WorldWideScience

Sample records for gd single crystals

  1. Czochralski growth of Gd2Ti2O7 single crystals

    Science.gov (United States)

    Guo, F. Y.; Zhang, W. H.; Ruan, M.; Kang, J. B.; Chen, J. Z.

    2014-09-01

    Gd2Ti2O7 (GTO) single crystals having dimensions of 17×17×20 mm3 were grown by the Czochralski method. These crystals displayed a strong growth habit with {1 1 1} facets. The colors of the as-grown crystals were sensitive to the oxygen concentration both during growth and post-growth annealing. The possible reason for the different colors is discussed and based on transmission, energy dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and electron spin resonance (ESR) analyses.

  2. Giant magnetocaloric effect and temperature induced magnetization jump in GdCrO3 single crystal

    Science.gov (United States)

    Yin, L. H.; Yang, J.; Kan, X. C.; Song, W. H.; Dai, J. M.; Sun, Y. P.

    2015-04-01

    We report on a systematic study of the single-crystal GdCrO3, which shows various novel magnetic features, such as temperature-induced magnetization reversal (TMR), temperature-induced magnetization jump (TMJ), spin reorientation, and giant magnetocaloric effect (MCE). In the field-cooled cooling process with modest magnetic field along the c axis, GdCrO3 first shows a TMR at T c o m p ˜ 120 - 130 K and then an abrupt TMJ with a sign change of magnetization at T j u m p ˜ 52 - 120 K , and finally a spin reorientation at T S R ˜ 4 - 7 K . Interestingly, the remarkable TMJ behavior, which was not reported ever before, persists at higher fields up to 10 kOe even when TMR disappears. In addition, giant MCE with the maximum value of magnetic entropy change reaching ˜31.6 J/kg K for a field change of 44 kOe was also observed in GdCrO3 single crystal, suggesting it could be a potential material for low-T magnetic refrigeration. A possible mechanism for these peculiar magnetic behaviors is discussed based on the various competing magnetic interactions between the 3d electrons of Cr3+ ions and 4f electrons of Gd3+ ions.

  3. Crystal growth and optical properties of Gd admixed Ce-doepd Lu2Si2O7 single crystals

    Science.gov (United States)

    Horiai, Takahiko; Kurosawa, Shunsuke; Murakami, Rikito; Yamaji, Akihiro; Shoji, Yasuhiro; Ohashi, Yuji; Pejchal, Jan; Kamada, Kei; Yokota, Yuui; Yoshikawa, Akira

    2017-06-01

    Ce-doped Lu2Si2O7 scintillator contains radioactive isotope 176Lu which causes an unwanted intrinsic background signal. The development of scintillators with reduced Lu concentration were required in some applications. In this study, we developed the Gd admixed lutetium pyrosilicate, where the average ion radius at the rare earth site was similar to the Tm3+ ion radius, for which the RE2Si2O7 (RE=Tm, Yb, Lu) crystal structure is stable from room temperature to melting point. We have grown (Cex Lu1-x-y Gdy)2Si2O7 (x=0.01, y=0.00, 0.05, 0.10) single crystals. Their crystal systems were monoclinic with a space group C2/m. The absorption spectra revealed the energy transitions in Ce and Gd ions might be occurred. The light output was degraded and decay time was accelerated comparing the Gd 5% admixed sample with the Gd 10% one.

  4. Structural and photoluminescence properties of Gd implanted ZnO single crystals

    Science.gov (United States)

    Murmu, P. P.; Mendelsberg, R. J.; Kennedy, J.; Carder, D. A.; Ruck, B. J.; Markwitz, A.; Reeves, R. J.; Malar, P.; Osipowicz, T.

    2011-08-01

    We present the structural and photoluminescence properties of 30 keV gadolinium implanted and subsequently annealed zinc oxide (ZnO) single crystals. Rutherford backscattering and channeling results reveal a low surface region defect density which was reduced further upon annealing. For low implantation fluence, around 85% of the Gd atoms are estimated to be in sites aligned with the ZnO lattice, while for higher fluences the Gd is largely disordered and likely forms precipitates. The Raman spectra of the implanted samples show defect-induced modes, which match the one-phonon density of states for the most heavily implanted samples. Annealing eliminates these features implying the removal of Gd-associated lattice disorder. Low temperature photoluminescence spectra revealed a red-shift in the defect emission, from green to orange/yellow, indicating the suppression of a deep level, which is thought to be due to oxygen vacancies. It is suggested that the orange/yellow emission is unmasked when the green emission is quenched by the presence of the implanted Gd atoms.

  5. Thermal conductivity of ferrimagnet GdBaMn2O5.0 single crystals

    Directory of Open Access Journals (Sweden)

    J. C. Wu

    2017-05-01

    Full Text Available GdBaMn2O5.0 is a double-perovskite ferrimagnet consisting of pyramidal manganese layers. In this work, we study the in-plane and the c-axis thermal conductivities of GdBaMn2O5.0 single crystals at low temperatures down to 0.3 K and in high magnetic fields up to 14 T. The κc(T curve shows a broad hump below the Néel temperature (TN = 144 K, which indicates the magnon heat transport along the c axis. Whereas, the κa(T shows a kink at TN, caused by a magnon-phonon scattering effect. This anisotropic behavior is caused by the anisotropy of spin interactions along different directions. At very low temperatures, magnetic-field-induced changes of κa and κc, which is likely due to phonon scattering by free Gd3+ spins, is rather weak. This indicates that the spin coupling between Gd3+ and Mn2+/Mn3+ is rather strong at low temperatures.

  6. Luminescence and light yield of (Gd2Y)(Ga3Al2)O12:Pr3+ single crystal scintillators

    Science.gov (United States)

    Lertloypanyachai, Prapon; Pathumrangsan, Nichakorn; Sreebunpeng, Krittiya; Pattanaboonmee, Nakarin; Chewpraditkul, Weerapong; Yoshikawa, Akira; Kamada, Kei; Nikl, Martin

    2017-06-01

    Praseodymium-doped (Gd2Y)(Ga3Al2)O12 (GYGAG: Pr) single crystals are grown by the micro-pulling down method with different Pr concentrations. The energy transfer process between Pr3+ and Gd3+ is investigated by photoluminescence excitation (PLE) and emission (PL) spectra measurements. Photoelectron yield measurements are carried out using photomultiplier. At 662 keV γ-rays, photoelectron yield of 2520 phe/MeV obtained for the GYGAG: Pr (0.01%) sample is larger than that of 1810 phe/MeV obtained for BGO crystal. Light yield degradation for the GYGAG: Pr scintillators is presumably due to the energy transfer from 5d state of Pr3+ to 4f state of Gd3+ together with the concentration quenching in the Gd3+-sublattice.

  7. Luminescence and scintillation timing characteristics of (LuxGd2-x)SiO5:Ce single crystals

    Science.gov (United States)

    Yawai, Nattasuda; Chewpraditkul, Warut; Sakthong, Ongsa; Chewpraditkul, Weerapong; Wantong, Kriangkrai; Szczesniak, Tomasz; Swiderski, Lukasz; Moszynski, Marek; Sidletskiy, Oleg

    2017-02-01

    The luminescence and scintillation characteristics of cerium-doped lutetium-gadolinium orthosilicate (LuxGd2-xSiO5:Ce; x=0, 0.8, 1.8) single crystals were investigated. At 662 keV γ-rays, the light yield of 29,800±3000 ph MeV-1 obtained for Lu1.8Gd0.2SiO5:Ce is higher than that of 20,200±2000 and 11,800±1200 ph MeV-1 obtained for Lu0.8Gd1.2SiO5:Ce and Gd2SiO5:Ce, respectively. The fast component decay time of 32, 18 and 17 ns was measured in the scintillation decay of Gd2SiO5:Ce, Lu0.8Gd1.2SiO5:Ce and Lu1.8Gd0.2SiO5:Ce, respectively. The coincidence time spectra for 511 keV annihilation quanta were measured in reference to a fast BaF2 detector and time resolution was discussed in terms of a number of photoelectrons and decay time of the fast component. The mass attenuation coefficient for studied crystals at 60 and 662 keV γ-rays was also evaluated and discussed.

  8. Magnetic properties of the tetragonal RCuGa{sub 3} (R=Pr, Nd and Gd) single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Nagalakshmi, R., E-mail: nagaphys@yahoo.com [Department of Physics, National Institute of Technology, Tiruchirappalli 6200015 (India); Kulkarni, Ruta; Dhar, S.K.; Thamizhavel, A. [DCMPMS, Tata Institute of Fundamental Research, Mumbai 400005 (India); Krishnakumar, V. [Department of Physics, Periyar University, Salem 636011 (India); Reiffers, Marian; Čurlík, Ivan [Institute of Experimental Physics, Watsonova 47, SK-040 01 Kosice (Slovakia); Department of Physics, University of Presov, 17 Novembra 1, SK-080 01 (Slovakia); Hagemann, Hans; Lovy, Dominique [Department of Physical Chemistry, University of Geneva, Geneva (Switzerland); Nallamuthu, S. [Department of Physics, National Institute of Technology, Tiruchirappalli 6200015 (India)

    2015-07-15

    Single crystals of tetragonal RCuGa{sub 3} (R=La, Pr, Nd and Gd), with BaNiSn{sub 3} type structure (space group I4 mm), have been grown by high temperature solution growth technique using Ga as flux. Their magnetic properties were determined by heat capacity and the measurement of magnetization and electrical resistivity along [100] and [001] directions. Except LaCuGa{sub 3}, the compounds order magnetically. PrCuGa{sub 3} undergoes a ferromagnetic transition with Curie temperature of 4.6 K. NdCuGa{sub 3} shows a bulk magnetic transition at 3.3 K. The data on GdCuGa{sub 3} indicate combined characteristics of spin glass and antiferromagnetic behavior at low temperatures. From the Schottky heat capacity data the crystal electric field level energy spectra have been determined. Further we have performed temperature dependent measurements of electron spin resonance (ESR) on GdCuGa{sub 3} between 11 K and room temperature. The ESR data indicate an enhancement of magnetic fluctuations associated with spin reorientation and both homogeneous and inhomogeneous thermal broadening of the linewidth. - Highlights: • RCuGa{sub 3} (R=La, Pr, Nd and Gd) single crystals were grown by flux technique. • The compounds exhibit long range magnetic ordering. • Crystal electric field levels have been derived from Schottky heat capacity. • Electron spin resonance (ESR) studies of GdCuGa{sub 3} are also discussed.

  9. Magnetism in GdCo2B2 Studied on a Single Crystal

    Science.gov (United States)

    Pospíšil, Jiří; Kitazawa, Hideaki; Gupta, Ajeya; Toyoizumi, Saori; Tamaki, Akira; Diviš, Martin; Sechovský, Vladimír

    2014-05-01

    We have prepared a high quality single crystal of GdCo2B2 and studied complicated magnetism by measuring the magnetization, AC susceptibility and heat capacity. The results can be conceived in terms of low-temperature antiferromagnetism (below TN = 22 K) undergoing three order to order magnetic phase transitions at T1 = 18.5, T2 = 13, and T3 = 7 K, respectively. Measurements on the single crystal allowed us determining the weak magnetocrystalline anisotropy when the a-axis appears to be direction of the easy magnetization. In addition spin-flop transitions have been detected on magnetization loops. We have constructed complex H-T magnetic phase diagrams and calculated magnetocaloric effect (MCE). The large magnetic entropy change of Δ Smag(9T) = 24 J kg-1 K-1 is attributed to the instability of antiferromagnetic ordering which can be easily changed to field-induced ferromagnetic state. The interpretation of experimental results is corroborated by ab initio electronic structure calculations.

  10. Irradiation damage in Gd2Ti2O7 single crystals: Ballistic versus ionization processes

    Science.gov (United States)

    Moll, S.; Sattonnay, G.; Thomé, L.; Jagielski, J.; Decorse, C.; Simon, P.; Monnet, I.; Weber, W. J.

    2011-08-01

    The structural transformations induced in Gd2Ti2O7 single crystals irradiated at high energies (870-MeV Xe), where ionization processes (electronic stopping) dominate, and at low energies (4-MeV Au), where ballistic processes (nuclear stopping) dominate, have been studied via the combination of Rutherford backscattering spectrometry and channeling (RBS/C), Raman spectroscopy, and transmission electron microscopy (TEM) experiments. At high energy, amorphization occurs directly in individual ion tracks from the extreme electronic-energy deposition, and full amorphization results from the overlapping of these tracks as described by a direct impact model. The track diameters lie in the range 6-9 nm. At low energy, amorphization occurs via indirect processes, driven by ballistic nuclear energy deposition from the ions, that is accounted for in the framework of both direct-impact/defect-stimulated and multi-step damage accumulation models. The ion fluence for total amorphization of the irradiated layer is much higher at low energy (0.5 ion nm-2) than at high energy (0.05 ion nm-2), consistent with the nuclear stopping at low energy (5.2 keV/nm) compared to the electronic stopping at high energy (29 keV/nm).

  11. Irradiation Damage in Gd2Ti2O7 Single Crystals: Ballistic vs Ionization Processes

    Energy Technology Data Exchange (ETDEWEB)

    Moll, Sandra [Pacific Northwest National Laboratory (PNNL); Sattonnay, Gael [Universite Paris Sud, Orsay, France; Thome, Lionel [Universite Paris Sud, Orsay, France; Jagielski, Jacek [Institute for Electronic Materials Technology; Decorse, C [Universite Paris Sud, Orsay, France; Simon, Patrick [CEMHTI-CNRS, Universite d' Orleans; Monnet, Isabelle [Grand Accelerateur National d' Ions Lourds (GANIL); Weber, William J [ORNL

    2011-01-01

    The structural transformations induced in Gd2Ti2O7 single crystals irradiated at high energies (870 MeV Xe), where ionization processes (electronic stopping) dominate, and at low energies (4 MeV Au), where ballistic processes (nuclear stopping) dominate, have been studied via the combination of Rutherford backscattering spectrometry and channeling, Raman spectroscopy and transmission electron microscopy experiments. At high energy, amorphization occurs directly in individual ion tracks from the extreme electronic energy deposition from ionization, and full amorphization results from the overlapping of these tracks as described by a direct impact model. The track diameters determined from RBS/C and TEM data lie in the range 6-8 nm. At low energy, amorphization occurs via indirect processes, driven by ballistic nuclear energy deposition from the ions, that is accounted for in the framework of both the direct-impact/defect stimulated and multi-step damage accumulation models. The ion fluence for total amorphization of the irradiated layer is much higher (0.5 ion nm-2) at low energy than at high energy (0.05 ion nm-2), consistent with the nuclear stopping at low energy (5.2 keV/nm) compared to the electronic stopping at high energy (29 keV/nm).

  12. EPR and optical absorption studies on Gd{sup 3+} ions in ammonium hydrogen malonate single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Kripal, Ram, E-mail: ram_kripal2001@rediffmail.co [EPR Laboratory, Department of Physics, University of Allahabad, Allahabad 211002 (India); Mishra, Indrajeet, E-mail: indrajeet_mishra47@rediffmail.co [EPR Laboratory, Department of Physics, University of Allahabad, Allahabad 211002 (India); Department of Physics, D.D.U. Government P.G. College, Saidabad, Allahabad (India)

    2010-01-01

    X-Band electron paramagnetic resonance (EPR) studies of Gd{sup 3+} ions in ammonium hydrogen malonate single crystals have been done at room temperature. Detailed EPR analysis indicates the presence of four physically equivalent but magnetically inequivalent sites. The zero-field splitting parameters and g factor are determined. The Gd{sup 3+} ion is in {sup 8}S state; its levels are split by the action of the crystalline electric field of monoclinic symmetry. The optical absorption spectra of Gd{sup 3+} ions in single crystals of ammonium hydrogen malonate are also recorded at room temperature. The energy levels of the 4f{sup 7} configuration are calculated and compared with those observed experimentally. The values of E{sup 1}=5854+-11, E{sup 2}=31+-0.36, E{sup 3}=592+-3.3 and zeta{sub 4f}=1595+-25 cm{sup -1} are found to give the best over-all agreement between experimentally observed and calculated levels.

  13. Optical and magneto-optical properties of single crystals of RFe{sub 2} (R = Gd, Tb, Ho, and Lu) and GdCo{sub 2} intermetallic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S.J.

    1999-02-12

    The author has studied the diagonal and off-diagonal optical conductivity of RFe{sub 2}(R = Gd, Tb, Ho, Lu) and GdCo{sub 2} single crystals grown by the flux method. Using spectroscopic ellipsometry the author has measured the dielectric function from 1.5 to 5.5 eV. The magneto-optical Kerr spectrometer at temperatures between 7 and 295 K and applied magnetic fields between 0.5 to 1.6 T. The apparatus and calibration method are described in detail. Using magneto-optical data and optical constants he derives the experimental value of the off-diagonal conductivity components. Theoretical calculations of optical conductivities and magneto-optical parameters were performed using the tight binding-linear muffin tin orbitals method within the local spin density approximation. He applied this TB-LMTO method to LuFe{sub 2}. The theoretical results obtained agree well with the experimental data. The oxidation effects on the diagonal part of the optical conductivity were considered using a three-phase model. The oxidation effects on the magneto-optical parameters were also considered by treating the oxide layer as a nonmagnetic thin transparent layer. These corrections change not only the magnitude but also the shape of the optical conductivity and the magneto-optical parameters.

  14. Crystal Growth and Glass-Like Thermal Conductivity of Ca3RE2(BO34 (RE = Y, Gd, Nd Single Crystals

    Directory of Open Access Journals (Sweden)

    L. V. Gudzenko

    2017-03-01

    Full Text Available Crystal growth and thermal properties of binary borates, Ca3RE2(BO34 (RE = Y, Gd, Nd, are considered promising crystals for laser applications. These single crystals were grown by the Czochralski method. The crystal and defect structure were characterized. Volumetric chemical methods without prior separation of the components were developed and applied for the determination of the dependence of chemical compositions of the crystals on the growth conditions. The thermal conductivity was investigated in the 50–300 K range. The character of the temperature dependence of thermal conductivity was found to be similar to that of glass. The possible reasons of the observed features of the thermal conductivity were analyzed.

  15. Czochralski growth of Gd3(Al5-xGax)O12 (GAGG) single crystals and their scintillation properties

    Science.gov (United States)

    Kurosawa, Shunsuke; Shoji, Yasuhiro; Yokota, Yuui; Kamada, Kei; Chani, Valery I.; Yoshikawa, Akira

    2014-05-01

    Ce:Gd3(AlxGa1-x)5O12 (x=2.5/5 and 3/5, Ce:GAGG-2.5 and Ce:GAGG-3) crystals were grown by the Czochralski process in order to reduce cost of the starting materials as compared with conventional Ce:Gd3Al2Ga3O12 (Ce:GAGG-2) crystal which have high light output. Although perovskite phase was detected in Ce:GAGG-3, Ce:GAGG-2.5 had single-phase garnet structure. Solidification fraction for the Ce:GAGG-2.5 growth was 0.52. Optical properties including transmittance, emission, and excitation spectra of 30 samples cut from the Ce:GAGG-2.5 bulk ingot did not depend on their original position along the growth axis. These samples had light outputs of approximately 58,000±3000 photons/MeV. However, scintillation decay times varied from 140 to 200 ns and depended on the position clearly.

  16. Spectral investigation of, Ce:YAG (:Pr3+, Eu3+, Gd3+) single crystals and their applications in white LEDs

    Institute of Scientific and Technical Information of China (English)

    杜勇; 邵冲云; 董永军; 杨秋红; 华伟

    2015-01-01

    Eu3+, Pr3+, or Gd3+ codoped Ce:YAG single crystals were grown by using the Czochralski method. The pho-toluminescence (PL) emission and excitation spectra and transmittance were measured and investigated. The additional red-emitting bands were observed in the PL emission spectra of Eu,Ce:YAG and Pr,Ce:YAG single crystals and the forma-tion of noticeable peaks was studied with reference to the schematic energy level diagrams. A red-shifted phenomenon was observed in the PL emission spectrum of Gd,Ce:YAG. With codoped Eu3+, Pr3+, or Gd3+ ions, warmer white light was achieved for the white light emitting diodes and the color rendering index became higher.

  17. Growth and scintillation properties of 3 in. diameter Ce doped Gd3Ga3Al2O12 scintillation single crystal

    Science.gov (United States)

    Kamada, Kei; Shoji, Yasuhiro; Kochurikhin, Vladimir V.; Okumura, Satoshi; Yamamoto, Seiichi; Nagura, Aya; Yeom, Jung Yeol; Kurosawa, Shunsuke; Yokota, Yuui; Ohashi, Yuji; Nikl, Martin; Yoshikawa, Akira

    2016-10-01

    The 3 in. size Ce1%:Gd3Al2Ga3O12 single crystals were prepared by the Czochralski (Cz) method. Optical constants were measured. Chemical composition analysis and uniformity of scintillation decay and light yield along growth direction were evaluated. The timing resolution measurement for a pair of 3 mm×3 mm×3 mm size Ce:GAGG scintillator crystals was performed using Si-PMs.

  18. Magnetic order in geometrically frustrated Gd2(Ti1-xZrx)2O7 (x=0.02 and 0.15) single crystals

    Science.gov (United States)

    Liao, Da-Qian; Lees, M. R.; Baker, D. W.; Paul, D. Mck.; Balakrishnan, G.

    2011-02-01

    Single crystals of Gd2(Ti1-xZrx)2O7 with x=0.02 and 0.15 have been used to investigate the effects of Zr doping on the properties of the geometrically frustrated antiferromagnet Gd2Ti2O7. Powder and single-crystal x-ray data, along with optical birefringence measurements, reveal that the x=0.02 sample retains the cubic Fd3¯m structure of pure Gd2Ti2O7, while the x=0.15 composition adopts a tetragonal I41/amd structure. Low-temperature magnetization and specific heat measurements show that for Gd2(Ti0.98Zr0.02)2O7 there are two magnetic transitions at TN1=1.02 K and TN2=0.70 K, but for Gd2(Ti0.85Zr0.15)2O7 a single transition is observed at TN=1.02 K. Changes in the specific heat with a magnetic field applied along the [110] and the [111] directions are used to construct the H-T phase diagrams for both samples.

  19. Investigation of magnetic property of GdFeO{sub 3} single crystal grown in air by optical floating zone technique

    Energy Technology Data Exchange (ETDEWEB)

    Ramesh Babu, P. [Centre for Crystal Growth, School Advance Sciences, VIT University, Vellore, Tamil Nadu (India); Bhaumik, Indranil [Crystal Growth Laboratory, Laser Materials Development and Devices Division, Raja Ramanna Centre for Advanced Technology, Indore (India); Ganesamoorthy, S. [X-ray Scattering and Crystal Growth Section, CMPD, Material Science Group, IGCAR, Kalpakkam, Tamil Nadu (India); Kalainathan, S., E-mail: kalainathan@yahoo.com [Centre for Crystal Growth, School Advance Sciences, VIT University, Vellore, Tamil Nadu (India); Bhatt, R.; Karnal, A.K.; Gupta, P.K. [Crystal Growth Laboratory, Laser Materials Development and Devices Division, Raja Ramanna Centre for Advanced Technology, Indore (India)

    2015-05-15

    Highlights: • GdFeO{sub 3} single crystals have been grown by OFZ technique in air. • Sample exhibits one order lower coercive field than crystal grown in oxygen. • Bloch 3/2-law holds good for GdFeO{sub 3} (B-parameter as 2.69 × 10{sup −5} K{sup −3/2}). • The coercivity exhibited sharp dip at 200 and 550 K. • At 550 K pinning of the direction of weak ferromagnetism by AFM ordering vanishes. - Abstract: Single phase Gadolinium orthoferrite (GdFeO{sub 3}) with orthorhombic perovskite structure was synthesized without any garnet impurities by solid state reaction and subsequently GdFeO{sub 3} single crystals were grown by the optical floating zone technique. The temperature dependent magnetization measurement revealed the magnetic phase transition from anti-ferromagnetic ordering to paramagnetic ordering at 670 K. The overlapping of the magnetization measured under zero-field and field cooling condition in the range of 300–20 K signifies that there is no magnetic transition in this temperature range. The hysteresis loop measurements revealed that in comparison to the values reported for the crystal grown in oxygen, the air grown sample exhibits one order lower coercive field (∼75 Oe). The Bloch 3/2-law was found to hold good for GdFeO{sub 3} with the value of B-parameter as 2.69 × 10{sup −5} K{sup −3/2}. The coercivity exhibited sharp dip at 200 and 550 K. At and above 550 K the ability of the antiferromagnetic ordering to pin the direction of magnetization related to the weak ferromagnetism present in the material vanishes leading to the lowering in the coercivity.

  20. Pulse shape discrimination properties of Gd3Ga3Al2O12:Ce,B single crystal in comparison with CsI:Tl

    Science.gov (United States)

    Rawat, S.; Tyagi, Mohit; Netrakanti, P. K.; Kashyap, V. K. S.; Mitra, A.; Singh, A. K.; Desai, D. G.; Kumar, G. Anil; Gadkari, S. C.

    2016-12-01

    Single crystals of Gd3Ga3Al2O12:Ce,B and CsI:Tl were grown by Czochralski and Bridgman techniques, respectively. While both the crystals exhibited similar emission at about 550 nm, their scintillation decay times showed significantly different characteristics. The average scintillation decay time of Gd3Ga3Al2O12:Ce,B crystal was found to be about 284 ns for alpha excitation compared to 108 ns measured for a gamma source. On the other hand in CsI:Tl crystals, the alpha excitation resulted in a lower average decay time of 600 ns compared to 1200 ns with gamma excitation. Their pulse shape discrimination (PSD) for gamma and alpha radiations were studied by coupling the scintillators with photomultiplier tube or SiPM and employing an advanced digitizer as well as a conventional zero-crossing setup. In spite of having a poor α/γ light yield ratio, the PSD figure of merit and the difference of zero-crossing time in Gd3Ga3Al2O12:Ce,B crystals were found to be superior in comparison to CsI:Tl crystals.

  1. Growth and scintillation characterization of Ce{sup 3+}-doped Rb{sub 2}LiGdBr{sub 6} single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Rooh, Gul [Department of Physics, Abdul Wali Khan University, Mardan 23200 (Pakistan); Kim, H.J., E-mail: hongjoo@knu.ac.kr [Department of Physics, Kyungpook National University, Daegu 702-701 (Korea, Republic of); Kim, Sunghwan [Department of Radiological Science, Cheongju University, Cheongju 360-764 (Korea, Republic of); Khan, Sajid [Department of Physics, Kohat University of Science & Technology, 26000 (Pakistan)

    2016-10-01

    Growth and scintillation characterizations of the newly developed cerium doped Rb{sub 2}LiGdBr{sub 6} (RLGB) single crystals were investigated. RLGB, which belongs to bromo-elpasolite crystal family, was grown by the vertical Bridgman technique with nominally 1%, 5%, and 10% Ce{sup 3+}-concentration (mole%). X-ray excited luminescence spectra show typical Ce{sup 3+} bands between 350 to 460 nm wavelength regions. A good energy resolution of 5.5% (FWHM) and light yield of 25,500±2600 ph/MeV for 662 keV γ-rays were observed at 5% Ce{sup 3+}-concentration. Under γ-ray excitation, RLGB:Ce{sup 3+} crystals display multi-exponential decays with Ce{sup 3+} like decay components at 23 ns and 29 ns for 1% and 5% Ce-concentrations, respectively. From the results, it is expected that this scintillator could be used as a thermal neutron detector because of Li and Gd ions in the host lattice. Also, like other inorganic halide scintillators, it is very hygroscopic. - Highlights: • Scintillation properties of new Rb{sub 2}LiGdBr{sub 6}:Ce{sup 3+} were presented. • Single crystals of Rb{sub 2}LiGdBr{sub 6} were grown by two zone vertical Bridgman technique. • The grown material was highly hygroscopic and belongs to elpasolite crystal family. • Good energy resolution of 5.5% (FWHM) and light yield of 25,500±2600 ph/MeV were obtained under γ-ray excitation. • This material displayed multiexponential decays with Ce{sup 3+} like decay components.

  2. Optical spectroscopy of Dy3+-doped CaGdAlO4 single crystal for potential use in solid-state yellow lasers

    Science.gov (United States)

    Xu, Xiaodong; Hu, Zongwen; Li, Ruijuan; Li, Dongzhen; Di, Juqing; Su, Liangbi; Yang, Qiuhong; Sai, Qinglin; Tang, Huili; Wang, Qingguo; Strzęp, Adam; Xu, Jun

    2017-04-01

    The crystal growth, optical spectra and lifetime of Dy:CaGdAlO4 crystal were investigated for the first time to our best knowledge. Single Dy:CaGdAlO4 crystal with size of Φ4 × 40 mm3 was grown by floating zone method. The peak absorption cross-sections were calculated to be 2.43 × 10-21cm2 and 1.28 × 10-21 cm2 at 453 nm for σ and π polarizations. The Judd-Ofelt (JO) parameters of Ω2, Ω4 and Ω6 were calculated to be 1.8 × 10-20cm2, 1.0 × 10-20cm2 and 0.5 × 10-20cm2, respectively. The emission cross-sections were calculated to be 0.51 × 10-20cm2 and 0.55 × 10-20cm2 for σ and π polarizations. The fluorescence decay time is 222 μs. The results indicate that the Dy:CaGdAlO4 crystal is a potential candidate for yellow laser operation.

  3. Crystal growth and scintillation properties of Li{sub 6}Lu{sub x}Gd{sub 1−x}(BO{sub 3}){sub 3}: Ce{sup 3+} single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Fawad, U. [Department of Physics, Kyungpook National University, Daegu 702-701 (Korea, Republic of); Rooh, Gul [Department of Physics, Kyungpook National University, Daegu 702-701 (Korea, Republic of); Department of Physics, Abdul Wali Khan University, Mardan 23200 (Pakistan); Kim, H.J., E-mail: hongjoo@knu.ac.kr [Department of Physics, Kyungpook National University, Daegu 702-701 (Korea, Republic of); Park, H. [Department of Physics, Kyungpook National University, Daegu 702-701 (Korea, Republic of); Kim, Sunghwan [Department of Radiological Science, Cheongju University, Cheongju 360-764 (Korea, Republic of); Jiang, Hua [Department of Engineering Physics, Tsinghua University, Beijing 100084 (China)

    2014-11-11

    Mixed crystals of Li{sub 6}Gd(BO{sub 3}){sub 3} and Li{sub 6}Lu(BO{sub 3}){sub 3}, Li{sub 6}Lu{sub x}Gd{sub 1−x}(BO{sub 3}){sub 3}, doped with Ce{sup 3+} ion are grown by the Czochralski technique (x=0.0, 0.2, 0.5, 0.8, 1.0). The growth problems during the crystal growth process and the technique to overcome them are discussed in detail. Powder X-ray diffraction (XRD) analysis confirms single phase of all the grown samples. Laser induced luminescence spectra are presented. Scintillation properties such as energy resolution, light yield, decay time and α/β ratio under the excitation of γ-rays and α-particles are also presented. -- Highlights: •Single crystals of Li{sub 6}Lu{sub x}Gd{sub 1−x}(BO{sub 3}){sub 3}: Ce{sup 3+} are grown by Czochralski technique for the first time. •Single phase of the crystals is been confirmed by X-ray diffraction analysis. •Scintillation and luminescence properties are measured for the grown crystals. •The grown crystals have got the potential to become a scintillation detector.

  4. Properties of Czochralski grown Ce,Gd:Y{sub 3}Al{sub 5}O{sub 12} single crystal for white light-emitting diode

    Energy Technology Data Exchange (ETDEWEB)

    Latynina, Anastasiya, E-mail: latynina.anastasiya@nims.go.jp [National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044 (Japan); Graduate School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555 (Japan); Watanabe, Makoto; Inomata, Daisuke; Aoki, Kazuo [KOHA Co. Ltd., 2-6-8 Kouyama, Nerima, Tokyo 176-0022 (Japan); Sugahara, Yoshiyuki [Graduate School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555 (Japan); García Víllora, Encarnacíon [National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044 (Japan); Shimamura, Kiyoshi [National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044 (Japan); Graduate School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555 (Japan)

    2013-03-15

    Highlights: ► We suggest single crystal phosphor plates (SCPPs) in a new concept of white LED. ► New concept realizes epoxy resin free package and eliminates photodegradation issue. ► SCPP showed superior stability under the high temperatures, irradiation and current. ► Quantum efficiency of SCPP was found to be as high as 93%. -- Abstract: Czochralski grown Ce and Gd-doped Y{sub 3}Al{sub 5}O{sub 12} (Ce,Gd:YAG) single crystal demonstrated superior performance features in a new concept of white LED where it is used as thin single crystal phosphor plates (SCPPs). New SCPP-based white LED realizes epoxy resin free package, which allows to eliminate the photodegradation issue of the organic material. Optical, thermal and electrical properties of SCPPs and SCPP-based white LEDs are discussed with the powder phosphor and commercial LED reference. SCPPs showed significantly higher values and better stability under the high temperatures, irradiation and current. Quantum efficiency was found to be as high as 93%.

  5. Luminescence of impurity-bound excitons in Li6GdB3O9:Ce3+ single crystals.

    Science.gov (United States)

    Ogorodnikov, Igor N; Pustovarov, Vladimir A

    2012-10-10

    The anomalous (τ luminescence of wide bandgap crystals of lithium-gadolinium orthoborate Li(6)GdB(3)O(9) doped with trivalent cerium ions, has been revealed for the first time and investigated through the low-temperature time-resolved vacuum ultraviolet synchrotron spectroscopy. It was shown that the optical transitions at 6.2 eV are due to electron transfer from the ground 4f(1) states of Ce(3+) ion onto the autoionized states near the conduction band bottom of a crystal. These transitions lead to the formation of impurity-bound excitons in the form of correlated electron-hole pair, in which the hole component is localized at 4f-level of the cerium ion and an electron component is located at the conduction band bottom in the attractive potential of this hole. It is established that the direct radiative recombination of the cerium impurity-bound exciton leads to a fast broadband emission at 4.25 eV. The energy threshold for creation of the impurity-bound excitons was determined on the basis of the obtained spectroscopic data. We calculated the H(k) functions of distribution of the elementary relaxations over the reaction rate constants and explained on this basis the decay kinetics and quenching processes, not only for the anomalous emission at 4.25 eV, but for the ordinary 5d-4f luminescence at 3.0 eV in Ce(3+) ions. The paper discusses the decay channels for the impurity-bound excitons and their influence on the decay kinetics and spectra of luminescence in Li(6)GdB(3)O(9) crystals.

  6. Optical and scintillation properties of ce-doped (Gd2Y1)Ga2.7Al2.3O12 single crystal grown by Czochralski method

    Science.gov (United States)

    Wang, Chao; Wu, Yuntao; Ding, Dongzhou; Li, Huanying; Chen, Xiaofeng; Shi, Jian; Ren, Guohao

    2016-06-01

    Multicomponent garnets, due to their excellent light yield and energy resolution, become one of the most promising scintillators used for homeland security and nuclear non-proliferation applications. This work focuses on the optimization of Ce-doped (Gd,Y)3(Ga,Al)5O12 scintillators using a combination strategy of pre-screening and scale-up. Ce-doped GdxY1-xGayAl5-yO12 (x=1, 2 and y=2, 2.2, 2.5, 2.7, 3) polycrystalline powders were prepared by high-temperature solid state reaction method. The desired garnet phase in all the samples was confirmed using X-ray diffraction measurement. By comparing the radioluminescence intensity, the highest scintillation efficiency was achieved at a component of Gd2Y1Ga2.7Al2.3O12:Ce powders. A (Gd2Y1)Ga2.7Al2.3O12 doped with 1% Ce single crystal with dimensions of Ø35×40 mm was grown by Czochralski method using a oriented seed. Luminescence and scintillation properties were measured. An optical transmittance of 84% was achieved in the concerned wavelength from 500 to 800 nm. Its 5d-4f emission of Ce3+ is at 530 nm. The light yield of a Ce1%: Gd2Y1Ga2.7Al2.3O12 single crystal slab at a size of 5×5×1 mm3 can reach about 65,000±3000 Ph/MeV along with two decay components of 94 and 615 ns under 137Cs source irradiation.

  7. Effect of Mg2+ ions co-doping on luminescence and defects formation processes in Gd3(Ga,Al)5O12:Ce single crystals

    Science.gov (United States)

    Babin, V.; Bohacek, P.; Grigorjeva, L.; Kučera, M.; Nikl, M.; Zazubovich, S.; Zolotarjovs, A.

    2017-04-01

    Photo- and radioluminescence and thermally stimulated luminescence characteristics of Ce3+ - doped and Ce3+, Mg2+ co-doped Gd3(Ga,Al)5O12 (GAGG) single crystals of similar composition are investigated in the 9-500 K temperature range. The Ce3+ - related luminescence spectra and the photoluminescence decay kinetics in these crystals are found to be similar. Under photoexcitation in the Ce3+ - and Gd3+ - related absorption bands, no prominent rise of the photoluminescence intensity in time is observed neither in GAGG:Ce,Mg nor in GAGG:Ce crystals. The afterglow is strongly reduced in GAGG:Ce,Mg as compared to GAGG:Ce, and the afterglow decay kinetics is much faster. Co-doping with Mg2+ results in a drastic decrease of the thermally stimulated luminescence (TSL) intensity in the whole investigated temperature range and in the appearance of a new complex Mg2+ - related TSL glow curve peak around 285 K. After irradiation in the Ce3+ - related 3.6 eV absorption band, the TSL intensity in GAGG:Ce,Mg is found to be comparable with that in the GAGG:Ce epitaxial film of similar composition. The Mg2+ - induced changes in the concentration, origin and structure of the crystal lattice defects and their influence on the scintillation characteristics of GAGG:Ce,Mg are discussed.

  8. Study of the Polarization Behavior of Ce0.9Gd0.1O2-δ Single Crystals below 350°C to Room Temperature

    DEFF Research Database (Denmark)

    Neuhaus, K.; Bernemann, M.; Hansen, Karin Vels;

    2016-01-01

    was investigated by mapping the introduced defect gradient and its decay with time using Kelvin probe force microscopy. The generated surface potential gradients were found to have a diameter of up to 1 μm, which is explained by the local ionization of defect associates by the applied high electric field....... Measurements were performed at room temperature and 50°C. The polarization behavior of the Ce0.9Gd0.1O2-δ single crystals was compared to cyclovoltammetry and polarization-relaxation experiments at T ≤ 350°C and in dry air or nitrogen which were performed using a specially suited AFM (Controlled Atmosphere...

  9. Optical and scintillation characteristics of Gd2YAl2Ga3O12:Ce and Lu2YAl2Ga3O12:Ce single crystals

    Science.gov (United States)

    Chewpraditkul, Warut; Sakthong, Ongsa; Pattanaboonmee, Nakarin; Chewpraditkul, Weerapong; Szczesniak, Tomasz; Swiderski, Lukasz; Moszynski, Marek; Kamada, Kei; Yoshikawa, Akira; Nikl, Martin

    2017-06-01

    The optical and scintillation characteristics of Gd2YAl2Ga3O12:Ce and Lu2YAl2Ga3O12:Ce single crystals are investigated. At 662 keV γ-rays, light yield (LY) of 37,900 ph/MeV and energy resolution of 7.0% obtained for Gd2YAl2Ga3O12:Ce are superior to those of 18,900 ph/MeV and 11.5% obtained for Lu2YAl2Ga3O12:Ce. Scintillation decays are measured using the time-correlated single photon counting technique. A fast component decay time of 45 ns with relative intensity of 88% obtained for Lu2YAl2Ga3O12:Ce is superior to that of 50 ns (65%) for Gd2YAl2Ga3O12:Ce. The linear attenuation coefficient at 662 keV γ-rays is also determined and discussed.

  10. Synchrotron Based Structural Investigations of Mass-Selected PtxGd Nanoparticles and a Gd/Pt(111) Single Crystal for Electrochemical Oxygen Reduction

    DEFF Research Database (Denmark)

    Pedersen, Anders Filsøe; Velazquez-Palenzuela, Amado Andres; Masini, Federico

    2015-01-01

    . 134, 16476–16479 (2012). 3. Velazquez-Palenzuela, A. et al. The enhanced activity of mass-selected PtxGd nanoparticles for oxygen electroreduction. J. Catal. [in press] (2015). doi:10.1016/j.jcat.2014.12.012 4. Perez-Alonso, F. J. et al. The Effect of Size on the Oxygen Electroreduction Activity...

  11. Magnetic properties of KRE(WO{sub 4}){sub 2} (RE=Gd, Yb, Tm) single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Borowiec, M.T., E-mail: borow@ifpan.edu.p [Institute of Physics, Polish Academy of Sciences, Aleja Lotnikow 32/46, PL 02-668 Warsaw (Poland); Zayarnyuk, T. [Institute of Physics, Polish Academy of Sciences, Aleja Lotnikow 32/46, PL 02-668 Warsaw (Poland); Pujol, M.C.; Aguilo, M.; Diaz, F. [Fisica i Cristal.lografia de Materials i Nanomaterials (FiCMA-FICNA), Departament de Quimica Fisica i Inorganica, Universitat Rovira i Virgili (URV), Campus Sescelades, C/Marcel.li Domingo, s/n, E-43007 Tarragona, Catalunya (Spain); Zubov, E.E.; Prokhorov, A.D. [Institute of Physics, Polish Academy of Sciences, Aleja Lotnikow 32/46, PL 02-668 Warsaw (Poland); Donetsk Institute for Physics and Engineering, National Academy of Sciences of Ukraine, R. Luxemburg Street 72, 83114 Donetsk (Ukraine); Berkowski, M.; Domuchowski, W.; Wisniewski, A.; Puzniak, R.; Pietosa, J. [Institute of Physics, Polish Academy of Sciences, Aleja Lotnikow 32/46, PL 02-668 Warsaw (Poland); Dyakonov, V.P. [Institute of Physics, Polish Academy of Sciences, Aleja Lotnikow 32/46, PL 02-668 Warsaw (Poland); Donetsk Institute for Physics and Engineering, National Academy of Sciences of Ukraine, R. Luxemburg Street 72, 83114 Donetsk (Ukraine); Baranski, M.; Szymczak, H. [Institute of Physics, Polish Academy of Sciences, Aleja Lotnikow 32/46, PL 02-668 Warsaw (Poland)

    2010-12-01

    Magnetic properties of KGd(WO{sub 4}){sub 2}, KYb(WO{sub 4}){sub 2} and KTm(WO{sub 4}){sub 2} single crystals have been studied. Temperature and field dependences of the magnetization along the main magnetic axes and angular dependence of the magnetization in the planes settled on the magnetic axes were recorded in the temperature range from 2 up to 100 K and in magnetic field up to 9 T. Paramagnetic Curie temperatures, g-factors and exchange interaction parameters were determined. Different theoretical models were used to describe magnetic properties of KGd(WO{sub 4}){sub 2} and KYb(WO{sub 4}){sub 2} crystals.

  12. Optical, scintillation properties and defect study of Gd2Si2O7:Ce single crystal grown by floating zone method

    Science.gov (United States)

    Feng, He; Xu, Wusheng; Ren, Guohao; Yang, Qiuhong; Xie, Jianjun; Xu, Jun; Xu, Jiayue

    2013-02-01

    Single crystal of Gd2Si2O7:Ce (GPS) presenting attractive scintillation performance was grown by the floating zone method. The vacuum ultra-violet (VUV) excitation and emission, ultra-violet (UV) excitation and emission spectra and fluorescent decay time at 77 K and RT were measured and discussed. Relative energy levels of 5d sublevels of Ce3+ in GPS:Ce are detected by the VUV excitation spectrum. The UV emission curve of GPS:1%Ce peaks around 382 nm at 77 K and moves towards longer wavelength direction as temperature increases. Thermally stimulated luminescence (TSL) was employed to investigate the defects in GPS:1%Ce. Energy depths of two traps detected in GPS:1%Ce are 0.64 and 1.00 eV.

  13. Timing characteristics of Ce doped Gd{sub 3}Ga{sub 3}Al{sub 2}O{sub 12} single crystals in comparison with CsI(Tl) scintillators

    Energy Technology Data Exchange (ETDEWEB)

    Tyagi, M.; Singh, A.K.; Singh, S.G.; Sen, S.; Gadkari, S.C. [Technical Physics Division, Bhabha Atomic Research Centre, Mumbai, 400085 (India); Desai, V.V.; Nayak, B.K. [Nuclear Physics Division, Bhabha Atomic Research Centre, Mumbai, 400085 (India)

    2015-10-15

    Single crystals of Gd{sub 3}Ga{sub 3}Al{sub 2}O{sub 12}:Ce with B codopants were successfully grown using the Czochralski technique. The timing characteristics of the crystal was measured by coupling the crystal to photomultiplier tubes (PMT) or silicon photodiodes [Si(PIN)]. The two prompt γ-rays emitted in a cascade from {sup 60}Co or {sup 22}Na source were detected in coincidence using Gd{sub 3}Ga{sub 3}Al{sub 2}O{sub 12}:Ce,B crystal detectors and a BaF{sub 2} detector. The time resolution of these crystals are observed to be better than that measured for CsI:Tl crystal coupled to PMT or Si(PIN) in an identical measurement setup. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  14. Scintillation properties of Gd{sub 3}Al{sub 2}Ga{sub 3}O{sub 12}:Ce{sup 3+} single crystal scintillators

    Energy Technology Data Exchange (ETDEWEB)

    Sakthong, Ongsa [Department of Physics, King Mongkut' s University of Technology Thonburi, Bangkok 10140 (Thailand); Chewpraditkul, Weerapong, E-mail: weerapong.che@kmutt.ac.th [Department of Physics, King Mongkut' s University of Technology Thonburi, Bangkok 10140 (Thailand); Wanarak, Chalerm [Department of Physics, King Mongkut' s University of Technology Thonburi, Bangkok 10140 (Thailand); Kamada, Kei [NICHe, Tohoku University, 6-6-10 Aoba, Aramaki, Aoba-ku, Miyagi, Sendai 980-8579 (Japan); Yoshikawa, Akira [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan); NICHe, Tohoku University, 6-6-10 Aoba, Aramaki, Aoba-ku, Miyagi, Sendai 980-8579 (Japan); Prusa, Petr [Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, 11519 Prague (Czech Republic); Institute of Physics, AS CR, Prague 16253 (Czech Republic); Nikl, Martin [Institute of Physics, AS CR, Prague 16253 (Czech Republic)

    2014-07-01

    The scintillation properties of Gd{sub 3}Al{sub 2}Ga{sub 3}O{sub 12}:Ce{sup 3+} (GAGG:Ce) single crystals grown by the Czochralski method with 1 at% cerium in the melt were investigated and results were compared with so far published results in the literature. The light yield (LY) and energy resolution were measured using a XP5200B photomultiplier. Despite about twice higher LY for GAGG:Ce, the energy resolution is only slightly better than that of LuAG:Ce due to its worse intrinsic resolution and non-proportionality of LY. The LY dependences on the sample thickness and amplifier shaping time were measured. The estimated photofraction in pulse height spectra of 320 and 662 keV γ-rays and the total mass attenuation coefficient at 662 keV γ-rays were also determined and compared with the theoretical ones calculated using the WinXCom program. - Highlights: • Scintillation properties of GAGG:Ce crystals were studied. • High light yield value over 47,000 ph/MeV was obtained. • Dependences of yield on sample height and shaping time were examined. • Photofraction and mass attenuation at 320 and 662 keV were evaluated.

  15. The divalent ion codoping effect on Ce-doped (Gd, La)2Si2O7 single crystals

    Science.gov (United States)

    Horiai, Takahiko; Murakami, Rikito; Kurosawa, Shunsuke; Shoji, Yasuhiro; Yamaji, Akihiro; Pejchal, Jan; Ohashi, Yuji; Arakawa, Mototaka; Kamada, Kei; Yokota, Yuui; Yoshikawa, Akira

    2017-06-01

    Ce-doped (Gd, La)2Si2O7 scintillators have fast decay time and keep high light output even at high temperature (∼150°C). To improve the scintillation properties such as light output and decay time, Ce-doped (Gd, La)2Si2O7 scintillators codoped with the divalent ions (e.g. Mg2+, Ca2+) have been studied. In this study, we focused on the other divalent ions (Sr2+ and Ba2+), and investigated their effect on the scintillation properties and temperature dependence of light output. The absorption due to Ce4+ was not observed for Sr or Ba codoping. The light outputs were degraded by Sr2+ or Ba2+ codoping, while the decay times at room temperature were not changed for the samples codoped with divalent ions. On the other hand, the temperature dependence of light output for Ba-codoped sample was improved, and the light output value at 175°C was 36,000 photons/MeV, which was 93% of that at 25°C.

  16. Structural modifications and phonon softening in Bi sub 2 Sr sub 2 Ca sub 1 sub - sub x R sub x Cu sub 2 O sub 8 sub + subdelta (R = Pr and Gd) single crystals

    CERN Document Server

    Feng, S J; Han, Q; Ma, J; Shi, L; Sun, X F; Zuo, J; Li, X G

    2003-01-01

    The phonon Raman spectra of Bi sub 2 Sr sub 2 Ca sub 1 sub - sub x R sub x Cu sub 2 O sub 8 sub + subdelta (R = Pr and Gd) single crystals are systematically investigated. The experimental results show that the O(2) sub S sub r A sub 1 sub g mode softens with Pr and Gd doping, while the O(1) sub C sub u B sub 1 sub g mode softens with Pr doping but hardens with Gd doping. The changes of average ionic radius on the Ca site in Bi-based cuprates can account well for the Raman frequency shifts of the O(1) sub C sub u mode, but have little influence on the O(2) sub S sub r mode. The frequency softening of the O(2) sub S sub r mode in Pr-and Gd-doped Bi2212 crystals mainly results from contraction of the BiO bilayers with doping content. The correlation between the O(2) sub S sub r mode frequency and the c-axis parameter as well as the incommensurate modulation wavelength is discussed.

  17. Fast ultradense GdTa1-xNbxO4 scintillator crystals

    Science.gov (United States)

    Voloshyna, Olesia; Gerasymov, Iaroslav; Sidletskiy, Oleg; Kurtsev, Daniil; Gorbacheva, Tatyana; Hubenko, Kateryna; Boiaryntseva, Ianina; Ivanov, Alexey; Spassky, Dmitry; Omelkov, Sergey; Belsky, Andrei

    2017-04-01

    Single crystals of GdTaO4 and GdTa0.8Nb0.2O4 were grown by the Czochralski technique, and their luminescent and scintillation properties were studied. Both crystals demonstrate fast emission with decay time around 10-8 s. Meanwhile, in GdTaO4 the fast decay is accompanied by a huge build-up with the decay time around 1 μs, while in the mixed crystal the contribution of slow components is negligible. UV- and X-ray excited luminescence, curves of thermostimulated luminescence and absolute light yields of crystals are presented as well. GdTa0.8Nb0.2O4 crystal is shown to be an ultradense (8.37 g/cm3) and fast (shortest component decay time 17 ns) scintillator with a high stopping power.

  18. Thermal Conductivity Investigation of {Ca}_{9} {RE}({VO}_{4})_{7} (RE = La, Nd, Gd) and {Ca}_{10}M(VO_{4})_{7} (M = Li, Na, K) Single Crystals

    Science.gov (United States)

    Popov, P. A.; Skrobov, S. A.; Matovnikov, A. V.; Kosmyna, M. B.; Puzikov, V. M.; Nazarenko, B. P.; Shekhovtsov, A. N.; Behrooz, A.; Paszkowicz, W.; Khodasevich, I. A.; Shereshovets, N. N.; Voitikov, S. V.; Orlovich, V. A.

    2017-01-01

    The {Ca}9{RE}({VO}4)7 (RE = La, Nd, Gd) and {Ca}_{10}{M}({VO}4)7 (M = Li, Na, K) single crystals have been grown by the Czochralski method. The binary vanadates are isostructural to "whitlockite" mineral (rhombohedral symmetry, R3 c space group). Their thermal conductivity has been investigated in the range 50 K-300 K parallel to the c axis. For {Ca}9{Gd}({VO}4)7 crystals, the thermal conductivity has been investigated in the range 300 K-550 K also. Additionally, for the {Ca}_{10}{M}({VO}4)7 (M = Li, Na, K) crystals the heat capacity has been studied in the temperature range 80 K-300 K. The character of the temperature dependence of thermal conductivity is close to that of glasses. The possible reasons of the observed features of the thermal conductivity have been analyzed. Raman spectra of {Ca}_{10}{M}({VO}4)7 (M = Li, Na, K) crystals have been measured and discussed. The spectral lines were broad and similar to polycrystalline or amorphous solids. These crystals are expected to be suitable for application as efficient nonlinear optic and laser materials.

  19. Effect of Mg co-doping on scintillation properties of Ce:Gd3(Ga, Al)5O12 single crystals with various Ga/Al ratios

    Science.gov (United States)

    Yoshino, Masao; Kamada, Kei; Shoji, Yasuhiro; Yamaji, Akihiro; Kurosawa, Shunsuke; Yokota, Yuui; Ohashi, Yuji; Yoshikawa, Akira; Chani, Valery I.

    2017-06-01

    Mg co-doped Ce1%:Gd3GaxAl5-xO12 (Ce:GAGG) crystals (x=2.4, 2.7, 3.0) were successfully grown by the Czochralski (Cz) method. Effect of Mg co-doping on the scintillation properties of Ce:GAGG was examined. This study covers measurements of solidification fraction and scintillation properties such as light yield, energy resolution and non-proportionality for each crystal. Pulse-height spectra of various gamma and X-ray sources with energies ranged from 30 keV to 662 keV were measured. Regardless of the presence/absence of Mg dopant, the non-proportionality curves with lower content of gallium in the crystal structure tend to improve. Mg co-doped Ce:GAGG samples did not show a significant difference as compared with non co-doped Ce:GAGG. Mg co-doped crystals with x=2.4 and 2.7 showed the promising scintillation properties of faster decay time and higher energy resolution than those with x=3.0.

  20. Crystal structure of the ternary silicide Gd2Re3Si5.

    Science.gov (United States)

    Fedyna, Vitaliia; Kozak, Roksolana; Gladyshevskii, Roman

    2014-12-01

    A single crystal of the title compound, the ternary silicide digadolinium trirhenium penta-silicide, Gd2Re3Si5, was isolated from an alloy of nominal composition Gd20Re30Si50 synthesized by arc melting and investigated by X-ray single-crystal diffraction. Its crystal structure belongs to the U2Mn3Si5 structure type. All atoms in the asymmetric lie on special positions. The Gd site has site symmetry m..; the two Mn atoms have site symmetries m.. and 2.22; the three Si atoms have site symmetries m.., ..2 and 4.. . The coordination polyhedra of the Gd atoms have 21 vertices, while those of the Re atoms are cubo-octa-hedra and 13-vertex polyhedra. The Si atoms are arranged as tricapped trigonal prisms, bicapped square anti-prisms, or 11-vertex polyhedra. The crystal structure of the title compound is also related to the structure types CaBe2Ge2 and W5Si3. It can be represented as a stacking of Gd-centred polyhedra of composition [GdSi9]. The Re atoms form infinite chains with an Re-Re distance of 2.78163 (5) Å and isolated squares with an Re-Re distance of 2.9683 (6) Å.

  1. Crystal structure of the ternary silicide Gd2Re3Si5

    Directory of Open Access Journals (Sweden)

    Vitaliia Fedyna

    2014-12-01

    Full Text Available A single crystal of the title compound, the ternary silicide digadolinium trirhenium pentasilicide, Gd2Re3Si5, was isolated from an alloy of nominal composition Gd20Re30Si50 synthesized by arc melting and investigated by X-ray single-crystal diffraction. Its crystal structure belongs to the U2Mn3Si5 structure type. All atoms in the asymmetric lie on special positions. The Gd site has site symmetry m..; the two Mn atoms have site symmetries m.. and 2.22; the three Si atoms have site symmetries m.., ..2 and 4.. . The coordination polyhedra of the Gd atoms have 21 vertices, while those of the Re atoms are cubooctahedra and 13-vertex polyhedra. The Si atoms are arranged as tricapped trigonal prisms, bicapped square antiprisms, or 11-vertex polyhedra. The crystal structure of the title compound is also related to the structure types CaBe2Ge2 and W5Si3. It can be represented as a stacking of Gd-centred polyhedra of composition [GdSi9]. The Re atoms form infinite chains with an Re—Re distance of 2.78163 (5 Å and isolated squares with an Re—Re distance of 2.9683 (6 Å.

  2. Optical and scintillation properties of Ce-doped (Gd{sub 2}Y{sub 1})Ga{sub 2.7}Al{sub 2.3}O{sub 12} single crystal grown by Czochralski method

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Chao; Wu, Yuntao; Ding, Dongzhou; Li, Huanying; Chen, Xiaofeng; Shi, Jian; Ren, Guohao, E-mail: rgh@mail.sic.ac.cn

    2016-06-01

    Multicomponent garnets, due to their excellent light yield and energy resolution, become one of the most promising scintillators used for homeland security and nuclear non-proliferation applications. This work focuses on the optimization of Ce-doped (Gd,Y){sub 3}(Ga,Al){sub 5}O{sub 12} scintillators using a combination strategy of pre-screening and scale-up. Ce-doped Gd{sub x}Y{sub 1−x}Ga{sub y}Al{sub 5−y}O{sub 12} (x=1, 2 and y=2, 2.2, 2.5, 2.7, 3) polycrystalline powders were prepared by high-temperature solid state reaction method. The desired garnet phase in all the samples was confirmed using X-ray diffraction measurement. By comparing the radioluminescence intensity, the highest scintillation efficiency was achieved at a component of Gd{sub 2}Y{sub 1}Ga{sub 2.7}Al{sub 2.3}O{sub 12}:Ce powders. A (Gd{sub 2}Y{sub 1})Ga{sub 2.7}Al{sub 2.3}O{sub 12} doped with 1% Ce single crystal with dimensions of Ø35×40 mm was grown by Czochralski method using a <111> oriented seed. Luminescence and scintillation properties were measured. An optical transmittance of 84% was achieved in the concerned wavelength from 500 to 800 nm. Its 5d–4f emission of Ce{sup 3+} is at 530 nm. The light yield of a Ce1%: Gd{sub 2}Y{sub 1}Ga{sub 2.7}Al{sub 2.3}O{sub 12} single crystal slab at a size of 5×5×1 mm{sup 3} can reach about 65,000±3000 Ph/MeV along with two decay components of 94 and 615 ns under {sup 137}Cs source irradiation.

  3. Growth and characterization of Ce:Gd3(Al, Ga)5O12 single crystals with various ratio of Ga to Al

    Science.gov (United States)

    Sato, H.; Endo, T.; Usuki, Y.; Matsueda, T.; Kamada, K.; Yoshino, M.; Yoshikawa, A.

    2017-06-01

    2-inch size Ce:GAGG single crystals with various ratio of Ga to Al (Ga/Al) were grown by the Cz method and the concentration of the grown crystals was measured by using EPMA. Scintillation properties such as light output, decay time and time resolution were evaluated and the dependence on the Ga/Al was characterized. As a result, the light output was reduced by increasing of the Ga/Al. On the other hand, the timing properties became worse by decreasing of the Ga/Al.

  4. Single crystal Processing and magnetic properties of gadolinium nickel

    Energy Technology Data Exchange (ETDEWEB)

    Shreve, Andrew John [Iowa State Univ., Ames, IA (United States)

    2012-01-01

    GdNi is a rare earth intermetallic material that exhibits very interesting magnetic properties. Spontaneous magnetostriction occurs in GdNi at T{sub C}, on the order of 8000ppm strain along the c-axis and only until very recently the mechanism causing this giant magnetostriction was not understood. In order to learn more about the electronic and magnetic structure of GdNi, single crystals are required for anisotropic magnetic property measurements. Single crystal processing is quite challenging for GdNi though since the rare-earth transition-metal composition yields a very reactive intermetallic compound. Many crystal growth methods are pursued in this study including crucible free methods, precipitation growths, and specially developed Bridgman crucibles. A plasma-sprayed Gd2O3 W-backed Bridgman crucible was found to be the best means of GdNi single crystal processing. With a source of high-quality single crystals, many magnetization measurements were collected to reveal the magnetic structure of GdNi. Heat capacity and the magnetocaloric effect are also measured on a single crystal sample. The result is a thorough report on high quality single crystal processing and the magnetic properties of GdNi.

  5. Anisotropic superconducting and normal state magnetic properties of single crystals of RNi*2*B*2*C compounds (R = Y, Gd, Dy, Ho, Er, and Tm)

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Beongki [Iowa State Univ., Ames, IA (United States)

    1995-09-26

    The interaction of superconductivity with magnetism has been one of the most interesting and important phenomena in solid state physics since the 1950`s when small amounts of magnetic impurities were incorporated in superconductors. The discovery of the magnetic superconductors RNi2B2C (R = rare earth, Y) offers a new system to study this interaction. The wide ranges of superconducting transition (Tc) and antiferromagnetic (AF) ordering temperatures (TN) (0 K ≤ Tc ≤ 16 K, 0 K ≤ TN ≤ 20 K) give a good opportunity to observe a variety of interesting phenomena. Single crystals of high quality with appropriate size and mass are crucial in examining the anisotropic intrinsic properties. Single crystals have been grown successfully by an unusual high temperature flux method and characterized thoroughly by X-ray, electrical transport, magnetization, neutron scattering, scanning electron microscopy, and other measurements.

  6. Crystal growth and scintillation properties of undoped and Ce3+-doped GdI3 crystals

    Science.gov (United States)

    Ye, Le; Li, Huanying; Wang, Chao; Shi, Jian; Chen, Xiaofeng; Wang, Zhongqing; Huang, Yuefeng; Xu, Jiayue; Ren, Guohao

    2017-02-01

    The growth and scintillation properties of undoped and Ce3+-doped GdI3 crystals were reported in this paper. These GdI3:χ%Ce (χ = 0, 1, 2) crystals were grown by the vertical Bridgman growth technique in evacuated quartz crucibles. X-ray excited optical luminescence spectra of GdI3:Ce exhibit a broad emission band (450 nm-650 nm) peaking at 520 nm corresponding to 5d1→4f1 transition of Ce3+ while the undoped GdI3 crystal consists of a broad band (400 nm-600 nm) and several sharp lines peaking at 462 nm, 482 nm, 492 nm, 549 nm, 579 nm owing to the impurities ions and defects. The excitation spectra of Ce3+ doped GdI3 consist of two broad bands between 300 nm and 500 nm corresponding to 4f1→5d1 absorption of Ce3+. The other absorption peaking at 262 nm in the spectrum of GdI3:2%Ce is assigned to band-to-band exciton transition. The excitation spectrum of undoped GdI3 contains a flat absorption band from 330 to 370 nm and a broad band between 390 and 450 nm peaking at 414 nm corresponding to the absorption of the unintentionally doped Ce3+, Dy3+, Ho3+ impurities and other defects. The emission spectrum of undoped GdI3 under 332 nm excitation has the identical line peaks with the spectrum measured under X-ray excitation. The emission spectra of GdI3:2%Ce and GdI3:1%Ce show a broad band in the range of 450-750 nm with the maximum at 550 nm corresponding to 5d1→4f1 transitions of Ce3+ ion. The GdI3, GdI3:1%Ce and GdI3:2%Ce show fast principle decay time constant 73 ns, 69 ns and 58 ns respectively, besides, the undoped also shows a slow decay constant 325 ns which doesn't appear in Ce3+-doped GdI3 crystal. The energy resolutions of GdI3:χ%Ce (χ = 1, 2) measured at 662 KeV are about 3%-5% and the undoped GdI3 is 13.3%.

  7. Thermal characteristics of pure and substituted gel grown Gd-molybdate crystals

    Indian Academy of Sciences (India)

    Vinay Hangloo; K K Bamzai; P N Kotru; M L Koul

    2004-10-01

    Polycrystalline spherulitic crystals of pure Gd-heptamolybdate and single and twinned crystals of substituted Gd–Ba-molybdate were grown by using gel encapsulation technique. The thermal behaviour of these crystals was studied using the thermoanalytical techniques, which included TG, DTA and DSC. Thermal analysis suggests decomposition of the materials in one or more than one stages. Results obtained on application of TG based models viz. Horowitz–Metzger, Coats–Redfern and Piloyan–Novikova, are reported. According to the results of the kinetics of thermal decomposition, the random nucleation model is shown to be the one that is relevant to the decomposition of single rare earth (Gd) containing material and contracting sphere to the decomposition of the substituted (Gd–Ba) one. The kinetic parameters viz. the order of reaction, frequency factor and energy of activation using above-mentioned models, are computed and shown to bear reasonably good agreement.

  8. Magnetic and dielectric properties of layered perovskite Gd2Ti2O7 thin film epitaxially stabilized on a perovskite single crystal

    Science.gov (United States)

    Ukita, Takashi; Hirose, Yasushi; Ohno, Sawako; Hatabayashi, Kunitada; Fukumura, Tomoteru; Hasegawa, Tetsuya

    2012-04-01

    Layered perovskite (LP) titanates, Ln2Ti2O7 (Ln = lanthanoids), are ferroelectric materials containing magnetic Ln3+ ions at A-site. Metastable LP-Gd2Ti2O7 was fabricated in epitaxial thin film form on lattice-matched perovskite substrates and its dielectric and magnetic properties were investigated. The (100)-oriented LP-Gd2Ti2O7 films were epitaxially grown on (110) plane of (LaAlO3)0.3-(SrAl0.5Ta0.5O3)0.7 (LSAT) and Nb-doped SrTiO3 by using a pulsed laser deposition method. Piezoresponse force microscope measurements revealed that LP-Gd2Ti2O7 has spontaneous polarization along the b-axis at room temperature, strongly suggesting room temperature ferroelectricity. Magnetization measurements showed paramagnetic behavior with weak antiferromagnetic interaction around 2 K. Small positive magneto-dielectric effect (Δɛ/ɛ ˜ 10-5 order) was also confirmed at 10 K.

  9. Magnetic behavior of RMn2+xAl10-x (R=La,Gd) crystals

    Science.gov (United States)

    Sefat, Athena S.; Li, Bin; Bud'Ko, Sergey L.; Canfield, Paul C.

    2007-11-01

    The crystallographic and magnetic properties of the solution grown RMn2+xAl10-x ( R=Gd and La) crystals with tetragonal (P4/nmm) structure are investigated. For these, single-crystal x-ray diffraction results have shown the preferential occupation of excess manganese on the aluminum 8i crystallographic site. Due to excess Mn, there is evidence of local-moment magnetism in LaMn2+xAl10-x and their random distribution is thought to be responsible for the magnetic correlations below ˜50K and the spin-glass behavior below ˜3K . For GdMn2+xAl10-x , the extra manganese influences temperature below which the sample enters into a state with a net ferromagnetic component: TC≈16K for GdMn2.21(4)Al9.79(4) and 25.5K for GdMn2.39(2)Al9.61(2) . Assuming a linear dependence between TC and excess Mn concentration, the fully stoichiometric and ordered GdMn2Al10 should have TC≈5K .

  10. Polarized spectroscopic properties of Er3+:Gd2SiO5 crystal and evaluation of Er3+:Yb3+:Gd2SiO5 crystal as a 1.55 μm laser medium

    Science.gov (United States)

    Wang, H.; Huang, J. H.; Gong, X. H.; Chen, Y. J.; Lin, Y. F.; Luo, Z. D.; Huang, Y. D.

    2016-10-01

    An Er3+-doped Gd2SiO5 single crystal with high optical quality has been grown by the Czochralski method. Polarized absorption and fluorescence spectra and fluorescence lifetime of the crystal were measured at room temperature. Intensity parameters, spontaneous emission probabilities, fluorescence branching ratios, and radiative lifetimes were estimated on the basis of the Judd-Ofelt theory. Besides, potentiality of 1.55 μm laser emission in an Er3+-Yb3+ co-doped Gd2SiO5 crystal was evaluated.

  11. Kinetic arrest of first-order transition between charge-ordered and ferromagnetic phases in Gd0.5Sr0.5MnO3 single crystals: magnetization relaxation studies

    Science.gov (United States)

    Wagh, Aditya A.; Kumar, P. S. Anil; Elizabeth, Suja

    2016-10-01

    We have studied the span and nature of first-order phase transition (FOPT) between charge-ordered insulating and ferromagnetic metallic phases in oriented single crystals of Gd0.5Sr0.5MnO3. Magnetic field—temperature phase diagram was formulated from magnetization data for different crystallographic axes and non-monotonic variation of supercooling limit was observed at low temperature. A peculiar nature of magnetization was observed as irreversible open hysteresis loops during thermal cycling. We perceive that the nature of metastable states responsible for open hysteresis loops is different from that of supercooled ones. Further, thermal cycling magnetization data reveal that magnetic phases formed at 8 K after zero-field or field-cooled protocols (89 kOe) are not in equilibrium. Relaxation time constant is found to increase below 30 K in magnetization relaxation measurements made across the FOPT. The non-monotonic variation of relaxation time constant is a manifestation of kinetic arrest of the FOPT. We propose that the non-equilibrium, glass-like magnetic phase (at 8 K and 89 kOe) is a consequence of kinetic arrest.

