Ge(1 0 0) surface was about 120 times longer than for the H-terminated Ge(1 0 0) surface. However, the oxidation of S-terminated Ge(1 0 0) surface drastically increased after the threshold time. There was no significant difference in threshold time between S-terminations formed in 0.5, 5, and 20% (NH 4) 2S solutions. With the surface oxidation, desorption of S on the Ge surface was observed. The desorption behavior of sulfur on the S-terminated Ge(1 0 0) surface was independent of the concentration of the (NH 4) 2S solution that forms S-termination. Non-ideal S-termination on Ge surfaces may be related to drastic oxidation of the Ge surface. Finally, with the desulfurization on the S-terminated Ge(1 0 0) surface, oxide growth is accelerated.

  4. XRD analysis of strained Ge-SiGe heterostructures on relaxed SiGe graded buffers grown by hybrid epitaxy on Si(0 0 1) substrates

    International Nuclear Information System (INIS)

    Franco, N.; Barradas, N.P.; Alves, E.; Vallera, A.M.; Morris, R.J.H.; Mironov, O.A.; Parker, E.H.C.

    2005-01-01

    Ge/Si 1-x Ge x inverted modulation doped heterostructures with Ge channel thickness of 16 and 20 nm were grown by a method of hybrid epitaxy followed by ex situ annealing at 650 deg. C for p-HMOS application. The thicker layers of the virtual substrate (6000 nm graded SiGe up to x = 0.6 and 1000 nm uniform composition with x = 0.6) were produced by ultrahigh vacuum chemical vapor deposition (UHV-CVD) while the thinner, Si(2 nm)-SiGe(20 nm)-Ge-SiGe(15 nm + 5 nm B-doped + 20 nm) active layers were grown by low temperature solid-source (LT-SS) MBE at T = 350 deg. C. As-grown and annealed samples were measured by X-ray diffraction (XRD). Reciprocal space maps (RSMs) allowed us to determine non-destructively the precise composition (∼1%) and strain of the Ge channel, along with similar information regarding the other layers that made up the whole structure. Layer thickness was determined with complementary high-resolution Rutherford backscattering (RBS) experiments

  5. Shell morphology and Raman spectra of epitaxial Ge-SixGe1-x and Si-SixGe1-x core-shell nanowires

    Science.gov (United States)

    Wen, Feng; Dillen, David C.; Kim, Kyounghwan; Tutuc, Emanuel

    2017-06-01

    We investigate the shell morphology and Raman spectra of epitaxial Ge-SixGe1-x and Si-SixGe1-x core-shell nanowire heterostructures grown using a combination of a vapor-liquid-solid (VLS) growth mechanism for the core, followed by in-situ epitaxial shell growth using ultra-high vacuum chemical vapor deposition. Cross-sectional transmission electron microscopy reveals that the VLS growth yields cylindrical Ge, and Si nanowire cores grown along the ⟨111⟩, and ⟨110⟩ or ⟨112⟩ directions, respectively. A hexagonal cross-sectional morphology is observed for Ge-SixGe1-x core-shell nanowires terminated by six {112} facets. Two distinct morphologies are observed for Si-SixGe1-x core-shell nanowires that are either terminated by four {111} and two {100} planes associated with the ⟨110⟩ growth direction or four {113} and two {111} planes associated with the ⟨112⟩ growth direction. We show that the Raman spectra of Si- SixGe1-x are correlated with the shell morphology thanks to epitaxial growth-induced strain, with the core Si-Si mode showing a larger red shift in ⟨112⟩ core-shell nanowires compared to their ⟨110⟩ counterparts. We compare the Si-Si Raman mode value with calculations based on a continuum elasticity model coupled with the lattice dynamic theory.

  6. Room Temperature Electroluminescence from Tensile-Strained Si0.13Ge0.87/Ge Multiple Quantum Wells on a Ge Virtual Substrate

    Directory of Open Access Journals (Sweden)

    Guangyang Lin

    2016-09-01

    Full Text Available Direct band electroluminescence (EL from tensile-strained Si0.13Ge0.87/Ge multiple quantum wells (MQWs on a Ge virtual substrate (VS at room temperature is reported herein. Due to the competitive result of quantum confinement Stark effect and bandgap narrowing induced by tensile strain in Ge wells, electroluminescence from Γ1-HH1 transition in 12-nm Ge wells was observed at around 1550 nm. As injection current density increases, additional emission shoulders from Γ2-HH2 transition in Ge wells and Ge VS appeared at around 1300–1400 nm and 1600–1700 nm, respectively. The peak energy of EL shifted to the lower energy side superquadratically with an increase of injection current density as a result of the Joule heating effect. During the elevation of environmental temperature, EL intensity increased due to a reduction of energy between L and Γ valleys of Ge. Empirical fitting of the relationship between the integrated intensity of EL (L and injection current density (J with L~Jm shows that the m factor increased with injection current density, suggesting higher light emitting efficiency of the diode at larger injection current densities, which can be attributed to larger carrier occupations in the Γ valley and the heavy hole (HH valance band at higher temperatures.

  7. Structure of Ag, Fe and Ge microclusters

    International Nuclear Information System (INIS)

    Montano, P.A.; Shenoy, G.K.; Schulze, W.

    1989-01-01

    The structures of Ag, Fe and Ge microclusters were determined using EXAFS. The measurements were performed over a wide range of clusters sizes. The clusters were prepared using the gas aggregation technique and isolated in solid argon at 4.2 K. The measurements were performed at the National Synchrotron Light Source (NSLS) at beam line X-18B. A strong contraction of the interatomic distances was observed for Ag dimers and multimers. Silver clusters larger than 12 A mean diameter show a small contraction of the nn distance and a structure consistent with an fcc lattice. By contrast clusters smaller than 12 A show the presence of a small expansion and a strong reduction or absence of nnn in the EXAFS signal. This points towards a different crystallographic structure for Ag microclusters with diameter less than 12 A. In iron clusters we observe a gradual reduction of the nn distance as the cluster size decreases. The interatomic distance for iron dimers was determined to be 1.94 A, in good agreement with earlier measurements. The iron microclusters show a bcc structure down to a mean diameter of 9 A. Iron clusters with 9 A mean diameter show a structure inconsistent with a bcc lattice. The new structure is consistent with an fcc or hcp lattice. The measurements on Ge clusters show the presence of only nearest neighbors. There was clear evidence of temporal annealing as determined by variations in the near edge structure of the K-absorption edge. Absorption edge measurements were also performed for free Ge clusters travelling perpendicular to the direction of the synchrotron radiation beam. The measurements performed on the free clusters were consistent with those obtained for matrix isolated clusters. (orig.)

  8. HPC4Energy Final Report : GE Energy

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Steven G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Van Zandt, Devin T. [GE Energy Consulting, Schenectady, NY (United States); Thomas, Brian [GE Energy Consulting, Schenectady, NY (United States); Mahmood, Sajjad [GE Energy Consulting, Schenectady, NY (United States); Woodward, Carol S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2014-02-25

    Power System planning tools are being used today to simulate systems that are far larger and more complex than just a few years ago. Advances in renewable technologies and more pervasive control technology are driving planning engineers to analyze an increasing number of scenarios and system models with much more detailed network representations. Although the speed of individual CPU’s has increased roughly according to Moore’s Law, the requirements for advanced models, increased system sizes, and larger sensitivities have outstripped CPU performance. This computational dilemma has reached a critical point and the industry needs to develop the technology to accurately model the power system of the future. The hpc4energy incubator program provided a unique opportunity to leverage the HPC resources available to LLNL and the power systems domain expertise of GE Energy to enhance the GE Concorda PSLF software. Well over 500 users worldwide, including all of the major California electric utilities, rely on Concorda PSLF software for their power flow and dynamics. This pilot project demonstrated that the GE Concorda PSLF software can perform contingency analysis in a massively parallel environment to significantly reduce the time to results. An analysis with 4,127 contingencies that would take 24 days on a single core was reduced to 24 minutes when run on 4,217 cores. A secondary goal of this project was to develop and test modeling techniques that will expand the computational capability of PSLF to efficiently deal with systems sizes greater than 150,000 buses. Toward this goal the matrix reordering implementation time was sped up 9.5 times by optimizing the code and introducing threading.

  9. Radiation-modified structure of Ge25Sb15S60 and Ge35Sb5S60 glasses

    International Nuclear Information System (INIS)

    Kavetskyy, T.; Shpotyuk, O.; Kaban, I.; Hoyer, W.

    2008-01-01

    Atomic structures of Ge 25 Sb 15 S 60 and Ge 35 Sb 5 S 60 glasses are investigated in the γ-irradiated and annealed after γ-irradiation states by means of high-energy synchrotron x-ray diffraction technique. The first sharp diffraction peak (FSDP) is detected at around 1.1 A -1 in the structure factors of both alloys studied. The FSDP position is found to be stable for radiation/annealing treatment of the samples, while the FSDP intensity shows some changes between γ-irradiated and annealed states. The peaks in the pair distribution functions observed between 2 and 4 A are related to the Ge-S, Ge-Sb, and Sb-Sb first neighbor correlations and Ge-Ge second neighbor correlations in the edge-shared GeS 4/2 tetrahedra, and S-S and/or Ge-Ge second neighbor correlations in the corner-shared GeS 4/2 tetrahedra. Three mechanisms of the radiation-/annealing-induced changes are discussed in the framework of coordination topological defect formation and bond-free solid angle concepts

  10. Growth Mechanism and Surface Structure of Ge Nanocrystals Prepared by Thermal Annealing of Cosputtered GeSiO Ternary Precursor

    Directory of Open Access Journals (Sweden)

    Bo Zhang

    2014-01-01

    Full Text Available Ge nanocrystals (Ge-ncs embedded in a SiO2 superlattice structure were prepared by magnetron cosputtering and postdeposition annealing. The formation of spherical nanocrystals was confirmed by transmission electron microscopy and their growth process was studied by a combination of spectroscopic techniques. The crystallinity volume fraction of Ge component was found to increase with crystallite size, but its overall low values indicated a coexistence of crystalline and noncrystalline phases. A reduction of Ge-O species was observed in the superlattice during thermal annealing, accompanied by a transition from oxygen-deficient silicon oxide to silicon dioxide. A growth mechanism involving phase separation of Ge suboxides (GeOx was then proposed to explain these findings and supplement the existing growth models for Ge-ncs in SiO2 films. Further analysis of the bonding structure of Ge atoms suggested that Ge-ncs are likely to have a core-shell structure with an amorphous-like surface layer, which is composed of GeSiO ternary complex. The surface layer thickness was extracted to be a few angstroms and equivalent to several atomic layer thicknesses.

  11. Wozu Open-Access-Transformationsverträge?

    Directory of Open Access Journals (Sweden)

    Angela Holzer

    2017-07-01

    Full Text Available Die Deutsche Forschungsgemeinschaft (DFG hat im Frühjahr 2017 eine Ausschreibung veröffentlicht, um „Open-Access-Transformationsverträge“ zu unterstützen. Anträge können bis Ende 2018 gestellt werden. Dieser Artikel erläutert den Inhalt der Ausschreibung, erklärt die Beweggründe für die Ausschreibung, diskutiert die Vor- und Nachteile dieses Instruments der Open-Access-Transformation und legt dar, inwiefern einzelne Bibliotheken in Deutschland die Transformation befördern können.

  12. High spin spectroscopy of 70Ge

    International Nuclear Information System (INIS)

    Kumar Raju, M.; Sugathan, P.; Seshi Reddy, T.; Thirumala Rao, B.V.; Madhusudhana Rao, P.V.; Muralithar, S.; Singh, R.P.; Bhowmik, R.K.

    2011-01-01

    Structure of nuclei in mass 70 region is of interest due to presence of a variety of complex phenomenon. In these nuclei rapid change of nuclear shape with proton and neutron numbers, spin and excitation energy. Valance nucleons in f-p-g shell configuration will drive the nuclei towards high deformations. Relatively large values of quadrupole deformation are evident in the even-even nuclei in this region. Present study is aimed to explore the high spin structure of the 70 Ge nucleus. A negative parity structure was reported in an earlier study

  13. SiGe HBTs Optimization for Wireless Power Amplifier Applications

    Directory of Open Access Journals (Sweden)

    Pierre-Marie Mans

    2010-01-01

    Full Text Available This paper deals with SiGe HBTs optimization for power amplifier applications dedicated to wireless communications. In this work, we investigate the fT-BVCEO tradeoff by various collector optimization schemes such as epilayer thickness and dopant concentration, and SIC and CAP characteristics. Furthermore, a new trapezoidal base Germanium (Ge profile is proposed. Thanks to this profile, precise control of Ge content at the metallurgical emitter-base junction is obtained. Gain stability is obtained for a wide range of temperatures through tuning the emitter-base junction Ge percent. Finally, a comprehensive investigation of Ge introduction into the collector (backside Ge profile is conducted in order to improve the fT values at high injection levels.

  14. Room-temperature ferromagnetic Cr-doped Ge/GeOx core–shell nanowires

    Science.gov (United States)

    Katkar, Amar S.; Gupta, Shobhnath P.; Motin Seikh, Md; Chen, Lih-Juann; Walke, Pravin S.

    2018-06-01

    The Cr-doped tunable thickness core–shell Ge/GeOx nanowires (NWs) were synthesized and characterized using x-ray diffraction, field-emission scanning electron microscopy, transmission electron microscopy, energy-dispersive x-ray spectroscopy, x-ray photoelectron spectroscopy and magnetization studies. The shell thickness increases with the increase in synthesis temperature. The presence of metallic Cr and Cr3+ in core–shell structure was confirmed from XPS study. The magnetic property is highly sensitive to the core–shell thickness and intriguing room temperature ferromagnetism is realized only in core–shell NWs. The magnetization decreases with an increase in shell thickness and practically ceases to exist when there is no core. These NWs show remarkably high Curie temperature (TC > 300 K) with the dominating values of its magnetic remanence (MR) and coercivity (HC) compared to germanium dilute magnetic semiconductor nanomaterials. We believe that our finding on these Cr-doped Ge/GeOX core–shell NWs has the potential to be used as a hard magnet for future spintronic devices, owing to their higher characteristic values of ferromagnetic ordering.

  15. Optimal Ge/SiGe nanofin geometries for hole mobility enhancement: Technology limit from atomic simulations

    Science.gov (United States)

    Vedula, Ravi Pramod; Mehrotra, Saumitra; Kubis, Tillmann; Povolotskyi, Michael; Klimeck, Gerhard; Strachan, Alejandro

    2015-05-01

    We use first principles simulations to engineer Ge nanofins for maximum hole mobility by controlling strain tri-axially through nano-patterning. Large-scale molecular dynamics predict fully relaxed, atomic structures for experimentally achievable nanofins, and orthogonal tight binding is used to obtain the corresponding electronic structure. Hole transport properties are then obtained via a linearized Boltzmann formalism. This approach explicitly accounts for free surfaces and associated strain relaxation as well as strain gradients which are critical for quantitative predictions in nanoscale structures. We show that the transverse strain relaxation resulting from the reduction in the aspect ratio of the fins leads to a significant enhancement in phonon limited hole mobility (7× over unstrained, bulk Ge, and 3.5× over biaxially strained Ge). Maximum enhancement is achieved by reducing the width to be approximately 1.5 times the height and further reduction in width does not result in additional gains. These results indicate significant room for improvement over current-generation Ge nanofins, provide geometrical guidelines to design optimized geometries and insight into the physics behind the significant mobility enhancement.

  16. Optimal Ge/SiGe nanofin geometries for hole mobility enhancement: Technology limit from atomic simulations

    International Nuclear Information System (INIS)

    Vedula, Ravi Pramod; Mehrotra, Saumitra; Kubis, Tillmann; Povolotskyi, Michael; Klimeck, Gerhard; Strachan, Alejandro

    2015-01-01

    We use first principles simulations to engineer Ge nanofins for maximum hole mobility by controlling strain tri-axially through nano-patterning. Large-scale molecular dynamics predict fully relaxed, atomic structures for experimentally achievable nanofins, and orthogonal tight binding is used to obtain the corresponding electronic structure. Hole transport properties are then obtained via a linearized Boltzmann formalism. This approach explicitly accounts for free surfaces and associated strain relaxation as well as strain gradients which are critical for quantitative predictions in nanoscale structures. We show that the transverse strain relaxation resulting from the reduction in the aspect ratio of the fins leads to a significant enhancement in phonon limited hole mobility (7× over unstrained, bulk Ge, and 3.5× over biaxially strained Ge). Maximum enhancement is achieved by reducing the width to be approximately 1.5 times the height and further reduction in width does not result in additional gains. These results indicate significant room for improvement over current-generation Ge nanofins, provide geometrical guidelines to design optimized geometries and insight into the physics behind the significant mobility enhancement

  17. Optimal Ge/SiGe nanofin geometries for hole mobility enhancement: Technology limit from atomic simulations

    Energy Technology Data Exchange (ETDEWEB)

    Vedula, Ravi Pramod; Mehrotra, Saumitra; Kubis, Tillmann; Povolotskyi, Michael; Klimeck, Gerhard [School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907 (United States); Strachan, Alejandro, E-mail: strachan@purdue.edu [School of Materials Engineering and Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907 (United States)

    2015-05-07

    We use first principles simulations to engineer Ge nanofins for maximum hole mobility by controlling strain tri-axially through nano-patterning. Large-scale molecular dynamics predict fully relaxed, atomic structures for experimentally achievable nanofins, and orthogonal tight binding is used to obtain the corresponding electronic structure. Hole transport properties are then obtained via a linearized Boltzmann formalism. This approach explicitly accounts for free surfaces and associated strain relaxation as well as strain gradients which are critical for quantitative predictions in nanoscale structures. We show that the transverse strain relaxation resulting from the reduction in the aspect ratio of the fins leads to a significant enhancement in phonon limited hole mobility (7× over unstrained, bulk Ge, and 3.5× over biaxially strained Ge). Maximum enhancement is achieved by reducing the width to be approximately 1.5 times the height and further reduction in width does not result in additional gains. These results indicate significant room for improvement over current-generation Ge nanofins, provide geometrical guidelines to design optimized geometries and insight into the physics behind the significant mobility enhancement.

  18. On the Potential Application of the Wrinkled SiGe/SiGe Nanofilms

    Czech Academy of Sciences Publication Activity Database

    Fedorchenko, Alexander I.; Cheng, H. H.; Wang, W.; Ch.

    2016-01-01

    Roč. 6, č. 2 (2016), s. 19-23 ISSN 2160-049X Institutional support: RVO:61388998 Keywords : wrinkled SiGe nanofilms * terahertz radiation * terahertz gap Subject RIV: BE - Theoretical Physics http://www.scirp.org/journal/wjm,http://dx.doi.org/10.4236/wjm.2016.62003

  19. Sample Scripts for Generating PaGE-OM XML [

    Lifescience Database Archive (English)

    Full Text Available Sample Scripts for Generating PaGE-OM XML This page is offering some sample scripts...on MySQL. Outline chart of procedure 6. Creating RDB tables for Generating PaGE-OM XML These scripts help yo...wnload: create_tables_sql2.zip 7. Generating PaGE-OM XML from phenotype data This sample Perl script helps y

  20. Innovative Ge Quantum Dot Functional Sensing and Metrology Devices

    Science.gov (United States)

    2017-08-21

    Sensing/Metrology Devices Period: May 26th 2015May 25th 2017 Investigators: Pei-Wen Li Affiliation: Department of Electrical Engineering , National...light sources as well as low-power, high-speed Ge photodetectors indeed requires the growth of direct-gap Ge, heterostructure engineering for...All these tasks cannot be simply conducted in terms of bulk Ge technology, and it is no doubt that nanoscience and nanotechnology would offer

  1. Electrical and magnetic transport properties of DyTiGe

    International Nuclear Information System (INIS)

    Dagula, W.; Tegus, O.; Li, X.W.; Zhang, L.; Brueck, E.; Boer, F.R. de; Buschow, K.H.J.

    2004-01-01

    Electrical resistivity and magnetoresistance of DyTiGe were investigated as a function of temperature and magnetic field. DyTiGe is an antiferromagnet with Neel temperature, T N , of 180 K. The electrical resistivity has an anomaly around T N . Below T N , the magnetoresistance of DyTiGe abruptly changes at a critical field. At 5 K, we observe a magnetoresistance reduction of about 20%

  2. New data on excited level scheme of 73Ge nucleus

    International Nuclear Information System (INIS)

    Kosyak, Yu.G.; Kaipov, D.K.; Chekushina, L.V.

    1990-01-01

    New data on the scheme of 73 Ge decay obtained by the method of reactor fast neutron inelastic scattering are presented. γ-Spectra from reaction 73 Ge(n, n'γ) 73 Ge at the angles of 90 and 124 deg of relatively incident neutron beam have been measured. Experimental populations of the levels are studied. 29 new γ-transitions have been identified, two new levels have been introduced

  3. Electrical circuit model of ITO/AZO/Ge photodetector.

    Science.gov (United States)

    Patel, Malkeshkumar; Kim, Joondong

    2017-10-01

    In this data article, ITO/AZO/Ge photodetector was investigated for electrical circuit model. Due to the double (ITO and AZO) transparent metal-oxide films (DOI:10.1016/j.mssp.2016.03.007) (Yun et al., 2016) [1], the Ge heterojunction device has a better interface quality due to the AZO layer with a low electrical resistance due to the ITO layer (Yun et al., 2015) [2]. The electrical and interfacial benefitted ITO/AZO/Ge heterojunction shows the quality Schottky junction. In order to investigate the device, the ITO/AZO/Ge heterojunction was analyzed by R-C circuit model using the impedance spectroscopy.

  4. Growth of Ge films by cluster beam deposition

    CERN Document Server

    Xu, J L; Feng, J Y

    2002-01-01

    Ge epitaxial layers with reasonable quality were grown on the Si(1 1 1) substrates by cluster beam deposition (CBD) process. The growth temperature plays a dominant role in the epitaxial growth of Ge films. The substrate temperature for epitaxial growth is about 500 deg. C, which is lower than the reported critical temperature of Ge epitaxial growth by MBE and CVD. A stress induced phase transition of Ge lattice from cubic to tetragonal is also observed in the CBD process, and the mechanism is discussed.

  5. The first acceleration to 300 GeV

    CERN Multimedia

    CERN PhotoLab

    1976-01-01

    After the acceleration to 80 GeV in May the 200 GeV energy was attained on June 4, followed by a successful attempt to reach 300 GeV and then 400 GeV by the Council session on June 17. Here at the desk (centre) Boris Milman and Bas de Raad, (right) Pat Mills and a machine operator. Then standing on the back Jacques Althaber, Simon Van der Meer, Hans-Peter Kindermann, Raymond Rausch, John Adams, Klaus Batzner, and still back Antonio Millich, Jim Allaby, Wim Middelkoop, Bo Angerth, Hans Horisberger.

  6. Growth and evolution of nickel germanide nanostructures on Ge(001)

    International Nuclear Information System (INIS)

    Grzela, T; Capellini, G; Schubert, M A; Schroeder, T; Koczorowski, W; Czajka, R; Curson, N J; Heidmann, I; Schmidt, Th; Falta, J

    2015-01-01

    Nickel germanide is deemed an excellent material system for low resistance contact formation for future Ge device modules integrated into mainstream, Si-based integrated circuit technologies. In this study, we present a multi-technique experimental study on the formation processes of nickel germanides on Ge(001). We demonstrate that room temperature deposition of ∼1 nm of Ni on Ge(001) is realized in the Volmer–Weber growth mode. Subsequent thermal annealing results first in the formation of a continuous Ni_xGe_y wetting layer featuring well-defined terrace morphology. Upon increasing the annealing temperature to 300 °C, we observed the onset of a de-wetting process, characterized by the appearance of voids on the Ni_xGe_y terraces. Annealing above 300 °C enhances this de-wetting process and the surface evolves gradually towards the formation of well-ordered, rectangular Ni_xGe_y 3D nanostructures. Annealing up to 500 °C induces an Ostwald ripening phenomenon, with smaller nanoislands disappearing and larger ones increasing their size. Subsequent annealing to higher temperatures drives the Ni-germanide diffusion into the bulk and the consequent formation of highly ordered, {111} faceted Ni-Ge nanocrystals featuring an epitaxial relationship with the substrate Ni-Ge (101); (010) || Ge(001); (110). (paper)

  7. Vertical Ge photodetector base on InP taper waveguide

    Science.gov (United States)

    Amiri, Iraj Sadegh; Ariannejad, M. M.; Azzuhri, S. R. B.; Anwar, T.; Kouhdaragh, V.; Yupapin, P.

    2018-06-01

    In this work, simulation is conducted to investigate Ge photodetectors monolithically integrated on Si chip. The performance of vertical Germanium photodetector with FDTD Solutions (optical simulation) and electrical simulation has been studied. Selective heteroepitaxy of Ge is functioned in the monolithic integration of Ge photodetectors. The potential of CMOS-compatible monolithic integration of Ge as photodetector is investigated and the performance optimization is presented. Additionally, the investigation is extended to electrical part, particularly in the conversion efficiency as well as operation under low supplied voltage condition.

  8. The Au modified Ge(1 1 0) surface

    Science.gov (United States)

    Zhang, L.; Kabanov, N. S.; Bampoulis, P.; Saletsky, A. M.; Zandvliet, H. J. W.; Klavsyuk, A. L.

    2018-05-01

    The pristine Ge(1 1 0) surface is composed of Ge pentagons, which are arranged in relatively large (16 × 2) and c(8 × 10) unit cells. The deposition of sub-monolayer amounts of Au and mild annealing results into de-reconstructed Ge(1 1 0) regions completely free of Ge pentagons and regions composed of nanowires that are aligned along the high symmetry [ 1 1 bar 0 ] direction of the Ge(1 1 0) surface. The de-reconstructed Ge(1 1 0) regions consist of atomic rows that are aligned along the [ 1 1 bar 0 ] direction. A substantial fraction of these substrate rows are straight and resemble the atom rows of the unreconstructed, i.e. bulk terminated, Ge(1 1 0) surface, whereas the other substrate rows have a meandering appearance. These meandering atom rows are comprised of two types of atoms, one type that appears dim, whereas the other type appears bright in filled-state scanning tunneling microscopy images. Using density functional theory calculations, we have tested more than 20 different atomic models for the meandering atom rows. The density functional theory calculations reveal that it is energetically favorable for the deposited Au atoms to exchange position with Ge atoms in the first layer. Based on these findings we conclude that the bright atoms are Ge atoms, whereas the dim atoms are Au atoms.

  9. Heteroepitaxial Ge-on-Si by DC magnetron sputtering

    Directory of Open Access Journals (Sweden)

    Martin Steglich

    2013-07-01

    Full Text Available The growth of Ge on Si(100 by DC Magnetron Sputtering at various temperatures is studied by Spectroscopic Ellipsometry and Transmission Electron Microscopy. Smooth heteroepitaxial Ge films are prepared at relatively low temperatures of 380°C. Typical Stransky-Krastanov growth is observed at 410°C. At lower temperatures (320°C, films are essentially amorphous with isolated nanocrystallites at the Si-Ge interface. A minor oxygen contamination at the interface, developing after ex-situ oxide removal, is not seen to hinder epitaxy. Compensation of dislocation-induced acceptors in Ge by sputtering from n-doped targets is proposed.

  10. Structural Analyses of Phase Stability in Amorphous and Partially Crystallized Ge-Rich GeTe Films Prepared by Atomic Layer Deposition.

    Science.gov (United States)

    Gwon, Taehong; Mohamed, Ahmed Yousef; Yoo, Chanyoung; Park, Eui-Sang; Kim, Sanggyun; Yoo, Sijung; Lee, Han-Koo; Cho, Deok-Yong; Hwang, Cheol Seong

    2017-11-29

    The local bonding structures of Ge x Te 1-x (x = 0.5, 0.6, and 0.7) films prepared through atomic layer deposition (ALD) with Ge(N(Si(CH 3 ) 3 ) 2 ) 2 and ((CH 3 ) 3 Si) 2 Te precursors were investigated using Ge K-edge X-ray absorption spectroscopy (XAS). The results of the X-ray absorption fine structure analyses show that for all of the compositions, the as-grown films were amorphous with a tetrahedral Ge coordination of a mixture of Ge-Te and Ge-Ge bonds but without any signature of Ge-GeTe decomposition. The compositional evolution in the valence band electronic structures probed through X-ray photoelectron spectroscopy suggests a substantial chemical influence of additional Ge on the nonstoichiometric GeTe. This implies that the ALD process can stabilize Ge-abundant bonding networks like -Te-Ge-Ge-Te- in amorphous GeTe. Meanwhile, the XAS results on the Ge-rich films that had undergone post-deposition annealing at 350 °C show that the parts of the crystalline Ge-rich GeTe became separated into Ge crystallites and rhombohedral GeTe in accordance with the bulk phase diagram, whereas the disordered GeTe domains still remained, consistent with the observations of transmission electron microscopy and Raman spectroscopy. Therefore, amorphousness in GeTe may be essential for the nonsegregated Ge-rich phases and the low growth temperature of the ALD enables the achievement of the structurally metastable phases.

  11. A 100 GeV SLAC Linac

    International Nuclear Information System (INIS)

    Farkas, Zoltan D

    2002-01-01

    The SLAC beam energy can be increased from the current 50 GeV to 100 GeV, if we change the operating frequency from the present 2856 MHz to 11424 MHz, using technology developed for the NLC. We replace the power distribution system with a proposed NLC distribution system as shown in Fig. 1. The four 3 meter s-band 820 nS fill time accelerator sections are replaced by six 2 meter x-band 120 nS fill time sections. Thus the accelerator length per klystron retains the same length, 12 meters. The 4050 65MW-3.5(micro)S klystrons are replaced by 75MW-1.5(micro)S permanent magnet klystrons developed here and in Japan. The present input to the klystrons would be multiplied by a factor of 4 and possibly amplified. The SLED [1] cavities have to be replaced. The increase in beam voltage is due to the higher elastance to group velocity ratio, higher compression ratio and higher unloaded to external Q ratio of the new SLED cavities. The average power input is reduced because of the narrower klystron pulse width and because the klystron electro-magnets are replaced by permanent magnets

  12. Magnetic phase diagrams of UNiGe

    International Nuclear Information System (INIS)

    Nakotte, H.; Hagmusa, I.H.; Klaasse, J.C.P.; Hagmusa, I.H.; Klaasse, J.C.P.

    1997-01-01

    UNiGe undergoes two magnetic transitions in zero field. Here, the magnetic diagrams of UNiGe for B parallel b and B parallel c are reported. We performed temperatures scans of the magnetization in static magnetic fields up to 19.5T applied along the b and c axes. For both orientations 3 magnetic phases have been identified in the B-T diagrams. We confirmed the previously reported phase boundaries for B parallel c, and in addition we determined the location of the phase boundaries for B parallel b. We discuss a possible relationship of the two zero-field antiferromagnetic phases (commensurate: T<42K; incommensurate: 42K< T<50K) and the field-induced phase, which, at low temperatures, occurs between 18 and 25T or 4 and 10T for B parallel b or B parallel c, respectively. Finally, we discuss the field dependence of the electronic contribution γ to the specific heat for B parallel c up to 17.5T, and we find that its field dependence is similar to the one found in more itinerant uranium compounds

  13. Structural and phonon transmission study of Ge-Au-Ge eutectically bonded interfaces

    International Nuclear Information System (INIS)

    Knowlton, W.B.; Lawrence Berkeley Lab., CA

    1995-07-01

    This thesis presents a structural analysis and phonon transparency investigation of the Ge-Au-Ge eutectic bond interface. Interface development was intended to maximize the interfacial ballistic phonon transparency to enhance the detection of the dark matter candidate WIMPs. The process which was developed provides an interface which produces minimal stress, low amounts of impurities, and insures Ge lattice continuity through the interface. For initial Au thicknesses of greater than 1,000 angstrom Au per substrate side, eutectic epitaxial growth resulted in a Au dendritic structure with 95% cross sectional and 90% planar Au interfacial area coverages. In sections in which Ge bridged the interface, lattice continuity across the interface was apparent. Epitaxial solidification of the eutectic interface with initial Au thicknesses < 500 A per substrate side produced Au agglomerations thereby reducing the Au planar interfacial area coverage to as little as 30%. The mechanism for Au coalescence was attributed to lateral diffusion of Ge and Au in the liquid phase during solidification. Phonon transmission studies were performed on eutectic interfaces with initial Au thicknesses of 1,000 angstrom, 500 angstrom, and 300 angstrom per substrate side. Phonon imaging of eutectically bonded samples with initial Au thicknesses of 300 angstrom/side revealed reproducible interfacial percent phonon transmissions from 60% to 70%. Line scan phonon imaging verified the results. Phonon propagation TOF spectra distinctly showed the predominant phonon propagation mode was ballistic. This was substantiated by phonon focusing effects apparent in the phonon imaging data. The degree of interface transparency to phonons and resulting phonon propagation modes correlate with the structure of the interface following eutectic solidification. Structural studies of samples with initial Au thickness of 1,000 angstrom/side appear to correspond with the phonon transmission study

  14. Structural and phonon transmission study of Ge-Au-Ge eutectically bonded interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Knowlton, W.B. [Univ. of California, Berkeley, CA (United States). Dept. of Materials Science and Mineral Engineering]|[Lawrence Berkeley Lab., CA (United States). Materials Sciences Div.

    1995-07-01

    This thesis presents a structural analysis and phonon transparency investigation of the Ge-Au-Ge eutectic bond interface. Interface development was intended to maximize the interfacial ballistic phonon transparency to enhance the detection of the dark matter candidate WIMPs. The process which was developed provides an interface which produces minimal stress, low amounts of impurities, and insures Ge lattice continuity through the interface. For initial Au thicknesses of greater than 1,000 {angstrom} Au per substrate side, eutectic epitaxial growth resulted in a Au dendritic structure with 95% cross sectional and 90% planar Au interfacial area coverages. In sections in which Ge bridged the interface, lattice continuity across the interface was apparent. Epitaxial solidification of the eutectic interface with initial Au thicknesses < 500 A per substrate side produced Au agglomerations thereby reducing the Au planar interfacial area coverage to as little as 30%. The mechanism for Au coalescence was attributed to lateral diffusion of Ge and Au in the liquid phase during solidification. Phonon transmission studies were performed on eutectic interfaces with initial Au thicknesses of 1,000 {angstrom}, 500 {angstrom}, and 300 {angstrom} per substrate side. Phonon imaging of eutectically bonded samples with initial Au thicknesses of 300 {angstrom}/side revealed reproducible interfacial percent phonon transmissions from 60% to 70%. Line scan phonon imaging verified the results. Phonon propagation TOF spectra distinctly showed the predominant phonon propagation mode was ballistic. This was substantiated by phonon focusing effects apparent in the phonon imaging data. The degree of interface transparency to phonons and resulting phonon propagation modes correlate with the structure of the interface following eutectic solidification. Structural studies of samples with initial Au thickness of 1,000 {angstrom}/side appear to correspond with the phonon transmission study.

  15. Reduction in the formation temperature of Poly-SiGe alloy thin film in Si/Ge system

    Science.gov (United States)

    Tah, Twisha; Singh, Ch. Kishan; Madapu, K. K.; Sarguna, R. M.; Magudapathy, P.; Ilango, S.

    2018-04-01

    The role of deposition temperature in the formation of poly-SiGe alloy thin film in Si/Ge system is reported. For the set ofsamples deposited without any intentional heating, initiation of alloying starts upon post annealingat ˜ 500 °C leading to the formation of a-SiGe. Subsequently, poly-SiGe alloy phase could formonly at temperature ≥ 800 °C. Whereas, for the set of samples deposited at 500 °C, in-situ formation of poly-SiGe alloy thin film could be observed. The energetics of the incoming evaporated atoms and theirsubsequent diffusionsin the presence of the supplied thermal energy is discussed to understand possible reasons for lowering of formation temperature/energyof the poly-SiGe phase.

  16. In-situ Ga doping of fully strained Ge1-xSnx heteroepitaxial layers grown on Ge(001) substrates

    DEFF Research Database (Denmark)

    Shimura, Y.; Takeuchi, S.; Nakatsuka, O.

    2012-01-01

    to the introduction of dislocations, due to the increase in the strain of the Ge1-xSnx layers. We achieved the growth of a fully strained Ge0.922Sn0.078 layer on Ge with a Ga concentration of 5.5×1019 /cm3 without any dislocations and stacking faults. The resistivity of the Ga-doped Ge1-xSnx layer decreased as the Sn...... content was increased. This decrease was due to an increase in the carrier concentration, with an increase in the activation level of Ga atoms in the Ge1-xSnx epitaxial layers being induced by the introduction of Sn. As a result, we found that the resistivity for the Ge0.950Sn0.050 layer annealed at 600°C...

  17. Remote plasma enhanced chemical deposition of non-crystalline GeO2 on Ge and Si substrates.

    Science.gov (United States)

    Lucovsky, Gerald; Zeller, Daniel

    2011-09-01

    Non-crystalline GeO2 films remote were plasma deposited at 300 degrees C onto Ge substrates after a final rinse in NH4OH. The reactant precursors gas were: (i) down-stream injected 2% GeH4 in He as the Ge precursor, and (ii) up-stream, plasma excited O2-He mixtures as the O precursor. Films annealed at 400 degrees C displayed no evidence for loss of O resulting in Ge sub-oxide formation, and for a 5-6 eV mid-gap absorption associated with formation of GeOx suboxide bonding, x deposited on Ge and annealed at 600 degrees C and 700 degrees C display spectra indicative of loss of O-atoms, accompanied with a 5.5 eV absorption. X-ray absorption spectroscopy and many-electron theory are combined to describe symmetries and degeneracies for O-vacancy bonding defects. These include comparisons with remote plasma-deposited non-crystalline SiO2 on Si substrates with SiON interfacial layers. Three different properties of remote plasma GeO2 films are addressed comparisons between (i) conduction band and band edge states of GeO2 and SiO2, and (ii) electronic structure of O-atom vacancy defects in GeO2 and SiO2, and differences between (iii) annealing of GeO2 films on Ge substrates, and Si substrates passivated with SiON interfacial transition regions important for device applications.

  18. Magnetic and electrical properties of epitaxial GeMn

    Energy Technology Data Exchange (ETDEWEB)

    Ahlers, Stefan

    2009-01-15

    In this work, GeMn magnetic semiconductors will be investigated. The fabrication of GeMn thin films with Mn contents up to 11.7% was realised with molecular beam epitaxy. At a fabrication temperature of 60 C, the suppression of Mn{sub x}Ge{sub y} phases could reproducibly be obtained. Dislocation free epitaxy of diamond-lattice type GeMn thin films was observed. In all fabrication conditions where Mn{sub x}Ge{sub y} suppression was feasible, an inhomogeneous dispersion of Mn was observed in form of a self-assembly of nanometre sized, Mn rich regions in a Ge rich matrix. Each Mn rich region exhibits ferromagnetic coupling with high Curie temperatures exceeding, in part, room temperature. The local ferromagnetic ordering leads to the formation of large, spatially separated magnetic moments, which induce a superparamagnetic behaviour of the GeMn thin films. At low temperatures {<=} 20 K, remanent behaviour was found to emerge. X-ray absorption experiments revealed a similarity of the Mn incorporation in diamond-lattice type GeMn thin films and in the hexagonal lattice of the intermetallic Mn{sub 5}Ge{sub 3} phase, respectively. These tetrahedra represent building blocks of the Mn{sub 5}Ge{sub 3} unit cell. The incorporation of Mn{sub 5}Ge{sub 3} building blocks was found to be accompanied by local structural disorder. The electrical properties of GeMn thin films were addressed by transport measurements. It was shown that by using a n-type Ge substrate, a pn energy barrier between epilayers and substrate to suppress parallel substrate conduction paths can be introduced. With the pn barrier concept, first results on the magnetotransport behaviour of GeMn thin films were obtained. GeMn was found to be p-type, but of high resistivity. a series of GeMn thin films was fabricated, where intermetallic Mn{sub x}Ge{sub y} phase separation was supported in a controlled manner. Phase separation was found to result in the formation of partially coherent, nanometre sized Mn{sub 5

  19. Investigation of electrochemical reduction of GeO2 to Ge in molten CaCl2-NaCl

    International Nuclear Information System (INIS)

    Rong, Liangbin; He, Rui; Wang, Zhiyong; Peng, Junjun; Jin, Xianbo; Chen, George Z.

    2014-01-01

    Electrochemical reduction of solid GeO 2 has been investigated in the mixed CaCl 2 -NaCl melt at 1023 K for developing a more efficient process for preparation of Ge. Cyclic voltammetry and potentiostatic electrolysis were applied to study the GeO 2 -loaded metallic cavity electrode. In addition, porous GeO 2 pellets were reduced by potentiostatic and constant cell voltage electrolysis with a graphite anode, and the electrolysis products were analyzed by powder X-ray diffraction, scanning electron microscopy and energy-dispersive X-ray spectrometry, focusing on understanding the reduction mechanism and the impact of electrode potential on the product purity. It was found that the reduction of GeO 2 to Ge occurred at a potential of about -0.50 V (vs. Ag/Ag + ), but generating various calcium germanates simultaneously, whose reduction was a little more difficult and needed a potential more negative than -1.00 V. However, if the cathode potential exceeded -1.60 V, Ca (or Na) - Ge intermetallic compounds might form. These results gave an appropriate potential range between -1.10 and -1.40 V for the production of pure germanium. Rapid electrolysis of GeO 2 to pure Ge has been realized at a cell voltage of 2.5 V with a current efficiency of about 92%

  20. Growth of two-dimensional Ge crystal by annealing of heteroepitaxial Ag/Ge(111) under N2 ambient

    Science.gov (United States)

    Ito, Koichi; Ohta, Akio; Kurosawa, Masashi; Araidai, Masaaki; Ikeda, Mitsuhisa; Makihara, Katsunori; Miyazaki, Seiichi

    2018-06-01

    The growth of a two-dimensional crystal of Ge atoms on an atomically flat Ag(111) surface has been demonstrated by the thermal annealing of a heteroepitaxial Ag/Ge structure in N2 ambient at atmospheric pressure. The surface morphology and chemical bonding features of heteroepitaxial Ag(111) grown on wet-cleaned Ge(111) after annealing at different temperatures and for various times have been systematically investigated to control the surface segregation of Ge atoms and the planarization of the heteroepitaxial Ag(111) surface.

  1. Shell model description of Ge isotopes

    International Nuclear Information System (INIS)

    Hirsch, J G; Srivastava, P C

    2012-01-01

    A shell model study of the low energy region of the spectra in Ge isotopes for 38 ≤ N ≤ 50 is presented, analyzing the excitation energies, quadrupole moments, B(E2) values and occupation numbers. The theoretical results have been compared with the available experimental data. The shell model calculations have been performed employing three different effective interactions and valence spaces. We have used two effective shell model interactions, JUN45 and jj44b, for the valence space f 5/2 pg 9/2 without truncation. To include the proton subshell f 7/2 in valence space we have employed the fpg effective interaction due to Sorlin et al., with 48 Ca as a core and a truncation in the number of excited particles.

  2. 3 GeV Injector Design Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Wiedemann, H.; /SLAC, SSRL

    2009-12-16

    This Design Handbook is intended to be the main reference book for the specifications of the 3 GeV SPEAR booster synchrotron project. It is intended to be a consistent description of the project including design criteria, key technical specifications as well as current design approaches. Since a project is not complete till it's complete changes and modifications of early conceptual designs must be expected during the duration of the construction. Therefore, this Design Handbook is issued as a loose leaf binder so that individual sections can be replaced as needed. Each page will be dated to ease identification with respect to latest revisions. At the end of the project this Design Handbook will have become the 'as built' reference book of the injector for operations and maintenance personnel.

  3. Quantitative Auger analysis of Nb-Ge superconducting alloys

    International Nuclear Information System (INIS)

    Buitrago, R.H.

    1980-01-01

    The feasibility of using Auger electron analysis for quantitative analysis was investigated by studying Nb 3 Ge thin-film Auger data with different approaches. A method base on elemental standards gave consistent quantitative values with reported Nb-Ge data. Alloy sputter yields were also calculated and results were consistent with those for pure elements

  4. 75 FR 21680 - GE-Hitachi Global Laser Enrichment LLC;

    Science.gov (United States)

    2010-04-26

    ... Global Laser Enrichment LLC; Establishment of Atomic Safety and Licensing Board Pursuant to delegation by... over the following proceeding: GE-Hitachi Global Laser Enrichment LLC (GLE Commercial Facility) This... application of GE-Hitachi Global Laser Enrichment LLC for a license to possess and use source, byproduct, and...

  5. Thermoelectric Performance of Na-Doped GeSe

    NARCIS (Netherlands)

    Shaabani, Laaya; Aminorroaya-Yamini, Sima; Byrnes, Jacob; Akbar Nezhad, Ali; Blake, Graeme R

    2017-01-01

    Recently, hole-doped GeSe materials have been predicted to exhibit extraordinary thermoelectric performance owing largely to extremely low thermal conductivity. However, experimental research on the thermoelectric properties of GeSe has received less attention. Here, we have synthesized

  6. Stress evolution of Ge nanocrystals in dielectric matrices

    Science.gov (United States)

    Bahariqushchi, Rahim; Raciti, Rosario; Emre Kasapoğlu, Ahmet; Gür, Emre; Sezen, Meltem; Kalay, Eren; Mirabella, Salvatore; Aydinli, A.

    2018-05-01

    Germanium nanocrystals (Ge NCs) embedded in single and multilayer silicon oxide and silicon nitride matrices have been synthesized using plasma enhanced chemical vapor deposition followed by conventional furnace annealing or rapid thermal processing in N2 ambient. Compositions of the films were determined by Rutherford backscattering spectrometry and x-ray photoelectron spectroscopy. The formation of NCs under suitable process conditions was observed with high resolution transmission electron microscope micrographs and Raman spectroscopy. Stress measurements were done using Raman shifts of the Ge optical phonon line at 300.7 cm-1. The effect of the embedding matrix and annealing methods on Ge NC formation were investigated. In addition to Ge NCs in single layer samples, the stress on Ge NCs in multilayer samples was also analyzed. Multilayers of Ge NCs in a silicon nitride matrix separated by dielectric buffer layers to control the size and density of NCs were fabricated. Multilayers consisted of SiN y :Ge ultrathin films sandwiched between either SiO2 or Si3N4 by the proper choice of buffer material. We demonstrated that it is possible to tune the stress state of Ge NCs from compressive to tensile, a desirable property for optoelectronic applications. We also observed that there is a correlation between the stress and the crystallization threshold in which the compressive stress enhances the crystallization, while the tensile stress suppresses the process.

  7. In-situ Ga doping of fully strained Ge1-xSnx heteroepitaxial layers grown on Ge(001) substrates

    International Nuclear Information System (INIS)

    Shimura, Y.; Takeuchi, S.; Nakatsuka, O.; Vincent, B.; Gencarelli, F.; Clarysse, T.; Vandervorst, W.; Caymax, M.; Loo, R.; Jensen, A.; Petersen, D.H.; Zaima, S.

    2012-01-01

    We have investigated the Ga and Sn content dependence of the crystallinity and electrical properties of Ga-doped Ge 1-x Sn x layers that are heteroepitaxially grown on Ge(001) substrates. The doping of Ga to levels as high as the solubility limit of Ga at the growth temperature leads to the introduction of dislocations, due to the increase in the strain of the Ge 1-x Sn x layers. We achieved the growth of a fully strained Ge 0.922 Sn 0.078 layer on Ge with a Ga concentration of 5.5 × 10 19 /cm 3 without any dislocations and stacking faults. The resistivity of the Ga-doped Ge 1-x Sn x layer decreased as the Sn content was increased. This decrease was due to an increase in the carrier concentration, with an increase in the activation level of Ga atoms in the Ge 1-x Sn x epitaxial layers being induced by the introduction of Sn. As a result, we found that the resistivity for the Ge 0.950 Sn 0.050 layer annealed at 600°C for 1 min is 3.6 times less than that of the Ga-doped Ge/Ge sample. - Highlights: ► Heavy Ga-doping into fully strained GeSn layers without the introduction of dislocations ► The uniform Ga depth profile allowed the introduction of Sn ► The decrease in resistivity with an increase in the activation level of Ga was caused by the introduction of Sn

  8. Optimization of Si–C reaction temperature and Ge thickness in C-mediated Ge dot formation

    Energy Technology Data Exchange (ETDEWEB)

    Satoh, Yuhki, E-mail: yu-ki@ecei.tohoku.ac.jp; Itoh, Yuhki; Kawashima, Tomoyuki; Washio, Katsuyoshi

    2016-03-01

    To form Ge dots on a Si substrate, the effect of thermal reaction temperature of sub-monolayer C with Si (100) was investigated and the deposited Ge thickness was optimized. The samples were prepared by solid-source molecular beam epitaxy with an electron-beam gun for C sublimation and a Knudsen cell for Ge evaporation. C of 0.25 ML was deposited on Si (100) at a substrate temperature of 200 °C, followed by a high-temperature treatment at the reaction temperature (T{sub R}) of 650–1000 °C to create Si–C bonds. Ge equivalent to 2 to 5 nm thick was subsequently deposited at 550 °C. Small and dense dots were obtained for T{sub R} = 750 °C but the dot density decreased and the dot diameter varied widely in the case of lower and higher T{sub R}. A dot density of about 2 × 10{sup 10} cm{sup −2} was achieved for Ge deposition equivalent to 3 to 5 nm thick and a standard deviation of dot diameter was the lowest of 10 nm for 5 nm thick Ge. These results mean that C-mediated Ge dot formation was strongly influenced not only by the c(4 × 4) reconstruction condition through the Si–C reaction but also the relationship between the Ge deposition thickness and the exposed Si (100)-(2 × 1) surface area. - Highlights: • The effect of Si–C reaction temperature on Ge dot formation was investigated. • Small and dense dots were obtained for T{sub R} = 750 °C. • The dot density of about 2 × 10{sup 10} cm{sup −2} was achieved for Ge = 3 to 5 nm. • The standard deviation of dot diameter was the lowest of 10 nm at Ge = 5 nm.

  9. GeNF - Experimental report 2006

    International Nuclear Information System (INIS)

    Pranzas, P.K.; Schreyer, A.; Willumeit, R.

    2007-01-01

    At the Geesthacht Neutron Facility GeNF about 212 experiments were performed in 2006 by GKSS and by or for external users, partners or contractors. In most cases the measurements were performed and analysed in cooperation by the guests and by the GKSS staff or by the permanent external user group staff. The activities, which are based on a proposal procedure and on the in house R and D program, are reported in 71 contributions in the present annual experimental report for the year 2006. The contributions may contain one or also several combined experiments. During 2006 the GKSS research reactor FRG-1 achieved an operation time of 197 days at the full 5 MW reactor power providing a neutron flux of ca. 1.4 x 10 14 thermal neutrons/cm 2 s. The cold neutron source was available during the complete operation time. The focus of the in house R and D work at GeNF instruments was the characterisation of nanostructures in engineering materials, the analysis of stresses and textures in welds and technical structures at ARES-2, TEX-2, DCD and SANS-2, the structural investigation of hydrogen containing substances such as polymers, colloids and biological macromolecules at SANS-1 as well as the characterisation of magnetic thin films at PNR, NeRo, POLDI and ROeDI. The thoroughly upgraded residual stress diffractomer ARES-2 went in full operation in spring 2006 as well as the new neutron tomography device at GENRA-3. The installation of modern experiment control hardware and software based on LabView was completed on all designated instruments. In the appendices I and II the experimental reports of REFSANS at FRM II are attached as well as of the GKSS outstation HARWI-II at DESY. Both instruments started full operation in 2006. (orig.)

  10. GeNF - experimental report 2003

    International Nuclear Information System (INIS)

    Schreyer, A.; Vollbrandt, J.; Willumeit, R.

    2004-01-01

    At the Geesthacht Neutron Facility GeNF about 210 experiments were performed in 2003 by GKSS and by or for external users, partners or contractors. In most cases the measurements were performed and analysed in cooperation by the guest and by the GKSS staff or by the permanent external user group staff. The activities, which are based on a proposal procedure and on the in house R and D program, are reported in 76 contributions in the present annual experimental report for the year 2003. The contributions may contain one or also several combined experiments. During 2003 the GKSS research reactor FRG-1 achieved an operation time of 252 days at the full 5 MW reactor power providing a neutron flux of ca. 1,4 x 10 14 thermal neutrons / cm 2 s. The cold neutron source was available during the complete operation time. The focus of the in house R and D work at GeNF instruments was the characterisation of metal alloys, the analysis of stresses in welds and technical structures at ARES, FSS, DCD and SANS-2, the structural investigation of hydrogen containing substances such as polymers, colloids and biological macromolecules at SANS-1 as well as the characterisation of magnetic thin films at PNR and ROeDI. The reflectomer TOREMA was thoroughly upgraded to the instrument NeRo and now offers new measurement possibilities. In the appendices the progress of the project REFSANS at FRM-II is reported as well as the experimental activities of the newly installed GKSS outstation HARWI-II at DESY. (orig.)

  11. GeNF - experimental report 2003

    Energy Technology Data Exchange (ETDEWEB)

    Schreyer, A; Vollbrandt, J; Willumeit, R [GKSS-Forschungszentrum Geesthacht GmbH (Germany). Inst. for Materials Research

    2004-07-01

    At the Geesthacht Neutron Facility GeNF about 210 experiments were performed in 2003 by GKSS and by or for external users, partners or contractors. In most cases the measurements were performed and analysed in cooperation by the guest and by the GKSS staff or by the permanent external user group staff. The activities, which are based on a proposal procedure and on the in house R and D program, are reported in 76 contributions in the present annual experimental report for the year 2003. The contributions may contain one or also several combined experiments. During 2003 the GKSS research reactor FRG-1 achieved an operation time of 252 days at the full 5 MW reactor power providing a neutron flux of ca. 1,4 x 10{sup 14} thermal neutrons / cm{sup 2} s. The cold neutron source was available during the complete operation time. The focus of the in house R and D work at GeNF instruments was the characterisation of metal alloys, the analysis of stresses in welds and technical structures at ARES, FSS, DCD and SANS-2, the structural investigation of hydrogen containing substances such as polymers, colloids and biological macromolecules at SANS-1 as well as the characterisation of magnetic thin films at PNR and ROeDI. The reflectomer TOREMA was thoroughly upgraded to the instrument NeRo and now offers new measurement possibilities. In the appendices the progress of the project REFSANS at FRM-II is reported as well as the experimental activities of the newly installed GKSS outstation HARWI-II at DESY. (orig.)

