WorldWideScience

Sample records for gd-ba-cu-o bulk superconductors

  1. Trapped field measurements of Gd-Ba-Cu-O bulk superconductor in controlled pulse field magnetizing

    Energy Technology Data Exchange (ETDEWEB)

    Ida, T [Department of Electronic Control Engineering, Hiroshima National College of Maritime Technology, 4272-1, Higashino, Ohsakikamijima-cho, Toyota-gun, Hiroshima 725-0231 (Japan); Kimura, Y; Sano, T; Yamaguchi, K; Izumi, M [Department of Marine Electronics and Mechanical Engineering, Tokyo University of Marine Science and Technology, 2-1-6, Etchu-jima, Koto-ku, Tokyo 135-8533 (Japan); Miki, M [Kitano Seiki Co. Ltd., 7-13-7, Chuo, Ohta-ku, Tokyo 143-0024 (Japan)], E-mail: ida@hiroshima-cmt.ac.jp

    2008-02-01

    For large-scale electric power application of the melt-processed high temperature superconductor (HTS) bulks, especially at rotating machine, development of trapping much higher magnetic fields by using pulsed magnetization technique is essential. It is difficult to use static field cooling (FCM) technique that is most effective magnetizing method for the general industrial HTS applications, because the FCM requires large-scale superconducting magnets. Because the rise in temperature due to the magnetic flux motion decreases the pinning force, we controlled the magnetic flux penetrating to the bulk for the effective magnetization. A couple of vortex-type copper coils applied a magnetic field to a Gd-Ba-Cu-O bulk, which dimension was 45mm in diameter and 19 mm in thickness. HTS bulk was magnetized by the controlled pulse field without passive LCR pulse. We controlled waveform by using the discharge current that IGBT chopper in pulse magnetizer intermitted. We applied the pulse magnetic field with the various risetime to the HTS bulk in liquid nitrogen. The various conditions of the controlled waveform pulse to trap well-dressed profile magnetized the Gd-Ba-Cu-O bulk, strongly at 77K. In the present study, we show several properties which was measured in the PFM of the HTS bulk.

  2. Effect of silver addition on the mechanical and field trapping properties of Gd-Ba-Cu-O bulk superconductors

    CERN Document Server

    Nariki, S; Matsui, M; Murakami, M

    2002-01-01

    The effect of Ag addition on the microstructure and the mechanical and field trapping properties of Gd-Ba-Cu-O bulk superconductor has been investigated. The single grain Gd-Ba-Cu-O bulk superconductors 32 mm in diameter were fabricated with 0-30 mass%Ag/sub 2/O additions by the melt growth method under controlled oxygen partial pressure of 1.0%. From microscopic observations, it was found that the macro- cracks in the a-b plane decreased with Ag addition. The three-point bending test showed that the average strength of Ag-free bulk was 69 MPa at room temperature, while the strength was dramatically improved to 110-115 MPa with 10-30 mass%Ag/sub 2/O additions. The trapped magnetic field of Ag-free bulk sample was 1.3 T at 77 K. The trapped field of bulk Gd-Ba-Cu-O samples with 10-20 mass%Ag/sub 2/O exhibited high values of 1.8-2.0 T at 77 K. However, the trapped field of the sample with 30 mass%Ag/sub 2/O addition was lowered to 1.1 T with decreasing the critical current density. The trapped field of Ag- adde...

  3. Effect of pinning on the flux motion of Gd-Ba-Cu-O bulk superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Yoshizawa, K.; Nariki, S.; Murakami, M.; Takizawa, T

    2003-10-15

    We have observed the flux motion using Hall probe sensors that are placed on the surface of high quality Y-Ba-Cu-O and Gd-Ba-Cu-O disks 15 mm in diameter with 0.95 mm thickness with applying pulsed magnetic field. The peak value of the field was varied from 0.1 to 0.8 T. The effects of static bias fields was also studied in the field range of 0-3 T at 77 K. Gd-Ba-Cu-O shows the clear secondary peak effect on the J{sub c}-B curve so that the pinning property was different from Y-Ba-Cu-O for which J{sub c} monotonically decreases with field. The flux motion was enhanced in Y-Ba-Cu-O with increasing static bias field, while that was suppressed in Gd-Ba-Cu-O, reflecting the secondary peak effect.

  4. Electron microscopy of a Gd-Ba-Cu-O superconductor

    Science.gov (United States)

    Ramesh, R.; Thomas, G.; Meng, R. L.; Hor, P. H.; Chu, C. W.

    1989-01-01

    An electron microscopy study has been carried out to characterize the microstructure of a sintered Gd-Ba-Cu-O superconductor alloy. The GdBa2Cu3O(7-x) phase in the oxygen annealed sample is orthorhombic, while in the vacuum annealed sample it is tetragonal. It is shown that the details of the fine structure in the 001-line zone axis convergent beam patterns can be used to distinguish between the orthorhombic form and the tetragonal form. In addition to this matrix phase, an amorphous phase is frequently observed at the triple grain junctions. Gd-rich inclusions have been observed inside the matrix phase.

  5. Pulsed Field Waveforms for Magnetization of HTS Gd-Ba-Cu-O Bulk Magnets

    Energy Technology Data Exchange (ETDEWEB)

    Ida, T [Department of Electronic Control Engineering, Hiroshima National College of Maritime Technology, 4272-1, Higashino, Ohsakikamijima-cho, Toyota-gun, Hiroshima 725-0231 (Japan); Matsuzaki, H [Department of Marine Electronics and Mechanical Engineering, Tokyo University of Marine Science and Technology, 2-1-6, Etchu-jima, Koto-ku, Tokyo 135-8533 (Japan); Morita, E [Department of Marine Electronics and Mechanical Engineering, Tokyo University of Marine Science and Technology, 2-1-6, Etchu-jima, Koto-ku, Tokyo 135-8533 (Japan); Sakashita, H [Department of Electronic Control Engineering, Hiroshima National College of Maritime Technology, 4272-1, Higashino, Ohsakikamijima-cho, Toyota-gun, Hiroshima 725-0231 (Japan); Harada, T [Department of Electronic Control Engineering, Hiroshima National College of Maritime Technology, 4272-1, Higashino, Ohsakikamijima-cho, Toyota-gun, Hiroshima 725-0231 (Japan); Ogata, H [Department of Marine Electronics and Mechanical Engineering, Tokyo University of Marine Science and Technology, 2-1-6, Etchu-jima, Koto-ku, Tokyo 135-8533 (Japan); Kimura, Y [Department of Marine Electronics and Mechanical Engineering, Tokyo University of Marine Science and Technology, 2-1-6, Etchu-jima, Koto-ku, Tokyo 135-8533 (Japan); Miki, M [Kitano Seiki Co. Ltd., 7-13-7, Chuo, Ohta-ku, Tokyo 143-0024 (Japan); Kitano, M [Kitano Seiki Co. Ltd., 7-13-7, Chuo, Ohta-ku, Tokyo 143-0024 (Japan); Izumi, M [Department of Marine Electronics and Mechanical Engineering, Tokyo University of Marine Science and Technology, 2-1-6, Etchu-jima, Koto-ku, Tokyo 135-8533 (Japan)

    2006-06-01

    Progress in pulse magnetization technique for high-temperature superconductor bulks of melt-textured RE-Ba-Cu-O with large diameter is important for the realization of power applications. We studied the pulsed power source and pulsed field waveforms to enhance to improve the magnetization properties for Gd-Ba-Cu-O bulk. The risetime and duration of pulse waveform effectively varied distribution of magnetic flux.

  6. Top seeded melt growth of Gd-Ba-Cu-O single grain superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Cardwell, D A; Shi, Y-H; Pathak, S K; Dennis, A R [Superconductivity Group, Engineering Department, University of Cambridge, Cambridge CB2 1PZ (United Kingdom); Hari Babu, N [Brunel Centre for Advanced Solidification Technology (BCAST), Brunel University, West London UB8 3PH (United Kingdom); Iida, K [Leibniz Institute for Solid State and Materials Research Dresden (IFW)-Dresden, 01069 Dresden (Germany)

    2010-03-15

    Top seeded melt growth (TSMG) has been used extensively to fabricate large, single grain Y-Ba-Cu-O (YBCO) bulk superconductors that can trap large magnetic fields. The TSMG method is relatively economical and has enabled the development of batch processes for the fabrication of a large number of bulk single grain superconductors in a single furnace. In addition, the technique allows the fabrication of complex-shaped bulk samples with controlled and strongly connected grains by using a novel, multi-seeding process. A practical processing route for processing of LRE-Ba-Cu-O (where LRE represents a light rare earth element) single grain superconductors (which have superior properties to YBCO) has been developed at Cambridge over the past three years, based on the development of a generic seed of melt textured Mg-doped Nd-123 and suppression of solid solution phase formation in air by enriching the precursor composition with excess Ba. In this paper we report the successful application of a practical TSMG process in the fabrication of high performance Gd-Ba-Cu-O (GdBCO) single grain superconductor. This method has enabled the development of a batch process for GdBCO and we demonstrate for the first time the fabrication of a large number of high performance single grains of this material in a single process. Finally, we report the processing of bulk GdBCO in the form of complex geometries with controlled grain orientation for bespoke engineering applications.

  7. Trapped field characteristics on {phi}65 mm GdBaCuO bulk by modified multi-pulse technique with stepwise cooling (MMPSC)

    Energy Technology Data Exchange (ETDEWEB)

    Fujishiro, H. [Faculty of Engineering, Iwate University, 3-4-5 Ueda, Morioka, Iwate 020-8551 (Japan)], E-mail: fujishiro@iwate-u.ac.jp; Tateiwa, T.; Kakehata, K.; Hiyama, T.; Naito, T. [Faculty of Engineering, Iwate University, 3-4-5 Ueda, Morioka, Iwate 020-8551 (Japan); Yanagi, Y. [IMRA Material R and D Co., Ltd., 5-50 Hachiken-cho, Kariya 448-0021 (Japan)

    2008-09-15

    A large GdBaCuO superconducting bulk 65 mm in diameter has been magnetized by a two-stage pulse field magnetization method named as a modified multi-pulse technique with stepwise cooling (MMPSC). The trapped field B{sub T}{sup P} of 3.0 T was achieved at the bulk center at 40 K by optimizing the trapped field profile at the first stage of the MMPSC method, on which the maximum B{sub T}{sup P} was as low as 1.9 T at 40 K for the single pulsed field application. A magnetic gradient along the radius direction larger than that estimated by a Bean's model is realized at the ascending stage of the magnetic pulse field at the second stage, and a large amount of magnetic fluxes staying at the bulk periphery flow to the bulk center at the descending stage.

  8. Trapped magnetic-field properties of prototype for Gd-Ba-Cu-O/MgB2 hybrid-type superconducting bulk magnet

    Science.gov (United States)

    Naito, Tomoyuki; Mochizuki, Hidehiko; Fujishiro, Hiroyuki; Teshima, Hidekazu

    2016-03-01

    We have studied experimentally and numerically the trapped magnetic-field properties of a hybrid-type superconducting bulk magnet, which comprised an inner Gd-Ba-Cu-O (GdBCO) disk-bulk and an outer MgB2 ring-bulk, under field-cooled magnetization (FCM) and pulsed-field magnetization (PFM). The trapped field by FCM at the center of the hybrid bulk was 4.5 T at 20 K, which was 0.2 T higher than that of the inner GdBCO disk-bulk without MgB2 ring-bulk. The experimental results by FCM were quantitatively reproduced by the numerical estimations for a model, which makes it possible to understand the trapped field properties of the hybrid bulk. The total magnetic flux by FCM, which was estimated numerically, was enhanced by about 1.7 times from 0.91 mWb of the single GdBCO bulk to 1.53 mWb of the hybrid bulk. We also succeeded in magnetizing the whole hybrid bulk by applying multi-pulsed-fields. The central trapped field of 1.88 T was not enhanced, but the total magnetic flux, which was obtained experimentally, was evidently increased by 2.5 times (0.25 \\to 0.62 mWb) for the hybrid bulk. The obtained results suggest that the hybridization is effective to enhance the total magnetic flux. To confirm the reinforcing effect of the MgB2 ring to the GdBCO disk during the cooling and magnetization processes, we have measured the thermal dilatation, {\\text{}}{dL}({\\text{}}T)/{\\text{}}L(300 K), of the GdBCO, MgB2 and stainless steel. As a result, the thermal dilatation of MgB2 was smaller than that of GdBCO. MgB2 ring-bulk shows no compression effect to resist the hoop stress of the GdBCO disk-bulk during the FCM process. The reinforcing material such as the stainless steel ring must be set outside the GdBCO disk-bulk.

  9. A trapped field of 17.6 T in melt-processed, bulk Gd-Ba-Cu-O reinforced with shrink-fit steel

    Science.gov (United States)

    Durrell, J. H.; Dennis, A. R.; Jaroszynski, J.; Ainslie, M. D.; Palmer, K. G. B.; Shi, Y.-H.; Campbell, A. M.; Hull, J.; Strasik, M.; Hellstrom, E. E.; Cardwell, D. A.

    2014-08-01

    The ability of large-grain (RE)Ba2Cu3O7-δ ((RE)BCO; RE = rare earth) bulk superconductors to trap magnetic fields is determined by their critical current. With high trapped fields, however, bulk samples are subject to a relatively large Lorentz force, and their performance is limited primarily by their tensile strength. Consequently, sample reinforcement is the key to performance improvement in these technologically important materials. In this work, we report a trapped field of 17.6 T, the largest reported to date, in a stack of two silver-doped GdBCO superconducting bulk samples, each 25 mm in diameter, fabricated by top-seeded melt growth and reinforced with shrink-fit stainless steel. This sample preparation technique has the advantage of being relatively straightforward and inexpensive to implement, and offers the prospect of easy access to portable, high magnetic fields without any requirement for a sustaining current source.

  10. Fabrication of high performance Gd-Ba-Cu-O single grains in air using a practical melt processing technique

    Energy Technology Data Exchange (ETDEWEB)

    Cardwell, D.A., E-mail: dc135@cam.ac.u [Engineering Department, Trumpington Street, University of Cambridge, CB2 1PZ (United Kingdom); Shi, Y. [Engineering Department, Trumpington Street, University of Cambridge, CB2 1PZ (United Kingdom); Hari Babu, N. [Engineering Department, Trumpington Street, University of Cambridge, CB2 1PZ (United Kingdom); BCAST, Brunel University, West London UB8 3PH (United Kingdom); Iida, K. [Engineering Department, Trumpington Street, University of Cambridge, CB2 1PZ (United Kingdom)

    2009-10-15

    A practical processing route for the fabrication of LRE-Ba-Cu-O single grain superconductors has been developed at the University of Cambridge based on a generic, Mg-doped Nd-123 melt textured seed and suppression of the formation of the solid solution phase in air by enriching the precursors with higher Ba concentration. The processing of high performance Gd-Ba-Cu-O single grains using this processing route is described. The Mg-doped generic seed crystal has been used effectively to promote heterogeneous nucleation via a cold-seeding process. The Gd/Ba solid solution has been suppressed by enriching Gd-Ba-Cu-O precursor powders with two different Ba-rich compositions. This involved adding BaO{sub 2} and GdBa{sub 6}Cu{sub 3}O{sub y} (Gd-163) (a novel Ba-rich second phase) to the precursor powders, respectively. The Gd-163 phase has been observed not only to suppress formation of the solid solution phase, but also to promote increased heterogeneous grain size. A detailed further study has been carried out with an initial aim of optimizing the BaO{sub 2} and Gd-163 phase content of the precursor composition to produce a single grain almost free of solid solution. Based on the optimized parameters, large single grain Gd-Ba-Cu-O superconductors have been fabricated in an air atmosphere and demonstrated to exhibit record trapped magnetic fields for this material melt processed in air in relatively small single grain samples. The trapped fields of samples produced in air atmosphere are at least comparable to those processed under reduced oxygen partial pressure.

  11. Interrelation of the structure, vibrational spectra and critical temperature of (123)-superconductors. [YScBaSrCuO; YBaSrCuAlO; GdBaCuO; YBaCuO

    Energy Technology Data Exchange (ETDEWEB)

    Limonov, M.F.; Markov, Yu.F.; Panfilov, A.G.; Razbirin, B.S.; Syrnikov, P.P. (A.F. Ioffe Physico-Technical Inst., St. Petersburg (Russia)); Bush, A.A. (Inst. of Informatics MIREA, Moscow (Russia))

    1992-02-01

    Raman spectrum changes resulting from different variations of the crystal lattice YBa{sub 2}Cu{sub 3}O{sub {delta}} (such as the substitutions Y {yields} rare-earth element R, Ba {yields} Sr, {delta}=6{yields}{delta}=7) have been studied. The concentration associated shift of vibrational frequencies of the oxygen atoms located in different layers of the lattice is shown to obey a general law: certain vibrations soften whereas the others harden. This vibrational behaviour is explained by the wave-like reconstruction of the crystal lattice (123). For the whole superconductor family RBa{sub 2}Cu{sub 3}O{sub 7} and for YBa{sub 2}Cu{sub 3}O{sub 7} at hydrostatic pressure the increase in Tc with increasing frequency of the highest frequency A{sub g}-vibration is established. The results show the essential role of phonons in the high-Tc superconductivity mechanism. (orig.).

  12. Effect of metal impregnation in the field cool magnetization of bulk superconductor

    Energy Technology Data Exchange (ETDEWEB)

    Kita, M. [Superconductivity Research Laboratory, ISTEC, 1-10-13 Shinonome, Koto-ku, Tokyo 135-0062 (Japan)]. E-mail: kita@istec.or.jp; Nariki, S. [Superconductivity Research Laboratory, ISTEC, 1-10-13 Shinonome, Koto-ku, Tokyo 135-0062 (Japan); Sakai, N. [Superconductivity Research Laboratory, ISTEC, 1-10-13 Shinonome, Koto-ku, Tokyo 135-0062 (Japan); Hirabayashi, I. [Superconductivity Research Laboratory, ISTEC, 1-10-13 Shinonome, Koto-ku, Tokyo 135-0062 (Japan)

    2006-10-01

    Gd-Ba-Cu-O bulk superconductors have significant potential for various applications due to the high critical current density and the highly trapped magnetic fields. Recently we have developed a large sized bulk superconductor using Gd210, which is discovered in the microgravity experiment. We investigated the mechanical properties and the cryostability of the Gd-Ba-Cu-O bulk superconductor to determine how to improve toughness and heat conduction of the large sized bulk superconductor. We introduced a stainless ring around the circumference of the bulk to increase the fracture strength of the bulk. Also, we introduced Al wires inserted in the hole along the c-axis of the bulk, and then the sample was subjected to the impregnation by using Bi-Sn-Cd alloy. We measured the trapped magnetic fields and the repulsive forces of the samples. The trapped magnetic field distributions were 1.13-1.36 T. The repulsive forces at 1 mm gap between the sample bulk and the permanent magnet with the surface magnetic induction of 0.37 T were about 70 N at 77 K. We have also measured the temperature dependence of the trapped magnetic field, and confirmed the effect of metal impregnation.

  13. NiFe alloy particles doping effect of Gd-Ba-Cu-O bulks processed by a new cold-seeding technology%钆钡铜氧超导单晶块材的冷籽晶诱导生长及铁镍合金的掺杂作用

    Institute of Scientific and Technical Information of China (English)

    周迪帆; 徐坤; Shogo HARA; 李备战; Mitsuru IZUMI

    2013-01-01

      介绍了利用在MgO衬底上生长NdBa2Cu3Oy(Nd123)薄膜从而诱导生长GdBa2Cu3Oy(Gd123)超导单畴块材的工艺,并在此基础上研究了使用MgO缓冲层诱导生长钆钡铜氧单畴块材的工艺。通过调整热处理参数和缓冲层中Gd2BaCuO5(Gd211)相的含量,克服了MgO与Gd123母体的晶格失配和低反应率的问题。成功制备了Gd123单畴块材,研究了铁镍软磁合金粒子在超导块材中的掺杂作用。结果表明,0.4%(摩尔分数)为最优掺杂比例,超导临界电流在低场和中场下得到了很大的提升,对工业应用有重要意义。超导电流的提升主要源于铁、镍离子对铜位的替代,并提供了额外的磁通钉扎。%The process of cold seeding melt growth of GdBa2Cu3Oy (Gd123) bulk superconductors using NdBa2Cu3Oy (Nd123) thin films was reported. In addition, a novel cold seeding concept of combining MgO crystal and buffer pellet was also introduced. The misorientation caused by the lattice mismatch between MgO and Gd123 melt was overcome by choosing suitable heat treatment program and Gd2BaCuO5 (Gd211) content of the buffer pellet. The doping effect of soft ferromagnetic NiFe alloy particles was also reported. The bulk sample with 0.4%(mole fraction) doping amount shows the best performance on the flux trapping. The critical current density is largely enhanced under the external field of 1−2 T, which is promising for large-scale applications. This effect is originated from the substitution of Fe and Ni ions for the Cu sites contributing to magnetic flux pinning.

  14. Developments in the processing of bulk (RE)BCO superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Babu, N. Hari, E-mail: mtsthbn@brunel.ac.u [Brunel Centre for Advanced Solidification Technology (BCAST), Brunel University, West London UB8 3PH (United Kingdom); Shi, Y.-H.; Pathak, S.K.; Dennis, A.R.; Cardwell, D.A. [Bulk Superconductivity Group, Engineering Department, University of Cambridge, Cambridge CB2 1PZ (United Kingdom)

    2011-03-15

    Research highlights: {yields} (RE)-Ba-Cu-O bulk superconductors containing nano-scale inclusions are fabricated. {yields} Generic seed crystal development enabled batch process for Gd-Ba-Cu-O. {yields} Multi-grains with strongly coupled grain boundaries are fabricated. {yields} We propose recycling concept for bulk superconductors. - Abstract: The development of a practical processing method for the fabrication of high performance large, single grain bulk superconductors is essential for their cost-effective application in a variety of high field engineering devices. We discuss recent developments in the processing of these materials that enable high performance bulk superconductors to be fabricated in a practical way. These include the introduction of nano-scale second phase inclusions to the superconducting phase matrix, the development of a generic seed crystal, the development of practical, batch processing routes for the fabrication of light rare earth superconductors, the processing of complex shaped geometries via controlled multi-seeding and recycling of scrap bulk samples into high performance, single grains.

  15. Batch-processed GdBCO-Ag bulk superconductors fabricated using generic seeds with high trapped fields

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Y., E-mail: ys206@cam.ac.u [Superconductivity Group, Engineering Department, University of Cambridge, CB2 1PZ (United Kingdom); Hari Babu, N. [Brunel Centre for Advanced Solidification Technology (BCAST), Brunel University, West London UB8 3PH (United Kingdom); Iida, K. [Superconducting Group, IFW-Dresden Helmoholtz Str. 20, D-01069 Dresden (Germany); Yeoh, W.K. [Australian Key Centre for Microscopy and Microanalysis, University of Sydney, NSW 2006 (Australia); Dennis, A.R.; Pathak, S.K.; Cardwell, D.A. [Superconductivity Group, Engineering Department, University of Cambridge, CB2 1PZ (United Kingdom)

    2010-09-01

    Large, single grains of Y-Ba-Cu-O (YBCO) have been batch-processed to date by the top seeded melt growth (TSMG) process using NdBCO or SmBCO seed crystals. It has proved difficult, however, to economically batch-process light rare earth (LRE) LRE-Ba-Cu-O bulk high temperature superconductors, which have higher critical current densities and irreversibility fields than YBCO, and therefore greater potential for high field engineering applications. In this paper, we report a novel batch-process based on a cheap, readily available generic seed crystal, developed recently at Cambridge, and a TSMG melt processing technique based on cold seeding in air for the batch fabrication of Gd-Ba-Cu-O-Ag single grains. The superconducting properties of the (LRE)BCO single grains fabricated by this process are, in all respects, equivalent to those processed more conventionally in a reduced oxygen atmosphere.

  16. A portable magnetic field of >3 T generated by the flux jump assisted, pulsed field magnetization of bulk superconductors

    Science.gov (United States)

    Zhou, Difan; Ainslie, Mark D.; Shi, Yunhua; Dennis, Anthony R.; Huang, Kaiyuan; Hull, John R.; Cardwell, David A.; Durrell, John H.

    2017-02-01

    A trapped magnetic field of greater than 3 T has been achieved in a single grain GdBa2Cu3O7-δ (GdBaCuO) bulk superconductor of diameter 30 mm by employing pulsed field magnetization. The magnet system is portable and operates at temperatures between 50 K and 60 K. Flux jump behaviour was observed consistently during magnetization when the applied pulsed field, Ba, exceeded a critical value (e.g., 3.78 T at 60 K). A sharp dBa/dt is essential to this phenomenon. This flux jump behaviour enables the magnetic flux to penetrate fully to the centre of the bulk superconductor, resulting in full magnetization of the sample without requiring an applied field as large as that predicted by the Bean model. We show that this flux jump behaviour can occur over a wide range of fields and temperatures, and that it can be exploited in a practical quasi-permanent magnet system.

  17. Effect of Gd2O3 Addition on the Superconductivity of Gd-Ba-Cu-O Bulk Superconductor Fabricated in Air%Gd2O3的添加对Gd-Ba-Cu-O超导块材性能的影响

    Institute of Scientific and Technical Information of China (English)

    张红; 冯勇; 周廉; 张翠萍; 于泽铭; 熊晓梅

    2004-01-01

    采用PMP工艺在空气中成功制备了φ17 mm的单畴Gd-Ba-Cu-O超导体.利用Gd2O3代替Gd 211的添加,同样可以提高Gd-Ba-Cu-O的超导性能,并且可以降低样品的制备成本.但过量的Gd2O3的添加会造成Gd-Ba-Cu-O超导体中Gd-Ba固溶体的增加,从而降低样品的超导性能.本实验中Gd2O3的最佳添加量为0.15 mol,制备的样品捕获磁通达到0.36 T(77 K).

  18. Enhanced trapped field performance of bulk high-temperature superconductors using split coil, pulsed field magnetization with an iron yoke

    Science.gov (United States)

    Ainslie, M. D.; Fujishiro, H.; Mochizuki, H.; Takahashi, K.; Shi, Y.-H.; Namburi, D. K.; Zou, J.; Zhou, D.; Dennis, A. R.; Cardwell, D. A.

    2016-07-01

    Investigating and predicting the magnetization of bulk superconducting materials and developing practical magnetizing techniques is crucial to using them as trapped field magnets in engineering applications. The pulsed field magnetization (PFM) technique is considered to be a compact, mobile and relative inexpensive way to magnetize bulk samples, requiring shorter magnetization times (on the order of milliseconds) and a smaller and less complicated magnetization fixture; however, the trapped field produced by PFM is generally much smaller than that of slower zero field cooling or field cooling techniques, particularly at lower operating temperatures. In this paper, the PFM of two, standard Ag-containing Gd-Ba-Cu-O samples is carried out using two types of magnetizing coils: (1) a solenoid coil, and (2) a split coil, both of which make use of an iron yoke to enhance the trapped magnetic field. It is shown that a significantly higher trapped field can be achieved using a split coil with an iron yoke, and in order to explain these how this arrangement works in detail, numerical simulations using a 2D axisymmetric finite element method based on the H -formulation are carried to qualitatively reproduce and analyze the magnetization process from both electromagnetic and thermal points of view. It is observed that after the pulse peak significantly less flux exits the bulk when the iron core is present, resulting in a higher peak trapped field, as well as more overall trapped flux, after the magnetization process is complete. The results have important implications for practical applications of bulk superconductors as such a split coil arrangement with an iron yoke could be incorporated into the design of a portable, high magnetic field source/magnet to enhance the available magnetic field or in an axial gap-type bulk superconducting electric machine, where iron can be incorporated into the stator windings to (1) improve the trapped field from the magnetization process

  19. Large area bulk superconductors

    Science.gov (United States)

    Miller, Dean J.; Field, Michael B.

    2002-01-01

    A bulk superconductor having a thickness of not less than about 100 microns is carried by a polycrystalline textured substrate having misorientation angles at the surface thereof not greater than about 15.degree.; the bulk superconductor may have a thickness of not less than about 100 microns and a surface area of not less than about 50 cm.sup.2. The textured substrate may have a thickness not less than about 10 microns and misorientation angles at the surface thereof not greater than about 15.degree.. Also disclosed is a process of manufacturing the bulk superconductor and the polycrystalline biaxially textured substrate material.

  20. Development of superconductor bulk for superconductor bearing

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Chan Joong; Jun, Byung Hyuk; Park, Soon Dong (and others)

    2008-08-15

    Current carrying capacity is one of the most important issues in the consideration of superconductor bulk materials for engineering applications. There are numerous applications of Y-Ba-Cu-O (YBCO) bulk superconductors e.g. magnetic levitation train, flywheel energy storage system, levitation transportation, lunar telescope, centrifugal device, magnetic shielding materials, bulk magnets etc. Accordingly, to obtain YBCO materials in the form of large, single crystals without weak-link problem is necessary. A top seeded melt growth (TSMG) process was used to fabricate single crystal YBCO bulk superconductors. The seeded and infiltration growth (IG) technique was also very promising method for the synthesis of large, single-grain YBCO bulk superconductors with good superconducting properties. 5 wt.% Ag doped Y211 green compacts were sintered at 900 .deg. C {approx} 1200 .deg.C and then a single crystal YBCO was fabricated by an infiltration method. A refinement and uniform distribution of the Y211 particles in the Y123 matrix were achieved by sintering the Ag-doped samples. This enhancement of the critical current density was ascribable to a fine dispersion of the Y211 particles, a low porosity and the presence of Ag particles. In addition, we have designed and manufactured large YBCO single domain with levitation force of 10-13 kg/cm{sup 2} using TSMG processing technique.

  1. Bulk Superconductors in Mobile Application

    Science.gov (United States)

    Werfel, F. N.; Delor, U. Floegel-; Rothfeld, R.; Riedel, T.; Wippich, D.; Goebel, B.; Schirrmeister, P.

    We investigate and review concepts of multi - seeded REBCO bulk superconductors in mobile application. ATZ's compact HTS bulk magnets can trap routinely 1 T@77 K. Except of magnetization, flux creep and hysteresis, industrial - like properties as compactness, power density, and robustness are of major device interest if mobility and light-weight construction is in focus. For mobile application in levitated trains or demonstrator magnets we examine the performance of on-board cryogenics either by LN2 or cryo-cooler application. The mechanical, electric and thermodynamical requirements of compact vacuum cryostats for Maglev train operation were studied systematically. More than 30 units are manufactured and tested. The attractive load to weight ratio is more than 10 and favours group module device constructions up to 5 t load on permanent magnet (PM) track. A transportable and compact YBCO bulk magnet cooled with in-situ 4 Watt Stirling cryo-cooler for 50 - 80 K operation is investigated. Low cooling power and effective HTS cold mass drives the system construction to a minimum - thermal loss and light-weight design.

  2. Applications of bulk high-temperature superconductors

    Science.gov (United States)

    Hull, J. R.

    The development of high-temperature superconductors (HTS's) can be broadly generalized into thin-film electronics, wire applications, and bulk applications. We consider bulk HTS's to include sintered or crystallized forms that do not take the geometry of filaments or tapes, and we discuss major applications for these materials. For the most part applications may be realized with the HTS's cooled to 77 K, and the properties of the bulk HTS's are often already sufficient for commercial use. A non-exhaustive list of applications for bulk HTS's includes trapped field magnets, hysteresis motors, magnetic shielding, current leads, and magnetic bearings. These applications are briefly discussed in this paper.

  3. Trapped magnetic field measurements on HTS bulk by peak controlled pulsed field magnetization

    Energy Technology Data Exchange (ETDEWEB)

    Ida, Tetsuya; Watasaki, Masahiro [Department of Electronic Control Engineering, Hiroshima National College of Maritime Technology, 4272-1, Higashino, Ohsakikamijima-cho, Toyota-gun, Hiroshima 725-0231 (Japan); Kimura, Yosuke [Kawasaki Heavy Industries, Ltd. Technical Institute System Technology Development Centre 1-1, Kawasaki-cho, Akashi-shi, Hyogo 673-8666 (Japan); Miki, Motohiro; Izumi, Mitsuru, E-mail: ida@hiroshima-cmt.ac.j [Department of Marine Electronics and Mechanical Engineering, Tokyo University of Marine Science and Technology, 2-1-6, Etchu-jima, Koto-ku, Tokyo 135-8533 (Japan)

    2010-06-01

    For the past several years, we have studied the high-temperature superconducting (HTS) synchronous motor assembled with melt-textured Gd-Ba-Cu-O bulk magnets. If the single pulse field magnetizes a bulk effectively, size of electrical motor will become small for the strong magnetic field of the HTS magnets without reducing output power of motor. In the previous study, we showed that the HTS bulk was magnetized to excellent cone-shape magnetic field distribution by using the waveform control pulse magnetization (WCPM) method. The WCPM technique made possible the active control of the waveform on which magnetic flux motion depended. We generated the pulse waveform with controlled risetime for HTS bulk magnetization to suppress the magnetic flux motion which decreases magnetization efficiency. The pulsed maximum magnetic flux density with slow risetime is not beyond the maximum magnetic flux density which is trapped by the static field magnetization. But, as for applying the pulse which has fast risetime, the magnetic flux which exceed greatly the threshold penetrates the bulk and causes the disorder of the trapped magnetic distribution. This fact suggests the possibility that the threshold at pulsed magnetization influences the dynamic magnetic flux motion. In this study, Gd-Ba-Cu-O bulk is magnetized by the controlled arbitrary trapezoidal shape pulse, of which the maximum magnetic flux density is controlled not to exceed the threshold. We will present the trapped magnetic characteristics and the technique to generate the controlled pulsed field.

  4. Fault current limiter using bulk oxides superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Belmont, O.; Ferracci, P.; Porcar, L.; Barbut, J.M. [Schneider Electric, Grenoble (France). Usine A3; Tixador, P.; Noudem, J.G.; Bourgault, D.; Tournier, R

    1998-08-01

    We study the limitation possibilities of bulk Bi high T{sub c} materials. For this we test these materials with AC or DC currents above their critical currents. We study particularly the evolution of the voltage with time or with current. The material, the value of the current and the time duration play important parts. For sintered Bi samples the voltage depends only on the current even for values much larger than the critical current. With textured samples the V(I) curves shows an hysteretic behaviour due to a warming up. The textured materials are more interesting than sintered ones in terms of required volume for the current limitation. In both cases the superconductors are in a dissipative state but not in the normal state. This state is nevertheless reached if the dissipated energy inside the sample is sufficient. We have tried to apply a magnetic field on the samples in order to trigger a more effective limitation. The voltage increases but with a limited effect for currents much higher (3-4 times) than the critical zero field current. We think that the dissipative state is due mainly to the grain boundaries which become resistive above the critical current. (orig.) 11 refs.

  5. Factors affecting characterization of bulk high-temperature superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Hull, J.R. [Argonne National Lab., IL (United States). Energy Technology Div.

    1997-11-01

    Three major factors affect the characterization of bulk high-temperature superconductors in terms of their levitation properties during interaction with permanent magnets. First, the appropriate parameter for the permanent magnet is internal magnetization, not the value of the magnetic field measured at the magnet`s surface. Second, although levitation force grows with superconductor thickness and surface area, for a given permanent magnet size, comparison of levitation force between samples is meaningful when minimum values are assigned to the superconductor size parameters. Finally, the effect of force creep must be considered when time-averaging the force measurements. In addition to levitational force, the coefficient of friction of a levitated rotating permanent magnet may be used to characterize the superconductor.

  6. Growth and characterization of bulk superconductor material

    CERN Document Server

    Chen, Dapeng; Maljuk, Andrey; Zhou, Fang

    2016-01-01

    This book focuses on recently developed crystal growth techniques to grow large and high quality superconducting single crystals. The techniques applied are traveling solvent floating zone (TSFZ) with infrared image furnace, Bridgeman, solution/flux and top seeded solution growth (TSSG) methods. The materials range from cuprates, cobaltates to pnictides including La2CuO4-based (LCO), YBa2Cu3O7-d (YBCO), Bi2Sr2Can−1CunO2n+4+δ (n=1,2,3) (BSCCO) to NaxCoO2. The modified Bridgman “cold finger” method is devoted to the pnictide system with the best quality (transition width DTc~0.5 K) with highest Tc~38.5 K of Ba0.68K0.32Fe2A2. The book presents various iron-based superconductors with different structures, such as 1111, 122, 111, 11 and 42622,10-3-8. Detailed single crystal growth methods (fluxes, Bridgman, floating zone), the associated procedures and their impact to crystal size and quality are presented. The book also describes the influence of doping on the structure and the electric, magnetic, and supe...

  7. Permanent magnet with MgB2 bulk superconductor

    Science.gov (United States)

    Yamamoto, Akiyasu; Ishihara, Atsushi; Tomita, Masaru; Kishio, Kohji

    2014-07-01

    Superconductors with persistent zero-resistance currents serve as permanent magnets for high-field applications requiring a strong and stable magnetic field, such as magnetic resonance imaging. The recent global helium shortage has quickened research into high-temperature superconductors (HTSs)—materials that can be used without conventional liquid-helium cooling to 4.2 K. Herein, we demonstrate that 40-K-class metallic HTS magnesium diboride (MgB2) makes an excellent permanent bulk magnet, maintaining 3 T at 20 K for 1 week with an extremely high stability (cryocoolers, making MgB2 bulks promising for the next generation of Tesla-class permanent-magnet applications.

  8. Processing of bulk Bi-2223 high-temperature superconductor

    Directory of Open Access Journals (Sweden)

    Alexander Polasek

    2005-12-01

    Full Text Available The Bi2Sr2Ca2Cu3 O10+x (Bi-2223 is one of the main high temperature superconductors for applications. One of these applications is the Superconductor Fault Current Limiter (SCFCL, which is a very promising high temperature superconducting device. SCFCL's can be improved by using bulk superconductors with high critical currents, which requires a sufficiently dense and textured material. In the present work, a process for improving the microstructure of Bi-2223 bulk samples is investigated. Pressed precursor blocks are processed by sintering with a further partial melting step, in order to enhance the Bi-2223 grain texture and to healing cracks induced by pressing. In order to improve the microstructure, the precursor is mixed with silver powder before pressing. Samples with and without silver powder have been studied, with the aim of investigating the influence of silver on the microstructure evolution. The phase contents and the microstructure obtained have been analyzed through XRD and SEM/EDS. The electromagnetic characterization has been performed by Magnetic Susceptibility Analysis. We present and discuss the process and the properties of the superconducting blocks. High fractions of textured Bi-2223 grains have been obtained.

  9. Permanent magnet with MgB{sub 2} bulk superconductor

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Akiyasu, E-mail: yamamoto@appchem.t.u-tokyo.ac.jp [The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656 (Japan); JST-PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012 (Japan); Ishihara, Atsushi; Tomita, Masaru [Railway Technical Research Institute, 2-8-38 Hikari, Kokubunji, Tokyo 185-8540 (Japan); Kishio, Kohji [The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656 (Japan)

    2014-07-21

    Superconductors with persistent zero-resistance currents serve as permanent magnets for high-field applications requiring a strong and stable magnetic field, such as magnetic resonance imaging. The recent global helium shortage has quickened research into high-temperature superconductors (HTSs)—materials that can be used without conventional liquid-helium cooling to 4.2 K. Herein, we demonstrate that 40-K-class metallic HTS magnesium diboride (MgB{sub 2}) makes an excellent permanent bulk magnet, maintaining 3 T at 20 K for 1 week with an extremely high stability (<0.1 ppm/h). The magnetic field trapped in this magnet is uniformly distributed, as for single-crystalline neodymium-iron-boron. Magnetic hysteresis loop of the MgB{sub 2} permanent bulk magnet was determined. Because MgB{sub 2} is a simple-binary-line compound that does not contain rare-earth metals, polycrystalline bulk material can be industrially fabricated at low cost and with high yield to serve as strong magnets that are compatible with conventional compact cryocoolers, making MgB{sub 2} bulks promising for the next generation of Tesla-class permanent-magnet applications.

  10. Development of fabrication technique of bulk high superconductor

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Gye Won; Kim, Chang Joong; Kim, Ki Baik; Lee, Ho Jin; Lee, Hee Gyoun; Kwon, Sun Chil

    1997-05-01

    In order to realize the commercial application of HTSC materials, it is necessary to develop the fabrication process of high Tc oxide superconductor materials with desired shape and for practical application and high critical current density as well as good mechanical strength which critical current density as well as good mechanical strength which can withstand high lorenz force generated at high magnetic field. Much studies have been concentrated to develop the fabrication technique for high critical current density but still there are a lot of gap which should be overcome for large scale application of HTSC materials at liquid nitrogen temperature. Recently some new fabrication techniques have been developed for YBCO bulk superconductor with high mechanical strength and critical current density. In this project, plastic extrusion and melt process techniques were studied. The components materials for the current lead and the flywheel application were fabricated and their characteristics were investigated from the view point of microstructure and phase formation during heat treatment process. (author). 64 refs., 59 figs.

  11. Melt processing of bulk high Tc superconductors and their application

    Science.gov (United States)

    Murakami, M.; Oyama, T.; Fujimoto, H.; Gotoh, S.; Yamaguchi, K.

    1991-03-01

    The authors report a melt-powder-melt-growth (MPMG) process which results in high Jc for bulk Y-Ba-Cu-O superconductors. The Y-Ba-Cu-O pellets or powders are melt quenched. The quenched plates are crushed into powder and mixed well. The powder is then compacted into desired shapes, remelted, and slowly cooled in a thermal gradient. When the starting composition is changed from the 1:2:3 stoichiometry toward the Y2BaCuO5(211) rich region, the 211 inclusions can be dispersed in the YBa2Cu3O(x) matrix, which contributes to increases in both flux pinning force and fracture toughness. A Jc value exceeding 3 x 108 A/sq m has been achieved at 77 K and 1 T. Another attractive feature of the MPMG process is that other components such as fine Ag powders can be added during solid-state mixing. Fine dispersion of Ag particles can effectively reduce the amount of cracking. MPMG-processed Y-Ba-Cu-O with Ag doping can levitate a mass of 3-kg at 1-mm height using a repulsive force against a 0.4-T magnet. A noncontacting rotation device such as a magnetic bearing can be made utilizing bulk high-Jc materials. A superconducting permanent magnet is also a promising candidate for future application. MPMG-processed Y-Ba-Cu-O can generate 0.25 T at 77 K.

  12. Improvement of the mechanical properties of bulk superconductors; Jushiganshin niyoru baruku chodendotai no kikaitekitokusei no kaizen

    Energy Technology Data Exchange (ETDEWEB)

    Tomita, M; Murakami, M [Superconductivity Research Laboratory, Tokyo (Japan)

    1999-11-25

    Large single-grain bulk rare earth element (RE)-Ba-Cu-O superconductors can trip large fields exceeding several teslas and thus can function as very strong quasi-permanent magnets. However, the maximum trapped field is essentially limited by the mechanical strength of the bulk superconductors. The stress produced by refrigeration sometimes causes cracking. A large electromagnetic force also acts on superconductors when they trap large magnetic fields, and this occasionally leads to device failure. We have recently found that epoxy resin can penetrate into bulk superconductors under certain conditions. Microstructural observation revealed that microcracks as well as porosities can be impregnated with epoxy resin, which greatly improves the mechanical properties of bulk RE-Ba-Cu-O and thus results in the improvement of field trapping capability. (author)

  13. Bulk superconductivity in Type II superconductors near the second critical field

    DEFF Research Database (Denmark)

    Fournais, Søren; Helffer, Bernard

    2010-01-01

    We consider superconductors of Type II near the transition from the ‘bulk superconducting’ to the ‘surface superconducting’ state. We prove a new L∞ estimate on the order parameter in the bulk, i.e. away from the boundary. This solves an open problem posed by Aftalion and Serfaty [AS].......We consider superconductors of Type II near the transition from the ‘bulk superconducting’ to the ‘surface superconducting’ state. We prove a new L∞ estimate on the order parameter in the bulk, i.e. away from the boundary. This solves an open problem posed by Aftalion and Serfaty [AS]....

  14. Magnetic Signals of High-Temperature Superconductor Bulk During the Levitation Force Measurement Process

    Science.gov (United States)

    Huang, Huan; Zheng, Jun; Qian, Nan; Che, Tong; Zheng, Botian; Jin, Liwei; Deng, Zigang

    2017-05-01

    In order to study the commonly neglected magnetic field information in the course of levitation force measurement process in a superconducting maglev system, a multipoint magnetic field measurement platform was employed to acquire magnetic signals of a bulk high-Tc superconductor on both the top and the bottom surface. Working conditions including field cooling (FC) and zero field cooling were investigated for these vertical down and up motions above a permanent magnet guideway performed on a HTS maglev measurement system. We have discussed the magnetic flux variation process based on the Bean model. A magnetic hysteresis effect similar to the levitation force hysteresis loop of the bulk superconductor was displayed and analyzed in this paper. What is more valuable, there exists some available magnetic flux on the top surface of the bulk superconductor, and the proportion is as high as 62.42% in the FC condition, which provides an experimental hint to design the superconductor bulk and the applied field for practical use in a more efficient way. In particular, this work reveals real-time magnetic flux variation of the bulk superconductor in the levitation application, which is the other important information in contrast to the macroscopic levitation and guidance force investigations in previous studies, and it enriches the existing research methods. The results are significant for understanding the magnetic characteristic of superconductors, and they can contribute to optimize the present HTS maglev system design.

  15. Magnetic Signals of High-Temperature Superconductor Bulk During the Levitation Force Measurement Process

    Science.gov (United States)

    Huang, Huan; Zheng, Jun; Qian, Nan; Che, Tong; Zheng, Botian; Jin, Liwei; Deng, Zigang

    2017-02-01

    In order to study the commonly neglected magnetic field information in the course of levitation force measurement process in a superconducting maglev system, a multipoint magnetic field measurement platform was employed to acquire magnetic signals of a bulk high-Tc superconductor on both the top and the bottom surface. Working conditions including field cooling (FC) and zero field cooling were investigated for these vertical down and up motions above a permanent magnet guideway performed on a HTS maglev measurement system. We have discussed the magnetic flux variation process based on the Bean model. A magnetic hysteresis effect similar to the levitation force hysteresis loop of the bulk superconductor was displayed and analyzed in this paper. What is more valuable, there exists some available magnetic flux on the top surface of the bulk superconductor, and the proportion is as high as 62.42% in the FC condition, which provides an experimental hint to design the superconductor bulk and the applied field for practical use in a more efficient way. In particular, this work reveals real-time magnetic flux variation of the bulk superconductor in the levitation application, which is the other important information in contrast to the macroscopic levitation and guidance force investigations in previous studies, and it enriches the existing research methods. The results are significant for understanding the magnetic characteristic of superconductors, and they can contribute to optimize the present HTS maglev system design.

  16. Surface barrier and bulk pinning in MgB$_2$ superconductor

    OpenAIRE

    Pissas, M.; Moraitakis, E.; Stamopoulos, D.; Papavassiliou, G.; V. Psycharis; Koutandos, S.

    2001-01-01

    We present a modified method of preparation of the new superconductor MgB$_2$. The polycrystalline samples were characterized using x-ray and magnetic measurements. The surface barriers control the isothermal magnetization loops in powder samples. In bulk as prepared samples we always observed symmetric magnetization loops indicative of the presence of a bulk pinning mechanism. Magnetic relaxation measurements in the bulk sample reveal a crossover of surface barrier to bulk pinning.

  17. Bulk superconductivity in Type II superconductors near the second critical field

    CERN Document Server

    Fournais, S

    2008-01-01

    We consider superconductors of Type II near the transition from the 'bulk superconducting' to the 'surface superconducting' state. We prove a new $L^{\\infty}$ estimate on the order parameter in the bulk, i.e. away from the boundary. This solves an open problem posed by Aftalion and Serfaty.

  18. Superconductors, analysis and applications, with special reference to the utilisation of bulk (Re)BCO materials

    Energy Technology Data Exchange (ETDEWEB)

    Coombs, T.A., E-mail: tac1000@cam.ac.u [University of Cambridge, Department of Engineering, Trumpington Street, Cambridge CB2 1PZ (United Kingdom)

    2010-11-01

    The Electrical Power and Energy Conversion (EPEC) superconductivity group at Cambridge University has been working on the application of superconductivity to large scale devices. This work is taking place over a range of areas which cover FCLs, motors and generators, SMES, accelerator magnets and MRI. The research is underpinned by advanced modelling techniques using both pure Critical State models and E-J models to analyse the behaviour of the superconductors. As part of the device design we are concentrating on the analysis of AC losses in complicated geometries such as are found in motor windings and the magnetisation of bulk superconductors to enable their full potential to be realised. We are interested in the full range of high-temperature superconductors and have measured and predicted the performance of YBCO, MgB{sub 2} and BSCCO at a range of temperatures and in wire, tape and bulk forms. This paper concentrates on recent work which includes: modelling of coils using formulations based on H and A. A critical state model for the analysis of coils in SMES; crossed field effects in bulk superconductors; a magnetic model together with experimental results which explain and describe the method of flux pumping whereby a bulk superconductor can be magnetised to a high flux density using a repeatedly applied field of low flux density and finally a new configuration for MRI magnets

  19. Magnetizing properties of the commercial bulk superconductors; Shihan yo koon chodendo baruku no jika tokusei

    Energy Technology Data Exchange (ETDEWEB)

    Fujita, H.; Fujinuma, S.; Noto, K. [Iwate Univ., Iwate (Japan); Murakami, M.; Yoshioka, J. [International Superconductivity Tech. Center, Tokyo (Japan); Chiba, T.

    2000-05-29

    It carries out the research in the high-temperature superconductor by many researchers, and it expects the practical application in tape wire rod, thin film and bulk material in various fields mainly on electric power application. Especially, it markets the high-temperature superconductivity bulk material for the application in the bulk material. It recently develops superconductive permanent magnet, which realized the temperature range of which superconducting characteristic using the high-temperature superconductivity bulk material is excellent using small refrigerating machine. Then, we evaluated the magnetization characteristic on the high-temperature superconductivity bulk material marketed. (NEDO)

  20. Development of superconducting magnetic bearing with superconducting coil and bulk superconductor for flywheel energy storage system

    Science.gov (United States)

    Arai, Y.; Seino, H.; Yoshizawa, K.; Nagashima, K.

    2013-11-01

    We have been developing superconducting magnetic bearing for flywheel energy storage system to be applied to the railway system. The bearing consists of a superconducting coil as a stator and bulk superconductors as a rotor. A flywheel disk connected to the bulk superconductors is suspended contactless by superconducting magnetic bearings (SMBs). We have manufactured a small scale device equipped with the SMB. The flywheel was rotated contactless over 2000 rpm which was a frequency between its rigid body mode and elastic mode. The feasibility of this SMB structure was demonstrated.

  1. Elliptical hole in a bulk superconductor under electromagnetic forces

    Energy Technology Data Exchange (ETDEWEB)

    Yong Huadong; Zhou Youhe [Key Laboratory of Mechanics on Western Disaster and Environment, Ministry of Education, Lanzhou 730000 (China); Department of Mechanics, Lanzhou University, Lanzhou 730000 (China)

    2009-02-15

    A simple model is presented for the distribution of flux-pinning-induced stress in a superconductor around an elliptical hole and the singular stress field near crack tips. The magnetic behavior is described by the critical state, the original Bean model. It is assumed that the perturbation brought upon by the elliptical hole on the critical current density is not significant. Explicit expressions for the stress field in the vicinity of an elliptical hole are derived based on the complex variable method. Furthermore, the stress intensity factor at the tip of a slender crack is determined. An exact solution is found during the decreasing field and field-cooling process. Dependence of the stress field on the parameters including the applied field, shape of the elliptical hole or superconductor slab is investigated. The results show that the applied field and geometry parameter have obvious effects on the distribution of the stress.

  2. Elliptical hole in a bulk superconductor under electromagnetic forces

    Science.gov (United States)

    Yong, Hua-Dong; Zhou, You-He

    2009-02-01

    A simple model is presented for the distribution of flux-pinning-induced stress in a superconductor around an elliptical hole and the singular stress field near crack tips. The magnetic behavior is described by the critical state, the original Bean model. It is assumed that the perturbation brought upon by the elliptical hole on the critical current density is not significant. Explicit expressions for the stress field in the vicinity of an elliptical hole are derived based on the complex variable method. Furthermore, the stress intensity factor at the tip of a slender crack is determined. An exact solution is found during the decreasing field and field-cooling process. Dependence of the stress field on the parameters including the applied field, shape of the elliptical hole or superconductor slab is investigated. The results show that the applied field and geometry parameter have obvious effects on the distribution of the stress.

  3. Present status of bulk high temperature superconductors; Baruku koonchodendotai kaihatsu no genjo

    Energy Technology Data Exchange (ETDEWEB)

    Murakami, Masato [Superconductivity Research Laboratory, Tokyo (Japan). Division 3

    1999-03-25

    Recent advancement in materials processing enabled us to grow large single-grain bulk RE-Ba-Cu-O superconductors (RE: rate earth elements) with high critical current densities. These superconductors can exhibit a large electromagnetic force with the interaction of external magnetic fields. Various devices have been developed by utilizing such a force: magnetic bearings, flywheels for energy storage, load transport, hysteresis motors, and several levitation devices. A large magnetic field can also be trapped by bulk superconductors, which can function as a quasi-permanent magnet. Trapped field values have already reached 10 T, thus leading to many novel applications of high trapped field magnets. The final target will be a second-generation Maglev train. (author)

  4. Anisotropy Effect on Levitation Performance of Bulk High-Tc Superconductors Above a Permanent Magnet Guideway

    Science.gov (United States)

    Zheng, Jun; Liao, Xinglin; Jing, Hailian; Lin, Qunxu; Ma, Guangtong; Yen, Fei; Wang, Suyu; Wang, Jiasu

    The anisotropy properties of bulk high-temperature superconductors (HTSCs) are taken into consideration for the application of high-temperature superconducting (HTS) Maglev systems, which are especially based on the different flux-trapping capabilities as well as critical current density, Jc, values between the growth section boundary (GSB) and the growth sections (GS) in bulk superconductors. By adjusting the angle between the GSB of bulk HTSCs and the strongest magnetic field position of a permanent magnet guideway (PMG), the levitation force and its relaxation processes are compared at different field-cooling conditions. Experimental results show that the levitation capability and the suppression of levitation force decay can be enhanced by optimizing the GS/GSB alignment of every bulk HTSC above the PMG. Meanwhile, our conclusions may provide references to other HTS maglev systems with small levitation gaps, i.e., superconducting magnetic bearings.

  5. Concepts for using trapped-flux bulk high-temperature superconductor in motors and generators

    Science.gov (United States)

    Hull, John R.; Strasik, Michael

    2010-12-01

    We review previous concepts for using bulk high-temperature superconductors (HTSs) in motors and generators and discuss methods for using trapped-flux (TF) HTSs in motors and generators that have been recently investigated in our laboratory. We examine the expected performance of a brushless motor/generator that uses TF bulk HTSs to provide magnetomotive force, where the stator windings are used to create the TF. A key feature is the use of dysprosium for the stator and rotor cores.

  6. Concepts for using trapped-flux bulk high-temperature superconductor in motors and generators

    Energy Technology Data Exchange (ETDEWEB)

    Hull, John R; Strasik, Michael [Boeing Research and Technology, PO Box 3707, MC 2T-50, Seattle, WA 98124-2207 (United States)

    2010-12-15

    We review previous concepts for using bulk high-temperature superconductors (HTSs) in motors and generators and discuss methods for using trapped-flux (TF) HTSs in motors and generators that have been recently investigated in our laboratory. We examine the expected performance of a brushless motor/generator that uses TF bulk HTSs to provide magnetomotive force, where the stator windings are used to create the TF. A key feature is the use of dysprosium for the stator and rotor cores.

  7. Magneto-thermal phenomena in bulk high temperature superconductors subjected to applied AC magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Vanderbemden, P; Laurent, P [SUPRATECS and Department of Electrical Engineering and Computer Science B28, Sart-Tilman, B-4000 Liege (Belgium); Fagnard, J-F [SUPRATECS, Royal Military Academy of Belgium, Avenue de la Renaissance, B-1000 Brussels (Belgium); Ausloos, M [SUPRATECS and Department of Physics B5, Sart-Tilman, B-4000 Liege (Belgium); Hari Babu, N [Brunel Centre for Advanced Solidification Technology (BCAST), Brunel University, West London UB8 3PH (United Kingdom); Cardwell, D A, E-mail: Philippe.Vanderbemden@ulg.ac.b [Bulk Superconductivity Group, Engineering Department, University of Cambridge, Cambridge CB2 1PZ (United Kingdom)

    2010-07-15

    In the present work we study, both theoretically and experimentally, the temperature increase in a bulk high temperature superconductor subjected to applied AC magnetic fields of large amplitude. We calculate analytically the equilibrium temperatures of the bulk sample as a function of the experimental parameters using a simple critical state model for an infinitely long type-II superconducting slab or cylinder. The results show the existence of a limit heat transfer coefficient (AU{sub lim}) separating two thermal regimes with different characteristics. The theoretical analysis predicts a 'forbidden' temperature window within which the temperature of the superconductor can never stabilize when the heat transfer coefficient is small. In addition, we determine analytical expressions for two threshold fields H{sub tr1} and H{sub tr2} characterizing the importance of magneto-thermal effects and show that a thermal runaway always occurs when the field amplitude is larger than H{sub tr2}. The theoretical predictions of the temperature evolution of the bulk sample during a self-heating process agree well with the experimental data. The simple analytical study presented in this paper enables order of magnitude thermal effects to be estimated for simple superconductor geometries under applied AC magnetic fields and can be used to predict the influence of experimental parameters on the self-heating characteristics of bulk type-II superconductors.

  8. Bulk viscosity of spin-one color superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Sa' d, Basil A.

    2009-08-27

    The bulk viscosity of several quark matter phases is calculated. It is found that the effect of color superconductivity is not trivial, it may suppress, or enhance the bulk viscosity depending on the critical temperature and the temperature at which the bulk viscosity is calculated. Also, is it found that the effect of neutrino-emitting Urca processes cannot be neglected in the consideration of the bulk viscosity of strange quark matter. The results for the bulk viscosity of strange quark matter are used to calculate the r-mode instability window of quark stars with several possible phases. It is shown that each possible phase has a different structure for the r-mode instability window. (orig.)

  9. A superconducting conveyer system using multiple bulk Y-Ba-Cu-O superconductors and permanent magnets

    Science.gov (United States)

    Kinoshita, T.; Koshizuka, N.; Nagashima, K.; Murakami, M.

    Developments of non-contact superconducting devices like superconducting magnetic levitation transfer and superconducting flywheel energy storage system have been performed based on the interactions between bulk Y-Ba-Cu-O superconductors and permanent magnets, in that the superconductors can stably be levitated without any active control. The performances of noncontact superconducting devices are dependent on the interaction forces like attractive forces and stiffness. In the present study, we constructed a non-contact conveyer for which the guide rails were prepared by attaching many Fe-Nd-B magnets onto an iron base plate. Along the translational direction, all the magnets were arranged as to face the same pole, and furthermore their inter-distance was made as small as possible. The guide rail has three magnet rows, for which the magnets were glued on the iron plate such that adjacent magnet rows have opposite poles like NSN. At the center row, the magnetic field at zero gap reached 0.61T, while the field strengths of two rows on the side edges were only 0.48T due to magnetic interactions among permanent magnets. We then prepared a cryogenic box made with FRP that can store several bulk Y-Ba-Cu-O superconductors 25 mm in diameter cooled by liquid nitrogen. It was found that the levitation forces and stiffness increased with increasing the number of bulk superconductors installed in the box, although the levitation force per unit bulk were almost the same. We also confirmed that these forces are dependent on the configuration of bulk superconductors.

  10. New method for introducing nanometer flux pinning centers into single domain YBCO bulk superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Yang, W.M., E-mail: yangwm@snnu.edu.cn; Wang, Miao

    2013-10-15

    Highlights: • Single domain YBCO bulks with Bi{sub 2}O{sub 3} additions fabricated by TSIG process. • Nanoscale Y{sub 2}Ba{sub 4}CuBiOx(YBi2411) particles introduced by Bi{sub 2}O{sub 3} additions. • The YBi2411 particles are about 150 nm, can act as effective flux pinning centers. • The optimal addition of Bi{sub 2}O{sub 3} is 0.7wt% to achieve higher levitation force. • The result is helpful to improve the quality of REBCO bulk superconductors. -- Abstract: Single domain YBCO superconductors with different additions of Bi{sub 2}O{sub 3} have been fabricated by top seeded infiltration and growth process (TSIG). The effect of Bi{sub 2}O{sub 3} additions on the growth morphology, microstructure and levitation force of the YBCO bulk superconductor has been investigated. The results indicate that single domain YBCO superconductors can be fabricated with the additions of Bi{sub 2}O{sub 3} less than 2 wt%; Bi{sub 2}O{sub 3} can be reacted with Y{sub 2}BaCuO{sub 5} and liquid phase and finally form Y{sub 2}Ba{sub 4}CuBiO{sub x}(YBi2411) nanoscale particles; the size of the YBi2411 particles is about 100 nm, which can act as effective flux pinning centers. It is also found that the levitation force of single domain YBCO bulks is increasing from 13 N to 34 N and decreasing to 11 N with the increasing of Bi{sub 2}O{sub 3} addition from 0.1 wt% to 0.7 wt% and 2 wt%. This result is helpful for us to improve the physical properties of REBCO bulk superconductors.

  11. A new 3D levitation force measuring device for REBCO bulk superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Chen, S.L. [School of Physics, Shaanxi Normal University, Xi’an 710062 (China); Yang, W.M., E-mail: yangwm@snnu.edu.cn [School of Physics, Shaanxi Normal University, Xi’an 710062 (China); Li, J.W.; Yuan, X.C. [School of Physics, Shaanxi Normal University, Xi’an 710062 (China); Ma, J. [School of Physics, Shaanxi Normal University, Xi’an 710062 (China); Department of Physics, Qinghai Normal University, Xining 810008 (China); Wang, M. [School of Physics, Shaanxi Normal University, Xi’an 710062 (China)

    2014-01-15

    Highlights: •A new 3D levitation force measuring device has been designed and constructed. •It can measure the 3D real-time interaction force simultaneously and directly. •Performance, accuracy and effectiveness has been demonstrate by tests. -- Abstract: A new 3D levitation force measuring device for ReBa{sub 2}Cu{sub 3}O{sub 7−x} (REBCO) bulk superconductors has been designed and constructed. Three pull pressure load cells are orthogonally set on a fixing bracket to test the interaction force between a bulk superconductor and a magnet in three dimensions. To realize the simple, rapid and accurate measurement of the levitation force, a non-magnetic hollow cylinder flange, three pull pressure load cells, a piece of iron plate, a NbFeB permanent magnet (PM) and some steel balls are elaborately constructed with the fixing bracket, thus the magnet or REBCO bulk superconductor can be well and rigidly connected with the load cells, and the mutual interference from the three pull pressure load cells can be effectively avoided during the levitation force measuring processes. This device can be used to measure the interaction (or levitation) force between a superconductor and a magnet, that between a magnet and a magnet, or the magnetic force among magnetic materials in three dimensions.

  12. Method for determining transport critical current densities and flux penetration depth in bulk superconductors

    Science.gov (United States)

    Israelsson, Ulf E. (Inventor); Strayer, Donald M. (Inventor)

    1992-01-01

    A contact-less method for determining transport critical current density and flux penetration depth in bulk superconductor material. A compressor having a hollow interior and a plunger for selectively reducing the free space area for distribution of the magnetic flux therein are formed of superconductor material. Analytical relationships, based upon the critical state model, Maxwell's equations and geometrical relationships define transport critical current density and flux penetration depth in terms of the initial trapped magnetic flux density and the ratio between initial and final magnetic flux densities whereby data may be reliably determined by means of the simple test apparatus for evaluating the current density and flux penetration depth.

  13. High temperature superconductor bulk materials fundamentals, processing, properties control, applications aspects

    CERN Document Server

    Krabbes, Gernot; Canders, Wolf-Rüdiger; May, Hardo; Palka, Ryszard

    2005-01-01

    With its comprehensive review of the current knowledge and the future requirements in the field, this book presents all the features of bulk high temperature superconducting materials. Starting from physical and chemical fundamentals, the authors move on to portray methods and problems of materials processing, thoroughly working out the characteristic properties of bulk superconductors in contrast to long conductors and films. They provide a wide range of specific materials characteristics with respect to the latest developments and future applications guiding from fundamentals to practical engineering examples. The authors are all leading international specialists involved in the field of high TC superconductor bulk materials since the beginning. Of utmost interest to engineers, scientists, and PhD students working in this field

  14. Maximum trapped field of a ring bulk superconductor by low pulsed field magnetization

    Energy Technology Data Exchange (ETDEWEB)

    Tsuchimoto, M. [Hokkaido Institute of Technology, 7-15 Maeda, Teine-ku, Sapporo 006-8585 (Japan)], E-mail: tsuchi@hit.ac.jp; Kamijo, H. [Railway Technical Research Institute, 2-8-38, Hikari-cho, Kokubunji, Tokyo 185-8540 (Japan)

    2007-10-01

    Pulsed field magnetization is an important technique for a bulk superconducting magnet, which is one practical application of a bulk high T{sub c} superconductor (HTS). Full magnetization of a ring HTS is effective to obtain large trapped field for low pulsed field magnetization. In this study, trapped field in a ring bulk superconductor by the low pulsed field magnetization is numerically analyzed under assumption of variable shielding current by the temperature control. Differences between one-dimensional Bean model and axisymmetric three-dimensional numerical solution are discussed through the analysis. There is maximum trapped field in the axisymmetric three-dimensional model because of finite thickness of the ring HTS. The shielding current density and inner radius of the ring HTS are discussed to obtain the maximum trapped field.

  15. EBSD analysis of MgB2 bulk superconductors

    Science.gov (United States)

    Koblischka-Veneva, A.; Koblischka, M. R.; Schmauch, J.; Inoue, K.; Muralidhar, M.; Berger, K.; Noudem, J.