  12. Single crystal growth of Ce:Gd3(Ga,Al)5O12 with various Mg concentration and their scintillation properties

    Science.gov (United States)

    Kamada, Kei; Shoji, Yasuhiro; Kochurikhin, Vladimir V.; Nagura, Aya; Okumura, Satoshi; Yamamoto, Seiichi.; Yeom, Jung Yeol; Kurosawa, Shunsuke; Pejchal, Jan; Yokota, Yuui; Ohashi, Yuji; Nikl, Martin; Yoshino, Masao; Yoshikawa, Akira

    2017-06-01

    1 in. diameter Mg 0.05, 0.1, 0.2, 0.5 mol% and Zr 0.015% co-doped Ce1%:GGAG crystals were grown by Cz method. Relationship between Mg concentration and absorption, luminescence, light output, decay time, timing resolution was investigated. Mg 0.2 mol% co-doped sample showed the fastest timing resolution of 165 ps among the Mg-co-doped samples.

  13. SINGLE CRYSTAL NEUTRON DIFFRACTION.

    Energy Technology Data Exchange (ETDEWEB)

    KOETZLE,T.F.

    2001-03-13

    Single-crystal neutron diffraction measures the elastic Bragg reflection intensities from crystals of a material, the structure of which is the subject of investigation. A single crystal is placed in a beam of neutrons produced at a nuclear reactor or at a proton accelerator-based spallation source. Single-crystal diffraction measurements are commonly made at thermal neutron beam energies, which correspond to neutron wavelengths in the neighborhood of 1 Angstrom. For high-resolution studies requiring shorter wavelengths (ca. 0.3-0.8 Angstroms), a pulsed spallation source or a high-temperature moderator (a ''hot source'') at a reactor may be used. When complex structures with large unit-cell repeats are under investigation, as is the case in structural biology, a cryogenic-temperature moderator (a ''cold source'') may be employed to obtain longer neutron wavelengths (ca. 4-10 Angstroms). A single-crystal neutron diffraction analysis will determine the crystal structure of the material, typically including its unit cell and space group, the positions of the atomic nuclei and their mean-square displacements, and relevant site occupancies. Because the neutron possesses a magnetic moment, the magnetic structure of the material can be determined as well, from the magnetic contribution to the Bragg intensities. This latter aspect falls beyond the scope of the present unit; for information on magnetic scattering of neutrons see Unit 14.3. Instruments for single-crystal diffraction (single-crystal diffractometers or SCDs) are generally available at the major neutron scattering center facilities. Beam time on many of these instruments is available through a proposal mechanism. A listing of neutron SCD instruments and their corresponding facility contacts is included in an appendix accompanying this unit.

  14. Growth and scintillation properties of Ce{sup 3+}-doped (Y{sub 1-x}Gd{sub x})AlO{sub 3} crystals

    Energy Technology Data Exchange (ETDEWEB)

    Fujimoto, Yutaka; Wakahara, Shingo; Suzuki, Shotaro; Kurosawa, Shunsuke [Institute of Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577 (Japan); Yanagida, Takayuki [New Industry Creation Hatchery Center, Tohoku University, 6-6-10 Aramaki, Aoba-ku, Sendai 980-8579 (Japan); Yoshikawa, Akira [Institute of Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577 (Japan); New Industry Creation Hatchery Center, Tohoku University, 6-6-10 Aramaki, Aoba-ku, Sendai 980-8579 (Japan)

    2012-12-15

    The optical and scintillation properties of 0.5% fixed Ce-doped (Y{sub 1-x}Gd{sub x})AlO{sub 3} single crystals have been investigated at three different levels of Gd doping: x = 0.2, 0.4 and 0.6. Single crystal of the Ce{sup 3+}-doped (Y{sub 0.8}Gd{sub 0.2})AlO{sub 3}, (Y{sub 0.6}Gd{sub 0.4})AlO{sub 3} and (Y{sub 0.4}Gd{sub 0.6})AlO{sub 3} were successfully grown by {mu}-PD technique in nitrogen atmosphere. From X-ray diffraction analysis, no impurity phase was detected for the grown Ce-doped crystals. Ce-doped (Y{sub 0.6}Gd{sub 0.4})AlO{sub 3} crystal demonstrated highest fluorescence quantum efficiency ({proportional_to} 25%) with improvement of excitation efficiency due to the Gd-doping. When irradiated by the alpha-rays from a {sup 241}Am source, all the Ce-doped crystals showed luminescence band that corresponding to 5d (t{sub 2g})-4f transition of Ce{sup 3+}. The scintillation decay time was characterized by two components; the fast component (5-15 ns) is ascribed to 5d-4f transition of Ce{sup 3+}, while the slow one (100-200 ns) may be related to energy transfer between Ce{sup 3+} and Gd{sup 3+} ion. According to the result of {sup 137}Cs gamma-ray irradiated pulse height spectra compared with BGO scintillator, the relative scintillation light output was found to be about 12200 {+-} 1220 (Gd 20%) and 16000 {+-} 1600 (Gd 40%) ph/MeV. (copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  15. Optical properties and radiation response of Ce{sup 3+}-doped GdScO{sub 3} crystals

    Energy Technology Data Exchange (ETDEWEB)

    Yamaji, Akihiro; Fujimoto, Yutaka; Futami, Yoshisuke; Yokota, Yuui; Kurosawa, Shunsuke [Institute of Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577 (Japan); Kochurikhin, Vladimir [General Physics Institute, 38 Vavilov Str., 119991 Moscow (Russian Federation); Yanagida, Takayuki [New Industry Creation Hatchery Center, Tohoku University, 6-6-10 Aramaki, Aoba-ku, Sendai 980-8579 (Japan); Yoshikawa, Akira [Institute of Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577 (Japan); New Industry Creation Hatchery Center, Tohoku University, 6-6-10 Aramaki, Aoba-ku, Sendai 980-8579 (Japan)

    2012-12-15

    10%-Ce doped GdScO{sub 3} perovskite type single crystal was grown by the Czochralski process. The Ce concentration in the crystal was measured. No impurity phases were observed by powder X-ray diffraction analysis. We evaluated the optical and radiation properties of the grown crystal. Ce:GdScO{sub 3} crystal showed photo- and radio-luminescence peaks due to Ce{sup 3+} of 5d-4f transition and colour centre. The photoluminescence decay time was sub-ns order. The relative light yield under 5.5 MeV alpha-ray excitation was calculated to be approximately 9% of BGO. (copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  16. Crystal growth and spectroscopic properties of Cr3+-doped CaGdAlO4

    Science.gov (United States)

    Zhang, Zhu; Huang, Yisheng; Zhang, Lizhen; Sun, Shijia; Yuan, Feifei; Lin, Zhoubin

    2017-04-01

    A Cr3+:CaGdAlO4 single crystal with dimensions of ∅21 × 33 mm3 was grown successfully by Czochralski method for the first time. Its spectral properties including polarized absorption spectra, polarized fluorescence spectra, excitation spectrum and fluorescence decay curves were investigated in detail. The absorption cross-sections at around 573 nm corresponding to the 4A2 → 4T2 transition of Cr3+ ions are 4.75 × 10-20 and 2.56 × 10-20 cm2 for σ- and π-polarizations, respectively. The excitation spectrum shows two broad and intense absorption bands at about 390 nm and 570 nm, which are associated with the 4A2 → 4T1 and 4A2 → 4T2 transitions of Cr3+ ions, respectively. The emission band with peak at around 744 nm is ascribed to the 2E → 4A2 transition of Cr3+ ions, with the emission cross-sections of 5.55 × 10-22 and 5.41 × 10-22 cm2 for σ- and π-polarizations, respectively. The fluorescence lifetime is 4.35 ms at room temperature. The Dq/B value is 2.72, which means that Cr3+ ions occupy the lattice sites with strong crystal field strength. The results show that Cr3+:CaGdAlO4 crystal can be regarded as a potential laser gain medium.

  17. Fabrication of high performance Gd-Ba-Cu-O single grains in air using a practical melt processing technique

    Energy Technology Data Exchange (ETDEWEB)

    Cardwell, D.A., E-mail: dc135@cam.ac.u [Engineering Department, Trumpington Street, University of Cambridge, CB2 1PZ (United Kingdom); Shi, Y. [Engineering Department, Trumpington Street, University of Cambridge, CB2 1PZ (United Kingdom); Hari Babu, N. [Engineering Department, Trumpington Street, University of Cambridge, CB2 1PZ (United Kingdom); BCAST, Brunel University, West London UB8 3PH (United Kingdom); Iida, K. [Engineering Department, Trumpington Street, University of Cambridge, CB2 1PZ (United Kingdom)

    2009-10-15

    A practical processing route for the fabrication of LRE-Ba-Cu-O single grain superconductors has been developed at the University of Cambridge based on a generic, Mg-doped Nd-123 melt textured seed and suppression of the formation of the solid solution phase in air by enriching the precursors with higher Ba concentration. The processing of high performance Gd-Ba-Cu-O single grains using this processing route is described. The Mg-doped generic seed crystal has been used effectively to promote heterogeneous nucleation via a cold-seeding process. The Gd/Ba solid solution has been suppressed by enriching Gd-Ba-Cu-O precursor powders with two different Ba-rich compositions. This involved adding BaO{sub 2} and GdBa{sub 6}Cu{sub 3}O{sub y} (Gd-163) (a novel Ba-rich second phase) to the precursor powders, respectively. The Gd-163 phase has been observed not only to suppress formation of the solid solution phase, but also to promote increased heterogeneous grain size. A detailed further study has been carried out with an initial aim of optimizing the BaO{sub 2} and Gd-163 phase content of the precursor composition to produce a single grain almost free of solid solution. Based on the optimized parameters, large single grain Gd-Ba-Cu-O superconductors have been fabricated in an air atmosphere and demonstrated to exhibit record trapped magnetic fields for this material melt processed in air in relatively small single grain samples. The trapped fields of samples produced in air atmosphere are at least comparable to those processed under reduced oxygen partial pressure.

  18. Fabrication and properties of single domain GdBCO superconducting rings by a buffer aided Gd+011 TSIG method

    Science.gov (United States)

    Yang, P. T.; Yang, W. M.; Chen, J. L.

    2017-08-01

    Single domain REBCO bulk superconductors can be fabricated by both the top-seeded melt texture growth process and the top-seeded infiltration and growth (TSIG) process. The buffer pellet technique used in these two methods has been demonstrated to act as an efficient seed and to aid the growth of the REBCO bulk superconductors. In this paper, we combined the Gd+011 TSIG method and buffer pellet technique together to fabricate single domain REBCO superconducting rings without any machining and obvious shrinkage of the final ring, which shows a satisfactory trapped field and very good magnetic shielding at the same time. It is found that (1) a single domain GdBCO ring, with inner diameter of 10 mm and outer diameter of 32 mm, has been fabricated by this method successfully. (2) The trapped field (0.32 T, 77 K) and maximum levitation force (80.1 N, 77 K) of the single domain GdBCO ring are nearly the same as the trapped field (0.33 T, 77 K) and maximum levitation force (80.2 N, 77 K) of the single domain GdBCO bulk with the same diameter and thickness, but the uniformity of trapped field is much better for the single domain GdBCO ring. (3) The single domain GdBCO ring shows very good magnetic shielding property, the magnetic flux density shielded by the superconducting ring is up to 0.40 T at 77 K, which is much higher than that of reported samples. The results indicate that the buffer aided Gd+011 TSIG method can provide an important way to fabricate high quality single domain REBCO superconducting rings directly.

  19. Crystal growth, structure, and physical properties of Ln(Ag, Al, Si)₂ (Ln = Ce and Gd).

    Science.gov (United States)

    Drake, Brenton L; Kangas, Michael J; Capan, C; Haldolaarachchige, N; Xiong, Y; Adams, P W; Young, D P; Chan, Julia Y

    2010-10-27

    Single crystals of CeM₂ and GdM₂ (M = Ag, Al, and Si) were grown by the flux growth technique and characterized by means of single crystal x-ray diffraction, magnetic susceptibility, resistivity, and heat capacity measurements. CeM₂ and GdM₂ crystallize in the tetragonal I4(1)/amd space group with the α-ThSi₂ structure type with lattice parameters a ~4.2 Å and c ~14.4 Å. Curie-Weiss behavior is observed for both analogues with CeM₂ ordering first ferromagnetically at 11 K with a second antiferromagnetic transition at 8.8 K while GdM₂ orders antiferromagnetically at 24 K. Heat capacity measurements on CeM₂ show two magnetic transitions at 10.8 and 8.8 K with an electronic specific heat coefficient, γ(0), of ~53 mJ K(-2) mol(-1). The entropy at the magnetic transition is less than the expected Rln2 for CeM₂, reinforcing the assertions of an enhanced mass state and Kondo behavior being observed in the resistivity.

  20. Anisotropy of Nonlinear-Optical Property of RCOB (R = Gd, Y) Crystal

    Institute of Scientific and Technical Information of China (English)

    WANG Zheng-Ping; WEI Jing-Qian; CHEN Huan-Chu; SHAO Zong-Shu; LIU Jun-Hai; SONG Ren-Bo; JIANG Huai-Dong; ZHANG Shu-Jun; FU Kun; WANG Chang-Qing; WANG Ji-Yang; LIU Yao-Gang

    2001-01-01

    The nonlinear-optical coefficients of RCOB (R = Gd, Y) crystals are measured. The spatial distribution of deff (effective nonlinear-optical coefficient) is subsequently determined. Our experiments show that the maximum deff occurs at the second quadrant. The second-harmonic generation efficiency reaches 48% for a 6 mm long, (113.2°,47.4°)-cut GdCOB, and 41.5% for a 5mm long, (113°, 36.5°)-cut YCOB, respectively. The intracavity frequency doubling of GdCOB is reported for the first time.

  1. Polarized spectroscopic properties of Er{sup 3+}:Gd{sub 2}SiO{sub 5} crystal and evaluation of Er{sup 3+}:Yb{sup 3+}:Gd{sub 2}SiO{sub 5} crystal as a 1.55 μm laser medium

    Energy Technology Data Exchange (ETDEWEB)

    Wang, H. [Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002 (China); University of Chinese Academy of Sciences, Beijing 100039 (China); Huang, J.H.; Gong, X.H.; Chen, Y.J.; Lin, Y.F.; Luo, Z.D. [Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002 (China); Huang, Y.D., E-mail: huyd@fjirsm.ac.cn [Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002 (China)

    2016-10-01

    An Er{sup 3+}-doped Gd{sub 2}SiO{sub 5} single crystal with high optical quality has been grown by the Czochralski method. Polarized absorption and fluorescence spectra and fluorescence lifetime of the crystal were measured at room temperature. Intensity parameters, spontaneous emission probabilities, fluorescence branching ratios, and radiative lifetimes were estimated on the basis of the Judd–Ofelt theory. Besides, potentiality of 1.55 μm laser emission in an Er{sup 3+}–Yb{sup 3+} co-doped Gd{sub 2}SiO{sub 5} crystal was evaluated.

  2. Growth of bulk gadolinium pyrosilicate single crystals for scintillators

    Science.gov (United States)

    Gerasymov, I.; Sidletskiy, O.; Neicheva, S.; Grinyov, B.; Baumer, V.; Galenin, E.; Katrunov, K.; Tkachenko, S.; Voloshina, O.; Zhukov, A.

    2011-03-01

    Ce, Pr, and La-doped gadolinium pyrosilicate Gd2Si2O7 (GPS) single crystals were grown by the Czochralski and Top Seeded Solution Growth (TSSG) techniques for the first time. Formation conditions of different pyrosilicate phases were determined. X-ray luminescence integral intensity of Ce-doped GPS is about one order of magnitude higher in comparison with gadolinium oxyorthosilicate Gd2SiO5:Ce (GSO:Ce). All samples demonstrate temperature stability of luminescence yield up to 400 K.

  3. Crystallization and dielectric properties of lead-free glass-ceramic composites with Gd_2O_3 addition

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    Lead-free glass-ceramic composites in barium sodium niobate silica system with Gd2O3 addition were synthesized through melt-casting fol-lowed by controlled crystallization technique. Crystallization and dielectric properties of the Gd2O3 adding glass-ceramic composites were investigated. With the increase in the concentration of Gd2O3, the glass transition temperature and the crystallization temperature of the pre-cursor glass shift towards the higher temperature. The crystallization behavior that occurred ...

  4. Single crystals of LnFeAsO{sub 1-x}F{sub x} (Ln = La, Pr, Nd, Sm, Gd) and Ba{sub 1-x}Rb{sub x}Fe{sub 2}As{sub 2}: Growth, structure and superconducting properties

    Energy Technology Data Exchange (ETDEWEB)

    Karpinski, J., E-mail: karpinski@phys.ethz.c [Laboratory for Solid State Physics, ETH Zurich, 8093 Zurich (Switzerland); Zhigadlo, N.D.; Katrych, S.; Bukowski, Z.; Moll, P. [Laboratory for Solid State Physics, ETH Zurich, 8093 Zurich (Switzerland); Weyeneth, S.; Keller, H. [Physik-Institut der Universitaet Zuerich, 8057 Zuerich (Switzerland); Puzniak, R. [Institute of Physics, Polish Academy of Sciences, Aleja Lotnikow 32/46, 02-668 Warsaw (Poland); Tortello, M.; Daghero, D.; Gonnelli, R. [Dipartimento di Fisica, Politecnico di Torino, 10129 Torino (Italy); Maggio-Aprile, I. [DPMC-MaNEP, University of Geneva, Geneva (Switzerland); Fasano, Y. [DPMC-MaNEP, University of Geneva, Geneva (Switzerland); Low Temperatures Laboratory and Instituto Balseiro, Bariloche (Argentina); Fischer, O. [DPMC-MaNEP, University of Geneva, Geneva (Switzerland); Rogacki, K. [Institute of Low Temperature and Structure Research, Polish Academy of Sciences, 50-950 Wroclaw, P.O. Box 1410 (Poland); Batlogg, B. [Laboratory for Solid State Physics, ETH Zurich, 8093 Zurich (Switzerland)

    2009-05-01

    A review of our investigations on single crystals of LnFeAsO{sub 1-x}F{sub x} (Ln = La, Pr, Nd, Sm, Gd) and Ba{sub 1-x}Rb{sub x}Fe{sub 2}As{sub 2} is presented. A high-pressure technique has been applied for the growth of LnFeAsO{sub 1-x}F{sub x} crystals, while Ba{sub 1-x}Rb{sub x}Fe{sub 2}As{sub 2} crystals were grown using a quartz ampoule method. Single crystals were used for electrical transport, structure, magnetic torque and spectroscopic studies. Investigations of the crystal structure confirmed high structural perfection and show incomplete occupation of the (O, F) position in superconducting LnFeAsO{sub 1-x}F{sub x} crystals. Resistivity measurements on LnFeAsO{sub 1-x}F{sub x} crystals show a significant broadening of the transition in high magnetic fields, whereas the resistive transition in Ba{sub 1-x}Rb{sub x}Fe{sub 2}As{sub 2} simply shifts to lower temperature. The critical current density for both compounds is relatively high and exceeds 2 x 10{sup 9} A/m{sup 2} at 15 K in 7 T. The anisotropy of magnetic penetration depth, measured on LnFeAsO{sub 1-x}F{sub x} crystals by torque magnetometry is temperature dependent and apparently larger than the anisotropy of the upper critical field. Ba{sub 1-x}Rb{sub x}Fe{sub 2}As{sub 2} crystals are electronically significantly less anisotropic. Point-Contact Andreev-Reflection spectroscopy indicates the existence of two energy gaps in LnFeAsO{sub 1-x}F{sub x}. Scanning Tunneling Spectroscopy reveals in addition to a superconducting gap, also some feature at high energy (approx20 meV).

  5. High-pressure syntheses, crystal structures, and thermal behaviour of {beta}-RE(BO{sub 2}){sub 3} (RE = Nd, Sm, Gd)

    Energy Technology Data Exchange (ETDEWEB)

    Emme, H.; Heymann, G.; Haberer, A.; Huppertz, H. [Ludwig-Maximilians-Univ. Muenchen (Germany). Dept. Chemie und Biochemie

    2007-06-15

    The compounds {beta}-RE(BO{sub 2}){sub 3} [RE = Nd (neodymium meta-borate), Sm (samarium meta-borate) and Gd (gadolinium meta-borate)] were synthesized under high-pressure and high-temperature conditions in a Walker-type multianvil apparatus at 3.5 GPa (Nd), 7.5 GPa (Sm, Gd) and 1050 C. The crystal structures were determined by single crystal X-ray diffraction data collected at r. t. (Sm, Gd) and at -73 C (Nd), respectively. The structures are isotypic with the already known ambient-pressure phases {beta}-RE(BO{sub 2}){sub 3} (RE = (Tb, Dy)) and the high-pressure phases {beta}-RE(BO{sub 2}){sub 3} (RE = Ho.Lu). (orig.)

  6. Defects and flux contamination in Ln sub 2-x Ce sub x CuO sub 4 (Ln=Nd, Gd) crystals - oxygen disorder in Gd sub 2 CuO sub 4 crystals. [Nd-Ce-Cu-O; Nd-Cu-O; Gd-Cu-O

    Energy Technology Data Exchange (ETDEWEB)

    Galez, P. (C.P.C.M., DPhG, C.E.N. Saclay, 91 - Gif-sur-Yvette (France)); Schweiss, P. (Lab. Leon Brillouin, C.E.N. Saclay, 91 - Gif-sur-Yvette (France) Kernforschungzentrum Karlsruhe, INFP (Germany, F.R.) Inst. fuer Mineralogie, Lahnberge, Marburg/Lahn (Germany, F.R.)); Collin, G. (C.P.C.M., DPhG, C.E.N. Saclay, 91 - Gif-sur-Yvette (France) Lab. de Physique des Solides, Paris-Sud Univ., 91 - Orsay (France)); Bellissent, R. (Lab. Leon Brillouin, C.E.N. Saclay, 91 - Gif-sur-Yvette (France))

    1990-10-15

    The structure of several Nd{sub 2-x}Ce{sub x}CuO{sub 4} (x=0 and x=0.18) and Gd{sub 2}CuO{sub 4} single crystals is investigated by means of X-ray and neutron diffraction. All crystals have the Nd{sub 2}CuO{sub 4} tetragonal T' structure, space group I4/mmm. Single crystals for X-ray diffraction, prepared either by spontaneous crystallisation or growth from a flux (CuO), exhibit a significant copper deficiency. The oxygen of the CuO{sub 2} planes in Gd{sub 2}CuO{sub 4} is found off-centered in the a direction. Larger Nd{sub 2}CuO{sub 4} crystals, suitable for neutron diffraction, were produced with a higher amount of CuO in excess. In most of them inclusions of Cu{sub 2}O having their (110) or (111) direction perfectly aligned along the c-axis of Nd{sub 2}CuO{sub 4} were detected. Structural refinement of a Cu{sub 2}O free single crystal indicates a full occupancy of the Cu site but vacancies on both oxygen sites. (orig.).

  7. Crystal-structure transformations and magnetic-ordering phenomena in GdCu1–xGax

    NARCIS (Netherlands)

    Dongen, J.C.M. van; Palstra, T.T.M.; Morgownik, A.F.J.; Mydosh, J.A.; Geerken, B.M.; Buschow, K.H.J.

    1983-01-01

    Electrical resistivity, magnetic susceptibility, thermal expansion, x-ray diffraction, and scanning calorimetry measurements have been performed over wide temperature ranges on the pseudobinary compounds GdCu1–xGax. In GdCu, which forms in the CsCl crystal structure at room temperature when prepared

  8. Single Crystal Surfaces

    Science.gov (United States)

    Aguilar-Santillan, Joaquin

    2014-06-01

    The present work studies (0001) Al2O3 and (111) Al2MgO4 wetting with pure molten Al by the sessile drop technique from 1073 K to 1473 K (800 °C to 1200 °C) under Ar at PO2 10-15 Pa. Al pure liquid wets a smooth and chemically homogeneous surface of an inert solid, the wetting driving force ( t, T) can be readily studied when surface solid roughness increases in the system. Both crystals planes (0001) Al2O3 and (111) Al2MgO4 have crystallographic surfaces with identical O-2 crystalline positions however considering Mg2+ content in Al2MgO4 structure may influence a reactive mode. Kinetic models results under similar experimental conditions show that Al wetting on (0001) Al2O3 is less reactive than (111) Al2MgO4, however at >1273 K (1000 °C) (0001) Al2O3 transformation occurs and a transition of wetting improves. The (111) Al2MgO4 and Al system promotes interface formations that slow its wetting process.

  9. Luminescence and scintillation mechanism in Ce{sup 3+} and Pr{sup 3+} doped (Lu,Y,Gd){sub 3}(Ga,Al){sub 5}O{sub 12} single crystal scintillators

    Energy Technology Data Exchange (ETDEWEB)

    Nikl, M.; Babin, V. [Institute of Physics AS CR, Cukrovarnicka 10, Prague 16253 (Czech Republic); Kamada, K. [Materials Research Laboratory, Furukawa Co. Ltd., Tsukuba 305-0856 (Japan); Kurosawa, S.; Yokota, Y. [Institute for Materials Research (IMR), Tohoku University, Sendai 980-8577 (Japan); Yoshikawa, A. [Institute for Materials Research (IMR), Tohoku University, Sendai 980-8577 (Japan); NICHe, Tohoku University, 6-6-10 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579 (Japan); Pejchal, J. [Institute of Physics AS CR, Cukrovarnicka 10, Prague 16253 (Czech Republic); Institute for Materials Research (IMR), Tohoku University, Sendai 980-8577 (Japan)

    2013-02-15

    Luminescence processes occurring in the 5d{sup 1} excited state of Ce{sup 3+} and Pr{sup 3+} centers in the (Gd,RE){sub 3}(Ga,Al){sub 5}O{sub 12}, RE=Lu,Y, multicomponent garnet host were studied by purely optical contactless methods. Combination of measurements of the prompt nanosecond decay and slow delayed radiative recombination decay allows to resolve the presence of thermal quenching and thermally induced ionization processes acting upon the 5d{sup 1} excited state. Additional energy transfer process depleting the 5d{sup 1} state of Pr{sup 3+} center was found and is due to the resonance of 5d{sup 1}-{sup 3}H{sub 4} emission transition of Pr{sup 3+} and {sup 8}S-{sup 6}P{sub x} absorption transition of Gd{sup 3+} which might be responsible for noticeably lower light yield in Pr-doped multicomponent garnets. (copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  10. Crystal ball single event display

    Energy Technology Data Exchange (ETDEWEB)

    Grosnick, D.; Gibson, A. [Valparaiso Univ., IN (United States). Dept. of Physics and Astronomy; Allgower, C. [Argonne National Lab., IL (United States). High Energy Physics Div.; Alyea, J. [Valparaiso Univ., IN (United States). Dept. of Physics and Astronomy]|[Argonne National Lab., IL (United States). High Energy Physics Div.

    1997-10-15

    The Single Event Display (SED) is a routine that is designed to provide information graphically about a triggered event within the Crystal Ball. The SED is written entirely in FORTRAN and uses the CERN-based HICZ graphing package. The primary display shows the amount of energy deposited in each of the NaI crystals on a Mercator-like projection of the crystals. Ten different shades and colors correspond to varying amounts of energy deposited within a crystal. Information about energy clusters is displayed on the crystal map by outlining in red the thirteen (or twelve) crystals contained within a cluster and assigning each cluster a number. Additional information about energy clusters is provided in a series of boxes containing useful data about the energy distribution among the crystals within the cluster. Other information shown on the event display include the event trigger type and data about {pi}{sup o}`s and {eta}`s formed from pairs of clusters as found by the analyzer. A description of the major features is given, along with some information on how to install the SED into the analyzer.

  11. Stacking fault energy in some single crystals

    Institute of Scientific and Technical Information of China (English)

    Aditya M.Vora

    2012-01-01

    The stacking fault energy of single crystals has been reported using the peak shift method.Presently studied all single crystals are grown by using a direct vapor transport (DVT) technique in the laboratory.The structural characterizations of these crystals are made by XRD.Considerable variations are shown in deformation (α) and growth (β) probabilities in single crystals due to off-stoichiometry,which possesses the stacking fault in the single crystal.

  12. Growth and characterisation of gadolinium samarium oxalate single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Korah, I. [Dept. of Physics, St. George College, Aruvithura - 686122, Kerala (India); Joseph, C. [School of Pure and Applied Physics, Mahatma Gandhi University, Kottayam - 686562 (India); Ittyachan, M.A. [Dept. of Physics, Cochin University of Science and Technology, Cochin (India)

    2007-10-15

    Single crystals of Gadolinium Samarium Oxalate (GSO) are grown by gel method. The crystals are pale yellowish in colour. Morphology and size of the crystals are found to depend on pH of the medium, gel density, concentration of the reactants and acidity of the feed solution. The crystallinity of the grown sample was confirmed by X-ray diffraction studies and the lattice parameters were determined. X-ray diffractogram shows well defined peaks. IR spectrum confirms the presence of water molecules and carboxylic group. EDAX analysis confirms the presence of Gd and Sm in the sample. The thermal decomposition behaviour of the crystal was analysed using TGA and DTA studies. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  13. Spectroscopy of tetragonal Eu:NaGd(WO4)2 crystal

    Science.gov (United States)

    Loiko, P. A.; Vilejshikova, E. V.; Mateos, X.; Serres, J. M.; Dashkevich, V. I.; Orlovich, V. A.; Yasukevich, A. S.; Kuleshov, N. V.; Yumashev, K. V.; Grigoriev, S. V.; Vatnik, S. M.; Bagaev, S. N.; Pavlyuk, A. A.

    2016-07-01

    We report on growth and detailed spectroscopic study of Eu3+-doped tetragonal sodium gadolinium double tungstate, Eu:NaGd(WO4)2, a new promising crystal for deep-red lasers. Large-volume crystal doped with 4.9 at.% Eu is grown by Czochralski method along the [001] crystallographic direction. Absorption of Eu3+ ions is studied at room temperature (RT) and at 6 K. For the absorption band related to the 7F1 → 5D1 transition suitable for pumping of Eu:NaGd(WO4)2, the maximum cross-section is σabs = 1.2 × 10-21 cm2 at 535.5 nm with the full width at half maximum (FWHM) of 3.1 nm (at RT, for E || a polarization). For the 5D0 → 7F4 transition, the maximum stimulated-emission cross-section is σSE = 1.6 × 10-21 cm2 at 698.3 nm (RT, E || c polarization). Lifetime of the 5D0 state is 490 ± 10 μs (at RT). Under UV excitation, Eu:NaGd(WO4)2 provides intense red emission with CIE coordinates (x = 0.671, y = 0.329).

  14. Thermal, defects, mechanical and spectral properties of Nd-doped GdNbO4 laser crystal

    Science.gov (United States)

    Ding, Shoujun; Zhang, Qingli; Luo, Jianqiao; Liu, Wenpeng; Wang, Xiaofei; Sun, Guihua; Li, Xiuli; Sun, Dunlu

    2017-05-01

    A Nd-doped GdNbO4 crystal was grown successfully by Czochralski method. Its monoclinic structure was determined by X-ray diffraction; the unit-cell parameters are a = 5.38 Å, b = 11.09 Å, c = 5.11 Å, and β = 94.56°. The morphological defects of Nd:GdNbO4 crystal were investigated using the chemical etching with the phosphoric acid etchant. For a new crystal, the physical properties are of great importance. The hardness and density of Nd:GdNbO4 were investigated first. Thermal properties of Nd:GdNbO4, including thermal expansion coefficient and specific heat, were measured along a-, b-, and c-crystalline axes. Thermal properties indicate that the Nd:GdNbO4 pumped along c-axis can reduce the thermal lensing effect effectively. The specific heat is 0.53 J g-1 K-1 at 300 K, indicating a relatively high damage threshold of Nd:GdNbO4. The transmission and emission spectrum of Nd:GdNbO4 were measured, and the absorption peaks were assigned. The strongest emission peak of Nd:GdNbO4 is located at 1065.3 nm in the spectral range of 850-1420 nm excited by 808 nm laser. The refractive index of Nd:GdNbO4 was calculated with the transmission spectrum and fitted with Sellmeier equation. All these obtained results is of great significance for the further research of Nd:GdNbO4.

  15. Growth and Characteristics of Nd3+: GdAl3(BO3)4 Crystal

    Institute of Scientific and Technical Information of China (English)

    TU Chao-Yang(涂朝阳); ZHU Zhao-Jie(朱昭捷); LI Jian-Fu(李坚富); WU Bai-Chang(吴柏昌); BRENIER Alain

    2003-01-01

    Nd3+:GdAl3(BO3)4 (NGAB) crystal with the size of 30 mm was grown from the solvent system of K2O-Gd2O3-MoO3-B2O3 by combining accelerated seed rotation technology with medium seeded solution growth (MSSG) method, and its crystal structure has been determined by X-ray powder diffraction. It crystallizes in the trigonal system, space group R32 with a = 9.2734(2),c = 7.2438(1) A, V = 538 A3, Z = 3 and Dc = 4.379 g/cm3. The absorption and emission spectra of NGAB in the function of σ and π polarizations at room temperature have been measured. UV generation tuneable in 378~382 nm, green (531 nm) generation and blue generation tuneable in 436~443 nm as well as red (669 nm) generation by self-frequency changing were obtained with the output of 105, 119.5, 445 and 19μJ/pulse, respectively, when the crystal was pumped by a dye laser.

  16. Top seeded melt growth of Gd-Ba-Cu-O single grain superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Cardwell, D A; Shi, Y-H; Pathak, S K; Dennis, A R [Superconductivity Group, Engineering Department, University of Cambridge, Cambridge CB2 1PZ (United Kingdom); Hari Babu, N [Brunel Centre for Advanced Solidification Technology (BCAST), Brunel University, West London UB8 3PH (United Kingdom); Iida, K [Leibniz Institute for Solid State and Materials Research Dresden (IFW)-Dresden, 01069 Dresden (Germany)

    2010-03-15

    Top seeded melt growth (TSMG) has been used extensively to fabricate large, single grain Y-Ba-Cu-O (YBCO) bulk superconductors that can trap large magnetic fields. The TSMG method is relatively economical and has enabled the development of batch processes for the fabrication of a large number of bulk single grain superconductors in a single furnace. In addition, the technique allows the fabrication of complex-shaped bulk samples with controlled and strongly connected grains by using a novel, multi-seeding process. A practical processing route for processing of LRE-Ba-Cu-O (where LRE represents a light rare earth element) single grain superconductors (which have superior properties to YBCO) has been developed at Cambridge over the past three years, based on the development of a generic seed of melt textured Mg-doped Nd-123 and suppression of solid solution phase formation in air by enriching the precursor composition with excess Ba. In this paper we report the successful application of a practical TSMG process in the fabrication of high performance Gd-Ba-Cu-O (GdBCO) single grain superconductor. This method has enabled the development of a batch process for GdBCO and we demonstrate for the first time the fabrication of a large number of high performance single grains of this material in a single process. Finally, we report the processing of bulk GdBCO in the form of complex geometries with controlled grain orientation for bespoke engineering applications.

  17. Heavy-atom derivatives in lipidic cubic phases: results on hen egg-white lysozyme tetragonal derivative crystals with Gd-HPDO3A complex.

    Science.gov (United States)

    Girard, Eric; Pebay-Peyroula, Eva; Vicat, Jean; Kahn, Richard

    2004-08-01

    Gd-HPDO3A, a neutral gadolinium complex, is a good candidate for obtaining heavy-atom-derivative crystals by the lipidic cubic phase crystallization method known to be effective for membrane proteins. Gadolinium-derivative crystals of hen egg-white lysozyme were obtained by co-crystallizing the protein with 100 mM Gd-HPDO3A in a monoolein cubic phase. Diffraction data were collected to a resolution of 1.7 A using Cu Kalpha radiation from a rotating-anode generator. Two binding sites of the gadolinium complex were located from the strong gadolinium anomalous signal. The Gd-atom positions and their refined occupancies were found to be identical to those found in derivative crystals of hen egg-white lysozyme obtained by co-crystallizing the protein with 100 mM Gd-HPDO3A using the hanging-drop technique. Moreover, the refined structures are isomorphous. The lipidic cubic phase is not disturbed by the high concentration of Gd-HPDO3A. This experiment demonstrates that a gadolinium complex, Gd-HPDO3A, can be used to obtain derivative crystals by the lipidic cubic phase crystallization method. Further studies with membrane proteins that are known to crystallize in lipidic cubic phases will be undertaken with Gd-HPDO3A and other Gd complexes to test whether derivative crystals with high Gd-site occupancies can be obtained.

  18. Properties of SAW synchronous two-port resonators on GdCa₄O(BO₃)₃ crystal.

    Science.gov (United States)

    Soluch, Waldemar

    2011-02-01

    Surface acoustic wave (SAW) synchronous two-port resonators were fabricated and measured on several orientations of the GdCa₄O(BO₃)₃ crystal. Resonance frequencies, insertion losses, and unloaded quality factors of the resonators, measured at room temperature, were in the ranges of about 432.3 to 437.5 MHz, 3.8 to 6.3 dB, and 6500 to 7500, respectively. The properties of this crystal, such as its lack of a phase transition up to its melting temperature of about 1500 °C, a SAW temperature coefficient of frequency of about -80 ppm/ °C, and good parameters of the resonators make the crystal attractive for high-temperature sensor applications.

  19. Novel Zn sub 9 -cluster compounds RE sub 2 Zn sub 6 Ge sub 3 (RE: La, Ce, Pr, Nd, Sm, Gd): crystal structure and physical properties

    CERN Document Server

    Grytsiv, A; Berger, S; Hilscher, G; Michor, H; Paul, C; Rogl, P; Daoud-Aladine, A; Keller, L; Roisnel, T; Noel, H

    2003-01-01

    A novel ternary structure type has been determined from single crystals of Ce sub 2 Zn sub 6 Ge sub 3 grown from indium-zinc flux solvent. The Ce sub 2 Zn sub 6 Ge sub 3 type is hexagonal (a = 0.767 69(2) nm; c = 0.411 59(2) nm) with space group P6-bar2m, Z = 1. Isotypic compounds with La, Pr, Nd, Sm and Gd were synthesized by reaction sintering, and their isotypic crystal structures were confirmed from Rietveld refinements. These novel ternaries show metallic behaviour and their ground state depends on the particular rare earth ion. Long-range magnetic order was deduced for the compounds from Ce to Gd, with a maximum transition temperature T sub N approx 29 K for Gd sub 2 Zn sub 6 Ge sub 3. While the compounds with Ce and Pr exhibit a spontaneous magnetic type of order, those with Nd, Sm and Gd are antiferromagnetic. The magnetic structures of Pr sub 2 Zn sub 6 Ge sub 3 and Nd sub 2 Zn sub 6 Ge sub 3 were resolved on the basis of neutron powder diffraction performed at 1.5 K.

  20. Crystallization Growth of Single Crystal Cu by ContinuousCasting

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Crystallization growth of single-crystal Cu by continuous casting has been investigated using selfdesigned horizontal continuous casting equipment and XRD. Experimental results showed that the crystallization plane of (311), (220) and (111) were eliminated sequentially in evolutionary process. The final growth plane of crystal was (200), the direction of crystallization was [100],the growth direction of both sides of the rod inclined to axis, and the degree of deviation of direction [100] from the crystal axis was less than 10. In order to produce high quality single crystal, the solid-liquid interface morphology must be smooth, even be planar.

  1. Structure of Non-stoichiometric Sr6Gd0.61Sc1.39(BO3)6 Crystal

    Institute of Scientific and Technical Information of China (English)

    HU Zu-Shu; LIN Zhou-Bin; CHEN Jiu-Tong; WANG Guo-Fu

    2004-01-01

    The crystal of the title compound Sr6Gd0.61Sc1.39(BO3)6 (Mr = 1037.00) was grown by Czochralski method. It crystallizes in trigonal, space group with a = 12.415(2), c = 9.274(2) (A。), Z = 3, V = 1238.0(4) (A。)3, Dc = 4.173 g/cm3, λ(MoKα) = 0.71073 (A。), μ = 22.278 mm-1, F(000) = 1411, S = 1.213, the final R = 0.0577 and wR = 0.1414 for 401 observed reflections with I>2σ(I). In the structure Gd(1)O6 Gd(1) = Gd0.46 + Sc0.54) and Gd(2)O6 (Gd(2)= Gd0.15 + Sc0.85) are alternately stacked between the planar triangular BO3 groups to form chains extending along the trigonal axis. These chains are connected through the 9-coordinate Sr atoms.

  2. Single Crystals (M = Fe, Co)

    Science.gov (United States)

    Cabrera-Baez, M.; Magnavita, E. Thizay; Ribeiro, Raquel A.; Avila, Marcos A.

    2014-06-01

    FeGa3 and related compounds have been subjects of recent investigation for their interesting thermoelectric, electronic, and magnetic behaviors. Here, single crystals of FeGa3- y Ge y were grown by the self-flux technique with effective y = 0, 0.09(1), 0.11(1), and 0.17(1) in order to investigate the evolution of the diamagnetic semiconducting compound FeGa3 into a ferromagnetic metal, which occurs through the electron doping and band structure modifications that result from substitution of Ge for Ga. Heat capacity and magnetization measurements reveal non-Fermi liquid behavior in the vicinity of the transition from a paramagnetic to ferromagnetic ground state, suggesting the presence of a ferromagnetic quantum critical point (FMQCP). We also present the first results of hole doping in this system by the growth of FeGa3- y Zn y single crystals, and electron- and hole doping of the related compound CoGa3 by CoGa3- y Ge y and CoGa3- y Zn y crystal growths, aiming to search for further routes to band structure and charge carrier tuning, thermoelectric optimization, and quantum criticality in this family of compounds. The ability to tune the charge carrier type warrants further investigation of the MGa3 system's thermoelectric properties above room temperature.

  3. Growth and Second-Harmonic Generation Properties of Tm3+, Yb3+, Bi3+ and Li+ Doped GdCa4O(BO3)3 Crystals

    Institute of Scientific and Technical Information of China (English)

    ZHANG Shu-Jun; CHENG Zhen-Xiang; ZHANG Shao-Jun; LIU Jun-Hai; HAN Jian-Ru; WANG Ji-Yang; CHEN Huan-Chu

    2001-01-01

    The rare-earth ions (Yb3+, Tm3+) and Li+, Bi3+ ions doped GdCa4O(BO3)3 crystals were grown using the Czochralski pulling method. The second-harmonic generation conversion efficiencies of the GdCOB:Yb and GdCOB:Tm crystals are 31.3% and 33.3%, respectively, while the undoped GdCOB crystal is 27.9%. The conversion efficiencies of Yb3+, Tm3+ doped GdCOB are improved by 12% and 19%, respectively, compared to that of the undoped one. The conversion efficiencies of Li+, Bi3+ doped GdCOB crystals are 33% and 38.3%,which are improved by 15% and 37% as compared to that of the undoped crystal. The results are discussed using the anion group theory.

  4. Valence bands, oxygen in planes and chains, and surface changes for single crystals of M/sub 2/CuO/sub 4/ and MBa/sub 2/Cu/sub 3/O/sub x/ (M = Pr,Nd,Eu,Gd)

    Energy Technology Data Exchange (ETDEWEB)

    Weaver, J.H.; Meyer H.M. III; Wagener, T.J.; Hill, D.M.; Gao, Y.; Peterson, D.; Fisk, Z.; Arko, A.J.

    1988-09-01

    X-ray photoemission results for single crystals of M/sub 2/CuO/sub 4/ (M = Pr,Eu,Gd), MBa/sub 2/Cu/sub 3/O/sub x/ (M = Nd,Gd), and CuO are sintered La/sub 1.85/Sr/sub 0.15/CuO/sub 4/ and YBa/sub 2/Cu/sub 3/O/sub 6.9/ show valence-band spectra within 10 eV of the Fermi energy that are remarkably similar in appearance, with contributions that reflect Cu-O hybrid states and the rare-earth 4f states. For Pr/sub 2/CuO/sub 4/ and NdBa/sub 2/Cu/sub 3/O/sub x/, there are two distinct 4f features due to ligand screening in the photoemission final state. The rare-earth 5p core-level emission overlaps the O 2s emission and reveals complex 5p-4f multiplet interactions. All O 1s spectra show a dominant peak at /similar to/528 eV that can be resolved into features separated by /similar to/0.7 eV. These reflect inequivalent oxygen bonding configurations in the lattice and are associated with the planes and chains for the 1:2:3 compounds and the planes and off-planes for the 2:1:4 compounds. The lower-binding-energy feature is associated with the Cu-O chains of the 1:2:3 compounds and the Cu-O planes of the 2:1:4 compounds. In addition to the O 1s main line for the Cu-O planes there is also a weak satellite. Time dependent studies of the Cu 2p and O 1s emission indicate surface modification, dependent upon the quality of the cleave. The effects of surface changes and the presence of imperfections are discussed in the context of surface studies and surface superconductivity.

  5. Patterning of Perovskite Single Crystals

    KAUST Repository

    Corzo, Daniel

    2017-06-12

    As the internet-of-things hardware integration continues to develop and the requirements for electronics keep diversifying and expanding, the necessity for specialized properties other than the classical semiconductor performance becomes apparent. The success of emerging semiconductor materials depends on the manufacturability and cost as much as on the properties and performance they offer. Solution-based semiconductors are an emerging concept that offers the advantage of being compatible with large-scale manufacturing techniques and have the potential to yield high-quality electronic devices at a lower cost than currently available solutions. In this work, patterns of high-quality MAPbBr3 perovskite single crystals in specific locations are achieved through the modification of the substrate properties and solvent engineering. The fabrication of the substrates involved modifying the surface adhesion forces through functionalization with self-assembled monolayers and patterning them by photolithography processes. Spin coating and blade coating were used to deposit the perovskite solution on the modified silicon substrates. While single crystal perovskites were obtained with the modification of substrates alone, solvent engineering helped with improving the Marangoni flows in the deposited droplets by increasing the contact angle and lowering the evaporation rate, therefore controlling and improving the shape of the grown perovskite crystals. The methodology is extended to other types of perovskites such as the transparent MAPbCl3 and the lead-free MABi2I9, demonstrating the adaptability of the process. Adapting the process to electrode arrays opened up the path towards the fabrication of optoelectronic devices including photodetectors and field-effect transistors, for which the first iterations are demonstrated. Overall, manufacturing and integration techniques permitting the fabrication of single crystalline devices, such as the method in this thesis work, are

  6. Mechanically worked single crystal article

    Energy Technology Data Exchange (ETDEWEB)

    Gell, M. L.; Giamei, A. F.

    1985-07-09

    A single crystal nickel base superalloy component, such as a gas turbine blade is mechanically deformed at elevated temperature to improve the yield strength of a portion which is used at temperatures below 800/sup 0/ C., compared to a portion which is used at a higher temperature. A blade has a root which is deformed by 2-14% at 700/sup 0/-1100/sup 0/ C. and an airfoil which is not deformed. The root yield strength is increased 15-50% while the airfoil creep strength is maintained.

  7. Synthesis and Crystal Structure of a Dicyanamide-bridged One-dimensional Gadolinium(Ⅲ) Complex [Gd(dca)3(phen)2(H2O)]n

    Institute of Scientific and Technical Information of China (English)

    ZHANG Li-Fang; KOU Jian-Yi; KOU Hui-Zhong; NI Zhong-Hai; CUI Ai-Li; WANG Ru-Ji

    2005-01-01

    A chainlike coordination polymer [Gd(dca)3(phen)2(H2O)]n (dca = dicyanamide,phen = 1,10-phenanthroline) has been synthesized, and its crystal structure was characterized by X-ray single-crystal diffraction. The crystal belongs to monoclinic, space group P21/n with a = 10.6581(13), b = 15.6129(16), c = 17.733(3) (A), β = 90.499(5)°, V = 2950.8(7) (A)3, Z = 4,C30H18GdN13O, Mr = 733.82, Dc= 1.652 g/cm3, F(000) = 1444, λ(MoKα) = 0.71073 (A),μ = 2.297 mm-1, R = 0.0258 and wR = 0.0616 for 4570 observed reflections (I > 2σ(Ⅰ)). In this complex, the gadolinium atom is nine-coordinated by four dca anions, two chelated phen ligands and one H2O molecule in a distorted tricapped trigonal prism. Two bridging dca anions connect the Gd(Ⅲ) ions yielding chainlike polymers that are linked by hydrogen bonds and π-π interactions to form a three-dimensional network.

  8. Additive manufacturing of micrometric crystallization vessels and single crystals

    Science.gov (United States)

    Halevi, Oded; Jiang, Hui; Kloc, Christian; Magdassi, Shlomo

    2016-11-01

    We present an all-additive manufacturing method that is performed at mild conditions, for the formation of organic single crystals at specific locations, without any photolithography prefabrication process. The method is composed of two steps; inkjet printing of a confinement frame, composed of a water soluble electrolyte. Then, an organic semiconductor solution is printed within the confinement to form a nucleus at a specific location, followed by additional printing, which led to the growth of a single crystal. The specific geometry of the confinement enables control of the specific locations of the single crystals, while separating the nucleation and crystal growth processes. By this method, we printed single crystals of perylene, which are suitable for the formation of OFETs. Moreover, since this method is based on a simple and controllable wet deposition process, it enables formation of arrays of single crystals at specific locations, which is a prerequisite for mass production of active organic elements on flexible substrates.

  9. Electron spin resonance study of the single-ion anisotropy in the pyrochlore antiferromagnet Gd2Sn2O7

    Science.gov (United States)

    Glazkov, V. N.; Smirnov, A. I.; Sanchez, J. P.; Forget, A.; Colson, D.; Bonville, P.

    2006-02-01

    Single-ion anisotropy is of importance for the magnetic ordering of the frustrated pyrochlore antiferromagnets Gd2Ti2O7 and Gd2Sn2O7. The anisotropy parameters for Gd2Sn2O7 were measured using the electron spin resonance technique. The anisotropy was found to be of the easy plane type, with the main constant D = 140 mK. This value is 35% smaller than the value of the corresponding anisotropy constant of the related compound Gd2Ti2O7.

  10. Effect of Strontium Ion on the Growth and Second-Harmonic Generation Properties of GdCa4O(BO3)3 Crystal

    Institute of Scientific and Technical Information of China (English)

    张树君; 程振祥; 刘均海; 韩建儒; 王继扬; 邵宗书; 陈焕矗

    2001-01-01

    Large sized and optical quality GdCa4O(BO3)3 (GdCOB) crystal with calcium partially substituted by strontium (Sr) ions was grown for the first time. The x-ray powder diffraction shows that the Sr ion has an effect on the cell parameters of the GdCOB crystal Second-harmonic generation (SHG) experiments were performed on the Sr:GdCOB and GdCOB crystals along the spatial phase-matching direction. The results show that the cw green laser output power is 1.04 W when the laser diode pump power is 10 W in the Nd:YVO4/Sr:GdCOB intracavity laser. Considering the slope efficiency of Nd:YVO4 and the fundamental laser in cavity, the intracavity SHG conversion efficiency of the GdCOB crystal is 21% while it is 24% for the Sr:GdCOB crystal, the SHG conversion efficiency is improved by 14%. The effect of the Sr ions on the nonlinearity of the GdCOB crystal is also discussed by using the anion group theory.

  11. Relaxor-PT Single Crystal Piezoelectric Sensors

    OpenAIRE

    Xiaoning Jiang; Jinwook Kim; Kyugrim Kim

    2014-01-01

    Relaxor-PbTiO3 piezoelectric single crystals have been widely used in a broad range of electromechanical devices, including piezoelectric sensors, actuators, and transducers. This paper reviews the unique properties of these single crystals for piezoelectric sensors. Design, fabrication and characterization of various relaxor-PT single crystal piezoelectric sensors and their applications are presented and compared with their piezoelectric ceramic counterparts. Newly applicable fields and futu...

  12. Orientation of growing crystals of Co- or Gd-containing L-threonine dehydrogenase by magnetic fields

    Science.gov (United States)

    Maki, Syou; Ishikawa, Kazuhiko; Ataka, Mitsuo

    2009-12-01

    L-Threonine dehydrogenase from Pyrococcus horikoshii (TDH) is a water-soluble metalloenzyme, the molecular structure of which has been unknown until recently. The Zn 2+ ion in the native TDH, prepared as a recombinant protein, is replaced artificially with Co 2+, Ni 2+ or Gd 3+. These samples are crystallized in homogeneous magnetic fields of 2-10 T. Half of the Co- or Gd-substituted crystals show magnetic orientation in a field of 2 T at 278 K whereas the crystals of the native TDH require a 4 T magnetic field for half orientation. The sensitivity to magnetic orientation can thus be increased by metal substitution. On the other hand, we cannot assign clear changes in the size, number, and quality of the native and metal-substituted crystals with and without the presence of the magnetic field.

  13. Spontaneous resolution upon crystallization of chiral La(III) and Gd(III) MOFs from achiral dihydroxymalonate.

    Science.gov (United States)

    Gil-Hernández, Beatriz; Höppe, Henning A; Vieth, Jana K; Sanchiz, Joaquin; Janiak, Christoph

    2010-11-21

    The achiral chelating and bridging dihydroxymalonato (mesoxalato) ligand is a new enantiopurity enforcer in extended structures by yielding the Λ/Δ-metal configured homochiral MOFs 2D-[Ln(2)(μ-mesoxalato)(3)(H(2)O)(6)] (Ln = La(III), Gd(III)) through self-resolution during crystal growth.

  14. Prepared GdBa2 Cu3Oy Single Domain Superconducting Bulks in Air

    Institute of Scientific and Technical Information of China (English)

    Zheng Minghui; Xiao Ling; Ren Hongtao; Jiao Yulei; Xu Bin; Fang Yuan

    2004-01-01

    The preparation of the single domain GBCO bulk with 25 mm in diameter in air was reported. In order to avoid the Gd ions substituted the Ba sites, different BaCuO2 contents was added into the precursor powders. Tc of the samples achieved 94.3 K. The magnetization hysteresis loops of the samples were measured at 77 K. It is shown that the irreverswas obtained.

  15. Structural and spectral studies of Yb:NaGd(WO{sub 4}){sub 2} crystals irradiated by 6.0 MeV O ions

    Energy Technology Data Exchange (ETDEWEB)

    Jia, Chuan-Lei; Li, Song; Song, Xiao-Xiao [China University of Mining and Technology, Department of Physics, Xuzhou (China)

    2017-03-15

    Yb:NaGd(WO{sub 4}){sub 2} single crystals are implanted with 6.0 MeV O ions at room temperature. The effects of ion irradiation on the structure and spectral properties are demonstrated by employing X-ray diffraction techniques, high resolution X-ray diffraction techniques and photoluminescence (PL) measurement. The corresponding results show that the sample can retain good crystallinity by irradiation at relative low fluences of 1.6 x 10{sup 14} ions/cm{sup 2}, whilst both the PL intensity and the line bandwidth can be effectively improved. (orig.)

  16. Spectroscopic analysis and efficient diode-pumped 1.9 μm Tm3+-doped β'-Gd2(MoO4)3 crystal laser.

    Science.gov (United States)

    Tang, Jianfeng; Chen, Yujin; Lin, Yanfu; Gong, Xinghong; Huang, Jianhua; Luo, Zundu; Huang, Yidong

    2011-07-04

    Tm3+-doped β'-Gd2(MoO4)3 single crystal was grown by the Czochralski method. Spectroscopic analysis was carried out along different polarizations. End-pumped by a quasi-cw diode laser at 795 nm in a plano-concave cavity, an average laser output power of 58 mW around 1.9 μm was achieved in a 0.93-mm-thick crystal when the output coupler transmission was 7.1%. The absorbed pump threshold was 8 mW and the slope efficiency of the laser was 57%. This crystal has smooth and broad gain curve around 1.9 μm, which shows that it is also a potential gain medium for tunable and short pulse lasers.

  17. Synthesis and structural characterization of a single-crystal to single-crystal transformable coordination polymer.

    Science.gov (United States)

    Tian, Yuyang; Allan, Phoebe K; Renouf, Catherine L; He, Xiang; McCormick, Laura J; Morris, Russell E

    2014-01-28

    A single-crystal to single-crystal transformable coordination polymer compound was hydrothermally synthesized. The structural rearrangement is induced by selecting a ligand that contains both strong and weaker coordinating groups. Both hydrated and dehydrated structures were determined by single crystal X-ray analysis.

  18. Ultratough single crystal boron-doped diamond

    Science.gov (United States)

    Hemley, Russell J [Carnegie Inst. for Science, Washington, DC ; Mao, Ho-Kwang [Carnegie Inst. for Science, Washington, DC ; Yan, Chih-Shiue [Carnegie Inst. for Science, Washington, DC ; Liang, Qi [Carnegie Inst. for Science, Washington, DC

    2015-05-05

    The invention relates to a single crystal boron doped CVD diamond that has a toughness of at least about 22 MPa m.sup.1/2. The invention further relates to a method of manufacturing single crystal boron doped CVD diamond. The growth rate of the diamond can be from about 20-100 .mu.m/h.

  19. Adhesion of single crystals on modified surfaces in crystallization fouling

    Science.gov (United States)

    Mayer, Moriz; Augustin, Wolfgang; Scholl, Stephan

    2012-12-01

    In crystallization fouling it has been observed that during a certain initial phase the fouling is formed by a non-uniform layer consisting of a population of single crystals. These single crystals are frequently formed by inverse soluble salts such as CaCO3. During heterogeneous nucleation and heterogeneous growth an interfacial area between the crystal and the heat transfer surface occurs. The development of this interfacial area is the reason for the adhesion of each single crystal and of all individual crystals, once a uniform layer has been built up. The emerging interfacial area is intrinsic to the heterogeneous nucleation of crystals and can be explained by the thermodynamic principle of the minimum of the Gibbs free energy. In this study CaCO3 crystals were grown heterogeneously on untreated and on modified surfaces inside a flow channel. An untreated stainless steel (AISI 304) surface was used as a reference. Following surface modifications were investigated: enameled and electropolished stainless steel as well as diamond-like-carbon based coatings on stainless steel substrate. The adhesion was measured through a novel measurement technique using a micromanipulator to shear off single crystals from the substrate which was fixed to a spring table inside a SEM.

  20. Synthesis, Crystal Structure, Magnetism, and Optical Properties of Gd 3[SiON 3]O—An Oxonitridosilicate Oxide with Noncondensed SiON 3 Tetrahedra

    Science.gov (United States)

    Höppe, Henning A.; Kotzyba, Gunter; Pöttgen, Rainer; Schnick, Wolfgang

    2002-09-01

    The novel oxonitridosilicate oxide (sion oxide) Gd 3[SiON 3]O was obtained by the reaction of gadolinium metal with its carbonate oxide and silicon diimide in a radiofrequency (r.f.) furnace at a temperature of 1400°C. The crystal structure of Gd 3[SiON 3]O ( I4/ mcm, a=649.1(2) pm, c=1078.8(6) pm, Z=4, R1=0.0411, w R2=0.0769, 405 F2 values, 19 parameters, 123 K) is isotypic with that of Ba 3[SiO 4]O and Cs 3[CoCl 4]Cl. It can be derived from the perovskite structure type by a hierarchical substitution: Ti 4+→O 2-, O 2-→Gd 3+, Ca 2+→[SiON 3] 7- resulting in the formation of large [OGd 6] 16+ octahedra, which are twisted by ξ=16.47(1)° around [001]. The low-temperature single-crystal data investigation led to a crystallographic splitting of the central O atom which could not be resolved at room temperature. The UV-Vis absorption spectra in reflection geometry of the yellow title compound revealed two overlaying broad bands, one peaking at almost the same wavelength as observed in gadolinium oxide (340 nm) and a second red-shifted band at approximately 400 nm indicating a strong influence of nitrogen on the ligand field splitting of the 5 d states of Gd 3+. Temperature-dependent magnetic susceptibility measurements of Gd 3[SiON 3]O show Curie-Weiss behavior from 2 to 300 K with an experimental magnetic moment of 7.68(5) μB/Gd, indicating trivalent gadolinium. There is no evidence for magnetic ordering down to 2 K. According to the paramagnetic Curie temperature of -7(1) K, the exchange between the gadolinium magnetic moments is supposed to be only weak. The vibrational spectroscopic data (IR and Raman) are reported.

  1. Achieving a table-like magnetocaloric effect and large refrigerant capacity in in situ multiphase Gd65Mn25Si10 alloys obtained by crystallization treatment

    Science.gov (United States)

    Shen, X. Y.; Zhong, X. C.; Huang, X. W.; Mo, H. Y.; Feng, X. L.; Liu, Z. W.; Jiao, D. L.

    2017-01-01

    In situ multiphase structure Gd65Mn25Si10 alloys were fabricated by melt spinning and subsequent crystallization treatment. In the process of crystallization, the α-Gd, GdMn2 and Gd5Si3 phases precipitate in the amorphous matrix in turn. The Curie temperature (T C) values for the α-Gd crystallization phase and amorphous matrix can be tailored by tuning the crystallization treatment time. All three multiphase alloys obtained by crystallization treatment at 637 K for 20, 30 and 40 min, respectively, undergo multiple successive magnetic phase transitions. A table-like magnetic entropy change over a wide temperature range (~90-120 K) and a large full width at half maximum (ΔT FWHM) magnetic entropy change (~230 K) were achieved in the above-mentioned crystallized alloys, resulting in large refrigerant capacities (RCs). The enhanced RCs of the three crystallized alloys for a magnetic field change of 0-5 T are in the range of 541-614 J kg-1. Large ΔT FWHM and RC values and a table-like (-ΔS M)max feature obtained in in situ multiphase Gd65Mn25Si10 crystallized alloys make them suitable for potential application in efficient Ericsson-cycle magnetic refrigeration working in a temperature range from 74 to 310 K.

  2. Crystal phase transition in LixNa1-xGdF4 solid solution nanocrystals - Tuning of optical properties

    KAUST Repository

    Bański, Mateusz

    2014-01-01

    The influence of precursor composition on the crystallization of LixNa1-xGdF4 is investigated and discussed. Nanocrystals are prepared from the thermal decomposition of trifluoroacetates in the presence of trioctylphosphine oxide to provide control over particle size. A crystal phase transition from hexagonal to cubic and to tetragonal is observed by increasing lithium trifluoroacetate (Li-TFA) in the solution. Controlling the composition of LixNa1-xGdF4 nanocrystals results in modified crystal field symmetry and emission properties from doped europium (Eu3+) ions. We report that for lithium (Li+) substitution <15%, the hexagonal crystal field is preferred, while the Eu3+ emission is already tuned, whereas at higher Li+ substitution, a phase change takes place and the number of crystalline matrix defects increases which is reflected in the optical properties of Eu3+. From Eu3+ emission properties, the optimum Li+ content is determined to be ∼6.2% in the prepared LixNa1-xGdF4 nanocrystals.

  3. Investigation of spectroscopic properties and energy transfer between Ce and Dy in (Lu{sub 0.2}Gd{sub 0.8−x−y}Ce{sub x}Dy{sub y}){sub 2}SiO{sub 5} single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Strzęp, A. [Institute of Low Temperature and Structure Research PAS, Wroclaw (Poland); Martin, I.R. [Faculty of Physics, Universidad de La Laguna, S/C de Tenerife (Spain); Malta Consolider Team and Instituto de Materiales y Nanotecnología (IMN), Universidad de La Laguna, S/C de Tenerife (Spain); Głowacki, M. [Institute of Physics PAS, Warsaw (Poland); Ryba-Romanowski, W. [Institute of Low Temperature and Structure Research PAS, Wroclaw (Poland); Berkowski, M. [Institute of Physics PAS, Warsaw (Poland); Pérez-Rodríguez, C. [Faculty of Physics, Universidad de La Laguna, S/C de Tenerife (Spain); Malta Consolider Team and Instituto de Materiales y Nanotecnología (IMN), Universidad de La Laguna, S/C de Tenerife (Spain)

    2015-10-15

    In this paper we present results of spectroscopic investigations of single crystals with general formula (Lu{sub 0.2}Gd{sub 0.8−x−y}){sub 2}SiO{sub 5} codoped with x% of Ce{sup {sub 3}{sub +}} and y% of Dy{sup {sub 3}{sub +}} ions. Investigated materials exhibit strong optical anisotropy what can be easily observed in polarized absorption and emission spectra. Based on room temperature polarized absorption spectra calculations in framework of phenomenological Judd–Ofelt model was carried out. Intensity parameters Ω{sub t} were evaluated to be Ω{sub 2}=7.08 (±0.39), Ω{sub 4}=2.76 (±0.44), and Ω{sub 6}=3.36 (±0.21) [10{sup −20} cm{sup 2}] for sample doped with 1% of cerium and Ω{sub 2}=10.72 (±0.33), Ω{sub 4}=1.98 (±0.37), and Ω{sub 6}=2.11 (±0.18) [10{sup −20} cm{sup 2}] for sample doped with 3% of cerium. Influence of cerium admixture on Judd Ofelt intensity parameters is discussed. Value of experimental lifetime of {sub 4}F{sub 9/2} multiplet of Dy{sup 3+} ion in sample doped with 1 at% Ce is 0.5 ms (τ{sub rad}=0.45 ms), while for sample doped with 3 at% of Ce, experimental lifetime is 0.45 ms (τ{sub rad}=0.43 ms). Absorption bands located between 440 and 460 nm, can be utilized for optical pumping of material by GaN laser diodes. Intense and broad emission bands at 465–495 and 560–590 nm, with experimental branching ratio strongly depending on polarization, give high chance for obtaining white luminophore, due to appropiate mixing of blue and yellow luminescence. By means of a pump and probe experiment optical amplification was demonstrated in the codoped sample with 1 at% of Ce and 1 at% Dy at 575 nm corresponding to the emission of Dy{sup 3+} with a high net gain coefficient of 34 cm{sup −1}. Such high amplification was obtained under 359 nm excitation (at the maximum of intense absorption band of Ce{sup 3+} ions). - Highlights: • Influence of anisotropy on properties of LGSO: Ce, Dy crystals was investigated. • ET between Ce

  4. Crystal growth and structural analysis of zirconium sulphoselenide single crystals

    Indian Academy of Sciences (India)

    K R Patel; R D Vaidya; M S Dave; S G Patel

    2008-08-01

    A series of zirconium sulphoselenide (ZrSSe3–, where = 0, 0.5, 1, 1.5, 2, 2.5, 3) single crystals have been grown by chemical vapour transport technique using iodine as a transporting agent. The optimum condition for the growth of these crystals is given. The stoichiometry of the grown crystals were confirmed on the basis of energy dispersive analysis by X-ray (EDAX) and the structural characterization was accomplished by X-ray diffraction (XRD) studies. The crystals are found to possess monoclinic structure. The lattice parameters, volume, particle size and X-ray density have been carried out for these crystals. The effect of sulphur proportion on the lattice parameter, unit cell volume and X-ray density in the series of ZrSSe3– single crystals have been studied and found to decrease in all these parameters with rise in sulphur proportion. The grown crystals were examined under optical zoom microscope for their surface topography study. Hall effect measurements were carried out on grown crystals at room temperature. The negative value of Hall coefficient implies that these crystals are -type in nature. The conductivity is found to decrease with increase of sulphur content in the ZrSSe3– series. The electrical resistivity parallel to c-axis as well as perpendicular to -axis have been carried out in the temperature range 303–423 K. The results obtained are discussed in detail.

  5. Relaxor-PT Single Crystal Piezoelectric Sensors

    Directory of Open Access Journals (Sweden)

    Xiaoning Jiang

    2014-07-01

    Full Text Available Relaxor-PbTiO3 piezoelectric single crystals have been widely used in a broad range of electromechanical devices, including piezoelectric sensors, actuators, and transducers. This paper reviews the unique properties of these single crystals for piezoelectric sensors. Design, fabrication and characterization of various relaxor-PT single crystal piezoelectric sensors and their applications are presented and compared with their piezoelectric ceramic counterparts. Newly applicable fields and future trends of relaxor-PT sensors are also suggested in this review paper.

  6. Crystal growth of β’—Gd2(Mo4)3 and in situ observation of its domain structure by the microscope and the synchrotron X—ray topography

    Institute of Scientific and Technical Information of China (English)

    QingxiYuan; ChunhuaZhao; WieipingLuo; XiaofengYin; JunXu; ShoukiuiP

    2001-01-01

    We report that β’-Gd2(MoO4)3 crystals have been grown by the Czochralski(CZ) method.We studied the growth conditions fo β’-Gd2(MoO4)3 crystal.A compatison between the resistance-heated method and radio frequency induction-heated method is described.Also,the in situ observation of the domain structure by the microscope and by synchrotron radiation X-ray topography under the conditions of DC polarization voltage and tempertature change were carried out.Experiments showed that multidomain structure including ferroelectric and ferroelastic domains occurred in β’-Gd2(MoO4)3 cystal.Usually ferroeletiric domains appeared in the as-grown crystal and ferroelastic domains appeared in the polished thinner piece.Both ferroelectric and ferroelastic domains disappeared when the temperature of the crystal piece was higher than the Curie tempperature Tc and they could be reproduced when the temperature of the crystal piece was lowered below TC.When a DC polarization voltage ranging from 150 to 500V was applied on a c-axis β’-Gd2(MoO4)3 piece having a thickness of 0.5mm ,the multidomain would gradually transform to a single domain.This resual means that it is possible to make a periodically poled β’-Gd2(MoO4)3 crystal.2001 Elsevier Science B.V.All rights reserved.

  7. Comparative study of ceramic and single crystal Ce:GAGG scintillator

    Science.gov (United States)

    Yanagida, Takayuki; Kamada, Kei; Fujimoto, Yutaka; Yagi, Hideki; Yanagitani, Takagimi

    2013-10-01

    Recent study revealed that single crystal Ce:Gd3(Al,Ga)5O12 (Ce:GAGG) showed good scintillation response under γ-ray exposure. We discover here that ceramic Ce:GAGG scintillator exhibited better performance than the single crystal counterpart. We developed Ce 1% doped ceramic and single crystal GAGG scintillators with 1 mm thick and compared their properties. In radioluminescence spectra, they showed intense emission peaking at 530 nm due to Ce3+ 5d-4f transition. The 137Cs γ-ray induced light yields of ceramic and single crystal resulted 70 000 ph/MeV and 46 000 ph/MeV with primary decay times of 165 and 143 ns, respectively. At present, the observed light yield was the brightest in oxide scintillators.