  12. GeNF - Experimental report 2006

    Energy Technology Data Exchange (ETDEWEB)

    Pranzas, P K; Schreyer, A; Willumeit, R [GKSS-Forschungszentrum Geesthacht GmbH (Germany). Inst. of Materials Research

    2007-07-01

    At the Geesthacht Neutron Facility GeNF about 212 experiments were performed in 2006 by GKSS and by or for external users, partners or contractors. In most cases the measurements were performed and analysed in cooperation by the guests and by the GKSS staff or by the permanent external user group staff. The activities, which are based on a proposal procedure and on the in house R and D program, are reported in 71 contributions in the present annual experimental report for the year 2006. The contributions may contain one or also several combined experiments. During 2006 the GKSS research reactor FRG-1 achieved an operation time of 197 days at the full 5 MW reactor power providing a neutron flux of ca. 1.4 x 10{sup 14} thermal neutrons/cm{sup 2}s. The cold neutron source was available during the complete operation time. The focus of the in house R and D work at GeNF instruments was the characterisation of nanostructures in engineering materials, the analysis of stresses and textures in welds and technical structures at ARES-2, TEX-2, DCD and SANS-2, the structural investigation of hydrogen containing substances such as polymers, colloids and biological macromolecules at SANS-1 as well as the characterisation of magnetic thin films at PNR, NeRo, POLDI and ROeDI. The thoroughly upgraded residual stress diffractomer ARES-2 went in full operation in spring 2006 as well as the new neutron tomography device at GENRA-3. The installation of modern experiment control hardware and software based on LabView was completed on all designated instruments. In the appendices I and II the experimental reports of REFSANS at FRM II are attached as well as of the GKSS outstation HARWI-II at DESY. Both instruments started full operation in 2006. (orig.)

  13. Crystal structure of LaFe5Ge3O15 = LaFe5[GeO4][Ge2O7]O4

    International Nuclear Information System (INIS)

    Genkina, E.A.; Maksimov, B.A.; Mill, B.V.

    1991-01-01

    The authors have determined the structure of a new lanthanum-iron germanate LaFe 5 [GeO 4 ][GeO 4 ][Ge 2 O 7 ]O 4 (a = 18.040(4), b = 17.012(4), c = 7.591(1) angstrom, V = 2330.2(9) angstrom 3 , Z = 8, ρ t = 4.99 g/cm 3 , space ground Cmca, 1976 I hkl ≥ 3 σ(I), R = 4.5%). The compound is interesting because the framework simultaneously contains ortho- and diorthogroups of Ge and because of a classical set of coordination numbers (4,5,6) characteristic of trivalent iron within the composition of one structure. The coordination polyhedron of La has nine vertices

  14. Crystal growth kinetics in undercooled melts of pure Ge, Si and Ge-Si alloys

    Science.gov (United States)

    Herlach, Dieter M.; Simons, Daniel; Pichon, Pierre-Yves

    2018-01-01

    We report on measurements of crystal growth dynamics in semiconducting pure Ge and pure Si melts and in Ge100-xSix (x = 25, 50, 75) alloy melts as a function of undercooling. Electromagnetic levitation techniques are applied to undercool the samples in a containerless way. The growth velocity is measured by the utilization of a high-speed camera technique over an extended range of undercooling. Solidified samples are examined with respect to their microstructure by scanning electron microscopic investigations. We analyse the experimental results of crystal growth kinetics as a function of undercooling within the sharp interface theory developed by Peter Galenko. Transitions of the atomic attachment kinetics are found at large undercoolings, from faceted growth to dendrite growth. This article is part of the theme issue `From atomistic interfaces to dendritic patterns'.

  15. 20 GeV e+ x 400 GeV p: some synchrotron radiation considerations

    International Nuclear Information System (INIS)

    Humphrey, J.W.; Limon, P.J.

    1977-01-01

    The possibility of a 20 GeV electron ring in the 400 x 400 GeV 2 ISABELLE tunnel is considered. The conclusions that can be drawn from these considerations are: (1) much work remains to be done on the implications of synchrotron radiation for insertion design; (2) in the absence of considerations concerning insertion areas with longitudinal polarization, placing the electron ring in the same vertical plane as the electron ring is mildly favored; (3) creating insertions for longitudinally polarized electrons is difficult, and elementary considerations indicate that the synchrotron radiation flux in the insertion region will increase by a factor of approximately 100 and the luminosity may decrease by a factor of approximately 10; and (4) the creation of insertions for longitudinally polarized electrons favors placing the electron ring in the same horizontal plane as the proton ring

  16. Determination of core level line widths in XPS of GeS and GeSe

    International Nuclear Information System (INIS)

    Viljoen, P.E.

    1981-01-01

    Measured X-ray photoelectron spectra are broadened owing to several factors. They can be regarded as the sums of the instrument response functions and the finite source widths. By measuring the response function and deconvoluting the measured peak, the form of the measured peak, the instrument function and the deconvoluted line were determined. The former two seem to have a Gauss and the latter a Lorentz form. The X-ray source is known to have a Lorentz form. A simple method, using the shapes of all these lines, is proposed to determine the line width. Applied to GeS and GeSe lines it gives values that agree quite well with other determinations. Strictly speaking, the method is only applicable to our or other similar spectrometers, but it can be generally applied if the line shapes are known or can be determined [af

  17. Undoped and in-situ B doped GeSn epitaxial growth on Ge by atmospheric pressure-chemical vapor deposition

    DEFF Research Database (Denmark)

    Vincent, B.; Gencarelli, F.; Bender, H.

    2011-01-01

    In this letter, we propose an atmospheric pressure-chemical vapor deposition technique to grow metastable GeSn epitaxial layers on Ge. We report the growth of defect free fully strained undoped and in-situ B doped GeSn layers on Ge substrates with Sit contents up to 8%. Those metastable layers stay...

  18. Water-vapor-enhanced growth of Ge-GeOx core-shell nanowires and Si1-xGexOy nanowires

    International Nuclear Information System (INIS)

    Hsu, T-J; Ko, C-Y; Lin, W-T

    2007-01-01

    The effects of moist Ar on the growth of Ge-GeO x core-shell nanowires (Ge-GeO x NWs) and Si 1-x Ge x O y nanowires (SiGeONWs) on Si substrates without adding a metal catalyst via the carbothermal reduction of GeO 2 powders at 1100 deg. C were studied. No significant nanowires were grown in dry Ar at a flow rate of 100-300 sccm until a bit of water in the range of 0.5-2 ml was loaded into the furnace. More water suppressed the growth of nanowires because of the exhaustion of more graphite powder. The growth of Ge-GeO x NWs and SiGeONWs follows the vapor-solid and vapor-liquid-solid processes, respectively. The present study showed that the water vapor serves as an oxidizer as well as a reducer at 1100 deg. C in enhancing the growth of SiGeONWs and Ge-GeO x NWs, respectively. The growth mechanisms of Ge-GeO x NWs and SiGeONWs are also discussed

  19. Band structure analysis in SiGe nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Amato, Michele [' Centro S3' , CNR-Istituto Nanoscienze, via Campi 213/A, 41100 Modena (Italy); Dipartimento di Scienze e Metodi dell' Ingegneria, Universita di Modena e Reggio Emilia, via Amendola 2 Pad. Morselli, I-42100 Reggio Emilia (Italy); Palummo, Maurizia [European Theoretical Spectroscopy Facility (ETSF) (Italy); CNR-INFM-SMC, Dipartimento di Fisica, Universita di Roma, ' Tor Vergata' , via della Ricerca Scientifica 1, 00133 Roma (Italy); Ossicini, Stefano, E-mail: stefano.ossicini@unimore.it [' Centro S3' , CNR-Istituto Nanoscienze, via Campi 213/A, 41100 Modena (Italy) and Dipartimento di Scienze e Metodi dell' Ingegneria, Universita di Modena e Reggio Emilia, via Amendola 2 Pad. Morselli, I-42100 Reggio Emilia (Italy) and European Theoretical Spectroscopy Facility - ETSF (Italy) and Centro Interdipartimentale ' En and Tech' , Universita di Modena e Reggio Emilia, via Amendola 2 Pad. Morselli, I-42100 Reggio Emilia (Italy)

    2012-06-05

    One of the main challenges for Silicon-Germanium nanowires (SiGe NWs) electronics is the possibility to modulate and engine their electronic properties in an easy way, in order to obtain a material with the desired electronic features. Diameter and composition constitute two crucial ways for the modification of the band gap and of the band structure of SiGe NWs. Within the framework of density functional theory we present results of ab initio calculations regarding the band structure dependence of SiGe NWs on diameter and composition. We point out the main differences with respect to the case of pure Si and Ge wires and we discuss the particular features of SiGe NWs that are useful for future technological applications.

  20. Effects of hydrogenation on magnetism of UNiGe

    Energy Technology Data Exchange (ETDEWEB)

    Adamska, A.M., E-mail: anna@mag.mff.cuni.cz [Department of Condensed Matter Physics, Charles University, Ke Karlovu 5, 12116 Prague 2 (Czech Republic); Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, al. Mickiewicza 30, 30 059 Cracow (Poland); Havela, L. [Department of Condensed Matter Physics, Charles University, Ke Karlovu 5, 12116 Prague 2 (Czech Republic); Prochazka, J. [Faculty of Sports and Physical Education, Charles University, Jose Martiho 31, 16252, Prague 6 (Czech Republic); Andreev, A.V. [Institute of Physics, Academy of Sciences, Na Slovance 2, 18221 Prague (Czech Republic); Skourski, Y. [Dresden High Magnetic Field Laboratory, Helmholtz-Zentrum Dresden-Rossendorf, 01314 Dresden (Germany)

    2011-12-15

    U-based intermetallic compound UNiGe absorbs hydrogen up to the stoichiometry UNiGeH{sub 1.2}. In analogy to other compounds with the TiNiSi-type of structure, the structure is modified into hexagonal. The zig-zag U-chains are stretched, the U-U spacing is largely enhanced and the ordering temperature increases up to 100 K. The ordered state has a spontaneous moment, but it is unlikely to be a simple ferromagnet. - Highlights: > UNiGe exhibits a variety of magnetic properties. > Hydrogenation modifies the crystal, electronic structure, and the magnetic properties. > Upon hydrogenation, the crystal symmetry of UNiGe increases from orthorhombic to hexagonal. > Magnetic ordering temperature of UNiGe (T{sub N}=44 K) is double in the hydride, possible second phase transition.

  1. Band structure analysis in SiGe nanowires

    International Nuclear Information System (INIS)

    Amato, Michele; Palummo, Maurizia; Ossicini, Stefano

    2012-01-01

    One of the main challenges for Silicon-Germanium nanowires (SiGe NWs) electronics is the possibility to modulate and engine their electronic properties in an easy way, in order to obtain a material with the desired electronic features. Diameter and composition constitute two crucial ways for the modification of the band gap and of the band structure of SiGe NWs. Within the framework of density functional theory we present results of ab initio calculations regarding the band structure dependence of SiGe NWs on diameter and composition. We point out the main differences with respect to the case of pure Si and Ge wires and we discuss the particular features of SiGe NWs that are useful for future technological applications.

  2. First evidence of low energy enhancement in Ge isotopes

    Directory of Open Access Journals (Sweden)

    Renstrøm T.

    2015-01-01

    Full Text Available The γ-strength functions and level densities of 73,74Ge have been extracted from particle-γ coincidence data using the Oslo method. In addition the γ-strength function of 74Ge above the neutron separation threshold, Sn = 10.196 MeV has been extracted from photoneutron measurements. When combined, these two experiments give a γ-strength function covering the energy range of ∼1-13 MeV for 74Ge. This thorough investigation of 74Ge is a part of an international campaign to study the previously reported low energy enhancement in this mass region in the γ-strength function from ∼3MeV towards lower γ energies. The obtained data show that both 73,74Ge display an increase in strength at low γ energies.

  3. Vertically grown Ge nanowire Schottky diodes on Si and Ge substrates

    Science.gov (United States)

    Chandra, Nishant; Tracy, Clarence J.; Cho, Jeong-Hyun; Picraux, S. T.; Hathwar, Raghuraj; Goodnick, Stephen M.

    2015-07-01

    The processing and performance of Schottky diodes formed from arrays of vertical Ge nanowires (NWs) grown on Ge and Si substrates are reported. The goal of this work is to investigate CMOS compatible processes for integrating NWs as components of vertically scaled integrated circuits, and elucidate transport in vertical Schottky NWs. Vertical phosphorus (P) doped Ge NWs were grown using vapor-liquid-solid epitaxy, and nickel (Ni)-Ge Schottky contacts were made to the tops of the NWs. Current-voltage (I-V) characteristics were measured for variable ranges of NW diameters and numbers of nanowires in the arrays, and the I-V characteristics were fit using modified thermionic emission theory to extract the barrier height and ideality factor. As grown NWs did not show rectifying behavior due to the presence of heavy P side-wall doping during growth, resulting in a tunnel contact. After sidewall etching using a dilute peroxide solution, rectifying behavior was obtained. Schottky barrier heights of 0.3-0.4 V and ideality factors close to 2 were extracted using thermionic emission theory, although the model does not give an accurate fit across the whole bias range. Attempts to account for enhanced side-wall conduction due to non-uniform P doping profile during growth through a simple shunt resistance improve the fit, but are still insufficient to provide a good fit. Full three-dimensional numerical modeling using Silvaco Atlas indicates that at least part of this effect is due to the presence of fixed charge and acceptor like traps on the NW surface, which leads to effectively high ideality factors.

  4. Development of GE90 engine with largest thrust. GE90 engine no kaihatsu jokyo

    Energy Technology Data Exchange (ETDEWEB)

    Aono, H [Ishikawajima-Harima Heavy Industries, Co. Ltd., Tokyo (Japan)

    1994-05-01

    The present paper explained the turbofan engine GE90 which is being developed by General Electric Co., USA. That engine is to meet the thrust (takeoff thrust) of 300 to 530kN as required for the new-generation wide-fuselage civil transport plane which is being designed for its planned operation in the 1990's. In April, 1991, the world's strongest thrust of 480kN was achieved with engine elements also confirmed through element test. Thereafter, the engine underwent a flying test on board of Boeing 747 to materialize the planned operation in 1995. Made to be 9 in by-pass ratio and about 40 in overall pressure ratio, the GE90 was given the concept that advantage could be secured in both propulsive efficiency and thermal efficiency. That concept could be materialized by the development of composite fan blade technology and energy-efficient technology which were both demonstrated with an unducted fan. In spite of its pressure ratio of 22, the GE90's high pressure compressor demonstrates its polytropic efficiency which is equal to that of the low pressure ratio compressor. 3 refs., 19 figs., 1 tab.

  5. Molecular beam epitaxy growth of [CrGe/MnGe/FeGe] superlattices: Toward artificial B20 skyrmion materials with tunable interactions

    Science.gov (United States)

    Ahmed, Adam S.; Esser, Bryan D.; Rowland, James; McComb, David W.; Kawakami, Roland K.

    2017-06-01

    Skyrmions are localized magnetic spin textures whose stability has been shown theoretically to depend on material parameters including bulk Dresselhaus spin orbit coupling (SOC), interfacial Rashba SOC, and magnetic anisotropy. Here, we establish the growth of a new class of artificial skyrmion materials, namely B20 superlattices, where these parameters could be systematically tuned. Specifically, we report the successful growth of B20 superlattices comprised of single crystal thin films of FeGe, MnGe, and CrGe on Si(1 1 1) substrates. Thin films and superlattices are grown by molecular beam epitaxy and are characterized through a combination of reflection high energy electron diffraction, X-ray diffraction, and cross-sectional scanning transmission electron microscopy (STEM). X-ray energy dispersive spectroscopy (XEDS) distinguishes layers by elemental mapping and indicates good interface quality with relatively low levels of intermixing in the [CrGe/MnGe/FeGe] superlattice. This demonstration of epitaxial, single-crystalline B20 superlattices is a significant advance toward tunable skyrmion systems for fundamental scientific studies and applications in magnetic storage and logic.

  6. GeO{sub x} interfacial layer scavenging remotely induced by metal electrode in metal/HfO{sub 2}/GeO{sub x}/Ge capacitors

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Taehoon; Jung, Yong Chan; Seong, Sejong; Ahn, Jinho, E-mail: jhahn@hanyang.ac.kr [Department of Materials Science and Engineering, Hanyang University, Seoul 04763 (Korea, Republic of); Lee, Sung Bo [Department of Materials Science and Engineering and Research Institute of Advanced Materials (RIAM), Seoul National University, Seoul 08826 (Korea, Republic of); Park, In-Sung, E-mail: parkis77@hanyang.ac.kr [Department of Materials Science and Engineering, Hanyang University, Seoul 04763 (Korea, Republic of); Institute of Nano Science and Technology, Hanyang University, Seoul 04763 (Korea, Republic of)

    2016-07-11

    The metal gate electrodes of Ni, W, and Pt have been investigated for their scavenging effect: a reduction of the GeO{sub x} interfacial layer (IL) between HfO{sub 2} dielectric and Ge substrate in metal/HfO{sub 2}/GeO{sub x}/Ge capacitors. All the capacitors were fabricated using the same process except for the material used in the metal electrodes. Capacitance-voltage measurements, scanning transmission electron microscopy, and electron energy loss spectroscopy were conducted to confirm the scavenging of GeO{sub x} IL. Interestingly, these metals are observed to remotely scavenge the interfacial layer, reducing its thickness in the order of Ni, W, and then Pt. The capacitance equivalent thickness of these capacitors with Ni, W, and Pt electrodes are evaluated to be 2.7 nm, 3.0 nm, and 3.5 nm, and each final remnant physical thickness of GeO{sub x} IL layer is 1.1 nm 1.4 nm, and 1.9 nm, respectively. It is suggested that the scavenging effect induced by the metal electrodes is related to the concentration of oxygen vacancies generated by oxidation reaction at the metal/HfO{sub 2} interface.

  7. Strain-free Ge/GeSiSn Quantum Cascade Lasers Based on L-Valley Intersubband Transitions

    National Research Council Canada - National Science Library

    Soret, R. A; Sun, G; Cheng, H; Menendez, J; Khurgin, J

    2007-01-01

    The authors propose a Ge/Ge0.76Si0.19Sn0.05 quantum cascade laser using intersubband transitions at L valleys of the conduction band which has a clean offset of 150 meV situated below other energy valleys Gamma and X...

  8. Ab-initio calculations of semiconductor MgGeP{sub 2} and MgGeAs{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Kocak, B.; Ciftci, Y.O., E-mail: yasemin@gazi.edu.tr

    2016-05-15

    Highlights: • MgGeP{sub 2} and MgGeAs{sub 2} are semiconductor compounds. • MgGeP{sub 2} and MgGeAs{sub 2} are energetically, mechanically and dynamically stable. • The electronic charge density contour plot shows that the nature of bonding is a mixture of ionic-covalent. - Abstract: In this study, we focus on structural, electronic, elastic, lattice dynamic and optic properties of MgGeP{sub 2} and MgGeAs{sub 2} using ab-initio density-functional theory (DFT) within Armiento-Mattson 2005 (AM05) scheme of the generalized gradient approximation (GGA) for the exchange-correlation potential. Our computed structural results are in reasonable agreement with the literature. The band gap of these compounds is predicted to be direct. Our elastic results prove that these compounds are mechanically stable. The obtained phonon spectra of MgGeP{sub 2} and MgGeAs{sub 2} do not exhibit any significant imaginary branches using GGA-AM05 for the exchange-correlation approximation. Further analysis of the optical response of the dielectric functions, optical reflectivity, refractive index, extinction coefficient and electron energy loss delves into for the energy range of 0–22.5 eV. It motivated that there exists an optical polarization anisotropy of these compounds for optoelectronic device applications.

  9. Transient and temperature-dependent phenomena in Ge:Be and Ge:Zn far infrared photoconductors

    International Nuclear Information System (INIS)

    Haegel, N.M.

    1985-11-01

    An experimental study of the transient and temperature-dependent behavior of Ge:Be and Ge:Zn photoconductors has been performed under the low background photon flux conditions (p dot approx. = 10 8 photons/second) typical of astronomy and astrophysics applications. The responsivity of Ge:Be and Ge:Zn detectors is strongly temperature-dependent in closely compensated material, and the effect of compensation on free carrier lifetime in Ge:Be has been measured using the photo-Hall effect technique. Closely compensated material has been obtained by controlling the concentration of novel hydrogen-related shallow acceptor complexes, A(Be,H) and A(Zn,H), which exist in doped crystals grown under a H 2 atmosphere. A review of selection criteria for multilevel materials for optimum photoconductor performance is included. 55 refs., 47 figs

  10. Improving the electrode performance of Ge through Ge@C core-shell nanoparticles and graphene networks.

    Science.gov (United States)

    Xue, Ding-Jiang; Xin, Sen; Yan, Yang; Jiang, Ke-Cheng; Yin, Ya-Xia; Guo, Yu-Guo; Wan, Li-Jun

    2012-02-08

    Germanium is a promising high-capacity anode material for lithium ion batteries, but it usually exhibits poor cycling stability because of its huge volume variation during the lithium uptake and release process. A double protection strategy to improve the electrode performance of Ge through the use of Ge@C core-shell nanostructures and reduced graphene oxide (RGO) networks has been developed. The as-synthesized Ge@C/RGO nanocomposite showed excellent cycling performance and rate capability in comparison with Ge@C nanoparticles when used as an anode material for Li ion batteries, which can be attributed to the electronically conductive and elastic RGO networks in addition to the carbon shells and small particle sizes of Ge. The strategy is simple yet very effective, and because of its versatility, it may be extended to other high-capacity electrode materials with large volume variations and low electrical conductivities.

  11. GeO2/Ge structure submitted to annealing in deuterium: Incorporation pathways and associated oxide modifications

    Science.gov (United States)

    Bom, N. M.; Soares, G. V.; Hartmann, S.; Bordin, A.; Radtke, C.

    2014-10-01

    Deuterium (D) incorporation in GeO2/Ge structures following D2 annealing was investigated. Higher D concentrations were obtained for GeO2/Ge samples in comparison to their SiO2/Si counterparts annealed in the same conditions. Oxygen vacancies produced during the annealing step in D2 constitute defect sites for D incorporation, analogous to defects at the SiO2/Si interfacial region. Besides D incorporation, volatilization of the oxide layer is also observed as a consequence of D2 annealing, especially in the high temperature regime of the present study (>450 °C). In parallel to this volatilization, the stoichiometry and chemical structure of remnant oxide are modified as well. These results evidence the broader impact of forming gas annealing in dielectric/Ge structures with respect to SiO2/Si counterparts.

  12. Thermoelectric cross-plane properties on p- and n-Ge/Si{sub x}Ge{sub 1-x} superlattices

    Energy Technology Data Exchange (ETDEWEB)

    Ferre Llin, L.; Samarelli, A. [University of Glasgow, School of Engineering, Oakfield Avenue, Glasgow G12 8LT (United Kingdom); Cecchi, S.; Chrastina, D.; Isella, G. [L-NESS, Politecnico di Milano, Via Anzani 42, 22100 Como (Italy); Müller Gubler, E. [ETH, Electron Microscopy ETH Zurich, Wolgang-Pauli-Str. Ch-8093 Zurich (Switzerland); Etzelstorfer, T.; Stangl, J. [Johannes Kepler Universität, Institute of Semiconductor and Solid State Physics, A-4040 Linz (Austria); Paul, D.J., E-mail: Douglas.Paul@glasgow.ac.uk [University of Glasgow, School of Engineering, Oakfield Avenue, Glasgow G12 8LT (United Kingdom)

    2016-03-01

    Silicon and germanium materials have demonstrated an increasing attraction for energy harvesting, due to their sustainability and integrability with complementary metal oxide semiconductor and micro-electro-mechanical-system technology. The thermoelectric efficiencies for these materials, however, are very poor at room temperature and so it is necessary to engineer them in order to compete with telluride based materials, which have demonstrated at room temperature the highest performances in literature [1]. Micro-fabricated devices consisting of mesa structures with integrated heaters, thermometers and Ohmic contacts were used to extract the cross-plane values of the Seebeck coefficient and the thermal conductivity from p- and n-Ge/Si{sub x}Ge{sub 1-x} superlattices. A second device consisting in a modified circular transfer line method structure was used to extract the electrical conductivity of the materials. A range of p-Ge/Si{sub 0.5}Ge{sub 0.5} superlattices with different doping levels was investigated in detail to determine the role of the doping density in dictating the thermoelectric properties. A second set of n-Ge/Si{sub 0.3}Ge{sub 0.7} superlattices was fabricated to study the impact that quantum well thickness might have on the two thermoelectric figures of merit, and also to demonstrate a further reduction of the thermal conductivity by scattering phonons at different wavelengths. This technique has demonstrated to lower the thermal conductivity by a 25% by adding different barrier thicknesses per period. - Highlights: • Growth of epitaxial Ge/SiGe superlattices on Si substrates as energy harvesters • Study of cross-plane thermoelectric properties of Ge/SiGe superlattices at 300 K • Thermoelectric figures of merit studied as a function of doping density • Phonon scattering at different wavelengths to reduce thermal transport.

  13. The Effects of Annealing Temperatures on Composition and Strain in Si x Ge1-x Obtained by Melting Growth of Electrodeposited Ge on Si (100).

    Science.gov (United States)

    Abidin, Mastura Shafinaz Zainal; Morshed, Tahsin; Chikita, Hironori; Kinoshita, Yuki; Muta, Shunpei; Anisuzzaman, Mohammad; Park, Jong-Hyeok; Matsumura, Ryo; Mahmood, Mohamad Rusop; Sadoh, Taizoh; Hashim, Abdul Manaf

    2014-02-24

    The effects of annealing temperatures on composition and strain in Si x Ge 1- x , obtained by rapid melting growth of electrodeposited Ge on Si (100) substrate were investigated. Here, a rapid melting process was performed at temperatures of 1000, 1050 and 1100 °C for 1 s. All annealed samples show single crystalline structure in (100) orientation. A significant appearance of Si-Ge vibration mode peak at ~400 cm -1 confirms the existence of Si-Ge intermixing due to out-diffusion of Si into Ge region. On a rapid melting process, Ge melts and reaches the thermal equilibrium in short time. Si at Ge/Si interface begins to dissolve once in contact with the molten Ge to produce Si-Ge intermixing. The Si fraction in Si-Ge intermixing was calculated by taking into account the intensity ratio of Ge-Ge and Si-Ge vibration mode peaks and was found to increase with the annealing temperatures. It is found that the strain turns from tensile to compressive as the annealing temperature increases. The Si fraction dependent thermal expansion coefficient of Si x Ge 1- x is a possible cause to generate such strain behavior. The understanding of compositional and strain characteristics is important in Ge/Si heterostructure as these properties seem to give significant effects in device performance.

  14. The Effects of Annealing Temperatures on Composition and Strain in SixGe1−x Obtained by Melting Growth of Electrodeposited Ge on Si (100)

    Science.gov (United States)

    Abidin, Mastura Shafinaz Zainal; Morshed, Tahsin; Chikita, Hironori; Kinoshita, Yuki; Muta, Shunpei; Anisuzzaman, Mohammad; Park, Jong-Hyeok; Matsumura, Ryo; Mahmood, Mohamad Rusop; Sadoh, Taizoh; Hashim, Abdul Manaf

    2014-01-01

    The effects of annealing temperatures on composition and strain in SixGe1−x, obtained by rapid melting growth of electrodeposited Ge on Si (100) substrate were investigated. Here, a rapid melting process was performed at temperatures of 1000, 1050 and 1100°C for 1 s. All annealed samples show single crystalline structure in (100) orientation. A significant appearance of Si-Ge vibration mode peak at ~00 cm−1 confirms the existence of Si-Ge intermixing due to out-diffusion of Si into Ge region. On a rapid melting process, Ge melts and reaches the thermal equilibrium in short time. Si at Ge/Si interface begins to dissolve once in contact with the molten Ge to produce Si-Ge intermixing. The Si fraction in Si-Ge intermixing was calculated by taking into account the intensity ratio of Ge-Ge and Si-Ge vibration mode peaks and was found to increase with the annealing temperatures. It is found that the strain turns from tensile to compressive as the annealing temperature increases. The Si fraction dependent thermal expansion coefficient of SixGe1−x is a possible cause to generate such strain behavior. The understanding of compositional and strain characteristics is important in Ge/Si heterostructure as these properties seem to give significant effects in device performance. PMID:28788521

  15. The Effects of Annealing Temperatures on Composition and Strain in SixGe1−x Obtained by Melting Growth of Electrodeposited Ge on Si (100

    Directory of Open Access Journals (Sweden)

    Mastura Shafinaz Zainal Abidin

    2014-02-01

    Full Text Available The effects of annealing temperatures on composition and strain in SixGe1−x, obtained by rapid melting growth of electrodeposited Ge on Si (100 substrate were investigated. Here, a rapid melting process was performed at temperatures of 1000, 1050 and 1100 °C for 1 s. All annealed samples show single crystalline structure in (100 orientation. A significant appearance of Si-Ge vibration mode peak at ~400 cm−1 confirms the existence of Si-Ge intermixing due to out-diffusion of Si into Ge region. On a rapid melting process, Ge melts and reaches the thermal equilibrium in short time. Si at Ge/Si interface begins to dissolve once in contact with the molten Ge to produce Si-Ge intermixing. The Si fraction in Si-Ge intermixing was calculated by taking into account the intensity ratio of Ge-Ge and Si-Ge vibration mode peaks and was found to increase with the annealing temperatures. It is found that the strain turns from tensile to compressive as the annealing temperature increases. The Si fraction dependent thermal expansion coefficient of SixGe1−x is a possible cause to generate such strain behavior. The understanding of compositional and strain characteristics is important in Ge/Si heterostructure as these properties seem to give significant effects in device performance.

  16. Pulse shape discrimination performance of inverted coaxial Ge detectors

    Science.gov (United States)

    Domula, A.; Hult, M.; Kermaïdic, Y.; Marissens, G.; Schwingenheuer, B.; Wester, T.; Zuber, K.

    2018-05-01

    We report on the characterization of two inverted coaxial Ge detectors in the context of being employed in future 76Ge neutrinoless double beta (0 νββ) decay experiments. It is an advantage that such detectors can be produced with bigger Ge mass as compared to the planar Broad Energy Ge (BEGe) or p-type Point Contact (PPC) detectors that are currently used in the GERDA and MAJORANA DEMONSTRATOR 0 νββ decay experiments respectively. This will result in a lower background for the search of 0 νββ decay due to a reduction of detector surface to volume ratio, cables, electronics and holders which are dominating nearby radioactive sources. The measured resolution near the 76Ge Q-value at 2039 keV is 2.3 keV FWHM and their pulse-shape discrimination of background events are similar to BEGe and PPC detectors. It is concluded that this type of Ge-detector is suitable for usage in 76Ge 0 νββ decay experiments.

  17. Photoluminescence of phosphorus atomic layer doped Ge grown on Si

    Science.gov (United States)

    Yamamoto, Yuji; Nien, Li-Wei; Capellini, Giovanni; Virgilio, Michele; Costina, Ioan; Schubert, Markus Andreas; Seifert, Winfried; Srinivasan, Ashwyn; Loo, Roger; Scappucci, Giordano; Sabbagh, Diego; Hesse, Anne; Murota, Junichi; Schroeder, Thomas; Tillack, Bernd

    2017-10-01

    Improvement of the photoluminescence (PL) of Phosphorus (P) doped Ge by P atomic layer doping (ALD) is investigated. Fifty P delta layers of 8 × 1013 cm-2 separated by 4 nm Ge spacer are selectively deposited at 300 °C on a 700 nm thick P-doped Ge buffer layer of 1.4 × 1019 cm-3 on SiO2 structured Si (100) substrate. A high P concentration region of 1.6 × 1020 cm-3 with abrupt P delta profiles is formed by the P-ALD process. Compared to the P-doped Ge buffer layer, a reduced PL intensity is observed, which might be caused by a higher density of point defects in the P delta doped Ge layer. The peak position is shifted by ˜0.1 eV towards lower energy, indicating an increased active carrier concentration in the P-delta doped Ge layer. By introducing annealing at 400 °C to 500 °C after each Ge spacer deposition, P desorption and diffusion is observed resulting in relatively uniform P profiles of ˜2 × 1019 cm-3. Increased PL intensity and red shift of the PL peak are observed due to improved crystallinity and higher active P concentration.

  18. Monolithically Integrated Ge-on-Si Active Photonics

    Directory of Open Access Journals (Sweden)

    Jifeng Liu

    2014-07-01

    Full Text Available Monolithically integrated, active photonic devices on Si are key components in Si-based large-scale electronic-photonic integration for future generations of high-performance, low-power computation and communication systems. Ge has become an interesting candidate for active photonic devices in Si photonics due to its pseudo-direct gap behavior and compatibility with Si complementary metal oxide semiconductor (CMOS processing. In this paper, we present a review of the recent progress in Ge-on-Si active photonics materials and devices for photon detection, modulation, and generation. We first discuss the band engineering of Ge using tensile strain, n-type doping, Sn alloying, and separate confinement of Γ vs. L electrons in quantum well (QW structures to transform the material towards a direct band gap semiconductor for enhancing optoelectronic properties. We then give a brief overview of epitaxial Ge-on-Si materials growth, followed by a summary of recent investigations towards low-temperature, direct growth of high crystallinity Ge and GeSn alloys on dielectric layers for 3D photonic integration. Finally, we review the most recent studies on waveguide-integrated Ge-on-Si photodetectors (PDs, electroabsorption modulators (EAMs, and laser diodes (LDs, and suggest possible future research directions for large-scale monolithic electronic-photonic integrated circuits on a Si platform.

  19. GeNF - Experimental report 2008

    Energy Technology Data Exchange (ETDEWEB)

    Pranzas, Philipp Klaus; Mueller, Martin; Willumeit, Regine; Schreyer, Andreas [GKSS-Forschungszentrum Geesthacht GmbH (Germany). Inst. fuer Materialforschung

    2009-12-11

    At the Geesthacht Neutron Facility GeNF about 182 experiments were performed in 2008 by GKSS and by or for external users, partners or contractors. In most cases the measurements were performed and analysed in cooperation by the guests, by GKSS staff or by the permanent external user group staff. The activities, which are based on a proposal procedure and on the in house R and D program, are reported in 76 contributions in the present annual experimental report for the year 2008. The contributions may contain several combined experiments. During 2008 the GKSS research reactor FRG-1 achieved an operation time of 175 days at the full 5 MW reactor power providing a neutron flux of ca. 1.4.10{sup 14} thermal neutrons/cm{sup 2} s. The focus of the in house R and D work at GeNF instruments in 2008 was the characterisation of nanostructures in engineering materials, the analysis of stresses and textures in welds and technical structures at SANS-2, DCD, ARES-2 and TEX-2, the structural investigation of hydrogen containing substances such as polymers, colloids and biological macromolecules at SANS-1 as well as the characterisation of magnetic thin films at NeRo, PNR, POLDI and ROeDI. The modern experiment control hardware (e.g. sample environments, like magnets, cryostats or furnaces) and software based on LabView was continuously improved on all instruments. In the appendices I and II the experimental reports of the GKSS outstation at the FRM II are attached as well as of the GKSS outstation at DESY. The massive activity at the FRM II outstation is documented by the increasing number of REFSANS reports, accumulated to nine. Three reports show the activities of GKSS in the field of texture measurement at the instrument STRESS-SPEC. The instrument HARWI II at the synchrotron storage ring DORIS III at DESY is accepted very well by the community and is heavily overbooked in all fields (tomography, diffraction, etc.). After an 8-month shutdown period for an upgrade in the frame

  20. GeNF - Experimental report 2008

    International Nuclear Information System (INIS)

    Pranzas, Philipp Klaus; Mueller, Martin; Willumeit, Regine; Schreyer, Andreas

    2009-01-01

    At the Geesthacht Neutron Facility GeNF about 182 experiments were performed in 2008 by GKSS and by or for external users, partners or contractors. In most cases the measurements were performed and analysed in cooperation by the guests, by GKSS staff or by the permanent external user group staff. The activities, which are based on a proposal procedure and on the in house R and D program, are reported in 76 contributions in the present annual experimental report for the year 2008. The contributions may contain several combined experiments. During 2008 the GKSS research reactor FRG-1 achieved an operation time of 175 days at the full 5 MW reactor power providing a neutron flux of ca. 1.4.10 14 thermal neutrons/cm 2 s. The focus of the in house R and D work at GeNF instruments in 2008 was the characterisation of nanostructures in engineering materials, the analysis of stresses and textures in welds and technical structures at SANS-2, DCD, ARES-2 and TEX-2, the structural investigation of hydrogen containing substances such as polymers, colloids and biological macromolecules at SANS-1 as well as the characterisation of magnetic thin films at NeRo, PNR, POLDI and ROeDI. The modern experiment control hardware (e.g. sample environments, like magnets, cryostats or furnaces) and software based on LabView was continuously improved on all instruments. In the appendices I and II the experimental reports of the GKSS outstation at the FRM II are attached as well as of the GKSS outstation at DESY. The massive activity at the FRM II outstation is documented by the increasing number of REFSANS reports, accumulated to nine. Three reports show the activities of GKSS in the field of texture measurement at the instrument STRESS-SPEC. The instrument HARWI II at the synchrotron storage ring DORIS III at DESY is accepted very well by the community and is heavily overbooked in all fields (tomography, diffraction, etc.). After an 8-month shutdown period for an upgrade in the frame of the

  1. GeNF - Experimental report 2007

    Energy Technology Data Exchange (ETDEWEB)

    Pranzas, P K; Schreyer, A; Willumeit, R [GKSS-Forschungszentrum Geesthacht GmbH (Germany). Inst. fuer Materialforschung

    2008-11-05

    At the Geesthacht Neutron Facility GeNF about 203 experiments were performed in 2007 by GKSS and by or for external users, partners or contractors. In most cases the measurements were performed and analysed in cooperation by the guests and by the GKSS staff or by the permanent external user group staff. The activities, which are based on a proposal procedure and on the in house R and D program, are reported in 70 contributions in the present annual experimental report for the year 2007. The contributions may contain one or also several combined experiments. During 2007 the GKSS research reactor FRG-1 achieved an operation time of 204 days at the full 5 MW reactor power providing a neutron flux of ca. 1.4 x 10{sup 14} thermal neutrons/cm{sup 2}s. In May/June 2007 the FRG-1 was upgraded with a new cold neutron source yielding a flux increase at the five instruments using cold neutrons of up to 40 %. The focus of the in house R and D work at GeNF instruments in 2007 was the characterisation of nano-structures in engineering materials, the analysis of stresses and textures in welds and technical structures at SANS-2, DCD, ARES-2 and TEX-2, the structural investigation of hydrogen containing substances such as polymers, colloids and biological macromolecules at SANS-1 as well as the characterisation of magnetic thin films at NeRo, PNR, POLDI and ROeDI. The modern experiment control hardware and software based on LabView was continuously improved on all instruments. In the appendices I and II the experimental reports of the GKSS outstation at the FRM II are attached as well as of the GKSS outstation at DESY. At the neutron reflectometer REFSANS at FRM II measurements are possible using a broad range of the scattering vector with reflectivities up to 10{sup -7}. Three reports show the activities of GKSS in the field of texture measurement at the instrument STRESS-SPEC. The instrument HARWI II at DESY is accepted very well by the community and is overbooked in all fields

  2. GeNF - Experimental report 2007

    International Nuclear Information System (INIS)

    Pranzas, P.K.; Schreyer, A.; Willumeit, R.

    2008-01-01

    At the Geesthacht Neutron Facility GeNF about 203 experiments were performed in 2007 by GKSS and by or for external users, partners or contractors. In most cases the measurements were performed and analysed in cooperation by the guests and by the GKSS staff or by the permanent external user group staff. The activities, which are based on a proposal procedure and on the in house R and D program, are reported in 70 contributions in the present annual experimental report for the year 2007. The contributions may contain one or also several combined experiments. During 2007 the GKSS research reactor FRG-1 achieved an operation time of 204 days at the full 5 MW reactor power providing a neutron flux of ca. 1.4 x 10 14 thermal neutrons/cm 2 s. In May/June 2007 the FRG-1 was upgraded with a new cold neutron source yielding a flux increase at the five instruments using cold neutrons of up to 40 %. The focus of the in house R and D work at GeNF instruments in 2007 was the characterisation of nano-structures in engineering materials, the analysis of stresses and textures in welds and technical structures at SANS-2, DCD, ARES-2 and TEX-2, the structural investigation of hydrogen containing substances such as polymers, colloids and biological macromolecules at SANS-1 as well as the characterisation of magnetic thin films at NeRo, PNR, POLDI and ROeDI. The modern experiment control hardware and software based on LabView was continuously improved on all instruments. In the appendices I and II the experimental reports of the GKSS outstation at the FRM II are attached as well as of the GKSS outstation at DESY. At the neutron reflectometer REFSANS at FRM II measurements are possible using a broad range of the scattering vector with reflectivities up to 10 -7 . Three reports show the activities of GKSS in the field of texture measurement at the instrument STRESS-SPEC. The instrument HARWI II at DESY is accepted very well by the community and is overbooked in all fields (tomography

  3. Efficient tunable luminescence of SiGe alloy sheet polymers

    International Nuclear Information System (INIS)

    Vogg, G.; Meyer, A. J.-P.; Miesner, C.; Brandt, M. S.; Stutzmann, M.

    2001-01-01

    Crystalline SiGe alloy sheet polymers were topotactically prepared from epitaxially grown calcium germanosilicide Ca(Si 1-x Ge x ) 2 precursor films in the whole composition range. These polygermanosilynes are found to be a well-defined mixture of the known siloxene and polygermyne sheet polymers with the OH groups exclusively bonded to silicon. The optical properties determined by photoluminescence and optical reflection measurements identify the mixed SiGe sheet polymers as direct semiconductors with efficient luminescence tunable in the energy range between 2.4 and 1.3 eV. [copyright] 2001 American Institute of Physics

  4. A CoGeNT confirmation of the DAMA signal

    International Nuclear Information System (INIS)

    Foot, R.

    2010-01-01

    The CoGeNT Collaboration has recently reported a rising low energy spectrum in their ultra low noise Germanium detector. This is particularly interesting as the energy range probed by CoGeNT overlaps with the energy region in which DAMA has observed their annual modulation signal. We show that the mirror dark matter candidate can simultaneously explain both the DAMA annual modulation signal and the rising low energy spectrum observed by CoGeNT. This constitutes a model dependent confirmation of the DAMA signal and adds weight to the mirror dark matter paradigm.

  5. Development of high responsivity Ge:Ga photoconductors

    International Nuclear Information System (INIS)

    Haegel, N.M.; Hueschen, M.R.; Haller, E.E.

    1984-06-01

    Czochralski-grown gallium-doped germanium (Ge:Ga) single crystal samples with a compensation of 10 -4 have been modified by the indiffusion of Cu to produce photoconductors which provide NEPs comparable to current optimum Ge:Ga detectors, but exhibit responsivities a factor of 5 to 6 times higher when tested at a background photon flux of 10 8 photons/sec at lambda=93 μm. The introduction of Cu, a triple acceptor in Ge which acts as a neutral scattering center, reduces carrier mobility and extends the breakdown field significantly in this ultra-low compensation material

  6. Spin-polarized photoemission from SiGe heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Ferrari, A.; Bottegoni, F.; Isella, G.; Cecchi, S.; Chrastina, D.; Finazzi, M.; Ciccacci, F. [LNESS-Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano (Italy)

    2013-12-04

    We apply the principles of Optical Orientation to measure by Mott polarimetry the spin polarization of electrons photoemitted from different group-IV heterostructures. The maximum measured spin polarization, obtained from a Ge/Si{sub 0.31}Ge{sub 0.69} strained film, undoubtedly exceeds the maximum value of 50% attainable in bulk structures. The explanation we give for this result lies in the enhanced band orbital mixing between light hole and split-off valence bands as a consequence of the compressive strain experienced by the thin Ge layer.

  7. Soft chemistry routes to GeS2 nanoparticles

    Science.gov (United States)

    Courthéoux, Laurence; Mathiaud, Romain; Ribes, Michel; Pradel, Annie

    2018-04-01

    Spherical GeS2 particles are prepared by a low temperature liquid route with TEOG as germanium precursor and either H2S or thioacetamide (TAA) as sulfur precursors. The size and agglomeration of the particles change depending upon the temperature and nature of the solvent. Most synthesis lead to preparing amorphous GeS2. When the reaction kinetic is slowed down by using TAA at 25 °C, the obtained GeS2 product presents a larger order in the range of few Å as proven by Raman spectroscopy, even though it is still an amorphous compound as suggested by X-Ray diffraction and TEM experiments.

  8. Gadolinium scandium germanide, Gd2Sc3Ge4

    Directory of Open Access Journals (Sweden)

    Sumohan Misra

    2009-04-01

    Full Text Available Gd2Sc3Ge4 adopts the orthorhombic Pu5Rh4-type structure. The crystal structure contains six sites in the asymmetric unit: two sites are statistically occupied by rare-earth atoms with Gd:Sc ratios of 0.967 (4:0.033 (4 and 0.031 (3:0.969 (3, one site (.m. symmetry is occupied by Sc atoms, and three distinct sites (two of which with .m. symmetry are occupied by Ge atoms. The rare-earth atoms form two-dimensional slabs with Ge atoms occupying the trigonal-prismatic voids.

  9. Muonium hyperfine parameters in Si1-x Ge x alloys

    International Nuclear Information System (INIS)

    King, Philip; Lichti, Roger; Cottrell, Stephen; Yonenaga, Ichiro

    2006-01-01

    We present studies of muonium behaviour in bulk, Czochralski-grown Si 1- x Ge x alloy material, focusing in particular on the hyperfine parameter of the tetrahedral muonium species. In contrast to the bond-centred species, the hyperfine parameter of the tetrahedral-site muonium centre (Mu T ) appears to vary non-linearly with alloy composition. The temperature dependence of the Mu T hyperfine parameter observed in low-Ge alloy material is compared with that seen in pure Si, and previous models of the Mu T behaviour in Si are discussed in the light of results from Si 1- x Ge x alloys

  10. Applications of Si/SiGe heterostructures to CMOS devices

    International Nuclear Information System (INIS)

    Sidek, R.M.

    1999-03-01

    For more than two decades, advances in MOSFETs used in CMOS VLSI applications have been made through scaling to ever smaller dimensions for higher packing density, faster circuit speed and lower power dissipation. As scaling now approaches nanometer regime, the challenge for further scaling becomes greater in terms of technology as well as device reliability. This work presents an alternative approach whereby non-selectively grown Si/SiGe heterostructure system is used to improve device performance or to relax the technological challenge. SiGe is considered to be of great potential because of its promising properties and its compatibility with Si, the present mainstream material in microelectronics. The advantages of introducing strained SiGe in CMOS technology are examined through two types of device structure. A novel structure has been fabricated in which strained SiGe is incorporated in the source/drain of P-MOSFETs. Several advantages of the Si/SiGe source/drain P-MOSFETs over Si devices are experimentally, demonstrated for the first time. These include reduction in off-state leakage and punchthrough susceptibility, degradation of parasitic bipolar transistor (PBT) action, suppression of CMOS latchup and suppression of PBT-induced breakdown. The improvements due to the Si/SiGe heterojunction are supported by numerical simulations. The second device structure makes use of Si/SiGe heterostructure as a buried channel to enhance the hole mobility of P-MOSFETs. The increase in the hole mobility will benefit the circuit speed and device packing density. Novel fabrication processes have been developed to integrate non-selective Si/SiGe MBE layers into self-aligned PMOS and CMOS processes based on Si substrate. Low temperature processes have been employed including the use of low-pressure chemical vapor deposition oxide and plasma anodic oxide. Low field mobilities, μ 0 are extracted from the transfer characteristics, Id-Vg of SiGe channel P-MOSFETs with various Ge

  11. High-pressure structural behaviour of nanocrystalline Ge

    International Nuclear Information System (INIS)

    Wang, H; Liu, J F; He, Y; Wang, Y; Chen, W; Jiang, J Z; Olsen, J Staun; Gerward, L

    2007-01-01

    The equation of state and the pressure of the I-II transition have been studied for nanocrystalline Ge using synchrotron x-ray diffraction. The bulk modulus and the transition pressure increase with decreasing particle size for both Ge-I and Ge-II, but the percentage volume collapse at the transition remains constant. Simplified models for the high-pressure structural behaviour are presented, based on the assumption that a large fraction of the atoms reside in grain boundary regions of the nanocrystalline material. The interface structure plays a significant role in affecting the transition pressure and the bulk modulus

  12. Interaction of slow neutrons with 74Ge single crystals

    International Nuclear Information System (INIS)

    Pshenichnyj, V.A.; Pak En Men; Vorobkalo, F.M.; Vertebnyj, V.P.

    1986-01-01

    The total cross section of monocrystal from germanium-74 isotope by the time-of-flight method in the 0.017-10 eV range is measured. At room temperatures the above monocrystal possesses the capability of separating from the white reactor spectrum intensive beams of thermal neutrons. It is shown that the 74 Ge monocrystal by its filtering properties approaches to the Si monocrystal. The observed cross sections for Si, Ge, 74 Ge monocrystals in the thermal region of neutron energy are indicated in the study

  13. Recent progress in GeSi electro-absorption modulators

    International Nuclear Information System (INIS)

    Chaisakul, Papichaya; Marris-Morini, Delphine; Rouifed, Mohamed-Said; Coudevylle, Jean-René; Roux, Xavier Le; Edmond, Samson; Vivien, Laurent; Frigerio, Jacopo; Chrastina, Daniel; Isella, Giovanni

    2014-01-01

    Electro-absorption from GeSi heterostructures is receiving growing attention as a high performance optical modulator for short distance optical interconnects. Ge incorporation with Si allows strong modulation mechanism using the Franz–Keldysh effect and the quantum-confined Stark effect from bulk and quantum well structures at telecommunication wavelengths. In this review, we discuss the current state of knowledge and the on-going challenges concerning the development of high performance GeSi electro-absorption modulators. We also provide feasible future prospects concerning this research topic. (review)

  14. The metallization of Ge-doped plastics

    International Nuclear Information System (INIS)

    Huser, G.; Recoules, V.; Salin, G.; Galmiche, D.; Ozaki, N.; Miyanishi, K.; Kodama, R.; Sano, T.; Sakawa, Y.

    2013-01-01

    Ge-doped plastics are used in inertial fusion targets. Doped plastics are complex mixtures and the validation of their properties in a broad range of thermodynamic conditions requires an experimental validation. The metallization of plastics appears when shock waves generated by power lasers create pressures around 10 6 bar and temperatures around 10.000 K. The shock front propagating in the plastic becomes reflective. We have performed experiments to test the mathematical models describing the compressibility of such materials. We have compared the Thomas-Fermi model that is implemented in the QEOS formalism (Quotidian Equation of State) with 2 other models: the Sommerfeld metal model and a model that allows the closure of the semi-conducting gap. It appears that the Thomas-Fermi model predicts satisfactorily the compressibility of a mixture compressed at a few 10 6 bars, but over-estimates the average ionisation by a factor up to 10 which leads to an over-estimation of the metallization step

  15. Antimony segregation in Ge and formation of n-type selectively doped Ge films in molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Yurasov, D. V., E-mail: Inquisitor@ipm.sci-nnov.ru; Antonov, A. V.; Drozdov, M. N.; Schmagin, V. B.; Novikov, A. V. [Institute for Physics of Microstructures, Russian Academy of Sciences, GSP-105, 603950 Nizhny Novgorod (Russian Federation); Lobachevsky State University of Nizhni Novgorod, 23 Prospekt Gagarina, 603950 Nizhny Novgorod (Russian Federation); Spirin, K. E. [Institute for Physics of Microstructures, Russian Academy of Sciences, GSP-105, 603950 Nizhny Novgorod (Russian Federation)

    2015-10-14

    Antimony segregation in Ge(001) films grown by molecular beam epitaxy was studied. A quantitative dependence of the Sb segregation ratio in Ge on growth temperature was revealed experimentally and modeled theoretically taking into account both the terrace-mediated and step-edge-mediated segregation mechanisms. A nearly 5-orders-of-magnitude increase in the Sb segregation ratio in a relatively small temperature range of 180–350 °C was obtained, which allowed to form Ge:Sb doped layers with abrupt boundaries and high crystalline quality using the temperature switching method that was proposed earlier for Si-based structures. This technique was employed for fabrication of different kinds of n-type Ge structures which can be useful for practical applications like heavily doped n{sup +}-Ge films or δ-doped layers. Estimation of the doping profiles sharpness yielded the values of 2–5 nm per decade for the concentration gradient at the leading edge and 2–3 nm for the full-width-half-maximum of the Ge:Sb δ-layers. Electrical characterization of grown Ge:Sb structures revealed nearly full electrical activation of Sb atoms and the two-dimensional nature of charge carrier transport in δ-layers.

  16. Single ferromagnetic fluctuations in UCoGe revealed by 73Ge- and 59Co-NMR studies

    Science.gov (United States)

    Manago, Masahiro; Ishida, Kenji; Aoki, Dai

    2018-02-01

    73Ge and 59Co nuclear magnetic resonance (NMR) and nuclear quadrupole resonance (NQR) measurements have been performed on a 73Ge-enriched single-crystalline sample of the ferromagnetic superconductor UCoGe in the paramagnetic state. The 73Ge NQR parameters deduced from NQR and NMR are close to those of another isostructural ferromagnetic superconductor URhGe. The Knight shifts of the Ge and Co sites are well scaled to each other when the magnetic field is parallel to the b or c axis. The hyperfine coupling constants of Ge are estimated to be close to those of Co. The large difference of spin susceptibilities between the a and b axes could lead to the different response of the superconductivity and ferromagnetism with the field parallel to these directions. The temperature dependence of the nuclear spin-lattice relaxation rates 1 /T1 at the two sites is similar to each other above 5 K. These results indicate that the itinerant U-5 f electrons are responsible for the ferromagnetism in this compound, consistent with previous studies. The similarities and differences in the three ferromagnetic superconductors are discussed.

  17. Intermixing between HfO2 and GeO2 films deposited on Ge(001) and Si(001): Role of the substrate

    International Nuclear Information System (INIS)

    Soares, G. V.; Krug, C.; Miotti, L.; Bastos, K. P.; Lucovsky, G.; Baumvol, I. J. R.; Radtke, C.

    2011-01-01

    Thermally driven atomic transport in HfO 2 /GeO 2 /substrate structures on Ge(001) and Si(001) was investigated in N 2 ambient as function of annealing temperature and time. As-deposited stacks showed no detectable intermixing and no instabilities were observed on Si. On Ge, loss of O and Ge was detected in all annealed samples, presumably due to evolution of GeO from the GeO 2 /Ge interface. In addition, hafnium germanate is formed at 600 deg. C. Our data indicate that at 500 deg. C and above HfO 2 /GeO 2 stacks are stable only if isolated from the Ge substrate.