    2016-04-01

    The grain orientation, the texture and the grain boundary misorientations are important parameters for the understanding of the magnetic properties of the bulk MgB2 samples intended for super-magnet applications. Such data can be provided by electron backscatter diffraction (EBSD) analysis. However, as the grain size (GS) of the MgB2 bulks is preferably in the 100-200 nm range, the common EBSD technique working in reflection operates properly only on highly dense samples. In order to achieve a reasonably good Kikuchi pattern quality on all samples, we apply here the newly developed transmission EBSD (t-EBSD) technique to several bulk MgB2 samples. This method requires the preparation of TEM slices by means of focused ion-beam milling, which are then analyzed within the SEM, operating with a specific sample holder. We present several EBSD mappings of samples prepared with different techniques and at various reaction temperatures.

  16. Reinforcement of bulk Y-Ba-Cu-O superconductors by using Fe-Mn-Si-Ni shape memory alloy rings

    Science.gov (United States)

    Seki, H.; Honma, Y.; Nomura, M.; Nakayama, C.; Koshizuka, N.; Maruyama, T.; Murakami, M.

    Bulk Y-Ba-Cu-O superconductors are brittle ceramics and their tensional strengths are very low. Therefore, reinforcement of the bulk superconductor is needed for practical applications. Pre-compression load has been shown to be effective in enforcing the bulk superconductors. Fe-Mn-Si alloys exhibit shape-memory effects and the size change due to the shape recovery is large. Therefore, the Fe-Mn-Si shape memory alloy rings will function as effective reinforcement material for the bulk superconductors. We prepared Y-Ba-Cu-O bulk superconductors with top-seeded melt-growth process and the Ni added Fe-Mn-Si (Fe-Mn-Si-Ni) alloy ring which exhibited better shape memory performances than Ni-free Fe-Mn-Si alloys. The ring was extended by inserting a steel rod and heated to 623K. The amount of shape recovery strain was about 2%. Based on these results, the TSMG-processed bulk YBa- Cu-O superconductor 39.0 mm in diameter was inserted into the Fe-Mn-Si-Ni ring whose inner diameter was 39.3 mm at room temperature. With heating to 623K, the Fe-Mn-Si-Ni ring shrank and firmly encapsulated the bulk Y-Ba-Cu-O superconductor. Cracking was not observed in the bulk superconductor. It was interesting to note that the trapped magnetic field of the Y-Ba-Cu-O superconductor at 77K was increased from 2,550 G to 3,795 G through Fe-Mn-Si-Ni ring reinforcement. These results clearly show that the reinforcement treatment with Fe-Mn-Si-Ni alloy ring or pre-compression load is effective in improving the field trapping ability in addition to thee improvement of the mechanical properties.

  17. Gap-related trapped magnetic flux dependence between single and combined bulk superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Z., E-mail: zgdeng@gmail.co [Laboratory of Applied Physics, Department of Marine Electronics and Mechanical Engineering, Tokyo University of Marine Science and Technology, Tokyo 135-8533 (Japan); Miki, M.; Felder, B.; Tsuzuki, K.; Shinohara, N.; Uetake, T.; Izumi, M. [Laboratory of Applied Physics, Department of Marine Electronics and Mechanical Engineering, Tokyo University of Marine Science and Technology, Tokyo 135-8533 (Japan)

    2011-05-15

    Highlights: {yields} Rectangular YBCO bulks to realize a compact combination. {yields} The gap effect was added to consider in the trapped flux density mapping. {yields} The trapped-flux dependence between single and combined bulks is gap related. {yields} It is possible to estimate the total magnetic flux of bulk combinations. - Abstract: Aiming at examining the trapped-flux dependence between single and combined bulk superconductors for field-pole applications, three rectangular Y{sub 1.65}Ba{sub 2}Cu{sub 3}O{sub 7-x} (YBCO) bulks with a possibly compact combination were employed to investigate the trapped-flux characteristics of single and combined bulks with a field-cooling magnetization (FCM) method. A gap-related dependence was found between them. At lower gaps of 1 mm and 5 mm, the peak trapped fields and total magnetic flux of combined bulks are both smaller than the additive values of each single bulk, which can be ascribed to the demagnetization influences of the field around the bulk generated by the adjacent ones. While, at larger gaps like 10 mm, the situation becomes reversed. The combined bulks can attain bigger peak trapped fields as well as total magnetic flux, which indicates that the magnetic field by the bulk combination can reach higher gaps, thanks to the bigger magnetic energy compared with the single bulk. The presented results show that, on one hand, it is possible to estimate the total trapped magnetic flux of combined bulks by an approximate additive method of each single bulk while considering a demagnetization factor; on the other hand, it also means that the performance of combined bulks will be superior to the addition of each single bulk at larger gaps, thus preferable for large-scaled magnet applications.

  18. Interior seeding combined with top seeding for the fabrication of single grain REBCO bulk superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hee Gyoun [Korea Polytechnic University, Siheung (Korea, Republic of)

    2017-06-15

    This study presents three dimensional (3-D) seeding technique which is a modification of interior seeding. 3-D seeding is beneficial for shortening the processing period and enhancing the magnetic properties of REBCO bulk superconductors fabricated by melt growth. Oxygen channels were provided by using divided powder compacts instead of by using a rubber insert. Microstructure observations revealed that the grains grown from the seeds impinged each other and formed low angle grain boundaries of (001)/(001). It has been shown that the 3-D seeding technique reduces the volume fraction of a-c growth sector and thereby maximizes the area of a-b growth sector which attribute to the high magnetic characteristics of single grain REBCO bulk superconductors.

  19. Bulk YBa2Cu3O(x) superconductors through pressurized partial melt growth processing

    Science.gov (United States)

    Hu, S.; Hojaji, H.; Barkatt, A.; Boroomand, M.; Hung, M.; Buechele, A. C.; Thorpe, A. N.; Davis, D. D.; Alterescu, S.

    1992-01-01

    A novel pressurized partial melt growth process has been developed for producing large pieces of bulk Y-Ba-Cu-O superconductors. During long-time partial melt growth stage, an additional driving force for solidification is obtained by using pressurized oxygen gas. The microstructure and superconducting properties of the resulting samples were investigated. It was found that this new technique can eliminate porosity and inhomogeneity, promote large-scale grain-texturing, and improve interdomain coupling as well.

  20. Effects of oxide coating on the growth of single grain YBCO bulk superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Park, S.D.; Jun, B.-H. [Neutron Science Division, Korea Atomic Energy Research Institute (KAERI), Daejeon 305-353 (Korea, Republic of); Park, B.J.; Jung, S.Y. [Superconductivity and Applications Group, Korea Electric Power Research Institute (KEPRI), Daejeon 305-380 (Korea, Republic of); Seong, B.S. [Neutron Science Division, Korea Atomic Energy Research Institute (KAERI), Daejeon 305-353 (Korea, Republic of); Kim, C.-J., E-mail: cjkim2@kaeri.re.k [Neutron Science Division, Korea Atomic Energy Research Institute (KAERI), Daejeon 305-353 (Korea, Republic of)

    2009-10-15

    Surface oxide coating and bottom inserting of oxide plates have been conducted to top seeded melt growth (TSMG) processed YBa{sub 2}Cu{sub 3}O{sub 7-y} (Y123) bulk superconductors with an aim of controlling the Y123 nucleation and growth. The coating medium for surfaces was Yb{sub 2}O{sub 3} solution and the bottom inserts were Yb{sub 2}O{sub 3}/Y{sub 2}O{sub 3} powder compact. Many vertical cracks were found to develop at the compact/insert interfaces when an Yb{sub 2}O{sub 3} insert was used, but the crack evolution was greatly reduced when a (Yb{sub 2}O{sub 3} + Y{sub 2}O{sub 3}) insert was used. The formation of the vertical cracks is ascribed to the difference in thermal expansion between the YBCO compact and bottom insert. Presence of vertical cracks was found to be crucial to the trapped magnetic field and levitation forces of single grain YBCO bulk superconductors. The Y123 nucleation and growth in TSMG-processed YBCO bulk superconductors were successfully controlled by conducting surface coating and bottom plating using a (Yb{sub 2}O{sub 3} + Y{sub 2}O{sub 3}) insert and as a result, the levitation properties were much enhanced.

  1. Levitation forces of a bulk YBCO superconductor in gradient varying magnetic fields

    Science.gov (United States)

    Jiang, J.; Gong, Y. M.; Wang, G.; Zhou, D. J.; Zhao, L. F.; Zhang, Y.; Zhao, Y.

    2015-09-01

    The levitation forces of a bulk YBCO superconductor in gradient varying high and low magnetic fields generated from a superconducting magnet were investigated. The magnetic field intensity of the superconducting magnet was measured when the exciting current was 90 A. The magnetic field gradient and magnetic force field were both calculated. The YBCO bulk was cooled by liquid nitrogen in field-cooling (FC) and zero-field-cooling (ZFC) condition. The results showed that the levitation forces increased with increasing the magnetic field intensity. Moreover, the levitation forces were more dependent on magnetic field gradient and magnetic force field than magnetic field intensity.

  2. Effects of binder addition on the mechanical properties of bulk Y-Ba-Cu-O superconductors

    Science.gov (United States)

    Seki, H.; Wongsatanawarid, A.; Kobayashi, S.; Ikeda, Y.; Murakami, M.

    2010-11-01

    We studied the effects of binder addition on the mechanical properties of bulk Y-Ba-Cu-O superconductors. We prepared YBa2Cu3Oy, Y2BaCuO5 powders and polyvinyl alcohol mixed with water as a binder. These raw materials were mixed, and the binder-added powders were pressed into pellets. The hardness of the green compacts with binder is higher than that without the binder. However, the hardness of green compacts with 8% binder is the same as that with 4% binder. The maximum compression strength of the precursor with binder is higher than that without binder. Equally, the maximum strength of the green compacts with 8% binder is higher than that with 4% binder. The differential thermal analysis measurements showed that the exothermic reaction due to the decomposition of the organic binder started at 550 °C and gradually proceeded with further heating. After de-binder treatment, BaCO3 powders were produced on the green compacts. The green compacts were subjected to melt-processing. We also measured trapped magnetic fields of binder-added bulk Y-Ba-Cu-O superconductors with a Hall probe scanning device. Trapped magnetic field of the bulk added with 4% is higher than that of the binder-free bulk. Hence, Y-Ba-Cu-O bulk with suitable amount of binder shows good influence for mechanical strength and trapped magnetic field.

  3. Melt-growth bulk superconductors and application to an axial-gap-type rotating machine

    Science.gov (United States)

    Zhang, Yufeng; Zhou, Difan; Ida, Tetsuya; Miki, Motohiro; Izumi, Mitsuru

    2016-04-01

    The present manuscript addresses key issues in the course of our study of materials processing of bulk high-temperature superconductors, trapped flux and its application to a prototype axial-gap-type rotating machine. The TUMSAT group has conducted a series of studies since 2003 on the growth of GdBa2Cu3O7-δ bulk material and its application in a compact low-speed high-torque rotating machine. In the stage of material growth, gaining the advantage of a large motive torque density requires large integrated flux in the motor/generators. A large grain surface might be required with sophisticated techniques for the melt-growth texture in the bulk with optimal flux pinning. In the second stage, the in situ magnetization procedure for bulk superconductors in the applied machine is a crucial part of the technology. Pulsed current excitation by using an armature copper winding has magnetized field pole bulks on the rotor. The axial-gap flux synchronous machine studied in the past decade is a condensed technology and indicates that further scientific development is required for a future compact machine to be superior to conventional ones in accordance with the cryogenic periphery and flux stabilization.

  4. Interaction between ring permanent magnets and bulk Dy-Ba-Cu-O superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Kurabayashi, H., E-mail: m208501@sic.shibaura-it.ac.j [Superconducting Materials Laboratory, Shibaura Institute of Technology, 3-7-5, Toyosu, Koto-Ku, Tokyo 135-8548 (Japan); Horikoshi, S.; Suzuki, A.; Ikeda, M.; Wongsatanawarid, A.; Seki, H. [Superconducting Materials Laboratory, Shibaura Institute of Technology, 3-7-5, Toyosu, Koto-Ku, Tokyo 135-8548 (Japan); Akiyama, S. [Magneo-Giken, 1-4-23, Suwa, Iwatsuki-Ku, Saitama-Shi, Saitama-Ken (Japan); Hiragushi, M. [SEIKOW Chemical Engineering, 4-1-31, Suidou-Cho, Amagasaki-Shi, Hyougo-Ken (Japan); Murakami, M. [Superconducting Materials Laboratory, Shibaura Institute of Technology, 3-7-5, Toyosu, Koto-Ku, Tokyo 135-8548 (Japan)

    2010-11-01

    A combination of bulk Dy-Ba-Cu-O superconductors and permanent magnets can be used for various rotational applications such as flywheel energy storage and magnetic bearings. For practical applications, there are two important parameters: the levitation force and the stiffness. Since the superconductor and magnets are installed in a closed space, the attractive force is another important parameter that we should take care. In this study, we measured the levitation force and the stiffness by changing the thickness of a ring permanent magnet. We used ring Fe-Nd-B magnets 120 mm in outer diameter and 70 mm in inner diameter with the thicknesses of 5-40 mm. For superconductors, we used single-domain bulk Dy-Ba-Cu-O 47 mm in diameter and 10 mm in thickness. Six pellets of Dy-Ba-Cu-O were placed concentrically such that the inner diameter becomes 70 mm. The levitation forces increased with increasing the thickness of the permanent magnet but tended to saturate.

  5. Doping-Induced Isotopic Mg11B2 Bulk Superconductor for Fusion Application

    Directory of Open Access Journals (Sweden)

    Qi Cai

    2017-03-01

    Full Text Available Superconducting wires are widely used for fabricating magnetic coils in fusion reactors. Superconducting magnet system represents a key determinant of the thermal efficiency and the construction/operating costs of such a reactor. In consideration of the stability of 11B against fast neutron irradiation and its lower induced radioactivation properties, MgB2 superconductor with 11B serving as the boron source is an alternative candidate for use in fusion reactors with a severe high neutron flux environment. In the present work, the glycine-doped Mg11B2 bulk superconductor was synthesized from isotopic 11B powder to enhance the high field properties. The critical current density was enhanced (103 A·cm−2 at 20 K and 5 T over the entire field in contrast with the sample prepared from natural boron.

  6. Magnetic levitation and its application for education devices based on YBCO bulk superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Yang, W.M., E-mail: yangwm@snnu.edu.cn; Chao, X.X.; Guo, F.X.; Li, J.W.; Chen, S.L.

    2013-10-15

    Highlights: • A small superconducting maglev propeller system has been designed and constructed based on YBCO bulk superconductors. • Several small maglev vehicle models have been designed and constructed based on YBCO bulk superconductors. • The models can be used as experimental or demonstration devices for the magnetic levitation applications. -- Abstract: A small superconducting maglev propeller system, a small spacecraft model suspending and moving around a terrestrial globe, several small maglev vehicle models and a magnetic circuit converter have been designed and constructed. The track was paved by NdFeB magnets, the arrangement of the magnets made us easy to get a uniform distribution of magnetic field along the length direction of the track and a high magnetic field gradient in the lateral direction. When the YBCO bulks mounted inside the vehicle models or spacecraft model was field cooled to LN{sub 2} temperature at a certain distance away from the track, they could be automatically floating over and moving along the track without any obvious friction. The models can be used as experimental or demonstration devices for the magnetic levitation applications.

  7. Magnetic characterisation of large grain, bulk Y-Ba-Cu-O superconductor-soft ferromagnetic alloy hybrid structures

    Science.gov (United States)

    Philippe, M. P.; Fagnard, J.-F.; Kirsch, S.; Xu, Z.; Dennis, A. R.; Shi, Y.-H.; Cardwell, D. A.; Vanderheyden, B.; Vanderbemden, P.

    2014-07-01

    Large grain, bulk Y-Ba-Cu-O (YBCO) high temperature superconductors (HTS) have significant potential for use in a variety of practical applications that incorporate powerful quasi-permanent magnets. In the present work, we investigate how the trapped field of such magnets can be improved by combining bulk YBCO with a soft FeNi, ferromagnetic alloy. This involves machining the alloy into components of various shapes, such as cylinders and rings, which are attached subsequently to the top surface of a solid, bulk HTS cylinder. The effect of these modifications on the magnetic hysteresis curve and trapped field of the bulk superconductor at 77 K are then studied using pick-up coil and Hall probe measurements. The experimental data are compared to finite element modelling of the magnetic flux distribution using Campbell’s algorithm. Initially we establish the validity of the technique involving pick-up coils wrapped around the bulk superconductor to obtain its magnetic hysteresis curve in a non-destructive way and highlight the difference between the measured signal and the true magnetization of the sample. We then consider the properties of hybrid ferromagnet/superconductor (F/S) structures. Hall probe measurements, together with the results of the model, establish that flux lines curve outwards through the ferromagnet, which acts, effectively, like a magnetic short circuit. Magnetic hysteresis curves show that the effects of the superconductor and the ferromagnet simply add when the ferromagnet is saturated fully by the applied field. The trapped field of the hybrid structure is always larger than that of the superconductor alone below this saturation level, and especially when the applied field is removed. The results of the study show further that the beneficial effects on the trapped field are enhanced when the ferromagnet covers the entire surface of the superconductor for different ferromagnetic components of various shapes and fixed volume.

  8. Effects of carbon nanotube addition on superconductivity in Y-Ba-Cu-O bulk superconductors

    Science.gov (United States)

    Inoue, K.; Miyake, Y.; Miryala, M.; Murakami, M.

    2017-07-01

    Bulk Y-Ba-Cu-O superconductors have significant potential for engineering applications due to high critical current density, which is attributed to the presence of pinning centers such as Y2BaCuO5. The introduction of nano-sized secondary phase is known to act as more effective pinning center than those in micron sizes. The diameter of carbon nanotube (CNT) is close to that of the coherence length of high-temperature superconductors, which is expected to improve the flux pinning performance. We have investigated the effects of CNT addition on the microstructure, superconducting transition temperature (T c), and critical current density (J c) of YBa2Cu3O x (Y123) based bulk superconductors. SEM observation showed the distribution of needle-like particles around 100 nm in length in the Y123 matrix for the CNT added samples. The highly porous texture was also observed for the excess addition of CNT. T c was enhanced from 90.5 K to 91.8 K with increasing CNT addition. It is probable that carbon originated from CNT suppressed oxidation and carrier doping. Jc exhibited the highest value for 0.25 wt% CNT added sample. This suggests that nano-sized needle-like particles act as effective pinning centers. However, a further increase of CNT led to the decline of J c, which suggests that there is an optimum amount of CNT for the improvement of J c. The secondary peak was observed for the sample with 1 wt% CNT addition, where CO3 substitutions with Cu site at the Cu-O chain might induce oxygen vacancies leading to the field induced pinning.

  9. Magnetic field, temperature and mechanical crack performance of a GdBCO magnetic lens

    Science.gov (United States)

    Zhang, Z. Y.; Matsumoto, S.; Teranishi, R.; Kiyoshi, T.

    2012-11-01

    Magnetic field concentration by using the diamagnetism of a superconductor is a novel technique that has been experimentally demonstrated in magnetic lenses. A magnetic lens consists of a hollow superconductor cylinder with a tapered inner diameter within which the magnetic flux is concentrated by diamagnetism. Magnetic lenses are very promising for use in compact high magnetic field systems. However, magnetic lenses with large inner diameters are required to facilitate sample access during use. In this study, an optimized GdBaCuO magnetic lens with large inner and outer diameters was designed and its performance was investigated in liquid nitrogen, liquid helium, and a cryocooler-cooled cryostat. A lens with an inner diameter of 12 mm was constructed by stacking three specially machined GdBaCuO bulk pieces. This magnetic lens cracked due to the large flux jump that occurred when the concentrated field of the magnetic lens exceeded 10 T at 4.2 K. The cracked lens was subsequently impregnated with epoxy resin. A concentrated field of 12.42 T was realized when the background field was 8 T at 20 K and no flux jumps occurred. This result demonstrates that this GdBCO magnetic lens is promising for use in compact superconducting magnet systems.

  10. Comparison of simulation and experiment on levitation force between GdBCO bulk superconductor and superconducting magnet

    Energy Technology Data Exchange (ETDEWEB)

    Araki, S., E-mail: satoshi@sum.sd.keio.ac.j [Department of System Design Engineering, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522 (Japan); Nagashima, K.; Seino, H. [Railway Technical Research Institute, 2-8-38 Hikari-cho, Kokubunji, Tokyo 185-8540 (Japan); Murakami, T.; Sawa, K. [Department of System Design Engineering, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522 (Japan)

    2009-10-15

    High temperature bulk superconductors have significant potential for various engineering applications such as a flywheel energy storage system. This system is expected to decrease the energy loss by using bulk superconductors for the bearing. Recently, the authors have developed a new superconducting magnet to realize large levitation force. In this system, the axial component of magnetic field is canceled each other but the radial component of magnetic field expects to be enhanced. Thus, it was expected that the large levitation force can be realized and its time relaxation will be decreased. And in the previous paper, the levitation force and its time relaxation were measured under the various conditions by using this new magnet. But it is difficult to consider what phenomenon has happened in the bulk from only experimental results. In addition the quantitative evaluation cannot be done only by the experimental results, for example, the influence of the magnetic field penetration and magnetic distribution around a bulk superconductor on the maximum force and so on. Thus, in this paper, the authors simulated the levitation force of bulk superconductor by using ELF/MAGIC, which is a three-dimensional electromagnetic analytical software. In the simulation the bulk was considered as a rigid body and the simulation was executed under the same conditions and model with the experiment. The distribution of magnetic field and the levitation force were obtained and discussed.

  11. Influence of soft ferromagnetic sections on the magnetic flux density profile of a large grain, bulk Y-Ba-Cu-O superconductor

    OpenAIRE

    Philippe, Matthieu; Ainslie, Mark D.; Wera, Laurent; Fagnard, Jean-François; Dennis, Anthony; Shi, Yunhua; Cardwell, David A.; Vanderheyden, Benoît; Vanderbemden, Philippe

    2015-01-01

    Bulk, high temperature superconductors have significant potential for use as powerful permanent magnets in a variety of practical applications due to their ability to trap record magnetic fields. In this paper, soft ferromagnetic sections are combined with a bulk, large grain Y-Ba-Cu-O (YBCO) high temperature superconductor to form superconductor/ferromagnet (SC/FM) hybrid structures. We study how the ferromagnetic sections influence the shape of the profile of the trapped magnetic induction ...

  12. Superconductor-Mediated Modification of Gravity? AC Motor Experiments with Bulk YBCO Disks in Rotating Magnetic Fields

    Science.gov (United States)

    Noever, David A.; Koczor, Ronald J.; Roberson, Rick

    1998-01-01

    We have previously reported results using a high precision gravimeter to probe local gravity changes in the neighborhood of large bulk-processed high-temperature superconductors. Podkietnov, et al (Podkietnov, E. and Nieminen, R. (1992) A Possibility of Gravitational Force Shielding by Bulk YBa2 Cu3 O7-x Superconductor, Physica C, C203:441-444.) have indicated that rotating AC fields play an essential role in their observed distortion of combined gravity and barometric pressure readings. We report experiments on large (15 cm diameter) bulk YBCO ceramic superconductors placed in the core of a three-phase, AC motor stator. The applied rotating field produces up to a 12,000 revolutions per minute magnetic field. The field intensity decays rapidly from the maximum at the outer diameter of the superconducting disk (less than 60 Gauss) to the center (less than 10 Gauss). This configuration was applied with and without a permanent DC magnetic field levitating the superconducting disk, with corresponding gravity readings indicating an apparent increase in observed gravity of less than 1 x 10(exp -6)/sq cm, measured above the superconductor. No effect of the rotating magnetic field or thermal environment on the gravimeter readings or on rotating the superconducting disk was noted within the high precision of the observation. Implications for propulsion initiatives and power storage flywheel technologies for high temperature superconductors will be discussed for various spacecraft and satellite applications.

  13. The size effect on the magnetic levitation force of MgB2 bulk superconductors

    Science.gov (United States)

    Savaskan, B.; Koparan, E. T.; Güner, S. B.; Celik, S.; Yanmaz, E.

    2016-12-01

    In this study, the size effect on the magnetic levitation performance of disk-shaped MgB2 bulk superconductors and permanent magnets was investigated. MgB2 samples with varying diameters of 13 mm, 15 mm and 18 mm, each of which were 2 g in mass, were prepared by two-step solid state reaction method. Vertical levitation force measurements under both zero-field-cooled (ZFC) and field-cooled (FC) regimes were carried out at different temperatures of 20, 24 and 28 K. It was determined that the levitation force of the MgB2 strongly depends on both the diameters of the sample and the permanent magnet. In ZFC regime, the maximum levitation force value for the permanent magnet and the sample 18 mm in diameters reached to the 8.41 N at 20 K. In addition, in FC regime, attractive and repulsive force increased with increasing diameters of the sample and the permanent magnet. In that, the sample with 18 mm in diameter showed the highest attractive force value -3.46 N at 20 K and FC regime. The results obtained in this study are very useful in magnetic levitation devices as there is no detailed study on the size of superconductors and permanent magnets.

  14. Flux motion in Y-Ba-Cu-O bulk superconductors during pulse field magnetization

    Energy Technology Data Exchange (ETDEWEB)

    Yoshizawa, K [Department of Physics, College of Humanities and Sciences, Nihon University, 3-25-40 Sakura-Josui, Setagaya-ku, Tokyo 156-8550 (Japan); Nariki, S [Division of Material Science and Physics, Bulk Superconductor Laboratory, 1-16-25 Shibaura, Minato-ku, Tokyo 105-0023 (Japan); Sakai, N [Division of Material Science and Physics, Bulk Superconductor Laboratory, 1-16-25 Shibaura, Minato-ku, Tokyo 105-0023 (Japan); Murakami, M [Division of Material Science and Physics, Bulk Superconductor Laboratory, 1-16-25 Shibaura, Minato-ku, Tokyo 105-0023 (Japan); Hirabayasi, I [Division of Material Science and Physics, Bulk Superconductor Laboratory, 1-16-25 Shibaura, Minato-ku, Tokyo 105-0023 (Japan); Takizawa, T [Department of Physics, College of Humanities and Sciences, Nihon University, 3-25-40 Sakura-Josui, Setagaya-ku, Tokyo 156-8550 (Japan)

    2004-02-01

    We have studied the relationship between the magnetization and temperature change in Y-Ba-Cu-O bulk superconductor during pulse field magnetization (PFM). The flux motion was monitored using both Hall sensors and pick-up coils that are placed on a surface of a Y-Ba-Cu-O disc having dimensions of 15 mm in diameter and 0.95 mm in thickness. The peak value of the field was varied from 0.2 to 0.8 T. The effect of the static bias field was also studied in the range of 0-3 T. The temperature of the sample surface was measured using a resistance temperature sensor. The temperature increased with the magnitude of the applied pulsed magnetic field, and the amount of temperature rise decreased with increasing static bias field.

  15. Multiple seeding for the growth of bulk GdBCO-Ag superconductors with single grain behaviour

    Science.gov (United States)

    Shi, Y.; Durrell, J. H.; Dennis, A. R.; Huang, K.; Namburi, D. K.; Zhou, D.; Cardwell, D. A.

    2017-01-01

    Rare earth-barium-copper oxide bulk superconductors fabricated in large or complicated geometries are required for a variety of engineering applications. Initiating crystal growth from multiple seeds reduces the time taken to melt-process individual samples and can reduce the problem of poor crystal texture away from the seed. Grain boundaries between regions of independent crystal growth can reduce significantly the flow of current due to crystallographic misalignment and the agglomeration of impurity phases. Enhanced supercurrent flow at such boundaries has been achieved by minimising the depth of the boundary between A growth sectors generated during the melt growth process by reducing second phase agglomerations and by a new technique for initiating crystal growth that minimises the misalignment between different growth regions. The trapped magnetic fields measured for the resulting samples exhibit a single trapped field peak indicating they are equivalent to conventional single grains.

  16. Large bulk Y-Ba-Cu-O superconductors fabricated by multiseeding melt growth methods

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    We have fabricated the large single domain YBaCuO bulk superconductors by using multiseeding technique combined with composition gradient in the precursor. Obviously, the growth time can be shortened by multiseeding method and the weak links between grain boundaries originated from different seeds can be also overcome with introducing the chemical component gradient and arranging the seeds exactly. For these YBCO disks, only single peak occurs in the distributions of trapped field, and the magnetic levitation force is equal to that of the same size sample fabricated with single seed. Although the arrangement of seeds is similar, the distribution of trapped field still shows four peaks for the sample without composition gradient.

  17. Coasting characteristic of the flywheel system under anisotropy effect of bulk high temperature superconductors

    Science.gov (United States)

    Wu, J. F.; Li, Y.

    2014-10-01

    High-temperature superconductors (HTSCs) array with aligned growth section boundary (GSB) pattern (AGSBP) exhibits larger levitation force and suppression of levitation force decay above a permanent magnet guideway (PMG) compared with misaligned GSB pattern (MGSBP) has been studied in maglev train application (Zheng et al., 2013). This result maybe helpful and support a new way for the HTS bearing design for flywheel systems. So, in this paper, we further examine this growth anisotropy effect on the maglev performance of flywheel system. Levitation force and coasting time were investigated from the point-view of HTS flywheel applications. The GS/GSB alignment of AGSBP bulk HTSCs produces larger levitation force than that of MGSBP, but the coasting time is shorter than that of MGSBP, that is to say, the electric magnetic drag force with AGSBP is larger than that of MGSBP. This result may also exist in the maglev guideline when the maglev train stops freely.

  18. Upper critical and irreversibility fields in Ni- and Co- doped pnictide bulk superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Nikolo, Martin [Saint Louis U., Physics; Singleton, John [Los Alamos National Laboratory; Solenov, Dmitry [Saint Louis U., Physics; Jiang, Jianyi [Applied Superconductivity Center, FSU and NHMFL; Weiss, Jeremy [Applied Superconductivity Center, FSU and NHMFL; Hellstorm, Eric [Applied Superconductivity Center, FSU and NHMFL

    2017-02-13

    Comprehensive study of upper critical and irreversibility magnetic fields in Ba(Fe0.95Ni0.05)2As2 (large grain and small grain samples or Ni5(SG), Ni5(LG)), Ba(Fe0.94Ni0.06)2As2 (Ni6), Ba(Fe0.92Co0.08)2As2 (Co8), and Ba(Fe0.92Co0.09)2As2 (Co9) polycrystalline bulk pnictide superconductors was made in pulsed fields of up to 65 T.

  19. Improving magnetic properties of MgB2 bulk superconductors by synthetic engine oil treatment

    Science.gov (United States)

    Taylan Koparan, E.; Savaskan, B.; Yanmaz, E.

    2016-08-01

    The present study focuses on the effects of standby time of the MgB2 samples immersed in synthetic engine oil on the critical current density (Jc(H)), magnetic field dependence of the pinning force density fp(b) and Tc performances of MgB2 bulk superconductors. Synthetic engine oil was used as a product which is cheap and a rich carbon source. Manufactured MgB2 pellet samples were immersed at different standby time of 30 min, 120 min, 300 min and 1440 min in synthetic engine oil after the first heating process. Finally, MgB2 samples immersed in synthetic engine oil were sintered at 1000 °C and kept for 15 min in Ar atmosphere. The critical current density of all of MgB2 samples immersed at different standby time in engine oil in whole field range was better than that of the pure MgB2 sample because of the number of the pinning centers. The MgB2 sample immersed at 300 min standby time in synthetic engine oil has the best performance compared to other samples. The Jc value for the pure sample is 2.0 × 103 A/cm2, whereas for the MgB2 sample immersed at 300 min standby time in engine oil the Jc is enhanced to 4.8 × 103A/cm2 at 5 K and 3 T. The superconducting transition temperature (Tc) did not change with the increasing standby time of the samples in synthetic engine oil at all. The best diamagnetic property was obtained from the sample which kept in synthetic engine oil for 300 min. Synthetic engine oil treatment results in remarkable improvement of the critical current density and pinning force performances of MgB2 superconductors. It was found that all MgB2 samples have a different pinning property at different measuring temperatures. Using synthetic engine oil as a product which is cheap and a rich carbon source in MgB2 bulk superconductors makes MgB2 samples immersed in synthetic engine oil a good candidate for industrial applications.

  20. Flux jump-assisted pulsed field magnetisation of high-J c bulk high-temperature superconductors

    Science.gov (United States)

    Ainslie, M. D.; Zhou, D.; Fujishiro, H.; Takahashi, K.; Shi, Y.-H.; Durrell, J. H.

    2016-12-01

    Investigating, predicting and optimising practical magnetisation techniques for charging bulk superconductors is a crucial prerequisite to their use as high performance ‘psuedo’ permanent magnets. The leading technique for such magnetisation is the pulsed field magnetisation (PFM) technique, in which a large magnetic field is applied via an external magnetic field pulse of duration of the order of milliseconds. Recently ‘giant field leaps’ have been observed during charging by PFM: this effect greatly aids magnetisation as flux jumps occur in the superconductor leading to magnetic flux suddenly intruding into the centre of the superconductor. This results in a large increase in the measured trapped field at the centre of the top surface of the bulk sample and full magnetisation. Due to the complex nature of the magnetic flux dynamics during the PFM process, simple analytical methods, such as those based on the Bean critical state model, are not applicable. Consequently, in order to successfully model this process, a multi-physical numerical model is required, including both electromagnetic and thermal considerations over short time scales. In this paper, we show that a standard numerical modelling technique, based on a 2D axisymmetric finite-element model implementing the H -formulation, can model this behaviour. In order to reproduce the observed behaviour in our model all that is required is the insertion of a bulk sample of high critical current density, J c. We further explore the consequences of this observation by examining the applicability of the model to a range of previously reported experimental results. Our key conclusion is that the ‘giant field leaps’ reported by Weinstein et al and others need no new physical explanation in terms of the behaviour of bulk superconductors: it is clear the ‘giant field leap’ or flux jump-assisted magnetisation of bulk superconductors will be a key enabling technology for practical applications.

  1. Improving magnetic properties of MgB{sub 2} bulk superconductors by synthetic engine oil treatment

    Energy Technology Data Exchange (ETDEWEB)

    Taylan Koparan, E., E-mail: etaylan20@gmail.com [Department of Science Education, Eregli Faculty of Education, Bulent Ecevit University, TR-67300, Zonguldak (Turkey); Savaskan, B. [Energy Systems Engineering, Faculty of Technology, Karadeniz Technical University, 61830, Of, Trabzon (Turkey); Yanmaz, E. [Department of Mechatronics, Faculty of Engineering and Architecture, İstanbul Gelişim University, İstanbul (Turkey)

    2016-08-15

    Highlights: • The effects of synthetic engine oil treatment on magnetic properties of bulk MgB{sub 2} superconductors has been first time investigated and reported. • Synthetic engine oil used as a product which is cheap and a rich carbon source obviously has improved the superconducting magnetic properties of MgB{sub 2}. • The critical current density of all of MgB{sub 2} samples immersed at different standby time in engine oil in whole field range has been better than that of the pure MgB{sub 2} sample. • The MgB{sub 2} sample immersed at 300 min standby time in synthetic engine oil has the best performance compared to other samples. - Abstract: The present study focuses on the effects of standby time of the MgB{sub 2} samples immersed in synthetic engine oil on the critical current density ( J{sub c}(H)), magnetic field dependence of the pinning force density f{sub p}(b) and T{sub c} performances of MgB{sub 2} bulk superconductors. Synthetic engine oil was used as a product which is cheap and a rich carbon source. Manufactured MgB{sub 2} pellet samples were immersed at different standby time of 30 min, 120 min, 300 min and 1440 min in synthetic engine oil after the first heating process. Finally, MgB{sub 2} samples immersed in synthetic engine oil were sintered at 1000 °C and kept for 15 min in Ar atmosphere. The critical current density of all of MgB{sub 2} samples immersed at different standby time in engine oil in whole field range was better than that of the pure MgB{sub 2} sample because of the number of the pinning centers. The MgB{sub 2} sample immersed at 300 min standby time in synthetic engine oil has the best performance compared to other samples. The J{sub c} value for the pure sample is 2.0 × 10{sup 3} A/cm{sup 2}, whereas for the MgB{sub 2} sample immersed at 300 min standby time in engine oil the J{sub c} is enhanced to 4.8 × 10{sup 3} A/cm{sup 2} at 5 K and 3 T. The superconducting transition temperature (T{sub c}) did not change

  2. Optimum processing conditions for the fabrication of large, single grain Ag-doped YBCO bulk superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Iida, K. [IRC in Superconductivity and Department of Engineering, University of Cambridge, Cavendish Laboratory 19 JJ Thomson Avenue, Cambridge CB3 0HE (United Kingdom)], E-mail: k.iida@ifw-dresden.de; Babu, N.H. [IRC in Superconductivity and Department of Engineering, University of Cambridge, Cavendish Laboratory 19 JJ Thomson Avenue, Cambridge CB3 0HE (United Kingdom); BCAST, Brunel University, West London UB8 3PH (United Kingdom); Pathak, S.; Shi, Y.; Yeoh, W.K. [IRC in Superconductivity and Department of Engineering, University of Cambridge, Cavendish Laboratory 19 JJ Thomson Avenue, Cambridge CB3 0HE (United Kingdom); Miyazaki, T. [Shibaura Institute of Technology, 3-7-5 Toyosu, Koto-ku, Tokyo 135-8548 (Japan); SRL-ISTEC, 1-10-13 Shinonome, Koto-ku, Tokyo 135-0062 (Japan); Sakai, N. [SRL-ISTEC, 1-10-13 Shinonome, Koto-ku, Tokyo 135-0062 (Japan); Murakami, M. [Shibaura Institute of Technology, 3-7-5 Toyosu, Koto-ku, Tokyo 135-8548 (Japan); Cardwell, D.A. [IRC in Superconductivity and Department of Engineering, University of Cambridge, Cavendish Laboratory 19 JJ Thomson Avenue, Cambridge CB3 0HE (United Kingdom)

    2008-06-15

    A pseudo Time-Temperature-Transformation (TTT) diagram has been constructed for the optimum melt processing conditions for the fabrication of large, single grain Ag-doped Y-Ba-Cu-O (YBCO/Ag) bulk superconductors. The thermal conditions for the formation of homogeneous nuclei have been investigated and the boundary between this region and that for no grain nucleation has been mapped as a function of holding time. YBCO/Ag bulk samples grow typically in the form of single grains when the processing temperature profile lies within the 'no nucleation' region of the pseudo TTT diagram. However, by studying the YBCO/Ag growth process, some samples have been grown in the form of single grains by employing a temperature profile within the homogeneous grain nucleation region of the phase diagram. Such growth may be achieved when the YBCO/Ag phase constitutes the majority of the volume of the pellet before the growth temperature reaches that at the nucleation boundary. A large, single YBCO/Ag grain of diameter 30 mm has been fabricated successfully based on these studies by both cold-seeding and seeded infiltration growth techniques.

  3. Superconductors

    CERN Document Server

    Narlikar, A V

    2014-01-01

    Superconductors is neither about basic aspects of superconductivity nor about its applications, but its mainstay is superconducting materials. Unusual and unconventional features of a large variety of novel superconductors are presented and their technological potential as practical superconductors assessed. The book begins with an introduction to basic aspects of superconductivity. The presentation is readily accessible to readers from a diverse range of scientific and technical disciplines, such as metallurgy, materials science, materials engineering, electronic and device engineering, and chemistry. The derivation of mathematical formulas and equations has been kept to a minimum and, wherever necessary, short appendices with essential mathematics have been added at the end of the text. The book is not meant to serve as an encyclopaedia, describing each and every superconductor that exists, but focuses on important milestones in their exciting development.

  4. High-field flux mapping of (RE)BCO bulk superconductors-Development of an in situ scanning system

    Energy Technology Data Exchange (ETDEWEB)

    Withnell, T.D. [Superconductivity Group, Cambridge University Engineering Department, Trumpington Street, Cambridge CB2 1PZ (United Kingdom)], E-mail: tdw25@cantab.net; Hari-Babu, N.; Ganney, I.; Dennis, A.; Cardwell, D.A. [Superconductivity Group, Cambridge University Engineering Department, Trumpington Street, Cambridge CB2 1PZ (United Kingdom)

    2008-06-15

    Flux mapping of Y-Ba-Cu-O (YBCO) melt-processed, bulk high-temperature superconductors (HTS) is used to visualise the profile of trapped magnetic field on a magnetised sample and to measure the extent of current flow, and hence field penetration, within the bulk microstructure. Grain structure and defects below the sample surface are observed non-destructively by this technique. This paper outlines the design, development and construction of a novel, in situ Hall scanning system using an 8 T magnet and variable temperature insert (VTI). This system is then used to characterise the field trapping properties of bulk samples for different applied field history.

  5. Modelling and comparison of trapped fields in (RE)BCO bulk superconductors for activation using pulsed field magnetization

    Science.gov (United States)

    Ainslie, M. D.; Fujishiro, H.; Ujiie, T.; Zou, J.; Dennis, A. R.; Shi, Y.-H.; Cardwell, D. A.

    2014-06-01

    The ability to generate a permanent, stable magnetic field unsupported by an electromotive force is fundamental to a variety of engineering applications. Bulk high temperature superconducting (HTS) materials can trap magnetic fields of magnitude over ten times higher than the maximum field produced by conventional magnets, which is limited practically to rather less than 2 T. In this paper, two large c-axis oriented, single-grain YBCO and GdBCO bulk superconductors are magnetized by the pulsed field magnetization (PFM) technique at temperatures of 40 and 65 K and the characteristics of the resulting trapped field profile are investigated with a view of magnetizing such samples as trapped field magnets (TFMs) in situ inside a trapped flux-type superconducting electric machine. A comparison is made between the temperatures at which the pulsed magnetic field is applied and the results have strong implications for the optimum operating temperature for TFMs in trapped flux-type superconducting electric machines. The effects of inhomogeneities, which occur during the growth process of single-grain bulk superconductors, on the trapped field and maximum temperature rise in the sample are modelled numerically using a 3D finite-element model based on the H-formulation and implemented in Comsol Multiphysics 4.3a. The results agree qualitatively with the observed experimental results, in that inhomogeneities act to distort the trapped field profile and reduce the magnitude of the trapped field due to localized heating within the sample and preferential movement and pinning of flux lines around the growth section regions (GSRs) and growth sector boundaries (GSBs), respectively. The modelling framework will allow further investigation of various inhomogeneities that arise during the processing of (RE)BCO bulk superconductors, including inhomogeneous Jc distributions and the presence of current-limiting grain boundaries and cracks, and it can be used to assist optimization of

  6. High output power reluctance electric motors with bulk high-temperature superconductor elements

    Science.gov (United States)

    Kovalev, L. K.; Ilushin, K. V.; Penkin, V. T.; Kovalev, K. L.; Larionoff, A. E.; M-A Koneev, S.; Modestov, K. A.; Larionoff, S. A.; Poltavets, V. N.; Akimov, I. I.; Alexandrov, V. V.; Gawalek, W.; Oswald, B.; Krabbes, G.

    2002-05-01

    We present new types of electric machines with the rotors containing bulk high-temperature superconductor (HTS) - YBCO and Bi-Ag - elements. We discuss different schematics of hysteresis, reluctance, 'trapped field' and composed synchronous HTS machines. The two-dimensional mathematical models describing the processes in such types of HTS machines were developed on the basis of the theoretical analysis of the electrodynamic and hysteresis processes in the single-domain and polycrystal YBCO ceramic samples and plate shape Bi-Ag elements. We give the test results of the series of hysteresis, reluctance, 'trapped field' and composed with permanent magnets HTS motors with an output power rating of 0.1-18 kW and current frequencies 50 Hz and 400 Hz. These results show that in the media of liquid nitrogen the specific output power per one unit weight of the HTS motor is four to seven times better than for conventional electric machines. A comparison of the theoretical and experimental characteristics of the developed HTS motors show that they are in good agreement. We discuss the test results for a liquid nitrogen cryogenic pump system with a hysteresis 500 W HTS motor. We describe several designs of new HTS motors operating in the media of liquid nitrogen with an output power 125 kW (and more) and a power factor of more than 0.8. We discuss future applications of new types of HTS motors for aerospace technology, on-land industry and transport systems.

  7. Coasting characteristic of the flywheel system under anisotropy effect of bulk high temperature superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Wu, J.F., E-mail: wujf@ciomp.ac.cn; Li, Y.

    2014-10-15

    Highlights: • Coasting time was investigated from the point-view of HTS flywheel applications. • The coasting time of aligned growth section boundary pattern (AGSBP) is shorter than that of MGSBP. • The electric magnetic drag force with AGSBP is larger than that of MGSBP. • This result may also exist in the maglev guideline when the maglev train stops freely. - Abstract: High-temperature superconductors (HTSCs) array with aligned growth section boundary (GSB) pattern (AGSBP) exhibits larger levitation force and suppression of levitation force decay above a permanent magnet guideway (PMG) compared with misaligned GSB pattern (MGSBP) has been studied in maglev train application (Zheng et al., 2013). This result maybe helpful and support a new way for the HTS bearing design for flywheel systems. So, in this paper, we further examine this growth anisotropy effect on the maglev performance of flywheel system. Levitation force and coasting time were investigated from the point-view of HTS flywheel applications. The GS/GSB alignment of AGSBP bulk HTSCs produces larger levitation force than that of MGSBP, but the coasting time is shorter than that of MGSBP, that is to say, the electric magnetic drag force with AGSBP is larger than that of MGSBP. This result may also exist in the maglev guideline when the maglev train stops freely.

  8. The Effect of Argon Ambient Pressure and Annealing Time on Bulk MgB2 Superconductor

    Science.gov (United States)

    Erdem, Murat; Ozturk, Ozgur; Asikuzun, Elif; Kaya, Seydanur; Safran, Serap; Kilic, Ahmet; Terzioglu, Cabir

    2015-03-01

    The effects of Ar ambient pressure (vacuum, 0B, 10B and 20B) and annealing times (0.5 h and 1 h) on microstructural, superconducting and mechanical properties of bulk superconducting MgB2 are investigated. The samples are produced using the solid state reaction method. X-ray diffraction (XRD) and scanning electron microscopy (SEM) measurements were performed for determination of the crystal structure, and surface morphology of MgB2 samples, respectively. The superconducting properties were studied by AC magnetic susceptibility and DC resistivity measurements. Increasing the Ar pressure decreased the lattice parameters and hence the average grain size. Increasing the annealing time results in larger lattice parameters and larger grain formation. The susceptibility measurements revealed two step transition which is reminiscent of granular superconductors. The intra-grain transition temperature is determined to be 38.4 K for all samples. The inter-grain transition temperatures of 37.2 K is obtained for samples produced under Ar ambient. The samples produced under Ar ambient have better superconducting properties than the ones produced in vacuum. Increasing the annealing time under vacuum further decreases the superconducting properties probably due to Mg loss. This research is supported by Kastamonu University Scientific Research Projects Coordination Department under the Grant No. KUBAP-03/2012-03.

  9. A flux extraction device to measure the magnetic moment of large samples; application to bulk superconductors.

    Science.gov (United States)

    Egan, R; Philippe, M; Wera, L; Fagnard, J F; Vanderheyden, B; Dennis, A; Shi, Y; Cardwell, D A; Vanderbemden, P

    2015-02-01

    We report the design and construction of a flux extraction device to measure the DC magnetic moment of large samples (i.e., several cm(3)) at cryogenic temperature. The signal is constructed by integrating the electromotive force generated by two coils wound in series-opposition that move around the sample. We show that an octupole expansion of the magnetic vector potential can be used conveniently to treat near-field effects for this geometrical configuration. The resulting expansion is tested for the case of a large, permanently magnetized, type-II superconducting sample. The dimensions of the sensing coils are determined in such a way that the measurement is influenced by the dipole magnetic moment of the sample and not by moments of higher order, within user-determined upper bounds. The device, which is able to measure magnetic moments in excess of 1 A m(2) (1000 emu), is validated by (i) a direct calibration experiment using a small coil driven by a known current and (ii) by comparison with the results of numerical calculations obtained previously using a flux measurement technique. The sensitivity of the device is demonstrated by the measurement of flux-creep relaxation of the magnetization in a large bulk superconductor sample at liquid nitrogen temperature (77 K).

  10. Effects of seed orientation on the growth behavior of single grain REBCO bulk superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hee Gyoun [Korea Polytechnic University, Siheung (Korea, Republic of)

    2017-06-15

    This study presents a simple method to control the seed orientation which leads to the various growth characteristics of a single grain REBCO (RE: rare-earth elements) bulk superconductors. Seed orientation was varied systematically from c-axis to a-axis with every 30 degree rotation around b-axis. Orientations of a REBCO single grain was successfully controlled by placing the seed with various angles on the prismatic indent prepared on the surface of REBCO powder compacts. Growth pattern was changed from cubic to rectangular when the seed orientation normal to compact surface was varied from c-axis to a-axis. Macroscopic shape change has been explained by the variation of the wetting angle of un-reacted melt depending on the interface energy between YBa2Cu3O7-y (Y123) grain and melt. Higher magnetic levitation force was obtained for the specimen prepared using tilted seed with an angle of 30 degree rotation around b-axis.

  11. Growth anisotropy effect of bulk high temperature superconductors on the levitation performance in the applied magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, J., E-mail: jzheng@swjtu.edu.cn; Liao, X.L.; Jing, H.L.; Deng, Z.G.; Yen, F.; Wang, S.Y.; Wang, J.S.

    2013-10-15

    Highlights: • The single-layer bulk HTSC with AGSBP obtains better levitation performance than that of MGSBP. • The double-layer bulk with AGSBP obtains better levitation performance than that of MGSBP too. • The double-layer bulk finding is contrast to MGSBP if pursuing high trapped field. • The optimization is highlighted by simple and easy operation, thus economical in the practice. -- Abstract: Growth anisotropies of bulk high temperature superconductors (HTSCs) fabricated by a top-seeded melt texture growth process, that is, different pinning effect in the growth sectors (GSs) and growth sector boundaries (GSBs), possess effect on the macro flux trapping and levitation performance of bulk HTSCs. Previous work (Physics Procedia, 36 (2012) 1043) has found that the bulk HTSC array with aligned GSB pattern (AGSBP) exhibits better capability for levitation and suppression of levitation force decay above a permanent magnet guideway (PMG) compared with misaligned GSB pattern (MGSBP). In this paper, we further examine this growth anisotropy effect on the maglev performance of a double-layer bulk HTSC. In contrast to reported trapped flux cases (Supercond. Sci. Technol. 19 (2006) S466), the two superposed bulk HTSCs with same AGSBP with PMG are found to show better maglev performance. These series of results are helpful and support a new way for the performance optimization of present HTS maglev systems.

  12. Self-heating of bulk high temperature superconductors of finite height subjected to a large alternating magnetic field

    Science.gov (United States)

    Laurent, P.; Fagnard, J.-F.; Babu, N. Hari; Cardwell, D. A.; Vanderheyden, B.; Vanderbemden, P.

    2010-12-01

    In this work we study, both experimentally and numerically, the self-heating of a bulk, large YBCO pellet of aspect ratio (thickness/diameter) ~ 0.4 subjected to a large AC magnetic field. To ensure accurate temperature measurements, the sample was placed in an experimental vacuum chamber to achieve a small and reproducible heat transfer coefficient between the superconductor and the cryogenic fluid. The temperature was measured at several locations on the sample surface during the self-heating process. The experimentally determined temperature gradients are found to be very small in this arrangement (Bean model, assuming a uniform temperature in the sample. A 2D magneto-thermal model was also used to determine the space and time-dependent temperature distribution T(r, z, t) during the application of the AC field. The losses in the bulk pellet were determined using an algorithm based on the numerical method of Brandt, which was combined with a heat diffusion algorithm implemented using a finite-difference method. The model is shown to be able to reproduce the main trends of the observed temperature evolution of the bulk sample during a self-heating process. Finally, the 2D model is used to study the effect of a non-uniform distribution of critical current density Jc(r, z) on the losses within the bulk superconductor.

  13. Self-heating of bulk high temperature superconductors of finite height subjected to a large alternating magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Laurent, P; Vanderheyden, B; Vanderbemden, P [SUPRATECS and Department of Electrical Engineering and Computer Science B28, Sart-Tilman, B-4000 Liege (Belgium); Fagnard, J-F [SUPRATECS, Royal Military Academy of Belgium, Avenue de la Renaissance, B-1000 Brussels (Belgium); Babu, N Hari [Brunel Centre for Advanced Solidification Technology (BCAST), Brunel University, West London UB8 3PH (United Kingdom); Cardwell, D A, E-mail: Philippe.Vanderbemden@ulg.ac.b [Bulk Superconductivity Group, Engineering Department, University of Cambridge, Cambridge CB2 1PZ (United Kingdom)

    2010-12-15

    In this work we study, both experimentally and numerically, the self-heating of a bulk, large YBCO pellet of aspect ratio (thickness/diameter) {approx} 0.4 subjected to a large AC magnetic field. To ensure accurate temperature measurements, the sample was placed in an experimental vacuum chamber to achieve a small and reproducible heat transfer coefficient between the superconductor and the cryogenic fluid. The temperature was measured at several locations on the sample surface during the self-heating process. The experimentally determined temperature gradients are found to be very small in this arrangement (<0.2 K across the radius of the superconductor). The time-dependence of the average temperature T(t) is found to agree well with a theoretical prediction based on the one-dimensional (1D) Bean model, assuming a uniform temperature in the sample. A 2D magneto-thermal model was also used to determine the space and time-dependent temperature distribution T(r, z, t) during the application of the AC field. The losses in the bulk pellet were determined using an algorithm based on the numerical method of Brandt, which was combined with a heat diffusion algorithm implemented using a finite-difference method. The model is shown to be able to reproduce the main trends of the observed temperature evolution of the bulk sample during a self-heating process. Finally, the 2D model is used to study the effect of a non-uniform distribution of critical current density J{sub c}(r, z) on the losses within the bulk superconductor.

  14. Anomalous peak-effect in type-II superconductors: A competition between bulk pinning and a surface barrier

    Energy Technology Data Exchange (ETDEWEB)

    Maksimov, I.L. [Department of Theoretical Physics, Nizhny Novgorod University, Gagarin Avenue 23, Nizhny Novgorod 603950 (Russian Federation); Ainbinder, R.M. [Department of Theoretical Physics, Nizhny Novgorod University, Gagarin Avenue 23, Nizhny Novgorod 603950 (Russian Federation)]. E-mail: romain@inbox.ru; Vodolazov, D.Yu. [Institute for Physics of Microstructures, GSP-105, Nizhny Novgorod 603950 (Russian Federation)

    2007-01-15

    In this work, the joint influence of the surface barrier and bulk pinning on the magnetic-field dependence of the critical current I {sub c} for bulk type-II superconductors is investigated. It is shown that in the weak magnetic field H {sub 0}, there is a section in the dependence I {sub c}(H {sub 0}) in which I {sub c} increases with the growth of H {sub 0}; this increase results in a pronounced peak in the dependence I {sub c}(H {sub 0}) - the anomalous peak-effect. This effect is explained by the combined influence of the surface barrier and bulk pinning. Two well-known models - the Bean model and the Kim-Anderson model - of the critical state were analysed in order to describe the anomalous peak-effect quantitatively.

  15. Counter magnetization of SmCo5 permanent magnet by YBCO/Ag composite bulk superconductor — A competing interaction picture

    Science.gov (United States)

    Parthasarathy, R.; Lakshmi, M. M.; Seshubai, V.

    2012-06-01

    We report here for the first time the counter magnetization of an SmCo5 permanent magnet in the presence of a YBCO/Ag composite bulk superconductor. This remarkable phenomenon has been observed during our experiments to measure the levitation force of the superconductor. The inclination to study the effects of the superconductor on the permanent magnet led us to observe this surprising and curious phenomenon for the first time. A complete M-H hysteresis loop of the SmCo5 permanent magnet has been recorded using the bulk superconductor itself as a magnet. We present some of the initial results which are interesting and we discuss the possible kind of interaction that could lead to our observations.

  16. Thickness dependence of the levitation performance of double-layer high-temperature superconductor bulks above a magnetic rail

    Energy Technology Data Exchange (ETDEWEB)

    Sun, R.X.; Zheng, J.; Liao, X.L.; Che, T.; Gou, Y.F.; He, D.B.; Deng, Z.G., E-mail: zgdeng@gmail.com

    2014-10-15

    Highlights: • Thickness optimization of double-layer bulk HTSC arrangement is studied. • The new bulk HTSC arrangement makes better use of the flux distribution of the magnetic rails. • Levitation performance can be enhanced with the optimization. • The optimization can meet large levitation force requirements for HTS Maglev system. - Abstract: A double-layer high-temperature superconductor (HTSC) arrangement was proposed and proved to be able to bring improvements to both levitation force and guidance force compared with present single-layer HTSC arrangement. To fully exploit the applied magnetic field by a magnetic rail, the thickness dependence of a double-layer HTSC arrangement on the levitation performance was further investigated in the paper. In this study, the lower-layer bulk was polished step by step to different thicknesses, and the upper-layer bulk with constant thickness was directly superimposed on the lower-layer one. The levitation force and the force relaxation of the double-layer HTSC arrangement were measured above a Halbach magnetic rail. Experimental result shows that a bigger levitation force and a less levitation force decay could be achieved by optimizing the thickness of the lower-layer bulk HTSC. This thickness optimization method could be applied together with former reported double-layer HTSC arrangement method with aligned growth sector boundaries pattern. This series of study on the optimized combination method do bring a significant improvement on the levitation performance of present HTS maglev systems.

  17. Superconductors

    Science.gov (United States)

    Newkirk, Lawrence R.; Valencia, Flavio A.

    1977-02-01

    The structural quality of niobium germanide as a high-transition-temperature superconducting material is substantially improved by the presence of about 5 at. % oxygen. Niobium germanide having this oxygen content may readily be prepared as a bulk coating bonded to a metallic substrate by chemical vapor deposition techniques.

  18. Improvement of persistent magnetic field trapping in bulk Y-Ba-Cu-O superconductors

    Science.gov (United States)

    Chen, In-Gann; Weinstein, Roy

    1993-01-01

    For type-II superconductors, magnetic field can be trapped due to persistent internal supercurrent. Quasi-persistent magnetic fields near 2 T at 60 K (and 1.4 T at 77 K) have been measured in minimagnets made of proton-irradiated melt-textured Y-Ba-Cu-O (MT-Y123) samples. Using the trapping effect, high-field permanent magnets with dipole, quadrupole, or more complicated configurations can be made of existing MT-Y123 material, thus bypassing the need for high-temperature superconductor (HTS) wires. A phenomenological current model has been developed to account for the trapped field intensity and profile in HTS samples. This model is also a guide to select directions of materials development to further improve field trapping properties. General properties such as magnetic field intensities, spatial distributions, stabilities, and temperature dependence of trapped field are discussed.

  19. Visualizing the morphology of vortex lattice domains in a bulk type-II superconductor.

    Science.gov (United States)

    Reimann, T; Mühlbauer, S; Schulz, M; Betz, B; Kaestner, A; Pipich, V; Böni, P; Grünzweig, C

    2015-01-01

    Alike materials in the solid state, the phase diagram of type-II superconductors exhibit crystalline, amorphous, liquid and spatially inhomogeneous phases. The multitude of different phases of vortex matter has thence proven to act as almost ideal model system for the study of both the underlying properties of superconductivity but also of general phenomena such as domain nucleation and morphology. Here we show how neutron grating interferometry yields detailed information on the vortex lattice and its domain structure in the intermediate mixed state of a type-II niobium superconductor. In particular, we identify the nucleation regions, how the intermediate mixed state expands, and where it finally evolves into the Shubnikov phase. Moreover, we complement the results obtained from neutron grating interferometry by small-angle neutron scattering that confirm the spatially resolved morphology found in the intermediate mixed state, and very small-angle neutron scattering that confirm the domain structure of the vortex lattice.

  20. Effects of Y211 phase contents on the critical current density Jc and microstructural analysis in YBCO bulk superconductors

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    YBCO bulk superconductors were prepared by the solid state reaction and top-seed-melt-textured growth (TSMTG) process. By using the AC susceptibility measurement, the critical transition temperature Tc of samples is 91.5 K for the highest value, and the transition width ?Tc is less than 1 K. The highest magnetization critical current densities Jc achieved 106 A/cm2 under 5 T at 10 K and 1.35?104 A/cm2 under 2 T at 70 K (H//c), respectively. The results combining the SEM observation indicate that doping of Y211 particles is more effective in improving the growth quality of melt-textured YBCO superconductor and in reducing the micro-cracks of specimens. Doping of Y2O3 powder forms the rod-shaped Y211 particles, but doping of Y211 particles directly to matrix materials forms the spherical Y211 particles mainly. Combining the microstructures with Jc measurements shows that the interfaces are most important on flux bundle pinning, in which the gradient of free energy is larger than that of other place between the Y211 particles and the Y123 matrix materials.

  1. Thickness dependence of the levitation performance of double-layer high-temperature superconductor bulks above a magnetic rail

    Science.gov (United States)

    Sun, R. X.; Zheng, J.; Liao, X. L.; Che, T.; Gou, Y. F.; He, D. B.; Deng, Z. G.

    2014-10-01

    A double-layer high-temperature superconductor (HTSC) arrangement was proposed and proved to be able to bring improvements to both levitation force and guidance force compared with present single-layer HTSC arrangement. To fully exploit the applied magnetic field by a magnetic rail, the thickness dependence of a double-layer HTSC arrangement on the levitation performance was further investigated in the paper. In this study, the lower-layer bulk was polished step by step to different thicknesses, and the upper-layer bulk with constant thickness was directly superimposed on the lower-layer one. The levitation force and the force relaxation of the double-layer HTSC arrangement were measured above a Halbach magnetic rail. Experimental result shows that a bigger levitation force and a less levitation force decay could be achieved by optimizing the thickness of the lower-layer bulk HTSC. This thickness optimization method could be applied together with former reported double-layer HTSC arrangement method with aligned growth sector boundaries pattern. This series of study on the optimized combination method do bring a significant improvement on the levitation performance of present HTS maglev systems.

  2. The influence of post-growth thermal treatments on the critical current density of TSMG YBCO bulk superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Diko, P; Antal, V; Zmorayova, K; Sefcikova, M; Kovac, J [Institute of Experimental Physics SAS, Watsonova 47, 04001 Kosice (Slovakia); Chaud, X [CNRS/CRETA, 25, Avenue des Martyrs, 38042 Grenoble Cedex 9 (France); Yao, X [Department of Physics, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240 (China); Chen, I [Department of Materials Science and Engineering, National Cheng Kung University (NCKU) Tainan, Taiwan (China); Eisterer, M; Weber, H W [Vienna University of Technology, Atominstitut, Stadionallee 2, 1020 Vienna (Austria)

    2010-12-15

    Oxygenation and thermochemical post-growth treatments of top seeded melt-growth (TSMG) YBCO bulk superconductors can significantly influence critical current density. It is shown that, depending on oxygenation conditions and the size of 211 particles, different reductions of intrinsic critical current density values can be obtained due to the reduction in the sample cross-section caused by the presence of a/b-microcracks induced by 211 particles, and a/b- and a/c-cracks induced by oxygenation. The possibility of eliminating oxygenation cracks by high pressure oxygenation and consequently significantly increasing the macroscopic critical current density is demonstrated. An effective dopant concentration for chemical pinning is proposed and possible clustering of substitutions in the Y123 lattice by thermochemical treatments is shown.

  3. Levitation force and magnetization in bulk and thin film high T{sub c} superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Riise, A.B

    1998-04-01

    The authors present high-resolution measurements of the repulsive vertical force and its associated stiffness between a Nd-B-Fe magnet and a YBa{sub 2}Cu{sub 3}O{sub 7-{delta}} superconductor in cylindrical geometry. The results are compared with theoretical predictions. The calculations are based on a model in which the superconductor is assumed to be either a sintered granular material or consisting of grains embedded in a nonactive matrix so that only intragranular currents are important. The critical state model is applied to each grain individually and closed form expressions for both vertical force F{sub z} and stiffness are obtained in a configuration with cylindrical symmetry. The model explains all features of the experimental results in a consistent way. A good quantitative agreement has been obtained using only three adjustable parameters. Several central aspects of the phenomenon of magnetic levitation with high-T{sub c} superconductors are presented. High-resolution measurements are made of the repulsive vertical force and its associated stiffness as well as the horizontal stabilizing force and the stiffness governing lateral vibrations. The results obtained at 77 K using a granular YBa{sub 2}Cu{sub 3}O{sub 7-{delta}} sample and Nd-Fe-B magnet in a rectangular levitation configuration are compared with theoretical predictions. The calculations, which are based on the critical state model with the assumption that it applies to the grins individually, give closed-form expressions for all the measured quantities. It is concluded that the present model explains all features of the observations in a consistent way. Using only three adjustable parameters a good agreement exists also at a quantitative level. Experimental studies and theoretical modelling of the levitation force on a permanent magnet placed above a superconducting thin film are offered. It is shown that measurements of the levitation force is a simple and precise method to determine the

  4. Fine structure of a bulk MgB2 superconductor after deformation and heat treatment

    Science.gov (United States)

    Kuznetsova, E. I.; Krinitsina, T. P.; Blinova, Yu. V.; Degtyarev, M. V.; Sudareva, S. V.

    2017-04-01

    The structure of the MgB2 superconductor subjected to high-temperature restoration annealing after cold deformation under high pressure in a Toroid chamber or Bridgman anvils has been investigated by transmission electron microscopy. It has been shown that after postdeformation annealing at 950°C the average size of crystallites in the matrix phase increases 5-10 times compared to the deformed state, reaching 50-150 nm, as well as the critical current density increases by a factor of three (up to 6.7 × 104 A/cm2, 30 K) compared to the initial state. It has been found that the MgO phase and the higher magnesium borides are present in the form of dispersed precipitates 10-70 nm in size.