  8. Evaluation of Optical Properties of Self-Frequency-Doubling Crystal Yb:GdYAl3(BO3)4 for Laser Applications

    Institute of Scientific and Technical Information of China (English)

    LI Jing; LI Qiang; WANG Ji-Yang; ZHAO Hong-Yang

    2007-01-01

    @@ Yb:GdYAl3(BO3)4(Yb:GdYAB) is investigated as a new laser crystal for potential applications in self-frequency doubling. The emission and absorption properties of Yb:GdYAB crystal are studied, and the emission decay times of the upper laser level are measured. The emission cross sections are evaluated using the absorption cross section and principle of reciprocity. The other laser performance parameters, such as the minimum inversion fraction βmin, pump saturation intensity Isat and minimum pump intensity Imin, are also calculated. The results are discussed in the framework of requirements for an effective diode-pumped Yb3+ laser system. Yb:GdYAB is expected to exhibit the most useful laser properties and to be superior to Yb:YAB crystal that has been excellent self-frequency-doubling crystal at present in many key spectroscopic parameter values.

  9. Defect free single crystal thin layer

    KAUST Repository

    Elafandy, Rami Tarek Mahmoud

    2016-01-28

    A gallium nitride film can be a dislocation free single crystal, which can be prepared by irradiating a surface of a substrate and contacting the surface with an etching solution that can selectively etch at dislocations.

  10. Spray printing of organic semiconducting single crystals.

    Science.gov (United States)

    Rigas, Grigorios-Panagiotis; Payne, Marcia M; Anthony, John E; Horton, Peter N; Castro, Fernando A; Shkunov, Maxim

    2016-11-22

    Single-crystal semiconductors have been at the forefront of scientific interest for more than 70 years, serving as the backbone of electronic devices. Inorganic single crystals are typically grown from a melt using time-consuming and energy-intensive processes. Organic semiconductor single crystals, however, can be grown using solution-based methods at room temperature in air, opening up the possibility of large-scale production of inexpensive electronics targeting applications ranging from field-effect transistors and light-emitting diodes to medical X-ray detectors. Here we demonstrate a low-cost, scalable spray-printing process to fabricate high-quality organic single crystals, based on various semiconducting small molecules on virtually any substrate by combining the advantages of antisolvent crystallization and solution shearing. The crystals' size, shape and orientation are controlled by the sheer force generated by the spray droplets' impact onto the antisolvent's surface. This method demonstrates the feasibility of a spray-on single-crystal organic electronics.

  11. Spray printing of organic semiconducting single crystals

    Science.gov (United States)

    Rigas, Grigorios-Panagiotis; Payne, Marcia M.; Anthony, John E.; Horton, Peter N.; Castro, Fernando A.; Shkunov, Maxim

    2016-11-01

    Single-crystal semiconductors have been at the forefront of scientific interest for more than 70 years, serving as the backbone of electronic devices. Inorganic single crystals are typically grown from a melt using time-consuming and energy-intensive processes. Organic semiconductor single crystals, however, can be grown using solution-based methods at room temperature in air, opening up the possibility of large-scale production of inexpensive electronics targeting applications ranging from field-effect transistors and light-emitting diodes to medical X-ray detectors. Here we demonstrate a low-cost, scalable spray-printing process to fabricate high-quality organic single crystals, based on various semiconducting small molecules on virtually any substrate by combining the advantages of antisolvent crystallization and solution shearing. The crystals' size, shape and orientation are controlled by the sheer force generated by the spray droplets' impact onto the antisolvent's surface. This method demonstrates the feasibility of a spray-on single-crystal organic electronics.

  12. Neutron forward diffraction by single crystal prisms

    Indian Academy of Sciences (India)

    Sohrab Abbas; Apoorva G Wagh; Markus Strobl; Wolfgang Treimer

    2008-11-01

    We have derived analytic expressions for the deflection as well as transmitted fraction of monochromatic neutrons forward diffracted by a single crystal prism. In the vicinity of a Bragg reflection, the neutron deflection deviates sharply from that for an amorphous prism, exhibiting three orders of magnitude greater sensitivity to the incidence angle. We have measured the variation of neutron deflection and transmission across a Bragg reflection, for several single crystal prisms. The results agree well with theory.

  13. Growth and spectra properties of Tm, Ho doped and Tm, Ho co-doped CaGdAlO{sub 4} crystals

    Energy Technology Data Exchange (ETDEWEB)

    Di, Juqing [Key Laboratory of Materials for High Power Laser, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800 (China); University of Chinese Academy of Sciences, Beijing 100039 (China); Xu, Xiaodong, E-mail: xdxu79@mail.sic.ac.cn [Key Laboratory of Transparent and Opto-functional Inorganic Materials, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 201800 (China); Xia, Changtai, E-mail: xia_ct@siom.ac.cn [Key Laboratory of Materials for High Power Laser, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800 (China); Sai, Qinglin [Key Laboratory of Materials for High Power Laser, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800 (China); Zhou, Dahua [Key Laboratory of Materials for High Power Laser, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800 (China); University of Chinese Academy of Sciences, Beijing 100039 (China); Lv, Zhengyong [Department of Electronics and Information Materials, School of Materials Sciences and Engineering, Shanghai University, Shanghai 200072 (China); Xu, Jun [Key Laboratory of Transparent and Opto-functional Inorganic Materials, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 201800 (China)

    2014-11-15

    Growth of Tm, Ho doped and Tm, Ho co-doped CaGdAlO{sub 4} crystals by Czochralski method are investigated for the first time. Tm:CaGdAlO{sub 4} crystal without any crack was obtained. The segregation coefficient and XRD were detected and the results revealed that the cell parameters decreased with increasing of the doping concentration. The absorption spectra, J–O parameters, emission spectra and fluorescence lifetime of were discussed. The absorption cross sections were calculated to be 0.61×10{sup −20} cm{sup 2} and 1.49×10{sup −20} cm{sup 2} at 793 nm and 798 nm for a polarization and c polarization of Tm:CaGdAlO{sub 4} crystal, and the stimulated emission cross-section was calculated to be 0.36×10{sup −20} cm{sup 2} at 1762 nm. The stimulated emission cross-section of Ho:CaGdAlO{sub 4} crystal was calculated to be 1.18×10{sup −20} cm{sup 2} at 2002 nm. The width of Tm,Ho:CaGdAlO{sub 4} emission band is almost 600 nm. The results show that Tm:CaGdAlO{sub 4}, Ho:CaGdAlO{sub 4} and Tm,Ho:CaGdAlO{sub 4} crystals were excellent potential ultrafast laser media. - Highlights: • Tm:CGA, Tm,Ho:CGA and Ho:CGA crystals were grown for the first time. • The absorption and emission properties were investigated for the first time. • J–O theory was used to evaluate the potential of laser performance of Tm:CGA, Tm,Ho:CGA and Ho:CGA crystals. • The energy transfer coefficients between Tm and Ho ions in this crystal were studied.

  14. Anion-templated assembly and magnetocaloric properties of a nanoscale {Gd38} cage versus a {Gd48} barrel.

    Science.gov (United States)

    Guo, Fu-Sheng; Chen, Yan-Cong; Mao, Ling-Ling; Lin, Wei-Quan; Leng, Ji-Dong; Tarasenko, Róbert; Orendáč, Martin; Prokleška, Jan; Sechovský, Vladimír; Tong, Ming-Liang

    2013-10-25

    The comprehensive study reported herein provides compelling evidence that anion templates are the main driving force in the formation of two novel nanoscale lanthanide hydroxide clusters, {Gd38(ClO4)6} (1) and {Gd48Cl2(NO3)} (2), characterized by single-crystal X-ray crystallography, infrared spectroscopy, and magnetic measurements. {Gd38(ClO4)6}, encapsulating six ClO4(-) ions, features a cage core composed of twelve vertex-sharing {Gd4} tetrahedrons and one Gd⋅⋅⋅Gd pillar. When Cl(-) and NO3(-) were incorporated in the reaction instead of ClO4(-), {Gd48Cl2(NO3)} is obtained with a barrel shape constituted by twelve vertex-sharing {Gd4} tetrahedrons and six {Gd5} pyramids. What is more, the cage-like {Gd38} can be dynamically converted into the barrel-shaped {Gd48} upon Cl(-) and NO3(-) stimulus. To our knowledge, it is the first time that the linear M-O-M' fashion and the unique μ8-ClO4(-) mode have been crystallized in pure lanthanide complex, and complex 2 represents the largest gadolinium cluster. Both of the complexes display large magnetocaloric effect in units of J kg(-1) K(-1) and mJ cm(-3) K(-1) on account of the weak antiferromagnetic exchange, the high N(Gd)/M(W) ratio (magnetic density), and the relatively compact crystal lattice (mass density).

  15. Electrically Anisotropic Layered Perovskite Single Crystal

    KAUST Repository

    Li, Ting-You

    2016-04-01

    Organic-inorganic hybrid perovskites (OIHPs), which are promising materials for electronic and optoelectronic applications (1-10), have made into layered organic-inorganic hybrid perovskites (LOIHPs). These LOIHPs have been applied to thin-film transistors, solar cells and tunable wavelength phosphors (11-18). It is known that devices fabricated with single crystal exhibit the superior performance, which makes the growth of large-sized single crystals critical for future device applications (19-23). However, the difficulty in growing large-sized LOIHPs single crystal with superior electrical properties limits their practical applications. Here, we report a method to grow the centimeter-scaled LOIHP single crystal of [(HOC2H4NH3)2PbI4], demonstrating the potentials in mass production. After that, we reveal anisotropic electrical and optoelectronic properties which proved the carrier propagating along inorganic framework. The carrier mobility of in-inorganic-plane (in-plane) devices shows the average value of 45 cm2 V–1 s–1 which is about 100 times greater than the record of LOIHP devices (15), showing the importance of single crystal in device application. Moreover, the LOIHP single crystals show its ultra-short carrier lifetime of 42.7 ps and photoluminescence quantum efficiency (PLQE) of 25.4 %. We expect this report to be a start of LOIHPs for advanced applications in which the anisotropic properties are needed (24-25), and meets the demand of high-speed applications and fast-response applications.

  16. Thermal properties measurement and laser operation of a new Yb: Gd0.68Lu0.32VO4 crystal.

    Science.gov (United States)

    Zhang, Huaijin; Yu, Yonggui; Cheng, Yan; Wang, Jiyang; Tao, Xutang; Jiang, Minhua; Xia, Huirui

    2008-07-21

    A new series mixed vanadate crystals, Yb:Gd(x)Lu(1-x)VO(4) (x=0.2, 0.35, 0.53, 0.68 and 0.84), were grown by the Czochralski method. The thermal conductivities of these crystals were measured from room temperature to 280?C, and the thermal conductivities of Yb:Gd(0.68)Lu(0.32)VO(4) at room temperature are 6.4 and 6.9 W m(-1)K(-1) along a- and c-axis, respectively. The material constants of Yb:Gd(x)Lu(1-x)VO(4) series crystals were estimated. The properties of Yb:Gd(x)Lu(1-x)VO(4) series crystals were compared with those of Yb:LuVO(4) and Yb:GdVO(4) crystals. Laser output power of 1.25 W at 1031 nm was obtained with a slope efficiency of 26% by use of diode pumping for Yb:Gd(0.68)Lu(0.32)VO(4) crystal.

  17. Dielectric frame, Sellmeier equations, and phase-matching properties of the monoclinic acentric crystal GdCasub>4sub>O(BOsub>3sub>)sub>3sub>.

    Science.gov (United States)

    Guo, Feng; Segonds, Patricia; Ménaert, Bertrand; Debray, Jerôme; Aka, Gerard; Loiseau, Pascal; Boulanger, Benoît

    2016-11-15

    We directly measured the phase-matching properties of the biaxial GdCasub>4sub>O(BOsub>3sub>)sub>3sub> (GdCOB) crystal using the sphere method. We studied second-harmonic generation and difference frequency generation in two principal planes of the crystal. All these data allowed us to refine the Sellmeier equations of the three principal refractive indices. These equations are valid over the entire transparency range of GdCOB and then could be used to calculate the tuning curves of infrared optical parametric generation.

  18. Growth and passively self-Q-switched laser output of new Nd3+,Cr5+:GdVO4 crystal.

    Science.gov (United States)

    Yu, Haohai; Zhang, Huaijin; Wang, Zhengping; Wang, Jiyang; Yu, Yonggui; Gao, Wenlan; Tao, Xutang; Jiang, Minhua

    2008-03-03

    A new passively self-Q-switched Nd, Cr:GdVO(4) laser crystal was grown by Czochralski method for the first time to our knowledge. Polarized absorption spectra were measured at room temperature. The absorption bands display polarization character and an absorption band of Cr(5+) ions at 1110 nm enables the crystal to be a self-Q-switched laser material at 1.06 mum. In the passive self-Q-switching operation, the maximum output power, shortest pulse width, and largest pulse energy were obtained to be 265 mW, 230 ns, and 1.12 microJ, respectively.

  19. Structure of BaGd2(MoO4)4 Crystal

    Institute of Scientific and Technical Information of China (English)

    ZHAO Dan; LIN Zhou-Bin; WANG Guo-Fu

    2007-01-01

    The title compound belongs to monoclinic, space group C2/c with a = 5.2694(1),b = 12.6659(4), c = 19.4108(2) (A),β = 91.504(2)°, V = 1295.06(5) (A)3, Z = 4 and Dc= 5.599 g/cm3.The structure of BaGd2(MoO4)4 contains a MoO4 tetrahedron, a distorted GdO8 polyhedron, and Ba2+ ions in a tenfold coordination. The GdO8 polyhedra are linked together through edge-sharing to give a two-dimensional Gd layer. The MoO4 tetrahedra connected to the Gd atoms are capped up and down the Gd layer through common oxygen apices, thus forming a new Gd-Mo layer. Finally,the Gd-Mo layers are held together through bridging BaO10 polyhedra to form a three-dimensional framework. Since the Ba-μ3-O bond has a large average distance of 2.888 (A), this structural characteristic will result in a cleavage along the (001) plane.

  20. Light Emitting Transistors of Organic Single Crystals

    Science.gov (United States)

    Iwasa, Yoshihiro

    2009-03-01

    Organic light emitting transistors (OLETs) are attracting considerable interest as a novel function of organic field effect transistors (OFETs). Besides a smallest integration of light source and current switching devices, OLETs offer a new opportunity in the fundamental research on organic light emitting devices. The OLET device structure allows us to use organic single crystals, in contrast to the organic light emitting diodes (OLEDs), the research of which have been conducted predominantly on polycrystalline or amorphous thin films. In the case of OFETs, use of single crystals have produced a significant amount of benefits in the studies of pursuit for the highest performance limit of FETs, intrinsic transport mechanism in organic semiconductors, and application of the single crystal transistors. The study on OLETs have been made predominantly on polycrystalline films or multicomponent heterojunctions, and single crystal study is still limited to tetracene [1] and rubrene [2], which are materials with relatively high mobility, but with low photoluminescence efficiency. In this paper, we report fabrication of single crystal OLETs of several kinds of highly luminescent molecules, emitting colorful light, ranging from blue to red. Our strategy is single crystallization of monomeric or oligomeric molecules, which are known to have a very high photoluminescence efficiency. Here we report the result on single crystal LETs of rubrene (red), 4,4'-bis(diphenylvinylenyl)-anthracene (green), 1,4-bis(5-phenylthiophene-2-yl)benzene (AC5) (green), and 1,3,6,8-tetraphenylpyrene (TPPy) (blue), all of which displayed ambipolar transport as well as peculiar movement of voltage controlled movement of recombination zone, not only from the surface of the crystal but also from the edges of the crystals, indicting light confinement inside the crystal. Realization of ambipolar OLET with variety of single crystals indicates that the fabrication method is quite versatile to various light

  1. Kinetics of Glass Transition and Crystallization in Carbon Nanotube Reinforced Mg-Cu-Gd Bulk Metallic Glass

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Mg65Cu25Gd10 bulk metallic glass and its carbon nanotube reinforced composite were prepared. Differential scanning calorimeter (DSC) was used to investigate the kinetics of glass transition and crystallization processes. The influence of CNTs addition to the glass matrix on the glass transition and crystallization kinetics was studied. It is shown that the kinetic effect on glass transition and crystallization are preserved for both the monothetic glass and its glass composite.Adding CNTs in to the glass matrix reduces the influence of the heating rate on the crystallization process. In addition, the CNTs increase the energetic barrier for the glass transition. This results in the decrease of GFA. The mechanism of the GFA decrease was also discussed.

  2. The effects of Gd3+ doping on the physical structure and photocatalytic performance of Bi2MoO6 nanoplate crystals

    Science.gov (United States)

    Yu, Changlin; Wu, Zhen; Liu, Renyue; He, Hongbo; Fan, Wenhong; Xue, Shuangshuang

    2016-06-01

    Gd3+ doped Bi2MoO6 nanoplate crystals were fabricated by solvothermal combined calcination method. The effects of Gd3+ doping with different concentrations on the texture, crystal and optical properties of Bi2MoO6 were investigated by N2 physical adsorption, X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscope (TEM), Fourier transform infrared spectroscopy (FT-IR) and ultraviolet-visible diffuse reflection spectrum (UV-vis DRS), photoluminescence (PL) spectroscopy, and X-ray photoelectron spectroscopy (XPS). Under simulated solar light irradiation, the influences of Gd3+doping on photocatalytic activity of Bi2MoO6 were evaluated by photocatalytic degradation of Rhodamine B. The characterization results showed that with Gd3+ doping, a contraction of lattice and a decrease in crystallite size occurred. Meanwhile, an increase in surface area over Gd3+ doped Bi2MoO6 was observed. Moreover, Gd3+ doping could obviously enhance the visible light harvesting of Bi2MoO6 and promoted the separation of photogenerated electrons and holes. With optimum Gd3+(6 wt%) doping, Gd/Bi2MoO6 exhibited the best activity and stability in degradation of Rhodamine B.

  3. The growth of sapphire single crystals

    Directory of Open Access Journals (Sweden)

    STEVAN DJURIC

    2001-06-01

    Full Text Available Sapphire (Al2O3 single crystals were grown by the Czochralski technique both in air and argon atmospheres. The conditions for growing sapphire single crystals were calculated by using a combination of Reynolds and Grashof numbers. Acritical crystal diameter dc = 20 mm and the critical rate of rotation wc = 20 rpm were calculated from the hydrodynamics of the melt. The value of the rate of crystal growth was experimentally found to be 3.5 mm/h. According to our previous experiments, it was confirmed that three hours exposures to conc. H3PO4 at 593 K was suitable for chemical polishing. Also, three hours exposure to conc.H3PO4 at 523 K was found to be a suitable etching solution. The lattice parameters a = 0.47573 nm and c = 1.29893 nm were determined by X-ray powder diffraction. The obtained results are discussed and compared with published data.

  4. Neutron detection with single crystal organic scintillators

    Energy Technology Data Exchange (ETDEWEB)

    Zaitseva, N; Newby, J; Hamel, S; Carman, L; Faust, M; Lordi, V; Cherepy, N; Stoeffl, W; Payne, S

    2009-07-15

    Detection of high-energy neutrons in the presence of gamma radiation background utilizes pulse-shape discrimination (PSD) phenomena in organics studied previously only with limited number of materials, mostly liquid scintillators and single crystal stilbene. The current paper presents the results obtained with broader varieties of luminescent organic single crystals. The studies involve experimental tools of crystal growth and material characterization in combination with the advanced computer modeling, with the final goal of better understanding the relevance between the nature of the organic materials and their PSD properties. Special consideration is given to the factors that may diminish or even completely obscure the PSD properties in scintillating crystals. Among such factors are molecular and crystallographic structures that determine exchange coupling and exciton mobility in organic materials and the impurity effect discussed on the examples of trans-stilbene, bibenzyl, 9,10-diphenylanthracene and diphenylacetylene.

  5. Multiple seeding for the growth of bulk GdBCO-Ag superconductors with single grain behaviour

    Science.gov (United States)

    Shi, Y.; Durrell, J. H.; Dennis, A. R.; Huang, K.; Namburi, D. K.; Zhou, D.; Cardwell, D. A.

    2017-01-01

    Rare earth-barium-copper oxide bulk superconductors fabricated in large or complicated geometries are required for a variety of engineering applications. Initiating crystal growth from multiple seeds reduces the time taken to melt-process individual samples and can reduce the problem of poor crystal texture away from the seed. Grain boundaries between regions of independent crystal growth can reduce significantly the flow of current due to crystallographic misalignment and the agglomeration of impurity phases. Enhanced supercurrent flow at such boundaries has been achieved by minimising the depth of the boundary between A growth sectors generated during the melt growth process by reducing second phase agglomerations and by a new technique for initiating crystal growth that minimises the misalignment between different growth regions. The trapped magnetic fields measured for the resulting samples exhibit a single trapped field peak indicating they are equivalent to conventional single grains.

  6. Hybrid gold single crystals incorporating amino acids

    CERN Document Server

    Chen, Linfeng; Weber, Eva; Fitch, Andy N; Pokroy, Boaz

    2016-01-01

    Composite hybrid gold crystals are of profound interest in various research areas ranging from materials science to biology. Their importance is due to their unique properties and potential implementation, for example in sensing or in bio-nanomedicine. Here we report on the formation of hybrid organic-metal composites via the incorporation of selected amino acids histidine, aspartic acid, serine, glutamine, alanine, cysteine, and selenocystine into the crystal lattice of single crystals of gold. We used electron microscopy, chemical analysis and high-resolution synchrotron powder X ray diffraction to examine these composites. Crystal shape, as well as atomic concentrations of occluded amino acids and their impact on the crystal structure of gold, were determined. Concentration of the incorporated amino acid was highest for cysteine, followed by serine and aspartic acid. Our results indicate that the incorporation process probably occurs through a complex interaction of their individual functional groups with ...

  7. Single chirality through crystal grinding

    NARCIS (Netherlands)

    Noorduin, W.L.

    2010-01-01

    The properties of chiral molecules in living organisms can be different for left- and right-handed molecules. Therefore, ways to produce molecules of single handedness are of paramount importance, especially for economical, high yielding processes to synthesize pharmaceutical compounds that must be

  8. Single crystal and optical ceramic multicomponent garnet scintillators: A comparative study

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Yuntao, E-mail: ywu52@utk.edu [Scintillation Materials Research Center, University of Tennessee, Knoxville, TN 37996 (United States); Department of Materials Science and Engineering, University of Tennessee, Knoxville, TN 37996 (United States); Luo, Zhaohua; Jiang, Haochuan [Ningbo Institution of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China); Meng, Fang [Scintillation Materials Research Center, University of Tennessee, Knoxville, TN 37996 (United States); Department of Materials Science and Engineering, University of Tennessee, Knoxville, TN 37996 (United States); Koschan, Merry [Scintillation Materials Research Center, University of Tennessee, Knoxville, TN 37996 (United States); Melcher, Charles L. [Scintillation Materials Research Center, University of Tennessee, Knoxville, TN 37996 (United States); Department of Materials Science and Engineering, University of Tennessee, Knoxville, TN 37996 (United States)

    2015-04-21

    Multicomponent garnet materials can be made in optical ceramic as well as single crystal form due to their cubic crystal structure. In this work, high-quality Gd{sub 3}Ga{sub 3}Al{sub 2}O{sub 12}:0.2 at% Ce (GGAG:Ce) single crystal and (Gd,Lu){sub 3}Ga{sub 3}Al{sub 2}O{sub 12}:1 at% Ce (GLuGAG:Ce) optical ceramics were fabricated by the Czochralski method and a combination of hot isostatic pressing (HIPing) and annealing treatment, respectively. Under optical and X-ray excitation, the GLuGAG:Ce optical ceramic exhibits a broad Ce{sup 3+} transition emission centered at 550 nm, while the emission peak of the GGAG:Ce single crystal is centered at 540 nm. A self-absorption effect in GLuGAG:Ce optical ceramic results in this red-shift of the Ce{sup 3+} emission peak compared to that in the GGAG:Ce single crystal. The light yield under 662 keV γ-ray excitation was 45,000±2500 photons/MeV and 48,200±2410 photons/MeV for the GGAG:Ce single crystal and GLuGAG:Ce optical ceramic, respectively. An energy resolution of 7.1% for 662 keV γ-rays was achieved in the GLuGAG:Ce optical ceramic with a Hamamatsu R6231 PMT, which is superior to the value of 7.6% for a GGAG:Ce single crystal. Scintillation decay time measurements under {sup 137}Cs irradiation show two exponential decay components of 58 ns (47%) and 504 ns (53%) for the GGAG:Ce single crystal, and 84 ns (76%) and 148 ns (24%) for the GLuGAG:Ce optical ceramic. The afterglow level after X-ray cutoff in the GLuGAG:Ce optical ceramic is at least one order of magnitude lower than in the GGAG:Ce single crystal. - Highlights: • GGAG:Ce single crystal and GLuGAG:Ce optical ceramics were fabricated. • The light yield of both ceramic and crystal G(Lu)GAG:Ce reached the level of 45,000 photons/MeV. • GLuGAG:Ce optical ceramic showed a better energy resolution of 7.1% for 662 keV. • GLuGAG:Ce ceramics exhibited lower afterglow level than that of GGAG:Ce single crystals. • The possible optimization strategies for

  9. First measurement of the nonlinear coefficient for Gd1-xLux Ca4O(BO3)3 and Gd1-xScxCa4O(BO3)3 crystals

    DEFF Research Database (Denmark)

    Andersen, Martin Thalbitzer; Mortensen, Jesper Liltorp; Germershausen, Sven

    2007-01-01

    -cavity SHG of a CW Ti:Sapphire laser, and the effective nonlinear coefficients were found to be in the range of 0.5 to 0.6 pm/V for the three crystals used. The FWHM temperature acceptance bandwidth was measured to be more than 35 °C using a 6 mm long Gd0.871Lu0.129Ca4O(BO3)3 crystal. A maximum of 115 m......The effective nonlinear coefficient and temperature acceptance bandwidth of three Lu and Sc co-doped GdCa4O(B03)3 type nonlinear crystals were measured. NCPM for SHG in to the blue-UV spectral region can be obtained by controlling the co-dopant concentration. Measurements were based on intra......W at 407.3 nm in a single direction was measured using a 6.5 mm long Gd0.96Sc 0.04CaO(BO3)3 crystal....

  10. The growth of Nd: YAG single crystals

    Directory of Open Access Journals (Sweden)

    ANDREJA VALCIC

    2002-04-01

    Full Text Available Y3Al5O12 doped with 0.8 % wt. Nd (Nd:YAG single crystals were grown by the Czochralski technique under an argon atmosphere. The conditions for growing the Nd: YAG single crystals were calculated by using a combination of Reynolds and Grashof numbers. The critical crystal diameter and the critical rate of rotation were calculated from the hydrodynamics of the melt. The crystal diameter Dc = 1.5 cm remained constant during the crystal growth, while the critical rate of rotation changed from wc = 38 rpm after necking to wc = 13 rpm at the end of the crystal. The value of the rate of crystal growth was experimentally found to be 0.8–1.0 mm/h. According to our previous experiments, it was confirmed that 20 min exposure to conc. H3PO4 at 603 K was suitable for chemical polishing. Also, one-hour exposure to conc. H3PO4 at 493 K was found to be suitable for etching. The lattice parameter a = 1.201 (1 nm was determined by X-ray powder diffraction. The obtained results are discussed and compared with published data.

  11. First Single-Crystal Mullite Fibers

    Science.gov (United States)

    1997-01-01

    Ceramic-matrix composites strengthened by suitable fiber additions are being developed for high-temperature use, particularly for aerospace applications. New oxide-based fibers, such as mullite, are particularly desirable because of their resistance to high-temperature oxidative environments. Mullite is a candidate material in both fiber and matrix form. The primary objective of this work was to determine the growth characteristics of single-crystal mullite fibers produced by the laser-heated floating zone method. Directionally solidified fibers with nominal mullite compositions of 3Al2O3 2SiO2 were grown by the laser-heated floating zone method at the NASA Lewis Research Center. SEM analysis revealed that the single-crystal fibers grown in this study were strongly faceted and that the facets act as critical flaws, limiting fiber strength. The average fiber tensile strength is 1.15 GPa at room temperature. The mullite fibers exhibit superior strength retention (80 percent of their room temperature tensile strength at 1450 C). Examined by transmission electron microscopy, these mullite single crystals are free of dislocations, low-angle boundaries, and voids. In addition, they show a high degree of oxygen vacancy ordering. High-resolution digital images from an optical microscope furnish evidence of the formation of a liquid-liquid miscibility gap during crystal growth. These images represent the first experimental evidence of liquid immiscibility for these compositions and temperatures. Continuing investigation with controlled seeding of mullite single crystals is planned.

  12. Evaluation of spectroscopic properties of Er3+/Yb3+/Pr3+: SrGdGa3O7 crystal for use in mid-infrared lasers

    Science.gov (United States)

    Xia, Houping; Feng, Jianghe; Wang, Yan; Li, Jianfu; Jia, Zhitai; Tu, Chaoyang

    2015-01-01

    Er3+/Yb3+/Pr3+: SrGdGa3O7 crystal was firstly grown by Czochralski method. Detailed spectroscopic analyses of Er3+/Yb3+/Pr3+: SrGdGa3O7 were carried out. Besides better absorption characteristic, the spectra of Er3+/Yb3+/Pr3+: SrGdGa3O7 show weaker up-conversion and near-infrared emissions as well as superior mid-infrared emission in comparison to Er3+: SrGdGa3O7 and Er3+/Yb3+: SrGdGa3O7 crystals. Furthermore, the self-termination effect for Er3+ 2.7 μm laser is suppressed successfully because the fluorescence lifetime of the 4I13/2 lower level of Er3+ decreases markedly while that of the upper 4I11/2 level changes slightly in Er3+/Yb3+/Pr3+: SrGdGa3O7 crystal. The sensitization effect of Yb3+ and deactivation effect of Pr3+ ions as well as the energy transfer mechanism in Er3+/Yb3+/Pr3+: SrGdGa3O7 crystal were also studied in this work. The introduction of Yb3+ and Pr3+ is favorable for achieving an enhanced 2.7 μm emission in Er3+/Yb3+/Pr3+: SrGdGa3O7 crystal which can act as a promising candidate for mid-infrared lasers. PMID:26369289

  13. Evaluation of spectroscopic properties of Er(3+)/Yb(3+)/Pr(3+): SrGdGa3O7 crystal for use in mid-infrared lasers.

    Science.gov (United States)

    Xia, Houping; Feng, Jianghe; Wang, Yan; Li, Jianfu; Jia, Zhitai; Tu, Chaoyang

    2015-09-15

    Er(3+)/Yb(3+)/Pr(3+): SrGdGa3O7 crystal was firstly grown by Czochralski method. Detailed spectroscopic analyses of Er(3+)/Yb(3+)/Pr(3+): SrGdGa3O7 were carried out. Besides better absorption characteristic, the spectra of Er(3+)/Yb(3+)/Pr(3+): SrGdGa3O7 show weaker up-conversion and near-infrared emissions as well as superior mid-infrared emission in comparison to Er(3+): SrGdGa3O7 and Er(3+)/Yb(3+): SrGdGa3O7 crystals. Furthermore, the self-termination effect for Er(3+) 2.7 μm laser is suppressed successfully because the fluorescence lifetime of the (4)I(13/2) lower level of Er(3+) decreases markedly while that of the upper (4)I(11/2) level changes slightly in Er(3+)/Yb(3+)/Pr(3+): SrGdGa3O7 crystal. The sensitization effect of Yb(3+) and deactivation effect of Pr(3+) ions as well as the energy transfer mechanism in Er(3+)/Yb(3+)/Pr(3+): SrGdGa3O7 crystal were also studied in this work. The introduction of Yb(3+) and Pr(3+) is favorable for achieving an enhanced 2.7 μm emission in Er(3+)/Yb(3+)/Pr(3+): SrGdGa3O7 crystal which can act as a promising candidate for mid-infrared lasers.

  14. Friction stir welding of single crystal aluminium

    DEFF Research Database (Denmark)

    Fonda, Richard Warren; Wert, John A.; Reynolds, A.P.

    2007-01-01

    Friction stir welds were prepared in different orientations in an aluminium single crystal. The welds were quenched to preserve the microstructure surrounding the tool and then electron backscattered diffraction was used to reveal the generation of grain boundaries and the evolution of crystallog......Friction stir welds were prepared in different orientations in an aluminium single crystal. The welds were quenched to preserve the microstructure surrounding the tool and then electron backscattered diffraction was used to reveal the generation of grain boundaries and the evolution...

  15. Radiation piezoelectric effect in germanium single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Kikoin, I.K.; Kikoin, L.I.; Lazarev, S.D.

    1977-06-01

    Irradiation with ionizing particles of a germanium single crystal and uniaxial deformation at right-angles to the particle beam produced an electric field and a corresponding emf due to the radiation piezoelectric effect. Measurements were carried out when such a single crystal was irradiated with ..cap alpha.. particles and protons. The piezoelectric emf increased linearly with the compressive stress and the ..cap alpha..-particle flux intensity. The emf depended weakly on the particle energy. The observed effect was due to the anisotropy resulting from uniaxial deformation.

  16. Inkjet printing of single-crystal films

    Science.gov (United States)

    Minemawari, Hiromi; Yamada, Toshikazu; Matsui, Hiroyuki; Tsutsumi, Jun'ya; Haas, Simon; Chiba, Ryosuke; Kumai, Reiji; Hasegawa, Tatsuo

    2011-07-01

    The use of single crystals has been fundamental to the development of semiconductor microelectronics and solid-state science. Whether based on inorganic or organic materials, the devices that show the highest performance rely on single-crystal interfaces, with their nearly perfect translational symmetry and exceptionally high chemical purity. Attention has recently been focused on developing simple ways of producing electronic devices by means of printing technologies. `Printed electronics' is being explored for the manufacture of large-area and flexible electronic devices by the patterned application of functional inks containing soluble or dispersed semiconducting materials. However, because of the strong self-organizing tendency of the deposited materials, the production of semiconducting thin films of high crystallinity (indispensable for realizing high carrier mobility) may be incompatible with conventional printing processes. Here we develop a method that combines the technique of antisolvent crystallization with inkjet printing to produce organic semiconducting thin films of high crystallinity. Specifically, we show that mixing fine droplets of an antisolvent and a solution of an active semiconducting component within a confined area on an amorphous substrate can trigger the controlled formation of exceptionally uniform single-crystal or polycrystalline thin films that grow at the liquid-air interfaces. Using this approach, we have printed single crystals of the organic semiconductor 2,7-dioctyl[1]benzothieno[3,2-b][1]benzothiophene (C8-BTBT) (ref. 15), yielding thin-film transistors with average carrier mobilities as high as 16.4cm2V-1s-1. This printing technique constitutes a major step towards the use of high-performance single-crystal semiconductor devices for large-area and flexible electronics applications.

  17. Piezoelectricity in Single Crystal of Pentaerythritol Tetranitrate

    Directory of Open Access Journals (Sweden)

    K. Raha

    1991-07-01

    Full Text Available The piezoelectric constants perpendicular to (110 and (001 of single crystal f pentaerythritol tetranitrate (PETN are determined to be (3.2+-0.30x10/sup-13/and (1.5+-0.30x10/sub-13/CN/sub-1/. The charge development on these faces under static loading has been confirmed to be true piezoelectric in origin. The crystal seems to experience a quasi permanent deformation under repeated and successive compression with a very long relaxation time. This gives rise to a unique behaviour of individual crystal of PETN under identical stress condition. Mechanical stress relaxation measurements have also been carried out to provide additional evidence on the uniqueness of the crystal. Dielectric constant of the crystal along the directions perpendicular to (110 and (001 are 3.50+-0.12 and 4.57+-0.17; Young's modulus along the directions are (1.24+- 0.30x10/sub6/g cm/sup-2/ respectively. Single crystals of one cm/sub3/ of PETN develops about 10 V cm/sup-1/ field under a force of 1 kg across (110face.

  18. High Polarization Single Mode Photonic Crystal Microlaser

    Institute of Scientific and Technical Information of China (English)

    CHEN Wei; XING Ming-Xin; ZHOU Wen-Jun; LIU An-Jin; ZHENG Wan-Hua

    2009-01-01

    Generally,dipole mode is a doubly degenerate mode.Theoretical calculations have indicated that the single dipole mode of two-dimensional photonic crystal single point defect cavity shows high polarization property.We present a structure with elongated lattice,which only supports a single y-dipole mode.With this structure we can eliminate the degeneracy,control the lasing action of the cavity and demonstrate the high polarization property of the single dipole mode.In our experiment,the polarization extinction ratio of the y-dipole mode is as high as 51:1.

  19. Microhardness studies of sulfamic acid single crystal

    Science.gov (United States)

    Santhosh Kumar, A.; Joseph, Cyriac; Paulose, Reshmi; R, Rajesh; Joseph, Georgekutty; Louis, Godfrey

    2015-02-01

    Vicker's microhardness study of (100), (010) and (001) faces of a non-linear optical crystal sulfamic acid have been reported. Single crystals of sulfamic acid have been grown by slow evaporation method. The load dependence of the Vickers microhardness of sulfamic acid crystal were investigated and analyzed from the stand point of various theoretical models. Crystal samples in a, b and c-axes exhibit reverse indentation effect which is best described by Meyer's law, Hays-Kendall's approach and proportional specimen resistance (PSR) models. The negative values of load dependent quantities in Hays-Kendall's approach and PSR model suggest that the origin of indentation size effect is associated with the process of relaxation of indentation stresses.

  20. Energy-level structure and spectral analysis of Nd3+ in GdNbO4 crystal

    Science.gov (United States)

    Ding, Shoujun; Zhang, Qingli; Gao, Jinyun; Luo, Jianqiao; Liu, Wenpeng; Wang, XiaoFei; Sun, Guihua; Sun, Dunlu

    2017-02-01

    A detailed crystal-field splitting analysis is given for the 22 lowest-energy multiplet manifolds of Nd3+ (4f3) in GdNbO4 crystal. The absorption spectra obtained at room temperature, excitation spectra obtained at 8 K in the wavelength range of 280-900 nm, and emission spectra obtained between 8 K and room temperature in the wavelength range of 950-1420 nm are analyzed for transitions between individual energy (Stark) levels. Based on the excitation and absorption spectra, all of the 63 Stark levels associated with these manifolds are identified by transitions from the ground state Stark level 4I9/2 (Z1) to excited stark levels. Based on the emission spectra, the emitting stark level 4F3/2 (R1) to the stark levels in the manifolds of 4I9/2, 4I11/2 and 4I13/2 are obtained. The effective Judd-Ofelt parameters are calculated to be:6.126, 1.561, and 2.8071 × 10-20 cm2, respectively. All of the obtained energy level and spectroscopic parameters have great significance for the in-depth research of a new laser crystal of Nd:GdNbO4.

  1. Synthesis of monoclinic zinc diphosphide single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Mowles, T.A.

    1978-05-01

    Monoclinic zinc diphosphide is a cheap, plentiful, direct-gap semiconductor with an optimum transition energy for solar absorption. Single crystals were grown from the vapor to be evaluated as a new photovoltaic material. Monoclinic and tetragonal crystal formed within evacuated quartz ampules that were charged with zinc and excess phosphorous and heated in a temperature gradient to give phosphorous pressures from 0.07 to 8.5 atmospheres. The monoclinic form melts incongruently near 990/sup 0/C. The tetragonal form is metastable; its growth is enhanced by impurities but retarded by high phosphorous pressures. The mechanism of the synthesis indicates that a tightly-controlled vapor deposition is possible and that high-quality thin films should form at temperatures from 950 to 990/sup 0/C at pressures below 10 atmospheres. By a modification of the technique, sesquizinc phosphide single crystals were grown for comparison.

  2. Recrystallization of deformed single crystals of iridium

    Energy Technology Data Exchange (ETDEWEB)

    Ermakov, A.V.; Klotsman, S.M.; Pushin, V.G.; Timofeev, A.N.; Kaigorodov, V.N.; Panfilov, P.Y.; Yurchenko, L.I.

    1999-12-31

    The X-ray diffractometric method was used to analyze crystalline textures that appear during rolling of pure single-Ir and annealing of the said crystals in ultrahigh vacuum (UHV) at successively elevating temperatures. Observing alteration of the texture of the deformed pure single-Ir after UHV annealing, the primary recrystallization temperature T{sub 1recr} of pure Ir was found not to exceed 670 K (0.25 T{sub m}).

  3. Ionic conduction of lithium hydride single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Pilipenko, G.I.; Oparin, D.V.; Zhuravlev, N.A.; Gavrilov, F.F.

    1987-09-01

    Using the electrical-conductivity- and NMR-measurement- methods, the ionic-conduction mechanism is established in stoichiometric lithium hydride single crystals. The activation energies of migration of anion- and cation-vacancies and the formation of Schottky-pair defects are determined. They assume that the mechanisms of self-diffusion and conductivity are different in lithium hydride.

  4. Lattice effects in YVO3 single crystal

    NARCIS (Netherlands)

    Marquina, C; Sikora, M; Ibarra, MR; Nugroho, AA; Palstra, TTM

    2005-01-01

    In this paper we report on the lattice effects in the Mott insulator yttrium orthovanadate (YVO3). Linear thermal expansion and magnetostriction experiments have been performed on a single crystal, in the temperature range from 5 K to room temperature. The YVO3 orders antiferromagnetically at T-N =

  5. Antiferromagnetism in chromium alloy single crystals

    DEFF Research Database (Denmark)

    Bjerrum Møller, Hans; Trego, A.L.; Mackintosh, A.R.

    1965-01-01

    The antiferromagnetism of single crystals of dilute alloys of V, Mn and Re in Cr has been studied at 95°K and 300°K by neutron diffraction. The addition of V causes the diffraction peaks to decrease in intensity and move away from (100), while Mn and Re cause them to increase and approach (100) so...

  6. Growth of single-crystal gallium nitride

    Science.gov (United States)

    Clough, R.; Richman, D.; Tietjen, J.

    1970-01-01

    Use of ultrahigh purity ammonia prevents oxygen contamination of GaN during growth, making it possible to grow the GaN at temperatures as high as 825 degrees C, at which point single crystal wafers are deposited on /0001/-oriented sapphire surfaces.

  7. High Field Magnetization of Tb Single Crystals

    DEFF Research Database (Denmark)

    Roeland, L. W.; Cock, G. J.; Lindgård, Per-Anker

    1975-01-01

    The magnetization of Tb single crystals was measured in magnetic fields to 34T along the hard direction at temperature of 1.8, 4.2, 65.5 and 77K, and along with easy direction at 4.2 and 77K. The data are compared with the results of a self-consistent spin wave calculation using a phenomenological...

  8. Single-Crystal-to-Single-Crystal Anion Exchange in a Gadolinium MOF: Incorporation of POMs and [AuCl4]−

    Directory of Open Access Journals (Sweden)

    Javier López-Cabrelles

    2016-04-01

    Full Text Available The encapsulation of functional molecules inside porous coordination polymers (also known as metal-organic frameworks, MOFs has become of great interest in recent years at the field of multifunctional materials. In this article, we present a study of the effects of size and charge in the anion exchange process of a Gd based MOF, involving molecular species like polyoxometalates (POMs, and [AuCl4]−. This post-synthetic modification has been characterized by IR, EDAX, and single crystal diffraction, which have provided unequivocal evidence of the location of the anion molecules in the framework.

  9. Power scaling of directly dual-end-pumped Nd:GdVO4 laser using grown-together composite crystal.

    Science.gov (United States)

    Li, XuDong; Yu, Xin; Chen, Fei; Yan, RenPeng; Luo, Ming; Yu, JunHua; Chen, DeYing

    2010-03-29

    Power scaling of end-pumped Nd:GdVO(4) laser was realized by direct pumping, grown-together composite crystal and dual-end-pumping. A maximum CW output power of 46.0W with M(2)switch operation, peak power of 304.1kW, 58.6kW and 23.8kW, pulse width of 7.2ns, 11.3ns and 16.2ns were obtained at the repetition rates of 10kHz, 50kHz and 100kHz, respectively.

  10. Spectral properties of Er{sup 3+}-doped CaGdAlO{sub 4} crystal for laser application around 1.55 μm

    Energy Technology Data Exchange (ETDEWEB)

    Huang, J.H.; Gong, X.H.; Chen, Y.J.; Lin, Y.F; Luo, Z.D.; Huang, Y.D., E-mail: huyd@fjirsm.ac.cn

    2014-02-05

    Highlights: • Detailed spectral properties of the Er:CaGdAlO{sub 4} crystal have been investigated. • Multi-phonon relaxation rate of Er{sup 3+} ions in the Er:CaGdAlO{sub 4} crystal is estimated. • The quantum efficiency of the {sup 4}I{sub 13/2} level in the Er:CaGdAlO{sub 4} crystal is near 100%. -- Abstract: Room-temperature polarized spectral properties of the Er:CaGdAlO{sub 4} crystal are reported. The Judd–Ofelt theory was applied to analyze the polarized absorption spectra and then calculate the spontaneous emission probabilities, radiative lifetimes, and branch ratios. Room-temperature fluorescence lifetimes of the {sup 4}I{sub 13/2}, {sup 4}I{sub 11/2}, {sup 4}F{sub 9/2}, and {sup 4}S{sub 3/2} multiplets for Er{sup 3+} ions were measured. Stimulated emission cross-sections of the {sup 4}I{sub 13/2} → {sup 4}I{sub 15/2} transition obtained by the Fuchtbauer–Ladenberg formula and the reciprocity method were compared. The results show that the Er:CaGdAlO{sub 4} crystal may be a potential gain medium for a low-threshold 1.55 μm laser.

  11. Crystal Structures of Dy2(WO4)3 and GdY(WO4)3

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Two compounds, Dy2(WO4)3 and GdY(WO4)3; were synthesized by using the standard solid state reaction tech-nique. The crystal structure was determined by powder X-ray diffraction and Rietveld refinement method. It is found thatboth compounds have Eu2(WO4)3-type monoclinic structure, with space group C 2/c, Z = 4. The unit cell parameters ofDy2(WO4)3 are a = 0.75981(1) nm, b = 1.13220(1) nm, c = 1.13254(1) nm, and β= 109.8001(3)°, and those of GdY(WO4)3are a = 0.76175(1) nm, b = 1.13543(1) nm, c = 1.13496(2) nm, and β= 109.8015(13)°. Each W atom has four oxygen near-est neighbors, while each rare-earth atom is surrounded by eight oxygen atoms. WO4 tetrahedra share their four verticeswith REO8 (RE = Dy, Gd, or Y) trigondodecahedra and some REO8 trigondodecahedra share an edge with each other. Thephase transition and the magnetic properties were investigated by differential thermal analysis (DTA) and dc superconduct-ing quantum interference device (SQUID) magnetometer.

  12. MAGNETORESISTANCE AND HALL EFFECT IN SINGLE CRYSTALS OF ALUMINUM

    Science.gov (United States)

    ALUMINUM, *SINGLE CRYSTALS, CRYSTALS, HALL EFFECT , IMPURITIES, LOW PRESSURE, MAGNETIC FIELDS, MAGNETIC PROPERTIES, PARTICLE TRAJECTORIES, ELECTRICAL RESISTANCE, SOLID STATE PHYSICS, SURFACE PROPERTIES.

  13. Growth and luminescent properties of scintillators based on the single crystalline films of Lu{sub 3−x}Gd{sub x}Al{sub 5}O{sub 12}:Ce garnet

    Energy Technology Data Exchange (ETDEWEB)

    Zorenko, Yu, E-mail: zorenko@ukw.edu.pl [Institute of Physics, Kazimierz Wielki University in Bydgoszcz, 85090 Bydgoszcz (Poland); Laboratory for Optoelectronic Materials, Department of Electronics of Ivan Franko National University of Lviv, 79017 Lviv (Ukraine); Gorbenko, V. [Institute of Physics, Kazimierz Wielki University in Bydgoszcz, 85090 Bydgoszcz (Poland); Laboratory for Optoelectronic Materials, Department of Electronics of Ivan Franko National University of Lviv, 79017 Lviv (Ukraine); Vasylkiv, Ja [Laboratory for Optoelectronic Materials, Department of Electronics of Ivan Franko National University of Lviv, 79017 Lviv (Ukraine); Zelenyj, A. [Danylo Halytskyy Lviv National Medical University, 79010 Lviv (Ukraine); Fedorov, A. [Institute for Scintillation Materials, NAS of Ukraine, 61001 Kharkiv (Ukraine); Kucerkova, R.; Mares, J.A.; Nikl, M. [Institute of Physics, AS CR, 16253 Prague (Czech Republic); Bilski, P.; Twardak, A. [Institute of Nuclear Physic, Polish Academy of Science, 31-342 Krakow (Poland)

    2015-04-15

    Highlights: • Single crystalline films of Lu{sub 3−x}Gd{sub x}Al{sub 5}O{sub 12} garnets at x = 0 ÷ 3.0 were grown by LPE method onto YAG substrates. • Lattice constant of Lu{sub 3−}Gd{sub x}Al{sub 5}O{sub 12}:Ce film and the misfit m between films and YAG substrate changed linearly with increasing of Gd content. • Effective Gd{sup 3+}–Ce{sup 3+} energy transfer occurs in the Lu{sub 3−x}Gd{sub x}Al{sub 5}O{sub 12}:Ce films. • Best scintillation light yield is observed in the Lu{sub 3}Al{sub 5}O{sub 12}:Ce and Lu{sub 2.4}Gd{sub 0.6}Al{sub 5}O{sub 12}:Ce films. • Increase of the Gd content in x = 1.5–2.5 range results in decreasing the scintillation LY of Lu{sub 3−x}Gd{sub x}Al{sub 5}O{sub 12}:Ce films. - Abstract: The work is related to the growth of scintillators based on the single crystalline films (SCF) of Ce{sup 3+} doped Lu{sub 3−}Gd{sub x}Al{sub 5}O{sub 12} mixed rare-earth garnets by Liquid Phase Epitaxy (LPE) method. We have shown, that full set of Lu{sub 3−}Gd{sub x}Al{sub 5}O{sub 12} SCFs with x values ranging from 0 to 3.0 can be successfully crystallized by the LPE method onto Y{sub 3}Al{sub 5}O{sub 12} (YAG) substrates from the melt-solutions based on PbO-B{sub 2}O{sub 3} flux. The absorption, X-ray excited luminescence, photoluminescence, thermoluminescence and light yield measurements, the latter under excitation by α-particles of {sup 239}Pu and {sup 241}Am radioisotopes, were applied for their characterization.

  14. Syntheses and crystal structures of rare earth (Nd, Gd) 1-D chain complexes with N-p-tolylsulfonyl-β-alanine

    Institute of Scientific and Technical Information of China (English)

    MA Lufang; LI Xiaodong; WANG Liya; LIANG Fupei; ZHANG Manbo; YU Kaibei

    2005-01-01

    Two rare earth complexes of Ts-β-AlaH with the formula of [Ln2(H2O)4(Ts-β-AlaH)6]n·4nH2O (where Ln =Nd(1), Gd(2); Ts-β-AlaH = N-p-tolylsulfonyl-β-Alanine) have been synthesized and characterized by elemental analysis, IR,and X-ray diffraction. The results show that the two complexes are isostructural. They crystallize in a monoclinic system with P21/n space group. Crystal data for 1: a = 0.95149(19) nm, b = 1.9012(4) nm, c = 2.2863(5) nm, β= 100.37(3)°, Z = 4,Dc = 1.509 mg/cm3, F(000) = 1880, R1 = 0.0560, wR2 = 0.1564 [Ⅰ> 2σ(Ⅰ)]; for 2: a = 0.9495(2) nm, b = 1.9037(4) nm, c =2.2987(5) nm, β= 99.87(3)°, Z = 4, Dc= 1.541 mg/cm3, F(000) = 1916, R1 = 0.0515, wR2= 0.1566 [Ⅰ>2σ (Ⅰ)]. The two complexes are one-dimensional chains and the coordination number of the Nd3+ or Gd 3+ ion is nine.

  15. The growth of ruby single crystals

    Directory of Open Access Journals (Sweden)

    ALEKSANDAR GOLUBOVIC

    2005-02-01

    Full Text Available Ruby (Cr:Al2O3 single crystals were grown by the Czochralski technique in an argon atmosphere. The critical crystal diameter dc = 1.0 cm and the critical rate of rotation wc = 20 rpm were calculated by equations of the hydrodynamics of the melt. The rate of crystal growthwas experimentally obtained to be 2.7 mm/h. For chemical polishing, conc. H3PO4 at 593 K for an exposure of 3 hours was determined. Conc. H3PO4 at 523 K for an exposure of 3 h was found to be a suitable etching solution. The lattice parameters a = 0.47627(6 nm and c = 1.301(1 nm were determined by X-ray powder diffraction. The obtained results are discussed and compared with published data.

  16. Biomineralization of nanoscale single crystal hydroxyapatite.

    Science.gov (United States)

    Omokanwaye, Tiffany; Wilson, Otto C; Gugssa, Ayelle; Anderson, Winston

    2015-11-01

    The chemical and physical characteristics of nanocrystalline hydroxyapatite particles which formed during the subcutaneous implantation of crab shell in Sprague-Dawley rats were studied using selected area electron diffraction (SAED) and high resolution transmission electron microscopy (HRTEM). The initial SAED characterization evidence indicated the presence of an amorphous calcium phosphate phase. The electron dense nanophase particles which formed in the wound healing zone displayed broad diffuse rings which usually indicate a low crystalline order or amorphous phase. High resolution transmission electron microscopy (HRTEM) revealed that these mineralized regions contained discrete single crystal particles less than 5nm in size. Micrographs taken at successively higher magnifications revealed very small nanoparticles with a hexagonal arrangement of ion channels with characteristic spacing of 0.54nm and 0.23nm. This study revealed that single crystal hydroxyapatite nanoparticles consisting of only a few unit cells formed via a biomineralization directed process. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Electroluminescence in BaFCl single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Somaiah, K.; Paracchini, C.

    1987-06-01

    A study of electroluminescence in BaFCl single crystals as a function of temperature is reported. At an excitation voltage of 5 kV, electroluminescent intensity, which is feeble at room temperature, is shown to increase with decreasing temperature. The increase is rapid between 250 K and 175 K and levels off as 80 K is approached. A tentative explanation, in the light of x-ray induced luminescence, is offered. (U.K.).

  18. Secondary particle emission from sapphire single crystal

    Energy Technology Data Exchange (ETDEWEB)

    Minnebaev, K.F., E-mail: minnebaev@mail.ru [Physics Faculty, Moscow State University, Leninskie Gory, Moscow 119991 (Russian Federation); Khvostov, V.V.; Zykova, E.Yu.; Tolpin, K.A. [Physics Faculty, Moscow State University, Leninskie Gory, Moscow 119991 (Russian Federation); Colligon, J.S. [Manchester Metropolitan University, Chester Street, Manchester M1 5GD (United Kingdom); Yurasova, V.E. [Physics Faculty, Moscow State University, Leninskie Gory, Moscow 119991 (Russian Federation)

    2015-07-01

    Secondary ion emission from sapphire single crystal has been studied experimentally and by means of computer simulation. The particular oscillations of secondary ion energy spectra and two specific maxima of O{sup +} and Al{sup +} ions were observed under irradiation of (0001) sapphire face by 1 and 10 keV Ar{sup +} ions. We have explained this by the interplay of the charge exchange processes between moving particles and solids. The existence of two maxima in energy spectra of O{sup +} and Al{sup +} secondary ions can be also connected with special features of single-crystal sputtering: the low-energy peak can be formed by random sputtering and the high-energy peak from focusing collisions. In addition some similarity was found between the positions of low-energy maximum in energy spectra of Al{sup +} ions emitted from sapphire and the principal maxima of Al{sup +} ions ejected from the aluminum single crystal. This indicates a possibility to explain the presence of low-energy maximum in energy spectra of secondary ions ejecting from sapphire by emission of Al{sup +} ions from aluminum islands appearing in a number of cases on the sapphire surface due to preferential sputtering of oxygen. These different mechanisms of creating the energy spectra of ions emitted from sapphire should be taken in account.

  19. Biomineralization of nanoscale single crystal hydroxyapatite

    Energy Technology Data Exchange (ETDEWEB)

    Omokanwaye, Tiffany [Catholic University of America, BONE/CRAB Lab, Department of Biomedical Engineering, Washington, DC 20064 (United States); Wilson, Otto C., E-mail: wilsono@cua.edu [Catholic University of America, BONE/CRAB Lab, Department of Biomedical Engineering, Washington, DC 20064 (United States); Gugssa, Ayelle; Anderson, Winston [Howard University, Department of Biology, Washington, DC (United States)

    2015-11-01

    The chemical and physical characteristics of nanocrystalline hydroxyapatite particles which formed during the subcutaneous implantation of crab shell in Sprague–Dawley rats were studied using selected area electron diffraction (SAED) and high resolution transmission electron microscopy (HRTEM). The initial SAED characterization evidence indicated the presence of an amorphous calcium phosphate phase. The electron dense nanophase particles which formed in the wound healing zone displayed broad diffuse rings which usually indicate a low crystalline order or amorphous phase. High resolution transmission electron microscopy (HRTEM) revealed that these mineralized regions contained discrete single crystal particles less than 5 nm in size. Micrographs taken at successively higher magnifications revealed very small nanoparticles with a hexagonal arrangement of ion channels with characteristic spacing of 0.54 nm and 0.23 nm. This study revealed that single crystal hydroxyapatite nanoparticles consisting of only a few unit cells formed via a biomineralization directed process. - Highlights: • Nanocrystalline particles were formed during in vivo implantation of crab shell using a rat model. • High resolution TEM revealed that nanoparticles were single crystals and less than 5 nm in size. • The relative distance between spots matches the expected values for hydroxyapatite.

  20. Charge transport in single crystal organic semiconductors

    Science.gov (United States)

    Xie, Wei

    Organic electronics have engendered substantial interest in printable, flexible and large-area applications thanks to their low fabrication cost per unit area, chemical versatility and solution processability. Nevertheless, fundamental understanding of device physics and charge transport in organic semiconductors lag somewhat behind, partially due to ubiquitous defects and impurities in technologically useful organic thin films, formed either by vacuum deposition or solution process. In this context, single-crystalline organic semiconductors, or organic single crystals, have therefore provided the ideal system for transport studies. Organic single crystals are characterized by their high chemical purity and outstanding structural perfection, leading to significantly improved electrical properties compared with their thin-film counterparts. Importantly, the surfaces of the crystals are molecularly flat, an ideal condition for building field-effect transistors (FETs). Progress in organic single crystal FETs (SC-FETs) is tremendous during the past decade. Large mobilities ~ 1 - 10 cm2V-1s-1 have been achieved in several crystals, allowing a wide range of electrical, optical, mechanical, structural, and theoretical studies. Several challenges still remain, however, which are the motivation of this thesis. The first challenge is to delineate the crystal structure/electrical property relationship for development of high-performance organic semiconductors. This thesis demonstrates a full spectrum of studies spanning from chemical synthesis, single crystal structure determination, quantum-chemical calculation, SC-OFET fabrication, electrical measurement, photoelectron spectroscopy characterization and extensive device optimization in a series of new rubrene derivatives, motivated by the fact that rubrene is a benchmark semiconductor with record hole mobility ~ 20 cm2V-1s-1. With successful preservation of beneficial pi-stacking structures, these rubrene derivatives form

  1. A nanoporous two-dimensional polymer by single-crystal-to-single-crystal photopolymerization.

    Science.gov (United States)

    Kissel, Patrick; Murray, Daniel J; Wulftange, William J; Catalano, Vincent J; King, Benjamin T

    2014-09-01

    In contrast to the wide number and variety of available synthetic routes to conventional linear polymers, the synthesis of two-dimensional polymers and unambiguous proof of their structure remains a challenge. Two-dimensional polymers-single-layered polymers that form a tiling network in exactly two dimensions-have potential for use in nanoporous membranes and other applications. Here, we report the preparation of a fluorinated hydrocarbon two-dimensional polymer that can be exfoliated into single sheets, and its characterization by high-resolution single-crystal X-ray diffraction analysis. The procedure involves three steps: preorganization in a lamellar crystal of a rigid monomer bearing three photoreactive arms, photopolymerization of the crystalline monomers by [4 + 4] cycloaddition, and isolation of individual two-dimensional polymer sheets. This polymer is a molecularly thin (~1 nm) material that combines precisely defined monodisperse pores of ~9 Å with a high pore density of 3.3 × 10(13) pores cm(-2). Atomic-resolution single-crystal X-ray structures of the monomer, an intermediate dimer and the final crystalline two-dimensional polymer were obtained and prove the single-crystal-to-single-crystal nature and molecular precision of the two-dimensional photopolymerization.

  2. Partially disordered Yb:Gd xY 1-xVO 4 crystal for femtosecond lasers

    Science.gov (United States)

    Petrov, V. V.; Pestryakov, E. V.; Trunov, V. I.; Kirpichnikov, A. V.; Merzliakov, M. A.; Laptev, A. V.; Matrosov, V. N.; Klimin, S. A.

    2007-06-01

    The results of experimental spectroscopic and laser investigations of ytterbium-doped partially (mixed) disordered tetragonal gadolinium-yttrium vanadate crystals at 5-300 K temperature range under laser diode pumping are presented and compared with yttrium vanadate crystals. The Yb:Gd xY 1-xVO 4 (x=0.64) partially (mixed) disordered crystals demonstrate large stimulated emission cross-section compared with the values of Yb:YVO 4 crystals. Polarized absorption and fluorescence spectra in the 5-300 K temperature range are investigated and gain cross-sections are deduced at room and liquid nitrogen temperatures. The amplitudes of emission cross-sections are increased almost fourfold at liquid nitrogen temperature in comparison with the same at room temperature at wavelength near 1006 nm. The CW and ultrashort pulses generation with additional SESAM structure have been investigated in the folded resonator at 975 nm laser diode pumping at room temperature. At low temperature the estimations for different inversion population ratios show that duration of pulses are somewhat varied.

  3. Perpetually self-propelling chiral single crystals.

    Science.gov (United States)

    Panda, Manas K; Runčevski, Tomče; Husain, Ahmad; Dinnebier, Robert E; Naumov, Panče

    2015-02-11

    When heated, single crystals of enantiomerically pure D- and L-pyroglutamic acid (PGA) are capable of recurring self-actuation due to rapid release of latent strain during a structural phase transition, while the racemate is mechanically inactive. Contrary to other thermosalient materials, where the effect is accompanied by crystal explosion due to ejection of debris or splintering, the chiral PGA crystals respond to internal strain with unprecedented robustness and can be actuated repeatedly without deterioration. It is demonstrated that this superelasticity is attained due to the low-dimensional hydrogen-bonding network which effectively accrues internal strain to elicit propulsion solely by elastic deformation without disintegration. One of the two polymorphs (β) associated with the thermosalient phase transition undergoes biaxial negative thermal expansion (αa = -54.8(8) × 10(-6) K(-1), αc = -3.62(8) × 10(-6) K(-1)) and exceptionally large uniaxial thermal expansion (αb = 303(1) × 10(-6) K(-1)). This second example of a thermosalient solid with anomalous expansion indicates that the thermosalient effect can be expected for first-order phase transitions in soft crystals devoid of an extended 3D hydrogen-bonding network that undergo strongly anisotropic thermal expansion around the phase transition.

  4. Crystal growth and characterization of gadolinium tartrate trihydrate: Gd(C{sub 4}H{sub 4}O{sub 6})(C{sub 4}H{sub 5}O{sub 6}).3H{sub 2}O

    Energy Technology Data Exchange (ETDEWEB)

    Want, Basharat [Department of Physics, University of Kashmir, Srinagar 190006, J and K (India); Ahmad, Farooq [Department of Physics, University of Kashmir, Srinagar 190006, J and K (India); Kotru, P.N. [Department of Physics and Electronics, University of Jammu, Jammu 180006 (India)]. E-mail: pn_kotru@yahoo.com

    2006-09-15

    The growth of gadolinium tartrate trihydrate crystals is achieved in silica and agar-agar gels. The crystals are grown by diffusion of gadolinium ions through silica and agar-agar gels impregnated with L-tartaric acid. The type of medium influences the morphology of grown crystals: silica gel yielding single crystals and spherulites whereas agar-agar gel leads to growth of only single crystals. The grown crystals are characterized using energy dispersive analysis of X-rays (EDAX), carbon and hydrogen analysis (CHN), X-ray powder diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, thermogravimetric (TG), differential thermogravimetric (DTG) and differential thermal analysis. The chemical formula of the grown crystals is suggested to be Gd(C{sub 4}H{sub 4}O{sub 6})(C{sub 4}H{sub 5}O{sub 6}).3H{sub 2}O. The infrared spectrum indicates the presence of tartrate ligands and suggests that one of the tartrate ions is singly ionized. The thermal analysis shows that the material is thermally stable up to about 205 deg. C.

  5. Synthesis and Crystal Structure of Monochloridehepta (dimethyl sulfoxide)gadolinium (Ⅲ) di(tetraphenyl boron) Salt [Gd(dmso) 7Cl][BPh4]2

    Institute of Scientific and Technical Information of China (English)

    张道; 郭松山; 王汉章; 郁开北

    2000-01-01

    The crystal of the title compound (C62H82B2ClGdO7S7 Mr= 1378.02)is triclinic with space group P-1. a=12. 532(2), b=12. 774(2), c=24. 580(5)A; α=93.389(9), β=104. 640(8), γ=112. 923(9)°, V=3451.4(8)A3, Z=2, Dc=1.326g/cm3. μ(MoKα)=1. 258mm-1, F(000)=1426. R=0.036 , Rw= 0. 091for 12101 reflections with I>2σ(I). The crystal is composed of a discrete cation [Gd(dm-so )7Cl]+ and two anions [BPh4]-. The Gd( Ⅲ ) ion is coordinated by a chlorine and seven oxygen atoms from seven monodenate dimethylsulfoxides formimg a distorted square antiprism coordination polyhedron.

  6. 7.5W Nd:GdV04环形腔单频激光器%7.5 W Nd: GdVO4 Single-Frequency Ring Laser

    Institute of Scientific and Technical Information of China (English)

    赵伟芳; 侯玮; 郭林; 林学春; 李晋闽

    2011-01-01

    A Nd.: GdVO4 crystal is end-pumped by a fiber-coupled laser diode (FCLD), and high power of singlefrequency laser output is achieved. The four-mirror bow-tie ring cavity with a Faraday rotator and a half wave plate is applied to eliminate the spatial hole-burning effect. A solid etalon is inserted into the cavity to obtain single-frequency 1063 nm output of the narrow line width. The maximum output is 7.57 W and the optical-optical conversionefficiency is 41.8% with 18.10 W of the incident power.%采用光纤耦合输出激光二极管(FCLD)单端端面抽运Nd:GdVO4晶体的方式,获得高功率单频激光的输出.在实验中,采用四镜折叠环形腔,考虑了晶体的热透镜效应后,优化了环行腔腔型.通过在腔内插入法拉第旋光器和半波片实现激光的单向运转从而抑制空间烧孔效应,在腔内插入标准具后,压缩了单频激光的线宽,获得了连续单频1063 nm激光输出.在18.10 W抽运功率时,获得了7.57 W的单频激光,光-光转换效率为4L 8%,光束质量因子M2≈1.2.

  7. Sintered pellets: A simple and cost effective method to predict the performance of GGAG:Ce single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Fang, E-mail: fmeng2@vols.utk.edu [Materials Science and Engineering, University of Tennessee, Knoxville, TN 37996 (United States); Scintillation Materials Research Center, University of Tennessee, Knoxville, TN 37996 (United States); Koschan, Merry [Scintillation Materials Research Center, University of Tennessee, Knoxville, TN 37996 (United States); Melcher, Charles L. [Materials Science and Engineering, University of Tennessee, Knoxville, TN 37996 (United States); Scintillation Materials Research Center, University of Tennessee, Knoxville, TN 37996 (United States); Cohen, Peter [Siemens Medical Solutions Molecular Imaging, Knoxville, TN 37932 (United States)

    2015-03-15

    Highlights: • Sintered pellets were firstly used to predict the performance of single crystals. • Similar properties between sintered pellets and single crystals were investigated. • B and Ba increase luminescence intensity in pellets and light yield in crystals. • Ca shortens photoluminescence decay in pellets and scintillation decay in crystals. - Abstract: Polycrystalline Gd{sub 3}Ga{sub 3}Al{sub 2}O{sub 12}:Ce (GGAG:Ce) pellets with various codopants were prepared via solid-state synthesis and characterized by X-ray diffraction, radioluminescence (RL), photoluminescence (PL), reflectivity and PL decay measurements. GGAG:Ce pellets codoped with B and Ba were found to have higher RL intensity than pellets with other codopants, while Ca codoping improved the decay time but reduced the RL intensity. These results were strongly correlated with the performance of these codopants in GGAG:Ce single crystals. The light yield of the single crystals codoped with B or Ba was ∼15% higher than the light yield of the GGAG:Ce crystal without codoping, while Ca codoping in single crystals resulted in lower light yield but shorter scintillation decay time (43 ns vs. 56 ns). The consistent performance of these codopants in both matrix forms indicates that sintering pellets may be used as a simple cost effective technique to evaluate compositions for likely single crystal scintillator performance.