  18. Luminescence of one dimensional ZnO, GeO{sub 2}–Zn{sub 2}GeO{sub 4} nanostructure through thermal evaporation of Zn and Ge powder mixture

    Energy Technology Data Exchange (ETDEWEB)

    Pham, Vuong-Hung, E-mail: vuong.phamhung@hust.edu.vn; Kien, Vu Trung; Tam, Phuong Dinh; Huy, Pham Thanh

    2016-07-15

    Graphical abstract: - Highlights: • ZnO and GeO{sub 2}–ZnGeO{sub 4} nanowires were fabricated by thermal evaporation of Zn and Ge powder mixture. • Morphology of specimens were observed to have a nanowire structure to rod-like morphology. • Strong NBE emission band with suppressed visible green emission band were observed on the dominant ZnO nanowires. • Strong emission of ∼530 nm were observed on the GeO{sub 2}–Zn{sub 2}GeO{sub 4} nanowires. - Abstract: This paper reports the first attempt for fabrication of thermal evaporated Zn–Ge powder mixture to achieve near-band-edge (NBE) emission of ZnO and visible emission of GeO{sub 2}–Zn{sub 2}GeO{sub 4} nanowires with controllable intensities. The nanowires were fabricated by thermal evaporation of Zn and Ge powder mixture, particularly, by using different Zn:Ge ratio, temperature and evaporated times. The morphology of nanowires was depended on the Zn and Ge ratio that was observed to have a nanowire structure to rod-like morphology. The thermal evaporation of Zn:Ge powder mixture resulted in formation of dominant ZnO or GeO{sub 2}–Zn{sub 2}GeO{sub 4} nanowires as a function of evaporated parameters. These results suggest that the application of thermal evaporation of Zn and Ge mixture for potential application in synthesis of ZnO or GeO{sub 2}–Zn{sub 2}GeO{sub 4} nanowires for optoelectronic field.

  19. Sn-based Ge/Ge{sub 0.975}Sn{sub 0.025}/Ge p-i-n photodetector operated with back-side illumination

    Energy Technology Data Exchange (ETDEWEB)

    Chang, C.; Li, H.; Huang, S. H.; Cheng, H. H., E-mail: hhcheng@ntu.edu.tw [Center for Condensed Matter Sciences and Graduate Institute of Electronics Engineering, National Taiwan University, Taipei 106, Taiwan (China); Sun, G.; Soref, R. A. [Department of Engineering, University of Massachusetts Boston, Boston, Massachusetts 02125 (United States)

    2016-04-11

    We report an investigation of a GeSn-based p-i-n photodetector grown on a Ge wafer that collects light signal from the back of the wafer. Temperature dependent absorption measurements performed over a wide temperature range (300 K down to 25 K) show that (a) absorption starts at the indirect bandgap of the active GeSn layer and continues up to the direct bandgap of the Ge wafer, and (b) the peak responsivity increases rapidly at first with decreasing temperature, then increases more slowly, followed by a decrease at the lower temperatures. The maximum responsivity happens at 125 K, which can easily be achieved with the use of liquid nitrogen. The temperature dependence of the photocurrent is analyzed by taking into consideration of the temperature dependence of the electron and hole mobility in the active layer, and the analysis result is in reasonable agreement with the data in the temperature regime where the rapid increase occurs. This investigation demonstrates the feasibility of a GeSn-based photodiode that can be operated with back-side illumination for applications in image sensing systems.

  20. Atomic layer-by-layer oxidation of Ge (100) and (111) surfaces by plasma post oxidation of Al2O3/Ge structures

    International Nuclear Information System (INIS)

    Zhang, Rui; Huang, Po-Chin; Lin, Ju-Chin; Takenaka, Mitsuru; Takagi, Shinichi

    2013-01-01

    The ultrathin GeO x /Ge interfaces formed on Ge (100) and (111) surfaces by applying plasma post oxidation to thin Al 2 O 3 /Ge structures are characterized in detail using X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy. It is found that the XPS signals assigned to Ge 1+ and the 2+ states in the GeO x layers by post plasma oxidation have oscillating behaviors on Ge (100) surfaces in a period of ∼0.3 nm with an increase in the GeO x thickness. Additionally, the oscillations of the signals assigned to Ge 1+ and 2+ states show opposite phase to each other. The similar oscillation behaviors are also confirmed on Ge (111) surfaces for Ge 1+ and 3+ states in a period of ∼0.5 nm. These phenomena can be strongly regarded as an evidence of the atomic layer-by-layer oxidation of GeO x /Ge interfaces on Ge (100) and (111) surfaces.

  1. Organo-Zintl-based superatoms: [Ge9(CHO)3] and [Ge9(CHO)

    Science.gov (United States)

    Reddy, G. Naaresh; Jena, Puru; Giri, Santanab

    2017-10-01

    A systematic study, based on density functional theory and different hybrid functionals for exchange-correlation potential, shows that the electron affinities of organo-zintl clusters [Ge9(R)n] [R = CHO; n = 1, 3] are close to that of chlorine (3.6 eV) and iodine (3.0 eV). A detailed study of the molecular orbitals of these complexes, when compared to those of Al13-, Cl- and I-, confirm that they behave as superatoms, mimicking the chemistry of halogens. This study expands the scope of superatoms by including a new class of pseudo-halogens based on ligated organo-Zintl ions.

  2. Increasing the thermoelectric power factor of Ge17Sb2Te20 by adjusting the Ge/Sb ratio

    Science.gov (United States)

    Williams, Jared B.; Mather, Spencer P.; Page, Alexander; Uher, Ctirad; Morelli, Donald T.

    2017-07-01

    We have investigated the thermoelectric properties of Ge17Sb2Te20. This compound is a known phase change material with electronic properties that depend strongly on temperature. The thermoelectric properties of this compound can be tuned by altering the stoichiometry of Ge and Sb without the use of additional foreign elements during synthesis. This tuning results in a 26% increase in the thermoelectric power factor at 723 K. Based on a single parabolic band model we show that the pristine material is optimally doped, and thus, a reduction in the lattice thermal conductivity of pure Ge17Sb2Te20 should result in an enhanced thermoelectric figure of merit.

  3. Electrical circuit model of ITO/AZO/Ge photodetector

    Directory of Open Access Journals (Sweden)

    Malkeshkumar Patel

    2017-10-01

    Full Text Available In this data article, ITO/AZO/Ge photodetector was investigated for electrical circuit model. Due to the double (ITO and AZO transparent metal-oxide films (DOI:10.1016/j.mssp.2016.03.007 (Yun et al., 2016 [1], the Ge heterojunction device has a better interface quality due to the AZO layer with a low electrical resistance due to the ITO layer (Yun et al., 2015 [2]. The electrical and interfacial benefitted ITO/AZO/Ge heterojunction shows the quality Schottky junction. In order to investigate the device, the ITO/AZO/Ge heterojunction was analyzed by R–C circuit model using the impedance spectroscopy.

  4. The Role of Surface Passivation in Controlling Ge Nanowire Faceting.

    Science.gov (United States)

    Gamalski, A D; Tersoff, J; Kodambaka, S; Zakharov, D N; Ross, F M; Stach, E A

    2015-12-09

    In situ transmission electron microscopy observations of nanowire morphologies indicate that during Au-catalyzed Ge nanowire growth, Ge facets can rapidly form along the nanowire sidewalls when the source gas (here, digermane) flux is decreased or the temperature is increased. This sidewall faceting is accompanied by continuous catalyst loss as Au diffuses from the droplet to the wire surface. We suggest that high digermane flux and low temperatures promote effective surface passivation of Ge nanowires with H or other digermane fragments inhibiting diffusion and attachment of Au and Ge on the sidewalls. These results illustrate the essential roles of the precursor gas and substrate temperature in maintaining nanowire sidewall passivation, necessary to ensure the growth of straight, untapered, ⟨111⟩-oriented nanowires.

  5. Physics with polarized beams above GeV region

    International Nuclear Information System (INIS)

    Yokosawa, A.

    1980-01-01

    During the past several years many exciting and unexpected results have been observed in experiments with polarized beams. Those results are reviewed briefly. A new polarized beam line up to 600 GeV/c is also discussed. 4 figures

  6. Preparing for 1000 GeV physics at Fermilab

    International Nuclear Information System (INIS)

    Anon.

    1980-01-01

    The superconducting proton beams and the neutrino beams at Fermilab prepared for the research with 1000 GeV colliding proton and antiproton beams are described. Especially a new developed helium transfer line is described. (HSI).

  7. Fabrication of prototypes of Ge(li) semiconductor detector

    International Nuclear Information System (INIS)

    Santos, W.M.S.; Marti, G.V.; Rizzo, P.; Barros, S. de.

    1987-01-01

    The fabrication process of Ge(Li) semiconductor detector prototypes, from specific chemical treatments of doped monocrystal with receptor impurities (p + semicondutor) is presented. The detector characteristics, such as resulotion and operation tension are shown. (M.C.K.) [pt

  8. Cross-correlation analysis of Ge/Li/ spectra

    International Nuclear Information System (INIS)

    MacDonald, R.; Robertson, A.; Kennett, T.J.; Prestwich, W.V.

    1974-01-01

    A sensitive technique is proposed for activation analysis using cross-correlation and improved spectral orthogonality achieved through use of a rectangular zero area digital filter. To test the accuracy and reliability of the cross-correlation procedure five spectra obtained with a Ge/Li detector were combined in different proportions. Gaussian distributed statistics were then added to the composite spectra by means of a pseudo-random number generator. The basis spectra used were 76 As, 82 Br, 72 Ga, 77 Ge, and room background. In general, when the basis spectra were combined in roughly comparable proportions the accuracy of the techique proved to be excelent (>1%). However, of primary importance was the ability of the correlation technique to identify low intensity components in the presence of high intensity components. It was found that the detection threshold for Ge, for example, was not reached until the Ge content in the unfiltered spectrum was <0.16%. (T.G.)

  9. arXiv Charged Fermions Below 100 GeV

    CERN Document Server

    Egana-Ugrinovic, Daniel; Ruderman, Joshua T.

    2018-05-03

    How light can a fermion be if it has unit electric charge? We revisit the lore that LEP robustly excludes charged fermions lighter than about 100 GeV. We review LEP chargino searches, and find them to exclude charged fermions lighter than 90 GeV, assuming a higgsino-like cross section. However, if the charged fermion couples to a new scalar, destructive interference among production channels can lower the LEP cross section by a factor of 3. In this case, we find that charged fermions as light as 75 GeV can evade LEP bounds, while remaining consistent with constraints from the LHC. As the LHC collects more data, charged fermions in the 75–100 GeV mass range serve as a target for future monojet and disappearing track searches.

  10. Growth strategies to control tapering in Ge nanowires

    Directory of Open Access Journals (Sweden)

    P. Periwal

    2014-04-01

    Full Text Available We report the effect of PH3 on the morphology of Au catalyzed Ge nanowires (NWs. Ge NWs were grown on Si (111 substrate at 400 °C in the presence of PH3, using vapor-liquid-solid method by chemical vapor deposition. We show that high PH3/GeH4 ratio causes passivation at NW surface. At high PH3 concentration phosphorous atoms attach itself on NW surface and form a self-protection coating that prevents conformal growth and leads to taper free nanostructures. However, in case of low PH3 flux the combination of axial and radial growth mechanism occurs resulting in conical structure. We have also investigated axial PH3-intrinsic junctions in Ge NWs. The unusual NW shape is attributed to a combination of catalyzed, uncatalyzed and diffusion induced growth.

  11. Annealing-induced Ge/Si(100) island evolution

    International Nuclear Information System (INIS)

    Zhang Yangting; Drucker, Jeff

    2003-01-01

    Ge/Si(100) islands were found to coarsen during in situ annealing at growth temperature. Islands were grown by molecular-beam epitaxy of pure Ge and annealed at substrate temperatures of T=450, 550, 600, and 650 deg. C, with Ge coverages of 6.5, 8.0, and 9.5 monolayers. Three coarsening mechanisms operate in this temperature range: wetting-layer consumption, conventional Ostwald ripening, and Si interdiffusion. For samples grown and annealed at T=450 deg. C, consumption of a metastably thick wetting layer causes rapid initial coarsening. Slower coarsening at longer annealing times occurs by conventional Ostwald ripening. Coarsening of samples grown and annealed at T=550 deg. C occurs via a combination of Si interdiffusion and conventional Ostwald ripening. For samples grown and annealed at T≥600 deg. C, Ostwald ripening of SiGe alloy clusters appears to be the dominant coarsening mechanism

  12. Ge Quantum Dot Infrared Imaging Camera, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Luna Innovations Incorporated proposes to develop a high performance Ge quantum dots-based infrared (IR) imaging camera on Si substrate. The high sensitivity, large...

  13. The excess enthalpies of liquid Ge-Pb-Te alloys

    International Nuclear Information System (INIS)

    Blachnik, R.; Binder, J.; Schlieper, A.

    1997-01-01

    The excess enthalpies of liquid alloys in the ternary system Ge-Pb-Te were determined at 1210 K in a heat flow calorimeter for five sections Ge y Pb 1-y -Te with y = 0.2, 0.4, 0.5, 0.6 and 0.8 and at 1153 K for Ge 0.5 Pb 0.5 -Te. The enthalpy surface in the ternary system is determined by a valley of exothermic minima, stretching from an exothermic minimum at the composition GeTe to one at the composition PbTe in the respective binaries. The excess enthalpies in the limiting metallic binary were adapted with the Redlich-Kister formalism. For the description of the thermodynamic functions in the ternary system the equation of Bonnier was taken using ternary coefficients. The calculated curves are in good agreement with the experimental data. (orig.)

  14. Electronic and magnetic properties of Si substituted Fe3Ge

    International Nuclear Information System (INIS)

    Shanavas, K. V.; McGuire, Michael A.; Parker, David S.

    2015-01-01

    Using first principles calculations, we studied the effect of Si substitution in the hexagonal Fe 3 Ge. We find the low temperature magnetic anisotropy in this system to be planar and originating mostly from the spin-orbit coupling in Fe-d states. Reduction of the unitcell volume reduces the magnitude of in-plane magnetic anisotropy, eventually turning it positive which reorients the magnetic moments to the axial direction. Substituting Ge with the smaller Si ions also increases the anisotropy, potentially enhancing the region of stability of the axial magnetization, which is beneficial for magnetic applications such as permanent magnets. Our experimental measurements on samples of Fe 3 Ge 1−x Si x confirm these predictions and show that substitution of about 6% of the Ge with Si increases by approximately 35 K the temperature range over which anisotropy is uniaxial

  15. Superthin Solar Cells Based on AIIIBV/Ge Heterostructures

    Science.gov (United States)

    Pakhanov, N. A.; Pchelyakov, O. P.; Vladimirov, V. M.

    2017-11-01

    A comparative analysis of the prospects of creating superthin, light-weight, and highly efficient solar cells based on AIIIBV/InGaAs and AIIIBV/Ge heterostructures is performed. Technological problems and prospects of each variant are discussed. A method of thinning of AIIIBV/Ge heterostructures with the use of an effective temporary carrier is proposed. The method allows the process to be performed almost with no risk of heterostructure fracture, thinning of the Ge junction down to several tens of micrometers (or even several micrometers), significant enhancement of the yield of good structures, and also convenient and reliable transfer of thinned solar cells to an arbitrary light and flexible substrate. Such a technology offers a possibility of creating high-efficiency thin and light solar cells for space vehicles on the basis of mass-produced AIIIBV/Ge heterostructures.

  16. Electron density distribution in Si and Ge using multipole, maximum ...

    Indian Academy of Sciences (India)

    Si and Ge has been studied using multipole, maximum entropy method (MEM) and ... and electron density distribution using the currently available versatile ..... data should be subjected to maximum possible utility for the characterization of.

  17. Electrically detected magnetic resonance study of the Ge dangling bonds at the Ge(1 1 1)/GeO2 interface after capping with Al2O3 layer

    International Nuclear Information System (INIS)

    Paleari, S.; Molle, A.; Accetta, F.; Lamperti, A.; Cianci, E.; Fanciulli, M.

    2014-01-01

    The electrical activity of Ge dangling bonds is investigated at the interface between GeO 2 -passivated Ge(1 1 1) substrate and Al 2 O 3 grown by atomic layer deposition, by means of electrically detected magnetic resonance spectroscopy (EDMR). The Al 2 O 3 /GeO 2 /Ge stacked structure is promising as a mobility booster for the post-Si future electronic devices. EDMR proved to be useful in characterizing interface defects, even at the very low concentrations of state-of-the-art devices ( 10 cm −2 ). In particular, it is shown that capping the GeO 2 -passivated Ge(1 1 1) with Al 2 O 3 has no impact on the microstructure of the Ge dangling bond.

  18. Electrically detected magnetic resonance study of the Ge dangling bonds at the Ge(1 1 1)/GeO{sub 2} interface after capping with Al{sub 2}O{sub 3} layer

    Energy Technology Data Exchange (ETDEWEB)

    Paleari, S., E-mail: s.paleari6@campus.unimib.it [Dipartimento di Scienza dei Materiali, Università degli Studi di Milano Bicocca, via Cozzi 53, I-20125 Milan (Italy); Molle, A. [Laboratorio MDM, IMM-CNR, Via C. Olivetti 2, I-20864 Agrate Brianza, MB (Italy); Accetta, F. [Dipartimento di Scienza dei Materiali, Università degli Studi di Milano Bicocca, via Cozzi 53, I-20125 Milan (Italy); Lamperti, A.; Cianci, E. [Laboratorio MDM, IMM-CNR, Via C. Olivetti 2, I-20864 Agrate Brianza, MB (Italy); Fanciulli, M., E-mail: marco.fanciulli@unimib.it [Dipartimento di Scienza dei Materiali, Università degli Studi di Milano Bicocca, via Cozzi 53, I-20125 Milan (Italy); Laboratorio MDM, IMM-CNR, Via C. Olivetti 2, I-20864 Agrate Brianza, MB (Italy)

    2014-02-01

    The electrical activity of Ge dangling bonds is investigated at the interface between GeO{sub 2}-passivated Ge(1 1 1) substrate and Al{sub 2}O{sub 3} grown by atomic layer deposition, by means of electrically detected magnetic resonance spectroscopy (EDMR). The Al{sub 2}O{sub 3}/GeO{sub 2}/Ge stacked structure is promising as a mobility booster for the post-Si future electronic devices. EDMR proved to be useful in characterizing interface defects, even at the very low concentrations of state-of-the-art devices (<10{sup 10} cm{sup −2}). In particular, it is shown that capping the GeO{sub 2}-passivated Ge(1 1 1) with Al{sub 2}O{sub 3} has no impact on the microstructure of the Ge dangling bond.

  19. On the DAMA and CoGeNT Modulations

    DEFF Research Database (Denmark)

    Frandsen, Mads Toudal; Kahlhoefer, Felix; March-Russell, John

    2011-01-01

    DAMA observes an annual modulation in their event rate, as might be expected from dark matter scatterings, while CoGeNT has reported evidence for a similar modulation. The simplest interpretation of these findings in terms of dark matter-nucleus scatterings is excluded by other direct detection...... constraints, while inelasticity enhances the annual modulation fraction of the signal, bringing the CoGeNT and CDMS results into better agreement....

  20. Elastic scattering crossovers from 50 to 175 GeV

    International Nuclear Information System (INIS)

    Anderson, R.L.; Ayres, D.S.; Barton, D.S.; Brenner, A.E.; Butler, J.; Cutts, D.; DeMarzo, C.; Diebold, R.; Elias, J.E.; Fines, J.; Friedman, J.I.; Gittelman, B.; Gottschalk, B.; Guerriero, L.; Gustavson, D.; Kendall, H.W.; Lanou, R.E.; Lavopa, P.; Levinson, L.J.; Litt, J.; Loh, E.; Maclay, G.J.; Maggi, G.; Massimo, J.T.; Meunier, R.; Mikenberg, G.; Nelson, B.; Posa, F.; Rich, K.; Ritson, D.M.; Rosenson, L.; Selvaggi, G.; Sogard, M.; Spinelli, P.; Verdier, R.; Waldner, F.; Weitsch, G.A.

    1976-01-01

    A comparison of K/sup plus-or-minus/p and p/sup plus-or-minus/p elastic scattering is made for incident energy 50 to 175 GeV. Average values of 0.19 +- 0.04 and 0.11 +- 0.02 GeV 2 were found for the invariant-momentum-transfer values of the Kp and pp crossover points, respectively

  1. Halbwachs no Collège de France

    Directory of Open Access Journals (Sweden)

    Laurent Mucchielli

    2001-01-01

    Full Text Available Este artigo apresenta documento escrito por Maurice Halbwachs, em seus cadernos de memória. Seu principal tema é a eleição de Halbwachs para o Collège de France.This article presents the document writen by Maurice Halbwachs, in his memory-books. Its main subject is the Halbwachs election for the Collège de France.

  2. Nb3Ge superconductive films grown with nitrogen

    International Nuclear Information System (INIS)

    Sigsbee, R.A.

    1978-01-01

    A superconductive film of Nb 3 Ge is produced by providing within a vacuum chamber a heated substrate and sources of niobium and germanium, reducing the pressure within the chamber to a residual pressure no greater than about 10 -5 mm Hg, introducing nitrogen into the resulting evacuated chamber in controlled amounts and vaporizing the niobium and germanium to deposit a film of Nb 3 Ge on the heated substrate

  3. Steering of sub-GeV electrons by ultrashort Si and Ge bent crystals

    Energy Technology Data Exchange (ETDEWEB)

    Sytov, A.I. [Ferrara Univ. (Italy). Dipt. di Fisica e Scienze della Terra; Belarusian State Univ., Minsk (Belarus). Inst. for Nuclear Problems; INFN Sezione di Ferrara (Italy); Bandiera, L.; Mazzolari, A.; Bagli, E.; Germogli, G.; Guidi, V.; Romagnoni, M. [Ferrara Univ. (Italy). Dipt. di Fisica e Scienze della Terra; INFN Sezione di Ferrara (Italy); De Salvador, D.; Carturan, S.; Maggioni, G. [INFN, Laboratori Nazionali di Legnaro (Italy); Padova Univ. (Italy). Dipt. di Fisica; Berra, A.; Prest, M. [Univ. dell' Insubria, Como (Italy); INFN, Sezione di Milano Bicocca, Milan (Italy); Durighello, C. [Ferrara Univ. (Italy). Dipt. di Fisica e Scienze della Terra; INFN, Laboratori Nazionali di Legnaro (Italy); Padova Univ. (Italy). Dipt. di Fisica; INFN Sezione di Ferrara (Italy); Klag, P.; Lauth, W. [Mainz Univ. (Germany). Inst. fuer Kernphysik; Tikhomirov, V.V. [Belarusian State Univ., Minsk (Belarus). Inst. for Nuclear Problems; Vallazza, E. [INFN, Sezione di Trieste (Italy)

    2017-12-15

    We report the observation of the steering of 855 MeV electrons by bent silicon and germanium crystals at the MAinzer MIkrotron. Crystals with 15 μm of length, bent along (111) planes, were exploited to investigate orientational coherent effects. By using a piezo-actuated mechanical holder, which allowed to remotely change the crystal curvature, it was possible to study the steering capability of planar channeling and volume reflection vs. the curvature radius and the atomic number, Z. For silicon, the channeling efficiency exceeds 35%, a record for negatively charged particles. This was possible due to the realization of a crystal with a thickness of the order of the dechanneling length. On the other hand, for germanium the efficiency is slightly below 10% due to the stronger contribution of multiple scattering for a higher-Z material. Nevertheless this is the first evidence of negative beam steering by planar channeling in a Ge crystal. Having determined for the first time the dechanneling length, one may design a Ge crystal based on such knowledge providing nearly the same channeling efficiency of silicon. The presented results are relevant for crystal-based beam manipulation as well as for the generation of e.m. radiation in bent and periodically bent crystals. (orig.)

  4. Steering of Sub-GeV electrons by ultrashort Si and Ge bent crystals

    Science.gov (United States)

    Sytov, A. I.; Bandiera, L.; De Salvador, D.; Mazzolari, A.; Bagli, E.; Berra, A.; Carturan, S.; Durighello, C.; Germogli, G.; Guidi, V.; Klag, P.; Lauth, W.; Maggioni, G.; Prest, M.; Romagnoni, M.; Tikhomirov, V. V.; Vallazza, E.

    2017-12-01

    We report the observation of the steering of 855 MeV electrons by bent silicon and germanium crystals at the MAinzer MIkrotron. Crystals with 15 μ m of length, bent along (111) planes, were exploited to investigate orientational coherent effects. By using a piezo-actuated mechanical holder, which allowed to remotely change the crystal curvature, it was possible to study the steering capability of planar channeling and volume reflection vs. the curvature radius and the atomic number, Z. For silicon, the channeling efficiency exceeds 35%, a record for negatively charged particles. This was possible due to the realization of a crystal with a thickness of the order of the dechanneling length. On the other hand, for germanium the efficiency is slightly below 10% due to the stronger contribution of multiple scattering for a higher-Z material. Nevertheless this is the first evidence of negative beam steering by planar channeling in a Ge crystal. Having determined for the first time the dechanneling length, one may design a Ge crystal based on such knowledge providing nearly the same channeling efficiency of silicon. The presented results are relevant for crystal-based beam manipulation as well as for the generation of e.m. radiation in bent and periodically bent crystals.

  5. LArGe. A liquid argon scintillation veto for GERDA

    International Nuclear Information System (INIS)

    Heisel, Mark

    2011-01-01

    LArGe is a GERDA low-background test facility to study novel background suppression methods in a low-background environment, for possible applications in the GERDA experiment. GERDA searches for the neutrinoless double-beta decay in 76 Ge, by operating naked germanium detectors submersed into 65 m 3 of liquid argon. Similarly, LArGe runs Ge-detectors in 1 m 3 (1.4 tons) of liquid argon, which in addition is instrumented with photomultipliers to detect argon scintillation light. The light is used in anti-coincidence with the germanium detectors, to effectively suppress background events that deposit energy in the liquid argon. This work adresses the design, construction, and commissioning of LArGe. The background suppression efficiency has been studied in combination with a pulse shape discrimination (PSD) technique for various sources, which represent characteristic backgrounds to GERDA. Suppression factors of a few times 10 3 have been achieved. First background data of LArGe (without PSD) yield a background index of (0.12-4.6).10 -2 cts/(keV.kg.y) (90% c.l.), which is at the level of the Gerda phase I design goal. Furthermore, for the first time we measure the natural 42 Ar abundance (in parallel to Gerda), and have indication for the 2νββ-decay in natural germanium. (orig.)

  6. The 50 GeV program at SLAC

    International Nuclear Information System (INIS)

    Prescott, C.Y.

    1994-03-01

    SLAC has undertaken a modes programs to upgrade the beam energy for fixed target experiments to 50 GeV. This upgrade is possible due to the previous extensive development work on the linac accelerating gradient for the SLC, which has been operational for over five years. The SLC can deliver a beam of energy up to 60 GeV using a pulse compression technique in the rf system which trades pulse length for a higher pulse amplitude. This mode of operation has been reliable and routine for the SLC. However the beam line transport which takes electrons or positrons from the end of the linac to the target in End Station A has not been upgraded from the original design energy of 25 GeV. The 50 GeV upgrade for the fixed target experiments consists in modifying and increasing the number of beam line dipole magnets to reach 50 GeV, plus modernization of the beam line instrumentation and controls. The plans for spin structure experiments using electron beams at energies up to 50 GeV are described

  7. Growth and evolution of nickel germanide nanostructures on Ge(001).

    Science.gov (United States)

    Grzela, T; Capellini, G; Koczorowski, W; Schubert, M A; Czajka, R; Curson, N J; Heidmann, I; Schmidt, Th; Falta, J; Schroeder, T

    2015-09-25

    Nickel germanide is deemed an excellent material system for low resistance contact formation for future Ge device modules integrated into mainstream, Si-based integrated circuit technologies. In this study, we present a multi-technique experimental study on the formation processes of nickel germanides on Ge(001). We demonstrate that room temperature deposition of ∼1 nm of Ni on Ge(001) is realized in the Volmer-Weber growth mode. Subsequent thermal annealing results first in the formation of a continuous NixGey wetting layer featuring well-defined terrace morphology. Upon increasing the annealing temperature to 300 °C, we observed the onset of a de-wetting process, characterized by the appearance of voids on the NixGey terraces. Annealing above 300 °C enhances this de-wetting process and the surface evolves gradually towards the formation of well-ordered, rectangular NixGey 3D nanostructures. Annealing up to 500 °C induces an Ostwald ripening phenomenon, with smaller nanoislands disappearing and larger ones increasing their size. Subsequent annealing to higher temperatures drives the Ni-germanide diffusion into the bulk and the consequent formation of highly ordered, {111} faceted Ni-Ge nanocrystals featuring an epitaxial relationship with the substrate Ni-Ge (101); (010) || Ge(001); (110).

  8. LArGe. A liquid argon scintillation veto for GERDA

    Energy Technology Data Exchange (ETDEWEB)

    Heisel, Mark

    2011-04-13

    LArGe is a GERDA low-background test facility to study novel background suppression methods in a low-background environment, for possible applications in the GERDA experiment. GERDA searches for the neutrinoless double-beta decay in {sup 76}Ge, by operating naked germanium detectors submersed into 65 m{sup 3} of liquid argon. Similarly, LArGe runs Ge-detectors in 1 m{sup 3} (1.4 tons) of liquid argon, which in addition is instrumented with photomultipliers to detect argon scintillation light. The light is used in anti-coincidence with the germanium detectors, to effectively suppress background events that deposit energy in the liquid argon. This work adresses the design, construction, and commissioning of LArGe. The background suppression efficiency has been studied in combination with a pulse shape discrimination (PSD) technique for various sources, which represent characteristic backgrounds to GERDA. Suppression factors of a few times 10{sup 3} have been achieved. First background data of LArGe (without PSD) yield a background index of (0.12-4.6).10{sup -2} cts/(keV.kg.y) (90% c.l.), which is at the level of the Gerda phase I design goal. Furthermore, for the first time we measure the natural {sup 42}Ar abundance (in parallel to Gerda), and have indication for the 2{nu}{beta}{beta}-decay in natural germanium. (orig.)

  9. Measurement of energy transitions for the decay radiations of 75Ge and 69Ge in a high purity germanium detector

    Science.gov (United States)

    Aydın, Güral; Usta, Metin; Oktay, Adem

    2018-06-01

    Photoactivation experiments have a wide range of application areas in nuclear, particle physics, and medical physics such as measuring energy levels and half-lifes of nuclei, experiments for understanding imaging methods in medicine, isotope production for patient treatment, radiation security and transportation, radiation therapy, and astrophysics processes. In this study, some energy transition values of the decay radiations of 75Ge and 69Ge, which are the products of photonuclear reactions (γ, n) with germanium isotopes (75Ge and 69Ge), were measured. The gamma spectrum as a result of atomic transitions were analysed by using a high purity semiconductor germanium detector and the energy transition values which are presented here were compared with the ones which are the best in literature. It was observed that the results presented are in agreement with literature in error range and some results have better precisions.

  10. Atomic diffusion in laser irradiated Ge rich GeSbTe thin films for phase change memory applications

    Science.gov (United States)

    Privitera, S. M. S.; Sousa, V.; Bongiorno, C.; Navarro, G.; Sabbione, C.; Carria, E.; Rimini, E.

    2018-04-01

    The atomic diffusion and compositional variations upon melting have been studied by transmission electron microscopy and electron energy loss spectroscopy in Ge rich GeSbTe films, with a composition optimized for memory applications. Melting and quenching has been achieved by laser pulses, in order to study pure thermal diffusion without electric field induced electromigration. The effect of different laser energy densities has been investigated. The diffusion of Ge atoms in the molten phase is found to be a prominent mechanism and, by employing finite elements computational analysis, a diffusion coefficient of Ge on the order of 5  ×  10-5 cm2 s-1 has been estimated.

  11. Ferro electrical properties of GeSbTe thin films; Propiedades ferroelectricas de peliculas delgadas de GeSbTe

    Energy Technology Data Exchange (ETDEWEB)

    Gervacio A, J. J.; Prokhorov, E.; Espinoza B, F. J., E-mail: jgervacio@qro.cinvestav.m [IPN, Centro de Investigacion y de Estudios Avanzados, Unidad Queretaro, Libramiento Norponiente No. 2000, Juriquilla, 76230 Queretaro (Mexico)

    2011-07-01

    The aim of this work is to investigate and compare ferro electrical properties of thin GeSbTe films with composition Ge{sub 4}Sb{sub 1}Te{sub 5} (with well defined ferro electrical properties) and Ge{sub 2}Sb{sub 2}Te{sub 5} using impedance, optical reflection, XRD, DSc and Piezo response Force Microscopy techniques. The temperature dependence of the capacitance in both materials shows an abrupt change at the temperature corresponding to ferroelectric-paraelectric transition and the Curie-Weiss dependence. In Ge{sub 2}Sb{sub 2}Te{sub 5} films this transition corresponds to the end from a NaCl-type to a hexagonal transformation. Piezo response Force Microscopy measurements found ferroelectric domains with dimension approximately equal to the dimension of grains. (Author)

  12. Experiments and Modeling of Si-Ge Interdiffusion with Partial Strain Relaxation in Epitaxial SiGe Heterostructures

    KAUST Repository

    Dong, Y.

    2014-07-26

    Si-Ge interdiffusion and strain relaxation were studied in a metastable SiGe epitaxial structure. With Ge concentration profiling and ex-situ strain analysis, it was shown that during thermal anneals, both Si-Ge interdiffusion and strain relaxation occurred. Furthermore, the time evolutions of both strain relaxation and interdiffusion were characterized. It showed that during the ramp-up stage of thermal anneals at higher temperatures (800°C and 840°C), the degree of relaxation, R, reached a “plateau”, while interdiffusion was negligible. With the approximation that the R value is constant after the ramp-up stage, a quantitative interdiffusivity model was built to account for both the effect of strain relaxation and the impact of the relaxation induced dislocations, which gave good agreement with the experiment data.

  13. Thermally oxidized formation of new Ge dots over as-grown Ge dots in the Si capping layer

    International Nuclear Information System (INIS)

    Nie Tianxiao; Lin Jinhui; Shao Yuanmin; Wu Yueqin; Yang Xinju; Fan Yongliang; Jiang Zuimin; Chen Zhigang; Zou Jin

    2011-01-01

    A Si-capped Ge quantum dot sample was self-assembly grown via Stranski-Krastanov mode in a molecular beam epitaxy system with the Si capping layer deposited at 300 deg. C. After annealing the sample in an oxygen atmosphere at 1000 deg. C, a structure, namely two layers of quantum dots, was formed with the newly formed Ge-rich quantum dots embedded in the oxidized matrix with the position accurately located upon the as-grown quantum dots. It has been found that the formation of such nanostructures strongly depends upon the growth temperature and oxygen atmosphere. A growth mechanism was proposed to explain the formation of the nanostructure based on the Ge diffusion from the as-grown quantum dots, Ge segregation from the growing oxide, and subsequent migration/agglomeration.

  14. Missing mass spectra in pp inelastic scattering at total energies of 23 GeV and 31 GeV

    CERN Document Server

    Albrow, M G; Barber, D P; Bogaerts, A; Bosnjakovic, B; Brooks, J R; Clegg, A B; Erné, F C; Gee, C N P; Locke, D H; Loebinger, F K; Murphy, P G; Rudge, A; Sens, Johannes C; Van der Veen, F

    1974-01-01

    Results are reported of measurements of the momentum spectra of protons emitted at small angles in inelastic reactions at the CERN ISR. The data are for total energies s/sup 1///sub 2/ of 23 GeV and 31 GeV. The structure of the peak at low values of the missing mass M (of the system recoiling against the observed proton) is studied. The missing mass distributions have the form (M/sup 2/)-/sup B(t)/ where t is the four-momentum transfer squared. B(t) drops from 0.98+or-0.06 at t=-0.15 GeV/sup 2/ to 0.20+or-0.15 at t=-1.65 GeV/sup 2/. The results are compared with a simple triple-Regge formula. (12 refs).

  15. Coarsening of Ni-Ge solid-solution precipitates in 'inverse' Ni{sub 3}Ge alloys

    Energy Technology Data Exchange (ETDEWEB)

    Ardell, Alan J., E-mail: alan.ardell@gmail.com [National Science Foundation, 4201 Wilson Boulevard, Arlington, VA 22230 (United States); Ma Yong [Aquatic Sensor Network Technology LLC, Storrs, CT 06268 (United States)

    2012-07-30

    Highlights: Black-Right-Pointing-Pointer We report microstructural evolution of disordered Ni-Ge precipitates in Ni{sub 3}Ge alloys. Black-Right-Pointing-Pointer Coarsening kinetics and particle size distributions are presented. Black-Right-Pointing-Pointer Data are analyzed quantitatively using the MSLW theory, but agreement is only fair. Black-Right-Pointing-Pointer The shapes of large precipitates are unusual, with discus or boomerang cross-sections. Black-Right-Pointing-Pointer Results are compared with morphology, kinetics of Ni-Al in inverse Ni{sub 3}Al alloys. - Abstract: The morphological evolution and coarsening kinetics of Ni-Ge solid solution precipitates from supersaturated solutions of hypostoichiometric Ni{sub 3}Ge were investigated in alloys containing from 22.48 to 23.50 at.% Ge at 600, 650 and 700 Degree-Sign C. The particles evolve from spheres to cuboids, though the flat portions of the interfaces are small. At larger sizes the precipitates coalesce into discus shapes, and are sometimes boomerang-shaped in cross section after intersection. The rate constant for coarsening increases strongly with equilibrium volume fraction, much more so than predicted by current theories; this is very different from the coarsening behavior of Ni{sub 3}Ge precipitates in normal Ni-Ge alloys and of Ni-Al precipitates in inverse Ni{sub 3}Al alloys. The activation energy for coarsening, 275.86 {+-} 24.17 kJ/mol, is somewhat larger than the result from conventional diffusion experiments, though within the limits of experimental error. Quantitative agreement between theory and experiment, estimated using available data on tracer diffusion coefficients in Ni{sub 3}Ge, is fair, the calculated rate constants exceeding measured ones by a factor of about 15. The particle size distributions are not in very good agreement with the predictions of any theory. These results are discussed in the context of recent theories and observations.

  16. Coarsening of Ni–Ge solid-solution precipitates in “inverse” Ni3Ge alloys

    International Nuclear Information System (INIS)

    Ardell, Alan J.; Ma Yong

    2012-01-01

    Highlights: ► We report microstructural evolution of disordered Ni–Ge precipitates in Ni 3 Ge alloys. ► Coarsening kinetics and particle size distributions are presented. ► Data are analyzed quantitatively using the MSLW theory, but agreement is only fair. ► The shapes of large precipitates are unusual, with discus or boomerang cross-sections. ► Results are compared with morphology, kinetics of Ni–Al in inverse Ni 3 Al alloys. - Abstract: The morphological evolution and coarsening kinetics of Ni–Ge solid solution precipitates from supersaturated solutions of hypostoichiometric Ni 3 Ge were investigated in alloys containing from 22.48 to 23.50 at.% Ge at 600, 650 and 700 °C. The particles evolve from spheres to cuboids, though the flat portions of the interfaces are small. At larger sizes the precipitates coalesce into discus shapes, and are sometimes boomerang-shaped in cross section after intersection. The rate constant for coarsening increases strongly with equilibrium volume fraction, much more so than predicted by current theories; this is very different from the coarsening behavior of Ni 3 Ge precipitates in normal Ni–Ge alloys and of Ni–Al precipitates in inverse Ni 3 Al alloys. The activation energy for coarsening, 275.86 ± 24.17 kJ/mol, is somewhat larger than the result from conventional diffusion experiments, though within the limits of experimental error. Quantitative agreement between theory and experiment, estimated using available data on tracer diffusion coefficients in Ni 3 Ge, is fair, the calculated rate constants exceeding measured ones by a factor of about 15. The particle size distributions are not in very good agreement with the predictions of any theory. These results are discussed in the context of recent theories and observations.

  17. Silicon and Ge in the deep sea deduced from Si isotope and Ge measurements in giant glass sponges

    Science.gov (United States)

    Jochum, K. P.; Schuessler, J. A.; Haug, G. H.; Andreae, M. O.; Froelich, P. N.

    2016-12-01

    Biogenic silica, such as giant glass spicules of the deep-sea sponge Monorhaphis chuni, is an archive to monitor paleo-Si and -Ge in past seawater. Here we report on Si isotopes and Ge/Si ratios in up to 2.7 m long spicules using LA-(MC)-ICP-MS. Isotope ratios of Si are suitable proxies for Si concentrations in seawater, because Si isotope fractionation into biogenic silica is a function of seawater dissolved Si concentration. The δ30Si values for our specimens range from about - 0.5 ‰ to - 3.6 ‰ and are much lower than modern (>1000 m) seawater δ30Si of about 1.3 ‰. Interestingly, there is a systematic Si isotopic and Ge variation from the rim to the center of the cross sections, which we interpret as seawater paleo-Si and -Ge changes. The lifetime of the giant sponges appears to be between about 6 and 14 ka. These age estimates were obtained by comparing our analytical data with various paleo-markers of the glacial-interglacial termination. Thus, the entire Holocene and the end of the last glacial period are contained in the oldest giant spicules. The derived Si and Ge seawater concentrations are ca. 12 % higher and 20 % lower, respectively, during the late glacial than at present. Possible explanations for changing Si, Ge and Ge/Si during the deglaciation could be changes in riverine, glacial, and/or eolian deliveries of silica to the oceans and changes in marine sedimentary reverse weathering, which removes Ge into marine sediments during opal dissolution and diagenesis.

  18. Extended deep level defects in Ge-condensed SiGe-on-Insulator structures fabricated using proton and helium implantations

    International Nuclear Information System (INIS)

    Kwak, D.W.; Lee, D.W.; Oh, J.S.; Lee, Y.H.; Cho, H.Y.

    2012-01-01

    SiGe-on-Insulator (SGOI) structures were created using the Ge condensation method, where an oxidation process is performed on the SiGe/Si structure. This method involves rapid thermal chemical vapor deposition and H + /He + ion-implantations. Deep level defects in these structures were investigated using deep level transient spectroscopy (DLTS) by varying the pulse injection time. According to the DLTS measurements, a deep level defect induced during the Ge condensation process was found at 0.28 eV above the valence band with a capture cross section of 2.67 × 10 −17 cm 2 , two extended deep levels were also found at 0.54 eV and 0.42 eV above the valence band with capture cross sections of 3.17 × 10 −14 cm 2 and 0.96 × 10 −15 cm 2 , respectively. In the SGOI samples with ion-implantation, the densities of the newly generated defects as well as the existing defects were decreased effectively. Furthermore, the Coulomb barrier heights of the extended deep level defects were drastically reduced. Thus, we suggest that the Ge condensation method with H + ion implantation could reduce deep level defects generated from the condensation and control the electrical properties of the condensed SiGe layers. - Highlights: ► We have fabricated low-defective SiGe-on-Insulator (SGOI) with implantation method. ► H + and He + -ions are used for ion-implantation method. ► We have investigated the deep level defects of SGOI layers. ► Ge condensation method using H + ion implantation could reduce extended defects. ► They could enhance electrical properties.

  19. Properties of Si{sub n}, Ge{sub n}, and Si{sub n}Ge{sub n} clusters

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Yi; Rehman, Habib ur; Springborg, Michael [Physical and Theoretical Chemistry, University of Saarland, 66123 Saarbrücken (Germany)

    2015-01-22

    The structures of Si{sub n}, Ge{sub n}, and Si{sub n}Ge{sub n} clusters with up to 44 atoms have been determined theoretically using an unbiased structure-optimization method in combination with a parametrized, density-functional description of the total energy for a given structure. By analyzing the total energy in detail, particularly stable clusters are identified. Moreover, general trends in the structures are identified with the help of specifically constructed descriptors.

  20. Next Generation, Si-Compatible Materials and Devices in the Si-Ge-Sn System

    Science.gov (United States)

    2015-10-09

    and conclusions The work initially focused on growth of next generation Ge1-ySny alloys on Ge buffered Si wafers via UHV CVD depositions of Ge3H8...Abstract The work initially focused on growth of next generation Ge1-ySny alloys on Ge buffered Si wafers via UHV CVD depositions of Ge3H8, SnD4. The...AFRL-AFOSR-VA-TR-2016-0044 Next generation, Si -compatible materials and devices in the Si - Ge -Sn system John Kouvetakis ARIZONA STATE UNIVERSITY Final

  1. Interface Engineering for Atomic Layer Deposited Alumina Gate Dielectric on SiGe Substrates.

    OpenAIRE

    Zhang, L; Guo, Y; Hassan, VV; Tang, K; Foad, MA; Woicik, JC; Pianetta, P; Robertson, John; McIntyre, PC

    2016-01-01

    Optimization of the interface between high-k dielectrics and SiGe substrates is a challenging topic due to the complexity arising from the coexistence of Si and Ge interfacial oxides. Defective high-k/SiGe interfaces limit future applications of SiGe as a channel material for electronic devices. In this paper, we identify the surface layer structure of as-received SiGe and Al2O3/SiGe structures based on soft and hard X-ray photoelectron spectroscopy. As-received SiGe substrates have native Si...

  2. Ge nanoclusters in PECVD-deposited glass caused only by heat treatment

    DEFF Research Database (Denmark)

    Ou, Haiyan; Rørdam, Troels Peter; Rottwitt, Karsten

    2008-01-01

    This paper reports the formation of Ge nanoclusters in a multi-layer structure consisting of alternating thin films of Ge-doped silica glass and SiGe, deposited by plasma-enhanced chemical vapor deposition (PECVD) and post annealed at 1100 °C in N2 atmosphere. We studied the annealed samples...... embedded with Ge nanoclusters after annealing. These nanoclusters are crystalline and varied in size. There were no clusters in the Ge-doped glass layer. Raman spectra verified the existence of crystalline Ge clusters. The positional shift of the Ge vibrational peak with the change of the focus depth...

  3. Quantitative SIMS analysis of SiGe composition with low energy O2+ beams

    International Nuclear Information System (INIS)

    Jiang, Z.X.; Kim, K.; Lerma, J.; Corbett, A.; Sieloff, D.; Kottke, M.; Gregory, R.; Schauer, S.

    2006-01-01

    This work explored quantitative analyses of SiGe films on either Si bulk or SOI wafers with low energy SIMS by assuming a constant ratio between the secondary ion yields of Si + and Ge + inside SiGe films. SiGe samples with Ge contents ranging from 15 to 65% have been analyzed with a 1 keV O 2 + beam at normal incidence. For comparison, the samples were also analyzed with RBS and/or AES. The Ge content as measured with SIMS, based on a single SiGe/Si or SiGe/SOI standard, exhibited good agreement with the corresponding RBS and AES data. It was concluded that SIMS was capable of providing accurate characterization of the SiGe composition with the Ge content up to 65%

  4. Dislocation-free Ge Nano-crystals via Pattern Independent Selective Ge Heteroepitaxy on Si Nano-Tip Wafers.

    Science.gov (United States)

    Niu, Gang; Capellini, Giovanni; Schubert, Markus Andreas; Niermann, Tore; Zaumseil, Peter; Katzer, Jens; Krause, Hans-Michael; Skibitzki, Oliver; Lehmann, Michael; Xie, Ya-Hong; von Känel, Hans; Schroeder, Thomas

    2016-03-04

    The integration of dislocation-free Ge nano-islands was realized via selective molecular beam epitaxy on Si nano-tip patterned substrates. The Si-tip wafers feature a rectangular array of nanometer sized Si tips with (001) facet exposed among a SiO2 matrix. These wafers were fabricated by complementary metal-oxide-semiconductor (CMOS) compatible nanotechnology. Calculations based on nucleation theory predict that the selective growth occurs close to thermodynamic equilibrium, where condensation of Ge adatoms on SiO2 is disfavored due to the extremely short re-evaporation time and diffusion length. The growth selectivity is ensured by the desorption-limited growth regime leading to the observed pattern independence, i.e. the absence of loading effect commonly encountered in chemical vapor deposition. The growth condition of high temperature and low deposition rate is responsible for the observed high crystalline quality of the Ge islands which is also associated with negligible Si-Ge intermixing owing to geometric hindrance by the Si nano-tip approach. Single island as well as area-averaged characterization methods demonstrate that Ge islands are dislocation-free and heteroepitaxial strain is fully relaxed. Such well-ordered high quality Ge islands present a step towards the achievement of materials suitable for optical applications.

  5. The cross-plane thermoelectric properties of p-Ge/Si0.5Ge0.5 superlattices

    International Nuclear Information System (INIS)

    Ferre Llin, L.; Samarelli, A.; Weaver, J. M. R.; Dobson, P. S.; Paul, D. J.; Cecchi, S.; Chrastina, D.; Isella, G.; Etzelstorfer, T.; Stangl, J.; Müller Gubler, E.

    2013-01-01

    The electrical conductivity, Seebeck coefficients, and thermal conductivities of a range of p-type Ge/Si 0.5 Ge 0.5 superlattices designed for thermoelectric generation and grown by low energy plasma enhanced chemical vapor deposition have been measured using a range of microfabricated test structures. For samples with barriers around 0.5 nm in thickness, the measured Seebeck coefficients were comparable to bulk p-SiGe at similar doping levels suggesting the holes see the material as a random bulk alloy rather than a superlattice. The Seebeck coefficients for Ge quantum wells of 2.85 ± 0.85 nm increased up to 533 ± 25 μV/K as the doping was reduced. The thermal conductivities are between 4.5 to 6.0 Wm −1 K −1 which are lower than comparably doped bulk Si 0.3 Ge 0.7 but higher than undoped Si/Ge superlattices. The highest measured figure of merit ZT was 0.080 ± 0.011 obtained for the widest quantum well studied. Analysis suggests that interface roughness is presently limiting the performance and a reduction in the strain between the quantum wells and barriers has the potential to improve the thermoelectric performance

  6. Influence of the entrance channel in the fusion reaction 318 MeV 74Ge+74Ge

    International Nuclear Information System (INIS)

    Zhu, L.H.; Cinausero, M.; Angelis, G. de; De Poli, M.; Fioretto, E.; Gadea, A.; Napoli, D.R.; Prete, G.; Lucarelli, F.

    1998-01-01

    Entrance channel effects in the fusion of heavy ions have been studied by using the 74 Ge+ 74 Ge reaction at 318 MeV. The population of the yrast superdeformed band in 144 Gd shows an increase when compared with the results obtained in the more asymmetric 48 Ti+ 100 Mo reaction at 215 MeV. The relative yields of the different evaporation residues produced in the 74 Ge+ 74 Ge and in the 48 Ti+ 100 Mo reactions are very similar, with the exception of the 145,144 Gd residual nuclei (3n and 4n decay channels) which are populated with a larger yield in the symmetric reaction. Statistical model calculations reproduce qualitatively such effect if a fission delay is explicitly taken into account. Effects related to fusion barrier fluctuations seem to be important in determining the spin distributions of the compound nucleus. The spectra of the high energy γ-rays emitted in the 74 Ge+ 74 Ge reaction have been measured as a function of the γ-ray multiplicity as well as in coincidence with selected evaporation residues. They are reproduced by standard statistical model calculations with GDR parameters taken from systematics, demonstrating that, in agreement with dynamical model prediction, the emission of γ-rays from the dinucleus formed in the earlier stage of the collision is unimportant. (orig.)

  7. Propagation of GeV neutrinos through Earth

    Science.gov (United States)

    Olivas, Yaithd Daniel; Sahu, Sarira

    2018-06-01

    We have studied the Earth matter effect on the oscillation of upward going GeV neutrinos by taking into account the three active neutrino flavors. For neutrino energy in the range 3 to 12 GeV we observed three distinct resonant peaks for the oscillation process νe ↔νμ,τ in three distinct densities. However, according to the most realistic density profile of the Earth, the second peak at neutrino energy 6.18 GeV corresponding to the density 6.6 g/cm3 does not exist. So the resonance at this energy can not be of MSW-type. For the calculation of observed flux of these GeV neutrinos on Earth, we considered two different flux ratios at the source, the standard scenario with the flux ratio 1 : 2 : 0 and the muon damped scenario with 0 : 1 : 0. It is observed that at the detector while the standard scenario gives the observed flux ratio 1 : 1 : 1, the muon damped scenario has a different ratio. For muon damped case with Eν 20 GeV, we get the average Φνe ∼ 0 and Φνμ ≃Φντ ≃ 0.45. The upcoming PINGU will be able to shed more light on the nature of the resonance in these GeV neutrinos and hopefully will also be able to discriminate among different processes of neutrino production at the source in GeV energy range.

  8. Remote interfacial dipole scattering and electron mobility degradation in Ge field-effect transistors with GeO x /Al2O3 gate dielectrics

    Science.gov (United States)

    Wang, Xiaolei; Xiang, Jinjuan; Wang, Shengkai; Wang, Wenwu; Zhao, Chao; Ye, Tianchun; Xiong, Yuhua; Zhang, Jing

    2016-06-01

    Remote Coulomb scattering (RCS) on electron mobility degradation is investigated experimentally in Ge-based metal-oxide-semiconductor field-effect-transistors (MOSFETs) with GeO x /Al2O3 gate stacks. It is found that the mobility increases with greater GeO x thickness (7.8-20.8 Å). The physical origin of this mobility dependence on GeO x thickness is explored. The following factors are excluded: Coulomb scattering due to interfacial traps at GeO x /Ge, phonon scattering, and surface roughness scattering. Therefore, the RCS from charges in gate stacks is studied. The charge distributions in GeO x /Al2O3 gate stacks are evaluated experimentally. The bulk charges in Al2O3 and GeO x are found to be negligible. The density of the interfacial charge is  +3.2  ×  1012 cm-2 at the GeO x /Ge interface and  -2.3  ×  1012 cm-2 at the Al2O3/GeO x interface. The electric dipole at the Al2O3/GeO x interface is found to be  +0.15 V, which corresponds to an areal charge density of 1.9  ×  1013 cm-2. The origin of this mobility dependence on GeO x thickness is attributed to the RCS due to the electric dipole at the Al2O3/GeO x interface. This remote dipole scattering is found to play a significant role in mobility degradation. The discovery of this new scattering mechanism indicates that the engineering of the Al2O3/GeO x interface is key for mobility enhancement and device performance improvement. These results are helpful for understanding and engineering Ge mobility enhancement.