  5. Magnetic Properties of GdBa{sub 2}Cu{sub 3}O{sub 7-y} Bulk Superconductors Fabricated by a Top-seeded Melt Growth Process

    Energy Technology Data Exchange (ETDEWEB)

    Kim, K. M.; Park, S. D.; Jun, B. H.; Kim, C. J. [Neutron Science Division, Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Ko, T. K. [Dept. of Electrical and Eletronic Engineering, Yonsei University, Seoul (Korea, Republic of)

    2012-08-15

    The fabrications condition and superconducting properties of top-seeded melt growth (TSMG) processed GdBa{sub 2}Cu{sub 3}O{sub 7-y} (Gd123) bulk superconductors were studied. Processing parameters (a maximum temperature (T{sub max}), a temperature for crystal growth (T{sub G}) and a cooling rate (R{sub G}) through a peritectic temperature (T{sub P}) for the fabrication of single grain Gd123 superconductors were optimized. The magnetic levitation forces, trapped magnetic fields, superconducting transition temperature (Tc) and critical current density (Jc) of the Gd123 bulks superconductors were estimated. Single grain Gd123 bulk superconductors were successfully fabricated at the optimized processing condition. The Tc of a TSMG processed Gd123 sample was 92.5 K and the Jc at 77 K and 0 T was approximately 50{kappa}A/cm{sup 2}. The trapped magnetic field contour and magnetic levitation forces were dependent on the top surface morphology of TSMG processed Gd123 samples. The single grain Gd123 samples, field-cooled at 77 K using a Nd-B-Fe permanent magnet with 5.27 kG and 30 mm dia., showed the trapped magnetic field contour of a single grain with a maximum of 4 kG at the sample center. The maximum magnetic levitation forces of the single grain Gd123 sample, field-cooled or zero field-cooled, were 40 N and 107 N, respectively.

  6. Multi-seeding melt growth process of bulk Y-Ba-Cu-O superconductors for engineering applications

    Science.gov (United States)

    Wongsatanawarid, A.; Seki, H.; Murakami, M.

    2010-06-01

    We have prepared polycrystalline and four-domain Y-Ba-Cu-O superconductors in a molar ratio of Y123: Y211 = 10: 4 with lwt% Ce02 addition by melt-processing in air. Trapped field measurements showed that four sharp peaks were observed in a four-domain bulk sample, showing that four grains were successfully formed without defects by a multi-seeding method. Force measurements showed that a four-domain Y-Ba-Cu-O sample exhibited higher repulsive forces and smaller hysteresis loops than polycrystalline Y-Ba-Cu-O sample during the increasing and decreasing field processes, which implies higher pinning performance of the four-domain sample. With the aim of studying the transferable torque forces, we used a multi-pole magnet circuit with NSNS configuration. We confirmed that with the interaction of the magnet circuit, a four-domain Y-Ba-Cu-O sample showed larger forces than a polycrystalline sample both in the field-cooled and the zero-field-cooled mode. We also measured the torque forces acting between the magnet circuit and bulk Y-Ba-Cu-O samples by twisting the magnet circuit in the levitated state. Again a four-domain Y-Ba-Cu-O sample exhibited much higher torque forces than a polycrystalline sample. These results showed that multi-seeded Y-Ba-Cu-O sample with four-domains can be used for torque transfer apllications.

  7. The enhancement of critical current density on the bulk of BPSCCO-system superconductor with silver additions

    Energy Technology Data Exchange (ETDEWEB)

    Engkir Sukirman; Wisnu Ari Adi; Puji Sulisworo dan W. Prasuad [Materials Science Research Center, BATAN, Serpong (Indonesia)

    1999-10-01

    The influence of silver additions on the critical current density (Jc) of BPSCCO-bulk superconductor was investigated, with the aim of getting an increase of its Jc and trying to find out a correlation of Jc and structures of BPSCCO-silver composites. The BPSCCO-system superconductors with nominal composition Bi{sub 1.84}Pb{sub 0.34}Sr{sub 2.00}Ca{sub 2.03}Cu{sub 3.06}O{sub x} (2223-phase) were synthesized by using solid state reaction method. The silver added was in the powder-AgO form varied from 0 to 30 wt % AgO. The critical current density, crystal structure, and micro-structure of BPSCCO-silver composites were characterized by means of four-point probe, x-ray diffractometer, and scanning electron microscope that is equipped with a link system energy dispersive spectrometer. It was found that silver additions to BPSCCO cause a reasonable improvement in Jc from 120 to 215 A/cm{sup 2}, and a slight increase in Tc from 92 to 108 K, and lattice parameters of the 2223-phase from a 3.811(3) to 3.820(2) A, and from c = 37.08(3) to 37.15(2) A, with the optimum value occurs at 20 wt % AgO. The AgO powders added to the BPSCCO specimens were converted to Ag{sub 2}O and metallic Ag during the annealing process at 827degC for 96 h in air. The addition of AgO to BPSCCO system does not necessarily lead to decomposition of the 2223-phase. The AgO reacts with and suppresses the 2201-phase. (author)

  8. Significant flux trapping in single grain GdBCO bulk superconductor under off-axis field cooled magnetization

    Science.gov (United States)

    Li, Zhi; Ida, Tetsuya; Miki, Motohiro; Teshima, Hidekazu; Morita, Mitsuru; Izumi, Mitsuru

    2017-03-01

    A single grain bulk high-temperature superconductor (HTS) exhibits intensified flux trapping performance upon field cooled magnetization. The world record of trapped flux is 17.6 T achieved by using stacked two-fold GdBCO bulks. However, the majority of magnetization studies focused on the magnetization along the crystallographic c-axis. In the present study, we clarify the flux trapping performance under field cooled magnetization using an off-axis magnetic field with respect to the c-axis. The results show that the trapped flux is almost polarized along the applied field as expected. This tendency remains up to a high off-axis angle θ around 60°. It is worth mentioning that, with θ of 30°, the maximum trapped flux component B // max parallel to the c-axis significantly remains more than 96% of 1.6 T which occurs under on-axis magnetization. Meanwhile, the angular dependence of the c-axis parallel component exhibits that observed flux density is higher than that expected from 1.6 cosθ. In addition, to visualize the flux line upon magnetization at θ of 90°, we successfully demonstrate the continuous flux line trace using steel wires; different trapped flux behaviour appears when applied field penetrates the bulk through the growth sectors centre and along the growth sector boundary, respectively. We interpret these results may come from the microstructure as a result of melt growth. It is highly emphasized that the off-axis magnetization with the finite inclination angle is quite useful for introducing into the design of HTS applications.

  9. Remagnetization of bulk high-temperature superconductors subjected to crossed and rotating magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Vanderbemden, P [SUPRATECS and Department of Electrical Engineering and Computer Science B28, Sart-Tilman, B-4000 Liege (Belgium); Hong, Z [Centre for Advanced Photonics and Electronics, Engineering Department, University of Cambridge, 9 JJ Thomson Avenue, Cambridge CB3 0FA (United Kingdom); Coombs, T A [Centre for Advanced Photonics and Electronics, Engineering Department, University of Cambridge, 9 JJ Thomson Avenue, Cambridge CB3 0FA (United Kingdom); Ausloos, M [SUPRATECS and Department of Physics B5, Sart-Tilman, B-4000 Liege (Belgium); Babu, N Hari [IRC in Superconductivity, University of Cambridge, Madingley Road, Cambridge CB3 0HE (United Kingdom); Cardwell, D A [IRC in Superconductivity, University of Cambridge, Madingley Road, Cambridge CB3 0HE (United Kingdom); Campbell, A M [IRC in Superconductivity, University of Cambridge, Madingley Road, Cambridge CB3 0HE (United Kingdom)

    2007-09-15

    Bulk melt-processed Y-Ba-Cu-O (YBCO) has significant potential for a variety of high-field permanent-magnet-like applications, such as the rotor of a brushless motor. When used in rotating devices of this kind, however, the YBCO can be subjected to both transient and alternating magnetic fields that are not parallel to the direction of magnetization and which have a detrimental effect on the trapped field. These effects may lead to long-term decay of the magnetization of the bulk sample. In the present work, we analyze both experimentally and numerically the remagnetization process of a melt-processed YBCO single domain that has been partially demagnetized by a magnetic field applied orthogonal to the initial direction of trapped flux. Magnetic torque measurements are used as a tool to probe changes in the remanent magnetization during various sequences of applied field. The application of a small magnetic field between the transverse cycles parallel to the direction of original magnetization results in partial remagnetization of the sample. Rotating the applied field, however, is found to be much more efficient at remagnetizing the bulk material than applying a magnetizing field pulse of the same amplitude. The principal features of the experimental data can be reproduced qualitatively using a two-dimensional finite-element numerical model based on an E-J power law. Finally, the remagnetization process is shown to result from the complex modification of current distribution within the cross-section of the bulk sample.

  10. Melt process of Sm-Ba-Cu-O bulk superconductors by thin film cold seeding

    Science.gov (United States)

    Fujimoto, H.; Ozaku, H.; Ohtabara, E.

    2003-10-01

    We discuss Sm123 bulks melt-processed in air and their characteristic superconducting properties for improving superconducting properties and producing a larger bulk. Isothermal undercooling growth in air with oxygen annealing and Nd123/MgO thin film cold seeding technique were applied in SmBaCuOy/Ag system to seek the high-efficiency of process, homogeneity of composition, and feasibility of batch production. We investigated process conditions such as heat treatment temperatures, compositions, seeding methods, and atmosphere. Single-domain growth of superconducting phases of a square larger than 10 mm on a side and 5 mm in thickness was achieved using this technique. Tc,onset and Tc,zero are 94 and 90 K, and Jc is 3 × 10 4 A/cm 2 at around 2 T at 77 K with a typical peak effect in the LRE system. In the case of Sm211 = 10 and 40 mol% addition, the maximum trapped magnetic field of the bulks is 1000 and 2100 G, respectively. The maximum magnetic field increases as Sm211 volume fractions increase. The result implies that melt-processed in air applying isothermal method and thin film seeding in Sm system is feasible for producing larger bulks in large scale applications.

  11. Interaction of bulk superconductors with flywheel rings made of multiple permanent magnets

    Science.gov (United States)

    Ikeda, M.; Wongsatanawarid, A.; Seki, H.; Murakami, M.

    2009-10-01

    Compared to conventional mechanical bearings, superconducting bearings have the advantage that there is no friction loss. Thus the superconducting bearings are employed for a flywheel energy storage device, and thereby one can construct the system that stores the energy for a long duration. Hence, superconducting flywheel energy storage system has attracted worldwide attention. For practical applications of the superconducting energy storage system, the stored energy must be maximized that can be achieved by either increasing the diameter of the levitated flywheel or the rotational velocity. Since the suspended flywheel in the superconducting flywheel energy storage system is made of permanent magnets, its size is limited by the size of permanent magnets. In addition, when the rotational speed is increased, there is possibility for the magnet ring to fracture due to a large centrifugal force. We therefore proposed the construction of the magnetic flywheel ring by simply arranging small permanent magnets pasted into machined grooves in Al disk 650 mm in diameter. Then we measured the force interaction between superconductor sample and a invented flywheel design. We have found that the field is almost uniform when the distance from the flywheel surface exceeded 15 mm, showing that frictionless rotation is possible at the gap larger than 15 mm. Furthermore, the repulsive force density was 0.48 N/cm 2 at 15 mm, which demonstrates that the mass of 161.32 kg can be levitated.

  12. Feasibility of introducing ferromagnetic materials to onboard bulk high-T{sub c} superconductors to enhance the performance of present maglev systems

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Zigang, E-mail: zgdeng@gmail.com [Applied Superconductivity Laboratory (ASCLab), Southwest Jiaotong University (SWJTU), Chengdu, Sichuan 610031 (China); State Key Laboratory of Traction Power (TPL), Southwest Jiaotong University (SWJTU), Chengdu, Sichuan 610031 (China); Wang, Jiasu [Applied Superconductivity Laboratory (ASCLab), Southwest Jiaotong University (SWJTU), Chengdu, Sichuan 610031 (China); Zheng, Jun; Zhang, Ya [Applied Superconductivity Laboratory (ASCLab), Southwest Jiaotong University (SWJTU), Chengdu, Sichuan 610031 (China); State Key Laboratory of Traction Power (TPL), Southwest Jiaotong University (SWJTU), Chengdu, Sichuan 610031 (China); Wang, Suyu [Applied Superconductivity Laboratory (ASCLab), Southwest Jiaotong University (SWJTU), Chengdu, Sichuan 610031 (China)

    2013-02-14

    Highlights: ► Ferromagnetic materials guide the flux distribution of the PMG to bulk positions. ► With ferromagnetic materials, guidance performance can be enhanced greatly. ► A new HTS Maglev system with onboard ferromagnetic materials is designed. ► The design can meet large guidance force requirements for practical applications. -- Abstract: Performance improvement is a long-term research task for the promotion of practical application of promising high-temperature superconducting (HTS) magnetic levitation (maglev) vehicle technologies. We studied the feasibility to enhance the performance of present HTS Maglev systems by introducing ferromagnetic materials to onboard bulk superconductors. The principle here is to make use of the high magnetic permeability of ferromagnetic materials to alter the flux distribution of the permanent magnet guideway for the enhancement of magnetic field density at the position of the bulk superconductors. Ferromagnetic iron plates were added to the upper surface of bulk superconductors and their geometric and positioning effects on the maglev performance were investigated experimentally. Results show that the guidance performance (stability) was enhanced greatly for a particular setup when compared to the present maglev system which is helpful in the application where large guidance forces are needed such as maglev tracks with high degrees of curves.

  13. Common electronic origin of superconductivity in (Li,Fe)OHFeSe bulk superconductor and single-layer FeSe/SrTiO3 films.

    Science.gov (United States)

    Zhao, Lin; Liang, Aiji; Yuan, Dongna; Hu, Yong; Liu, Defa; Huang, Jianwei; He, Shaolong; Shen, Bing; Xu, Yu; Liu, Xu; Yu, Li; Liu, Guodong; Zhou, Huaxue; Huang, Yulong; Dong, Xiaoli; Zhou, Fang; Liu, Kai; Lu, Zhongyi; Zhao, Zhongxian; Chen, Chuangtian; Xu, Zuyan; Zhou, X J

    2016-02-08

    The mechanism of high-temperature superconductivity in the iron-based superconductors remains an outstanding issue in condensed matter physics. The electronic structure plays an essential role in dictating superconductivity. Recent revelation of distinct electronic structure and high-temperature superconductivity in the single-layer FeSe/SrTiO3 films provides key information on the role of Fermi surface topology and interface in inducing or enhancing superconductivity. Here we report high-resolution angle-resolved photoemission measurements on the electronic structure and superconducting gap of an FeSe-based superconductor, (Li0.84Fe0.16)OHFe0.98Se, with a Tc at 41 K. We find that this single-phase bulk superconductor shows remarkably similar electronic behaviours to that of the superconducting single-layer FeSe/SrTiO3 films in terms of Fermi surface topology, band structure and the gap symmetry. These observations provide new insights in understanding high-temperature superconductivity in the single-layer FeSe/SrTiO3 films and the mechanism of superconductivity in the bulk iron-based superconductors.

  14. Processing of Bulk YBa2Cu3O(7-x) High Temperature Superconductor Materials for Gravity Modification Experiments and Performance Under AC Levitation

    Science.gov (United States)

    Koczor, Ronald; Noever, David; Hiser, Robert

    1999-01-01

    We have previously reported results using a high precision gravimeter to probe local gravity changes in the neighborhood of bulk-processed high temperature superconductor disks. Others have indicated that large annular disks (on the order of 25cm diameter) and AC levitation fields play an essential role in their observed experiments. We report experiments in processing such large bulk superconductors. Successful results depend on material mechanical characteristics, and pressure and heat treat protocols. Annular disks having rough dimensions of 30cm O.D., 7cm I.D. and 1 cm thickness have been routinely fabricated and tested under AC levitation fields ranging from 45 to 300OHz. Implications for space transportation initiatives and power storage flywheel technology will be discussed.

  15. Melt-processed bulk superconductors: Fabrication and characterization for power and space applications

    Science.gov (United States)

    Hojaji, Hamid; Barkatt, Aaron; Hu, Shouxiang; Thorpe, Arthur N.; Ware, Matthew F.; Davis, David; Alterescu, Sidney

    1991-01-01

    Melt-process bulk superconducting materials based on variations on the base YBa2Cu3O(x) were produced in a variety of shapes and forms. Very high values of both zero-field and high-field magnetization were observed. These are useful for levitation and power applications. Magnetic measurements show that the effects of field direction and intensity, temperature and time are consistent with an aligned grain structure with multiple pinning sites and with models of thermally activated flux motion.

  16. Influence of lateral displacement on the levitation performance of a magnetized bulk high-T{sub c} superconductor magnet

    Energy Technology Data Exchange (ETDEWEB)

    Liu, W., E-mail: tonny-violet@163.com [College of Nuclear Technology and Automation Engineering, Chengdu University of Technology, Chengdu 610059 (China) and Applied Superconductivity Laboratory, Southwest Jiaotong University, Chengdu 610031 (China); Wang, J.S.; Ma, G.T.; Zheng, J. [Applied Superconductivity Laboratory, Southwest Jiaotong University, Chengdu 610031 (China); State Key Laboratory of Traction Power, Southwest Jiaotong University, Chengdu 610031 (China); National Laboratory of Rail Transit, Chengdu, 610031 (China); Tuo, X.G.; Li, L.L. [College of Nuclear Technology and Automation Engineering, Chengdu University of Technology, Chengdu 610059 (China); Ye, C.Q.; Liao, X.L. [Applied Superconductivity Laboratory, Southwest Jiaotong University, Chengdu 610031 (China); National Laboratory of Rail Transit, Chengdu, 610031 (China); Wang, S.Y. [Applied Superconductivity Laboratory, Southwest Jiaotong University, Chengdu 610031 (China); State Key Laboratory of Traction Power, Southwest Jiaotong University, Chengdu 610031 (China); National Laboratory of Rail Transit, Chengdu, 610031 (China)

    2012-03-15

    Compared with the permanent magnet, the magnetized bulk high-T{sub c} superconductor magnet (MBSCM) can trap higher magnetic field due to its strong flux pinning ability, so it is a good candidate to improve the levitation performance of high-T{sub c} superconductive (HTS) maglev system. The trapped magnetic flux of a MBSCM is sustained by the inductive superconducting current produced by the magnetizing process and is susceptible to the current intensity as well as configuration. In the HTS maglev system, the lateral displacement is an important process to change the superconducting current within a MBSCM and then affects its levitation performance, which is essential for the traffic ability in curve-way, the loading capacity of lateral impact and so on. The research about influence of lateral displacement on the levitation performance of MBSCM is necessary when MBSCM is applied on the HTS maglev vehicle. The experimental investigations about the influence of lateral displacement on the levitation performance of a MBSCM with different trapped fluxes and applied fields are processed in this article. The analyses and conclusions of this article are useful for the practical application of MBSCM in HTS maglev system.

  17. Microstructural and superconducting properties of C6H6 added bulk MgB2 superconductor

    Science.gov (United States)

    Babaoğlu, Meral G.; Safran, Serap; Çiçek, Özlem; Ağıl, Hasan; Ertekin, Ercan; Hossain, Md. Shahriar A.; Yanmaz, Ekrem; Gencer, Ali

    2012-10-01

    The effect of aromatic hydrocarbon (benzene, C6H6) addition on lattice parameters, microstructure, critical temperature (Tc), critical current density (Jc) of bulk MgB2 has been studied. In this work only 2 mol% C6H6 addition was found to be very effective in increasing the Jc values, while resulting in slight reduction of the Tc. Jc values of 2 mol% C6H6 added MgB2 bulks reached to 1.83×106 A/cm2 at 15 K and 0 T. Microstructural analyses suggest that Jc enhancement is associated with the substitution of carbon with boron and which also results in the smaller MgB2 grain size. The change in the lattice parameters or the lattice disorder is claimed as a cause of the slight reduction in the Tc by carbon addition. We note that our results show the advantages of C6H6 addition include homogeneous mixing of precursor powders, avoidance of expansive nanoadditives, production of highly reactive C, and significant enhancement in Jc of MgB2, compared to un-doped samples.

  18. Universal bulk charge-density-wave (CDW) correlations in the cuprate superconductors

    Science.gov (United States)

    Tabis, Wojciech

    2014-03-01

    The recent observation of bulk CDW order in YBa2Cu3O8+δ(YBCO) in competition with superconductivity is a significant development. Using Cu L-edge resonant X-ray scattering, we also observe bulk CDW order in HgBa2CuO4+δ(Hg1201 Tc = 72K). The correlations appear below TCDW ~ 200K, well below the pseudogap temperature T* ~ 320K associated with unusual magnetism, but coincident with the onset of Fermi-liquid-like charge transport. In contrast to YBCO, we observe no decrease of the CDW amplitude below Tc, and the correlation length is short and temperature independent. CDW correlations therefore are a universal property of underdoped cuprates, enhanced by low structural symmetry and a magnetic field, but fundamentally not in significant competition with superconductivity. We also discuss the relationship between the CDW modulation wave vector and the Fermi surface area extracted from QO experiments. Work supported by DOE-BES. In collaboration with Y. Li, M. Le Tacon, L. Braicovich, A. Kreyssig, M. Minola, G. Dellea, E. Weschke, M. Veit, A. Goldman, T. Schmitt, G. Ghiringhelli, N. Barisic, M.K. Chan, C. Dorow, G. Yu, X. Zhao, B. Keimer, M. Greven.

  19. Polarized neutron imaging and three-dimensional calculation of magnetic flux trapping in bulk of superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Treimer, Wolfgang; Ebrahimi, Omid; Karakas, Nursel; Prozorov, Ruslan

    2012-05-17

    Polarized neutron radiography was used to study the three-dimensional magnetic flux distribution inside of single-crystal and polycrystalline Pb cylinders with large (cm3) volume and virtually zero demagnetization. Experiments with single crystals being in the Meissner phase (Tbulk Meissner expulsion in single crystals and bulk flux trapping with nearly-Bean-model profiles due to flux pinning in polycrystalline samples.

  20. Comparison of the effects of platinum and CeO2 on the properties of single grain, Sm-Ba-Cu-O bulk superconductors

    Science.gov (United States)

    Zhao, Wen; Shi, Yunhua; Radušovská, Monika; Dennis, Anthony R.; Durrell, John H.; Diko, Pavel; Cardwell, David A.

    2016-12-01

    SmBa2Cu3O7-δ (Sm-123) is a light-rare-earth barium-cuprate (LRE-BCO) high-temperature superconductor (HTS) with significant potential for high field industrial applications. We report the fabrication of large, single grain bulk [Sm-Ba-Cu-O (SmBCO)] superconductors containing 1 wt% CeO2 and 0.1 wt% Pt using a top-seeded melt growth process. The performance of the SmBCO bulk superconductors containing the different dopants was evaluated based on an analysis of their superconducting properties, including critical transition temperature, T c and critical current density, J c , and on sample microstructure. We find that both CeO2 and Pt dopants refine the size of Sm2BaCuO5 (Sm-211) particles trapped in the Sm-123 superconducting phase matrix, which act as effective flux pinning centres, although the addition of CeO2 results in broadly improved superconducting performance of the fully processed bulk single grain. However, 1 wt% CeO2 is significantly cheaper than 0.1 wt% Pt, which has clear economic benefits for use in medium to large scale production processes for these technologically important materials. Finally, the use of CeO2 results generally in the formation of finer Sm-211 particles and to the generation of fewer macro-cracks and Sm-211 free regions in the sample microstructure.

  1. Magnetic levitation and its application for education devices based on YBCO bulk superconductors

    Science.gov (United States)

    Yang, W. M.; Chao, X. X.; Guo, F. X.; Li, J. W.; Chen, S. L.

    2013-10-01

    A small superconducting maglev propeller system, a small spacecraft model suspending and moving around a terrestrial globe, several small maglev vehicle models and a magnetic circuit converter have been designed and constructed. The track was paved by NdFeB magnets, the arrangement of the magnets made us easy to get a uniform distribution of magnetic field along the length direction of the track and a high magnetic field gradient in the lateral direction. When the YBCO bulks mounted inside the vehicle models or spacecraft model was field cooled to LN2 temperature at a certain distance away from the track, they could be automatically floating over and moving along the track without any obvious friction. The models can be used as experimental or demonstration devices for the magnetic levitation applications.

  2. Characterization and study of pinning properties of bulk neodymium barium copper oxide superconductor with the neutron-induced fission

    Science.gov (United States)

    Osabe, Goro

    This dissertation describes work on characterization of the bulk Nd 1Ba2Cu3Oy high temperature superconductor, and investigation of flux pinning properties of columnar defects. The U/n process has been used to introduce quasi-columnar pinning centers into Nd123. The process involves adding 235U to the precursor powders of the superconductor, texturing, and irradiating with thermal neutrons. The nuclear fission fragments cause discontinuous broken columnar damage which acts as pinning centers. We intensively investigate the pinning properties due to the U/n process. We performed studies of superconductivity characteristics for U/n-Nd123, such as trapped field, critical current Jc, anisotropic, angular dependence of magnetization, flux creep, irreversible field and critical temperature. All measurements were made both before and after irradiation. The U/n process also results in chemical pinning centers smaller than 1mum. Pinning properties due to these chemical pinning centers were also investigated. Our results show that the U/n method increases the trapped field by factor of 4.45 (+/-0.36), and increases J c before 28,097 A/cm2 to values of 160,750 A/cm 2 at 77K with applied field 0.17T. If our best sample had been used at the best fluence, the sample would have reached a trapped field of 2997.9 G (3mm cube) at the peak fluence Fn = 0.885x10 16 n/cm2. A theoretical proposal for the summation problem for columnar pinning is also proposed. We introduce the concept of reduction of the order parameter due to the ion damage. We then have set up the summation problem for columnar defects. We use this approach for the summation problem in order to obtain Jc, as a function of diameter of columnar damage, number of incident ions, and magnetic field. These results have fairly good quantitative agreement with the actual experimental results. The calculations reveal that discontinuous columnar defects yield the maximum Jc in agreement with experiment. The highest Jc can be

  3. Enhancement of trapped field in single grain Y-Ba-Cu-O bulk superconductors by a modified top-seeded melt-textured growth

    Science.gov (United States)

    Tang, Tian-wei; Wu, Dong-jie; Xu, Ke-Xi

    2016-08-01

    The modified top-seeded melt-textured growth technique for fabricating single grain Y-Ba-Cu-O (YBCO) bulk superconductors with high field-trapping ability by using modified precursor pellets was reported. The modified precursor pellets are composed of different precursor powders YBa2Cu3O{}7-δ (Y123) + x mol% Y2BaCuO5 (Y211) + 1 wt% CeO2 without any further chemical doping. The modified YBCO bulks up to 25 and 34 mm in diameter were successfully fabricated from the modified precursor pellets. Microstructural observation results showed that the modified YBCO bulk exhibited a homogeneous distribution of Y211 phase particles, which was qualitatively explained by the solute diffusion growth model in combination with the trapping/pushing theory. As a result, it is notable that the peak trapped field values of 0.91 T (maximum 0.96 T) and 1.2 T (maximum 1.28 T) at 77 K were achieved for 25 and 34 mm modified YBCO bulks, respectively. In a word, the results from present work are very helpful to understand the melt growth mechanism and to further improve the properties of YBCO bulk superconductors for practical applications.

  4. A trapped magnetic field of 3 T in homogeneous, bulk MgB2 superconductors fabricated by a modified precursor infiltration and growth process

    Science.gov (United States)

    Bhagurkar, A. G.; Yamamoto, A.; Anguilano, L.; Dennis, A. R.; Durrell, J. H.; Babu, N. Hari; Cardwell, D. A.

    2016-03-01

    The wetting of boron with liquid magnesium is a critical factor in the synthesis of MgB2 bulk superconductors by the infiltration and growth (IG) process. Poor wetting characteristics can therefore result potentially in non-uniform infiltration, formation of defects in the final sample structure and poor structural homogeneity throughout the bulk material. Here we report the fabrication of near-net-shaped MgB2 bulk superconductors by a modified precursor infiltration and growth (MPIG) technique. A homogeneous bulk microstructure has subsequently been achieved via the uniform infiltration of Mg liquid by enriching pre-reacted MgB2 powder within the green precursor pellet as a wetting enhancer, leading to relatively little variation in superconducting properties across the entire bulk sample. Almost identical values of trapped magnetic field of 2.12 T have been measured at 5 K at both the top and bottom surfaces of a sample fabricated by the MPIG process, confirming the uniformity of the bulk microstructure. A maximum trapped field of 3 T has been measured at 5 K at the centre of a stack of two bulk MgB2 samples fabricated using this technique. A steady rise in trapped field was observed for this material with decreasing temperature down to 5 K without the occurrence of flux avalanches and with a relatively low field decay rate (1.5%/d). These properties are attributed to the presence of a fine distribution of residual Mg within the bulk microstructure generated by the MPIG processing technique.

  5. Cryogenic milling for the fabrication of high J{sub c} MgB{sub 2} bulk superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Kim, D. N.; Kang, M. O.; Park, H. W. [Korea University of Technology and Education, Cheonan (Korea, Republic of); Jun, B. H.; Kim, C. J. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2017-06-15

    Cryogenic milling which is a combined process of low-temperature treatment and mechanical milling was applied to fabricate high critical current density (J{sub c}) MgB{sub 2} bulk superconductors. Liquid nitrogen was used as a coolant, and no solvent or lubricant was used. Spherical Mg (6-12 μm, 99.9 % purity) and plate-like B powder (⁓ 1 μm, 97 % purity) were milled simultaneously for various time periods (0, 2, 4, 6 h) at a rotating speed of 500 rpm using ZrO{sub 2} balls. The (Mg{sup +2B}) powders milled were pressed into pellets and heat-treated at 700°C for 1 h in flowing argon. The use of cryomilled powders as raw materials promoted the formation reaction of superconducting MgB{sub 2}, reduced the grain size of MgB{sub 2}, and suppressed the formation of impurity MgO. The superconducting critical temperature (T{sub c}) of MgB{sub 2} was not influenced as the milling time (t) increased up to 6 h. Meanwhile, the critical current density (J{sub c}) of MgB{sub 2} increased significantly when t increased to 4 h. When t increased further to 6 h, however, Jc decreased. The J{sub c} enhancement of MgB{sub 2} by cryogenic milling is attributed to the formation of the fine grain MgB{sub 2} and a suppression of the MgO formation.

  6. Influence of layered precursor pellets on the growth and properties of Y-Ba-Cu-O bulk superconductors by top-seeded melt-textured growth

    Science.gov (United States)

    Tang, Tian-wei; Wu, Dong-jie; Xu, Ke-Xi

    2016-03-01

    It is well known that a fine and homogeneous distribution of Y2BaCuO5 (Y211) phase particles in single-grain Y-Ba-Cu-O (YBCO) bulk superconductors is essential for improving field-trapping ability. However, the size and concentration of Y211 phase particles in the fully melt-processed superconducting bulk increase significantly with the distance from the seed, which results in the accumulation of Y211 phase particles and the degradation of superconducting properties. In this paper, we report a new method of fabricating single-grain YBCO using layered precursor pellets. Using the top-seeded melt-textured growth process, single-grain YBCO bulk superconductors of about 22 mm in diameter and 9 mm in thickness were fabricated from layered precursor pellets and standard precursor pellets, respectively. The layered precursor pellets consist of precursor powders with 40 mol% Y211 at the top, 30 mol% Y211 in the middle and 20 mol% Y211 at the bottom of the whole pellets, while standard precursor pellets are prepared from precursor powders with only 40 mol% Y211. The growth morphology, microstructure and magnetic flux properties of the layered samples and standard samples were comparatively studied. The results proved that the layered precursor pellets allow a sufficient growth in the c-growth sector and a more uniform distribution of the Y211 phase in the matrix. The distribution of Y211 phase particles is qualitatively explained by the prevalent trapping/pushing theory. The trapped field at 77 K reaches 0.8 T, nearly 29% higher than the standard sample. The present results are very valuable for further improving the properties of YBCO bulk superconductors.

  7. Development of a Cost-Effective Process for the Fabrication of Single Grain YBa{sub 2}Cu{sub 3}O{sub 7-y} Bulk Superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Park, Soon Dong; Kim, Kwang Mo; Jun, Byung Hyuk [Neutron Science Division, Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Han, Young Hee; Kim, Chan Joong [Green Growth Laboratory, Korea Electric Power Research Institute, Daejeon (Korea, Republic of)

    2011-12-15

    To reduce the processing cost of the single grain REBCO (RE: Rare-earth elements) bulk superconductors, a cost-effective process should be developed. One possible way of developing the cost-effective process is the use of low-cost precursor powders. In this study, the single grain YBCO superconductors were fabricated using a home made powder. YBa{sub 2}Cu{sub 3}O{sub 7-y} (Y123) powders were synthesized at in air by the powder calcination method with repeated crushing and heat treatment steps. The processing parameters for the fabrication of single grain Y123 bulk superconductors, T{sub max} (maximum temperature), Tp (peritectic temperature) and a cooling rate through Tp were optimized. To enhance the flux pinning capacity of the single grain Y123 samples, YBa{sub 2}Cu{sub 3}O{sub 5} (Y211) particles were dispersed in the Y123 matrix by adding Y{sub 2}O{sub 3} powder to the calcined Y123 powder. Applying the optimized processing condition, the single grain Y123 superconductors with Tc=91 K and Jc-1.5x10{sup 4} A/cm{sup 2} at 2 T were successfully fabricated using a home made powder. The levitation forces and trapped magnetic field at 77 K measured using a Nd-B-Fe permanent magnet of 5300 G were 47 N and 3000 G, respectively, which are comparable to those obtained for the samples fabricated using a commercial grade Y123 powders.

  8. Surface critical magnetic field c3() of a bulk superconductor MgB2 using two-band Ginzburg–Landau theory

    Indian Academy of Sciences (India)

    I N Askerzade

    2003-09-01

    Two-band Ginzburg–Landau (TB G–L) equations for a bulk MgB2 were solved analytically to determine the temperature dependence of surface critical magnetic field Hc3(). It is shown that c3() has the same temperature dependence with c2(), similar to the case of a single-band superconductor, c3()=1.66 c2(). We use an elimination procedure for the decoupling of G–L equations of two-band superconductivity, which eases the calculations. It is expected that the temperature dependence for c3() gives positive curvature near c.

  9. Control of Y-211 content in bulk YBCO superconductors fabricated by a buffer-aided, top seeded infiltration and growth melt process

    Science.gov (United States)

    Namburi, Devendra K.; Shi, Yunhua; Palmer, Kysen G.; Dennis, Anthony R.; Durrell, John H.; Cardwell, David A.

    2016-03-01

    Bulk (RE)-Ba-Cu-O ((RE)BCO, where RE stands for rare-earth), single grain superconductors can trap magnetic fields of several tesla at low temperatures and therefore can function potentially as high field magnets. Although top seeded melt growth (TSMG) is an established process for fabricating relatively high quality single grains of (RE)BCO for high field applications, this technique suffers from inherent problems such as sample shrinkage, a large intrinsic porosity and the presence of (RE)2BaCuO5 (RE-211)-free regions in the single grain microstructure. Seeded infiltration and growth (SIG), therefore, has emerged as a practical alternative to TSMG that overcomes many of these problems. Until now, however, the superconducting properties of bulk materials processed by SIG have been inferior to those fabricated using the TSMG technique. In this study, we identify that the inferior properties of SIG processed bulk superconductors are related to the presence of a relatively large Y-211 content (˜41.8%) in the single grain microstructure. Controlling the RE-211 content in SIG bulk samples is particularly challenging because it is difficult to regulate the entry of the liquid phase into the solid RE-211 preform during the infiltration process. In an attempt to solve this issue, we have investigated the effect of careful control of both the infiltration temperature and the quantity of liquid phase powder present in the sample preforms prior to processing. We conclude that careful control of the infiltration temperature is the most promising of these two process variables. Using this knowledge, we have fabricated successfully a YBCO bulk single grain using the SIG process of diameter 25 mm that exhibits a trapped field of 0.69 T at 77 K, which is the largest value reported to date for a sample fabricated by the SIG technique.

  10. Dependence of levitation force on frequency of an oscillating magnetic levitation field in a bulk YBCO superconductor

    Science.gov (United States)

    Carter, Hamilton; Pate, Stephen; Goedecke, George

    2013-02-01

    The dependence of the magnetic field strength required for levitation of a melt textured, single domain YBCO superconductor disk on the frequency of the current generating the levitating magnetic field has been investigated. The magnetic field strength is found to be independent of frequency between 10 and 300 Hz. This required field strength is found to be in good experimental and theoretical agreement with the field strength required to levitate the same superconductor with a non-oscillating magnetic field. Hysteretic losses within the superconductor predicted by Bean’s critical-state model were also calculated. The measured data rules out any significant Bean’s model effects on the required levitation field strength within the measured frequency range.

  11. Dependence of levitation force on frequency of an oscillating magnetic levitation field in a bulk YBCO superconductor

    Energy Technology Data Exchange (ETDEWEB)

    Carter, Hamilton, E-mail: hcarter3@nmsu.edu [Department of Physics, New Mexico State University, Las Cruces, NM 88003 (United States); Pate, Stephen, E-mail: pate@nmsu.edu [Department of Physics, New Mexico State University, Las Cruces, NM 88003 (United States); Goedecke, George, E-mail: ggoedeck@nmsu.edu [Department of Physics, New Mexico State University, Las Cruces, NM 88003 (United States)

    2013-02-14

    Highlights: ► AC magnetic field strength required for levitation is independent of frequency. ► RMS magnetic field strength is in good agreement with DC magnetic field strength. ► Dependence of YBCO levitation force on AC magnetic field frequency is investigated. -- Abstract: The dependence of the magnetic field strength required for levitation of a melt textured, single domain YBCO superconductor disk on the frequency of the current generating the levitating magnetic field has been investigated. The magnetic field strength is found to be independent of frequency between 10 and 300 Hz. This required field strength is found to be in good experimental and theoretical agreement with the field strength required to levitate the same superconductor with a non-oscillating magnetic field. Hysteretic losses within the superconductor predicted by Bean’s critical-state model were also calculated. The measured data rules out any significant Bean’s model effects on the required levitation field strength within the measured frequency range.

  12. A novel, two-step top seeded infiltration and growth process for the fabrication of single grain, bulk (RE)BCO superconductors

    Science.gov (United States)

    Namburi, Devendra K.; Shi, Yunhua; Palmer, Kysen G.; Dennis, Anthony R.; Durrell, John H.; Cardwell, David A.

    2016-09-01

    A fundamental requirement of the fabrication of high performing, (RE)-Ba-Cu-O bulk superconductors is achieving a single grain microstructure that exhibits good flux pinning properties. The top seeded melt growth (TSMG) process is a well-established technique for the fabrication of single grain (RE)BCO bulk samples and is now applied routinely by a number of research groups around the world. The introduction of a buffer layer to the TSMG process has been demonstrated recently to improve significantly the general reliability of the process. However, a number of growth-related defects, such as porosity and the formation of micro-cracks, remain inherent to the TSMG process, and are proving difficult to eliminate by varying the melt process parameters. The seeded infiltration and growth (SIG) process has been shown to yield single grain samples that exhibit significantly improved microstructures compared to the TSMG technique. Unfortunately, however, SIG leads to other processing challenges, such as the reliability of fabrication, optimisation of RE2BaCuO5 (RE-211) inclusions (size and content) in the sample microstructure, practical oxygenation of as processed samples and, hence, optimisation of the superconducting properties of the bulk single grain. In the present paper, we report the development of a near-net shaping technique based on a novel two-step, buffer-aided top seeded infiltration and growth (BA-TSIG) process, which has been demonstrated to improve greatly the reliability of the single grain growth process and has been used to fabricate successfully bulk, single grain (RE)BCO superconductors with improved microstructures and superconducting properties. A trapped field of ˜0.84 T and a zero field current density of 60 kA cm-2 have been measured at 77 K in a bulk, YBCO single grain sample of diameter 25 mm processed by this two-step BA-TSIG technique. To the best of our knowledge, this value of trapped field is the highest value ever reported for a sample

  13. Melting of SmBa2Cu3O7-y-seeds during preparation of YBCO Bulk Superconductors by Infiltration Growth Method

    Science.gov (United States)

    Vojtkova, L.; Diko, P.; Volochová, D.

    2016-03-01

    The conditions for single-grain growth of YBCO bulk superconductors by top seeded infiltration growth were tested. It is shown that the interaction of melt formed from BaCuO2 + CuO + Y2O3 precursor with the Sm123 seed causes dissolution of the seed at maximum melting temperature 1045 °C. Experiments with low weight Y211 pellet confirmed that the low concentration of Y in the infiltration melt is responsible for this effect. The most effective way suppressing the seed dissolution was shown to be the insertion of Y123 + Y211 buffer layer between the seed and the Y211 pellet. This buffer layer possesses the melt which is saturated with yttrium what prevents dissolution of the seed.

  14. The influence of slow cooling on Y211 size and content in single-grain YBCO bulk superconductor through the infiltration-growth process

    Energy Technology Data Exchange (ETDEWEB)

    Ouerghi, A [Systems and Applied Mechanics Laboratory LASMAP, Polytechnic School of Tunisia, Rue El Kawarezmi La Marsa 743, Université de Carthage Tunis (Tunisia); Moutalbi, N., E-mail: nahed.moutalbi@yahoo.fr [Systems and Applied Mechanics Laboratory LASMAP, Polytechnic School of Tunisia, Rue El Kawarezmi La Marsa 743, Université de Carthage Tunis (Tunisia); Noudem, J.G. [CRISMAT-ENSICAEN (UMR-CNRS 6508), Université de Caen-Basse-Normandie, F-14050 Caen (France); LUSAC, Université de Caen-Basse-Normandie F-50130 Cherbourg-Octeville (France); M' chirgui, A. [Systems and Applied Mechanics Laboratory LASMAP, Polytechnic School of Tunisia, Rue El Kawarezmi La Marsa 743, Université de Carthage Tunis (Tunisia)

    2017-03-15

    Highlights: • YBCO bulk superconductors are produced by optimized Seeded Infiltration and Growth process. • The slow cooling time, in a fixed slow cooling temperature window, affects considerably the surface morphology and the bulk’s microstructure. • The Y211 particle’s size and content depend on the slow cooling time and its distribution behavior changes from one position to another. • There is an optimum slow cooling time, estimated to 88h, over which the shrinkage for both the liquid phase and the Y211 pellet is maximal, without any improvement of the crystal grain growth. • The magnetic trapped flux distribution for a given sample brings out the single grain characteristic. - Abstract: Highly textured YBa{sub 2}Cu{sub 3}O{sub 7-δ} (Y123) superconductors were produced using modified Textured Top Seeded Infiltration Growth (TSIG) process. The liquid source is made of only Y123 powder whereas the solid source is composed of Y{sub 2}BaCuO{sub 5} (Y211) powder. We aim to control the amount of liquid that infiltrates the solid pellet, which in turn controls the final amount of Y{sub 2}BaCuO{sub 5} particles in Y123 matrix. The effect of the slow cooling kinetics on sample morphology, on grain growth and on final microstructure was too investigated. It is shown that appropriate slow cooling time may also contribute to the control of the amount of Y211 inclusions in the final structure of Y123 bulk. We report herein the Y211 particle size and density distribution in the whole Y123 matrix. The present work proves that finest Y211 particles locate under the seed and that their size and density increase with distance from the seed.

  15. Structure and properties of YBa2Cu3O7-δ superconductor doped with bulk cadmium oxide

    Directory of Open Access Journals (Sweden)

    A Echresh

    2010-09-01

    Full Text Available In this paper, the Y1-xCdxBa2Cu3O7-δ superconductor with x=0, 0.05, 0.1, 0.15, 0.2, 0.3, 0.4, 0.5 are prepared using the solid state method and the structure, electrical resistance, critical current density and critical temperature of it, have been studied. The results show that these doping do not affect so much on the structure and lattice parameters. The electrical resistance of samples increased with doping. A little amount of doping cadmium improve critical current density such that the sample x=0.1 has a maximum critical current density among the samples. The critical temperature with doping cadmium up to x=0.2 has little fluctuation and its variation can be ignored, but by increasing up to x=0.5 the critical temperature decreases gradually.

  16. Analysis of the levitation force of pure and starch/polystyrene/MWCNT added bulk MgB2 superconductors using frozen image model under zero field cooling condition

    Science.gov (United States)

    Tripathi, D.; Dey, T. K.

    2016-04-01

    The measurement of superconducting levitation force between permanent magnet and polycrystalline samples of pure and MgB2 added with starch, polystyrene (PS) and multiwall carbon nanotube (MWCNT) have been performed under zero field cooling (ZFC) condition at 20 K in both descending and ascending modes. For this, the bulk pellets were synthesized by conventional solid state sintering technique. The XRD data indicate well developed MgB2 phase. However, a decrease in lattice parameter 'a = b' have been observed for doped MgB2 samples. Superconducting transition temperature of MgB2 also decreases with starch/PS/MWCNT addition. Unlike MWCNT, the addition of starch/polystyrene is found to enhance the levitation force of MgB2 superconductor. The levitation force between PM and investigated pellets in ZFC condition is explained well in terms of the updated version of modified frozen image model and the magnetic moment originated due to vertical motion of the superconductors have been estimated. It may be noted that except for MWCNT, addition of starch/PS in MgB2 improves the magnetic moment generated by vertical movement of pure MgB2. However, this improvement is more pronounced for 1 wt.% of PS added MgB2, which indicates more flux trapping and hence better levitation properties in 1 wt.% of PS added MgB2. The vertical stiffness estimated for pure and starch/PS/MWCNT doped MgB2 samples indicate that the levitation force are more sensitive in the region close to the PM.

  17. Crystalline phase transition information induced by high temperature susceptibility transformations in bulk PMP-YBCO superconductor growth in-situ

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, C.P., E-mail: zhangcp6813@126.com [SMRC, Northwest Institute for Non-ferrous Metal Research, Xi’an (China); Physics Department, Université Joseph Fourier, Grenoble (France); State Key Lab of Solidification Processing, Northwest Polytechnical University, Xi’an (China); Chaud, X. [CRETA/CNRS, 25 avenue des martyrs, 38042 Grenoble Cedex 9 (France); Beaugnon, E. [Physics Department, Université Joseph Fourier, Grenoble (France); CRETA/CNRS, 25 avenue des martyrs, 38042 Grenoble Cedex 9 (France); Zhou, L. [SMRC, Northwest Institute for Non-ferrous Metal Research, Xi’an (China); State Key Lab of Solidification Processing, Northwest Polytechnical University, Xi’an (China)

    2015-01-15

    Highlights: • It was the first time we measured the susceptibility of bulk YBCO in powder-melting-process at high temperature up to 1060 °C. • It revealed that the crystalline phase transition of bulk PMP-YBCO growth in process. • A new discovery of Y123 phase pre-formed then melted in heating stage has been found. • It discovered that Y123 crystal solidification started at 1004 °C in cooling stage in PMP route. - Abstract: The dynamic susceptibility transformations of bulk HTSC PMP-YBCO growth have been investigated from 200 °C up to 1060 °C by the Faraday Balance in-situ. It revealed that the crystalline phase transitions of bulk PMP-YBCO growth in process. A new discovery of Y123 phase pre-formed then melted in heating stage has been found. It also discovered that Y123 crystal solidification started at 1004 °C in cooling stage. Before Y123 solidification the liquid phase CuO change to Cu{sub 2}O reciprocally as well as the copper ion valence changed between divalent Cu{sup 2+} and trivalent Cu{sup 1+} each other. It was essential to keep quantities of CuO phase instead of the Cu{sub 2}O for Y123 crystal solidification.

  18. Solid state synthesis and characterization of bulk FeTe0.5Se0.5 superconductors

    Science.gov (United States)

    Onar, K.; Yakinci, M. E.

    2016-01-01

    FeTe0.5Se0.5 polycrystalline superconductor samples were synthesized by solid- state reaction method at different heating temperatures. The morphological and structural characterization of FeTe0 5Se0.5 samples were carried out by X-rays Diffraction, Scanning Electron Microscope and Energy Dispersive X-ray Spectroscopy. The electrical, magnetic and thermal transport properties were investigated up to 8 T by using physical property measurement system. The results reveal that the sensitivity of electrical and magnetic properties strongly depends on the heat treatment cycles. The upper critical field, Hc2(0), was determined with the magnetic field parallel to the sample surface. It gives a maximum value of 36.3 T. The lower critical field, Hc1(T), was obtained as 210, 140 and 70 Oe at 5, 8 and 12 K, respectively. The coherence length, ξ, at the zero field, was calculated to be 1.94 nm and suggested a transparent intergrain boundaries peculiarity. The μ0Hc2(0)/kBTc rate shows higher value (3.36 T/K) than the Pauli limit (1.84 T/K) which suggests unconventional nature of superconductivity for the polycrystalline FeTe0.5Se0.5 superconducting samples.

  19. Crystalline phase transition information induced by high temperature susceptibility transformations in bulk PMP-YBCO superconductor growth in-situ

    Science.gov (United States)

    Zhang, C. P.; Chaud, X.; Beaugnon, E.; Zhou, L.

    2015-01-01

    The dynamic susceptibility transformations of bulk HTSC PMP-YBCO growth have been investigated from 200 °C up to 1060 °C by the Faraday Balance in-situ. It revealed that the crystalline phase transitions of bulk PMP-YBCO growth in process. A new discovery of Y123 phase pre-formed then melted in heating stage has been found. It also discovered that Y123 crystal solidification started at 1004 °C in cooling stage. Before Y123 solidification the liquid phase CuO change to Cu2O reciprocally as well as the copper ion valence changed between divalent Cu2+ and trivalent Cu1+ each other. It was essential to keep quantities of CuO phase instead of the Cu2O for Y123 crystal solidification.

  20. Modification of the trapped field in bulk high-temperature superconductors as a result of the drilling of a pattern of artificial columnar holes

    Science.gov (United States)

    Lousberg, Gregory P.; Fagnard, J.-F.; Ausloos, M.; Vanderbemden, Ph; Vanderheyden, B.

    2010-06-01

    The trapped magnetic field is examined in bulk high-temperature superconductors that are artificially drilled along their c-axis. The influence of the hole pattern on the magnetization is studied and compared by means of numerical models and Hall probe mapping techniques. To this aim, we consider two bulk YBCO samples with a rectangular cross-section that are drilled each by six holes arranged either on a rectangular lattice (sample I) or on a centered rectangular lattice (sample II). For the numerical analysis, three different models are considered for calculating the trapped flux: (i), a two-dimensional (2D) Bean model neglecting demagnetizing effects and flux creep, (ii), a 2D finite-element model neglecting demagnetizing effects but incorporating magnetic relaxation in the form of an E - J power law, and, (iii), a 3D finite element analysis that takes into account both the finite height of the sample and flux creep effects. For the experimental analysis, the trapped magnetic flux density is measured above the sample surface by Hall probe mapping performed before and after the drilling process. The maximum trapped flux density in the drilled samples is found to be smaller than that in the plain samples. The smallest magnetization drop is found for sample II, with the centered rectangular lattice. This result is confirmed by the numerical models. In each sample, the relative drops that are calculated independently with the three different models are in good agreement. As observed experimentally, the magnetization drop calculated in the sample II is the smallest one and its relative value is comparable to the measured one. By contrast, the measured magnetization drop in sample (1) is much larger than that predicted by the simulations, most likely because of a change of the microstructure during the drilling process.

  1. The influence of slow cooling on Y211 size and content in single-grain YBCO bulk superconductor through the infiltration-growth process

    Science.gov (United States)

    Ouerghi, A.; Moutalbi, N.; Noudem, J. G.; M'chirgui, A.

    2017-03-01

    Highly textured YBa2Cu3O7-δ (Y123) superconductors were produced using modified Textured Top Seeded Infiltration Growth (TSIG) process. The liquid source is made of only Y123 powder whereas the solid source is composed of Y2BaCuO5 (Y211) powder. We aim to control the amount of liquid that infiltrates the solid pellet, which in turn controls the final amount of Y2BaCuO5 particles in Y123 matrix. The effect of the slow cooling kinetics on sample morphology, on grain growth and on final microstructure was too investigated. It is shown that appropriate slow cooling time may also contribute to the control of the amount of Y211 inclusions in the final structure of Y123 bulk. We report herein the Y211 particle size and density distribution in the whole Y123 matrix. The present work proves that finest Y211 particles locate under the seed and that their size and density increase with distance from the seed.

  2. Bulk high-T{sub c} superconductors with drilled holes: how to arrange the holes to maximize the trapped magnetic flux?

    Energy Technology Data Exchange (ETDEWEB)

    Lousberg, Gregory P [SUPRATECS Research Group, Department of Electrical Engineering and Computer Science (B28), University of Liege (Belgium); Ausloos, M [SUPRATECS, Department of Physics (B5), University of Liege (Belgium); Vanderbemden, Ph [SUPRATECS Research Group, Department of Electrical Engineering and Computer Science (B28), University of Liege (Belgium); Vanderheyden, B [SUPRATECS Research Group, Department of Electrical Engineering and Computer Science (B28), University of Liege (Belgium)

    2008-02-15

    Drilling holes in a bulk high-T{sub c} superconductor enhances the oxygen annealing and the heat exchange with the cooling liquid. However, drilling holes also reduces the amount of magnetic flux that can be trapped in the sample. In this paper, we use the Bean model to study the magnetization and the current line distribution in drilled samples, as a function of the hole positions. A single hole perturbs the critical current flow over an extended region that is bounded by a discontinuity line, where the direction of the current density changes abruptly. We demonstrate that the trapped magnetic flux is maximized if the centre of each hole is positioned on one of the discontinuity lines produced by the neighbouring holes. For a cylindrical sample, we construct a polar triangular hole pattern that exploits this principle; in such a lattice, the trapped field is {approx}20% higher than in a squared lattice, for which the holes do not lie on discontinuity lines. This result indicates that one can simultaneously enhance the oxygen annealing, the heat transfer and maximize the trapped field.

  3. Influence of magnetic fields on hysteretic ac losses in bulk MgB{sub 2} superconductor investigated by using Hall probe ac susceptibility method

    Energy Technology Data Exchange (ETDEWEB)

    Varilci, A [Faculty of Arts and Sciences, Department of Physics, Abant Izzet Baysal University, 14280 Bolu (Turkey)

    2007-04-15

    We report the results of an investigation of the influence of magnetic fields on hysteretic ac losses in bulk MgB{sub 2} superconductor by using Hall probe ac susceptibility. The external magnetic field in this study had an ac part with frequency 10 Hz and magnitude in the range 240-1200 A m{sup -1} and no dc part. We have measured the imaginary part of the magnetic susceptibility and analysed data by using Bean's critical state model of cylindrical geometry for four different temperature values 39.55, 39.51, 39.47 and 39.41 K. The result of this analysis indicates that Bean's model is adequate to explain the experimental findings. Calculated hysteretic ac loss versus applied magnetic field curve is given by using the critical state model. We have also measured the magnetization versus applied magnetic field and determined the first critical magnetic field of a MgB{sub 2} sample as 500 A m{sup -1} at 35 K.

  4. Pinning and trapped field in MgB2- and MT-YBaCuO bulk superconductors manufactured under pressure

    Science.gov (United States)

    Prikhna, T.; Eisterer, M.; Chaud, X.; Weber, H. W.; Habisreuther, T.; Moshchil, V.; Kozyrev, A.; Shapovalov, A.; Gawalek, W.; Wu, M.; Litzkendorf, D.; Goldacker, W.; Sokolovsky, V.; Shaternik, V.; Rabier, J.; Joulain, A.; Grechnev, G.; Boutko, V.; Gusev, A.; Shaternik, A.; Barvitskiy, P.

    2016-03-01

    The relevant pinning centers of Abrikosov vortices in MgB2-based materials are oxygen-enriched Mg-B-O inclusions or nanolayers and inclusions of MgBx (x>4) phases. The high critical current densities, j c, of 106 and 103A/cm2 at 1 and 8.5 T, respectively, at 20 K can be achieved in polycrystalline materials (prepared at 2 GPa) containing a large amount of admixed oxygen. Besides, oxygen can be incorporated into the MgB2 structure in small amounts (MgB1.5O0.5), which is supported by Auger studies and calculations of the DOS and the binding energy. The j c of melt textured YBa2Cu3O7-δ (or Y123)-based superconductors (MT-YBaCuO) depends not only on the perfectness of texture and the amount of oxygen in the Y123 structure, but also on the density of twins and micro-cracks formed during the oxygenation (due to shrinking of the c-lattice parameter). The density of twins and microcracks increases with the reduction of the distance between Y2BaCuO5 (Y211) inclusions in Y123. At 77 K jc=8·104 A/cm2 in self-field and jc=103 A/cm2 at 10 T were found in materials oxygenated at 16 MPa for 3 days with a density of twins of 22–35 per µm (thickness of the lamellae: 45-30 nm) and a density of micro-cracks of 200–280 per mm. Pinning can occur at the points of intersection between the Y123 twin planes and the Y211 inclusions. MTYBaCuO at 77 K can trap 1.4 T (38×38×17 mm, oxygenated at 0.1 MPa for 20 days) and 0.8 T (16 mm in diameter and 10 mm thick with 0.45 mm holes oxygenated at 10 MPa for 53 h). The sensitivity of MgB2 to magnetic field variations (flux jumps) complicates estimates of the trapped field. At 20 K 1.8 T was found for a block of 30 mm in diameter and a thickness of 7.5 mm and 1.5 T (if the magnetic field was increased at a rate of 0.1 T) for a ring with dimensions 24×18 mm and a thickness of 8 mm.

  5. Effects of Bi-2212 addition on the levitation force properties of bulk MgB2 superconductors

    Science.gov (United States)

    Taylan Koparan, E.; Savaskan, B.; Guner, S. B.; Celik, S.

    2016-02-01

    We present a detailed investigation of the effects of Bi2Sr2Ca1Cu2O8+κ (Bi-2212) adding on the levitation force and magnetic properties of bulk MgB2 obtained by hot press method. The amount of Bi-2212 was varied between 0 and 10 wt% (0, 2, 4, 6, 10 wt%) of the total MgB2. Moreover, we present MgB2 bulk samples fabricated by using different production methods including hot pressing method to our knowledge. All samples were prepared by using elemental magnesium (Mg) powder, amorphous nano-boron (B) powder and Bi-2212 powder which are produced by hot press method. As a result of hot press process, compact pellet samples were manufactured. The vertical and lateral levitation force measurements were executed at the temperatures of 20, 24 and 28 K under zero-field-cooled (ZFC) and field-cooled (FC) regimes for samples with various adding levels. At 24 K and 28 K under ZFC regime, the 2 wt% Bi-2212 added sample exhibits a higher vertical levitation force than the pure sample. Bi-2212 added MgB2 samples compared to the pure sample have lower attractive force values in FC regime. The magnetic field dependence of the critical current density J c was calculated from the M-H loops for Bi-2212 added MgB2 samples. The 2 wt% Bi-2212 added sample has the best levitation and critical current density performance compared to other samples. The critical temperature ( T c ) has slightly dropped from 37.8 K for the pure MgB2 sample to 36.7 K for the 10 wt% of Bi-2212 added sample. The transition temperature slightly decreases when Bi-2212 adding level is increased.

  6. Investigation on the levitation force behaviour of malic acid added bulk MgB{sub 2} superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Savaskan, B., E-mail: burcusavaskan@hotmail.com [Energy Systems Engineering, Faculty of Technology, Karadeniz Technical University, 61830 Of, Trabzon (Turkey); Taylan Koparan, E. [Department of Primary Education, Eregli Faculty of Education, Bulent Ecevit University, TR-67300 Zonguldak (Turkey); Celik, S. [Department of Physics, Faculty of Arts and Sciences, Recep Tayyip Erdogan University, 53100 Rize (Turkey); Ozturk, K.; Yanmaz, E. [Department of Physics, Faculty of Sciences, Karadeniz Technical University, 61080 Trabzon (Turkey)

    2014-07-15

    Highlights: • The effects of malic acid addition on the levitation force properties of bulk MgB{sub 2} has been first time investigated and reported. • The malic acid adding has a positive impact on the levitation properties. • 4 wt% and 6 wt% malic acid added samples exhibited a higher vertical and lateral force than pure sample. - Abstract: The effects of malic acid addition (from 0 to 15 wt% of the total MgB{sub 2}) on the levitation force properties of bulk MgB{sub 2} have been investigated. All samples were prepared from magnesium powder, amorphous boron powder, malic acid (C{sub 4}H{sub 6}O{sub 5}) and toluene (C{sub 7}H{sub 8}) by using two-step solid state reaction method. Vertical and lateral levitation force measurements that are under both zero-field-cooled (ZFC) and field-cooled (FC) regimes were carried out at different temperatures of 24, 28 and 32 K for samples with various adding level. It was found that the reasonable malic acid adding has a positive impact on the levitation properties. At 24 K and 28 K, the 4 wt% and 6 wt% malic acid added samples exhibits a higher levitation force than pure sample. In the case of the optimally additive 4 wt% sample, the maximum levitation force corresponds to 18.60 N, whereas the pure sample shows 16.95 N at 24 K for ZFC regime. In this study the enhancing effect of malic acid adding on the levitation force properties of MgB{sub 2} has been first time investigated and reported.

  7. Effects of Bi-2212 addition on the levitation force properties of bulk MgB{sub 2} superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Taylan Koparan, E. [Bulent Ecevit University, Department of Science Education, Eregli Faculty of Education, Zonguldak (Turkey); Savaskan, B. [Karadeniz Technical University, Energy Systems Engineering, Faculty of Technology, Trabzon (Turkey); Guner, S.B. [Recep Tayyip Erdogan University, Department of Physics, Faculty of Arts and Sciences, Rize (Turkey); Celik, S. [Sinop University, Energy Systems Engineering, Faculty of Engineering and Architecture, Sinop (Turkey)

    2016-02-15

    We present a detailed investigation of the effects of Bi{sub 2}Sr{sub 2}Ca{sub 1}Cu{sub 2}O{sub 8+κ} (Bi-2212) adding on the levitation force and magnetic properties of bulk MgB{sub 2} obtained by hot press method. The amount of Bi-2212 was varied between 0 and 10 wt% (0, 2, 4, 6, 10 wt%) of the total MgB{sub 2}. Moreover, we present MgB{sub 2} bulk samples fabricated by using different production methods including hot pressing method to our knowledge. All samples were prepared by using elemental magnesium (Mg) powder, amorphous nano-boron (B) powder and Bi-2212 powder which are produced by hot press method. As a result of hot press process, compact pellet samples were manufactured. The vertical and lateral levitation force measurements were executed at the temperatures of 20, 24 and 28 K under zero-field-cooled (ZFC) and field-cooled (FC) regimes for samples with various adding levels. At 24 K and 28 K under ZFC regime, the 2 wt% Bi-2212 added sample exhibits a higher vertical levitation force than the pure sample. Bi-2212 added MgB{sub 2} samples compared to the pure sample have lower attractive force values in FC regime. The magnetic field dependence of the critical current density J{sub c} was calculated from the M-H loops for Bi-2212 added MgB{sub 2} samples. The 2 wt% Bi-2212 added sample has the best levitation and critical current density performance compared to other samples. The critical temperature (T{sub c}) has slightly dropped from 37.8 K for the pure MgB{sub 2} sample to 36.7 K for the 10 wt% of Bi-2212 added sample. The transition temperature slightly decreases when Bi-2212 adding level is increased. (orig.)

  8. Improvements in the processing of large grain, bulk Y-Ba-Cu-O superconductors via the use of additional liquid phase

    Science.gov (United States)

    Congreve, Jasmin V. J.; Shi, Yunhua; Dennis, Anthony R.; Durrell, John H.; Cardwell, David A.

    2017-01-01

    A major limitation to the widespread application of Y-Ba-Cu-O (YBCO) bulk superconductors is the relative complexity and low yield of the top seeded melt growth (TSMG) process, by which these materials are commonly fabricated. It has been demonstrated in previous work on the recycling of samples in which the primary growth had failed, that the provision of an additional liquid-rich phase to replenish liquid lost during the failed growth process leads to the reliable growth of relatively high quality recycled samples. In this paper we describe the adaptation of the liquid phase enrichment technique to the primary TSMG fabrication process. We further describe the observed differences between the microstructure and superconducting properties of samples grown with additional liquid-rich phase and control samples grown using a conventional TSMG process. We observe that the introduction of the additional liquid-rich phase leads to the formation of a higher concentration of Y species at the growth front, which leads, in turn, to a more uniform composition at the growth front. Importantly, the increased uniformity at the growth front leads directly to an increased homogeneity in the distribution of the Y-211 inclusions in the superconducting Y-123 phase matrix and to a more uniform Y-123 phase itself. Overall, the provision of an additional liquid-rich phase improves significantly both the reliability of grain growth through the sample thickness and the magnitude and homogeneity of the superconducting properties of these samples compared to those fabricated by a conventional TSMG process.

  9. Fabrication of single-grain GdBa2Cu3O7− bulk superconductors with a new kind of liquid source by the top seeded infiltration and growth technique

    Indian Academy of Sciences (India)

    Guo-Zheng Li; Wan-Min Yang; Xiao-Fang Cheng; Jing Fan; Xiao-Dan Guo

    2010-05-01

    Compared to the conventional melt growth (MG) method, the top seeded infiltration and growth (TSIG) process is an effective way for preparing bulk REBa2Cu3O7− (RE-123) with finely dispersed RE2BaCuO5 (RE-211) particles. However, it is more complicated and time-consuming, because three kinds of precursor powders, namely, RE-211, RE-123 and BaCuO2, have to be prepared for the conventional TSIG process. In this paper, a new liquid source (NLS) composed of RE-211 and Ba3Cu5O8, was proposed for simplifying the TSIG process, which is different from the regular liquid source (RLS) composed of RE-123 and Ba3Cu5O8. In this modified TSIG technique, we need to prepare only RE-211 and BaCuO2 powders. Single-grain GdBa2Cu3O7− (GdBCO) bulk super-conductors have been fabricated using the RLS and NLS separately. The morphology, microstructure and levitation force of the bulk GdBCO have also been investigated. The results indicate that the NLS can be used to simplify the process flow and improve the efficiency on the fabrication of single-grain GdBCO superconductors.