  8. Electrical conductivity of sulfamic acid single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Varughese, G. [Department of Physics, Catholicate College, Pathanamthitta, Kerala (India); Iype, L. [School of Pure and Applied Physics, Mahatma Gandhi Unniversity, Kottayam, Kerala (India); Rajesh, R. [Department of Physics, N S S College, Manjeri, Malappuram, Kerala (India); Joseph, G. [Department of Physics, Sacred Heart College, Thevara, Cochin, Kerala (India); Louis, G. [Department of Physics, Cochin University of Science and Technology, Cochin, Kerala (India); Santhosh Kumar, A.

    2010-08-15

    Single crystals of sulfamic acid have been grown by the method of slow evaporation at constant temperature. DC electrical conductivity was measured in the temperature range 300 - 440 K along a, b and c-axes. Conductivity measurements show slope change near 330 K and 410 K. The slope change observed around 330 K may be attributed as due to a phase transition which has been well supported by the DSC and DTA measurements. Slope change observed around 410 K is attributed as the onset of the thermal decomcoposition as evidenced by TGA curve. TGA studies show the crystal is very stable up to 440 K. Activation energies for the conduction process are calculated for all measured crystallographic directions. (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  9. Reper Radioactive Sources for Time and Energy Calibration of Single Crystal Scintillation Time Spectrometers

    CERN Document Server

    Lebedev, N A; Morozova, N V; Novgorodov, A F; Filossofov, D V

    2000-01-01

    There was made a set of reper radioactive sources for time and energy calibration of the single crystal scintillation time spectrometer. The set consists of ^{73}As, ^{153}Gd, ^{169}Yb, ^{241}Am sources and sources of ^{225}Ac and ^{232}Th including the products of their decay. This set of radioactive sources covers the time interval from 4 ns to 4 mus and energy interval starting from 10 keV. Some of these sources were included in the small size plastic scintillators providing the 4 pi geometry for radiation measurements.

  10. Direct shear of olivine single crystals

    Science.gov (United States)

    Tielke, Jacob A.; Zimmerman, Mark E.; Kohlstedt, David L.

    2016-12-01

    Knowledge of the strengths of the individual dislocation slip systems in olivine is fundamental to understanding the flow behavior and the development of lattice-preferred orientation in olivine-rich rocks. The most direct measurements of the strengths of individual slip systems are from triaxial compression experiments on olivine single crystals. However, such experiments only allow for determination of flow laws for two of the four dominant slip systems in olivine. In order to measure the strengths of the (001)[100] and (100)[001] slip systems independently, we performed deformation experiments on single crystals of San Carlos olivine in a direct shear geometry. Experiments were carried out at temperatures of 1000 ° to 1300 °C, a confining pressure of 300 MPa, shear stresses of 60 to 334 MPa, and resultant shear strain rates of 7.4 × 10-6 to 2.1 × 10-3 s-1. At high-temperature (≥1200 °C) and low-stress (≤200 MPa) conditions, the strain rate of crystals oriented for direct shear on either the (001)[100] or the (100)[001] slip system follows a power law relationship with stress, whereas at lower temperatures and higher stresses, strain rate depends exponentially on stress. The flow laws derived from the mechanical data in this study are consistent with a transition from the operation of a climb-controlled dislocation mechanism during power-law creep to the operation of a glide-controlled dislocation mechanism during exponential creep. In the climb-controlled regime, crystals oriented for shear on the (001)[100] slip system are weaker than crystals orientated for shear on the (100)[001] slip system. In contrast, in the glide-controlled regime the opposite is observed. Extrapolation of flow laws determined for crystals sheared in orientations favorable for slip on these two slip systems to upper mantle conditions reveals that the (001)[100] slip system is weaker at temperatures and stresses that are typical of the asthenospheric mantle, whereas the (100

  11. Image shifts resulting from the misorientation of two individuals in GdCa4O(BO3)3 crystal

    Institute of Scientific and Technical Information of China (English)

    XiaoboHu; JiyangWang; ShushengJiang; HongLiu; MingGuo; HuaidongJian

    2001-01-01

    Large GdCa4O(BO3)3 crystal has been grown by the Czochralski method.The quality of GdCa4(BO3)3 crystal was assessed by white-beam synchrotron radiation topography.It has been found that there is a sub-grain boundary in the GdCa4O(BO3)3 crystal.The boundary divides the large GdCa4O(BO3)3 crystal into two individuals.Due to the misorientation between the two individuals,the image shifts can be observed in the synchrotron topopraphs.Based on the misorientation determined by high resolution X-ray diffractometer,the image shifts were calculated for several reflections.The calculations are in agreement with the measurements from the topogrphs very Well.In addition,the formation mechanism of sub-grain boundary is discussed.2001 Elsevier science B.V.All rights reserved.

  12. Continuous-wave laser operation of diode-pumped Tm-doped Gd3Ga5O12 crystal

    Science.gov (United States)

    Wang, Yi; Lan, Jinglong; Zhou, Zhiyong; Guan, Xiaofeng; Xu, Bin; Xu, Huiying; Cai, Zhiping; Wang, Yan; Tu, Chaoyang

    2017-04-01

    We report on a diode-pumped Tm:Gd3Ga5O12 (GGG) laser at 2004 nm operated in continuous-wave mode with two-mirror linear cavity configuration. The maximum output power reaches 0.58 W with laser threshold absorbed pump power of about 0.39 W and overall slope efficiency of about 18.4%, which is believed to be the highest output power for Tm:GGG laser up to now. The Tm:GGG laser shows obvious thermally induced saturation of the output power, which indicated that power and efficiency scaling could be furtherly realized by more efficient thermal removal of the laser crystal.

  13. Spectral Parameters of Nd3+ in the Nd3+:GdMgB5O10 Crystal

    Institute of Scientific and Technical Information of China (English)

    FAN Jun-Mei; LIN Zhou-Bin; ZHANG Li-Zhen; HU Zu-Shu; WANG Guo-Fu

    2005-01-01

    The absorption and emission spectra of Nd3+:GdMgB5O10 crystal were inves- tigated. Based on Judd-Ofelt theory the three parameters of oscillator strength were obtained as follows: Ω2 = 2.099×10-20 cm2, Ω4 = 4.599×10-20 cm2 and Ω6 = 5.139×10-20 cm2. The fluorescence branch rations were also obtained: β1 = 0.424, β2 = 0.474, β3 = 0.094 and β4 = 0.005. The radiative lifetime is 416 μs and quantum efficiency ηc 9.13%. The emission cross section σp (1.06 μm) is 4.38×10-19 cm2.

  14. Layered exfoliable crystalline materials based on Sm-, Eu- and Eu/Gd-2-phenylsuccinate frameworks. Crystal structure, topology and luminescence properties.

    Science.gov (United States)

    Gomez, G E; Bernini, M C; Brusau, E V; Narda, G E; Vega, D; Kaczmarek, A M; Van Deun, R; Nazzarro, M

    2015-02-21

    Three new layered metal-organic frameworks (MOFs) based on 2-phenylsuccinic acid (H2psa) and lanthanide ions with the formula [Ln2(C10H8O4)3(H2O)] (Ln = Eu, Sm and Eu-Gd) have been synthesized under solvothermal conditions and fully characterized by single-crystal X-ray diffraction, thermal and vibrational analyses. The compounds are isostructural featuring 2D frameworks that consist of infinite zigzag chains composed of [LnO8] and [LnO8(H2O)] edge-sharing polyhedra linked by psa ligands leading to layers further connected by weak π-π interactions in an edge orientation. Moreover, a topological study was carried out to obtain the simplified net for better comparison with structurally related compounds. The crystals were exfoliated into nanolayers after miniaturization by addition of sodium acetate as a capping agent in the reaction medium. Scanning electron microscopy was applied to characterize the miniaturized samples whereas the exfoliated hybrid nanosheets were studied by atomic force microscopy. The photoluminescence (PL) properties of the bulk compounds as well as the miniaturized and exfoliated materials were investigated and compared with other related ones. An exhaustive study of the Eu(iii)-based MOFs was performed on the basis of the obtained PL parameters (excitation and emission spectra, kr, knr, intrinsic quantum yields and lifetimes) to explore the underlying structure-property relationships.

  15. Fabrication of crystals from single metal atoms.

    Science.gov (United States)

    Barry, Nicolas P E; Pitto-Barry, Anaïs; Sanchez, Ana M; Dove, Andrew P; Procter, Richard J; Soldevila-Barreda, Joan J; Kirby, Nigel; Hands-Portman, Ian; Smith, Corinne J; O'Reilly, Rachel K; Beanland, Richard; Sadler, Peter J

    2014-05-27

    Metal nanocrystals offer new concepts for the design of nanodevices with a range of potential applications. Currently the formation of metal nanocrystals cannot be controlled at the level of individual atoms. Here we describe a new general method for the fabrication of multi-heteroatom-doped graphitic matrices decorated with very small, ångström-sized, three-dimensional (3D)-metal crystals of defined size. We irradiate boron-rich precious-metal-encapsulated self-spreading polymer micelles with electrons and produce, in real time, a doped graphitic support on which individual osmium atoms hop and migrate to form 3D-nanocrystals, as small as 15 Å in diameter, within 1 h. Crystal growth can be observed, quantified and controlled in real time. We also synthesize the first examples of mixed ruthenium-osmium 3D-nanocrystals. This technology not only allows the production of ångström-sized homo- and hetero-crystals, but also provides new experimental insight into the dynamics of nanocrystals and pathways for their assembly from single atoms.

  16. Growth and characterization of propyl-para-hydroxybenzoate single crystals

    Indian Academy of Sciences (India)

    N Karunagaran; P Ramasamy; R Perumal Ramasamy

    2014-10-01

    Single crystals of propyl--hydroxybenzoate have been grown by slow evaporation solution technique. The structure of the compound was confirmed by FT–IR, FT–Raman spectroscopy and single crystal X-ray diffraction studies. The crystalline perfection of the grown single crystals has been analysed by high resolution X-ray diffraction measurements. Optical properties of the grown single crystals were studied by UV–Vis NIR spectrum. The luminescence behaviour of the single crystal has been analysed by photoluminescence analysis and found maximum luminescence in the lower wavelength region. A simple interferometric technique was used for measuring birefringence of the crystal. The laser damage threshold of the crystal is 1.3 GW/cm2. The mechanical strength of the grown crystal is measured using Vickers microhardness tester. The dielectric properties have been investigated.

  17. The new single crystal diffractometer SC3

    Energy Technology Data Exchange (ETDEWEB)

    Schefer, J.; Koch, M.; Keller, P.; Fischer, S.; Thut, R. [Lab. for Neutron Scattering ETH Zurich, Zurich (Switzerland) and Paul Scherrer Institute, Villigen (Switzerland)

    1996-11-01

    Single crystal diffraction is a powerful method for the determination of precise structure parameters, superlattices, stress. Neutron single crystal diffraction gives additionally to X-rays information on magnetic structures, both commensurate and incommensurate, hydrogen positions, hydrogen bonding behavior and accurate bondlengths, e.g. important in cuprates. The method is therefore especially powerful if combined with X-ray diffraction results. The new instrument at SINQ has been designed for inorganic materials and is positioned at a thermal beam tube, pointing on a water scatterer. This scatterer is presently operating with H{sub 2}O at ambient temperature, but a change to another medium at different temperature is possible. The instrument will be equipped with three area detectors, moving at fixed difference in 2{Theta}. each detector may be individually moved around a vertical circle (tilting angle {gamma}), allowing to use not only 4-circle geometry in the temperature range from 1.5 to 380 K, but also any equipment from a dilution refrigerator (7 mK) to a heavy magnet. A high temperature furnace for 4-circle geometry is foreseen as a future option. (author) 6 figs., 1 tab., 7 refs.

  18. Growth, characterization and dielectric studies of gadolinium fumarate heptahydrate single crystals

    Indian Academy of Sciences (India)

    M D Shah; B Want

    2015-02-01

    Gadolinium fumarate heptahydrate single crystals were grown by the single gel diffusion technique using silica gel as a medium of growth. Nucleation rate of these crystals was studied corresponding to the effect of various growth parameters. An attempt was made to relate the experimental results with the classical nucleation theory. The crystals were characterized by different physico-chemical techniques of characterization. Powder X-ray diffraction pattern showed that gadolinium fumarate is a crystalline compound and is isomorphous with samarium fumarate heptahydrate crystals. Fourier transform infrared spectroscopy was performed for the identification of water and other functional groups present in the compound. Elemental analysis sugested the chemical formula of the crystals to be Gd2(C4H2O4)3.7H2O. The presence of seven molecules of water was also supported by the thermogravimetric analysis. The hydrated compound was found to be thermally stable up to a temperature of about 110°C and its anhydrous form up to the temperature of 420°C. The thermal decomposition of the compound in the nitrogen atmosphere leads to the formation of gadolinium oxide as the final product. The dielectric properties and AC conductivity of gadolinium fumarate heptahydrate complex were carried out in the frequency range of 20 Hz–3MHz and over the temperature range of 15–130°C, both showing a hump at about 95°C, which could be attributed to water molecules in the crystal boundary.

  19. A Single-Longitudinal-Mode Dual-Wavelength cw Tm,Ho: GdVO4 Microchip Laser

    Institute of Scientific and Technical Information of China (English)

    JU You-Lun; WANG Zhen-Guo; LI Yu-Feng; WANG Yue-Zhu

    2008-01-01

    A liquid nitrogen cooled dual-wavelength Tm,Ho:GdVO4 microchip laser is reported. The output dual wavelengths are at 2038.9nm and 2050.1nm. At each wavelength, the laser has a single longitudinal mode. The threshold power is nearly 20mW and the slope efficiency is 18.7%. The single longitudinal mode output power reaches 98mW, and the ratio of power is about 60% (2038.9nm) and 40% (2050.1 nm).

  20. Crystal growth, defects, and mechanical and spectral properties of a novel mixed laser crystal Nd:GdYNbO4

    Science.gov (United States)

    Ding, Shoujun; Liu, Wenpeng; Zhang, Qingli; Peng, Fang; Luo, Jianqiao; Dou, Renqin; Sun, Guihua; Sun, Dunlu

    2017-01-01

    A mixed laser crystal of Nd-doped GYNO crystal was grown successfully by Czochralski method. The crystal belongs to monoclinic system with space group I2/a, the structural parameters are obtained by the X-ray Rietveld refinement method. The defects and dislocations along three crystallographic orientations were studied by using the chemical etching method with the phosphoric acid etchant. The mechanical properties (including hardness, yield strength, fracture toughness, and brittle index) of the crystal were estimated by Vickers hardness test. The transmission spectrum was measured at room temperature, and the absorption peaks were assigned. Spectral properties of the as-grown crystal were investigated by Judd-Ofelt theory, and the Judd-Ofelt intense parameters Ω2,4,6 were obtained to be 9.674 × 10-20, 2.092 × 10-20, and 4.061 × 10-20 cm2, respectively.

  1. Growth of single crystals of BaFe12O19 by solid state crystal growth

    Science.gov (United States)

    Fisher, John G.; Sun, Hengyang; Kook, Young-Geun; Kim, Joon-Seong; Le, Phan Gia

    2016-10-01

    Single crystals of BaFe12O19 are grown for the first time by solid state crystal growth. Seed crystals of BaFe12O19 are buried in BaFe12O19+1 wt% BaCO3 powder, which are then pressed into pellets containing the seed crystals. During sintering, single crystals of BaFe12O19 up to ∼130 μm thick in the c-axis direction grow on the seed crystals by consuming grains from the surrounding polycrystalline matrix. Scanning electron microscopy-energy dispersive spectroscopy analysis shows that the single crystal and the surrounding polycrystalline matrix have the same chemical composition. Micro-Raman scattering shows the single crystal to have the BaFe12O19 structure. The optimum growth temperature is found to be 1200 °C. The single crystal growth behavior is explained using the mixed control theory of grain growth.

  2. Load Relaxation of Olivine Single Crystals

    Science.gov (United States)

    Cooper, R. F.; Stone, D. S.; Plookphol, T.

    2016-12-01

    Single crystals of ferromagnesian olivine (San Carlos, AZ, peridot; Fo90-92) have been deformed in both uniaxial creep and load relaxation under conditions of ambient pressure, T = 1500ºC and pO2 = 10-10 atm; creep stresses were in the range 40 ≤ σ1 (MPa) ≤ 220. The crystals were oriented such that the applied stress was parallel to [011]c, which promotes single slip on the slowest slip system in olivine, (010)[001]. The creep rates at steady state match well the results of earlier investigators, as does the stress sensitivity (a power-law exponent of n = 3.6). Dislocation microstructures, including spatial distribution of low-angle (subgrain) boundaries, additionally confirm previous investigations. Inverted primary creep (an accelerating strain rate with an increase in stress) was observed. Load-relaxation, however, produced a singular response—a single hardness curve—regardless of the magnitude of creep stress or total accumulated strain preceding relaxation. The log-stress v. log-strain rate data from load-relaxation and creep experiments overlap to within experimental error. The load-relaxation behavior is distinctly different that that described for other crystalline solids, where the flow stress is affected strongly by work hardening such that a family of distinct hardness curves is generated, which are related by a scaling function. The response of olivine for the conditions studied, thus, indicates flow that is rate-limited by dislocation glide, reflecting specifically a high intrinsic lattice resistance (Peierls stress).

  3. The RELi{sub x}Sn{sub 2} (RE=La–Nd, Sm, and Gd; 0≤x<1) series revisited. Synthesis, crystal chemistry, and magnetic susceptibilities

    Energy Technology Data Exchange (ETDEWEB)

    Makongo, Julien P.A.; Suen, Nian-Tzu; Guo, Shengping [Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716 (United States); Saha, Shanta; Greene, Richard; Paglione, Johnpierre [Department of Physics, University of Maryland, College Park, MD 20742 (United States); Bobev, Svilen, E-mail: bobev@udel.edu [Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716 (United States)

    2014-03-15

    This study is concerned with the ternary compounds RELi{sub x}Sn{sub 2} (RE=La–Nd, Sm, and Gd; 0≤x<1), which have been previously thought to be the stoichiometric RELiSn{sub 2} phases. These materials crystallize with the base-centered orthorhombic space group Cmcm (No. 63), and can be formally assigned with the CeNiSi{sub 2} structure type (Pearson symbol oC16). Our systematic single-crystal X-ray diffraction studies revealed substantial Li-deficiencies in all cases, with SmSn{sub 2} (space group Cmmm, ZrGa{sub 2} structure type, Pearson symbol oC12) and GdSn{sub 2} (space group Cmcm, ZrSi{sub 2} structure type, Pearson symbol oC12) being completely lithium-free. The structure refinements also uncovered positional disorder on the Sn site neighboring the vacancies. The Sn-disorder and the Li-deficiency correlate, and vary monotonically with the decreased size of the rare-earth atoms in the order RE=La–Nd. The SmSn{sub 2} and GdSn{sub 2} structures are devoid of any disorder. Temperature-dependent studies of the magnetic response of the title compounds are also presented and discussed. -- Graphical abstract: RELi{sub x}Sn{sub 2} (RE=La–Nd, 0≤x<1) crystallize in a defect variants of the CeNiSi{sub 2} structure type (a). The Sn-disorder and the Li-deficiency correlate, and vary monotonically with the decreased size of the rare-earth atoms in the order RE=La–Nd. The SmSn{sub 2} (b) and GdSn{sub 2} (c) structures are devoid of any disorder. Highlights: • The crystal structures of the RELi{sub x}Sn{sub 2} (RE=La–Nd, 0≤x<1) compounds are revised using single-crystal X-ray diffraction data. • The structure is a filled derivative of the ZrSi{sub 2} structure type or defect variant of the CeNiSi{sub 2} structure type. • SmSn{sub 2} is isotypic with the ZrGa{sub 2} structure, while RESn{sub 2} (RE=Gd–Lu) are isotypic with the ZrSi{sub 2} structure.

  4. Crystal structure and negative magnetization in Sm{sub 2}Al and Sm{sub 1.988}Gd{sub 0.012}Al compounds

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Pramod, E-mail: pkumar@iiita.ac.in [Indian Institute of Information Technology Allahabad, Allahabad 211012 (India); Department of Physics, IIT Bombay, Mumbai 400076 (India); Kumar, Rachana [National Physical Laboratory, Dr. K. S. Krishnan Marg, New Delhi 110012 (India); Pandey, S. [Indian Institute of Information Technology Allahabad, Allahabad 211012 (India); Suresh, K.G. [Department of Physics, IIT Bombay, Mumbai 400076 (India); Nigam, A.K. [Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400005 (India)

    2014-09-01

    Here we report Sm{sub 2}Al and Sm{sub 1.988}Gd{sub 0.012}Al compounds, with orthorhombic crystal structure (space group: Pnma), showing negative magnetization in temperature dependence magnetization data. Both compounds magnetically order at ∼150 and 200 K respectively and below this temperature, magnetization data shows a compensation temperature (T{sub comp}) which shifts with field. Hysteresis loops obtained below T{sub comp} signify that both Sm{sub 2}Al and Sm{sub 1.988}Gd{sub 0.012}Al possess exchange anisotropy. Both, exchange anisotropy field and coercive field are found to be quite large and comparable to those of the classical spin–orbit compensated ferromagnet (Sm,Gd)Al{sub 2}.

  5. Facile synthesis, single crystal analysis, and computational studies of sulfanilamide derivatives

    Science.gov (United States)

    Tahir, Muhammad Nawaz; Khalid, Muhammad; Islam, Ayesha; Ali Mashhadi, Syed Muddassir; Braga, Ataualpa A. C.

    2017-01-01

    Antibacterial resistance is a worldwide problem. Sulfanilamide is widely used antibacterial. For the first time, we report here a simple method for the derivative synthesis of the title drugs, single crystal XRD and density functional theory (DFT) studies. The optimized molecular structure, natural bond orbital (NBO), frontier molecular orbitals (FMOs) molecular electrostatic potential studies (MEP) and Mulliken population analysis (MPA) have been performed using M06-2X/6-31G(d, p). The FT-IR spectra and thermodynamic parameters were calculated at M06-2X/6-311 + G(2d,p) and B3LYP/6-31G(d, p) levels respectively, while, the UV-Vis analysis was performed using TD-DFT/B3LYP/6-31G(d, p) method. The experimental FT-IR spectra of both compounds were also carried out to reconfirm sbnd H⋯Osbnd hydrogen bonds. The DFT optimized parameters exhibiting good agreement with the experimental data. NBO analysis explored the hyper conjugative interaction and stability of title crystals, especially, reconfirmed the existence of sbnd H⋯Osbnd hydrogen bonds between the dimers. The FT-IR, thermodynamic parameters, MEP and MPA also revealed the hydrogen bonding detail is harmonious to XRD data. As a matter of the fact, the hydrogen bonding is a significant parameter for the understanding and design of molecular crystals, subsequently; it can also play a vital role in the supramolecular chemistry. Moreover, the global reactivity descriptors suggest that title compounds might be bioactive.

  6. Vibration-assisted machining of single crystal

    Science.gov (United States)

    Zahedi, S. A.; Roy, A.; Silberschmidt, V. V.

    2013-07-01

    Vibration-assisted machining offers a solution to expanding needs for improved machining, especially where accuracy and precision are of importance, such as in micromachining of single crystals of metals and alloys. Crystallographic anisotropy plays a crucial role in determining on overall response to machining. In this study, we intend to address the matter of ultra-precision machining of material at the micron scale using computational modelling. A hybrid modelling approach is implemented that combines two discrete schemes: smoothed particle hydrodynamics and continuum finite elements. The model is implemented in a commercial software ABAQUS/Explicit employing a user-defined subroutine (VUMAT) and used to elucidate the effect of crystallographic anisotropy on a response of face centred cubic (f.c.c.) metals to machining.

  7. Method of Making Lightweight, Single Crystal Mirror

    Science.gov (United States)

    Bly, Vincent T. (Inventor)

    2015-01-01

    A method of making a mirror from a single crystal blank may include fine grinding top and bottom surfaces of the blank to be parallel. The blank may then be heat treated to near its melting temperature. An optical surface may be created on an optical side of the blank. A protector may be bonded to the optical surface. With the protector in place, the blank may be light weighted by grinding a non-optical surface of the blank using computer controlled grinding. The light weighting may include creating a structure having a substantially minimum mass necessary to maintain distortion of the mirror within a preset limit. A damaged layer of the non-optical surface caused by light weighting may be removed with an isotropic etch and/or repaired by heat treatment. If an oxide layer is present, the entire blank may then be etched using, for example, hydrofluoric acid. A reflecting coating may be deposited on the optical surface.

  8. Piezoresistance measurement on single crystal silicon nanowires

    Science.gov (United States)

    Toriyama, Toshiyuki; Funai, Daisuke; Sugiyama, Susumu

    2003-01-01

    A p-type single crystal silicon nanowire bridge and a four-terminal nanowire element were fabricated by electron-beam direct writing. The piezoresistance was investigated in order to demonstrate the usefulness of these sensing elements as mechanical sensors. The longitudinal piezoresistance coefficient πl[110] was found to be 38.7×10-11 Pa-1 at a surface impurity concentration of Ns=9×1019cm-3 for the nanowire bridge. The shear piezoresistance coefficient π44 was found to be 77.4×10-11 Pa-1 at Ns=9×1019 cm-3 for the four-terminal nanowire element. These values are 54.8% larger than the values obtained from p+ diffused piezoresistors, which are used in conventional mechanical sensors.

  9. Development of novel growth methods for halide single crystals

    Science.gov (United States)

    Yokota, Yuui; Kurosawa, Shunsuke; Shoji, Yasuhiro; Ohashi, Yuji; Kamada, Kei; Yoshikawa, Akira

    2017-03-01

    We developed novel growth methods for halide scintillator single crystals with hygroscopic nature, Halide micro-pulling-down [H-μ-PD] method and Halide Vertical Bridgman [H-VB] method. The H-μ-PD method with a removable chamber system can grow a single crystal of halide scintillator material with hygroscopicity at faster growth rate than the conventional methods. On the other hand, the H-VB method can grow a large bulk single crystal of halide scintillator without a quartz ampule. CeCl3, LaBr3, Ce:LaBr3 and Eu:SrI2 fiber single crystals could be grown by the H-μ-PD method and Eu:SrI2 bulk single crystals of 1 and 1.5 inch in diameter could be grown by the H-VB method. The grown fiber and bulk single crystals showed comparable scintillation properties to the previous reports using the conventional methods.

  10. Piezoelectric single crystals for ultrasonic transducers in biomedical applications

    Science.gov (United States)

    Zhou, Qifa; Lam, Kwok Ho; Zheng, Hairong; Qiu, Weibao; Shung, K. Kirk

    2014-01-01

    Piezoelectric single crystals, which have excellent piezoelectric properties, have extensively been employed for various sensors and actuators applications. In this paper, the state–of–art in piezoelectric single crystals for ultrasonic transducer applications is reviewed. Firstly, the basic principles and design considerations of piezoelectric ultrasonic transducers will be addressed. Then, the popular piezoelectric single crystals used for ultrasonic transducer applications, including LiNbO3 (LN), PMN–PT and PIN–PMN–PT, will be introduced. After describing the preparation and performance of the single crystals, the recent development of both the single–element and array transducers fabricated using the single crystals will be presented. Finally, various biomedical applications including eye imaging, intravascular imaging, blood flow measurement, photoacoustic imaging, and microbeam applications of the single crystal transducers will be discussed. PMID:25386032

  11. Single crystal growth and anisotropic crystal-fluid interface tension in soft colloidal systems

    NARCIS (Netherlands)

    Nguyen, V.D.; Hu, Z.; Schall, P.

    2011-01-01

    We measure the anisotropy of the crystal-fluid interfacial free energy in soft colloidal systems. A temperature gradient is used to direct crystal nucleation and control the growth of large single crystals in order to achieve well-equilibrated crystal-fluid interfaces. Confocal microscopy is used to

  12. Functionalizing single crystals: incorporation of nanoparticles inside gel-grown calcite crystals.

    Science.gov (United States)

    Liu, Yujing; Yuan, Wentao; Shi, Ye; Chen, Xiaoqiang; Wang, Yong; Chen, Hongzheng; Li, Hanying

    2014-04-14

    Synthetic single crystals are usually homogeneous solids. Biogenic single crystals, however, can incorporate biomacromolecules and become inhomogeneous solids so that their properties are also extrinsically regulated by the incorporated materials. The discrepancy between the properties of synthetic and biogenic single crystals leads to the idea to modify the internal structure of synthetic crystals to achieve nonintrinsic properties by incorporation of foreign material. Intrinsically colorless and diamagnetic calcite single crystals are turned into colored and paramagnetic solids, through incorporation of Au and Fe3O4 nanoparticles without significantly disrupting the crystalline lattice of calcite. The crystals incorporate the nanoparticles and gel fibers when grown in agarose gel media containing the nanoparticles, whereas the solution-grown crystals do not. As such, our work extends the long-history gel method for crystallization into a platform to functionalize single-crystalline materials.

  13. Piezoelectric single crystals for ultrasonic transducers in biomedical applications

    OpenAIRE

    Zhou, Qifa; Lam, Kwok Ho; Zheng, Hairong; Qiu, Weibao; Shung, K. Kirk

    2014-01-01

    Piezoelectric single crystals, which have excellent piezoelectric properties, have extensively been employed for various sensors and actuators applications. In this paper, the state–of–art in piezoelectric single crystals for ultrasonic transducer applications is reviewed. Firstly, the basic principles and design considerations of piezoelectric ultrasonic transducers will be addressed. Then, the popular piezoelectric single crystals used for ultrasonic transducer applications, including LiNbO...

  14. Ultraviolet Photoelectric Effect in ZrO2 Single Crystals

    Institute of Scientific and Technical Information of China (English)

    XING Jie; WANG Xu; ZHAO Kun; LI Jie; JIN Kui-Juan; HE Meng; ZHENG Dong-Ning; L(U) Hui-Bin

    2007-01-01

    Nanosecond photoelectric effect is observed in a ZrO2 single crystal at ambient temperature for the first time.The rise time is 20ns and the full width at half maximum is about 30ns for the photovoltaic pulse when the wafer surface of the ZrO2 single crystal is irradiated by 248nm KrF laser pulses. The experimental results show that ZrO2 single crystals may be a potential candidate in UV photodetectors.

  15. Volume reflection of ultrarelativistic particles in single crystals

    Directory of Open Access Journals (Sweden)

    V. A. Maisheev

    2007-08-01

    Full Text Available An analytical description of volume reflection of charged ultrarelativistic particles in bent single crystals is considered. The relation describing the angle of volume reflection as a function of the transversal energy is obtained. Different angle distributions of the scattered protons in single crystals are found. Results of calculations for 400 GeV protons scattered by the silicon single crystal are presented.

  16. Composite single crystal silicon scan mirror substrates Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Single crystal silicon is a desirable mirror substrate for scan mirrors in space telescopes. As diameters of mirrors become larger, existing manufacturing...

  17. Cryogenic Fluid Transfer Components Using Single Crystal Piezoelectric Actuators Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Cryogenic fluid transfer components using single crystal piezoelectric actuators are proposed to enable low thermal mass, minimal heat leak, low power consumption...

  18. Cryogenic Fluid Transfer Components Using Single Crystal Piezoelectric Actuators Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Cryogenic fluid transfer components using single crystal piezoelectric actuators are proposed to enable low thermal mass, minimal heat leak, low power consumption...

  19. Ultratough CVD single crystal diamond and three dimensional growth thereof

    Science.gov (United States)

    Hemley, Russell J [Washington, DC; Mao, Ho-kwang [Washington, DC; Yan, Chih-shiue [Washington, DC

    2009-09-29

    The invention relates to a single-crystal diamond grown by microwave plasma chemical vapor deposition that has a toughness of at least about 30 MPa m.sup.1/2. The invention also relates to a method of producing a single-crystal diamond with a toughness of at least about 30 MPa m.sup.1/2. The invention further relates to a process for producing a single crystal CVD diamond in three dimensions on a single crystal diamond substrate.

  20. Growth morphology and structural characteristic of C70single crystals

    Institute of Scientific and Technical Information of China (English)

    周维亚; 解思深; 吴源; 常保和; 王刚; 钱露茜

    1999-01-01

    Large size C70 single crystals with the dimension of more than 5 mm are grown from the vapor phase by controlling nucleation. X-ray diffraction and electron diffraction confirm that in the C70 single crystal a phase of the hexagonal close-packed (hcp) structure coexists with a minor face-center-cubic (fcc) phase at room temperature. The morphologies and their formation mechanism of the C70 single crystals are investigated by means of scanning electron microscopy and optical microscopy. The influence of growth conditions on the morphologies of C70 single crystals is discussed.

  1. Spectroscopic and crystal field studies of Nd3+ in GdCa4O(BO3)3 and YCa4O(BO3)3

    Science.gov (United States)

    Lupei, A.; Antic-Fidancev, E.; Aka, G.; Vivien, D.; Aschehoug, P.; Goldner, Ph.; Pellé, F.; Gheorghe, L.

    2002-06-01

    The calcium rare-earth oxoborate crystals RCa4O(BO3)3-RCOB with R3+ as Gd3+ or Y3+ represent promising laser and nonlinear materials for the development of compact near IR and visible laser sources. New results on Nd3+ spectral characteristics in GdCOB and YCOB crystals in connection to the crystal structure are presented. Low-temperature absorption and selectively excited emission spectra of Nd3+ in RCOB crystals, grown by the Czochralski method in iridium crucible, present one prevailing center corresponding to Nd3+ ions in the R3+ site of Cs symmetry and at least three minority centers. Crystal field modeling gives a set of free ion and crystal field parameters that describe well the experimentally obtained energy level schemes for the main centers. A comparison between the Nd3+ crystal field splittings in RCOB and those of the C2 site in C-type Y 2O3 in terms of rare-earth environments is made. The selectively excited emission, lifetimes, and structural data were used to elucidate the nature of the minority centers. Two of the them were associated with Nd3+ in R3+ sites slightly perturbed by charged intrinsic lattice defects of nonstoichiometric or inversion Gd3+ (Y3+)Ca2+ type, while the third Nd3+ center is assigned to Nd3+ in a Ca2+ site. Other features of the spectra such as vibronics or homogeneous linewidths are also discussed. The Gaussian line shape and main contributions to inhomogeneous broadening are analyzed. An additional source of broadening for Nd3+ in YCOB is revealed.

  2. Single crystal studies of platinum alloys for oxygen reduction electrodes

    DEFF Research Database (Denmark)

    Ulrikkeholm, Elisabeth Therese

    In this thesis the discovery, characterization and testing of new catalysts for the oxygen reduction reaction (ORR) is investigated. Experiments on sputter cleaned, polycrystalline Pt5Y and Pt5Gd crystals have shown that these alloys are excelent candidates for catalysts for the ORR. To mimic...... was performed on the samples as prepared, and after electrochemical cycling between 0.05 V and 1.0 V VS. RHE. and between 0.05 V and 1.2 V VS. RHE. Diffraction experiments carried out after the cycling to 1.0 V showed that an overlayer with crystalline order had been formed on the Y/Pt(111) sample and the Gd....../Pt(111) samples. These overlayers were slightly compressed compared to pure platinum and had a 6-fold symmetry. After cycling to 1.2 V VS. RHE. the correlation length of the overlayer on the Gd/Pt(111) sample had decreased significantly, and the overlayer on the Y/Pt(111) had disappeared completely...

  3. Employing a cylindrical single crystal in gas-surface dynamics

    NARCIS (Netherlands)

    Hahn, C.; Shan, J.; Liu, Y.; Berg, van den O.; Kleijn, A.W.; Juurlink, L.B.F.

    2012-01-01

    We describe the use of a polished, hollow cylindrical nickel single crystal to study effects of step edges on adsorption and desorption of gas phase molecules. The crystal is held in an ultra-high vacuum apparatus by a crystal holder that provides axial rotation about a [100] direction, and a crysta

  4. Hot Corrosion of Coated Single Crystal Superalloys

    Energy Technology Data Exchange (ETDEWEB)

    Simms, N. J.; Encinas-Oropesa, A.; Nicholls, J.R. [Cranfield University, Power Generation Technology Centre, Cranfield, Beds, MK43 0AL (United Kingdom)

    2004-07-01

    Gas turbines are at the heart of many modern power systems, with combined cycle power generation utilising natural gas being an effective way of reducing environmental emissions compared to conventional pulverized coal fired plants. The development of gas turbine technology has been focused on increasing its efficiency. However, the lives of the hot gas path components within these gas turbines are also critical to the viability of the power systems. Single crystal superalloys have been developed for use with clean fuel/air but are now being used in industrial gas turbines that may need to run with dirtier fuel/air. Indeed, gas turbine based power systems are being evaluated in which solid fuels (e.g. coal and/or biomass) are gasified to produce fuel gases, which introduces the potential for significant corrosive and erosive damage to gas turbine blades and vanes. The performance of these materials, with coatings, has to be determined before they can be used with confidence in dirtier fuel environments. This paper reports results from a series of laboratory tests carried out using the 'deposit replenishment' technique to investigate the sensitivity of candidate materials to exposure conditions anticipated in such gas turbines. The materials investigated have included CMSX-4 and SC{sup 2}-B (both bare and with Pt-Al and Amdry 997 coatings) as well as conventional nickel based superalloys such as IN738LC for comparison. The exposure conditions within the laboratory tests have covered ranges of SO{sub x} (50 and 500 vpm) and HCl (0 and 500 vpm) in air, as well as 4/1 (Na/K){sub 2}SO{sub 4} deposits, with deposition fluxes of 1.5, 5 and 15 {mu}g/cm{sup 2}/h, for periods of up to 500 hours at 700 and 900 deg. C. Data on the performance of materials has been obtained using dimensional metrology: pre-exposure contact measurements and post-exposure measurements of features on polished cross-sections. These measurement methods allow distributions of damage data to

  5. Mesoporous zeolite and zeotype single crystals synthesized in fluoride media

    DEFF Research Database (Denmark)

    Egeblad, Kresten; Kustova, Marina; Klitgaard, Søren Kegnæs

    2007-01-01

    We report the synthesis and characterization of a series of new mesoporous zeolite and zeotype materials made available by combining new and improved procedures for directly introducing carbon into reaction mixtures with the fluoride route for conventional zeolite synthesis. The mesoporous...... characterized by XRPD, SEM, TEM and N-2 physisorption measurements. For the zeolite materials it A as found that mesoporous MFI and MEL structured single crystals could indeed be crystallized from fluoride media using an improved carbon-templating approach. More importantly, it was found that mesoporous BEA......-type single crystals could be crystallized from fluoride media by a newly developed procedure presented here. Thus, we here present the only known route to mesoporous BEA-type single crystals, since crystallization of this framework structure from basic media is known to give only nanosized crystals...

  6. Optical characterization of ferroelectric glycinium phosphite single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Perumal, R.; Senthil Kumar, K. [Crystal Growth Centre, Anna University, Sardar Patel Road, Chennai, Tamil Nadu 600025 (India); Moorthy Babu, S., E-mail: babu@annauniv.ed [Crystal Growth Centre, Anna University, Sardar Patel Road, Chennai, Tamil Nadu 600025 (India); Bhagavannarayana, G. [Crystal Growth and Crystallography Section, National Physical Laboratory, CSIR, Dr. K.S. Krishnan Marg, New Delhi 110012 (India)

    2010-02-04

    Single crystals of glycinium phosphite (GPI) were grown by isothermal evaporation and conventional temperature-lowering techniques. Single crystal and powder X-ray diffraction analysis confirm the monoclinic structure of the as grown crystals. The structural perfection of the as grown crystal was determined through HRXRD analysis. FTIR and Raman analysis revealed the functional groups present in the grown crystals. The optical absorption of the grown crystal was analyzed and the refractive index values for different wavelengths were measured by prism coupling technique. Thermal stability, melting temperature and phase transition temperature of the as grown crystals were identified from TGA/DSC analysis. The dielectric impedance analysis indicates the continuous phase transition nature of the grown crystals. The mechanical strength and hardening co-efficient were determined from Vicker's microhardness measurements for different loads with constant dwell time. The growth mechanism and the defects were analyzed through chemical etching analysis from various crystallographic planes and etching periods.

  7. Gd12Co5.3Bi and Gd12Co5Bi, Crystalline Doppelgänger with Low Thermal Conductivities.

    Science.gov (United States)

    Oliynyk, Anton O; Sparks, Taylor D; Gaultois, Michael W; Ghadbeigi, Leila; Mar, Arthur

    2016-07-05

    Attempts to prepare Gd12Co5Bi, a member of the rare-earth (RE) intermetallics RE12Co5Bi, which were identified by a machine-learning recommendation engine as potential candidates for thermoelectric materials, led instead to formation of the new compound Gd12Co5.3Bi with a very similar composition. Phase equilibria near the Gd-rich corner of the Gd-Co-Bi phase diagram were elucidated by both lab-based and variable-temperature synchrotron powder X-ray diffraction, suggesting that Gd12Co5.3Bi and Gd12Co5Bi are distinct phases. The higher symmetry structure of Gd12Co5.3Bi (cubic, space group Im3̅, Z = 2, a = 9.713(6) Å), as determined from single-crystal X-ray diffraction, is closely related to that of Gd12Co5Bi (tetragonal, space group Immm). Single Co atoms and Co-Co dumbbells are disordered with occupancies of 0.78(2) and 0.22(2), respectively, in Gd12Co5.3Bi, but they are ordered in Gd12Co5Bi. Consistent with this disorder, the electrical resistivity shows less dependence on temperature for Gd12Co5.3Bi than for Gd12Co5Bi. The thermal conductivity is low and reaches 2.8 W m(-1) K(-1) at 600 °C for both compounds; however, the temperature dependence of the thermal conductivity differs, decreasing for Gd12Co5.3Bi and increasing for Gd12Co5Bi as the temperature increases. The unusual trends in thermal properties persist in the heat capacity, which decreases below 2R, and in the thermal diffusivity, which increases at higher temperatures.

  8. Oxygen diffusion in single crystal barium titanate.

    Science.gov (United States)

    Kessel, Markus; De Souza, Roger A; Martin, Manfred

    2015-05-21

    Oxygen diffusion in cubic, nominally undoped, (100) oriented BaTiO3 single crystals has been studied by means of (18)O2/(16)O2 isotope exchange annealing and subsequent determination of the isotope profiles in the solid by time-of-flight secondary ion mass spectrometry (ToF-SIMS). Experiments were carried out as a function of temperature 973 coefficient ks*, the space-charge potential Φ0 and the bulk diffusion coefficient D*(∞). Analysis of the temperature and oxygen activity dependencies of D*(∞) and Φ0 yields a consistent picture of both the bulk and the interfacial defect chemistry of BaTiO3. Values of the oxygen vacancy diffusion coefficient DV extracted from measured D*(∞) data are compared with literature data; consequently a global expression for the vacancy diffusivity in BaTiO3 for the temperature range 466 < T/K < 1273 is obtained, with an activation enthalpy of vacancy migration, ΔHmig,V = (0.70 ± 0.04) eV.

  9. Thermomechanical fatigue in single crystal superalloys

    Directory of Open Access Journals (Sweden)

    Moverare Johan J.

    2014-01-01

    Full Text Available Thermomechanical fatigue (TMF is a mechanism of deformation which is growing in importance due to the efficiency of modern cooling systems and the manner in which turbines and associated turbomachinery are now being operated. Unfortunately, at the present time, relatively little research has been carried out particularly on TMF of single crystal (SX superalloys, probably because the testing is significantly more challenging than the more standard creep and low cycle fatigue (LCF cases; the scarcity and relative expense of the material are additional factors. In this paper, the authors summarise their experiences on the TMF testing of SX superalloys, built up over several years. Emphasis is placed upon describing: (i the nature of the testing method, the challenges involved in ensuring that an given testing methodology is representative of engine conditions (ii the behaviour of a typical Re-containing second generation alloy such as CMSX-4, and its differing performance in out-of-phase/in-phase loading and crystallographic orientation and (iii the differences in behaviour displayed by the Re-containing alloys and new Re-free variants such as STAL15. It is demonstrated that the Re-containing superalloys are prone to different degradation mechanisms involving for example microtwinning, TCP precipitation and recrystallisation. The performance of STAL15 is not too inferior to alloys such as CMSX-4, suggesting that creep resistance itself does not correlate strongly with resistance to TMF. The implications for alloy design efforts are discussed.

  10. Excitonic polaritons of zinc diarsenide single crystals

    Science.gov (United States)

    Syrbu, N. N.; Stamov, I. G.; Zalamai, V. V.; Dorogan, A.

    2017-02-01

    Excitonic polaritons of ZnAs2 single crystals had been investigated. Parameters of singlet excitons with D2bar(z) symmetry and orthoexcitons 2D1bar(y)+D2bar(x) had been determined. Spectral dependencies of ordinary and extraordinary dispersion of refractive index had been calculated using interferential reflection and transmittance spectra. It was shown, that A excitonic series were due to hole (V1) and electron (C1) bands. The values of effective masses of electrons (mc*=0.10 m0) and holes (mv1*=0.89 m0) had been estimated. It was revealed that the hole mass mv1* changes from 1.03 m0 to 0.55 m0 at temperature increasing from 10 K up to 230 K and that the electron mass mc* does not depend on temperature. The integral absorption A (eV cm-1) of the states n=1, 2 and 3 of D2bar(z) excitons depends on the An≈n-3 equality, which it is characteristic for S-type excitonic functions. Temperature dependences of the integral absorption of ground states for D2bar(z) and D2bar(D) excitons differ. The ground states of B and C excitons formed by V3 - C1 and V4 - C1 bands and its parameters had been determined.

  11. Growth and Characterization on PMN-PT-Based Single Crystals

    Directory of Open Access Journals (Sweden)

    Jian Tian

    2014-07-01

    Full Text Available Lead magnesium niobate—lead titanate (PMN-PT single crystals have been successfully commercialized in medical ultrasound imaging. The superior properties of PMN-PT crystals over the legacy piezoelectric ceramics lead zirconate titanate (PZT enabled ultrasound transducers with enhanced imaging (broad bandwidth and improved sensitivity. To obtain high quality and relatively low cost single crystals for commercial production, PMN-PT single crystals were grown with modified Bridgman method, by which crystals were grown directly from stoichiometric melt without flux. For ultrasound imaging application, [001] crystal growth is essential to provide uniform composition and property within a crystal plate, which is critical for transducer performance. In addition, improvement in crystal growth technique is under development with the goals of improving the composition homogeneity along crystal growth direction and reducing unit cost of crystals. In recent years, PIN-PMN-PT single crystals have been developed with higher de-poling temperature and coercive field to provide improved thermal and electrical stability for transducer application.

  12. Single crystal micromechanical resonator and fabrication methods thereof

    Energy Technology Data Exchange (ETDEWEB)

    Olsson, Roy H.; Friedmann, Thomas A.; Homeijer, Sara Jensen; Wiwi, Michael; Hattar, Khalid Mikhiel; Clark, Blythe; Bauer, Todd; Van Deusen, Stuart B.

    2016-12-20

    The present invention relates to a single crystal micromechanical resonator. In particular, the resonator includes a lithium niobate or lithium tantalate suspended plate. Also provided are improved microfabrication methods of making resonators, which does not rely on complicated wafer bonding, layer fracturing, and mechanical polishing steps. Rather, the methods allow the resonator and its components to be formed from a single crystal.

  13. Single crystal micromechanical resonator and fabrication methods thereof

    Science.gov (United States)

    Olsson, Roy H.; Friedmann, Thomas A.; Homeijer, Sara Jensen; Wiwi, Michael; Hattar, Khalid Mikhiel; Clark, Blythe; Bauer, Todd; Van Deusen, Stuart B.

    2016-12-20

    The present invention relates to a single crystal micromechanical resonator. In particular, the resonator includes a lithium niobate or lithium tantalate suspended plate. Also provided are improved microfabrication methods of making resonators, which does not rely on complicated wafer bonding, layer fracturing, and mechanical polishing steps. Rather, the methods allow the resonator and its components to be formed from a single crystal.

  14. Azeotropic binary solvent mixtures for preparation of organic single crystals

    NARCIS (Netherlands)

    Li, X.; Kjellander, B.K.C.; Anthony, J.E.; Bastiaansen, C.W.M.; Broer, D.J.; Gelinck, G.H.

    2009-01-01

    Here, a new approach is introduced to prepare large single crystals of π-conjugated organic molecules from solution. Utilizing the concept of azeotropism, single crystals of tri-isopropylsilylethynyl pentacene (TIPS-PEN) with dimensions up to millimeters are facilely self-assembled from homogeneous

  15. Growth of centimeter-sized C60 single crystals

    Institute of Scientific and Technical Information of China (English)

    李宏年; 徐亚伯; 张建华; 何丕模; 李海洋; 吴太权; 鲍世宁

    2001-01-01

    C60 single crystals larger than one centimeter in size are grown with vapor method by nucleation control and by a proper time-dependent temperature process which allows only one nucleus growing larger and larger. X-ray diffraction patterns exhibit the high quality of the sample. As an example of the applications of large single C60 crystals,svnchrotron radiation photoemission spectra are measured to investigate the fine structure of valence bands of C60 crystals.

  16. Crystal growth, structure, and physical properties of Ln(Cu,Al)12 (Ln = Y, Ce, Pr, Sm, and Yb) and Ln(Cu, Ga)12 (Ln = Y, Gd-Er, and Yb).

    Science.gov (United States)

    Drake, Brenton L; Capan, C; Cho, Jung Young; Nambu, Y; Kuga, K; Xiong, Y M; Karki, A B; Nakatsuji, S; Adams, P W; Young, D P; Chan, Julia Y

    2010-02-17

    Single crystals of Ln(Cu,Al)12 and Ln(Cu,Ga)12 compounds (Ln = Y, Ce-Nd, Sm, Gd-Ho, and Yb for Al and Ln = Y, Gd-Er, Yb for Ga) have been grown by flux-growth methods and characterized by means of single-crystal x-ray diffraction, complemented with microprobe analysis, magnetic susceptibility, resistivity and heat capacity measurements. Ln(Cu,Ga)12 and Ln(Cu,Al)12 of the ThMn12 structure type crystallize in the tetragonal I4/mmm space group with lattice parameters a approximately 8.59 Å and c approximately 5.15 Å and a approximately 8.75 Å and c approximately 5.13 Å for Ga and Al containing compounds, respectively. For aluminium containing compounds, magnetic susceptibility data show Curie-Weiss paramagnetism in the Ce and Pr analogues down to 50 K with no magnetic ordering down to 3 K, whereas the Yb analogue shows a temperature-independent Pauli paramagnetism. Sm(Cu,Al)12 orders antiferromagnetically at T(N)approximately 5 K and interestingly exhibits Curie-Weiss behaviour down to 10 K with no Van Vleck contribution to the susceptibility. Specific heat data show that Ce(Cu,Al)12 is a heavy fermion antiferromagnet with T(N) approximately 2 K and with an electronic specific heat coefficient γ0 as large as 390 mJ K2 mol(-1). In addition, this is the first report of Pr(Cu,Al)12 and Sm(Cu,Al)12 showing an enhanced mass (approximately 80 and 120 mJ K(2) mol(-1)). For Ga containing analogues, magnetic susceptibility data also show the expected Curie-Weiss behaviour from Gd to Er, with the Yb analogue being once again a Pauli paramagnet. The antiferromagnetic transition temperatures range over 12.5, 13.5, 6.7, and 3.4 K for Gd, Tb, Dy, and Er. Metallic behaviour is observed down to 3 K for all Ga and Al analogues. A large positive magnetoresistance up to 150% at 9 T is also observed for Dy(Cu,Ga)12. The structure, magnetic, and transport properties of these compounds will be discussed.

  17. Study of effect of quenching and deformation on KCl: Gd3+ crystals by using conductivity measurements

    Indian Academy of Sciences (India)

    G Saibabu; A Ramachandra Reddy; D Srikanth

    2004-10-01

    The study of ionic conductivity vs reciprocal temperature of pure KCl and KCl crystal doped with 0.1, 0.3 and 0.5 mole% gadolinium has been carried out in as grown, quenched from elevated temperatures (100, 350 and 500°C) and annealed at various timings i.e. 2–3 h and deformed by different percentages. The plots exhibit three well-known regions, II, III and IV (extrinsic regions). The intrinsic region I was not observed in the plots as the conductivity measurements were taken up to 575°C. From the analysis of these plots, activation energies for the migration of cation vacancy and the association of gadolinium ion with cation vacancy in the lattice of KCl crystals are calculated. These values are compared with previously reported values. Further, an attempt is made to explain the existence of oxidation state of gadolinium ion in + 3 state rather than in + 2 state as reported earlier. The variation in conductivity with effect of concentration of impurity ion, quenching and annealing and deformation with various percentages are explained on the basis of formation of impurity vacancy dipoles, vacancy – vacancy pairs (which appear in the form of precipitation), storage of cation vacancies in the form of defects, introduction of fresh dislocations, etc.

  18. Effect of doping Gd3+ on crystal structure and luminescent properties of Sr2SiO4:Eu2+ phosphor

    Institute of Scientific and Technical Information of China (English)

    赵聪; 朱达川; 高唯; 韩涛; 彭玲玲; 涂铭旌

    2015-01-01

    Sr1.995–1.5xGdxSiO4:0.005Eu2+ phosphor series withx=0–0.08 molfor near-ultraviolet white light-emitting diodes (NUV w-LEDs) were synthesized via solid-state reaction method. XRD profile pattern and refinement results demonstrated that doping Gd3+ ions resulted in the phase transformation (β-Sr2SiO4→α’-Sr2SiO4). The photoluminescence spectrum of the sample withx=0 mol dis-played two emission peaks centered at 470 and 525 nm. The two-peak spectra became one-peak spectra with the Gd3+ concentration increasing. Actually, the fitting results demonstrated that the one-peak spectra were still composed of two single emission spectra. The photoluminescence intensity was improved and the CIE chromaticity coordinates were adjusted via doping Gd3+.

  19. Gamma multi-detectors and nuclear structure studies: search for superdeformed structures in {sup 147}Gd and {sup 144}Gd isotopes using Crystal Castle; simulation calculations for EUROGAM multi-detector definition; Multidetecteurs gamma et etudes de structure nucleaire: recherche avec le Chateau de Cristal de structures superdeformees dans les isotopes {sup 147}Gd et {sup 144}Gd; calculs de simulation pour la definition du multidetecteur EUROGAM

    Energy Technology Data Exchange (ETDEWEB)

    France, G. de

    1991-12-31

    Computer simulations have been used for the calculation of the new generation of 4 {pi}{gamma} multi-detectors (Castle Crystal) of EUROGAM system (phase I and II). Two superdeformed bands (I and II), comprising 16 and 13 transitions respectively, have been described for {sup 147}Gd nucleus during the {sup 122}Sn({sup 30}Si,5n) fusion-evaporation reaction in a 155 MeV bombardment energy. Dynamic inertia momentum similarities and gamma transition energy similarities have been observed between band I and {sup 148}Gd nucleus and between band II and {sup 146}Gd nucleus, respectively. These similarities can be related to a pseudo-spin symmetry. Calculations suggest the existence of an octupolar susceptibility in this mass region. {sup 144}Gd nucleus has been studied using {sup 120}Sn({sup 29}Si,5n) fusion-evaporation reaction in a 155 MeV bombardment energy and using {sup 100}Mo({sup 48}Ti,4n) reactions in a 200 MeV bombardment energy. {gamma}-{gamma} coincidences have revealed the existence of a 58 keV width valley in the matrix representation compatible with theoretical predictions. In spite of the evidence for about ten transitions during these experiments, no superdeformed structure has been demonstrated for {sup 144}Gd nucleus. (J.S.). 87 refs., 57 figs., 41 tabs.

  20. 光学浮区法生长的 GdFeO3单晶%GdFeO3 monocrystal prepared by optical floating zone method

    Institute of Scientific and Technical Information of China (English)

    王占亮; 武安华; 景财年; 占晟; 曹世勋; 徐军

    2013-01-01

      正交钙钛矿结构 GdFeO3材料是一种新型的磁光材料。采用光学浮区法生长磁光晶体 GdFeO3,通过多次试验,生长出的晶体直径达到8mm,长度为50~80mm,晶体截面抛光后未发现明显的夹杂物等缺陷。测试结果证明光学浮区法是生长 GdFeO3磁光晶体的有效方法。%  Gadolinium orthoferrite crystals (GdFeO3) with orthogonal perovskite structure is a novel magneto-optical crystal. The magneto-optical crystal GdFeO3 (gadolinium orthoferrite) was grown by floating zone method. The growth parameters were optimized and GdFeO3 single crystal was prepared with diameter of up to 8mm and length of 50-80mm. There are no visible inclusions on the polished surface. The test results prove that floating zone method is an effective technology to grow GdFeO3 magneto-optical crystal.

  1. Formation and spectral probing of transparent oxyfluoride glass-ceramics containing (Eu2+, Eu3+:BaGdF5) nano-crystals

    Science.gov (United States)

    Biswas, Kaushik; Balaji, S.; Karmakar, Prantik; Annapurna, K.

    2015-01-01

    In the present study, we report the formation of transparent glass-ceramics containing BaGdF5 nanocrystals under optimum ceramization of SiO2-BaF2-K2O-Sb2O3-GdF3-Eu2O3 based oxyfluoride glass and the energy transfer mechanisms in Eu2+ → Eu3+ and Gd3+ → Eu3+ has been interpreted through luminescence study. The modification of local environment surrounding dopant ion in glass and glass ceramics has been studied using Eu3+ ion as spectral probe. The optimum ceramization temperature was determined from the differential scanning calorimetry (DSC) thermogram which revealed that the glass transition temperature (Tg), the crystallization onset temperature (Tx), and crystallization peak temperature (Tp) are 563 °C, 607 °C and 641 °C, respectively. X-ray diffraction pattern of the glass-ceramics sample displayed the presence of cubic BaGdF5 phase (JCPDS code: 24-0098). Transmission electron microscopy image of the glass-ceramics samples revealed homogeneous distribution of spherical fluoride nanocrystals ranging 5-15 nm in size. The emission transitions from the higher excited sates (5DJ, J = 1, 2, and 3) as well as lowered asymmetry ratio of the 5D0 → 7F2 transition (forced electric dipole transition) to that of the 5D0 → 7F1 transition (magnetic dipole) of Eu3+ in the glass-ceramics when compared to glass sample demonstrated the incorporation of dopant Eu3+ ions into the cubic BaGdF5 nanocrystals with higher local symmetry with enhanced ionic nature. The presence of absorption bands of Eu2+ ions and Gd3+ ions present in the glass matrix or fluoride nanocrystals in the excitation spectra of Eu3+ by monitoring emission at 614 nm indicated energy transfer from (Eu2+ → Eu3+) and (Gd3+ → Eu3+) in both glass and glass-ceramics samples.

  2. Investigation on Growth and Optical Properties of LVCC Single Crystals

    Directory of Open Access Journals (Sweden)

    N. Sheen Kumar

    2014-11-01

    Full Text Available L-valine cadmium chloride (LVCC single crystals were grown by slow evaporation technique with different concentrations (0.25, 0.5, 0.75 and 1.0 mole of CdCl2. All the grown crystals were subjected to single crystal X-ray diffraction analysis. Solid state parameters were calculated for the grown crystals. The optical properties of the crystals were investigated by UV-Vis. absorption spectroscopy. The results revealed that, the wider bandgap and large transparency in the visible region along with higher polarizability of the grown crystals are highly useful in optoelectronic devices. Also according to our needs, one can tune the optical and electrical properties of LVCC crystals by adjusting the concentration of CdCl2 in LVCC.

  3. Single crystal to single crystal transformation and hydrogen-atom transfer upon oxidation of a cerium coordination compound.

    Science.gov (United States)

    Williams, Ursula J; Mahoney, Brian D; Lewis, Andrew J; DeGregorio, Patrick T; Carroll, Patrick J; Schelter, Eric J

    2013-04-15

    Trivalent and tetravalent cerium compounds of the octamethyltetraazaannulene (H2omtaa) ligand have been synthesized. Electrochemical analysis shows a strong thermodynamic preference for the formal cerium(IV) oxidation state. Oxidation of the cerium(III) congener Ce(Homtaa)(omtaa) occurs by hydrogen-atom transfer that includes a single crystal to single crystal transformation upon exposure to an ambient atmosphere.

  4. Growth, structural and spectroscopic properties of Yb{sup 3+}-doped Li{sub 0.75}Gd{sub 0.75}Ba{sub 0.5}(MoO{sub 4}){sub 2} crystals

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Cortes, A. [Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Cientificas, c/ Sor Juana Ines de la Cruz, 3, Cantoblanco, 28049 Madrid (Spain); Cascales, C. [Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Cientificas, c/ Sor Juana Ines de la Cruz, 3, Cantoblanco, 28049 Madrid (Spain)], E-mail: ccascales@icmm.csic.es; Zaldo, C. [Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Cientificas, c/ Sor Juana Ines de la Cruz, 3, Cantoblanco, 28049 Madrid (Spain)], E-mail: cezaldo@icmm.csic.es

    2008-01-15

    Yb-doped Li{sub 0.75}Gd{sub 0.75}Ba{sub 0.5}(MoO{sub 4}){sub 2} crystals were grown in air by the Top Seeded Solution Growth slow cooling method in a Li{sub 2}Mo{sub 2}O{sub 7} flux. The single crystal X-ray diffraction analysis indicates the symmetry of monoclinic space group C2/c (No. 15), with lattice parameters a = 5.2355(3) A, b = 12.7396(8) A, c = 19.1626(11) A, {beta} = 91.170(1) deg., V = 1277.84(13) A{sup 3}, and Z = 8, with one 8f site shared (0.725:0.06:0.215) by Gd{sup 3+}, Yb{sup 3+} and Li{sup +} ions, respectively. The optical absorption and photoluminescence properties are described consistently with the anisotropic character of the monoclinic phase. The relative energies of the Yb{sup 3+} Stark levels have been determined, and in order to make a preliminary evaluation of its laser properties, values of the 300 K absorption and emission cross-sections have been derived.

  5. Excitonic polaritons of zinc diarsenide single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Syrbu, N.N., E-mail: sirbunn@yahoo.com [Technical University of Moldova, Chisinau, Republic of Moldova (Moldova, Republic of); Stamov, I.G. [T.G. Shevchenko State University of Pridnestrovie, Tiraspol, Republic of Moldova (Moldova, Republic of); Zalamai, V.V. [Institute of Applied Physics, Academy of Sciences of Moldova, Chisinau, Republic of Moldova (Moldova, Republic of); Dorogan, A. [Technical University of Moldova, Chisinau, Republic of Moldova (Moldova, Republic of)

    2017-02-01

    Excitonic polaritons of ZnAs{sub 2} single crystals had been investigated. Parameters of singlet excitons with Г{sub 2}¯(z) symmetry and orthoexcitons 2Г{sub 1}¯(y)+Г{sub 2}¯(x) had been determined. Spectral dependencies of ordinary and extraordinary dispersion of refractive index had been calculated using interferential reflection and transmittance spectra. It was shown, that A excitonic series were due to hole (V{sub 1}) and electron (C{sub 1}) bands. The values of effective masses of electrons (m{sub c}{sup *}=0.10 m{sub 0}) and holes (m{sub v1}{sup *}=0.89 m{sub 0}) had been estimated. It was revealed that the hole mass m{sub v1}{sup *} changes from 1.03 m{sub 0} to 0.55 m{sub 0} at temperature increasing from 10 K up to 230 K and that the electron mass m{sub c}{sup *} does not depend on temperature. The integral absorption A (eV cm{sup −1}) of the states n=1, 2 and 3 of Г{sub 2}¯(z) excitons depends on the A{sub n}≈n{sup −3} equality, which it is characteristic for S-type excitonic functions. Temperature dependences of the integral absorption of ground states for Г{sub 2}¯(z) and Г{sub 2}¯(Ñ…) excitons differ. The ground states of B and C excitons formed by V{sub 3} – C{sub 1} and V{sub 4} – C{sub 1} bands and its parameters had been determined.

  6. Optical and scintillation properties of Ce:(Gd8AE2)(SiO4)6O2 (AE = Mg, Ca, Sr and Ba) crystals

    Science.gov (United States)

    Igashira, Takuya; Mori, Masaki; Okada, Go; Kawaguchi, Noriaki; Yanagida, Takayuki

    2017-02-01

    1% Ce-doped and non-doped (Gd8AE2)(SiO4)6O2 (AE = Mg, Ca, Sr and Ba) (denoted as GMS, GCS, GSrS and GBS, respectively) single crystals were grown by the Floating Zone (FZ) method to evaluate their optical and scintillation properties. The Ce:GCS and Ce:GSrS samples exhibited scintillation and photoluminescence (PL) around 400 nm due to the 5d-4f transitions of Ce3+. On the other hand, Ce:GMS and Ce:GBS showed much weaker emissions in the wavelength range of 500-650 nm, in which the origin was associated with the host matrices. The PL decay curves were approximated by a double exponential decay function for all the Ce-doped samples. The decay times ranged around 10-30 and 40-90 ns, and faster components coincided with those of the non-doped samples. The scintillation decay curves of Ce-doped samples, on the other hand, were approximated by single exponential functions with slower decay constants than those of PL decay. These constants were very similar to those of non-doped samples. In the X-ray induced afterglow measurements, Ce:GCS exhibited the lowest afterglow level. The pulse height spectrum of these samples showed a full-energy peak under 241Am 5.5 MeV α-ray irradiation. Among these samples, Ce:GSrS exhibited the highest light yield which was around 600 ph/5.5 MeV-α.

  7. Comparative studies between the influence of single- and multi-walled carbon nanotubes addition on Gd-123 superconducting phase

    Science.gov (United States)

    Abou-Aly, A. I.; Anas, M.; Ebrahim, Shaker; Awad, R.; Eldeen, I. G.

    2016-12-01

    The effect of single-walled carbon nanotubes (SWCNTs) and multi-walled carbon nanotubes (MWCNTs) addition on the phase formation and the superconducting properties of GdBa2Cu3O7-δ phase has been studied. Therefore, composite superconductor samples of type (CNTs)x GdBa2Cu3O7-δ, 0.0 ≤ x ≤ 0.1 wt.% have been synthesized by a standard solid-state reaction technique. The samples have been characterized using X-ray powder diffraction (XRD), scanning electron microscope (SEM) and transmission electron microscope (TEM). The results of XRD show an enhancement in the phase formation up to 0.06 wt.% and 0.08 wt.% for SWCNTs and MWCNTs, respectively. SEM and TEM reveal that CNTs form an electrical network resulting in well-connected superconducting grains. The electrical properties of the prepared samples have been examined by electric resistivity and I-V measurements, and their results reinforce the XRD, SEM and TEM. Consequently, both Tc and Jc improve as the addition percentage increases up to 0.06 wt.% and 0.08 wt.% for SWCNTs and MWCNTs, respectively.

  8. Growth, thermal and spectral properties of Tm{sup 3+}, Ho{sup 3+} co-doped NaGd(MoO{sub 4}){sub 2} Crystal

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Chunhao [Key Laboratory of Optoelectronic Information and Sensing Technologies, Guangdong Higher Education Institutes, Guangzhou 510632 (China); Institute of Optoelectronic Engineering, Jinan University, Guangzhou 510632 (China); Yin, Hao, E-mail: yinhaoemail@jnu.edu.cn [Institute of Optoelectronic Engineering, Jinan University, Guangzhou 510632 (China); Key Laboratory of Optoelectronic Materials Chemistry and Physics, CAS, Fuzhou 350002 (China); Li, Anming; Wu, Yonghua; Zhu, Siqi [Key Laboratory of Optoelectronic Information and Sensing Technologies, Guangdong Higher Education Institutes, Guangzhou 510632 (China); Institute of Optoelectronic Engineering, Jinan University, Guangzhou 510632 (China); Chen, Zhenqiang, E-mail: tzqchen@jnu.edu.cn [Key Laboratory of Optoelectronic Information and Sensing Technologies, Guangdong Higher Education Institutes, Guangzhou 510632 (China); Institute of Optoelectronic Engineering, Jinan University, Guangzhou 510632 (China); Zhang, Ge [Key Laboratory of Optoelectronic Materials Chemistry and Physics, CAS, Fuzhou 350002 (China); Su, Kang [Key Laboratory of Optoelectronic Information and Sensing Technologies, Guangdong Higher Education Institutes, Guangzhou 510632 (China); Institute of Optoelectronic Engineering, Jinan University, Guangzhou 510632 (China)

    2014-12-05

    Highlights: • The Tm{sup 3+}/Ho{sup 3+}:NaGd(MoO{sub 4}){sub 2} crystal was grown by Czochralski method. • The optical characterizes and energy transfer process of Tm{sup 3+}/Ho{sup 3+}:NaGd(MoO{sub 4}){sub 2} crystal were studied. • This crystal exhibits a large absorption cross-section at 796 nm and broad emission band around 2 μm. • The results indicate that the crystal may be regarded as a potential solid-state laser material. - Abstract: A Tm{sup 3+}/Ho{sup 3+}:NaGd(MoO{sub 4}){sub 2} crystal was grown by the Czochralski method. The XRD results matched standard data from JCPDS file, which accorded with scheelite structure with an I41/a space group. Thermal properties of crystal were analyzed by using the TG–DSC curve. The melting point and specific heat are 1182 °C and 0.5 J/g K at 300 K, respectively. The Spectral properties of the Tm{sup 3+}/Ho{sup 3+}:NaGd(MoO{sub 4}){sub 2} crystal were investigated, including room temperature absorption spectrum and fluorescence spectrum. The absorption cross-section of Tm{sup 3+} at 796 nm is 4.33 × 10{sup −20} cm{sup 2} with pertinent full widths at half maximum (FWHM) of 10 nm. The intensity parameters, spontaneous emission probability, fluorescence branching ratios and radiative lifetimes were calculated by Judd–Ofelt theory. The emission cross-sections are 1.47 × 10{sup −20} cm{sup 2} and 1.36 × 10{sup −20} cm{sup 2} for Tm{sup 3+} at 1850 nm and Ho{sup 3+} at 2000 nm respectively. The lifetime of {sup 5}I{sub 7} → {sup 5}I{sub 8} (Ho{sup 3+}) was 4.263 ms.