  9. Comparative study of the luminescence of structures with Ge nanocrystals formed by dry and wet oxidation of SiGe films

    International Nuclear Information System (INIS)

    RodrIguez, A; Ortiz, M I; Sangrador, J; RodrIguez, T; Avella, M; Prieto, A C; Torres, A; Jimenez, J; Kling, A; Ballesteros, C

    2007-01-01

    The luminescence emission of structures containing Ge nanocrystals embedded in a dielectric matrix obtained by dry and wet oxidation of polycrystalline SiGe layers has been studied as a function of the oxidation time and initial SiGe layer thickness. A clear relationship between the intensity of the luminescence, the structure of the sample, the formation of Ge nanocrystals and the oxidation process parameters that allows us to select the appropriate process conditions to get the most efficient emission has been established. The evolution of the composition and thickness of the growing oxides and the remaining SiGe layer during the oxidation processes has been characterized using Raman spectroscopy, x-ray diffraction, Fourier-transform infrared spectroscopy, Rutherford backscattering spectrometry and transmission electron microscopy. For dry oxidation, the luminescence appears suddenly, regardless of the initial SiGe layer thickness, when all the Si of the SiGe has been oxidized and the remaining layer of the segregated Ge starts to be oxidized forming Ge nanocrystals. Luminescence is observed as long as Ge nanocrystals are present. For wet oxidation, the luminescence appears from the first stages of the oxidation, and is related to the formation of Ge-rich nanoclusters trapped in the mixed (Si and Ge) growing oxide. A sharp increase of the luminescence intensity for long oxidation times is also observed, due to the formation of Ge nanocrystals by the oxidation of the layer of segregated Ge. For both processes the luminescence is quenched when the oxidation time is long enough to cause the full oxidation of the Ge nanocrystals. The intensity of the luminescence in the dry oxidized samples is about ten times higher than in the wet oxidized ones for equal initial thickness of the SiGe layer

  10. High quality Ge epilayer on Si (1 0 0) with an ultrathin Si1-x Ge x /Si buffer layer by RPCVD

    Science.gov (United States)

    Chen, Da; Guo, Qinglei; Zhang, Nan; Xu, Anli; Wang, Bei; Li, Ya; Wang, Gang

    2017-07-01

    The authors report a method to grow high quality strain-relaxed Ge epilayer on a combination of low temperature Ge seed layer and Si1-x Ge x /Si superlattice buffer layer by reduced pressure chemical vapor deposition system without any subsequent annealing treatment. Prior to the growth of high quality Ge epilayer, an ultrathin Si1-x Ge x /Si superlattice buffer layer with the thickness of 50 nm and a 460 nm Ge seed layer were deposited successively at low temperature. Then an 840 nm Ge epilayer was grown at high deposition rate with the surface root-mean-square roughness of 0.707 nm and threading dislocation density of 2.5  ×  106 cm-2, respectively. Detailed investigations of the influence of ultrathin low-temperature Si1-x Ge x /Si superlattice buffer layer on the quality of Ge epilayer were performed, which indicates that the crystalline quality of Ge epilayer can be significantly improved by enhancing the Ge concentration of Si1-x Ge x /Si superlattice buffer layer.

  11. Formation of Ge dot or film in Ge/Si heterostructure by using sub-monolayer carbon deposition on top and in-situ post annealing

    Energy Technology Data Exchange (ETDEWEB)

    Itoh, Yuhki, E-mail: itoh.yuhki@ecei.tohoku.ac.jp; Hatakeyama, Shinji; Kawashima, Tomoyuki; Washio, Katsuyoshi

    2016-03-01

    Effects of carbon (C) atoms on solid-phase epitaxial growth of Ge on Si(100) have been studied. C and Ge layers were deposited on Si(100) substrates at low temperature (150–300 °C) by using solid-source molecular beam epitaxy (MBE) system and subsequently annealed at 650 °C in the MBE chamber. The surface morphology after annealing changed depending on deposited amounts of C and deposition temperature of Ge. Ge dots were formed for small amounts of C while smooth Ge films were formed by large amounts of C varying with the Ge deposition temperature. The surface morphology after annealing was also affected by the as-deposited Ge crystallinity. The change in surface morphology depending on the amounts of deposited C was considered to be affected by the formation of Ge–C bonds which relieved the misfit strain between Ge and Si. The crystallinity of Ge deteriorated with increasing C coverage due to the incorporation of insoluble C atoms in the shape of both dots and films. - Highlights: • Effects of carbon on solid-phase epitaxy of C/Ge/Si(100) were studied. • Surface morphology changed depending on C amounts and Ge deposition temperature. • Solid-phase growth of Ge changed from large dots to smooth films with C coverage. • Transition of surface morphology was affected by the formation of Ge–C bonds.

  12. Effects of Ge-132 and GeO2 on seed germination and seedling growth of Oenothera biennis L. under NaCl stress.

    Science.gov (United States)

    Liu, Yan; Hou, Long-Yu; Li, Qing-Mei; Jiang, Ze-Ping; Gao, Wei-Dong; Zhu, Yan; Zhang, Hai-Bo

    2017-01-01

    To investigate the effects of β-carboxyethyl germanium sequioxide (Ge-132) and germanium dioxide (GeO 2 ) on improving salt tolerance of evening primrose (Oenothera biennis L.), seed germination, seedling growth, antioxidase and malondialdehyde (MDA) were observed under treatments of various concentrations (0, 5, 10, 20, 30 μM) of Ge in normal condition and in 50 mM NaCl solution. The results showed that both Ge-132 and GeO 2 treatments significantly increased seed germination percentage and shoot length in dose-dependent concentrations but inhibited early root elongation growth. 5-30 μM Ge-132 and 10, 20 μM GeO 2 treatments could significantly mitigate even eliminate harmful influence of salt, representing increased percentage of seed germination, root length, ratio between length of root and shoot, and decreased shoot length. These treatments also significantly decreased peroxidase (POD) and catalase (CAT) activities and MDA content. The mechanism is likely that Ge scavenges reactive oxygen species - especially hydrogen peroxide (H 2 O 2 ) - by its electron configuration 4S 2 4P 2 so as to reduce lipid peroxidation. This is the first report about the comparison of bioactivity effect of Ge-132 and GeO 2 on seed germination and seedling growth under salt stress. We conclude that Ge-132 is better than GeO 2 on promoting salt tolerance of seed and seedling.

  13. Alleviation of Fermi level pinning at metal/n-Ge interface with lattice-matched Si x Ge1‑ x ‑ y Sn y ternary alloy interlayer on Ge

    Science.gov (United States)

    Suzuki, Akihiro; Nakatsuka, Osamu; Sakashita, Mitsuo; Zaima, Shigeaki

    2018-06-01

    The impact of a silicon germanium tin (Si x Ge1‑ x ‑ y Sn y ) ternary alloy interlayer on the Schottky barrier height (SBH) of metal/Ge contacts with various metal work functions has been investigated. Lattice matching at the Si x Ge1‑ x ‑ y Sn y /Ge heterointerface is a key factor for controlling Fermi level pinning (FLP) at the metal/Ge interface. The Si x Ge1‑ x ‑ y Sn y ternary alloy interlayer having a small lattice mismatch with the Ge substrate can alleviate FLP at the metal/Ge interface significantly. A Si0.11Ge0.86Sn0.03 interlayer increases the slope parameter for the work function dependence of the SBH to 0.4. An ohmic behavior with an SBH below 0.15 eV can be obtained with Zr and Al/Si0.11Ge0.86Sn0.03/n-Ge contacts at room temperature.

  14. Poly-SiGe for MEMS-above-CMOS sensors

    CERN Document Server

    Gonzalez Ruiz, Pilar; Witvrouw, Ann

    2014-01-01

    Polycrystalline SiGe has emerged as a promising MEMS (Microelectromechanical Systems) structural material since it provides the desired mechanical properties at lower temperatures compared to poly-Si, allowing the direct post-processing on top of CMOS. This CMOS-MEMS monolithic integration can lead to more compact MEMS with improved performance. The potential of poly-SiGe for MEMS above-aluminum-backend CMOS integration has already been demonstrated. However, aggressive interconnect scaling has led to the replacement of the traditional aluminum metallization by copper (Cu) metallization, due to its lower resistivity and improved reliability. Poly-SiGe for MEMS-above-CMOS sensors demonstrates the compatibility of poly-SiGe with post-processing above the advanced CMOS technology nodes through the successful fabrication of an integrated poly-SiGe piezoresistive pressure sensor, directly fabricated above 0.13 m Cu-backend CMOS. Furthermore, this book presents the first detailed investigation on the influence o...

  15. ISABELLE: a 200 + 200 GeV colliding beam facility

    International Nuclear Information System (INIS)

    Courant, E.D.

    1977-01-01

    Plans are under way for the construction of a pair of intersecting storage rings providing for colliding beams of protons of energy at least 200 GeV. The rings (circumference 2.62 km) will contain superconducting magnets constructed with braided Nb--Ti filamentary wire, with a peak field of 4.0 T corresponding to an energy of 200 GeV. A current of 10 A of protons will be injected at 29 GeV from the existing AGS accelerator at Brookhaven, using the energy stacking technique similar to that employed at the CERN ISR; subsequently the stored beam will be accelerated gradually in the storage rings. Six intersection areas will be provided for experiments. They are designed to provide flexibility in beam characteristics for different experiments. The maximum luminosity at full energy is expected to be 1.0 x 10 33 cm -2 s -1 , at 29 GeV it will be approximately 10 32 cm -2 s -1 . Recent work with prototype magnets indicates that fields of 5.0 T can be produced. This has led to an alternative design of somewhat larger rings (circumference 3.77 km) that should be capable of providing colliding beams at 400 + 400 GeV

  16. Structural study of Ge/GaAs thin films

    International Nuclear Information System (INIS)

    Lazarov, V K; Lari, L; Lytvyn, P M; Kholevchuk, V V; Mitin, V F

    2012-01-01

    Ge/GaAs heterostructure research is largely motivated by the application of this material in solar cells, metal-oxide-semiconductor field-effect transistors, mm-wave mixer diodes, temperature sensors and photodetectors. Therefore, understanding of how the properties of Ge/GaAs heterostructure depend on its preparation (growth) is of importance for various high-efficiency devices. In this work, by using thermal Ge evaporation on GaAs(100), we studied structural properties of these films as a function of the deposition rate. Film grains size and morphology show strong dependence of the deposition rate. Low deposition rates results in films with large crystal grains and rough surface. At high deposition rates films become flatter and their crystal grains size decreases, while at very high deposition rates films become amorphous. Cross-sectional TEM of the films show that the Ge films are granular single crystal epitaxially grown on GaAs. The Ge/GaAs interface is atomically abrupt and free from misfit dislocations. Stacking faults along the [111] directions that originate at the interface were also observed. Finally by using the Kelvin probe microscopy we show that work function changes are related to the grain structure of the film.

  17. Solid state synthesis of Mn{sub 5}Ge{sub 3} in Ge/Ag/Mn trilayers: Structural and magnetic studies

    Energy Technology Data Exchange (ETDEWEB)

    Myagkov, V.G.; Bykova, L.E.; Matsynin, A.A.; Volochaev, M.N.; Zhigalov, V.S.; Tambasov, I.A. [Kirensky Institute of Physics, SB RAS, Krasnoyarsk 660036 (Russian Federation); Mikhlin, Yu L. [Institute of Chemistry and Chemical Technology, SB RAS, Krasnoyarsk 660049 (Russian Federation); Velikanov, D.A. [Kirensky Institute of Physics, SB RAS, Krasnoyarsk 660036 (Russian Federation); Bondarenko, G.N. [Institute of Chemistry and Chemical Technology, SB RAS, Krasnoyarsk 660049 (Russian Federation)

    2017-02-15

    The thin-film solid-state reaction between elemental Ge and Mn across chemically inert Ag layers with thicknesses of (0, 0.3, 1 and 2.2 µm) in Ge/Ag/Mn trilayers was studied for the first time. The initial samples were annealed at temperatures between 50 and 500 °C at 50 °C intervals for 1 h. The initiation temperature of the reaction for Ge/Mn (without a Ag barrier layer) was ~ 120 °C and increased slightly up to ~ 250 °C when the Ag barrier layer thickness increased up to 2.2 µm. In spite of the Ag layer, only the ferromagnetic Mn{sub 5}Ge{sub 3} compound and the Nowotny phase were observed in the initial stage of the reaction after annealing at 500 °C. The cross-sectional studies show that during Mn{sub 5}Ge{sub 3} formation the Ge is the sole diffusing species. The magnetic and cross-sectional transmission electron microscopy (TEM) studies show an almost complete transfer of Ge atoms from the Ge film, via a 2.2 µm Ag barrier layer, into the Mn layer. We attribute the driving force of the long-range transfer to the long-range chemical interactions between reacting Mn and Ge atoms. - Graphical abstract: The direct visualization of the solid state reaction between Mn and Ge across a Ag buffer layer at 500 °C. - Highlights: • The migration of Ge, via an inert 2.2 µm Ag barrier, into a Mn layer. • The first Mn{sub 5}Ge{sub 3} phase was observed in reactions with different Ag layers. • The Ge is the sole diffusing species during Mn{sub 5}Ge{sub 3} formation • The long-range chemical interactions control the Ge atomic transfer.

  18. Development of 68Ge/68Ga Generator using 30 MeV Cyclotron

    International Nuclear Information System (INIS)

    Goo, Hur Min; Dae, Yang Seung; Hoon, Park Jeong; Dae, Park Yong; Je, Lee Eun; Bae, Kong Young; Kim, In Jong; Lee, Jin Woo; Hyun, Yu Kook

    2012-05-01

    The purpose of this research is to develop the 68 Ge/ 68 Ga generator where daughter nuclide 68 Ga can be eluted according to the designated periods from the resin which holds mother nuclide 68 Ge absorbed and to develop the 68 Ga utilization technology. 1. Target development for 68 Ge target and production of 68 Ge - Target designed for 68 Ge production with 30 MeV cyclotron - Target body material evaluation and proton beam irradiation 2. Separation of 68 Ge and development of column material and extraction system for 68 Ge/ 68 Ga separation - Development of 68 Ge separation method from nat Ga target - Development of absorbents for generator using stable isotope 3. Development of 68 Ga labelled radiopharmaceutical - Development of 68 Ga labelled benzamide derivative for diagnosis of melanoma - Development of 68 Ga dendrimer complex using nano-technology 4. Development of shield case for 68 Ge/ 68 Ga generator

  19. Intrinsic Ge nanowire nonvolatile memory based on a simple core–shell structure

    International Nuclear Information System (INIS)

    Chen, Wen-Hua; Liu, Chang-Hai; Li, Qin-Liang; Sun, Qi-Jun; Liu, Jie; Gao, Xu; Sun, Xuhui; Wang, Sui-Dong

    2014-01-01

    Intrinsic Ge nanowires (NWs) with a Ge core covered by a thick Ge oxide shell are utilized to achieve nanoscale field-effect transistor nonvolatile memories, which show a large memory window and a high ON/OFF ratio with good retention. The retainable surface charge trapping is considered to be responsible for the memory effect, and the Ge oxide shell plays a key role as the insulating tunneling dielectric which must be thick enough to prevent stored surface charges from leaking out. Annealing the device in air is demonstrated to be a simple and effective way to attain thick Ge oxide on the Ge NW surface, and the Ge-NW-based memory corresponding to thick Ge oxide exhibits a much better retention capability compared with the case of thin Ge oxide. (paper)

  20. Ion beam induced epitaxy in Ge- and B- coimplanted silicon

    International Nuclear Information System (INIS)

    Hayashi, N.; Hasegawa, M.; Tanoue, H.; Takahashi, H.; Shimoyama, K.; Kuriyama, K.

    1992-01-01

    The epitaxial regrowth of amorphous surface layers in and Si substrate has been studied under irradiation with 400 keV Ar + ions at the temperature range from 300 to 435degC. The amorphous layers were obtained by Ge + implantation, followed by B + implantation. The ion beam assisted epitaxy was found to be sensitive to both the substrate orientation and the implanted Ge concentration, and the layer-by-layer epitaxial regrowth seemed to be precluded in Si layers with high doses of Ge implants, e.g., 2.5 x 10 15 ions/cm 2 . Electrical activation of implanted dopant B was also measured in the recrystallized Si layer. (author)

  1. Optical properties of individual site-controlled Ge quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Grydlik, Martyna, E-mail: moritz.brehm@jku.at, E-mail: martyna.grydlik@jku.at [Institute of Semiconductor and Solid State Physics, Johannes Kepler University Linz, Altenbergerstrasse 69, 4040 Linz (Austria); Institute for Integrative Nanosciences, IFW Dresden, Helmholtzstr. 20, Dresden 01069 (Germany); Center for Advancing Electronics Dresden, CfAED, TU Dresden (Germany); Brehm, Moritz, E-mail: moritz.brehm@jku.at, E-mail: martyna.grydlik@jku.at [Institute of Semiconductor and Solid State Physics, Johannes Kepler University Linz, Altenbergerstrasse 69, 4040 Linz (Austria); Institute for Integrative Nanosciences, IFW Dresden, Helmholtzstr. 20, Dresden 01069 (Germany); Tayagaki, Takeshi [Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011 (Japan); Research Center for Photovoltaics, National Institute of Advanced Industrial Science and Technology, 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568 (Japan); Langer, Gregor; Schäffler, Friedrich [Institute of Semiconductor and Solid State Physics, Johannes Kepler University Linz, Altenbergerstrasse 69, 4040 Linz (Austria); Schmidt, Oliver G. [Institute for Integrative Nanosciences, IFW Dresden, Helmholtzstr. 20, Dresden 01069 (Germany); Center for Advancing Electronics Dresden, CfAED, TU Dresden (Germany)

    2015-06-22

    We report photoluminescence (PL) experiments on individual SiGe quantum dots (QDs) that were epitaxially grown in a site-controlled fashion on pre-patterned Si(001) substrates. We demonstrate that the PL line-widths of single QDs decrease with excitation power to about 16 meV, a value that is much narrower than any of the previously reported PL signals in the SiGe/Si heterosystem. At low temperatures, the PL-intensity becomes limited by a 25 meV high potential-barrier between the QDs and the surrounding Ge wetting layer (WL). This barrier impedes QD filling from the WL which collects and traps most of the optically excited holes in this type-II heterosystem.

  2. Electronic Structure of GdCuGe Intermetallic Compound

    Science.gov (United States)

    Lukoyanov, A. V.; Knyazev, Yu. V.; Kuz'min, Yu. I.

    2018-04-01

    The electronic structure of GdCuGe intermetallic compound has been studied. Spin-polarized energy spectrum calculations have been performed by the band method with allowance for strong electron correlations in the 4 f-shell of gadolinium ions. Antiferromagnetic ordering of GdCuGe at low temperatures has been obtained in a theoretical calculation, with the value of the effective magnetic moment of gadolinium ions reproduced in fair agreement with experimental data. The electronic density of states has been analyzed. An optical conductivity spectrum has been calculated for GdCuGe; it reveals specific features that are analogous to the ones discovered previously in the GdCuSi compound with a similar hexagonal structure.

  3. Isomeric rations study for the α + 70 Ge

    International Nuclear Information System (INIS)

    Hora Villano, M.H. da.

    1984-12-01

    Isomeric ratios for 73 Se F,I produced in the reaction α + 70 Ge with incidence laboratory energy ranging from 8 to 28 MeV, have been measured using off-line γ-ray spectroscopy. Relative formation cross-section for isomeric and ground states were obtained with NAT Ge targets. Compound nucleus statistical analyses were performed using computer codes Alice and Julian. Unlike to Alice code, the Julian code predictions agreed quite well with the experimental results. This agreement may be explained by the inclusion of the γ competition in the deexcitation channels of the compound nucleus and by the correct level density calculation of the emission probabilities in the Julian code. Finally angular momentum populations for isomers formations in the reaction 70 Ge(α, n) 73 have been determined. (author)

  4. Flat Ge-doped optical fibres for food irradiation dosimetry

    International Nuclear Information System (INIS)

    Noor, N. Mohd; Jusoh, M. A.; Razis, A. F. Abdull; Alawiah, A.; Bradley, D. A.

    2015-01-01

    Exposing food to radiation can improve hygiene quality, germination control, retard sprouting, and enhance physical attributes of the food product. To provide for food safety, radiation dosimetry in irradiated food is required. Herein, fabricated germanium doped (Ge-doped) optical fibres have been used. The fibres have been irradiated using a gamma source irradiator, doses in the range 1 kGy to 10 kGy being delivered. Using Ge-doped optical fibres of variable size, type and dopant concentration, study has been made of linearity, reproducibility, and fading. The thermoluminescence (TL) yield of the fibres were obtained and compared. The fibres exhibit a linear dose response over the investigated range of doses, with mean reproducibility to within 2.69 % to 8.77 %, exceeding the dose range of all commercial dosimeters used in evaluating high doses for the food irradiation industry. TL fading of the Ge-doped flat fibres has been found to be < 13%

  5. A distributed charge storage with GeO2 nanodots

    International Nuclear Information System (INIS)

    Chang, T.C.; Yan, S.T.; Hsu, C.H.; Tang, M.T.; Lee, J.F.; Tai, Y.H.; Liu, P.T.; Sze, S.M.

    2004-01-01

    In this study, a distributed charge storage with GeO 2 nanodots is demonstrated. The mean size and aerial density of the nanodots embedded in SiO 2 are estimated to be about 5.5 nm and 4.3x10 11 cm -2 , respectively. The composition of the dots is also confirmed to be GeO 2 by x-ray absorption near-edge structure analyses. A significant memory effect is observed through the electrical measurements. Under the low voltage operation of 5 V, the memory window is estimated to ∼0.45 V. Also, a physical model is proposed to demonstrate the charge storage effect through the interfacial traps of GeO 2 nanodots

  6. The 12 GeV Upgrade at Jefferson Lab

    International Nuclear Information System (INIS)

    Rolf Ent

    2002-01-01

    There has been a remarkable fruitful evolution of our picture of the behavior of strongly interacting matter during the almost two decades that have passed since the parameters of the Continuous Electron Beam Accelerator Facility (CEBAF) at Jefferson Lab were defined. These advances have revealed important new experimental questions best addressed by a CEBAF-class machine at higher energy. Fortunately, favorable technical developments coupled with foresight in the design of the facility make it feasible to triple (double) CEBAF's design (achieved) beam energy from 4 (6) GeV to 12 GeV, in a cost-effective manner: the Upgrade can be realized for about 15% of the cost of the initial facility. This Upgrade would enable the worldwide community to greatly expand its physics horizons. In addition to in general improving the figure of merit and momentum transfer range of the present Jefferson Lab physics program, raising the energy of the accelerator to 12 GeV opens up two main new areas of physics: (1) It allows direct exploration of the quark-gluon structure of hadrons and nuclei in the ''valence quark region''. It is known that inclusive electron scattering at the high momentum and energy transfers available at 12 GeV is governed by elementary interactions with quarks and, indirectly, gluons. The original CEBAF energy is not adequate to study this critical region, while with continuous 12 GeV beams one can cleanly access the entire ''valence quark region'' and exploit the newly discovered Generalized Parton Distributions. In addition, a 12-GeV Jefferson Lab can essentially complete the studies of the transition from hadronic to quark-gluon degrees of freedom. (2) It allows crossing the threshold above which the origins of quark confinement can be investigated. Specifically, 12 GeV will enable the production of certain ''exotic'' mesons. Whereas in the QCD region of asymptotic freedom ample evidence for the role of gluons exist through the observation of gluon jets

  7. Flat Ge-doped optical fibres for food irradiation dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Noor, N. Mohd; Jusoh, M. A. [Department of Imaging, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor (Malaysia); Razis, A. F. Abdull [Food Safety Research Centre, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor (Malaysia); Laboratory of UPM-MAKNA Cancer Research, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor (Malaysia); Alawiah, A. [Faculty of Engineering and Technology, Multimedia University, 75450 Malacca (Malaysia); Bradley, D. A. [Department of Physics, University of Surrey, Guildford, Surrey GU2 7XH (United Kingdom); Department of Physics, University of Malaya, 50603 Kuala Lumpur (Malaysia)

    2015-04-24

    Exposing food to radiation can improve hygiene quality, germination control, retard sprouting, and enhance physical attributes of the food product. To provide for food safety, radiation dosimetry in irradiated food is required. Herein, fabricated germanium doped (Ge-doped) optical fibres have been used. The fibres have been irradiated using a gamma source irradiator, doses in the range 1 kGy to 10 kGy being delivered. Using Ge-doped optical fibres of variable size, type and dopant concentration, study has been made of linearity, reproducibility, and fading. The thermoluminescence (TL) yield of the fibres were obtained and compared. The fibres exhibit a linear dose response over the investigated range of doses, with mean reproducibility to within 2.69 % to 8.77 %, exceeding the dose range of all commercial dosimeters used in evaluating high doses for the food irradiation industry. TL fading of the Ge-doped flat fibres has been found to be < 13%.

  8. Surface tension and density of Si-Ge melts

    Science.gov (United States)

    Ricci, Enrica; Amore, Stefano; Giuranno, Donatella; Novakovic, Rada; Tuissi, Ausonio; Sobczak, Natalia; Nowak, Rafal; Korpala, Bartłomiej; Bruzda, Grzegorz

    2014-06-01

    In this work, the surface tension and density of Si-Ge liquid alloys were determined by the pendant drop method. Over the range of measurements, both properties show a linear temperature dependence and a nonlinear concentration dependence. Indeed, the density decreases with increasing silicon content exhibiting positive deviation from ideality, while the surface tension increases and deviates negatively with respect to the ideal solution model. Taking into account the Si-Ge phase diagram, a simple lens type, the surface tension behavior of the Si-Ge liquid alloys was analyzed in the framework of the Quasi-Chemical Approximation for the Regular Solutions model. The new experimental results were compared with a few data available in the literature, obtained by the containerless method.

  9. Strain controlled switching effects in phosphorene and GeS.

    Science.gov (United States)

    Li, B W; Wang, Y; Xie, Y Q; Zhu, L; Yao, K L

    2017-10-27

    By performing first principles calculations within the combined approach of density functional theory and nonequilibrium Green's function technique, we have designed some nanoelectronic devices to explore the ferroelastic switching of phosphorene and phosphorene analogs GeS. With the structure swapping along the zigzag direction and armchair direction, band gap transformed at different states due to their anisotropic phosphorene-like structure. From the initial state to the middle state, the band gap becomes progressively smaller, after that, it becomes wide. By analyzing transmission coefficients, it is found that the transport properties of phosphorene and GeS can be controlled by a uniaxial strain. The results also manifest that GeS has great potential to fabricate ferroic nonvolatile memory devices, because its relatively high on/off transmission coefficient ratio (∼1000) between the two stable ferroelastic states.

  10. CEBAF SRF Performance during Initial 12 GeV Commissioning

    International Nuclear Information System (INIS)

    Bachimanchi, Ramakrishna; Allison, Trent; Daly, Edward; Drury, Michael; Hovater, J; Lahti, George; Mounts, Clyde; Nelson, Richard; Plawski, Tomasz

    2015-09-01

    The Continuous Electron Beam Accelerator Facility (CEBAF) energy upgrade from 6 GeV to 12 GeV includes the installation of eleven new 100 MV cryomodules (88 cavities). The superconducting RF cavities are designed to operate CW at an accelerating gradient of 19.3 MV/m with a Q L of 3x10 7 . Not all the cavities were operated at the minimum gradient of 19.3 MV/m with the beam. Though the initial 12 GeV milestones were achieved during the initial commissioning of CEBAF, there are still some issues to be addressed for long term reliable operation of these modules. This paper reports the operational experiences during the initial commissioning and the path forward to improve the performance of C100 (100 MV) modules.

  11. The CERN 400 GeV proton synchrotron (CERN SPS)

    International Nuclear Information System (INIS)

    Adams, J.B.

    1977-01-01

    The main characteristics of the CERN 400 GeV proton synchrotron (SPS) has described. Beam intensity averages about 5x10 12 protons per pulse. The CERN 28 GeV proton synchrotron serves as an injector for the SPS. There are 108 magnet periods in the machine with a phase shift per period of π/2. The magnet system consists of 800 dipoles with 1.8 T magnetic field and 216 quadrupoles with a field gradient of 20.7 T (per meter). The frequency chosen for the RF system of the SPS is 200 MHz. Two beam extraction systems are installed in the SPS, one to feed protons to the West Experimental Area, and the other to feed protons to the North Experimental Area. The planned development of the machine in the next few years has described. The cost per GeV of the SPS works out 3 to 4 times less than that of the CPS

  12. Large rectification magnetoresistance in nonmagnetic Al/Ge/Al heterojunctions.

    Science.gov (United States)

    Zhang, Kun; Li, Huan-Huan; Grünberg, Peter; Li, Qiang; Ye, Sheng-Tao; Tian, Yu-Feng; Yan, Shi-Shen; Lin, Zhao-Jun; Kang, Shi-Shou; Chen, Yan-Xue; Liu, Guo-Lei; Mei, Liang-Mo

    2015-09-21

    Magnetoresistance and rectification are two fundamental physical properties of heterojunctions and respectively have wide applications in spintronics devices. Being different from the well known various magnetoresistance effects, here we report a brand new large magnetoresistance that can be regarded as rectification magnetoresistance: the application of a pure small sinusoidal alternating-current to the nonmagnetic Al/Ge Schottky heterojunctions can generate a significant direct-current voltage, and this rectification voltage strongly varies with the external magnetic field. We find that the rectification magnetoresistance in Al/Ge Schottky heterojunctions is as large as 250% at room temperature, which is greatly enhanced as compared with the conventional magnetoresistance of 70%. The findings of rectification magnetoresistance open the way to the new nonmagnetic Ge-based spintronics devices of large rectification magnetoresistance at ambient temperature under the alternating-current due to the simultaneous implementation of the rectification and magnetoresistance in the same devices.

  13. Characterising the 750 GeV diphoton excess

    International Nuclear Information System (INIS)

    Bernon, Jérémy; Goudelis, Andreas; Kraml, Sabine; Mawatari, Kentarou; Sengupta, Dipan

    2016-01-01

    We study kinematic distributions that may help characterise the recently observed excess in diphoton events at 750 GeV at the LHC Run 2. Several scenarios are considered, including spin-0 and spin-2 750 GeV resonances that decay directly into photon pairs as well as heavier parent resonances that undergo three-body or cascade decays. We find that combinations of the distributions of the diphoton system and the leading photon can distinguish the topology and mass spectra of the different scenarios, while patterns of QCD radiation can help differentiate the production mechanisms. Moreover, missing energy is a powerful discriminator for the heavy parent scenarios if they involve (effectively) invisible particles. While our study concentrates on the current excess at 750 GeV, the analysis is general and can also be useful for characterising other potential diphoton signals in the future.

  14. Kinetics of plasma oxidation of germanium-tin (GeSn)

    Science.gov (United States)

    Wang, Wei; Lei, Dian; Dong, Yuan; Zhang, Zheng; Pan, Jisheng; Gong, Xiao; Tok, Eng-Soon; Yeo, Yee-Chia

    2017-12-01

    The kinetics of plasma oxidation of GeSn at low temperature is investigated. The oxidation process is described by a power-law model where the oxidation rate decreases rapidly from the initial oxidation rate with increasing time. The oxidation rate of GeSn is higher than that of pure Ge, which can be explained by the higher chemical reaction rate at the GeSn-oxide/GeSn interface. In addition, the Sn atoms at the interface region exchange positions with the underlying Ge atoms during oxidation, leading to a SnO2-rich oxide near the interface. The bandgap of GeSn oxide is extracted to be 5.1 ± 0.2 eV by XPS, and the valence band offset at the GeSn-oxide/GeSn heterojunction is found to be 3.7 ± 0.2 eV. Controlled annealing experiments demonstrate that the GeSn oxide is stable with respect to annealing temperatures up to 400 °C. However, after annealing at 450 °C, the GeO2 is converted to GeO, and desorbs from the GeSn-oxide/GeSn, leaving behind Sn oxide.

  15. Photoemission Studies of Si Quantum Dots with Ge Core: Dots formation, Intermixing at Si-clad/Ge-core interface and Quantum Confinement Effect

    OpenAIRE

    Yudi Darma

    2008-01-01

    Spherical Si nanocrystallites with Ge core (~20nm in average dot diameter) have been prepared by controlling selective growth conditions of low-pressure chemical vapor deposition (LPCVD) on ultrathin SiO2 using alternately pure SiH4 and 5% GeH4 diluted with He. XPS results confirm the highly selective growth of Ge on the pregrown Si dots and subsequently complete coverage by Si selective growth on Ge/Si dots. Compositional mixing and the crystallinity of Si dots with Ge core as a function of ...

  16. Framework 'interstitial' oxygen in La10(GeO4)5-(GeO5)O2 apatite electrolyte

    International Nuclear Information System (INIS)

    Pramana, S.S.; White, T.J.

    2007-01-01

    Oxygen conduction at low temperatures in apatites make these materials potentially useful as electrolytes in solid-oxide fuel cells, but our understanding of the defect structures enabling ion migration is incomplete. While conduction along [001] channels is dominant, considerable inter-tunnel mobility has been recognized. Using neutron powder diffraction of stoichiometric 'La 10 (GeO 4 ) 6 O 3 ', it has been shown that this compound is more correctly described as an La 10 (GeO 4 ) 5- (GeO 5 )O 2 apatite, in which high concentrations of interstitial oxygen reside within the channel walls. It is suggested that these framework interstitial O atoms provide a reservoir of ions that can migrate into the conducting channels of apatite, via a mechanism of inter-tunnel oxygen diffusion that transiently converts GeO 4 tetrahedra to GeO 5 distorted trigonal bipyramids. This structural modification is consistent with known crystal chemistry and may occur generally in oxide apatites. (orig.)

  17. Ion Beam Synthesis of Ge Nanowires. rev. ed.

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, T.

    2001-01-01

    The formation of Ge nanowires in V-grooves has been studied experimentally as well as theoretically. As substrate oxide covered Si V-grooves were used formed by anisotropic etching of (001)Si wafers and subsequent oxidation of their surface. Implantation of 1 x 10{sup 17} Ge{sup +}cm{sup -2} at 70 keV was carried out into the oxide layer covering the V-grooves. Ion irradiation induces shape changes of the V-grooves, which are captured in a novel continuum model of surface evolution. It describes theoretically the effects of sputtering, redeposition of sputtered atoms, and swelling. Thereby, the time evolution of the target surface is determined by a nonlinear integro-differential equation, which was solved numerically for the V-groove geometry. A very good agreement is achieved for the predicted surface shape and the shape observed in XTEM images. Surprisingly, the model predicts material (Si, O, Ge) transport into the V-groove bottom which also suggests an Ge accumulation there proven by STEM-EDX investigations. In this Ge rich bottom region, subsequent annealing in N{sub 2} atmosphere results in the formation of a nanowire by coalescence of Ge precipitates shown by XTEM images. The process of phase separation during the nanowire growth was studied by means of kinetic 3D lattice Monte-Carlo simulations. These simulations also indicate the disintegration of continuous wires into droplets mediated by thermal fluctuations. Energy considerations have identified a fragmentation threshold and a lower boundary for the droplet radii which were confirmed by the Monte Carlo simulation. The here given results indicate the possibility of achieving nanowires being several nanometers wide by further growth optimizations as well as chains of equally spaced clusters with nearly uniform diameter. (orig.)

  18. Formation Mechanism of Ge Nanocrystals Embedded in SiO2 Studied by Fluorescence X-Ray Absorption Fine Structure

    International Nuclear Information System (INIS)

    Yan Wensheng; Li Zhongrui; Sun Zhihu; Wei Shiqiang; Kolobov, A. V.

    2007-01-01

    The formation mechanism of Ge nanocrystals for Ge (60 mol%) embedded in a SiO2 matrix grown on Si(001) and quartz-glass substrates was studied by fluorescence x-ray absorption fine structure (XAFS). It was found that the formation of Ge nanocrystals strongly depends on the properties of the substrate materials. In the as-prepared samples, Ge atoms exist in amorphous Ge and GeO2 phases. At the annealing temperature of 1073 K, on the quartz-glass substrate, Ge nanocrystals are only formed predominantly from the amorphous Ge phase in the as-prepared sample. However, on the Si(100) substrate the Ge nanocrystals are generated partly from amorphous Ge, and partly from GeO2 phases through the permutation reaction with Si substrate. Quantitative analysis revealed that about 10% of GeO2 in as-prepared sample permutated with Si in the wafer and formed Ge nanocrystals

  19. Reconstruction of GeV Neutrino Events in LENA

    International Nuclear Information System (INIS)

    Moellenberg, R.; Feilitzsch, F. von; Goeger-Neff, M.; Hellgartner, D.; Lewke, T.; Meindl, Q.; Oberauer, L.; Potzel, W.; Tippmann, M.; Winter, J.; Wurm, M.; Peltoniemi, J.

    2011-01-01

    LENA (Low Energy Neutrino Astronomy) is a proposed next generation liquid-scintillator detector with about 50 kt target mass. Besides the detection of solar neutrinos, geoneutrinos, supernova neutrinos and the search for the proton decay, LENA could also be used as the far detector of a next generation neutrino beam. The present contribution outlines the status of the Monte Carlo studies towards the reconstruction of GeV neutrinos in LENA. Both the tracking capabilities at a few hundred MeV, most interesting for a beta beam, and above 1 GeV for a superbeam experiment are presented.

  20. Superconductivity in ThPd2Ge2

    Science.gov (United States)

    Domieracki, Krzysztof; Wiśniewski, Piotr; Wochowski, Konrad; Romanova, Tetiana; Hackemer, Alicja; Gorzelniak, Roman; Pikul, Adam; Kaczorowski, Dariusz

    2018-05-01

    Our on-going search for unconventional superconductors among the ThTE2Ge2 phases (TE is a d-electron transition metal) revealed that ThPd2Ge2, which crystallizes with a body-centered tetragonal ThCr2Si2-type structure, exhibits superconductivity at low temperatures. In this paper, we report on the electrical transport and thermodynamic properties of a polycrystalline sample of this new superconductor, extended down to 50 mK. The experimental data indicates weakly-coupled type-II superconductivity with Tc = 0.63(2) K and μ0Hc2(0) = 32(2) mT.

  1. Description of the ternary system Cu-Ge-Te

    International Nuclear Information System (INIS)

    Dogguy, M.; Carcaly, C.; Rivet, J.; Flahaut, J.

    1977-01-01

    The Cu-Ge-Te ternary system has been studied by DTA and by crystallographic and metallographic analysis. The existence of a ternary compound Cu 2 GeTe 3 is demonstrated; this compound has a ternary incongruent melting point at 500 0 C. This ternary compound has a superstructure of a zinc blende type. The study shows the existence of five ternary eutectics. Two liquid-liquid miscibility gaps exist: the first is situated entirely in the ternary system; the second gives a monotectic region within the ternary system. (Auth.)

  2. Magnetoelastic behaviour of Gd sub 5 Ge sub 4

    CERN Document Server

    Magen, C; Algarabel, P A; Marquina, C; Ibarra, M R

    2003-01-01

    A complete investigation of the complex magnetic behaviour of Gd sub 5 Ge sub 4 by means of linear thermal expansion and magnetostriction measurements (5-300 K, 0-120 kOe) has been carried out. Our results support the suggested existence in this system of a coupled crystallographic-magnetic transition from a Gd sub 5 Ge sub 4 -type Pnma (antiferromagnetic) to a Gd sub 5 Si sub 4 -type Pnma (ferromagnetic) state. Strong magnetoelastic effects are observed at the field-induced first-order magnetic-martensitic transformation. A revised magnetic and crystallographic H- T phase diagram is proposed.

  3. Shaping Ge islands on Si(001) surfaces with misorientation angle.

    Science.gov (United States)

    Persichetti, L; Sgarlata, A; Fanfoni, M; Balzarotti, A

    2010-01-22

    A complete description of Ge growth on vicinal Si(001) surfaces in the angular miscut range 0 degrees -8 degrees is presented. The key role of substrate vicinality is clarified from the very early stages of Ge deposition up to the nucleation of 3D islands. By a systematic scanning tunneling microscopy investigation we are able to explain the competition between step-flow growth and 2D nucleation and the progressive elongation of the 3D islands along the miscut direction [110]. Using finite element calculations, we find a strict correlation between the morphological evolution and the energetic factors which govern the {105} faceting at atomic scale.

  4. Summary of the 70 GeV Booster Group

    International Nuclear Information System (INIS)

    Makdisi, Y.; Khiari, F.

    1985-06-01

    The energy range of the 70 GeV SSC booster makes it difficult to employ a single technique for preserving the beam polarization. Results of DEPOL calculations show that the expected resonance strengths are below the .5 x 10 -1 level, which poses no problem for resonance jumping. It was found that a single adiabatically energized Siberian snake will not significantly depolarize the beam. Thus one good solution to the mixing problem is that the snake magnets be energized during the acceleration cycle reaching maximum operating value at 20 GeV, where they take over the resonance jumping role. The possibility of adiabatically energizing two snakes was found to be feasible

  5. Epitaxial graphene-encapsulated surface reconstruction of Ge(110)

    Science.gov (United States)

    Campbell, Gavin P.; Kiraly, Brian; Jacobberger, Robert M.; Mannix, Andrew J.; Arnold, Michael S.; Hersam, Mark C.; Guisinger, Nathan P.; Bedzyk, Michael J.

    2018-04-01

    Understanding and engineering the properties of crystalline surfaces has been critical in achieving functional electronics at the nanoscale. Employing scanning tunneling microscopy, surface x-ray diffraction, and high-resolution x-ray reflectivity experiments, we present a thorough study of epitaxial graphene (EG)/Ge(110) and report a Ge(110) "6 × 2" reconstruction stabilized by the presence of epitaxial graphene unseen in group-IV semiconductor surfaces. X-ray studies reveal that graphene resides atop the surface reconstruction with a 0.34 nm van der Waals (vdW) gap and provides protection from ambient degradation.

  6. Optical response of Cu3Ge thin films

    OpenAIRE

    Aboelfotoh, M. O.; Guizzetti, G.; Marabelli, F.; Pellegrino, Paolo; Sassella, A.

    1996-01-01

    We report an investigation on the optical properties of Cu3Ge thin films displaying very high conductivity, with thickness ranging from 200 to 2000 Å, deposited on Ge substrates. Reflectance, transmittance, and ellipsometric spectroscopy measurements were performed at room temperature in the 0.01-6.0, 0.01-0.6, and 1.4-5.0 eV energy range, respectively. The complex dielectric function, the optical conductivity, the energy-loss function, and the effective charge density were obtained over the ...

  7. Formation of Si/Ge/Si heterostructures with quantum dots

    International Nuclear Information System (INIS)

    Zinov'ev, V.A.; Dvurechenskij, A.V.; Novikov, P.L.

    2003-01-01

    It is present the Monte Carlo simulation of epitaxial embedding of faceted three-dimensional Ge islands (quantum dots) in a Si matrix. Under a Si flux these islands expand and undergo a shape change (from pyramidal to drop-like shape). The main expansion occurs at initial stage of embedding in Si (deposition of 1-2 monolayers). This change is controlled by surface diffusion. The shape of island can be preserved when one uses the higher Si fluxes. The reason of island conservation lies in blocking of Ge surface diffusion [ru

  8. Substrate Effects in Wideband SiGe HBT Mixer Circuits

    DEFF Research Database (Denmark)

    Johansen, Tom Keinicke; Vidkjær, Jens; Krozer, Viktor

    2005-01-01

    are also applied to predict short distance substrate coupling effects. Simulation results using extracted equivalent circuit models and substrate coupling networks are compared with experimental results obtained on a wideband mixer circuit implemented in a 0.35 μm, 60 GHz ft SiGe HBT BiCMOS process.......In this paper, the influence from substrate effects on the performance of wideband SiGe HBT mixer circuits is investigated. Equivalent circuit models including substrate networks are extracted from on-wafer test structures and compared with electromagnetic simulations. Electromagnetic simulations...

  9. Strained Si/SiGe MOS transistor model

    Directory of Open Access Journals (Sweden)

    Tatjana Pešić-Brđanin

    2009-06-01

    Full Text Available In this paper we describe a new model of surfacechannel strained-Si/SiGe MOSFET based on the extension of non-quasi-static (NQS circuit model previously derived for bulk-Si devices. Basic equations of the NQS model have been modified to account for the new physical parameters of strained-Si and relaxed-SiGe layers. From the comparisons with measurements, it is shown that a modified NQS MOS including steady-state self heating can accurately predict DC characteristics of Strained Silicon MOSFETs.

  10. Heavy Ion Current Transients in SiGe HBTs

    Science.gov (United States)

    Pellish, Jonathan A.; Reed, Robert A.; Vizkelethy, Gyorgy; McMorrow, Dale; Ferlet-Cavrois, Veronique; Baggio, Jacques; Paillet, Philipe; Duhanel, Olivier; Phillips, Stanley D.; Sutton, Akil K.; hide

    2009-01-01

    Time-resolved ion beam induced charge reveals heavy ion response of IBM 5AM SiGe HBT: a) Position correlation[ b) Unique response for different bias schemes; c) Similarities to TPA pulsed-laser data. Heavy ion broad-beam transients provide more realistic device response: a) Feedback using microbeam data; b) Overcome issues of LET and ion range with microbeam. Both micro- and broad-beam data sets yield valuable input for TCAD simulations. Uncover detailed mechanisms for SiGe HBTs and other devices fabricated on lightly-doped substrates.

  11. GaAs/Ge solar panels for the SAMPEX program

    Science.gov (United States)

    Dobson, Rodney; Kukulka, Jerry; Dakermanji, George; Roufberg, Lew; Ahmad, Anisa; Lyons, John

    1992-01-01

    GaAs based solar cells have been developed for spacecraft use for several years. However, acceptance and application of these cells for spacecraft missions has been slow because of their high cost and concerns about their integration onto solar panels. Spectrolab has now completed fabrication of solar panels with GaAs/Ge solar cells for a second space program. This paper will focus on the design, fabrication and test of GaAs/Ge solar panels for the Solar Anomalous and Magnetospheric Particle Explorer (SAMPEX) Program.

  12. Ge nanocrystals formed by furnace annealing of Ge(x)[SiO2](1-x) films: structure and optical properties

    Science.gov (United States)

    Volodin, V. A.; Cherkov, A. G.; Antonenko, A. Kh; Stoffel, M.; Rinnert, H.; Vergnat, M.

    2017-07-01

    Ge(x)[SiO2](1-x) (0.1  ⩽  x  ⩽  0.4) films were deposited onto Si(0 0 1) or fused quartz substrates using co-evaporation of both Ge and SiO2 in high vacuum. Germanium nanocrystals were synthesized in the SiO2 matrix by furnace annealing of Ge x [SiO2](1-x) films with x  ⩾  0.2. According to electron microscopy and Raman spectroscopy data, the average size of the nanocrystals depends weakly on the annealing temperature (700, 800, or 900 °C) and on the Ge concentration in the films. Neither amorphous Ge clusters nor Ge nanocrystals were observed in as-deposited and annealed Ge0.1[SiO2]0.9 films. Infrared absorption spectroscopy measurements show that the studied films do not contain a noticeable amount of GeO x clusters. After annealing at 900 °C intermixing of germanium and silicon atoms was still negligible thus preventing the formation of GeSi nanocrystals. For annealed samples, we report the observation of infrared photoluminescence at low temperatures, which can be explained by exciton recombination in Ge nanocrystals. Moreover, we report strong photoluminescence in the visible range at room temperature, which is certainly due to Ge-related defect-induced radiative transitions.

  13. 70 °C synthesis of high-Sn content (25%) GeSn on insulator by Sn-induced crystallization of amorphous Ge

    Energy Technology Data Exchange (ETDEWEB)

    Toko, K., E-mail: toko@bk.tsukuba.ac.jp; Oya, N.; Suemasu, T. [Institute of Applied Physics, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573 (Japan); Saitoh, N.; Yoshizawa, N. [Electron Microscope Facility, TIA, AIST, 16-1 Onogawa, Tsukuba 305-8569 (Japan)

    2015-02-23

    Polycrystalline GeSn thin films are fabricated on insulating substrates at low temperatures by using Sn-induced crystallization of amorphous Ge (a-Ge). The Sn layer stacked on the a-Ge layer (100-nm thickness each) had two roles: lowering the crystallization temperature of a-Ge and composing GeSn. Slow annealing at an extremely low temperature of 70 °C allowed for a large-grained (350 nm) GeSn layer with a lattice constant of 0.590 nm, corresponding to a Sn composition exceeding 25%. The present investigation paves the way for advanced electronic optical devices integrated on a flexible plastic substrate as well as on a Si platform.

  14. Density functional study of the decomposition pathways of SiH₃ and GeH₃ at the Si(100) and Ge(100) surfaces.

    Science.gov (United States)

    Ceriotti, M; Montalenti, F; Bernasconi, M

    2012-03-14

    By means of first-principles calculations we studied the decomposition pathways of SiH₃ on Ge(100) and of GeH₃ on Si(100), of interest for the growth of crystalline SiGe alloys and Si/Ge heterostructures by plasma-enhanced chemical vapor deposition. We also investigated H desorption via reaction of two adsorbed SiH₂/GeH₂ species (β₂ reaction) or via Eley-Rideal abstraction of surface H atoms from the impinging SiH₃ and GeH₃ species. The calculated activation energies for the different processes suggest that the rate-limiting step for the growth of Si/Ge systems is still the β₂ reaction of two SiH₂ as in the growth of crystalline Si.

  15. Growth of crystallized Ge films from VHF inductively-coupled plasma of H2-diluted GeH4

    International Nuclear Information System (INIS)

    Sakata, T.; Makihara, K.; Murakami, H.; Higashi, S.; Miyazaki, S.

    2007-01-01

    We have studied the Ge crystalline nucleation and film growth on quartz substrate at 250 deg. C from inductively-coupled plasma (ICP) of GeH 4 diluted with H 2 . The ICP was generated by supplying 60 MHz power to an external single-turn antenna which was placed on a quartz plate window of a stainless steel reactor and parallel to the substrate. We have found that the growth rate is significantly increased when the preferential growth of the (110) plane becomes pronounced after the formation of randomly-oriented crystalline network. The (110) oriented Ge films, of which average crystallinity is as high as 70%. The integrated intensity ratio of TO phonons in crystalline phase to those in disordered phase, were grown at a rate of ∼ 4.0 nm/s after the formation of amorphous incubation layer with a thickness of ∼ 0.1 μm on quartz

  16. Giant magnetocaloric effect in isostructural MnNiGe-CoNiGe system by establishing a Curie-temperature window

    KAUST Repository

    Liu, E. K.

    2013-03-28

    An effective scheme of isostructural alloying was applied to establish a Curie-temperature window in isostructural MnNiGe-CoNiGe system. With the simultaneous accomplishment of decreasing structural-transition temperature and converting antiferromagnetic martensite to ferromagnetic state, a 200 K Curie-temperature window was established between Curie temperatures of austenite and martensite phases. In the window, a first-order magnetostructural transition between paramagnetic austenite and ferromagnetic martensite occurs with a sharp jump in magnetization, showing a magnetic entropy change as large as −40 J kg−1 K−1 in a 50 kOe field change. This giant magnetocaloric effect enables Mn1− x Co x NiGe to become a potential magnetic refrigerant.

  17. Properties of slow traps of ALD Al{sub 2}O{sub 3}/GeO{sub x}/Ge nMOSFETs with plasma post oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Ke, M., E-mail: kiramn@mosfet.t.u-tokyo.ac.jp; Yu, X.; Chang, C.; Takenaka, M.; Takagi, S. [Department of Electrical Engineering and Information Systems, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan and JST-CREST, K' s Gobancho 6F, 7 Gobancho, Chiyoda-ku, Tokyo 102-0076 (Japan)

    2016-07-18

    The realization of Ge gate stacks with a small amount of slow trap density as well as thin equivalent oxide thickness and low interface state density (D{sub it}) is a crucial issue for Ge CMOS. In this study, we examine the properties of slow traps, particularly the location of slow traps, of Al{sub 2}O{sub 3}/GeO{sub x}/n-Ge and HfO{sub 2}/Al{sub 2}O{sub 3}/GeO{sub x}/n-Ge MOS interfaces with changing the process and structural parameters, formed by atomic layer deposition (ALD) of Al{sub 2}O{sub 3} and HfO{sub 2}/Al{sub 2}O{sub 3} combined with plasma post oxidation. It is found that the slow traps can locate in the GeO{sub x} interfacial layer, not in the ALD Al{sub 2}O{sub 3} layer. Furthermore, we study the time dependence of channel currents in the Ge n-MOSFETs with 5-nm-thick Al{sub 2}O{sub 3}/GeO{sub x}/Ge gate stacks, with changing the thickness of GeO{sub x}, in order to further clarify the position of slow traps. The time dependence of the current drift and the effective time constant of slow traps do not change among the MOSFETs with the different thickness GeO{sub x}, demonstrating that the slow traps mainly exist near the interfaces between Ge and GeO{sub x}.

  18. Stellar Laboratories: New GeV and Ge VI Oscillator Strengths and their Validation in the Hot White Dwarf RE0503-289

    Science.gov (United States)

    Rauch, T.; Werner, K.; Biemont, E.; Quinet, P.; Kruk, J. W.

    2013-01-01

    State-of-the-art spectral analysis of hot stars by means of non-LTE model-atmosphere techniques has arrived at a high level of sophistication. The analysis of high-resolution and high-S/N spectra, however, is strongly restricted by the lack of reliable atomic data for highly ionized species from intermediate-mass metals to trans-iron elements. Especially data for the latter has only been sparsely calculated. Many of their lines are identified in spectra of extremely hot, hydrogen-deficient post-AGB stars. A reliable determination of their abundances establishes crucial constraints for AGB nucleosynthesis simulations and, thus, for stellar evolutionary theory. Aims. In a previous analysis of the UV spectrum of RE 0503-289, spectral lines of highly ionized Ga, Ge, As, Se, Kr, Mo, Sn, Te, I, and Xe were identified. Individual abundance determinations are hampered by the lack of reliable oscillator strengths. Most of these identified lines stem from Ge V. In addition, we identified Ge VI lines for the first time. We calculated Ge V and Ge VI oscillator strengths in order to reproduce the observed spectrum. Methods. We newly calculated Ge V and Ge VI oscillator strengths to consider their radiative and collisional bound-bound transitions in detail in our non-LTE stellar-atmosphere models for the analysis of the Ge IV-VI spectrum exhibited in high-resolution and high-S/N FUV (FUSE) and UV (ORFEUS/BEFS, IUE) observations of RE 0503-289. Results. In the UV spectrum of RE 0503-289, we identify four Ge IV, 37 Ge V, and seven Ge VI lines. Most of these lines are identified for the first time in any star. We can reproduce almost all Ge IV, GeV, and Ge VI lines in the observed spectrum of RE 0503-289 (T(sub eff) = 70 kK, log g = 7.5) at log Ge = -3.8 +/- 0.3 (mass fraction, about 650 times solar). The Ge IV/V/VI ionization equilibrium, that is a very sensitive T(sub eff) indicator, is reproduced well. Conclusions. Reliable measurements and calculations of atomic data are a

  19. Structural, electronic and optical characteristics of SrGe{sub 2} and BaGe{sub 2}: A combined experimental and computational study

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Mukesh, E-mail: mkgarg79@gmail.com [Environmental Remediation Materials Unit, National Institute for Materials Science, Ibaraki 305-0044 (Japan); Umezawa, Naoto [Environmental Remediation Materials Unit, National Institute for Materials Science, Ibaraki 305-0044 (Japan); Imai, Motoharu [Superconducting Properties Unit, National Institute for Materials Science, Ibaraki 305-0047 (Japan)

    2015-05-05

    Highlights: • Charge transfer between cation and anion atoms observed first time in digermandies. • Study yields a band gap of ∼1 eV and ∼0.85 eV for SrGe{sub 2} and BaGe{sub 2}, respectively. • Band gap decrease with the application of hydrostatic pressure. • Localized cation d states lead to a large absorption coefficient (>7.5 × 10{sup 4} cm{sup −1}). - Abstract: SrGe{sub 2} and BaGe{sub 2} were characterized for structural, electronic and optical properties by means of diffuse reflectance and first-principles density functional theory. These two germanides crystallize in the BaSi{sub 2}-type structure, in which Ge atoms are arranged in tetrahedral configuration. The calculation indicates a charge transfer from Sr (or Ba) atoms to Ge atoms along with the formation of covalent bonds among Ge atoms in Ge tetrahedral. The computational results confirm that these two germanies are Zintl phase described as Sr{sub 2}Ge{sub 4} (or Ba{sub 2}Ge{sub 4}), which are characterized by positively charged [Sr{sub 2} (or Ba{sub 2})]{sup 2.59+} and negatively charged [Ge{sub 4}]{sup 2.59−} units acting as cation and anion, respectively. These compounds are indirect gap semiconductors with band gap estimated to be E{sub g} = 1.02 eV for BaGe{sub 2} and E{sub g} = 0.89 eV for SrGe{sub 2} which are in good agreement with our experimental measured values (E{sub g} = 0.97 eV for BaGe{sub 2} and E{sub g} = 0.82 eV for SrGe{sub 2}). Our calculations demonstrate that the band gaps are narrowed by application of hydrostatic pressure; the pressure coefficients are estimated to be −10.54 for SrGe{sub 2} and −10.06 meV/GPa for BaGe{sub 2}. Optical properties reveal that these compounds have large absorption coefficient (∼7.5 × 10{sup 4} cm{sup −1} at 1.5 eV) and the estimated high frequency (static) dielectric constant are, ε{sub ∞}(ε{sub 0}) ≈ 12.8(20.97) for BaGe{sub 2} and ε{sub ∞}(ε{sub 0}) ≈ 14.27(22.87) for SrGe{sub 2}.