  10. Enhanced critical current density of in situ processed MgB{sub 2} bulk superconductors with MgB{sub 4} additions

    Energy Technology Data Exchange (ETDEWEB)

    Kim, S. H.; Jun, B. H.; Lee, Y. J.; Kim, C. J. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Kang, W. N. [Sungkyunkwan University, Suwon (Korea, Republic of)

    2017-03-15

    The effects of MgB{sub 4} addition on the superconducting properties and the microstructure of in situ processed MgB{sub 2} bulk superconductors were studied. MgB{sub 4} powder of 1-20 wt.% was mixed with (Mg + 2B) powder and then pressed into pellets. The pellets of (Mg + 2B + xMgB{sub 4}) were heat-treated at 650 ℃ for 1 h in flowing argon. The powder X-ray diffraction (XRD) analysis for the heat-treated samples showed that the major formed phase in all samples was MgB{sub 2} and the minor phases were MgB{sub 4} and MgO. The full width at half maximum (FWHM) values showed that the grain size of MgB{sub 2} decreased as the amount of MgB{sub 4} addition increased. MgB{sub 4} particles included in a MgB{sub 2} matrix is considered to suppress the grain growth of MgB{sub 2}. The onset temperatures (T{sub c},onset) of MgB{sub 2} with MgB{sub 4} addition (0-10 wt.%) was between 37-38 K. The 20 wt.% MgB{sub 4} addition slightly reduced the T{sub c},onset of MgB{sub 2} to 36.5 K. This result indicates that MgB{sub 4} addition did not influence the superconducting transition temperature (T{sub c}) of MgB{sub 2} significantly. On the other hand, the small additions of 1-5 wt.% MgB{sub 4} increased the critical current density (J{sub c}) of MgB{sub 2}. The Jc enhancement by MgB{sub 4} addition is attributed not only to the grain size refinement but also to the possible flux pinning of MgB{sub 4} particles dispersed in a MgB{sub 2} matrix.

  11. Topological surface states in nodal superconductors.

    Science.gov (United States)

    Schnyder, Andreas P; Brydon, Philip M R

    2015-06-24

    Topological superconductors have become a subject of intense research due to their potential use for technical applications in device fabrication and quantum information. Besides fully gapped superconductors, unconventional superconductors with point or line nodes in their order parameter can also exhibit nontrivial topological characteristics. This article reviews recent progress in the theoretical understanding of nodal topological superconductors, with a focus on Weyl and noncentrosymmetric superconductors and their protected surface states. Using selected examples, we review the bulk topological properties of these systems, study different types of topological surface states, and examine their unusual properties. Furthermore, we survey some candidate materials for topological superconductivity and discuss different experimental signatures of topological surface states.

  12. Influence of high-pressure deformation and annealing on the structure and properties of a bulk MgB2 superconductor

    Science.gov (United States)

    Degtyarev, M. V.; Pilyugin, V. P.; Akshentsev, Yu. N.; Kuznetsova, E. I.; Krinitsina, T. P.; Blinova, Yu. V.; Sudareva, S. V.; Romanov, E. P.

    2016-08-01

    A synthesized MgB2 superconductor has been investigated by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, and by the measurements of the superconducting characteristics and microhardness after cold high-pressure deformation in a Toroid chamber and in Bridgman anvils and subsequent high-temperature annealing. A nanocrystalline structure is formed in the superconductor after high-pressure treatment, but internal cracks appear, and the critical current density decreases strongly. The annealing leads to a coarsening of the structure and to an increase in the critical current density up to 5.8-6.7 × 104 A/cm2, which is more than three times greater than that in the initial state.

  13. Granular Superconductors and Gravity

    Science.gov (United States)

    Noever, David; Koczor, Ron

    1999-01-01

    As a Bose condensate, superconductors provide novel conditions for revisiting previously proposed couplings between electromagnetism and gravity. Strong variations in Cooper pair density, large conductivity and low magnetic permeability define superconductive and degenerate condensates without the traditional density limits imposed by the Fermi energy (approx. 10(exp -6) g cu cm). Recent experiments have reported anomalous weight loss for a test mass suspended above a rotating Type II, YBCO superconductor, with a relatively high percentage change (0.05-2.1%) independent of the test mass' chemical composition and diamagnetic properties. A variation of 5 parts per 104 was reported above a stationary (non-rotating) superconductor. In experiments using a sensitive gravimeter, bulk YBCO superconductors were stably levitated in a DC magnetic field and exposed without levitation to low-field strength AC magnetic fields. Changes in observed gravity signals were measured to be less than 2 parts in 108 of the normal gravitational acceleration. Given the high sensitivity of the test, future work will examine variants on the basic magnetic behavior of granular superconductors, with particular focus on quantifying their proposed importance to gravity.

  14. The effect of resolidification on preform optimized infiltration growth processed (Y, Nd, Sm, Gd)BCO, multi-grain bulk superconductor

    Science.gov (United States)

    Pavan Kumar Naik, S.; Seshu Bai, V.

    2017-01-01

    Controlling the microstructure of superconductors by incorporating the flux pinning centers and reducing the macro-defects to improve high field performance is the topic of recent research. In continuation, the preform optimized infiltration growth (POIG) processed YBa2Cu3O7-δ (YBCO) system, Y-site substituted with three mixed RE (Nd, Sm, Gd) elements is investigated. 20 wt.% of (Nd, Sm, Gd)2BaCuO5 were mixed with Y2BaCuO5 and POIG processed in reduced oxygen atmosphere to obtain YNSG superconductor. No seed is employed for crystal growth; hence the processed samples are multi-grained. Microstructural and compositional investigations on YNSG revealed the presence of different phases in the matrix as well as in precipitates which are of the order of submicron to 4 μm. A large fraction of macro-defects (∼6% of porosity) was observed in the YNSG sample. For reducing the unwanted macro-defects and refine the non-superconducting precipitates, processed YNSG sample is pressed and resolidified (by infiltrating the liquid phases once again) in an argon atmosphere and the structural, microstructural, elemental and superconducting properties are compared with YNSG and undoped samples. Due to spatial scatter in superconducting critical temperatures, caused by the distribution of different REBCO unit cells in YBCO, superconducting transition curve is sharp in YNSG, whereas the resolidified sample showed the broad transition due to solidified liquid phases.

  15. Studies on Magnetization Technique of High Temperature Superconductors

    OpenAIRE

    大橋, 忠巌; 荻原, 宏康

    1999-01-01

    It is known that permanent magnets produce magnetic fields up to 1T. On the other hand, magnetized high temperature superconductors can be used as "super"-permanent magnets which produce magnetic fields higher than 1T, because superconductors can trap higher magnetic fluxes than usual permanent magnets. In order to magnetize a YBCO bulk superconductor, there are two ways; a field cooling (FC) method and a zero field cooling (ZFC) method. FC is the way of magnetizing the superconductor by appl...

  16. Top surface morphologies of melt growth processed Y{sub 1.5}Ba{sub 2}Cu{sub 3}O{sub 7−y} bulk superconductors with corner or edge seeding

    Energy Technology Data Exchange (ETDEWEB)

    Kim, C.-J., E-mail: cjkim2@kaeri.re.kr [Neutron Science Division, Korea Atomic Energy Research Institute, Daedoek-Daero 1045, Yuseong, Daejeon 305-353 (Korea, Republic of); Jung, S.A. [Neutron Science Division, Korea Atomic Energy Research Institute, Daedoek-Daero 1045, Yuseong, Daejeon 305-353 (Korea, Republic of); Park, H.-W. [College of Energy, Material and Chemical Engineering, Korea University of Technology and Education, 1600 Chungjeol-ro, Chunan, Chungnam 330-708 (Korea, Republic of); Jun, B.-H.; Park, S.-D. [Neutron Science Division, Korea Atomic Energy Research Institute, Daedoek-Daero 1045, Yuseong, Daejeon 305-353 (Korea, Republic of)

    2013-12-15

    Highlights: •Corner or edge seeding modifies top surface morphologies of YBCO superconductors. •Numbers and a shape of facet lines on top surfaces depend on seeding technique. •Facet lines are straight but often have a curvature. •Unreacted regions form on top surfaces owing to a low growth rate of a 〈1 0 0〉 direction. •Magnetic flux density and levitation forces are dependent on top surface morphology. -- Abstract: A corner or edge seeding was attempted to control top surface morphologies (facet lines) of top-seeded melt growth (TSMG) processed Y{sub 1.5}Ba{sub 2}Cu{sub 3}O{sub 7−y} (Y1.5) bulk superconductors. The orientation and numbers of facet lines were successfully modified using the corner/edge seeding with adjusted seed orientations. Most of the facet lines developed on the top surfaces were nearly straight, whereas some of them often had curvatures when the facet lines met the edges with high angles. The size of the growth area of Y123 on the top surfaces was dependent not only on the seeding method but also on the seed orientation. The unreacted regions were often observed on the local parts of the top surfaces, which are attributed to the difference in a growth rate among growth planes. The top surface with the corner seeding where the 〈1 1 0〉 growth direction is parallel to the diagonal of the Y123 compact showed the highest magnetic flux density and magnetic levitation forces owing to the largest growth area of Y123.

  17. Current induced magnetic flux response in frustrated three-band superconductors as a bulk probe of broken time reversal symmetry (BTRS) ground states

    Energy Technology Data Exchange (ETDEWEB)

    Yerin, Yuriy; Omelyanchouk, Alexander [Verkin Inst. for Low Temperature Physics and Engineering. 61103 Kharkiv (Ukraine); Drechsler, Stefan-Ludwig; Brink, Jeroen van den; Efremov, Dmitriy [Inst. for Theorretical Solid State Physics at the Leibniz Inst. for Solid State an Materials Research, IFW-Dresden, D-01171 Dresden (Germany)

    2016-07-01

    Within the Ginzburg-Landau formalism we provide a classification of all possible ground states (GS) of a three-band superconductor (3BSC) where either frustrated states with BTRS or a single non-BTRS GS with unconventional/conventional s-wave symmetry, respectively, exist. The necessary condition for a BTRS GS in general cannot be reduced to a ''-''sign of the product of all interband couplings (IBC) valid in the case of 3 equivalent bands with repulsive equal IBC, only. It corresponds to a maximal IBC frustration. We show that with increasing diversity of the parameter space this frustration is reduced and the regions of possible BTRS GS start to shrink. We track possible evolutions of a BTRS GS of a 3BSC based doubly-connected system in an external magnetic field. Depending on its parameters, a magnetic flux can induce various current density leaps, connected with adiabatic or non-adiabatic transitions from BTRS to non-BTRS states and vice versa. The current induced magnetic flux response of samples with a doubly-connected geometry e.g. as a thin tube provides a suitable experimental tool for the detection of BTRS GS.

  18. Bulk MgB2 superconductor with high critical current density synthesized by self-propagating high-temperature synthesis method

    Institute of Scientific and Technical Information of China (English)

    Feng Wang-Jun; Xia Tian-Dong; Liu Tian-Zuo; Zhao Wen-Jun; Wei Zhi-Qiang

    2005-01-01

    Pure MgB2 bulk samples are successfully synthesized by self-propagating high-temperature synthesis (SHS)method. The experiments show that the best preheating temperature is 250℃, the highest Jc values of the prepared MgB2 reach 1.5×106A/cm2 (10K, 0.5T) and 1.7×106A/cm2 (20K, 0T), and the MgB2 particle sizes range from 2 to 5μm. The advantages of this method are that it is simple, economical and suitable for the manufacture of bulk MgB2 materials on industrial scale.

  19. Superconductor Composite

    Science.gov (United States)

    Dorris, Stephen E.; Burlone, Dominick A.; Morgan; Carol W.

    1999-02-02

    A superconducting conductor fabricated from a plurality of wires, e.g., fine silver wires, coated with a superconducting powder. A process of applying superconducting powders to such wires, to the resulting coated wires and superconductors produced therefrom.

  20. MEASUREMENTS FOR TRAPPED FLUX DENSITY OF HIGH TEMPERATURE SUPERCONDUCTOR BULKS%块状高温超导体俘获磁通密度实验测试方法

    Institute of Scientific and Technical Information of China (English)

    徐克西; 郑明辉; 刘宜平; 焦玉磊; 肖玲

    2015-01-01

    块状单畴高温超导体的重要特性参数之一“俘获磁通密度”决定了单畴超导体能够冻结住的最大磁通俘获场,实际用户在设计装置时必须了解这些参数.然而,这些数值强烈地依赖于测试方法.随着国内块状单畴超导体的研究、生产、应用的不断发展,市场规模的不断扩大以及国际贸易的开展,迫切需要建立一个与国际接轨的测试标准,统一材料提供方与用户之间对单畴块材性能的表征过程.经国家标准化管理委员会批准,2013年全国超导标准化技术委员会将IEC 61788-9国际标准《SUPERCONDUCTIVITY-Measurements for bulk high temperature superconductors-Trapped flux density of large grain bulk oxide superconductors》(《超导电性:块状高温超导体的测量—大晶粒氧化物超导体的俘获磁通密度》)转化为国家标准,本文主要介绍有关“标准”的转化实施过程.

  1. Orientation and thickness dependence of magnetic levitation force and trapped magnetic field of single grain YBa{sub 2}Cu{sub 3}O{sub 7-y} bulk superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Y.; Go, S. J.; Joo, H. T. [Korea Science Academy of Korea Advanced Institute of Science and Technology, Pusan (Korea, Republic of); Lee, Y. J.; Park, S. D.; Jun, B. H.; KIm, C. J. [Neutron Utilization Technology Division, Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2017-03-15

    The effects of the crystallographic orientation and sample thickness on the magnetic levitation forces (F) and trapped magnetic field (B) of single grain YBCO bulk superconductors were examined. Single grain YBCO samples with a (001), (110) or (100) surface were used as the test samples. The samples used for the force-distance (F-d) measurement were cooled at 77 K without a magnetic field (zero field cooling, ZFC), whereas the samples used for the B measurement were cooled under the external magnetic field of a Nd-B-Fe permanent magnet (field cooling, FC). It was found that F and B of the (001) surface were higher than those of the (110) or (100) surface, which is attributed to the higher critical current density (J{sub c}) of the (001) surface. For the (001) samples with t=5–18 mm, the maximum magnetic levitation forces (F{sub max}s) of the ZFC samples were larger than 40 N. About 80% of the applied magnetic field was trapped in the FC samples. However, the F and B decreased rapidly as t decreased below 5 mm. There exists a critical sample thickness (t=5 mm for the experimental condition of this study) for maintaining the large levitation/trapping properties, which is dependent on the material properties and magnitude of the external magnetic fields.

  2. Development of Bulk Bi2+xSr3-yCa yCu 2O8+delta Superconductors by Partial-Melting Route for Fault Current Limiters Application

    Directory of Open Access Journals (Sweden)

    Bojan A. Marinkovic

    2002-06-01

    Full Text Available The production of bulk Bi2+xSr3-yCa yCu 2O8+delta (Bi-2212 superconductors for fault current limiter application was developed via a partial-melting route. Aiming high Ic (critical current, which is the essential superconducting characteristic for application of this material in the construction of Fault Current Limiters (FCL, the produced blocks have predominance of Bi-2212 phase (83 wt%, which characterizes with high values of zero and onset transport critical temperature of 92K and 97.5K, respectively. A relatively low transition width, deltaT, from the superconducting to the normal state of 5.5K, revealed a good intergrain connectivity. Consequently, current measurements on the blocks of Bi-2212 show promising Ic values of 230A and 850A for direct and alternate current, respectively. It is expected that further increases in the Ic values will depend on the elimination of an observed amorphous phase and further reduction of amount and grain sizes of secondary phases, still present in the blocks obtained by the proposed partial-melting route. This may be achieved by a further optimization of the partial-melting processing parameters.

  3. Investigation of odd-order harmonic susceptibilities of a bulk Tl{sub 2}Ba{sub 2}Ca{sub 2}Cu{sub 3}O{sub 10} superconductors using critical state approach

    Energy Technology Data Exchange (ETDEWEB)

    Aksu, E. [Ankara Nuclear Research and Training Center, TAEA, 06100 Besevler-Ankara (Turkey)]. E-mail: eaksu@taek.gov.tr; Gencer, A. [Ankara University, Department of Physics, Faculty of Science, 06100 Besevler-Ankara (Turkey); Calinli, N. [Ankara Nuclear Research and Training Center, TAEA, 06100 Besevler-Ankara (Turkey); Koralay, H. [Ankara Nuclear Research and Training Center, TAEA, 06100 Besevler-Ankara (Turkey); Cavdar, S. [Ankara Nuclear Research and Training Center, TAEA, 06100 Besevler-Ankara (Turkey)

    2005-06-15

    The fundamental and high-order harmonic susceptibility, {chi}{sub n}={chi}{sub n}{sup '}+i{chi}{sub n}{sup '}' (n=1,3,5 and 7) were measured as a function of temperature (50-130K), frequencies (11 and 140Hz) and AC magnetic field amplitude (80-1280A/m) on a bulk Tl{sub 2}Ba{sub 2}Ca{sub 2}Cu{sub 3}O{sub 10} high-T{sub c} superconductor prepared by the solid-state reaction method. They exhibit dependence on the amplitude of the AC field. The observed dependences were analyzed by using the Bean Model. We have obtained an empirical function for the penetration field H{sub p}=H{sub {alpha}}(1-t){sup {beta}}, with t=T/T{sub cb}. Best fitting to data was obtained with parameters H{sub {alpha}}{approx}2.6x10{sup 4}A/m and {beta}=1.74. The experimental values agree well with the theoretical findings. The XRD pattern, resistivity measurement and SEM analysis were also carried out to characterize the sample.

  4. Microstructural and superconducting properties of C{sub 6}H{sub 6} added bulk MgB{sub 2} superconductor

    Energy Technology Data Exchange (ETDEWEB)

    Babaoglu, Meral G.; Safran, Serap; Cicek, Oezlem; Ag Latin-Small-Letter-Dotless-I l, Hasan; Ertekin, Ercan [Department of Physics, Faculty of Science, Ankara University, Tandogan 06100, Ankara (Turkey); Hossain, Md.Shahriar A. [Institute for Superconducting and Electronic Materials, University of Wollongong, Innovation Campus, North Wollongong, NSW 2519 (Australia); Yanmaz, Ekrem [Department of Physics, Faculty of Arts and Sciences, Karadeniz Technical University, 61080 Trabzon (Turkey); Gencer, Ali, E-mail: gencer@science.ankara.edu.tr [Department of Physics, Faculty of Science, Ankara University, Tandogan 06100, Ankara (Turkey)

    2012-10-15

    The effect of aromatic hydrocarbon (benzene, C{sub 6}H{sub 6}) addition on lattice parameters, microstructure, critical temperature (T{sub c}), critical current density (J{sub c}) of bulk MgB{sub 2} has been studied. In this work only 2 mol% C{sub 6}H{sub 6} addition was found to be very effective in increasing the J{sub c} values, while resulting in slight reduction of the T{sub c}. J{sub c} values of 2 mol% C{sub 6}H{sub 6} added MgB{sub 2} bulks reached to 1.83 Multiplication-Sign 10{sup 6} A/cm{sup 2} at 15 K and 0 T. Microstructural analyses suggest that J{sub c} enhancement is associated with the substitution of carbon with boron and which also results in the smaller MgB{sub 2} grain size. The change in the lattice parameters or the lattice disorder is claimed as a cause of the slight reduction in the T{sub c} by carbon addition. We note that our results show the advantages of C{sub 6}H{sub 6} addition include homogeneous mixing of precursor powders, avoidance of expansive nanoadditives, production of highly reactive C, and significant enhancement in J{sub c} of MgB{sub 2}, compared to un-doped samples.

  5. Magnetic Flux-Trapping of Anisotropic-Grown Y-Ba-Cu-O Bulk Superconductors during and after Pulsed-Field Magnetizing Processes

    Science.gov (United States)

    Oka, T.; Yamada, Y.; Horiuchi, T.; Ogawa, J.; Fukui, S.; Sato, T.; Yokoyama, K.; Langer, M.

    2014-05-01

    The magnetic flux penetration into the melt-textured Y-Ba-Cu-O high temperature superconducting bulk magnets were precisely evaluated during and after the pulsed field magnetization processes operated at 30 K. The bulk magnets were carefully fabricated by the cold seeding method with use of a single and a pair of seed crystals composed of the Nd-Ba-Cu-O thin films. These seed crystals were put on the top surfaces of the precursors to let the large grains grow during the heat treatments. We observed the flux penetrations which occurred in the lower applied-field regions at around 3.1 T for the samples bearing the twin seeds than those of the single-seeded crystals at around 3.8 T. This means that the magnetic fluxes are capable of invading into the twin-seeded samples more easily than the single-seeds. It suggests that the anisotropic grain growths of parallel and normal to the rows of seed crystals affects the variations of Jc values with different distributions of the pinning centers, results in the preferential paths for the invading magnetic fluxes.

  6. Characteristics of a Bulk High-Critical Temperature Superconductor Fabricated by the Shock Compaction Method: Possible Use as a Highly Sensitive Magnetic Sensor

    Energy Technology Data Exchange (ETDEWEB)

    Fujita, H [Interdisci. Grad. School of Sci. and Engi., Grad. School of Kinki University, Higashi-Osaka, Osaka 577-8502 (Japan); Maeji, Y [Interdisci. Grad. School of Sci. and Engi., Grad. School of Kinki University, Higashi-Osaka, Osaka 577-8502 (Japan); Yamagata, K [Relia. Eval. Technol. Center, Nitto Denko Corp., Onomichi, Hiroshima 722-0212 (Japan); Itoh, M [Interdisci. Grad. School of Sci. and Engi., Grad. School of Kinki University, Higashi-Osaka, Osaka 577-8502 (Japan); Kezuka, H [Faculty of Bionics, Tokyo University of Technol., Hachioji, Tokyo 192-0982 (Japan); Kikuchi, M [Kansen Fukushi Research Center, Tohoku Fukushi University Sendai, Miyagi 989-3201 (Japan); Atou, T [Insti. for Mate. Research, Tohoku University Sendai, Miyagi 980-8577 (Japan); Kawasaki, M [Insti. for Mate. Research, Tohoku University Sendai, Miyagi 980-8577 (Japan); Fukuoka, K [Insti. for Mate. Research, Tohoku University Sendai, Miyagi 980-8577 (Japan)

    2006-06-01

    A magnetic sensor, constructed of bulk Bi-Pb-Sr-Ca-Cu-O (BPSCCO), was fabricated by use of the shock compaction method, employing a propellant gun-system, and then sintered under through use of an electronic furnace. The specimen as a magnetic sensor was maintained in the superconducting state at 77.4 K, under a current density J of approximately 40 A/cm{sup 2} in the absence of an excitation magnetic field B{sub ex}. The superconducting state was then broken and the specimen exposed to a B{sub ex} value of 40x10{sup -4} T. That is, the resistance R{sub meas} of the specimen occurred when exposed to 40x10{sup -4} T under a constant J of 40 A/cm{sup 2}. The magnetic sensitivity S of the specimen was approximately 13 %/(10{sup -4} T) over the range of measurement of the magnetic field B{sub meas} from 0 to {+-}5x10{sup -4} T, under a constant 40x10{sup -4} T for the value of B{sub ex}, being approximately 13 times greater than that of a giant magnetoresistance (GMR) sensor. It was, consequently, determined that it was possible to apply the bulk BPSCCO specimen as a highly sensitive magnetic sensor.

  7. Holographic Multi-Band Superconductor

    CERN Document Server

    Huang, Ching-Yu; Maity, Debaprasad

    2011-01-01

    We propose a gravity dual for the holographic superconductor with multi-band carriers. Moreover, the currents of these carriers are unified under a global non-Abelian symmetry, which is dual to the bulk non-Abelian gauge symmetry. We study the phase diagram of our model, and find it qualitatively agrees with the one for the realistic 2-band superconductor, such as MgB2. We also evaluate the holographic conductivities and find the expected mean-field like behaviors in some cases. However, for a wide range of the parameter space, we also find the non-mean-field like behavior with negative conductivities.

  8. Excitations in Topological Superfluids and Superconductors

    Science.gov (United States)

    Wu, Hao

    In this thesis I present the theoretical work on Fermionic surface states, and %the bulk Bosonic collective excitations in topological superfluids and superconductors. Broken symmetries %Bulk-edge correspondence in topological condensed matter systems have implications for the spectrum of Fermionic excitations confined on surfaces or topological defects. (Abstract shortened by ProQuest.).

  9. Superconducting bulk magnets for magnetic levitation systems

    Science.gov (United States)

    Fujimoto, H.; Kamijo, H.

    2000-06-01

    The major applications of high-temperature superconductors have mostly been confined to products in the form of wires and thin films. However, recent developments show that rare-earth REBa 2Cu 3O 7- x and light rare-earth LREBa 2Cu 3O 7- x superconductors prepared by melt processes have a high critical-current density at 77 K and high magnetic fields. These superconductors will promote the application of bulk high-temperature superconductors in high magnetic fields; the superconducting bulk magnet for the Maglev train is one possible application. We investigated the possibility of using bulk magnets in the Maglev system, and examined flux-trapping characteristics of multi-superconducting bulks arranged in array.

  10. Properties, magnetic susceptibility, critical currents and irreversibility fields of (Tl{sub 0.5}Pb{sub 0.5})Sr{sub 2} (Ca{sub 1-x}Gd{sub x})Cu{sub 2}O{sub z} bulk superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Woch, W M; Zalecki, R; Kolodziejczyk, A [Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, Aleja Mickiewicza 30, PL 30-059, Krakow (Poland); Sudra, H; Gritzner, G [Institute for Chemical Technology of Inorganic Materials, Johannes Kepler University, A 4040 Linz (Austria)], E-mail: wmwoch@agh.edu.pl

    2008-08-15

    Bulk (Tl{sub 0.5}Pb{sub 0.5})Sr{sub 2}(Ca{sub 1-x}Gd{sub x})Cu{sub 2}O{sub z} superconductors with x 0.1,0.2 and 0.3 were prepared by a wet chemical gel technique followed by a special heat-treatment procedure. X-ray diffraction analysis revealed practically phase-pure samples with tetragonal structure (space group P/4mmm). The temperature dependence of the real and imaginary parts of the ac susceptibility and the dependence on the ac applied magnetic field were investigated to learn about the superconducting and magnetic properties of bulk (Tl{sub 0.5}Pb{sub 0.5})Sr{sub 2}(Ca{sub 1-x}Gd{sub x})Cu{sub 2}O{sub z} superconductors. The critical current densities of the samples were derived from Bean's model. The temperature dependence of the critical current was successfully fitted based on a power law from the thermally activated magnetic flux creep model. From magneto-resistance measurements the temperature dependences of the transport critical currents and the irreversibility fields were found. The dc magnetic field dependence of the width of superconducting transitions and the critical currents was also obtained. These properties of the superconductors were analyzed within available theoretical models.

  11. Superconductor cable

    Science.gov (United States)

    Allais, Arnaud; Schmidt, Frank; Marzahn, Erik

    2010-05-04

    A superconductor cable is described, having a superconductive flexible cable core (1) , which is laid in a cryostat (2, 3, 4), in which the cable core (1) runs in the cryostat (2, 3, 4) in the form of a wave or helix at room temperature.

  12. Majorana Fermions and Topology in Superconductors

    OpenAIRE

    Sato, Masatoshi; Fujimoto, Satoshi

    2016-01-01

    Topological superconductors are novel classes of quantum condensed phases, characterized by topologically nontrivial structures of Cooper pairing states. On the surfaces of samples and in vortex cores of topological superconductors, Majorana fermions, which are particles identified with their own anti-particles, appear as Bogoliubov quasiparticles. The existence and stability of Majorana fermions are ensured by bulk topological invariants constrained by the symmetries of the systems. Majorana...

  13. Development of superconductor application technology

    Energy Technology Data Exchange (ETDEWEB)

    Hong, G. W.; Kim, C. J.; Lee, H. G.; Lee, H. J.; Kim, K. B.; Won, D. Y.; Jang, K. I.; Kwon, S. C.; Kim, W. J.; Ji, Y. A.; Yang, S. W.; Kim, W. K.; Park, S. D.; Lee, M. H.; Lee, D. M.; Park, H. W.; Yu, J. K.; Lee, I. S.; Kim, J. J.; Choi, H. S.; Chu, Y.; Kim, Y. S.; Kim, D. H.

    1997-09-01

    Fabrication of high Tc bulk superconductor and its application, fabrication of superconducting wire for electric power device and analysis for cryogenic system were carried out for developing superconductor application technologies for electric power system. High quality YBaCuO bulk superconductor was fabricated by controlling initial powder preparation process and prototype flywheel energy storage device was designed basically. The superconducting levitation force measuring device was made to examine the property of prepared superconductor specimen. Systematic studies onthe method of starting powder preparation, mechanical fabrication process, heat treatment condition and analysis of plastic deformation were carried out to increase the stability and reproducibility of superconducting wire. A starting power with good reactivity and fine particle size was obtained by mechanical grinding, control of phase assemblage, and emulsion drying method. Ag/BSCCO tape with good cross sectional shape and Jc of 20,000 A/cm{sup 2} was fabricated by applying CIP packing procedure. Multifilamentary wire with Jc of 10,000 A/cm{sup 2} was fabricated by rolling method using square billet as starting shape. The joining of the multifilamentary wire was done by etching and pressing process and showed 50% of joining efficiency. Analysis on the heat loss in cryostat for high Tc superconducting device was carried out for optimum design of the future cryogenic system. (author). 66 refs., 104 figs.

  14. Superconductor Dynamics

    CERN Document Server

    Gömöry, F

    2014-01-01

    Superconductors used in magnet technology could carry extreme currents because of their ability to keep the magnetic flux motionless. The dynamics of the magnetic flux interaction with superconductors is controlled by this property. The cases of electrical transport in a round wire and the magnetization of wires of various shapes (circular, elliptical, plate) in an external magnetic field are analysed. Resistance to the magnetic field penetration means that the field produced by the superconducting magnet is no longer proportional to the supplied current. It also leads to a dissipation of electromagnetic energy. In conductors with unequal transverse dimensions, such as flat cables, the orientation with respect to the magnetic field plays an essential role. A reduction of magnetization currents can be achieved by splitting the core of a superconducting wire into fine filaments; however, new kinds of electrical currents that couple the filaments consequently appear. Basic formulas allowing qualitative analyses ...

  15. Chiral superconductors.

    Science.gov (United States)

    Kallin, Catherine; Berlinsky, John

    2016-05-01

    Chiral superconductivity is a striking quantum phenomenon in which an unconventional superconductor spontaneously develops an angular momentum and lowers its free energy by eliminating nodes in the gap. It is a topologically non-trivial state and, as such, exhibits distinctive topological modes at surfaces and defects. In this paper we discuss the current theory and experimental results on chiral superconductors, focusing on two of the best-studied systems, Sr2RuO4, which is thought to be a chiral triplet p-wave superconductor, and UPt3, which has two low-temperature superconducting phases (in zero magnetic field), the lower of which is believed to be chiral triplet f-wave. Other systems that may exhibit chiral superconductivity are also discussed. Key signatures of chiral superconductivity are surface currents and chiral Majorana modes, Majorana states in vortex cores, and the possibility of half-flux quantum vortices in the case of triplet pairing. Experimental evidence for chiral superconductivity from μSR, NMR, strain, polar Kerr effect and Josephson tunneling experiments are discussed.

  16. Ferromagnetic superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Huxley, Andrew D.

    2015-07-15

    Highlights: • Review of ferromagnetic superconductors. • Covers UGe{sub 2}, URhGe and UCoGe and briefly other materials. • The focus is on experimental data and the pairing mechanism. - Abstract: The co-existence of superconductivity and ferromagnetism is of potential interest for spintronics and high magnetic field applications as well as a fascinating fundamental state of matter. The recent focus of research is on a family of ferromagnetic superconductors that are superconducting well below their Curie temperature, the first example of which was discovered in 2000. Although there is a ‘standard’ theoretical model for how magnetic pairing might bring about such a state, why it has only been seen in a few materials that at first sight appear to be very closely related has yet to be fully explained. This review covers the current state of knowledge of the magnetic and superconducting properties of these materials with emphasis on how they conform and differ from the behaviour expected from the ‘standard’ model and from each other.

  17. Shock compaction of high- Tc superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Weir, S.T.; Nellis, W.J.; McCandless, P.C.; Brocious, W.F. (Lawrence Livermore National Lab., CA (USA)); Seaman, C.L.; Early, E.A.; Maple, M.B. (California Univ., San Diego, La Jolla, CA (USA). Dept. of Physics); Kramer, M.J. (Ames Lab., IA (USA)); Syono, Y.; Kikuchi, M. (Tohoku Univ., Sendai (Japan))

    1990-09-01

    We present the results of shock compaction experiments on high-{Tc} superconductors and describe the way in which shock consolidation addresses critical problems concerning the fabrication of high J{sub c} bulk superconductors. In particular, shock compaction experiments on YBa{sub 2}Cu{sub 3}O{sub 7} show that shock-induced defects can greatly increase intragranular critical current densities. The fabrication of crystallographically aligned Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8} samples by shock-compaction is also described. These experiments demonstrate the potential of the shock consolidation method as a means for fabricating bulk high-{Tc} superconductors having high critical current densities.

  18. Effect of assembled bar magnet configuration on levitation force of single domain GdBCO bulk superconductor%条状永磁体的组合形式及间距对单畴GdBCO超导体磁悬浮力的影响

    Institute of Scientific and Technical Information of China (English)

    马俊; 杨万民

    2011-01-01

    By measuring the levitation forces between a single domain GdBCO bulk superconductor and assembled bar magnets (ABM) in different configurations at liquid nitrogen temperature, the effects of ABM configurations on the levitation force of single domain GdBCO bulk superconductor are investigated. The maximum levitation force is obtained at the same vertical gap distance Z = 5 mm between the superconductor and the ABM for configurations with different lateral gap distance(D)between the magnets of the ABM. It is found that 1) for the ABM consisting of 3 bar magnet, the levitation force of the GdBCO bulk decreases from 22.8N to 9.7N with the D value increasing from 0 to 30 mm, when the magnetic pole N of the middle magnet is pointed upwards and the directions of magnetic pole N of two side magnets are pointed to the middle magnet in horizontal direction; the levitation force of the GdBCO bulk increases first from 9.2N to 13.9N and then decreases tol0.4 N with D value increasing from 0 to 30ram, if the magnetic pole N of the middle magnet is pointed upwards and the directions of magnetic pole N of two side magnets are pointed downwards;2)for the ABM consisting of 2 bar magnets, the levitation force of the GdBCO bulk decreases from l 1.2N to 1.2N with D value increasing from 0 to 30mm, when the directions of magnetic pole N of two side magnets are pointed upwards ; the levitation force of the GdBCO bulk increases first from 6. ON to 6.8N and then decreases to 2.9N with D value increasing from 0 to 30mm, if the directions of magnetic pole N of two magnets are anti-parallel in horizontal direction; 3) for the ABM consisting of only 1 bar magnets, D = 0, and the levitation force of the GdBCO bulk is about 9.5N. The results indicate that the magnet configuration and its detailed parameters of ABM are very important for improving the levitation force of a superconductor and helpful for designing and application based on the superconducting magnetic levitation

  19. p-wave superconductors in dilaton gravity

    CERN Document Server

    Fan, ZhongYing

    2013-01-01

    In this paper, we study peculiar properties of p-wave superconductors in dilaton gravity. The scale invariance of the bulk geometry is effectively broken due to the existence of dilaton. By coupling the dilaton to the non-Abelian gauge field, i.e., $-\\frac14 e^{-\\beta \\Phi} F^a_{\\mu\

  20. Ferromagnetic superconductors

    Science.gov (United States)

    Huxley, Andrew D.

    2015-07-01

    The co-existence of superconductivity and ferromagnetism is of potential interest for spintronics and high magnetic field applications as well as a fascinating fundamental state of matter. The recent focus of research is on a family of ferromagnetic superconductors that are superconducting well below their Curie temperature, the first example of which was discovered in 2000. Although there is a 'standard' theoretical model for how magnetic pairing might bring about such a state, why it has only been seen in a few materials that at first sight appear to be very closely related has yet to be fully explained. This review covers the current state of knowledge of the magnetic and superconducting properties of these materials with emphasis on how they conform and differ from the behaviour expected from the 'standard' model and from each other.

  1. Superconductor cable

    Science.gov (United States)

    Allais, Arnaud; Schmidt, Frank (Langenhagen, DE

    2009-12-15

    A superconductor cable includes a superconductive cable core (1) and a cryostat (2) enclosing the same. The cable core (1) has a superconductive conductor (3), an insulation (4) surrounding the same and a shielding (5) surrounding the insulation (4). A layer (3b) of a dielectric or semiconducting material is applied to a central element (3a) formed from a normally conducting material as a strand or tube and a layer (3c) of at least one wire or strip of superconductive material is placed helically on top. The central element (3a) and the layer (3c) are connected to each other in an electrically conducting manner at the ends of the cable core (1).

  2. Shielding superconductors with thin films

    CERN Document Server

    Posen, Sam; Catelani, Gianluigi; Liepe, Matthias U; Sethna, James P

    2015-01-01

    Determining the optimal arrangement of superconducting layers to withstand large amplitude AC magnetic fields is important for certain applications such as superconducting radiofrequency cavities. In this paper, we evaluate the shielding potential of the superconducting film/insulating film/superconductor (SIS') structure, a configuration that could provide benefits in screening large AC magnetic fields. After establishing that for high frequency magnetic fields, flux penetration must be avoided, the superheating field of the structure is calculated in the London limit both numerically and, for thin films, analytically. For intermediate film thicknesses and realistic material parameters we also solve numerically the Ginzburg-Landau equations. It is shown that a small enhancement of the superheating field is possible, on the order of a few percent, for the SIS' structure relative to a bulk superconductor of the film material, if the materials and thicknesses are chosen appropriately.

  3. The effects of different particle raze Y2Ba4CuBiOy nanoparticles doped on the properties of single domain YBCO bulk superconductors by TSIG process%不同粒径纳米Y2Ba4CuBiOy相掺杂对TSIG法单畴YBCO超导块材性能的影响

    Institute of Scientific and Technical Information of China (English)

    王妙; 杨万民; 张晓菊; 唐艳妮; 王高峰

    2012-01-01

    Single domain YBCO bulk superconductors are fabricated by the top-seeded infiltration and growth process(TSIG). The effects of different particle size Y2Ba4CuBiOy nanoparticles doped on the growth morphology, microstrncture and levitation force of single domain YBCO bulk superconductors are investigated. The mean diameters of the initial Y2Ba4CuBiOy nanoparticles respectively are 283 nm, 170.4 nm and 82.5 nm, and the amount of Y2Ba4CuBiOyadded to Y2BaCuO5 is 2 wt%. The results show that the single domain YBCO bulk superconductors can be fabricated, and the surface of the sample has significant cross pattern and four single domain sectors become smooth and flat. The second phase Y2Ba4CuBiOy nanoparticles are well-distributed into the single domain YBCO bulk samples, and the particles sizes of Y2Ba4CuBiOy nanoparticles in the YBCO bulk sample are respectively 270 nm, 150 nm and 50 nm, smaller than that the initial powder. The magnetic levitation forces of the samples increase gradually with the decrease of initial powders of Y2Ba4CuBiOy nanoparticles, which are respectively 10 N, 17 N and 22 N. The results are very important for further studying the method of flux pinning of nanoparticles and improving the properties of YBCO bulk superconductors.%本文采用顶部籽晶熔渗方法(TSIG),研究了不同粒径纳米Y2Ba4CuBiOy粒子对单畴YBCO超导块材的生长形貌、微观结构及其磁悬浮力的影响.实验所用纳米Y2Ba4CuBiOy粉体的平均粒度分别为283.0nm,170.4nm以及82.5nm,每种粉体在YBCO超导块材中的含量均为2wt%.研究结果表明:在掺杂量为2wt%的情况下,Y2Ba4CuBiOy粉体的粒度并不影响样品的宏观形貌,均可制备出单畴YBCO块材;并且成功地将纳米Y2Ba4CuBiOy粒子引入单畴YBCO块材中,且使其均匀分布,但样品中的Y2Ba4CuBiOy粒子均小于其初始粉体的粒度,分别减小到270nm,150nm和50nm;随着Y2Ba4CuBiOy粉体初始粒度

  4. Technical issues of a high-Tc superconducting bulk magnet

    Science.gov (United States)

    Fujimoto, Hiroyuki

    2000-06-01

    Superconducting magnets made of high-Tc superconductors are promising for industrial applications. It is well known that REBa2Cu3O7-x superconductors prepared by melt processes have a high critical current density, Jc, at 77 K and high magnetic fields. The materials are very promising for high magnetic field applications as a superconducting permanent/bulk magnet with liquid-nitrogen refrigeration. Light rare-earth (LRE) BaCuO bulks, compared with REBaCuO bulks, exhibit a larger Jc in high magnetic fields and a much improved irreversibility field, Hirr, at 77 K. In this study, we discuss technical issues of a high-Tc superconducting bulk magnet, namely the aspects of the melt processing for bulk superconductors, their characteristic superconducting properties and mechanical properties, and trapped field properties of a superconducting bulk magnet. One of the possible applications is a superconducting bulk magnet for the magnetically levitated (Maglev) train in the future.

  5. High-temperature superconductors

    CERN Document Server

    Saxena, Ajay Kumar

    2010-01-01

    The present book aims at describing the phenomenon of superconductivity and high-temperature superconductors discovered by Bednorz and Muller in 1986. The book covers the superconductivity phenomenon, structure of high-Tc superconductors, critical currents, synthesis routes for high Tc materials, superconductivity in cuprates, the proximity effect and SQUIDs, theories of superconductivity and applications of superconductors.

  6. Superconductor bearings, flywheels and transportation

    Science.gov (United States)

    Werfel, F. N.; Floegel-Delor, U.; Rothfeld, R.; Riedel, T.; Goebel, B.; Wippich, D.; Schirrmeister, P.

    2012-01-01

    This paper describes the present status of high temperature superconductors (HTS) and of bulk superconducting magnet devices, their use in bearings, in flywheel energy storage systems (FESS) and linear transport magnetic levitation (Maglev) systems. We report and review the concepts of multi-seeded REBCO bulk superconductor fabrication. The multi-grain bulks increase the averaged trapped magnetic flux density up to 40% compared to single-grain assembly in large-scale applications. HTS magnetic bearings with permanent magnet (PM) excitation were studied and scaled up to maximum forces of 10 kN axially and 4.5 kN radially. We examine the technology of the high-gradient magnetic bearing concept and verify it experimentally. A large HTS bearing is tested for stabilizing a 600 kg rotor of a 5 kWh/250 kW flywheel system. The flywheel rotor tests show the requirement for additional damping. Our compact flywheel system is compared with similar HTS-FESS projects. A small-scale compact YBCO bearing with in situ Stirling cryocooler is constructed and investigated for mobile applications. Next we show a successfully developed modular linear Maglev system for magnetic train operation. Each module levitates 0.25t at 10 mm distance during one-day operation without refilling LN2. More than 30 vacuum cryostats containing multi-seeded YBCO blocks are fabricated and are tested now in Germany, China and Brazil.

  7. Order parameter fluctuations in the holographic superconductor

    Science.gov (United States)

    Plantz, N. W. M.; Stoof, H. T. C.; Vandoren, S.

    2017-03-01

    We investigate the effect of order parameter fluctuations in the holographic superconductor. In particular, following an introduction to the concept of intrinsic dynamics and its implementation within holographic models, we compute the intrinsic spectral functions of the order parameter in both the normal and the superconducting phase, using a fully backreacted bulk geometry. We also present a vector-like large-N version of the Ginzburg–Landau model that accurately describes our long-wavelength results in both phases. Our results indicate that the holographic superconductor describes a relativistic multi-component superfluid in the universal regime of the BEC–BCS crossover.

  8. Passivation of high temperature superconductors

    Science.gov (United States)

    Vasquez, Richard P. (Inventor)

    1991-01-01

    The surface of high temperature superconductors such as YBa2Cu3O(7-x) are passivated by reacting the native Y, Ba and Cu metal ions with an anion such as sulfate or oxalate to form a surface film that is impervious to water and has a solubility in water of no more than 10(exp -3) M. The passivating treatment is preferably conducted by immersing the surface in dilute aqueous acid solution since more soluble species dissolve into the solution. The treatment does not degrade the superconducting properties of the bulk material.

  9. 零场冷和场冷方式下高温超导块材最大悬浮力关系%RELATIONSHIP OF THE MAXIMUM LEVITATION FORCE OF BULK HIGH TEMPERATURE SUPERCONDUCTOR IN ZERO-FIELD-COOLING AND FIELD-COOLING CASE

    Institute of Scientific and Technical Information of China (English)

    邓自刚; 王家素; 郑珺; 刘伟; 林群煦; 马光同; 王为; 王素玉; 张娅

    2009-01-01

    文章通过对15块高温超导块材与永磁轨道相互作用的悬浮力测试,比较了零场冷和场冷两种冷却方式下块材的最大悬浮力关系.实验结果显示零场冷时悬浮力大的块材在场冷时悬浮力不一定就大,反之亦然,两者并无直接的对应关系.在实际的场冷应用中,推荐以场冷下的悬浮力数据为参考.%The paper compares the relationship of maximum levitation force of bulk high temperature superconductor in zero-field-cooling (ZFC) and field-cooling (FC) cases by the levitation measurement of 15 bulks interacting with permanent magnet guideway. The experimental results show that the maximum forces in the two cooling cases are not corresponding to each other. The bulk with large levitation force in ZFC case will not always obtain a large one in the FC case, and vice ver-sa. So, the levitation force data in FC case is recommended to the practical FC applications.

  10. Development of high temperature superconductors having high critical current density

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Gye Wong; Kim, C. J.; Lee, H.G.; Kwon, S. C.; Lee, H. J.; Kim, K. B.; Park, J. Y.; Jung, C. H

    2000-08-01

    Fabrication of high T{sub c} superconductors and its applications for electric power device were carried out for developing superconductor application technologies. High quality YBCO superconductors was fabricated by melt texture growth, top-seeded melt growth process and multi-seeded melt growth process and the properties was compared. The critical current density of the melt processed YBCO superconductors was about few 10,000 A/cm{sup 2} and the levitation force was 50 N. The processing time needed for the growth of the 123 single grain was greatly reduced by applying multi-seeding without no significant degradation of the levitation force. The multi-seeded melt growth process was confirmed as a time-saving and cost-effective method for the fabrication of bulk superconductors with controlled crystallographic orientation.

  11. Preliminary study of superconducting bulk magnets for Maglev

    Science.gov (United States)

    Fujimoto, Hiroyuki; Kamijo, Hiroki

    Recent development shows that melt-processed YBaCuO (Y123) or Rare Earth (RE)123 superconductors have a high Jc at 77 K and high magnetic field, leading to high field application as a superconducting quasi-permanent bulk magnet with the liquid nitrogen refrigeration. One of the promising applications is a superconducting magnet for the magnetically levitated (Maglev) train. We discuss a superconducting bulk magnet for the Maglev train in the aspect of a preliminary design of the bulk magnet and also processing for (L)REBaCuO bulk superconductors and their characteristic superconducting properties.

  12. Study of the glass formation of high temperature superconductors

    Science.gov (United States)

    Ethridge, Edwin C.; Kaukler, William F.; Rolin, Terry

    1992-01-01

    A number of compositions of ceramic oxide high T(sub c) superconductors were elevated for their glass formation ability by means of rapid thermal analysis during quenching, optical, and electron microscopy of the quenched samples, and with subsequent DSC measurements. Correlations between experimental measurements and the methodical composition changes identified the formulations of superconductors that can easily form glass. The superconducting material was first formed as a glass; then, with subsequent devitrification, it was formed into a bulk crystalline superconductor by a series of processing methods.

  13. Observability of surface currents in p-wave superconductors

    Science.gov (United States)

    Bakurskiy, S. V.; Klenov, N. V.; Soloviev, I. I.; Kupriyanov, M. Yu; Golubov, A. A.

    2017-04-01

    A general approach is formulated to describe spontaneous surface current distribution in a chiral p-wave superconductor. We use the quasiclassical Eilenberger formalism in the Ricatti parametrization to describe various types of the superconductor surface, including arbitrary roughness and metallic behavior of the surface layer. We calculate angle resolved distributions of the spontaneous surface currents and formulate the conditions of their observability. We argue that local measurements of these currents by muon spin rotation technique may provide an information on the underlying pairing symmetry in the bulk superconductor.

  14. Fine uniform filament superconductors

    Science.gov (United States)

    Riley, Jr., Gilbert N.; Li, Qi; Roberts, Peter R.; Antaya, Peter D.; Seuntjens, Jeffrey M.; Hancock, Steven; DeMoranville, Kenneth L.; Christopherson, Craig J.; Garrant, Jennifer H.; Craven, Christopher A.

    2002-01-01

    A multifilamentary superconductor composite having a high fill factor is formed from a plurality of stacked monofilament precursor elements, each of which includes a low density superconductor precursor monofilament. The precursor elements all have substantially the same dimensions and characteristics, and are stacked in a rectilinear configuration and consolidated to provide a multifilamentary precursor composite. The composite is thereafter thermomechanically processed to provide a superconductor composite in which each monofilament is less than about 50 microns thick.

  15. Superconductor rotor cooling system

    Science.gov (United States)

    Gamble, Bruce B.; Sidi-Yekhlef, Ahmed; Schwall, Robert E.; Driscoll, David I.; Shoykhet, Boris A.

    2002-01-01

    A system for cooling a superconductor device includes a cryocooler located in a stationary reference frame and a closed circulation system external to the cryocooler. The closed circulation system interfaces the stationary reference frame with a rotating reference frame in which the superconductor device is located. A method of cooling a superconductor device includes locating a cryocooler in a stationary reference frame, and transferring heat from a superconductor device located in a rotating reference frame to the cryocooler through a closed circulation system external to the cryocooler. The closed circulation system interfaces the stationary reference frame with the rotating reference frame.

  16. Photothermal measurements of superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Kino, G.S.; Studenmund, W.R.; Fishman, I.M. [Stanford Univ., Stanford, CA (United States)

    1996-12-31

    A photothermal technique has been used to measure diffusion and critical temperature in high temperature superconductors. The technique is particularly suitable for determining material quality and inhomogeneity.

  17. Development of superconductor application technology - Fabrication of superconducting plate using tape casting and development of directional growth

    Energy Technology Data Exchange (ETDEWEB)

    Noh, Kwang Soo; Yoon, Dae Sung; Lee, Joon Sung; Jun, Byung Hyuk; Woo, Sung Soo; Hong, Seung Bum; Kim, Eun Ah; Song, Han Wook [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)

    1996-05-01

    This study concerns the establishment of the fabrication techniques of the high temperature superconductor tape using tape coating, the heat treatment and directional growth techniques in order to fabricate high temperature superconductor bulks having high current density. This study is important in the development of bulk high temperature superconductors and in the applications in bulk forms. Development of Tape Casting Technique : Fabrication of the high temperature superconductor tape using different processing condition. Fabrication of Y- and Bi- High Temperature Superconductor Tapes : Based on the optimum processing condition, the superconductor tapes were fabricated. Development of Directional Growth Techniques : The tapes were heat-treated at proper condition and directionally growth using different directional growth condition. The superconducting properties were tested on the directionally grown samples. 21 figs. (author)

  18. Developing a high-temperature superconducting bulk magnet for the maglev train of the future

    Science.gov (United States)

    Fujimoto, Hiroyuki

    1998-10-01

    The major applications of high-temperature superconductors have mostly been confined to products in the form of wires and thin films. However, recent developments show that rare-earth REBa2Cu3O7-x and light rare-earth LREBa2Cu3O7-3 superconductors prepared by melt processes have a high critical-current density at 77 K and high magnetic fields. These superconductors will promote the application of bulk high-temperature superconductors in high magnetic fields; the superconducting bulk magnet for the Maglev train is one possible application.

  19. The effect of oxide Bi2O3 doping on the levitation force of single domain YBCO bulk superconductors%Bi2O3氧化物掺杂对单畴YBCO超导块材磁悬浮力的影响

    Institute of Scientific and Technical Information of China (English)

    王妙; 杨万民; 马俊; 唐艳妮; 张晓菊; 王高峰

    2012-01-01

    In this paper, single domain YBCO superconductors, with compositions of Bi2O3:Y5BaCuO5=x:(1 -x), (x=0.1; 0.3; 0,5; 0.7; 0.9; 2, units: wt%), have been successfully fabricated by the top-seeding infiltration and growth process (TS1G). The effect of the different doping amounts of Bi2O3 particles on the growth morphology, the magnetic levitation force properties and microstruclure of single domain YBCO bulk superconductors has been investigated. The results show that the nanoscale Y2Ba4CuBiOx(YBi2411) particles which were formatted by oxide Bi2Oi doping can work as effective flux pinning centers to improve the properties of YBCO bulk samples. It is found that the levitation force is increasing from 7 N to 25 N with the increasing of Bi2O3 addition from 0.1wt% to 0.7wt%, and decreasing from 25 N to 6 N with the increasing of Bi2O3 addition from 0.7wt% to 2wt%. The results are very important for further study in flux pinning of oxide Bi2O3 doping and improvement in the properties of YBCO bulk superconductors.%采用顶部籽晶熔渗工艺(TSIG)制备出了配比为Bi2O3∶Y2BaCuO5=x∶(1-x)的系列单畴YBCO超导块材(其中x=0.1,0.3,0.5,0.7,0.9,2,单位为wt%),并且研究了不同比例的氧化物Bi2O3掺杂对样品的生长形貌、磁悬浮力以及其微观结构的影响.实验结果表明了,Bi2O3粒子的掺杂在样品中生成Y2Ba4CuBiOx(YBi2411)纳米粒子从而可以有效地提高样品的磁悬浮性能.当Bi2O3粒子掺杂量x从0.1wt%(质量分数,下同)增加到0.7wt%时,样品的磁悬浮力从7N增加到25N;当其掺杂量从0.7wt%增加到2wt%时,样品的磁悬浮力从25N降低到6N.该实验结果对于我们进一步研究氧化物掺杂对磁通钉扎作用的影响以及提高YBCO超导块材的性能有着重要的影响.

  20. Fabrication of high temperature superconductors

    Science.gov (United States)

    Balachandran, Uthamalingam; Dorris, Stephen E.; Ma, Beihai; Li, Meiya

    2003-06-17

    A method of forming a biaxially aligned superconductor on a non-biaxially aligned substrate substantially chemically inert to the biaxially aligned superconductor comprising is disclosed. A non-biaxially aligned substrate chemically inert to the superconductor is provided and a biaxially aligned superconductor material is deposited directly on the non-biaxially aligned substrate. A method forming a plume of superconductor material and contacting the plume and the non-biaxially aligned substrate at an angle greater than 0.degree. and less than 90.degree. to deposit a biaxially aligned superconductor on the non-biaxially aligned substrate is also disclosed. Various superconductors and substrates are illustrated.

  1. Conductance of d-wave superconductor/normal metal/d-wave superconductor junctions

    Science.gov (United States)

    Pesin, Dmytro; Andreev, Anton; Spivak, Boris

    2008-03-01

    We develop a theory of the low-temperature conductance of superconductor/normal metal/superconductor junctions in which the superconductors have d-wave pairing symmetry. We show that at low temperatures the conductance of the junction is determined by the inelastic relaxation time of quasiparticles in the bulk of d-wave superconductors, GDND√&(d)circ;ɛ. Thus it greatly exceeds the conductance of the normal metal part of the junction, which is controlled by the elastic mean free path. This dependence of GDND on the inelastic relaxation time should be contrasted with that of the low-temperature conductance of the junction in the case of the s- wave superconductor leads, GSNS. In the latter case the conductance is proportional to the first power of the inelastic electron relaxation time in the normal metal part of the junction, GSNSτɛ^(n) [1]. [1] S. V. Lempitskii, Sov. Phys. JETP 58, 624 (1983); U. Gunsenheimer and A. D. Zaikin, Phys. Rev. B50, 6317 (1994); F. Zhou and B. Spivak, JETP Lett. 65, 369 (1997).

  2. 辅助永磁体的引入方式对单畴GdBCO超导块材磁场分布及其磁悬浮力的影响%The effects of magnetization methods with additional permanent magnet on the magnetic field distribution and levitation force of single domain GdBCO bulk superconductor

    Institute of Scientific and Technical Information of China (English)

    马俊; 杨万民; 李佳伟; 王妙; 陈森林

    2012-01-01

    通过对永磁体辅助下单畴GdBCO超导体和方形永磁体在液氮温度、零场冷、轴对称情况下磁悬浮力的测量,研究了三种不同组态中辅助永磁体的引入方式对单畴GdBCO超导块材磁场分布及其磁悬浮力的影响.实验结果表明,如果处在超导体上方的测量用方形永磁体N极向下,则在轴对称情况下,当方形辅助永磁体N极向上与超导体下表面贴在一起时,超导体的最大磁悬浮力从没有引入辅助永磁体磁化的14.3 N增加到31.8 N,提高到222%;当方形辅助永磁体放置在超导体上表面、N极垂直向上且场冷后去掉辅助永磁体时,超导体的最大磁悬浮力从没有引入辅助永磁体磁化的14.3 N增加到21.6N,增加到151%;当方形辅助永磁体放置在超导体上表面、N极垂直向下且场冷后去掉方形辅助永磁体时,超导体的最大磁悬浮力从没有引入辅助永磁体磁化的14.3 N减小到8.6 N,减小为无辅助永磁体时的60%.这些结果说明,只有通过科学合理地设计超导体和永磁体的组合方式,才能获得较高的磁场强度,有效地提高超导体的磁悬浮力特性,该结果对促进超导体的应用具有重要的指导意义.%The effects of magnetization methods with additional permanent magnet on the magnetic field distribution and the levitation force of single domain GdBCO bulk superconductor are investigated with a cubic permanent magnet in their coaxial configuration in zero field cooled state at liquid nitrogen temperature in three different ways. It is found that when the N pole of the cubic permanent magnet, for the levitation force measurement, is placed above the GdBCO bulk superconductor and in the downward direction, the maximal levitation force can be improved to 31.8 N, and that when the N pole of the additional cubic permanent magnet points to upward and sticks to the bottom of the GdBCO bulk, the maximal levitation force is increased up to about 222% of the

  3. Superconductor terahertz metamaterial

    CERN Document Server

    Gu, Jianqiang; Tian, Zhen; Cao, Wei; Xing, Qirong; Han, Jiaguang; Zhang, Weili

    2010-01-01

    We characterize the behaviour of split ring resonators made up of high-transition temperature YBCO superconductor using terahertz time domain spectroscopy. The superconductor metamaterial shows sharp change in the transmission spectrum at the fundamental inductive-capacitive resonance and the dipole resonance as the temperature dips below the transition temperature. Our results reveal that the high performance of such a metamaterial is limited by material imperfections and defects such as cracks, voids and secondary phases which play dominant role in partially impeding the flow of current causing dissipation of energy and electrical resistance to appear in the superconductor film.

  4. Electronic structure and superconductivity of FeSe-related superconductors.

    Science.gov (United States)

    Liu, Xu; Zhao, Lin; He, Shaolong; He, Junfeng; Liu, Defa; Mou, Daixiang; Shen, Bing; Hu, Yong; Huang, Jianwei; Zhou, X J

    2015-05-13

    FeSe superconductors and their related systems have attracted much attention in the study of iron-based superconductors owing to their simple crystal structure and peculiar electronic and physical properties. The bulk FeSe superconductor has a superconducting transition temperature (Tc) of ~8 K and it can be dramatically enhanced to 37 K at high pressure. On the other hand, its cousin system, FeTe, possesses a unique antiferromagnetic ground state but is non-superconducting. Substitution of Se with Te in the FeSe superconductor results in an enhancement of Tc up to 14.5 K and superconductivity can persist over a large composition range in the Fe(Se,Te) system. Intercalation of the FeSe superconductor leads to the discovery of the AxFe2-ySe2 (A = K, Cs and Tl) system that exhibits a Tc higher than 30 K and a unique electronic structure of the superconducting phase. A recent report of possible high temperature superconductivity in single-layer FeSe/SrTiO3 films with a Tc above 65 K has generated much excitement in the community. This pioneering work opens a door for interface superconductivity to explore for high Tc superconductors. The distinct electronic structure and superconducting gap, layer-dependent behavior and insulator-superconductor transition of the FeSe/SrTiO3 films provide critical information in understanding the superconductivity mechanism of iron-based superconductors. In this paper, we present a brief review of the investigation of the electronic structure and superconductivity of the FeSe superconductor and related systems, with a particular focus on the FeSe films.

  5. Electrodynamics of Metallic Superconductors

    Directory of Open Access Journals (Sweden)

    M. Dressel

    2013-01-01

    Full Text Available The theoretical and experimental aspects of the microwave, terahertz, and infrared properties of superconductors are discussed. Electrodynamics can provide information about the superconducting condensate as well as about the quasiparticles. The aim is to understand the frequency dependence of the complex conductivity, the change with temperature and time, and its dependence on material parameters. We confine ourselves to conventional metallic superconductors, in particular, Nb and related nitrides and review the seminal papers but also highlight latest developments and recent experimental achievements. The possibility to produce well-defined thin films of metallic superconductors that can be tuned in their properties allows the exploration of fundamental issues, such as the superconductor-insulator transition; furthermore it provides the basis for the development of novel and advanced applications, for instance, superconducting single-photon detectors.

  6. Using high-temperature superconductors for levitation applications

    Science.gov (United States)

    Hull, John R.

    1999-07-01

    Melt-textured, bulk high-temperature superconductors are finding increasing uses in superconducting bearings, flywheel energy storage, and other levitational applications. This article reviews the use of these materials in magnetic-levitation applications. The behavior of levitational force, stiffness, damping, and rotational losses is discussed.

  7. Neutron-diffraction investigations of flux-lines in superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Forgan, E.M. [Birmingham Univ. (United Kingdom); Lee, S.L. [Saint Andrews Univ. (United Kingdom); McKPaul, D. [Warwick Univ., Coventry (United Kingdom); Mook, H.A. [Oak Ridge National Lab., TN (United States); Cubitt, R. [Institut Max von Laue - Paul Langevin (ILL), 38 - Grenoble (France)

    1997-04-01

    SANS has proved an extremely useful tool for investigating flux-line structures within the bulk of superconductors. With high-T{sub c} materials, the scattered intensities are weak, but careful measurements are giving important new information about flux lattices, flux pinning and flux-lattice melting. (author). 10 refs.

  8. Numerical analysis of thermally actuated magnets for magnetization of superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Li Quan; Yan Yu; Rawlings, Colin; Coombs, Tim, E-mail: ql229@cam.ac.u [EPEC Superconductivity Group, Engineering Department, University of Cambridge, Trumpington Street. Cambridge, CB2 1PZ (United Kingdom)

    2010-06-01

    Superconductors, such as YBCO bulks, have extremely high potential magnetic flux densities, comparing to rare earth magnets. Therefore, the magnetization of superconductors has attracted broad attention and contribution from both academic research and industry. In this paper, a novel technique is proposed to magnetize superconductors. Unusually, instead of using high magnetic fields and pulses, repeatedly magnetic waves with strength of as low as rare earth magnets are applied. These magnetic waves, generated by thermally controlling a Gadolinium (Gd) bulk with a rare earth magnet underneath, travel over the flat surface of a YBCO bulk and get trapped little by little. Thus, a very small magnetic field can be used to build up a very large magnetic field. In this paper, the modelling results of thermally actuated magnetic waves are presented showing how to transfer sequentially applied thermal pulses into magnetic waves. The experiment results of the magnetization of YBCO bulk are also presented to demonstrate how superconductors are progressively magnetized by small magnetic field

  9. Physics and Materials Science of High Temperature Superconductors

    Science.gov (United States)

    1989-08-26

    SUPERCONDUCTIVITY OF BULK HIGH TEMPERATURE SUPERCONDUCTORS. F. M. Costa and J. M. Vieira, Departamento de Eng. Ceramica e de Vidro, Universidade de Aveiro...Lisboa, Portugal; F. Costa, Dep Eng Ceramica e do Vidro, Universidade de Aveiro, P-3800 Avaerio, Portugal; and J. M. Alves and M. M. Godinho, Dep Fisica

  10. Topological superconductors: a review.

    Science.gov (United States)

    Sato, Masatoshi; Ando, Yoichi

    2017-04-03

    This review elaborates pedagogically on the fundamental concept, basic theory, expected properties, and materials realizations of topological superconductors. The relation between topological superconductivity and Majorana fermions are explained, and the difference between dispersive Majorana fermions and a localized Majorana zero mode is emphasized. A variety of routes to topological superconductivity are explained with an emphasis on the roles of spin-orbit coupling. Present experimental situations and possible signatures of topological superconductivity are summarized with an emphasis on intrinsic topological superconductors.

  11. Layered nickel based superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Ronning, Filip [Los Alamos National Laboratory; Bauer, Eric D [Los Alamos National Laboratory; Park, Tuson [Los Alamos National Laboratory; Kurita, Nobuyuki [Los Alamos National Laboratory; Klimczuk, T [Los Alamos National Laboratory; Movshovich, R [Los Alamos National Laboratory; Thompson, J D [Los Alamos National Laboratory; Sefat, A S [ORNL; Mandrus, D [ORNL

    2009-01-01

    We review the properties of Ni-based superconductors which contain Ni{sub 2}X{sub 2} (X=As, P, Bi, Si, Ge, B) planes, a common structural element to the recently discovered FeAs superconductors. We also compare the properties ofthe Ni-and Fe-based systems from a perspective ofelectronic structure as well as structure-property relations.

  12. Continuous lengths of oxide superconductors

    Science.gov (United States)

    Kroeger, Donald M.; List, III, Frederick A.