  9. High-quality bulk hybrid perovskite single crystals within minutes by inverse temperature crystallization

    KAUST Repository

    Saidaminov, Makhsud I.

    2015-07-06

    Single crystals of methylammonium lead trihalide perovskites (MAPbX3; MA=CH3NH3+, X=Br− or I−) have shown remarkably low trap density and charge transport properties; however, growth of such high-quality semiconductors is a time-consuming process. Here we present a rapid crystal growth process to obtain MAPbX3 single crystals, an order of magnitude faster than previous reports. The process is based on our observation of the substantial decrease of MAPbX3 solubility, in certain solvents, at elevated temperatures. The crystals can be both size- and shape-controlled by manipulating the different crystallization parameters. Despite the rapidity of the method, the grown crystals exhibit transport properties and trap densities comparable to the highest quality MAPbX3 reported to date. The phenomenon of inverse or retrograde solubility and its correlated inverse temperature crystallization strategy present a major step forward for advancing the field on perovskite crystallization.

  10. High-quality bulk hybrid perovskite single crystals within minutes by inverse temperature crystallization

    Science.gov (United States)

    Saidaminov, Makhsud I.; Abdelhady, Ahmed L.; Murali, Banavoth; Alarousu, Erkki; Burlakov, Victor M.; Peng, Wei; Dursun, Ibrahim; Wang, Lingfei; He, Yao; Maculan, Giacomo; Goriely, Alain; Wu, Tom; Mohammed, Omar F.; Bakr, Osman M.

    2015-07-01

    Single crystals of methylammonium lead trihalide perovskites (MAPbX3; MA=CH3NH3+, X=Br- or I-) have shown remarkably low trap density and charge transport properties; however, growth of such high-quality semiconductors is a time-consuming process. Here we present a rapid crystal growth process to obtain MAPbX3 single crystals, an order of magnitude faster than previous reports. The process is based on our observation of the substantial decrease of MAPbX3 solubility, in certain solvents, at elevated temperatures. The crystals can be both size- and shape-controlled by manipulating the different crystallization parameters. Despite the rapidity of the method, the grown crystals exhibit transport properties and trap densities comparable to the highest quality MAPbX3 reported to date. The phenomenon of inverse or retrograde solubility and its correlated inverse temperature crystallization strategy present a major step forward for advancing the field on perovskite crystallization.

  11. Simulation of Single Crystal Growth: Heat and Mass Transfer

    CERN Document Server

    Zhmakin, A I

    2015-01-01

    The heat transfer (conductive, convective, radiative) and the related problems (the unknown phase boundary fluid/crystal, the assessment of the quality of the grown crystals) encountered in the melt and vapour growth of single crystal as well as the corresponding macroscopic models are reviewed. The importance of the adequate description of the optical crystal properties (semitransparency, absorption, scattering, refraction, diffuse and specular reflecting surfaces) and their effect on the heat transfer is stressed. The problems of the code verification and validation are discussed; differences between the crystal growth simulation codes intended for the research and for the industrial applications are indicated.

  12. On the growth of calcium tartrate tetrahydrate single crystals

    Indian Academy of Sciences (India)

    X Sahaya Shajan; C Mahadevan

    2004-08-01

    Calcium tartrate single crystals were grown using silica gel as the growth medium. Calcium formate mixed with formic acid was taken as the supernatant solution. It was observed that the nucleation density was reduced and the size of the crystals was improved to a large extent compared to the conventional way of growing calcium tartrate crystals with calcium chloride. The role played by formate–formic acid on the growth of crystals is discussed. The grown crystals were characterized by atomic absorption spectroscopy (AAS), X-ray diffraction analysis (XRD), microhardness measurement, Fourier transform infrared spectroscopy (FTIR), thermogravimetry (TG) and differential thermal analysis (DTA). The results obtained are compared with the previous work.

  13. Effect of Mg$^{2+}$ ions co-doping on timing performance and radiation tolerance of Cerium doped Gd$_{3}$Al$_{2}$Ga$_{3}$O$_{12}$ crystals

    CERN Document Server

    Lucchini, M.T.; Bohacek, P.; Gundacker, S.; Kamada, K.; Nikl, M.; Petrosyan, A.; Yoshikawa, A.; Auffray, E.

    2016-01-01

    Inorganic scintillators with high density and high light yield are of major interest for applications in medical imaging and high energy physics detectors. In this work, the optical and scintillation properties of Mg co-doped Ce:Gd3Al2Ga3O12 crystals, grown using Czochralski technique, have been investigated and compared with Ce:Gd3Al2Ga3O12 ones prepared with identical technology. Improvements in the timing performance of the Mg co-doped samples with respect to Ce:Gd3Al2Ga3O12 ones have been measured, namely a substantial shortening of the rise time and scintillation decay components and lower afterglow were achieved. In particular, a significantly better coincidence time resolution of 233 ps FWHM, being a fundamental parameter for TOF-PET devices, has been observed in Mg co-doped crystals. The samples have also shown a good radiation tolerance under high doses of γ-rays, making them suitable candidates for applications in harsh radiation environments, such as detectors at future collider experiments.

  14. Physicochemical principles of high-temperature crystallization and single crystal growth methods

    Science.gov (United States)

    Bagdasarov, Kh. S.

    The mechanisms of crystal growth are reviewed, with attention given to the physicochemical reactions taking place in the melt near the phase boundary; phenomena determining physical and chemical kinetics directly at the growth front; solid-phase processes occurring within the crystal. Methods for growing refractory single crystals are discussed with particular reference to the Verneuil method, zone melting, Czhochralskii growth, horizontal directional solidification, and the Stockbarger method. Methods for growing crystals of complex geometrical shapes are also discussed.

  15. The Growth of Large Single Crystals.

    Science.gov (United States)

    Baer, Carl D.

    1990-01-01

    Presented is an experiment which demonstrates principles of experimental design, solubility, and crystal growth and structure. Materials, procedures and results are discussed. Suggestions for adapting this activity to the high school laboratory are provided. (CW)

  16. Growing Single Crystals of Compound Semiconductors

    Science.gov (United States)

    Naumann, Robert J.; Lehoczky, Sandor L.; Frazier, Donald O.

    1987-01-01

    Defect reduced by preventing melt/furnace contact and suppressing convention. Large crystals of compound semiconductors with few defects grown by proposed new method. Such materials as gallium arsenide and cadmium telluride produced, with quality suitable for very-large-scale integrated circuits or for large focal-plane arrays of photodetectors. Method used on small scale in Earth gravity, but needs microgravity to provide crystals large enough for industrial use.

  17. The optical properties of bismuth germanium oxide single crystals

    Directory of Open Access Journals (Sweden)

    ANDREJA VALCIC

    2000-09-01

    Full Text Available Bi12GeO20 single crystals were grown by the Czochralski technique. Suitable polishing and etching solutions were determined. Reflection spectra were recorded in the wave numbers range 20–5000 cm–1, and compared with the spectra of Bi12SiO20 single crystals to study the position of the phonon modes. The optical constants of the Bi12GeO20 single crystals were obtained using Kramers-Kronig analysis. The obtained results are dicussed and compared with published data.

  18. Dielectric and baric characteristics of TlS single crystal

    Energy Technology Data Exchange (ETDEWEB)

    Mustafaeva, S.N., E-mail: solmust@gmail.com [Institute of Physics, ANAS, G. Javid prosp. 33, Az 1143 Baku (Azerbaijan); Asadov, M.M. [Institute of Chemical Problems, ANAS, G. Javid prosp. 29, Az 1143 Baku (Azerbaijan); Ismailov, A.A. [Institute of Physics, ANAS, G. Javid prosp. 33, Az 1143 Baku (Azerbaijan)

    2014-11-15

    The investigation of the frequency dependences of the dielectric coefficients and ac-conductivity of the TlS single crystals made it possible to elucidate the nature of dielectric loss and the charge transfer mechanism. Moreover, we evaluated the density and energy spread of localized states near the Fermi level, the average hopping time and the average hopping length. It was shown that the dc-conductivity of the TlS single crystals can be controlled by varying the hydrostatic pressure. This has opened up possibilities for using TlS single crystals as active elements of pressure detectors.

  19. Photon Cascade from a Single Crystal Phase Nanowire Quantum Dot

    DEFF Research Database (Denmark)

    Bouwes Bavinck, Maaike; Jöns, Klaus D; Zieliński, Michal

    2016-01-01

    unprecedented potential to be controlled with atomic layer accuracy without random alloying. We show for the first time that crystal phase quantum dots are a source of pure single-photons and cascaded photon-pairs from type II transitions with excellent optical properties in terms of intensity and line width...... quantum optical properties for single photon application and quantum optics.......We report the first comprehensive experimental and theoretical study of the optical properties of single crystal phase quantum dots in InP nanowires. Crystal phase quantum dots are defined by a transition in the crystallographic lattice between zinc blende and wurtzite segments and therefore offer...

  20. Growth and characterization of diammonium copper disulphate hexahydrate single crystal

    Energy Technology Data Exchange (ETDEWEB)

    Siva Sankari, R. [Department of Physics, Agni College of Technology, Thalambur, Chennai 603103 (India); Perumal, Rajesh Narayana, E-mail: r.shankarisai@gmail.com [Department of Physics, SSN College of Engineering, Kalavakkam, Chennai 603110 (India)

    2014-03-01

    Graphical abstract: Diammonium copper disulphate hexahydrate (DACS) is one of the most promising inorganic dielectric crystals with exceptional mechanical properties. Good quality crystals of DACS were grown by using solution method in a period of 30 days. The grown crystals were subjected to single crystal X-ray diffraction analysis in order to establish their crystalline nature. Thermo gravimetric, differential thermal analysis, FTIR, and UV–vis–NIR analysis were performed for the crystal. Several solid state physical parameters have been determined for the grown crystals. The dielectric constant and the dielectric loss and AC conductivity of the grown crystal were studied as a function of frequency and temperature has been calculated and plotted. - Highlights: • Diammonium copper disulphate is grown for the first time and CCDC number obtained. • Thermal analysis is done to see the stability range of the crystals. • Band gap and UV cut off wavelength of the crystal are determined to be 2.4 eV and 472.86 nm, respectively. • Dielectric constant, dielectric loss and AC conductivity are plotted as a function of applied field. - Abstract: Diammonium copper disulphate hexahydrate is one of the most promising inorganic crystals with exceptional dielectric properties. A good quality crystal was harvested in a 30-day period using solution growth method. The grown crystal was subjected to various characterization techniques like single crystal X-ray diffraction analysis, thermo gravimetric, differential thermal analysis, FTIR, and UV–vis–NIR analysis. Unit cell dimensions of the grown crystal have been identified from XRD studies. Functional groups of the title compounds have been identified from FTIR studies. Thermal stability of the samples was checked by TG/DTA studies. Band gap of the crystal was calculated. The dielectric constant and dielectric loss were studied as a function of frequency of the applied field. AC conductivity was plotted as a function

  1. Growth and characterization of organic material 4-dimethylaminobenzaldehyde single crystal

    Science.gov (United States)

    Jebin, R. P.; Suthan, T.; Rajesh, N. P.; Vinitha, G.; Madhusoodhanan, U.

    2015-01-01

    The organic material 4-dimethylaminobenzaldehyde single crystals were grown by slow evaporation technique. The grown crystal was confirmed by the single crystal and powder X-ray diffraction analyses. The functional groups of the crystal have been identified from the Fourier Transform Infrared (FTIR) and FT-Raman studies. The optical property of the grown crystal was analyzed by UV-Vis-NIR and photoluminescence (PL) spectral measurements. The thermal behavior of the grown crystal was analyzed by thermogravimetric (TG) and differential thermal analyses (DTA). Dielectric measurements were carried out with different frequencies by using parallel plate capacitor method. The third order nonlinear optical properties of 4-dimethylaminobenzaldehyde was measured by the Z-scan technique using 532 nm diode pumped continuous wave (CW) Nd:YAG laser.

  2. Single-Crystal Bismuth Iodide Gamma-Ray Spectrometers

    Science.gov (United States)

    2012-02-01

    grow high quality Bib single crystals (> 1 cm3 in volume) via a high temperature modified Bridgman crystal growth technique. We will then test and...methods to improve Bib crystals. Finally, test structures will be designed and their performance will be assessed using a variety of small, calibrated...characteristics of the test structures (basic material properties for Bib ). While the main objectives of the project have not changed, more emphasis is

  3. Single crystals of V Amylose complexed with glycerol

    NARCIS (Netherlands)

    Hulleman, S.H.D.; Helbert, W.; Chanzy, H.

    1996-01-01

    Lamellar single crystals of amylose V glycerol were grown at 100°C by evaporating water from solutions of amylose in aqueous glycerol. The crystals which were square, with lateral dimensions of several micrometers, gave sharp electron diffraction patterns presenting an orthorhombic symmetry with a p

  4. Growth features of ammonium hydrogen -tartrate single crystals

    Indian Academy of Sciences (India)

    G Sajeevkumar; R Raveendran; B S Remadevi; Alexander Varghese Vaidyan

    2004-08-01

    Ammonium hydrogen -tartrate (-AHT) single crystals were grown in silica gel. The growth features of these crystals with variation of parameters like specific gravity of the gel, gel pH, acid concentrations, concentration of the feed solution and gel age were studied in detail.

  5. Ellipsometric studies of ErMnO3 single crystals

    DEFF Research Database (Denmark)

    Babonas, G.-J.; Grivel, Jean-Claude; Reza, A.

    2007-01-01

    Ellipsometric studies of ErMnO3 single crystals have been carried out in the spectral range of 1-5 eV by means of photometric ellipsometers. Experimental ellipsometric data were analysed in the uniaxial crystal model. For the first time, the components of dielectric function of ErMnO3 were...

  6. Ellipsometric studies of ErMnO3 single crystals

    DEFF Research Database (Denmark)

    Babonas, G.-J.; Grivel, Jean-Claude; Reza, A.;

    2007-01-01

    Ellipsometric studies of ErMnO3 single crystals have been carried out in the spectral range of 1-5 eV by means of photometric ellipsometers. Experimental ellipsometric data were analysed in the uniaxial crystal model. For the first time, the components of dielectric function of ErMnO3 were...

  7. Synthesis, Growth, and Characterization of Bisglycine Hydrobromide Single Crystal

    Directory of Open Access Journals (Sweden)

    Koteeswari Pandurangan

    2014-01-01

    Full Text Available Single crystals of BGHB were grown by slow evaporation technique. The unit cell dimensions and space group of the grown crystals were confirmed by single crystal X-ray diffraction. The modes of vibration of the molecules and the presence of functional groups were identified using FTIR technique. The microhardness study shows that the Vickers hardness number of the crystal increases with the increase in applied load. The optical properties of the crystals were determined using UV-Visible spectroscopy. The thermal properties of the grown crystal were also determined. The refractive index was determined as 1.396 using Brewster’s angle method. The emission of green light on passing the Nd: YAG laser light confirmed the second harmonic generation property of the crystals and the SHG efficiency of the crystals was found to be higher than that of KDP. The dielectric constant and dielectric loss measurements were carried out for different temperatures and frequencies. The ac conductivity study of the crystals was also discussed. The photoconductivity studies confirm that the grown crystal has negative photoconductivity nature. The etching studies were carried out to study the formation of etch pits.

  8. Dielectric behaviour of strontium tartrate single crystals

    Indian Academy of Sciences (India)

    S K Arora; Vipul Patel; Brijesh Amin; Anjana Kothari

    2004-04-01

    Strontium tartrate trihydrate (STT) crystals have been grown in silica hydrogel. Various polarization mechanisms such as atomic polarization of lattice, orientational polarization of dipoles and space charge polarization in the grown crystals have been understood using results of the measurements of dielectric constant (') and dielectric loss (tan ) as functions of frequency and temperature. Ion core type polarization is seen in the temperature range 75–180°C, and above 180°C, there is interfacial polarization for relatively lower frequency range. One observes dielectric dispersion at lower frequency presumably due to domain wall relaxation.

  9. Growth and luminescent properties of single crystalline films of Ce3+ doped Pr1-xLuxAlO3 and Gd1-xLuxAlO3 perovskites

    Science.gov (United States)

    Zorenko, Yu; Gorbenko, V.; Zorenko, T.; Voznyak, T.; Riva, F.; Douissard, P. A.; Martin, T.; Fedorov, A.; Suchocki, A.; Zhydachevskii, Ya.

    2017-01-01

    The paper is dedicated to development of UV emitting scintillating screens for microimaging applications based on the single crystalline films (SCFs) of Ce doped Gd1-xLuxAlO3 and Pr1-xLuxAlO3 (x=0-1) multicomponent perovskites grown onto YAlO3 (YAP) substrates using the liquid phase epitaxy (LPE) method with the objective to improve the X-ray stopping power. Recently Riva et al. [1] have reported that the full set of GdxLu1-xAlO3 SCFs with x values in x=0-1.0 range can be crystallized on YAP substrates using this technique. We report here that PrxLu1-xAlO3 SCFs with x values in x=0-0.5 range can be grown also by the LPE method from PbO-B2O3 flux onto the same YAP substrates. The structural quality of the films was studied using X-ray diffraction. The optical properties of Ce3+ doped of Gd1-xLuxAlO3 and Pr1-xLuxAlO3 (x=0-1) multicomponent perovskite films, studied by traditional spectroscopic methods, such as absorption, cathodoluminescence, photoluminescence and light yield measurements under α-particles excitation, are also reported in this work. We have shown that Pb2+ flux related impurity has significantly larger influence on the light yield of Pr0.5Lu0.5AlO3:Ce, GdAlO3:Ce and Gd0.5Lu0.5AlO3:Ce SCFs in comparison with the YAP:Ce and LuAlO3:Ce counterparts grown onto YAP substrates.

  10. GROWTH AND SPECTRAL PROPERTIES OF Er:LiGdF4 CRYSTAL%Er:LiGdF4晶体生长及光谱性能

    Institute of Scientific and Technical Information of China (English)

    李春; 张莹; 张学建; 林海; TONELLI M; Di LIETO A; 王成伟; 曾繁明; 刘景和

    2010-01-01

    采用提拉法生长出掺铒氟化钆锂(Er3+:LiGdF4,Er:LGF)激光晶体.晶体生长工艺参数为:提拉速率为0.16mm/h,晶体转速为3 r/min,冷却速率为lO℃/h.X射线粉末衍射分析表明:晶体属于四方晶系,白钨矿结构,空间群为I41/a,计算的晶胞参数:a=0.5196nm,c=1.102 86nm.晶体的吸收光谱和荧光光谱表明:晶体在659,980nm和1 540nm附近的吸收峰较强,其中在1 540nm处的吸收截面为1.09×10-20cm2.在激光二极管的532nm波长泵浦下,发射峰分别位于995nm和1 530nm附近,其中1 530nm处的半高宽为52nm.

  11. Process for Forming a High Temperature Single Crystal Canted Spring

    Science.gov (United States)

    DeMange, Jeffrey J (Inventor); Ritzert, Frank J (Inventor); Nathal, Michael V (Inventor); Dunlap, Patrick H (Inventor); Steinetz, Bruce M (Inventor)

    2017-01-01

    A process for forming a high temperature single crystal canted spring is provided. In one embodiment, the process includes fabricating configurations of a rapid prototype spring to fabricate a sacrificial mold pattern to create a ceramic mold and casting a canted coiled spring to form at least one canted coil spring configuration based on the ceramic mold. The high temperature single crystal canted spring is formed from a nickel-based alloy containing rhenium using the at least one coil spring configuration.

  12. HEiDi: Single crystal diffractometer at hot source

    Directory of Open Access Journals (Sweden)

    Martin Meven

    2015-08-01

    Full Text Available The single crystal diffractometer HEiDi, which is operated by the Institute of Crystallography, RWTH Aachen University and JCNS, Forschungszentrum Jülich, is designed for detailed studies on structural and magnetic properties of single crystals using unpolarised neutrons and Bragg’s Law: 2dhklsinθ = λ (typically 0.55 Å <λ< 1.2 Å.

  13. Scintillating screens for micro-imaging based on the Ce-Tb doped LuAP single crystal films

    OpenAIRE

    Douissard, Paul-Antoine; MARTIN, Thierry; Riva, Federica; Mathieu, Eric; Zorenko, Yuriy; Savchyn, Volodymyr; Zorenko, Tetyana; Fedorov, Alexander

    2014-01-01

    Single Crystal Film (SCF) scintillators are key-components of today's high-resolution 2D X-ray detectors used at synchrotrons for applications such as X-ray Radiography, Computed Tomography (CT), laminography, full-field XANES, and topography. Due to its high density and effective atomic number, LuAlO3 (LuAP) perovskite has a great potential to replace or complement the currently used Eu-doped Gd3Ga5O12 (GGG:Eu) and Tb-doped Lu2SiO5 (LSO:Tb) SCFs. In this article we present the growth of LuAP...

  14. Blocks and residual stresses in shaped sapphire single crystals

    Science.gov (United States)

    Krymov, V. M.; Nosov, Yu. G.; Bakholdin, S. I.; Maslov, V. N.; Shul‧pina, I. L.; Nikolaev, V. I.

    2017-01-01

    The formation of blocks and residual stresses in shaped sapphire crystals grown from the melt by the Stepanov method (EFG) has been studied. The probability of block formation is higher for the growth along the c axis compared to that grown in the a-axis direction. The distribution of residual stress in sapphire crystals of tubular, rectangular and round cross section was measured by the conoscopy method. It was found that the magnitude of the residual stress increases from the center to the periphery of the crystal and reaches up to about 20 MPa. Residual stress tensor components for solid round rod and tubular single crystals were determined by numerical integration.

  15. Synthesis and Crystal Structure of Lanthanide Heteropolymolybdate Complex(NH4)11Gd[Gd4Mo29O100(H2O)23]·25.75H2O

    Institute of Scientific and Technical Information of China (English)

    黄金凤; 王世铭; 林深; 蔡秀真; 林祥

    2000-01-01

    The title complex crystallizes in the triclinic system, space group P1with a = 16.9568(5), b = 18.8631(6), c =24. 1640(8) (A。), α = 100. 110(1), β=92.330(1), γ=113.368(1)°, V=7602.54(4) (A。)3, Dc =3.002 g/crn3, F(000) =5893, Mr=6245.25, μ(MoKα)=5.010mm-1, Z=2andfinalR=0.0722and wR = 0. 1960 for 16015 observed reflections with Ⅰ≥2σ(Ⅰ). The Gd( Ⅲ ) ion is coordinated by nine oxygen atoms, forming a distorted mono-capped square antiprism, while the Mo( Ⅵ ) ions have their different coordination numbers such as 4, 5 and 6 with different configurations such as tetrahedron, squar e pyramid and octahedron, respectively.

  16. Fast crystallization of amorphous Gd{sub 2}Zr{sub 2}O{sub 7} induced by thermally activated electron-beam irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Zhangyi; Qi, Jianqi, E-mail: qijianqi@scu.edu.cn; Zhou, Li; Feng, Zhao; Yu, Xiaohe [College of Physical Science and Technology, Sichuan University, Chengdu 610064 (China); Key Laboratory of Radiation Physics and Technology of Ministry of Education, Sichuan University, Chengdu 610064 (China); Gong, Yichao [College of Materials Science and Engineering, Sichuan University, Chengdu 610064 (China); Yang, Mao; Wei, Nian [College of Physical Science and Technology, Sichuan University, Chengdu 610064 (China); Key Laboratory of High Energy Density Physics of Ministry of Education, Sichuan University, Chengdu 610064 (China); Shi, Qiwu [College of Physical Science and Technology, Sichuan University, Chengdu 610064 (China); College of Materials Science and Engineering, Sichuan University, Chengdu 610064 (China); Lu, Tiecheng, E-mail: lutiecheng@scu.edu.cn [College of Physical Science and Technology, Sichuan University, Chengdu 610064 (China); Key Laboratory of Radiation Physics and Technology of Ministry of Education, Sichuan University, Chengdu 610064 (China); Key Laboratory of High Energy Density Physics of Ministry of Education, Sichuan University, Chengdu 610064 (China)

    2015-12-07

    We investigate the ionization and displacement effects of an electron-beam (e-beam) on amorphous Gd{sub 2}Zr{sub 2}O{sub 7} synthesized by the co-precipitation and calcination methods. The as-received amorphous specimens were irradiated under electron beams at different energies (80 keV, 120 keV, and 2 MeV) and then characterized by X-ray diffraction and transmission electron microscopy. A metastable fluorite phase was observed in nanocrystalline Gd{sub 2}Zr{sub 2}O{sub 7} and is proposed to arise from the relatively lower surface and interface energy compared with the pyrochlore phase. Fast crystallization could be induced by 120 keV e-beam irradiation (beam current = 0.47 mA/cm{sup 2}). The crystallization occurred on the nanoscale upon ionization irradiation at 400 °C after a dose of less than 10{sup 17} electrons/cm{sup 2}. Under e-beam irradiation, the activation energy for the grain growth process was approximately 10 kJ/mol, but the activation energy was 135 kJ/mol by calcination in a furnace. The thermally activated ionization process was considered the fast crystallization mechanism.

  17. Growth and characterization of organic single crystal benzyl carbamate

    Science.gov (United States)

    Bala Solanki, S. Siva; Perumal, Rajesh Narayana; Suthan, T.; Bhagavannarayana, G.

    2015-10-01

    Benzyl carbamate single crystal is grown by a solution and vertical Bridgman technique for the first time. The cell parameters and morphologies are assessed from single crystal X-ray diffraction analysis. High resolution X-ray diffraction analysis indicates the crystalline perfection of the grown benzyl carbamate crystal. Fourier Transforms Infrared spectroscopy study has been applied to arrive at the different functional groups. Thermo gravimetric analysis and differential scanning calorimetry are used to study its thermal behavior. The microhardness test is carried out and the load dependent hardness is measured.

  18. Studies on crystal growth and physical properties of 2-amino-5-chloropyridine single crystal

    Energy Technology Data Exchange (ETDEWEB)

    Suthan, T. [Centre for Crystal Growth, SSN College of Engineering, Kalavakkam 603 110 (India); Rajesh, N.P., E-mail: rajeshnp@hotmail.com [Centre for Crystal Growth, SSN College of Engineering, Kalavakkam 603 110 (India); Mahadevan, C.K. [Physics Research Centre, S.T. Hindu College, Nagercoil 629 002 (India); Bhagavannarayana, G. [C.G.C. Section, National Physical Laboratory, New Delhi 110 012 (India)

    2011-09-15

    Graphical abstract: 2-Amino-5-chloropyridine single crystal. Highlights: {yields} 2-Amino-5-chloropyridine single crystals grown by slow evaporation technique. {yields} Use acetone as solvent. {yields} Grown crystal conformed by XRD and FTIR. {yields} HRXRD, optical, thermal, dielectric and mechanical studies were analyzed. - Abstract: Organic 2-amino-5-chloropyridine single crystals have been grown by slow evaporation technique successfully. The grown crystal was confirmed by single and powder X-ray diffraction studies. The presence of functional groups was identified by Fourier transform infrared (FTIR) study. High resolution X-ray diffraction (HRXRD) analysis indicates the crystalline perfection of the grown crystal. UV-Vis-NIR analysis was performed to examine the optical property of the grown crystal. The thermal property of the grown crystal was studied by thermogravimetric analysis (TGA) and differential thermal analysis (DTA). The dielectric measurements were carried out and the results indicate an increase in dielectric and conductivity parameters with the increase of temperature at all frequencies. The Vicker's hardness study reveals that the grown crystal is in soft nature.

  19. The lattice parameter of highly pure silicon single crystals

    Science.gov (United States)

    Becker, P.; Scyfried, P.; Siegert, H.

    1982-08-01

    From crystal to crystal comparison, the d 220 lattice spacing in PERFX and WASO silicon crystals used in the only two existing absolute measurements have been found to be equal within ±2×10-7 d 220. This demonstrates that generic variabilities of the two crystals account only for a small part of the 1.8×10-6 d 220 difference in the two absolute measurements. In a new series of 336 single measurements, our d 220 value reported recently has been confirmed within ±2×10-8 d 220. From these results we derive the following lattice parameter for highly pure silicon single crystals: a 0=(543 102.018±0.034) fm (at 22.5°C, in vacuum).

  20. The optical properties of alkali nitrate single crystals

    Science.gov (United States)

    Anan'ev, Vladimir; Miklin, Mikhail

    2000-08-01

    Absorption of non-polarized light by a uniaxial crystal has been studied. The degree of absorption polarization has been calculated as a function of the ratio of optical densities in the region of low and high absorbances. This function is proposed for analysis of the qualitative and quantitative characteristics of uniaxial crystal absorption spectra. Non-polarized light spectra of alkali nitrate single crystals, both pure and doped with thallium, have been studied. It is shown that the absorption band at 300 nm is due to two transitions, whose intensities depend on temperature in various ways. There is a weak band in a short wavelength range of the absorption spectrum of potassium nitrate crystal, whose intensity increases with thallium doping. The band parameters of alkali nitrate single crystals have been calculated. Low-energy transitions in the nitrate ion have been located.

  1. Growth and properties of benzil doped benzimidazole (BMZ) single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Babu, R. Ramesh, E-mail: rampap2k@yahoo.co.in [Crystal Growth and Thin Film Laboratory, School of Physics, Bharathidasan University, Tiruchirappalli 620 024 (India); Crystal Growth and Crystallography Section, National Physical Laboratory, Krishnan Marg, New Delhi 110 012 (India); Sukumar, M. [Crystal Growth and Thin Film Laboratory, School of Physics, Bharathidasan University, Tiruchirappalli 620 024 (India); Vasudevan, V. [Crystal Growth and Thin Film Laboratory, School of Physics, Bharathidasan University, Tiruchirappalli 620 024 (India); Crystal Growth and Crystallography Section, National Physical Laboratory, Krishnan Marg, New Delhi 110 012 (India); Shakir, Mohd. [Crystal Growth and Crystallography Section, National Physical Laboratory, Krishnan Marg, New Delhi 110 012 (India); Ramamurthi, K. [Crystal Growth and Thin Film Laboratory, School of Physics, Bharathidasan University, Tiruchirappalli 620 024 (India); Bhagavannarayana, G. [Crystal Growth and Crystallography Section, National Physical Laboratory, Krishnan Marg, New Delhi 110 012 (India)

    2010-09-15

    In the present work, we have made an attempt to study the effect of benzil doping on the properties of benzimidazole single crystals. For this purpose we have grown pure and benzil doped benzimidazole single crystals by vertical Bridgman technique. The grown crystals were characterized by various characterization techniques. The presence of dopants confirmed by powder X-ray diffraction (XRD). Crystalline perfection of the grown crystals has been analysed by high-resolution X-ray diffraction (HRXRD). The transmittance, electrical property and mechanical strength have been analysed using UV-vis-NIR spectroscopic, dielectric and Vicker's hardness studies. The relative second harmonic generation efficiency of pure and doped benzimidazole crystals measured using Kurtz powder test.

  2. Anisotropic behaviour of semiconducting tin monosulphoselenide single crystals

    Indian Academy of Sciences (India)

    T H Patel; Rajiv Vaidya; S G Patel

    2003-10-01

    Single crystals of ternary mixed compounds of group IV–VI in the form of a series, SnSSe1- (where = 0, 0.25, 0.50, 0.75 and 1), have been grown using direct vapour transport technique. The grown crystals were characterized by the X-ray diffraction analysis for their structural parameter determination. All the grown crystals were found to be orthorhombic. The microstructure analysis of the grown crystals reveals their layered type growth mechanism. From the Hall effect measurements Hall mobility, Hall coefficient and carrier concentration were calculated with all crystals showing -type nature. The d.c. electrical resistivity measurements perpendicular to -axis (i.e. along the basal plane) in the temperature range 303–453 K were carried out for grown crystals using four-probe method. The d.c. electrical resistivity measurements parallel to -axis (i.e. perpendicular to basal plane) in the temperature range 303–453 K were carried out for the same crystals. The electrical resistivity measurements showed an anisotropic behaviour of electrical resistivity for the grown crystals. The anisotropic behaviour and the effect of change in stoichiometric proportion of S and Se content on the electrical properties of single crystals of the series, SnSSe1- (where = 0, 0.25, 0.50, 0.75 and 1), is presented systematically.

  3. An analytical model for porous single crystals with ellipsoidal voids

    Science.gov (United States)

    Mbiakop, A.; Constantinescu, A.; Danas, K.

    2015-11-01

    A rate-(in)dependent constitutive model for porous single crystals with arbitrary crystal anisotropy (e.g., FCC, BCC, HCP, etc.) containing general ellipsoidal voids is developed. The proposed model, denoted as modified variational model (MVAR), is based on the nonlinear variational homogenization method, which makes use of a linear comparison porous material to estimate the response of the nonlinear porous single crystal. Periodic multi-void finite element simulations are used in order to validate the MVAR for a large number of parameters including cubic (FCC, BCC) and hexagonal (HCP) crystal anisotropy, various creep exponents (i.e., nonlinearity), several stress triaxiality ratios, general void shapes and orientations and various porosity levels. The MVAR model, which involves a priori no calibration parameters, is found to be in good agreement with the finite element results for all cases considered in the rate-dependent context. The model is then used in a predictive manner to investigate the complex response of porous single crystals in several cases with strong coupling between the anisotropy of the crystal and the (morphological) anisotropy induced by the shape and orientation of the voids. Finally, a simple way of calibrating the MVAR with just two adjustable parameters is depicted in the rate-independent context so that an excellent agreement with the FE simulation results is obtained. In this last case, this proposed model can be thought as a generalization of the Gurson model in the context of porous single crystals and general ellipsoidal void shapes and orientations.

  4. Anisotropy of nickel-base superalloy single crystals

    Science.gov (United States)

    Mackay, R. A.; Maier, R. D.; Dreshfield, R. L.

    1980-01-01

    The effects of crystal orientation on the mechanical properties of single crystals of the nickel-based superalloy Mar-M247 are investigated. Tensile tests at temperatures from 23 to 1093 C and stress rupture tests at temperatures from 760 to 1038 C were performed for 52 single crystals at various orientations. During tensile testing between 23 and 760 C, single crystals with high Schmid factors were found to be favorably oriented for slip and to exhibit lower strength and higher ductility than those with low Schmid factors. Crystals which required large rotations to become oriented for cross slip were observed to have the shortest stress rupture lives at 760 C, while those which required little or no rotation had the longest lives. In addition, stereographic triangles obtained for Mar-M247 and Mar-M200 single crystals reveal that crystals with orientations near the -111 had the highest lives, those near the 001 had high lives, and those near the 011 had low lives.

  5. Anisotropy of nickel-base superalloy single crystals

    Science.gov (United States)

    Mackay, R. A.; Maier, R. D.; Dreshfield, R. L.

    1980-01-01

    The effects of crystal orientation on the mechanical properties of single crystals of the nickel-based superalloy Mar-M247 are investigated. Tensile tests at temperatures from 23 to 1093 C and stress rupture tests at temperatures from 760 to 1038 C were performed for 52 single crystals at various orientations. During tensile testing between 23 and 760 C, single crystals with high Schmid factors were found to be favorably oriented for slip and to exhibit lower strength and higher ductility than those with low Schmid factors. Crystals which required large rotations to become oriented for cross slip were observed to have the shortest stress rupture lives at 760 C, while those which required little or no rotation had the longest lives. In addition, stereographic triangles obtained for Mar-M247 and Mar-M200 single crystals reveal that crystals with orientations near the -111 had the highest lives, those near the 001 had high lives, and those near the 011 had low lives.

  6. Crystal structure and magnetic properties of GdCo{sub 6}X{sub 6} (X=Ge, Sn) and TbCo{sub 6}Ge{sub 6}

    Energy Technology Data Exchange (ETDEWEB)

    Szytula, A.; Wawrzynska, E.; Zygmunt, A

    2004-03-10

    Crystal structures of the YCo{sub 6}Ge{sub 6}-type for GdCo{sub 6}X{sub 6} (X=Ge, Sn) and TbCo{sub 6}Ge{sub 6} are determined by X-ray diffraction. The magnetic data indicates that GdCo{sub 6}Ge{sub 6} is an antiferromagnet with a Neel temperature equal to 3 K while GdCo{sub 6}Sn{sub 6} and TbCo{sub 6}Ge{sub 6} are paramagnetic down to 1.8 K.

  7. Cladded single crystal fibers for high power fiber lasers

    Science.gov (United States)

    Kim, W.; Shaw, B.; Bayya, S.; Askins, C.; Peele, J.; Rhonehouse, D.; Meyers, J.; Thapa, R.; Gibson, D.; Sanghera, J.

    2016-09-01

    We report on the recent progress in the development of cladded single crystal fibers for high power single frequency lasers. Various rare earth doped single crystal YAG fibers with diameters down to 17 μm with length > 1 m have been successfully drawn using a state-of-the-art Laser Heated Pedestal Growth system. Single and double cladding on rare earth doped YAG fibers have been developed using glasses where optical and physical properties were precisely matched to doped YAG core single crystal fiber. The double clad Yb:YAG fiber structures have dimensions analogous to large mode area (LMA) silica fiber. We also report successful fabrications of all crystalline core/clad fibers where thermal and optical properties are superior over glass cladded YAG fibers. Various fabrication methods, optical characterization and gain measurements on these cladded YAG fibers are reported.

  8. High-quality single crystals for neutron experiments

    Indian Academy of Sciences (India)

    Geetha Balakrishnan

    2008-10-01

    To make headway on any problem in physics, high-quality single crystals are required. In this talk, special emphasis will be placed on the crystal growth of various oxides (superconductors and magnetic materials), borides and carbides using the image furnaces at Warwick. The floating zone method of crystal growth used in these furnaces produces crystals of superior quality, circumventing many of the problems associated with, for example, flux growth from the melt. This method enables the growth of large volumes of crystal, a prerequisite especially for experiments using neutron beams. Some examples of experimental results from crystals grown at Warwick, selected from numerous in-house studies and our collaborative research projects with other UK and international groups will be discussed.

  9. Mesoporous zeolite single crystals for catalytic hydrocarbon conversion

    DEFF Research Database (Denmark)

    Schmidt, I.; Christensen, C.H.; Hasselriis, Peter

    2005-01-01

    transport to and from active sites and at the same time maintain the shape-selectivity required. Thus, all these results support the idea that the beneficial effect of the mesopores system in the mesoporous zeolite single crystals call be solely attributed to enhanced mass transport.......Recently, mesoporous zeolite single crystals were discovered. They constitute a novel family of materials that features a combined micropore and mesopore architecture within each individual crystal. Here, we briefly summarize recent catalytic results from cracking and isomerization of alkalies......, alkylation of aromatics and present new results on isomerization of aromatics. Specifically, the shape-selective isomerization of meta-xylenc into para-xylene and ortho-xylene is studied. In all these reactions, rnesoporous zeolite single crystals prove to be unique catalysts since they provide easy...

  10. Mesoporous zeolite single crystals for catalytic hydrocarbon conversion

    DEFF Research Database (Denmark)

    Schmidt, I.; Christensen, C.H.; Hasselriis, Peter

    2005-01-01

    Recently, mesoporous zeolite single crystals were discovered. They constitute a novel family of materials that features a combined micropore and mesopore architecture within each individual crystal. Here, we briefly summarize recent catalytic results from cracking and isomerization of alkalies......, alkylation of aromatics and present new results on isomerization of aromatics. Specifically, the shape-selective isomerization of meta-xylenc into para-xylene and ortho-xylene is studied. In all these reactions, rnesoporous zeolite single crystals prove to be unique catalysts since they provide easy...... transport to and from active sites and at the same time maintain the shape-selectivity required. Thus, all these results support the idea that the beneficial effect of the mesopores system in the mesoporous zeolite single crystals call be solely attributed to enhanced mass transport....

  11. Chemical Bond Analysis of Single Crystal Growth of Magnesium Oxide

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Starting from the crystallographic structure of magnesium oxide (MgO), both the chemical bond model of solids and Pauling's third rule (polyhedral sharing rule) were employed to quantitatively analyze the chemical bonding structure of constituent atoms and single crystal growth. Our analytical results show that MgO single crystals prefer to grow along the direction and the growth rate of the {100} plane is the slowest one. Therefore, the results show that the {100} plane of MgO crystals can be the ultimate morphology face, which is in a good agreement with our previous experimental results. The study indicate that the structure analysis is an effective tool to control the single-crystal growth.

  12. Magnetism of manganese in RMn sub 2 and RMn sub 4 Al sub 8 (R=Y, Gd, Er) intermetallics

    CERN Document Server

    Talik, E; Winiarski, A; Neumann, M; Mydlarz, T; Gilewski, A; Böhm, H

    1998-01-01

    The XPS electronic structure was measured for YMn sub 2 , GdMn sub 2 , ErMn sub 2 , YMn sub 4 Al sub 8 and GdMn sub 4 Al sub 8 single crystals and pure Mn. Exchange splitting of Mn 3d and 3s states was found for the compounds with magnetic manganese. The electrical resistivity of the GdMn sub 2 single crystal shows an antiferromagnetic transition at 108 K and the second transition at 32 K. The lattice parameter against temperature of GdMn sub 2 exhibits a large spontaneous magnetostriction at T sub N. The anisotropic character of the GdMn sub 2 magnetization was found. The results were discussed using the Yamada and Shimizu model. (author)

  13. Method of making macrocrystalline or single crystal semiconductor material

    Science.gov (United States)

    Shlichta, P. J. (Inventor); Holliday, R. J. (Inventor)

    1986-01-01

    A macrocrystalline or single crystal semiconductive material is formed from a primary substrate including a single crystal or several very large crystals of a relatively low melting material. This primary substrate is deposited on a base such as steel or ceramic, and it may be formed from such metals as zinc, cadmium, germanium, aluminum, tin, lead, copper, brass, magnesium silicide, or magnesium stannide. These materials generally have a melting point below about 1000 C and form on the base crystals the size of fingernails or greater. The primary substrate has an epitaxial relationship with a subsequently applied layer of material, and because of this epitaxial relationship, the material deposited on the primary substrate will have essentially the same crystal size as the crystals in the primary substrate. If required, successive layers are formed, each of a material which has an epitaxial relationship with the previously deposited layer, until a layer is formed which has an epitaxial relationship with the semiconductive material. This layer is referred to as the epitaxial substrate, and its crystals serve as sites for the growth of large crystals of semiconductive material. The primary substrate is passivated to remove or otherwise convert it into a stable or nonreactive state prior to deposition of the seconductive material.

  14. Inspection of Single Crystal Aerospace Components with Ultrasonic Arrays

    Science.gov (United States)

    Lane, C. J. L.; Dunhill, A.; Drinkwater, B. W.; Wilcox, P. D.

    2010-02-01

    Single crystal metal alloys are used extensively in the manufacture of jet engine components for their excellent mechanical properties at elevated temperatures. The increasing use of these materials and demand for longer operational life and improved reliability motivates the requirement to have capable NDE methods available. Ultrasonic arrays are well established at detecting sub-surface defects however these methods are not currently suitable to the inspection of single crystal components due to their high elastic anisotropy causing directional variation in ultrasonic waves. In this paper a model of wave propagation in anisotropic material is used to correct an ultrasonic imaging algorithm and is applied to single crystal test specimens. The orientation of the crystal in a specimen must be known for this corrected-algorithm; therefore a crystal orientation method is also presented that utilizes surface skimming longitudinal waves under a 2D array. The work detailed in this paper allows an ultrasonic 2D array to measure the orientation of a single crystal material and then perform accurate volumetric imaging to detect and size defects.

  15. Benzothiazolium Single Crystals: A New Class of Nonlinear Optical Crystals with Efficient THz Wave Generation.

    Science.gov (United States)

    Lee, Seung-Heon; Lu, Jian; Lee, Seung-Jun; Han, Jae-Hyun; Jeong, Chan-Uk; Lee, Seung-Chul; Li, Xian; Jazbinšek, Mojca; Yoon, Woojin; Yun, Hoseop; Kang, Bong Joo; Rotermund, Fabian; Nelson, Keith A; Kwon, O-Pil

    2017-08-01

    Highly efficient nonlinear optical organic crystals are very attractive for various photonic applications including terahertz (THz) wave generation. Up to now, only two classes of ionic crystals based on either pyridinium or quinolinium with extremely large macroscopic optical nonlinearity have been developed. This study reports on a new class of organic nonlinear optical crystals introducing electron-accepting benzothiazolium, which exhibit higher electron-withdrawing strength than pyridinium and quinolinium in benchmark crystals. The benzothiazolium crystals consisting of new acentric core HMB (2-(4-hydroxy-3-methoxystyryl)-3-methylbenzo[d]thiazol-3-ium) exhibit extremely large macroscopic optical nonlinearity with optimal molecular ordering for maximizing the diagonal second-order nonlinearity. HMB-based single crystals prepared by simple cleaving method satisfy all required crystal characteristics for intense THz wave generation such as large crystal size with parallel surfaces, moderate thickness and high optical quality with large optical transparency range (580-1620 nm). Optical rectification of 35 fs pulses at the technologically very important wavelength of 800 nm in 0.26 mm thick HMB crystal leads to one order of magnitude higher THz wave generation efficiency with remarkably broader bandwidth compared to standard inorganic 0.5 mm thick ZnTe crystal. Therefore, newly developed HMB crystals introducing benzothiazolium with extremely large macroscopic optical nonlinearity are very promising materials for intense broadband THz wave generation and other nonlinear optical applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Optical properties of silica sol-gel materials singly-and doubly-doped with Eu3+and Gd3+ions

    Institute of Scientific and Technical Information of China (English)

    Natalia Pawlik; Barbara Szpikowska-Sroka; Marta Sołtys; Wojciech A.Pisarski

    2016-01-01

    In present work, the optical and structural properties of silica sol-gel glasses and glass-ceramic materials singly-and dou-bly-doped with Eu3+and Gd3+ions were investigated. The optical properties of studied systems were determined based on absorption, excitation and emission spectra as well as luminescence decay analysis. Conducted studies clearly indicated a significant enhance-ment of visible emission originated from Eu3+ions as a result of changing the excitation mechanism, via Gd3+→Eu3+energy transfer. The luminescence intensity R-ratio was analyzed before and after heat-treatment process upon excitation atλex=393 nm andλex=273 nm. Moreover, the influence of excitation wavelength on luminescence decay time of the 5D0 excited state was also analyzed. The Gd3+→Eu3+energy transfer efficiencies for precursor and annealed samples were calculated based on luminescence lifetime of the 6P7/2 level of Gd3+ions. The X-ray diffraction measurements were conducted to verify the nature of obtained sol-gel materials. In re-sult, the formation of orthorhombic GdF3 nanocrystal phase dispersed in amorphous silica glass host was identified after annealing. Obtained results clearly indicated an incorporation of Eu3+ activators into formed GdF3 nanocrystals. Thus, conducted heat-treatment process led to considerable changes in surrounding environment around Eu3+ions. Actually, it was found that en-ergy transfer phenomenon and heat-treatment process were responsible for significant improvement of Eu3+luminescence in stud-ied sol-gel samples.

  17. Crystal-Orientation Dependent Evolution of Edge Dislocations from a Void in Single Crystal Gu

    Institute of Scientific and Technical Information of China (English)

    SONG Zhen-Fei; ZHU Wen-Jun; DENG Xiao-Liang; HE Hong-Liang

    2006-01-01

    @@ The micro-void growth by dislocation emission under tensile loading is explored with focus on the influence of crystal orientations. Based on the elastic theory, a dislocation emission criterion is formulated. It is predicted that the preferential location of dislocation nucleation and its threshold stress are dependent on the crystal orientation.Large-scale molecular dynamics (MD) simulations are also performed for single crystal copper to illustrate the dislocation evolution pattern associated with a nano-void growth. The results are in line with those given by the theoretical prediction. As revealed by MD simulations, the characteristics of void growth at micro-scale depend greatly on the crystal-orientation.

  18. Crystallization phase diagram, the growth of large single crystals of bovine {beta}-Lactoglobulin A

    Energy Technology Data Exchange (ETDEWEB)

    Yagi, D; Ohnishi, Y; Tanaka, I; Niimura, N, E-mail: niimura@mx.ibaraki.ac.jp

    2010-11-01

    A crystallization phase diagram defining the meta-stable region of bovine {beta}-lactoglobulin A ({beta}-Lg) was firstly determined by a dialysis method. We have succeeded in growing a large single crystal of {beta}-Lg by selecting a crystal grown in this ''meta-stable region'' method described in the present paper. The quality of protein crystals was characterized quantitatively via rapid X-ray data collections, followed by the use of Wilson plots to analyze their resulting average B-factors.

  19. Crystallization phase diagram, the growth of large single crystals of bovine β-Lactoglobulin A

    Science.gov (United States)

    Yagi, D.; Ohnishi, Y.; Tanaka, I.; Niimura, N.

    2010-11-01

    A crystallization phase diagram defining the meta-stable region of bovine β-lactoglobulin A (β-Lg) was firstly determined by a dialysis method. We have succeeded in growing a large single crystal of β-Lg by selecting a crystal grown in this "meta-stable region" method described in the present paper. The quality of protein crystals was characterized quantitatively via rapid X-ray data collections, followed by the use of Wilson plots to analyze their resulting average B-factors.

  20. Concentration distribution of Nd{sup 3+} In Nd:Gd{sub 3}Ga{sub 5}O{sub 12} crystals studied by optical absorption method

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Dunlu; Zhang, Qingli; Wang, Zhaobing; Su, Jing; Gu, Changjiang; Wang, Aihua; Yin, Shaotang [Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, HeFei 230031 (China)

    2005-07-01

    Nd:Gd{sub 3}Ga{sub 5}O{sub 12} crystals with different concentrations of Nd{sup 3+} were grown by Czochralski method, their absorption spectra were measured at room temperature. By using the optical absorption method, the effective distribution coefficient k{sub eff} for Nd{sup 3+} in GGG was fitted to be 0.40{+-}0.01, which is higher than that of Nd{sup 3+} in YAG. The 808nm absorption cross-section was calculated to be 4.0{+-}0.2 x 10{sup -20} cm{sup -2}. The lengthways and radial concentration distribution of Nd{sup 3+} in the crystals were also analyzed and discussed. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  1. Growth and high pressure studies of zirconium sulphoselenide single crystals

    Indian Academy of Sciences (India)

    K R Patel; R D Vaidya; M S Dave; S G Patel

    2009-11-01

    Transition metal trichalcogenides are well suited for extreme pressure lubrication. These materials being semiconducting and of layered structure may undergo structural and electronic transition under pressure. In this paper authors reported the details about synthesis and characterization of zirconium sulphoselenide single crystals. The chemical vapour transport technique was used for the growth of zirconium sulphoselenide single crystals. The energy dispersive analysis by X-ray (EDAX) gave the confirmation about the stoichiometry of the as-grown crystals and other structural characterizations were accomplished by X-ray diffraction (XRD) study. The variation of electrical resistance was monitored in a Bridgman opposed anvil set-up up to 8 GPa pressure to identify the occurrence of any structural transition. These crystals do not possess any structural transitions upto the pressure limit examined.

  2. Geometric constraints on phase coexistence in vanadium dioxide single crystals

    Science.gov (United States)

    McGahan, Christina; Gamage, Sampath; Liang, Jiran; Cross, Brendan; Marvel, Robert E.; Haglund, Richard F.; Abate, Yohannes

    2017-02-01

    The appearance of stripe phases is a characteristic signature of strongly correlated quantum materials, and its origin in phase-changing materials has only recently been recognized as the result of the delicate balance between atomic and mesoscopic materials properties. A vanadium dioxide (VO2) single crystal is one such strongly correlated material with stripe phases. Infrared nano-imaging on low-aspect-ratio, single-crystal VO2 microbeams decorated with resonant plasmonic nanoantennas reveals a novel herringbone pattern of coexisting metallic and insulating domains intercepted and altered by ferroelastic domains, unlike previous reports on high-aspect-ratio VO2 crystals where the coexisting metal/insulator domains appear as alternating stripe phases perpendicular to the growth axis. The metallic domains nucleate below the crystal surface and grow towards the surface with increasing temperature as suggested by the near-field plasmonic response of the gold nanorod antennas.

  3. Single-Crystal Structure of a Covalent Organic Framework

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, YB; Su, J; Furukawa, H; Yun, YF; Gandara, F; Duong, A; Zou, XD; Yaghi, OM

    2013-11-06

    The crystal structure of a new covalent organic framework, termed COF-320, is determined by single-crystal 3D electron diffraction using the rotation electron diffraction (RED) method for data collection. The COF crystals are prepared by an imine condensation of tetra-(4-anilyl)methane and 4,4'-biphenyldialdehyde in 1,4-dioxane at 120 degrees C to produce a highly porous 9-fold interwoven diamond net. COF-320 exhibits permanent porosity with a Langmuir surface area of 2400 m(2)/g and a methane total uptake of 15.0 wt % (176 cm(3)/cm(3)) at 25 degrees C and 80 bar. The successful determination of the structure of COF-320 directly from single-crystal samples is an important advance in the development of COF chemistry.

  4. Geometric constraints on phase coexistence in vanadium dioxide single crystals.

    Science.gov (United States)

    McGahan, Christina; Gamage, Sampath; Liang, Jiran; Cross, Brendan; Marvel, Robert E; Haglund, Richard F; Abate, Yohannes

    2017-02-24

    The appearance of stripe phases is a characteristic signature of strongly correlated quantum materials, and its origin in phase-changing materials has only recently been recognized as the result of the delicate balance between atomic and mesoscopic materials properties. A vanadium dioxide (VO2) single crystal is one such strongly correlated material with stripe phases. Infrared nano-imaging on low-aspect-ratio, single-crystal VO2 microbeams decorated with resonant plasmonic nanoantennas reveals a novel herringbone pattern of coexisting metallic and insulating domains intercepted and altered by ferroelastic domains, unlike previous reports on high-aspect-ratio VO2 crystals where the coexisting metal/insulator domains appear as alternating stripe phases perpendicular to the growth axis. The metallic domains nucleate below the crystal surface and grow towards the surface with increasing temperature as suggested by the near-field plasmonic response of the gold nanorod antennas.

  5. Modelling of Heat Transfer in Single Crystal Growth

    CERN Document Server

    Zhmakin, Alexander I

    2014-01-01

    An attempt is made to review the heat transfer and the related problems encountered in the simulation of single crystal growth. The peculiarities of conductive, convective and radiative heat transfer in the different melt, solution, and vapour growth methods are discussed. The importance of the adequate description of the optical crystal properties (semitransparency, specular reflecting surfaces) and their effect on the heat transfer is stresses. Treatment of the unknown phase boundary fluid/crystal as well as problems related to the assessment of the quality of the grown crystals (composition, thermal stresses, point defects, disclocations etc.) and their coupling to the heat transfer/fluid flow problems is considered. Differences between the crystal growth simulation codes intended for the research and for the industrial applications are indicated. The problems of the code verification and validation are discussed; a brief review of the experimental techniques for the study of heat transfer and flow structu...

  6. Crystallization in Emulsions: A Thermo-Optical Method to Determine Single Crystallization Events in Droplet Clusters

    Directory of Open Access Journals (Sweden)

    Serghei Abramov

    2016-08-01

    Full Text Available Delivery systems with a solid dispersed phase can be produced in a melt emulsification process. For this, dispersed particles are melted, disrupted, and crystallized in a liquid continuous phase (melt emulsification. Different to bulk crystallization, droplets in oil-in-water emulsions show individual crystallization behavior, which differs from droplet to droplet. Therefore, emulsion droplets may form liquid, amorphous, and crystalline structures during the crystallization process. The resulting particle size, shape, and physical state influence the application properties of these colloidal systems and have to be known in formulation research. To characterize crystallization behavior of single droplets in micro emulsions (range 1 µm to several hundred µm, a direct thermo-optical method was developed. It allows simultaneous determination of size, size distribution, and morphology of single droplets within droplet clusters. As it is also possible to differentiate between liquid, amorphous, and crystalline structures, we introduce a crystallization index, CIi, in dispersions with a crystalline dispersed phase. Application of the thermo-optical approach on hexadecane-in-water model emulsion showed the ability of the method to detect single crystallization events of droplets within emulsion clusters, providing detailed information about crystallization processes in dispersions.

  7. High-quality bulk hybrid perovskite single crystals within minutes by inverse temperature crystallization

    OpenAIRE

    Saidaminov, Makhsud I.; Abdelhady, Ahmed L.; Murali, Banavoth; Alarousu, Erkki; Burlakov, Victor M.; Peng, Wei; Dursun, Ibrahim; Wang, Lingfei; He, Yao; Maculan, Giacomo; Goriely, Alain; Wu, Tom; Mohammed, Omar F.; Bakr, Osman M.

    2015-01-01

    Single crystals of methylammonium lead trihalide perovskites (MAPbX3; MA=CH3NH3 +, X=Br− or I−) have shown remarkably low trap density and charge transport properties; however, growth of such high-quality semiconductors is a time-consuming process. Here we present a rapid crystal growth process to obtain MAPbX3 single crystals, an order of magnitude faster than previous reports. The process is based on our observation of the substantial decrease of MAPbX3 solubility, in certain solvents, at e...

  8. Cooperative down-conversion of UV light in disordered scheelitelike Yb-doped NaGd(MoO4)2 and NaLa(MoO4)2 crystals

    Science.gov (United States)

    Subbotin, K. A.; Osipova, Yu. N.; Lis, D. A.; Smirnov, V. A.; Zharikov, E. V.; Shcherbakov, I. A.

    2017-07-01

    Concentration series of disordered scheelitelike Yb:NaGd(MoO4)2 and Yb:NaLa(MoO4)2 single crystals are grown by the Czochralski method. The actual concentrations of Yb3+ ions in the crystals are determined by optical-absorption spectroscopy. The luminescence of Yb3+ ions in these crystals in the region of 1 μm is studied under UV and IR excitation. In the case of UV excitation, this luminescence appears as a result of nonradiative excited state energy transfer from donor centers of unknown nature to ytterbium. The character of the concentration dependence of Yb3+ luminescence indicates that the energy transfer at high Yb concentrations occurs with active participation of a cooperative mechanism, according to which the excitation energy of one donor center is transferred simultaneously to two Yb3+ ions. In other words, the quantum yield of this transfer exceeds unity, which can be used to increase the efficiency of crystalline silicon (c-Si) solar cells.

  9. Synthesis, crystal growth and mechanical properties of Bismuth Silicon Oxide (BSO) single crystal

    Energy Technology Data Exchange (ETDEWEB)

    Riscob, B. [CSIR – National Physical Laboratory, Crystal Growth and X-ray Analysis, New Delhi 110 012 (India); Institute for Plasma Research, Bhat, Gandhinagar 382428, Gujarat (India); Shkir, Mohd. [CSIR – National Physical Laboratory, Crystal Growth and X-ray Analysis, New Delhi 110 012 (India); Ganesh, V. [Department of Physics, Kakatiya University, Warangal 506 009 (India); Vijayan, N.; Maurya, K.K. [CSIR – National Physical Laboratory, Crystal Growth and X-ray Analysis, New Delhi 110 012 (India); Kishan Rao, K. [Department of Physics, Kakatiya University, Warangal 506 009 (India); Bhagavannarayana, G., E-mail: bhagavan@mail.nplindia.ernet.in [CSIR – National Physical Laboratory, Crystal Growth and X-ray Analysis, New Delhi 110 012 (India)

    2014-03-05

    Highlights: • Synthesis of Bismuth Silicon Oxide (BSO). • Single crystal growth of BSO by Czochralski (Cz) method. • Complete mechanical analysis by device fabrication point of view. • Theoretical and experimental calculations of mechanical properties. -- Abstract: Bismuth Silicon Oxide (BSO) is an efficient material for piezo-electric and electro-optic applications. In this article, growth of BSO single crystal by high temperature Czochralski melt growth technique and its detailed mechanical characterization by Vickers microhardness, fracture toughness, crack propagation, brittleness index and yield strength have been reported. The raw material was synthesized by solid state reaction using the stoichiometric ratio of high purity bismuth tri-oxide and silicon di-oxide. The synthesized material was charged in the platinum crucible and then melted. The required rotation and pulling rate was optimized for BSO single crystal growth and good quality single crystal has been harvested after a time span of 5 days. Powder X-ray diffraction analysis confirms the parent crystallization phase of BSO. The experimentally studied mechanical behavior of the crystal is explained using various theoretical models. The anisotropic nature of the crystals is studied using Knoop indentation technique.

  10. Skylab experiments on semiconductors and alkali halides. [single crystal growth

    Science.gov (United States)

    Lundquist, C. A.

    1974-01-01

    The space processing experiments performed during the Skylab missions included one on single crystal growth of germanium selenide and telluride, one on pure and doped germanium crystals, two on pure and doped indium antimonide, one on gallium-indium-antimony systems, and one on a sodium chloride-sodium fluoride eutectic. In each experiment, three ampoules of sample were processed in the multipurpose electric furnace within the Skylab Materials Processing Facility. All were successful in varying degrees and gave important information about crystal growth removed from the effects of earth surface gravity.

  11. Is the methanation reaction over Ru single crystals structure dependent?

    DEFF Research Database (Denmark)

    Vendelbo, Søren Bastholm; Johansson, Martin; Nielsen, Jane Hvolbæk;

    2011-01-01

    The influence of monoatomic steps and defects on the methanation reaction over ruthenium has been investigated. The experiments are performed on a Ru(0 1 54) ruthenium single crystal, which contains one monoatomic step atom for each 27 terrace atoms. The methanation activity is measured at one ba...... front-side of the crystal is poisoned faster than the entire crystal containing more defects. We also observe that additional sputtering of the well-defined front-side increases the reactivity measured on the surface. Based on this, we conclude that the methanation reaction takes place...

  12. Single Crystal Growth of Zirconia Utilizing a Skull Melting Technique,

    Science.gov (United States)

    1979-08-01

    help eliminate many crystal growth problems. The flame-fusion apparatus was invented by A. Verneuil 3 over 75 years ago and has been used for growth of...AOAO2 23 OMEAIRDEVLOPENT CNT RI RIFISS AFB NY F /S .7/ NGLE CRYSTAL GROWTH OF Z RONA UT IXZIN A SKULL MELTING TE-SCUl AUG 79 A C MARSHALL, J A ADAMSK...Crucible-less synthesis 50. ABSTRACT (Ceefiw.. - eooe edi. ,.e.eimwd identiby Slek ~b.,) Investigation into the growth of single crystal materials are

  13. Single Crystal Synthesis and STM Studies of High Temperature Superconductors

    Science.gov (United States)

    Barrientos, Alfonso

    1997-01-01

    This is a final report for the work initiated in September of 1994 under the grant NAG8-1085 - NASA/OMU, on the fabrication of bulk and single crystal synthesis, specific heat measuring and STM studies of high temperature superconductors. Efforts were made to fabricate bulk and single crystals of mercury based superconducting material. A systematic thermal analysis on the precursors for the corresponding oxides and carbonates were carried out to synthesized bulk samples. Bulk material was used as seed in an attempt to grow single crystals by a two-step self flux process. On the other hand bulk samples were characterized by x-ray diffraction, electrical resistivity and magnetic susceptibility, We studied the specific heat behavior in the range from 80 to 300 K. Some preliminary attempts were made to study the atomic morphology of our samples. As part of our efforts we built an ac susceptibility apparatus for measuring the transition temperature of our sintered samples.

  14. Heterogeneous Monolithic Integration of Single-Crystal Organic Materials.

    Science.gov (United States)

    Park, Kyung Sun; Baek, Jangmi; Park, Yoonkyung; Lee, Lynn; Hyon, Jinho; Koo Lee, Yong-Eun; Shrestha, Nabeen K; Kang, Youngjong; Sung, Myung Mo

    2017-02-01

    Manufacturing high-performance organic electronic circuits requires the effective heterogeneous integration of different nanoscale organic materials with uniform morphology and high crystallinity in a desired arrangement. In particular, the development of high-performance organic electronic and optoelectronic devices relies on high-quality single crystals that show optimal intrinsic charge-transport properties and electrical performance. Moreover, the heterogeneous integration of organic materials on a single substrate in a monolithic way is highly demanded for the production of fundamental organic electronic components as well as complex integrated circuits. Many of the various methods that have been designed to pattern multiple heterogeneous organic materials on a substrate and the heterogeneous integration of organic single crystals with their crystal growth are described here. Critical issues that have been encountered in the development of high-performance organic integrated electronics are also addressed.

  15. Surface enhanced raman spectroscopy studies on triglycine sulphate single crystals

    Science.gov (United States)

    Parameswari, A.; Mohamed Asath, R.; Premkumar, R.; Milton Franklin Benial, A.

    2017-01-01

    Adsorption characteristics of triglycine sulphate (TGS) on silver (Ag) surface were investigated based on density functional theory calculations and surface enhanced Raman spectroscopy (SERS) technique. The single crystals of TGS were grown by slow evaporation method. Ag nanoparticles (Ag NPs) were prepared by solution combustion method and characterized. The calculated and observed structural parameters of TGS molecule were compared. Raman and SERS spectra for TGS single crystal were studied experimentally and validated theoretically. Frontier molecular orbitals (FMOs) analysis was carried out for TGS and TGS adsorbed on Ag surface. The second harmonic generation measurements confirm the nonlinear optical (NLO) activity of the TGS molecule. SERS spectral analysis reveals that the TGS adsorbed as tilted orientation on the silver surface. The theoretical and experimental results evidence the suitability of the grown TGS single crystal for optoelectronic applications.

  16. Corelli: Efficient single crystal diffraction with elastic discrimination

    Indian Academy of Sciences (India)

    Stephan Rosenkranz; Raymond Osborn

    2008-10-01

    Single crystal diffuse scattering provides one of the most powerful probes of short-range correlations on the 1-100 nm scale, which often are responsible for the extreme field response of many emerging phenomena of great interest. Accurate modeling of such complex disorder from diffuse scattering data however puts stringent experimental demands, requiring measurements over large volumes of reciprocal space with sufficient momentum and energy resolution. Here, we discuss the potential of the cross-correlation technique for efficient measurement of single crystal diffuse scattering with energy discrimination, as will be implemented in a novel instrument, Corelli. Utilizing full experiment simulations, we show that this technique readily leads up to a fifty-fold gain in efficiency, as compared to traditional methods, for measuring single crystal diffuse scattering over volumes of reciprocal space with elastic discrimination.

  17. Single crystal surface structure by bragg scattering

    DEFF Research Database (Denmark)

    Nielsen, Mogens

    1985-01-01

    X-ray diffraction is becoming an important tool in the measurements of surface structures. Single crystalline samples are used as in Low Energy Electron Diffraction (LEED)-studies. The X-ray technique is somewhat more involved due to the need of bright, collimated photon sources, in general...... synchrotron X-rays, and of very accurate angular settings in the ultrahigh-vacuum environment of the sample. We present the technique and discuss examples of experimental results....

  18. Crystal growth and characterization of new semiorganic nonlinear optical single crystals

    Science.gov (United States)

    Kulshrestha, Shobha; Shrivastava, A. K.

    2016-05-01

    An organic material of a L-histidine monohydrochloride single crystal was grown in a distilled water solution using the slow evaporation method at 40-45°C. The grown crystal was transparent and colourless, with a size of about 20 × 9 × 5 mm3, obtained within a period of 21 days. The solubility of grown crystals have found out at various temperatures. The UV-visible transmittance studies show that the grown crystals have wide optical transparency in the entire visible region It is observed that the crystal has transparency window from 255nm to 700nm and its energy gap (Eg) found to be is 3.1eV. The grown crystal was subjected to powder X-ray diffraction analysis, confirming that the orthorhombic crystalline nature of the crystal. To identify the surface morphology, the as grown crystal was subjected to FE-SEM technique. The chemical composition of the grown crystal was estimated by Energy dispersive X-ray analysis. The optical behaviour of the grown crystal was analyzed by PL study.

  19. Development of a single-phase 330kVA HTS transformer using GdBCO tapes

    Science.gov (United States)

    Hu, Daoyu; Li, Zhuyong; Hong, Zhiyong; Jin, Zhijian

    2017-08-01

    With the mature of manufacture process and technology of high temperature superconductors, the critical current and stability are gradually increased. High temperature superconductors could be used in transformer, current limiter, generator, magnet and etc. This paper focuses on development and characteristic tests of a single-phase high temperature superconducting (HTS) power transformer with capacity of 330 kVA by using GdBCO tapes, which is 1/3 model of a 1 MVA / 10 kV / 0.4 kV HTS transformer. The specifications of iron core, HTS windings and cryostat are described in detail. The iron core is made of silicon steel plate. The arrangement of HTS windings are based on experimental and simulated results. The cryostat with a room temperature bore is manufactured using nonmetallic materials. Several characteristic tests and insulation tests are performed in liquid nitrogen of 77 K. The efficiency and AC loss at rated load is 99.90% and 243.7 W, respectively. In addition, an overload test was also performed.