  20. Optical and structural investigations of self-assembled Ge/Si bi-layer containing Ge QDs

    Energy Technology Data Exchange (ETDEWEB)

    Samavati, Alireza, E-mail: alireza.samavati@yahoo.com [Ibn Sina Institute for Fundamental Science Studies, Universiti Teknologi Malaysia, Skudai 81310, Johor (Malaysia); Othaman, Z., E-mail: zulothaman@gmail.com [Ibn Sina Institute for Fundamental Science Studies, Universiti Teknologi Malaysia, Skudai 81310, Johor (Malaysia); Ghoshal, S.K.; Dousti, M.R. [Advanced Optical Material Research Group, Department of Physics, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor (Malaysia)

    2014-10-15

    We report the influence of Si spacer thickness variation (10–40 nm) on structural and optical properties of Ge quantum dots (QDs) in Ge/Si(1 0 0) bi-layer grown by radio frequency magnetron sputtering. AFM images reveal the spacer dependent width, height, root mean square roughness and number density of QDs vary in the range of ∼12–25 nm, ∼2–6 nm, ∼1.95–1.05 nm and ∼0.55×10{sup 11}–2.1×10{sup 11} cm{sup −2}, respectively. XRD patterns exhibit the presence of poly-oriented structures of Ge with preferred growth along (1 1 1) direction accompanied by a reduction in strain from 4.9% to 1.2% (estimated from Williamson–Hall plot) due to bi-layering. The room temperature luminescence displays strong blue–violet peak associated with a blue shift as much as 0.05 eV upon increasing the thickness of Si spacer. This shift is attributed to the quantum size effect, the material intermixing and the strain mediation. Raman spectra for both mono and bi-layer samples show intense Ge–Ge optical phonon mode that is shifted towards higher frequency. Furthermore, the first order features of Raman spectra affirm the occurrence of interfacial intermixing and phase formation during deposition. The excellent features of the results suggest that our systematic method may constitute a basis for the tunable growth of Ge QDs suitable in nanophotonics. - Highlights: • High quality bilayered hetero-structure Ge/Si using economic and easy rf magnetron sputtering fabrication method. • The role of phonon-confinement and strain relaxation mechanisms. • Influence of bilayering on evolutionary growth dynamics. • Band gap shift of visible PL upon bilayering.

  1. High spin levels in 66Ga, 68Ga, 70Ga and 68Ge, 70Ge, 72Ge via fusion evaporation reactions induced by α-particles

    International Nuclear Information System (INIS)

    Morand, C.

    1979-01-01

    The high spin (J 70 Ga all the members (except the 3 - one) of the (πpsub(3/2), νgsub(9/2)) configuration have been identified, in addition with the (πfsub(5/2), νgsub(9/2))sub(7 - ) and (πgsub(9/2), νgsub(9/2))sub(9 + ) states. In 66 Ga and 68 Ga most of the levels with J>7 ca be described as a result of maximum coupling of a gsub(9/2) neutron with the odd Ga core. Thus the (πgsub(9/2), νgsub(9/2))sub(9 + ) states have been safely located. In the same way the even Ge, the backbending effect at the Jsup(π)=8 + state is less and less pronouced from the 68 Ge to the 72 Ge; that can be explained by the (νgsub(9/2)) 2 sub(8 + ) configuration of this state, so that the 8 + →6 + γ-transition is more and more allowed with increasing N, i.e. as the νgsub(9/2) shell acts more and more in the lower yrast levels Jsup(π)=0 + , 2 + , 4 + , 6 + configurations [fr

  2. Pressure-induced antiferromagnetic superconductivity in CeNiGe3: A Ge73-NQR study under pressure

    International Nuclear Information System (INIS)

    Harada, A.; Kawasaki, S.; Mukuda, H.; Kitaoka, Y.; Thamizhavel, A.; Okuda, Y.; Settai, R.; Onuki, Y.; Itoh, K.M.; Haller, E.E.; Harima, H.

    2007-01-01

    We report on antiferromagnetic (AF) properties of pressure-induced superconductivity in CeNiGe 3 via the Ge73 nuclear-quadrupole-resonance (NQR) measurements under pressure (P). The NQR-spectrum measurements have revealed that the incommensurate antiferromagnetic ordering is robust against increasing P with the increase of ordered moment and ordering temperature. Nevertheless the measurements of nuclear spin-lattice relaxation rate (1/T 1 ) have pointed to the onset of superconductivity as a consequence of Ce-4f electrons delocalized by applying P. The emergence of superconductivity under the development of AF order suggests that a novel type of superconducting mechanism works in this compound

  3. The Ho–Ni–Ge system: Isothermal section and new rare-earth nickel germanides

    Energy Technology Data Exchange (ETDEWEB)

    Morozkin, A.V., E-mail: morozkin@tech.chem.msu.ru [Department of Chemistry, Moscow State University, Leninskie Gory, House 1, Building 3, GSP-2, Moscow 119992 (Russian Federation); Knotko, A.V. [Department of Chemistry, Moscow State University, Leninskie Gory, House 1, Building 3, GSP-2, Moscow 119992 (Russian Federation); Yapaskurt, V.O. [Department of Petrology, Faculty of Geology, Moscow State University, Leninskie Gory, Moscow 119992 (Russian Federation); Yuan, Fang; Mozharivskyj, Y. [Department of Chemistry and Chemical Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4M1 (Canada); Pani, M.; Provino, A.; Manfrinetti, P. [Institute SPIN-CNR and Dipartimento di Chimica e Chimica Industriale, Università di Genova, Via Dodecaneso 31, 16146 Genova (Italy)

    2015-05-15

    The Ho–Ni–Ge system has been investigated at 1070 K and up to ~60 at% Ho by X-ray diffraction and microprobe analyses. Besides the eight known compounds, HoNi{sub 5}Ge{sub 3} (YNi{sub 5}Si{sub 3}-type), HoNi{sub 2}Ge{sub 2} (CeAl{sub 2}Ga{sub 2}-type), Ho{sub 2}NiGe{sub 6} (Ce{sub 2}CuGe{sub 6}-type), HoNiGe{sub 3} (SmNiGe{sub 3}-type), HoNi{sub 0.2÷0.6}Ge{sub 2} (CeNiSi{sub 2}-type), Ho{sub 37÷34}Ni{sub 6÷24}Ge{sub 57÷42} (AlB{sub 2}-type), HoNiGe (TiNiSi-type), Ho{sub 3}NiGe{sub 2} (La{sub 3}NiGe{sub 2}-type), the ternary system contains four new compounds: Ho{sub 3}Ni{sub 11}Ge{sub 4} (Sc{sub 3}Ni{sub 11}Ge{sub 4}-type), HoNi{sub 3}Ge{sub 2} (ErNi{sub 3}Ge{sub 2}-type), Ho{sub 3}Ni{sub 2}Ge{sub 3} (Hf{sub 3}Ni{sub 2}Si{sub 3}-type) and ~Ho{sub 5}Ni{sub 2}Ge{sub 3} (unknown structure). Quasi-binary solid solutions were observed at 1070 K for Ho{sub 2}Ni{sub 17}, HoNi{sub 5}, HoNi{sub 7}, HoNi{sub 3}, HoNi{sub 2}, HoNi and Ho{sub 2}Ge{sub 3}, but no detectable solubility was found for the other binary compounds in the Ho–Ni–Ge system. Based on the magnetization measurements, the HoNi{sub 5}Ge{sub 3}, HoNi{sub 3}Ge{sub 2} and Ho{sub 3}Ni{sub 11}Ge{sub 4} (and isostructural (Tb, Dy){sub 3}Ni{sub 11}Ge{sub 4}) compounds have been found to show paramagnetic behavior down to 5 K, whereas Ho{sub 3}Ni{sub 2}Ge{sub 3} exhibits an antiferromagnetic transition at ~7 K. Additionally, the crystal structure of the new isostructural phases (Y, Yb)Ni{sub 3}Ge{sub 2} (ErNi{sub 3}Ge{sub 2}-type), Er{sub 3}Ni{sub 11}Ge{sub 4} (Sc{sub 3}Ni{sub 11}Ge{sub 4}-type) and (Y, Tb, Dy, Er, Tm){sub 3}Ni{sub 2}Ge{sub 3} (Hf{sub 3}Ni{sub 2}Si{sub 3}-type) has been also investigated. - Graphical abstract: The Ho–Ni–Ge system has been investigated at 1070 K and up to ~60 at.% Ho by X-ray and microprobe analyses. Besides the eight known compounds, i.e. HoNi{sub 5}Ge{sub 3} (YNi{sub 5}Si{sub 3}-type), HoNi{sub 2}Ge{sub 2} (CeAl{sub 2}Ga{sub 2}-type), Ho{sub 2}NiGe{sub 6} (Ce{sub 2

  4. Inhibitive formation of nanocavities by introduction of Si atoms in Ge nanocrystals produced by ion implantation

    Energy Technology Data Exchange (ETDEWEB)

    Cai, R. S.; Shang, L.; Liu, X. H.; Zhang, Y. J. [The Cultivation Base for State Key Laboratory, Qingdao University, No. 308 Ningxia Road, Qingdao 266071 (China); Wang, Y. Q., E-mail: yqwang@qdu.edu.cn, E-mail: barba@emt.inrs.ca [The Cultivation Base for State Key Laboratory, Qingdao University, No. 308 Ningxia Road, Qingdao 266071 (China); College of Physics Science, Qingdao University, No. 308 Ningxia Road, Qingdao 266071 (China); Ross, G. G.; Barba, D., E-mail: yqwang@qdu.edu.cn, E-mail: barba@emt.inrs.ca [INRS-Énergie, Matériaux et Télécommunications, 1650 boulevard Lionel-Boulet, Varennes Québec J3X 1S2 (Canada)

    2014-05-28

    Germanium nanocrystals (Ge-nc) were successfully synthesized by co-implantation of Si and Ge ions into a SiO{sub 2} film thermally grown on (100) Si substrate and fused silica (pure SiO{sub 2}), respectively, followed by subsequent annealing at 1150 °C for 1 h. Transmission electron microscopy (TEM) examinations show that nanocavities only exist in the fused silica sample but not in the SiO{sub 2} film on a Si substrate. From the analysis of the high-resolution TEM images and electron energy-loss spectroscopy spectra, it is revealed that the absence of nanocavities in the SiO{sub 2} film/Si substrate is attributed to the presence of Si atoms inside the formed Ge-nc. Because the energy of Si-Ge bonds (301 kJ·mol{sup −1}) are greater than that of Ge-Ge bonds (264 kJ·mol{sup −1}), the introduction of the Si-Ge bonds inside the Ge-nc can inhibit the diffusion of Ge from the Ge-nc during the annealing process. However, for the fused silica sample, no crystalline Si-Ge bonds are detected within the Ge-nc, where strong Ge outdiffusion effects produce a great number of nanocavities. Our results can shed light on the formation mechanism of nanocavities and provide a good way to avoid nanocavities during the process of ion implantation.

  5. Homogeneity of Ge-rich nanostructures as characterized by chemical etching and transmission electron microscopy.

    Science.gov (United States)

    Bollani, Monica; Chrastina, Daniel; Montuori, Valeria; Terziotti, Daniela; Bonera, Emiliano; Vanacore, Giovanni M; Tagliaferri, Alberto; Sordan, Roman; Spinella, Corrado; Nicotra, Giuseppe

    2012-02-03

    The extension of SiGe technology towards new electronic and optoelectronic applications on the Si platform requires that Ge-rich nanostructures be obtained in a well-controlled manner. Ge deposition on Si substrates usually creates SiGe nanostructures with relatively low and inhomogeneous Ge content. We have realized SiGe nanostructures with a very high (up to 90%) Ge content. Using substrate patterning, a regular array of nanostructures is obtained. We report that electron microscopy reveals an abrupt change in Ge content of about 20% between the filled pit and the island, which has not been observed in other Ge island systems. Dislocations are mainly found within the filled pit and only rarely in the island. Selective chemical etching and electron energy-loss spectroscopy reveal that the island itself is homogeneous. These Ge-rich islands are possible candidates for electronic applications requiring locally induced stress, and optoelectronic applications which exploit the Ge-like band structure of Ge-rich SiGe.

  6. Homogeneity of Ge-rich nanostructures as characterized by chemical etching and transmission electron microscopy

    International Nuclear Information System (INIS)

    Bollani, Monica; Chrastina, Daniel; Montuori, Valeria; Vanacore, Giovanni M; Tagliaferri, Alberto; Sordan, Roman; Terziotti, Daniela; Bonera, Emiliano; Spinella, Corrado; Nicotra, Giuseppe

    2012-01-01

    The extension of SiGe technology towards new electronic and optoelectronic applications on the Si platform requires that Ge-rich nanostructures be obtained in a well-controlled manner. Ge deposition on Si substrates usually creates SiGe nanostructures with relatively low and inhomogeneous Ge content. We have realized SiGe nanostructures with a very high (up to 90%) Ge content. Using substrate patterning, a regular array of nanostructures is obtained. We report that electron microscopy reveals an abrupt change in Ge content of about 20% between the filled pit and the island, which has not been observed in other Ge island systems. Dislocations are mainly found within the filled pit and only rarely in the island. Selective chemical etching and electron energy-loss spectroscopy reveal that the island itself is homogeneous. These Ge-rich islands are possible candidates for electronic applications requiring locally induced stress, and optoelectronic applications which exploit the Ge-like band structure of Ge-rich SiGe. (paper)

  7. Local structural environments of Ge doped in eutectic Sb-Te film before and after crystallization

    Science.gov (United States)

    Shin, Sang Yeol; Cheong, Byung-ki; Choi, Yong Gyu

    2018-06-01

    Electrical phase change device using the Ge-doped eutectic Sb-Te (e.g., Ge1Sb8Te2) film is known to exhibit improved energy efficiency thanks to lowered threshold voltage as well as decreased power consumption for the reset operation, as compared with Ge2Sb2Te5 film. Ge K-edge EXAFS analysis is employed in this study in an effort to elucidate such merits of Ge1Sb8Te2 film in connection with its local atomic arrangements. It is then verified that a Ge atom is four-fold coordinated in its nearest-neighboring shell both in the as-deposited and in the annealed films. It needs to be highlighted that approximately two Sb atoms constitute the Ge tetrahedral units in its amorphous state; however, after being crystallized, heteropolar Ge-Sb bonds hardly exist in this Ge1Sb8Te2 film. It has been known that crystallization temperature and activation energy for crystallization of this Ge1Sb8Te2 composition are greater than those of Ge2Sb2Te5 composition. In addition, these two phase change materials exhibit distinctly different crystallization mechanisms, i.e., nucleation-dominant for Ge2Sb2Te5 film but growth-dominant for Ge1Sb8Te2 film. These discrepancies in the crystallization-related properties are delineated in terms of the local structural changes verified from the present EXAFS analysis.

  8. XML Schema of PaGE-OM: fuge.xsd [

    Lifescience Database Archive (English)

    Full Text Available ://www.omg.org/spec/PAGE-OM/20090722/snp schemaLocation=snp.xsd/> ..._source type=fuge:Ontology_source/> _source> ...ogy_term/> _term> Ontology term, defined in more detail in FuGE (http://fuge.sourceforge.net/). This

  9. GeV Detection of HESS J0632+057

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jian; Torres, Diego F.; Wilhelmi, Emma de Oña [Institute of Space Sciences (CSIC–IEEC), Campus UAB, Carrer de Magrans s/n, E-08193 Barcelona (Spain); Cheng, K.-S. [Department of Physics, University of Hong Kong, Pokfulam Road, Hong Kong (China); Kretschmar, Peter [European Space Astronomy Centre (ESA/ESAC), Science Operations Department, Villanueva de la Cañada (Madrid) (Spain); Hou, Xian [Yunnan Observatories, Chinese Academy of Sciences, 396 Yangfangwang, Guandu District, Kunming 650216 (China); Takata, Jumpei, E-mail: jian@ice.csic.es [School of Physics, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2017-09-10

    HESS J0632+057 is the only gamma-ray binary that has been detected at TeV energies, but not at GeV energies yet. Based on nearly nine years of Fermi Large Area Telescope (LAT) Pass 8 data, we report here on a deep search for the gamma-ray emission from HESS J0632+057 in the 0.1–300 GeV energy range. We find a previously unknown gamma-ray source, Fermi J0632.6+0548, spatially coincident with HESS J0632+057. The measured flux of Fermi J0632.6+0548 is consistent with the previous flux upper limit on HESS J0632+057 and shows variability that can be related to the HESS J0632+057 orbital phase. We propose that Fermi J0632.6+0548 is the GeV counterpart of HESS J0632+057. Considering the Very High Energy spectrum of HESS J0632+057, a possible spectral turnover above 10 GeV may exist in Fermi J0632.6+0548, as appears to be common in other established gamma-ray binaries.

  10. 12 GeV detector technology at Jefferson Lab

    Energy Technology Data Exchange (ETDEWEB)

    Leckey, John P. [Indiana University, Bloomington, IN 47405 (United States); Collaboration: GlueX Collaboration

    2013-04-19

    The Thomas Jefferson National Accelerator Facility (JLab) is presently in the middle of an upgrade to increase the energy of its CW electron beam from 6 GeV to 12 GeV along with the addition of a fourth experimental hall. Driven both by necessity and availability, novel detectors and electronics modules have been used in the upgrade. One such sensor is the Silicon Photomultiplier (SiPM), specifically a Multi-Pixel Photon Counter (MPPC), which is an array of avalanche photodiode pixels operating in Geiger mode that are used to sense photons. The SiPMs replace conventional photomultiplier tubes and have several distinct advantages including the safe operation in a magnetic field and the lack of need for high voltage. Another key to 12 GeV success is advanced fast electronics. Jlab will use custom 250 MHz and 125 MHz 12-bit analog to digital converters (ADCs) and time to digital converters (TDCs) all of which take advantage of VME Switched Serial (VXS) bus with its GB/s high bandwidth readout capability. These new technologies will be used to readout drift chambers, calorimeters, spectrometers and other particle detectors at Jlab once the 12 GeV upgrade is complete. The largest experiment at Jlab utilizing these components is GlueX - an experiment in the newly constructed Hall D that will study the photoproduction of light mesons in the search for hybrid mesons. The performance of these components and their respective detectors will be presented.

  11. Metal Induced Gap States on Pt/Ge(001)

    NARCIS (Netherlands)

    Oncel, N.; van Beek, W.J.; Poelsema, Bene; Zandvliet, Henricus J.W.

    2007-01-01

    Using scanning tunneling microscopy (STM) and scanning tunneling spectroscopy (STS) we have studied the electronic properties of a novel, planar, metal semiconductor contact. For this purpose we take advantage of the unique properties of the Pt-modified Ge(001) surface, which consist of coexisting

  12. Effect of pressure on magnetism of UIrGe

    International Nuclear Information System (INIS)

    Pospíšil, Jiří; Haga, Yoshinori; Tateiwa, Naoyuki; Kambe, Shinsaku; Yamamoto, Etsuji; Gouchi, Jun; Uwatoko, Yoshiya; Nagasaki, Shoko; Honda, Fuminori; Homma, Yoshiya

    2017-01-01

    We report the effect of hydrostatic pressure on the electronic state of the antiferromagnet UIrGe, which is isostructural and isoelectronic with the ferromagnetic superconductors UCoGe and URhGe. A series of electrical resistivity measurements in a piston–cylinder-type cell and a cubic-anvil cell were performed at hydrostatic pressures up to 15 GPa. The Néel temperature decreases with increasing pressure. We constructed a p–T phase diagram and estimated the critical pressure p_c, where the antiferromagnetism vanishes, as ∼12 GPa. The antiferromagnetic/paramagnetic transition appears to be first order. We suggest a scenario of competing antiferromagnetic inter-J- and ferromagnetic intra-J*-chain interactions in UIrGe. A moderate increase in the effective electron mass was detected in the vicinity of p_c. A discussion of the electronic specific heat γ and electron–electron correlation term A using the Kadowaki–Woods relation is given. (author)

  13. USA hiiglane GE Healthcare korraldab meditsiinis revolutsiooni / Andrew Jack

    Index Scriptorium Estoniae

    Jack, Andrew

    2006-01-01

    General Electricu tütarettevõte GE Healthcare võttis üle Briti diagnostika- ja bioteaduse uurimisfirma Amersham, firma strateegia tuum on võimsa skaneerimistehnoloogia ja meditsiinilise diagnostika üksteisele lähendamine. Lisa: Aeg sorteerida andmeid infotehnoloogia abil

  14. High-field magnetization of UCuGe single crystal

    Czech Academy of Sciences Publication Activity Database

    Andreev, Alexander V.; Mushnikov, N. V.; Gozo, T.; Honda, F.; Sechovský, V.; Prokeš, K.

    346-347, - (2004), s. 132-136 ISSN 0921-4526 R&D Projects: GA ČR GA202/02/0739 Institutional research plan: CEZ:AV0Z1010914 Keywords : uranium intermetallics * UCuGe * high fields * magnetic anisotropy * field-induced phase transition Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.679, year: 2004

  15. Thermal expansion of the superconducting ferromagnet UCoGe

    NARCIS (Netherlands)

    Gasparini, A.; Huang, Y.K.; Hartbaum, J.; v. Löhneysen, H.; de Visser, A.

    2010-01-01

    We report measurements of the coefficient of linear thermal expansion, α(T), of the superconducting ferromagnet UCoGe. The data taken on a single-crystalline sample along the orthorhombic crystal axes reveal a pronounced anisotropy with the largest length changes along the b axis. The large values

  16. Oblique roughness replication in strained SiGe/Si multilayers

    NARCIS (Netherlands)

    Holy, V.; Darhuber, A.A.; Stangl, J.; Bauer, G.; Nützel, J.-F.; Abstreiter, G.

    1998-01-01

    The replication of the interface roughness in SiGe/Si multilayers grown on miscut Si(001) substrates has been studied by means of x-ray reflectivity reciprocal space mapping. The interface profiles were found to be highly correlated and the direction of the maximal replication was inclined with

  17. Fabrication of Cu(x)Ge(y) Nanoplatelets

    Czech Academy of Sciences Publication Activity Database

    Křenek, T.; Fajgar, Radek; Medlín, R.; Klementová, Mariana; Novotný, F.; Dřínek, Vladislav

    2011-01-01

    Roč. 11, č. 9 (2011), s. 8279-8283 ISSN 1533-4880. [EuroCVD-18. Kinsale, 04.09.2011-09.09.2011] Institutional research plan: CEZ:AV0Z40720504; CEZ:AV0Z40320502 Keywords : CuGe * alloy * nanoplatelet Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.563, year: 2011

  18. 7-GeV Advanced Photon Source Conceptual Design Report

    International Nuclear Information System (INIS)

    1987-04-01

    During the past decade, synchrotron radiation emitted by circulating electron beams has come into wide use as a powerful, versatile source of x-rays for probing the structure of matter and for studying various physical processes. Several synchrotron radiation facilities with different designs and characteristics are now in regular operation throughout the world, with recent additions in this country being the 0.8-GeV and 2.5-GeV rings of NSLS at Brookhaven National Laboratory. However, none of the operating facilities has been designed to use a low-emittance, high-energy stored beam, together with modern undulator devices, to produce a large number of hard x-ray beams of extremely high brilliance. This document is a proposal to the Department of Energy to construct and operate high-energy synchrotron radiation facility at Argonne National Laboratory. We have now chosen to set the design energy of this facility at 7.0 GeV, with the capability to operate at up to 7.5 GeV

  19. Injection error monitor for KEK 12 GeV PS

    International Nuclear Information System (INIS)

    Shirakata, Masashi; Sato, Hikaru; Toyama, Takeshi; Marutsuka, Katsumi.

    1994-01-01

    The injection error monitor is now developing for an easy tuning of the main ring beam injection at the KEK 12 GeV proton synchrotron. The beam trajectory on the horizontal phase space plane is obtained by a test bench system. The injection error monitor proved to be available for the beam injection tuning. (author)

  20. The structure of collective bands in 72Ge

    International Nuclear Information System (INIS)

    Tripathy, K.C.; Sahu, R.

    1999-01-01

    In recent years, extensive experimental studies of nuclei in the mass region A=80 have led to exciting discoveries of large ground state deformations, coexistence of shapes, band crossings, rapid variations of structure with changing nucleon numbers etc. A theoretical study of 72 Ge is presented

  1. Antilocalization of Coulomb Blockade in a Ge-Si Nanowire

    DEFF Research Database (Denmark)

    Higginbotham, Andrew P.; Kuemmeth, Ferdinand; Larsen, Thorvald Wadum

    2014-01-01

    The distribution of Coulomb blockade peak heights as a function of magnetic field is investigated experimentally in a Ge-Si nanowire quantum dot. Strong spin-orbit coupling in this hole-gas system leads to antilocalization of Coulomb blockade peaks, consistent with theory. In particular, the peak...

  2. Sputtering of Ge(001): transition between dynamic scaling regimes

    DEFF Research Database (Denmark)

    Smilgies, D.-M.; Eng, P.J.; Landemark, E.

    1997-01-01

    We have studied the dynamic behavior of the Ge(001) surface during sputtering in situ and in real time using synchrotron X-ray diffraction. We find two dynamic regimes as a function of surface temperature and sputter current which are separated by a sharp transition. The boundary between these two...

  3. Synthesis and characterization of germanium monosulphide (GeS)

    Indian Academy of Sciences (India)

    This paper reports the growth of germanium monosulphide (GeS) single crystals by vapour phase technique using different transporting agents. The single crystallinity and composition of the grown crystals have been verified by transmission electron microscopy (TEM) and energy dispersive analysis of X-rays (EDAX) ...

  4. GE NANOCLUSTERS IN PLANAR GLASS WAVEGUIDES DEPOSITED BY PECVD

    DEFF Research Database (Denmark)

    Haiyan, Ou; Olsen, Johnny H.; Rottwitt, Karsten

    2004-01-01

    Germanium (Ge) has been widely used as the dopant in the core layer of planar glass waveguides to increase the refractive index because it gives a small propagation loss. Plasma enhanced chemical vapour deposition (PECVD) and flame hydrolysis deposition (FHD) are two main material deposition meth...

  5. CMS event at 900 GeV - 5 May 2015

    CERN Document Server

    CMS, Collaboration

    2015-01-01

    This proton collision di-jet event was detected at the CMS detector. The red bars represent the energy deposited in the electromagnetic calorimeter and the blue represent the energy in the hadronic calorimeter. The total hadronic and electromagnetic energy is approximately 30 GeV in each jet. The back-to-back jet cones can be clearly seen emanating from the vertex.

  6. GeV C.W. electron microtron design report

    International Nuclear Information System (INIS)

    1982-05-01

    Rising interest in the nuclear physics community in a GeV C.W. electron accelerator reflects the growing importance of high-resolution short-range nuclear physics to future advances in the field. In this report major current problems are reviewed and the details of prospective measurements which could be made with a GeV C.W. electron facility are discussed, together with their impact on an understanding of nuclear forces and the structure of nuclear matter. The microtron accelerator has been chosen as the technology to generate the electron beams required for the research discussed because of the advantages of superior beam quality, low capital and operating cost and capability of furnishing beams of several energies and intensities simultaneously. A complete technical description of the conceptual design for a 2 GeV double-sided C.W. electron microtron is presented. The accelerator can furnish three beams with independently controlled energy and intensity. The maximum current per beam is 100 μamps. Although the precise objective for maximum beam energy is still a subject of debate, the design developed in this study provides the base technology for microtron accelerators at higher energies (2 to 6 GeV) using multi-sided geometries

  7. GeSn Based Near and Mid Infrared Heterostructure Detectors

    Science.gov (United States)

    2018-02-07

    prestigious journals. 15.  SUBJECT TERMS Plasmonic Enhancement, Metal Nanostructures, CMOS, Photodetectors, Germanium-Tin Diode, IR Focal Plane Array...following features: (1) ease of manufacture in a foundry via a simple epitaxial structure, (2) end- fire coupling into on-chip transparent Ge or Si

  8. GeV C. W. electron microtron design report

    Energy Technology Data Exchange (ETDEWEB)

    1982-05-01

    Rising interest in the nuclear physics community in a GeV C.W. electron accelerator reflects the growing importance of high-resolution short-range nuclear physics to future advances in the field. In this report major current problems are reviewed and the details of prospective measurements which could be made with a GeV C.W. electron facility are discussed, together with their impact on an understanding of nuclear forces and the structure of nuclear matter. The microtron accelerator has been chosen as the technology to generate the electron beams required for the research discussed because of the advantages of superior beam quality, low capital and operating cost and capability of furnishing beams of several energies and intensities simultaneously. A complete technical description of the conceptual design for a 2 GeV double-sided C.W. electron microtron is presented. The accelerator can furnish three beams with independently controlled energy and intensity. The maximum current per beam is 100 ..mu..amps. Although the precise objective for maximum beam energy is still a subject of debate, the design developed in this study provides the base technology for microtron accelerators at higher energies (2 to 6 GeV) using multi-sided geometries.

  9. Self-assembled growth of nanostructural Ge islands on bromine ...

    Indian Academy of Sciences (India)

    bromine-passivated Si(111) surfaces at room temperature. AMAL K DAS1 ... Both the islands and the layer are nanocrystalline. This appears ..... coworkers estimated an activation energy of 0.59 ±0.1 eV for Ge diffusion on Si(100) and 0.45 eV ...

  10. Trapping effect on the resolution of Ge(Li) detectors

    International Nuclear Information System (INIS)

    Venturini, L.; Suarez, A.A.

    1980-01-01

    This work describes the measurement of the resolution variation of a Ge(Li) detector as a function of irradiation position by a collimated gamma-ray beam. Also the resolution dependence has been measured as a function of the detector applied voltage, using collimated and non-collimated gamma-ray beam. (A.C.A.S.) [pt

  11. Application of Ge/Li/-spectrometry in boreholes

    International Nuclear Information System (INIS)

    Chrusciel, E.

    1976-01-01

    The paper presents the results of Ge/Li/ spectrometry applications in boreholes. The natural radioactivity measurements as well as rare elements determinations with the use of 252 Cf neutron source and capture-gamma and activation techniques are described. The minimum concentrations of certain elements to be determined in the field circumstances are evaluated on the basis of the model experiments. (author)

  12. 90 - GeV Higgs boson in supersymmetric models

    International Nuclear Information System (INIS)

    Grzadkowski, B.; Kalinowski, J.; Pokorski, S.

    1989-07-01

    We discuss supersymmetric models with a hierarchy of vacuum expectation values of Higgs fields. These models predict one of the physical neutral Higgs bosons to have its mass very close to the Z-boson mass. Properties of such a 90-GeV Higgs boson are discussed. (author)

  13. Characterization of Ge-nanocrystal films with photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Bostedt, C.; Buuren, T. van; Willey, T.M.; Nelson, A.J.; Franco, N.; Moeller, T.; Terminello, L.J.

    2003-01-01

    The Ge 3d core-levels of germanium nanocrystal films have been investigated by means of photoelectron spectroscopy. The experiments indicate bulk-like coordinated atoms in the nanocrystals and suggest structured disorder on the nanoparticle surface. The results underline the importance of the surface on the overall electronic structure of this class of nanostructured materials

  14. The majorana {sup 76}Ge double-beta decay project

    Energy Technology Data Exchange (ETDEWEB)

    Aalseth, C.E.; Adles, E.; Anderson, D.; Avignone, F.T.; Barabash, A.; Bowyer, T.W.; Brodzinski, R.L.; Brudanin, V.; Champangne, A.; Collar, J.I.; Doe, P.J.; Egorov, S.; Elliott, S.R.; Farach, H.A.; Gaitskell, R.; Jordan, D.; Jain, R.K.; Kazkaz, K.; King, G.; Kochetov, O.; Konovalov, S.; Kouzes, R.; Miley, H.S.; Palms, J.M.; Pitts, W.K.; Reeves, J.H.; Robertson, R.G.H.; Rohm, R.; Sandukovsky, S.; Smith, L.E.; Stekhanov, V.; Thompson, R.C.; Tornow, W.; Umatov' , V.; Warner, R.; Webb, J.; Wilkerson, J.F.; Young, A

    2003-07-01

    The interest and relevance of next-generation 0{sub v} {beta}{beta}-decay experiments is increasing. Even with nonzero neutrino mass strongly suggested by solar and atmospheric neutrino experiments sensitive to {delta}m{sup 2}, 0{sub v} {beta}{beta}-decay experiments are still the only way to establish the Dirac or Majorana nature of neutrinos by measuring the effective electron neutrino mass, . In addition, the atmospheric neutrino oscillation experiments imply that at least one neutrino has a mass greater than about 50 meV. The Majorana Experiment expects to probe an effective neutrino mass near this critical value. Majorana is a next-generation {sup 76}Ge double-beta decay search. It will employ 500 kg of Ge, isotopically enriched to 86% in {sup 76}Ge, in the form of {approx} 200 detectors in a close-packed array. Each crystal will be electronically segmented and each segment fitted with pulse-shape analysis electronics. This combination of segmentation and pulse-shape analysis significantly improves our ability to discriminate neutrinoless double beta-decay from internal cosmogenic {sup 68}Ge and {sup 60}Co. The half-life sensitivity is estimated to be 4.2 x 10{sup 27} y corresponding to a range of {<=} 20 - 70 meV, depending on the nuclear matrix elements used to interpret the data.

  15. Polarized protons from the source to 70 GeV

    International Nuclear Information System (INIS)

    Makdisi, Y.I.

    1985-01-01

    This energy range covers the current project at the AGS and extends well beyond it. I shall report on our learning experience at BNL, discuss the potential for improvement, and the limitations of extending the AGS resonance jumping technique beyond 25 GeV

  16. 750 GeV diphoton resonance and electric dipole moments

    Directory of Open Access Journals (Sweden)

    Kiwoon Choi

    2016-09-01

    Full Text Available We examine the implication of the recently observed 750 GeV diphoton excess for the electric dipole moments of the neutron and electron. If the excess is due to a spin zero resonance which couples to photons and gluons through the loops of massive vector-like fermions, the resulting neutron electric dipole moment can be comparable to the present experimental bound if the CP-violating angle α in the underlying new physics is of O(10−1. An electron EDM comparable to the present bound can be achieved through a mixing between the 750 GeV resonance and the Standard Model Higgs boson, if the mixing angle itself for an approximately pseudoscalar resonance, or the mixing angle times the CP-violating angle α for an approximately scalar resonance, is of O(10−3. For the case that the 750 GeV resonance corresponds to a composite pseudo-Nambu–Goldstone boson formed by a QCD-like hypercolor dynamics confining at ΛHC, the resulting neutron EDM can be estimated with α∼(750 GeV/ΛHC2θHC, where θHC is the hypercolor vacuum angle.

  17. Ultra thin films of nanocrystalline Ge studied by AFM and ...

    Indian Academy of Sciences (India)

    Unknown

    peak position and an asymmetrical broadening on the lower frequency side when compared with the spectrum of the bulk Ge sample. The shift of the Raman .... resultant fit to Ic(ω) (1) (thin line) and a Lorentzian function (dotted line). Figure 6 shows Raman spectra of the samples B and C. A shoulder at 280 cm–1 can be.

  18. Anomalous activation of shallow B+ implants in Ge

    DEFF Research Database (Denmark)

    Yates, B.R.; Darby, B.L.; Rudawski, N.G.

    2011-01-01

    The electrical activation of B+ implantation at 2 keV to doses of 5.0×1013-5.0×1015 cm-2 in crystalline and pre-amorphized Ge following annealing at 400 °C for 1.0 h was studied using micro Hall effect measurements. Preamorphization improved activation for all samples with the samples implanted...... to a dose of 5.0×1015 cm-2 displaying an estimated maximum active B concentration of 4.0×1020 cm-3 as compared to 2.0×1020 cm-3 for the crystalline sample. However, incomplete activation was observed for all samples across the investigated dose range. For the sample implanted to a dose of 5.0×1013 cm -2......, activation values were 7% and 30%, for c-Ge and PA-Ge, respectively. The results suggest the presence of an anomalous clustering phenomenon of shallow B+ implants in Ge. © 2011 Elsevier B.V. All rights reserved....

  19. Regrowth of Si and Ge under laser irradiation

    International Nuclear Information System (INIS)

    Bertolotti, M.; Vitali, G.

    1979-01-01

    The effects of pulsed laser irradiation on amorphous layers of Si and Ge obtained via ion implantation are considered. Amorphous-polycrystalline, amorphous-single crystal and polycrystalline-single crystal transitions have been obtained. Residual disorder and mechanical damage are considered. (author)

  20. The phase diagram of annealed Ge(111)/Ga

    DEFF Research Database (Denmark)

    Molinàs-Mata, P.; Böhringer, M.; Artacho, E.

    1995-01-01

    A study of the annealed phases of Ge(111)/Ga for coverages above 0.05 ML is presented. The surfaces are investigated by low-energy electron diffraction, scanning tunneling microscopy, and partly by photoemission and surface X-ray diffraction using synchrotron radiation. For Ga coverages beyond 0....

  1. Control of Ge1-x-ySixSny layer lattice constant for energy band alignment in Ge1-xSnx/Ge1-x-ySixSny heterostructures

    Science.gov (United States)

    Fukuda, Masahiro; Watanabe, Kazuhiro; Sakashita, Mitsuo; Kurosawa, Masashi; Nakatsuka, Osamu; Zaima, Shigeaki

    2017-10-01

    The energy band alignment of Ge1-xSnx/Ge1-x-ySixSny heterostructures was investigated, and control of the valence band offset at the Ge1-xSnx/Ge1-x-ySixSny heterointerface was achieved by controlling the Si and Sn contents in the Ge1-x-ySixSny layer. The valence band offset in the Ge0.902Sn0.098/Ge0.41Si0.50Sn0.09 heterostructure was evaluated to be as high as 330 meV, and its conduction band offset was estimated to be 150 meV by considering the energy bandgap calculated from the theoretical prediction. In addition, the formation of the strain-relaxed Ge1-x-ySixSny layer was examined and the crystalline structure was characterized. The epitaxial growth of a strain-relaxed Ge0.64Si0.21Sn0.15 layer with the degree of strain relaxation of 55% was examined using a virtual Ge substrate. Moreover, enhancement of the strain relaxation was demonstrated by post-deposition annealing, where a degree of strain relaxation of 70% was achieved after annealing at 400 °C. These results indicate the possibility for enhancing the indirect-direct crossover with a strained and high-Sn-content Ge1-xSnx layer on a strain-relaxed Ge1-x-ySixSny layer, realizing preferable carrier confinement by type-I energy band alignment with high conduction and valence band offsets.

  2. A high performance Ge/Si0.5Ge0.5/Si heterojunction dual sources tunneling transistor with a U-shaped channel

    Science.gov (United States)

    Li, Wei; Liu, Hongxia; Wang, Shulong; Wang, Qianqiong; Chen, Shupeng

    2017-06-01

    In this paper, a new Ge/Si0.5Ge0.5/Si heterojunction dual sources tunneling transistor with a U-shaped channel (Ge_DUTFET) is proposed and investigated by Silvaco-Atlas simulation. The line tunneling perpendicular to channel and point tunneling parallel to channel simultaneously occur on both sides of the gate. The Ge is chosen as the source region material to increase the line tunneling current. The designed heterojunction between the Ge source and Si channel decreases the point tunneling barrier width to enhance the point tunneling current. And this heterojunction can also promote the Ge_DUTFET to occur point tunneling at the small gate voltage, which makes it obtain the smaller turn-on voltage. Furthermore, the Si0.5Ge0.5 buffer layer is also helpful for the enhancement of performance. The simulation results reveal that Ge_DUTFET has the better performance compared with the Si_DUTFET. The on-state current and average subthreshold swing of Ge_DUTFET are 1.11 × 10-5A/μm and 35.1mV/dec respectively. The max cut-off frequency (fT) and gain bandwidth product (GBW) are 26.6 GHz and 16.6 GHz respectively. The fT and GBW of the Ge_DUTFET are respectively increased by ∼27.4% and ∼84.3% compared with the Si_DUTFET.

  3. Impact parameter analysis of proton-antiproton elastic scattering from √s=7.6 GeV to √s=546 GeV

    International Nuclear Information System (INIS)

    Fearnley, T.

    1985-09-01

    The proton-antiproton elastic profile function GAMMA (b) and inelastic overlap function Gsub(in)(b) are calculated from a coherent set of proton-antiproton elastic scattering data at Psub(L)=30 and 50 GeV/c (√s=7.6 and 9.8 GeV), and at √s=53 and 546 GeV. The energy dependence of Gsub(in)(b) is studied in the low energy regime and in the high energy regime. The increase of the inelastic cross section from 50 GeV/c to 30 GeV/c and from √s=53 GeV to √s=546 GeV is found to originate from a peripheral increase of Gsub(in) around 1 fm, accompanied by a non-negligible central increase. The proton-antiproton collision at √s=53 GeV is shown to be slightly less absorptive centrally than pp at this energy, while it is more absorptive peripherally around 1.2 fm. The inelastic overlap functions strongly disagree with the predictions of geometrical scaling and factorizing eikonal models, both in the low energy regime psub(L)=30-50 GeV/c and in the high energy regime √s=53-546 GeV

  4. SiGe layer thickness effect on the structural and optical properties of well-organized SiGe/SiO2 multilayers

    Science.gov (United States)

    Vieira, E. M. F.; Toudert, J.; Rolo, A. G.; Parisini, A.; Leitão, J. P.; Correia, M. R.; Franco, N.; Alves, E.; Chahboun, A.; Martín-Sánchez, J.; Serna, R.; Gomes, M. J. M.

    2017-08-01

    In this work, we report on the production of regular (SiGe/SiO2)20 multilayer structures by conventional RF-magnetron sputtering, at 350 °C. Transmission electron microscopy, scanning transmission electron microscopy, raman spectroscopy, and x-ray reflectometry measurements revealed that annealing at a temperature of 1000 °C leads to the formation of SiGe nanocrystals between SiO2 thin layers with good multilayer stability. Reducing the nominal SiGe layer thickness (t SiGe) from 3.5-2 nm results in a transition from continuous SiGe crystalline layer (t SiGe ˜ 3.5 nm) to layers consisting of isolated nanocrystals (t SiGe ˜ 2 nm). Namely, in the latter case, the presence of SiGe nanocrystals ˜3-8 nm in size, is observed. Spectroscopic ellipsometry was applied to determine the evolution of the onset in the effective optical absorption, as well as the dielectric function, in SiGe multilayers as a function of the SiGe thickness. A clear blue-shift in the optical absorption is observed for t SiGe ˜ 2 nm multilayer, as a consequence of the presence of isolated nanocrystals. Furthermore, the observed near infrared values of n = 2.8 and k = 1.5 are lower than those of bulk SiGe compounds, suggesting the presence of electronic confinement effects in the nanocrystals. The low temperature (70 K) photoluminescence measurements performed on annealed SiGe/SiO2 nanostructures show an emission band located between 0.7-0.9 eV associated with the development of interface states between the formed nanocrystals and surrounding amorphous matrix.

  5. Development of a production scale purification of Ge-68 from irradiated gallium metal

    Energy Technology Data Exchange (ETDEWEB)

    Fitzsimmons, Jonathan M.; Mausner, Leonard [Brookhaven National Laboratory, Upton, NY (United States)

    2015-05-01

    Germanium-68 (Ge-68) is produced by proton irradiation of a gallium metal target and purified by organic extraction. The Ge-68 can be used in a medical isotope generator to produce Gallium-68 (Ga-68) which can be used to radiolabel PET imaging agents. The emerging use of Ge-68 in the Ga-68 medical isotope generator has caused us to develop a new purification method for Ge-68 that does not use toxic solvents. The purpose of this work was to develop a production scale separation of Ge-68 that utilizes a leaching step to remove a bulk of the gallium metal, followed by purification with Sephadex {sup copyright} G25. Production scale (300 mCi) purification was performed with the new method. The purified Ge-68 contained the highest radioactivity concentration of Ge-68 produced at BNL; the sample meet Department of Energy specifications and the method had an excellent recovery of Ge-68.

  6. Ge-intercalated graphene: The origin of the p-type to n-type transition

    KAUST Repository

    Kaloni, Thaneshwor P.

    2012-09-01

    Recently huge interest has been focussed on Ge-intercalated graphene. In order to address the effect of Ge on the electronic structure, we study Ge-intercalated free-standing C 6 and C 8 bilayer graphene, bulk C 6Ge and C 8Ge, as well as Ge-intercalated graphene on a SiC(0001) substrate, by density functional theory. In the presence of SiC(0001), there are three ways to obtain n-type graphene: i) intercalation between C layers; ii) intercalation at the interface to the substrate in combination with Ge deposition on the surface; and iii) cluster intercalation. All other configurations under study result in p-type states irrespective of the Ge coverage. We explain the origin of the different doping states and establish the conditions under which a transition occurs. © Copyright EPLA, 2012.

  7. Epitaxial Ge Solar Cells Directly Grown on Si (001) by MOCVD Using Isobutylgermane

    Science.gov (United States)

    Kim, Youngjo; Kim, Kangho; Lee, Jaejin; Kim, Chang Zoo; Kang, Ho Kwan; Park, Won-Kyu

    2018-03-01

    Epitaxial Ge layers have been grown on Si (001) substrates by metalorganic chemical vapor deposition (MOCVD) using an isobutylgermane (IBuGe) metalorganic source. Low and high temperature two-step growth and post annealing techniques are employed to overcome the lattice mismatch problem between Ge and Si. It is demonstrated that high quality Ge epitaxial layers can be grown on Si (001) by using IBuGe with surface RMS roughness of 2 nm and an estimated threading dislocation density of 4.9 × 107 cm -2. Furthermore, single-junction Ge solar cells have been directly grown on Si substrates with an in situ MOCVD growth. The epitaxial Ge p- n junction structures are investigated with transmission electron microscopy and electrochemical C- V measurements. As a result, a power conversion efficiency of 1.69% was achieved for the Ge solar cell directly grown on Si substrate under AM1.5G condition.

  8. Study of nuclear interactions of 400 GeV protons in emulsion

    International Nuclear Information System (INIS)

    Otterlund, I.; Kullberg, R.; Stenlund, E.; Andersson, B.; Nilsson, G.; Kim, C.O.; Lorry, J.; Meton, C.; Schune, D.; Chu, T.; Villot, B.; Kaiser, R.; Vincent, M.A.; Baumann, G.; Devienne, R.; Schmitt, R.; Adamovic, O.; Juric, M.; Bolta, J.M.; Sanchis, M.A.; Bravo, L.; Niembro, R.; Ruiz, A.; Villar, E.

    1977-05-01

    400 GeV inelastic proton-emulsion nucleus interactions from an International Emulsion Group experiment at Fermilab are reported. The results are compared with the corresponding data at 67-300 GeV. (Auth.)

  9. Unexpected Ge-Ge contacts in the two-dimensional Ge{sub 4}Se{sub 3}Te phase and analysis of their chemical cause with the density of energy (DOE) function

    Energy Technology Data Exchange (ETDEWEB)

    Kuepers, Michael; Konze, Philipp M.; Maintz, Stefan; Steinberg, Simon [Institute of Inorganic Chemistry, Chair of Solid-State and Quantum Chemistry, RWTH Aachen University (Germany); Mio, Antonio M.; Cojocaru-Miredin, Oana; Zhu, Min; Wuttig, Matthias [I. Physikalisches Institut, RWTH Aachen University (Germany); Mueller, Merlin; Mayer, Joachim [Gemeinschaftslabor fuer Elektronenmikroskopie, RWTH Aachen University (Germany); Luysberg, Martina [Ernst-Ruska-Center, Forschungszentrum Juelich GmbH (Germany); Dronskowski, Richard [Institute of Inorganic Chemistry, Chair of Solid-State and Quantum Chemistry, RWTH Aachen University (Germany); Juelich-Aachen Research Alliance (JARA-HPC), RWTH Aachen University (Germany)

    2017-08-14

    A hexagonal phase in the ternary Ge-Se-Te system with an approximate composition of GeSe{sub 0.75}Te{sub 0.25} has been known since the 1960s but its structure has remained unknown. We have succeeded in growing single crystals by chemical transport as a prerequisite to solve and refine the Ge{sub 4}Se{sub 3}Te structure. It consists of layers that are held together by van der Waals type weak chalcogenide-chalcogenide interactions but also display unexpected Ge-Ge contacts, as confirmed by electron microscopy analysis. The nature of the electronic structure of Ge{sub 4}Se{sub 3}Te was characterized by chemical bonding analysis, in particular by the newly introduced density of energy (DOE) function. The Ge-Ge bonding interactions serve to hold electrons that would otherwise go into antibonding Ge-Te contacts. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  10. Molecular beam deposition of Al2O3 on p-Ge(001)/Ge0.95Sn0.05 heterostructure and impact of a Ge-cap interfacial layer

    International Nuclear Information System (INIS)

    Merckling, C.; Franquet, A.; Vincent, B.; Vandervorst, W.; Loo, R.; Caymax, M.; Sun, X.; Shimura, Y.; Takeuchi, S.; Nakatsuka, O.; Zaima, S.

    2011-01-01

    We investigated the molecular beam deposition of Al 2 O 3 on Ge 0.95 Sn 0.05 surface with and without an ultra thin Ge cap layer in between. We first studied the atomic configuration of both Ge 1-x Sn x and Ge/Ge 1-x Sn x surfaces after deoxidation by reflection high-energy electron diffraction and resulted, respectively, in a c(4x2) and (2x1) surface reconstructions. After in situ deposition of an Al 2 O 3 high-κ gate dielectric we evidenced using time-of-flight secondary ion mass spectroscopy analyses that Sn diffusion was at the origin of high leakage current densities in the Ge 1-x Sn x /Al 2 O 3 gate stack. This damage could be avoided by inserting a thin 5-nm-thick Ge cap between the oxide and the Ge 1-x Sn x layer. Finally, metal-oxide-semiconductor capacitors on the Ge capped sample showed well-behaved capacitance-voltage (C-V) characteristics with interface trap density (D it ) in the range of 10 12 eV -1 cm -2 in mid gap and higher close to the valence band edge.

  11. 45 CFR 2541.240 - Matching or cost sharing.

    Science.gov (United States)

    2010-10-01

    ... case, a reasonable amount for fringe benefits may be included in the valuation. (2) Employees of other... the employee's regular rate of pay exclusive of the employee's fringe benefits and overhead costs. If..., and only depreciation or use allowances may be counted for donated equipment and buildings. The...

  12. Chemical states and optical properties of thermally evaporated Ge-Te and Ge-Sb-Te amorphous thin films

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, S.; Singh, D.; Shandhu, S. [Semiconductor Laboratory, Department of Physics, Guru Nanak Dev University Amritsar (India); Thangaraj, R., E-mail: rthangaraj@rediffmail.com [Semiconductor Laboratory, Department of Physics, Guru Nanak Dev University Amritsar (India)

    2012-07-15

    Thin amorphous films of Ge{sub 22}Sb{sub 22}Te{sub 56} and Ge{sub 50}Te{sub 50} have been prepared from their respective polycrystalline bulk on glass substrates by thermal evaporation technique. The amorphous nature of the films was checked with X-ray diffraction studies. Amorphous-to-crystalline transition of the films has been induced by thermal annealing and the structural phases have been identified by X-ray diffraction. The phase transformation temperature of the films was evaluated by temperature dependent sheet resistance measurement. The chemical structure of the amorphous films has been investigated using X-ray photoelectron spectroscopy and the role of Sb in phase change Ge{sub 22}Sb{sub 22}Te{sub 56} film is discussed. Survey and core level (Ge 3d, Te 3d, Te 4d, Sb 3p, Sb 3d, O 1s, C 1s) band spectra has been recorded and analyzed. For optical studies, the transmittance and the reflectance spectra were measured over the wavelength ranges 400-2500 nm using UV-vis-NIR spectroscopy. The optical band gap, refractive index and extinction coefficient are also presented for thermally evaporated amorphous thin films.

  13. Delayed plastic relaxation limit in SiGe islands grown by Ge diffusion from a local source

    Energy Technology Data Exchange (ETDEWEB)

    Vanacore, G. M.; Zani, M.; Tagliaferri, A., E-mail: alberto.tagliaferri@polimi.it [CNISM-Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, I-20133 Milano (Italy); Nicotra, G. [IMM-CNR, Stradale Primosole 50, I-95121 Catania (Italy); Bollani, M. [CNR-IFN, LNESS, Via Anzani 42, I-22100 Como (Italy); Bonera, E.; Montalenti, F.; Picco, A.; Boioli, F. [Dipartimento di Scienza dei Materiali and L-NESS, Università Milano-Bicocca, via Cozzi 53, I-20125 Milano (Italy); Capellini, G. [Department of Sciences at the Università Roma Tre, Via Vasca Navale 79, 00146 Roma (Italy); Isella, G. [CNISM, LNESS, Dipartimento di Fisica, Politecnico di Milano (Polo di Como), Via Anzani 42, I-22100 Como (Italy); Osmond, J. [ICFO–The Institute of Photonic Sciences, Av. Carl Friedrich Gauss, 3, E-08860 Castelldefels (Barcelona) (Spain)

    2015-03-14

    The hetero-epitaxial strain relaxation in nano-scale systems plays a fundamental role in shaping their properties. Here, the elastic and plastic relaxation of self-assembled SiGe islands grown by surface-thermal-diffusion from a local Ge solid source on Si(100) are studied by atomic force and transmission electron microscopies, enabling the simultaneous investigation of the strain relaxation in different dynamical regimes. Islands grown by this technique remain dislocation-free and preserve a structural coherence with the substrate for a base width as large as 350 nm. The results indicate that a delay of the plastic relaxation is promoted by an enhanced Si-Ge intermixing, induced by the surface-thermal-diffusion, which takes place already in the SiGe overlayer before the formation of a critical nucleus. The local entropy of mixing dominates, leading the system toward a thermodynamic equilibrium, where non-dislocated, shallow islands with a low residual stress are energetically stable. These findings elucidate the role of the interface dynamics in modulating the lattice distortion at the nano-scale, and highlight the potential use of our growth strategy to create composition and strain-controlled nano-structures for new-generation devices.