    2000-01-01

    A layered oxide superconductor prepared by depositing a superconductor precursor powder on a continuous length of a first substrate ribbon. A continuous length of a second substrate ribbon is overlaid on the first substrate ribbon. Sufficient pressure is applied to form a bound layered superconductor precursor powder between the first substrate ribbon and the second substrate ribbon. The layered superconductor precursor is then heat treated to establish the oxide superconducting phase. The layered oxide superconductor has a smooth interface between the substrate and the oxide superconductor.

  13. High temperature superconductor accelerator magnets

    NARCIS (Netherlands)

    van Nugteren, J.

    2016-01-01

    For future particle accelerators bending dipoles are considered with magnetic fields exceeding 20T. This can only be achieved using high temperature superconductors (HTS). These exhibit different properties from classical low temperature superconductors and still require significant research and dev

  14. Current fluctuations in unconventional superconductor junctions with impurity scattering

    Science.gov (United States)

    Burset, Pablo; Lu, Bo; Tamura, Shun; Tanaka, Yukio

    2017-06-01

    The order parameter of bulk two-dimensional superconductors is classified as nodal if it vanishes for a direction in momentum space, or gapful if it does not. Each class can be topologically nontrivial if Andreev bound states are formed at the edges of the superconductor. Nonmagnetic impurities in the superconductor affect the formation of Andreev bound states and can drastically change the tunneling spectra for small voltages. Here, we investigate the mean current and its fluctuations for two-dimensional tunnel junctions between normal-metal and unconventional superconductors by solving the quasiclassical Eilenberger equation self-consistently, including the presence of nonmagnetic impurities in the superconductor. As the impurity strength increases, we find that superconductivity is suppressed for almost all order parameters since (i) at zero applied bias, the effective transferred charge calculated from the noise-current ratio tends to the electron charge e , and (ii) for finite bias, the current-voltage characteristics follows that of a normal-state junction. There are notable exceptions to this trend. First, gapful nontrivial (chiral) superconductors are very robust against impurity scattering due to the linear dispersion relation of their surface Andreev bound states. Second, for nodal nontrivial superconductors, only px-wave pairing is almost immune to the presence of impurities due to the emergence of odd-frequency s -wave Cooper pairs near the interface. Due to their anisotropic dependence on the wave vector, impurity scattering is an effective pair-breaking mechanism for the remaining nodal superconductors. All these behaviors are neatly captured by the noise-current ratio, providing a useful guide to find experimental signatures for unconventional superconductivity.

  15. 永磁轨道上方高温超导块材各向异性对悬浮力弛豫特性的影响%INFLUENCE OF ANISOTROPY PROPERTY OF BULK HIGH TEMPERATURE SUPERCONDUCTOR ON LEVITATION RELAXATION PERFORMANCE ABOVE PERMANENT MAGNET GUIDEWAY

    Institute of Scientific and Technical Information of China (English)

    荆海莲; 郑珺; 廖兴林; 蒋冬辉; 林群煦; 王家素; 王素玉

    2012-01-01

    The melt-texturing processed bulk high temperature superconductor (HTSC) YBCO has five growth sections in each of the sample generally. By the trapped field experiments, it was known that the bulk HTSC shows the obvious anisotropy property. The capability of trapping fields of the bulk HTSC YBCO is different at each growth section and each boundary. Considering the application of the high temperature superconducting Maglev, the levitation relaxation performances of the different three-bulk HTSC arrays above the permanent magnet guideway (PMG) are discussed. According to the experimental results, the relaxation rate of levitation force show smaller if the crystal growth section boundary obeys the aligned growth section boundary arrangement (AGSBA) pattern rath- er than the misaligned growth section boundary arrangement (MGSBA) pattern, no matter at field cooling (FC) condition or zero field cooling (ZFC) condition. It implies the former levitation relaxation performance is better. The further study shows the relaxation rate of levitation force is smaller with the same pattern at the FC condition than that at the ZFC condition. The relaxation performance is better at the FC condition for the HTS Maglev application. It can be a good improvement option to arrange reasonably each onboard YBCO bulk position and the field cooling height for the better relaxation performance of the Maglev system as well as its better stability performance.%采用顶部熔融织构生长法制备的高温超导块材YBCO通常有5个生长区域.通过捕获磁通实验研究,人们发现高温超导块材内部生长区域及边界的捕获磁通能力不同,存在明显的各向异性.面向高温超导磁悬浮应用,本文比较研究了3块不同的高温超导块材YBCO组合在永磁轨道上方悬浮力弛豫特性.实验结果表明,无论场冷还是零场冷情况,块材籽晶生长线对齐排列方式的悬浮力衰减率均小于块材

  16. Cathodoluminescence study of thin films of high Tc superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Barkay, Z.; Azoulay, J.; Lereah, Y.; Dai, U.; Hess, N.; Racah, D.; Gruenbaum, E.; Deutscher, G. (School of Physics and Astronomy, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, 69978 Ramat Aviv (Israel))

    1990-10-22

    Cathodoluminescence (CL) of thin films of high {ital T}{sub {ital c}} superconductors was studied in the scanning electron microscope. The depth and the lateral locations of the different phases can be revealed. In thin films, unlike the bulk superconductors, the CL information can be obtained either from the film itself or the substrate by varying the primary beam energy. At high beam energy, substrate defects and slight thickness variations of a single high {ital T}{sub {ital c}} phase are observed. The resolution of the CL measurements improves at low temperatures.

  17. EDITORIAL: Focus on Superconductors with Exotic Symmetries FOCUS ON SUPERCONDUCTORS WITH EXOTIC SYMMETRIES

    Science.gov (United States)

    Rice, T. Maurice; Sigrist, Manfred; Maeno, Yoshiteru

    2009-05-01

    Behnia Pairing state at an interface of Sr2RuO4: parity-mixing, restored time-reversal symmetry and topological superconductivity Y Tada, N Kawakami and S Fujimoto Momentum-resolved superconducting gap in the bulk of Ba1-xKxFe2As2 from combined ARPES and μSR measurements D V Evtushinsky, D S Inosov, V B Zabolotnyy, M S Viazovska, R Khasanov, A Amato, H-H Klauss, H Luetkens, Ch Niedermayer, G L Sun, V Hinkov, C T Lin, A Varykhalov, A Koitzsch, M Knupfer, B Büchner, A A Kordyuk and S V Borisenko Cooper-pair formation by anharmonic rattling modes in the β-pyrochlore superconductor KOs2O6 Jun Chang, Ilya Eremin and Peter Thalmeier Doping-dependent optical properties of Bi2201 E van Heumen, W Meevasana, A B Kuzmenko, H Eisaki and D van der Marel Phase diagram and single-particle spectrum of CuO2 high-Tc layers: variational cluster approach to the three-band Hubbard model E Arrigoni, M Aichhorn, M Daghofer and W Hanke Heat transport as a probe of superconducting gap structure H Shakeripour, C Petrovic and Louis Taillefer Pressure-induced magnetic transition and volume collapse in FeAs superconductors: an orbital-selective Mott scenario Andreas Hackl and Matthias Vojta Orbital magnetic moment of a chiral p-wave superconductor James F Annett, B L Györffy and K I Wysokiński Magnetism and superconductivity in strongly correlated CeRhIn5 Tuson Park and J D Thompson Superconducting gap structure of heavy-Fermion compound URu2Si2 determined by angle-resolved thermal conductivity Y Kasahara, H Shishido, T Shibauchi, Y Haga, T D Matsuda, Y Onuki and Y Matsuda Polar Kerr effect as probe for time-reversal symmetry breaking in unconventional superconductors Aharon Kapitulnik, Jing Xia, Elizabeth Schemm and Alexander Palevski Influence of non-magnetic impurities on hole-doped two-leg Cu-O Hubbard ladders P Chudzinski, M Gabay and T Giamarchi Pairing in the iron arsenides: a functional RG treatment Christian Platt, Carsten Honerkamp and Werner Hanke Tracking anisotropic scattering in

  18. Discovery of a Superhard Iron Tetraboride Superconductor

    Science.gov (United States)

    Gou, Huiyang; Dubrovinskaia, Natalia; Bykova, Elena; Tsirlin, Alexander A.; Kasinathan, Deepa; Schnelle, Walter; Richter, Asta; Merlini, Marco; Hanfland, Michael; Abakumov, Artem M.; Batuk, Dmitry; Van Tendeloo, Gustaaf; Nakajima, Yoichi; Kolmogorov, Aleksey N.; Dubrovinsky, Leonid

    2013-10-01

    Single crystals of novel orthorhombic (space group Pnnm) iron tetraboride FeB4 were synthesized at pressures above 8 GPa and high temperatures. Magnetic susceptibility and heat capacity measurements demonstrate bulk superconductivity below 2.9 K. The putative isotope effect on the superconducting critical temperature and the analysis of specific heat data indicate that the superconductivity in FeB4 is likely phonon mediated, which is rare for Fe-based superconductors. The discovered iron tetraboride is highly incompressible and has the nanoindentation hardness of 62(5) GPa; thus, it opens a new class of highly desirable materials combining advanced mechanical properties and superconductivity.

  19. 373 K Superconductors

    CERN Document Server

    Kostadinov, Ivan Zahariev

    2016-01-01

    Experimental evidence of superconductors with critical temperatures above $373\\:K$ is presented. In a family of different compounds we demonstrate the superconductor state, the transition to normal state above $387\\:K$, an intermediate $242\\:K$ superconductor, susceptibility up to $350\\:K$, $I-V$ curves at $4.2\\:K$ in magnetic field of $12\\:T$ and current up to $60\\:A$, $300\\:K$ Josephson Junctions and Shapiro steps with radiation of $5\\:GHz$ to $21\\:THz$, $300\\:K$ tapes tests with high currents up to $3000\\:A$ and many $THz$ images of coins and washers. Due to a pending patent, the exact chemical characterization and technological processes for these materials are temporarily withheld and will be presented elsewhere.

  20. Lightning in superconductors.

    Science.gov (United States)

    Vestgården, J I; Shantsev, D V; Galperin, Y M; Johansen, T H

    2012-01-01

    Crucially important for application of type-II superconductor films is the stability of the vortex matter--magnetic flux lines penetrating the material. If some vortices get detached from pinning centres, the energy dissipated by their motion will facilitate further depinning, and may trigger a massive electromagnetic breakdown. Up to now, the time-resolved behaviour of these ultra-fast events was essentially unknown. We report numerical simulation results revealing the detailed dynamics during breakdown as within nanoseconds it develops branching structures in the electromagnetic fields and temperature, with striking resemblance of atmospheric lightning. During a dendritic avalanche the superconductor is locally heated above its critical temperature, while electrical fields rise to several kV/m as the front propagates at instant speeds near up to 100 km/s. The numerical approach provides an efficient framework for understanding the ultra-fast coupled non-local dynamics of electromagnetic fields and dissipation in superconductor films.

  1. Correlations Between Magnetic Flux and Levitation Force of HTS Bulk Above a Permanent Magnet Guideway

    Science.gov (United States)

    Huang, Huan; Zheng, Jun; Zheng, Botian; Qian, Nan; Li, Haitao; Li, Jipeng; Deng, Zigang

    2017-06-01

    In order to clarify the correlations between magnetic flux and levitation force of the high-temperature superconducting (HTS) bulk, we measured the magnetic flux density on bottom and top surfaces of a bulk superconductor while vertically moving above a permanent magnet guideway (PMG). The levitation force of the bulk superconductor was measured simultaneously. In this study, the HTS bulk was moved down and up for three times between field-cooling position and working position above the PMG, followed by a relaxation measurement of 300 s at the minimum height position. During the whole processes, the magnetic flux density and levitation force of the bulk superconductor were recorded and collected by a multipoint magnetic field measurement platform and a self-developed maglev measurement system, respectively. The magnetic flux density on the bottom surface reflected the induced field in the superconductor bulk, while on the top, it reveals the penetrated magnetic flux. The results show that the magnetic flux density and levitation force of the bulk superconductor are in direct correlation from the viewpoint of inner supercurrent. In general, this work is instructive for understanding the connection of the magnetic flux density, the inner current density and the levitation behavior of HTS bulk employed in a maglev system. Meanwhile, this magnetic flux density measurement method has enriched present experimental evaluation methods of maglev system.

  2. Bi-based superconductor

    Directory of Open Access Journals (Sweden)

    S E Mousavi

    2009-08-01

    Full Text Available   In this paper, Bi-Sr-Ca-Cu-O (BCSCCO system superconductor is made by the solid state reaction method. The effect of doping Pb, Cd, Sb, Cu and annealing time on the critical temperature and critical current density have been investigated. The microstructure and morphology of the samples have been studied by X-ray diffraction, scanning electron microscope and energy dispersive X-ray. The results show that the fraction of Bi-2223 phase in the Bi- based superconductor, critical temperature and critical current density depend on the annealing temperature, annealing time and the kind and amount of doping .

  3. Physical Vacuum in Superconductors

    CERN Document Server

    de Matos, Clovis Jacinto

    2009-01-01

    Although experiments carried out by Jain et al. showed that the Cooper pairs obey the strong equivalence principle, The measurement of the Cooper pairs inertial mass by Tate et al. revealed an anomalous excess of mass. In the present paper we interpret these experimental results in the framework of an electromagnetic model of dark energy for the superconductors' vacuum. We argue that this physical vacuum is associated with a preferred frame. Ultimately from the conservation of energy for Cooper pairs we derive a model for a variable vacuum speed of light in the superconductors physical vacuum in relation with a possible breaking of the weak equivalence principle for Cooper pairs.

  4. Static Test for a Gravitational Force Coupled to Type 2 YBCO Superconductors

    Science.gov (United States)

    Li, Ning; Noever, David; Robertson, Tony; Koczor, Ron; Brantley, Whitt

    1997-01-01

    As a Bose condensate, superconductors provide novel conditions for revisiting previously proposed couplings between electromagnetism and gravity. Strong variations in Cooper pair density, large conductivity and low magnetic permeability define superconductive and degenerate condensates without the traditional density limits imposed by the Fermi energy (approx. 10(exp -6) g cc. Recent experiments have reported anomalous weight loss for a test mass suspended above a rotating type II, YBCO superconductor, with the percentage change (0.05 - 2.1 %) independent of the test mass' chemical composition and diamagnetic properties. A variation of 5 parts per 10' was reported above a stationary (non-rotating) superconductor. In experiments using a sensitive gravimeter, bulk YBCO superconductors were stably levitated in a DC magnetic field. Changes in acceleration were measured to be less than 2 parts in 108 of the normal gravitational acceleration. This result puts new limits on the strength and range of the proposed coupling between static superconductors and gravity.

  5. Odd-parity topological superconductors: theory and application to CuxBi2Se3.

    Science.gov (United States)

    Fu, Liang; Berg, Erez

    2010-08-27

    Topological superconductors have a full pairing gap in the bulk and gapless surface Andreev bound states. In this Letter, we provide a sufficient criterion for realizing time-reversal-invariant topological superconductors in centrosymmetric superconductors with odd-parity pairing. We next study the pairing symmetry of the newly discovered superconductor CuxBi2Se3 within a two-orbital model, and find that a novel spin-triplet pairing with odd parity is favored by strong spin-orbit coupling. Based on our criterion, we propose that CuxBi2Se3 is a good candidate for a topological superconductor. We close by discussing experimental signatures of this new topological phase.

  6. Manufacturing of Superconductors

    DEFF Research Database (Denmark)

    Bech, Jakob Ilsted; Bay, Niels

    Superconducting tapes based on the ceramic high temperature superconductor (HTS) is a new promising product for high current applications such as electro-magnets and current transmission cables. The tapes are made by the oxide powder in tube (OPIT) method implying drawing and rolling of silver tu...

  7. The contact conductance of a one-dimensional wire partly embedded in a superconductor

    OpenAIRE

    Matthews, Raphael; Agam, Oded

    2007-01-01

    The conductance through a semi-infinite one-dimensional wire, partly embedded in a superconducting bulk electrode, is studied. When the electron-electron interactions within the wire are strongly repulsive, the wire effectively decouples from the superconductor. If they are moderately or weakly repulsive, the proximity of the superconductor induces superconducting order in the segment of the wire embedded in it. In this case it is shown that the conductance exhibits a crossover from conductiv...

  8. Designing heterostructures -- a route towards new superconductors

    Science.gov (United States)

    Kopp, Thilo

    2013-03-01

    By now it has become technologically feasible to grow controllably transition metal oxides layer by layer. In effect, the achieved progress allows to design heterostructures with optimized electronic properties. The talk will specifically address scenarios for interface superconductivity and the possibility to raise the transition temperature of bulk superconductors by layer design. Heterostructures offer a complexity beyond that of bulk materials. The nature of the superconducting states formed in layered materials and at interfaces is a fascinating topic of recent research which will be in the focus of this presentation. This work was supported by the DFG (TRR 80). I thankfully acknowledge the collaboration with Natalia Pavlenko, Peter Hirschfeld, Cyril Stephanos, Florian Loder, Arno Kampf, and Jochen Mannhart.

  9. Fermi Surface of the Most Dilute Superconductor

    Science.gov (United States)

    Lin, Xiao; Zhu, Zengwei; Fauqué, Benoît; Behnia, Kamran

    2013-04-01

    The origin of superconductivity in bulk SrTiO3 is a mystery since the nonmonotonous variation of the critical transition with carrier concentration defies the expectations of the crudest version of the BCS theory. Here, employing the Nernst effect, an extremely sensitive probe of tiny bulk Fermi surfaces, we show that, down to concentrations as low as 5.5×1017cm-3, the system has both a sharp Fermi surface and a superconducting ground state. The most dilute superconductor currently known therefore has a metallic normal state with a Fermi energy as little as 1.1 meV on top of a band gap as large as 3 eV. The occurrence of a superconducting instability in an extremely small, single-component, and barely anisotropic Fermi surface implies strong constraints for the identification of the pairing mechanism.

  10. Glass formability of high T(sub c) Bi-Sr-Ca-Cu-O superconductors

    Science.gov (United States)

    Kaukler, William F.

    1992-01-01

    A number of compositions of ceramic oxide high T(sub c) superconductors were evaluated for their glass formation ability by means of rapid thermal analysis during quenching, optical and electron microscopy of the quenched samples, and with subsequent DSC measurements. Correlations between experimental measurements and the methodical composition changes identified the formulations of superconductors that can easily form glass. The superconducting material was first formed as a glass, then with subsequent devitrification it was formed into bulk crystalline superconductor by a series of processing methods.

  11. Wetting, prewetting and surface transitions in type-I superconductors

    Science.gov (United States)

    Indekeu, J. O.; van Leeuwen, J. M. J.

    1995-02-01

    Within the Ginzburg-Landau theory, which is quantitatively correct for classical superconductors, it is shown that a type-I superconductor can display an interface delocalization or “wetting” transition, in which a macroscopically thick superconducting layer intrudes from the surface into the bulk normal phase. The condition for this transition to occur is that the superconducting order parameter | ψ| 2 is enhanced at the surface. This corresponds to a negative surface extrapolation length b. The wetting transition takes place at bulk two-phase coexistence of normal and superconducting phases, at a temperature TD below the critical temperature Tc, and at magnetic field HD = Hc( TD). The field is applied parallel to the surface. Surprisingly, the order of the wetting transition is controlled by a bulk material constant, the Ginzburg-Landau parameter κ. This is very unusual, since in other systems (fluids, Ising magnets,…) the order of the wetting transition depends on surface parameters that are difficult to determine or control. For superconductors, first-order wetting is predicted for 0 ≤ κ wetting for 0.374 wetting, the prewetting extension is also found. Unlike in standard wetting problems, the prewetting line does not terminate at a critical point but changes from first to second order at a tricritical point. Twinning-plane superconductivity (TPS) is reinterpreted as a prewetting phenomenon. The possibility of critical wetting in superconductors is especially interesting because this phenomenon has largely eluded experimental verification in any system until now. Furthermore, superconductors provide a realization of wetting in systems with short-range (exponentially decaying) interactions. This is very different from the usual long-range (algebraically decaying) interactions, such as van der Waals forces, and has important consequences for the wetting characteristics.

  12. Three-dimensional Majorana fermions in chiral superconductors.

    Science.gov (United States)

    Kozii, Vladyslav; Venderbos, Jörn W F; Fu, Liang

    2016-12-01

    Using a systematic symmetry and topology analysis, we establish that three-dimensional chiral superconductors with strong spin-orbit coupling and odd-parity pairing generically host low-energy nodal quasiparticles that are spin-nondegenerate and realize Majorana fermions in three dimensions. By examining all types of chiral Cooper pairs with total angular momentum J formed by Bloch electrons with angular momentum j in crystals, we obtain a comprehensive classification of gapless Majorana quasiparticles in terms of energy-momentum relation and location on the Fermi surface. We show that the existence of bulk Majorana fermions in the vicinity of spin-selective point nodes is rooted in the nonunitary nature of chiral pairing in spin-orbit-coupled superconductors. We address experimental signatures of Majorana fermions and find that the nuclear magnetic resonance spin relaxation rate is significantly suppressed for nuclear spins polarized along the nodal direction as a consequence of the spin-selective Majorana nature of nodal quasiparticles. Furthermore, Majorana nodes in the bulk have nontrivial topology and imply the presence of Majorana bound states on the surface, which form arcs in momentum space. We conclude by proposing the heavy fermion superconductor PrOs4Sb12 and related materials as promising candidates for nonunitary chiral superconductors hosting three-dimensional Majorana fermions.

  13. Advanced nuclear materials development -Development of superconductor application technology-

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Kye Won; Lee, Heui Kyoon; Lee, Hoh Jin; Kim, Chan Joong; Jang, Kun Ik; Kim, Kee Baek; Kwon, Sun Chil; Park, Hae Woong; Yoo, Jae Keun; Kim, Jong Jin; Jang, Joong Chul; Yang, Suk Woo [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1995-07-01

    Fabrication of high Tc bulk superconductor and its application, fabrication of superconducting wire for electric power device and analysis for cryogenic system were carried out for developing superconductor application technologies for electric power system. High quality YBaCuO bulk superconductor was fabricated by controlling initial powder preparation process and prototype fly wheel energy storage device was designed basically. The superconducting levitation force measuring device was made to examine the property of prepared superconductor specimen. Systematic studies on the method of starting powder preparation, mechanical fabrication process, heat treatment condition and analysis of plastic deformation were carried out to increase the stability and reproducibility of superconducting wire. A starting powder with good reactivity and fine particle size was obtained by emulsion drying method. Ag/BSCCO tape with good cross sectional shape and Tc of 16,000 A/cm{sup 2} was fabricated by applying CIP packing procedure. Multifilamentary wire with the Jc of approx. 10000 A/cm{sup 2} was fabricated by rolling method using square billet as starting shape. The joining of the multifilament wire was done by etching and pressing process and showed 50% of joining efficiency. Analysis on the heat loss in cryostat for high Tc superconducting device was carried out for optimum design of the future cryogenic system. 126 figs, 14 tabs, 214 refs. (Author).

  14. Single Crystal Synthesis and STM Studies of High Temperature Superconductors

    Science.gov (United States)

    Barrientos, Alfonso

    1997-01-01

    This is a final report for the work initiated in September of 1994 under the grant NAG8-1085 - NASA/OMU, on the fabrication of bulk and single crystal synthesis, specific heat measuring and STM studies of high temperature superconductors. Efforts were made to fabricate bulk and single crystals of mercury based superconducting material. A systematic thermal analysis on the precursors for the corresponding oxides and carbonates were carried out to synthesized bulk samples. Bulk material was used as seed in an attempt to grow single crystals by a two-step self flux process. On the other hand bulk samples were characterized by x-ray diffraction, electrical resistivity and magnetic susceptibility, We studied the specific heat behavior in the range from 80 to 300 K. Some preliminary attempts were made to study the atomic morphology of our samples. As part of our efforts we built an ac susceptibility apparatus for measuring the transition temperature of our sintered samples.

  15. Ambient-pressure organic superconductor

    Science.gov (United States)

    Williams, Jack M.; Wang, Hsien-Hau; Beno, Mark A.

    1986-01-01

    A new class of organic superconductors having the formula (ET).sub.2 MX.sub.2 wherein ET represents bis(ethylenedithio)-tetrathiafulvalene, M is a metal such as Au, Ag, In, Tl, Rb, Pd and the like and X is a halide. The superconductor (ET).sub.2 AuI.sub.2 exhibits a transition temperature of 5 K which is high for organic superconductors.

  16. Introduction to Holographic Superconductor Models

    CERN Document Server

    Cai, Rong-Gen; Li, Li-Fang; Yang, Run-Qiu

    2015-01-01

    In the last years it has been shown that some properties of strongly coupled superconductors can be potentially described by classical general relativity living in one higher dimension, which is known as holographic superconductors. This paper gives a quick and introductory overview of some holographic superconductor models with s-wave, p-wave and d-wave orders in the literature from point of view of bottom-up, and summarizes some basic properties of these holographic models in various regimes. The competition and coexistence of these superconductivity orders are also studied in these superconductor models.

  17. Vortices and nanostructured superconductors

    CERN Document Server

    2017-01-01

    This book provides expert coverage of modern and novel aspects of the study of vortex matter, dynamics, and pinning in nanostructured and multi-component superconductors. Vortex matter in superconducting materials is a field of enormous beauty and intellectual challenge, which began with the theoretical prediction of vortices by A. Abrikosov (Nobel Laureate). Vortices, vortex dynamics, and pinning are key features in many of today’s human endeavors: from the huge superconducting accelerating magnets and detectors at the Large Hadron Collider at CERN, which opened new windows of knowledge on the universe, to the tiny superconducting transceivers using Rapid Single Flux Quanta, which have opened a revolutionary means of communication. In recent years, two new features have added to the intrinsic beauty and complexity of the subject: nanostructured/nanoengineered superconductors, and the discovery of a range of new materials showing multi-component (multi-gap) superconductivity. In this book, leading researche...

  18. Vortex cutting in superconductors

    Science.gov (United States)

    Glatz, A.; Vlasko-Vlasov, V. K.; Kwok, W. K.; Crabtree, G. W.

    2016-08-01

    Vortex cutting and reconnection is an intriguing and still-unsolved problem central to many areas of classical and quantum physics, including hydrodynamics, astrophysics, and superconductivity. Here, we describe a comprehensive investigation of the crossing of magnetic vortices in superconductors using time dependent Ginsburg-Landau modeling. Within a macroscopic volume, we simulate initial magnetization of an anisotropic high temperature superconductor followed by subsequent remagnetization with perpendicular magnetic fields, creating the crossing of the initial and newly generated vortices. The time resolved evolution of vortex lines as they approach each other, contort, locally conjoin, and detach, elucidates the fine details of the vortex-crossing scenario under practical situations with many interacting vortices in the presence of weak pinning. Our simulations also reveal left-handed helical vortex instabilities that accompany the remagnetization process and participate in the vortex crossing events.

  19. Producing Ceramic High Tc Superconductors for Strong Current Applications

    Institute of Scientific and Technical Information of China (English)

    Jian-Xun Jin; Yuan-Chang Guo; Xue-Kei Fu; Shi-Xue Dou

    2000-01-01

    @@ Strong current and large-scale application is the most important prospect of high Tc superconductors (HTS).Practical HTS samples, both in forms of wire and bulk, have been produced with high critical currents operated at economic cryogenic temperatures, and studied for engineering applications with various prototype devices. The applicable HTS materials produced are introduced in this paper with regard to processing, characterization and application.

  20. Conceptual design of a novel insertion device using bulk superconducting magnet

    Science.gov (United States)

    Kii, T.; Kinjo, R.; Bakr, M. A.; Choi, Y. W.; Yoshida, K.; Ueda, S.; Takasaki, M.; Ishida, K.; Kimura, N.; Sonobe, T.; Masuda, K.; Ohgaki, H.

    2011-11-01

    An undulator or a wiggler with a strong magnetic field will play an important role in future synchrotron light sources, free electron lasers, and linear colliders. We proposed the bulk high critical temperature superconductor staggered array undulator (Bulk HTSC SAU) in order to generate a strong periodic field. The Bulk HTSC SAU consists of stacked bulk high-Tc superconductors (HTSs) and a solenoid magnet which is used to magnetize the bulk HTSs. A periodic magnetic field was produced and controlled using a prototype of the Bulk HTSC SAU using 11 pairs of REBaCuO bulk HTSs at 77 K. The expected performance at low temperatures around 20 K is calculated using a loop current model.

  1. Processing of Superconductor-Normal-Superconductor Josephson Edge Junctions

    Science.gov (United States)

    Kleinsasser, A. W.; Barner, J. B.

    1997-01-01

    The electrical behavior of epitaxial superconductor-normal-superconductor (SNS) Josephson edge junctions is strongly affected by processing conditions. Ex-situ processes, utilizing photoresist and polyimide/photoresist mask layers, are employed for ion milling edges for junctions with Yttrium-Barium-Copper-Oxide (YBCO) electrodes and primarily Co-doped YBCO interlayers.

  2. Vortices in superconducting bulk, films and SQUIDs

    Indian Academy of Sciences (India)

    Ernst Helmut Brandt

    2006-01-01

    The properties of the ideal periodic vortex lattice in bulk superconductors and in films of any thickness can be calculated from Ginzburg-Landau theory by an iteration method using Fourier series. The London theory yields general analytic expressions for the magnetic field and energy of arbitrary arrangements of straight or curved vortex lines. The elasticity of the vortex lattice is highly nonlocal. The magnetic response of superconductors of realistic shapes like thin and thick strips and disks or thin rectangular plates or films, containing pinned vortices, can be computed within continuum theory by solving an integral equation. A useful example is a thin square with a central hole and a radial slit, used as superconducting quantum interference device (SQUID).

  3. Testability issues in Superconductor Electronics

    NARCIS (Netherlands)

    Kerkhoff, Hans G.; Arun, A.J.

    2004-01-01

    An emerging technology for solutions in high-end applications in computing and telecommunication is superconductor electronics. A system-level study has been carried out to verify the feasibility of DfT in superconductor electronics. In this paper, we present how this can be realized to monitor

  4. Superconducting RF materials other than bulk niobium: a review

    Science.gov (United States)

    Valente-Feliciano, Anne-Marie

    2016-11-01

    For the past five decades, bulk niobium (Nb) has been the material of choice for superconducting RF (SRF) cavity applications. Alternatives such as Nb thin films and other higher-T c materials, mainly Nb compounds and A15 compounds, have been investigated with moderate effort in the past. In recent years, RF cavity performance has approached the theoretical limit for bulk Nb. For further improvement of RF cavity performance for future accelerator projects, research interest is renewed towards alternatives to bulk Nb. Institutions around the world are now investing renewed efforts in the investigation of Nb thin films and superconductors with higher transition temperature T c for application to SRF cavities. This paper gives an overview of the results obtained so far and challenges encountered for Nb films as well as other materials, such as Nb compounds, A15 compounds, MgB2, and oxypnictides, for SRF cavity applications. An interesting alternative using a superconductor-insulator-superconductor multilayer approach has been recently proposed to delay the vortex penetration in Nb surfaces. This could potentially lead to further improvement in RF cavities performance using the benefit of the higher critical field H c of higher-T c superconductors without being limited with their lower H c1.

  5. Coupling spin qubits via superconductors

    DEFF Research Database (Denmark)

    Leijnse, Martin; Flensberg, Karsten

    2013-01-01

    We show how superconductors can be used to couple, initialize, and read out spatially separated spin qubits. When two single-electron quantum dots are tunnel coupled to the same superconductor, the singlet component of the two-electron state partially leaks into the superconductor via crossed...... Andreev reflection. This induces a gate-controlled singlet-triplet splitting which, with an appropriate superconductor geometry, remains large for dot separations within the superconducting coherence length. Furthermore, we show that when two double-dot singlet-triplet qubits are tunnel coupled...... to a superconductor with finite charging energy, crossed Andreev reflection enables a strong two-qubit coupling over distances much larger than the coherence length....

  6. The effect of additional permanent magnet magnetizing methods on magnetic field distribution and the levitation force of single domain GdBCO bulk superconductor%辅助永磁体磁化方式对单畴GdBCO超导块材捕获磁场分布及其磁悬浮力的影响

    Institute of Scientific and Technical Information of China (English)

    马俊; 杨万民; 王妙; 陈森林; 冯忠岭

    2013-01-01

    It has been investigated that the interaction force between a cubic permanent magnet PM1 and a GdBCO bulk (HTSC) super-conducting permanent magnet (SCPM) magnetized by a cubic permanent magnet PM2 under different configurations at 77 K. Two configurations were used for the magnetization of the GdBCO bulk, one is that the North pole of the PM2 is in upward direction, the other is in downward direction, so that the North pole of the SCPM is in two states SCPM↑and SCPM↓;the vertical distance between the bottom surface of PM1 and the top surface of SCPM is kept as a constant value, but the PM2 can be fixed at any positions (x) along a diameter of the GdBCO bulk during the magnetization process. It is found that:for the PM1↓-SCPM↑configuration, the maximum levitation force is increasing from 16.7 N to 23.1 N when x increases from−15 mm to 0, and then decreases to 16.6 N when x further increases to 15 mm;but for the PM1↓-SCPM↓configuration, the maximum levitation force is decreasing from 17.7 N to 7 N when x increases from−15 mm to 0, and then increases to 17.6 N when x further increases to 15 mm. These results are not only much different in the two configurations, but also much different from the maximum levitation force 17.1 N of the sample under zero field cooled condition, which is closely related with the trapped field distribution of the SCPM at different x values. These results indicate that the levitation force of high temperature bulk superconductors can be effectively improved by introducing additional permanent magnet based on scientific and reasonable designing of the system configurations, which is very important during the practical design and applications of superconducting magnetic levitation systems.%通过对方形永磁体和方形辅助永磁体在液氮温度下对GdBCO超导体磁化后超导磁悬浮力的测量,研究了两种组态中方形辅助永磁体对超导体的磁化方式对单畴GdBCO超导块材

  7. Iron pnictide superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Tegel, Marcus Christian

    2011-03-22

    The scope of this dissertation therefore has not only been the synthesis of various new superconducting and non-superconducting iron pnictides of several structural families but also their in-depth crystallographic and physical characterisation. In Chapters 3 - 6, the family of the ZrCuSiAs-type (1111) compounds is subject of discussion. The solid solution series La(Co{sub x}Fe{sub 1-x})PO is analysed regarding magnetic and superconducting properties and the new compounds EuMnPF and REZnPO, as well as the new superconductor parent compound SrFeAsF are presented. Chapters 7 - 9 are dedicated to the new iron arsenide superconductors of the ThCr{sub 2}Si{sub 2}-type (122 family). Therein, also the discovery of the first superconductor in this structural family, Ba{sub 0.6}K{sub 0.4}Fe{sub 2}As{sub 2}, is unveiled. A detailed examination of the complete solid solution series (Ba{sub 1-x}K{sub x})Fe{sub 2}As{sub 2} is presented. Moreover, the crystallographic phase transitions of the closely related compounds SrFe{sub 2}As{sub 2} and EuFe{sub 2}As{sub 2} are characterised and the superconductors Sr{sub 1-x}K{sub x}Fe{sub 2}As{sub 2} and Ca{sub 1-x}Na{sub x}Fe{sub 2}As{sub 2} are examined for magnetic and phononic excitations. In Chapter 10, the redetermined crystal structure of the superconductor Fe(Se{sub 1-x}Te{sub x}) (11-type) is presented from a chemist's point of view. Chapters 11 - 14 look into the superconducting and non-superconducting iron arsenides of more complex structural families (32522-type and 21311-type). Therein, crystallographic and magnetic details of Sr{sub 3}Sc{sub 2}O{sub 5}Fe{sub 2}As{sub 2} are presented and Ba{sub 2}ScO{sub 3}FeAs and Sr{sub 2}CrO{sub 3}FeAs, the first two members of the new 21311-type are portrayed. Sr{sub 2}CrO{sub 3}FeAs is looked at in close detail with various methods, so e.g. the spin structure of the magnetically ordered compound is solved and a possible reason for the absence of superconductivity in this compound

  8. High temperature superconductors

    CERN Document Server

    Paranthaman, Parans

    2010-01-01

    This essential reference provides the most comprehensive presentation of the state of the art in the field of high temperature superconductors. This growing field of research and applications is currently being supported by numerous governmental and industrial initiatives in the United States, Asia and Europe to overcome grid energy distribution issues. The technology is particularly intended for densely populated areas. It is now being commercialized for power-delivery devices, such as power transmission lines and cables, motors and generators. Applications in electric utilities include current limiters, long transmission lines and energy-storage devices that will help industries avoid dips in electric power.

  9. Antenna applications of superconductors

    Science.gov (United States)

    Hansen, R. C.

    1991-09-01

    The applicability of superconductors to antennas is examined. Potential implementations that are examined are superdirective arrays; electrically small antennas; tuning and matching of these two; high-gain millimeter-wavelength arrays; and kinetic inductance slow wave structures for array phasers and traveling wave array feeds. It is thought that superdirective arrays and small antennas will not benefit directly, but their tuning/matching networks will undergo major improvements. Miniaturization of antennas will not be aided, but much higher gain millimeter-wave arrays will be realizable. Kinetic inductance slow-wave lines appear advantageous for improved array phasers and time delay, as well as for traveling-wave array feeds.

  10. Surface superconductivity of dirty two-band superconductors: applications to MgB2.

    Science.gov (United States)

    Gorokhov, Denis A

    2005-02-25

    The minimal magnetic field H(c2) destroying superconductivity in the bulk of a superconductor is smaller than the magnetic field H(c3) needed to destroy surface superconductivity if the surface of a superconductor coincides with one of the crystallographic planes and is parallel to the external magnetic field. While for a dirty single-band superconductor the ratio of H(c3) to H(c2) is a universal temperature-independent constant 1.6946, for dirty two-band superconductors this is not the case. I show that in the latter case the interaction of the two bands leads to a novel scenario with the ratio H(c3)/H(c2) varying with temperature and taking values larger and smaller than 1.6946. The results are applied to MgB(2) and compared with recent experiments (A. Rydh, cond-mat/0307445).

  11. Flux pinning in superconductors

    CERN Document Server

    Matsushita, Teruo

    2014-01-01

    The book covers the flux pinning mechanisms and properties and the electromagnetic phenomena caused by the flux pinning common for metallic, high-Tc and MgB2 superconductors. The condensation energy interaction known for normal precipitates or grain boundaries and the kinetic energy interaction proposed for artificial Nb pins in Nb-Ti, etc., are introduced for the pinning mechanism. Summation theories to derive the critical current density are discussed in detail. Irreversible magnetization and AC loss caused by the flux pinning are also discussed. The loss originally stems from the ohmic dissipation of normal electrons in the normal core driven by the electric field induced by the flux motion. The readers will learn why the resultant loss is of hysteresis type in spite of such mechanism. The influence of the flux pinning on the vortex phase diagram in high Tc superconductors is discussed, and the dependencies of the irreversibility field are also described on other quantities such as anisotropy of supercondu...

  12. Flux Pinning in Superconductors

    CERN Document Server

    Matsushita, Teruo

    2007-01-01

    The book covers the flux pinning mechanisms and properties and the electromagnetic phenomena caused by the flux pinning common for metallic, high-Tc and MgB2 superconductors. The condensation energy interaction known for normal precipitates or grain boundaries and the kinetic energy interaction proposed for artificial Nb pins in Nb-Ti, etc., are introduced for the pinning mechanism. Summation theories to derive the critical current density are discussed in detail. Irreversible magnetization and AC loss caused by the flux pinning are also discussed. The loss originally stems from the ohmic dissipation of normal electrons in the normal core driven by the electric field induced by the flux motion. The readers will learn why the resultant loss is of hysteresis type in spite of such mechanism. The influence of the flux pinning on the vortex phase diagram in high Tc superconductors is discussed, and the dependencies of the irreversibility field are also described on other quantities such as anisotropy of supercondu...

  13. Hybrid superconductor magnet bearings

    Science.gov (United States)

    Chu, Wei-Kan

    1995-01-01

    Hybrid superconductor magnet bearings (HSMB's) utilize high temperature superconductors (HTS's) together with permanent magnets to form a frictionless interface between relatively rotating parts. They are low mass, stable, and do not incur expenditure of energy during normal operation. There is no direct physical contact between rotor and stator, and hence there is no wear and tear. However, just as any other applications of HTS's, it requires a very cold temperature to function. Whereas this might be perceived as a disadvantage on earth, it is of no great concern in space or on the moon. To astronomers, the moon is an excellent site for an observatory, but the cold and dusty vacuum environment on the moon precludes the use of mechanical bearings on the telescope mounts. Furthermore, drive mechanisms with very fine steps, and hence bearings with extremely low friction are needed to track a star from the moon, because the moon rotates very slowly. All aspects considered, the HSMB is about the only candidate that fits in naturally. Here, we present a design for one such bearing, capable of supporting a telescope that weighs about 3 lbs on Earth.

  14. Materials design for new superconductors.

    Science.gov (United States)

    Norman, M R

    2016-07-01

    Since the announcement in 2011 of the Materials Genome Initiative by the Obama administration, much attention has been given to the subject of materials design to accelerate the discovery of new materials that could have technological implications. Although having its biggest impact for more applied materials like batteries, there is increasing interest in applying these ideas to predict new superconductors. This is obviously a challenge, given that superconductivity is a many body phenomenon, with whole classes of known superconductors lacking a quantitative theory. Given this caveat, various efforts to formulate materials design principles for superconductors are reviewed here, with a focus on surveying the periodic table in an attempt to identify cuprate analogues.

  15. Spin manipulation in nanoscale superconductors.

    Science.gov (United States)

    Beckmann, D

    2016-04-27

    The interplay of superconductivity and magnetism in nanoscale structures has attracted considerable attention in recent years due to the exciting new physics created by the competition of these antagonistic ordering phenomena, and the prospect of exploiting this competition for superconducting spintronics devices. While much of the attention is focused on spin-polarized supercurrents created by the triplet proximity effect, the recent discovery of long range quasiparticle spin transport in high-field superconductors has rekindled interest in spin-dependent nonequilibrium properties of superconductors. In this review, the experimental situation on nonequilibrium spin injection into superconductors is discussed, and open questions and possible future directions of the field are outlined.

  16. Materials design for new superconductors

    Science.gov (United States)

    Norman, M. R.

    2016-07-01

    Since the announcement in 2011 of the Materials Genome Initiative by the Obama administration, much attention has been given to the subject of materials design to accelerate the discovery of new materials that could have technological implications. Although having its biggest impact for more applied materials like batteries, there is increasing interest in applying these ideas to predict new superconductors. This is obviously a challenge, given that superconductivity is a many body phenomenon, with whole classes of known superconductors lacking a quantitative theory. Given this caveat, various efforts to formulate materials design principles for superconductors are reviewed here, with a focus on surveying the periodic table in an attempt to identify cuprate analogues.

  17. Topological Superconductivity on the Surface of Fe-Based Superconductors.

    Science.gov (United States)

    Xu, Gang; Lian, Biao; Tang, Peizhe; Qi, Xiao-Liang; Zhang, Shou-Cheng

    2016-07-22

    As one of the simplest systems for realizing Majorana fermions, the topological superconductor plays an important role in both condensed matter physics and quantum computations. Based on ab initio calculations and the analysis of an effective 8-band model with superconducting pairing, we demonstrate that the three-dimensional extended s-wave Fe-based superconductors such as Fe_{1+y}Se_{0.5}Te_{0.5} have a metallic topologically nontrivial band structure, and exhibit a normal-topological-normal superconductivity phase transition on the (001) surface by tuning the bulk carrier doping level. In the topological superconductivity (TSC) phase, a Majorana zero mode is trapped at the end of a magnetic vortex line. We further show that the surface TSC phase only exists up to a certain bulk pairing gap, and there is a normal-topological phase transition driven by the temperature, which has not been discussed before. These results pave an effective way to realize the TSC and Majorana fermions in a large class of superconductors.

  18. Manufacturing a Superconductor in School.

    Science.gov (United States)

    Barrow, John

    1989-01-01

    Described is the manufacture of a superconductor from a commercially available kit using equipment usually available in schools or easily obtainable. The construction is described in detail including equipment, materials, safety procedures, tolerances, and manufacture. (Author/CW)

  19. Small angle neutron diffraction studies of vortex structures in high temperature superconductors

    DEFF Research Database (Denmark)

    Cubitt, R.; Forgan, E.M.; Wylie, M.T.

    1994-01-01

    We have used neutron scattering to provide direct information about flux structures in the bulk of crystals of the superconductor Bi2Sr2CaCu2O8. Its extremely high effective mass anisotropy, makes the flux lattice susceptable to melting and also to decomposition into 'pancake' vortices, which would...

  20. Superconductor stripes move on

    Energy Technology Data Exchange (ETDEWEB)

    Tranquada, J. [Physics Department, Brookhaven National Laboratory, Upton, NY (United States)

    1999-11-01

    Differences in fundamental assumptions are behind much of the controversy among theorists over the cause of high-temperature superconductivity the absence of resistance to electrical current at temperatures as high as 130 K in layered copper-oxide compounds. One common assumption is that the charge carriers are distributed uniformly throughout the all-important CuO{sub 2} layers. However, there is growing experimental evidence that this is not the case and that 'stripes' of charge form in these puzzling materials. Now a significant step forward in the struggle to understand the behaviour of charge carriers in high-temperature superconductors has been made at the Oak Ridge National Laboratory in the US. (UK)

  1. Manufacturing of Superconductors

    DEFF Research Database (Denmark)

    Bech, Jakob Ilsted; Bay, Niels

    Superconducting tapes based on the ceramic high temperature superconductor (HTS) is a new promising product for high current applications such as electro-magnets and current transmission cables. The tapes are made by the oxide powder in tube (OPIT) method implying drawing and rolling of silver...... on the mechanical and thermal processes applied. One of the most crucial processes is probably the flat rolling process, where the round or square wire is rolled to form a thin tape (about 3 mm x 0.2 mm), while the density of the powder fibres increase and the fibres obtain their final geometry. For instance...... rolling a tape to a thickness of 250 µm may give a very high Je, whereas further reduction to 200 µm may be fatal. In the present work the flat rolling process is analysed systematically from a mechanical forming point of view. This work implies · Mechanical characterisation of the plastic parameters...

  2. Heterostructures of Bi-4334 and MgB2 superconductors

    Science.gov (United States)

    Padmavathi, M.; Singh, R.

    2016-05-01

    We report the studies on hetero structures of Bi-4334 and MgB2 superconductors. The two superconductors were arranged in the form of bulk multilayers using hydraulic pressure system. X-ray diffraction pattern and dc magnetization studies confirm the presence of both superconducting phases in this try-layer hetero structured sample. The d.c magnetization shows the superconducting onset at 77K and 39K for Bi-4334 and MgB2 phases respectively. Critical current density (Jc) is calculated from hysteresis loop of the sample in both in-plane field and out of plane field configurations. Inverted anisotropy in Jc is observed due to enhancement of ab-plane properties because of multilayer growth process. Morphology of the samples at surface and interface of two superconducting layers is discussed in view of Field emission scanning electron microscopy.

  3. Phenomenological Models of Holographic Superconductors and Hall currents

    CERN Document Server

    Aprile, Francesco; Rodriguez-Gomez, Diego; Russo, Jorge G

    2010-01-01

    We study general models of holographic superconductivity parametrized by four arbitrary functions of a neutral scalar field of the bulk theory. The models can accommodate several features of real superconductors, like arbitrary critical temperatures and critical exponents in a certain range, and perhaps impurities, boundary or thickness effects. We find analytical expressions for the critical exponents of the general model and show that they satisfy the Rushbrooke identity. An important subclass of models exhibits second order phase transitions. A study of the specific heat shows that general models can also describe holographic superconductors undergoing first, second and third (or higher) order phase transitions. We discuss how small deformations of the HHH model lead to the appearance of resonance peaks in the conductivity, which become narrower as the temperature is gradually decreased, without the need for tuning mass of the scalar to be close to the Breitenlohner-Freedman bound. Finally, we investigate ...

  4. Nanoengineering of Flux Pinning Sites in High-Tc Superconductors

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Volume pinning forces were determined for a variety of bulk high-Tcsuperconductors of the 123-type from magnetization measurements. By means of scaling of the pinning forces, the acting pinning mechanisms in various temperature ranges were identified. The Nd-based superconductors and some YBCO crystalsexhibited a dominating pinning of the δTc-type (i.e., small, superconducting pinning sites). In contrast to this, the addition of insulating 211 particles provided pinning of the δl-type; providing effective pinning in the entire temperature range acting as a "background" pinning mechanism for the peak effect. Due to the small coherence lengths of the high-Tc compounds, effective pinning sites are defects or particles of nanometer size relative to ξ3. Integral magnetic measurements of the magnetization as a function of temperature in large applied magnetic fields (up to 7 T) revealed that practically all high-Tc compounds were spatially inhomogeneous, which could be caused byoxygen deficiency (YBCO), solid solutions of Nd/Ba (NdBCO and other light rare earth compounds), intergrowths (Bi-based superconductors), and doping by pair-breaking dopants like Zn, Pr. This implies that the superconducting sample consists of stronger and weaker superconducting areas, coupled together. In large appliedfields, this coupling gets broken and the magnetization versus temperature curves revealed more than one superconducting transition. In contrast, irradiation experiments by neutrons, protons, and heavy-ions enabled the artificial introduction of very effective pinning sites into the high-Tc superconductors, thus creating a large variety of different observations using magnetic data. From all these observations, we construct a pinning diagram for bulk high-Tc superconductors explaining many features observed in high-Tc samples.

  5. Performance and applications of quench melt-growth bulk magnets

    Science.gov (United States)

    Nariki, S.; Teshima, H.; Morita, M.

    2016-03-01

    This paper describes the progress in quench melt-growth (QMG) bulk magnets, developed by the Nippon Steel & Sumitomo Metal Corporation, which consist of single crystalline RE123 phase and finely dispersed RE211 particles. QMG bulks can trap high magnetic fields. The field-trapping ability of QMG bulks is largely increased with an improvement in its J c and size, promising the realization of various applications such as flywheel energy-storage systems, ship motors, NMR/MRI spectrometers, wind-power generators and so on. Intensive research has revealed that the optimal RE element is different depending on application requirements. Gd-QMG bulk is the most promising material for several high-field engineering applications. The trapped magnetic field of Gd-QMG bulk 60 mm in diameter at 77 K is twice as large as that of Y-QMG bulk with a similar size due to its excellent J c properties. The large Gd-based QMG bulks up to 150 mm in diameter are fabricated by incorporating the RE compositional gradient method. Compact NMR/MRI spectrometers are one of the promising applications of bulk superconductors. Eu-QMG bulks are suitable for NMR magnets. NMR applications require extremely homogeneous magnetic fields. In the Eu-system, the small paramagnetic moment of a Eu ion compared to a Gd ion improves the field homogeneity in the bulk. For the application of current leads, Dy-based QMG is available by utilizing a low thermal conductivity.

  6. Process for fabricating continuous lengths of superconductor

    Science.gov (United States)

    Kroeger, Donald M.; List, III, Frederick A.

    1998-01-01

    A process for manufacturing a superconductor. The process is accomplished by depositing a superconductor precursor powder on a continuous length of a first substrate ribbon, overlaying a continuous length of a second substrate ribbon on said first substrate ribbon, and applying sufficient pressure to form a bound layered superconductor precursor between said first substrate ribbon and said second substrates ribbon. The layered superconductor precursor is then heat treated to form a super conductor layer.

  7. Ferromagnet / superconductor oxide superlattices

    Science.gov (United States)

    Santamaria, Jacobo

    2006-03-01

    The growth of heterostructures combining oxide materials is a new strategy to design novel artificial multifunctional materials with interesting behaviors ruled by the interface. With the (re)discovery of colossal magnetoresistance (CMR) materials, there has been renewed interest in heterostructures involving oxide superconductors and CMR ferromagnets where ferromagnetism (F) and superconductivity (S) compete within nanometric distances from the interface. In F/S/F structures involving oxides, interfaces are especially complex and various factors like interface disorder and roughness, epitaxial strain, polarity mismatch etc., are responsible for depressed magnetic and superconducting properties at the interface over nanometer length scales. In this talk I will focus in F/S/F structures made of YBa2Cu3O7 (YBCO) and La0.7Ca0.3MnO3 (LCMO). The high degree of spin polarization of the LCMO conduction band, together with the d-wave superconductivity of the YBCO make this F/S system an adequate candidate for the search of novel spin dependent effects in transport. We show that superconductivity at the interface is depressed by various factors like charge transfer, spin injection or ferromagnetic superconducting proximity effect. I will present experiments to examine the characteristic distances of the various mechanisms of superconductivity depression. In particular, I will discuss that the critical temperature of the superconductor depends on the relative orientation of the magnetization of the F layers, giving rise to a new giant magnetoresistance effect which might be of interest for spintronic applications. Work done in collaboration with V. Peña^1, Z. Sefrioui^1, J. Garcia-Barriocanal^1, C. Visani^1, D. Arias^1, C. Leon^1 , N. Nemes^2, M. Garcia Hernandez^2, S. G. E. te Velthuis^3, A. Hoffmann^3, M. Varela^4, S. J. Pennycook^4. Work supported by MCYT MAT 2005-06024, CAM GR- MAT-0771/2004, UCM PR3/04-12399 Work at Argonne supported by the Department of Energy, Basic

  8. Gravitoelectromagnetism and Dark Energy in Superconductors

    CERN Document Server

    De Matos, C J

    2006-01-01

    A gravitomagnetic analogue of the London moment in superconductors can explain the anomalous Cooper pair mass excess reported by Janet Tate. Ultimately the gravitomagnetic London moment is attributed to the breaking of the principle of general covariance in superconductors. This naturally implies non-conservation of classical energy-momentum. Possible relation with the manifestation of dark energy in superconductors is questioned.

  9. Multistrand superconductor cable

    Science.gov (United States)

    Borden, Albert R.

    1985-01-01

    Improved multistrand Rutherford-type superconductor cable is produced by using strands which are preformed, prior to being wound into the cable, so that each strand has a variable cross section, with successive portions having a substantially round cross section, a transitional oval cross section, a rectangular cross section, a transitional oval cross section, a round cross section and so forth, in repetitive cycles along the length of the strand. The cable is wound and flattened so that the portions of rectangular cross section extend across the two flat sides of the cable at the strand angle. The portions of round cross section are bent at the edges of the flattened cable, so as to extend between the two flat sides. The rectangular portions of the strands slide easily over one another, so as to facilitate flexing and bending of the cable, while also minimizing the possibility of causing damage to the strands by such flexing or bending. Moreover, the improved cable substantially maintains its compactness and cross-sectional shape when the cable is flexed or bent.

  10. Terahertz Detection with Twin Superconductor-Insulator-Superconductor Tunnel Junctions

    Institute of Scientific and Technical Information of China (English)

    LI Jing; WANG Ming-Jye; SHI Sheng-Cai; Hiroshi Mat-suo

    2007-01-01

    Terahertz detection with twin superconductor-insulator-superconductor (SIS) tunnel junctions, which are connected in parallel via an inductive thin-film superconducting microstrip line, is mainly studied. Firstly, we investigate the direct-detection response of a superconducting twin-junction device by means of a Fourier transform spectrometer. Secondly, we construct a direct-detection model of twin SIS tunnel junctions. The superconducting twin-junction device is then simulated in terms of the constructed model. The simulation result is found to be in good agreement with the measured one. In addition, we observe that the direct-detection response of the device is consistent with the noise temperature behaviour.

  11. Low-temperature rapid synthesis and superconductivity of Fe-based oxypnictide superconductors.

    Science.gov (United States)

    Fang, Ai-Hua; Huang, Fu-Qiang; Xie, Xiao-Ming; Jiang, Mian-Heng

    2010-03-17

    Fe-based oxypnictide superconductors were successfully synthesized at lower reaction temperatures and with shorter reaction times made possible by starting with less stable compounds, which provide a larger driving force for reactions. Using ball-milled powders of intermediate compounds, phase-pure superconductors with T(c) above 50 K were synthesized at 1173 K in 20 min. This method is particularly advantageous for retaining F, a volatile dopant that enhances superconductivity. Bulk superconductivity and high upper critical fields up to 392 T in Sm(0.85)Nd(0.15)FeAsO(0.85)F(0.15) were demonstrated.

  12. Topological insulators and topological superconductors

    CERN Document Server

    Bernevig, Andrei B

    2013-01-01

    This graduate-level textbook is the first pedagogical synthesis of the field of topological insulators and superconductors, one of the most exciting areas of research in condensed matter physics. Presenting the latest developments, while providing all the calculations necessary for a self-contained and complete description of the discipline, it is ideal for graduate students and researchers preparing to work in this area, and it will be an essential reference both within and outside the classroom. The book begins with simple concepts such as Berry phases, Dirac fermions, Hall conductance and its link to topology, and the Hofstadter problem of lattice electrons in a magnetic field. It moves on to explain topological phases of matter such as Chern insulators, two- and three-dimensional topological insulators, and Majorana p-wave wires. Additionally, the book covers zero modes on vortices in topological superconductors, time-reversal topological superconductors, and topological responses/field theory and topolo...

  13. Thin film superconductor magnetic bearings

    Science.gov (United States)

    Weinberger, Bernard R.

    1995-12-26

    A superconductor magnetic bearing includes a shaft (10) that is subject to a load (L) and rotatable around an axis of rotation, a magnet (12) mounted to the shaft, and a stator (14) in proximity to the shaft. The stator (14) has a superconductor thin film assembly (16) positioned to interact with the magnet (12) to produce a levitation force on the shaft (10) that supports the load (L). The thin film assembly (16) includes at least two superconductor thin films (18) and at least one substrate (20). Each thin film (18) is positioned on a substrate (20) and all the thin films are positioned such that an applied magnetic field from the magnet (12) passes through all the thin films. A similar bearing in which the thin film assembly (16) is mounted on the shaft (10) and the magnet (12) is part of the stator (14) also can be constructed.

  14. Modified Entropic Gravitation in Superconductors

    CERN Document Server

    de Matos, Clovis Jacinto

    2011-01-01

    Verlinde recently developed a theoretical account of gravitation in terms of an entropic force. The central element in Verlinde's derivation is information and its relation with entropy through the holographic principle. The application of this approach to the case of superconductors requires to take into account that information associated with superconductor's quantum vacuum energy is not stored on Planck size surface elements, but in four volume cells with Planck-Einstein size. This has profound consequences on the type of gravitational force generated by the quantum vacuum condensate in superconductors, which is closely related with the cosmological repulsive acceleration responsible for the accelerated expansion of the Universe. Remarkably this new gravitational type force depends on the level of breaking of the weak equivalence principle for cooper pairs in a given superconducting material, which was previously derived by the author starting from similar principles. It is also shown that this new gravit...

  15. Superconductor stability, 1983: a review

    Energy Technology Data Exchange (ETDEWEB)

    Dresner, L.

    1983-01-01

    Three main topics have been discussed in this paper, namely, internally cooled superconductors, cooling by superfluid helium, and metastable magnets. The discussion of each has centered around a dominant idea, and it is fitting to highlight these ideas by way of conclusion. With regard to internally cooled superconductors, most of what we have learned in the last few years centers on the strong motion caused by the thermal expansion of helium. How naive were our early calculations that treated the helium as though it were incompressible. Our discussion of He-II was organized around the Gorter-Mellink relation and the solutions of the nonlinear diffusion equation it gives rise to. And our discussion of metastable magnets revolved around the fruitful concept of the MPZ. These three ideas are sturdy trunks that support much of the thought about superconductor stability that has flowered in the past several years.

  16. Technical issues of a high-T{sub c} superconducting bulk magnet

    Energy Technology Data Exchange (ETDEWEB)

    Fujimoto, Hiroyuki [Railway Technical Research Institute, 2-8-38 Hikari-cho, Kokubunji-shi, Tokyo 185-8540 (Japan). E-mail: fujimoto at rtri.or.jp

    2000-06-01

    Superconducting magnets made of high-T{sub c} superconductors are promising for industrial applications. It is well known that REBa{sub 2}Cu{sub 3}O{sub 7-}x superconductors prepared by melt processes have a high critical current density, J{sub c}, at 77 K and hig{sub h} magnetic fields. The materials are very promising for high magnetic field applications as a superconducting permanent/bulk magnet with liquid-nitrogen refrigeration. Light rare-earth (LRE) BaCuO bulks, compared with REBaCuO bulks, exhibit a larger J{sub c} in high magnetic fields and a much improved irreversibility field, H{sub irr}, at 77 K. In this study, we discuss technical issues of a high-T{sub c} superconducting bulk magnet, namely the aspects of the melt processing for bulk superconductors, their characteristic superconducting properties and mechanical properties, and trapped field properties of a superconducting bulk magnet. One of the possible applications is a superconducting bulk magnet for the magnetically levitated (Maglev) train in the future. (author)

  17. Apparatus for fabricating continuous lengths of superconductor

    Science.gov (United States)

    Kroeger, Donald M.; List, III, Frederick A.

    2002-01-01

    A process and apparatus for manufacturing a superconductor. The process is accomplished by depositing a superconductor precursor powder on a continuous length of a first substrate ribbon, overlaying a continuous length of a second substrate ribbon on said first substrate ribbon, and applying sufficient pressure to form a bound layered superconductor comprising a layer of said superconducting precursor powder between said first substrate ribbon and said second substrates ribbon. The layered superconductor is then heat treated to establish the superconducting phase of said superconductor precursor powder.

  18. High temperature superconductor current leads

    Energy Technology Data Exchange (ETDEWEB)

    Hull, John R. (Hinsdale, IL); Poeppel, Roger B. (Glen Ellyn, IL)

    1995-01-01

    An electrical lead having one end for connection to an apparatus in a cryogenic environment and the other end for connection to an apparatus outside the cryogenic environment. The electrical lead includes a high temperature superconductor wire and an electrically conductive material distributed therein, where the conductive material is present at the one end of the lead at a concentration in the range of from 0 to about 3% by volume, and at the other end of the lead at a concentration of less than about 20% by volume. Various embodiments are shown for groups of high temperature superconductor wires and sheaths.

  19. Terahertz Spectroscopy of Novel Superconductors

    Directory of Open Access Journals (Sweden)

    Stefano Lupi

    2011-01-01

    Full Text Available Through the coupling of Synchrotron Radiation and Michelson interferometry, one may obtain in the terahertz (THz range transmittance and reflectivity spectra with a signal-to-noise ratio (S/N up to 103. In this paper we review the application of this spectroscopic technique to novel superconductors with an increasing degree of complexity: the single-gap boron-doped diamond; the isotropic multiband V3Si, where superconductivity opens two gaps at the Fermi energy; the CaAlSi superconductor, isostructural to MgB2, with a single gap in the hexagonal ab plane and two gaps along the orthogonal c axis.

  20. Topological Aspects of Triplet Superconductors

    Institute of Scientific and Technical Information of China (English)

    REN Ji-Rong; XU Dong-Hui; ZHANG Xin-Hui; LI Ran

    2007-01-01

    In this paper, using the φ-mapping theory, it is shown that two kinds of topological defects, i.e., the vortex lines and the monopoles exist in the helical configuration of magnetic field in triplet superconductors. And the inner topological structure of these defects is studied. Because the knot solitons in the triplet superconductors are characterized by the Hopf invariant, we also establish a relationship between the Hopf invariant and the linking number of knots family,and reveal the inner topological structure of the Hopf invariant.

  1. Holographic superconductors without translational symmetry

    CERN Document Server

    Zeng, Hua Bi

    2014-01-01

    A holographic superconductor is constructed in the background of a massive gravity theory. In the normal state without condensation, the conductivity exhibits a Drude peak that approaches a delta function in the massless gravity limit as studied by David Vegh. In the superconducting state, besides the infinite DC conductivity, the AC conductivity has Drude behavior at low frequency followed by a power law-fall. These results are in agreement with that found earlier by Horowitz and Santos, who studied a holographic superconductor with an implicit periodic potential beyond the probe limit. The results also agree with measurements on some cuprates.

  2. Superconductors in plasmonics and metamaterials: some experimental data

    Science.gov (United States)

    Gombos, M.; Romano, S.; Rendina, I.; Ciancio, R.; Carapella, G.; Mocella, V.

    2013-05-01

    High frequencies (visible and near infrared) applications of metamaterials and plasmonic structures are strongly limited by dissipative losses in structures, due to poor conductivity of most used metals in this frequency range. The use of high temperature superconductors (HTSC) is a possible approach to this problem, being HTSC plasmonic materials at nonzero temperature. Negative dielectic constant and variety of charge carriers (electrons or holes) are further very attractive features for plasmonic applications. Characterization of the high frequency response of these materials is then necessary in order to correctly understand the optical parameters of HTSC. We report on FTIR and ellipsometry measurements on NdBa2Cu3O7-δ (Nd123) and the ruthenocuprate superconductor GdSr2RuCu2O8-δ (Gd1212) in optical and near infrared regime. Among YBCO-like cuprate superconductors, Nd123 presents the highest Tc (96K), and the most interesting magnetic response properties. Even more interesting, in view of use for metamaterial, is Gd1212, whose main characteristic is the coexistence, in the same cell, of superconductivity and magnetic order below Tc: Ru ions intrinsic magnetic moments order themselves below 135K, whereas superconductivity onset is at about 40K, depending on fabrication details. We performed measurements on Melt-Textured bulk samples, which present the best superconducting properties. Results confirm the promising feature of the considered materials; further analyses, also on powders and films, are in progress.

  3. Nature of the superconductor-insulator transition in disordered superconductors.

    Science.gov (United States)

    Dubi, Yonatan; Meir, Yigal; Avishai, Yshai

    2007-10-18

    The interplay of superconductivity and disorder has intrigued scientists for several decades. Disorder is expected to enhance the electrical resistance of a system, whereas superconductivity is associated with a zero-resistance state. Although superconductivity has been predicted to persist even in the presence of disorder, experiments performed on thin films have demonstrated a transition from a superconducting to an insulating state with increasing disorder or magnetic field. The nature of this transition is still under debate, and the subject has become even more relevant with the realization that high-transition-temperature (high-T(c)) superconductors are intrinsically disordered. Here we present numerical simulations of the superconductor-insulator transition in two-dimensional disordered superconductors, starting from a microscopic description that includes thermal phase fluctuations. We demonstrate explicitly that disorder leads to the formation of islands where the superconducting order is high. For weak disorder, or high electron density, increasing the magnetic field results in the eventual vanishing of the amplitude of the superconducting order parameter, thereby forming an insulating state. On the other hand, at lower electron densities or higher disorder, increasing the magnetic field suppresses the correlations between the phases of the superconducting order parameter in different islands, giving rise to a different type of superconductor-insulator transition. One of the important predictions of this work is that in the regime of high disorder, there are still superconducting islands in the sample, even on the insulating side of the transition. This result, which is consistent with experiments, explains the recently observed huge magneto-resistance peak in disordered thin films and may be relevant to the observation of 'the pseudogap phenomenon' in underdoped high-T(c) superconductors.