  20. Modeling of elastic and plastic waves for HCP single crystals in a 3D formulation based on zinc single crystal

    Science.gov (United States)

    Krivosheina, Marina; Kobenko, Sergey; Tuch, Elena; Kozlova, Maria

    2016-11-01

    This paper investigates elastic and plastic waves in HCP single crystals through the numerical simulation of strain processes in anisotropic materials based on a zinc single crystal. Velocity profiles for compression waves in the back surfaces of single-crystal zinc plates with impact loading oriented in 0001 and 10 1 ¯0 are presented in this work as a part of results obtained in numerical simulations. The mathematical model implemented in this study reflects the following characteristics of the mechanical properties inherent in anisotropic (transtropic) materials: varying degree of anisotropy of elastic and plastic properties, which includes reverse anisotropy, dependence of distribution of all types of waves on the velocity orientation, and the anisotropy of compressibility. Another feature of elastic and plastic waves in HCP single crystals is that the shock wave does not split into an elastic precursor and "plastic" compression shock wave, which is inherent in zinc single crystals with loading oriented in 0001. The study compares numerical results obtained in a three-dimensional formulation with the results of velocity profiles from the back surfaces of target plates obtained in real experiments. These results demonstrate that the mathematical model is capable of describing the properties of the above-mentioned anisotropic (transtropic) materials.

  1. Aluminum-rich mesoporous MFI - type zeolite single crystals

    DEFF Research Database (Denmark)

    Kustova, Marina; Kustov, Arkadii; Christensen, Christina Hviid

    2005-01-01

    . With this technique, only zeolites with relatively low Al contents were reported (Si/Al ratio about 100). In this work, the preparation of aluminum-rich mesoporous MFI-type zeolite single crystals (Si/Al similar to 16-50) using aluminum isopropoxide as the aluminum Source is reported for the first time. All samples......Zeolitcs are crystalline materials, which are widely used as solid acid catalysts and supports in many industrial processes. Recently, mesoporous MFI-type zeolite single crystals were synthesized by use of carbon particles as a mesopore template and sodium aluminate as the aluminum Source...

  2. Apparatus And Method For Producing Single Crystal Metallic Objects

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Shyh-Chin (Latham, NY); Gigliotti, Jr., Michael Francis X. (Scotia, NY); Rutkowski, Stephen Francis (Duanesburg, NY); Petterson, Roger John (Fultonville, NY); Svec, Paul Steven (Scotia, NY)

    2006-03-14

    A mold is provided for enabling casting of single crystal metallic articles including a part-defining cavity, a sorter passage positioned vertically beneath and in fluid communication with the part-defining cavity, and a seed cavity positioned vertically beneath and in fluid communication with the sorter passage. The sorter passage includes a shape suitable for encouraging a single crystal structure in solidifying molten metal. Additionally, a portion of the mold between the sorter passage and the part-defining cavity includes a notch for facilitating breakage of a cast article proximate the notch during thermal stress build-up, so as to prevent mold breakage or the inclusion of part defects.

  3. Growth of Solid Solution Single Crystals

    Science.gov (United States)

    Lehoczky, Sandor L.; Szofran, F. R.; Gillies, Donald C.

    2001-01-01

    The solidification of a solid solution semiconductor, having a wide separation between liquidus and solidus has been extensively studied in ground based, high magnetic field and Spacelab experiments. Two alloys of mercury cadmium telluride have been studied; with 80.0 mole percent of HgTe and 84.8 mole percent of HgTe respectively, the remainder being cadmium telluride. Such alloys are extremely difficult to grow by directional solidification on earth due to high solutal and thermal density differences that give rise to fluid flow and consequent loss of interface shape and composition. Diffusion controlled growth is therefore impossible to achieve in conventional directional solidification. The ground based experiments consisted of growing crystals in several different configurations of heat pipe furnaces, NASA's Advanced Automated Directional Solidification Furnace (AADSF), and a similar furnace incorporated in a superconducting magnet capable of operating at up to 5T. The first microgravity experiment took place during the flight of STS-62 in March 1994, with the AADSF installed on the second United States Microgravity Payload (USMP-2). The alloy was solidified at 3/4 inch per day over a 9 day period, and for the first time a detailed evaluation was performed correlating composition variations to measured residual acceleration. The second flight experiment took place in the fourth United States Microgravity Payload Mission (USMP-4) in November 1997. Due to contamination of the furnace system, analysis shows that the conditions prevailing during the experiment were quite different from the requirements requested prior to the mission. The results indicate that the sample did accomplish the desired objectives.

  4. Role of crystal orientation on chemical mechanical polishing of single crystal copper

    Science.gov (United States)

    Zhu, Aibin; He, Dayong; Luo, Wencheng; Liu, Yangyang

    2016-11-01

    The material removal mechanism of single crystal copper in chemical mechanical polishing (CMP) has not been intensively investigated. And the role of crystal orientation in CMP of single crystal cooper is not quite clear yet. Quasi-continuum method was adopted in this paper to simulate the process of nano-particles grinding on single crystal copper in CMP process. Three different crystal orientations, i.e. x[100]y[001], x[001]y[110] and x[-211]y[111], were chosen for analysis. The atom displacement diagrams, stress distribution diagrams and load-displacement curves were obtained. After analyzing the deformation mechanism, residual stress of the work piece material and cutting force, results showed that, the crystal orientation of work piece has great influence on the deformation characteristics and surface quality of work piece during polishing. In the A(001)[100] orientation, the residual stress distribution after polishing is deeper, and the stress is larger than that in the B(110)[001] and C(111)[-211] orientations. And the average tangential cutting force in the A(001)[100] orientation is much larger than those in the other two crystal orientation. This research is helpful to revealing the material removal mechanism of CMP process.

  5. Growth and characterization of morpholinium dihydrogenphosphate single crystal

    Science.gov (United States)

    Babu, D. Rajan; Arul, H.; Vizhi, R. Ezhil

    2016-10-01

    Morpholinium dihydrogenphosphate (MDP) single crystals were synthesized, and were subsequently grown by controlled evaporation technique at room temperature for nonlinear optical applications. The grown crystal, which belongs to the monoclinic system with the space group P21, was subjected to single crystal X-ray diffraction to confirm the structure. UV-vis-NIR spectroscopy was done on the grown crystal and it showed good optical transparency in the entire visible region with a minimum cut-off wavelength of 289 nm. The optical band gap was computed as a function of photon energy using Tauc's plot. The refractive index of the grown crystal was determined using a Metricon Prism Coupler. The thermogravimetric (TG) and differential thermal analysis (DTA) traces disclosed the thermal stability of the compound. The mechanical strength of the crystal was investigated by a Vickers microhardness tester. Dielectric constant and dielectric loss were calculated and plotted as a function of frequency at different temperatures. The second harmonic conversion efficiency was determined using the Kurtz-Perry powder technique, and the efficiency was found to be 1.2 times greater than that of standard KDP.

  6. Studies on growth, crystal structure and characterization of novel organic nicotinium trifluoroacetate single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Dhanaraj, P.V. [Centre for Crystal Growth, SSN College of Engineering, Kalavakkam 603 110 (India); Rajesh, N.P., E-mail: rajeshnp@hotmail.com [Centre for Crystal Growth, SSN College of Engineering, Kalavakkam 603 110 (India); Sundar, J. Kalyana; Natarajan, S. [Department of Physics, Madurai Kamaraj University, Madurai 625 021 (India); Vinitha, G. [Department of Physics, Crescent Engineering College, Chennai 600 048 (India)

    2011-09-15

    Highlights: {yields} Good quality crystals of nicotinium trifluoroacetate in monoclinic system were grown for first time. {yields} Nicotinium trifluoroacetate crystal exhibits third order nonlinear optical properties. {yields} The optical spectrum of nicotinium trifluoroacetate crystal reveals the wide transmission in the entire range with cutoff wavelength at 286 nm. {yields} Nicotinium trifluoroacetate is a low dielectric constant material. - Abstract: An organic material, nicotinium trifluoroacetate (NTF) was synthesized and single crystals in monoclinic system were grown from aqueous solution for the first time. Its solubility and metastable zone width were estimated. The crystal structure of NTF was analyzed to reveal the molecular arrangements and the formation of hydrogen bonds in the crystal. High-resolution X-ray diffraction rocking curve measurements were performed to analyze the structural perfection of the grown crystals. Functional groups in NTF were identified by Fourier transform infrared spectral analysis. Thermal behaviour and stability of NTF were studied by thermogravimetric and differential thermal analysis and differential scanning calorimetry. Mechanical and dielectric properties of NTF crystals were analyzed. Optical studies reveal that NTF crystals are transparent in the wavelength range 286-1100 nm. The third order nonlinear optical parameters of NTF were derived by the Z-scan technique.

  7. Structure and Bonding in Some Gd(Ⅲ) Metal Complexes Studied by Three-Dimensional X-Ray Analysis and 155Gd M(o)ssbauer Spectroscopy

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Some functional lanthanide metal complexes, such as acetylacetonato complexes, ethylenediaminetetraacetato complexes, were successfully applied for diagnostic technique.The authors are interested in investigating the structure and bonding in lanthanide and actinide metal complexes using 166Er, 155Gd, and 237Np M(o)ssbauer spectroscopies in connection with single-crystal and/or powder X-ray diffraction, making clear the differences on their structures as well as the differences in the participation of 4f and 5f orbitals in the chemical bonds.In this article, the crystal structures of two novel Gd(Ⅲ) acetylacetonato complexes, Gd(pta)3·2H2O (pta=1,1,1-trifluoro-5,5-dimethyl-2,4-hexanedione) and Gd(bfa)3·2H2O (bfa=1, 1, 1-trifluoro-4-phenyl-2-4-butanedione) were reported.Though both of them were dihydrate and had distorted square antiprismatical structure, Gd(pta)3·2H2O crystallizes in the P 21/ n (#14) monoclinic space group and its lattice parameters are a =1.4141(6) nm, b =1.0708(3) nm, c =2.2344(4) nm, β=95.24(2)°, and Gd(bfa)3·2H2O crystallizes in P 212121 orthorhombic space group and its lattice parameters were a=1.322(1) nm, b =2.295(1) nm, c =1.0786(8) nm.In the meantime, the authors had finished a systematic investigation on the 155Gd M(o)ssbauer isomer shift (δ) of various Gd(Ⅲ) metal complexes having a different coordination number (C.N.) and different ratios coordinating oxygen to nitrogen.A tendency for the δ value to decrease with an increase in the C.N, and the number of the nitrogen atom coordinating to Gd was confirmed.This indicated that the Gd-O and/or Gd-N bond in the investigated Gd(Ⅲ) metal complexes had a small covalent contribution, which was possible to be deduced from the O and/or N atoms of the ligands donating electrons to 6s, 5d, and 4f orbitals of Gd.

  8. Passively Q-switched Er,Yb:GdAl3(BO3)4 laser with single-walled carbon nanotube based saturable absorber

    Science.gov (United States)

    Gorbachenya, K. N.; Kisel, V. E.; Yasukevich, A. S.; Prudnikova, M. B.; Maltsev, V. V.; Leonyuk, N. I.; Choi, S. Y.; Rotermund, F.; Kuleshov, N. V.

    2017-03-01

    We demonstrate a passively Q-switched Er,Yb:GdAl3(BO3)4 diode-pumped laser emitting near 1.5 µm. By using a single-walled carbon nanotube (SWCNT) as a saturable absorber, Q-switched laser pulses with energy of 0.8 µJ and duration of 130 ns at a maximum repetition rate of 500 kHz were obtained at 1550 nm.

  9. Decrease of bulk pinning strength in deoxygenated YBCO single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Moreno, A.J.; Bekeris, V. [Buenos Aires Univ. (Argentina). Lab. de Bajas Temperaturas

    2000-07-01

    We measured the first and third harmonics of the complex AC susceptibility in YBCO single crystals with different oxygen contents (6.5 {<=} x {<=} 7). The amplitude of the AC field was varied in presence of an external dc field both applied parallel to the c-axis of the crystals. We give evidence that deoxygenation leads to a reduction of the bulk pinning strength and consequently to a stronger contribution of geometrical barriers. These results support the recently reported investigations showing that deoxygenation makes the YBCO crystals more anisotropic reducing the effective bulk pinning for quasi two-dimensional vortices. We also show measurements for the same crystals with the AC field applied perpendicular to the c-axis. (orig.)

  10. Mg-ion indiffusion of lithium niobate single crystal fiber

    Institute of Scientific and Technical Information of China (English)

    阙文修; 姚熹; 霍玉晶

    1995-01-01

    A core-cladding waveguide structure of lithium niobate single crystal fiber with different refractive index profiles has been obtained by using an Mg-ion indiffusion process. The propagation loss of the dadded crystal fiber is measured to be 14 times as low as that of the undadded crystal fibers. Mechanisms of Mg-ion indiffusion and reasons of lattice distortion are analyzed and discussed. It is found by X-ray diffraction analysis as well as scanning electron microscopy that MgO-rich layer in the magnesium diffused surface exhibits the crystal structure of a new compound from the Li-Mg-Nb-O ternary system. It is proposed, for the first time, that this new compound in MgO-rich layer is the real source of Mg-ion indiffusion lithium niobate.

  11. Synthesis and characterization of {sup 159}Gd-doped hydroxyapatite nanorods for bioapplications as theranostic systems

    Energy Technology Data Exchange (ETDEWEB)

    Cipreste, Marcelo F.; Peres, Anderson M.; Cotta, Alexandre A.C.; Aragón, Fermin H.; Antunes, Alan de M.; Leal, Alexandre S.; Macedo, Waldemar A.A.; Sousa, Edésia M.B. de, E-mail: sousaem@cdtn.br

    2016-09-15

    Gadolinium-doped hydroxyapatite (HA-Gd) nanorods have become promisor theranostic nanoparticles for early stage cancers as radioisotope carriers able to act in the treatment and multi-imaging diagnosis by single photon emission computed tomography and magnetic resonance imaging systems. In this work, gadolinium-doped HA nanorods were synthesized aiming the use as theranostic system for osteosarcomas. The as-prepared HA-Gd nanorods were characterized by XRD with Rietveld refinement method, FTIR, XPS, ICP-AES, TEM, SEM, BET and VSM in order to investigate the physical-chemical, morphology, pore size distribution and magnetic properties. Moreover, phosphorous and gadolinium in the HA-Gd sample were activated by neutron capture, in a nuclear reactor, producing {sup 32}P and {sup 159}Gd radioisotopes, and the surfaces of these nanorods were functionalized with folic acid. The results indicate that Gd{sup 3+} are trapped in the HA nanorods crystal net showing great stability of the HA-Gd interaction. Gadolinium provide paramagnetic properties on HA nanorods and structural phosphorous and gadolinium can be activated to induced gamma and beta activity. The well succeeded production of {sup 159}Gd-{sup 32}P-HA makes this material a promisor agent to act as a theranostic system. - Highlights: • Gd- HA nanorods were synthesized aiming their use as theranostic system. • Gd{sup 3+} ions are trapped in the HA nanorods crystal net showing great stability. • Gd- HA presents paramagnetic behavior indicating their use as contrast agents. • HA-{sup 159}Gd-{sup 32}P were successful produced by neutron activation to act as a theranostic system.

  12. Compression Deformation Mechanisms at the Nanoscale in Magnesium Single Crystal

    Institute of Scientific and Technical Information of China (English)

    Yafang GUO; Xiaozhi TANG; Yuesheng WANG; Zhengdao WANG; Sidney YIP

    2013-01-01

    The dominant deformation mode at low temperatures for magnesium and its alloys is generally regarded to be twinning because of the hcp crystal structure.More recently,the phenomenon of a "loss" of the twins has been reported in microcompression experiments of the magnesium single crystals.Molecular dynamics simulation of compression deformation shows that the pyramidal slip dominates compression behavior at the nanoscale.No compression twins are observed at different temperatures at different loadings and boundary conditions.This is explained by the analyses,that is,the {10(1-)2} and {101-1} twins can be activated under c-axis tension,while compression twins will not occur when the c/a ratio of the hcp metal is below (/)3.Our theoretical and simulation results are consistent with recent microcompression experiments of the magnesium (0001) single crystals.

  13. Thermal properties of single-walled carbon nanotube crystal

    Institute of Scientific and Technical Information of China (English)

    Hu Li-Jun; Liu Ji; Liu Zheng; Qiu Cai-Yu; Zhou Hai-Qing; Sun Lian-Feng

    2011-01-01

    In this work,the thermal properties of a single-walled carbon nanotube (SWCNT) crystal are studied. The thermal conductivity of the SWCNT crystal is found to have a linear dependence on temperature in the temperature range from 1.9 K to 100.0 K. In addition,a peak (658 W/mK) is found at a temperature of about 100.0 K. The thermal conductivity decreases gradually to a value of 480 W/mK and keeps almost a constant in the temperature range from 100.0 K to 300.0 K. Meanwhile,the specific heat shows an obvious linear relationship with temperature in the temperature range from 1.9 K to 300.0 K. We discuss the possible mechanisms for these unique thermal properties of the single-walled carbon nanotube crystal.

  14. Atomistic simulation of shocks in single crystal and polycrystalline Ta

    Science.gov (United States)

    Bringa, E. M.; Higginbotham, A.; Park, N.; Tang, Y.; Suggit, M.; Mogni, G.; Ruestes, C. J.; Hawreliak, J.; Erhart, P.; Meyers, M. A.; Wark, J. S.

    2011-06-01

    Non-equilibrium molecular dynamics (MD) simulations of shocks in Ta single crystals and polycrystals were carried out using up to 360 million atoms. Several EAM and FS type potentials were tested up to 150 GPa, with varying success reproducing the Hugoniot and the behavior of elastic constants under pressure. Phonon modes were studied to exclude possible plasticity nucleation by soft-phonon modes, as observed in MD simulations of Cu crystals. The effect of loading rise time in the resulting microstructure was studied for ramps up to 0.2 ns long. Dislocation activity was not observed in single crystals, unless there were defects acting as dislocation sources above a certain pressure. E.M.B. was funded by CONICET, Agencia Nacional de Ciencia y Tecnología (PICT2008-1325), and a Royal Society International Joint Project award.

  15. Singly-resonant optical parametric oscillator based on KTA crystal

    Indian Academy of Sciences (India)

    S Das; S Gangopadhyay; C Ghosh; G C Bhar

    2005-01-01

    Tunable mid-infra-red radiation by singly resonant optical parametric oscillation based on KTA crystal pumped by multi-axial Gaussian shape beam from Q-switched Nd:YAG laser has been demonstrated. Threshold energy of oscillation at different idler wavelengths for different cavity length has been demonstrated. Single pass conversion efficiency of incident pump energy to infra-red wavelength has also been measured.

  16. Single particle detection in CMOS compatible photonic crystal nanobeam cavities.

    Science.gov (United States)

    Quan, Qimin; Floyd, Daniel L; Burgess, Ian B; Deotare, Parag B; Frank, Ian W; Tang, Sindy K Y; Ilic, Rob; Loncar, Marko

    2013-12-30

    We report the label-free detection of single particles using photonic crystal nanobeam cavities fabricated in silicon-on-insulator platform, and embedded inside microfluidic channels fabricated in poly-dimethylsiloxane (PDMS). Our system operates in the telecommunication wavelength band, thus leveraging the widely available, robust and tunable telecom laser sources. Using this approach, we demonstrated the detection of polystyrene nanoparticles with dimensions down to 12.5nm in radius. Furthermore, binding events of a single streptavidin molecule have been observed.

  17. Single Crystals of Organolead Halide Perovskites: Growth, Characterization, and Applications

    KAUST Repository

    Peng, Wei

    2017-04-01

    With the soaring advancement of organolead halide perovskite solar cells rising from a power conversion efficiency of merely 3% to more than 22% shortly in five years, researchers’ interests on this big material family have been greatly spurred. So far, both in-depth studies on the fundamental properties of organolead halide perovskites and their extended applications such as photodetectors, light emitting diodes, and lasing have been intensively reported. The great successes have been ascribed to various superior properties of organolead halide hybrid perovskites such as long carrier lifetimes, high carrier mobility, and solution-processable high quality thin films, as will be discussed in Chapter 1. Notably, most of these studies have been limited to their polycrystalline thin films. Single crystals, as a counter form of polycrystals, have no grain boundaries and higher crystallinity, and thus less defects. These characteristics gift single crystals with superior optical, electrical, and mechanical properties, which will be discussed in Chapter 2. For example, organolead halide perovskite single crystals have been reported with much longer carrier lifetimes and higher carrier mobilities, which are especially intriguing for optoelectronic applications. Besides their superior optoelectronic properties, organolead halide perovskites have shown large composition versatility, especially their organic components, which can be controlled to effectively adjust their crystal structures and further fundamental properties. Single crystals are an ideal platform for such composition-structure-property study since a uniform structure with homogeneous compositions and without distraction from grain boundaries as well as excess defects can provide unambiguously information of material properties. As a major part of work of this dissertation, explorative work on the composition-structure-property study of organic-cation-alloyed organolead halide perovskites using their single

  18. Angular correlation of annihilation photons in ice single crystals

    DEFF Research Database (Denmark)

    Mogensen, O. E.; Kvajic, G.; Eldrup, Morten Mostgaard

    1971-01-01

    Linear-slit angular-correlation curves were obtained at - 148 °C for the [0001], [10¯10], and [11¯20] directions in single crystals of ice. Besides the narrow central peak, pronounced narrow side peaks were also observed. They occurred at angles θ=2πℏgz/mc, where gz is the projection of reciproca...

  19. Coupling of single quantum dots to a photonic crystal waveguide

    DEFF Research Database (Denmark)

    Lund-Hansen, Toke; Stobbe, Søren; Julsgaard, Brian

    . An alternative approach is to couple the quantum dot directly to the propagating mode of a photonic waveguide. We demonstrate the coupling of single quantum dots to a photonic crystal waveguide using time-resolved spontaneous emission measurements. A pronounced effect is seen in the decay rates of dots coupled...

  20. Transverse Mode Multi-Resonant Single Crystal Transducer

    Science.gov (United States)

    Snook, Kevin A. (Inventor); Liang, Yu (Inventor); Luo, Jun (Inventor); Hackenberger, Wesley S. (Inventor); Sahul, Raffi (Inventor)

    2015-01-01

    A transducer is disclosed that includes a multiply resonant composite, the composite having a resonator bar of a piezoelectric single crystal configured in a d(sub 32) transverse length-extensional resonance mode having a crystallographic orientation set such that the thickness axis is in the (110) family and resonance direction is the (001) family.

  1. Some Debye temperatures from single-crystal elastic constant data

    Science.gov (United States)

    Robie, R.A.; Edwards, J.L.

    1966-01-01

    The mean velocity of sound has been calculated for 14 crystalline solids by using the best recent values of their single-crystal elastic stiffness constants. These mean sound velocities have been used to obtain the elastic Debye temperatures ??De for these materials. Models of the three wave velocity surfaces for calcite are illustrated. ?? 1966 The American Institute of Physics.

  2. Organic field-effect transistors using single crystals

    Directory of Open Access Journals (Sweden)

    Tatsuo Hasegawa and Jun Takeya

    2009-01-01

    Full Text Available Organic field-effect transistors using small-molecule organic single crystals are developed to investigate fundamental aspects of organic thin-film transistors that have been widely studied for possible future markets for 'plastic electronics'. In reviewing the physics and chemistry of single-crystal organic field-effect transistors (SC-OFETs, the nature of intrinsic charge dynamics is elucidated for the carriers induced at the single crystal surfaces of molecular semiconductors. Materials for SC-OFETs are first reviewed with descriptions of the fabrication methods and the field-effect characteristics. In particular, a benchmark carrier mobility of 20–40 cm2 Vs−1, achieved with thin platelets of rubrene single crystals, demonstrates the significance of the SC-OFETs and clarifies material limitations for organic devices. In the latter part of this review, we discuss the physics of microscopic charge transport by using SC-OFETs at metal/semiconductor contacts and along semiconductor/insulator interfaces. Most importantly, Hall effect and electron spin resonance (ESR measurements reveal that interface charge transport in molecular semiconductors is properly described in terms of band transport and localization by charge traps.

  3. Field-effect transistors on tetracene single crystals

    NARCIS (Netherlands)

    De Boer, R.W.I.; Klapwijk, T.M.; Morpurgo, A.F

    2003-01-01

    We report on the fabrication and electrical characterization of field-effect transistors at the surface of tetracene single crystals. We find that the mobility of these transistors reaches the room-temperature value of 0.4 cm2/V s. The nonmonotonous temperature dependence of the mobility, its weak g

  4. Three-dimensional charge transport in organic semiconductor single crystals.

    Science.gov (United States)

    He, Tao; Zhang, Xiying; Jia, Jiong; Li, Yexin; Tao, Xutang

    2012-04-24

    Three-dimensional charge transport anisotropy in organic semiconductor single crystals - both plates and rods (above and below, respectively, in the figure) - is measured in well-performing organic field-effect transistors for the first time. The results provide an excellent model for molecular design and device preparation that leads to good performance.

  5. Single-crystal semiconductor films grown on foreign substrates

    Science.gov (United States)

    Vohl, P.

    1966-01-01

    Intermediate alloy formed between foreign substrates and semiconductor material enable the growth of single crystal semiconductor films on the alloy layer. The melted film must not ball up on the surface of the substrate and neither chemically react nor alloy with the intermediate alloy formed on the substrate.

  6. Low field investigations of single crystal Bi(2212): DC magnetization

    Energy Technology Data Exchange (ETDEWEB)

    Shaw, G.; Murphy, S.D.; Bhagat, S.M. (Center for Superconductivity Research and Dept. of Physics and Astronomy, Univ. of Maryland, College Park (USA))

    1989-12-01

    DC Magnetization measurements on micaceous Bi(2212) single crystals suggest that; 1. for T< or approx.25 K the material is a bulk Superconductor (SC), 2. as T is increased, the interlayer coupling weakens, until for T> or approx.55 K the lamina become independent. (orig.).

  7. Coupling of single quantum dots to a photonic crystal waveguide

    DEFF Research Database (Denmark)

    Lund-Hansen, Toke; Stobbe, Søren; Julsgaard, Brian;

    . An alternative approach is to couple the quantum dot directly to the propagating mode of a photonic waveguide. We demonstrate the coupling of single quantum dots to a photonic crystal waveguide using time-resolved spontaneous emission measurements. A pronounced effect is seen in the decay rates of dots coupled...

  8. TOPICAL REVIEW: Organic field-effect transistors using single crystals

    Science.gov (United States)

    Hasegawa, Tatsuo; Takeya, Jun

    2009-04-01

    Organic field-effect transistors using small-molecule organic single crystals are developed to investigate fundamental aspects of organic thin-film transistors that have been widely studied for possible future markets for 'plastic electronics'. In reviewing the physics and chemistry of single-crystal organic field-effect transistors (SC-OFETs), the nature of intrinsic charge dynamics is elucidated for the carriers induced at the single crystal surfaces of molecular semiconductors. Materials for SC-OFETs are first reviewed with descriptions of the fabrication methods and the field-effect characteristics. In particular, a benchmark carrier mobility of 20-40 cm2 Vs-1, achieved with thin platelets of rubrene single crystals, demonstrates the significance of the SC-OFETs and clarifies material limitations for organic devices. In the latter part of this review, we discuss the physics of microscopic charge transport by using SC-OFETs at metal/semiconductor contacts and along semiconductor/insulator interfaces. Most importantly, Hall effect and electron spin resonance (ESR) measurements reveal that interface charge transport in molecular semiconductors is properly described in terms of band transport and localization by charge traps.

  9. Crystal chemistry of the orthorhombic Ln2TiO5 compounds with Ln=La, Pr, Nd, Sm, Gd, Tb and Dy

    Science.gov (United States)

    Aughterson, Robert D.; Lumpkin, Gregory R.; Thorogood, Gordon J.; Zhang, Zhaoming; Gault, Baptiste; Cairney, Julie M.

    2015-07-01

    The crystal structures of seven samples of orthorhombic (Pnma) Ln2TiO5 compounds with Ln=La, Pr, Nd, Sm, Gd, Tb and Dy were refined by Rietveld analysis of synchrotron X-ray powder diffraction (S-XRD) data. With increasing size of the lanthanide cation, the lattice parameters increase systematically: c by only ~1.5% whereas both a and b by ~6% from Dy2TiO5 to La2TiO5. The mean Ti-O bond length only increases by ~1% with increasing radius of the Ln cation from Gd to La, primarily due to expansion of the pair of Ti-O3 bonds to opposite corners of the Ti-O5 square based pyramid polyhedra. For Dy2TiO5 and Tb2TiO5, a significant variation in Ti-O1 and Ti-O4 bond lengths results in an increased deformation of the Ti-O5 base. The particular configuration consists of large rhombic shaped tunnels and smaller triangular tunnels along the b axis, which have implications for defect formation and migration caused by radiation damage or the ionic conductivity.

  10. Shaped crystal growth of langasite-type piezoelectric single crystals and their physical properties.

    Science.gov (United States)

    Yokota, Yuui; Yoshikawa, Akira; Futami, Yoshisuke; Sato, Masato; Tota, Kazushige; Onodera, Ko; Yanagida, Takayuki

    2012-09-01

    We have grown shape-controlled langasite-type crystals by the micro-pulling-down (μ-PD) method. Columnar shaped La(3)Ta(0.5)Ga(5.5)O(14) (LTG), Ca(3)NbGa(3)Si(2)O(14) (CNGS), Ca(3)TaGa(3)Si(2)O(14) (CTGS), Sr(3)NbGa(3)Si(2)O(14) (SNGS), and Sr(3)Ta- Ga(3)Si(2)O(14) (STGS) crystals were grown using a Pt-Rh crucible with a 3-mm-diameter columnar die at the bottom. All grown crystals showed high transparency except for the peripheral area and diameter of approximately 3 mm. The chemical phases at the central parts of the grown crystals were identified as a single phase of langasite-type structure and their lattice parameters were almost the same as those of crystals grown by the Czochralski (Cz) method; however, some impurity phases were observed in the peripheral area. In X-ray rocking curve measurements, the grown crystals indicated equivalent crystallinity to the crystal grown by the Cz method. The piezoelectric constant d(11) of the CNGS crystal was 3.98 pC/N; this value is well correlated with those of previous reports.

  11. Significant flux trapping in single grain GdBCO bulk superconductor under off-axis field cooled magnetization

    Science.gov (United States)

    Li, Zhi; Ida, Tetsuya; Miki, Motohiro; Teshima, Hidekazu; Morita, Mitsuru; Izumi, Mitsuru

    2017-03-01

    A single grain bulk high-temperature superconductor (HTS) exhibits intensified flux trapping performance upon field cooled magnetization. The world record of trapped flux is 17.6 T achieved by using stacked two-fold GdBCO bulks. However, the majority of magnetization studies focused on the magnetization along the crystallographic c-axis. In the present study, we clarify the flux trapping performance under field cooled magnetization using an off-axis magnetic field with respect to the c-axis. The results show that the trapped flux is almost polarized along the applied field as expected. This tendency remains up to a high off-axis angle θ around 60°. It is worth mentioning that, with θ of 30°, the maximum trapped flux component B // max parallel to the c-axis significantly remains more than 96% of 1.6 T which occurs under on-axis magnetization. Meanwhile, the angular dependence of the c-axis parallel component exhibits that observed flux density is higher than that expected from 1.6 cosθ. In addition, to visualize the flux line upon magnetization at θ of 90°, we successfully demonstrate the continuous flux line trace using steel wires; different trapped flux behaviour appears when applied field penetrates the bulk through the growth sectors centre and along the growth sector boundary, respectively. We interpret these results may come from the microstructure as a result of melt growth. It is highly emphasized that the off-axis magnetization with the finite inclination angle is quite useful for introducing into the design of HTS applications.

  12. Understanding the Cubic Phase Stabilization and Crystallization Kinetics in Mixed Cations and Halides Perovskite Single Crystals.

    Science.gov (United States)

    Xie, Li-Qiang; Chen, Liang; Nan, Zi-Ang; Lin, Hai-Xin; Wang, Tan; Zhan, Dong-Ping; Yan, Jia-Wei; Mao, Bing-Wei; Tian, Zhong-Qun

    2017-03-08

    The spontaneous α-to-δ phase transition of the formamidinium-based (FA) lead halide perovskite hinders its large scale application in solar cells. Though this phase transition can be inhibited by alloying with methylammonium-based (MA) perovskite, the underlying mechanism is largely unexplored. In this Communication, we grow high-quality mixed cations and halides perovskite single crystals (FAPbI3)1-x(MAPbBr3)x to understand the principles for maintaining pure perovskite phase, which is essential to device optimization. We demonstrate that the best composition for a perfect α-phase perovskite without segregation is x = 0.1-0.15, and such a mixed perovskite exhibits carrier lifetime as long as 11.0 μs, which is over 20 times of that of FAPbI3 single crystal. Powder XRD, single crystal XRD and FT-IR results reveal that the incorporation of MA(+) is critical for tuning the effective Goldschmidt tolerance factor toward the ideal value of 1 and lowering the Gibbs free energy via unit cell contraction and cation disorder. Moreover, we find that Br incorporation can effectively control the perovskite crystallization kinetics and reduce defect density to acquire high-quality single crystals with significant inhibition of δ-phase. These findings benefit the understanding of α-phase stabilization behavior, and have led to fabrication of perovskite solar cells with highest efficiency of 19.9% via solvent management.

  13. Mechanism of the emergence of the photo-EMF upon silicon liquid crystal-single crystal contact

    Science.gov (United States)

    Budagov, K. M.; Guseinov, A. G.; Pashaev, B. G.

    2017-03-01

    The effect light has on a silicon liquid crystal-single crystal contact at different temperatures of the surface doping of silicon, and when BaTiO3 nanoparticles are added to the composition of a liquid crystal, is studied. The mechanism of the emergence of the photo-EMF in the liquid crystal-silicon structure is explained.

  14. Low-dissipation cavity optomechanics in single-crystal diamond

    CERN Document Server

    Mitchell, Matthew; Lake, David P; Barclay, Paul E

    2015-01-01

    Single-crystal diamond cavity optomechanical devices are a promising example of a hybrid quantum system: by coupling mechanical resonances to both light and electron spins, they can enable new ways for photons to control solid state qubits. However, creating devices from high quality bulk diamond chips is challenging. Here we demonstrate single-crystal diamond cavity optomechanical devices that can enable photon-phonon-spin coupling. Cavity optomechanical coupling to $2\\,\\text{GHz}$ frequency ($f_\\text{m}$) mechanical resonances is observed. In room temperature ambient conditions, the resonances have a record combination of low dissipation ($Q_\\text{m} > 9000$) and high frequency, with $Q_\\text{m}\\cdot f_\\text{m} \\sim 1.9\\times10^{13}$ sufficient for room temperature single phonon coherence. The system is nearly sideband resolved, and radiation pressure is used to excite $\\sim 31\\,\\text{pm}$ amplitude mechanical self-oscillations that can drive diamond color centre electron spin transitions.

  15. Spatially resolved micro-photoluminescence imaging of porphyrin single crystals

    Science.gov (United States)

    Marin, Dawn M.; Castaneda, Jose; Kaushal, Meesha; Kaouk, Ghallia; Jones, Daniel S.; Walter, Michael G.

    2016-08-01

    We describe the collection of both time-resolved and steady-state micro-photoluminescence data from solution-grown single crystals of 5,15-bis(4-carbomethoxyphenyl)porphyrin (BCM2PP). Linking molecular orientation and structure with excited-state dynamics is crucial for engineering efficient organic solar cells, light-emitting diodes, and related molecular electronics. Photoluminescence features of single porphyrin crystals were imaged using a laser scanning confocal microscope equipped with time-correlated single photon counting (TCSPC). We show enhanced exciton lifetimes (τs1 = 2.6 ns) and stronger steady-state emission in crystalline BCM2PP samples relative to semicrystalline thin films (τs1 = 1.8 ns).

  16. Role of crystal orientation on chemical mechanical polishing of single crystal copper

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Aibin, E-mail: abzhu@mail.xjtu.edu.cn; He, Dayong; Luo, Wencheng; Liu, Yangyang

    2016-11-15

    Highlights: • The role of crystal orientation in cooper CMP by quasi-continuum was studied. • The atom displacement diagrams were obtained and analyzed. • The stress distribution diagrams and load-displacement curves were analyzed. • This research is helpful to revealing the material removal mechanism of CMP. - Abstract: The material removal mechanism of single crystal copper in chemical mechanical polishing (CMP) has not been intensively investigated. And the role of crystal orientation in CMP of single crystal cooper is not quite clear yet. Quasi-continuum method was adopted in this paper to simulate the process of nano-particles grinding on single crystal copper in CMP process. Three different crystal orientations, i.e. x[100]y[001], x[001]y[110] and x[–211]y[111], were chosen for analysis. The atom displacement diagrams, stress distribution diagrams and load-displacement curves were obtained. After analyzing the deformation mechanism, residual stress of the work piece material and cutting force, results showed that, the crystal orientation of work piece has great influence on the deformation characteristics and surface quality of work piece during polishing. In the A(001)[100] orientation, the residual stress distribution after polishing is deeper, and the stress is larger than that in the B(110)[001] and C(111)[–211] orientations. And the average tangential cutting force in the A(001)[100] orientation is much larger than those in the other two crystal orientation. This research is helpful to revealing the material removal mechanism of CMP process.

  17. Crystal Chemistry of the New Families of Interstitial Compounds R6Mg23C (R = La, Ce, Pr, Nd, Sm, or Gd) and Ce6Mg23Z (Z = C, Si, Ge, Sn, Pb, P, As, or Sb).

    Science.gov (United States)

    Wrubl, Federico; Manfrinetti, Pietro; Pani, Marcella; Solokha, Pavlo; Saccone, Adriana

    2016-01-01

    The crystal chemical features of the new series of compounds R6Mg23C with R = La-Sm or Gd and Ce6Mg23Z with Z = C, Si, Ge, Sn, Pb, P, As, or Sb have been studied by means of single-crystal and powder X-ray diffraction techniques. All phases crystallize with the cubic Zr6Zn23Si prototype (cF120, space group Fm3̅m, Z = 4), a filled variant of the Th6Mn23 structure. While no Th6Mn23-type binary rare earth-magnesium compound is known to exist, the addition of a third element Z (only 3 atom %), located into the octahedral cavity of the Th6Mn23 cell (Wyckoff site 4a), stabilizes this structural arrangement and makes possible the formation of the ternary R6Mg23Z compounds. The results of both structural and topological analyses as well as of LMTO electronic structure calculations show that the interstitial element plays a crucial role in the stability of these phases, forming a strongly bonded [R6Z] octahedral moiety spaced by zeolite cage-like [Mg45] clusters. Considering these two building units, the crystal structure of these apparently complex intermetallics can be simplified to the NaCl-type topology. Moreover, a structural relationship between RMg3 and R6Mg23C compounds has been unveiled; the latter can be described as substitutional derivatives of the former. The geometrical distortions and the consequent symmetry reduction that accompany this transformation are explicitly described by means of the Bärnighausen formalism within group theory.

  18. Crystallization kinetics and corrosion behaviors of Mg61Cu28Gd11 and (Mg0.61Cu0.28Gd0.11)99.5Sb0.5 amorphous alloys%Mg61Cu28Gd11和(Mg0.61Cu0.28Gd0.11)99.5Sb0.5非晶合金的晶化动力学和腐蚀行为

    Institute of Scientific and Technical Information of China (English)

    孙颖迪; 李子全; 刘劲松; 杨继年; 丛孟启

    2011-01-01

    0.5% (molar fraction) Sb was added to Mg61Cu28Gd11 glass forming alloy to improve its thermal stability and corrosion resistance. The crystallization kinetics of Mg61Cu28Gd11 and (Mg0.61Cu0.28Gd0.11)99.5Sb0.5 amorphous alloys was investigated under continuous heating. The temperatures of glass transition,onset and peak crystallization for the two glasses exhibit strong heating-rate dependence. The activation energies for the onset and peak crystallization were determined based on the Oawza plots.Vogel-Fulcher-Tamman equation analysis shows that the larger strength parameter and much longer relaxation time are obtained due to the Sb addition. The corrosion properties of the two glassy alloys were studied by means of potentiodynamic and immersion tests.Compared with the parent alloy,(Mg0.61Cu0.28Gd0.11)99.5Sb0.5 glassy alloy exhibits a superior corrosion resistance in Cl--containing alkaline solution,as indicated by the lower passive current density and corrosion rate. Based on the point defect model,the effect mechanism of Sb addition on corrosion resistance of Mg-Cu-Gd glassy alloy is carefully identified.%研究0.5%(摩尔分数)Sb的引入对Mg61Cu28Gd11块体非晶合金性能的影响.利用差热扫描量热仪测试样品的晶化动力学.结果表明:在等时加热的过程中,非晶合金的玻璃转变温度、起始晶化和峰值晶化温度都表现出对加热速率强的依赖性.基于Oawza方法可以确定非晶合金的起始晶化和峰值晶化激活能.Vogel-Fulcher-Tamman公式分析表明:含Sb元素的非晶合金具有更高的强度系数和更长的延迟时间.采用电化学极化和失重测试方法研究2种玻璃合金的腐蚀行为.与基体非晶合金相比,添加微量Sb降低了非晶合金的在含Cl-的碱性溶液中的钝化电流密度和腐蚀速率,表现出相比基体合金更为优越的耐蚀性.最后基于"点缺陷模型"进一步分析微量Sb元素对基体合金耐蚀性能的影响机理.

  19. Crystal structure and luminescence property of a novel blue-emitting Cs2xCa2xGd2(1-x)(PO4)2:Eu(2+) (x = 0.36) phosphor.

    Science.gov (United States)

    Geng, Kang; Xia, Zhiguo; Molokeev, Maxim S

    2014-10-07

    A novel blue-emitting double-phosphate phosphor Cs0.72Ca0.72Gd1.28(PO4)2:Eu(2+) was synthesized by the sol-gel method, and the structure and luminescence properties were investigated in detail. The crystal structure and chemical composition of Cs0.72Ca0.72Gd1.28(PO4)2 matrix was analyzed and determined based on Rietveld refinements and phase and chemical composition analysis. The composition-optimized Cs0.72Ca0.72Gd1.28(PO4)2:Eu(2+) exhibited strong blue light, peaking at 462 nm upon excitation at 365 nm with the CIE coordinates of (0.139, 0.091). The quenching concentration of Eu(2+) in the Cs0.72Ca0.72Gd1.28(PO4)2 phase was about 0.01 and attributed to the dipole-quadrupole interaction. The thermally stable luminescence properties, fluorescence decay curves and diffuse reflectance spectra of Cs0.72Ca0.72Gd1.28(PO4)2:Eu(2+) phosphors are also discussed, all of which indicate that the Cs0.72Ca0.72Gd1.28(PO4)2:Eu(2+) phosphor is a promising phosphor for application in white-light UV LEDs.

  20. Transport Properties of Bi2S3 Single Crystals

    Institute of Scientific and Technical Information of China (English)

    H.T.Shaban; M.M.Nassary; M.S.El-Sadek

    2008-01-01

    Bi2S3 single crystals were grown by using a modification of Bridgman method. Measurements of the electrical conductivity, Hall effect and thermoelectric power (TEP) were preformed in two crystallographic directions(parallel and perpendicular to the c-axis). The measurements showed that the electrical conductivity, Hall mobility, and Seebeck coefficient have anisotropic nature. From these measurements some physical parameters were estimated and the crystals showed n-type of conduction mechanism. Also, values of the energy gap were found to be different in the two directions.

  1. Impurity centers in LiF:Cu{sup +} single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Nepomnyashchikh, A I; Shalaev, A A; Subanakov, A K; Paklin, A S; Bobina, N S; Myasnikova, A S; Shendrik, R, E-mail: alshal@igc.irk.ru

    2010-11-15

    The single crystals LiF with copper impurity were grown by Czochralski method. The concentrations of Cu in the crystals were 0,0004-0,002%. In order to determine a copper valence impurity, measurements of the ESR, emission, excitation and absorption spectra were performed. We found emission peak at 410 nm and excitation peak at 250 nm. In agreement with reference, these peaks point to presence of Cu{sup +} in our samples. The mechanisms of capture and recombination providing process of thermoluminescence were recognized.

  2. Organic single-crystal field-effect transistors

    Directory of Open Access Journals (Sweden)

    Colin Reese

    2007-03-01

    Full Text Available Organic molecular crystals hold great promise for the rational development of organic semiconductor materials. Their long-range order not only reveals the performance limits of organic materials, but also provides unique insight into their intrinsic transport properties. The field-effect transistor (FET has served as a versatile tool for electrical characterization of many facets of their performance. In the last few years, breakthroughs in single-crystal FET fabrication techniques have enabled the realization of field-effect mobilities far surpassing amorphous Si, observation of the Hall effect in an organic material, and the study of transport as an explicit function of molecular packing and chemical structure.

  3. Effect of symmetry reduction on the electronic transitions in polytypic GdAl3(BO3)4:Eu:Tb crystals

    Science.gov (United States)

    Lengyel, K.; Beregi, E.; Földvári, I.; Corradi, G.; Kovács, L.; Solarz, P.; Ryba-Romanowski, W.

    2016-03-01

    The existence of a recently described monoclinic phase (C2/c, Z = 8) (Beregi et al., 2012) in addition to the well-known Huntite type rhombohedral (R32) polytypic modification of the GdAl3(BO3)4 (GAB) crystal at room temperature provides a unique possibility to investigate the incorporation of rare earth dopants into slightly modified crystal lattice by spectroscopic methods. In these characteristic GAB structures the dopant ions, e.g. Tb3+ or Eu3+, possess slightly different neighbor geometries and local symmetries. The Tb3+: 7F6 → 5D4 and Eu3+: 7F0,1,2 → 5D0,1,2 electronic transitions were successfully identified in the absorption spectra using polarization, concentration and temperature dependent measurements in both polytypic modifications. The positions of the investigated Tb lines are shifted by up to 10 cm-1 due to symmetry changes. In addition, some of the Eu lines show splittings of about 4-30 cm-1 as a consequence of the change of the local environment. From the room temperature absorption measurements some of the low energy crystal field levels of 7F and 5D states of the Eu3+ ions were successfully determined for both modifications.

  4. Kinetic study of isothermal crystallization process of Gd2Ti2O7 precursor's powder prepared through the Pechini synthetic approach

    Science.gov (United States)

    Janković, Bojan; Marinović-Cincović, Milena; Dramićanin, Miroslav

    2015-10-01

    Crystallization process of Gd2Ti2O7 precursor's powder prepared by Pechini-type polymerized complex route has been studied under isothermal experimental conditions in an air atmosphere. It was found that the crystallization proceeds through two-parameter Šesták-Berggren (SB) autocatalytic model, in the operating temperature range of 550 °C≤T≤750 °C. Based on the behavior of SB parameters (M, N), it was found that in the lower operating temperature range, the crystallites with relatively low compactness exist, which probably disclosed low dimensionality of crystal growth from numerous nucleation sites, where the amorphous solid is produced. In the higher operating temperature region (above 750 °C), it was established that a morphological well-defined and high-dimensional particles of the formed pyrochlore phase can be expected. It was found that at T=850 °C, there is a change in the rate-determining reaction step, from autocatalytic into the contracting volume mechanism.

  5. Crystal growth, electrical and photophysical properties of Tl2S layered single crystals

    Indian Academy of Sciences (India)

    A M Badr; H A Elshaikh; I M Ashraf

    2009-05-01

    The Tl2S compound was prepared in a single crystal form using a special local technique, and the obtained crystals were analysed by X-ray diffraction. For the resultant crystals, the electrical properties (electrical conductivity and Hall effect) and steady-state photoconductivity were elucidated in this work. The electrical measurements extend from 170 to 430 K, where it was found that ⊥ = 8.82 × 10−5 Sm-1 when current flow direction makes right angle to the cleavage plane of the crystals. In the same range of temperatures, it was found that ∥ = 4.73 × 10−5 Sm-1 when the current flow is parallel to the cleavage plane. In line with the investigated range of temperatures, the widths of the band gaps were calculated and discussed as also the results of the electrical conductivity and Hall effect measurements. In addition, the anisotropy of the electrical conductivity (⊥/∥) for the obtained crystals was also studied in this work. Finally the photosensitivity was calculated for different levels of illumination as a result of the photoconductivity measurements, which showed that the recombination process in Tl2S single crystals is a monomolecular process.

  6. The crystallization and optical properties of LiNbO3 single crystals

    Directory of Open Access Journals (Sweden)

    SLOBODANKA NIKOLIC

    2000-06-01

    Full Text Available LiNbO3 single crystals were grown by the Czochralski technique in an air atmosphere. The critical crystal diameter Dc = 1.5 cm and the critical rate of rotation wc = 35 rpm were calculated from the dynamic of fluids equations for buoyancy-driven and forced convections under which the shape of the melt/crystal interface changed. The domain inversion was carried out at 1473 K using a 10 min 3.75 V/cm electric field. The obtained crystals were cut, polished and etched to determine the presence of dislocations and single domain structures. The lattice parameters a = 0.51494 nm, c = 1.38620 nm and V = 0.3186 nm3 were determined by X-ray powder diffraction. The optical properties were studied by infrared spectroscopy in the wave number range 20 - 5000 cm-1. With decreasing temperature, an atypical behaviour of the phonon modes, due to the ferroelectric properties of LiNbO3 single crystal, could be seen. The optical constants were calculated by Kramers-Kronig analysis and the value of the critical temperature was estimated. The obtained results are discussed and compared with published data.

  7. Strain gradient crystal plasticity analysis of a single crystal containing a cylindrical void

    DEFF Research Database (Denmark)

    Borg, Ulrik; Kysar, J.W.

    2007-01-01

    The effects of void size and hardening in a hexagonal close-packed single crystal containing a cylindrical void loaded by a far-field equibiaxial tensile stress under plane strain conditions are studied. The crystal has three in-plane slip systems oriented at the angle 60 degrees with respect...... to one another. Finite element simulations are performed using a strain gradient crystal plasticity formulation with an intrinsic length scale parameter in a non-local strain gradient constitutive framework. For a vanishing length scale parameter the non-local formulation reduces to a local crystal...... to three times higher for smaller void sizes than for larger void sizes in the non-local material....

  8. Crystallization of inorganic nonlinear optical zinc di-magnesium chloro sulphate (ZDMCS) single crystal

    Science.gov (United States)

    Arivuselvi, R.; Ruban Kumar, A.

    2017-02-01

    The growth of inorganic zinc di-magnesium chloro sulphate (ZDMCS) nonlinear optical material from low temperature evaporation technique at ambient temperature has been reported. The dimension of harvested crystal is 28×10×2 mm3 and is possess rectangular shape morphology. The single crystal X-ray diffraction studies confirmed that the grown crystal belongs to the system of trigonal. The S-Cl stretching vibrations and Mg2+ ions present in the sample were observed by FTIR spectrometer. The cut-off wavelength of the grown crystal is about 203 nm is found by UV-visible absorption spectrum. The nonlinear optical efficiency was determined by powder Kurtz Perry technique. EDAX spectrum confirms the presence of elements within the material. Dielectric nature of the sample was analyzed for the frequency range 50 Hz to 5 MHz at different temperatures. The mechanical behaviour of the title compound was investigated using Vicker's microhardness tester.

  9. The effect of pressure on the crystal structure of [Gd(PhCOO)3(DMF)]n to 3.7 GPa and the transition to a second phase at 5.0 GPa.

    Science.gov (United States)

    Parois, Pascal; Moggach, Stephen A; Lennie, Alistair R; Warren, John E; Brechin, Euan K; Murrie, Mark; Parsons, Simon

    2010-08-14

    The effect of pressure on the crystal structure of the coordination polymer [Gd(PhCOO)(3)(DMF)](n) has been studied to 5.0 GPa. At ambient pressure the structure is tetragonal (space group P4(2)/n) with the polymers extending along the c-direction of the unit cell; successive Gd atoms are alternately bridged by four benzoates and by two benzoates; the coordination spheres of the metal atoms are completed by DMF ligands. This results in two different Gd...Gd repeats, measuring 3.8953(3) and 5.3062(3) A, respectively. The polymer chains interact with each other via dispersion interactions, including a number of CH...pi contacts to phenyl rings in which the H...ring-centroid distances are 3.19 to 3.28 A. Up to 3.7 GPa the crystal remains in a compressed form of its ambient-pressure phase. The a-axis shortens by 7.7%, and the c-axis by 2.9%, the difference reflecting the greater ease of compression along the crystallographic directions mediated by weak intermolecular interactions. At ambient pressure the Gd-O distances span 2.290(2)-2.559(2) A, with an average of 2.39(3) A. At 3.7 GPa the corresponding parameters are 2.259(3) to 2.509(4) and 2.36(3) A. The Gd...Gd distances shortened by 0.0467(4) and 0.1851(4) A, and the CH...pi distances span the range 2.76-2.90 A. During compression a number of H...H contacts develop, the shortest measuring 1.84 A at 3.7 GPa. On increasing the pressure to 5.0 GPa a phase transition occurred in which the shortest H...H contact is relieved by conversion of an edge-to-edge phenyl-phenyl contact into a pi...pi stacking interaction. The new phase is also tetragonal, space group P4, the inversion symmetry present in phase-I being lost in phase-II. The phase transition allows more efficient packing of ligands, and while the a-axis decreases in length the c-axis increases. This leads to Gd...Gd distances of 3.8373(4) and 5.3694(4) A, the latter being longer than at ambient pressure. Gd-O distances at 5.0 GPa span the range 2.265(5) to 2

  10. Semiconducting polymer single crystals and devices (Conference Presentation)

    Science.gov (United States)

    Dong, Huanli

    2016-11-01

    Highly ordered organic semiconductors in solid state with optimal molecular packing are critical to their electrical performance. Single crystals with long-range molecular orders and nearly perfect molecular packing are the best candidates, which already have been verified to exhibit the highest performance whether based on inorganic or small organic materials. However, in comparison, preparing high quality polymer crystals remains a big challenge in polymer science because of the easy entanglements of the long and flexible polymer chains during self-assembly process, which also significantly limits the development of their crystalline polymeric electronic devices. Here we have carried out systematical investigations to prepare high quality semiconducting polymers and high performance semiconducting polymer crystal optoelectronic devices have been successfully fabricated. The semiconducting polymeric devices demonstrate significantly enhanced charge carreir transport compared to their thin films, and the highest carreir mobiltiy could be approcahing 30 cm2 V-1s-1, one of the highest mobiltiy values for polymer semiconductors.

  11. Neutron transmission and reflection at a copper single crystal

    Energy Technology Data Exchange (ETDEWEB)

    Adib, M.; Maayouf, R.M.A.; Abdel-Kawy, A.; Fayek, M.; Habib, N. (Atomic Energy Establishment, Cairo (Egypt). Reactor and Neutron Physics Dept.); Wahba, M. (Ain Shams Univ., Cairo (Egypt). Dept. of Engineering Physics and Mathematics)

    1991-06-01

    Neutron transmission and reflection at a copper single crystal cut along the (111) plane were studied with the fixed-scattering-angle spectrometer installed at the ET-RR-1 reactor. The transmission was measured for neutron wavelengths between 0.15 and 0.46 nm and various orientations of the (111) plane with respect to the incident beam. When used as a neutron band pass filter, the crystal is optimally oriented when the neutron beam is incident parallel to the (111) direction. The reflectivity was measured for the (111) plane at 45deg with respect to the incident beam. The results were found to be in reasonable agreement with a value predicted for the reflected intensity at an imperfect crystal with finite absorption. (orig.).

  12. Resonant magnetic properties of gadolinium-gallium garnet single crystals

    Science.gov (United States)

    Bedyukh, A. R.; Danilov, V. V.; Nechiporuk, A. Yu.; Romanyuk, V. F.

    1999-03-01

    The results of experimental investigations of resonant magnetic properties of gadolinium-gallium garnet (GGG) single crystals at temperatures 4.2-300 K in the frequency range 1.6-9.3 GHz are considered. It is found that magnetic losses in GGG are determined by the initial splitting of energy levels for gadolinium ions in the garnet crystal lattice and by the dipole broadening. The width and shape of the electron paramagnetic resonance (EPR) line in the GGG crystal, whose asymmetry is manifested most strongly at low frequencies, can be explained by the influence of these factors. Magnetic losses in GGG increase with frequency and upon cooling. It is found that the EPR linewidth increases considerably with decreasing temperature due to the presence of rapidly relaxing impurities.

  13. Performance comparison between ceramic Ce:GAGG and single crystal Ce:GAGG with digital-SiPM

    Science.gov (United States)

    Park, C.; Kim, C.; Kim, J.; Lee, Y.; Na, Y.; Lee, K.; Yeom, J. Y.

    2017-01-01

    The Gd3Al2Ga3O12 (Ce:GAGG) is a new inorganic scintillator known for its attractive properties such as high light yield, stopping power and relatively fast decay time. In this study, we fabricated a ceramic Ce:GAGG scintillator as a cost-effective alternative to single crystal Ce:GAGG and, for the first time, investigated their performances when coupled to the digital silicon photomultiplier (dSiPM)—a new type of photosensor designed for applications in medical imaging, high energy and astrophysics. Compared to 3 × 3 × 2 mm3 sized single crystal Ce:GAGG, the translucent ceramic Ce:GAGG, which has a much lower transmittance than the single crystal, was determined to give an output signal amplitude that is approximately 61% of single crystal Ce:GAGG. The energy resolution of the 511 keV annihilation peak of a 22Na source was measured to be 9.9 ± 0.2% and 13.0 ± 0.3% for the single and ceramic scintillators respectively. On the other hand, the coincidence resolving time (CRT) of ceramic Ce:GAGG was 307 ± 23 ps, better than the 465 ± 37 ps acquired with single crystals—probably attributed to its slightly faster decay time and higher proportion of the fast decay component. The ceramic Ce:GAGG may be a promising cost-effective candidate for applications that do not require thick scintillators such as x-ray detectors and charged particle detectors, and those that require time-of-flight capabilities.

  14. Planar tetranuclear Dy(III) single-molecule magnet and its Sm(III), Gd(III), and Tb(III) analogues encapsulated by salen-type and β-diketonate ligands.

    Science.gov (United States)

    Yan, Peng-Fei; Lin, Po-Heng; Habib, Fatemah; Aharen, Tomoko; Murugesu, Muralee; Deng, Zhao-Peng; Li, Guang-Ming; Sun, Wen-Bin

    2011-08-01

    The syntheses, structures, and magnetic properties are reported for four new lanthanide clusters [Sm(4)(μ(3)-OH)(2)L(2)(acac)(6)]·4H(2)O (1), [Gd(4)(μ(3)-OH)(2)L(2)(acac)(6)]·4CH(3)CN (2), and [Ln(4)(μ(3)-OH)(2)L(2)(acac)(6)]·2H(2)L·2CH(3)CN (3, Ln = Tb; 4, Ln = Dy) supported by salen-type (H(2)L = N,N'-bis(salicylidene)-1,2-cyclohexanediamine) and β-diketonate (acac = acetylacetonate) ligands. The four clusters were confirmed to be essentially isomorphous by infrared spectroscopy and single-crystal X-ray diffraction. Their crystal structures reveal that the salen-type ligand provides a suitable tetradentate coordination pocket (N(2)O(2)) to encapsulate lanthanide(III) ions. Moreover, the planar Ln(4) core is bridged by two μ(3)-hydroxide, four phenoxide, and two ketonate oxygen atoms. Magnetic properties of all four compounds have been investigated using dc and ac susceptibility measurements. For 4, the static and dynamic data indicate that the Dy(4) complex exhibits slow relaxation of the magnetization below 5 K associated with single-molecule magnet behavior.

  15. Crystal-field analysis for RE 3+ ions in laser materials: II. Absorption spectra and energy levels calculations for Nd 3+ ions doped into SrLaGa 3O 7 and BaLaGa 3O 7 crystals and Tm 3+ ions in SrGdGa 3O 7

    Science.gov (United States)

    Karbowiak, M.; Gnutek, P.; Rudowicz, C.; Ryba-Romanowski, W.

    2011-08-01

    Low temperature polarized absorption spectra are analyzed to achieve assignments of energy levels for Nd 3+ and Tm 3+ ions at monoclinic C s site symmetry in ABC 3O 7 crystals. Based on the concept of average optical center, the experimental energy levels for single crystals of SrLaGa 3O 7:Nd 3+ (SLG:Nd), BaLaGa 3O 7:Nd 3+ (BLG:Nd), and SrGdGa 3O 7:Tm 3+ (SGG:Tm) were analyzed in terms of the free-ion parameters and the crystal field (CF) ones, B kq. Assignments of the energy levels resolved in the spectra were done in stages applying the ascent/descent in symmetry method in CF analysis. The actual monoclinic C s site symmetry at the metal centers in ABC 3O 7 crystals and the approximated orthorhombic C 2v and tetragonal C 4v symmetry were considered. The starting values of B kq's for SLG:Nd and BLG:Nd crystals were obtained from superposition model (SPM) analysis. The final fitted crystal field parameters show high compatibility with the existing data for structurally similar ion-host systems. The obtained values of the intrinsic parameters provide basis for SPM analysis of CF parameters for rare earth ions in other similar systems, especially those exhibiting low-symmetry sites. The SPM parameters derived for SLG:Nd are used for simulation and assignment of the energy levels involved in the potential laser transitions at about 1800 nm due to Tm 3+ ions in SGG crystals. The evaluated emission cross-section is about two times lower than that obtained previously.

  16. Magnetic Properties of GdBa{sub 2}Cu{sub 3}O{sub 7-y} Bulk Superconductors Fabricated by a Top-seeded Melt Growth Process

    Energy Technology Data Exchange (ETDEWEB)

    Kim, K. M.; Park, S. D.; Jun, B. H.; Kim, C. J. [Neutron Science Division, Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Ko, T. K. [Dept. of Electrical and Eletronic Engineering, Yonsei University, Seoul (Korea, Republic of)

    2012-08-15

    The fabrications condition and superconducting properties of top-seeded melt growth (TSMG) processed GdBa{sub 2}Cu{sub 3}O{sub 7-y} (Gd123) bulk superconductors were studied. Processing parameters (a maximum temperature (T{sub max}), a temperature for crystal growth (T{sub G}) and a cooling rate (R{sub G}) through a peritectic temperature (T{sub P}) for the fabrication of single grain Gd123 superconductors were optimized. The magnetic levitation forces, trapped magnetic fields, superconducting transition temperature (Tc) and critical current density (Jc) of the Gd123 bulks superconductors were estimated. Single grain Gd123 bulk superconductors were successfully fabricated at the optimized processing condition. The Tc of a TSMG processed Gd123 sample was 92.5 K and the Jc at 77 K and 0 T was approximately 50{kappa}A/cm{sup 2}. The trapped magnetic field contour and magnetic levitation forces were dependent on the top surface morphology of TSMG processed Gd123 samples. The single grain Gd123 samples, field-cooled at 77 K using a Nd-B-Fe permanent magnet with 5.27 kG and 30 mm dia., showed the trapped magnetic field contour of a single grain with a maximum of 4 kG at the sample center. The maximum magnetic levitation forces of the single grain Gd123 sample, field-cooled or zero field-cooled, were 40 N and 107 N, respectively.

  17. Size effects in single crystal thin films : nonlocal crystal plasticity simulations

    NARCIS (Netherlands)

    Yefimov, S; van der Giessen, E

    2005-01-01

    Stress relaxation in single crystalline thin films on substrates subjected to thermal loading is studied using a recently proposed nonlocal continuum crystal plasticity theory. The theory is founded on a statistical-mechanics description of the collective behaviour of dislocations in multiple slip,

  18. A new material for single crystal modulators: BBO

    Science.gov (United States)

    Bammer, F.; Schumi, T.; Petkovsek, R.

    2011-06-01

    Single crystal photo-elastic modulators (SCPEM) are based on a single piezo-electric crystal which is electrically excited on a resonance frequency such that the resulting resonant oscillation causes a modulated artificial birefringence due to the photo-elastic effect. Polarized light experience in such a crystal a strong modulation of polarization, which, in connection with a polarizer, can be used for Q-switching of lasers with pulse repetition frequencies in the range of 100- 1000 kHz. A particularly advantageous configuration is possible with crystals from the symmetry class 3m. Besides LiTaO3 and LiNbO3, both already well explored as SCPEM-materials, we introduce now BBO, which offers a very low absorption in the near infrared region and is therefore particularly suited for Q-switching of solid state lasers. We demonstrate first results of such a BBO-modulator with the dimensions 8.6 x 4.05 x 4.5mm in x-, y-, z- direction, which offers a useful resonance and polarization modulation at 131.9 kHz. Since the piezo-electric effect is small, the voltage amplitude for achieving Q-switching for an Nd:YAG-laser is expected to be in the range of 100V. Nevertheless it is a simple and robust device to achieve Q-switching with a high fixed repetition rate for high power solid state lasers.

  19. Converting ceria polyhedral nanoparticles into single-crystal nanospheres.

    Science.gov (United States)

    Feng, Xiangdong; Sayle, Dean C; Wang, Zhong Lin; Paras, M Sharon; Santora, Brian; Sutorik, Anthony C; Sayle, Thi X T; Yang, Yi; Ding, Yong; Wang, Xudong; Her, Yie-Shein

    2006-06-09

    Ceria nanoparticles are one of the key abrasive materials for chemical-mechanical planarization of advanced integrated circuits. However, ceria nanoparticles synthesized by existing techniques are irregularly faceted, and they scratch the silicon wafers and increase defect concentrations. We developed an approach for large-scale synthesis of single-crystal ceria nanospheres that can reduce the polishing defects by 80% and increase the silica removal rate by 50%, facilitating precise and reliable mass-manufacturing of chips for nanoelectronics. We doped the ceria system with titanium, using flame temperatures that facilitate crystallization of the ceria yet retain the titania in a molten state. In conjunction with molecular dynamics simulation, we show that under these conditions, the inner ceria core evolves in a single-crystal spherical shape without faceting, because throughout the crystallization it is completely encapsulated by a molten 1- to 2-nanometer shell of titania that, in liquid state, minimizes the surface energy. The principle demonstrated here could be applied to other oxide systems.

  20. Frictional properties of single crystals HMX, RDX and PETN explosives.

    Science.gov (United States)

    Wu, Y Q; Huang, F L

    2010-11-15

    The frictional properties of single crystals of cyclotetramethylene tetranitramine (HMX), cyclotrimethylene trinitramine (RDX) and pentaerythritol tetranitrate (PETN) secondary explosives are examined using a sensitive friction machine. The explosive crystals used for the measurements are at least 3.5 mm wide. The friction coefficients between crystals of the same explosive (i.e., HMX on HMX, etc.), crystals of different explosives (i.e., HMX on RDX, etc.), and each explosive and a well-polished gauge steel surface are determined. The frictional surfaces are also studied under an environmental scanning electron microscope (ESEM) to analyze surface microstructural changes under increasing loading forces. The friction coefficients vary considerably with increasing normal loading forces and are particularly sensitive to slider shapes, crystal roughness and the mechanical properties of both the slider and the sample. With increasing loading forces, most friction experiments show surface damage, consisting of grooves, debris, and nano-particles, on both the slider and sample. In some cases, a strong evidence of a localized molten state is found in the central region of the friction track. Possible mechanisms that affect the friction coefficient are discussed based on microscopic observations. Copyright © 2010 Elsevier B.V. All rights reserved.

  1. Dispersion of optical activity of magnesium sulfite hexahydrate single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Dimov, T; Bunzarov, Zh; Iliev, I; Petkova, P; Tzoukrovski, Y, E-mail: dimov@shu-bg.ne

    2010-11-01

    The magnesium sulfite hexahydrate (MgSO{sub 3}.6H{sub 2}O) crystals are unique because they are the only representative (with sodium periodate) of the crystallographic class C{sub 3} (without a center of symmetry). The crystal symmetry suggests presence of nonlinearity, piezo- and pyro-electric properties and gyrotropy as well. Single crystals of MgSO{sub 3}.6H{sub 2}O (pure and doped with Ni, Co and Zn) for the time being are grown only by the original method developed in the Laboratory for Crystal growth at the Faculty of Physics in Sofia University. The first results of optical activity of pure MgSO{sub 3}.6H{sub 2}O and Zn doped MgSO{sub 3}.6H{sub 2}O crystals are described and analyzed in a wide spectral range. The optical activity manifests itself in the direction (0001) as a rotation of the polarization plane.

  2. Nanofluidics of Single-crystal Diamond Nanomechanical Resonators

    CERN Document Server

    Kara, V; Atikian, H; Yakhot, V; Loncar, M; Ekinci, K L

    2015-01-01

    Single-crystal diamond nanomechanical resonators are being developed for countless applications. A number of these applications require that the resonator be operated in a fluid, i.e., a gas or a liquid. Here, we investigate the fluid dynamics of single-crystal diamond nanomechanical resonators in the form of nanocantilevers. First, we measure the pressure-dependent dissipation of diamond nanocantilevers with different linear dimensions and frequencies in three gases, He, N$_2$, and Ar. We observe that a subtle interplay between the length scale and the frequency governs the scaling of the fluidic dissipation. Second, we obtain a comparison of the surface accommodation of different gases on the diamond surface by analyzing the dissipation in the molecular flow regime. Finally, we measure the thermal fluctuations of the nanocantilevers in water, and compare the observed dissipation and frequency shifts with theoretical predictions. These findings set the stage for developing diamond nanomechanical resonators o...