  14. Anisotropic phase separation through the metal-insulator transition in amorphous Mo-Ge and Fe-Ge alloys

    International Nuclear Information System (INIS)

    Regan, M.J.

    1993-12-01

    Since an amorphous solid is often defined as that which lacks long-range order, the atomic structure is typically characterized in terms of the high-degree of short-range order. Most descriptions of vapor-deposited amorphous alloys focus on characterizing this order, while assuming that the material is chemically homogeneous beyond a few near neighbors. By coupling traditional small-angle x-ray scattering which probes spatial variations of the electron density with anomalous dispersion which creates a species-specific contrast, one can discern cracks and voids from chemical inhomogeneity. In particular, one finds that the chemical inhomogeneities which have been previously reported in amorphous Fe x Ge 1-x and Mo x Ge 1-x are quite anisotropic, depending significantly on the direction of film growth. With the addition of small amounts of metal atoms (x 2 or MoGe 3 . Finally, by manipulating the deposited power flux and rates of growth, Fe x Ge 1-x films which have the same Fe composition x can be grown to different states of phase separation. These results may help explain the difficulty workers have had in isolating the metal/insulator transition for these and other vapor-deposited amorphous alloys

  15. Influence of Si and Ge on the magnetic phase transition and magnetocaloric properties of MnFe(P, Si, Ge)

    International Nuclear Information System (INIS)

    Cam Thanh, D.T.; Brueck, E.; Tegus, O.; Klaasse, J.C.P.; Buschow, K.H.J.

    2007-01-01

    Recently, we found a large magnetocaloric effect (MCE) and favourable magnetic properties in low cost and nontoxic MnFe(P, Si, Ge) compounds [D.T. Cam Thanh, E. Brueck, O. Tegus, J.C.P. Klaasse, T.J. Gortenmulder, K.H.J. Buschow, J. Appl. Phys. 99 (2006) 08Q107]. These compounds are promising for magnetic refrigeration applications. One of the interesting points in these compounds is a nonlinear dependence of the Curie temperature (T C ) on Si concentration. This dependence is associated with the change in the lattice parameters a and c, and their ratio c/a. Compounds with larger a parameter and smaller c/a ratio have higher T C . It is clear that Si and Ge atoms play an important role in the magnetic and magnetocaloric properties in the MnFe(P, Si, Ge) compounds. In this paper, we study the effect of Si and Ge on the magnetic phase transition in these materials. Our study shows that the temperature of the phase transition, from paramagnetic to ferromagnetic, can be tuned in the room temperature range without losing giant magnetocaloric properties

  16. Ge-on-insulator tunneling FET with abrupt source junction formed by utilizing snowplow effect of NiGe

    Science.gov (United States)

    Matsumura, Ryo; Katoh, Takumi; Takaguchi, Ryotaro; Takenaka, Mitsuru; Takagi, Shinichi

    2018-04-01

    Tunneling field-effect transistors (TFETs) attract much attention for use in realizing next-generation low-power processors. In particular, Ge-on-insulator (GOI) TFETs are expected to realize low power operation with a high on-current/off-current (I on/I off) ratio, owing to their narrow bandgap. Here, to improve the performance of GOI-TFETs, a source junction with a high doping concentration and an abrupt impurity profile is essential. In this study, a snowplow effect of NiGe combined with low-energy BF2 + implantation has been investigated to realize an abrupt p+/n Ge junction for GOI n-channel TFETs. By optimizing the Ni thickness to form NiGe (thickness: 4 nm), an abrupt junction with a B profile abruptness of ˜5 nm/dec has been realized with a high doping concentration of around 1021 cm-3. The operation of GOI n-TFETs with this source junction having the abrupt B profile has been demonstrated, and the improvement of TFET properties such as the I on/I off ratio from 311 to 743 and the subthreshold slope from 368 to 239 mV/dec has been observed. This junction formation technology is attractive for enhancing the TFET performance.

  17. EXAFS and RDF studies of Ge27S53I20 glass

    International Nuclear Information System (INIS)

    Nasu, H.; Myoren, H.; Makida, S.; Imura, T.; Osaka, Y.

    1988-01-01

    Detailed X-ray diffraction measurements and extended X-ray absorption fine structure (EXAFS) have been applied to Ge 23 S 57 I 20 glass as a typical chalcohalide glass and to GeS 2 glass for comparison, in order to investigate the structure of Ge-S-I glass system. From the derived curves against atomic distance, the formation of Ge-I bonds is evidenced in the glass structure. (author) 4 refs., 2 figs., 1 tab

  18. Mushroom-free selective epitaxial growth of Si, SiGe and SiGe:B raised sources and drains

    Science.gov (United States)

    Hartmann, J. M.; Benevent, V.; Barnes, J. P.; Veillerot, M.; Lafond, D.; Damlencourt, J. F.; Morvan, S.; Prévitali, B.; Andrieu, F.; Loubet, N.; Dutartre, D.

    2013-05-01

    We have evaluated various Cyclic Selective Epitaxial Growth/Etch (CSEGE) processes in order to grow "mushroom-free" Si and SiGe:B Raised Sources and Drains (RSDs) on each side of ultra-short gate length Extra-Thin Silicon-On-Insulator (ET-SOI) transistors. The 750 °C, 20 Torr Si CSEGE process we have developed (5 chlorinated growth steps with four HCl etch steps in-between) yielded excellent crystalline quality, typically 18 nm thick Si RSDs. Growth was conformal along the Si3N4 sidewall spacers, without any poly-Si mushrooms on top of unprotected gates. We have then evaluated on blanket 300 mm Si(001) wafers the feasibility of a 650 °C, 20 Torr SiGe:B CSEGE process (5 chlorinated growth steps with four HCl etch steps in-between, as for Si). As expected, the deposited thickness decreased as the total HCl etch time increased. This came hands in hands with unforeseen (i) decrease of the mean Ge concentration (from 30% down to 26%) and (ii) increase of the substitutional B concentration (from 2 × 1020 cm-3 up to 3 × 1020 cm-3). They were due to fluctuations of the Ge concentration and of the atomic B concentration [B] in such layers (drop of the Ge% and increase of [B] at etch step locations). Such blanket layers were a bit rougher than layers grown using a single epitaxy step, but nevertheless of excellent crystalline quality. Transposition of our CSEGE process on patterned ET-SOI wafers did not yield the expected results. HCl etch steps indeed helped in partly or totally removing the poly-SiGe:B mushrooms on top of the gates. This was however at the expense of the crystalline quality and 2D nature of the ˜45 nm thick Si0.7Ge0.3:B recessed sources and drains selectively grown on each side of the imperfectly protected poly-Si gates. The only solution we have so far identified that yields a lesser amount of mushrooms while preserving the quality of the S/D is to increase the HCl flow during growth steps.

  19. Effects of flexible substrate thickness on Al-induced crystallization of amorphous Ge thin films

    Energy Technology Data Exchange (ETDEWEB)

    Oya, Naoki [Institute of Applied Physics, University of Tsukuba, Tsukuba, Ibaraki 305-8573 (Japan); Toko, Kaoru, E-mail: toko@bk.tsukuba.ac.jp [Institute of Applied Physics, University of Tsukuba, Tsukuba, Ibaraki 305-8573 (Japan); Saitoh, Noriyuki; Yoshizawa, Noriko [Electron Microscope Facility, TIA, AIST, 16-1 Onogawa, Tsukuba 305-8569 (Japan); Suemasu, Takashi [Institute of Applied Physics, University of Tsukuba, Tsukuba, Ibaraki 305-8573 (Japan)

    2015-05-29

    Amorphous germanium (a-Ge) thin films were directly crystallized on flexible plastic substrates at 325 °C using Al-induced crystallization. The thickness of the plastic substrate strongly influenced the crystal quality of the resulting polycrystalline Ge layers. Using a thicker substrate lowered the stress on the a-Ge layer during annealing, which increased the grain size and fraction of (111)-oriented grains within the Ge layer. Employing a 125-μm-thick substrate led to 95% (111)-oriented Ge with grains having an average size of 100 μm. Transmission electron microscopy demonstrated that the Ge grains had a low-defect density. Production of high-quality Ge films on plastic substrates allows for the possibility for developing Ge-based electronic and optical devices on inexpensive flexible substrates. - Highlights: • Polycrystalline Ge thin films are directly formed on flexible plastic substrates. • Al-induced crystallization allows the low-temperature growth (325 °C) of amorphous Ge. • The substrate bending during annealing strongly influences the crystal quality of poly-Ge. • A thick substrate (125 μm) leads to 95% (111)-oriented Ge with grains 100 μm in size.

  20. Assembly of Ge nanocrystals on SiO2 via a stress-induced dewetting process

    International Nuclear Information System (INIS)

    Sutter, E; Sutter, P

    2006-01-01

    We use epitaxial Ge islands on silicon-on-insulator (001) to initiate and drive the dewetting of the ultrathin ( 2 layer and transforms the Ge islands into oxide-supported, electrically isolated, Ge-rich nanocrystals. We investigate the process of dewetting and demonstrate that it can be used for the controlled assembly of nanocrystals-from isolated single ones to dense arrays

  1. 77 FR 38714 - Proposed Collection; Comment Request for the TE/GE Compliance Check Questionnaires

    Science.gov (United States)

    2012-06-28

    ... TE/GE Compliance Check Questionnaires AGENCY: Internal Revenue Service (IRS), Treasury. ACTION..., the IRS is soliciting comments concerning the TE/GE Compliance Check Questionnaires. DATES: Written... [email protected] . SUPPLEMENTARY INFORMATION: Title: TE/GE Compliance Check Questionnaires. OMB...

  2. 78 FR 63565 - Proposed Collection; Comment Request for the TE/GE Compliance Check Questionnaires

    Science.gov (United States)

    2013-10-24

    ... TE/GE Compliance Check Questionnaires AGENCY: Internal Revenue Service (IRS), Treasury. ACTION..., the IRS is soliciting comments concerning the TE/GE Compliance Check Questionnaires. DATES: Written... . SUPPLEMENTARY INFORMATION: Title: TE/GE Compliance Check Questionnaires. OMB Number: 1545-2071. Form Number: Not...

  3. Large-area selective CVD epitaxial growth of Ge on Si substrates

    NARCIS (Netherlands)

    Sammak, A.; De Boer, W.; Nanver, L.K.

    2011-01-01

    Selective epitaxial growth of crystalline Ge on Si in a standard ASM Epsilon 2000 CVD reactor is investigated for the fabrication of Ge p+n diodes. At the deposition temperature of 700?C, most of the lattice mismatch-defects are trapped within first 300nm of Ge growth and good quality single crystal

  4. Ge-on-Si : Single-Crystal Selective Epitaxial Growth in a CVD Reactor

    NARCIS (Netherlands)

    Sammak, A.; De Boer, W.B.; Nanver, L.K.

    2012-01-01

    A standard Si/SiGe ASM CVD reactor that was recently modified for merging GaAs and Si epitaxial growth in one system is utilized to achieve intrinsic and doped epitaxial Ge-on-Si with low threading dislocation and defect densities. For this purpose, the system is equipped with 2% diluted GeH4 as the

  5. Synthesis of crystalline Ge nanoclusters in PE-CVD-deposited SiO2 films

    DEFF Research Database (Denmark)

    Leervad Pedersen, T.P.; Skov Jensen, J.; Chevallier, J.

    2005-01-01

    The synthesis of evenly distributed Ge nanoclusters in plasma-enhanced chemical-vapour-deposited (PE-CVD) SiO2 thin films containing 8 at. % Ge is reported. This is of importance for the application of nanoclusters in semiconductor technology. The average diameter of the Ge nanoclusters can...

  6. Ferroelectric phase transitions in multiferroic Ge1-xMnxTe driven by local lattice distortions

    Czech Academy of Sciences Publication Activity Database

    Kriegner, D.; Furthmüller, J.; Kirchschlager, R.; Endres, J.; Horák, L.; Cejpek, P.; Reichlová, Helena; Martí, Xavier; Primetzhofer, D.; Ney, A.; Bauer, G.; Bechstedt, F.; Holy, V.; Springholz, G.

    2016-01-01

    Roč. 94, č. 5 (2016), 1-8, č. článku 054112. ISSN 2469-9950 Institutional support: RVO:68378271 Keywords : semiconductor Ge 1-x Mn x Te * GeTe * GeMnTe * alloys * heat * Mn Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.836, year: 2016

  7. Pressure variation of the valence band width in Ge: A self-consistent GW study

    DEFF Research Database (Denmark)

    Modak, Paritosh; Svane, Axel; Christensen, Niels Egede

    2009-01-01

    . In the present work we report results of quasiparticle self-consistent GW  (QSGW) band calculations for diamond- as well as β-tin-type Ge under pressure. For both phases we find that the band width increases with pressure. For β-tin Ge this agrees with experiment and density-functional theory, but for diamond Ge...

  8. Stress-Induced Crystallization of Ge-Doped Sb Phase-Change Thin Films

    NARCIS (Netherlands)

    Eising, Gert; Pauza, Andrew; Kooi, Bart J.

    The large effects of moderate stresses on the crystal growth rate in Ge-doped Sb phase-change thin films are demonstrated using direct optical imaging. For Ge6Sb94 and Ge7Sb93 phase-change films, a large increase in crystallization temperature is found when using a polycarbonate substrate instead of

  9. Amorphous Ge quantum dots embedded in SiO2 formed by low energy ion implantation

    International Nuclear Information System (INIS)

    Zhao, J. P.; Huang, D. X.; Jacobson, A. J.; Chen, Z. Y.; Makarenkov, B.; Chu, W. K.; Bahrim, B.; Rabalais, J. W.

    2008-01-01

    Under ultrahigh vacuum conditions, extremely small Ge nanodots embedded in SiO 2 , i.e., Ge-SiO 2 quantum dot composites, have been formed by ion implantation of 74 Ge + isotope into (0001) Z-cut quartz at a low kinetic energy of 9 keV using varying implantation temperatures. Transmission electron microscopy (TEM) images and micro-Raman scattering show that amorphous Ge nanodots are formed at all temperatures. The formation of amorphous Ge nanodots is different from reported crystalline Ge nanodot formation by high energy ion implantation followed by a necessary high temperature annealing process. At room temperature, a confined spatial distribution of the amorphous Ge nanodots can be obtained. Ge inward diffusion was found to be significantly enhanced by a synergetic effect of high implantation temperature and preferential sputtering of surface oxygen, which induced a much wider and deeper Ge nanodot distribution at elevated implantation temperature. The bimodal size distribution that is often observed in high energy implantation was not observed in the present study. Cross-sectional TEM observation and the depth profile of Ge atoms in SiO 2 obtained from x-ray photoelectron spectra revealed a critical Ge concentration for observable amorphous nanodot formation. The mechanism of formation of amorphous Ge nanodots and the change in spatial distribution with implantation temperature are discussed

  10. Why is GeV physics relevant in the age of the LHC?

    Energy Technology Data Exchange (ETDEWEB)

    Pennington, Michael R. [JLAB

    2014-02-01

    The contribution that Jefferson Lab has made, with its 6 GeV electron beam, and will make, with its 12 GeV upgrade, to our understanding of the way the fundamental interactions work, particularly strong coupling QCD, is outlined. The physics at the GeV scale is essential even in TeV collisions.

  11. Ion beam analysis of the dry thermal oxidation of thin polycrystalline SiGe films

    International Nuclear Information System (INIS)

    Kling, A.; Soares, J.C.; Prieto, A.C.; Jimenez, J.; Rodriguez, A.; Sangrador, J.; Rodriguez, T.

    2005-01-01

    Nanoparticles of Ge embedded in a formed dielectric matrix appear as very promising systems for electronic and photonic applications. We present here an exhaustive characterization of the oxidation process of polycrystalline SiGe layers from the starting of its oxidation process to the total oxidation of it. We have characterized the process by RBS, FTIR and Raman spectroscopy, showing the necessity to use different techniques in order to get a full view of the process. First the Si-Si and Si-Ge bonds are oxidized growing SiO 2 , and Ge segregates from the SiO 2 . As soon as all Si is oxidized GeO 2 is growing gradually. RBS has demonstrated to be very useful to characterize the SiO 2 and the remaining non-oxidized poly-SiGe layer thickness, as well as for the determination of the Ge fraction, where the high sensitivity of this technique allows to explore its whole range. On the other hand, for the reliable determination of the GeO 2 thickness, information on the amount of Ge-O bonding had to be obtained from FTIR spectra. Raman spectroscopy yields detailed information about the oxidation processes for different bonds (Si-Si, Si-Ge, Ge-Ge)

  12. Studies of the chemical behavior of carrier-free 68Ge. Pt. 2

    International Nuclear Information System (INIS)

    Mirzadeh, S.; Kahn, M.

    1986-01-01

    A determination of the 68 Ge distribution constant from the distillation of the azeotropic HCl was made. A simple correlation between the distribution constants of the 68 Ge and HCl was observed which can be expressed as D'sub(Ge)=k[D'sub(HCl)]sup(n). (orig.)

  13. 78 FR 23595 - Importer of Controlled Substances; Notice of Registration; GE Healthcare

    Science.gov (United States)

    2013-04-19

    ... Registration; GE Healthcare By Notice dated January 31, 2013, and published in the Federal Register on February 6, 2013, 78 FR 8583, GE Healthcare, 3350 North Ridge Avenue, Arlington Heights, Illinois 60004-1412... considered the factors in 21 U.S.C. 823(a) and 952(a) and determined that the registration of GE Healthcare...

  14. 78 FR 54914 - Importer of Controlled Substances; Notice of Registration; GE Healthcare

    Science.gov (United States)

    2013-09-06

    ... Registration; GE Healthcare By Notice dated June 7, 2013, and published in the Federal Register on June 18, 2013, 78 FR 36594, GE Healthcare, 3350 North Ridge Avenue, Arlington Heights, Illinois 60004-1412, made... factors in 21 U.S.C. 823(a) and 952(a) and determined that the registration of GE Healthcare to import the...

  15. Interactions between superconductivity and quantum criticality in CeCoIn5, URhGe and UCoGe

    International Nuclear Information System (INIS)

    Howald, L.

    2011-01-01

    The subject of this thesis is the analyze of the superconducting upper critical field (Hc2) and the interaction between superconductivity and quantum critical points (QCP), for the compounds CeCoIn 5 , URhGe and UCoGe. In CeCoIn 5 , study by mean of resistivity of the Fermi liquid domain allows us to localize precisely the QCP at ambient pressure. This analyze rule out the previously suggested pinning of Hc2(0) at the QCP. In a second part, the evolution of Hc2 under pressure is analyzed. The superconducting dome is unconventional in this compound with two characteristic pressures: at 1.6 GPa, the superconducting transition temperature is maximum but it is at 0.4 GPa that physical properties (maximum of Hc2(0), maximum of the initial slope dHc2/dT, maximum of the specific heat jump DC/C,... ) suggest a QCP. We explain this antagonism with pair-breaking effects in the proximity of the QCP. With these two experiments, we suggest a new phase diagram for CeCoIn 5 . In a third part, measurements of thermal conductivity on URhGe and UCoGe are presented. We obtained the bulk superconducting phase transition and confirmed the unusual curvature of the slope dHc2/dT observed by resistivity. The temperatures and fields dependence of thermal conductivity allow us to identify a non-electronic contribution for heat transport down to the lowest temperature (50 mK) and probably associated with magnon or longitudinal fluctuations. We also identified two different domains in the superconducting region, These domains are compatible with a two bands model for superconductivity. Thermopower measurements on UCoGe reveal a strong anisotropy to current direction and several anomaly under field applied in the b direction. We suggest a Lifshitz transition to explain our observations in these two compounds. (author) [fr

  16. Revision of the Ge–Ti phase diagram and structural stability of the new phase Ge4Ti5

    International Nuclear Information System (INIS)

    Bittner, Roland W.; Colinet, Catherine; Tedenac, Jean-Claude; Richter, Klaus W.

    2013-01-01

    Highlights: •New compound Ge 4 Ti 5 found by experiments and by DFT ground state calculations. •Enthalpies of formation calculated for different Ge–Ti compounds. •Modifications of the Ge–Ti phase diagram suggested. -- Abstract: The binary phase diagram Ge–Ti was investigated experimentally by powder X-ray diffraction, scanning electron microscopy including EDX analysis, and differential thermal analysis. Total energies of the compounds GeTi 3 , GeTi 2 , Ge 3 Ti 5 , Ge 4 Ti 5 , Ge 5 Ti 6 , GeTi and Ge 2 Ti were calculated for various structure types employing electronic density-functional theory (DFT). Experimental studies as well as electronic calculations show the existence of a new phase Ge 4 Ti 5 (Ge 4 Sm 5 -type, oP36, Pnma) which is formed in a solid state reaction Ge 3 Ti 5 + Ge 5 Ti 6 = Ge 4 Ti 5 . In addition, a significant homogeneity range was observed for the compound Ge 3 Ti 5 and the composition of the liquid phase in the eutectic reaction L = Ge + Ge 2 Ti was found to be at significant higher Ge-content (97.5 at.% Ge) than reported in previous studies. Based on these new results, a modified phase diagram Ge–Ti is suggested. The zero-temperature lattice parameters and the formation enthalpies determined by DTF calculations were found to be in good agreement with experimental data

  17. Dimers at Ge/Si(001) surfaces: Ge coverage dependent quenching, reactivation of flip-flop motion, and interaction with dimer vacancy lines

    International Nuclear Information System (INIS)

    Hirayama, H.; Mizuno, H.; Yoshida, R.

    2002-01-01

    We studied Ge coverage (θ Ge ) dependent quenching, reactivation of the flip-flop motion, and interaction with dimer vacancy lines (DVLs) of dimers on Ge/Si(001) surfaces using a scanning tunneling microscope (STM) combined with a molecular beam epitaxy apparatus. Deposition of ∼0.3 ML (monolayer) Ge quenched the flip-flop motion, making all dimers asymmetric. Further deposition introduced DVLs at θ Ge ≥∼0.5 ML, and symmetric dimer domains appeared again locally at θ≥1.5 ML. High-resolution STM images indicated that asymmetric dimer rows always invert their phase in alternation with buckled dimer's up-end at the DVLs. Low-temperature STM images indicated that the symmetric dimer domains were due to flip-flopping of asymmetric dimers activated by large θ Ge at room temperature. The symmetric dimer domains extended along the dimer rows over the DVLs due to the phase correlation

  18. Dynamic aperture calculation for 100 GeV Au-Au and 250 GeV pp lattices with near third order resonance working point

    International Nuclear Information System (INIS)

    Gu, X.; Luo, Y.; Fischer, W.

    2010-01-01

    In the preparation for the 2011 RHIC 250 GeV polarized proton (pp) run, both experiment and simulation were carried out to investigate the possibility to accelerate the proton beam with a vertical tune near 2/3. It had been found experimentally in Run-9 that accelerating the proton beam with a vertical tune close to 2/3 will greatly benefit the transmission of the proton polarization. In this note, we report the calculated dynamic apertures with the 100 GeV Au run and 250 GeV proton run lattices with vertical tunes close to the third order resonance. We will compare the third order resonance band width between the beam experiment and the simulation with the 100 GeV Au lattices. And we also will compare the calculated resonance band width between the 100 GeV Au and 250 GeV proton run lattices.

  19. Measurement of the neutron-capture cross section of 76Ge and 74Ge below 15 MeV and its relevance to 0 νββ decay searches of 76Ge

    Science.gov (United States)

    Bhike, Megha; Fallin, B.; Krishichayan; Tornow, W.

    2015-02-01

    The neutron radiative-capture cross section of 76Ge was measured between 0.4 and 14.8 MeV using the activation technique. Germanium samples with the isotopic abundance of ∼ 86%76Ge and ∼ 14%74Ge used in the 0 νββ searches by the GERDA and Majorana Collaborations were irradiated with monoenergetic neutrons produced at eleven energies via the 3H (p , n)3He, 2H (d , n)3He and 3H (d , n)4He reactions. Previously, data existed only at thermal energies and at 14 MeV. As a by-product, capture cross-section data were also obtained for 74Ge at neutron energies below 8 MeV. Indium and gold foils were irradiated simultaneously for neutron fluence determination. High-resolution γ-ray spectroscopy was used to determine the γ-ray activity of the daughter nuclei of interest. For the 76Ge total capture cross section the present data are in good agreement with the TENDL-2013 model calculations and the ENDF/B-VII.1 evaluations, while for the 74Ge (n , γ)75Ge reaction, the present data are about a factor of two larger than predicted. It was found that the 74Ge (n , γ)75Ge yield in the High-Purity Germanium (HPGe) detectors used by the GERDA and Majorana Collaborations is only about a factor of two smaller than the 76Ge (n , γ)77Ge yield due to the larger cross section of the former reaction.

  20. Production of prototype 68Ge/68Ga generator in Iran

    International Nuclear Information System (INIS)

    Shirazi, B.; Fateh, B.; Mirzaii, M.; Aslani, Gh. R.

    2007-01-01

    Ga-68 is a radioisotope material with a half life of 68 min. As it has a specific decay mode, it is a positron emitter and hence, is popularly used in nuclear medicine. The only way to obtain these nuclides is to produce the mother nuclease which is Germanium-68. There are many nuclear reactions from which the Ge-68 is obtained, however, the best reaction is 6 9 G a(p, 2n) 6 8 G e . The cross section of this nuclear reaction was calculated with the ALICE-91 Code and the result was compared with the practical work made by other researchers, and it was acceptable. Having the cross sections in mind, the best proton energy was calculated to be between 20-25 MeV. Further research showed that Ga 2 O 3 is the best type of target material. Therefore, it was necessary to design and make a suitable target holder for these kind of compositions, which for the first time in Iran was demonstrated in the Atomic Energy Organization of Iran. The thickness of the target, bearing in mind the rate of energy loss inside the target material, was calculated with the SRIM Code and the Ga 2 O 3 tablets were made with FT-IR facilities at the Nuclear Research Center for Agriculture and Medicine (NRCAM). They were, then bombarded with 22.5 MeV proton energy and the beam currents of 2 and 10 μA. Two weeks after the bombardment the radio chemical separation of Ge-68 was accompolished with concentrated acid HN0 3 and by applying heat. Then, the acid solution was evaporated till dried, after that, an EDTA solution (0.005 M, pH=11) was added to recover the Ge-68. By passing the EDTA solution with the rate of 0.5 ml/min through the AI 2 O 3 column, the Ge-68 radioisotope was observed. Then, about 50 ml of EDTA (0.005 M, pH=11) was passed through the loaded column, where almost all the natural Gallium impurities were removed. The prepared generators were milked many times with EDTA solution (0.005 M, pH=8) and the leakage of Ge-68 nuclease and natural Gallium were determined. The average of the

  1. Antiferromagnetism in EuPdGe{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Albedah, Mohammed A. [Department of Physics, University of Ottawa, Ottawa, Ontario K1N 6N5 (Canada); Al-Qadi, Khalid [Department of Physics, University of Ottawa, Ottawa, Ontario K1N 6N5 (Canada); Department of Mathematics, Statistics and Physics, Qatar University, P.O. Box 2713, Doha (Qatar); Stadnik, Zbigniew M., E-mail: stadnik@uottawa.ca [Department of Physics, University of Ottawa, Ottawa, Ontario K1N 6N5 (Canada); Przewoźnik, Janusz [Solid State Physics Department, Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, 30-059 Kraków (Poland)

    2014-11-15

    Highlights: • We show that EuPdGe{sub 3} crystallizes in the BaNiSn{sub 3}-type structure with the lattice constants a = 4.4457(1) Å and c = 10.1703(2). • We demonstrate that EuPdGe{sub 3} is an antiferromagnet with the Néel temperature T{sub N} = 12.16(1) K. • The temperature dependence of the hyperfine magnetic field follows a S = 7/2 Brillouin function. • We find that the Debye temperature of the studied compound is 199(2) K. - Abstract: The results of X-ray diffraction, magnetic susceptibility and magnetization, and {sup 151}Eu Mössbauer spectroscopy measurements of polycrystalline EuPdGe{sub 3} are reported. EuPdGe{sub 3} crystallizes in the BaNiSn{sub 3}-type tetragonal structure (space group I4mm) with the lattice constants a=4.4457(1)Å and c=10.1703(2)Å. The results are consistent with EuPdGe{sub 3} being an antiferromagnet with the Néel temperature T{sub N}=12.16(1)K and with the Eu spins S=7/2 in the ab plane. The temperature dependence of the magnetic susceptibility above T{sub N} follows the modified Curie-Weiss law with the effective magnetic moment of 7.82(1) μ{sub B} per Eu atom and the paramagnetic Curie temperature of -5.3(1)K indicative of dominant antiferromagnetic interactions. The M(H) isotherms for temperatures approaching T{sub N} from above are indicative of dynamical short-range antiferromagnetic ordering in the sample. The temperature dependence of the hyperfine magnetic field follows a S=7/2 Brillouin function. The principal component of the electric field gradient tensor is shown to increase with decreasing temperature and is well described by a T{sup 3/2} power-law relation. The Debye temperature of EuPdGe{sub 3} determined from the Mössbauer data is 199(2) K.

  2. Dimorphism in La{sub 5}Ge{sub 3} and Ce{sub 5}Ge{sub 3}? How exploratory syntheses led to surprising new finds in the La-Ge and Ce-Ge binary phase diagrams

    Energy Technology Data Exchange (ETDEWEB)

    Suen, Nian-Tzu; Bobev, Svilen [Department of Chemistry and Biochemistry, University of Delaware, Newark, DE (United States)

    2014-04-15

    Reported are the synthesis, the crystal structures, and the electronic structures of two new tetragonal phases, La{sub 5}Ge{sub 3} and Ce{sub 5}Ge{sub 3}. Both title compounds crystallize in the Pu{sub 5}Rh{sub 3} (P4/ncc) structure type, which has close structural relationship with the W{sub 5}Si{sub 3} (I4/mcm) structure type. The synthetic results, supported by thermal analysis suggest that this tetragonal phase is only stable at relatively low temperature and it transforms to the hexagonal form (Mn{sub 5}Si{sub 3} structure type, P6{sub 3}/mcm) at above 850 C. The structural relationship between La{sub 5}Ge{sub 3} (Pu{sub 5}Rh{sub 3} type) and La{sub 5}Sn{sub 3} (W{sub 5}Si{sub 3} type) is discussed as well. Temperature dependent DC magnetization and resistivity measurements indicate that the tetragonal phase La{sub 5}Ge{sub 3} exhibits Pauli-like paramagnetism and is a good metallic conductor. For the tetragonal phase Ce{sub 5}Ge{sub 3}, the magnetic behavior obeys the Curie-Weiss law in the high-temperature regime, while it deviates from the Curie-Weiss law at low temperature. No long-range magnetic ordering was observed down to 5 K, although short-range correlations can be inferred below ca. 50 K. The resistivity measurements of Ce{sub 5}Ge{sub 3} also show metallic-like temperature dependence, although the low-temperature behavior resembling a T{sup 2} law could signify anomalous electron-scattering (e.g., Kondo-like effect). The electronic structures of multiple phases with the same nominal compositions, computed by the TB-LMTO-ASA method, are compared and discussed. (Copyright copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  3. Direct band gap light emission and detection at room temperature in bulk germanium diodes with HfGe/Ge/TiN structure

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Dong, E-mail: wang.dong.539@m.kyushu-u.ac.jp [Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, 6-1 Kasuga-koen, Kasuga, Fukuoka 816-8580 (Japan); Maekura, Takayuki [Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, 6-1 Kasuga-koen, Kasuga, Fukuoka 816-8580 (Japan); Yamamoto, Keisuke; Nakashima, Hiroshi [Art, Science and Technology Center for Cooperative Research, Kyushu University, 6-1 Kasuga-koen, Kasuga, Fukuoka 816-8580 (Japan)

    2016-03-01

    Direct band gap (DBG) electroluminescence (EL) and photo detection were studied at room temperature for n-type bulk germanium (Ge) diodes with a fin type lateral HfGe/Ge/TiN structure. DBG EL spectra peaked at 1.55 μm were clearly observed due to small hole and electron barrier heights of HfGe/Ge and TiN/Ge contacts. DBG EL peak intensity increased with increasing doping level of Ge substrate due to increased electron population in direct conduction band. The integrated intensity of DBG EL spectrum is proportional to the area of active region, implying a good surface-uniformity of EL efficiency. Small dark current intensity was measured as 2.4 × 10{sup −7} A under a reverse bias voltage of − 1 V, corresponding to dark current densities of 5.3 × 10{sup −10} A/μm or 3.2 × 10{sup −10} A/μm{sup 2}. At the wavelength of 1.55 μm, a linear dependence of photo current intensity on laser power was observed with a responsivity of 0.44 A/W at a reverse bias voltage of − 1 V. - Highlights: • Lateral HfGe/Ge/TiN diodes were fabricated on bulk Ge substrates. • The highest temperature was 400 °C for the entire fabrication process. • Electroluminescence spectra were measured for HfGe/Ge/TiN diodes with different parameters. • Dark current densities were 5.3 × 10{sup −10} A/μm or 3.2 × 10{sup −10} A/μm{sup 2} at − 1 V. • Responsivity was 0.44 A/W, corresponding to an external quantum efficiency of 35.2%.

  4. High-Temperature Heat Capacity of Germanates Pr2Ge2O7 and Nd2Ge2O7 within 350-1000 K

    Science.gov (United States)

    Denisova, L. T.; Irtyugo, L. A.; Beletskii, V. V.; Belousova, N. V.; Denisov, V. M.

    2018-03-01

    Pr2Ge2O7 and Nd2Ge2O7 were obtained via solid-phase synthesis from Pr2O3 ( Nd2O3) and GeO2 with multistage firing in air within 1273-1473 K. A temperature effect on molar heat capacity of the oxide compounds was measured with a differential scanning calorimetry. Their thermodynamic properties were calculated from the C P = f( T) dependences.

  5. Ternary germanides RERhGe{sub 2} (RE = Y, Gd-Ho) – New representatives of the YIrGe{sub 2} type

    Energy Technology Data Exchange (ETDEWEB)

    Voßwinkel, Daniel; Heletta, Lukas; Hoffmann, Rolf-Dieter; Pöttgen, Rainer, E-mail: pottgen@uni-muenster.de

    2016-11-15

    The YIrGe{sub 2} type ternary germanides RERhGe{sub 2} (RE = Y, Gd-Ho) were synthesized from the elements by arc-melting and characterized by powder X-ray diffraction. The structure of DyRhGe{sub 2} was refined from single crystal X-ray diffractometer data: Immm, a = 426.49(9), b = 885.0(2), c = 1577.4(3) pm, wR2 = 0.0533, 637 F{sup 2} values, 30 variables (300 K data). The structure contains two crystallographically independent dysprosium atoms in pentagonal prismatic and hexagonal prismatic coordination. The three-dimensional [RhGe{sub 2}] polyanion is stabilized through covalent Rh–Ge (243–261 pm) and Ge–Ge (245–251 pm) bonding. The close structural relationship with the slightly rhodium-poorer germanides RE{sub 5}Rh{sub 4}Ge{sub 10} (≡ RERh{sub 0.8}Ge{sub 2}) is discussed. Temperature-dependent magnetic susceptibility measurements reveal Pauli paramagnetism for YRhGe{sub 2} and Curie-Weiss paramagnetism for RERhGe{sub 2} with RE = Gd, Tb, Dy and Ho. These germanides order antiferromagnetically at T{sub N} = 7.2(5), 10.6(5), 8.1(5), and 6.4(5) K, respectively. - Graphical abstract: The germanides RERhGe{sub 2} (RE = Y, Gd-Ho) are new representatives of the YIrGe{sub 2} type.

  6. GeSn growth kinetics in reduced pressure chemical vapor deposition from Ge2H6 and SnCl4

    Science.gov (United States)

    Aubin, J.; Hartmann, J. M.

    2018-01-01

    We have investigated the low temperature epitaxy of high Sn content GeSn alloys in a 200 mm industrial Reduced Pressure - Chemical Vapor Deposition tool from Applied Materials. Gaseous digermane (Ge2H6) and liquid tin tetrachloride (SnCl4) were used as the Ge and Sn precursors, respectively. The impact of temperature (in the 300-350 °C range), Ge2H6 and SnCl4 mass-flows on the GeSn growth kinetics at 100 Torr has been thoroughly explored. Be it at 300 °C or 325 °C, a linear GeSn growth rate increase together with a sub-linear Sn concentration increase occurred as the SnCl4 mass-flow increased, irrespective of the Ge2H6 mass flow (fixed or varying). The Sn atoms seemed to catalyze H desorption from the surface, resulting in higher GeSn growth rates for high SnCl4 mass-flows (in the 4-21 nm min-1 range). The evolution of the Sn content x with the F (SnCl4) 2 ·/F (Ge2H6) mass-flow ratio was fitted by x2/(1 - x) = n ·F (SnCl4) 2 ·/F (Ge2H6), with n = 0.25 (325 °C) and 0.60 (300 °C). We have otherwise studied the impact of temperature, in the 300-350 °C range, on the GeSn growth kinetics. The GeSn growth rate exponentially increased with the temperature, from 15 up to 32 nm min-1. The associated activation energy was low, i.e. Ea = 10 kcal mol-1. Meanwhile, the Sn content decreased linearly as the growth temperature increased, from 15% at 300 °C down to 6% at 350 °C.

  7. Phosphorus atomic layer doping in SiGe using reduced pressure chemical vapor deposition

    International Nuclear Information System (INIS)

    Yamamoto, Yuji; Heinemann, Bernd; Murota, Junichi; Tillack, Bernd

    2014-01-01

    Phosphorus (P) atomic layer doping in SiGe is investigated at temperatures between 100 °C to 600 °C using a single wafer reduced pressure chemical vapor deposition system. SiGe(100) surface is exposed to PH 3 at different PH 3 partial pressures by interrupting SiGe growth. The impact of the SiGe buffer/cap growth condition (total pressure/SiGe deposition precursors) on P adsorption, incorporation, and segregation are investigated. In the case of SiH 4 -GeH 4 -H 2 gas system, steeper P spikes due to lower segregation are observed by SiGe cap deposition at atmospheric (ATM) pressure compared with reduced pressure (RP). The steepness of P spike of ∼ 5.7 nm/dec is obtained for ATM pressure without reducing deposition temperature. This result may be due to the shift of equilibrium of P adsorption/desorption to desorption direction by higher H 2 pressure. Using Si 2 H 6 -GeH 4 -H 2 gas system for SiGe cap deposition in RP, lowering the SiGe growth temperature is possible, resulting in higher P incorporation and steeper P profile due to reduced desorption and segregation. In the case of Si 2 H 6 -GeH 4 -H 2 gas system, the P dose could be simulated assuming a Langmuir-type kinetics model. Incorporated P shows high electrical activity, indicating P is adsorbed mostly in lattice position. - Highlights: • Phosphorus (P) atomic layer doping in SiGe (100) is investigated using CVD. • P adsorption is suppressed by the hydrogen termination of Ge surface. • By SiGe cap deposition at atmospheric pressure, P segregation was suppressed. • By using Si 2 H 6 -based SiGe cap, P segregation was also suppressed. • The P adsorption process is self-limited and follows Langmuir-type kinetics model

  8. Hole mobility enhancement of p-MOSFETs using global and local Ge-channel technologies

    International Nuclear Information System (INIS)

    Takagi, Shinichi; Tezuka, T.; Irisawa, T.; Nakaharai, S.; Maeda, T.; Numata, T.; Ikeda, K.; Sugiyama, N.

    2006-01-01

    Mobility enhancement technologies have currently been recognized as mandatory for future scaled MOSFETs. In this paper, we review our recent results on high hole mobility p-MOSFETs using global/local SiGe or Ge channels. There are two directions for introducing SiGe or Ge channels into Si CMOS platform. One is to use SiGe or Ge global substrates and the other is to form SiGe or Ge-channel regions locally on Si wafers. In both cases, the Ge condensation technique, where Ge-channel layers are formed by oxidizing SiGe films on SOI substrates, are effectively utilized. As for the global technologies, ultrathin GOI substrates are prepared and used to fabricate high mobility GOI p-MOSFETs. As for the local technologies, SGOI or GOI channels are formed locally in the active area of p-MOSFETs on SOI wafers. It is shown that the hole mobility enhancement factor of as high as 10 is obtained in locally fabricated p-MOSFETs through the effects of high-Ge content and the compressive strain. Furthermore, the local Ge-channel technologies are combined with global SiGe or Ge substrates for pursuing the optimal and individual design of n-MOSFETs and p-MOSFETs on a single Si wafer. The CMOS device composed of strained-Si n-MOSFETs and SGOI p-MOSFETs is successfully integrated on a same wafer, which is a promising CMOS structure under deep sub 100 nm technology nodes

  9. Impact of nitrogen plasma passivation on the Al/n-Ge contact

    Energy Technology Data Exchange (ETDEWEB)

    Lai, Shumei; Mao, Danfeng [Department of Physics, Xiamen University, Xiamen, Fujian 361005 (China); Ruan, Yujiao [Xiamen Institute of Measurement and Testing, Xiamen, Fujian 361004 (China); Xu, Yihong; Huang, Zhiwei; Huang, Wei [Department of Physics, Xiamen University, Xiamen, Fujian 361005 (China); Chen, Songyan, E-mail: sychen@xmu.edu.cn [Department of Physics, Xiamen University, Xiamen, Fujian 361005 (China); Li, Cheng; Wang, Jianyuan [Department of Physics, Xiamen University, Xiamen, Fujian 361005 (China); Tang, Dingliang [College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005 (China)

    2016-09-15

    Highlights: • A thin GeO{sub x}N{sub y} layer was formed by N{sub 2} plasma. • The principal parameters of N{sub 2} plasma treatment and additional post anneal have a great impact on the Al/n-Ge contact. • A model was proposed to explain the variation of Schottky barrier height. • The GeO{sub x}N{sub y} layer was also benefit to achieve a low leakage current density for HfO{sub 2}/Ge MOS capacitors. - Abstract: Severe Fermi level pinning at the interface of metal/n-Ge leads to the formation of a Schottky barrier. Therefore, a high contact resistance is introduced, debasing the performance of Ge devices. In this study, a Ge surface was treated by nitrogen plasma to form an ultra-thin Germanium oxynitride (GeO{sub x}N{sub y}) passivation layer. It was found that the Schottky barrier height (SBH) of metal/n-Ge contact was strongly modulated by the GeO{sub x}N{sub y} interlayer, indicating alleviation of Fermi-level pinning effect. By adjusting the principal parameters of N{sub 2} plasma treatment and additional post anneal, a Quasi-ohmic Al/n-Ge contact was achieved. Furthermore, the introduced GeO{sub x}N{sub y} layer gave extremely lower leakage current density of the gate stack for HfO{sub 2}/Ge devices. These results demonstrate that GeO{sub x}N{sub y} formed by N{sub 2} plasma would be greatly beneficial to the fabrication of the Ge-based devices.

  10. Remote interfacial dipole scattering and electron mobility degradation in Ge field-effect transistors with GeOx/Al2O3 gate dielectrics

    International Nuclear Information System (INIS)

    Wang, Xiaolei; Xiang, Jinjuan; Wang, Shengkai; Wang, Wenwu; Zhao, Chao; Ye, Tianchun; Xiong, Yuhua; Zhang, Jing

    2016-01-01

    Remote Coulomb scattering (RCS) on electron mobility degradation is investigated experimentally in Ge-based metal–oxide–semiconductor field-effect-transistors (MOSFETs) with GeO x /Al 2 O 3 gate stacks. It is found that the mobility increases with greater GeO x thickness (7.8–20.8 Å). The physical origin of this mobility dependence on GeO x thickness is explored. The following factors are excluded: Coulomb scattering due to interfacial traps at GeO x /Ge, phonon scattering, and surface roughness scattering. Therefore, the RCS from charges in gate stacks is studied. The charge distributions in GeO x /Al 2 O 3 gate stacks are evaluated experimentally. The bulk charges in Al 2 O 3 and GeO x are found to be negligible. The density of the interfacial charge is  +3.2  ×  10 12 cm −2 at the GeO x /Ge interface and  −2.3  ×  10 12 cm −2 at the Al 2 O 3 /GeO x interface. The electric dipole at the Al 2 O 3 /GeO x interface is found to be  +0.15 V, which corresponds to an areal charge density of 1.9  ×  10 13 cm −2 . The origin of this mobility dependence on GeO x thickness is attributed to the RCS due to the electric dipole at the Al 2 O 3 /GeO x interface. This remote dipole scattering is found to play a significant role in mobility degradation. The discovery of this new scattering mechanism indicates that the engineering of the Al 2 O 3 /GeO x interface is key for mobility enhancement and device performance improvement. These results are helpful for understanding and engineering Ge mobility enhancement. (paper)

  11. The 76Ge(n,p)76Ga reaction and its relevance to searches for the neutrino-less double-beta decay of 76Ge

    Science.gov (United States)

    Tornow, W.; Bhike, Megha; Fallin, B.; Krishichayan, Fnu

    2015-10-01

    The 76Ge(n,p)76Ga reaction and the subsequent β decay of 76Ga to 76Ge has been used to excite the 3951.9 keV state of 76Ge, which decays by emission of a 2040.7 keV γ ray. Using HPGe detectors, the associated pulse-height signal may be undistinguishable from the potential signal produced in neutrino-less double-beta decay of 76Ge with its Q-value of 2039.0 keV. In the neutron energy range between 10 and 20 MeV the production cross section of the 2040.7 keV γ ray is approximately 0.1 mb. In the same experiment γ rays of energy 2037.9 keV resulting from the 76Ge(n, γ)77Ge reaction were clearly observed. Adding the 76Ge(n,n' γ)76Ge reaction, which also produces the 2040.7 keV γ ray with a cross section value of the order of 0.1 mb clearly shows that great care has to be taken to eliminate neutron-induced backgrounds in searches for neutrino-less double-beta decay of 76Ge. This work was supported by the U.S. DOE under Grant NO. DE-FG02-97ER41033.

  12. Surface segregation of Ge during Si growth on Ge/Si(0 0 1) at low temperature observed by high-resolution RBS

    International Nuclear Information System (INIS)

    Nakajima, K.; Hosaka, N.; Hattori, T.; Kimura, K.

    2002-01-01

    The Si/Ge/Si(0 0 1) multilayer with about 1 ML Ge layer is fabricated by evaporating Si overlayer on a Ge/Si(0 0 1) surface at 20-300 deg. C. The depth profile of the Ge atoms is observed by high-resolution Rutherford backscattering spectroscopy to investigate the possibility of Ge delta doping in Si. The observed profile of the Ge atoms spreads over several atomic layers even at 20 deg. C and a significant amount of Ge is located in the surface layer at higher temperatures. The results at 20-150 deg. C are well explained with two-layer model for surface segregation of the Ge atoms and the segregation rates are estimated. The activation energy for surface segregation of Ge atoms in amorphous Si is evaluated to be 0.035 eV, which is much smaller than the value reported for Si deposition at 500 deg. C. The small activation energy suggests that local heating during the Si deposition is dominant at low temperature

  13. Photoemission Studies of Si Quantum Dots with Ge Core: Dots formation, Intermixing at Si-clad/Ge-core interface and Quantum Confinement Effect

    Directory of Open Access Journals (Sweden)

    Yudi Darma

    2008-03-01

    Full Text Available Spherical Si nanocrystallites with Ge core (~20nm in average dot diameter have been prepared by controlling selective growth conditions of low-pressure chemical vapor deposition (LPCVD on ultrathin SiO2 using alternately pure SiH4 and 5% GeH4 diluted with He. XPS results confirm the highly selective growth of Ge on the pregrown Si dots and subsequently complete coverage by Si selective growth on Ge/Si dots. Compositional mixing and the crystallinity of Si dots with Ge core as a function of annealing temperature in the range of 550-800oC has been evaluated by XPS analysis and confirms the diffusion of Ge atoms from Ge core towards the Si clad accompanied by formation of GeOx at the Si clad surface. The first subband energy at the valence band of Si dot with Ge core has been measured as an energy shift at the top of the valence band density of state using XPS. The systematic shift of the valence band maximum towards higher binding energy with progressive deposition in the dot formation indicate the charging effect of dots and SiO2 layer by photoemission during measurements.

  14. Wet thermal annealing effect on TaN/HfO2/Ge metal—oxide—semiconductor capacitors with and without a GeO2 passivation layer

    International Nuclear Information System (INIS)

    Liu Guan-Zhou; Li Cheng; Lu Chang-Bao; Tang Rui-Fan; Tang Meng-Rao; Wu Zheng; Yang Xu; Huang Wei; Lai Hong-Kai; Chen Song-Yan

    2012-01-01

    Wet thermal annealing effects on the properties of TaN/HfO 2 /Ge metal—oxide—semiconductor (MOS) structures with and without a GeO 2 passivation layer are investigated. The physical and the electrical properties are characterized by X-ray photoemission spectroscopy, high-resolution transmission electron microscopy, capacitance—voltage (C—V) and current—voltage characteristics. It is demonstrated that wet thermal annealing at relatively higher temperature such as 550 °C can lead to Ge incorporation in HfO 2 and the partial crystallization of HfO 2 , which should be responsible for the serious degradation of the electrical characteristics of the TaN/HfO 2 /Ge MOS capacitors. However, wet thermal annealing at 400 °C can decrease the GeO x interlayer thickness at the HfO 2 /Ge interface, resulting in a significant reduction of the interface states and a smaller effective oxide thickness, along with the introduction of a positive charge in the dielectrics due to the hydrolyzable property of GeO x in the wet ambient. The pre-growth of a thin GeO 2 passivation layer can effectively suppress the interface states and improve the C—V characteristics for the as-prepared HfO 2 gated Ge MOS capacitors, but it also dissembles the benefits of wet thermal annealing to a certain extent

  15. Origin of structural analogies and differences between the atomic structures of GeSe4 and GeS4 glasses: A first principles study.

    Science.gov (United States)

    Bouzid, Assil; Le Roux, Sébastien; Ori, Guido; Boero, Mauro; Massobrio, Carlo

    2015-07-21

    First-principles molecular dynamics simulations based on density functional theory are employed for a comparative study of structural and bonding properties of two stoichiometrically identical chalcogenide glasses, GeSe4 and GeS4. Two periodic cells of 120 and 480 atoms are adopted. Both glasses feature a coexistence of Ge-centered tetrahedra and Se(S) homopolar connections. Results obtained for N = 480 indicate substantial differences at the level of the Se(S) environment, since Ge-Se-Se connections are more frequent than the corresponding Ge-S-S ones. The presence of a more prominent first sharp diffraction peak in the total neutron structure factor of glassy GeS4 is rationalized in terms of a higher number of large size rings, accounting for extended Ge-Se correlations. Both the electronic density of states and appropriate electronic localization tools provide evidence of a higher ionic character of Ge-S bonds when compared to Ge-Se bonds. An interesting byproduct of these investigations is the occurrence of discernible size effects that affect structural motifs involving next nearest neighbor distances, when 120 or 480 atoms are used.

  16. Structural and electrical properties of Ge(111) films grown on Si(111) substrates and application to Ge(111)-on-Insulator

    Energy Technology Data Exchange (ETDEWEB)

    Sawano, K., E-mail: sawano@tcu.ac.jp [Advanced Research Laboratories, Tokyo City University, 8-15-1 Todoroki, Setagaya-ku, Tokyo (Japan); Hoshi, Y.; Kubo, S. [Advanced Research Laboratories, Tokyo City University, 8-15-1 Todoroki, Setagaya-ku, Tokyo (Japan); Arimoto, K.; Yamanaka, J.; Nakagawa, K. [Center for Crystal Science and Technology, University of Yamanashi, 7 Miyamae-cho, Kofu (Japan); Hamaya, K. [Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka (Japan); Miyao, M. [Department of Electronics, Kyushu University, 744 Motooka, Fukuoka (Japan); Shiraki, Y. [Advanced Research Laboratories, Tokyo City University, 8-15-1 Todoroki, Setagaya-ku, Tokyo (Japan)

    2016-08-31

    Structural and electrical properties of a Ge(111) layer directly grown on a Si(111) substrate are studied. Via optimized two-step growth manner, we form a high-quality relaxed Ge layer, where strain-relieving dislocations are confined close to a Ge/Si interface. Consequently, a density of holes, which unintentionally come from crystal defects, is highly suppressed below 4 × 10{sup 16} cm{sup −3}, which leads to significantly high hole Hall mobility exceeding 1500 cm{sup 2}/Vs at room temperature. By layer transfer of the grown Ge layer, we also fabricate a Ge(111)-on-Insulator, which is a promising template for high-performance Ge-based electronic and photonic devices. - Highlights: • A high-quality Ge layer is epitaxially grown on a Si(111) by two-step growth manner. • Growth conditions, such as growth temperatures, are optimized. • Very high hole mobility is obtained from Ge(111) grown on Si(111). • High-quality thin Ge-on-Insulator with (111) orientation is obtained.

  17. The distribution in transverse momentum of 5 GeV/c secondaries produced at 53 GeV in the centre of mass

    CERN Document Server

    Albrow, M G; Bogaerts, A; Bošnjakovič, B; Brooks, J R; Clegg, A B; Erné, F C; Gee, C N P; Kanaris, A D; Lacourt, A; Locke, D H; Loebinger, F K; Murphy, P G; Rudge, A; Sens, Johannes C; Terwilliger, K M; Van der Veen, F

    1972-01-01

    Data are reported on the distribution in transverse momentum of 5 GeV /c pi /sup +or-/, K/sup +or-/, p and p, produced in proton proton collisions at 53 GeV centre of mass energy at the CERN ISR. At this energy the magnitude and p/sub T/ dependence of the invariant cross- section appears to be approximately equal to that at 19 GeV accelerator energy (at the same value of the Feynman variable x), for pi /sup +or-/ and K/sup +/ in the range 0.15

    GeV/c. (6 refs).

  18. Direct synthesis of highly textured Ge on flexible polyimide films by metal-induced crystallization

    Energy Technology Data Exchange (ETDEWEB)

    Oya, N.; Toko, K., E-mail: toko@bk.tsukuba.ac.jp; Suemasu, T. [Institute of Applied Physics, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573 (Japan); Saitoh, N.; Yoshizawa, N. [Electron Microscope Facility, TIA, AIST, 16-1 Onogawa, Tsukuba 305-8569 (Japan)

    2014-06-30

    The highly (111)-textured Ge thin film (50-nm thickness) is demonstrated on a flexible polyimide film via the low-temperature crystallization (325 °C) of amorphous Ge using Al as a catalyst. Covering the polyimide with insulators significantly improved the crystal quality of the resulting Ge layer. In particular, SiN covering led to 97% (111)-oriented Ge with grains 200 μm in size, two orders larger than the grain size of polycrystalline Ge directly formed on the polyimide film. This achievement will give a way to realize advanced electronic and optical devices simultaneously allowing for high performance, inexpensiveness, and flexibility.