  4. Block copolymer self-assembly-directed synthesis of mesoporous gyroidal superconductors.

    Science.gov (United States)

    Robbins, Spencer W; Beaucage, Peter A; Sai, Hiroaki; Tan, Kwan Wee; Werner, Jörg G; Sethna, James P; DiSalvo, Francis J; Gruner, Sol M; Van Dover, Robert B; Wiesner, Ulrich

    2016-01-01

    Superconductors with periodically ordered mesoporous structures are expected to have properties very different from those of their bulk counterparts. Systematic studies of such phenomena to date are sparse, however, because of a lack of versatile synthetic approaches to such materials. We demonstrate the formation of three-dimensionally continuous gyroidal mesoporous niobium nitride (NbN) superconductors from chiral ABC triblock terpolymer self-assembly-directed sol-gel-derived niobium oxide with subsequent thermal processing in air and ammonia gas. Superconducting materials exhibit a critical temperature (T c) of about 7 to 8 K, a flux exclusion of about 5% compared to a dense NbN solid, and an estimated critical current density (J c) of 440 A cm(-2) at 100 Oe and 2.5 K. We expect block copolymer self-assembly-directed mesoporous superconductors to provide interesting subjects for mesostructure-superconductivity correlation studies.

  5. Relaxation and pinning in spark-plasma sintered MgB2 superconductor

    Science.gov (United States)

    Jirsa, M.; Rames, M.; Koblischka, M. R.; Koblischka-Veneva, A.; Berger, K.; Douine, B.

    2016-02-01

    The model of thermally activated relaxation developed and successfully tested on high-T c superconductors (Jirsa et al 2004 Phys. Rev. B 70 0245251) was applied to magnetic data of a bulk spark-plasma sintered MgB2 sample to elucidate its magnetic relaxation behavior. MgB2 and the related borides form a superconductor class lying between classical and high-T c superconductors. In accord with this classification, the relaxation phenomena were found to be about ten times weaker than in cuprates. Vortex pinning analyzed in terms of the field dependence of the pinning force density indicates a combined pinning by normal point-like defects and by grain surfaces. An additional mode of pinning at rather high magnetic fields (of still unknown origin) was observed.

  6. Observation of Majorana fermions in ferromagnetic atomic chains on a superconductor

    Science.gov (United States)

    Nadj-Perge, Stevan; Drozdov, Ilya K.; Li, Jian; Chen, Hua; Jeon, Sangjun; Seo, Jungpil; MacDonald, Allan H.; Bernevig, B. Andrei; Yazdani, Ali

    2014-10-01

    Majorana fermions are predicted to localize at the edge of a topological superconductor, a state of matter that can form when a ferromagnetic system is placed in proximity to a conventional superconductor with strong spin-orbit interaction. With the goal of realizing a one-dimensional topological superconductor, we have fabricated ferromagnetic iron (Fe) atomic chains on the surface of superconducting lead (Pb). Using high-resolution spectroscopic imaging techniques, we show that the onset of superconductivity, which gaps the electronic density of states in the bulk of the Fe chains, is accompanied by the appearance of zero-energy end-states. This spatially resolved signature provides strong evidence, corroborated by other observations, for the formation of a topological phase and edge-bound Majorana fermions in our atomic chains.

  7. Topological matter. Observation of Majorana fermions in ferromagnetic atomic chains on a superconductor.

    Science.gov (United States)

    Nadj-Perge, Stevan; Drozdov, Ilya K; Li, Jian; Chen, Hua; Jeon, Sangjun; Seo, Jungpil; MacDonald, Allan H; Bernevig, B Andrei; Yazdani, Ali

    2014-10-31

    Majorana fermions are predicted to localize at the edge of a topological superconductor, a state of matter that can form when a ferromagnetic system is placed in proximity to a conventional superconductor with strong spin-orbit interaction. With the goal of realizing a one-dimensional topological superconductor, we have fabricated ferromagnetic iron (Fe) atomic chains on the surface of superconducting lead (Pb). Using high-resolution spectroscopic imaging techniques, we show that the onset of superconductivity, which gaps the electronic density of states in the bulk of the Fe chains, is accompanied by the appearance of zero-energy end-states. This spatially resolved signature provides strong evidence, corroborated by other observations, for the formation of a topological phase and edge-bound Majorana fermions in our atomic chains.

  8. Block copolymer self-assembly–directed synthesis of mesoporous gyroidal superconductors

    Science.gov (United States)

    Robbins, Spencer W.; Beaucage, Peter A.; Sai, Hiroaki; Tan, Kwan Wee; Werner, Jörg G.; Sethna, James P.; DiSalvo, Francis J.; Gruner, Sol M.; Van Dover, Robert B.; Wiesner, Ulrich

    2016-01-01

    Superconductors with periodically ordered mesoporous structures are expected to have properties very different from those of their bulk counterparts. Systematic studies of such phenomena to date are sparse, however, because of a lack of versatile synthetic approaches to such materials. We demonstrate the formation of three-dimensionally continuous gyroidal mesoporous niobium nitride (NbN) superconductors from chiral ABC triblock terpolymer self-assembly–directed sol-gel–derived niobium oxide with subsequent thermal processing in air and ammonia gas. Superconducting materials exhibit a critical temperature (Tc) of about 7 to 8 K, a flux exclusion of about 5% compared to a dense NbN solid, and an estimated critical current density (Jc) of 440 A cm−2 at 100 Oe and 2.5 K. We expect block copolymer self-assembly–directed mesoporous superconductors to provide interesting subjects for mesostructure-superconductivity correlation studies. PMID:27152327

  9. Chemistry of high temperature superconductors

    CERN Document Server

    1991-01-01

    This review volume contains the most up-to-date articles on the chemical aspects of high temperature oxide superconductors. These articles are written by some of the leading scientists in the field and includes a comprehensive list of references. This is an essential volume for researchers working in the fields of ceramics, materials science and chemistry.

  10. High Temperature Superconductor Machine Prototype

    DEFF Research Database (Denmark)

    Mijatovic, Nenad; Jensen, Bogi Bech; Træholt, Chresten

    2011-01-01

    A versatile testing platform for a High Temperature Superconductor (HTS) machine has been constructed. The stationary HTS field winding can carry up to 10 coils and it is operated at a temperature of 77K. The rotating armature is at room temperature. Test results and performance for the HTS field...

  11. Imaging the anisotropic nonlinear meissner effect in nodal YBa2 Cu3 O7-δ thin-film superconductors.

    Science.gov (United States)

    Zhuravel, Alexander P; Ghamsari, B G; Kurter, C; Jung, P; Remillard, S; Abrahams, J; Lukashenko, A V; Ustinov, Alexey V; Anlage, Steven M

    2013-02-22

    We have directly imaged the anisotropic nonlinear Meissner effect in an unconventional superconductor through the nonlinear electrodynamic response of both (bulk) gap nodes and (surface) Andreev bound states. A superconducting thin film is patterned into a compact self-resonant spiral structure, excited near resonance in the radio-frequency range, and scanned with a focused laser beam perturbation. At low temperatures, direction-dependent nonlinearities in the reactive and resistive properties of the resonator create photoresponse that maps out the directions of nodes, or of bound states associated with these nodes, on the Fermi surface of the superconductor. The method is demonstrated on the nodal superconductor YBa2Cu3O7-δ and the results are consistent with theoretical predictions for the bulk and surface contributions.

  12. A novel heat engine for magnetizing superconductors

    Science.gov (United States)

    Coombs, T. A.; Hong, Z.; Zhu, X.; Krabbes, G.

    2008-03-01

    The potential of bulk melt-processed YBCO single domains to trap significant magnetic fields (Tomita and Murakami 2003 Nature 421 517-20 Fuchs et al 2000 Appl. Phys. Lett. 76 2107-9) at cryogenic temperatures makes them particularly attractive for a variety of engineering applications including superconducting magnets, magnetic bearings and motors (Coombs et al 1999 IEEE Trans. Appl. Supercond. 9 968-71 Coombs et al 2005 IEEE Trans. Appl. Supercond. 15 2312-5). It has already been shown that large fields can be obtained in single domain samples at 77 K. A range of possible applications exist in the design of high power density electric motors (Jiang et al 2006 Supercond. Sci. Technol. 19 1164-8). Before such devices can be created a major problem needs to be overcome. Even though all of these devices use a superconductor in the role of a permanent magnet and even though the superconductor can trap potentially huge magnetic fields (greater than 10 T) the problem is how to induce the magnetic fields. There are four possible known methods: (1) cooling in field; (2) zero field cooling, followed by slowly applied field; (3) pulse magnetization; (4) flux pumping. Any of these methods could be used to magnetize the superconductor and this may be done either in situ or ex situ. Ideally the superconductors are magnetized in situ. There are several reasons for this: first, if the superconductors should become demagnetized through (i) flux creep, (ii) repeatedly applied perpendicular fields (Vanderbemden et al 2007 Phys. Rev. B 75 (17)) or (iii) by loss of cooling then they may be re-magnetized without the need to disassemble the machine; secondly, there are difficulties with handling very strongly magnetized material at cryogenic temperatures when assembling the machine; thirdly, ex situ methods would require the machine to be assembled both cold and pre-magnetized and would offer significant design difficulties. Until room temperature superconductors can be prepared, the

  13. A novel heat engine for magnetizing superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Coombs, T A; Hong, Z; Zhu, X [Cambridge University Engineering Department, Trumpington Street, CB2 1PZ (United Kingdom); Krabbes, G [IFW Dresden, Helmholtzstrasse 20, 01069 Dresden (Germany)

    2008-03-01

    The potential of bulk melt-processed YBCO single domains to trap significant magnetic fields (Tomita and Murakami 2003 Nature 421 517-20; Fuchs et al 2000 Appl. Phys. Lett. 76 2107-9) at cryogenic temperatures makes them particularly attractive for a variety of engineering applications including superconducting magnets, magnetic bearings and motors (Coombs et al 1999 IEEE Trans. Appl. Supercond. 9 968-71; Coombs et al 2005 IEEE Trans. Appl. Supercond. 15 2312-5). It has already been shown that large fields can be obtained in single domain samples at 77 K. A range of possible applications exist in the design of high power density electric motors (Jiang et al 2006 Supercond. Sci. Technol. 19 1164-8). Before such devices can be created a major problem needs to be overcome. Even though all of these devices use a superconductor in the role of a permanent magnet and even though the superconductor can trap potentially huge magnetic fields (greater than 10 T) the problem is how to induce the magnetic fields. There are four possible known methods: (1) cooling in field; (2) zero field cooling, followed by slowly applied field; (3) pulse magnetization; (4) flux pumping. Any of these methods could be used to magnetize the superconductor and this may be done either in situ or ex situ. Ideally the superconductors are magnetized in situ. There are several reasons for this: first, if the superconductors should become demagnetized through (i) flux creep, (ii) repeatedly applied perpendicular fields (Vanderbemden et al 2007 Phys. Rev. B 75 (17)) or (iii) by loss of cooling then they may be re-magnetized without the need to disassemble the machine; secondly, there are difficulties with handling very strongly magnetized material at cryogenic temperatures when assembling the machine; thirdly, ex situ methods would require the machine to be assembled both cold and pre-magnetized and would offer significant design difficulties. Until room temperature superconductors can be prepared, the

  14. Applications of high-temperature superconductors in power technology

    Science.gov (United States)

    Hull, John R.

    2003-11-01

    Since the discovery of the first high-temperature superconductors (HTSs) in the late 1980s, many materials and families of materials have been discovered that exhibit superconductivity at temperatures well above 20 K. Of these, several families of HTSs have been developed for use in electrical power applications. Demonstration of devices such as motors, generators, transmission lines, transformers, fault-current limiters, and flywheels in which HTSs and bulk HTSs have been used has proceeded to ever larger scales. First-generation wire, made from bismuth-based copper oxides, was used in many demonstrations. The rapid development of second-generation wire, made by depositing thin films of yttrium-based copper oxide on metallic substrates, is expected to further accelerate commercial applications. Bulk HTSs, in which large single-grain crystals are used as basic magnetic components, have also been developed and have potential for electrical power applications.

  15. Impurity bound states in fully gapped d-wave superconductors with subdominant order parameters

    Science.gov (United States)

    Mashkoori, Mahdi; Björnson, Kristofer; Black-Schaffer, Annica M.

    2017-01-01

    Impurities in superconductors and their induced bound states are important both for engineering novel states such as Majorana zero-energy modes and for probing bulk properties of the superconducting state. The high-temperature cuprates offer a clear advantage in a much larger superconducting order parameter, but the nodal energy spectrum of a pure d-wave superconductor only allows virtual bound states. Fully gapped d-wave superconducting states have, however, been proposed in several cuprate systems thanks to subdominant order parameters producing d + is- or d + id′-wave superconducting states. Here we study both magnetic and potential impurities in these fully gapped d-wave superconductors. Using analytical T-matrix and complementary numerical tight-binding lattice calculations, we show that magnetic and potential impurities behave fundamentally different in d + is- and d + id′-wave superconductors. In a d + is-wave superconductor, there are no bound states for potential impurities, while a magnetic impurity produces one pair of bound states, with a zero-energy level crossing at a finite scattering strength. On the other hand, a d + id′-wave symmetry always gives rise to two pairs of bound states and only produce a reachable zero-energy level crossing if the normal state has a strong particle-hole asymmetry. PMID:28281570

  16. Impurity bound states in fully gapped d-wave superconductors with subdominant order parameters.

    Science.gov (United States)

    Mashkoori, Mahdi; Björnson, Kristofer; Black-Schaffer, Annica M

    2017-03-10

    Impurities in superconductors and their induced bound states are important both for engineering novel states such as Majorana zero-energy modes and for probing bulk properties of the superconducting state. The high-temperature cuprates offer a clear advantage in a much larger superconducting order parameter, but the nodal energy spectrum of a pure d-wave superconductor only allows virtual bound states. Fully gapped d-wave superconducting states have, however, been proposed in several cuprate systems thanks to subdominant order parameters producing d + is- or d + id'-wave superconducting states. Here we study both magnetic and potential impurities in these fully gapped d-wave superconductors. Using analytical T-matrix and complementary numerical tight-binding lattice calculations, we show that magnetic and potential impurities behave fundamentally different in d + is- and d + id'-wave superconductors. In a d + is-wave superconductor, there are no bound states for potential impurities, while a magnetic impurity produces one pair of bound states, with a zero-energy level crossing at a finite scattering strength. On the other hand, a d + id'-wave symmetry always gives rise to two pairs of bound states and only produce a reachable zero-energy level crossing if the normal state has a strong particle-hole asymmetry.

  17. Josephson Current in Superconductor-Ferromagnet/Insulator/d-Wave Superconductor Junctions

    Institute of Scientific and Technical Information of China (English)

    LI Xiao-Wei; DONG Zheng-Chao

    2005-01-01

    Solving the Bogoliubov-de Gennes equation, the energy levels of bound states are obtained in the ferromagnetic superconductor. The Josephson currents in a ferromagnetic superconductor/Insulator/d-wave superconductor junction are calculated as a function of the exchange field, temperature, and insulating barrier strength. It is found that the Josephson critical current is always suppressed by the presence of exchange field h and depends on crystalline axis orientation of d-wave superconductor.

  18. Iron-Based Superconductors as Odd-Parity Superconductors

    Directory of Open Access Journals (Sweden)

    Jiangping Hu

    2013-07-01

    Full Text Available Parity is a fundamental quantum number used to classify a state of matter. Materials rarely possess ground states with odd parity. We show that the superconducting state in iron-based superconductors is classified as an odd-parity s-wave spin-singlet pairing state in a single trilayer FeAs/Se, the building block of the materials. In a low-energy effective model constructed on the Fe square bipartite lattice, the superconducting order parameter in this state is a combination of an s-wave normal pairing between two sublattices and an s-wave η pairing within the sublattices. The state has a fingerprint with a real-space sign inversion between the top and bottom As/Se layers. The results suggest that iron-based superconductors are a new quantum state of matter, and the measurement of the odd parity can help to establish high-temperature superconducting mechanisms.

  19. Current status of iron-based superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Kamihara, Yoichi, E-mail: kamihara_yoichi@appi.keio.ac.jp [Keio University, Department of Applied Physics and Physico-Informatics, Faculty of Science and Technology (Japan)

    2012-03-15

    Current status of iron-based superconductors is summarized. Although short range magnetic ordering and magnetic phase separation of Fe are controversial, (long range) magnetic and electronic phase diagrams of iron based superconductors can be classified into two-type. Antiferromagnetic ordering of itinerant Fe does not coexist with superconducting phase of SmFeAsO{sub 1 - x}F{sub x}. The very large H{sub c2} of iron-based superconductors attract us to attempts at applications.

  20. Current status of iron-based superconductors

    Science.gov (United States)

    Kamihara, Yoichi

    2012-03-01

    Current status of iron-based superconductors is summarized. Although short range magnetic ordering and magnetic phase separation of Fe are controversial, (long range) magnetic and electronic phase diagrams of iron based superconductors can be classified into two-type. Antiferromagnetic ordering of itinerant Fe does not coexist with superconducting phase of SmFeAsO1 - xFx. The very large H c2 of iron-based superconductors attract us to attempts at applications.

  1. A Road Towards High Temperature Superconductors

    Science.gov (United States)

    2013-08-01

    AFRL-AFOSR-UK-TR-2013-0040 A Road Towards High Temperature Superconductors Guy Deutscher Tel Aviv University Research... Superconductors 5a. CONTRACT NUMBER FA8655-10-1-3011 5b. GRANT NUMBER Grant 10-3011 5c. PROGRAM ELEMENT NUMBER 61102F 6. AUTHOR(S...issue in trying to make useful high temperature superconductors is obviously to discover superconductivity at higher temperatures. But there is also

  2. Holographic complexity in gauge/string superconductors

    Directory of Open Access Journals (Sweden)

    Davood Momeni

    2016-05-01

    Full Text Available Following a methodology similar to [1], we derive a holographic complexity for two dimensional holographic superconductors (gauge/string superconductors with backreactions. Applying a perturbation method proposed by Kanno in Ref. [2], we study behaviors of the complexity for a dual quantum system near critical points. We show that when a system moves from the normal phase (T>Tc to the superconductor phase (T

  3. Recent progress on carbon-based superconductors.

    Science.gov (United States)

    Kubozono, Yoshihiro; Eguchi, Ritsuko; Goto, Hidenori; Hamao, Shino; Kambe, Takashi; Terao, Takahiro; Nishiyama, Saki; Zheng, Lu; Miao, Xiao; Okamoto, Hideki

    2016-08-24

    This article reviews new superconducting phases of carbon-based materials. During the past decade, new carbon-based superconductors have been extensively developed through the use of intercalation chemistry, electrostatic carrier doping, and surface-proving techniques. The superconducting transition temperature T c of these materials has been rapidly elevated, and the variety of superconductors has been increased. This review fully introduces graphite, graphene, and hydrocarbon superconductors and future perspectives of high-T c superconductors based on these materials, including present problems. Carbon-based superconductors show various types of interesting behavior, such as a positive pressure dependence of T c. At present, experimental information on superconductors is still insufficient, and theoretical treatment is also incomplete. In particular, experimental results are still lacking for graphene and hydrocarbon superconductors. Therefore, it is very important to review experimental results in detail and introduce theoretical approaches, for the sake of advances in condensed matter physics. Furthermore, the recent experimental results on hydrocarbon superconductors obtained by our group are also included in this article. Consequently, this review article may provide a hint to designing new carbon-based superconductors exhibiting higher T c and interesting physical features.

  4. Melt processed high-temperature superconductors

    CERN Document Server

    1993-01-01

    The achievement of large critical currents is critical to the applications of high-temperature superconductors. Recent developments have shown that melt processing is suitable for producing high J c oxide superconductors. Using magnetic forces between such high J c oxide superconductors and magnets, a person could be levitated.This book has grown largely out of research works on melt processing of high-temperature superconductors conducted at ISTEC Superconductivity Research Laboratory. The chapters build on melt processing, microstructural characterization, fundamentals of flux pinning, criti

  5. Crystal growth and physical property of Bi-Sb-Te-Se topological insulator materials, and Cu-Bi-Se and Sn-In-Te topological superconductors

    Science.gov (United States)

    Gu, Genda; Yang, Alina; Schneeloch, J.; Zhong, R. D.; Xu, Z. J.; Tranquada, J. M.; Pan, Z. H.; Si, W. D.; Shi, X. Y.; Li, Q.; Valla, T.

    2013-03-01

    The discovery of 3D topological insulator materials and topological superconductor opens up a new research field in the condensed matter physics. We have grown a number of Bi-Sb-Te-Se topological insulator, and Cu-Bi-Se and Sn-In-Te topological superconductor single crystals. We have measured the physical properties on these single crystals. We have studied the effect of growth condition and impurity on the bulk electrical conductivity of these single crystals. We try to answer two questions for the topological insulator materials if it is possible to grow the bulk-insulating topological insulator single crystals and Which maximum resistivity of these topological insulator single crystals we can grow. For the topological superconductor, we have got the bulk superconducting single crystals with a maximum Tc =4.5K. DOE under Contract No. DE-AC02-98CH10886 and the DOE Center for Emergent Superconductivity.

  6. Theoretical studies of unconventional superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Groensleth, Martin Sigurd

    2008-07-01

    This thesis presents four research papers. In the first three papers we have derived analytical results for the transport properties in unconventional superconductors and ferromagnetic systems with multiple broken symmetries. In Paper I and parts of Paper II we have studied tunneling transport between two non-unitary ferromagnetic spin-triplet superconductors, and found a novel interplay between ferromagnetism and superconductivity manifested in the Josephson effect as a spin- and charge-current in the absence of an applied voltage across the junction. The critical amplitudes of these currents can be adjusted by the relative magnetization direction on each side of the junction. Furthermore, in Paper II, we have found a way of controlling a spin-current between two ferromagnets with spin-orbit coupling. Paper III considers a junction consisting of a ferromagnet and a non-unitary ferromagnetic superconductor, and we show that the conductance spectra contains detailed information about the superconducting gaps and pairing symmetry of the Cooper-pairs. In the last paper we present a Monte Carlo study of an effective Hamiltonian describing orbital currents in the CuO2 layers of high-temperature superconductive cuprates. The model features two intrinsically anisotropic Ising models, coupled through an anisotropic next-nearest neighbor interaction, and an Ashkin-Teller nearest neighbor fourth order coupling. We have studied the specific heat anomaly, as well as the anomaly in the staggered magnetization associated with the orbital currents and its susceptibility. We have found that in a limited parameter regime, the specific heat anomaly is substantially suppressed, while the susceptibility has a non-analytical peak across the order-disorder transition. The model is therefore a candidate for describing the breakup of hidden order when crossing the pseudo-gap line on the under-doped side in the phase diagram of high-temperature superconductors. (Author) 64 refs., figs

  7. Negative magnetic relaxation in superconductors

    Directory of Open Access Journals (Sweden)

    Krasnoperov E.P.

    2013-01-01

    Full Text Available It was observed that the trapped magnetic moment of HTS tablets or annuli increases in time (negative relaxation if they are not completely magnetized by a pulsed magnetic field. It is shown, in the framework of the Bean critical-state model, that the radial temperature gradient appearing in tablets or annuli during a pulsed field magnetization can explain the negative magnetic relaxation in the superconductor.

  8. Generalized Superconductors and Holographic Optics

    CERN Document Server

    Mahapatra, Subhash; Sarkar, Tapobrata

    2013-01-01

    We study generalized holographic s-wave superconductors in four dimensional R-charged black hole backgrounds, in the probe limit. We first establish the superconducting nature of the boundary theory, and then study its optical properties. Numerical analysis indicates that a negative index of refraction appears at low frequencies in the theory, for certain temperature ranges, for specific values of the charge parameter. The corresponding cut-off values for these are numerically established in several cases.

  9. Holographic superconductors with Weyl corrections

    Science.gov (United States)

    Momeni, Davood; Raza, Muhammad; Myrzakulov, Ratbay

    2016-10-01

    A quick review on the analytical aspects of holographic superconductors (HSCs) with Weyl corrections has been presented. Mainly, we focus on matching method and variational approaches. Different types of such HSC have been investigated — s-wave, p-wave and Stúckelberg ones. We also review the fundamental construction of a p-wave type, in which the non-Abelian gauge field is coupled to the Weyl tensor. The results are compared from numerics to analytical results.

  10. Edge instabilities of topological superconductors

    Science.gov (United States)

    Hofmann, Johannes S.; Assaad, Fakher F.; Schnyder, Andreas P.

    2016-05-01

    Nodal topological superconductors display zero-energy Majorana flat bands at generic edges. The flatness of these edge bands, which is protected by time-reversal and translation symmetry, gives rise to an extensive ground-state degeneracy. Therefore, even arbitrarily weak interactions lead to an instability of the flat-band edge states towards time-reversal and translation-symmetry-broken phases, which lift the ground-state degeneracy. We examine the instabilities of the flat-band edge states of dx y-wave superconductors by performing a mean-field analysis in the Majorana basis of the edge states. The leading instabilities are Majorana mass terms, which correspond to coherent superpositions of particle-particle and particle-hole channels in the fermionic language. We find that attractive interactions induce three different mass terms. One is a coherent superposition of imaginary s -wave pairing and current order, and another combines a charge-density-wave and finite-momentum singlet pairing. Repulsive interactions, on the other hand, lead to ferromagnetism together with spin-triplet pairing at the edge. Our quantum Monte Carlo simulations confirm these findings and demonstrate that these instabilities occur even in the presence of strong quantum fluctuations. We discuss the implications of our results for experiments on cuprate high-temperature superconductors.

  11. Is a color superconductor topological?

    CERN Document Server

    Nishida, Yusuke

    2010-01-01

    A fully gapped state of matter, whether insulator or superconductor, can be asked if it is topologically trivial or nontrivial. Here we investigate topological properties of superconducting Dirac fermions in 3D having a color superconductor as an application. In the chiral limit, when the pairing gap is parity even, the right-handed and left-handed sectors of the free space Hamiltonian have nontrivial topological charges with opposite signs. Accordingly, a vortex line in the superconductor supports localized gapless right-handed and left-handed fermions with the dispersion relations E=+/-vp_z (v is a parameter dependent velocity) and thus propagating in opposite directions along the vortex line. However, the presence of the fermion mass immediately opens up a mass gap for such localized fermions and the dispersion relations become E=+/-v(m^2+p_z^2)^(1/2). When the pairing gap is parity odd, the situation is qualitatively different. The right-handed and left-handed sectors of the free space Hamiltonian in the ...

  12. Modified entropic gravitation in superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Matos, Clovis Jacinto de, E-mail: clovis.de.matos@esa.int [European Space Agency, 8-10 rue Mario Nikis, 75015 Paris (France)

    2012-01-15

    Verlinde recently developed a theoretical account of gravitation in terms of an entropic force. The central element in Verlinde's derivation is information and its relation with entropy through the holographic principle. The application of this approach to the case of superconductors requires to take into account that information associated with superconductor's quantum vacuum energy is not stored on Planck size surface elements, but in four volume cells with Planck-Einstein size. This has profound consequences on the type of gravitational force generated by the quantum vacuum condensate in superconductors, which is closely related with the cosmological repulsive acceleration responsible for the accelerated expansion of the Universe. Remarkably this new gravitational type force depends on the level of breaking of the weak equivalence principle for cooper pairs in a given superconducting material, which was previously derived by the author starting from similar principles. It is also shown that this new gravitational force can be interpreted as a surface force. The experimental detection of this new repulsive gravitational-type force appears to be challenging.

  13. Fault current limiters using superconductors

    Science.gov (United States)

    Norris, W. T.; Power, A.

    Fault current limiters on power systems are to reduce damage by heating and electromechanical forces, to alleviate duty on switchgear used to clear the fault, and to mitigate disturbance to unfaulted parts of the system. A basic scheme involves a super-resistor which is a superconductor being driven to high resistance when fault current flows either when current is high during a cycle of a.c. or, if the temperature of the superconductive material rises, for the full cycle. Current may be commuted from superconductor to an impedance in parallel, thus reducing the energy dispersed at low temperature and saving refrigeration. In a super-shorted transformer the ambient temperature primary carries the power system current; the superconductive secondary goes to a resistive condition when excessive currents flow in the primary. A super-transformer has the advantage of not needing current leads from high temperature to low temperature; it behaves as a parallel super-resistor and inductor. The supertransductor with a superconductive d.c. bias winding is large and has small effect on the rate of fall of current at current zero; it does little to alleviate duty on switchgear but does reduce heating and electromechanical forces. It is fully active after a fault has been cleared. Other schemes depend on rapid recooling of the superconductor to achieve this.

  14. Iron Pnictide Superconductors: discovery and advances

    Science.gov (United States)

    Hosono, Hideo

    2009-03-01

    Superconducting transition in a layered ZrCuSiAs-type crystal was first reported for LaFePO in 2006 [1] and subsequently, a similar Tc was found for LaNiPO with the same crystal structure in 2007. However, Tc of these compounds reminded low (˜4K). On February 23, 2008, our paper reporting a layered compound in LaFeAsO1-xFx(x=0.1) exhibiting a superconducting critical temperature Tc (mid-point) = 26K was published [3]. In this presentation I talk the background of this discovery and the subsequent advance in materials. The following points have been clarified to date; (1) Iron-based superconductors reported are 4-types crystal structures, the 1111[3], 122[4], 111[5], and 11 [6] type. All the high Tc iron-based superconductors contain a Fe square lattice and the Fe 3d orbitals dominate the Fermi-level. (2) The occurrence of a crystallographic transition accompanying anti-ferromagnetic to paramagnetic state in the parent compound is a requisite for a high Tc. (3) There exist a vast number of materials containing the Fe square lattice. (4). A partial substitution of Fe with other transition metal is possible without serious reduction of Tc. (4) A new insulating layer AEF (AE=Ca, Sr)was found to be effective in the 1111 phase [7]. (5) High pressure synthesis was effective to obtain the 1111 phases with higher Tc, (6) Epitaxial thin films exhibiting a Tc almost the same as that in the bulk were fabricated for CaFeAsO:Co[8]. Epitaxial thin films of LaFeAsO was recently reported as well [9]. [4pt] [1] Y.Kamihara et al. JACS, 28 (2006)10012, [2] T.Watanabe et al.Inorg.Chem,46(2007) 7719, [3 ]Y.Kamihara et al. J.Am.Chem.Soc.130(2008)3296., [4]M.Rotter et al. PRL, 101(2008) 107006, [5] J.H.Tapp et al. PRB,78(2008)060505 [6] F.C.Hsu et al. PNAS,105(2008)14262., [7] S.Matsuishi et al. JACS 130(2008)14428 [8] H.Hiramatsu et al. Appl.Phys.Express 1(2008)101702, [9] H.Hiramatsu et al. APL. 93(2008) 162504.

  15. Vortex Dynamics Studies in Type II Superconductors

    Science.gov (United States)

    Xu, Zhigang

    1993-03-01

    Vibrating reed, ac susceptibility and resistance measurements have been used to study the dynamics of vortices in type II superconductors. In Nb measurements, in spite of the low T _{c}'s and long coherence lengths compared to the high T_{c} superconductors, we find an extended region of temperature and field over which reversible flux line motion occurs when the Nb reed is oriented with its long dimension perpendicular to the applied field. We observe a strong, frequency-independent depression of the "irreversibility temperature" T _{Q}(H) below the resistively determined critical temperature T_{R}. The results of the ac susceptibility measurements also support these results. We concluded that observation of an extended region of magnetic reversibility is not restricted to high T_{c} or extremely anisotropic materials, and depends upon the geometry of samples with respect to the applied field direction. In NbSe_2 measurements, vibrating reed measurements were performed with the hexagonal c-axis approximately parallel or perpendicular to an applied magnetic field. Field-cooling data revealed an unusual peak in the frequency shift of the reed, accompanied by two peaks in reed dissipation. The upper peak occurs near the temperature where R~ 0, and the lower peak is very sample and amplitude dependent and hysteretic. The ac susceptibility results also show that corresponding features. The interplay of superconductivity and density waves were investigated by comparing data for NbSe _2 with the results for NbS_2 , which has a comparable superconducting T _{c } and crystal structure. In NbS_2 measurements, we did not see such a peak in the frequency shift nor the double peak feature in the dissipation in either vibrating reed measurements or ac susceptibility measurements. We have also studied the (Ba,K)BiO_3 system. It is cubic at its superconducting composition, but exhibits a moderately high T_{c }=30 K that is intermediate between conventional and high T_{rm c

  16. Bulk Nanostructured Materials

    Science.gov (United States)

    Koch, C. C.; Langdon, T. G.; Lavernia, E. J.

    2017-09-01

    This paper will address three topics of importance to bulk nanostructured materials. Bulk nanostructured materials are defined as bulk solids with nanoscale or partly nanoscale microstructures. This category of nanostructured materials has historical roots going back many decades but has relatively recent focus due to new discoveries of unique properties of some nanoscale materials. Bulk nanostructured materials are prepared by a variety of severe plastic deformation methods, and these will be reviewed. Powder processing to prepare bulk nanostructured materials requires that the powders be consolidated by typical combinations of pressure and temperature, the latter leading to coarsening of the microstructure. The thermal stability of nanostructured materials will also be discussed. An example of bringing nanostructured materials to applications as structural materials will be described in terms of the cryomilling of powders and their consolidation.

  17. Near-oscillatory relaxation behavior of levitation force in infiltration and growth processed bulk YBCO/Ag superconducting composites

    Energy Technology Data Exchange (ETDEWEB)

    Parthasarathy, R.; Lakshmi, M.M. [School of Physics, University of Hyderabad, Hyderabad 500 046 (India); Seshubai, V., E-mail: drseshubai@yahoo.co.in [School of Physics, University of Hyderabad, Hyderabad 500 046 (India)

    2011-07-15

    Magnetic relaxation of superconductor using levitation force measurements. Observed oscillatory behavior of relaxation rate. Bistable equilibrium theory and model proposed for the current structure in the superconductor. Experimental verification of magnetization of permanent magnet by the superconductor. Time relaxation behavior of levitation force has been studied in IGP bulk YBCO/Ag superconductor using levitation force measurements as these measurements throw light on the magnetic relaxation in superconductors and the underlying vortex dynamics, pinning mechanisms and the nature of pinning forces. The measurements have revealed a hitherto unknown near-oscillatory relaxation of the levitation force with varying magnetic field. This kind of behavior is found to be more pronounced at smaller gap distances between the permanent magnet and the superconductor. A switch-type polarity bistable equilibrium model for the supercurrent structure has been proposed based on the understanding that even the permanent magnet gets magnetized in the presence of the superconductor, which has also been verified and reported here. This model satisfactorily explains the observed oscillatory behavior of relaxation rates.

  18. Growth of layered superconductor β-PdBi2 films using molecular beam epitaxy

    Science.gov (United States)

    Denisov, N. V.; Matetskiy, A. V.; Tupkalo, A. V.; Zotov, A. V.; Saranin, A. A.

    2017-04-01

    Bulk β-PdBi2 layered material exhibits advanced properties and is supposed to be probable topological superconductor. We present a method based on molecular beam epitaxy that allows us to grow β-PdBi2 films from a single β-PdBi2 triple layer up to the dozens of triple layers, using Bi(111) film on Si(111) as a template. The grown films demonstrate structural, electronic and superconducting properties similar to those of bulk β-PdBi2 crystals. Ability to grow the β-PdBi2 films of desired thickness opens the promising possibilities to explore fascinating properties of this advanced material.

  19. Preparation of Bulky Bi(Pb)-Sr-Ca-Cu-O Superconductor by Magnetized Twin-Roll

    Science.gov (United States)

    Kawahara, Nobuaki; Kawabata, Sanemasa; Enami, Hiroyoshi; Shinohara, Toshiyuki; Hoshizaki, Hiroki; Hasegawa, Masashi; Asai, Shigeo; Imura, Toru

    1990-02-01

    A highly oriented (Bi, Pb)2Sr2Ca2Cu3Ox bulk superconductor has been prepared by magnetized twin-roll processing. In these bulks, plate-like crystal grains were highly oriented by a magnetic and mechanical force. The grain c-axes were parallel to the magnetic field and pressing directions. In fact, both critical current density (Jc) and orientation degree of the sample rolled under 2 T were higher than those of the sample rolled with no magnetic field. The magnetized twin-roll processing is effective not only in enhancing grain-orientation but also in packing to improve Jc.

  20. Enhancement of mechanical properties of 123 superconductors

    Science.gov (United States)

    Balachandran, Uthamalingam

    1995-01-01

    A composition and method of preparing YBa.sub.2 Cu.sub.3 O.sub.7-x superconductor. Addition of tin oxide containing compounds to YBCO superconductors results in substantial improvement of fracture toughness and other mechanical properties without affect on T.sub.c. About 5-20% additions give rise to substantially improved mechanical properties.

  1. Electromagnetic Dark Energy and Gravitoelectrodynamics of Superconductors

    CERN Document Server

    de Matos, Clovis Jacinto

    2007-01-01

    It is shown that Beck's electromagnetic model of dark energy in superconductors can account for the gravitomagnetic London moment, which has been conjectured by the author to explain the Cooper pair's mass excess reported by Cabrera and Tate. A new Einstein-Planck regime for gravitation in condensed matter is proposed as a natural scale to host the gravitoelectrodynamic properties of superconductors.

  2. Gravitational force between two electrons in superconductors

    CERN Document Server

    de Matos, Clovis Jacinto

    2007-01-01

    The attractive gravitational force between two electrons in superconductors is deduced from the Eddington-Dirac large number relation, together with Beck and Mackey electromagnetic model of vacuum energy in superconductors. This force is estimated to be weaker than the gravitational attraction between two electrons in the vacuum.

  3. High temperature superconductors: A technological revolution

    Science.gov (United States)

    1990-01-01

    The objectives are to demonstrate the Meissner effect through magnetic levitation, to demonstrate one application of the Meissner effect, the low friction magnetic rotation bearing, and to demonstrate magnetic flux penetration and the Type II nature of ceramic superconductors via the stacking of the superconductor disks. Experimental equipment and procedures are described.

  4. First-principle simulations of the electronic structure of copper-based oxide superconductors

    CERN Document Server

    Yutoh, Y

    2003-01-01

    The relationship between the transition temperature (T sub c) of an oxide superconductor and strain has been studied by means of experiments, with a focus an specimens that include an interface between a superconductor and a substrate. In the current study, we performed calculations on the bulk and the surface in order to investigate the electronic structures of the above systems. We calculated the electronic structure of La sub 2 CuO sub 4 bulk by employment of three-dimensional boundary conditions and that of a La sub 2 CuO sub 4 surface by employment of two-dimensional boundary conditions. The results for the bulk indicate that a relationship exists between the lattice parameters and T sub c of La sub 2 CuO sub 4. We discuss the calculated results for the bulk and surface on the basis of the results of investigation of the differences in electronic structures. The results indicate that the surface retained the electronic structures of the bulk. (Abstract Copyright [2003], Wiley Periodicals, Inc.)

  5. Enhancing bulk superconductivity by engineering granular materials

    Science.gov (United States)

    Mayoh, James; García García, Antonio

    2014-03-01

    The quest for higher critical temperatures is one of the main driving forces in the field of superconductivity. Recent theoretical and experimental results indicate that quantum size effects in isolated nano-grains can boost superconductivity with respect to the bulk limit. Here we explore the optimal range of parameters that lead to an enhancement of the critical temperature in a large three dimensional array of these superconducting nano-grains by combining mean-field, semiclassical and percolation techniques. We identify a broad range of parameters for which the array critical temperature, TcArray, can be up to a few times greater than the non-granular bulk limit, Tc 0. This prediction, valid only for conventional superconductors, takes into account an experimentally realistic distribution of grain sizes in the array, charging effects, dissipation by quasiparticles and limitations related to the proliferation of thermal fluctuations for sufficiently small grains. For small resistances we find the transition is percolation driven. Whereas at larger resistances the transition occurs above the percolation threshold due to phase fluctuations. JM acknowledes support from an EPSRC Ph.D studentship, AMG acknowledges support from EPSRC, grant No. EP/I004637/1, FCT, grant PTDC/FIS/111348/2009 and a Marie Curie International Reintegration Grant PIRG07-GA-2010-268172.

  6. Magnetic characterisation of large grain, bulk Y–Ba–Cu–O superconductor–soft ferromagnetic alloy hybrid structures

    Energy Technology Data Exchange (ETDEWEB)

    Philippe, M.P., E-mail: M.Philippe@ulg.ac.be [SUPRATECS and Department of Electrical Engineering and Computer Science (B28), University of Liège, 4000 Liège (Belgium); Fagnard, J.-F.; Kirsch, S. [SUPRATECS and Department of Electrical Engineering and Computer Science (B28), University of Liège, 4000 Liège (Belgium); Xu, Z.; Dennis, A.R.; Shi, Y.-H.; Cardwell, D.A. [Bulk Superconductivity Group, Engineering Department, University of Cambridge, Cambridge CB2 1PZ (United Kingdom); Vanderheyden, B.; Vanderbemden, P. [SUPRATECS and Department of Electrical Engineering and Computer Science (B28), University of Liège, 4000 Liège (Belgium)

    2014-07-15

    Highlights: • Large grain, bulk YBaCuO superconductor (SC) combined with ferromagnetic elements. • The flux lines curve outwards through the ferromagnet in the remanent state. • The trapped field in the SC is enhanced by the presence of the ferromagnet. • The effects of the SC and the ferromagnet add when the ferromagnet is saturated. - Abstract: Large grain, bulk Y–Ba–Cu–O (YBCO) high temperature superconductors (HTS) have significant potential for use in a variety of practical applications that incorporate powerful quasi-permanent magnets. In the present work, we investigate how the trapped field of such magnets can be improved by combining bulk YBCO with a soft FeNi, ferromagnetic alloy. This involves machining the alloy into components of various shapes, such as cylinders and rings, which are attached subsequently to the top surface of a solid, bulk HTS cylinder. The effect of these modifications on the magnetic hysteresis curve and trapped field of the bulk superconductor at 77 K are then studied using pick-up coil and Hall probe measurements. The experimental data are compared to finite element modelling of the magnetic flux distribution using Campbell’s algorithm. Initially we establish the validity of the technique involving pick-up coils wrapped around the bulk superconductor to obtain its magnetic hysteresis curve in a non-destructive way and highlight the difference between the measured signal and the true magnetization of the sample. We then consider the properties of hybrid ferromagnet/superconductor (F/S) structures. Hall probe measurements, together with the results of the model, establish that flux lines curve outwards through the ferromagnet, which acts, effectively, like a magnetic short circuit. Magnetic hysteresis curves show that the effects of the superconductor and the ferromagnet simply add when the ferromagnet is saturated fully by the applied field. The trapped field of the hybrid structure is always larger than that of the

  7. Noncentrosymmetric superconductors in one dimension

    Science.gov (United States)

    Samokhin, K. V.

    2017-02-01

    We study the fermionic boundary modes (Andreev bound states) in a time-reversal invariant one-dimensional superconductor. In the presence of a substrate, spatial inversion symmetry is broken and the electronic properties are strongly affected by an antisymmetric spin-orbit coupling. We assume an arbitrary even number of nondegenerate bands crossing the Fermi level. We show that there is only one possible pairing symmetry in one dimension, an analog of s -wave pairing. The zero-energy Andreev bound states are present if the sign of the gap function in an odd number of the bands is different from all other bands.

  8. Microgravity Processing of Oxide Superconductors

    Science.gov (United States)

    Hofmeister, William H.; Bayuzick, Robert J.; Vlasse, Marcus; McCallum, William; Peters, Palmer (Technical Monitor)

    2000-01-01

    The primary goal is to understand the microstructures which develop under the nonequilibrium solidification conditions achieved by melt processing in copper oxide superconductor systems. More specifically, to define the liquidus at the Y- 1:2:3 composition, the Nd-1:2:3 composition, and several intermediate partial substitution points between pure Y-1:2:3 and Nd-1:2:3. A secondary goal has been to understand resultant solidification morphologies and pathways under a variety of experimental conditions and to use this knowledge to better characterize solidification phenomena in these systems.

  9. Holographic superconductors with hyperscaling violation

    CERN Document Server

    Fan, ZhongYing

    2013-01-01

    We investigate holographic superconductors in asympototically geometries with hyperscaling violation. The mass of the scalar field decouples from the UV dimension of the dual scalar operator and can be chosen as negative as we want, without disturbing the Breitenlohner-Freedman bound. We first numerically find that the scalar condenses below a critical temperature and a gap opens in the real part of the conductivity, indicating the onset of superconductivity. We further analytically explore the effects of the hyperscaling violation on the superconducting transition temperature. We find that the critical temperature increases with the increasing of hyperscaling violation.

  10. Vortex ice in nanostructured superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Reichhardt, Charles [Los Alamos National Laboratory; Reichhardt, Cynthia J [Los Alamos National Laboratory; Libal, Andras J [Los Alamos National Laboratory

    2008-01-01

    We demonstrate using numerical simulations of nanostructured superconductors that it is possible to realize vortex ice states that are analogous to square and kagome ice. The system can be brought into a state that obeys either global or local ice rules by applying an external current according to an annealing protocol. We explore the breakdown of the ice rules due to disorder in the nanostructure array and show that in square ice, topological defects appear along grain boundaries, while in kagome ice, individual defects appear. We argue that the vortex system offers significant advantages over other artificial ice systems.

  11. Superconductor lunar telescopes --Abstract only

    Science.gov (United States)

    Chen, P. C.; Pitts, R.; Shore, S.; Oliversen, R.; Stolarik, J.; Segal, K.; Hojaji, H.

    1994-01-01

    We propose a new type of telescope designed specifically for the lunar environment of high vacuum and low temperature. Large area UV-Visible-IR telescope arrays can be built with ultra-light-weight replica optics. High T(sub c) superconductors provide support, steering, and positioning. Advantages of this approach are light-weight payload compatible with existing launch vehicles, configurable large area optical arrays, no excavation or heavy construction, and frictionless electronically controlled mechanisms. We have built a prototype and will be demonstarting some of its working characteristics.

  12. Generalized superconductors and holographic optics

    Energy Technology Data Exchange (ETDEWEB)

    Mahapatra, Subhash; Phukon, Prabwal; Sarkar, Tapobrata [Department of Physics, Indian Institute of Technology,Kanpur 208016 (India)

    2014-01-24

    We study generalized holographic s-wave superconductors in four dimensional R-charged black hole and Lifshitz black hole backgrounds, in the probe limit. We first establish the superconducting nature of the boundary theories, and then study their optical properties. Numerical analysis indicates that a negative Depine-Lakhtakia index may appear at low frequencies in the theory dual to the R-charged black hole, for certain temperature ranges, for specific values of the charge parameter. The corresponding cut-off values for these are numerically established in several cases. Such effects are seen to be absent in the Lifshitz background where this index is always positive.

  13. Analytical Computation of Critical Exponents in Several Holographic Superconductors

    CERN Document Server

    Zeng, Hua-Bi; Jiang, Yu; Zong, Hong-Shi

    2010-01-01

    It is very interesting that all holographic superconductors like $s$-wave, $p$-wave and $d$-wave holographic superconductors shows the universal mean-field critical exponent $1/2$ at the critical temperature just like Gindzburg-Landau (G-L) theory for second order phase transitions. Now it is believed that the universal critical exponents appear since the dual gravity theory is classic in the large $N$ limit. However, there is an exception called "non-mean-field theory" even in the large $N$ limit: An extension of the $s$-wave model with a cubic term of the charged scalar field provides a different critical exponent $1$. In this paper, we try to use analytical calculation to get the critical exponents for these models to see how these properties of the gravity action decides the appearance of the mean-field or "non-mean-field" behaviors. It will be seen that like the G-L theory, it is the fundamental symmetries rather than the detail parameters of the bulk theory result in the universal properties of the holo...

  14. Emerging Trends in Topological Insulators and Topological Superconductors

    Indian Academy of Sciences (India)

    A M Jayannavar; Arijit Saha

    2017-08-01

    Topological insulators are new class of materials which arecharacterized by a bulk band gap like ordinary band insulatorsbut have protected conducting states on their edgesor surfaces. These states emerge due to the combination ofspin-orbit coupling and time reversal symmetry. Also, thesestates are insensitive to scattering by non-magnetic impurities.A two-dimensional topological insulator has one dimensionaledge states in which the spin-momentum locking ofthe electrons give rise to quantum spin Hall effect. A threedimensionaltopological insulator supports novel spin-polarized2D Dirac fermions on its surface. These topological insulatormaterials have been theoretically predicted and experimentallyobserved in a variety of 2D and 3D systems, includingHgTe quantum wells, BiSb alloys, and Bi2Te3, Bi2Se3 crystals.Moreover, proximity induced superconductivity in these systemscan lead to a state that supports zero energy Majoranafermions, and the phase is known as topological superconductors.In this article, the basic idea of topological insulatorsand topological superconductors are presented alongwith their experimental development.

  15. Magnetic characterisation of large grain, bulk Y–Ba–Cu–O superconductor–soft ferromagnetic alloy hybrid structures

    OpenAIRE

    Philippe, Matthieu; Fagnard, Jean-François; Kirsch, Sébastien; Xu, Zhihan; Dennis, Anthony; Shi, Yunhua; Cardwell, David A.; Vanderheyden, Benoît; Vanderbemden, Philippe

    2014-01-01

    Large grain, bulk Y–Ba–Cu–O (YBCO) high temperature superconductors (HTS) have significant potential for use in a variety of practical applications that incorporate powerful quasi-permanent magnets. In the present work, we investigate how the trapped field of such magnets can be improved by combining bulk YBCO with a soft FeNi, ferromagnetic alloy. This involves machining the alloy into components of various shapes, such as cylinders and rings, which are attached subsequently to the top surfa...

  16. Striped superconductors: how spin, charge and superconducting orders intertwine in the cuprates

    Energy Technology Data Exchange (ETDEWEB)

    Berg, Erez; Kivelson, Steven A [Department of Physics, Stanford University, Stanford, CA 94305-4060 (United States); Fradkin, Eduardo [Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL 61801-3080 (United States); Tranquada, John M [Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, NY 11973-5000 (United States)], E-mail: kivelson@stanford.edu

    2009-11-15

    Recent transport experiments in the original cuprate high temperature superconductor, La{sub 2-x}Ba{sub x}CuO{sub 4}, have revealed a remarkable sequence of transitions and crossovers that give rise to a form of dynamical dimensional reduction, in which a bulk crystal becomes essentially superconducting in two directions while it remains poorly metallic in the third. We identify these phenomena as arising from a distinct new superconducting state, the 'striped superconductor', in which the superconducting order is spatially modulated, so that its volume average value is zero. Here, in addition to outlining the salient experimental findings, we sketch the order parameter theory of the state, stressing some of the ways in which a striped superconductor differs fundamentally from an ordinary (uniform) superconductor, especially concerning its response to quenched randomness. We also present the results of density matrix renormalization group calculations on a model of interacting electrons in which sign oscillations of the superconducting order are established. Finally, we speculate concerning the relevance of this state to experiments in other cuprates, including recent optical studies of La{sub 2-x}Sr{sub x}CuO{sub 4} in a magnetic field, neutron scattering experiments in underdoped YBa{sub 2}Cu{sub 3}O{sub 6+x} and a host of anomalies seen in STM and ARPES studies of Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8+{delta}}.

  17. Striped superconductors: how spin, charge and superconducting orders intertwine in the cuprates

    Science.gov (United States)

    Berg, Erez; Fradkin, Eduardo; Kivelson, Steven A.; Tranquada, John M.

    2009-11-01

    Recent transport experiments in the original cuprate high temperature superconductor, La2-xBaxCuO4, have revealed a remarkable sequence of transitions and crossovers that give rise to a form of dynamical dimensional reduction, in which a bulk crystal becomes essentially superconducting in two directions while it remains poorly metallic in the third. We identify these phenomena as arising from a distinct new superconducting state, the 'striped superconductor', in which the superconducting order is spatially modulated, so that its volume average value is zero. Here, in addition to outlining the salient experimental findings, we sketch the order parameter theory of the state, stressing some of the ways in which a striped superconductor differs fundamentally from an ordinary (uniform) superconductor, especially concerning its response to quenched randomness. We also present the results of density matrix renormalization group calculations on a model of interacting electrons in which sign oscillations of the superconducting order are established. Finally, we speculate concerning the relevance of this state to experiments in other cuprates, including recent optical studies of La2-xSrxCuO4 in a magnetic field, neutron scattering experiments in underdoped YBa2Cu3O6+x and a host of anomalies seen in STM and ARPES studies of Bi2Sr2CaCu2O8+δ.

  18. Plastic superconductor bearings any size-any shape: 77 K and up

    Science.gov (United States)

    Reick, Franklin G.

    1991-01-01

    'Friction free' bearings at 77 K or higher are possible using the high T(sub c) copper oxide ceramic superconductors. The conventional method for making such bearings is to use a sintered ceramic monolith. This puts great restraints on size, shape, and postforming machining. The material is hard and abrasive. It is possible to grind up ceramic superconductors and suspend the granules in a suitable matrix. Mechanical properties improve and are largely dependent on the binder. The Meissner effect is confined to individual grains containing electron vortices. Tracks, rails, levitation areas, and bearings can be made this way with conventional plastic molding and extruding machines or by painting. The parts are easily machined. The sacrifice is in bulk electrical conductivity. A percolating wick feed for LN2 is used to cool remote superconductors and large areas quite effectively. A hollow spheroid or cylinder of superconductor material is molded with the internal surfaces shielded by the Meissner effect. It can be thought of as the DC magnetic analog of the Faraday cage and the inside is the 'Meissner space'. It is selective. The AC fields are transmitted with minor attenuation. Particle size and distribution have a profound effect on final magnetic and electrical characteristics.

  19. Plastic superconductor bearings any size, any shape, 77 k and up

    Science.gov (United States)

    Reick, Franklin G.

    1990-01-01

    Friction free bearings at 77 k or higher are possible using the high T(sub c) copper oxide ceramic superconductors. The conventional method for making such bearings is to use a sintered ceramic monolith. This puts great restraints on size, shape and postforming machining. The material is hard and abrasive. It's possible to grind up ceramic superconductors and suspend the granules in a suitable matrix. Mechanical properties improve and are largely dependent on the binder. The Meissner effect is confined to individual grains containing electron vortices. Tracks, rails, levitation areas and bearings can be made this way with conventional plastic molding and extruding machines or by painting. The parts are easily machined. The sacrifice is in bulk electrical conductivity. A percolating wick feel for LN2 can be used to cool remote superconductors and large areas quite effectively. A hollow spheroid or cylinder of superconductor material can be molded with the internal surfaces shielded by the Meissner effect. It might be thought of as the dc magnetic analogue of the Faraday cage and the inside can be called the Meissner space. It's selective. The ac fields are transmitted with minor attenuation. Particle size and distribution have a profound effect on final magnetic and electrical characteristics.

  20. Proximity effect of iron-based superconductor in conventional s-wave superconducting thin films

    Science.gov (United States)

    Groll, Nick; Proslier, Thomas; Koshelev, Alex; Stantev, Valentin; Chung, Duck-Young

    2012-02-01

    The proximity effect has been proposed as a mechanism to unambiguously identify the possible s±-state in iron-based superconductors.ootnotetextA. E. Koshelev, V. Stanev, Europhysics Letters, Vol. 96, 27014 (2011) With a thin s-wave superconductor atop a s±-superconductor it is suggested that the s-wave order parameter will couple to the s±-gaps differently, inducing a correction to the s-wave density of states that can be probed using electron tunneling spectroscopy. In this talk, we will present recent results of the superconducting proximity effect in s-wave MoGe thin films sputtered on top of bulk superconducting Ba0.6K0.4Fe2As2 (Tc=35K) pnictide. Electron tunneling spectroscopy measurements were performed for several MoGe film thicknesses using a homemade point contact setup. Finally, results will also be presented for similar measurements using two conventional s-wave superconductors.

  1. Odd-parity superconductors with two-component order parameters: Nematic and chiral, full gap, and Majorana node

    Science.gov (United States)

    Venderbos, Jörn W. F.; Kozii, Vladyslav; Fu, Liang

    2016-11-01

    Motivated by the recent experiment indicating that superconductivity in the doped topological insulator CuxBi2Se3 has an odd-parity pairing symmetry with rotational symmetry breaking, we study the general class of odd-parity superconductors with two-component order parameters in trigonal and hexagonal crystal systems. In the presence of strong spin-orbit interaction, we find two possible superconducting phases below Tc, a time-reversal-breaking (i.e., chiral) phase and an anisotropic (i.e., nematic) phase, and determine their relative energetics from the gap function in momentum space. The nematic superconductor generally has a full quasiparticle gap, whereas the chiral superconductor with a three-dimensional (3D) Fermi surface has point nodes with lifted spin degeneracy, resulting in itinerant Majorana fermions in the bulk and topological Majorana arcs on the surface.

  2. Losses of Superconductor Journal Bearing

    Science.gov (United States)

    Han, Y. H.; Hull, J. R.; Han, S. C.; Jeong, N. H.; Oh, J. M.; Sung, T. H.

    2004-06-01

    A high-temperature superconductor (HTS) journal bearing was studied for rotational loss. Two HTS bearings support the rotor at top and bottom. The rotor weight is 4 kg and the length is about 300 mm. Both the top and bottom bearings have two permanent magnet (PM) rings with an iron pole piece separating them. Each HTS journal bearing is composed of six pieces of superconductor blocks of size 35×25×10 mm. The HTS blocks are encased in a cryochamber through which liquid nitrogen flows. The inner spool of the cryochamber is made from G-10 to reduce eddy current loss, and the rest of the cryochamber is stainless steel. The magnetic field from the PM rings is < 10 mT on the stainless part. The rotational drag was measured over the same speed range at several chamber pressures. Results indicate that a chamber pressure of 0.4 mtorr is sufficiently low to minimize windage loss, and the 10 mT design criterion for the magnetic field on the stainless part of the cryochamber is too high.

  3. High Temperature Superconductor Accelerator Magnets

    CERN Document Server

    AUTHOR|(CDS)2079328; de Rijk, Gijs; Dhalle, Marc

    2016-11-10

    For future particle accelerators bending dipoles are considered with magnetic fields exceeding $20T$. This can only be achieved using high temperature superconductors (HTS). These exhibit different properties from classical low temperature superconductors and still require significant research and development before they can be applied in a practical accelerator magnet. In order to study HTS in detail, a five tesla demonstrator magnet named Feather-M2 is designed and constructed. The magnet is based on ReBCO coated conductor, which is assembled into a $10kA$ class Roebel cable. A new and optimized Aligned Block layout is used, which takes advantage of the anisotropy of the conductor. This is achieved by providing local alignment of the Roebel cable in the coil windings with the magnetic field lines. A new Network Model capable of analyzing transient electro-magnetic and thermal phenomena in coated conductor cables and coils is developed. This model is necessary to solve critical issues in coated conductor ac...

  4. Electronic transport in unconventional superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Graf, M.J.

    1998-12-31

    The author investigates the electron transport coefficients in unconventional superconductors at low temperatures, where charge and heat transport are dominated by electron scattering from random lattice defects. He discusses the features of the pairing symmetry, Fermi surface, and excitation spectrum which are reflected in the low temperature heat transport. For temperatures {kappa}{sub B}T {approx_lt} {gamma} {much_lt} {Delta}{sub 0}, where {gamma} is the bandwidth of impurity induced Andreev states, certain eigenvalues become universal, i.e., independent of the impurity concentration and phase shift. Deep in the superconducting phase ({kappa}{sub B}T {approx_lt} {gamma}) the Wiedemann-Franz law, with Sommerfeld`s value of the Lorenz number, is recovered. He compares the results for theoretical models of unconventional superconductivity in high-{Tc} and heavy fermion superconductors with experiment. The findings show that impurities are a sensitive probe of the low-energy excitation spectrum, and that the zero-temperature limit of the transport coefficients provides an important test of the order parameter symmetry.

  5. Method to improve superconductor cable

    Science.gov (United States)

    Borden, A.R.

    1984-03-08

    A method is disclosed of making a stranded superconductor cable having improved flexing and bending characteristics. In such method, a plurality of superconductor strands are helically wound around a cylindrical portion of a mandrel which tapers along a transitional portion to a flat end portion. The helically wound strands form a multistrand hollow cable which is partially flattened by pressure rollers as the cable travels along the transitional portion. The partially flattened cable is impacted with repeated hammer blows as the hollow cable travels along the flat end portion. The hammer blows flatten both the internal and the external surfaces of the strands. The cable is fully flattened and compacted by two sets of pressure rollers which engage the flat sides and the edges of the cable after it has traveled away from the flat end portion of the mandrel. The flattened internal surfaces slide easily over one another when the cable is flexed or bent so that there is very little possibility that the cable will be damaged by the necessary flexing and bending required to wind the cable into magnet coils.

  6. Position-sensitive superconductor detectors

    Science.gov (United States)

    Kurakado, M.; Taniguchi, K.

    2016-12-01

    Superconducting tunnel junction (STJ) detectors and superconducting transition- edge sensors (TESs) are representative superconductor detectors having energy resolutions much higher than those of semiconductor detectors. STJ detectors are thin, thereby making it suitable for detecting low-energy X rays. The signals of STJ detectors are more than 100 times faster than those of TESs. By contrast, TESs are microcalorimeters that measure the radiation energy from the change in the temperature. Therefore, signals are slow and their time constants are typically several hundreds of μs. However, TESs possess excellent energy resolutions. For example, TESs have a resolution of 1.6 eV for 5.9-keV X rays. An array of STJs or TESs can be used as a pixel detector. Superconducting series-junction detectors (SSJDs) comprise multiple STJs and a single-crystal substrate that acts as a radiation absorber. SSJDs are also position sensitive, and their energy resolutions are higher than those of semiconductor detectors. In this paper, we give an overview of position-sensitive superconductor detectors.

  7. Heat capacity measurements on high T sub c superconductors

    CERN Document Server

    Oezcan, S

    1998-01-01

    temperature interval. The phase transition jump increases with the increasing of oxygen amount in the CuO sub 2 layers. The hight of the jump is varying from 1.5% to 3.5% of the total specific heat which is the nature of the bulk superconductivity. The small coherence length increases fluctuation effects and also causes the dependence of superconducting properties on structural defects. The fluctuation effects on the heat capacity of YBCO is investigated on the sample that shows clear superconducting properties. In this work, a heat capacity measurement system which has high sensitivity and reproducibility designed and constructed. The investigation of the effect of oxygen stoichiometry on the superconducting properties of high T sub c superconductors was aimed. For this purpose electrical resistivity, magnetic susceptibility and heat capacity experiment were performed. The constructed system is a computerized adiabatic calorimeter which has temperature resolution of about 0.1 mk and operates in the temperatu...

  8. Holographic P-wave Superconductors in 1+1 Dimensions

    CERN Document Server

    Alkac, Gokhan; Chaturvedi, Pankaj

    2016-01-01

    We study $(1+1)$-dimensional p-wave holographic superconductors described by three dimensional Einstein-Maxwell gravity coupled to a massive complex vector field in the context of $AdS_3/CFT_2$ correspondence. In the probe limit where the backreation of matter fields is neglected, we show that there occurs a formation of a vector hair around the black hole below a certain critical temperature. In the dual strongly coupled $(1+1)$-dimensional boundary theory, this holographically corresponds to the formation of a charged vector condensate spontaneously breaking both the $U(1)$ and $SO(1,1)$ symmetries. We numerically compute the ac conductivity for the superconducting phase of the boundary field theory and find that the presence of a magnetic moment term in the dual bulk theory effects the conductivity in the boundary field theory.

  9. Anomalous density of states in hybrid normalmetal–superconductor bilayers

    Indian Academy of Sciences (India)

    A K Gupta; L Crétinon; B Pannetier; H Courtois

    2006-01-01

    In contact with a superconductor, the Andreev reflection of the electronslocally modifies the N metal electronic properties, including the local density of states(LDOS). We investigated the LDOS in superconductor–normal metal (Nb–Au) bilayersusing a very low temperature (60 mK) STM on the normal metal side. High resolutiontunneling spectra measured on the Au surface show a clear proximity effect with an energygap of reduced amplitude compared to the bulk Nb gap. The dependence of this mini-gap width with the normal metal thickness is discussed in terms of the Thouless energy. Within the mini-gap, the density of states does not reach zero and shows clear sub-gapfeatures. We compare the experimental spectra with the well-established quasi-classicaltheory.

  10. The AC magnetic susceptibility of high temperature superconductors

    CERN Document Server

    Salim, M

    2001-01-01

    This research concerns the development of AC magnetic susceptometers and use of susceptometers in analysing high temperature superconductors. Two of the designs were a differential magnetic susceptometer (DMS) and a double coil screening susceptometer (DCSS) whose descriptions are given in detail including coil design, field measurements, susceptometer operation, experimental instrumentation, phase adjustment, susceptometer calibration and sensitivity for each design. Theoretical details are given regarding each design in order to calculate the complex external and internal susceptibility. Investigation concerning the demagnetisation factor of different geometries, and the significant features and limitation for each design are also provided. The susceptometers were applied to a wide range of YBCO samples, which includes bulk samples with different geometry (i.e. Slabs, disk, powder and thick film) and thin films with different oxygen contents. Several silver sheathed Bi-2223 tapes were also involved. This al...