  3. Oriented hydroxyapatite single crystals produced by the electrodeposition method

    Energy Technology Data Exchange (ETDEWEB)

    Santos, E.A. dos, E-mail: euler@ufs.br [INSA - Groupe Ingenierie des Surfaces, 24, Bld de la Victoire, 67084 Strasbourg (France); IPCMS - Departement de Surfaces et Interfaces, 23, rue du Loess, BP 43, 67034 Strasbourg (France); Moldovan, M.S. [INSA - Groupe Ingenierie des Surfaces, 24, Bld de la Victoire, 67084 Strasbourg (France); IPCMS - Departement de Surfaces et Interfaces, 23, rue du Loess, BP 43, 67034 Strasbourg (France); Jacomine, L. [INSA - Groupe Ingenierie des Surfaces, 24, Bld de la Victoire, 67084 Strasbourg (France); Mateescu, M. [IS2M - Equipe Interaction Surface-Matiere Vivant, 15, rue Jean Starcky, BP 2488, 68057 Mulhouse (France); Werckmann, J. [IPCMS - Departement de Surfaces et Interfaces, 23, rue du Loess, BP 43, 67034 Strasbourg (France); Anselme, K. [IS2M - Equipe Interaction Surface-Matiere Vivant, 15, rue Jean Starcky, BP 2488, 68057 Mulhouse (France); Mille, P.; Pelletier, H. [INSA - Groupe Ingenierie des Surfaces, 24, Bld de la Victoire, 67084 Strasbourg (France)

    2010-05-25

    We propose here the use of cathodic electrodeposition as tool to fabricate implant coatings consisting in nano/micro single crystals of hydroxyapatite (HA), preferentially orientated along the c-axis. Coating characterization is the base of this work, where we discuss the mechanisms related to the deposition of oriented hydroxyapatite thin films. It is shown that when deposited on titanium alloys, the HA coating is constituted by two distinct regions with different morphologies: at a distance of few microns from the substrate, large HA single crystals are oriented along the c-axis and appear to grow up from a base material, consisting in an amorphous HA. This organized system has a great importance for cell investigation once the variables involved in the cell/surface interaction are reduced. The use of such systems could give a new insight on the effect of particular HA orientation on the osteoblast cells.

  4. Frequency dispersion of flexoelectricity in PMN-PT single crystal

    Directory of Open Access Journals (Sweden)

    Longlong Shu

    2017-01-01

    Full Text Available The mechanism of the recent discovered enhanced flexoelectricity in perovskites has brought about numerous controversies which still remain unclear. In this paper, we employed relaxor 0.68Pb(Mg2/3Nb1/3O3 -0.32PbTiO3 (PMN-PT single crystals for study. The observed flexoelectric coefficient in PMN-PT single crystal reaches up to 100 μC/m, and in a relative low frequency range, exhibits an abnormal frequency dispersion phenomenon with a positive relationship with frequency. Such frequency dispersion regulation is different from the normal relaxation behavior that usually occur a time delay, and hence proves the flexoelectricity acting more like bulk effect rather than surface effect in this kind of materials.

  5. Growth of EuO single crystals at reduced temperatures

    Science.gov (United States)

    Ramirez, Daniel C.; Besara, Tiglet; Whalen, Jeffrey B.; Siegrist, Theo

    2017-01-01

    Single crystals of (E u1 -xB ax)O have been grown in a molten barium-magnesium metal flux at temperatures up to 1000 °C, producing single crystals of (E u1 -xB ax)O with barium doping levels ranging from x =0.03 to x =0.25 . Magnetic measurements show that the ferromagnetic Curie temperature TC correlates with the Ba doping levels, and a modified Heisenberg model was used to describe the stoichiometry dependence of TC. Extrapolation of the results indicates that a sample with Ba concentration of x =0.72 should have a TC of 0 K, potentially producing a quantum phase transition in this material.

  6. High pressure single crystal and powder XRD study for neighborite

    Science.gov (United States)

    Liu, H.

    2016-12-01

    After Murakami et al. (2004) identified the post-perovskite (ppv) phase transition in MgSiO3 perovskite (pv) at pressures and temperatures consistent with the onset of Earth's D" layer, lots of post-perovskite type phase transitions were founded in other similar systems. These discoveries provided a better understanding of heterogeneous structures and seismic anisotropy observed in the controversial region of the lower mantle. With previous experimental evidence showing the analogue system of neighborite NaMgF3 will transform from pv to ppv at 30 GPa, we performed high quality single crystal XRD experiment, which led to a more precise structure determination. Using helium as pressure medium, one metastable low symmetric phase before the pv-ppv structure transition was discovered, whose total energy was calculated as well. The comparison between single crystal and powder XRD data will be presented, and potential application will be discussed.

  7. Synthesis and characterization of single-crystal strontium hexaboride nanowires.

    Science.gov (United States)

    Jash, Panchatapa; Nicholls, Alan W; Ruoff, Rodney S; Trenary, Michael

    2008-11-01

    Catalyst-assisted growth of single-crystal strontium hexaboride (SrB6) nanowires was achieved by pyrolysis of diborane (B2H6) over SrO powders at 760-800 degrees C and 400 mTorr in a quartz tube furnace. Raman spectra demonstrate that the nanowires are SrB6, and transmission electron microscopy along with selected area diffraction indicate that the nanowires consist of single crystals with a preferred [001] growth direction. Electron energy loss data combined with the TEM images indicate that the nanowires consist of crystalline SrB 6 cores with a thin (1 to 2 nm) amorphous oxide shell. The nanowires have diameters of 10-50 nm and lengths of 1-10 microm.

  8. Annealing Effect on Photovoltages of Quartz Single Crystals

    Institute of Scientific and Technical Information of China (English)

    TIAN Lu; ZHAO Song-Qing; ZHAO Kun

    2010-01-01

    @@ We investigate the photovoltaic effects of quartz single crystals annealed at high temperatures in ambient atmosphere.The open-circuit photovoltages and surface morphologies strongly depend on the heating treatments.When the annealing temperature increases from room temperature to 900℃,the rms roughness of quartz single crystal wafers increases from 0.207 to 1.011 nm.In addition,the photovoltages decrease from 1.994#V at room temperature to 1.551 μ V after treated at 500℃,and then increase up to 9.8μV after annealed at 900℃.The inner mechanism of the present photovoltaic response and surface morphologies is discussed.

  9. Electrical conductivity and dielectric properties of potassium sulfamate single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, A.S.; Iype, L.; Rajesh, R. [School of Pure and Applied Physics, Mahatma Gandhi University, Kottayam (India); Varughese, G. [Department of Physics, Catholicate College, Pathanamthitta, Kerala (India); Joseph, G. [Department of Physics, Sacred Heart College, Thevera, Cochin, Kerala (India); Louis, G. [Department of Physics, Cochin University of Science and Technology, Cochin (India)

    2011-10-15

    Single crystals of potassium sulfamate are grown by the method of slow evaporation at constant temperature. AC electrical conductivity of potassium sulfamate is measured in the temperature range 300-430 K and in the frequency region between 100 Hz and 3 MHz along the a, b and c-axes. Complex impedance spectroscopy is used to investigate the frequency response of the electrical properties of the potassium sulfamate single crystal. Temperature variation of AC conductivity and dielectric measurements show a slope change around 345 K for both heating and cooling run and this anomaly is attributed as phase transition, which is well supported by the DSC measurements. Value of loss tangent in the temperature region 330-400 K is found to be very low. Activation energies for the conduction process are calculated along the a, b and c-axes. (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  10. Single crystal neutron diffraction study of triglycine sulphate revisited

    Indian Academy of Sciences (India)

    Rajul Ranjan Choudhury; R Chitra

    2008-11-01

    In order to get the exact hydrogen-bonding scheme in triglycine sulphate (TGS), which is an important hydrogen bonded ferroelectric, a single crystal neutron diffraction study was undertaken. The structure was refined to an -factor of [2] = 0.034. Earlier neutron structure of TGS was reported with a very limited data set and large standard deviations. The differences between the present and the earlier reported neutron structure of TGS are discussed.

  11. The Herbertsmithite Hamiltonian: {mu}SR measurements on single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Ofer, Oren [TRIUMF, 4004 Wesbrook Mall, Vancouver, BC, V6T2A3 (Canada); Keren, Amit [Department of Physics, Technion, Haifa 32000 (Israel); Brewer, Jess H [Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, V6T1Z1 (Canada); Han, Tianheng H; Lee, Young S, E-mail: oren@triumf.ca [Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States)

    2011-04-27

    We present transverse field muon spin rotation/relaxation measurements on single crystals of the spin-1/2 kagome antiferromagnet Herbertsmithite. We find that the spins are more easily polarized when the field is perpendicular to the kagome plane. We demonstrate that the difference in magnetization between the different directions cannot be accounted for by Dzyaloshinskii-Moriya-type interactions alone and that anisotropic axial interaction is present.

  12. Ion implantation induced blistering of rutile single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Xiang, Bing-Xi [School of Physics, Shandong University, Jinan, Shandong 250100 (China); Jiao, Yang [College of Physics and Electronics, Shandong Normal University, Jinan, Shandong 250100 (China); Guan, Jing [School of Physics, Shandong University, Jinan, Shandong 250100 (China); Wang, Lei [School of Physics, Shandong University, Jinan, Shandong 250100 (China); Key Laboratory of Nanodevices and Applications, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences (China)

    2015-07-01

    The rutile single crystals were implanted by 200 keV He{sup +} ions with a series fluence and annealed at different temperatures to investigate the blistering behavior. The Rutherford backscattering spectrometry, optical microscope and X-ray diffraction were employed to characterize the implantation induced lattice damage and blistering. It was found that the blistering on rutile surface region can be realized by He{sup +} ion implantation with appropriate fluence and the following thermal annealing.

  13. Microstructure evolution of single crystal copper wires in cold drawing

    Institute of Scientific and Technical Information of China (English)

    CHEN; Jian; YAN; Wen; WANG; XueYan; FAN; XinHui

    2007-01-01

    The deformation microstructure evolution of single crystal copper wires produced by OCC method has been studied with the help of TEM, EBSD and OM. The results show that there are a small number of dendrites and twins in the undeformed single crystal copper wires. However, it is difficult to observe these dendrites in deformed single crystal copper wires. The structure evolution of deformed single crystal copper wires during drawing process can be divided into three stages. When the true strain is lower than 0.94, macroscopic subdivision of grains is not evident, and the microscopic evolution of deformed structure is that the cells are formed and elongated in drawn direction. When the true strain is between 0.94 and 1.96, macroscopic subdivision of grains takes place, and the number of microbands located on {111} and cell blocks is much more than that with the true strain lower than 0.94. When the true strain is larger than 1.96, the macroscopic subdivision of grains becomes more evident than that with the true strain between 0.94 and 1.96, and S-bands structure and lamellar boundaries will be formed. From EBSD analysis, it is found that part of texture resulting from solidifying is transformed into and due to shear deformation, but texture component is still kept in majority. When the true strain is 0.94, the misorientation angle of dislocation boundaries resulting from deformation is lower than 14°. However, when the true strain arrives at 1.96, the misorientation angle of some boundaries will be greater than 50°, and the peak of misorientation angle distribution produced by texture evolution is located in the range between 25° and 30°.

  14. Study of diffusion of Ag in Cu single crystals

    CERN Document Server

    Wang, R

    2002-01-01

    4.0 MeV sup 7 Li sup + sup + RBS and AES were used for investigations of thermal diffusion of Ag in Cu single crystals. The annealing of samples was carried out in vacuum in the temperature range from 498 to 613 K. The element depth concentration profiles transformed from RBS spectra indicate that the diffusion of Ag into Cu is a typical volume diffusion. The Arrhenius parameters corresponding to the diffusion were obtained.

  15. Magnetic phase diagram of the antiferromagnetic pyrochlore Gd2 Ti2 O7

    Science.gov (United States)

    Petrenko, O. A.; Lees, M. R.; Balakrishnan, G.; Paul, D. Mck

    2004-07-01

    Gd2Ti2O7 is a highly frustrated antiferromagnet on a pyrochlore lattice, where apart from the Heisenberg exchange the spins also interact via dipole-dipole forces. We report on low-temperature specific heat measurements performed on single crystals of Gd2Ti2O7 for three different directions of an applied magnetic field. The measurements reveal the strongly anisotropic behavior of Gd2Ti2O7 in a magnetic field despite the apparent absence of a significant single-ion anisotropy for Gd3+ . The H-T phase diagrams are constructed for H∥[111] , H∥[110] , and H∥[112] . The results indicate that further theoretical work beyond a simple mean-field model is required.

  16. Interfacial dislocation motion and interactions in single-crystal superalloys

    Energy Technology Data Exchange (ETDEWEB)

    Liu, B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Raabe, D. [Max Planck Inst. fur Eisenforshung. Dusseldorf (Germany); Roters, F. [Max Planck Inst. fur Eisenforshung. Dusseldorf (Germany); Arsenlis, A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2014-10-01

    The early stage of high-temperature low-stress creep in single-crystal superalloys is characterized by the rapid development of interfacial dislocation networks. Although interfacial motion and dynamic recovery of these dislocation networks have long been expected to control the subsequent creep behavior, direct observation and hence in-depth understanding of such processes has not been achieved. Incorporating recent developments of discrete dislocation dynamics models, we simulate interfacial dislocation motion in the channel structures of single-crystal superalloys, and investigate how interfacial dislocation motion and dynamic recovery are affected by interfacial dislocation interactions and lattice misfit. Different types of dislocation interactions are considered: self, collinear, coplanar, Lomer junction, glissile junction, and Hirth junction. The simulation results show that strong dynamic recovery occurs due to the short-range reactions of collinear annihilation and Lomer junction formation. The misfit stress is found to induce and accelerate dynamic recovery of interfacial dislocation networks involving self-interaction and Hirth junction formation, but slow down the steady interfacial motion of coplanar and glissile junction forming dislocation networks. The insights gained from these simulations on high-temperature low-stress creep of single-crystal superalloys are also discussed.

  17. Physical properties of CuAlO 2 single crystal

    Science.gov (United States)

    Brahimi, R.; Bellal, B.; Bessekhouad, Y.; Bouguelia, A.; Trari, M.

    2008-09-01

    CuAlO 2 single crystal elaborated by the flux method is a narrow band gap semiconductor crystallizing in the delafossite structure (SG R3¯m). Oxygen insertion in the layered lattice generates p-type conductivity where most holes are trapped in surface-polaron states. The detailed photoelectrochemical characterization and electrochemical impedance spectroscopy (EIS) have been reported for the first time on the single crystal. The study is confined in the basal plan and reversible oxygen insertion is evidenced from the intensity potential characteristics. The oxide is characterized by an excellent chemical stability; the semi-logarithmic plot gave a corrosion potential of-0.82 V SCE and an exchange current density of 0.022 μA cm -2 in KCl (0.5 M) electrolyte. The capacitance measurement ( C-2- V) shows a linear behavior from which a flat band potential of +0.42 V SCE and a doping density NA of 10 16 cm -3 have been determined. The valence band, located at 5.24 eV (0.51 V SCE) below vacuum, is made up of Cu-3d orbital. The Nyquist plot exhibits a pseudo-semicircle whose center is localized below the real axis with an angle of 20°. This can be attributed to a single relaxation time of the electrical equivalent circuit and a constant phase element (CPE). The absence of straight line indicates that the process is under kinetic control.

  18. Constitutive Model for an FCC Single-Crystal Material

    Institute of Scientific and Technical Information of China (English)

    DING Zhi-ping; LIU Yi-lun; YIN Ze-yong; YANG Zhi-guo; CHENG Xiao-ming

    2006-01-01

    Talking into account the effects that the components of tension stresses couple with components of torsion stresses when off-axis loads are applied to orthotropic materials.Hill's yield criterion for plastically orthotropic solids is modified by adding an invariant that is composed of the product item of quadratic components of the deviatoric siress tensor,and a new yield criteflon is put forward in terms of the characteristics of the face-centered cubic(FCC) single-crystal material.The correlation of prediction and experiments is very good.and the new criterion is used to predict the yield stresses of an intemal single-crystal,Nickel-based superalloy,DD3,which is more accurate than that Of Hill's at 760°C.Equivalent stress and strain that adapt to the new criterion are defined.Thinking of the yield function as a plastic potential function from the associated flow rule.the elastic-plastic constitutive model for the FCC single-crystal material is constructed,and the corresponding elastic-plastic matrix iseduced.The new yield criterion and its equivalent stress and strain will be reduced to Von Mises' yield criterion and corresponding equivalent stress and strain for isotropic materials.

  19. Chiral multichromic single crystals for optical devices (LDRD 99406).

    Energy Technology Data Exchange (ETDEWEB)

    Kemp, Richard Alan; Felix, Ana M. (University of New Mexico, Albuquerque, NM)

    2006-12-01

    This report summarizes our findings during the study of a novel system that yields multi-colored materials as products. This system is quite unusual as it leads to multi-chromic behavior in single crystals, where one would expect that only a single color would exist. We have speculated that these novel solids might play a role in materials applications such as non-linear optics, liquid crystal displays, piezoelectric devices, and other similar applications. The system examined consisted of a main-group alkyl compound (a p block element such as gallium or aluminum) complexed with various organic di-imines. The di-imines had substituents of two types--either alkyl or aromatic groups attached to the nitrogen atoms. We observed that single crystals, characterized by X-ray crystallography, were obtained in most cases. Our research during January-July, 2006, was geared towards understanding the factors leading to the multi-chromic nature of the complexes. The main possibilities put forth initially considered (a) the chiral nature of the main group metal, (b) possible reduction of the metal to a lower-valent, radical state, (c) the nature of the ligand(s) attached to the main group metal, and (d) possible degradation products of the ligand leading to highly-colored products. The work carried out indicates that the most likely explanation considered involves degradation of the aromatic ligands (a combination of (c) and (d)), as the experiments performed can clearly rule out (a) and (b).

  20. Single crystal plasticity by modeling dislocation density rate behavior

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, Benjamin L [Los Alamos National Laboratory; Bronkhorst, Curt [Los Alamos National Laboratory; Beyerlein, Irene [Los Alamos National Laboratory; Cerreta, E. K. [Los Alamos National Laboratory; Dennis-Koller, Darcie [Los Alamos National Laboratory

    2010-12-23

    The goal of this work is to formulate a constitutive model for the deformation of metals over a wide range of strain rates. Damage and failure of materials frequently occurs at a variety of deformation rates within the same sample. The present state of the art in single crystal constitutive models relies on thermally-activated models which are believed to become less reliable for problems exceeding strain rates of 10{sup 4} s{sup -1}. This talk presents work in which we extend the applicability of the single crystal model to the strain rate region where dislocation drag is believed to dominate. The elastic model includes effects from volumetric change and pressure sensitive moduli. The plastic model transitions from the low-rate thermally-activated regime to the high-rate drag dominated regime. The direct use of dislocation density as a state parameter gives a measurable physical mechanism to strain hardening. Dislocation densities are separated according to type and given a systematic set of interactions rates adaptable by type. The form of the constitutive model is motivated by previously published dislocation dynamics work which articulated important behaviors unique to high-rate response in fcc systems. The proposed material model incorporates thermal coupling. The hardening model tracks the varying dislocation population with respect to each slip plane and computes the slip resistance based on those values. Comparisons can be made between the responses of single crystals and polycrystals at a variety of strain rates. The material model is fit to copper.

  1. Large-lattice-parameter perovskite single-crystal substrates

    Science.gov (United States)

    Uecker, Reinhard; Bertram, Rainer; Brützam, Mario; Galazka, Zbigniew; Gesing, Thorsten M.; Guguschev, Christo; Klimm, Detlef; Klupsch, Michael; Kwasniewski, Albert; Schlom, Darrell G.

    2017-01-01

    The pseudobinary system LaLuO3-LaScO3 was explored in hopes of discovering new perovskite-type substrates with pseudocubic lattice parameters above 4 Å. A complete solid solution of the type (LaLuO3)1-x(LaScO3)x forms between the end members LaLuO3 and LaScO3, enabling large single crystals of (LaLuO3)1-x(LaScO3)x to be grown from the melt. A single crystal with x≈0.34 was demonstrated. Considering the maximum thermal load of the iridium crucibles appropriate for Czochralski growth of this solid solution, the theoretically maximum achievable x-value is 0.67. Based on the phase diagram determined, it is anticipated that single crystals with pseudocubic lattice constants between 4.09 and 4.18 Å can be grown in this system by the Czochralski method.

  2. Single mode dye-doped polymer photonic crystal lasers

    DEFF Research Database (Denmark)

    Christiansen, Mads Brøkner; Buss, Thomas; Smith, Cameron

    2010-01-01

    Dye-doped polymer photonic crystal (PhC) lasers fabricated by combined nanoimprint and photolithography are studied for their reproducibility and stability characteristics. We introduce a phase shift in the PhC lattice that substantially improves the yield of single wavelength emission. Single mode...... emission and reproducibility of laser characteristics are important if the lasers are to be mass produced in, e. g., optofluidic sensor chips. The fabrication yield is above 85% with highly reproducible wavelengths (within 0.5%), and the temperature dependence on the wavelength is found to be -0.045 or -0...

  3. Diamond turning of Si and Ge single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Blake, P.; Scattergood, R.O.

    1988-12-01

    Single-point diamond turning studies have been completed on Si and Ge crystals. A new process model was developed for diamond turning which is based on a critical depth of cut for plastic flow-to-brittle fracture transitions. This concept, when combined with the actual machining geometry for single-point turning, predicts that {open_quotes}ductile{close_quotes} machining is a combined action of plasticity and fracture. Interrupted cutting experiments also provide a meant to directly measure the critical depth parameter for given machining conditions.

  4. Magnetic properties and magnetic phase diagrams of intermetallic compound GdMn2Ge2

    Institute of Scientific and Technical Information of China (English)

    Guo Guang-Hua(郭光华); Zhang Hai-Bei(张海贝); R.Z.Levitin

    2003-01-01

    A modified Yafet-Kittle model is applied to investigate the magnetic properties and magnetic phase transition of the intermetallic compound GdMn2Ge2.Theoretical analysis and calculation show that there are five possible magnetic structures in GdMn2Ge2.Variations of external magnetic field and temperature give rise to the first-order or secondorder magnetic transitions from one phase to another.Based on this model,the magnetic curves of GdMn2Ge2 single crystals at different temperatures are calculated and a good agreement with experimental data has obtained.Based on the calculation,the H-T magnetic phase diagrams of GdMn2Ge2 are depicted.The Gd-Gd,Gd-Mn,intralayer Mn-Mn and interlayer Mn-Mn exchange coupling parameters are estimated.It is shown that,in order to describe the magnetic properties of GdMn2Ge2,the lattice constant and temperature dependence of interlayer Mn-Mn exchange interaction must be taken into account.

  5. Influence of solvents on the habit modification of alpha lactose monohydrate single crystals

    Science.gov (United States)

    Parimaladevi, P.; Srinivasan, K.

    2013-02-01

    Restricted evaporation of solvent method was adopted for the growth of alpha lactose monohydrate single crystals from different solvents. The crystal habits of grown crystals were analysed. The form of crystallization was confirmed by powder x-ray diffraction analysis. Thermal behaviour of the grown crystals was studied by using differential scanning calorimetry.

  6. Acquisition of Single Crystal Growth and Characterization Equipment

    Energy Technology Data Exchange (ETDEWEB)

    Maple, M. Brian; Zocco, Diego A.

    2008-12-09

    Final Report for DOE Grant No. DE-FG02-04ER46178 'Acquisition of Single Crystal Growth and Characterization Equipment'. There is growing concern in the condensed matter community that the need for quality crystal growth and materials preparation laboratories is not being met in the United States. It has been suggested that there are too many researchers performing measurements on too few materials. As a result, many user facilities are not being used optimally. The number of proficient crystal growers is too small. In addition, insufficient attention is being paid to the enterprise of finding new and interesting materials, which is the driving force behind much of condensed matter research and, ultimately, technology. While a detailed assessment of this situation is clearly needed, enough evidence of a problem already exists to compel a general consensus that the situation must be addressed promptly. This final report describes the work carried out during the last four years in our group, in which a state-of-the-art single crystal growth and characterization facility was established for the study of novel oxides and intermetallic compounds of rare earth, actinide and transition metal elements. Research emphasis is on the physics of superconducting (SC), magnetic, heavy fermion (HF), non-Fermi liquid (NFL) and other types of strongly correlated electron phenomena in bulk single crystals. Properties of these materials are being studied as a function of concentration of chemical constituents, temperature, pressure, and magnetic field, which provide information about the electronic, lattice, and magnetic excitations at the root of various strongly correlated electron phenomena. Most importantly, the facility makes possible the investigation of material properties that can only be achieved in high quality bulk single crystals, including magnetic and transport phenomena, studies of the effects of disorder, properties in the clean limit, and spectroscopic and

  7. Self-templated synthesis of single-crystal and single-domain ferroelectric nanoplates

    KAUST Repository

    Chao, Chunying

    2012-08-15

    Free-standing single-crystal PbTiO 3 nanoplates (see picture) were synthesized by a facile hydrothermal method. A "self-templated" crystal growth is presumed to lead to the formation of the PbTiO 3 nanoplates, which have ferroelectric single-domain structures, whose polarization areas can be manipulated by writing and reading. The nanoplates are also effective catalysts for the oxidation of carbon monoxide. © 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Effect of Solidification Condition on Microstructure and Mechanical Properties of Single Crystal Superalloy

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    CMSX-2 single crystals with different primary dendrite arm spacing were obtained on directional solidification apparatus with high temperature gradient (250 K/cm). The microstructure and elevated temperature stress rupture properties of these single crystals were examined and analyzed.

  9. Advanced piezoelectric single crystal based transducers for naval sonar applications

    Science.gov (United States)

    Snook, Kevin A.; Rehrig, Paul W.; Hackenberger, Wesley S.; Jiang, Xiaoning; Meyer, Richard J., Jr.; Markley, Douglas

    2006-03-01

    Transducers incorporating single crystal piezoelectric Pb(Mg 1/3Nb 2/3) x-1Ti xO 3 (PMN-PT) exhibit significant advantages over ceramic piezoelectrics such as PZT, including both high electromechanical coupling (k 33 > 90%) and piezoelectric coefficients (d 33 > 2000 pC/N). Conventional orientation gives inherently larger bandwidth and output power than PZT ceramics, however, the anisotropy of the crystal also allows for tailoring of the performance by orienting the crystal along different crystallographic axes. This attribute combined with composition refinements can be used to improve thermal or mechanical stability, which is important in high power, high duty cycle sonar applications. By utilizing the "31" resonance mode, the high power performance of PMN-PT can be improved over traditional "33" mode single crystal transducers, due to an improved aspect ratio. Utilizing novel geometries, effective piezoelectric constants of -600 pC/N to -1200 pC/N have been measured. The phase transition point induced by temperature, pre-stress or field is close to that in the "33" mode, and since the prestress is applied perpendicular to the poling direction in "31" mode elements, they exhibit lower loss and can therefore be driven harder. The high power characteristics of tonpilz transducers can also be affected by the composition of the PMN-PT crystal. TRS modified the composition of PMN-PT to improve the thermal stability of the material, while keeping the loss as low as possible. Three dimensional modeling shows that the useable bandwidth of these novel compositions nearly equals that of conventional PMN-PT. A decrease in the source level of up to 6 dB was calculated, which can be compensated for by the higher drive voltages possible.

  10. Crystal chemistry of the orthorhombic Ln{sub 2}TiO{sub 5} compounds with Ln=La, Pr, Nd, Sm, Gd, Tb and Dy

    Energy Technology Data Exchange (ETDEWEB)

    Aughterson, Robert D., E-mail: roa@ansto.gov.au [Institute of Materials Engineering, Australian Nuclear Science and Technology Organisation, Lucas Heights 2234, NSW (Australia); Australian Centre for Microscopy and Microanalysis, The University of Sydney, Sydney 2006, NSW (Australia); Lumpkin, Gregory R., E-mail: grl@ansto.gov.au [Institute of Materials Engineering, Australian Nuclear Science and Technology Organisation, Lucas Heights 2234, NSW (Australia); Thorogood, Gordon J., E-mail: gjt@ansto.gov.au [Institute of Materials Engineering, Australian Nuclear Science and Technology Organisation, Lucas Heights 2234, NSW (Australia); Zhang, Zhaoming [Institute of Materials Engineering, Australian Nuclear Science and Technology Organisation, Lucas Heights 2234, NSW (Australia); Gault, Baptiste, E-mail: baptiste.gault@materials.ox.ac.uk [Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom); Cairney, Julie M., E-mail: julie.cairney@sydney.edu.au [Australian Centre for Microscopy and Microanalysis, The University of Sydney, Sydney 2006, NSW (Australia)

    2015-07-15

    The crystal structures of seven samples of orthorhombic (Pnma) Ln{sub 2}TiO{sub 5} compounds with Ln=La, Pr, Nd, Sm, Gd, Tb and Dy were refined by Rietveld analysis of synchrotron X-ray powder diffraction (S-XRD) data. With increasing size of the lanthanide cation, the lattice parameters increase systematically: c by only ~1.5% whereas both a and b by ~6% from Dy{sub 2}TiO{sub 5} to La{sub 2}TiO{sub 5}. The mean Ti–O bond length only increases by ~1% with increasing radius of the Ln cation from Gd to La, primarily due to expansion of the pair of Ti–O{sub 3} bonds to opposite corners of the Ti–O{sub 5} square based pyramid polyhedra. For Dy{sub 2}TiO{sub 5} and Tb{sub 2}TiO{sub 5}, a significant variation in Ti–O{sub 1} and Ti–O{sub 4} bond lengths results in an increased deformation of the Ti–O{sub 5} base. The particular configuration consists of large rhombic shaped tunnels and smaller triangular tunnels along the b axis, which have implications for defect formation and migration caused by radiation damage or the ionic conductivity. - Graphical abstract: Figure: The crystallographic study of a systematic series of compounds with nominal stoichiometry Ln{sub 2}TiO{sub 5} (with Ln representing La, Pr, Nd, Sm, Gd, Tb and Dy) and orthorhombic, Pnma, symmetry shows changes in cell parameters which fit a linear trend. However, bond lengths are shown to deviate from trend with compounds containing the smaller, heavier lanthanides. - Highlights: • First fabrication and crystallographic refinement of compound Pr{sub 2}TiO{sub 5}. • First systematic study of the crystallography, using S-XRD, for Ln{sub 2}TiO{sub 5} series. • Cation to anion bonding trends and valence states are investigated. • The densities and band-gaps of the series are experimentally determined.

  11. Crystal structure and magnetic properties of Gd{sub 1+n}Fe{sub 12-x-y}Mo{sub x}{open_square}{sub y} solid solution

    Energy Technology Data Exchange (ETDEWEB)

    Mattern, N.; Zinkevich, M.; Handstein, A. [Institut fuer Festkoerper- und Werkstofforschung Dresden e.V. (Germany); Ehrenberg, H.; Knapp, M. [Technische Univ. Darmstadt (Germany). Fachbereich Materialwissenschaft

    2001-07-01

    A ternary ferromagnetic phase of the ThMn{sub 12} structure type (S.G. I4/mmm) is formed in the Gd-Fe-Mo system like in other rare earth - iron - transition metal systems. The phase exhibits in this case a homogeneity range between 83..80 and 63..60 at% iron and 10 and 30 at% molybdenum, respectively. The crystal structure and its composition dependence was determined by X-ray powder diffraction and Rietveld analysis. Our structural results - lattice constants and site occupancies versus chemical composition - point to an extended homogeneity region of the ThMn{sub 12}-type phase which can be expressed as Gd{sub 1+n}Fe{sub 12-x-y}Mo{sub x}{open_square}{sub y} ({open_square} is a vacancy, 0 {<=} n {<=} 0.2, 1.3 {<=} x {<=} 3.7, 0.6 {<=} y {<=} 0.90). The 8f and 8j positions are only partly occupied by iron (site occupancy : 92-94%). The 8i crystallographic site of the ThMn{sub 12} structure is always completely filled and occupied by iron as well as by molybdenum. The magnetic properties Curie temperature and magnetic moment of the ThMn{sub 12}-type phase vary with molybdenum content and are correlated to the behaviour of some interatomic distances within the unit cell. The temperature dependence of the demagnetisation curves shows composition dependent transition in the magnetic structure at low temperature. Highly resolved X-ray diffraction measurements at temperatures between 10 K and 300 K exhibit no structural transition. The thermal expansion of the lattice is isotropic. The linear expansion coefficients increases with temperature with a transition between 200 and 250 K. (orig.)

  12. Properties of Dy 3+-doped PbWO 4 single crystal grown by modified Bridgman method

    Science.gov (United States)

    Huang, Yanlin; Zhu, Wenliang; Feng, Xiqi; Duan, Yong; Man, Zhenyong

    2003-01-01

    Undoped and Dy 3+-doped PbWO 4 single crystals were grown in the same condition by modified Bridgman method. Optical transmittance, X-ray excited luminescence, excitation and emission under UV light, thermoluminescence glow curves and X-ray pulsed excited decays were investigated on Dy 3+:PWO for the first time. Dy 3+-doping has a positive effect similar to that of rare-earth ions La 3+ and Gd 3+, such as improvement of transmittance in the wavelength region of scintillation emission (350-450 nm), compensation of trapping centers that is reflected in the thermoluminescence characteristics and suppression of slow decay component in luminescence kinetics. Analysis of luminescence spectra indicates that energy transfer could take place from the PbWO 4 host to the Dy 3+ ions, followed by characteristic emission line assigned to transition from 4F 9/2 of Dy 3+ ion to lower lying states on basis of the energy level scheme. A tentative concept of energy transfer mechanism is proposed in this paper.

  13. Employing a cylindrical single crystal in gas-surface dynamics.

    Science.gov (United States)

    Hahn, Christine; Shan, Junjun; Liu, Ying; Berg, Otto; Kleijn, Aart W; Juurlink, Ludo B F

    2012-03-21

    We describe the use of a polished, hollow cylindrical nickel single crystal to study effects of step edges on adsorption and desorption of gas phase molecules. The crystal is held in an ultra-high vacuum apparatus by a crystal holder that provides axial rotation about a [100] direction, and a crystal temperature range of 89 to 1100 K. A microchannel plate-based low energy electron diffraction/retarding field Auger electron spectrometer (AES) apparatus identifies surface structures present on the outer surface of the cylinder, while a separate double pass cylindrical mirror analyzer AES verifies surface cleanliness. A supersonic molecular beam, skimmed by a rectangular slot, impinges molecules on a narrow longitudinal strip of the surface. Here, we use the King and Wells technique to demonstrate how surface structure influences the dissociation probability of deuterium at various kinetic energies. Finally, we introduce spatially-resolved temperature programmed desorption from areas exposed to the supersonic molecular beam to show how surface structures influence desorption features.

  14. Magnesium single crystals for biomedical applications grown in vertical Bridgman apparatus

    Science.gov (United States)

    Salunke, Pravahan; Joshi, Madhura; Chaswal, Vibhor; Zhang, Guangqi; Rosenbaum, Leonard A.; Dowling, Kevin; Decker, Paul; Shanov, Vesselin

    2016-10-01

    This paper describes successful efforts to design, build, test, and utilize a single crystal apparatus using the Bridgman approach for directional solidification. The created instrument has been successfully tested to grow magnesium single crystals from melt. Preliminary mechanical tests carried out on these single crystals indicate unique and promising properties, which can be harnessed for biomedical applications.

  15. Large pyramid shaped single crystals of BiFeO{sub 3} by solvothermal synthesis method

    Energy Technology Data Exchange (ETDEWEB)

    Sornadurai, D.; Ravindran, T. R.; Paul, V. Thomas; Sastry, V. Sankara [Condensed Matter Physics Division, Materials Science Group, Physical Metallurgy Division, Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam, Tamil Nadu (India); Condensed Matter Physics Division, Materials Science Group (India)

    2012-06-05

    Synthesis parameters are optimized in order to grow single crystals of multiferroic BiFeO{sub 3}. 2 to 3 mm size pyramid (tetrahedron) shaped single crystals were successfully obtained by solvothermal method. Scanning electron microscopy with EDAX confirmed the phase formation. Raman scattering spectra of bulk BiFeO3 single crystals have been measured which match well with reported spectra.

  16. Organic single-crystal light-emitting field-effect transistors

    NARCIS (Netherlands)

    Hotta, Shu; Yamao, Takeshi; Bisri, Satria Zulkarnaen; Takenobu, Taishi; Iwasa, Yoshihiro

    2014-01-01

    Growth and characterisation of single crystals constitute a major field of materials science. In this feature article we overview the characteristics of organic single-crystal light-emitting field-effect transistors (OSCLEFETs). The contents include the single crystal growth of organic semiconductor

  17. Room-Temperature Tensile Behavior of Oriented Tungsten Single Crystals with Rhenium in Dilute Solid Solution

    Science.gov (United States)

    1966-01-01

    SINGLE CRYSTALS WITH RHENIUM IN DILUTE SOLID SOLUTION Sby M. Garfinkle Lewis Research Center Cleveland, Ohio 20060516196 NATIONAL AERONAUTICS AND...WITH RHENIUM IN DILUTE SOLID SOLUTION By M. Garfinkle Lewis Research Center Cleveland, Ohio NATIONAL AERONAUTICS AND SPACE ADMINISTRATION For sale by...ORIENTED TUNGSTEN SINGLE CRYSTALS WITH RHENIUM IN DILUTE SOLID SOLUTION * by M. Garfinkle Lewis Research Center SUMMARY Tungsten single crystals

  18. Crystal structure and magnetization of a Co3B2O6 single crystal

    Science.gov (United States)

    Kazak, N. V.; Platunov, M. S.; Ivanova, N. B.; Knyazev, Yu. V.; Bezmaternykh, L. N.; Eremin, E. V.; Vasil'ev, A. D.; Bayukov, O. A.; Ovchinnikov, S. G.; Velikanov, D. A.; Zubavichus, Ya. V.

    2013-07-01

    The crystal structure and magnetic properties of Co3B2O6 single crystals are studied. Orthorhombic symmetry with space group Pnnm is detected at room temperature. The measurements of static magnetization and dynamic magnetic susceptibility reveal two magnetic anomalies at T 1 = 33 K and T 2 = 10 K and an easy-axis magnetic anisotropy. The effective magnetic moment indicates a high-spin state of the Co2+ ion. A spin-flop transition is found at low temperatures and H sf = 23 kOe. EXAFS spectra of the K-edge absorption of Co are recorded at various temperatures, the temperature-induced changes in the parameters of the local environment of cobalt are analyzed, and the effective Co-Co and Co-O distances are determined. The magnetic interactions in the crystal are analyzed in terms of an indirect coupling model.

  19. Strength anomaly in B2 FeAl single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Yoshimi, K.; Hanada, S.; Yoo, M.H. [Oak Ridge National Lab., TN (United States); Matsumoto, N. [Tohoku Univ. (Japan). Graduate School

    1994-12-31

    Strength and deformation microstructure of B2 Fe-39 and 48%Al single crystals (composition given in atomic percent), which were fully annealed to remove frozen-in vacancies, have been investigated at temperatures between room temperature and 1073K. The hardness of as-homogenized Fe-48Al is higher than that of as-homogenized Fe-39Al while after additional annealing at 698K the hardness of Fe-48Al becomes lower than that of Fe-39Al. Fe-39Al single crystals slowly cooled after homogenizing at a high temperature were deformed in compression as a function of temperature and crystal orientation. A peak of yield strength appears around 0.5T{sub m} (T{sub m} = melting temperature). The orientation dependence of the critical resolved shear stress does not obey Schmid`s law even at room temperature and is quite different from that of b.c.c. metals and B2 intermetallics at low temperatures. At the peak temperature slip transition from <111>-type to <001>-type is found to occur macroscopically and microscopically, while it is observed in TEM that some of the [111] dislocations decompose into [101] and [010] on the (1096I) plane below the peak temperature. The physical sources for the positive temperature dependence of yield stress of B2 FeAl are discussed based on the obtained results.

  20. Growth and Characterization of Lead-free Piezoelectric Single Crystals

    Directory of Open Access Journals (Sweden)

    Philippe Veber

    2015-11-01

    Full Text Available Lead-free piezoelectric materials attract more and more attention owing to the environmental toxicity of lead-containing materials. In this work, we review our first attempts of single crystal grown by the top-seeded solution growth method of BaTiO3 substituted with zirconium and calcium (BCTZ and (K0.5Na0.5NbO3 substituted with lithium, tantalum, and antimony (KNLSTN. The growth methodology is optimized in order to reach the best compositions where enhanced properties are expected. Chemical analysis and electrical characterizations are presented for both kinds of crystals. The compositionally-dependent electrical performance is investigated for a better understanding of the relationship between the composition and electrical properties. A cross-over from relaxor to ferroelectric state in BCTZ solid solution is evidenced similar to the one reported in ceramics. In KNLSTN single crystals, we observed a substantial evolution of the orthorhombic-to-tetragonal phase transition under minute composition changes.

  1. Structural peculiarities of single crystal diamond needles of nanometer thickness

    Science.gov (United States)

    Orekhov, Andrey S.; Tuyakova, Feruza T.; Obraztsova, Ekaterina A.; Loginov, Artem B.; Chuvilin, Andrey L.; Obraztsov, Alexander N.

    2016-11-01

    Diamond is attractive for various applications due to its unique mechanical and optical properties. In particular, single crystal diamond needles with high aspect ratios and sharp apexes of nanometer size are demanded for different types of optical sensors including optically sensing tip probes for scanning microscopy. This paper reports on electron microscopy and Raman spectroscopy characterization of the diamond needles having geometrically perfect pyramidal shapes with rectangular atomically flat bases with (001) crystallography orientation, 2-200 nm sharp apexes, and with lengths from about 10-160 μm. The needles were produced by selective oxidation of (001) textured polycrystalline diamond films grown by chemical vapor deposition. Here we study the types and distribution of defects inside and on the surface of the single crystal diamond needles. We show that sp3 type point defects are incorporated into the volume of the diamond crystal during growth, while the surface of the lateral facets is enriched by multiple extended defects. Nitrogen addition to the reaction mixture results in increase of the growth rate on {001} facets correlated with the rise in the concentration of sp3 type defects.

  2. Structural and magnetic studies on copper succinate dihydrate single crystals

    Indian Academy of Sciences (India)

    M P BINITHA; P P PRADYUMNAN

    2017-09-01

    Single crystals of copper succinate dihydrate were grown in silica gel by slow diffusion of copper chloride tosodium metasilicate gel impregnated with succinic acid. The grown crystal was subjected to single crystal X-ray diffractionstudies. In its structure each copper atom is penta co-ordinated to oxygen atoms of four succinate oxygens and oxygenof co-ordinated water molecule. The four bis-bidendate succinate anions form syn–syn bridges among two copper atomsto form a polymeric two-dimensional chain. From room temperature vibrating sample magnetometer (VSM) studies themagnetic moment of the material is calculated as 1.35 Bohr magneton (BM), indicating antiferromagnetic interaction betweencopper atoms and can be explained as due to the orbital overlap of the bridging ligand and the two copper atoms in syn-synorientation. A strong bonding of the magnetic orbital of equatorially oriented Cu atom on both sides of the exchange pathway(Cu–O-C-O–Cu) leads to the anti-ferromagnetic interaction.

  3. Single-Photon Source for Quantum Information Based on Single Dye Molecule Fluorescence in Liquid Crystal Host

    Energy Technology Data Exchange (ETDEWEB)

    Lukishova, S.G.; Knox, R.P.; Freivald, P.; McNamara, A.; Boyd, R.W.; Stroud, Jr., C.R.; Schmid, A.W.; Marshall, K.L.

    2006-08-18

    This paper describes a new application for liquid crystals: quantum information technology. A deterministically polarized single-photon source that efficiently produces photons exhibiting antibunching is a pivotal hardware element in absolutely secure quantum communication. Planar-aligned nematic liquid crystal hosts deterministically align the single dye molecules which produce deterministically polarized single (antibunched) photons. In addition, 1-D photonic bandgap cholesteric liquid crystals will increase single-photon source efficiency. The experiments and challenges in the observation of deterministically polarized fluorescence from single dye molecules in planar-aligned glassy nematic-liquid-crystal oligomer as well as photon antibunching in glassy cholesteric oligomer are described for the first time.

  4. Influence of Y, Gd and Sm on the glass forming ability and thermal crystallization of aluminum based alloy; Efeito das terras raras Y, Gd e Sm na tendencia a formacao de amorfo e na cristalizacao termica em ligas a base de aluminio

    Energy Technology Data Exchange (ETDEWEB)

    Aliaga, L.C.R.; Bolfarini, C.; Kiminami, C.S.; Botta Filho, W.J., E-mail: aliaga@ufscar.b [Universidade Federal de Sao Carlos (DEMa/UFSCar), SP (Brazil). Dept. de Engenharia de Materiais; Danez, G.P. [Universidade Federal de Sao Carlos (PPG-CEMUFSCar), SP (Brazil). Programa de Pos-Graduacao em Ciencia e Engenharia de Materiais

    2010-07-01

    Al-based amorphous alloys represent an important family of metals and a great scientific activity has been devoted to determine the main features of both glass forming ability (GFA) and crystallization behavior in order to have a comprehensive framework aimed at potential technological applications. Nowadays, it is well known that the best Al-based amorphous alloys are formed in ternary systems such as Al- RE-TM, where RE is a rare earth and TM a transition metal. This paper presents results of research in Al{sub 85}Ni{sub 10}RE{sub 5} alloys (RE = Y, Gd and Sm). Amorphous ribbons were processed by melt-spinning under the same conditions and subsequently characterized by x-ray diffraction (XRD) and differential scanning calorimetry (DSC). Results show appreciable micro structural differences as function of the rare earth, thus crystal is obtained for Y, nano-glassy for Gd and, fully amorphous structure for Sm. (author)

  5. Electronic properties of graphene-single crystal diamond heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Fang; Thuong Nguyen, Thuong; Golsharifi, Mohammad; Amakubo, Suguru; Jackman, Richard B., E-mail: r.jackman@ucl.ac.uk [London Centre for Nanotechnology and Department of Electronic and Electrical Engineering, University College London, 17-19 Gordon Street, London WC1H 0AH (United Kingdom); Loh, K. P. [Department of Chemistry, National University of Singapore, 3 Science Drive, Singapore 117543 (Singapore)

    2013-08-07

    Single crystal diamond has been used as a substrate to support single layer graphene grown by chemical vapor deposition methods. It is possible to chemically functionalise the diamond surface, and in the present case H-, F-, O-, and N-group have been purposefully added prior to graphene deposition. The electronic properties of the resultant heterostructures vary strongly; a p-type layer with good mobility and a band gap of ∼0.7 eV is created when H-terminated diamond layers are used, whilst a layer with more metallic-like character (high carrier density and low carrier mobility) arises when N(O)-terminations are introduced. Since it is relatively easy to pattern these functional groups on the diamond surface, this suggests that this approach may offer an exciting route to 2D device structures on single layer graphene sheets.

  6. Thermal expansion of the magnetorefrigerant Gd5(Si,Ge)4

    NARCIS (Netherlands)

    Brück, E.H.; Nazih, M.; de Visser, A.; Zhang, L.; Tegus, O.

    2003-01-01

    We report thermal expansion measurements carried out on a single-crystal of the giant magnetocaloric effect material Gd5(Si0.43Ge0.57)4. At the magneto-structural phase transition at T0~240 K, large steps in the relative length change ÄL/L along the principle crystallographic axes are observed. The

  7. High-efficiency Watt-level picosecond pulse generation based on Yb:Gd3AlxGa5-xO12 crystal

    Science.gov (United States)

    Li, Yanbin; Jia, Zhitai; Lou, Fei; Zhang, Baitao; He, Jingliang; Tao, Xutang

    2015-07-01

    A diode-pumped passively mode-locked Yb3+:Gd3Al0.5Ga4.5O12 (Yb:GAGG) laser has been investigated by using a semiconductor saturable absorber mirror (SESAM) for the first time. Pulses with duration of 1.6 ps were produced at the central wavelength of 1027.8 nm. At the absorbed pump power of 8.4 W, the maximum average output power of 1.02 W was obtained with the repetition rate of 45 MHz. The corresponding single pulse energy and the peak power were calculated to be 22.7 nJ and 14.2 kW, respectively.

  8. Rolling-contact deformation of MgO single crystals

    Science.gov (United States)

    Dufrane, K. F.; Glaeser, W. A.

    1976-01-01

    Magnesium oxide single crystals were used as a model bearing material and deformed by rolling contact with a steel ball 0.64 cm in diameter. A dependence of depth of slip on rolling velocity which persisted with increasing numbers of rolling-contact cycles was discovered. The track width, track hardness and dislocation interactions as observed by transmission electron microscopy all increased in a consistent manner with increasing cycles. The rolling-contact state of stress produces a high density of dislocations in a localized zone. Dislocation interaction in this zone produces cleavage-type cracks after a large number of rolling-contact cycles. The orientation of the crystal influences the character of dislocation accumulation.

  9. α-Lead tellurite from single-crystal data.

    Science.gov (United States)

    Zavodnik, Valery E; Ivanov, Sergey A; Stash, Adam I

    2008-02-06

    The crystal structure of the title compound, α-PbTeO(3) (PTO), has been reported previously by Mariolacos [Anz. Oesterr. Akad. Wiss. Math. Naturwiss. Kl. (1969), 106, 128-130], refined on powder data. The current determination at room temperature from data obtained from single crystals grown by the Czochralski method shows a significant improvement in the precision of the geometric parameters when all atoms have been refined anisotropically. The selection of a centrosymmetric (C2/c) structure model was confirmed by the second harmonic generation test. The asymmetric unit contains three formula units. The structure of PTO is built up of three types of distorted [PbO(x)] polyhedra (x = 7 and 9) which share their O atoms with TeO(3) pyramidal units. These main anionic polyhedra are responsible for establishing the two types of tunnel required for the stereochemical activity of the lone pairs of the Pb(2+) and Te(4+) cations.

  10. α-Lead tellurite from single-crystal data

    Directory of Open Access Journals (Sweden)

    Adam I. Stash

    2008-03-01

    Full Text Available The crystal structure of the title compound, α-PbTeO3 (PTO, has been reported previously by Mariolacos [Anz. Oesterr. Akad. Wiss. Math. Naturwiss. Kl. (1969, 106, 128–130], refined on powder data. The current determination at room temperature from data obtained from single crystals grown by the Czochralski method shows a significant improvement in the precision of the geometric parameters when all atoms have been refined anisotropically. The selection of a centrosymmetric (C2/c structure model was confirmed by the second harmonic generation test. The asymmetric unit contains three formula units. The structure of PTO is built up of three types of distorted [PbOx] polyhedra (x = 7 and 9 which share their O atoms with TeO3 pyramidal units. These main anionic polyhedra are responsible for establishing the two types of tunnel required for the stereochemical activity of the lone pairs of the Pb2+ and Te4+ cations.

  11. Shape-memory effect in Co-Ni single crystal

    Institute of Scientific and Technical Information of China (English)

    周伟敏; 刘岩; 张少宗; 江伯鸿

    2004-01-01

    The thermal shape-memory effect at room temperature for Co-32% Ni(mass fraction) magnetic shape memory alloy of single crystal was presented. When compressing the sample along the [001] direction at room temperature, strain can be recovered to some extent during later heating and the recovery rate varies with the pre-strain.But no obvious recoverable strain can be obtained along other crystal directions. For the thermal-mechanical training of the sample along [001], the recovery strain decreases obviously during the second round of compress and nearly no recovery happens after the third round of compress. A possible mechanism based on reversible motions of Shockley partial dislocations was proposed.

  12. Water weakening in experimentally deformed milky quartz single crystals

    Science.gov (United States)

    Stunitz, H.; Thust, A.; Kilian, R.; Heilbronner, R.; Behrens, H.; Tarantola, A.; Fitz Gerald, J. D.

    2015-12-01

    Natural single crystals of quartz have been experimentally deformed in two orientations: (1) normal to one prism-plane, (2) In O+ orientation at temperatures of 900 and 1000°C, pressures of 1.0 and 1.5 GPa, and strain rates of ~1 x 10-6s-1. The starting material is milky quartz, consisting of dry quartz (H2O contents of recycling of H2O between FI´s, dislocation generation at very small fluid inclusions, incorporation of structurally bound H into dislocation cores, and release of H2O from dislocations back into FI´s during recovery. Cracking and crack healing play an important role in the recycling process and imply a close interrelationship between brittle and crystal plastic deformation. The H2O weakening by this process is of a disequilibrium nature and thus depends on the amount of H2O available.

  13. Multiband Effects on -FeSe single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Petrovic C.; Lei, H.; Graf, D.; Hu, R.; Ryu, H.; Choi, E.S.; Tozer, S.W.

    2012-03-01

    We present the upper critical fields {mu}{sub 0}H{sub c2}(T) and Hall effect in {beta}-FeSe single crystals. The {mu}{sub 0}H{sub c2}(T) increases as the temperature is lowered for fields applied parallel and perpendicular to (101), the natural growth facet of the crystal. The {mu}{sub 0}H{sub c2}(T) for both field directions and the anisotropy at low temperature increase under pressure. Hole carriers are dominant at high magnetic fields. However, the contribution of electron-type carriers is significant at low fields and low temperature. Our results show that multiband effects dominate {mu}{sub 0}H{sub c2}(T) and electronic transport in the normal state.

  14. Monitoring Lidocaine Single-Crystal Dissolution by Ultraviolet Imaging

    DEFF Research Database (Denmark)

    Ostergaard, Jesper; Ye, Fengbin; Rantanen, Jukka

    2011-01-01

    Dissolution critically affects the bioavailability of Biopharmaceutics Classification System class 2 compounds. When unexpected dissolution behaviour occurs, detailed studies using high information content technologies are warranted. In the present study, an evaluation of real‐time ultraviolet (UV......) imaging for conducting single‐crystal dissolution studies was performed. Using lidocaine as a model compound, the aim was to develop a setup capable of monitoring and quantifying the dissolution of lidocaine into a phosphate buffer, pH 7.4, under stagnant conditions. A single crystal of lidocaine...... was placed in the quartz dissolution cell and UV imaging was performed at 254 nm. Spatially and temporally resolved mapping of lidocaine concentration during the dissolution process was achieved from the recorded images. UV imaging facilitated the monitoring of lidocaine concentrations in the dissolution...

  15. Microhardness studies on nonlinear optical -alanine single crystals

    Indian Academy of Sciences (India)

    R Hanumantharao; S Kalainathan

    2013-06-01

    Vickers and Knoop microhardness tests were carried out on grown -alanine single crystals by slow evaporation technique over a load range of 10–50 g on selected broad (2 0 3) plane. Vickers (v) and Knoop (k) microhardness for the above loads were found to be in the range of 60–71 kg/mm2 and 35–47 kg/mm2, respectively. Vickers microhardness number (v) and Knoop microhardness number (k) were found to increase with increasing load. Meyer’s index number () calculated from v shows that the material belongs to the soft material category. Using Wooster’s empirical relation, the elastic stiffness constant (11) was calculated from Vickers hardness values. Young’s modulus was calculated using Knoop hardness values. Hardness anisotropy has been observed in accordance with the orientation of the crystal.

  16. Judd–Ofelt analysis and transition probabilities of Er{sup 3+} doped KY{sub 1−x−y}Gd{sub x}Lu{sub y}(WO{sub 4}){sub 2} crystals

    Energy Technology Data Exchange (ETDEWEB)

    Martínez de Mendívil, Jon, E-mail: jon.martinez@uam.es [Departamento de Física de Materiales, Universidad Autónoma de Madrid, 28049 Madrid (Spain); Lifante, Ginés [Departamento de Física de Materiales, Universidad Autónoma de Madrid, 28049 Madrid (Spain); Pujol, Maria Cinta; Aguiló, Magdalena; Díaz, Francesc [Física i Cristalografia de Materials i Nanomaterials (FiCMA-FiCNA), Universitat Rovira i Virgili, Tarragona (Spain); Cantelar, Eugenio [Departamento de Física de Materiales, Universidad Autónoma de Madrid, 28049 Madrid (Spain)

    2015-09-15

    In this work the transition probabilities, radiative lifetimes and branching ratios of Er{sup 3+} ions in KY{sub 1−x−y}Gd{sub x}Lu{sub y}(WO{sub 4}){sub 2} crystals have been determined. With this aim, Er{sup 3+} doped KY{sub 1−x−y}Gd{sub x}Lu{sub y}(WO{sub 4}){sub 2} crystals have been grown by means of the high temperature Top-Seeded Solution Growth. A spectroscopic analysis of Er{sup 3+} ions in this crystal has been performed following anisotropic Judd–Ofelt analysis to obtain basic spectroscopic properties. A quantum efficiency over 97% has been determined for the {sup 4}I{sub 13/2}→{sup 4}I{sub 15/2} transition, indicating that this material is adequate for the development of lasers and amplifiers working in the third telecommunication window. - Highlights: • Er{sub 0.01}:KY{sub 1−x−y}Gd{sub x}Lu{sub y}(WO{sub 4}){sub 2} crystals have been grown. • Anisotropic Judd Ofelt analysis has been carried out. • Optical transition probabilities and branching ratios have been calculated. • Radiative and non-radiative lifetimes have been obtained.

  17. Micromechanical Behavior of Single-Crystal Superalloy with Different Crystal Orientations by Microindentation

    Directory of Open Access Journals (Sweden)

    Jinghui Li

    2015-01-01

    Full Text Available In order to investigate the anisotropic micromechanical properties of single-crystal nickel-based superalloy DD99 of four crystallographic orientations, (001, (215, (405, and (605, microindentation test (MIT was conducted with different loads and loading velocities by a sharp Berkovich indenter. Some material parameters reflecting the micromechanical behavior of DD99, such as microhardness H, Young’s modulus E, yield stress σy, strain hardening component n, and tensile strength σb, can be obtained from load-displacement relations. H and E of four different crystal planes evidently decrease with the increase of h. The reduction of H is due to dislocation hardening while E is related to interplanar spacing and crystal variable. σy of (215 is the largest among four crystal planes, followed by (605, and (001 has the lowest value. n of (215 is the lowest, followed by (605, and that of (001 is the largest. Subsequently, a simplified elastic-plastic material model was employed for 3D microindentation simulation of DD99 with various crystal orientations. The simulation results agreed well with experimental, which confirmed the accuracy of the simplified material model.

  18. Bulk glass ceramics containing Yb{sup 3+}/Er{sup 3+}: β-NaGdF{sub 4} nanocrystals: Phase-separation-controlled crystallization, optical spectroscopy and upconverted temperature sensing behavior

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Daqin, E-mail: dqchen@fjirsm.ac.cn [College of Materials & Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018 (China); Wan, Zhongyi; Zhou, Yan [College of Materials & Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018 (China); Huang, Ping, E-mail: phuang@fjirsm.ac.cn [Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002 (China); Zhong, Jiasong; Ding, Mingye [College of Materials & Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018 (China); Xiang, Weidong; Liang, Xiaojuan [College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035 (China); Ji, Zhenguo, E-mail: jizg@hdu.edu.cn [College of Materials & Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018 (China)

    2015-07-25

    Highlights: • Hexagonal NaGdF{sub 4} nanocrystals embedded bulk glass ceramics were fabricated. • The incorporation of Ln{sup 3+} dopants into the β-NaGdF{sub 4} lattice was demonstrated. • Upconversion luminescence was highly intensified after glass crystallization. • Such glass ceramics had possible application in the optical temperature sensors. - Abstract: Lanthanide doped hexagonal β-NaGdF{sub 4} nanocrystals embedded transparent bulk glass ceramics were successfully fabricated via a phase-separation-controlled crystallization route. Elemental mapping in the scanning transmission electron microscope and optical spectroscopy analysis demonstrated the partition of the active centers into the β-NaGdF{sub 4} crystalline lattice. As a result, upconversion luminescence of the glass ceramic co-doped with Yb{sup 3+} and Er{sup 3+} is about 60 times as high as that of the precursor glass, attributing to the modification of Yb{sup 3+}/Er{sup 3+} surrounding from phase-separated amorphous nanoparticle to β-NaGdF{sub 4} crystalline lattice with low phonon energy and high crystallinity after crystallization. Furthermore, the temperature-dependent green upconversion emissions assigned to {sup 2}H{sub 11/2} → {sup 4}I{sub 15/2} (520 nm) and {sup 4}S{sub 3/2} → {sup 4}I{sub 15/2} (540 nm) transitions were investigated, and the corresponding fluorescence intensity ratio of these two thermally coupled emitting-states greatly enhanced with increase of temperature. Using such fabricated glass ceramic as an optical thermometric medium, the maximum sensitivity reached as high as 0.0037 K{sup −1} at 580 K. It is expected that the investigated Er{sup 3+}/Yb{sup 3+} codoped glass ceramic might be a very promising candidate for accurate optical temperature sensors.

  19. Crystal growth, defects, and mechanical and spectral properties of a novel mixed laser crystal Nd:GdYNbO{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Shoujun; Dou, Renqin [Chinese Academy of Sciences, Anhui Institute of Optics and Fine Mechanics, Hefei, Anhui Province (China); University of Science and Technology of China, Hefei (China); Liu, Wenpeng; Zhang, Qingli; Peng, Fang; Luo, Jianqiao; Sun, Guihua; Sun, Dunlu [Chinese Academy of Sciences, Anhui Institute of Optics and Fine Mechanics, Hefei, Anhui Province (China)

    2017-01-15

    A mixed laser crystal of Nd-doped GYNO crystal was grown successfully by Czochralski method. The crystal belongs to monoclinic system with space group I2/a, the structural parameters are obtained by the X-ray Rietveld refinement method. The defects and dislocations along three crystallographic orientations were studied by using the chemical etching method with the phosphoric acid etchant. The mechanical properties (including hardness, yield strength, fracture toughness, and brittle index) of the crystal were estimated by Vickers hardness test. The transmission spectrum was measured at room temperature, and the absorption peaks were assigned. Spectral properties of the as-grown crystal were investigated by Judd-Ofelt theory, and the Judd-Ofelt intense parameters Ω{sub 2,4,6} were obtained to be 9.674 x 10{sup -20}, 2.092 x 10{sup -20}, and 4.061 x 10{sup -20} cm{sup 2}, respectively. (orig.)

  20. Single Crystal Structure Determination of Alumina to 1 Mbar

    Science.gov (United States)

    Dong, H.; Zhang, L.; Prakapenka, V.; Mao, H.

    2014-12-01

    Aluminum oxide (Al2O3) is an important ceramic material and a major oxide in the earth. Additionally, alumina is a widely used pressure standard in static high-pressure experiments (Cr3+-bearing corundum, ruby). The changes of its crystal structure with pressure (P) and temperature (T) are important for its applications and understanding its physical properties in the deep Earth. There have been numerous reports on the high P-T polymorphs of alumina. Previous theoretical calculations and experiments suggest that the crystal structure of Al2O3 evolves greatly at high P-T. In this study, we used the newly developed multigrain crystallography method combined with single-crystal x-ray diffraction analysis technique for the structure determination of alumina at high P-T to provide single-crystal structure refinement for high-pressure phases of Al2O3. Alumina powder was mixed with ~10% Pt and Ne was used as both pressure transmitting media and thermal insulating layers during laser-heating. Coarse-grained aggregates of Al2O3 were synthesized in a laser-heated diamond anvil cell. The structure change of Al2O3 was monitored by in situ x-ray diffraction at ~1 Mbar and 2700 K. The results allow us to distinguish the structural differences between the Rh2O3 (II) structure (space group Pbcn) and perovskite structure (space group Pbnm) for the first high-pressure phase of Al2O3. More detailed results will be discussed in the later work.

  1. Modeling the anisotropic shock response of single-crystal RDX

    Science.gov (United States)

    Luscher, Darby

    Explosives initiate under impacts whose energy, if distributed homogeneously throughout the material, translates to temperature increases that are insufficient to drive the rapid chemistry observed. Heterogeneous thermomechanical interactions at the meso-scale (i.e. between single-crystal and macroscale) leads to the formation of localized hot spots. Direct numerical simulations of mesoscale response can contribute to our understanding of hot spots if they include the relevant deformation mechanisms that are essential to the nonlinear thermomechanical response of explosive molecular crystals. We have developed a single-crystal model for the finite deformation thermomechanical response of cyclotrimethylene trinitramine (RDX). Because of the low symmetry of RDX, a complete description of nonlinear thermoelasticity requires a careful decomposition of free energy into components that represent the pressure-volume-temperature (PVT) response and the coupling between isochoric deformation and both deviatoric and hydrostatic stresses. An equation-of-state (EOS) based on Debye theory that defines the PVT response was constructed using experimental data and density functional theory calculations. This EOS replicates the equilibrium states of phase transformation from alpha to gamma polymorphs observed in static high-pressure experiments. Lattice thermoelastic parameters defining the coupled isochoric free energy were obtained from molecular dynamics calculations and previous experimental data. Anisotropic crystal plasticity is modeled using Orowan's expression relating slip rate to dislocation density and velocity. Details of the theory will be presented followed by discussion of simulations of flyer plate impact experiments, including recent experiments diagnosed with in situ X-ray diffraction at the Advanced Photon Source. Impact conditions explored within the experimental effort have spanned shock pressures ranging from 1-10 GPa for several crystallographic orientations

  2. The Gd{sub 14}Ag{sub 51} structure type and its relation to some complex amalgam structures

    Energy Technology Data Exchange (ETDEWEB)

    Tambornino, Frank; Sappl, Jonathan; Hoch, Constantin, E-mail: constantin.hoch@cup.uni-muenchen.de

    2015-01-05

    Highlights: • The Gd{sub 14}Ag{sub 51} structure type has been revisited on the basis of single crystal diffraction data. • Symmetry analysis from electron density and TEM shows the space group P6/m to be true. • Gd{sub 14}Ag{sub 51} shows good metallic behaviour. • Structure relations to alkali, alkaline-earth and rare-earth metal amalgams can be established. • Complexity values for the RE{sub 14}Ag{sub 51} structure family were calculated. - Abstract: A plethora of binary and ternary intermetallic compounds has been assigned to the Gd{sub 14}Ag{sub 51} structure type, crystallising in the hexagonal system (space group P6/m, a = 1264.30(18) pm, c = 933.58(11) pm for Gd{sub 14}Ag{sub 51}). Starting in the late 1960s, much work has been invested in the structural elucidation of these crystal structures. However, reliable single crystal data are scarce, and most structure type assignments have been performed merely on the basis of powder data. We have redetermined four representatives of the binary RE{sub 14}Ag{sub 51} structure type (RE = Y, Ce, Gd, Tb) with modern high-precision single crystal X-ray methods. The assignment of the Gd{sub 14}Ag{sub 51} structure type to space group P6/m was additionally verified by careful analysis of high resolution transmission electron micrographs. We emphasise the close relation of the Gd{sub 14}Ag{sub 51} structure type to the structures of some recently described amalgams of similar composition focussing on disorder phenomena and structural complexity. Furthermore, we provide detailed information on synthesis as well as electrical and magnetic properties for Gd{sub 14}Ag{sub 51}, the parent compound of this structure family.

  3. Fabrication of ZnO Bi-crystals with twist boundaries using Co doped ZnO single crystals

    CERN Document Server

    Ohashi, N; Ohgaki, T; Tsurumi, T; Fukunaga, O; Haneda, H; Tanaka, J

    1999-01-01

    Zn O single crystals doped with Co were grown by using a flux method and their electrical properties were investigated by Hall effect. Then, these crystals were polished with diamond paste and bonded to form bi-crystal by hot pressing under a pressure of 10 MPa at 1000 .deg. C. The bi-crystals showed nonlinear I-V curves, and the curvature of I-V relation agreed with that for Co-doped polycrystalline ZnO.

  4. Pressure-induced superconductivity in Bi single crystals

    Science.gov (United States)

    Li, Yufeng; Wang, Enyu; Zhu, Xiyu; Wen, Hai-Hu

    2017-01-01

    Measurements on resistivity and magnetic susceptibility have been carried out for Bi single crystals under pressures up to 10.5 GPa. The temperature dependent resistivity shows a semimetallic behavior at ambient and low pressures (below about 1.6 GPa). This is followed by an upturn of resistivity in the low temperature region when the pressure is increased, which is explained as a semiconductor behavior. This feature gradually gets enhanced up to a pressure of about 2.52 GPa. Then a nonmonotonic temperature dependent resistivity appears upon further increasing pressure, which is accompanied by a strong suppression to the low temperature resistivity upturn. Simultaneously, a superconducting transition occurs at about 3.92 K under a pressure of about 2.63 GPa. With further increasing pressure, a second superconducting transition emerges at about 7 K under about 2.8 GPa. For these two superconducting states, the superconductivity induced magnetic screening volumes are quite large. As the pressure further increases to 8.1 GPa, we observe the third superconducting transition at about 8.2 K. The resistivity measurements under magnetic field allow us to determine the upper critical fields μ0Hc 2 of the superconducting phases. The upper critical field for the phase with Tc=3.92 K is extremely low. Based on the Werthamer-Helfand-Hohenberg (WHH) theory, the estimated value of μ0Hc 2 for this phase is about 0.103 T, while the upper critical field for the phase with Tc=7 K is very high with a value of about 4.56 T. Finally, we present a pressure dependent phase diagram of Bi single crystals. Our results reveal the interesting and rich physics in bismuth single crystals under high pressure.