  19. Ge incorporation inside 4H-SiC during Homoepitaxial growth by chemical vapor deposition

    OpenAIRE

    Alassaad, Kassem; Soulière, Véronique; Cauwet, François; Peyre, Hervé; Carole, Davy; Kwasnicki, Pawel; Juillaguet, Sandrine; Kups, Thomas; Pezoldt, Jörg; Ferro, Gabriel

    2014-01-01

    8 pages; International audience; In this work, we report on the addition of GeH4 gas during homoepitaxial growth of 4H-SiC by chemical vapour deposition. Ge introduction does not affect dramatically the surface morphology and defect density though it is accompanied with Ge droplets accumulation at the surface. The Ge incorporation level inside the 4H-SiC matrix, ranging from few 1017 to few 1018 at.cm-3, was found to be mainly affected by the growth temperature and GeH4 flux. Other growth par...

  20. Backscattering analysis of AuGe-Ni ohmic contacts of n-GaAs

    International Nuclear Information System (INIS)

    Nassibian, A.G.; Kalkur, T.S.; Sutherland, G.J.; Cohen, D.

    1985-01-01

    AuGe-Ni is widely used for the fabrication of ohmic contacts to n-GaAs. The alloying behaviour of evaporated AuGe-Ni alloyed by furnace and Scanning Electron Beam, is characterised by Rutherford backscattering with 2MeV 4 He ions. Since the formation of alloyed AuGe-Ni contacts involves redistribution and diffusion of Ga, As, Ni, Ge and Au, it is difficult to separate the corresponding yields due to gold, Ga As, Ni and Ge in the spectrum. The technique used in the investigation involves assumption of depth distribution of elements and computing the resultant spectrum

  1. Generation of uniaxial tensile strain of over 1% on a Ge substrate for short-channel strained Ge n-type Metal–Insulator–Semiconductor Field-Effect Transistors with SiGe stressors

    International Nuclear Information System (INIS)

    Moriyama, Yoshihiko; Kamimuta, Yuuichi; Ikeda, Keiji; Tezuka, Tsutomu

    2012-01-01

    Tensile strain of over 1% in Ge stripes sandwiched between a pair of SiGe source-drain stressors was demonstrated. The Metal–Oxide–Semiconductor Field-Effect Transistor (MOSFET)-like structures were fabricated on a (001)-Ge substrate having SiO 2 dummy-gate stripes with widths down to 26 nm. Recess-regions adjacent to the dummy-gate stripes were formed by an anisotropic wet etching technique. A damage-free and well-controlled anisotropic wet etching process is developed in order to avoid plasma-induced damage during a conventional Reactive-ion Etching process. The SiGe stressors were epitaxially grown on the recesses to simulate strained Ge n-channel Metal–Insulator–Semiconductor Field-Effect Transistors (MISFETs) having high electron mobility. A micro-Raman spectroscopy measurement revealed tensile strain in the narrow Ge regions which became higher for narrower regions. Tensile strain of up to 1.2% was evaluated from the measurement under an assumption of uniaxial strain configuration. These results strongly suggest that higher electron mobility than the upper limit for a Si-MOSFET is obtainable in short-channel strained Ge-nMISFETs with the embedded SiGe stressors.

  2. Proton-proton Scattering Above 3 GeV/c

    Energy Technology Data Exchange (ETDEWEB)

    A. Sibirtsev, J. Haidenbauer, H.-W. Hammer S. Krewald ,Ulf-G. Meissner

    2010-01-01

    A large set of data on proton-proton differential cross sections, analyzing powers and the double-polarization parameter A{sub NN} is analyzed employing the Regge formalism. We find that the data available at proton beam momenta from 3 GeV/c to 50 GeV/c exhibit features that are very well in line with the general characteristics of Regge phenomenology and can be described with a model that includes the {rho}, {omega}, f{sub 2}, and a{sub 2} trajectories and single-Pomeron exchange. Additional data, specifically for spin-dependent observables at forward angles, would be very helpful for testing and refining our Regge model.

  3. GERDA - a new neutrinoless double beta experiment using 76Ge

    International Nuclear Information System (INIS)

    Meierhofer, G

    2011-01-01

    The search for neutrinoless double beta decay (0νssss) has been a very active field for the last decades. While double beta decay has been observed, 0νssss decay still waits for its experimental proof. The GErmanium Detector Array (GERDA) uses 76 Ge, an ideal candidate as it is acting as source and detector simultaneously. Germanium detectors, isotopically enriched in 76 Ge are submerged directly into an ultra pure cryo liquid, which serves as coolant and radiation shield. This concept will allow to reduce the background by up to two orders of magnitude with respect to earlier experiments. GERDA has been constructed in hall A of the underground laboratory LNGS of the INFN in Italy. The experiment started recently with a test run.

  4. Configuration interaction calculations for the region of 76Ge

    Science.gov (United States)

    Brown, Alex

    2017-09-01

    I will present a short history of the configuration interaction Hamiltonians that have been developed for the (0f5 / 2 , 1p3 / 2 , 1p1 / 2 , 0g9 / 2) (jj 44) model space. This model space is appropriate for the region of nuclei bounded by the nickel isotopes for Z = 28 and the isotones with N = 50 . I will discuss results for the double-beta decay of 76Ge that lies in the jj 44 region. I will show results for the structure of nuclei around 76Ge for some selected data from gamma decay, Gamow-Teller beta decay, charge-exchange reactions, one-nucleon transfer reactions, and two-nucleon transfer reactions. This work was supported by NSF Grant PHY-1404442.

  5. High temperature XRD of Cu2GeSe3

    International Nuclear Information System (INIS)

    Premkumar, D. S.; Malar, P.; Chetty, Raju; Mallik, Ramesh Chandra

    2015-01-01

    The Cu 2 GeSe 3 is prepared by solid state synthesis method. The high temperature XRD has been done at different temperature from 30 °C to 450 °C. The reitveld refinement confirms Cu 2 GeSe 3 phase and orthorhombic crystal structure. The lattice constants are increasing with increase in the temperature and their rate of increase with respect to temperature are used for finding the thermal expansion coefficient. The calculation of the linear and volume coefficient of thermal expansion is done from 30 °C to 400 °C. Decrease in the values of linear expansion coefficients with temperature are observed along a and c axis. Since thermal expansion coefficient is the consequence of the distortion of atoms in the lattice; this can be further used to find the minimum lattice thermal conductivity at given temperature

  6. Abelian hidden sectors at a GeV

    International Nuclear Information System (INIS)

    Morrissey, David E.; Poland, David; Zurek, Kathryn M.

    2009-01-01

    We discuss mechanisms for naturally generating GeV-scale hidden sectors in the context of weak-scale supersymmetry. Such low mass scales can arise when hidden sectors are more weakly coupled to supersymmetry breaking than the visible sector, as happens when supersymmetry breaking is communicated to the visible sector by gauge interactions under which the hidden sector is uncharged, or if the hidden sector is sequestered from gravity-mediated supersymmetry breaking. We study these mechanisms in detail in the context of gauge and gaugino mediation, and present specific models of Abelian GeV-scale hidden sectors. In particular, we discuss kinetic mixing of a U(1) x gauge force with hypercharge, singlets or bi-fundamentals which couple to both sectors, and additional loop effects. Finally, we investigate the possible relevance of such sectors for dark matter phenomenology, as well as for low- and high-energy collider searches.

  7. GeSbTe deposition for the PRAM application

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Junghyun [Nano Fabrication Center, SAIT, Suwon, P.O. Box 111 (Korea, Republic of); Choi, Sangjoon [Nano Fabrication Center, SAIT, Suwon, P.O. Box 111 (Korea, Republic of); Lee, Changsoo [Nano Fabrication Center, SAIT, Suwon, P.O. Box 111 (Korea, Republic of); Kang, Yoonho [Nano Fabrication Center, SAIT, Suwon, P.O. Box 111 (Korea, Republic of); Kim, Daeil [School of Materials Science and Engineering. University of Ulsan, San 29, Mugeo-Dong, Nam-Gu, Ulsan 680-749 (Korea, Republic of)]. E-mail: dkim84@mail.ulsan.ac.kr

    2007-02-15

    GeSbTe (GST) chalcogenide thin films for the phase-change random access memory (PRAM) were deposited by an atomic layer deposition (ALD) process. New precursors for GST thin films made with an ALD process were synthesized. Among the synthesized precursors, Ge(N(CH{sub 3}){sub 2}){sub 4}, Sb(N(CH{sub 3}){sub 2}){sub 4}, and Te(i-Pr){sub 2} (i-Pr = iso-propyl) were selected. Using the above precursors, GST thin films were deposited using an H{sub 2} plasma-assisted ALD process. Film resistivity abruptly changed after an N{sub 2} annealing process above a temperature of 350 deg. C. Cross-sectional scanning electron microscope (SEM) photographs of the GST films on the patterned substrate with aspect ratio of 7 shows that the step coverage is about 90%.

  8. Ge/Si core/multi shell heterostructure FETs

    Energy Technology Data Exchange (ETDEWEB)

    Picraux, Samuel T [Los Alamos National Laboratory; Dayeh, Shadi A [Los Alamos National Laboratory

    2010-01-01

    Concentric heterostructured materials provide numerous design opportunities for engineering strain and interfaces, as well as tailoring energy band-edge combinations for optimal device performance. Key to the realization of such novel device concepts is the complete understanding and full control over their growth, crystal structure, and hetero-epitaxy. We report here on a new route for synthesizing Ge/Si core/multi-shell heterostructure nanowires that eliminate Au seed diffusion on the nanowire sidewalls by engineering the interface energy density difference. We show that such control over core/shell synthesis enable experimental realization of heterostructure FET devices beyond those available in the literature with enhanced transport characteristics. We provide a side-by-side comparison on the transport properties of Ge/Si core/multi-shell nanowires grown with and without Au diffusion and demonstrate heterostructure FETs with drive currents that are {approx} 2X higher than record results for p-type FETs.

  9. Hole spin coherence in a Ge/Si heterostructure nanowire

    DEFF Research Database (Denmark)

    Higginbotham, Andrew P; Larsen, Thorvald Wadum; Yao, Jun

    2014-01-01

    Relaxation and dephasing of hole spins are measured in a gate-defined Ge/Si nanowire double quantum dot using a fast pulsed-gate method and dispersive readout. An inhomogeneous dephasing time T2(*)≈ 0.18 μs exceeds corresponding measurements in III-V semiconductors by more than an order of magnit......Relaxation and dephasing of hole spins are measured in a gate-defined Ge/Si nanowire double quantum dot using a fast pulsed-gate method and dispersive readout. An inhomogeneous dephasing time T2(*)≈ 0.18 μs exceeds corresponding measurements in III-V semiconductors by more than an order...

  10. Fractional Quantum Hall States in a Ge Quantum Well.

    Science.gov (United States)

    Mironov, O A; d'Ambrumenil, N; Dobbie, A; Leadley, D R; Suslov, A V; Green, E

    2016-04-29

    Measurements of the Hall and dissipative conductivity of a strained Ge quantum well on a SiGe/(001)Si substrate in the quantum Hall regime are reported. We analyze the results in terms of thermally activated quantum tunneling of carriers from one internal edge state to another across saddle points in the long-range impurity potential. This shows that the gaps for different filling fractions closely follow the dependence predicted by theory. We also find that the estimates of the separation of the edge states at the saddle are in line with the expectations of an electrostatic model in the lowest spin-polarized Landau level (LL), but not in the spin-reversed LL where the density of quasiparticle states is not high enough to accommodate the carriers required.

  11. Structure of eutectic alloys of Au with Si and Ge

    Energy Technology Data Exchange (ETDEWEB)

    Takeda, S. [Faculty of Sciences, Kyushu University, 4-2-1, Ropponmatsu, Fukuoka 810-8560 (Japan)], E-mail: takeda@rc.kyushu-u.ac.jp; Fujii, H. [Graduate School of Sciences, Kyushu University, 4-2-1, Ropponmatsu, Fukuoka 810-8560 (Japan); Kawakita, Y. [Faculty of Sciences, Kyushu University, 4-2-1, Ropponmatsu, Fukuoka 810-8560 (Japan); Tahara, S.; Nakashima, S. [Graduate School of Sciences, Kyushu University, 4-2-1, Ropponmatsu, Fukuoka 810-8560 (Japan); Kohara, S.; Itou, M. [Japan Synchrotron Radiation Research Institute, 1-1-1 Koto Sayo-cho, Sayo Hyogo 679-5198 (Japan)

    2008-03-06

    Au-Si and Au-Ge alloy systems have a deep eutectic point in the Au-rich concentration region where the melting point falls down to 633 K. In order to investigate the liquid structure in relation to the glass-forming tendency of these alloys, high-energy X-ray diffraction measurements have been carried out at the eutectic composition and at compositions with excess amounts of Au or IVb element. The nearest neighbor correlations in the eutectic liquids are intense and sharp in the pair distribution function and exhibit a rather small temperature dependence in comparison with those alloys of other than the eutectic composition. Structural models for these liquid alloys are proposed with the aid of reverse Monte Carlo simulation. The reproduced atomic arrangements around the eutectic region exhibit a substitutional-type structure where the dense random packing of Au atoms is preserved and Si or Ge atoms occupy the Au-sites at random.

  12. Proton GE/GM from beam-target asymmetry

    International Nuclear Information System (INIS)

    Mark Jones; Aram Aghalaryan; Abdellah Ahmidouch; Razmik Asaturyan; Frederic Bloch; Werner Boeglin; Peter Bosted; Cedric Carasco; Roger Carlini; Jinseok Cha; Jian-Ping Chen; Michael Christy; Leon Cole; Luminita Coman; Donald Crabb; Samuel Danagoulian; Donal Day; James Dunne; Mostafa Elaasar; Rolf Ent; Howard Fenker; Emil Frlez; David Gaskell; Liping Gan; Javier Gomez; Bitao Hu; Juerg Jourdan; Christopher Keith; Cynthia Keppel; Mahbubul Khandaker; Andreas Klein; Laird Kramer; Yongguang Liang; Jechiel Lichtenstadt; Richard Lindgren; David Mack; Paul McKee; Dustin McNulty; David Meekins; Hamlet Mkrtchyan; Rakhsha Nasseripour; Maria-Ioana Niculescu; Kristoff Normand; Blaine Norum; Dinko Pocanic; Yelena Prok; Brian Raue; Joerg Reinhold; Julie Roche; Daniela Rohe; Oscar Rondon-Aramayo; Nikolai Savvinov; Bradley Sawatzky; Mikell Seely; Ingo Sick; Karl Slifer; C. Smith; Gregory Smith; S. Stepanyan; Liguang Tang; Shigeyuki Tajima; Giuseppe Testa; William Vulcan; Kebin Wang; Glen Warren; Frank Wesselmann; Stephen Wood; Chen Yan; Lulin Yuan; Junho Yun; Markus Zeier; Hong Guo Zhu

    2006-01-01

    The ratio of the proton's electric to magnetic form factor, G E /G M , can be extracted in elastic electron-proton scattering by measuring either cross sections, beam-target asymmetry or recoil polarization. Separate determinations of G E /G M by cross sections and recoil polarization observables disagree for Q 2 > 1 (GeV/c) 2 . Measurement by a third technique might uncover an unknown systematic error in either of the previous measurements. The beam-target asymmetry has been measured for elastic electron-proton scattering at Q 2 = 1.51 (GeV/c) 2 for target spin orientation aligned perpendicular to the beam momentum direction. This is the largest Q 2 at which G E /G M has been determined by a beam-target asymmetry experiment. The result, μG E /G M = 0.884 +/- 0.027 +/- 0.029, is compared to previous world data

  13. Nuclear physics at multi-GeV hadron facilities

    International Nuclear Information System (INIS)

    Geesaman, D.F.

    1993-01-01

    The important contributions Multi-GeV hadron beam facilities can make to the field of Nuclear Physics have been recognized by the community for a decade. Such a facility has featured prominently in each NSAC planning exercise in this period. As Nuclear Physicists realize they must become more concerned with the quark structure of nuclei and the applications of Quantum Chromodynamics to many body systems, the need for experiments at such facilities has become more urgent. In this talk, I will present a personal view of some of the significant recent Nuclear Physics results with multi-GeV hadron facilities, the most important opportunities which can open up to us in the future, and demonstrate how our field must take advantage of these opportunities to progress. I will also report on the recent discussions in the community to make this possible

  14. Electronic structure of Ag8GeS6

    Directory of Open Access Journals (Sweden)

    D.I. Bletskan

    2017-04-01

    Full Text Available For the first time, the energy band structure, total and partial densities of states of Ag8GeS6 crystal were calculated using the ab initio density functional method in LDA and LDA+U approximations. Argyrodite is direct-gap semiconductor with the calculated band gap width Egd = 1.46 eV in the LDA+U approximation. The valence band of argyrodite contains four energy separated groups of occupied subzones. The unique feature of electron-energy structure of Ag8GeS6 crystal is the energy overlapping between the occupied d-states of Ag atoms and the delocalized valence p-states of S atoms in relatively close proximity to the valence band top.

  15. Muon channeling in Ge: Evidence for pionium formation

    International Nuclear Information System (INIS)

    Flik, G.; Bradbury, J.N.; Cooke, D.W.; Heffner, R.H.; Leon, M.; Paciotti, M.A.; Schillaci, M.E.; Maier, K.; Rempp, H.; Boekema, C.; Reidy, J.J.; Daniel, H.

    1986-01-01

    In a recent experiment observing muon channeling from the decay of positive pions implanted in high-purity Ge single crystals, the pion decay site is found to be sensitive to the concentration of excess charge carriers produced by photon absorption. Distinctly different channeling profiles are observed in Ge at 100 K for illuminated samples (high carrier concentration) as compared to unilluminated samples (low carrier concentration). From these data we conclude that different electronic states of the pion in a semiconductor host lattice must account for the observed changes in the pion location. Furthermore we suggest that the pion exists in the solid both as the bare entity π + and as pionium (π + e - ), i.e., a hydrogen-like atom with a mesonic nucleus. (orig.)

  16. New forces and the 750 GeV resonance

    International Nuclear Information System (INIS)

    Duerr, Michael; Fileviez Perez, Pavel; Smirnov, Juri

    2016-04-01

    Recently, the ATLAS and CMS collaborations have pointed out the possible existence of a new resonance with a mass around 750 GeV. We investigate the possibility to identify this new resonance with a spin zero field responsible for the breaking of a new gauge symmetry. We focus on a simple theory where the baryon number is a local symmetry spontaneously broken at the low scale. In this context new vector-like quarks are needed to cancel all baryonic anomalies and define the production mechanism and decays of the new Higgs at the LHC. Assuming the existence of the new Higgs with a mass of 750 GeV at the LHC we find an upper bound on the symmetry breaking scale. Therefore, one expects that a new force associated with baryon number could be discovered at the LHC.

  17. The European 400 GeV proton synchrotron

    CERN Document Server

    Middelkoop, Willem Cornelis

    1977-01-01

    On 19th February 1971, CERN decided to build a super proton synchrotron at a cost of 1150*10/sup 6/ Swiss francs. The design target of 400 GeV with a beam intensity of 10/sup 13/ protons/pulse was reached on the 4th of November 1976 within the original budget, allowing for inflation. The technical aspects of the SPS are reviewed, together with operating experience since May 1976. (2 refs).

  18. Superconductivity in the Nb-Ru-Ge σ phase

    Science.gov (United States)

    Carnicom, Elizabeth M.; Xie, Weiwei; Sobczak, Zuzanna; Kong, Tai; Klimczuk, Tomasz; Cava, R. J.

    2017-12-01

    We show that the previously unreported ternary σ -phase material N b20.4R u5.7G e3.9 (N b0.68R u0.19G e0.13 ) is a superconductor with a critical temperature of 2.2 K. Temperature-dependent magnetic susceptibility, resistance, and specific-heat measurements were used to characterize the superconducting transition. The Sommerfeld constant γ for N b20.4R u5.7G e3.9 is 91 mJ mol f .u .-1K-2 (˜3 mJ mol ato m-1K-2 ) and the specific-heat anomaly at the superconducting transition, Δ C /γ Tc , is approximately 1.38. The zero-temperature upper critical field [μ0H c2(0 ) ] was estimated to be 2 T by resistance data. Field-dependent magnetization data analysis estimated μ0H c1(0 ) to be 5.5 mT. Thus, the characterization shows N b20.4R u5.7G e3.9 to be a type-II BCS superconductor. This material appears to be the first reported ternary phase in the Nb-Ru-Ge system, and the fact that there are no previously reported binary Nb-Ru, Nb-Ge, or Ru-Ge σ phases shows that all three elements are necessary to stabilize the material. An analogous σ phase in the Ta-Ru-Ge system did not display superconductivity above 1.7 K, which suggests that electron count cannot govern the superconductivity observed. Preliminary characterization of a possible superconducting σ phase in the Nb-Ru-Ga system is also reported.

  19. Ge(Li) data reduction using small computers

    Science.gov (United States)

    Mcdermott, W. E.

    1972-01-01

    The advantages and limitations of using a small computer to analyze Ge(Li) radiation spectra are studied. The computer has to: (1) find the spectrum peaks, (2) determine the count rate in the photopeaks, and (3) relate the count rate to known gamma transitions to find the amount of each radionuclide present. Results show that tasks one and two may be done by the computer but task three must be done by an experimenter or a larger computer.

  20. Elastic p-4He scattering near 1 GeV

    International Nuclear Information System (INIS)

    Wallace, S.J.; Alexander, Y.

    1977-02-01

    New 1.029 GeV p- 4 He data from an Argonne-UCLA-Minnesota collaboration are in excellent agreement with existing multiple diffraction theory predictions. The theoretical calculation includes spin and isospin dependence of the Δ intermediate state process that fills the first diffraction minimum. The recently normalized Saclay data and the older Brookhaven data disagree with our calculation and the new data

  1. High-Performance γ spectrometry Using Ge(Li) Detectors

    International Nuclear Information System (INIS)

    Brethon, J.; Libs, G.; Detourne, G.; Legrand, J.; Boulanger, J.

    1968-01-01

    This report describes a high resolution gamma spectrometer design which use Ge-Li detectors, a cooled field effect transistor preamplifier, and a spectrum stabiliser. The obtained resolution and the 122 keV gamma ray of the 57 Co is 0.96 keV, and 239 Pu, 233 Pa and 95 Zr + 95 Nb spectra are shown for the example. (authors) [fr

  2. The Taylor relation in compression deformed Ge single crystals

    International Nuclear Information System (INIS)

    Nyilas, K; Ungar, T; Dupas, C; Martin, J L; Kruml, T

    2010-01-01

    Ge single crystals are deformed in compression at 850K and the same strain rate to various extents of strains. In each sample, the internal stress is measured through stress reduction tests and the dislocation densities by X-ray measurements. Data about these two parameters follow fairly well the Taylor-Saada relation, provided a correction term is added. It probably corresponds to dislocations which are seen by X-rays, though they do not contribute to crystal hardening.

  3. Zero cross over timing with coaxial Ge(Li) detectors

    International Nuclear Information System (INIS)

    El-Ibiary, M.Y.

    1979-07-01

    The performance of zero cross over timing systems of the constant fraction or amplitude rise time compensated type using coaxial Ge(Li) detectors is analyzed with special attention to conditions that compromise their energy-independence advantage. The outcome is verified against existing experimental results, and the parameters that lead to minimum disperson, as well as the value of the dispersion to be expected, are given by a series of charts

  4. Numerical simulation of microstructure of the GeSi alloy

    Energy Technology Data Exchange (ETDEWEB)

    Rasin, I.

    2006-09-08

    The goal of this work is to investigate pattern formation processes on the solid-liquid interface during the crystal growth of GeSi. GeSi crystals with cellular structure have great potential for applications in -ray and neutron optics. The interface patterns induce small quasi-periodic distortions of the microstructure called mosaicity. Existence and properties of this mosaicity are important for the application of the crystals. The properties depend on many factors; this dependence, is currently not known even not qualitatively. A better understanding of the physics near the crystal surface is therefore required, in order to optimise the growth process. There are three main physical processes in this system: phase-transition, diffusion and melt flow. Every process is described by its own set of equations. Finite difference methods and lattice kinetic methods are taken for solving these governing equations. We have developed a modification of the kinetic methods for the advectiondiffusion and extended this method for simulations of non-linear reaction diffusion equations. The phase-field method was chosen as a tool for describing the phase-transition. There are numerous works applied for different metallic alloys. An attempt to apply the method directly to simulation GeSi crystal growth showed that this method is unstable. This instability has not been observed in previous works due to the much smaller scale of simulations. We introduced a modified phase-field scheme, which enables to simulate pattern formation with the scale observed in experiment. A flow in the melt was taken in to account in the numerical model. The developed numerical model allows us to investigate pattern formation in GeSi crystals. Modelling shows that the flow near the crystal surface has impact on the patterns. The obtained patterns reproduce qualitatively and in some cases quantitatively the experimental results. (orig.)

  5. Neutrinoless double beta decay searches with 76Ge

    CERN Multimedia

    CERN. Geneva

    2017-01-01

    The search for neutrinoless double beta decay might be the only window to observe lepton number violation. Its observation would favour the leptogenesis mechanism for the explanation of the baryon asymmetry of the universe and is therefore considered to be of highest relevance. The isotope 76Ge has historically been most important for this search and the ongoing experiment GERDA has the lowest background of all experiments in the field. The talk reviews the motivation, the current status of experiments and future programs.

  6. Large rectification magnetoresistance in nonmagnetic Al/Ge/Al heterojunctions

    OpenAIRE

    Zhang, Kun; Li, Huan-huan; Grünberg, Peter; Li, Qiang; Ye, Sheng-tao; Tian, Yu-feng; Yan, Shi-shen; Lin, Zhao-jun; Kang, Shi-shou; Chen, Yan-xue; Liu, Guo-lei; Mei, and Liang-mo

    2015-01-01

    Magnetoresistance and rectification are two fundamental physical properties of heterojunctions and respectively have wide applications in spintronics devices. Being different from the well known various magnetoresistance effects, here we report a brand new large magnetoresistance that can be regarded as rectification magnetoresistance: the application of a pure small sinusoidal alternating-current to the nonmagnetic Al/Ge Schottky heterojunctions can generate a significant direct-current volt...

  7. Monte-Carlo modelling of Ge detectors - frequently overlooked issues

    International Nuclear Information System (INIS)

    Johnston, P.; Tagziria, H.; Gasparro, J.; Hult, M.

    2006-01-01

    This work concentrates on issues that are commonly encountered, but difficult to define including detectors tilted with respect to the cylindrical axis and otherwise misaligned, deviations of the sensitive volume from a right-cylinder, e.g. a rounded edge of co-axial Ge detectors and errors in the available data about the relevant decay scheme. The paper concentrates on methods used to overcome these difficulties

  8. XAFS study of GeO sub 2 glass under pressure

    CERN Document Server

    Ohtaka, O; Fukui, H; Murai, K; Okube, M; Takebe, H; Katayama, Y; Utsumi, W

    2002-01-01

    Using a large-volume high-pressure apparatus, Li sub 2 O-4GeO sub 2 glass and pure GeO sub 2 gel have been compressed to 14 GPa at room temperature and their local structural changes have been investigated by an in situ XAFS (x-ray absorption fine-structure) method. On compression of Li sub 2 O-4GeO sub 2 glass, the Ge-O distance gradually becomes short below 7 GPa, showing the conventional compression of the GeO sub 4 tetrahedron. Abrupt increase in the Ge-O distance occurs between 8 and 10 GPa, which corresponds to the coordination number (CN) changing from 4 to 6. The CN change is completed at 10 GPa. On decompression, the reverse transition occurs gradually below 10 GPa. In contrast to the case for Li sub 2 O-4GeO sub 2 glass, the Ge-O distance in GeO sub 2 gel gradually increases over a pressure range from 2 to 12 GPa, indicating that continuous change in CN occurs. The Ge-O distance at 12 GPa is shorter than that of Li-4GeO sub 2 indicating that the change in CN is not completed even at this pressure. O...

  9. DFT study of cyanide oxidation on surface of Ge-embedded carbon nanotube

    Science.gov (United States)

    Gao, Wei; Milad Abrishamifar, Seyyed; Ebrahimzadeh Rajaei, Gholamreza; Razavi, Razieh; Najafi, Meysam

    2018-03-01

    In recent years, the discovery of suitable catalyst to oxidation of the cyanide (CN) has high importance in the industry. In present study, in the first step, the carbon nanotube (CNT) with the Ge atom embedded and the surface of Ge-CNT via the O2 molecule activated. In second step, the oxidation of CN on surface of the Ge-CNT via the Langmuir Hinshelwood (LH) and the Eley Rideal (ER) mechanisms was investigated. Results show that O2-Ge-CNT oxidized the CN molecule via the Ge-CNT-O-O∗ + CN → Ge-CNT-O-O∗-CN → Ge-CNT-O∗ + OCN and the Ge-CNT-O∗ + CN → Ge-CNT + OCN reactions. Results show that oxidation of CN on surface of Ge-CNT via the LH mechanism has lower energy barrier than ER mechanism. Finally, calculated parameters reveal that Ge-CNT is acceptable catalyst with high performance for CN oxidation, form theoretical point of view.

  10. National CW GeV Electron Microtron laboratory

    International Nuclear Information System (INIS)

    1982-12-01

    Rising interest in the nuclear physics community in a CW GeV electron accelerator reflects the growing importance of high-resolution short-range nuclear physics to future advances in the field. To meet this need, Argonne National Laboratory proposes to build a CW GeV Electron Microtron (GEM) laboratory as a national user facility. The microtron accelerator has been chosen as the technology to generate the electron beams required for the research discussed because of the advantages of superior beam quality, low capital and operating costs and capability of furnishing beams of several energies and intensities simultaneously. A complete technical description of the conceptual design for a six-sided CW microtron (hexatron) is presented. The hexatron and three experimental areas will be housed in a well-shielded complex of existing buildings that provide all utilities and services required for an advanced accelerator and an active research program at a savings of $30 to 40 million. Beam lines have been designed to accommodate the transport of polarized beams to each area. The total capital cost of the facility will be $78.6 million and the annual budget for accelerator operations will be $12.1 million. Design and construction of the facility will require four and one half years. Staged construction with a 2 GeV phase costing $65.9 million is also discussed

  11. From X-Rays to MRI: Physics in GE

    Science.gov (United States)

    Schmitt, Roland W.

    2004-03-01

    The GE Research Laboratory, founded in 1900, became the first laboratory of scientific research in U.S. industry. William Coolidge, a physicist, joined the laboratory in 1905 and produced two advances of immense importance. The first, ductile tungsten, is still the heart of every incandescent light bulb. The second, the "Coolidge" X-Ray tube, remains an essential tool of modern medicine. In the process, Coolidge explored two main approaches of physics in industry. One addresses a commercial problem or opportunity (better light bulbs) and finds interesting physics. The other explores interesting physics (X-rays) and creates a commercial opportunity. This paper addresses the mix of these approaches during GE's years as an "electric" (and therefore physics-based) company. Episodes include the following: the work of Irving Langmuir (1932 Nobel laureate in chemistry, but as much physicist as chemist); the post-World War II "golden age of industrial physics" when the endless frontier offered opportunities from nuclear power to diamond making to superconductivity; the Nobel-prize winning work of Ivar Giaever; and interdisciplinary efforts that enabled GE to become a world business leader in two medical diagnostic technologies it did not invent: computed tomography and magnetic resonance imaging. I will speculate on whether this mix of problem-driven and opportunity-driven effort is as relevant to the 21st century as it was to the 20th.

  12. Axial Ge/Si nanowire heterostructure tunnel FETs.

    Energy Technology Data Exchange (ETDEWEB)

    Dayeh, Shadi A. (Los Alamos National Laboratory); Gin, Aaron V.; Huang, Jian Yu; Picraux, Samuel Thomas (Los Alamos National Laboratory)

    2010-03-01

    Axial Ge/Si heterostructure nanowires (NWs) allow energy band-edge engineering along the axis of the NW, which is the charge transport direction, and the realization of asymmetric devices for novel device architectures. This work reports on two significant advances in the area of heterostructure NWs and tunnel FETs: (i) the realization of 100% compositionally modulated Si/Ge axial heterostructure NWs with lengths suitable for device fabrication and (ii) the design and implementation of Schottky barrier tunnel FETs on these NWs for high-on currents and suppressed ambipolar behavior. Initial prototype devices with 10 nm PECVD SiN{sub x} gate dielectric resulted in a very high current drive in excess of 100 {micro}A/{micro}m (I/{pi}D) and 10{sup 5} I{sub on}/I{sub off} ratios. Prior work on the synthesis of Ge/Si axial NW heterostructures through the VLS mechanism have resulted in axial Si/Si{sub 1-x}Ge{sub x} NW heterostructures with x{sub max} {approx} 0.3, and more recently 100% composition modulation was achieved with a solid growth catalyst. In this latter case, the thickness of the heterostructure cannot exceed few atomic layers due to the slow axial growth rate and concurrent radial deposition on the NW sidewalls leading to a mixture of axial and radial deposition, which imposes a big challenge for fabricating useful devices form these NWs in the near future. Here, we report the VLS growth of 100% doping and composition modulated axial Ge/Si heterostructure NWs with lengths appropriate for device fabrication by devising a growth procedure that eliminates Au diffusion on the NW sidewalls and minimizes random kinking in the heterostructure NWs as deduced from detailed microscopy analysis. Fig. 1 a shows a cross-sectional SEM image of epitaxial Ge/Si axial NW heterostructures grown on a Ge(111) surface. The interface abruptness in these Ge/Si heterostructure NWs is of the order of the NW diameter. Some of these NWs develop a crystallographic kink that is {approx

  13. Undulator sources at a 8 GeV storage ring

    International Nuclear Information System (INIS)

    Harami, Taikan.

    1989-06-01

    The use of undulators plays an important role as a high brilliance sources of synchrotron photon at a facility having an electron (or positron) storage ring. This paper describes the characteristics, tunability from gap variation and brilliance of synchrotron photon from undulators at a 8 GeV storage ring. The numerical studies show the following results. (1) Undulators for a 8 GeV storage ring can cover the first harmonic photon energy range from about 0.3 to 30 keV and the third harmonic photon from 0.85 to 70 keV. (2) The brilliance of undulator can be expected to be the order of 10 21 photons/(sec mm 2 mrad 2 0.1% band width mA), without size and angular spread in the electron beam (diffraction limit). (3) The peak brilliance has a broad maximum as a function of β function of the lattice and is shown to be practically independent on the β function. The peak brilliance is calculated to be the order of 10 16 photons/(sec mm 2 mrad 2 0.1% band width mA) at the electron beam emittance of 5 x 10 -9 m·rad (undulator length 2 m). (4) The nuclei of 57 Fe, 119 Sn and 238 U are expected to be the candidates for the Moessbauer scattering experiment using synchrotron photon from a 8 GeV storage ring. (author)

  14. Elevated transition temperature in Ge doped VO2 thin films

    Science.gov (United States)

    Krammer, Anna; Magrez, Arnaud; Vitale, Wolfgang A.; Mocny, Piotr; Jeanneret, Patrick; Guibert, Edouard; Whitlow, Harry J.; Ionescu, Adrian M.; Schüler, Andreas

    2017-07-01

    Thermochromic GexV1-xO2+y thin films have been deposited on Si (100) substrates by means of reactive magnetron sputtering. The films were then characterized by Rutherford backscattering spectrometry (RBS), four-point probe electrical resistivity measurements, X-ray diffraction, and atomic force microscopy. From the temperature dependent resistivity measurements, the effect of Ge doping on the semiconductor-to-metal phase transition in vanadium oxide thin films was investigated. The transition temperature was shown to increase significantly upon Ge doping (˜95 °C), while the hysteresis width and resistivity contrast gradually decreased. The precise Ge concentration and the film thickness have been determined by RBS. The crystallinity of phase-pure VO2 monoclinic films was confirmed by XRD. These findings make the use of vanadium dioxide thin films in solar and electronic device applications—where higher critical temperatures than 68 °C of pristine VO2 are needed—a viable and promising solution.

  15. GePb Alloy Growth Using Layer Inversion Method

    Science.gov (United States)

    Alahmad, Hakimah; Mosleh, Aboozar; Alher, Murtadha; Banihashemian, Seyedeh Fahimeh; Ghetmiri, Seyed Amir; Al-Kabi, Sattar; Du, Wei; Li, Bauhoa; Yu, Shui-Qing; Naseem, Hameed A.

    2018-04-01

    Germanium-lead films have been investigated as a new direct-bandgap group IV alloy. GePb films were deposited on Si via thermal evaporation of Ge and Pb solid sources using the layer inversion metal-induced crystallization method for comparison with the current laser-induced recrystallization method. Material characterization of the films using x-ray diffraction analysis revealed highly oriented crystallinity and Pb incorporation as high as 13.5% before and 5.2% after annealing. Transmission electron microscopy, scanning electron microscopy, and energy-dispersive x-ray mapping of the samples revealed uniform incorporation of elements and complete layer inversion. Optical characterization of the GePb films by Raman spectroscopy and photoluminescence techniques showed that annealing the samples resulted in higher crystalline quality as well as bandgap reduction. The bandgap reduction from 0.67 eV to 0.547 eV observed for the highest-quality material confirms the achievement of a direct-bandgap material.

  16. Quantum confinement in Si and Ge nanostructures: Theory and experiment

    International Nuclear Information System (INIS)

    Barbagiovanni, Eric G.; Lockwood, David J.; Simpson, Peter J.; Goncharova, Lyudmila V.

    2014-01-01

    The role of quantum confinement (QC) in Si and Ge nanostructures (NSs) including quantum dots, quantum wires, and quantum wells is assessed under a wide variety of fabrication methods in terms of both their structural and optical properties. Structural properties include interface states, defect states in a matrix material, and stress, all of which alter the electronic states and hence the measured optical properties. We demonstrate how variations in the fabrication method lead to differences in the NS properties, where the most relevant parameters for each type of fabrication method are highlighted. Si embedded in, or layered between, SiO 2 , and the role of the sub-oxide interface states embodies much of the discussion. Other matrix materials include Si 3 N 4 and Al 2 O 3 . Si NSs exhibit a complicated optical spectrum, because the coupling between the interface states and the confined carriers manifests with varying magnitude depending on the dimension of confinement. Ge NSs do not produce well-defined luminescence due to confined carriers, because of the strong influence from oxygen vacancy defect states. Variations in Si and Ge NS properties are considered in terms of different theoretical models of QC (effective mass approximation, tight binding method, and pseudopotential method). For each theoretical model, we discuss the treatment of the relevant experimental parameters

  17. Surfactant mediated slurry formulations for Ge CMP applications

    KAUST Repository

    Basim, G. Bahar

    2013-01-01

    In this study, slurry formulations in the presence of self-assembled surfactant structures were investigated for Ge/SiO2 CMP applications in the absence and presence of oxidizers. Both anionic (sodium dodecyl sulfate-SDS) and cationic (cetyl trimethyl ammonium bromide-C12TAB) micelles were used in the slurry formulations as a function of pH and oxidizer concentration. CMP performances of Ge and SiO2 wafers were evaluated in terms of material removal rates, selectivity and surface quality. The material removal rate responses were also assessed through AFM wear rate tests to obtain a faster response for preliminary analyses. The surfactant adsorption characteristics were studied through surface wettability responses of the Ge and SiO2 wafers through contact angle measurements. It was observed that the self-assembled surfactant structures can help obtain selectivity on the silica/germanium system at low concentrations of the oxidizer in the slurry. © 2013 Materials Research Society.

  18. Epitaxial Ge-crystal arrays for X-ray detection

    International Nuclear Information System (INIS)

    Kreiliger, T; Falub, C V; Müller, E; Känel, H von; Isa, F; Isella, G; Chrastina, D; Bergamaschini, R; Marzegalli, A; Miglio, L; Kaufmann, R; Niedermann, P; Neels, A; Dommann, A; Meduňa, M

    2014-01-01

    Monolithic integration of an X-ray absorber layer on a Si CMOS chip might be a potentially attractive way to improve detector performance at acceptable costs. In practice this requires, however, the epitaxial growth of highly mismatched layers on a Si-substrate, both in terms of lattice parameters and thermal expansion coefficients. The generation of extended crystal defects, wafer bowing and layer cracking have so far made it impossible to put the simple concept into practice. Here we present a way in which the difficulties of fabricating very thick, defect-free epitaxial layers may be overcome. It consists of an array of densely packed, three-dimensional Ge-crystals on a patterned Si(001) substrate. The finite gap between neighboring micron-sized crystals prevents layer cracking and substrate bowing, while extended defects are driven to the crystal sidewalls. We show that the Ge-crystals are indeed defect-free, despite the lattice misfit of 4.2%. The electrical characteristics of individual Ge/Si heterojunction diodes are obtained from in-situ measurements inside a scanning electron microscope. The fabrication of monolithically integrated detectors is shown to be compatible with Si-CMOS processing

  19. Spin-splitting in p-type Ge devices

    Energy Technology Data Exchange (ETDEWEB)

    Holmes, S. N., E-mail: s.holmes@crl.toshiba.co.uk; Newton, P. J.; Llandro, J.; Mansell, R.; Barnes, C. H. W. [Cavendish Laboratory, Department of Physics, University of Cambridge, J. J. Thomson Avenue, Cambridge CB3 0HE (United Kingdom); Morrison, C.; Myronov, M. [Department of Physics, University of Warwick, Coventry CV4 7AL (United Kingdom)

    2016-08-28

    Compressively strained Ge quantum well devices have a spin-splitting in applied magnetic field that is entirely consistent with a Zeeman effect in the heavy hole valence band. The spin orientation is determined by the biaxial strain in the quantum well with the relaxed SiGe buffer layers and is quantized in the growth direction perpendicular to the conducting channel. The measured spin-splitting in the resistivity ρ{sub xx} agrees with the predictions of the Zeeman Hamiltonian where the Shubnikov-deHaas effect exhibits a loss of even filling factor minima in the resistivity ρ{sub xx} with hole depletion from a gate field, increasing disorder or increasing temperature. There is no measurable Rashba spin-orbit coupling irrespective of the structural inversion asymmetry of the confining potential in low p-doped or undoped Ge quantum wells from a density of 6 × 10{sup 10} cm{sup −2} in depletion mode to 1.7 × 10{sup 11} cm{sup −2} in enhancement.

  20. GePb Alloy Growth Using Layer Inversion Method

    Science.gov (United States)

    Alahmad, Hakimah; Mosleh, Aboozar; Alher, Murtadha; Banihashemian, Seyedeh Fahimeh; Ghetmiri, Seyed Amir; Al-Kabi, Sattar; Du, Wei; Li, Bauhoa; Yu, Shui-Qing; Naseem, Hameed A.

    2018-07-01

    Germanium-lead films have been investigated as a new direct-bandgap group IV alloy. GePb films were deposited on Si via thermal evaporation of Ge and Pb solid sources using the layer inversion metal-induced crystallization method for comparison with the current laser-induced recrystallization method. Material characterization of the films using x-ray diffraction analysis revealed highly oriented crystallinity and Pb incorporation as high as 13.5% before and 5.2% after annealing. Transmission electron microscopy, scanning electron microscopy, and energy-dispersive x-ray mapping of the samples revealed uniform incorporation of elements and complete layer inversion. Optical characterization of the GePb films by Raman spectroscopy and photoluminescence techniques showed that annealing the samples resulted in higher crystalline quality as well as bandgap reduction. The bandgap reduction from 0.67 eV to 0.547 eV observed for the highest-quality material confirms the achievement of a direct-bandgap material.

  1. Type II superconductivity in SrPd2Ge2

    International Nuclear Information System (INIS)

    Samuely, T; Szabó, P; Pribulová, Z; Samuely, P; Sung, N H; Cho, B K; Klein, T; Cambel, V; Rodrigo, J G

    2013-01-01

    Previous investigations have shown that SrPd 2 Ge 2 , a compound isostructural with ‘122’ iron pnictides but iron and pnictogen free, is a conventional superconductor with a single s-wave energy gap and a strongly three-dimensional electronic structure. In this work we reveal the Abrikosov vortex lattice formed in SrPd 2 Ge 2 when exposed to magnetic field by means of scanning tunneling microscopy and spectroscopy. Moreover, by examining the differential conductance spectra across a vortex and estimating the upper and lower critical magnetic fields by tunneling spectroscopy and local magnetization measurements, we show that SrPd 2 Ge 2 is a strong type II superconductor with κ ≫ 2 −1/2 . Also, we compare the differential conductance spectra in various magnetic fields to the pair-breaking model of Maki and de Gennes for a dirty limit type II superconductor in the gapless region. This way we demonstrate that the type II superconductivity is induced by the sample being in the dirty limit, while in the clean limit it would be a type I superconductor with κ ≪ 2 −1/2 , in concordance with our previous study (Kim et al (2012) Phys. Rev. B 85 014520). (paper)

  2. Structure and Magnetism of Mn5Ge3 Nanoparticles

    Directory of Open Access Journals (Sweden)

    Onur Tosun

    2018-04-01

    Full Text Available In this work, we investigated the magnetic and structural properties of isolated Mn5Ge3 nanoparticles prepared by the cluster-beam deposition technique. Particles with sizes between 7.2 and 12.6 nm were produced by varying the argon pressure and power in the cluster gun. X-ray diffraction (XRDand selected area diffraction (SAD measurements show that the nanoparticles crystallize in the hexagonal Mn5Si3-type crystal structure, which is also the structure of bulk Mn5Ge3. The temperature dependence of the magnetization shows that the as-made particles are ferromagnetic at room temperature and have slightly different Curie temperatures. Hysteresis-loop measurements show that the saturation magnetization of the nanoparticles increases significantly with particle size, varying from 31 kA/m to 172 kA/m when the particle size increases from 7.2 to 12.6 nm. The magnetocrystalline anisotropy constant K at 50 K, determined by fitting the high-field magnetization data to the law of approach to saturation, also increases with particle size, from 0.4 × 105 J/m3 to 2.9 × 105 J/m3 for the respective sizes. This trend is mirrored by the coercivity at 50 K, which increases from 0.04 T to 0.13 T. A possible explanation for the magnetization trend is a radial Ge concentration gradient.

  3. Progress toward a practical Nb--Ge conductor

    International Nuclear Information System (INIS)

    Braginski, A.I.; Gavaler, J.R.; Roland, G.W.; Daniel, M.R.; Janocko, M.A.; Santhanam, A.T.

    1976-01-01

    Properties of high-T/sub c/ Nb--Ge films deposited by sputtering and by chemical vapor deposition (CVD) have been investigated. Results of sputtering in the presence of controlled levels of O 2 , N 2 , Si, and of reactive sputtering in Ar--GeH 4 , suggest that the high-T/sub c/ A15 phase is impurity- or defect-stabilized. In CVD deposits two tetragonal modifications were found: sigma and T2, the latter probably stabilized by Cl 2 . High critical current densities, J/sub c/ (H, T) of fine-grained sputtered films are attributed to flux pinning on A15 grain boundaries. In coarse-grained CVD films high self-field J/sub c/'s, 10 6 to 10 7 A cm -2 at T = 4.2 0 K, are attributed to pinning on dispersed sigma-phase. Comparably high J/sub c/'s were also obtained in CVD A15 films doped with impurities. Low field ac losses p (H, T) were correlated with J/sub c/ and coating geometries. The feasibility of fabricating multifilamentary composite conductors by CVD was demonstrated experimentally and a fabrication process for long Nb 3 Ge CVD tapes is being developed

  4. Exclusive processes at JLab at 6 GeV

    Directory of Open Access Journals (Sweden)

    Kim Andrey

    2015-01-01

    Full Text Available Deeply virtual exclusive reactions provide a unique opportunity to probe the complex internal structure of the nucleon. They allow to access information about the correlations between parton transverse spatial and longitudinal momentum distributions from experimental observables. Dedicated experiments to study Deeply Virtual Compton Scattering (DVCS and Deeply Virtual Meson Production (DVMP have been carried out at Jefferson Lab using continuous electron beam with energies up to 6 GeV. Unpolarized cross sections, beam, target and double spin asymmetries have been measured for DVCS as well as for π0 exclusive electroproduction. The data from Hall B provide a wide kinematic coverage with Q2=1-4.5 GeV2, xB=0.1-0.5, and −t up to 2 GeV2. Hall A data have limited kinematic range partially overlapping with Hall B kinematics but provide a high accuracy measurements. Scaling tests of the DVCS cross sections provide solid evidence of twist-2 dominance, which makes chiral-even GPDs accessible even at modest Q2. We will discuss the interpretation of these data in terms of Generalized Parton Distributions (GPDs model. Successful description of the recent CLAS π0 exclusive production data within the framework of the GPD-based model provides a unique opportunity to access the chiral-odd GPDs.

  5. Probing dark matter streams with CoGeNT

    International Nuclear Information System (INIS)

    Natarajan, Aravind; Savage, Christopher; Freese, Katherine

    2011-01-01

    We examine the future sensitivity of CoGeNT to the presence of dark matter streams and find that consideration of streams in the data may lead to differences in the interpretation of the results. We show the allowed particle mass and cross section for different halo parameters, assuming spin-independent elastic scattering. As an example, we choose a stream with the same velocity profile as that of the Sagittarius stream (and in the Solar neighborhood) and find that, with an exposure of ∼10 kg yr, the CoGeNT results can be expected to exclude the standard-halo-model-only halo in favor of a standard halo model+stream halo at the 95% (99.7%) confidence level, provided the stream contributes 3% (5%) of the local dark matter density. The presence of a significant stream component may result in incorrect estimates of the particle mass and cross section unless the presence of the stream is taken into account. We conclude that the CoGeNT experiment is sensitive to streams and care should be taken to include the possibility of streams when analyzing experimental results.

  6. Top Mass Measurement at CLIC at 500 GeV

    CERN Document Server

    Simon, Frank; Poss, Stephane

    2012-01-01

    We present a study of the capability of a 500 GeV e+e- collider based on CLIC technology for precision measurements of top quark properties. The analysis is based on full detector simulations of the CLIC_ILD detector concept using Geant4, including realistic background contributions from two photon processes. Event reconstruction is performed using a particle flow algorithm with stringent cuts to control the influence of background. The mass and width of the top quark are studied in fully-hadronic and semi-leptonic decays of ttbar pairs using event samples of signal and standard model background processes corresponding to an integrated luminosity of 100/fb. Statistical uncertainties of the top mass given by the invariant mass of its decay products of 0.08 GeV and 0.09 GeV are obtained for the fully-hadronic and the semi-leptonic decay channel, respectively, demonstrating that similar precision to that at ILC can be achieved at CLIC despite less favorable experimental conditions.

  7. Analysis of Si/SiGe Heterostructure Solar Cell

    Directory of Open Access Journals (Sweden)

    Ashish Kumar Singh

    2014-01-01

    Full Text Available Sunlight is the largest source of carbon-neutral energy. Large amount of energy, about 4.3 × 1020 J/hr (Lewis, 2005, is radiated because of nuclear fusion reaction by sun, but it is unfortunate that it is not exploited to its maximum level. Various photovoltaic researches are ongoing to find low cost, and highly efficient solar cell to fulfil looming energy crisis around the globe. Thin film solar cell along with enhanced absorption property will be the best, so combination of SiGe alloy is considered. The paper presented here consists of a numerical model of Si/Si1-xGex heterostructure solar cell. The research has investigated characteristics such as short circuit current density (Jsc, generation rate (G, absorption coefficient (α, and open circuit voltage (Voc with optimal Ge concentration. The addition of Ge content to Si layer will affect the property of material and can be calculated with the use of Vegard’s law. Due to this, short circuit current density increases.

  8. Nuclear interactions of 400 GeV protons in emulsion

    International Nuclear Information System (INIS)

    Otterlund, I.; Stenlund, E.; Andersson, B.; Nilsson, G.; Adamovic, O.; Juric, M.; Areti, H.; Hebert, C.J.D.; Hebert, J.; Baumann, G.; Devienne, R.; Bolta, J.M.; Sanchis, M.A.; Bravo, L.; Niembro, R.; Ruiz, A.; Villar, E.

    1978-01-01

    The authors report on 400 GeV proton-emulsion nuclei reactions and compare the results to hadron-nucleus reactions at smaller energies. In particular they present results on the emission of fast target protons (essentially grey track particles) and on their correlation with the number of collisions inside the nucleus, γ, with the number of charged evaporated particles (essentially black track particles) and with the number of pions produced (essentially shower particles). It is observed that the main features of the 200-400 GeV data are very similar. However, it is found that the mean shower-particle multiplicity at 400 GeV is essentially higher than expected from the simple independent particle model prediction = [1+0.5( )-1)]. The shower particle multiplicities do not seem to follow a target mass dependence of the form =nsub(ch)>Asup(α) with α=0.14 or α=0.19 as has been suggested in the literature. The pseudo-rapidity distribution shows limiting target and projectile fragmentation. The shower-particle multiplicity in the 'central region' increases linearly with but faster than 0.5(γ) times the corresponding multiplicity in pp reactions. (Auth.)

  9. Nuclear interactions of 400 GeV protons in emulsion

    International Nuclear Information System (INIS)

    Otterlund, I.; Stenlund, E.; Andersson, B.

    1978-04-01

    We report on 400 GeV proton-emulsion nucleus reactions and compare the results to hadron-nucleus reactions at smaller energies. In particular we present results on the emission of fast target protons (essentially grey track particles) and on their correlation with the number of collisions inside the nucleus, ν, with the number of charged evaporated particles (essentially black particles) and with the number of pions produced (essentially shower particles). We observe that the main features of the 200-400 GeV data are very similar. However, we find that the mean shower-particle multiplicity at 400 GeV is essentially higher than expected from the simple independent particle model prediction = [1 + 0.5 ( - 1)]. The shower particle multiplicities do not seem to follow a target mass dependence of the form = A sup(α) with α = 0.19 as has been suggested in the literature. The pseudo-rapidity distribution shows limiting target and projectile fragmentation. The shower particle multiplicity in the ''central region'' increases linearily with but faster than 0.5 times the corresponding multiplicity in pp-reactions. (author)

  10. Nuclear interactions of 400 GeV protons in emulsion

    International Nuclear Information System (INIS)

    Otterlund, I.; Stenlund, E.; Andersson, B.