  11. Aeronautical applications of high-temperature superconductors

    Science.gov (United States)

    Turney, George E.; Luidens, Roger W.; Uherka, Kenneth; Hull, John

    1989-01-01

    The successful development of high-temperature superconductors (HTS) could have a major impact on future aeronautical propulsion and aeronautical flight vehicle systems. A preliminary examination of the potential application of HTS for aeronautics indicates that significant benefits may be realized through the development and implementation of these newly discovered materials. Applications of high-temperature superconductors (currently substantiated at 95 k) were envisioned for several classes of aeronautical systems, including subsonic and supersonic transports, hypersonic aircraft, V/STOL aircraft, rotorcraft, and solar, microwave and laser powered aircraft. Introduced and described are the particular applications and potential benefits of high-temperature superconductors as related to aeronautics and/or aeronautical systems.

  12. Synthesis of highly phase pure BSCCO superconductors

    Science.gov (United States)

    Dorris, S.E.; Poeppel, R.B.; Prorok, B.C.; Lanagan, M.T.; Maroni, V.A.

    1995-11-21

    An article and method of manufacture (Bi, Pb)-Sr-Ca-Cu-O superconductor are disclosed. The superconductor is manufactured by preparing a first powdered mixture of bismuth oxide, lead oxide, strontium carbonate, calcium carbonate and copper oxide. A second powdered mixture is then prepared of strontium carbonate, calcium carbonate and copper oxide. The mixtures are calcined separately with the two mixtures then combined. The resulting combined mixture is then subjected to a powder in tube deformation and thermal processing to produce a substantially phase pure (Bi, Pb)-Sr-Ca-Cu-O superconductor. 5 figs.

  13. Aeronautical applications of high-temperature superconductors

    Science.gov (United States)

    Turney, George E.; Luidens, Roger W.; Uherka, Kenneth; Hull, John

    1989-01-01

    The successful development of high-temperature superconductors (HTS) could have a major impact on future aeronautical propulsion and aeronautical flight vehicle systems. A preliminary examination of the potential application of HTS for aeronautics indicates that significant benefits may be realized through the development and implementation of these newly discovered materials. Applications of high-temperature superconductors (currently substantiated at 95 K) were envisioned for several classes of aeronautical systems, including subsonic and supersonic transports, hypersonic aircraft, V/STOL aircraft, rotorcraft, and solar, microwave and laser powered aircraft. Introduced and described are the particular applications and potential benefits of high-temperature superconductors as related to aeronautics and/or aeronautical systems.

  14. Tuning non-equilibrium superconductors with lasers

    Energy Technology Data Exchange (ETDEWEB)

    Sentef, Michael A.; Kollath, Corinna [HISKP, University of Bonn, Nussallee 14-16, D-53115 Bonn (Germany); Kemper, Alexander F. [LBL Berkeley (United States); Georges, Antoine [Ecole Polytechnique and College de France, Paris (France)

    2015-07-01

    The study of the real-time dynamics dynamics of solids perturbed by short laser pulses is an intriguing opportunity of ultrafast materials science. Previous theoretical work on pump-probe photoemission spectroscopy revealed spectroscopic signatures of electron-boson coupling, which are reminiscent of features observed in recent pump-probe photoemission experiments on cuprate superconductors. Here we investigate the ordered state of electron-boson mediated superconductors subject to laser driving using Migdal-Eliashberg theory on the Kadanoff-Baym-Keldysh contour. We extract the characteristic time scales on which the non-equilibrium superconductor reacts to the perturbation, and their relation to the coupling boson and the underlying order.

  15. Nematic antiferromagnetic states in bulk FeSe

    Science.gov (United States)

    Liu, Kai; Lu, Zhong-Yi; Xiang, Tao

    2016-05-01

    The existence of nematic order, which breaks the lattice rotational symmetry with nonequivalent a and b axes in iron-based superconductors, is a well-established experimental fact. An antiferromagnetic (AFM) transition is accompanying this order, observed in nearly all parent compounds, except bulk FeSe. The absence of the AFM order in FeSe casts doubt on the magnetic mechanism of iron-based superconductivity, since the nematic order is believed to be driven by the same interaction that is responsible for the superconducting pairing in these materials. Here we show, through systematic first-principles electronic structure calculations, that the ground state of FeSe is in fact strongly AFM correlated but without developing a magnetic long-range order. Actually, there are a series of staggered n -mer AFM states with corresponding energies below that of the single stripe AFM state, which is the ground state for the parent compounds of most iron-based superconductors. Here, the staggered n -mer (n any integer >1 ) means a set of n adjacent parallel spins on a line along the b axis with antiparallel spins between n -mers along both a and b axes. Moreover, different n -mers can antiparallelly mix with each other to coexist. Among all the states, we find that the lowest energy states formed by the staggered dimer, staggered trimer, and their random antiparallel aligned spin states along the b axis are quasidegenerate. The thermal average of these states does not show any magnetic long-range order, but it does possess a hidden one-dimensional AFM order along the a axis, which can be detected by elastic neutron scattering measurements. Our finding gives a natural account for the absence of long-range magnetic order and suggests that the nematicity is driven predominantly by spin fluctuations even in bulk FeSe, providing a unified description on the phase diagram of iron-based superconductors.

  16. Application Fields of High-Temperature Superconductors

    OpenAIRE

    Hott, Roland

    2003-01-01

    Potential application fields for cuprate high-temperature superconductors (HTS) and the status of respective projects are reviewed. The availability of a reliable and inexpensive cooling technique will be essential for a future broad acceptance of HTS applications.

  17. Progress of metallic superconductors in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Tachikawa, Kyoji, E-mail: tacsuper@keyaki.cc.u-tokai.ac.jp [Faculty of Engineering, Tokai University, 4-1-1, Kitakaname, Hiratsuka, Kanagawa 259-1292 (Japan)

    2013-01-15

    Highlights: ► Japanese contributions on the R and D of different metallic superconductors are summarized. ► Nb–Ti wires have been developed for MRI, accelerator, MAGLEV train and other applications. ► Multifilamentary Nb{sub 3}Sn wires with excellent performance have been developed for high-field use. ► Long-length Nb{sub 3}Al wires with promising strain tolerance have been fabricated by a new process. -- Abstract: This article overviews the development of metallic superconductors in Japan covering different kinds of alloys and intermetallic compounds. Metallic superconductors have opened many new application areas in science and technology. Japan has been one of the leading countries in the world, both in the research and development and in large-scale manufacturing of metallic superconductors.

  18. De-Sitter spacetime as a superconductor

    CERN Document Server

    Momeni, D

    2016-01-01

    A superconductor is a material with infinite electric conductivity. Superconductivity and magnetism are happening as two opposite phenomena: superconductors need weak external magnetic fields (the Meissner effect) while generally with a strong external magnetic field we loose superconductivity. In \\cite{ref:I}-\\cite{Chernodub:2011tv} , the author showed that a very strong magnetic field can turn an empty space into a superconductor. We extended this idea to the constant curvature spaces, de Sitter (dS) spacetime and by a careful analysis of the modes for a spinor with arbitrary spin, we show that in a very similar condensation scenario as was proposed for flat space, we could transform dS to a superconductor.

  19. Bulk chemicals from biomass

    NARCIS (Netherlands)

    Haveren, van J.; Scott, E.L.; Sanders, J.P.M.

    2008-01-01

    Given the current robust forces driving sustainable production, and available biomass conversion technologies, biomass-based routes are expected to make a significant impact on the production of bulk chemicals within 10 years, and a huge impact within 20-30 years. In the Port of Rotterdam there is a

  20. Auctioning Bulk Mobile Messages

    NARCIS (Netherlands)

    S. Meij (Simon); L-F. Pau (Louis-François); H.W.G.M. van Heck (Eric)

    2003-01-01

    textabstractThe search for enablers of continued growth of SMS traffic, as well as the take-off of the more diversified MMS message contents, open up for enterprises the potential of bulk use of mobile messaging , instead of essentially one-by-one use. In parallel, such enterprises or value added

  1. Bulk chemicals from biomass

    NARCIS (Netherlands)

    Haveren, van J.; Scott, E.L.; Sanders, J.P.M.

    2008-01-01

    Given the current robust forces driving sustainable production, and available biomass conversion technologies, biomass-based routes are expected to make a significant impact on the production of bulk chemicals within 10 years, and a huge impact within 20-30 years. In the Port of Rotterdam there is a

  2. Thermoelectric effect in a nonequilibrium superconductor

    Energy Technology Data Exchange (ETDEWEB)

    Falco, C. M.

    1977-01-01

    Initial results are reported showing experimental evidence for a pair-quasiparticle electrochemical potential difference in a superconductor in a temperature gradient. This potential diverges at low temperature and, within the resolution of the data, seems to approach a constant value at T/sub c/. The data can be used to extract a value for the thermal transport current of normal excitations in the superconductor.

  3. Holographic entanglement entropy in imbalanced superconductors

    CERN Document Server

    Dutta, Arghya

    2014-01-01

    We study the behavior of holographic entanglement entropy (HEE) for imbalanced holographic superconductor. It is found that HEE for this imbalanced system decreases with the increase of imbalance in chemical potentials. Also for an arbitrary mismatch between two chemical potentials, below the critical temperature, superconducting phase has a lower HEE in comparison to the AdS-Reissner-Nordstrom black hole phase. This suggests entanglement entropy to be a useful physical probe for understanding the imbalanced holographic superconductors.

  4. High temperature superconductors and other superfluids

    CERN Document Server

    Alexandrov, A S

    2017-01-01

    Written by eminent researchers in the field, this text describes the theory of superconductivity and superfluidity starting from liquid helium and a charged Bose-gas. It also discusses the modern bipolaron theory of strongly coupled superconductors, which explains the basic physical properties of high-temperature superconductors. This book will be of interest to fourth year graduate and postgraduate students, specialist libraries, information centres and chemists working in high-temperature superconductivity.

  5. Simultaneous constraint and phase conversion processing of oxide superconductors

    Science.gov (United States)

    Li, Qi; Thompson, Elliott D.; Riley, Jr., Gilbert N.; Hellstrom, Eric E.; Larbalestier, David C.; DeMoranville, Kenneth L.; Parrell, Jeffrey A.; Reeves, Jodi L.

    2003-04-29

    A method of making an oxide superconductor article includes subjecting an oxide superconductor precursor to a texturing operation to orient grains of the oxide superconductor precursor to obtain a highly textured precursor; and converting the textured oxide superconducting precursor into an oxide superconductor, while simultaneously applying a force to the precursor which at least matches the expansion force experienced by the precursor during phase conversion to the oxide superconductor. The density and the degree of texture of the oxide superconductor precursor are retained during phase conversion. The constraining force may be applied isostatically.

  6. Superconductors in the power grid materials and applications

    CERN Document Server

    2015-01-01

    Superconductors offer high throughput with low electric losses and have the potential to transform the electric power grid. Transmission networks incorporating cables of this type could, for example, deliver more power and enable substantial energy savings. Superconductors in the Power Grid: Materials and Applications provides an overview of superconductors and their applications in power grids. Sections address the design and engineering of cable systems and fault current limiters and other emerging applications for superconductors in the power grid, as well as case studies of industrial applications of superconductors in the power grid. Expert editor from highly respected US government-funded research centre Unique focus on superconductors in the power grid Comprehensive coverage

  7. Charge order in cuprate superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Bulut, Sinan; Kampf, Arno P. [Theoretical Physics III, Center for Electronic Correlations and Magnetism, Institute of Physics, University of Augsburg (Germany); Atkinson, Bill A. [Department of Physics and Astronomy, Trent University, Peterborough, Ontario (Canada)

    2015-07-01

    Motivated by widespread experimental evidence of charge orders in underdoped cuprate superconductors, we study a three band model of a cuprate plane. Our calculations start from a pseudogap-like normal system with a reconstructed Fermi surface, and we search for charge instabilities. From the charge susceptibilities, we identify a charge ordering instability with an ordering wavevector, q*, that matches experimental results not only with respect to the doping dependence but more importantly regarding its magnitude and direction. Namely, q* points along the Brillouin zone axes. Thus, our results clarify the discrepancy between many recent theoretical calculations and the experiments. We extend this calculation towards possible loop current instabilities and the charge ordering pattern in bilayer systems.

  8. Ultrasonic attenuation in cuprate superconductors

    Indian Academy of Sciences (India)

    T Gupta; D M Gaitonde

    2002-05-01

    We calculate the longitudinal ultrasonic attenuation rate (UAR) in clean d-wave superconductors in the Meissner and the mixed phases. In the Meissner phase we calculate the contribution of previously ignored processes involving the excitation of a pair of quasi-holes or quasi-particles. There is a contribution ∝ in the regime B ≪ F ≪ 0 and a contribution ∝ 1/ in the regime F ≪ B ≪ 0. We find that these contributions to the UAR are large and cannot be ignored. In the mixed phase, using a semi-classical description, we calculate the electronic quasi-particle contribution to the UAR which at very low , has a independent term proportional to $\\sqrt{H}$.

  9. Moessbauer studies of ternary superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Kimball, C.W.; Van Landuyt, G.L.; Barnet, C.D.; Shenoy, G.K.; Dunlap, B.D.; Fradin, F.Y.

    1978-01-01

    Moessbauer studies of the ternary Chevrel phase and rare earth rhodium boride superconductors have been made. Anomalous phonon properties at the Sn site in SnMo/sub 6/S/sub 8/, SnMo/sub 6/Se/sub 8/, and La/sub 0/ /sub 98/Sn/sub 0/ /sub 02/Mo/sub 6/Se/sub 8/ have been investigated. Studies of polarization of conduction electrons at the site of the magnetic ion have been made by means of the /sup 151/Eu Moessbauer effect in Eu/sub x/Sn/sub 1-x/Mo/sub 6/S/sub 8/ and the effects of such polarization on superconducting properties discussed. The Moessbauer effect in /sup 166/Er has been used to investigate the electronic ground state in the ternary compound ErRh/sub 4/B/sub 4/ both in the superconducting and magnetically ordered states.

  10. Subgap states in disordered superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Skvortsov, M. A., E-mail: skvor@itp.ac.ru; Feigel' man, M. V., E-mail: feigel@landau.ac.ru [Russian Academy of Sciences, Landau Institute for Theoretical Physics (Russian Federation)

    2013-09-15

    We revise the problem of the density of states in disordered superconductors. Randomness of local sample characteristics translates to the quenched spatial inhomogeneity of the spectral gap, smearing the BCS coherence peak. We show that various microscopic models of potential and magnetic disorder can be reduced to a universal phenomenological random order parameter model, whereas the details of the microscopic description are encoded in the correlation function of the order parameter fluctuations. The resulting form of the density of states is generally described by two parameters: the width {Gamma} measuring the broadening of the BCS peak and the energy scale {Gamma}{sub tail} that controls the exponential decay of the density of subgap states. We refine the existing instanton approaches for determination of {Gamma}{sub tail} and show that they appear as limiting cases of a unified theory of optimal fluctuations in a nonlinear system. The application to various types of disorder is discussed.

  11. Effect of Ni2O3 doping on the properties of single domain GdBCO bulk superconductors fabricated by a new modified top-seeding infiltration and growth process%Ni2O3掺杂对新固相源顶部籽晶熔渗生长法制备单畴GdBCO超导块材超导性能的影响

    Institute of Scientific and Technical Information of China (English)

    郭莉萍; 杨万民; 郭玉霞; 陈丽平; 李强

    2015-01-01

    本文通过在新固相源中添加Ni2 O3的方法,采用顶部籽晶熔渗生长工艺(TSIG)制备出组分为(1−x)(Gd2O3+1.2BaCuO2)+x Ni2O3、直径为20 mm的单畴GdBCO超导块材(其中x=0,0.02,0.06,0.10,0.14,0.18,0.30,0.50 wt%),并研究了Ni2 O3的掺杂量x对样品的表面生长形貌、微观结构、临界温度Tc、磁悬浮力以及俘获磁通密度的影响.研究结果表明,当Ni2 O3的掺杂量x在0—0.50 wt%的范围内时,均可制备出单畴性良好的样品,且Ni2 O3的掺杂对样品中Gd211粒子的分布和粒径没有明显的影响.在Ni2 O3的掺杂量x从0增加到0.50 wt%的过程中,样品的临界温度Tc呈现下降的趋势,从x=0时的92.5 K下降到x=0.50 wt%时的86.5 K,这是由于Ni3+替代GdBCO晶体中Cu2+所致;样品磁悬浮力和俘获磁通密度均呈现先增大后减小的变化规律, x=0.14 wt%时,磁悬浮力达到最大值34.2 N, x=0.10 wt%时,俘获磁通密度达到最大值0.354 T.样品磁悬浮力和俘获磁通密度的变化规律与Ni2 O3的掺杂量x有密切关系,只有当掺杂量x合适时, Ni3+对Cu2+的替代既不会造成Tc的明显下降,但又能产生适量的Ni3+/Cu2+晶格畸变,从而达到提高样品磁通钉扎能力和超导性能的效果.%Single-domain GdBCO bulk superconductor (20 mm in diameter) has been fabricated by a top-seeding infiltration and growth (TSIG) mathod, it has a new solid phase of [(1−x)(Gd2O3+1.2BaCuO2) +x Ni2O3] (where x = 0, 0.02, 0.06, 0.10, 0.14, 0.18, 0.30, 0.50 wt%). Effect of Ni2O3 additions on the growth morphology, microstructure, critical temperature Tc, magnetic levitation force, and trapped flux of single-domain GdBCO bulks have been investigated. Results show that the single-domain GdBCO bulk can be gained when x is in the range of 0–0.50 wt%;and the Gd211 particles are not affected by the Ni2O3 doping in the samples. The Tc of the samples decrease from 92.5 K (x=0 wt%) to 86.5 K (x=0.50 wt%) when x increases from 0 to 0.50 wt%, which is

  12. Search for Majorana fermions in topological superconductors.

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Wei [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Shi, Xiaoyan [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hawkins, Samuel D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Klem, John Frederick [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-10-01

    The goal of this project is to search for Majorana fermions (a new quantum particle) in a topological superconductor (a new quantum matter achieved in a topological insulator proximitized by an s-wave superconductor). Majorana fermions (MFs) are electron-like particles that are their own anti-particles. MFs are shown to obey non-Abelian statistics and, thus, can be harnessed to make a fault-resistant topological quantum computer. With the arrival of topological insulators, novel schemes to create MFs have been proposed in hybrid systems by combining a topological insulator with a conventional superconductor. In this LDRD project, we will follow the theoretical proposals to search for MFs in one-dimensional (1D) topological superconductors. 1D topological superconductor will be created inside of a quantum point contact (with the metal pinch-off gates made of conventional s-wave superconductors such as niobium) in a two-dimensional topological insulator (such as inverted type-II InAs/GaSb heterostructure).

  13. Vortexlike excitations in the heavy-fermion superconductor CeIrIn5

    Science.gov (United States)

    Luo, Yongkang; Rosa, P. F. S.; Bauer, E. D.; Thompson, J. D.

    2016-05-01

    We report a systematic study of temperature- and field-dependent charge (ρ ) and entropy (S ) transport in the heavy-fermion superconductor CeIrIn5. Its large positive thermopower Sx x is typical of Ce-based Kondo lattice systems, and strong electronic correlations play an important role in enhancing the Nernst signal Sx y. By separating the off-diagonal Peltier coefficient αx y from Sx y, we find that αx y becomes positive and greatly enhanced at temperatures well above the bulk Tc. Compared with the nonmagnetic analog LaIrIn5, these results suggest vortexlike excitations in a precursor state to unconventional superconductivity in CeIrIn5. This study sheds light on the similarity of heavy-fermion and cuprate superconductors and on the possibility of states not characterized by the amplitude of an order parameter.

  14. Levitation force of small clearance superconductor-magnet system under non-coaxial condition

    Science.gov (United States)

    Xu, Jimin; Jin, Yingze; Yuan, Xiaoyang; Miao, Xusheng

    2017-03-01

    A novel superconducting tilting-pad bearing was proposed for the advanced research of reusable liquid hydrogen turbopump in liquid rocket. The bearing is a combination of superconducting magnetic bearing and hydrodynamic fluid-film bearing. Since the viscosity of cryogenic fuel to activate superconducting state and form hydrodynamic fluid-film is very low, bearing clearance will be very small. This study focuses on the investigation of superconducting levitation force in this kind of small clearance superconductor-magnet system. Based on Bean critical state model and three-dimensional finite element method, an analysis method is presented to obtain the levitation force under such situation. Since the complicated operational conditions and structural arrangement for application in liquid rocket, center lines of bulk superconductor and magnet rotor will usually be in non-coaxial state. Superconducting levitation forces in axial direction and radial direction under non-coaxial situation are also analyzed by the presented method.

  15. Holographic Superconductors with Logarithmic Nonlinear Electrodynamics in an External Magnetic Field

    Science.gov (United States)

    Sheykhi, A.; Shamsi, F.

    2017-03-01

    Based on the matching method, we explore the effects of adding an external magnetic field on the s-wave holographic superconductors when the gauge field is in the form of the logarithmic nonlinear source. First, we obtain the critical temperature as well as the condensation operator in the presence of logarithmic nonlinear electrodynamics and understand that they depend on the nonlinear parameter b. We show that the critical temperature decreases with increasing b, which implies that the nonlinear gauge field makes the condensation harder. Then, we turn on the magnetic field in the bulk and find the critical magnetic field, B c , in terms of the temperature, which also depends on the nonlinear parameter b. We observe that for temperature smaller than the critical temperature, T superconductor with magnetic field in Maxwell theory.

  16. The magnetostriction in a superconductor-magnet system under non-uniform magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xueyi; Jiang, Lang; Wu, Hao [Key Laboratory of Mechanics on Disaster and Environment in Western China attached to the Ministry of Education of China, Lanzhou University, Lanzhou, Gansu 730000 (China); Gao, Zhiwen, E-mail: gaozhw@lzu.edu.cn [Department of Mechanics and Engineering Science, College of Civil Engineering and Mechanics, Lanzhou University, Lanzhou, Gansu 730000 (China)

    2017-03-15

    Highlights: • We studied firstly magnetostriction in HTS under non-uniform magnetic field. • The superconductors may be homogeneous and nonhomogeneous. • The magnetostrictions response of the HTS is sensitive to the critical current density and amplitude of the applied magnetic field. • The magnetostriction of nonhomogeneous HTS is larger than that of homogeneous HTS. - Abstract: This paper describes a numerical model to examine the magnetostriction of bulk high-temperature superconductor (HTS) under non-uniform magnetic field in conjunction with finite element analysis. Through this model, the magnetostriction of homogeneous and nonhomogeneous HTS can be implemented under non-uniform magnetic field. Further, the effects of critical current density, applied field frequency and amplitude are also considered. The computational study can provide a fundamental mechanistic understanding the effects of non-uniform magnetic field on magnetostriction of HTS.

  17. Kim model for flux-pinning-induced stress in a long cylindrical superconductor

    Science.gov (United States)

    Zeng, Jun; Wang, Xiaogui; Wu, Huaping; Xue, Feng; Zhu, Jun

    2016-07-01

    In this work, the flux-pinning-induced stress distribution in a circular cylinder of high-temperature superconductors is studied by adopting the Kim critical state model to describe the relationship between the magnetic flux density and induced current. Based on the plane strain approach, the analytic expressions of the radial and hoop stress in the cylinder are derived for the zero-field cooling and field cooling magnetization processes. It is shown that the stress distributions depend on the activation processes and the values of the dimensionless parameter p in the Kim model, and the overall maximums of the stresses appear at or near the center of the cylinder where cracking may be most likely initiated. In addition, the Kim model has wider applicability than the Bean model, and the influence of p on the stress depends on the activation process. Generally speaking, these results may be useful for understanding the magnetoelastic problem in practical application of bulk superconductors.

  18. Superconductor-semiconductor-superconductor planar junctions of aluminium on DELTA-doped gallium arsenide

    DEFF Research Database (Denmark)

    Taboryski, Rafael Jozef; Clausen, Thomas; Kutchinsky, jonatan

    1997-01-01

    We have fabricated and characterized planar superconductor-semiconductor-superconductor (S-Sm-S) junctions with a high quality (i.e. low barrier) interface between an n++ modulation doped conduction layer in MBE grown GaAs and in situ deposited Al electrodes. The Schottky barrier at the S...

  19. Geometric heat trapping in niobium superconductor-insulator-superconductor mixers due to niobium titanium nitride leads

    NARCIS (Netherlands)

    Leone, B; Jackson, BD; Gao, [No Value; Klapwijk, TM

    2000-01-01

    We analyze the current-voltage characteristics of a Nb superconductor-insulator-superconductor mixer with NbTiN leads to identify the heating processes in this device. We argue that the electron-electron interaction is much faster than the electron-phonon interaction, and show that the heat flow to

  20. Strong nonequilibrium coherent states in mesoscopic superconductor-semiconductor-superconductor junctions

    DEFF Research Database (Denmark)

    Kutchinsky, Jonatan; Wildt, Morten; Taboryski, Rafael Jozef;

    1999-01-01

    A biased superconductor-normal metal-superconductor junction is known to be a strong nonequilibrium system, where Andreev scattering at the interfaces creates a quasiparticle distribution function far from equilibrium, a manifestation of this is the well-known subgap structure in the I...

  1. Direct current heating in superconductor-insulator-superconductor tunnel devices for THz mixing applications

    NARCIS (Netherlands)

    Dieleman, P; Klapwijk, T.M; Kovtonyuk, S.; van de Stadt, H.

    1996-01-01

    DC heating effects in superconductor-insulator-superconductor (SIS) tunnel junctions are studied by comparing junctions sandwiched between niobium or aluminum layers. With niobium a temperature rise of several Kelvin is observed, which is reduced by an order of magnitude by using aluminum. A simple

  2. Niobium titanium nitride-based superconductor-insulator-superconductor mixers for low-noise terahertz receivers

    NARCIS (Netherlands)

    Jackson, B.D.; De Lange, G.; Zijlstra, T.; Kroug, M.; Klapwijk, T.M.; Stern, J.A.

    2005-01-01

    Integrating NbTiN-based microstrip tuning circuits with traditional Nb superconductor-insulator-superconductor (SIS) junctions enables the low-noise operation regime of SIS mixers to be extended from below 0.7 to 1.15 THz. In particular, mixers incorporating a NbTiN/SiO2/NbTiN microstrip tuning circ

  3. Josephson current in a normal-metal nanowire coupled to a superconductor/ferromagnet/superconductor junction

    NARCIS (Netherlands)

    Ebisu, H.; Lu, B.; Taguchi, K.; Golubov, Alexandre Avraamovitch; Tanaka, Y.

    2016-01-01

    We consider a superconducting nanowire proximity coupled to a superconductor/ferromagnet/superconductor (S/F/S) junction, where the magnetization penetrates into a superconducting segment in a nanowire decaying as ∼exp[−∣n∣ξ], where n is the site index and the ξ is the decay length. We tune chemical

  4. Trapped magnetic field of a superconducting bulk magnet in high- T sub c RE-Ba-Cu-O

    CERN Document Server

    Fujimoto, H; Higuchi, T; Nakamura, Y; Kamijo, H; Nagashima, K; Murakami, M

    1999-01-01

    Superconducting magnets made of high-T sub c superconductors are promising for industrial applications. It is well known that REBa sub 2 Cu sub 3 O sub 7 sub - sub x and LRE (light rare-earth) Ba sub 2 Cu sub 3 O sub 7 sub - sub x superconductors prepared by melt processes have a high critical current density, J sub c , at 77 K and high magnetic fields. Therefore, the materials are very prospective for high magnetic field application as a superconducting permanent/bulk magnet with liquid-nitrogen refrigeration. LREBaCuO bulks, compared with REBaCuO bulks, exhibit a larger J sub c in high magnetic fields and a much improved irreversibility field, H sub i sub r sub r , at 77 K. In this study, we discuss the possibility and trapped field properties of a superconducting bulk magnet, as well as the melt processing for bulk superconductors and their characteristic superconducting properties. One of the applications is a superconducting magnet for the future magnetically levitated (Maglev) train.

  5. Trapped magnetic field of a superconducting bulk magnet in high- T{sub c} RE-Ba-Cu-O

    Energy Technology Data Exchange (ETDEWEB)

    Fujimoto, Hiroyuki; Yoo, Sang Im; Higuchi, Takamitsu; Nakamura, Yuichi; Kamijo, Hiroki; Nagashima, Ken [Railway Technical Research Institute, Tokyo (Japan); Murakami, Masato [International Superconductivity Technology Center, Tokyo (Japan)

    1999-07-01

    Superconducting magnets made of high-T{sub c} superconductors are promising for industrial applications. It is well known that REBa{sub 2}Cu{sub 3}O{sub 7-x} and LRE (light rare-earth) Ba{sub 2}Cu{sub 3}O{sub 7-x} superconductors prepared by melt processes have a high critical current density, J{sub c}, at 77 K and high magnetic fields. Therefore, the materials are very prospective for high magnetic field application as a superconducting permanent/bulk magnet with liquid-nitrogen refrigeration. LREBaCuO bulks, compared with REBaCuO bulks, exhibit a larger J{sub c} in high magnetic fields and a much improved irreversibility field, H{sub irr}, at 77 K. In this study, we discuss the possibility and trapped field properties of a superconducting bulk magnet, as well as the melt processing for bulk superconductors and their characteristic superconducting properties. One of the applications is a superconducting magnet for the future magnetically levitated (Maglev) train.

  6. Comprehensive comparison of the levitation performance of bulk YBaCuO arrays above two different types of magnetic guideways

    Science.gov (United States)

    Deng, Zigang; Qian, Nan; Che, Tong; Jin, Liwei; Si, Shuaishuai; Zhang, Ya; Zheng, Jun

    2016-12-01

    The permanent magnet guideway (PMG) is an important part of high temperature superconducting (HTS) maglev systems. So far, two types of PMG, the normal PMG and Halbach-type PMG, are widely applied in present maglev transportation systems. In this paper, the levitation performance of high temperature superconductor bulks above the two PMGs was synthetically compared. Both static levitation performance and dynamic response characteristics were investigated. Benefiting from the reasonable magnetic field distribution, the Halbach-type PMG is able to gain larger levitation force, greater levitation force decay during the same relaxation time, bigger resonance frequency and dynamic stiffness for the bulk superconductor levitation unit compared with the normal PMG. Another finding is that the Halbach-type PMG is not sensitive to the levitation performance of the bulk levitation unit with different arrays. These results are helpful for the practical application of HTS maglev systems.

  7. Radiative Bulk Viscosity

    CERN Document Server

    Chen, X

    2001-01-01

    Viscous resistance to changes in the volume of a gas arises when different degrees of freedom have different relaxation times. Collisions tend to oppose the resulting departures from equilibrium and, in so doing, generate entropy. Even for a classical gas of hard spheres, when the mean free paths or mean flight times of constituent particles are long, we find a nonvanishing bulk viscosity. Here we apply a method recently used to uncover this result for a classical rarefied gas to radiative transfer theory and derive an expression for the radiative stress tensor for a gray medium with absorption and Thomson scattering. We determine the transport coefficients through the calculation of the comoving entropy generation. When scattering dominates absorption, the bulk viscosity becomes much larger than either the shear viscosity or the thermal conductivity.

  8. High Performance Bulk Thermoelectric Materials

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Zhifeng [Boston College, Chestnut Hill, MA (United States)

    2013-03-31

    Over 13 plus years, we have carried out research on electron pairing symmetry of superconductors, growth and their field emission property studies on carbon nanotubes and semiconducting nanowires, high performance thermoelectric materials and other interesting materials. As a result of the research, we have published 104 papers, have educated six undergraduate students, twenty graduate students, nine postdocs, nine visitors, and one technician.

  9. The effects of magnetization process on levitation characteristics of a superconducting bulk magnet

    Science.gov (United States)

    Jiang, J.; Gong, Y. M.; Li, Y. H.; Liang, G.; Yang, X. S.; Cheng, C. H.; Zhao, Y.

    2015-09-01

    In this paper, a bulk YBCO superconductor was magnetized in a chosen magnetic field generated from a superconducting magnet (SM) after field cooling process. The effects of magnetization process with different magnetization intensities on levitation forces and relaxation characteristics were investigated. From the results, it can be confirmed that the superconducting bulk magnet (SBM) magnetized with proper magnetization intensity was beneficial to improve the levitation characteristics of the magnetic levitation system. Nevertheless, when the magnetization intensity exceeded 0.85T, the levitation forces and the relaxation characteristics of the SBM attained saturation.

  10. Application of superconductor-semiconductor Schottky barrier for electron cooling

    Energy Technology Data Exchange (ETDEWEB)

    Savin, Alexander; Prunnila, Mika; Ahopelto, Jouni; Kivinen, Pasi; Toermae, Paeivi; Pekola, Jukka

    2003-05-01

    Electronic cooling in superconductor-semiconductor-superconductor structures at sub kelvin temperatures has been demonstrated. Effect of the carrier concentration in the semiconductor on performance of the micro-cooler has been investigated.

  11. Performance of ceramic superconductors in magnetic bearings

    Science.gov (United States)

    Kirtley, James L., Jr.; Downer, James R.

    1993-01-01

    Magnetic bearings are large-scale applications of magnet technology, quite similar in certain ways to synchronous machinery. They require substantial flux density over relatively large volumes of space. Large flux density is required to have satisfactory force density. Satisfactory dynamic response requires that magnetic circuit permeances not be too large, implying large air gaps. Superconductors, which offer large magnetomotive forces and high flux density in low permeance circuits, appear to be desirable in these situations. Flux densities substantially in excess of those possible with iron can be produced, and no ferromagnetic material is required. Thus the inductance of active coils can be made low, indicating good dynamic response of the bearing system. The principal difficulty in using superconductors is, of course, the deep cryogenic temperatures at which they must operate. Because of the difficulties in working with liquid helium, the possibility of superconductors which can be operated in liquid nitrogen is thought to extend the number and range of applications of superconductivity. Critical temperatures of about 98 degrees Kelvin were demonstrated in a class of materials which are, in fact, ceramics. Quite a bit of public attention was attracted to these new materials. There is a difficulty with the ceramic superconducting materials which were developed to date. Current densities sufficient for use in large-scale applications have not been demonstrated. In order to be useful, superconductors must be capable of carrying substantial currents in the presence of large magnetic fields. The possible use of ceramic superconductors in magnetic bearings is investigated and discussed and requirements that must be achieved by superconductors operating at liquid nitrogen temperatures to make their use comparable with niobium-titanium superconductors operating at liquid helium temperatures are identified.

  12. Effects of densification of precursor pellets on microstructures and critical current properties of YBCO melt-textured bulks

    Science.gov (United States)

    Setoyama, Yui; Shimoyama, Jun-ichi; Motoki, Takanori; Kishio, Kohji; Awaji, Satoshi; Kon, Koichi; Ichikawa, Naoki; Inamori, Satoshi; Naito, Kyogo

    2016-12-01

    Effects of densification of precursor disks on the density of residual voids and critical current properties for YBCO melt-textured bulk superconductors were systematically investigated. Six YBCO bulks were prepared from precursor pellets with different initial particle sizes of YBa2Cu3Oy (Y123) powder and applied pressures for pelletization. It was revealed that use of finer Y123 powder and consolidation using cold-isostatic-pressing (CIP) with higher pressures result in reduction of residual voids at inner regions of bulks and enhance Jc especially under low fields below the second peak.

  13. Quaternary borocarbides: New class of intermetallic superconductors

    Science.gov (United States)

    Nagarajan, R.; Gupta, L. C.; Dhar, S. K.; Mazumdar, Chandan; Hossain, Zakir; Godart, C.; Levy-Clement, C.; Padalia, B. D.; Vijayaraghavan, R.

    1995-01-01

    Our recent discovery of superconductivity (SC) in the four-element multiphase Y-Ni-B-C system at an elevated temperature (TC approximately 12 K) has opened up great possibilities of identifying new superconducting materials and generating new physics. Superconductivity with Tc (greater than 20 K) higher than that known so far in bulk intermetallics has been observed in multiphase Y-Pd-B-C and Th-Pd-B-C systems and a family of single phase materials RENi2B2C (RE= Y, rare earth) have been found. Our investigations show YNi2B2C to be a strong coupling hard type-II SC. HC2(T) exhibits an unconventional temperature dependence. Specific heat and magnetization studies reveal coexistence of SC and magnetism in RNi2B2C (R = Ho, Er, Tm) with magnetic ordering temperatures (Tc approximately 8 K, 10.5 K, 11 K and Tm approximately 5 K, approximately 7K, approximately 4 K respectively) that are remarkably higher than those in known magnetic superconductors . Mu-SR studies suggest the possibility of Ni atoms carrying a moment in TmNi2B2C. Resistivity results suggests a double re-entrant transition (SC-normal-SC) in HoNi2B2C. RENi2B2C (RE = Ce, Nd, Gd) do not show SC down to 4.2 K. The Nd- and Gd-compounds order magnetically at approximately 4.5 K and approximately 19.5 K, respectively. Two SC transitions are observed in Y-Pd-B-C (Tc approximately 22 K, approximately 10 K) and in Th-Pd-B-C (Tc approximately 20 K, approximately 14 K) systems, which indicate that there are at least two structures which support SC in these borocarbides. In our multiphase ThNi2B2C we observe SC at approximately 6 K. No SC was seen in multiphase UNi2B2C, UPd2B2C, UOs2Ge2C and UPd5B3C(0.35) down to 4.2 K. Tc in YNi2B2C is depressed by substitutions (Gd, Th and U at Y-sites and Fe, Co at Ni-sites).

  14. Sealed glass coating of high temperature ceramic superconductors

    Science.gov (United States)

    Wu, Weite; Chu, Cha Y.; Goretta, Kenneth C.; Routbort, Jules L.

    1995-01-01

    A method and article of manufacture of a lead oxide based glass coating on a high temperature superconductor. The method includes preparing a dispersion of glass powders in a solution, applying the dispersion to the superconductor, drying the dispersion before applying another coating and heating the glass powder dispersion at temperatures below oxygen diffusion onset and above the glass melting point to form a continuous glass coating on the superconductor to establish compressive stresses which enhance the fracture strength of the superconductor.

  15. Electron tunneling and point contact Andreev reflection studies of superconductors

    Science.gov (United States)

    Dai, Wenqing

    The energy gap is the most fundamental property of a superconductor. Electron tunneling spectroscopy and point contact spectroscopy (PCS) are powerful techniques for studying the density of states and energy gap features of superconductors. Two different superconducting systems, multiband superconductor MgB2 and proximity induced topological superconductor NbSe2/Bi 2Se3 heterostructures were studied using either quasiparticle tunneling in planar tunnel junctions or PCS in this work. (Abstract shortened by ProQuest.).

  16. High levitation pressures with cage-cooled superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Hull, John R. [Energy Technology Division, Argonne National Laboratory, Argonne, IL (United States); Komori, Mochimitsu [Department of Mechanical Systems Engineering, Kyushu Institute of Technology, Iizuka, Fukuoka (Japan)

    2002-05-01

    We present an analysis of and experimental results from a levitational system comprising a stationary, bulk high-temperature superconductor (HTS) and a levitated component (rotor) that consists of a cylindrical permanent magnet surrounded by an annular HTS. The rotor is cooled below the critical temperature of the HTS while surrounded by a ferromagnetic cage. When the ferromagnetic cage is removed, the flux from the permanent magnet is essentially excluded from the interior of the HTS. When brought into proximity with the HTS stator, the cage-cooled rotor experiences a levitational force. The levitational force may be calculated by applying magnetic circuit theory. Such calculations indicate that for a sufficiently high critical current density, the levitational pressure may exceed that between the permanent magnet and its mirror image. We constructed a rotor from an NdFeB permanent magnet and YBCO bulk HTS with a critical current density of {approx}5 kA cm{sup -2}. A soft ferromagnetic steel cage was constructed in segments. The critical current density of the stator HTS was also {approx}5 kA cm{sup -2}. Experimental results obtained with the cage-cooled rotor and stationary HTS show a significant increase in force over that of an equivalent PM rotor and stationary HTS. (author)

  17. High levitation pressures with cage-cooled superconductors

    Science.gov (United States)

    Hull, John R.; Komori, Mochimitsu

    2002-05-01

    We present an analysis of and experimental results from a levitational system comprising a stationary, bulk high-temperature superconductor (HTS) and a levitated component (rotor) that consists of a cylindrical permanent magnet surrounded by an annular HTS. The rotor is cooled below the critical temperature of the HTS while surrounded by a ferromagnetic cage. When the ferromagnetic cage is removed, the flux from the permanent magnet is essentially excluded from the interior of the HTS. When brought into proximity with the HTS stator, the cage-cooled rotor experiences a levitational force. The levitational force may be calculated by applying magnetic circuit theory. Such calculations indicate that for a sufficiently high critical current density, the levitational pressure may exceed that between the permanent magnet and its mirror image. We constructed a rotor from an NdFeB permanent magnet and YBCO bulk HTS with a critical current density of ≈5 kA cm-2. A soft ferromagnetic steel cage was constructed in segments. The critical current density of the stator HTS was also ≈5 kA cm-2. Experimental results obtained with the cage-cooled rotor and stationary HTS show a significant increase in force over that of an equivalent PM rotor and stationary HTS.

  18. Rotating superconductor magnet for producing rotating lobed magnetic field lines

    Science.gov (United States)

    Hilal, Sadek K.; Sampson, William B.; Leonard, Edward F.

    1978-01-01

    This invention provides a rotating superconductor magnet for producing a rotating lobed magnetic field, comprising a cryostat; a superconducting magnet in the cryostat having a collar for producing a lobed magnetic field having oppositely directed adjacent field lines; rotatable support means for selectively rotating the superconductor magnet; and means for energizing the superconductor magnet.

  19. Inhomogeneous magnetic field in AdS/CFT superconductor

    OpenAIRE

    Wen, Wen-Yu

    2008-01-01

    We study the holographically dual description of superconductor in (2+1)-dimensions in the presence of inhomogeneous magnetic field and observe that there exists type I and type II superconductor. A new feature of type changing is observed for type I superconductor near critical temperature.

  20. Physics and chemistry review of layered chalcogenide superconductors

    OpenAIRE

    Deguchi, Keita; Takano, Yoshihiko; Mizuguchi, Yoshikazu

    2012-01-01

    Structural and physical properties of layered chalcogenide superconductors are summarized. In particular, we review the remarkable properties of the Fe-chalcogenide superconductors, FeSe and FeTe-based materials. Furthermore, we introduce the recently-discovered new BiS2-based layered superconductors and discuss its prospects.

  1. Fermi surface deformation in a simple iron-based superconductor, FeSe

    Science.gov (United States)

    Coldea, Amalia; Watson, Matthew; Kim, Timur; Haghighirad, Amir; McCollam, Alix; Hoesch, Moritz; Schofield, Andrew

    2015-03-01

    One of the outstanding problems in the field superconductivity is the identification of the normal state out of which superconductivity emerges. FeSe is one of the simplest and most intriguing iron-based superconductors, since in its bulk form it undergoes a structural transition before it becomes superconducting, whereas its single-layer form is believed to be a high-temperature superconductor. The nature of the structural transition, occurring in the absence of static magnetism, is rather unusual and how the electronic structure is stabilized by breaking of the rotational symmetry is the key to understand the superconductivity in bulk FeSe. Here we report angle-resolved photoemission spectroscopy measurements on FeSe that gives direct access to the band structure and orbital-dependent effects. We complement our studies on bulk FeSe with low-temperature angular-dependent quantum oscillation measurements using applied magnetic fields that are sufficiently strong to suppress superconductivity and reach the normal state. These studies reveal a strong deformation of Fermi surface through the structural transition driven by electronic correlations and orbital-dependent effects. . This work was supported by EPSRC, UK (EP/I004475/1), Diamond Light Source, UK and HFML, Nijmegen.

  2. Fabrication of Bi2223 bulks with high critical current properties sintered in Ag tubes

    Science.gov (United States)

    Takeda, Yasuaki; Shimoyama, Jun-ichi; Motoki, Takanori; Kishio, Kohji; Nakashima, Takayoshi; Kagiyama, Tomohiro; Kobayashi, Shin-ichi; Hayashi, Kazuhiko

    2017-03-01

    Randomly grain oriented Bi2223 sintered bulks are one of the representative superconducting materials having weak-link problem due to very short coherence length particularly along the c-axis, resulting in poor intergrain Jc properties. In our previous studies, sintering and/or post-annealing under moderately reducing atmospheres were found to be effective for improving grain coupling in Bi2223 sintered bulks. Further optimizations of the synthesis process for Bi2223 sintered bulks were attempted in the present study to enhance their intergrain Jc. Effects of applied pressure of uniaxial pressing and sintering conditions on microstructure and superconducting properties have been systematically investigated. The best sample showed intergrain Jc of 2.0 kA cm-2 at 77 K and 8.2 kA cm-2 at 20 K, while its relative density was low ∼65%. These values are quite high as for a randomly oriented sintered bulk of cuprate superconductors.

  3. Quantum interference in an interfacial superconductor

    Science.gov (United States)

    Goswami, Srijit; Mulazimoglu, Emre; Monteiro, Ana M. R. V. L.; Wölbing, Roman; Koelle, Dieter; Kleiner, Reinhold; Blanter, Ya. M.; Vandersypen, Lieven M. K.; Caviglia, Andrea D.

    2016-10-01

    The two-dimensional superconductor that forms at the interface between the complex oxides lanthanum aluminate (LAO) and strontium titanate (STO) has several intriguing properties that set it apart from conventional superconductors. Most notably, an electric field can be used to tune its critical temperature (Tc; ref. 7), revealing a dome-shaped phase diagram reminiscent of high-Tc superconductors. So far, experiments with oxide interfaces have measured quantities that probe only the magnitude of the superconducting order parameter and are not sensitive to its phase. Here, we perform phase-sensitive measurements by realizing the first superconducting quantum interference devices (SQUIDs) at the LAO/STO interface. Furthermore, we develop a new paradigm for the creation of superconducting circuit elements, where local gates enable the in situ creation and control of Josephson junctions. These gate-defined SQUIDs are unique in that the entire device is made from a single superconductor with purely electrostatic interfaces between the superconducting reservoir and the weak link. We complement our experiments with numerical simulations and show that the low superfluid density of this interfacial superconductor results in a large, gate-controllable kinetic inductance of the SQUID. Our observation of robust quantum interference opens up a new pathway to understanding the nature of superconductivity at oxide interfaces.

  4. Very high resolution measurement of the penetration depth of superconductors by a novel single-coil inductance technique

    Science.gov (United States)

    Gauzzi, A.; Le Cochec, J.; Lamura, G.; Jönsson, B. J.; Gasparov, V. A.; Ladan, F. R.; Plaçais, B.; Probst, P. A.; Pavuna, D.; Bok, J.

    2000-05-01

    We describe a novel single-coil mutual inductance technique for measuring the magnetic penetration depth λ of superconductors at 2-4 MHz as a function of temperature in the 4-100 K range. We combine a single-coil configuration with a high-stability marginal oscillator; this enables us to measure the absolute value of λ on both bulk samples and thin films with very high resolution (δλ=10 pm) and a precision of 30 nm. As example of application, we report measurements on NbTi bulk samples and Nb films. This contactless technique is suited for probing the superconducting properties of samples over large surfaces.

  5. Nanoscale magnetization of a single vortex in d-wave superconductors

    Science.gov (United States)

    Zakharchuk, I.; Januzaj, A.; Safonchik, M.; Traito, K. B.; Lähderanta, E.

    2017-01-01

    A finite-size scaling of the nanoscale magnetization m on size averaging R of a single vortex in d-wave bulk superconductor is developed using quasiclassical Eilenberger equations. Nanoscaling is anchoring around the linear London approximation for bulk superconductors. Comparing the results with those obtained in local nonlinear approach demonstrated the importance of the nonlocal contribution. Temperature dependences of two-point correlation function χ(T , R 1 , R 2) = m(T , R 2) / m(0 , R 2) - m(T , R 1) / m(0 , R 1) with R2 > R1 and one-point function χ(T, R1 → ∞, R2) are calculated. It is found that χ(T, R1, R2), R2 > R1, is a nonmonotonous function of temperature and changes sign at high temperatures. This nonmonotonous temperature dependence can be understood as a result of competition between various effects i) Volovik effect and nonlocal corrections to superconducting electron density dominating in low temperature range, and ii) current-induced suppression of the order parameter dominating at high temperatures. The introduced nonmagnetic disorder greatly suppresses the low temperature nonlocal and nonlinear effects, leaving the order parameter effects to prevail in the whole temperature range. Nonlocal pairing and tunneling effects are investigated at the superconductor - normal metal border by considering a d-wave superconducting dot (d-dot) inside a normal diffusive metal. These effects result in a suppression of the supercurrent in the vortex core and are essential in nanodots with relatively small sizes. At sizes larger than a temperature dependent characteristic length the nanoscale physics transforms into bulk solution.

  6. Quantum information aspects on bulk and nano interacting Fermi system: A spin-space density matrix approach

    Science.gov (United States)

    Afzali, R.; Ebrahimian, N.; Eghbalifar, B.

    2016-10-01

    By approximating the energy gap, entering nano-size effect via gap fluctuation and calculating the Green's functions and the space-spin density matrix, the dependence of quantum correlation (entanglement, discord and tripartite entanglement) on the relative distance of two electron spins forming Cooper pairs, the energy gap and the length of bulk and nano interacting Fermi system (a nodal d-wave superconductor) is determined. In contrast to a s-wave superconductor, quantum correlation of the system is sensitive to the change of the gap magnitude and strongly depends on the length of the grain. Also, quantum discord oscillates. Furthermore, the entanglement length and the correlation length are investigated. Discord becomes zero at a characteristic length of the d-wave superconductor.

  7. Topological spin-singlet superconductors with underlying sublattice structure

    Science.gov (United States)

    Dutreix, C.

    2017-07-01

    Majorana boundary quasiparticles may naturally emerge in a spin-singlet superconductor with Rashba spin-orbit interactions when a Zeeman magnetic field breaks time-reversal symmetry. Their existence and robustness against adiabatic changes is deeply related, via a bulk-edge correspondence, to topological properties of the band structure. The present paper shows that the spin-orbit may be responsible for topological transitions when the superconducting system has an underlying sublattice structure, as it appears in a dimerized Peierls chain, graphene, and phosphorene. These systems, which belong to the Bogoliubov-de Gennes class D, are found to have an extra symmetry that plays the role of the parity. It enables the characterization of the topology of the particle-hole symmetric band structure in terms of band inversions. The topological phase diagrams this leads to are then obtained analytically and exactly. They reveal that, because of the underlying sublattice structure, the existence of topological superconducting phases requires a minimum doping fixed by the strength of the Rashba spin orbit. Majorana boundary quasiparticles are finally predicted to emerge when the Fermi level lies in the vicinity of the bottom (top) of the conduction (valence) band in semiconductors such as the dimerized Peierls chain and phosphorene. In a two-dimensional topological superconductor based on (stretched) graphene, which is semimetallic, Majorana quasiparticles cannot emerge at zero and low doping, that is, when the Fermi level is close to the Dirac points. Nevertheless, they are likely to appear in the vicinity of the van Hove singularities.

  8. Hacia el motor superconductor: estudio de las interacciones entre un rotor superconductor y un estator convencional

    OpenAIRE

    Pallarès Viña, Miquel Joan

    2002-01-01

    de la tesis:Hacia el motor superconductor: estudio de las interacciones entre un estator convencional y un rotor superconductorEl desarrollo de superconductores de alta temperatura (HTSC) de gran corriente crítica ha permitido la fabricación de dispositivos en varias áreas de la ingeniería electromecánica. En particular, los HTSC pueden mejorar el rendimiento de los motores eléctricos, ya sea sustituyendo el cobre en el rotor de los mismos o con la realización de nuevos diseños.El particular...

  9. dc Josephson Effect in s-Wave Superconductor/Ferromagnet Insulator/p-Wave Superconductor Junctions

    Institute of Scientific and Technical Information of China (English)

    LI Xiao-Wei

    2007-01-01

    The Josephson currents in s-wave superconductor/ferromagnet insulator/p-wave superconductor(s/FI/p)junctions are calculated as a function of temperature and the phase taking into account the roughness scattering effect at interface.The phase dependence of the Josephson current I ( φ) between s-wave and px-wave superconductor is predicted to be sin(2φ).The ferromagnet scattering effect,the barrier strength,and the roughness strength at interface suppress the dc currents in s/FI/p junction.

  10. Method for preparing high transition temperature Nb.sub.3 Ge superconductors

    Science.gov (United States)

    Newkirk, Lawrence R.; Valencia, Flavio A.

    1977-01-01

    Bulk coatings of Nb.sub.3 Ge superconductors having transition temperatures in excess of 20 K are readily formed by a chemical vapor deposition technique involving the coreduction of NbCl.sub.5 and GeCl.sub.4 in the presence of hydrogen. The NbCl.sub.5 vapor may advantageously be formed quantitatively in the temperature range of about 250.degree. to 260.degree. C by the chlorination of Nb metal provided the partial pressure of the product NbCl.sub.5 vapor is maintained at or below about 0.1 atm.

  11. A new ferromagnetic superconductor: CsEuFe4As4

    Institute of Scientific and Technical Information of China (English)

    Yi Liu; Ya-Bin Liu; Qian Chen; Zhang-Tu Tang; Wen-He Jiao; Qian Tao; Zhu-An Xu

    2016-01-01

    Superconductivity (SC) and ferromagnetism (FM) are in general antagonistic,which makes their coexistence very rare.Following our recent discovery of robust coexistence of SC and FM in RbEuFe4As4 (Liu et al.in Phys Rev B 93:214503,2016),here we report another example of such a coexistence in its sister compound CsEuFe4As4,synthesized for the first time.The new material exhibits bulk SC at 35.2 K and Eu2+-spin ferromagnetic ordering at 15.5 K,demonstrating that it is a new robust ferromagnetic superconductor.

  12. Effective field theory for a p -wave superconductor in the subgap regime

    Science.gov (United States)

    Hansson, T. H.; Kvorning, T.; Nair, V. P.; Sreejith, G. J.

    2015-02-01

    We construct an effective field theory for the 2 d spinless p -wave paired superconductor that faithfully describes the topological properties of the bulk state, and also provides a model for the subgap states at vortex cores and edges. In particular, it captures the topologically protected zero modes and has the correct ground-state degeneracy on the torus. We also show that our effective field theory becomes a topological field theory in a well defined scaling limit and that the vortices have the expected non-Abelian braiding statistics.

  13. The magnetostriction in a superconductor-magnet system under non-uniform magnetic field

    Science.gov (United States)

    Li, Xueyi; Jiang, Lang; Wu, Hao; Gao, Zhiwen

    2017-03-01

    This paper describes a numerical model to examine the magnetostriction of bulk high-temperature superconductor (HTS) under non-uniform magnetic field in conjunction with finite element analysis. Through this model, the magnetostriction of homogeneous and nonhomogeneous HTS can be implemented under non-uniform magnetic field. Further, the effects of critical current density, applied field frequency and amplitude are also considered. The computational study can provide a fundamental mechanistic understanding the effects of non-uniform magnetic field on magnetostriction of HTS.

  14. Radiation shielding effectiveness of newly developed superconductors

    Science.gov (United States)

    Singh, Vishwanath P.; Medhat, M. E.; Badiger, N. M.; Saliqur Rahman, Abu Zayed Mohammad

    2015-01-01

    Gamma ray shielding effectiveness of superconductors with a high mass density has been investigated. We calculated the mass attenuation coefficients, the mean free path (mfp) and the exposure buildup factor (EBF). The gamma ray EBF was computed using the Geometric Progression (G-P) fitting method at energies 0.015-15 MeV, and for penetration depths up to 40 mfp. The fast-neutron shielding effectiveness has been characterized by the effective neutron removal cross-section of the superconductors. It is shown that CaPtSi3, CaIrSi3, and Bi2Sr2Ca1Cu2O8.2 are superior shielding materials for gamma rays and Tl0.6Rb0.4Fe1.67Se2 for fast neutrons. The present work should be useful in various applications of superconductors in fusion engineering and design.

  15. Fracture toughness for copper oxide superconductors

    Science.gov (United States)

    Goretta, Kenneth C.; Kullberg, Marc L.

    1993-01-01

    An oxide-based strengthening and toughening agent, such as tetragonal Zro.sub.2 particles, has been added to copper oxide superconductors, such as superconducting YBa.sub.2 Cu.sub.3 O.sub.x (123) to improve its fracture toughness (K.sub.IC). A sol-gel coating which is non-reactive with the superconductor, such as Y.sub.2 BaCuO.sub.5 (211) on the ZrO.sub.2 particles minimized the deleterious reactions between the superconductor and the toughening agent dispersed therethrough. Addition of 20 mole percent ZrO.sub.2 coated with 211 yielded a 123 composite with a K.sub.IC of 4.5 MPa(m).sup.0.5.

  16. High-temperature superconductor antenna investigations

    Science.gov (United States)

    Karasack, Vincent G.

    1990-10-01

    The use of superconductors to increase antenna radiation efficiency and gain is examined. Although the gain of all normal-metal antennas can be increased through the use of superconductors, some structures have greater potential for practical improvement than others. Some structures suffer a great degradation in bandwidth when replaced with superconductors, while for others the improvement in efficiency is trivial due to the minimal contribution of the conductor loss mechanism to the total losses, or the already high efficiency of the structure. The following antennas and related structures are discussed: electrically small antennas, impedance matching of antennas, microstrip antennas, microwave and millimeter-wave antenna arrays, and superdirective arrays. The greatest potential practical improvements occur for large microwave and millimeter-wave arrays and the impedance matching of antennas.

  17. Practical superconductor development for electrical power applications

    Energy Technology Data Exchange (ETDEWEB)

    Goretta, K.C. (comp.)

    1992-10-01

    Development of useful high-critical-temperature (high-[Tc]) superconductors requires synthesis of superconducting compounds; fabrication of wires, tapes, and films from these compounds; production of composite structures that incorporate stabilizers or insulators; and design and testing of efficient components. This report describes the technical progress of research and development efforts aimed at producing superconducting components that are based on the Y-Ba-Cu, Bi-Sr-Ca-Cu, Bi-Pb-Sr-Ca-Cu, and (TI,Pb)-(Ba,Sr)-Ca-Cu oxide systems. Topics discussed are synthesis and heat treatment of high-[Tc] superconductors, formation of monolithic and composite wires and tapes, superconductor/metal connectors, characterization of structures and superconducting and mechanical properties, fabrication and properties of thin films, and development of prototype components. Collaborations with industry and academia are documented.

  18. On n-quantum vortices in superconductors

    CERN Document Server

    Marchenko, V I

    2002-01-01

    The conditions of the n-quantum vortices observation in the superconductors are discussed. It is established in the course of calculating the coefficient by the |psi| sup 6 (psi - the order parameter) in the Ginzburg-Landau theory for the BCS standard model that the sign of this coefficient is negative. This favours the possibility of observing the n-quantum vortices in the superconductors, wherein the vortex lattice with gravitation is formed. The existence of gravitation is manifested in the magnetization finite jump in the H sub 0 = H sub c sub sup 1 field. When by the temperature change the superconductor behavior changes in such a way, that its magnetization in the H sub 0 = H sub c field reduces to the zero, than the observation of the n-quantum vortices near this transition is possible

  19. Charge and spin transport in mesoscopic superconductors

    Directory of Open Access Journals (Sweden)

    M. J. Wolf

    2014-02-01

    Full Text Available Background: Non-equilibrium charge transport in superconductors has been investigated intensely in the 1970s and 1980s, mostly in the vicinity of the critical temperature. Much less attention has been paid to low temperatures and the role of the quasiparticle spin.Results: We report here on nonlocal transport in superconductor hybrid structures at very low temperatures. By comparing the nonlocal conductance obtained by using ferromagnetic and normal-metal detectors, we discriminate charge and spin degrees of freedom. We observe spin injection and long-range transport of pure, chargeless spin currents in the regime of large Zeeman splitting. We elucidate charge and spin transport by comparison to theoretical models.Conclusion: The observed long-range chargeless spin transport opens a new path to manipulate and utilize the quasiparticle spin in superconductor nanostructures.

  20. AC susceptibilities of grain-textured superconductors

    Science.gov (United States)

    Sakamoto, N.; Fukuda, Y.; Koga, M.; Akune, T.; Khan, H. R.; Lüders, K.

    2008-09-01

    In-phase χ n‧ and out-phase χ n″ components of nth harmonics of AC susceptibility with measuring parameters of a DC magnetic field Bdc, an amplitude Ba and a frequency f of the superimposed AC magnetic fields give substantial information of the superconducting properties. In low- Tc metallic superconductors, χ1‧ shows smooth transition and χ1″ does single peak. High- Tc oxide superconductors with anisotropic and grain-textured structures show deformed complex characteristics. Double peaks in χ1″ and shoulders in χ1‧ appear in AC susceptibility of Hg-1223 superconductors. Instead of simple Bean model, a grained model, where the superconducting grains are immersed in weak superconducting matrix, are proposed. The susceptibilities numerically analyzed using the model show varied and deformed curves and are successfully compared with the measured results.

  1. Crack problem in a long cylindrical superconductor

    Science.gov (United States)

    Yong, Hua-Dong; Zhou, You-He; Zeng, Jun

    2008-12-01

    In this work, the general problem of a center crack in a long cylindrical superconductor is studied. The dependence of the stress intensity factor on the parameters, including the crack length and the applied field, is investigated. We presented a simple model in which the effect of the crack on the critical current is taken into account. It is assumed that the crack forms a perfect barrier to the flow of current. The Bean model and the Kim model are considered for the critical state. Based on the complex potential and boundary collocation methods, the stress intensity factor under the magnetic field is obtained for a long cylindrical superconductor containing a central crack. The results show that the crack length and the applied field have significant effects on the fracture behavior of the superconductor.

  2. Thermomagnetic phenomena in the mixed state of high temperature superconductors

    Science.gov (United States)

    Meilikhov, E. Z.

    1995-01-01

    Galvano- and thermomagnetic-phenomena in high temperature superconductors, based on kinetic coefficients, are discussed, along with a connection between the electric field and the heat flow in superconductor mixed state. The relationship that determines the transport coefficients of high temperature superconductors in the mixed state based on Seebeck and Nernst effects is developed. It is shown that this relationship is true for a whole transition region of the resistive mixed state of a superconductor. Peltier, Ettingshausen and Righi-Leduc effects associated with heat conductivity as related to high temperature superconductors are also addressed.

  3. Surface texturing of superconductors by controlled oxygen pressure

    Science.gov (United States)

    Chen, N.; Goretta, K.C.; Dorris, S.E.

    1999-01-05

    A method of manufacture of a textured layer of a high temperature superconductor on a substrate is disclosed. The method involves providing an untextured high temperature superconductor material having a characteristic ambient pressure peritectic melting point, heating the superconductor to a temperature below the peritectic temperature, establishing a reduced pO{sub 2} atmosphere below ambient pressure causing reduction of the peritectic melting point to a reduced temperature which causes melting from an exposed surface of the superconductor and raising pressure of the reduced pO{sub 2} atmosphere to cause solidification of the molten superconductor in a textured surface layer. 8 figs.

  4. Superfluid response in heavy fermion superconductors

    Science.gov (United States)

    Zhong, Yin; Zhang, Lan; Shao, Can; Luo, Hong-Gang

    2017-10-01

    Motivated by a recent London penetration depth measurement [H. Kim, et al., Phys. Rev. Lett. 114, 027003 (2015)] and novel composite pairing scenario [O. Erten, R. Flint, and P. Coleman, Phys. Rev. Lett. 114, 027002 (2015)] of the Yb-doped heavy fermion superconductor CeCoIn5, we revisit the issue of superfluid response in the microscopic heavy fermion lattice model. However, from the literature, an explicit expression for the superfluid response function in heavy fermion superconductors is rare. In this paper, we investigate the superfluid density response function in the celebrated Kondo-Heisenberg model. To be specific, we derive the corresponding formalism from an effective fermionic large- N mean-field pairing Hamiltonian whose pairing interaction is assumed to originate from the effective local antiferromagnetic exchange interaction. Interestingly, we find that the physically correct, temperature-dependent superfluid density formula can only be obtained if the external electromagnetic field is directly coupled to the heavy fermion quasi-particle rather than the bare conduction electron or local moment. Such a unique feature emphasizes the key role of the Kondo-screening-renormalized heavy quasi-particle for low-temperature/energy thermodynamics and transport behaviors. As an important application, the theoretical result is compared to an experimental measurement in heavy fermion superconductors CeCoIn5 and Yb-doped Ce1- x Yb x CoIn5 with fairly good agreement and the transition of the pairing symmetry in the latter material is explained as a simple doping effect. In addition, the requisite formalism for the commonly encountered nonmagnetic impurity and non-local electrodynamic effect are developed. Inspired by the success in explaining classic 115-series heavy fermion superconductors, we expect the present theory will be applied to understand other heavy fermion superconductors such as CeCu2Si2 and more generic multi-band superconductors.

  5. Workshop on accelerator magnet superconductors. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    The workshop on accelerator magnet superconductors has gathered 102 registered participants from research laboratories, universities and industry. 8 European companies, active in superconducting materials and cables were present. This workshop has been organized to deal with the status of the world research and development on superconducting materials and cables for high field magnets (B > 10 T). The workshop has also reviewed the status of high temperature superconductors and transmission line cables for potential use in low field superconducting magnets for injectors and beam transfer lines, as well as cables for pulsed magnets that might be used in future hadron colliders or injectors.

  6. Order parameter fluctuations in the holographic superconductor

    CERN Document Server

    Plantz, N W M; Vandoren, S

    2015-01-01

    We investigate the effect of order parameter fluctuations in the holographic superconductor. In particular, the fully backreacted spectral functions of the order parameter in both the normal and the superconducting phase are computed. We also present a vector-like large-$N$ version of the Ginzburg-Landau model that accurately describes our long-wavelength results in both phases. The large-$N$ limit of the latter model explains why the Higgs mode and the second-sound mode are not present in the spectral functions. Our results indicate that the holographic superconductor describes a relativistic multi-component superfluid in the universal regime of the BEC-BCS crossover.

  7. Aluminum-stabilized NB3SN superconductor

    Science.gov (United States)

    Scanlan, Ronald M.

    1988-01-01

    An aluminum-stabilized Nb.sub.3 Sn superconductor and process for producing same, utilizing ultrapure aluminum. Ductile components are co-drawn with aluminum to produce a conductor suitable for winding magnets. After winding, the conductor is heated to convert it to the brittle Nb.sub.3 Sn superconductor phase, using a temperature high enough to perform the transformation but still below the melting point of the aluminum. This results in reaction of substantially all of the niobium, while providing stabilization and react-in-place features which are beneficial in the fabrication of magnets utilizing superconducting materials.

  8. Electrical connection structure for a superconductor element

    Science.gov (United States)

    Lallouet, Nicolas; Maguire, James

    2010-05-04

    The invention relates to an electrical connection structure for a superconductor element cooled by a cryogenic fluid and connected to an electrical bushing, which bushing passes successively through an enclosure at an intermediate temperature between ambient temperature and the temperature of the cryogenic fluid, and an enclosure at ambient temperature, said bushing projecting outside the ambient temperature enclosure. According to the invention, said intermediate enclosure is filled at least in part with a solid material of low thermal conductivity, such as a polyurethane foam or a cellular glass foam. The invention is applicable to connecting a superconductor cable at cryogenic temperature to a device for equipment at ambient temperature.

  9. Building blocks for correlated superconductors and magnets

    Directory of Open Access Journals (Sweden)

    J. L. Sarrao

    2015-04-01

    Full Text Available Recent efforts at Los Alamos to discover strongly correlated superconductors and hard ferromagnets are reviewed. While serendipity remains a principal engine of materials discovery, design principles and structural building blocks are beginning to emerge that hold potential for predictive discovery. Successes over the last decade with the so-called “115” strongly correlated superconductors are summarized, and more recent efforts to translate these insights and principles to novel hard magnets are discussed. While true “materials by design” remains a distant aspiration, progress is being made in coupling empirical design principles to electronic structure simulation to accelerate and guide materials design and synthesis.

  10. Building blocks for correlated superconductors and magnets

    Energy Technology Data Exchange (ETDEWEB)

    Sarrao, J. L.; Ronning, F.; Bauer, E. D.; Batista, C. D.; Zhu, J.-X.; Thompson, J. D. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

    2015-04-01

    Recent efforts at Los Alamos to discover strongly correlated superconductors and hard ferromagnets are reviewed. While serendipity remains a principal engine of materials discovery, design principles and structural building blocks are beginning to emerge that hold potential for predictive discovery. Successes over the last decade with the so-called “115” strongly correlated superconductors are summarized, and more recent efforts to translate these insights and principles to novel hard magnets are discussed. While true “materials by design” remains a distant aspiration, progress is being made in coupling empirical design principles to electronic structure simulation to accelerate and guide materials design and synthesis.

  11. Electromagnetic Effects in Superconductors in Gravitational Field

    CERN Document Server

    Ahmedov, B J

    2005-01-01

    The general relativistic modifications to the resistive state in superconductors of second type in the presence of a stationary gravitational field are studied. Some superconducting devices that can measure the gravitational field by its red-shift effect on the frequency of radiation are suggested. It has been shown that by varying the orientation of a superconductor with respect to the earth gravitational field, a corresponding varying contribution to AC Josephson frequency would be added by gravity. A magnetic flux (being proportional to angular velocity of rotation $\\Omega$) through a rotating hollow superconducting cylinder with the radial gradient of temperature $\

  12. Long-range spin transport in superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Beckmann, Detlef; Wolf, Michael J. [Institut fuer Nanotechnologie, Karlsruher Institut fuer Technologie (Germany); Huebler, Florian [Institut fuer Festkoerperphysik, Karlsruher Institut fuer Technologie (Germany); Loehneysen, Hilbert von [Institut fuer Festkoerperphysik, Karlsruher Institut fuer Technologie (Germany); Physikalisches Institut, Karlsruher Institut fuer Technologie (Germany)

    2012-07-01

    Recently, there has been some controversy about spin-polarized quasiparticle transport and relaxation in superconductors, with reports of both anomalously short or anomalously long relaxation times as compared to the normal state. Here, we report on non-local transport in multiterminal superconductor-ferromagnet structures. We find signatures of spin transport over distances much larger than the normal-state spin-diffusion length in the presence of a large Zeeman splitting of the quasiparticle states. The relaxation length shows a nearly linear increase with magnetic field, hinting at a freeze-out of spin relaxation by the Zeeman splitting.

  13. A moving target: responding to magnetic and structural disorder in lanthanide- and actinide-based superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, Eric D [Los Alamos National Laboratory; Mitchell, Jeremy N [Los Alamos National Laboratory; Booth, C H [LBNL

    2009-01-01

    The effects of various chemical substitutions and induced lattice disorder in the Ce- and Pu-based 115 superconductors are reviewed, with particular emphasis on results from x-ray absorption fine structure (XAFS) measurements. The competition between spin, charge, and lattice interactions is at the heart of many of the strongly-correlated ground states in materials of current interest, such as in colossal magnetoresistors and high-temperature superconductors. This relationship is particularly strong in the CeTIn{sub 5} and PuTGa{sub 5} series (T = Co, Rh, Ir) of heavy-fermion superconductors. In these systems (figure 1), competition between bulk magnetic and non-magnetic ground states, as well as between superconducting and normal states, are directly related to local properties around the lanthanide or actinide ion, such as the nearest-neighbor bond lengths and the local density of states at the Fermi level. Tiny changes in the latter values can easily tip the balance from one ground state to another. This paper reviews recent work by the authors exploring the relationship between local crystal and electronic structure and ground state magnetic and conducting properties in the Ce- and Pu-based 115 materials.

  14. Strongly linked current flow in polycrystalline forms of the superconductor MgB2.

    Science.gov (United States)

    Larbalestier, D C; Cooley, L D; Rikel, M O; Polyanskii, A A; Jiang, J; Patnaik, S; Cai, X Y; Feldmann, D M; Gurevich, A; Squitieri, A A; Naus, M T; Eom, C B; Hellstrom, E E; Cava, R J; Regan, K A; Rogado, N; Hayward, M A; He, T; Slusky, J S; Khalifah, P; Inumaru, K; Haas, M

    2001-03-01

    The discovery of superconductivity at 39 K in magnesium diboride, MgB2, raises many issues, a critical one being whether this material resembles a high-temperature copper oxide superconductor or a low-temperature metallic superconductor in terms of its behaviour in strong magnetic fields. Although the copper oxides exhibit very high transition temperatures, their in-field performance is compromized by their large anisotropy, the result of which is to restrict high bulk current densities to a region much less than the full magnetic-field-temperature (H-T) space over which superconductivity is found. Moreover, the weak coupling across grain boundaries makes transport current densities in untextured polycrystalline samples low and strongly sensitive to magnetic field. Here we report that, despite the multiphase, untextured, microscale, subdivided nature of our MgB2 samples, supercurrents flow throughout the material without exhibiting strong sensitivity to weak magnetic fields. Our combined magnetization, magneto-optical, microscopy and X-ray investigations show that the supercurrent density is mostly determined by flux pinning, rather than by the grain boundary connectivity. Our results therefore suggest that this new superconductor class is not compromized by weak-link problems, a conclusion of significance for practical applications if higher temperature analogues of this compound can be discovered.

  15. The upper critical magnetic field of holographic superconductor with conformally invariant power-Maxwell electrodynamics

    CERN Document Server

    Sheykhi, A; Davatolhagh, S

    2016-01-01

    The properties of $(d-1)$-dimensional $s$-wave holographic superconductor in the presence of power-Maxwell field is explored. We study the probe limit in which the scalar and gauge fields do not backreact on the background geometry. Our study is based on the matching of solutions on the boundary and on the horizon at some intermediate point. At first, the case without external magnetic field is considered, and the critical temperature is obtained in terms of the charge density, the dimensionality, and the power-Maxwell exponent. Then, a magnetic field is turned on in the $d$-dimensional bulk which can influence the $(d-1)$-dimensional holographic superconductor at the boundary. The phase behavior of the corresponding holographic superconductor is obtained by computing the upper critical magnetic field in the presence of power-Maxwell electrodynamics, characterized by the power exponent $q$. Interestingly, it is observed that in the presence of magnetic field, the physically acceptable phase behavior of the ho...

  16. Stabilizing the spin vortex crystal phase in two-dimensional iron-based superconductors

    Science.gov (United States)

    O'Halloran, Joseph; Agterberg, D. F.; Chen, M. X.; Weinert, M.

    2017-02-01

    We present an investigation of the magnetic structure for iron-based superconductors (FeSCs) when inversion symmetry is broken, such as in substrate-supported monolayers or in the presence of a c -axis electric field. We perform group-, mean-field-, and density-functional-theoretic analyses on a model system of monolayer iron selenide (FeSe) on a strontium titanate [SrTiO3 (001)] substrate. Our group- and mean-field-theoretic calculations are more generally applicable to thin films of the rest of the 11 (e.g., FeSe) family of iron-based superconductors, as well as to thin films of the 111 (e.g., LiFeAs) and 1111 (e.g., LaOFeAs) families, as these all belong to the same space group. We find that in systems with a collinear antiferromagnetic phase in bulk, when inversion symmetry is broken, the transition is instead into a "spin vortex crystal" phase and that a further phase transition can occur at a lower temperature in some circumstances. The spin vortex crystal is a C4-symmetric magnetic phase which is related to this parent C2-symmetric collinear antiferromagnetic (stripe) phase which is ubiquitous among the iron-based superconductors.

  17. Odd-frequency pairing and Ising spin susceptibility in time-reversal-invariant superfluids and superconductors

    Science.gov (United States)

    Mizushima, Takeshi

    2014-11-01

    We here illustrate the relation between odd-frequency spin-triplet even-parity (OTE) Cooper pairs and anomalous surface magnetic response in time-reversal-invariant (TRI) spin-triplet superfluids and superconductors. The spin susceptibility generally consists of two contributions: even-frequency odd-parity pair amplitudes and odd-frequency even-parity pair amplitudes. The OTE pair amplitudes are absent in the bulk region, but ubiquitously exist in the surface and interface region as Andreev bound states. We here clarify that additional discrete symmetries, originating from the internal symmetry and point-group symmetry, impose strong constraint on the OTE pair amplitudes emergent in the surface of TRI superfluids and superconductors. As a result of the symmetry constraint, the magnetic response of the OTE pairs yields Ising-like anisotropy. For the topological phase of the 3He -B in a restricted geometry, the coupling of the OTE pair amplitudes to an applied field is prohibited by an additional discrete symmetry. Once the discrete symmetry is broken, however, the OTE pairs start to couple to the applied field, which anomalously enhances surface spin susceptibility. Furthermore, we extend this theory to TRI superconductors, where the corresponding discrete symmetry is the mirror reflection symmetry.

  18. Topologically protected surface states in a centrosymmetric superconductor β-PdBi2.

    Science.gov (United States)

    Sakano, M; Okawa, K; Kanou, M; Sanjo, H; Okuda, T; Sasagawa, T; Ishizaka, K

    2015-01-01

    The topological aspects of electrons in solids can emerge in real materials, as represented by topological insulators. In theory, they show a variety of new magneto-electric phenomena, and especially the ones hosting superconductivity are strongly desired as candidates for topological superconductors. While efforts have been made to develop possible topological superconductors by introducing carriers into topological insulators, those exhibiting indisputable superconductivity free from inhomogeneity are very few. Here we report on the observation of topologically protected surface states in a centrosymmetric layered superconductor, β-PdBi2, by utilizing spin- and angle-resolved photoemission spectroscopy. Besides the bulk bands, several surface bands are clearly observed with symmetrically allowed in-plane spin polarizations, some of which crossing the Fermi level. These surface states are precisely evaluated to be topological, based on the Z2 invariant analysis in analogy to three-dimensional strong topological insulators. β-PdBi2 may offer a solid stage to investigate the topological aspect in the superconducting condensate.

  19. Bulk-Fill Resin Composites

    DEFF Research Database (Denmark)

    Benetti, Ana Raquel; Havndrup-Pedersen, Cæcilie; Honoré, Daniel;

    2015-01-01

    the restorative procedure. The aim of this study, therefore, was to compare the depth of cure, polymerization contraction, and gap formation in bulk-fill resin composites with those of a conventional resin composite. To achieve this, the depth of cure was assessed in accordance with the International Organization...... for Standardization 4049 standard, and the polymerization contraction was determined using the bonded-disc method. The gap formation was measured at the dentin margin of Class II cavities. Five bulk-fill resin composites were investigated: two high-viscosity (Tetric EvoCeram Bulk Fill, SonicFill) and three low......-viscosity (x-tra base, Venus Bulk Fill, SDR) materials. Compared with the conventional resin composite, the high-viscosity bulk-fill materials exhibited only a small increase (but significant for Tetric EvoCeram Bulk Fill) in depth of cure and polymerization contraction, whereas the low-viscosity bulk...

  20. Explosive bulk charge

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Jacob Lee

    2015-04-21

    An explosive bulk charge, including: a first contact surface configured to be selectively disposed substantially adjacent to a structure or material; a second end surface configured to selectively receive a detonator; and a curvilinear side surface joining the first contact surface and the second end surface. The first contact surface, the second end surface, and the curvilinear side surface form a bi-truncated hemispherical structure. The first contact surface, the second end surface, and the curvilinear side surface are formed from an explosive material. Optionally, the first contact surface and the second end surface each have a substantially circular shape. Optionally, the first contact surface and the second end surface consist of planar structures that are aligned substantially parallel or slightly tilted with respect to one another. The curvilinear side surface has one of a smooth curved geometry, an elliptical geometry, and a parabolic geometry.

  1. The Incredible Bulk

    CERN Document Server

    Fukushima, Keita; Kumar, Jason; Sandick, Pearl; Yamamoto, Takahiro

    2014-01-01

    Recent experimental results from the LHC have placed strong constraints on the masses of colored superpartners. The MSSM parameter space is also constrained by the measurement of the Higgs boson mass, and the requirement that the relic density of lightest neutralinos be consistent with observations. Although large regions of the MSSM parameter space can be excluded by these combined bounds, leptophilic versions of the MSSM can survive these constraints. In this paper we consider a scenario in which the requirements of minimal flavor violation, vanishing $CP$-violation, and mass universality are relaxed, specifically focusing on scenarios with light sleptons. We find a large region of parameter space, analogous to the original bulk region, for which the lightest neutralino is a thermal relic with an abundance consistent with that of dark matter. We find that these leptophilic models are constrained by measurements of the magnetic and electric dipole moments of the electron and muon, and that these models have ...

  2. Creating bulk nanocrystalline metal.

    Energy Technology Data Exchange (ETDEWEB)

    Fredenburg, D. Anthony (Georgia Institute of Technology, Atlanta, GA); Saldana, Christopher J. (Purdue University, West Lafayette, IN); Gill, David D.; Hall, Aaron Christopher; Roemer, Timothy John (Ktech Corporation, Albuquerque, NM); Vogler, Tracy John; Yang, Pin

    2008-10-01

    Nanocrystalline and nanostructured materials offer unique microstructure-dependent properties that are superior to coarse-grained materials. These materials have been shown to have very high hardness, strength, and wear resistance. However, most current methods of producing nanostructured materials in weapons-relevant materials create powdered metal that must be consolidated into bulk form to be useful. Conventional consolidation methods are not appropriate due to the need to maintain the nanocrystalline structure. This research investigated new ways of creating nanocrystalline material, new methods of consolidating nanocrystalline material, and an analysis of these different methods of creation and consolidation to evaluate their applicability to mesoscale weapons applications where part features are often under 100 {micro}m wide and the material's microstructure must be very small to give homogeneous properties across the feature.

  3. Giant supercurrent states in a superconductor-InAs/GaSb-superconductor junction

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Xiaoyan, E-mail: xshi@sandia.gov; Pan, W.; Hawkins, S. D.; Klem, J. F. [Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States); Yu, Wenlong; Jiang, Zhigang [School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States); Andrei Bernevig, B. [Department of Physics, Princeton University, Princeton, New Jersey 08544 (United States)

    2015-10-07

    Superconductivity in topological materials has attracted a great deal of interest in both electron physics and material sciences since the theoretical predictions that Majorana fermions can be realized in topological superconductors. Topological superconductivity could be realized in a type II, band-inverted, InAs/GaSb quantum well if it is in proximity to a conventional superconductor. Here, we report observations of the proximity effect induced giant supercurrent states in an InAs/GaSb bilayer system that is sandwiched between two superconducting tantalum electrodes to form a superconductor-InAs/GaSb-superconductor junction. Electron transport results show that the supercurrent states can be preserved in a surprisingly large temperature-magnetic field (T – H) parameter space. In addition, the evolution of differential resistance in T and H reveals an interesting superconducting gap structure.

  4. Application of 60 mmphi superconducting bulk magnet to magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Matsuda, T.; Kashimoto, S.; Imai, A.; Yanagi, Y.; Itoh, Y.; Ikuta, H.; Mizutani, U.; Sakurai, K.; Hazama, H

    2003-10-15

    We constructed the planar magnetron sputtering apparatus using a c-axis oriented single-domain Sm123 bulk superconductor with 60 mm in diameter as a very powerful magnet in place of an ordinary Nd-Fe-B magnet. A high magnetic field of 4.2 T at the surface of the superconductor coupled with a high target voltage of maximum 6 kV enabled us to discharge even at pressure of 1 x 10{sup -3} Pa. A target-to-substrate distance of 300 mm was successfully employed under low pressures of 10{sup -2}-10{sup -3} Pa to make the deposition of almost contamination-free films feasible. The simulation software (JMAG) was used to optimize the magnetic circuit configurations. The simulations could reproduce well the distribution of the magnetic field above the target measured by a three-axial Hall sensor. The discharging characteristics of Cu, Ni and Fe targets in the pressure range over 10{sup -1}-10{sup -3} Pa were studied under different target voltages. The deposition rates of 0.063 nm/s (or 38 Angst/min) and 0.013 nm/s (or 8 Angst/min) were achieved for Cu and Fe targets with 3 mm in thickness, respectively, under the Ar pressure of 6.6 x 10{sup -2} Pa (or 4.9 x 10{sup -4} Torr)

  5. Role of oxygen content on micro-whiskers in mercury based superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Aslan Çataltepe, Ö., E-mail: ozdenaslan@yahoo.com [Faculty of Engineering, Gedik University, 34876 İstanbul (Turkey); Güven Özdemir, Z. [Department of Physics, Yıldız Technical University, 34210 İstanbul (Turkey); Onbaşlı, Ü. [Department of Physics, Marmara University, Rıdvanpaşa cad.3.sok., 85/12, 34730 İstanbul (Turkey)

    2015-01-01

    In this study, the formation of micro-whiskers at the mercury based cuprate superconductors, synthesized by solid state reaction technique has been investigated for both oxygen and argon annealed samples. In this context, the superconducting samples have been annealed by the oxygen or argon gases in same rate (pressure) of 150 bar. Moreover, the over doped sample has been subjected to oxygen annealing twice at the same oxygen rate. Hence, micro-whiskers in the mercury cuprates have spontaneously grown for the over oxygen annealed sample, so we have not intended to have whisker grown. The whiskers grown in the mercury based cuprate superconductor has been investigated by Scanning Electron Microscopy, X-Ray Diffraction analysis and Superconducting Quantum Interference Devices measurements for the first time. It has been determined that whiskers grown on the over doped sample, which are in micrometer dimensions, have been observed only surfaces of the bulk sample. Moreover, the formation of whiskers has been examined for the optimally oxygen and argon doped samples. It has been shown that neither the optimally oxygen doped nor argon doped samples with the same gas rate have displayed any whisker structures. Hence, it has been decided that that the type of gas, the density of gas flowing and the bulk properties of the superconductor play a crucial role on formation of whisker structure in the system. Moreover, it has been revealed that in order to get rich whisker content, the oxygen process should be applied to the powder form of the superconductor in such a way to get the over oxygen doping rate for the superconducting system investigated. For further works, the magnetic and transport properties of the mercury based whiskers grown are planned to be determined. - Highlights: • Effect of gas type on whiskers has been investigated for Hg-based superconductor. • Concentration of the gas have a crucial role for whisker formation. • Shape of the superconducting

  6. Analytical Result on the Supercurrent Through a Superconductor/Quantum-Dot/Superconductor Junction

    Institute of Scientific and Technical Information of China (English)

    LI Wei; ZHU Yu; LIN Tsung-Han

    2002-01-01

    We present an analytical result for the supercurrent across a superconductor/quantum-dot/superconductor junction. By converting the current integration into a special contour integral, we can express the current as a sum of the residues of poles. These poles are real and give a natural definition of the Andreev bound states. We also use the exact result to explain some features of the supercurrent transport behavior.

  7. Application of textured YBCO bulks with artificial holes for superconducting magnetic bearing

    Science.gov (United States)

    Dias, D. H. N.; Sotelo, G. G.; Moysés, L. A.; Telles, L. G. T.; Bernstein, P.; Kenfaui, D.; Aburas, M.; Chaud, X.; Noudem, J. G.

    2015-07-01

    The levitation force between a superconductor and a permanent magnet has been investigated for the development of superconducting magnetic bearings (SMBs). Depending on the proposed application, the SMBs can be arranged with two kinds of symmetries: rotational or linear. The SMBs present passive operation, low level of noise and no friction, but they need a cooling system for their operation. Nowadays the cooling problem may be easily solved by the use of a commercial cryocooler. The levitation force of SMBs is directly related to the quality of the superconductor material (which depends on its critical current density) and the permanent magnet arrangement. Also, research about the YBa2Cu3Ox (Y123) bulk materials has shown that artificial holes enhance the superconducting properties, in particular the magnetic trapped field. In this context, this work proposes the investigation of the levitation force of a bulk Y123 sample with multiple holes and the comparison of its performances with those of conventional plain Y123 superconductors.

  8. Physics picture from neutron scattering study on Fe-based superconductors

    Institute of Scientific and Technical Information of China (English)

    Bao Wei

    2013-01-01

    Neutron scattering,with its ability to measure the crystal structure,the magnetic order,and the structural and magnetic excitations,plays an active role in investigating various families of Fe-based high-Tc superconductors.Three different types of antiferromagnetic orders have been discovered in the Fe plane,but two of them cannot be explained by the spin-densitywave (SDW) mechanism of nesting Fermi surfaces.Noticing the close relation between antiferromagnetic order and lattice distortion in orbital ordering from previous studies on manganites and other oxides,we have advocated orbital ordering as the underlying common mechanism for the structural and antiferromagnetic transitions in the 1111,122,and 11 parent compounds.We observe the coexistence of antiferromagnetic order and superconductivity in the (Ba,K)Fe2As2 system,when its phase separation is generally accepted.Optimal Tc is proposed to be controlled by the local FeAs4 tetrahedron from our investigation on the 1111 materials.The Bloch phase coherence of the Fermi liquid is found crucial to the occurrence of bulk superconductivity in iron chalcogenides of both the 11 and the 245 families.Iron chalcogenides carry a larger staggered magnetic moment (> 2 μB/Fe) than that in iron pnictides (< 1 μB/Fe) in the antiferromagnetic order.Normal state magnetic excitations in the 11 superconductor are of the itinerant nature while in the 245 superconductor the spin-waves of localized moments.The observation of superconducting resonance peak provides a crucial piece of information in current deliberation of the pairing symmetry in Fe-based superconductors.

  9. Holographic d-wave superconductors

    CERN Document Server

    Kim, Keun-Young

    2013-01-01

    We construct top down models for holographic d-wave superfluids in which the order parameter is a charged spin two field in the bulk. Close to the transition temperature the condensed phase can be captured by a charged spin two field in an R-charged black hole background (downstairs picture) or equivalently by specific graviton perturbations of a spinning black brane (upstairs picture). We analyse the necessary conditions on the mass and the charge of the spin two field for a condensed phase to exist and we discuss the competition of the d-wave phase with other phases such as s-wave superfluids.

  10. Enhancing critical current density of cuprate superconductors

    Science.gov (United States)

    Chaudhari, Praveen

    2015-06-16

    The present invention concerns the enhancement of critical current densities in cuprate superconductors. Such enhancement of critical current densities include using wave function symmetry and restricting movement of Abrikosov (A) vortices, Josephson (J) vortices, or Abrikosov-Josephson (A-J) vortices by using the half integer vortices associated with d-wave symmetry present in the grain boundary.

  11. Stripe phases in high-temperature superconductors.

    Science.gov (United States)

    Emery, V J; Kivelson, S A; Tranquada, J M

    1999-08-03

    Stripe phases are predicted and observed to occur in a class of strongly correlated materials describable as doped antiferromagnets, of which the copper-oxide superconductors are the most prominent representatives. The existence of stripe correlations necessitates the development of new principles for describing charge transport and especially superconductivity in these materials.

  12. Kinetic energy driven pairing in cuprate superconductors

    NARCIS (Netherlands)

    Maier, TA; Jarrell, M; Macridin, A; Slezak, C

    2004-01-01

    Pairing occurs in conventional superconductors through a reduction of the electronic potential energy accompanied by an increase in kinetic energy. In the underdoped cuprates, optical experiments show that pairing is driven by a reduction of the electronic kinetic energy. Using the dynamical cluster

  13. Stripe Phases in High-Temperature Superconductors

    Science.gov (United States)

    Emery, V. J.; Kivelson, S. A.; Tranquada, J. M.

    1999-08-01

    Stripe phases are predicted and observed to occur in a class of strongly correlated materials describable as doped antiferromagnets, of which the copper-oxide superconductors are the most prominent representatives. The existence of stripe correlations necessitates the development of new principles for describing charge transport and especially superconductivity in these materials.

  14. Epitaxy of semiconductor-superconductor nanowires

    DEFF Research Database (Denmark)

    Krogstrup, P.; Ziino, N.L.B.; Chang, W.

    2015-01-01

    Controlling the properties of semiconductor/metal interfaces is a powerful method for designing functionality and improving the performance of electrical devices. Recently semiconductor/superconductor hybrids have appeared as an important example where the atomic scale uniformity of the interface...

  15. Transverse acousto-electric effect in superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Lipavský, P., E-mail: lipavsky@karlov.mff.cuni.cz [Faculty of Mathematics and Physics, Charles University, Ke Karlovu 3, Prague 2 121 16 (Czech Republic); Koláček, J., E-mail: kolacek@fzu.cz [Institute of Physics, Academy of Sciences, Cukrovarnická 10, Prague 6 162 00 (Czech Republic); Lin, P.-J., E-mail: fareh.lin@gmail.com [Research Department, Universal Analytics Inc., RR2 Airdrie, AB T4B 2A4 (Canada)

    2016-06-15

    Highlights: • A description of an acousto-electric effect of superconductors is formulated, continuous over the phase transition. • Interactions among a sound wave, normal and superconducting electrons are included. • Response radiation attains a maximum before transition to the normal state. • Effects should be observable in clean niobium. - Abstract: We formulate a theory based on the time-dependent Ginzburg–Landau (TDGL) theory and Newtonian vortex dynamics to study the transverse acousto-electric response of a type-II superconductor with Abrikosov vortex lattice. When exposed to a transverse acoustic wave, Cooper pairs emerge from the moving atomic lattice and moving electrons. As in the Tolman–Stewart effect in a normal metal, an electromagnetic field is radiated from the superconductor. We adapt the equilibrium-based TDGL theory to this non-equilibrium system by using a floating condensation kernel. Due to the interaction between normal and superconducting components, the radiated electric field as a function of magnetic field attains a maximum value occurring below the upper critical magnetic field. This local increase in electric field has weak temperature dependence and is suppressed by the presence of impurities in the superconductor.

  16. Quantum Dots Coupled to a Superconductor

    DEFF Research Database (Denmark)

    Jellinggaard, Anders Robert

    are tuned electrostatically. This includes tuning the odd occupation of the dot through a quantum phase transition, where it forms a singlet with excitations in the superconductor. We detail the fabrication of these bottom gated devices, which additionally feature ancillary sensor dots connected...

  17. Noncontact Measurement Of Critical Current In Superconductor

    Science.gov (United States)

    Israelsson, Ulf E.; Strayer, Donald M.

    1992-01-01

    Critical current measured indirectly via flux-compression technique. Magnetic flux compressed into gap between superconductive hollow cylinder and superconductive rod when rod inserted in hole in cylinder. Hall-effect probe measures flux density before and after compression. Method does not involve any electrical contact with superconductor. Therefore, does not cause resistive heating and consequent premature loss of superconductivity.

  18. Technological Evolution of High Temperature Superconductors

    Science.gov (United States)

    2015-12-01

    power level would reach 250 kilowatts in a joint Navy-Advanced Research Projects Agency (the fore- runner to the Defense Advanced Research Projects...A1 2/22/2007 Method and apparatus for cooling a blade server H01L 021/66 US- 20060283620 A1 American Superconductor Corporation (United States

  19. Towards Structural Testing of Superconductor Electronics

    NARCIS (Netherlands)

    Arun, A.J.; Kerkhoff, Hans G.

    2003-01-01

    Many of the semiconductor technologies are already facing limitations while new-generation data and telecommunication systems are implemented. Although in its infancy, superconductor electronics (SCE) is capable of handling some of these high-end tasks. We have started a defect-oriented test

  20. Levitation performance of YBCO bulk in different applied magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Liu, W. [Applied Superconductivity Laboratory, Southwest Jiaotong University, Chengdu 610031 (China)], E-mail: asclab@asclab.cn; Wang, S.Y.; Jing, H.; Zheng, J.; Jiang, M.; Wang, J.S. [Applied Superconductivity Laboratory, Southwest Jiaotong University, Chengdu 610031 (China)

    2008-07-01

    The maglev performance of bulk high-T{sub c} superconductor (HTS) is investigated above three different types of permanent magnet guideways (PMGs). The main difference among these PMGs is the method used to concentrate the magnetic flux. The experimental results indicate that the levitation force depends only in part on the peak value of the magnetic field. The variation of the vertical component of the magnetic field (B{sub z}), and the structure of the magnetic field are also responsible for the levitation force. These results imply that the permanent magnet with high coercive force is better at concentrating flux th an iron. The conclusions contribute in a very helpful way to the design and optimization of PMGs for HTS maglev systems.

  1. Microstructural characterization of bulk MgB{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Wiederhold, Alex; Koblischka, Michael; Hartmann, Uwe [Institute of Experimental Physics, Saarland University, P. O. Box 151150, D-66123 Saarbruecken (Germany); Inoue, Kazuo; Muralidhar, Miryala; Murakami, Masato [Department of Material Science and Engeneering, Shibaura Institute of Technology, 3-7-5 Toyosu, Koto-ku, Tokyo 135-8548 (Japan); Berger, Kevin; Douine, Bruno [GREEN, Universite de Lorraine, Vandoeuvre-les-Nancy (France); Hauet, Thomas [Institute Jean Lamour, Universite de Lorraine, Vandoeuvre-les-Nancy (France); Noudem, Jacques [CRISMAT-CNRS, Cherbourg (France)

    2015-07-01

    A series of disk-shaped bulk MgB{sub 2} superconductors (sample diameter up to 4 cm) was prepared in order to improve the performance for superconducting super-magnets. Several samples were fabricated using a solid state reaction in pure Ar atmosphere from 750 to 950 C to obtain the highest critical current density (j{sub c}) as well as large trapped field values. Magnetization and transport measurements revealed that at the low reaction temperatures flux pinning at grain boundaries is dominant, which is decreasing on increasing temperature. At the highest reaction temperature, j{sub c} was found to increase again indicating a change of the pinning mechanism. In order to clarify this behavior the samples were characterized in detail by means of transmission electron microscopy (TEM) and transmission electron backscatter diffraction (t-EBSD).

  2. A review of finite size effects in quasi-zero dimensional superconductors.

    Science.gov (United States)

    Bose, Sangita; Ayyub, Pushan

    2014-11-01

    Quantum confinement and surface effects (SEs) dramatically modify most solid state phenomena as one approaches the nanometer scale, and superconductivity is no exception. Though we may expect significant modifications from bulk superconducting properties when the system dimensions become smaller than the characteristic length scales for bulk superconductors-such as the coherence length or the penetration depth-it is now established that there is a third length scale which ultimately determines the critical size at which Cooper pairing is destroyed. In quasi-zero-dimensional (0D) superconductors (e.g. nanocrystalline materials, isolated or embedded nanoparticles), one may define a critical particle diameter below which the mean energy level spacing arising from quantum confinement becomes equal to the bulk superconducting energy gap. The so-called Anderson criterion provides a remarkably accurate estimate of the limiting size for the destabilization of superconductivity in nanosystems. This review of size effects in quasi-0D superconductors is organized as follows. A general summary of size effects in nanostructured superconductors (section 1) is followed by a brief overview of their synthesis (section 2) and characterization using a variety of techniques (section 3). Section 4 reviews the size-evolution of important superconducting parameters-the transition temperature, critical fields and critical current-as the Anderson limit is approached from above. We then discuss the effect of thermodynamic fluctuations (section 5), which become significant in confined systems. Improvements in fabrication methods and the increasing feasibility of addressing individual nanoparticles using scanning probe techniques have lately opened up new directions in the study of nanoscale superconductivity. Section 6 reviews both experimental and theoretical aspects of the recently discovered phenomena of 'parity effect' and 'shell effect' that lead to a strong, non-monotonic size

  3. Isotope and multiband effects in layered superconductors.

    Science.gov (United States)

    Bussmann-Holder, Annette; Keller, Hugo

    2012-06-13

    In this review we consider three classes of superconductors, namely cuprate superconductors, MgB(2) and the new Fe based superconductors. All of these three systems are layered materials and multiband compounds. Their pairing mechanisms are under discussion with the exception of MgB(2), which is widely accepted to be a 'conventional' electron-phonon interaction mediated superconductor, but extending the Bardeen-Cooper-Schrieffer (BCS) theory to account for multiband effects. Cuprates and Fe based superconductors have higher superconducting transition temperatures and more complex structures. Superconductivity is doping dependent in these material classes unlike in MgB(2) which, as a pure compound, has the highest values of T(c) and a rapid suppression of superconductivity with doping takes place. In all three material classes isotope effects have been observed, including exotic ones in the cuprates, and controversial ones in the Fe based materials. Before the area of high-temperature superconductivity, isotope effects on T(c) were the signature for phonon mediated superconductivity-even when deviations from the BCS value to smaller values were observed. Since the discovery of high T(c) materials this is no longer evident since competing mechanisms might exist and other mediating pairing interactions are discussed which are of purely electronic origin. In this work we will compare the three different material classes and especially discuss the experimentally observed isotope effects of all three systems and present a rather general analysis of them. Furthermore, we will concentrate on multiband signatures which are not generally accepted in cuprates even though they are manifest in various experiments, the evidence for those in MgB(2), and indications for them in the Fe based compounds. Mostly we will consider experimental data, but when possible also discuss theoretical models which are suited to explain the data.

  4. Unified Theory of PT and CP Invariant Topological Metals and Nodal Superconductors.

    Science.gov (United States)

    Zhao, Y X; Schnyder, Andreas P; Wang, Z D

    2016-04-15

    As PT and CP symmetries are fundamental in physics, we establish a unified topological theory of PT and CP invariant metals and nodal superconductors, based on the mathematically rigorous KO theory. Representative models are constructed for all nontrivial topological cases in dimensions d=1, 2, and 3, with their exotic physical meanings being elucidated in detail. Intriguingly, it is found that the topological charges of Fermi surfaces in the bulk determine an exotic direction-dependent distribution of topological subgap modes on the boundaries. Furthermore, by constructing an exact bulk-boundary correspondence, we show that the topological Fermi points of the PT and CP invariant classes can appear as gapless modes on the boundary of topological insulators with a certain type of anisotropic crystalline symmetry.

  5. Developing bulk exchange spring magnets

    Energy Technology Data Exchange (ETDEWEB)

    Mccall, Scott K.; Kuntz, Joshua D.

    2017-06-27

    A method of making a bulk exchange spring magnet by providing a magnetically soft material, providing a hard magnetic material, and producing a composite of said magnetically soft material and said hard magnetic material to make the bulk exchange spring magnet. The step of producing a composite of magnetically soft material and hard magnetic material is accomplished by electrophoretic deposition of the magnetically soft material and the hard magnetic material to make the bulk exchange spring magnet.

  6. Interaction of Two Parallel Cracks in REBCO Bulk Superconductors under Applied Magnetic Field

    Science.gov (United States)

    Zhao-Xia, Zhang; Feng, Xue; Xiao-Fan, Gou

    2016-07-01

    Not Available Supported by the National Natural Science Foundation of China under Grant Nos 11372096 and 11402073, the National Research Foundation for the Doctoral Program of Higher Education of China, and the Natural Science Foundation of Jiangsu Province under Grant No BK20130824.

  7. Solid state synthesis and characterization of bulk β-FeSe superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Onar, K. [İnönü Üniversitesi, Fen Edebiyat Fakültesi, Fizik Bölümü, 44280 Malatya (Turkey); Yakinci, M.E. [İnönü Üniversitesi, Fen Edebiyat Fakültesi, Fizik Bölümü, 44280 Malatya (Turkey); İnönü Üniversitesi, Mühendislik Fakültesi, Biyomedikal Mühendisliği Bölümü, 44280 Malatya (Turkey)

    2015-01-25

    Highlights: • The upper critical field H{sub c2}(0) was determined to be 23.2 T. • At the zero field coherence length value was calculated to be 3.33 nm. • Calculated μ{sub 0}H{sub c2}(0)/k{sub B}T{sub c} rate was found to be 3.17 T/K. • Obtained results were suggested unconventional nature of superconductivity. - Abstract: Polycrystalline FeSe{sub 0.88} was synthesized by solid-state reaction method in sealed quartz tube at different heat heating cycles. The identification and characterization of FeSe{sub 0.88} samples were determined by X-ray Diffraction (XRD), Scanning Electron Microscope (SEM) and Energy Dispersive X-ray Spectroscopy (EDX). The electrical transport, magnetic and thermal transport properties of the obtained samples were also investigated. The results showed that the sensitivity of resistivity and magnetic susceptibility depends on heating cycles while the structural formation of samples does not. The upper critical field H{sub c2}(0) has been determined with the magnetic field parallel to the sample surface and yielding a maximum value of 23.2 T. At the zero field coherence length, ξ, value was calculated to be 3.33 nm. Calculated μ{sub 0}H{sub c2}(0)/k{sub B}T{sub c} rate indicated comparably higher value (3.17 T/K) than the Pauli limit (1.84 T/K) and obtained results were suggested unconventional nature of superconductivity in our samples.

  8. Analysis of Magnetic Critical Fields in Iron-Based SmFeAsO0.85 HIGH-Tc Superconductor

    Science.gov (United States)

    Ahmad, Dawood; Song, Tae Kwon; Park, In Suk; Kim, G. C.; Ren, Zhi-An; Kim, Y. C.

    The magnetic properties of the newly discovered iron-oxypnictide SmFeAsO0.85 high-Tc superconductor with a Tc of around 55 K were investigated. Bulk SmFeAsO0.85 was prepared by a method for high-pressure synthesis. The lower critical field Hc1 was estimated from the magnetization at low fields; Hc1(0) was measured to be 212 Oe. A linear temperature dependence instead of saturation at low temperatures in Hc1(T) revealed unconventional superconductivity with a nodal gap structure in our SmFeAsO0.85 superconductor. The results showed that the well-known secondary peak in the temperature dependence of the critical current density Jc is absent in the SmFeAsO0.85 high-Tc superconductor. The irreversibility line Birr was fitted well by the power law dependence (1 - T/Tc)n with n ~ 1.5. This is indicative of the flux creep phenomena in the SmFeAsO0.85 high-Tc superconductor. In addition, within the range of measurement temperatures in this study, no crossover was observed in the temperature dependence of the irreversibility line Birr which may be due to low anisotropy in our SmFeAsO0.85 superconductor.

  9. Influence of radius of cylinder HTS bulk on guidance force in a maglev vehicle system

    Science.gov (United States)

    Longcai, Zhang

    2014-07-01

    Bulk superconductors had great potential for various engineering applications, especially in a high-temperature superconducting (HTS) maglev vehicle system. In such a system, the HTS bulks were always exposed to AC external magnetic field, which was generated by the inhomogeneous surface magnetic field of the NdFeB guideway. In our previous work, it was observed that the guidance force of the YBCO bulk over the NdFeB guideway used in the HTS maglev vehicle system was decayed by the application of the AC external magnetic field. In this paper, we investigated the influence of the radius of the cylinder HTS bulk exposed to an AC magnetic field perturbation on the guidance force in the maglev vehicle system. From the results, it was found that the guidance force was stronger for the bulk with bigger radius and the guidance force decay rates of the bulks were approximately equal despite of the different radius in the maglev vehicle system. Therefore, in order to obtain higher guidance force in the maglev vehicle system, we could use the cylinder HTS bulks with the bigger radius.

  10. Gate-tuned Superconductor-Insulator transition in (Li,Fe)OHFeSe

    OpenAIRE

    Lei, B; Xiang, Z. J.; Lu, X. F.; Wang, N. Z.; Chang, J. R.; Shang, C.; Luo, X. G.; Wu, T.; Z. Sun; Chen, X. H.

    2015-01-01

    The antiferromagnetic(AFM) insulator-superconductor transition has been always a center of interest in the underlying physics of unconventional superconductors. The quantum phase transition between Mott insulator with AFM and superconductor can be induced by doping charge carriers in high-Tc cuprate superconductors. For the best characterized organic superconductors of k-(BEDT-TTF)2X (X=anion), a first order transition between AFM insulator and superconductor can be tuned by applied external ...

  11. Ginzburg-Landau theory of dirty two band s(+/-) superconductors.

    Science.gov (United States)

    Ng, Tai-Kai

    2009-12-04

    In this Letter, we study the effect of nonmagnetic impurities on two-band superconductors by deriving the corresponding Ginzburg-Landau equation. Depending on the strength of (impurity-induced) interband scattering, we find that there are two distinctive regions where the superconductors behave very differently. In the strong impurity-induced interband scattering regime T(c) band, the two-band superconductor behaves as an effective one-band dirty superconductor. In the other limit T(c) > or = tau(t)(-1), the dirty two-band superconductor is described by a network of frustrated two-band superconductor grains connected by Josephson tunneling junctions, and the Anderson theorem breaks down.

  12. Shiba chains of scalar impurities on unconventional superconductors

    Science.gov (United States)

    Neupert, Titus; Yazdani, A.; Bernevig, B. Andrei

    2016-03-01

    We show that a chain of nonmagnetic impurities deposited on a fully gapped two- or three-dimensional superconductor can become a topological one-dimensional superconductor with protected Majorana bound states at its end. A prerequisite is that the pairing potential of the underlying superconductor breaks the spin-rotation symmetry, as it is generically the case in systems with strong spin-orbit coupling. We illustrate this mechanism for a spinless triplet-superconductor (px+i py ) and a time-reversal symmetric Rashba superconductor with a mixture of singlet and triplet pairing. For the latter, we show that the impurity chain can be topologically nontrivial even if the underlying superconductor is topologically trivial.

  13. MgB sub 2 superconductor: a review

    CERN Document Server

    Mollah, S; Chaudhuri, B K

    2003-01-01

    Synthesis, structure and properties of the most intensively studied newly discovered intermetallic binary superconductor MgB sub 2 have been reviewed up to October, 2002. It has a hexagonal unit cell with cell parameters a approx 3.1432 A and c approx 3.5193 A. MgB sub 2 bulk samples synthesized under high pressure (approx 3.5 GPa) and high temperature (approx 1000 degC) has density approx 2.63 g/cm sup 3. The normal state carriers of MgB sub 2 are holes which have been established from the positive thermoelectric power and Hall coefficient measurements. The external pressure decreases the critical temperature (T sub c) with dT sub c /dP in the range of -1 to -2 K/GPa. The T sub c decreases rapidly by the doping of Mn, Li, Co, C, Al, Ni and Fe but increases slightly by Zn doping. However, no significant change of T sub c is observed by the doping of Si and Be. It is further noticed that the anisotropic ratio gamma(= H sub c sub 2 sup a sup b /H sub c sub 2 sup c) approx 1-5 with lower critical field (H sub c ...

  14. Flux-induced Nernst effect in low-dimensional superconductors

    Science.gov (United States)

    Berger, Jorge

    2017-02-01

    A method is available that enables consistent study of the stochastic behavior of a system that obeys purely diffusive evolution equations. This method has been applied to a superconducting loop with nonuniform temperature, with average temperature close to Tc. It is found that a flux-dependent average potential difference arises along the loop, proportional to the temperature gradient and most pronounced in the direction perpendicular to this gradient. The largest voltages were obtained for fluxes close to 0.3Φ0, average temperatures slightly below the critical temperature, thermal coherence length of the order of the perimeter of the ring, BCS coherence length that is not negligible in comparison to the thermal coherence length, and short inelastic scattering time. This effect is entirely due to thermal fluctuations. It differs essentially from the usual Nernst effect in bulk superconductors, that is induced by magnetic field rather than by magnetic flux. We also study the effect of confinement in a 2D mesoscopic film.

  15. Brane Couplings from Bulk Loops

    OpenAIRE

    Georgi, Howard; Grant, Aaron K.; Hailu, Girma

    2000-01-01

    We compute loop corrections to the effective action of a field theory on a five-dimensional $S_1/Z_2$ orbifold. We find that the quantum loop effects of interactions in the bulk produce infinite contributions that require renormalization by four-dimensional couplings on the orbifold fixed planes. Thus bulk couplings give rise to renormalization group running of brane couplings.

  16. Can bulk viscosity drive inflation

    Energy Technology Data Exchange (ETDEWEB)

    Pacher, T.; Stein-Schabes, J.A.; Turner, M.S.

    1987-09-15

    Contrary to other claims, we argue that bulk viscosity associated with the interactions of non- relativistic particles with relativistic particles around the time of the grand unified theory (GUT) phase transition cannot lead to inflation. Simply put, the key ingredient for inflation, negative pressure, cannot arise due to the bulk-viscosity effects of a weakly interacting mixture of relativistic and nonrelativistic particles.

  17. Theoretical study of pair density wave superconductors

    Science.gov (United States)

    Zheng, Zhichao

    In conventional superconductors, the Cooper pairs are formed from quasiparticles. We explore another type of superconducting state, a pair density wave (PDW) order, which spontaneously breaks some of the translational and point group symmetries. In a PDW superconductor, the order parameter is a periodic function of the center-of-mass coordinate, and the spatial average value of the superconducting order parameter vanishes. In the early 1960s, following the success of the BCS theory of superconductivity, Fulde and Ferrell and Larkin and Ovchinnikov (FFLO) developed theories of inhomogeneous superconducting states. Because of this Zeeman splitting in a magnetic field, the Cooper pairs having a nonzero center-of-mass momentum are more stable than the normal pairing, leading to the FFLO state. Experiments suggest possible occurrence of the FFLO state in the heavy-fermion compound CeCoIn5, and in quasi-low-dimensional organic superconductors. FFLO phases have also been argued to be of importance in understanding ultracold atomic Fermi gases and in the formation of color superconductivity in high density quark matter. In all Fermi superfluids known at the present time, Cooper pairs are composed of particles with spin 1/2. The spin component of a pair wave function can be characterized by its total spin S = 0 (singlet) and S = 1 (triplet). In the discovered broken inversion superconductors CePt3Si, Li2Pt3B, and Li2Pd3B, the magnetic field leads to novel inhomogeneous superconducting states, namely the helical phase and the multiple-q phase. Its order parameter exhibits periodicity similar to FFLO phase, and the consequences of both phases are same: the enhancement of transition temperature as a function of magnetic field. We have studied the PDW phases in broken parity superconductors with vortices included. By studying PDW vortex states, we find the usual Abrikosov vortex solution is unstable against a new solution with fractional vortex pairs. We have also studied the

  18. High temperature superconductor cable concepts for fusion magnets

    CERN Document Server

    AUTHOR|(CDS)2078397

    2013-01-01

    Three concepts of high temperature superconductor cables carrying kA currents (RACC, CORC and TSTC) are investigated, optimized and evaluated in the scope of their applicability as conductor in fusion magnets. The magnetic field and temperature dependence of the cables is measured; the thermal expansion and conductivity of structure, insulation and filling materials are investigated. High temperature superconductor winding packs for fusion magnets are calculated and compared with corresponding low temperature superconductor cases.

  19. Low resistivity contact to iron-pnictide superconductors

    Science.gov (United States)

    Tanatar, Makariy; Prozorov, Ruslan; Ni, Ni; Bud& #x27; ko, Sergey; Canfield, Paul

    2013-05-28

    Method of making a low resistivity electrical connection between an electrical conductor and an iron pnictide superconductor involves connecting the electrical conductor and superconductor using a tin or tin-based material therebetween, such as using a tin or tin-based solder. The superconductor can be based on doped AFe.sub.2As.sub.2, where A can be Ca, Sr, Ba, Eu or combinations thereof for purposes of illustration only.

  20. Search for New and Better High Temperature Superconductors

    Science.gov (United States)

    2014-03-30

    AFRL-OSR-VA-TR-2015-0096 (MURI 09) TOWARDS NEW AND BETTER HIGH TEMPERATURE SUPERCONDUCTORS Malcolm Beasley LELAND STANFORD JUNIOR UNIV CA Final...Search for New and Better High Temperature Superconductors 5a. CONTRACT NUMBER 5b. GRANT NUMBER FA9550-09-1-0583 5c. PROGRAM ELEMENT NUMBER 6...SUPPLEMENTARY NOTES 14. ABSTRACT This program was focused on an integrated search for new superconductors in material systems with perceived

  1. Andreev Spectra and Subgap Bound States in Multiband Superconductors

    OpenAIRE

    Golubov, A. A.; Brinkman, A.; Tanaka, Yukio; Mazin, I.I.; Dolgov, O. V.

    2009-01-01

    The theory of Andreev conductance is formulated for junctions involving normal metals (N) and multiband superconductors (S) and applied to the case of superconductors with nodeless extended $s_{\\pm}$-wave order parameter symmetry, as possibly realized in the recently discovered ferro pnictides. We find qualitative differences from tunneling into s-wave or d-wave superconductors that may help to identify such a state. First, interband interference leads to a suppression of Andreev reflection i...

  2. Centre seeded infiltration and growth process for fabrication of large grain bulk YBCO/Ag superconducting composites

    Science.gov (United States)

    Parthasarathy, R.; Seshubai, V.

    2012-06-01

    We report the fabrication of a large grain bulk YBCO/Ag superconductor using a novel technique which we call Centre Seeded Infiltration and Growth Process (CSIGP). Using this technique, it has been made possible to get bulk YBCO/Ag composite sample with uniform grain growth textured along the c-axis. The resulting large grain sample has been found to have high critical current densities up to large magnetic fields. We correlate the improved superconducting and magnetic properties to the modified grain growth conditions employed in this fabrication technique.

  3. A modified beam stiffness matrix for superconductor elements

    Energy Technology Data Exchange (ETDEWEB)

    Gori, R.; Schrefler, B.A. (Padua Univ. (Italy). Ist. di Scienza e Tecnica delle Costruzioni)

    1989-10-01

    The components of the stiffness matrix of superconductor elements are derived taking into account the effects of the wrapping of superconductor strands around the internal insulating strip and of possible stabilizing profiles around conductor core. It is already known that the inclination of the strands referred to the longitudinal axis of the superconductor produces a reduction of the axial stiffness and a considerable increase in torsional stiffness. Here also the effects of bending are taken into account, completing hence the previous investigation. Examples relating to superconductors proposed for the Toroidal Field Coil of the Next European Torus are shown. In that instance the strand transposition is carried out by roebling. (orig.).

  4. Structural and Chemical Diversity of Tl-Based Cuprate Superconductors

    Institute of Scientific and Technical Information of China (English)

    信赢

    2003-01-01

    The Tl-based cuprate superconductor family is the largest family in crystal structure and chemical composition among all high Tc cuprate superconductors. The Tl family can be divided into two sub-families, the Tl single layer family and the Tl double layer family, based on their crystal structural characteristics. The Tl single layer family is an ideal material for investigating the evolution of crystalline formation, charge carrier density, chemical composition, transport properties, superconductivity and their relationships. The Tl family contains almostall possible crystal structures discovered in high-Tc cuprate superconductors. Tl cuprate superconductors are of great importance not only in studying high-temperature superconductivity but also in commercial applications.

  5. Electrical bushing for a superconductor element

    Science.gov (United States)

    Mirebeau, Pierre; Lallouet, Nicolas; Delplace, Sebastien; Lapierre, Regis

    2010-05-04

    The invention relates to an electrical bushing serving to make a connection at ambient temperature to a superconductor element situated in an enclosure at cryogenic temperature. The electrical bushing passes successively through an enclosure at intermediate temperature between ambient temperature and cryogenic temperature, and an enclosure at ambient temperature, and it comprises a central electrical conductor surrounded by an electrically insulating sheath. According to the invention, an electrically conductive screen connected to ground potential surrounds the insulating sheath over a section that extends from the end of the bushing that is in contact with the enclosure at cryogenic temperature at least as far as the junction between the enclosure at intermediate temperature and the enclosure at ambient temperature. The invention is more particularly applicable to making a connection to a superconductor cable.

  6. Application of High Temperature Superconductors to Accelerators

    CERN Document Server

    Ballarino, A

    2000-01-01

    Since the discovery of high temperature superconductivity, a large effort has been made by the scientific community to investigate this field towards a possible application of the new oxide superconductors to different devices like SMES, magnetic bearings, flywheels energy storage, magnetic shielding, transmission cables, fault current limiters, etc. However, all present day large scale applications using superconductivity in accelerator technology are based on conventional materials operating at liquid helium temperatures. Poor mechanical properties, low critical current density and sensitivity to the magnetic field at high temperature are the key parameters whose improvement is essential for a large scale application of high temperature superconductors to such devices. Current leads, used for transferring currents from the power converters, working at room temperature, into the liquid helium environment, where the magnets are operating, represent an immediate application of the emerging technology of high t...

  7. Method for fabrication of high temperature superconductors

    Science.gov (United States)

    Balachandran, Uthamalingam; Ma, Beihai; Miller, Dean

    2009-07-14

    A layered article of manufacture and a method of manufacturing same is disclosed. A substrate has a biaxially textured MgO crystalline layer having the c-axes thereof inclined with respect to the plane of the substrate deposited thereon. A layer of one or more of YSZ or Y.sub.2O.sub.3 and then a layer of CeO.sub.2 is deposited on the MgO. A crystalline superconductor layer with the c-axes thereof normal to the plane of the substrate is deposited on the CeO.sub.2 layer. Deposition of the MgO layer on the substrate is by the inclined substrate deposition method developed at Argonne National Laboratory. Preferably, the MgO has the c-axes thereof inclined with respect to the normal to the substrate in the range of from about 10.degree. to about 40.degree. and YBCO superconductors are used.

  8. A Fifth Force: Generalized through Superconductors

    Science.gov (United States)

    Robertson, Glen A.

    1999-01-01

    The connection between the Biefield-Brown Effect, the recent repeat of the 1902 Trouton-Noble (TN) experiments, and the gravity shielding experiments was explored. This connection is visualized through high capacitive electron concentrations. From this connection, a theory is proposed that connects mass energy to gravity and a fifth force. The theory called the Gravi-Atomic Energy theory presents two new terms: Gravi-atomic energy and quantum vacuum pressure (QVP). Gravi-atomic energy is defined as the radiated mass energy, which acts on vacuum energy to create a QVP about a mass, resulting in gravity and the fifth force. The QVP emission from a superconductor was discussed followed by the description of a test for QVP from a superconductor using a Cavendish balance.

  9. Abrikosov Gluon Vortices in Color Superconductors

    CERN Document Server

    Ferrer, Efrain J

    2010-01-01

    In this talk I will discuss how the in-medium magnetic field can influence the gluon dynamics in a three-flavor color superconductor. It will be shown how at field strengths comparable to the charged gluon Meissner mass a new phase can be realized, giving rise to Abrikosov's vortices of charged gluons. In that phase, the inhomogeneous gluon condensate anti-screens the magnetic field due to the anomalous magnetic moment of these spin-1 particles. This paramagnetic effect can be of interest for astrophysics, since due to the gluon vortex antiscreening mechanism, compact stars with color superconducting cores could have larger magnetic fields than neutron stars made up entirely of nuclear matter. I will also discuss a second gluon condensation phenomenon connected to the Meissner instability attained at moderate densities by two-flavor color superconductors. In this situation, an inhomogeneous condensate of charged gluons emerges to remove the chromomagnetic instability created by the pairing mismatch, and as a ...

  10. Phases of holographic d-wave superconductor

    CERN Document Server

    Krikun, Alexander

    2015-01-01

    We study different phases in the holographic model of d-wave superconductor. These are described by solutions to the classical equations of motion found in different ansatze. Apart from the known homogeneous d-wave superconducting phase we find three new solutions. Two of them represent two distinct families of the spatially modulated solutions, which realize the charge density wave phases in the dual theory. The third one is the new homogeneous phase with nonzero anapole moment. These phases are relevant to the physics of cuprate high-Tc superconductor in pseudogap region. While the d-wave phase preserves translation, parity and time reversal symmetry, the striped phases break translations spontaneously. Parity and time-reversal are preserved when combined with discrete half-periodic shift of the wave. In anapole phase translation symmetry is preserved, but parity and time reversal are spontaneously broken. All of the considered solutions brake the global $U(1)$. Thermodynamical treatment shows that in the s...

  11. Electronic structure of Fe-based superconductors

    Indian Academy of Sciences (India)

    Kalobaran Maiti

    2015-06-01

    Fe-based superconductors have drawn much attention during the last decade due to the presence of superconductivity in materials containing the magnetic element, Fe, and the coexistence of superconductivity and magnetism. Extensive study of the electronic structure of these systems suggested the dominant role of states in their electronic properties, which is significantly different from the cuprate superconductors. In this article, some of our studies of the electronic structure of these fascinating systems employing high-resolution photoemission spectroscopy is reviewed. The combined effect of electron correlation and covalency reveals an interesting scenario in their electronic structure. The contribution of ligand states at the Fermi level is found to be much more significant than indicated in earlier studies. Temperature evolution of the energy bands reveals the signature of transition akin to Lifshitz transition in these systems.

  12. Shot Noise in Ferromagnetic Superconductor Tunnel Junctions

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    In this paper, the superconducting order parameter and the energy spectrum of the Bogoliubov excitations are obtained from the Bogoliubov-de Gennes (BdG) equation for a ferromagnetic superconductor (FS). Taking into account the rough interface scattering effect, we calculate the shot noise and the differential conductance of the normal- metal insulator ferromagnetic superconductor junction. It is shown that the exchange energy Eh in FS can lead to splitting of the differential shot noise peaks and the conductance peaks. The energy difference between the two splitting peaks is equal to 2Eh. The rough interface scattering strength results in descent of conductance peaks and the shot noise-to-current ratio but increases the shot noise.

  13. Magnetic chains on a triplet superconductor.

    Science.gov (United States)

    Sacramento, P D

    2015-11-11

    The topological state of a two-dimensional triplet superconductor may be changed by an appropriate addition of magnetic impurities. A ferromagnetic magnetic chain at the surface of a superconductor with spin-orbit coupling may eliminate the edge states of a finite system giving rise to localized zero modes at the edges of the chain. The coexistence/competition between the two types of zero modes is considered. The reduction of the system to an effective 1d system gives partial information on the topological properties but the study of the two sets of zero modes requires a two-dimensional treatment. Increasing the impurity density from a magnetic chain to magnetic islands leads to a finite Chern number. At half-filling small concentrations are enough to induce chiral modes.

  14. Iron-Based Superconductors as topological matter

    Science.gov (United States)

    Hu, Jiangping

    We show the existence of non-trivial topological properties in Iron-based superconductors. Several examples are provided, including (1) the single layer FeSe grown on SrTiO3 substrate, in which an topological insulator phase exists due to the band inversion at M point; (2) CaFeAs2, a staggered intercalation compound that integrates both quantum spin hall and superconductivity in which the nontrivial topology stems from the chain-like As layers away from FeAs layers; (3) the Fe(Te,Se) thin films in which the nontrivial Z2 topological invariance originates from the parity exchange at Γ point that is controlled by the Te(Se) height; (4 nontrivial topology that is driven by the nematic order in FeSe. These results lay ground for integrating high Tc superconductivity with topological properties to realize new emergent phenomena, such as majorana particles, in iron-based high temperature superconductors

  15. Topological properties in Iron-Based Superconductors

    Science.gov (United States)

    Hu, Jiangping; Hao, Ningning; Wu, X. X.

    2015-03-01

    We show the existence of non-trivial topological properties in Iron-based superconductors. Several examples are provided, including (1) the single layer FeSe grown on SrTiO3 substrate, in which an topological insulator phase exists due to the band inversion at M point; (2) CaFeAs2, a staggered intercalation compound that integrates both quantum spin hall and superconductivity in which the nontrivial topology stems from the chain-like As layers away from FeAs layers; (3) the Fe(Te,Se) thin films in which the nontrivial Z2 topological invariance originates from the parity exchange at ? point that is controlled by the Te(Se) height. These results lay ground for integrating high Tc superconductivity with topological properties to realize new emergent phenomena, such as majorana particles, in iron-based high temperature superconductors. The work is supported by NSFC and the Ministry of Science and Technology of China.

  16. Asymmetric Ferromagnet-Superconductor-Ferromagnet Switch

    Energy Technology Data Exchange (ETDEWEB)

    Cadden-Zimansky, P.; Bazaliy, Ya.B.; Litvak, L.M.; Jiang, J.S.; Pearson, J.; Gu, J.Y.; You, Chun-Yeol; Beasley, M.R.; Bader, S.D.

    2011-11-04

    In layered ferromagnet-superconductor-ferromagnet F{sub 1} /S/F{sub 2} structures, the critical temperature T{sub c} of the superconductors depends on the magnetic orientation of the ferromagnetic layers F{sub 1} and F{sub 2} relative to each other. So far, the experimentally observed magnitude of change in T{sub c} for structures utilizing weak ferromagnets has been 2 orders of magnitude smaller than is expected from calculations. We theoretically show that such a discrepancy can result from the asymmetry of F/S boundaries, and we test this possibility by performing experiments on structures where F{sub 1} and F{sub 2} are independently varied. Our experimental results indicate that asymmetric boundaries are not the source of the discrepancy. If boundary asymmetry is causing the suppressed magnitude of T{sub c} changes, it may only be possible to detect in structures with thinner ferromagnetic layers.

  17. Unconventional Disorder Effects in Correlated Superconductors

    Science.gov (United States)

    Gastiasoro, Maria N.; Bernardini, Fabio; Andersen, Brian M.

    2016-12-01

    We study the effects of disorder on unconventional superconductors in the presence of correlations, and explore a novel correlated disorder paradigm dominated by strong deviations from standard Abrikosov-Gor'kov theory due to generation of local bound states and cooperative impurity behavior driven by Coulomb interactions. Specifically we explain under which circumstances magnetic disorder acts as a strong poison destroying high-Tc superconductivity at the sub-1% level, and when nonmagnetic disorder, counterintuitively, hardly affects the unconventional superconducting state while concomitantly inducing an inhomogeneous full-volume magnetic phase. Recent experimental studies of Fe-based superconductors have discovered that such unusual disorder behavior seems to be indeed present in those systems.

  18. Very General Holographic Superconductors and Entanglement Thermodynamics

    CERN Document Server

    Dey, Anshuman; Sarkar, Tapobrata

    2014-01-01

    We construct and analyze holographic superconductors with generalized higher derivative couplings, in single R-charged black hole backgrounds in four and five dimensions. These systems, which we call very general holographic superconductors, have multiple tuning parameters and are shown to exhibit a rich phase structure. We establish the phase diagram numerically as well as by computing the free energy, and then validated the results by calculating the entanglement entropy for these systems. The entanglement entropy is shown to be a perfect indicator of the phase diagram. The differences in the nature of the entanglement entropy in R-charged backgrounds compared to the AdS-Schwarzschild cases are pointed out. We also compute the analogue of the entangling temperature for a subclass of these systems and compare the results with non-hairy backgrounds.

  19. Revisiting holographic superconductors with hyperscaling violation

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Qiyuan [Universidade de Sao Paulo, Instituto de Fisica, C.P. 66318, Sao Paulo (Brazil); Hunan Normal University, Department of Physics, Key Laboratory of Low Dimensional Quantum Structures and Quantum Control of Ministry of Education, Changsha, Hunan (China); Institute of Theoretical Physics, Chinese Academy of Sciences, State Key Laboratory of Theoretical Physics, Beijing (China); Zhang, Shao-Jun [Universidade de Sao Paulo, Instituto de Fisica, C.P. 66318, Sao Paulo (Brazil)

    2016-03-15

    We investigate the effect of the hyperscaling violation on the holographic superconductors. In the s-wave model, we find that the critical temperature decreases first and then increases as the hyperscaling violation increases, and the mass of the scalar field will not modify the value of the hyperscaling violation which gives the minimum critical temperature. We analytically confirm the numerical results by using the Sturm-Liouville method with the higher order trial function and improve the previous findings in Fan (J High Energy Phys 09:048, 2013). However, different from the s-wave case, we note that the critical temperature decreases with the increase of the hyperscaling violation in the p-wave model. In addition, we observe that the hyperscaling violation affects the conductivity of the holographic superconductors and changes the expected relation in the gap frequency in both s-wave and p-wave models. (orig.)

  20. Energy efficiency of adiabatic superconductor logic

    Science.gov (United States)

    Takeuchi, Naoki; Yamanashi, Yuki; Yoshikawa, Nobuyuki

    2015-01-01

    Adiabatic superconductor logic (ASL), including adiabatic quantum-flux-parametron (AQFP) logic, exhibits high energy efficiency because its bit energy can be decreased below the thermal energy through adiabatic switching operations. In the present paper, we present the general scaling laws of ASL and compare the energy efficiency of ASL with those of other energy-efficient logics. Also, we discuss the minimum energy-delay product (EDP) of ASL at finite temperature. Our study shows that there is a maximum temperature at which the EDP can reach the quantum limit given by ħ/2, which is dependent on the superconductor material and the Josephson junction quality, and that it is reasonable to operate ASL at cryogenic temperatures in order to achieve an EDP that approaches ħ/2.