    1978-04-01

    We report on 400 GeV proton-emulsion nucleus reactions and compare the results to hadron-nucleus reactions at smaller energies. In particular we present results on the emission of fast target protons (essentially grey track particles) and on their correlation with the number of collisions inside the nucleus, ν, with the number of charged evaporated particles (essentially black track particles) and with the number of pions produced (essentially shower particles). We observe that the main features of the 200-400 GeV data are very similar. However, we find that the mean shower-particle multiplicity at 400 GeV is essentially higher than expected from the simple independent particle model prediction = [1 + 0.5 ( - 1)]. The shower particle multiplicities do not seem to follow a target mass dependence of the form = Asup(α) with α = 0.14 or α = 0.19 as has been suggested in the literature. The pseudo-rapidity distribution shows limiting target and projectile fragmentation. The shower particle multiplicity in the ''central region'' increases linearily with but faster than 0.5 times the corresponding multiplicity in pp-reactions. (author)

  11. Tailoring the strain in Si nano-structures for defect-free epitaxial Ge over growth.

    Science.gov (United States)

    Zaumseil, P; Yamamoto, Y; Schubert, M A; Capellini, G; Skibitzki, O; Zoellner, M H; Schroeder, T

    2015-09-04

    We investigate the structural properties and strain state of Ge nano-structures selectively grown on Si pillars of about 60 nm diameter with different SiGe buffer layers. A matrix of TEOS SiO2 surrounding the Si nano-pillars causes a tensile strain in the top part at the growth temperature of the buffer that reduces the misfit and supports defect-free initial growth. Elastic relaxation plays the dominant role in the further increase of the buffer thickness and subsequent Ge deposition. This method leads to Ge nanostructures on Si that are free from misfit dislocations and other structural defects, which is not the case for direct Ge deposition on these pillar structures. The Ge content of the SiGe buffer is thereby not a critical parameter; it may vary over a relatively wide range.

  12. RBS/channeling study of buried Ge quantum dots grown in a Si layer

    International Nuclear Information System (INIS)

    Fonseca, A.; Alves, E.; Barradas, N.P.; Leitao, J.P.; Sobolev, N.A.; Carmo, M.C.; Nikiforov, A.I.; Presting, H.

    2006-01-01

    In last decades we have been assisting to a crescent importance of low dimensional systems for the fabrication of nano- and opto-electronic devices. Ge quantum dots (QDs) are well suited for fulfilling these requirements. In this work we present and discuss Ge/Si multilayer and single layer samples grown by molecular beam epitaxy. RBS/channeling results reveal the evidence for the presence of Ge QD for the thickest (with 1 ML of SiO 2 and 0.9 nm of Ge) single layer sample. On the other hand Ge atoms are fully substitutional incorporated in the Si matrix for the thinner sample, excluding the formation of Ge QDs. Multilayer sample shows an angular deviation of the Ge curve (-0.48 o ) with respect to the Si ones, indicating the compressive strain of the films. A tetragonal distortion of (1.78 ± 0.19%) was calculated

  13. Wetting Behavior of Ternary Au-Ge-X (X = Sb, Sn) Alloys on Cu and Ni

    Science.gov (United States)

    Jin, S.; Valenza, F.; Novakovic, R.; Leinenbach, C.

    2013-06-01

    Au-Ge-based alloys are potential substitutes for Pb-rich solders currently used for high-temperature applications. In the present work, the wetting behavior of two Au-Ge-X (X = Sb, Sn) ternary alloys, i.e., Au-15Ge-17Sb and Au-13.7 Ge-15.3Sn (at.%), in contact with Cu and Ni substrates has been investigated. Au-13.7Ge-15.3Sn alloy showed complete wetting on both Cu and Ni substrates. Total spreading of Au-15Ge-17Sb alloy on Cu was also observed, while the final contact angle of this alloy on Ni was about 29°. Pronounced dissolution of Cu substrates into the solder alloys investigated was detected, while the formation of Ni-Ge intermetallic compounds at the interface of both solder/Ni systems suppressed the dissolution of Ni into the solder.

  14. Activation and thermal stability of ultra-shallow B+-implants in Ge

    International Nuclear Information System (INIS)

    Yates, B. R.; Darby, B. L.; Jones, K. S.; Petersen, D. H.; Hansen, O.; Lin, R.; Nielsen, P. F.; Romano, L.; Doyle, B. L.; Kontos, A.

    2012-01-01

    The activation and thermal stability of ultra-shallow B + implants in crystalline (c-Ge) and preamorphized Ge (PA-Ge) following rapid thermal annealing was investigated using micro Hall effect and ion beam analysis techniques. The residual implanted dose of ultra-shallow B + implants in Ge was characterized using elastic recoil detection and was determined to correlate well with simulations with a dose loss of 23.2%, 21.4%, and 17.6% due to ion backscattering for 2, 4, and 6 keV implants in Ge, respectively. The electrical activation of ultra-shallow B + implants at 2, 4, and 6 keV to fluences ranging from 5.0 × 10 13 to 5.0 × 10 15 cm −2 was studied using micro Hall effect measurements after annealing at 400–600 °C for 60 s. For both c-Ge and PA-Ge, a large fraction of the implanted dose is rendered inactive due to the formation of a presumable B-Ge cluster. The B lattice location in samples annealed at 400 °C for 60 s was characterized by channeling analysis with a 650 keV H + beam by utilizing the 11 B(p, α)2α nuclear reaction and confirmed the large fraction of off-lattice B for both c-Ge and PA-Ge. Within the investigated annealing range, no significant change in activation was observed. An increase in the fraction of activated dopant was observed with increasing energy which suggests that the surface proximity and the local point defect environment has a strong impact on B activation in Ge. The results suggest the presence of an inactive B-Ge cluster for ultra-shallow implants in both c-Ge and PA-Ge that remains stable upon annealing for temperatures up to 600 °C.

  15. Simulation of thermal stress and buckling instability in Si/Ge and Ge/Si core/shell nanowires.

    Science.gov (United States)

    Das, Suvankar; Moitra, Amitava; Bhattacharya, Mishreyee; Dutta, Amlan

    2015-01-01

    The present study employs the method of atomistic simulation to estimate the thermal stress experienced by Si/Ge and Ge/Si, ultrathin, core/shell nanowires with fixed ends. The underlying technique involves the computation of Young's modulus and the linear coefficient of thermal expansion through separate simulations. These two material parameters are combined to obtain the thermal stress on the nanowires. In addition, the thermally induced stress is perceived in the context of buckling instability. The analysis provides a trade-off between the geometrical and operational parameters of the nanostructures. The proposed methodology can be extended to other materials and structures and helps with the prediction of the conditions under which a nanowire-based device might possibly fail due to elastic instability.

  16. Natural SnGeS3 from Radvanice near Trutnov (Czech Republic): its description, crystal structure refinement and solid solution with PbGeS3

    DEFF Research Database (Denmark)

    Sejkora, Jiri; Berlepsch, Peter; Makovicky, Emil

    2001-01-01

    geologi, SnGeS3-PbGeS3, Radvanice, Czech Republic, chemical analysis, XRD data, crystal structure......geologi, SnGeS3-PbGeS3, Radvanice, Czech Republic, chemical analysis, XRD data, crystal structure...

  17. Preparation and analysis of superconducting Nb-Ge films

    International Nuclear Information System (INIS)

    Testardi, L.R.; Meek, R.L.; Poate, J.M.; Royer, W.A.; Storm, A.R.; Wernick, J.H.

    1975-01-01

    The dependences of T/subc/, resistivity, resistance ratio, and structure on chemical composition and sputtering conditions for Nb-Ge films have been studied. The chemical composition, impurity content, and x-ray structure were obtained using Rutherford backscattering, nuclear techniques, and x-ray diffraction. Although T/subc/ varies with composition, it is not found to be critically dependent upon exact stoichiometry; the Nb/Ge ratios vary by approx. 13% (2.6 to 3) for films with approx. 23-K onsets and by approx. 40% (2.2 to 3.3) for films with approx. 20-K onsets. For compositions similar to the bulk, the films have comparitively much higher T/subc/'s and smaller lattice parameters. X-ray results show the films to contain predominately A-15 phase (except for Nb/Ge less-than or equal to 2.5) with lattice parameters varying from 5.15 A for Nb-rich low-T/subc/ films to 5.12 A for Ge-rich films. Several percent of oxygen and carbon occur in low-T/subc/ amorphous films deposited at 650 degreeC but this is considerably reduced in high-T/subc/ films made simultaneously at approx. 750 degreeC. No argon was found and the nitrogen content was generally less than 1%. No correlation of high T/subc/'s and impurities was found. The optimum deposition temperature and resistivity are lowest, and the resistance ratio highest for Nb/Ge ratios somewhat below 3/1. A simple correlation of T/subc/ and resistance ratio is reported which is largely independent of all sputtering conditions and composition and which suggests that slightly higher T/subc/'s may be possible. Negative bias was found to be detrimental to T/subc/ while positive bias had relatively little effect. Magnetic-field-assisted sputtering led to significant increases in the sputtering rate and the optimum deposition temperature

  18. Predicting yield-stress anomalies in L12 alloys: Ni3Ge-Fe3Ge pseudo-binaries

    International Nuclear Information System (INIS)

    Liu, J.B.; Johnson, D.D.; Smirnov, A.V.

    2005-01-01

    The L1 2 -based pseudo-binary (Ni 1-c Fe c ) 3 Ge is an ideal system to study yield-strength anomaly and its origin as it has a solid-solution phase vs. c and Ni 3 Ge exhibits an anomaly while Fe 3 Ge does not. Using two ab initio electronic-structure techniques, we calculate the planar-fault energies on the γ-surface, i.e., antiphase boundaries (APB) and stacking faults, both complex and superlattice intrinsic (SISF), for (Ni 1-c Fe c ) 3 Ge as a function of c. Generally, we use the fault energies combined with elasticity theory to predict occurrence/loss of the yield-strength anomaly and show that the loss of anomaly occurs due to APB(1 1 1)-to-SISF(1 1 1) instability. Assessing the stability of APB(1 1 1) on the γ-surface within linear elasticity theory, we predict the transition from anomalous to normal temperature dependence of yield strength for c ∼≥ 0.35 (or 26 at.% Fe), as is observed, after which type-II, rather than type-I, dissociation is energetically favorable. Hence, first-principles calculations can predict reliably the existence/loss of anomalous yield-strength. Finally, we show that (0 0 1) and (1 1 1) APB energies of the binaries and pseudo-binaries agree quantitatively with measured values when chemical antisite disorder, intrinsic to the samples characterized, is included, whereas they are too large by a factor of two in perfect L1 2 . We investigate three types of disorder: thermal and off-stoichiometric antisites, as well as chemical disorder vs. Fe-content in pseudo-binaries

  19. Multiple collision effects on the antiproton production by high energy proton (100 GeV - 1000 GeV)

    International Nuclear Information System (INIS)

    Takahashi, Hiroshi; Powell, J.

    1987-01-01

    Antiproton production rates which take into account multiple collision are calculated using a simple model. Methods to reduce capture of the produced antiprotons by the target are discussed, including geometry of target and the use of a high intensity laser. Antiproton production increases substantially above 150 GeV proton incident energy. The yield increases almost linearly with incident energy, alleviating space charge problems in the high current accelerator that produces large amounts of antiprotons

  20. Electronic and geometric structures of Ge{sub n}{sup -} and Ge{sub n}{sup +} (n=5-10) clusters in comparison with corresponding Si{sub n} ions

    Energy Technology Data Exchange (ETDEWEB)

    Li Baoxing; Cao Peilin; Song Bin; Ye Zhezhen

    2003-02-10

    Using full-potential linear-muffin-tin-orbital molecular-dynamics (FP-LMTO-MD) method, we have studied the geometric and electronic structures of ionic Ge{sub 5-10} clusters. Our calculations show that the ground state structures of some Ge cluster ions are different from those of their corresponding neutral Ge clusters. Furthermore, the positive Ge ions have more severe structural distortion than the negative Ge ions due to Jahn-Teller distortion. In addition, there are differences between the ground state structures of Ge ions and Si ions, although most of the Ge ions have similar geometrical configurations to their corresponding Si ions.

  1. Templated self-assembly of SiGe quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Dais, Christian

    2009-08-19

    This PhD thesis reports on the fabrication and characterization of exact aligned SiGe quantum dot structures. In general, SiGe quantum dots which nucleate via the Stranski-Krastanov growth mode exhibit broad size dispersion and nucleate randomly on the surface. However, to tap the full potential of SiGe quantum dots it is necessary to control the positioning and size of the dots on a nanometer length, e.g. for electronically addressing of individual dots. This can be realized by so-called templated self-assembly, which combines top-down lithography with bottom-up selfassembly. In this process the lithographically defined pits serve as pre-defined nucleation points for the epitaxially grown quantum dots. In this thesis, extreme ultraviolet interference lithography at a wavelength of e=13.4 nm is employed for prepatterning of the Si substrates. This technique allows the precise and fast fabrication of high-resolution templates with a high degree of reproducibility. The subsequent epitaxial deposition is either performed by molecular beam epitaxy or low-pressure chemical vapour deposition. It is shown that the dot nucleation on pre-patterned substrates depends strongly on the lithography parameters, e.g. size and periodicity of the pits, as well as on the epitaxy parameters, e.g. growth temperature or material coverage. The interrelations are carefully analyzed by means of scanning force microscopy, transmission electron microscopy and X-ray diffraction measurements. Provided that correct template and overgrowth parameters are chosen, perfectly aligned and uniform SiGe quantum dot arrays of different period, size as well as symmetry are created. In particular, the quantum dot arrays with the so far smallest period (35 nm) and smallest size dispersion are fabricated in this thesis. Furthermore, the strain fields of the underlying quantum dots allow the fabrication of vertically aligned quantum dot stacks. Combining lateral and vertical dot alignment results in three

  2. Single and multi-photon events with missing energy in $e^+ e^-$ collisions at 161 GeV < $\\sqrt{s}$ < 172 GeV

    CERN Document Server

    Acciarri, M; Aguilar-Benítez, M; Ahlen, S P; Alcaraz, J; Alemanni, G; Allaby, James V; Aloisio, A; Alverson, G; Alviggi, M G; Ambrosi, G; Anderhub, H; Andreev, V P; Angelescu, T; Anselmo, F; Arefev, A; Azemoon, T; Aziz, T; Bagnaia, P; Baksay, L; Banerjee, S; Banerjee, Sw; Banicz, K; Barczyk, A; Barillère, R; Barone, L; Bartalini, P; Baschirotto, A; Basile, M; Battiston, R; Bay, A; Becattini, F; Becker, U; Behner, F; Berdugo, J; Berges, P; Bertucci, B; Betev, B L; Bhattacharya, S; Biasini, M; Biland, A; Bilei, G M; Blaising, J J; Blyth, S C; Bobbink, Gerjan J; Böck, R K; Böhm, A; Boldizsar, L; Borgia, B; Bourilkov, D; Bourquin, Maurice; Braccini, S; Branson, J G; Brigljevic, V; Brock, I C; Buffini, A; Buijs, A; Burger, J D; Burger, W J; Busenitz, J K; Button, A M; Cai, X D; Campanelli, M; Capell, M; Cara Romeo, G; Carlino, G; Cartacci, A M; Casaus, J; Castellini, G; Cavallari, F; Cavallo, N; Cecchi, C; Cerrada-Canales, M; Cesaroni, F; Chamizo-Llatas, M; Chang, Y H; Chaturvedi, U K; Chekanov, S V; Chemarin, M; Chen, A; Chen, G; Chen, G M; Chen, H F; Chen, H S; Chéreau, X J; Chiefari, G; Chien, C Y; Cifarelli, Luisa; Cindolo, F; Civinini, C; Clare, I; Clare, R; Cohn, H O; Coignet, G; Colijn, A P; Colino, N; Commichau, V; Costantini, S; Cotorobai, F; de la Cruz, B; Csilling, Akos; Dai, T S; D'Alessandro, R; De Asmundis, R; Degré, A; Deiters, K; Della Volpe, D; Denes, P; De Notaristefani, F; DiBitonto, Daryl; Diemoz, M; Van Dierendonck, D N; Di Lodovico, F; Dionisi, C; Dittmar, Michael; Dominguez, A; Doria, A; Dova, M T; Duchesneau, D; Duinker, P; Durán, I; Dutta, S; Easo, S; Efremenko, Yu V; El-Mamouni, H; Engler, A; Eppling, F J; Erné, F C; Ernenwein, J P; Extermann, Pierre; Fabre, M; Faccini, R; Falciano, S; Favara, A; Fay, J; Fedin, O; Felcini, Marta; Fenyi, B; Ferguson, T; Ferroni, F; Fesefeldt, H S; Fiandrini, E; Field, J H; Filthaut, Frank; Fisher, P H; Fisk, I; Forconi, G; Fredj, L; Freudenreich, Klaus; Furetta, C; Galaktionov, Yu; Ganguli, S N; García-Abia, P; Gau, S S; Gentile, S; Gheordanescu, N; Giagu, S; Goldfarb, S; Goldstein, J; Gong, Z F; Gougas, Andreas; Gratta, Giorgio; Grünewald, M W; Gupta, V K; Gurtu, A; Gutay, L J; Hartmann, B; Hasan, A; Hatzifotiadou, D; Hebbeker, T; Hervé, A; Van Hoek, W C; Hofer, H; Hong, S J; Hoorani, H; Hou, S R; Hu, G; Innocente, Vincenzo; Jenkes, K; Jin, B N; Jones, L W; de Jong, P; Josa-Mutuberria, I; Kasser, A; Khan, R A; Kamrad, D; Kamyshkov, Yu A; Kapustinsky, J S; Karyotakis, Yu; Kaur, M; Kienzle-Focacci, M N; Kim, D; Kim, D H; Kim, J K; Kim, S C; Kim, Y G; Kinnison, W W; Kirkby, A; Kirkby, D; Kirkby, Jasper; Kiss, D; Kittel, E W; Klimentov, A; König, A C; Kopp, A; Korolko, I; Koutsenko, V F; Krämer, R W; Krenz, W; Kunin, A; Ladrón de Guevara, P; Laktineh, I; Landi, G; Lapoint, C; Lassila-Perini, K M; Laurikainen, P; Lebeau, M; Lebedev, A; Lebrun, P; Lecomte, P; Lecoq, P; Le Coultre, P; Le Goff, J M; Leiste, R; Leonardi, E; Levchenko, P M; Li Chuan; Lin, C H; Lin, W T; Linde, Frank L; Lista, L; Liu, Z A; Lohmann, W; Longo, E; Lu, W; Lü, Y S; Lübelsmeyer, K; Luci, C; Luckey, D; Luminari, L; Lustermann, W; Ma Wen Gan; Maity, M; Majumder, G; Malgeri, L; Malinin, A; Maña, C; Mangeol, D J J; Mangla, S; Marchesini, P A; Marin, A; Martin, J P; Marzano, F; Massaro, G G G; McNally, D; McNeil, R R; Mele, S; Merola, L; Meschini, M; Metzger, W J; Von der Mey, M; Mi, Y; Mihul, A; Van Mil, A J W; Mirabelli, G; Mnich, J; Molnár, P; Monteleoni, B; Moore, R; Morganti, S; Moulik, T; Mount, R; Müller, S; Muheim, F; Muijs, A J M; Nahn, S; Napolitano, M; Nessi-Tedaldi, F; Newman, H; Niessen, T; Nippe, A; Nisati, A; Nowak, H; Oh, Yu D; Opitz, H; Organtini, G; Ostonen, R; Palomares, C; Pandoulas, D; Paoletti, S; Paolucci, P; Park, H K; Park, I H; Pascale, G; Passaleva, G; Patricelli, S; Paul, T; Pauluzzi, M; Paus, C; Pauss, Felicitas; Peach, D; Pei, Y J; Pensotti, S; Perret-Gallix, D; Petersen, B; Petrak, S; Pevsner, A; Piccolo, D; Pieri, M; Pinto, J C; Piroué, P A; Pistolesi, E; Plyaskin, V; Pohl, M; Pozhidaev, V; Postema, H; Produit, N; Prokofev, D; Prokofiev, D O; Rahal-Callot, G; Raja, N; Rancoita, P G; Rattaggi, M; Raven, G; Razis, P A; Read, K; Ren, D; Rescigno, M; Reucroft, S; Van Rhee, T; Riemann, S; Riles, K; Robohm, A; Rodin, J; Roe, B P; Romero, L; Rosier-Lees, S; Rosselet, P; Van Rossum, W; Roth, S; Rubio, Juan Antonio; Ruschmeier, D; Rykaczewski, H; Salicio, J; Sánchez, E; Sanders, M P; Sarakinos, M E; Sarkar, S; Sassowsky, M; Schäfer, C; Shchegelskii, V; Schmidt-Kärst, S; Schmitz, D; Schmitz, P; Scholz, N; Schopper, Herwig Franz; Schotanus, D J; Schwenke, J; Schwering, G; Sciacca, C; Sciarrino, D; Servoli, L; Shevchenko, S; Shivarov, N; Shoutko, V; Shukla, J; Shumilov, E; Shvorob, A V; Siedenburg, T; Son, D; Sopczak, André; Smith, B; Spillantini, P; Steuer, M; Stickland, D P; Stone, A; Stone, H; Stoyanov, B; Strässner, A; Strauch, K; Sudhakar, K; Sultanov, G G; Sun, L Z; Susinno, G F; Suter, H; Swain, J D; Tang, X W; Tauscher, Ludwig; Taylor, L; Ting, Samuel C C; Ting, S M; Tonutti, M; Tonwar, S C; Tóth, J; Tully, C; Tuchscherer, H; Tung, K L; Uchida, Y; Ulbricht, J; Uwer, U; Valente, E; Van de Walle, R T; Vesztergombi, G; Vetlitskii, I; Viertel, Gert M; Vivargent, M; Völkert, R; Vogel, H; Vogt, H; Vorobev, I; Vorobyov, A A; Vorvolakos, A; Wadhwa, M; Wallraff, W; Wang, J C; Wang, X L; Wang, Z M; Weber, A; Wittgenstein, F; Wu, S X; Wynhoff, S; Xu, J; Xu, Z Z; Yang, B Z; Yang, C G; Yao, X Y; Ye, J B; Yeh, S C; You, J M; Zalite, A; Zalite, Yu; Zemp, P; Zeng, Y; Zhang, Z; Zhang, Z P; Zhou, B; Zhu, G Y; Zhu, R Y; Zichichi, Antonino; Ziegler, F

    1997-01-01

    A search for single and multi-photon events with missing energy is performed using data collected at centre-of-mass energies between 161 GeV and 172 GeV for a total of 20.9 pb$^{-1}$ of integrated luminosity. The results obtained are used to derive the value for the $\

  3. Measurement of the ratio of b-quark production cross sections at √s = 630 GeV and √s = 1800 GeV

    International Nuclear Information System (INIS)

    1996-07-01

    We report on a measurement of the ratio of b-quark production cross section in pp collisions at √s = 630 GeV and √s = 1800 GeV collected by the Collider Detector at Fermilab. Results are compared to the predictions of next-to-leading order QCD calculations. 16 refs., 4 figs

  4. Interplay between magnetic quantum criticality, Fermi surface and unconventional superconductivity in UCoGe, URhGe and URu2Si2

    International Nuclear Information System (INIS)

    Bastien, Gael

    2017-01-01

    This thesis is concentrated on the ferromagnetic superconductors UCoGe and URhGe and on the hidden order state in URu 2 Si 2 . In the first part the pressure temperature phase diagram of UCoGe was studied up to 10.5 GPa. Ferromagnetism vanishes at the critical pressure pc≅1 GPa. Unconventional superconductivity and non Fermi liquid behavior can be observed in a broad pressure range around pc. The superconducting upper critical field properties were explained by the suppression of the magnetic fluctuations under field. In the second part the Fermi surfaces of UCoGe and URhGe were investigated by quantum oscillations. In UCoGe four Fermi surface pockets were observed. Under magnetic field successive Lifshitz transitions of the Fermi surface have been detected. The observed Fermi surface pockets in UCoGe evolve smoothly with pressure up to 2.5 GPa and do not show any Fermi surface reconstruction at the critical pressure pc. In URhGe, three heavy Fermi surface pockets were detected by quantum oscillations. In the last part the quantum oscillation study in the hidden order state of URu 2 Si 2 shows a strong g factor anisotropy for two Fermi surface pockets, which is compared to the macroscopic g factor anisotropy extracted from the upper critical field study. (author) [fr

  5. Search for neutralinos, scalar leptons and scalar quarks in $e^+ e^-$ interactions at $\\sqrt{s}$=130 GeV and 136 GeV

    CERN Document Server

    Abreu, P; Adye, T; Agasi, E; Ajinenko, I; Alekseev, G D; Alemany, R; Allport, P P; Almehed, S; Amaldi, Ugo; Amato, S; Andersson, P; Andreazza, A; Andrieux, M L; Antilogus, P; Apel, W D; Åsman, B; Augustin, J E; Augustinus, A; Baillon, Paul; Bambade, P; Barão, F; Barate, R; Barbi, M S; Bardin, Dimitri Yuri; Baroncelli, A; Bärring, O; Barrio, J A; Bartl, Walter; Bates, M J; Battaglia, Marco; Baubillier, M; Baudot, J; Becks, K H; Begalli, M; Beillière, P; Belokopytov, Yu A; Benvenuti, Alberto C; Berggren, M; Bertini, D; Bertrand, D; Besançon, M; Bianchi, F; Bigi, M; Bilenky, S M; Billoir, P; Bloch, D; Blume, M; Bolognese, T; Bonesini, M; Bonivento, W; Booth, P S L; Bosio, C; Botner, O; Boudinov, E; Bouquet, B; Bourdarios, C; Bowcock, T J V; Bozzo, M; Branchini, P; Brand, K D; Brenke, T; Brenner, R A; Bricman, C; Brown, R C A; Brückman, P; Brunet, J M; Bugge, L; Buran, T; Burgsmüller, T; Buschmann, P; Buys, A; Cabrera, S; Caccia, M; Calvi, M; Camacho-Rozas, A J; Camporesi, T; Canale, V; Canepa, M; Cankocak, K; Cao, F; Carena, F; Carroll, L; Caso, Carlo; Castillo-Gimenez, M V; Cattai, A; Cavallo, F R; Chabaud, V; Charpentier, P; Chaussard, L; Checchia, P; Chelkov, G A; Chen, M; Chierici, R; Chliapnikov, P V; Chochula, P; Chorowicz, V; Chudoba, J; Cindro, V; Collins, P; Contreras, J L; Contri, R; Cortina, E; Cosme, G; Cossutti, F; Cowell, J H; Crawley, H B; Crennell, D J; Crosetti, G; Cuevas-Maestro, J; Czellar, S; Dahl-Jensen, Erik; Dahm, J; D'Almagne, B; Dam, M; Damgaard, G; Dauncey, P D; Davenport, Martyn; Da Silva, W; Defoix, C; Deghorain, A; Della Ricca, G; Delpierre, P A; Demaria, N; De Angelis, A; de Boer, Wim; De Brabandere, S; De Clercq, C; La Vaissière, C de; De Lotto, B; De Min, A; De Paula, L S; De Saint-Jean, C; Dijkstra, H; Di Ciaccio, Lucia; Di Diodato, A; Djama, F; Dolbeau, J; Dönszelmann, M; Doroba, K; Dracos, M; Drees, J; Drees, K A; Dris, M; Durand, J D; Edsall, D M; Ehret, R; Ekelöf, T J C; Ekspong, Gösta; Elsing, M; Engel, J P; Erzen, B; Espirito-Santo, M C; Falk, E; Fassouliotis, D; Feindt, Michael; Ferrer, A; Fichet, S; Filippas-Tassos, A; Firestone, A; Fischer, P A; Föth, H; Fokitis, E; Fontanelli, F; Formenti, F; Franek, B J; Frenkiel, P; Fries, D E C; Frodesen, A G; Frühwirth, R; Fulda-Quenzer, F; Fuster, J A; Galloni, A; Gamba, D; Gandelman, M; García, C; García, J; Gaspar, C; Gasparini, U; Gavillet, P; Gazis, E N; Gelé, D; Gerber, J P; Gokieli, R; Golob, B; Gopal, Gian P; Gorn, L; Górski, M; Guz, Yu; Gracco, Valerio; Graziani, E; Green, C; Grefrath, A; Gris, P; Grosdidier, G; Grzelak, K; Gumenyuk, S A; Gunnarsson, P; Günther, M; Guy, J; Hahn, F; Hahn, S; Hajduk, Z; Hallgren, A; Hamacher, K; Hao, W; Harris, F J; Hedberg, V; Hernández, J J; Herquet, P; Herr, H; Hessing, T L; Higón, E; Hilke, Hans Jürgen; Hill, T S; Holmgren, S O; Holt, P J; Holthuizen, D J; Hoorelbeke, S; Houlden, M A; Hrubec, Josef; Huet, K; Hultqvist, K; Jackson, J N; Jacobsson, R; Jalocha, P; Janik, R; Jarlskog, C; Jarlskog, G; Jarry, P; Jean-Marie, B; Johansson, E K; Jönsson, L B; Jönsson, P E; Joram, Christian; Juillot, P; Kaiser, M; Kapusta, F; Karafasoulis, K; Karlsson, M; Karvelas, E; Katsanevas, S; Katsoufis, E C; Keränen, R; Khokhlov, Yu A; Khomenko, B A; Khovanskii, N N; King, B J; Kjaer, N J; Klapp, O; Klein, H; Klovning, A; Kluit, P M; Köne, B; Kokkinias, P; Koratzinos, M; Korcyl, K; Kostyukhin, V; Kourkoumelis, C; Kuznetsov, O; Krammer, Manfred; Kreuter, C; Kronkvist, I J; Krumshtein, Z; Krupinski, W; Kubinec, P; Kucewicz, W; Kurvinen, K L; Lacasta, C; Laktineh, I; Lamsa, J; Lanceri, L; Lane, D W; Langefeld, P; Lapin, V; Laugier, J P; Lauhakangas, R; Leder, Gerhard; Ledroit, F; Lefébure, V; Legan, C K; Leitner, R; Lemonne, J; Lenzen, Georg; Lepeltier, V; Lesiak, T; Libby, J; Liko, D; Lindner, R; Lipniacka, A; Lippi, I; Lörstad, B; Loken, J G; López, J M; Loukas, D; Lutz, P; Lyons, L; MacNaughton, J N; Maehlum, G; Mahon, J R; Maio, A; Malmgren, T G M; Malychev, V; Mandl, F; Marco, J; Marco, R P; Maréchal, B; Margoni, M; Marin, J C; Mariotti, C; Markou, A; Martínez-Rivero, C; Martínez-Vidal, F; Martí i García, S; Masik, J; Matorras, F; Matteuzzi, C; Matthiae, Giorgio; Mazzucato, M; McCubbin, M L; McKay, R; McNulty, R; Medbo, J; Merk, M; Meroni, C; Meyer, S; Meyer, W T; Myagkov, A; Michelotto, M; Migliore, E; Mirabito, L; Mjörnmark, U; Moa, T; Møller, R; Mönig, K; Monge, M R; Morettini, P; Müller, H; Mundim, L M; Murray, W J; Muryn, B; Myatt, Gerald; Naraghi, F; Navarria, Francesco Luigi; Navas, S; Nawrocki, K; Negri, P; Némécek, S; Neumann, W; Neumeister, N; Nicolaidou, R; Nielsen, B S; Nieuwenhuizen, M; Nikolaenko, V; Niss, P; Nomerotski, A; Normand, Ainsley; Oberschulte-Beckmann, W; Obraztsov, V F; Olshevskii, A G; Onofre, A; Orava, Risto; Österberg, K; Ouraou, A; Paganini, P; Paganoni, M; Pagès, P; Pain, R; Palka, H; Papadopoulou, T D; Papageorgiou, K; Pape, L; Parkes, C; Parodi, F; Passeri, A; Pegoraro, M; Peralta, L; Pernegger, H; Pernicka, Manfred; Perrotta, A; Petridou, C; Petrolini, A; Petrovykh, M; Phillips, H T; Piana, G; Pierre, F; Pimenta, M; Plaszczynski, S; Podobrin, O; Pol, M E; Polok, G; Poropat, P; Pozdnyakov, V; Privitera, P; Pukhaeva, N; Pullia, Antonio; Radojicic, D; Ragazzi, S; Rahmani, H; Ratoff, P N; Read, A L; Reale, M; Rebecchi, P; Redaelli, N G; Regler, Meinhard; Reid, D; Renton, P B; Resvanis, L K; Richard, F; Richardson, J; Rídky, J; Rinaudo, G; Ripp, I; Romero, A; Roncagliolo, I; Ronchese, P; Roos, L; Rosenberg, E I; Rosso, E; Roudeau, Patrick; Rovelli, T; Rückstuhl, W; Ruhlmann-Kleider, V; Ruiz, A; Rybicki, K; Saarikko, H; Sacquin, Yu; Sadovskii, A; Sahr, O; Sajot, G; Salt, J; Sánchez, J; Sannino, M; Schimmelpfennig, M; Schneider, H; Schwickerath, U; Schyns, M A E; Sciolla, G; Scuri, F; Seager, P; Sedykh, Yu; Segar, A M; Seitz, A; Sekulin, R L; Serbelloni, L; Shellard, R C; Siccama, I; Siegrist, P; Silvestre, R; Simonetti, S; Simonetto, F; Sissakian, A N; Sitár, B; Skaali, T B; Smadja, G; Smirnov, N; Smirnova, O G; Smith, G R; Sokolov, A; Sosnowski, R; Souza-Santos, D; Spassoff, Tz; Spiriti, E; Sponholz, P; Squarcia, S; Stanescu, C; Stapnes, Steinar; Stavitski, I; Stevenson, K; Stichelbaut, F; Stocchi, A; Strauss, J; Strub, R; Stugu, B; Szczekowski, M; Szeptycka, M; Tabarelli de Fatis, T; Tavernet, J P; Chernyaev, E; Chikilev, O G; Thomas, J; Tilquin, A; Timmermans, J; Tkatchev, L G; Todorov, T; Todorova, S; Toet, D Z; Tomaradze, A G; Tomé, B; Tonazzo, A; Tortora, L; Tranströmer, G; Treille, D; Trischuk, W; Tristram, G; Trombini, A; Troncon, C; Tsirou, A L; Turluer, M L; Tyapkin, I A; Tyndel, M; Tzamarias, S; Überschär, B; Ullaland, O; Uvarov, V; Valenti, G; Vallazza, E; Van der Velde, C; van Apeldoorn, G W; van Dam, P; Van Eldik, J; Vassilopoulos, N; Vegni, G; Ventura, L; Venus, W A; Verbeure, F; Verlato, M; Vertogradov, L S; Vilanova, D; Vincent, P; Vitale, L; Vlasov, E; Vodopyanov, A S; Vrba, V; Wahlen, H; Walck, C; Waldner, F; Weierstall, M; Weilhammer, Peter; Weiser, C; Wetherell, Alan M; Wicke, D; Wickens, J H; Wielers, M; Wilkinson, G R; Williams, W S C; Winter, M; Witek, M; Woschnagg, K; Yip, K; Yushchenko, O P; Zach, F; Zaitsev, A; Zalewska-Bak, A; Zalewski, Piotr; Zavrtanik, D; Zevgolatakos, E; Zimin, N I; Zito, M; Zontar, D; Zucchelli, G C; Zumerle, G

    1996-01-01

    Using data accumulated by DELPHI during the November 1995 LEP run at 130~GeV -- 136~GeV, searches have been made for events with jets or leptons in conjunction with missing momentum. The results are interpreted in terms of limits on the production of neutralinos, scalar leptons, and scalar quarks.

  6. Rational design of monocrystalline (InP)(y)Ge(5-2y)/Ge/Si(100) semiconductors: synthesis and optical properties.

    Science.gov (United States)

    Sims, Patrick E; Chizmeshya, Andrew V G; Jiang, Liying; Beeler, Richard T; Poweleit, Christian D; Gallagher, James; Smith, David J; Menéndez, José; Kouvetakis, John

    2013-08-21

    In this work, we extend our strategy previously developed to synthesize functional, crystalline Si(5-2y)(AlX)y {X = N,P,As} semiconductors to a new class of Ge-III-V hybrid compounds, leading to the creation of (InP)(y)Ge(5-2y) analogues. The compounds are grown directly on Ge-buffered Si(100) substrates using gas source MBE by tuning the interaction between Ge-based P(GeH3)3 precursors and In atoms to yield nanoscale "In-P-Ge3" building blocks, which then confer their molecular structure and composition to form the target solids via complete elimination of H2. The collateral production of reactive germylene (GeH2), via partial decomposition of P(GeH3)3, is achieved by simple adjustment of the deposition conditions, leading to controlled Ge enrichment of the solid product relative to the stoichiometric InPGe3 composition. High resolution XRD, XTEM, EDX, and RBS indicate that the resultant monocrystalline (InP)(y)Ge(5-2y) alloys with y = 0.3-0.7 are tetragonally strained and fully coherent with the substrate and possess a cubic diamond-like structure. Molecular and solid-state ab initio density functional theory (DFT) simulations support the viability of "In-P-Ge3" building-block assembly of the proposed crystal structures, which consist of a Ge parent crystal in which the P atoms form a third-nearest-neighbor sublattice and "In-P" dimers are oriented to exclude energetically unfavorable In-In bonding. The observed InP concentration dependence of the lattice constant is closely reproduced by DFT simulation of these model structures. Raman spectroscopy and ellipsometry are also consistent with the "In-P-Ge3" building-block interpretation of the crystal structure, while the observation of photoluminescence suggests that (InP)(y)Ge(5-2y) may have important optoelectronic applications.

  7. Analysis of p-bar p scattering at 31 GeV and 62 GeV by the Chou-Yang model

    International Nuclear Information System (INIS)

    Padua, A.B. de; Covolan, R.J.M.; Souza Paes, J.T. de

    1988-01-01

    The p-bar p scattering is analysed at 31 GeV and 62 GeV energies for momentum transfers in the range O 2 . The experimental (dσ/dt)p-bar p values were fitted using a pure imaginary written as a sum of exponentials, that is, a(s,t)=a(s,O) σ n i=l α i e βit . Using the parameters obtained we have calculated the absorption constant K p-bar p the form factor and the mean square radius of the p-bar matter distribuition by the Chou-Yang model. These calculations reveal a ''dip'' around -t approx.= 1.3 (GeV/c) 2 at 31 GeV and 62 GeV. (author) [pt

  8. Design and testing of the measuring equipment for the detection of 71Ge and 69Ge within the gallium-solar-neutrino experiment

    International Nuclear Information System (INIS)

    Huebner, M.

    1980-01-01

    A low level measuring system has been developed for the Ga-solar-neutrino experiment, to detect the reaction 71 Ga (νsub(e),e - ) 71 Ge by the decay 71 Ge (Tsub(1/2) = 11. 4 d, 100% electron capture). An estimate based on the solar standard model gives 15 71 Ge atoms produced by solar neutrinos (pp and pep). As a monitor for background reactions in the target, the detectability of the 69 Ga (p,n) 69 Ge reaction by the decay 69 Ge (Tsub(1/2) = 39 h, 37% β + -decay, 63% electron capture) has been considered. To test the system, the detectors are mounted in a low level laboratory lead box. (orig./WB) [de

  9. Quantum-confined Stark effect at 1.3 μm in Ge/Si(0.35)Ge(0.65) quantum-well structure.

    Science.gov (United States)

    Rouifed, Mohamed Said; Chaisakul, Papichaya; Marris-Morini, Delphine; Frigerio, Jacopo; Isella, Giovanni; Chrastina, Daniel; Edmond, Samson; Le Roux, Xavier; Coudevylle, Jean-René; Vivien, Laurent

    2012-10-01

    Room-temperature quantum-confined Stark effect in a Ge/SiGe quantum-well structure is reported at the wavelength of 1.3 μm. The operating wavelength is tuned by the use of strain engineering. Low-energy plasma-enhanced chemical vapor deposition is used to grow 20 periods of strain-compensated quantum wells (8 nm Ge well and 12 nm Si(0.35)Ge(0.65) barrier) on Si(0.21)Ge(0.79) virtual substrate. The fraction of light absorbed per well allows for a strong modulation around 1.3 μm. The half-width at half-maximum of the excitonic peak of only 12 meV allows for a discussion on physical mechanisms limiting the performances of such devices.

  10. The Effect of Ge Content on the Optical and Electrical Properties of A-Sige: H Thin Films

    Directory of Open Access Journals (Sweden)

    Mursal Mursal

    2014-07-01

    Full Text Available The effect of Ge content on the optical and electrical properties of a-SiGe:H thin films deposited by HWC-PECVD had been investigated. The a-SiGe:H films ware grown on corning glass 7059 substrate using 10% diluted mixture of GeH4 and SiH4 gases, respectively. The GeH4 gas flow rate was varied from 2.5 – 12.5 sccm, while the flow rate of SiH4 was kept constant at 70 sccm. The results showed that the deposition rate of a-SiGe:H thin films increased by  increasing of GeH4 gas flow rate. In addition, the Ge content in the film increased and  the optical band gap decreased. The dark conductivity of a-SiGe:H films were relatively constant, whereas the photo conductivity decreased with increasing of Ge content.

  11. Transgene mobilization and regulatory uncertainty for non-GE fruit products of transgenic rootstocks.

    Science.gov (United States)

    Haroldsen, Victor M; Chi-Ham, Cecilia L; Bennett, Alan B

    2012-10-31

    Genetically engineered (GE) rootstocks may offer some advantages for biotechnology applications especially in woody perennial crops such as grape or walnut. Transgrafting combines horticultural grafting practices with modern GE methods for crop improvement. Here, a non-GE conventional scion (upper stem portion) is grafted onto a transgenic GE rootstock. Thus, the scion does not contain the genetic modification present in the rootstock genome. We examined transgene presence in walnut and tomato GE rootstocks and non-GE fruit-bearing scions. Mobilization of transgene DNA, protein, and mRNA across the graft was not detected. Though transgenic siRNA mobilization was not observed in grafted tomatoes or walnut scions, transgenic siRNA signal was detected in walnut kernels. Prospective benefits from transgrafted plants include minimized risk of GE pollen flow (Lev-Yadun and Sederoff, 2001), possible use of more than one scion per approved GE rootstock which could help curb the estimated US$136 million (CropLife International, 2011) cost to bring a GE crop to international markets, as well as potential for improved consumer and market acceptance since the consumable product is not itself GE. Thus, transgrafting provides an alternative option for agricultural industries wishing to expand their biotechnology portfolio. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Properties of three-dimensional structures prepared by Ge dewetting from Si(111) at high temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Shklyaev, Alexander, E-mail: shklyaev@isp.nsc.ru [A. V. Rzhanov Institute of Semiconductor Physics, SB RAS, Novosibirsk 630090 (Russian Federation); Novosibirsk State University, Novosibirsk 630090 (Russian Federation); Bolotov, Leonid; Poborchii, Vladimir; Tada, Tetsuya [National Institute of Advanced Industrial Science and Technology, Higashi 1-1-1, Tsukuba, Ibaraki 305-8562 (Japan)

    2015-05-28

    The formation of three-dimensional (3D) structures during Ge deposition on Si(111) at about 800 °C is studied with scanning tunneling, Kelvin probe and electron microscopies, and scanning tunneling and Raman spectroscopies. The observed surface morphology is formed by dewetting of Ge from Si(111), since it occurs mainly by means of minimization of surface and interfacial energies. The dewetting proceeds through massive Si eroding around growing 3D structures, providing them to be composed of SiGe with about a 30% Ge content, and leads to the significant reduction of the SiGe/Si interface area. It is found that the SiGe top component of 3D structures forms sharp interfaces with the underlying Si. The minimization of interfacial and strain energies occurs on the way that the 3D structures appear to get the dendrite-like shape. The Ge distribution in the 3D SiGe structures is inhomogeneous in the lateral dimension with a higher Ge concentration in their central areas and Ge segregation on their surface.

  13. The Low Temperature Epitaxy of Strained GeSn Layers Using RTCVD System

    Science.gov (United States)

    Kil, Yeon-Ho; Yuk, Sim-Hoon; Jang, Han-Soo; Lee, Sang-Geul; Choi, Chel-Jong; Shim, Kyu-Hwan

    2018-03-01

    We have investigated the low temperature (LT) growth of GeSn-Ge-Si structures using rapid thermal chemical vapor deposition system utilizing Ge2H6 and SnCl4 as the reactive precursors. Due to inappropriate phenomena, such as, Ge etch and Sn segregation, it was hard to achieve high quality GeSn epitaxy at the temperature > 350 °C. On the contrary, we found that the SnCl4 promoted the reaction of Ge2H6 precursors in a certain process condition of LT, 240-360 °C. In return, we could perform the growth of GeSn epi layer with 7.7% of Sn and its remaining compressive strain of 71.7%. The surface propagated defects were increased with increasing the Sn content in the GeSn layer confirmed by TEM analysis. And we could calculate the activation energies at lower GeSn growth temperature regime using by Ge2H6 and SnCl4 precursors about 0.43 eV.

  14. Microscopic parameters of heterostructures containing nanoclusters and thin layers of Ge in Si matrix

    CERN Document Server

    Erenburg, S B; Stepina, N P; Nikiforov, A I; Nenashev, A V; Mazalov, L N

    2001-01-01

    GeK XAFS measurements have been performed using the total electron yield detection mode for pseudomorphous Ge films deposited on Si(0 0 1) substrate via molecular beam epitaxy at 300 deg. C. The samples have been produced by thrice repeating the growing procedure separated by deposition of blocking Si layers at 500 deg. C. The local microstructure parameters (interatomic distances, Ge coordination numbers) are linked to nanostructure morphology and adequate models are suggested and discussed. It was established that pseudomorphous 4-monolayer Ge films contain 50% of Si atoms on the average. Pyramid-like, pure Ge islands formed in the Stranski-Krastanov growth are characterized by the interatomic Ge-Ge distances of 2.41 A (by 0.04 A less than in bulk Ge) and the Ge-Si distances of 2.37 A. It was revealed that the pure Ge nanoclusters are covered by a 1-2-monolayer film with admixture on the average of a 50% Si atom impurity from blocking Si layers.

  15. Growth and characterization of Ge nanostructures selectively grown on patterned Si

    International Nuclear Information System (INIS)

    Cheng, M.H.; Ni, W.X.; Luo, G.L.; Huang, S.C.; Chang, J.J.; Lee, C.Y.

    2008-01-01

    By utilizing different distribution of strain fields around the edges of oxide, which are dominated by a series of sizes of oxide-patterned windows, long-range ordered self-assembly Ge nanostructures, such as nano-rings, nano-disks and nano-dots, were selectively grown by ultra high vacuum chemical vapor deposition (UHV-CVD) on Si (001) substrates. High-resolution double-crystal symmetrical ω/2θ scans and two-dimensional reciprocal space mapping (2D-RSM) technologies employing the triple axis X-ray diffractometry have been used to evaluate the quality and strain status of as-deposited as well as in-situ annealed Ge nanostructures. Furthermore, we also compare the quality and strain status of Ge epilayers grown on planar unpatterned Si substrates. It was found that the quality of all Ge epitaxial structures is improved after in-situ annealing process and the quality of Ge nano-disk structures is better than that of Ge epilayers on planar unpatterned Si substrates, because oxide sidewalls are effective dislocation sinks. We also noted that the degree of relaxation for as-deposited Ge epilayers on planar unpatterned Si substrates is less than that for as-deposited Ge nano-disk structures. After in-situ annealing process, all Ge epitaxial structures are almost at full relaxation whatever Ge epitaxial structures grew on patterned or unpatterned Si substrates

  16. GeSn-on-insulator substrate formed by direct wafer bonding

    Energy Technology Data Exchange (ETDEWEB)

    Lei, Dian; Wang, Wei; Gong, Xiao, E-mail: elegong@nus.edu.sg, E-mail: yeo@ieee.org; Yeo, Yee-Chia, E-mail: elegong@nus.edu.sg, E-mail: yeo@ieee.org [Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117576 (Singapore); Lee, Kwang Hong; Wang, Bing [Low Energy Electronic Systems (LEES), Singapore MIT Alliance for Research and Technology (SMART), 1 CREATE Way, #10-01 CREATE Tower, Singapore 138602 (Singapore); Bao, Shuyu [Low Energy Electronic Systems (LEES), Singapore MIT Alliance for Research and Technology (SMART), 1 CREATE Way, #10-01 CREATE Tower, Singapore 138602 (Singapore); School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore); Tan, Chuan Seng [School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore)

    2016-07-11

    GeSn-on-insulator (GeSnOI) on Silicon (Si) substrate was realized using direct wafer bonding technique. This process involves the growth of Ge{sub 1-x}Sn{sub x} layer on a first Si (001) substrate (donor wafer) followed by the deposition of SiO{sub 2} on Ge{sub 1-x}Sn{sub x}, the bonding of the donor wafer to a second Si (001) substrate (handle wafer), and removal of the Si donor wafer. The GeSnOI material quality is investigated using high-resolution transmission electron microscopy, high-resolution X-ray diffraction (HRXRD), atomic-force microscopy, Raman spectroscopy, and spectroscopic ellipsometry. The Ge{sub 1-x}Sn{sub x} layer on GeSnOI substrate has a surface roughness of 1.90 nm, which is higher than that of the original Ge{sub 1-x}Sn{sub x} epilayer before transfer (surface roughness is 0.528 nm). The compressive strain of the Ge{sub 1-x}Sn{sub x} film in the GeSnOI is as low as 0.10% as confirmed using HRXRD and Raman spectroscopy.

  17. Properties of three-dimensional structures prepared by Ge dewetting from Si(111) at high temperatures

    International Nuclear Information System (INIS)

    Shklyaev, Alexander; Bolotov, Leonid; Poborchii, Vladimir; Tada, Tetsuya

    2015-01-01

    The formation of three-dimensional (3D) structures during Ge deposition on Si(111) at about 800 °C is studied with scanning tunneling, Kelvin probe and electron microscopies, and scanning tunneling and Raman spectroscopies. The observed surface morphology is formed by dewetting of Ge from Si(111), since it occurs mainly by means of minimization of surface and interfacial energies. The dewetting proceeds through massive Si eroding around growing 3D structures, providing them to be composed of SiGe with about a 30% Ge content, and leads to the significant reduction of the SiGe/Si interface area. It is found that the SiGe top component of 3D structures forms sharp interfaces with the underlying Si. The minimization of interfacial and strain energies occurs on the way that the 3D structures appear to get the dendrite-like shape. The Ge distribution in the 3D SiGe structures is inhomogeneous in the lateral dimension with a higher Ge concentration in their central areas and Ge segregation on their surface

  18. Structural transformation in mechanosynthesized bcc Fe-Al-Si(Ge) solid solutions during heating

    International Nuclear Information System (INIS)

    Kubalova, L.M.; Sviridov, I.A.; Vasilyeva, O.Ya.; Fadeeva, V.I.

    2007-01-01

    X-ray diffractometry and Moessbauer spectroscopy study of Fe 50 Al 25 Si 25 and Fe 50 Al 25 Ge 25 alloys obtained by mechanical alloying (MA) of elementary powders was carried out. Phase transformation during heating of synthesized products was studied using differential scanning calorimetry (DSC). After 2.5 h of MA monophase alloys containing bcc Fe(Al, Ge) solid solutions Fe(Al, Si) are formed. Fe(Al, Si) is partially ordered B2 type and Fe(Al, Ge) is completely disordered. DSC curves of synthesized alloys displayed the presence of exothermal peaks caused by phase transformation. The metastable Fe(Al, Si) solid solution transformed into FeAl 1-x Si x (B2) and FeSi 1-x Al x (B20) equilibrium phases. The Fe(Al, Ge) solid solution transformed into equilibrium phases through intermediate stage of Fe 6 Ge 3 Al 2 metastable phase formation. The Fe 6 Ge 3 Al 2 phase dissociated into three equilibrium phases: FeAl 1-x Ge x (B2), χ-Fe 6 Ge 5 and η-Fe 13 (Ge, Al) 8 (B8 2 ). The structure of Fe 6 Ge 3 Al 2 was calculated by Rietveld method, the distribution of Al and Ge in the elementary cell and its parameters were calculated. Moessbauer study showed that Fe(Al, Si) and Fe(Al, Ge) solid solutions are paramagnetic. In the equilibrium state the alloy containing Si is also paramagnetic while the alloy with Ge showed ferromagnetic properties

  19. Deeply virtual compton scattering at 6 GeV

    International Nuclear Information System (INIS)

    Berthot, J.; Chen, J.P.; Chudakov, E.

    2000-01-01

    We propose a measurement of the Deep Virtual Compton Scattering process (DVCS) ep → epγ in Hall A at Jefferson Lab with a 6 GeV beam. We are able to explore the onset of Q 2 scaling, by measuring a beam helicity asymmetry for Q 2 ranging from 1.5 to 2.5 GeV 2 at x B ∼0.35. At this kinematics, the asymmetry is dominated by the DVCS - Bethe-Heitler (BH) interference, which is proportional to the imaginary part of the DVCS amplitude amplified by the full magnitude of the BH amplitude. The imaginary part of the DVCS amplitude is expected to scale early. Indeed, the imaginary part of the forward Compton amplitude measured in deep inelastic scattering (via the optical theorem) scales at Q 2 as low as 1 GeV 2 . If the scaling regime is reached, we will make an 8% measurement of the skewed parton distributions (SPD) contributing to the DVCS amplitude. Also, this experiment allows us to separately estimate the size of the higher-twist effects, since they are only suppressed by an additional factor 1/Q compared to the leading-twist term, and have a different angular dependence. We use a polarized electron beam and detect the scattered electron in the HRSe, the real photon in an electromagnetic calorimeter (under construction) and the recoil proton in a shielded scintillator array (to be constructed). This allows as to determine the difference in cross-sections for electrons of opposite helicities. This observable is directly linked to the SPD's. We estimate that 25 days of beam (600 hours) are needed to achieve this goal. (authors)

  20. Deeply virtual compton scattering at 6 GeV

    Energy Technology Data Exchange (ETDEWEB)

    Berthot, J. [Universite Blaise Pascal, Clermont-Ferrand II, Lab. de Physique Corpusculaire (CNRS), 63 - Aubiere (France); Chen, J.P.; Chudakov, E. [National Accelerator Facility, Newport News, Virginia (United States)] [and others

    2000-07-01

    We propose a measurement of the Deep Virtual Compton Scattering process (DVCS) ep {yields} ep{gamma} in Hall A at Jefferson Lab with a 6 GeV beam. We are able to explore the onset of Q{sup 2} scaling, by measuring a beam helicity asymmetry for Q{sup 2} ranging from 1.5 to 2.5 GeV{sup 2} at x{sub B}{approx}0.35. At this kinematics, the asymmetry is dominated by the DVCS - Bethe-Heitler (BH) interference, which is proportional to the imaginary part of the DVCS amplitude amplified by the full magnitude of the BH amplitude. The imaginary part of the DVCS amplitude is expected to scale early. Indeed, the imaginary part of the forward Compton amplitude measured in deep inelastic scattering (via the optical theorem) scales at Q{sup 2} as low as 1 GeV{sup 2}. If the scaling regime is reached, we will make an 8% measurement of the skewed parton distributions (SPD) contributing to the DVCS amplitude. Also, this experiment allows us to separately estimate the size of the higher-twist effects, since they are only suppressed by an additional factor 1/Q compared to the leading-twist term, and have a different angular dependence. We use a polarized electron beam and detect the scattered electron in the HRSe, the real photon in an electromagnetic calorimeter (under construction) and the recoil proton in a shielded scintillator array (to be constructed). This allows as to determine the difference in cross-sections for electrons of opposite helicities. This observable is directly linked to the SPD's. We estimate that 25 days of beam (600 hours) are needed to achieve this goal. (authors)