  5. Characteristics of photoconductivity in thallium monosulfide single crystals

    Indian Academy of Sciences (India)

    I M Ashraf; H A Elshaikh; A M Badr

    2007-03-01

    This work elucidates the photoconductivity (PC) of thallium monosulfide single crystals. Results are obtained in the 77-300 K temperature range, 1500-4500 V lx excitation intensity, 6-18 V applied voltage, and in the 640-1500 nm wavelength range. Both the ac-photoconductivity (ac-PC) and the spectral distribution of the photocurrent are studied in different values of light intensity, applied voltage and temperature. Dependencies of carrier lifetime on light intensity, applied voltage and temperature are also investigated as a result of the ac-PC measurements. The temperature dependence of the energy gap width was described by studying the dc-photoconductivity (dc-PC).

  6. Exciton optical transitions in a hexagonal boron nitride single crystal

    Energy Technology Data Exchange (ETDEWEB)

    Museur, L. [Laboratoire de Physique des Lasers - LPL, CNRS UMR 7538, Institut Galilee, Universite Paris 13, 93430 Villetaneuse (France); Brasse, G.; Maine, S.; Ducastelle, F.; Loiseau, A. [ONERA - Laboratoire d' Etude des Microstructures - LEM, ONERA-CNRS, UMR 104, BP 72, 92322 Chatillon Cedex (France); Pierret, A. [ONERA - Laboratoire d' Etude des Microstructures - LEM, ONERA-CNRS, UMR 104, BP 72, 92322 Chatillon Cedex (France); CEA-CNRS, Institut Neel/CNRS, Universite J. Fourier, CEA/INAC/SP2M, 17 rue des Martyrs, 38 054 Grenoble Cedex 9 (France); Attal-Tretout, B. [ONERA - Departement Mesures Physiques - DMPh, 27 Chemin de la Huniere, 91761 Palaiseau Cedex (France); Barjon, J. [GEMaC, Universite de Versailles St Quentin, CNRS Bellevue, 1 Place Aristide Briand, 92195 Meudon Cedex (France); Watanabe, K.; Taniguchi, T. [National Institute for Materials Science, Namiki 1-1, Tsukuba, Ibaraki 305-0044 (Japan); Kanaev, A. [Laboratoire des Sciences des Procedes et des Materiaux - LSPM, CNRS UPR 3407, Universite Paris 13, 93430 Villetaneuse (France)

    2011-06-15

    Near band gap photoluminescence (PL) of a hexagonal boron nitride single crystal has been studied at cryogenic temperatures with synchrotron radiation excitation. The PL signal is dominated by trapped-exciton optical transitions, while the photoluminescence excitation (PLE) spectra show features assigned to free excitons. Complementary photoconductivity and PLE measurements set the band gap transition energy to 6.4 eV and the Frenkel exciton binding energy larger than 380 meV. (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  7. Oxygen diffusion in [alpha]-Zr single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Hood, G.M. (Reactor Materials Research Branch, Chalk River Laboratories, Atomic Energy of Canada Ltd., Chalk River, Ontario (Canada)); Zou, H. (Reactor Materials Research Branch, Chalk River Laboratories, Atomic Energy of Canada Ltd., Chalk River, Ontario (Canada)); Herbert, S. (Reactor Materials Research Branch, Chalk River Laboratories, Atomic Energy of Canada Ltd., Chalk River, Ontario (Canada)); Schultz, R.J. (Reactor Materials Research Branch, Chalk River Laboratories, Atomic Energy of Canada Ltd., Chalk River, Ontario (Canada)); Nakajima, H. (Department of Materials Science and Technology, Iwate University, Morioka 020 (Japan)); Jackman, J.A. (Metals Science and Technology, CANMET, Booth St., Ottawa, Ontario (Canada))

    1994-06-01

    Oxygen diffusion coefficients, D, have been measured in [alpha]-Zr single crystals in directions both parallel and perpendicular to the c-axis. The measurements, made in the interval 610-870 K, show that diffusion anisotropy is weak and that D is little affected by specimen impurity content. The values determined here are in good agreement with the bulk of previous literature data for the same temperature interval but they are about ten times larger than corresponding values found in a very recent AES study. ((orig.))

  8. Diffusion of Ti in [alpha]-Zr single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Hood, G.M. (Reactor Materials Division Atomic Energy of Canada Ltd., Chalk River Laboratories, Chalk River, Ontario (Canada)); Zou, H. (Reactor Materials Division Atomic Energy of Canada Ltd., Chalk River Laboratories, Chalk River, Ontario (Canada)); Schultz, R.J. (Reactor Materials Division Atomic Energy of Canada Ltd., Chalk River Laboratories, Chalk River, Ontario (Canada)); Bromley, E.H.; Jackman, J.A. (CANMET, Metals Technology Laboratories, Ottawa, Ontario (Canada))

    1994-12-01

    Ti diffusion coefficients (D) have been measured in nominally pure [alpha]-Zr single crystals (773-1124 K) in directions both parallel (D[sub pa]) and perpendicular (D[sub pe], few data) to the c-axis: tracer techniques and secondary ion mass spectrometry were used to determine the diffusion profiles. The results show a temperature dependence which may be interpreted in terms of two regions of diffusion behaviour. Above 1035 K, region I, diffusion conforms to the expectations of intrinsic behaviour with normal Arrhenius law constants: Below 1035 K, region II, D's appear to be enhanced with respect to an extrapolation of region I behaviour. ((orig.))

  9. Depressurization amorphization of single-crystal boron carbide.

    Science.gov (United States)

    Yan, X Q; Tang, Z; Zhang, L; Guo, J J; Jin, C Q; Zhang, Y; Goto, T; McCauley, J W; Chen, M W

    2009-02-20

    We report depressurization amorphization of single-crystal boron carbide (B4C) investigated by in situ high-pressure Raman spectroscopy. It was found that localized amorphization of B4C takes place during unloading from high pressures, and nonhydrostatic stresses play a critical role in the high-pressure phase transition. First-principles molecular dynamics simulations reveal that the depressurization amorphization results from pressure-induced irreversible bending of C-B-C atomic chains cross-linking 12 atom icosahedra at the rhombohedral vertices.

  10. Nonlinear microwave switching response of BSCCO single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Jacobs, T.; Sridhar, S. [Northeastern Univ., Boston, MA (United States). Dept. of Physics; Willemsen, B.A. [Northeastern Univ., Boston, MA (United States). Dept. of Physics]|[Rome Lab., Hanscom AFB, MA (United States); Li, Qiang [Brookhaven National Lab., Upton, NY (United States); Gu, G.D.; Koshizuka, N. [Superconductivity Research Lab., Tokyo (Japan)

    1996-06-01

    Measurements of the surface impedance in Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8+{delta}} single crystal with microwave currents flowing along the {cflx c} axis show clear evidence of a step-like nonlinearity. The surface resistance switches between apparently quantized levels for microwave field strength changes < 1 mG. This nonlinear response can arise from the presence of intrinsic Josephson junctions along the {cflx c} axis of these samples driven by the microwave current.

  11. Aluminum-rich mesoporous MFI - type zeolite single crystals

    DEFF Research Database (Denmark)

    Kustova, Marina; Kustov, Arkadii; Christensen, Christina Hviid

    2005-01-01

    Zeolitcs are crystalline materials, which are widely used as solid acid catalysts and supports in many industrial processes. Recently, mesoporous MFI-type zeolite single crystals were synthesized by use of carbon particles as a mesopore template and sodium aluminate as the aluminum Source...... are characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), ammonia temperature programmed desorption (NH3-TPD), and N-2 adsorption measurements. The obtained zeolites combine the high crystallinity and the characteristic micropores of zeolites with an intracrystalline mesopore system...

  12. The sublimation kinetics of GeSe single crystals

    Science.gov (United States)

    Irene, E. A.; Wiedemeier, H.

    1975-01-01

    The sublimation kinetics of (001) oriented GeSe single crystal platelets was studied by high-temperature mass spectroscopy, quantitative vacuum microbalance techniques, and hot stage optical microscopy. For a mean experimental temperature of 563 K, the activation enthalpy and entropy are found to equal 32.3 kcal/mole and 19.1 eu, respectively. The vaporization coefficient is less than unity for the range of test temperatures, and decreases with increasing temperature. The combined experimental data are correlated by means of a multistep surface adsorption mechanism.

  13. EPR studies of gamma-irradiated taurine single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Bulut, A. E-mail: abulut@samsun.omu.edu.tr; Karabulut, B.; Tapramaz, R.; Koeksal, F

    2000-04-01

    An EPR study of gamma-irradiated taurine [C{sub 2}H{sub 7}NO{sub 3}S] single crystal was carried out at room temperature. The EPR spectra were recorded in the three at mutually perpendicular planes. There are two magnetically distinct sites in monoclinic lattice. The principle values of g and hyperfine constants for both sites were calculated. The results have indicated the presence of {sup 32}SO{sup -}{sub 2} and {sup 33}SO{sup -}{sub 2} radicals. The hyperfine values of {sup 33}SO{sup -}{sub 2} radical were used to obtain O-S-O bond angle for both sites.

  14. Single Molecule Studies on Dynamics in Liquid Crystals

    Directory of Open Access Journals (Sweden)

    Daniela Täuber

    2013-09-01

    Full Text Available Single molecule (SM methods are able to resolve structure related dynamics of guest molecules in liquid crystals (LC. Highly diluted small dye molecules on the one hand explore structure formation and LC dynamics, on the other hand they report about a distortion caused by the guest molecules. The anisotropic structure of LC materials is used to retrieve specific conformation related properties of larger guest molecules like conjugated polymers. This in particular sheds light on organization mechanisms within biological cells, where large molecules are found in nematic LC surroundings. This review gives a short overview related to the application of highly sensitive SM detection schemes in LC.

  15. Single crystal piezoelectric composites for advanced NDT ultrasound

    Science.gov (United States)

    Jiang, Xiaoning; Snook, Kevin; Hackenberger, Wesley S.; Geng, Xuecang

    2007-04-01

    In this paper, the design, fabrication and characterization of PMN-PT single crystal/epoxy composites are reported for NDT ultrasound transducers. Specifically, 1-3 PMN-PT/epoxy composites with center frequencies of 5 MHz - 40 MHz were designed and fabricated using either the dice-and-fill method or a photolithography based micromachining process. The measured electromechanical coefficients for composites with frequency of 5 MHz - 15 MHz were about 0.78-0.83, and the coupling coefficients for composites with frequencies of 25 MHz- 40 MHz were about 0.71-0.72. The dielectric loss remains low (advanced NDT ultrasound applications.

  16. 9R structure in drawn industrial single crystal copper wires

    Institute of Scientific and Technical Information of China (English)

    CHEN Jian; YAN Wen; FAN Xin-hui

    2009-01-01

    By using transmission electron microscopy, the microstructures of drawn industrial single crystal copper wires produced by Ohno Continuous Casting(OCC) process were analyzed. The results show that the typical microstructures in the wires mainly include extended planar dislocation boundaries, a small fraction of twins and some dislocation cells sharing boundaries parallel to drawn direction. Besides the typical microstructures, 9R structure configurations were observed in the wires. The formation of 9R polytypes may be caused by the coupled emission of Shockley dislocations from a boundary.

  17. Tensor tomography of stresses in cubic single crystals

    Directory of Open Access Journals (Sweden)

    Dmitry D. Karov

    2015-03-01

    Full Text Available The possibility of optical tomography applying to investigation of a two-dimensional and a three-dimensional stressed state in single cubic crystals has been studied. Stresses are determined within the framework of the Maxwell piezo-optic law (linear dependence of the permittivity tensor on stresses and weak optical anisotropy. It is shown that a complete reconstruction of stresses in a sample is impossible both by translucence it in the parallel planes system and by using of the elasticity theory equations. For overcoming these difficulties, it is offered to use a method of magnetophotoelasticity.

  18. Capillarity creates single-crystal calcite nanowires from amorphous calcium carbonate.

    Science.gov (United States)

    Kim, Yi-Yeoun; Hetherington, Nicola B J; Noel, Elizabeth H; Kröger, Roland; Charnock, John M; Christenson, Hugo K; Meldrum, Fiona C

    2011-12-23

    Single-crystal calcite nanowires are formed by crystallization of morphologically equivalent amorphous calcium carbonate (ACC) particles within the pores of track etch membranes. The polyaspartic acid stabilized ACC is drawn into the membrane pores by capillary action, and the single-crystal nature of the nanowires is attributed to the limited contact of the intramembrane ACC particle with the bulk solution. The reaction environment then supports transformation to a single-crystal product.

  19. ‘Ionic crystals’ consisting of trinuclear macrocations and polyoxometalate anions exhibiting single crystal to single crystal transformation: breathing of crystals

    Indian Academy of Sciences (India)

    T ARUMUGANATHAN; ASHA SIDDIKHA; SAMAR K DAS

    2017-08-01

    Ion pairing of trinuclear macrocation cluster (known as basic carboxylate), [M ₃ (μ ₃-O) (ClCH ₂COO) ₆ (H ₂O) ₃] ¹⁺ and a Keggin type polyoxometalate cluster anion [SiW ₁₂O₄₀] ⁴⁻ is stabilized with a number of crystal water molecules in composite type compounds [M ₃ (μ ₃-O)(ClCH ₂COO) ₆ (H ₂O) ₃] ₄[SiW ₁₂O₄₀] ·xH ₂O · 2ClCH ₂COOH [M = Fe ³⁺, x = 18(1); M = Cr ³⁺x = 14(2)]. When the crystals of 1 are heated at 85◦C and 135◦C for 3.5 hours in an open atmospheric condition, it goes to [Fe ₃ (μ ₃-O)(ClCH ₂COO) ₆ (H ₂O) ₃] ₄ [SiW ₁₂O₄₀] ·10H ₂O ·2ClCH ₂COOH (dehydrated 1-85o ≡ 1'), and [Fe ₃ (μ ₃-O) (ClCH ₂COO) ₆ (H ₂O) ₃] ₄ [SiW ₁₂O₄₀] · 8H ₂O · 2ClCH ₂COOH (dehydrated 1-135o ≡ 1'') respectively with the loss of considerable amount of lattice water molecules retaining their single crystallinity. On the other hand, the single crystals of compound 2, upon heating at 85◦C or 135◦C for 3.5 hours, undergo ‘crystal-to-crystal transformation’ to the single crystals of [Cr ₃ (μ ₃-O)(ClCH ₂COO) ₆ (H ₂O) ₃] ₄ [SiW₁₂O₄₀]·8H₂O·2ClCH ₂COOH (dehydrated 2 ≡ 2'). Crystal structure analyses show that the parent compounds 1 and 2 undergo molecular rearrangement (molecular motion in the solid state) in respective dehydrated compounds. Remarkably, these dehydrated crystals (1', 1'' and 2'), upon exposure to water vapor at an ambient condition, regenerate the crystals of parent compounds 1 and 2, respectively

  20. Single nanoparticle detection using photonic crystal enhanced microscopy.

    Science.gov (United States)

    Zhuo, Yue; Hu, Huan; Chen, Weili; Lu, Meng; Tian, Limei; Yu, Hojeong; Long, Kenneth D; Chow, Edmond; King, William P; Singamaneni, Srikanth; Cunningham, Brian T

    2014-03-07

    We demonstrate a label-free biosensor imaging approach that utilizes a photonic crystal (PC) surface to detect surface attachment of individual dielectric and metal nanoparticles through measurement of localized shifts in the resonant wavelength and resonant reflection magnitude from the PC. Using a microscopy-based approach to scan the PC resonant reflection properties with 0.6 μm spatial resolution, we show that metal nanoparticles attached to the biosensor surface with strong absorption at the resonant wavelength induce a highly localized reduction in reflection efficiency and are able to be detected by modulation of the resonant wavelength. Experimental demonstrations of single-nanoparticle imaging are supported by finite-difference time-domain computer simulations. The ability to image surface-adsorption of individual nanoparticles offers a route to single molecule biosensing, in which the particles can be functionalized with specific recognition molecules and utilized as tags.

  1. Lanthanide-activated Na{sub 5}Gd{sub 9}F{sub 32} nanocrystals precipitated from a borosilicate glass: Phase-separation-controlled crystallization and optical property

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Daqin, E-mail: dqchen@hdu.edu.cn [College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018 (China); Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, CAS, Fuzhou 350002 (China); Wan, Zhongyi; Zhou, Yang [College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018 (China); Chen, Yan, E-mail: chenyan@hdu.edu.cn [College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018 (China); Yu, Hua; Lu, Hongwei; Ji, Zhenguo [College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018 (China); Huang, Ping, E-mail: phuang@fjirsm.ac.cn [Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, CAS, Fuzhou 350002 (China)

    2015-03-15

    Highlights: • Na{sub 5}Gd{sub 9}F{sub 32} nanocrystals embedded glass ceramics were fabricated for the first time. • Such glass ceramics were achieved by phase-separation-controlled crystallization. • Elemental mapping evidenced the segregation of activators into the Na{sub 5}Gd{sub 9}F{sub 32} lattice. • Luminescent color could be tuned by controlling glass crystallization temperature. - Abstract: Lanthanide-activated cubic Na{sub 5}Gd{sub 9}F{sub 32} nanocrystals were precipitated from a borosilicate glass with a specifically designed composition. The precursor glass is already phase-separated after melt-quenching, which is beneficial to the realization of the controllable glass crystallization for affording desirable size, morphology and activator partition. Elemental mapping in the scanning transmission electron microscopy evidenced that the segregation of lanthanide ions into the Na{sub 5}Gd{sub 9}F{sub 32} lattice was in situ formed without the requirement of long-range ionic diffusion. Impressively, such fabricated glass ceramic co-doped with Yb{sup 3+}/Er{sup 3+} ions exhibited intense upconversion luminescence, which was about 500 times higher than that of the precursor glass, and its luminescent color could be easily tuned from red to green by controlling glass crystallization temperature. It is anticipated that such phase-separation synthesis strategy with precise control over nanostructure of glass ceramics offer a great opportunity to design other highly transparent nanocomposites with a wide range of tunable optical properties.

  2. Q-switching with single crystal photo-elastic modulators

    Science.gov (United States)

    Bammer, F.; Petkovsek, R.

    2011-02-01

    An overview is given about experiments with a new method for Q-switching lasers at a constant pulse repetition frequency. It uses inside the laser resonator a Single Crystal Photo-Elastic Modulator (SCPEM). This consists of one piezo-electric crystal electrically excited on a mechanical resonance frequency. In resonance mechanical stresses are induced that lead via the photo-elastic effect to a strongly modulated birefringence. Polarized light going through such an oscillating crystal will experience a significant modulation of its polarization and of transmission through a polarizer. Suitable materials should not be optically active, as it is for example the case for SiO2, and should allow the excitation of a longitudinal oscillation with an electric field perpendicular to the travelling direction of the light. Crystals of the group 3m, like LiTaO3 and LiNbO3, proved to be ideally suited for SCPEMS for the NIR- and VIS-region. For the infrared GaAs can be used. We demonstrated SCPEM-Q-switching for a Nd:YAG-fiber, a Nd:YVO4-slab- and a Nd:YAG-rod-laser with typical pulse repetition rates of 100-200kHz, pulse enhancement factors of 100 and pulse durations {1/100 of the period time. Typically the average power during pulsed operation is nearly the same as the cw-power, when the modulator is switched off. The most stable results were achieved up to now with the Nd:YVO4-slab-laser at 10W average power, 1.1 kW peak power, 127 kHz pulse repetition rate, and 70ns pulse durations.

  3. Growth and properties of Lithium Salicylate single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Zaitseva, N; Newby, J; Hull, G; Saw, C; Carman, L; Cherepy, N; Payne, S

    2009-02-13

    An attractive feature of {sup 6}Li containing fluorescence materials that determines their potential application in radiation detection is the capture reaction with slow ({approx}< 100 keV) neutrons: {sup 6}Li + n = {sup 4}He + {sup 3}H + 4.8MeV. The use of {sup 6}Li-salicylate (LiSal, LiC{sub 6}H{sub 5}O{sub 3}) for thermal neutron detection was previously studied in liquid and polycrystalline scintillators. The studies showed that both liquid and polycrystalline LiSal scintillators could be utilized in pulse shape discrimination (PSD) techniques that enable separation of neutrons from the background gamma radiation. However, it was found that the efficiency of neutron detection using LiSal in liquid solutions was severely limited by its low solubility in commonly used organic solvents like, for example, toluene or xylene. Better results were obtained with neutron detectors containing the compound in its crystalline form, such as pressed pellets, or microscopic-scale (7-14 micron) crystals dispersed in various media. The expectation drown from these studies was that further improvement of pulse height, PSD, and efficiency characteristics could be reached with larger and more transparent LiSal crystals, growth of which has not been reported so far. In this paper, we present the first results on growth and characterization of relatively large, a cm-scale size, single crystals of LiSal with good optical quality. The crystals were grown both from aqueous and anhydrous (methanol) media, mainly for neutron detection studies. However, the results on growth and structural characterization may be interesting for other fields where LiSal, together with other alkali metal salicylates, is used for biological, medical, and chemical (as catalyst) applications.

  4. The crystal structure and twinning of neodymium gallium perovskite single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Ubizskii, S.B.; Vasylechko, L.O.; Savytskii, D.I.; Matkovskii, A.O.; Syvorotka, I.M. [Res. Production Amalgamation Carat, L' viv (Ukraine)

    1994-10-01

    By means of X-ray structure analysis, the crystal structure of neodymium gallium perovskite (NGP) single crystals (NdGaO{sub 3}) being used as a substrate for HTSC film epitaxy has been refined and the position of atoms has been determined. The possibility of YBa{sub 2}Cu{sub 3}O{sub 7-x} film epitaxy on the plane (110) of NGP crystal as well as its advantages and pitfalls are analysed from structural data. The twinning types in the NGP crystal were established. The twinning structure of NGP substrates is found to be stable up to a temperature of 1173 K, as differentiated from the LaGaO{sub 3} and LaAlO{sub 3} substrates. It is intimated that the twinning in the NGP substrates oriented as (001) can result in creation of 90 degrees twin bonds in a film, and in the case of (110)-oriented plates it is possible to ignore the twinning presence in substrate completely. (author)

  5. Highly improved upconversion luminescence in NaGd(WO₄)₂:Yb³⁺/Tm³⁺ inverse opal photonic crystals.

    Science.gov (United States)

    Wang, Yunfeng; Xu, Wen; Cui, Shaobo; Xu, Sai; Yin, Ze; Song, Hongwei; Zhou, Pingwei; Liu, Xiaoyan; Xu, Lin; Cui, Haining

    2015-01-28

    The upconversion luminescence (UCL) of rare earth (RE) ions doped nanomaterials has attracted extensive interest because of its wide and great potential applications. However, the lower UCL efficiency is still an obstacle for real applications. Photonic modulation is a novel way to improve the efficiency of UCL. In this work, NaGd(WO4)2:Yb(3+)/Tm(3+) inverse opal photonic crystals (IOPCs) were fabricated through the polymethylmethacrylate (PMMA) template and the modification of the IOPC structure on the emission spectra and dynamics of Tm(3+) ions was systemically studied. It is interesting to observe that in the IOPCs, the high-order UCL (1)D2-(3)H6/(3)F4 was relatively enhanced. At the same time, the local thermal effect induced by laser irradiation was suppressed. Furthermore, the overall intensity ratio of visible UCL to near-infrared (NIR) down-conversion luminescence (DCL) was 2.8-8 times improved than that of the grinded reference (REF) and independent of the photonic stop band (PSB). The studies on UCL dynamics indicated that the nonradiative transition rate of Tm(3+) was considerably suppressed. The facts above indicated that in the IOPCs the UCL efficiency of Tm(3+) was largely improved due to the periodic macroporous structure.

  6. Aging and memory effect in magnetoelectric gallium ferrite single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Vijay; Mukherjee, Somdutta [Department of Physics, Indian Institute of Technology Kanpur, Kanpur 208016 (India); Mitra, Chiranjib [Department of Physics, Indian Institute of Science Education and Research, Kolkata 741252 (India); Garg, Ashish [Department of Materials Science and Engineering, Indian Institute of Technology Kanpur, Kanpur 208016 (India); Gupta, Rajeev, E-mail: guptaraj@iitk.ac.in [Department of Physics, Indian Institute of Technology Kanpur, Kanpur 208016 (India); Materials Science Programme, Indian Institute of Technology Kanpur, Kanpur 208016 (India)

    2015-02-01

    Here, we present a time and temperature dependent magnetization study to understand the spin dynamics in flux grown single crystals of gallium ferrite (GaFeO{sub 3}), a known magnetoelectric, ferroelectric and ferrimagnet. Results of the magnetic measurements conducted in the field-cooled (FC) and zero-field-cooled (ZFC) protocols in the heating and cooling cycles were reminiscent of a “memory” effect. Subsequent time dependent magnetic relaxation measurements carried out in ZFC mode at 30 K with an intermittent cooling to 20 K in the presence of a small field show that the magnetization in the final wait period tends to follow its initial state which was present before the cooling break taken at 20 K. These observations provide an unambiguous evidence of single crystal gallium ferrite having a spin glass like phase. - Highlights: • Gallium ferrite a room temperature magnetoelectric and ferrimagnetic material. • Spin‐glass like phase at low temperatures below ∼200 K. • Observation of memory and aging effects in GFO.

  7. Large single-crystal diamond substrates for ionizing radiation detection

    Energy Technology Data Exchange (ETDEWEB)

    Girolami, Marco; Bellucci, Alessandro; Calvani, Paolo; Trucchi, Daniele M. [Istituto di Struttura della Materia (ISM), Consiglio Nazionale delle Ricerche (CNR), Sede Secondaria di Montelibretti, Monterotondo Stazione, Roma (Italy)

    2016-10-15

    The need for large active volume detectors for ionizing radiations and particles, with both large area and thickness, is becoming more and more compelling in a wide range of applications, spanning from X-ray dosimetry to neutron spectroscopy. Recently, 8.0 x 8.0 mm{sup 2} wide and 1.2 mm thick single-crystal diamond plates have been put on the market, representing a first step to the fabrication of large area monolithic diamond detectors with optimized charge transport properties, obtainable up to now only with smaller samples. The more-than-double thickness, if compared to standard plates (typically 500 μm thick), demonstrated to be effective in improving the detector response to highly penetrating ionizing radiations, such as γ-rays. Here we report on the first measurements performed on large active volume single-crystal diamond plates, both in the dark and under irradiation with optical wavelengths (190-1100 nm), X-rays, and radioactive γ-emitting sources ({sup 57}Co and {sup 22}Na). (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  8. Ultrafast dynamic response of single crystal β-HMX

    Science.gov (United States)

    Zaug, Joseph M.; Armstrong, Michael R.; Crowhurst, Jonathan C.; Radousky, Harry B.; Ferranti, Louis; Swan, Raymond; Gross, Rick; Teslich, Nick E.; Wall, Mark A.; Austin, Ryan A.; Fried, Laurence E.

    2017-01-01

    We report results from ultrafast compression experiments conducted on β-HMX single crystals. Results consist of nominally 12 picosecond time-resolved wave profile data, (ultrafast time domain interferometry -TDI measurements), that were analyzed to determine high-velocity wave speeds as a function of piston velocity. TDI results are used to validate calculations of anisotropic stress-strain behavior of shocked loaded energetic materials. Our previous results derived using a 350 ps duration compression drive revealed anisotropic elastic wave response in single crystal β-HMX from (110) and (010) impact planes. Here we present results using a 1.05 ns duration compression drive with a 950 ps interferometry window to extend knowledge of the anisotropic dynamic response of β-HMX within eight microns of the initial impact plane. We observe two distinct wave profiles from (010) and three wave profiles from (010) impact planes. The (110) impact plane wave speeds typically exceed (010) impact plane wave speeds at the same piston velocities. The development of multiple hydrodynamic wave profiles begins at 20 GPa for the (110) impact plane and 28 GPa for the (10) impact plane. We compare our ultrafast TDI results with previous gun and plate impact results on β-HMX and PBX9501.

  9. Stress topology within silicon single-crystal cantilever beam

    Directory of Open Access Journals (Sweden)

    Alexander P. Kuzmenko

    2015-06-01

    Full Text Available Flexural elastic deformations of single-crystal silicon have been studied using microspectral Raman scattering. Results are reported on nano-scaled sign-changing shifts of the main peak of the microspectral Raman scattering within the single-crystal silicon cantilever beam during exposure to flexural stress. The maximum value of Raman shift characteristic of the 518 cm−1 silicon peak at which elasticity still remains has been found to be 8 cm−1 which corresponds to an applied deformation of 4 GPa. We report three-dimensional maps of the distribution of internal stresses at different levels of deformation up to irreversible changes and brittle fracture of the samples that clearly show compression and tension areas and an undeformed area. A qualitative explanation of the increase in the strength of the cantilever beam due to its small thickness (2 μm has been provided that agrees with the predictions of real-world physical parameters obtained in SolidWorks software environment with the SimulationXpress module. We have defined the relative strain of the beam surface which was 2% and received a confirmation of changes in the silicon lattice parameter from 0.54307 nm to 0.53195 nm by the BFGS algorithm.

  10. The refractive index of zinc oxide microwire single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Czekalla, Christian; Kuehne, Philipp; Sturm, Chris; Schmidt-Grund, Ruediger; Grundmann, Marius [Universitaet Leipzig (Germany). Fakultaet fuer Physik und Geowissenschaften, Institut fuer Experimentelle Physik II

    2010-07-01

    Among a large number of applications, zinc oxide (ZnO) single crystals (bulk and micro- and nanowires) are expected to form important building blocks for future optoelectronic devices like light emitting and laser diodes. Optical resonances from ZnO structures have been observed by a number of groups in the past years. In most of the publications, modeling of the mode structure, especially in the near bandgap spectral region, is difficult because the energy dependent refractive index n(E) is typically not known. Additionally, in case of the self assembled micro- and nanowires, the structures are too small to perform spectroscopic ellipsometry to determine n(E). We compare n(E) obtained from (a) spectroscopic ellipsometry measurements of ZnO bulk single crystals and (b) spatially resolved photoluminescence measurements of ZnO microwires employing a plane wave whispering gallery mode model for the observed resonances. We discuss the differences between the results obtained from the two methods and their mutual impact, leading to a highly precise determination of n(E) in an energy range between 1.80 eV and 3.25 eV and for temperatures between 10 K and 295 K.

  11. Single Crystal Diamond Needle as Point Electron Source

    Science.gov (United States)

    Kleshch, Victor I.; Purcell, Stephen T.; Obraztsov, Alexander N.

    2016-10-01

    Diamond has been considered to be one of the most attractive materials for cold-cathode applications during past two decades. However, its real application is hampered by the necessity to provide appropriate amount and transport of electrons to emitter surface which is usually achieved by using nanometer size or highly defective crystallites having much lower physical characteristics than the ideal diamond. Here, for the first time the use of single crystal diamond emitter with high aspect ratio as a point electron source is reported. Single crystal diamond needles were obtained by selective oxidation of polycrystalline diamond films produced by plasma enhanced chemical vapor deposition. Field emission currents and total electron energy distributions were measured for individual diamond needles as functions of extraction voltage and temperature. The needles demonstrate current saturation phenomenon and sensitivity of emission to temperature. The analysis of the voltage drops measured via electron energy analyzer shows that the conduction is provided by the surface of the diamond needles and is governed by Poole-Frenkel transport mechanism with characteristic trap energy of 0.2-0.3 eV. The temperature-sensitive FE characteristics of the diamond needles are of great interest for production of the point electron beam sources and sensors for vacuum electronics.

  12. Detection and classification of different liver lesions: Comparison of Gd-EOB-DTPA-enhanced MRI versus multiphasic spiral CT in a clinical single centre investigation

    Energy Technology Data Exchange (ETDEWEB)

    Böttcher, Joachim [Institute of Diagnostic and Interventional Radiology, SRH Clinic Gera, Str. des Friedens 122, 07548 Gera (Germany); Hansch, Andreas [Institute of Diagnostic and Interventional Radiology, Friedrich-Schiller-University, Jena University Hospital, Erlanger Allee 101, 07740 Jena (Germany); Pfeil, Alexander [Department of Internal Medicine III, Friedrich-Schiller-University, Jena University Hospital, Erlanger Allee 101, 07740 Jena (Germany); Schmidt, Peter [Institute of Diagnostic and Interventional Radiology, Friedrich-Schiller-University, Jena University Hospital, Erlanger Allee 101, 07740 Jena (Germany); Malich, Ansgar [Institute of Diagnostic Radiology, Suedharz Clinic Nordhausen, Dr. Robert-Koch-Str. 39, 99734 Nordhausen (Germany); Schneeweiss, Albrecht [Institute of Diagnostic and Interventional Radiology, Friedrich-Schiller-University, Jena University Hospital, Erlanger Allee 101, 07740 Jena (Germany); Maurer, Martin H.; Streitparth, Florian [Department of Radiology, Charité University Medicine Berlin, Campus Virchow Clinic, Augustenburger Platz 1, 13353 Berlin (Germany); Teichgräber, Ulf K. [Institute of Diagnostic and Interventional Radiology, Friedrich-Schiller-University, Jena University Hospital, Erlanger Allee 101, 07740 Jena (Germany); Renz, Diane M., E-mail: diane.renz@charite.de [Department of Radiology, Charité University Medicine Berlin, Campus Virchow Clinic, Augustenburger Platz 1, 13353 Berlin (Germany)

    2013-11-01

    Objective: To compare the diagnostic efficacy of Gd-EOB-DTPA-enhanced magnetic resonance imaging (MRI) vs. multidetector computed tomography (MDCT) for the detection and classification of focal liver lesions, differentiated also for lesion entity and size; a separate analysis of pre- and postcontrast images as well as T2-weighted MRI sequences of focal and exclusively solid lesions was integrated. Methods: Twenty-nine patients with 130 focal liver lesions underwent MDCT (64-detector-row; contrast medium iopromide; native, arterial, portalvenous, venous phase) and MRI (1.5-T; dynamic and tissue-specific phase 20 min after application of Gd-EOB-DTPA). Hepatic lesions were verified against a standard of reference (SOR). CT and MR images were independently analysed by four blinded radiologists on an ordinal 6-point-scale, determining lesion classification and diagnostic confidence. Results: Among 130 lesions, 68 were classified as malignant and 62 as benign by SOR. The detection of malignant and benign lesions differed significantly between combined and postcontrast MRI vs. MDCT; overall detection rate was 91.5% for combined MRI and 80.4% for combined MDCT (p < 0.05). Considering all four readers together, combined MDCT achieved sensitivity of 66.2%, specificity of 79.0%, and diagnostic accuracy of 72.3%; combined MRI reached superior diagnostic efficacy: sensitivity 86.8%, specificity 94.4%, accuracy 90.4% (p < 0.05). Differentiated for lesion size, in particular lesions <20 mm revealed diagnostic benefit by MRI. Postcontrast MRI also achieved higher overall sensitivity, specificity, and accuracy compared to postcontrast MDCT for focal and exclusively solid liver lesions (p < 0.05). Conclusion: Combined and postcontrast Gd-EOB-DTPA-enhanced MRI provided significantly higher overall detection rate and diagnostic accuracy, including low inter-observer variability, compared to MDCT in a single centre study.

  13. CH3NH3PbCl3 Single Crystals: Inverse Temperature Crystallization and Visible-Blind UV-Photodetector

    KAUST Repository

    Maculan, Giacomo

    2015-09-02

    Single crystals of hybrid perovskites have shown remarkably improved physical properties compared to their polycrystalline film counterparts, underscoring their importance in the further development of advanced semiconductor devices. Here we present a new method of sizeable CH3NH3PbCl3 single crystal growth based on retrograde solubility behavior of hybrid perovskites. We show, for the first time, the energy band structure, charge-carrier recombination and transport properties of single crystal CH3NH3PbCl3. The chloride-based perovskite crystals exhibit trap-state density, charge carriers concentration, mobility and diffusion length comparable with the best quality crystals of methylammonium lead iodide or bromide perovskites reported so far. The high quality of the crystal along with its suitable optical bandgap enabled us to design and build an efficient visible-blind UV-photodetector, demonstrating the potential of this material to be employed in optoelectronic applications.

  14. Size effects on void growth in single crystals with distributed voids

    DEFF Research Database (Denmark)

    Borg, Ulrik; Niordson, Christian Frithiof; Kysar, J.W.

    2008-01-01

    The effect of void size on void growth in single crystals with uniformly distributed cylindrical voids is studied numerically using a finite deformation strain gradient crystal plasticity theory with an intrinsic length parameter. A plane strain cell model is analyzed for a single crystal...

  15. Passively Q-switched Single-longitudinal-mode c-cut Nd:GdVO4 laser with a twisted-mode cavity.

    Science.gov (United States)

    Pan, Haifeng; Xu, Shixiang; Zeng, Heping

    2005-04-04

    Single-longitudinal-mode operation is achieved in a twisted-mode-cavity c-cut Nd:GdVO4 laser. With a semiconductor saturable absorption mirror as an intracavity saturable absorber to launch passive Q-switching, no mode-locked spikes are observed on the temporal envelopes of the Q-switched output pulses due to the complete elimination of spatial hole burning in the gain medium to suppress longitudinal multi-modes. The maximal average output power is 1.24 W with the repetition rate of 76.3 kHz, and the single pulse energy is 16.0 microJ. The pulse width and polarization ratio of the output laser beam are measured about 150 ns and 53:1, respectively.

  16. Synthesis and Structural Characterization of Gd(Ⅱ) Coordination Polymer [Gd2(μ-phth)3(b-pd)(H2O)5]n

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    A new Gd(Ⅱ) complex [Gd2(μ-phth)3(b-pd)(H2O)5]n (phth = o-phthalato, b-pd = N,N- bipyridine) has been synthesized by the reaction of GdO2 with o-phthalate, H2O and 2,2′-bipyridine. The crystal structure has been determined by single-crystal X-ray diffraction. The crystal is of triclinic, space group P with a = 11.82920(10), b = 13.53550(10), c = 13.7381(2)(A), α = 88.99, β = 66.9120(10), γ = 66.2370(10)°, V = 1826.02(3)(A)3, Dc = 1.915 g/cm3, C34H30N2O17Gd2, Mr = 1053.10, F(000) = 1024, μ = 3.680 mm-1, Z = 2, R = 0.0612 and wR = 0.1320 for 6259 observed reflections (I > 2σ(I)). In the title complex, the Gd(II) ions are bridged by o-phthalate ligands in a bidentate mode, producing a 1D infi- nite chain structure. Each eight-coordinated Gd(Ⅱ) center is coordinated by eight oxygen atoms from phth to give a distorted dodecahedral geometry, and each nine-coordinated Gd(Ⅱ) center is coordi- nated by two N atoms from b-pd and seven oxygen atoms from phth to give a distorted geometry of capped square antiprism. The chains are linked by π-π interactions and hydrogen bonds between oxy- gen atoms of carboxylate groups and H2O molecules and hydrogen atoms of H2O, b-pd and o-phth molecules, forming an unusual three-dimensional coordination polymer.

  17. Crystal Growth and Properties of Co2+ doped Y3Sc2Ga3O12 Single Crystal

    Institute of Scientific and Technical Information of China (English)

    Guo Shiyi; Yuan Duorong; Shi Xuzhong; Cheng Xiufeng; Zhang Xiqing; Yu Fapeng

    2007-01-01

    Single crystal of cobalt (Co)-doped Y3Sc2Ga3O12 (YSGG) with the dimensions up to φ20×40mm3 and undoped YSGG crystal with the dimensions up to φ28×60mm3 have been grown using the Czochralski technique. The structure of the crystal was characterized by the X-ray powder diffraction (XRPD) method. The absorbance spectra of the crystal shows that it has strong absorption bands at 606 and 1540nm. The results indicate that the crystal Y3Sc2Ga3O12 may be a kind of good Q-switch material.

  18. Growth and Characterization of Pure and Doped L-Alanine Tartrate Single Crystals

    Directory of Open Access Journals (Sweden)

    K. Rajesh

    2013-01-01

    Full Text Available Single crystals of pure and Lanthanum doped L-Alanine Tartrate were grown by slow evaporation method. The cell parameters were determined using single crystal X-ray diffraction method. To improve the physical properties of the LAT crystal, Lanthanum dopant was added by 2 mol%. ICP studies confirm the presence of Lanthanum in the grown LAT crystal. Transparency range of the crystal was determined using UV-VIS-NIR spectrophotometer. The functional groups of pure and doped LAT crystals were analyzed by FT-IR spectroscopy. Using Vickers microhardness tester, mechanical strength of the material was found. Dielectric studies of pure and doped LAT single crystals were carried out. The doped LAT crystal is found to have efficiency higher than that of pure LAT crystal.

  19. A preliminary review of organic materials single crystal growth by the Czochralski technique

    Science.gov (United States)

    Penn, B. G.; Shields, A. W.; Frazier, D. O.

    1988-01-01

    The growth of single crystals of organic compounds by the Czochralski method is reviewed. From the literature it is found that single crystals of benzil, a nonlinear optical material with a d sub 11 value of 11.2 + or - 1.5 x d sub 11 value of alpha quartz, has fewer dislocations than generally contained in Bridgman crystals. More perfect crystals were grown by repeated Czochralski growth. This consists of etching away the defect-containing portion of a Czochralski grown crystal and using it as a seed for further growth. Other compounds used to grow single crystals are benzophenone, 12-tricosanone (laurone), and salol. The physical properties, growth apparatus, and processing conditions presented in the literature are discussed. Moreover, some of the possible advantages of growing single crystals of organic compounds in microgravity to obtain more perfect crystals than on Earth are reviewed.

  20. Rotational and translational distortions of the crystal structure of the Sr{sub 2}HrRuO{sub 6} (Hr = Ho, Dy, Gd, Eu) complex perovskites

    Energy Technology Data Exchange (ETDEWEB)

    Triana, C.A., E-mail: ctrianae@unal.edu.co [Grupo de Física de Nuevos Materiales, Departamento de Física, Universidad Nacional de Colombia, A.A. 5997, Bogotá D.C. (Colombia); Landínez Téllez, D.A. [Grupo de Física de Nuevos Materiales, Departamento de Física, Universidad Nacional de Colombia, A.A. 5997, Bogotá D.C. (Colombia); Roa-Rojas, J., E-mail: jroar@unal.edu.co [Grupo de Física de Nuevos Materiales, Departamento de Física, Universidad Nacional de Colombia, A.A. 5997, Bogotá D.C. (Colombia)

    2013-05-15

    Sr{sub 2}HrRuO{sub 6} (Hr = Ho, Dy, Gd, Eu) complex perovskites were synthesized through the high-temperature solid-state reaction method, and their crystal structures were analyzed in detail as a function of the Hr-cation ionic radius. Results of powder XRD pattern measurement and Rietveld analysis of the experimental profiles show that the Sr{sub 2}HrRuO{sub 6} compounds crystallize in a monoclinic distorted perovskite-like structure, P2{sub 1}/n (#14) space group, where the unit cell parameters are related to the primitive unit cell a{sub p} by a≈√(2)a{sub p}, b≈√(2)a{sub p} and c ≈ 2a{sub p}. The structures show an alternate distribution of the Ru{sup 5+} (2d: 0.5, 0, 0) and Hr{sup 3+} (2c: 0, 0.5, 0) making up RuO{sub 6} and HrO{sub 6} octahedra alternatively arranged in two interleaving fcc sublattices, where the O(1), O(2), and O(3) ions are localized at the corner of the octahedral, while the Sr{sup 2+} is located at the A-site, occupying the cavities built by the corner-sharing octahedra with Wyckoff position 4e. Due to the existence of mismatched ionic sizes between the ionic radii of the Sr{sub 2}HrRuO{sub 6} compounds, the HrO{sub 6} and RuO{sub 6} octahedra are constrained to tilting around the [111]{sub c}, [001]{sub c}, and [110]{sub c} cubic directions so as to optimize the Sr–O inter-atomic bond lengths, tending to rotate the structure in order to fix the Ru{sup 5+} and Hr{sup 3+} ions on the M′ and M″ sites of the complex perovskites. The cell parameters a, b, and c, the inter-atomic bond angles, the inter-atomic bond lengths, and the tilting angles increase as the Hr-cation ionic radius increases. The mismatch that exists in the Sr{sub 2}HrRuO{sub 6} ionic radius produces a large distortion from the ideal cubic symmetry. The pure perovskite-like phase of Sr{sub 2}HrRuO{sub 6} is thermodynamically and kinetically stable at high temperatures above 1420 K, where it is entirely governed by the average size of the Hr{sup 3+} and Ru

  1. Single Crystal DMs for Space-Based Observatories

    Science.gov (United States)

    Bierden, Paul

    We propose to demonstrate the feasibility of a new manufacturing process for large aperture, high-actuator count microelectromechanical deformable mirrors (MEMS-DMs). These DMs are designed to fill a critical technology gap in NASA s plan for high- contrast space-based exoplanet observatories. We will manufacture a prototype DM with a continuous mirror facesheet, having an active aperture of 50mm diameter, supported by 2040 electrostatic actuators (50 across the diameter of the active aperture), spaced at a pitch of 1mm. The DM will be manufactured using silicon microfabrication tools. The strategic motivation for the proposed project is to advance MEMS DMs as an enabling technology in NASA s rapidly emerging program for extrasolar planet exploration. That goal is supported by an Astro2010 white paper on Technologies for Direct Optical Imaging of Exoplanets, which concluded that DMs are a critical component for all proposed internal coronagraph instrument concepts. That white paper pointed to great strides made by DM developers in the past decade, and acknowledged the components made by Boston Micromachines Corporation to be the most notable MEMS-based technology option. The principal manufacturing innovation in this project will be assembly of the DM through fusion bonding of three separate single crystal silicon wafers comprising the device s substrate, actuator array, and facesheet. The most significant challenge of this project will be to develop processes that allow reliable fusion bonds between multiple compliant silicon layers while yielding an optically flat surface and a robust electromechanical system. The compliance of the DM, which is required for its electromechanical function, will make it challenging to achieve the intimate, planar contact that is generally needed for success in fusion bonding. The manufacturing approach will use photolithography and reactive ion etching to pattern structural layers. Three wafer-scale devices will be patterned and

  2. Crystal growth, structural, thermal and mechanical behavior of L-arginine 4-nitrophenolate 4-nitrophenol dihydrate (LAPP) single crystals

    Science.gov (United States)

    Mahadevan, M.; Ramachandran, K.; Anandan, P.; Arivanandhan, M.; Bhagavannarayana, G.; Hayakawa, Y.

    2014-12-01

    Single crystals of L-arginine 4-nitrophenolate 4-nitrophenol dihydrate (LAPP) have been grown successfully from the solution of L-arginine and 4-nitrophenol. Slow evaporation of solvent technique was adopted to grow the bulk single crystals. Single crystal X-ray diffraction analysis confirms the grown crystal has monoclinic crystal system with space group of P21. Powder X-ray diffraction analysis shows the good crystalline nature. The crystalline perfection of the grown single crystals was analyzed by HRXRD by employing a multicrystal X-ray diffractometer. The functional groups were identified from proton NMR spectroscopic analysis. Linear and nonlinear optical properties were determined by UV-Vis spectrophotometer and Kurtz powder technique respectively. It is found that the grown crystal has no absorption in the green wavelength region and the SHG efficiency was found to be 2.66 times that of the standard KDP. The Thermal stability of the crystal was found by obtaining TG/DTA curve. The mechanical behavior of the grown crystal has been studied by Vicker's microhardness method.

  3. DANCE (Detector for Advanced Neutron Capture Experiments) is a 4π array of BaF2 crystals installed at LANSCE, Lujan Center. Neutron capture measurements on ^157Gd and ^89Y nuclei were conducted using this facility.

    Science.gov (United States)

    Chyzh, A.; Mitchell, G.; Vieira, D.; Bredeweg, T.; Ullmann, J.; Jandel, M.; Couture, A.; Keksis, A.; Rundberg, R.; Wilhelmy, J.; O'Donnell, J.; Baramsai, B.; Haight, R.; Wouters, J.; Krticka, M.; Parker, W.; Becker, J.; Agvaanlusan, U.

    2009-10-01

    DANCE (Detector for Advanced Neutron Capture Experiments) is a 4π array of BaF2 crystals installed at LANSCE, Lujan Center. Neutron capture measurements on ^157Gd and ^89Y nuclei were conducted using this facility. The absolute cross sections of the ^89Y(n,γ) reaction was measured for the first time ever in the neutron energy range of 10 eV -- 10 keV and improvements were made in the 10 -- 300 keV range. The error bars were significantly reduced and number of cross section points was increased since the past ^89Y(n,γ) experiments. The ^157Gd(n,γ) cross section was determined at En = 20 eV -- 300 keV by normalizing the experimental DANCE data to a well known resonance taken from the ENDF/B-VII library. Computer simulations of the ^157Gd(n,γ) cascades and DANCE pulse height function were made using DICEBOX and GEANT4 codes and simulated Esum and Eγ spectra are compared to the experimental DANCE data. Values of spin and photon strength function (PSF) of the ^157Gd(n,γ) resonances are provided in the range of En = 2 -- 300 eV using spin dependence upon a γ-ray multiplicity.

  4. Ignition and growth modeling of detonation reaction zone experiments on single crystals of PETN and HMX

    Science.gov (United States)

    White, Bradley W.; Tarver, Craig M.

    2017-01-01

    It has long been known that detonating single crystals of solid explosives have much larger failure diameters than those of heterogeneous charges of the same explosive pressed or cast to 98 - 99% theoretical maximum density (TMD). In 1957, Holland et al. demonstrated that PETN single crystals have failure diameters of about 8 mm, whereas heterogeneous PETN charges have failure diameters of less than 0.5 mm. Recently, Fedorov et al. quantitatively determined nanosecond time resolved detonation reaction zone profiles of single crystals of PETN and HMX by measuring the interface particle velocity histories of the detonating crystals and LiF windows using a PDV system. The measured reaction zone time durations for PETN and HMX single crystal detonations were approximately 100 and 260 nanoseconds, respectively. These experiments provided the necessary data to develop Ignition and Growth (I&G) reactive flow model parameters for the single crystal detonation reaction zones. Using these parameters, the calculated unconfined failure diameter of a PETN single crystal was 7.5 +/- 0.5 mm, close to the 8 mm experimental value. The calculated failure diameter of an unconfined HMX single crystal was 15 +/- 1 mm. The unconfined failure diameter of an HMX single crystal has not yet been determined precisely, but Fedorov et al. detonated 14 mm diameter crystals confined by detonating a HMX-based plastic bonded explosive (PBX) without initially overdriving the HMX crystals.

  5. Growth of ZnO Single Crystal by Chemical Vapor Transport Method

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    ZnO crystals were grown by CVT method in closed quartz tube under seeded condition. Carbon was used as a transport agent to enhance the chemical transport of ZnO in the growth process. ZnO single crystals were grown by using GaN/sapphire and GaN/Si wafer as seeds. The property and crystal quality of the ZnO single crystals was studied by photoluminescence spectroscopy and X-ray diffraction technique.

  6. Floating Zone Growth and Thermionic Emission Property of Single Crystal CeB6

    Institute of Scientific and Technical Information of China (English)

    BAO Li-Hong; ZHANG Jiu-Xing; ZHOU Shen-Lin; ZHANG Ning; XU Hong

    2011-01-01

    @@ Large-sized and high-quality cerium hexaboride(CeB6) single crystals are successfully grown yb the optical floating zone method.The structure, chemical composition and thermionic emission properties of the crystal are characterized by x-ray diffraction, x-ray fluorescence and emission measurements, respectively.Based on the observation of single crystal diffraction, the relative density of feed rods has a great effect on the quality of the grown crystal.The thermionic emission measurement results show that the emission current density of the single crystal is 47.1 A/cm2 at 1873K with an applied voltage of 1 kV,which is about two times larger than the value for polycrystalline samples.The single crystal possesses excellent emission current stability.Therefore, it is expected that CeBs single crystal is a very promising material for thermionic cathode applications.

  7. Twin nucleation and migration in FeCr single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Patriarca, L. [Politecnico di Milano, Department of Mechanical Engineering, Via La Masa 34, I-20156 Milano (Italy); Abuzaid, Wael [Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, 1206 W. Green St., Urbana, IL 61801 (United States); Sehitoglu, Huseyin, E-mail: huseyin@illinois.edu [Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, 1206 W. Green St., Urbana, IL 61801 (United States); Maier, Hans J. [Lehrstuhl fuer Werkstoffkunde (Materials Science), University of Paderborn, 33095 Paderborn (Germany); Chumlyakov, Y. [Physics of Plasticity and Strength of Materials Laboratory, Siberian Physical and Technical Institute, 634050 Tomsk (Russian Federation)

    2013-01-15

    Tension and compression experiments were conducted on body-centered cubic Fe -47.8 at pct. Cr single crystals. The critical resolved shear stress (CRSS) magnitudes for slip nucleation, twin nucleation and twin migration were established. We show that the nucleation of slip occurs at a CRSS of about 88 MPa, while twinning nucleates at a CRSS of about 191 MPa with an associated load drop. Following twin nucleation, twin migration proceeds at a CRSS that is lower than the initiation stress ( Almost-Equal-To 114-153 MPa). The experimental results of the nucleation stresses indicate that the Schmid law holds to a first approximation for the slip and twin nucleation cases, but to a lesser extent for twin migration particularly when considerable slip strains preceded twinning. The CRSSs were determined experimentally using digital image correlation (DIC) in conjunction with electron back scattering diffraction (EBSD). The DIC measurements enabled pinpointing the precise stress on the stress-strain curves where twins or slip were activated. The crystal orientations were obtained using EBSD and used to determine the activated twin and slip systems through trace analysis. - Highlights: Black-Right-Pointing-Pointer Digital image correlation allows to capture slip/twin initiation for bcc FeCr. Black-Right-Pointing-Pointer Crystal orientations from EBSD allow slip/twin system indexing. Black-Right-Pointing-Pointer Nucleation of slip always precedes twinning. Black-Right-Pointing-Pointer Twin growth is sustained with a lower stress than required for nucleation. Black-Right-Pointing-Pointer Twin-slip interactions provide high hardening at the onset of plasticity.

  8. Growth of Bi-2212 single crystals by a horizontal Bridgman method using different oxygen pressure

    Energy Technology Data Exchange (ETDEWEB)

    Fujiwara, M.; Makino, T.; Nakabayashi, T. [Department of Electrical and Electronic Engineering, Tottori University, Koyama-Minami, Tottori 680-8552 (Japan); Tanaka, H. [Yonago National College of Technology, 4448 Hikona Yonago, Tottori 683-8502 (Japan); Kinoshita, K., E-mail: kinoshita@ele.tottori-u.ac.j [Department of Electrical and Electronic Engineering, Tottori University, Koyama-Minami, Tottori 680-8552 (Japan); Kishida, S. [Department of Electrical and Electronic Engineering, Tottori University, Koyama-Minami, Tottori 680-8552 (Japan)

    2009-10-15

    We compared the crystallinity of the Bi-2212 single crystals grown by the horizontal Bridgman (HB) method with those grown by the vertical Bridgman (VB) method in terms of resistivity, rho. It was clarified that crystals far inside the ingot grown by HB method showed the equivalent crystallinity to crystals grown by VB method, whereas crystals near the surface of the ingot grown by HB method showed the similar crystallinity to crystals grown by TSFZ method, which is sensitive to the growth atmosphere.

  9. Preparation, crystal structure and optical spectroscopy of the rare earth complexes (RE 3+=Sm, Eu, Gd and Tb) with 2-thiopheneacetate anion

    Science.gov (United States)

    Teotonio, Ercules E. S.; Brito, Hermi F.; Felinto, Maria Cláudia F. C.; Thompson, Larry C.; Young, Victor G.; Malta, Oscar L.

    2005-09-01

    Rare earth complexes with the formulae Sm(TPAC) 3·3H 2O, Eu 2(TPAC) 6·5.25H 2O and RE(TPAC) 3·3.5H 2O (where RE=Gd and Tb), and TPAC=2-thiopheneacetate) have been synthesized and characterized by complexometric titration, elemental analyses, infrared spectroscopy, and X-ray crystallography. Infrared data suggested the presence of both bridging and chelating TPAC anions. The crystal structure of the [Eu 2(TPAC) 6·(H 2O) 3]·2.25H 2O complex in the solid state, determined by X-ray diffraction, revealed that it crystallizes in the orthorhombic crystal system (space group Aba2), with two crystallographically independent Eu 3+ centers (Eu1 and Eu2). These europium centers are held together by one bidentate bridging and two tridentate bridging carboxylate groups. The existence of two Eu 3+ centers was also supported by the emission spectrum. The luminescence properties of the RE-TPAC complexes were investigated by measuring the excitation and emission spectra, and the intramolecular ligand-to-rare earth energy transfer mechanisms were discussed. The emission spectra of the Eu 3+ and Tb 3+ ions displayed only narrow bands arising from 5D 0→ 7F 0 and 5D 0→ 7F 0-4 transitions, respectively, indicating an efficient luminescence sensitization of these ions by the TPAC 'antenna'. On the other hand, the emission spectrum of the Sm 3+-complex displayed a broad band from the phosphorescence of the TPAC ligand which overlapped the 4f 5-intraconfigurational transitions. The theoretical intensity parameters Ωλ ( λ=2 and 4), maximum splitting of the 7F 1 state (Δ E) and the ratio between the 5D 0→ 7F 0 and 5D 0→ 7F 2 transition intensities ( R02) were calculated based on the X-ray crystalline structure for the Eu 3+-complex, and a comparison with experimental data were made. The emission quantum efficiency ( η) of the D5 emitting level of the Eu 3+ ion was also determined.

  10. Tb-Dy-Fe Single Crystal and Magnetostrictive Actuator Using These Materials

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Magnetostrictive actuators normally use twin-crystal magnetostrictive materials as driving unit. Because the crystal and twin-crystal plane hinder the movement of the domain wall, its displacement output of low magnetic strength is rather small. Using Tb-Dy-Fe single crystal technique can effectively solve the problems brought by pollution and twin crystals, and produce high-quality Tb-Dy-Fe single crystal materials. The paper will introduce the technique of using these materials to produce magnetostrictive actuators that possess high sensitivity and resolution and use pulse feeding.

  11. Growth and Characterization of Pure and Doped L-Alanine Tartrate Single Crystals

    OpenAIRE

    K. Rajesh; B. Milton Boaz; P. Praveen Kumar

    2013-01-01

    Single crystals of pure and Lanthanum doped L-Alanine Tartrate were grown by slow evaporation method. The cell parameters were determined using single crystal X-ray diffraction method. To improve the physical properties of the LAT crystal, Lanthanum dopant was added by 2 mol%. ICP studies confirm the presence of Lanthanum in the grown LAT crystal. Transparency range of the crystal was determined using UV-VIS-NIR spectrophotometer. The functional groups of pure and doped LAT crystals were a...

  12. Studies on synthesis, growth, structural, optical properties of organic 8-hydroxyquinolinium succinate single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Thirumurugan, R., E-mail: singlecrystalxrd@gmail.com; Anitha, K., E-mail: singlecrystalxrd@gmail.com [School of Physics, Madurai Kamaraj University, Madurai-625021 (India)

    2014-04-24

    8-hydroxyquinolinium succinate (8HQSU), an organic material has been synthesized and single crystals were grown by employing the technique of slow evaporation. The structure of the grown crystal was elucidated by using single crystal X-ray diffraction analysis. 8HQSU crystal belongs to the monoclinic crystallographic system with non-centro symmetric space group of P2{sub 1}. FT-IR spectral investigation has been carried out to identify the various functional groups present in the grown crystal. UV–vis spectral studies reveal that 8HQSU crystals are transparent in the entire visible region and the cut-off wavelength has been found to be 220nm.

  13. Solidification microstructures in single-crystal stainless steel melt pools

    Energy Technology Data Exchange (ETDEWEB)

    Sipf, J.B.; Boatner, L.A.; David, S.A.

    1994-03-01

    Development of microstructure of stationary melt pools of oriented stainless steel single crystals (70%Fe-15%Ni-15%Cr was analyzed. Stationary melt pools were formed by electron-beam and gas-tungsten-arc heating on (001), (011), and (111) oriented planes of the austenitic, fcc-alloy crystals. Characterization and analysis of resulting microstructure was carried out for each crystallographic plane and welding method. Results showed that crystallography which favors ``easy growth`` along the <100> family of directions is a controlling factor in the microstructural formation along with the melt-pool shape. The microstructure was found to depend on the melting method, since each method forms a unique melt-pool shape. These results are used in making a three-dimensional reconstruction of the microstructure for each plane and melting method employed. This investigation also suggests avenues for future research into the microstructural properties of electron-beam welds as well as providing an experimental basis for mathematical models for the prediction of solidification microstructures.

  14. Scintillation properties of CsI:In single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Gridin, S., E-mail: gridin.sergey@gmail.com [Institute for Scintillation Materials, 61001 Kharkov (Ukraine); Institut Lumière Matière, Lyon, 69622 Villeurbanne Cedex (France); Belsky, A. [Institut Lumière Matière, Lyon, 69622 Villeurbanne Cedex (France); Moszynski, M.; Syntfeld-Kazuch, A. [National Centre for Nuclear Research, Soltana 7, 05-400 Otwock-Swierk (Poland); Shiran, N.; Gektin, A. [Institute for Scintillation Materials, 61001 Kharkov (Ukraine)

    2014-10-11

    Scintillation properties of CsI:In single crystals have been investigated. Scintillation yield of CsI:In measured with the 24 μs integration time is around 27,000 ph/MeV, reaching the saturation at 0.005 mol% of the activator. However, luminescence yield of CsI:In is close to CsI:Tl scintillation crystals, which is around 60,000 ph/MeV. This difference is explained by the presence of an ultra-long afterglow in CsI:In scintillation pulse. Thermoluminescence studies revealed a stable trap around 240 K that is supposed to be related to millisecond decay components. The best measured energy resolution of (8.5±0.3)% was achieved at 24 μs peaking time for a CsI sample doped with 0.01 mol% of In. Temperature stability of CsI:In radioluminescence intensity was found to be remarkably high. Its X-ray luminescence yield remains stable up to 600 K, whereafter thermal quenching occurs. The latter property gives CsI:In a potential to be used in well logging applications.

  15. Ion implantation of CdTe single crystals

    Directory of Open Access Journals (Sweden)

    Wiecek Tomasz

    2017-01-01

    Full Text Available Ion implantation is a technique which is widely used in industry for unique modification of metal surface for medical applications. In semiconductor silicon technology ion implantation is also widely used for thin layer electronic or optoelectronic devices production. For other semiconductor materials this technique is still at an early stage. In this paper based on literature data we present the main features of the implantation of CdTe single crystals as well as some of the major problems which are likely to occur when dealing with them. The most unexpected feature is the high resistance of these crystals against the amorphization caused by ion implantation even at high doses (1017 1/cm2. The second property is the disposal of defects much deeper in the sample then it follows from the modeling calculations. The outline of principles of the ion implantation is included in the paper. The data based on RBS measurements and modeling results obtained by using SRIM software were taken into account.

  16. From Protein Structure to Function via Single Crystal Optical Spectroscopy

    Directory of Open Access Journals (Sweden)

    Luca eRonda

    2015-04-01

    Full Text Available The more than 100.000 protein structures determined by X-ray crystallography provide a wealth of information for the characterization of biological processes at the molecular level. However, several crystallographic artifacts, including conformational selection, crystallization conditions and radiation damages, may affect the quality and the interpretation of the electron density map, thus limiting the relevance of structure determinations. Moreover, for most of these structures no functional data have been obtained in the crystalline state, thus posing serious questions on their validity in the inference for protein mechanisms. In order to solve these issues, spectroscopic methods have been applied for the determination of equilibrium and kinetic properties of proteins in the crystalline state. These methods are UV-vis spectrophotometry, spectrofluorimetry, IR, EPR, Raman and resonance Raman spectroscopy. Some of these approaches have been implemented with on-line instruments at X-ray synchrotron beamlines. Here, we provide an overview of investigations predominantly carried out in our laboratory by single crystal polarized absorption UV-vis microspectrophotometry, the most applied technique for the functional characterization of proteins in the crystalline state. Studies on hemoglobins, pyridoxal 5’-phosphate dependent enzymes and green fluorescent protein in the crystalline state have addressed key biological issues, leading to either straightforward structure-function correlations or limitations to structure-based mechanisms.

  17. The growth of Nd:CaWO4 single crystals

    Directory of Open Access Journals (Sweden)

    ALEKSANDAR GOLUBOVIC

    2003-12-01

    Full Text Available CaWO4 doped with 0.8 % at. Nd (Nd:CaWO4 single crystals were grown from the melt in air by the Czochralski technique. The critical diameter dc = 1.0 cm and the critical rate of rotation wc = 30 rpm were calculated from hydrodynamic equations for buoyancy-driven and forced convection. The rate of crystal growth was experimentally obtained to be 6.7 mm/h. For chemical polishing, a solution of 1 part saturated chromic acid (CrO3 in water and 3 parts conc. H3PO4 (85 % at 433 K with an exposure time of 2 h was found to be adequate. A mixture of 1 part concentrated HF and 2 parts chromic acid at room temperature after exposure for 30 min was found to be a suitable etching solution. The lattice parameters a = 0.52404 (6 nm, c = 1.1362 (6 nm and V0 = 0.312 (2 nm3 were determined by X-ray powder diffraction. The obtained results are discussed and compared with published data.

  18. Ion implantation of CdTe single crystals

    Science.gov (United States)

    Wiecek, Tomasz; Popovich, Volodymir; Bester, Mariusz; Kuzma, Marian

    2016-12-01

    Ion implantation is a technique which is widely used in industry for unique modification of metal surface for medical applications. In semiconductor silicon technology ion implantation is also widely used for thin layer electronic or optoelectronic devices production. For other semiconductor materials this technique is still at an early stage. In this paper based on literature data we present the main features of the implantation of CdTe single crystals as well as some of the major problems which are likely to occur when dealing with them. The most unexpected feature is the high resistance of these crystals against the amorphization caused by ion implantation even at high doses (1017 1/cm2). The second property is the disposal of defects much deeper in the sample then it follows from the modeling calculations. The outline of principles of the ion implantation is included in the paper. The data based on RBS measurements and modeling results obtained by using SRIM software were taken into account.

  19. Characterization of CuInSe{sub 2} single crystal

    Energy Technology Data Exchange (ETDEWEB)

    Shaban, H.T. [Physics Department, Faculty of Science, South Valley University, Qena (Egypt)]. E-mail: htsh2@yahoo.com; Mobarak, M. [Physics Department, Faculty of Science, South Valley University, Qena (Egypt); Nassary, M.M. [Physics Department, Faculty of Science, South Valley University, Qena (Egypt)

    2007-02-15

    High quality CuInSe{sub 2} (CIS) single crystals grown by the vertical Bridgman method. The electrical conductivity, Hall coefficient and thermoelectric power were measured as a function of temperature. The energy gap was found 1.04eV. The crystals were characterized structurally by X-ray diffraction and compositionally by microprobe analyses. Throughout joining the electrical with thermoelectric power measurements many physical parameters were estimated. The effective mass of holes m{sub p}* and electrons m{sub n}* were determined at room temperature and found to be 1.66x10{sup -30} and 8.6x10{sup -36}kg, respectively. Also, at the same temperature the mobility was found to be 956cm{sup 2}/Vs. The hole and electron diffusion coefficients were found to be 23.9 and 35.85cm{sup 2}/s. The relaxation times for holes and electrons were calculated and yielded the values 9.9x10{sup -13} and 7.7x10{sup -18}s, respectively. The diffusion length for holes and electrons was obtained as L{sub p}=4.86x10{sup -6}cm and L{sub n}=16.61x10{sup -9}cm.

  20. Radionuclide annular single crystal scintillator camera with rotating collimator

    Energy Technology Data Exchange (ETDEWEB)

    Genna, S.; Pang, S.-C.

    1986-04-22

    A radionuclide emission tomography camera is described for sensing gamma ray emissions from a source within the field of view consisting of: a fixed, position-sensitive detector means, responsive to the gamma ray emissions and surrounding the field of view for detecting the contact position and the trajectory from which a gamma ray emission originates, the fixed, position-sensitive detector including a single continuous stationary scintillation crystal; rotatable collimator means, disposed between the fixed, position-sensitive detecto means and the field of view, and including at least one array of collimator elements, for restricting and collimating the gamma ray emissions; and means for rotating the collimator means relative to the fixed, position-sensitive detector, for exposing different sections of the position-sensitive detector to the gamma ray emissions in order to view the source from different angles.

  1. Shock Hugoniot behavior of single crystal titanium using atomistic simulations

    Science.gov (United States)

    Mackenchery, Karoon; Dongare, Avinash

    2017-01-01

    Atomistic shock simulations are performed for single crystal titanium using four different interatomic potentials at impact velocities ranging from 0.5 km/s to 2.0 km/s. These potentials comprise of three parameterizations in the formulation of the embedded atom method and one formulation of the modified embedded atom method. The capability of the potentials to model the shock deformation and failure behavior is investigated by computing the shock hugoniot response of titanium and comparing to existing experimental data. In addition, the capability to reproduce the shock induced alpha (α) to omega (ω) phase transformation seen in Ti is investigated. The shock wave structure is discussed and the velocities for the elastic, plastic and the α-ω phase transformation waves are calculated for all the interatomic potentials considered.

  2. Optical studies of neutron-irradiated lithium hydride single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Oparin, D.V.; Pilipenko, G.I.; Tyutyunnik, O.I.; Gavrilov, F.F.; Sulimov, E.M. (Ural' skij Politekhnicheskij Inst., Sverdlovsk (USSR))

    1984-09-01

    Lithium hydride single crystals irradiated with neutrons were studied by the optical method. Wide bands belonging to the large F-aggregate and quasimetallic F-centres and to the metallic lithium colloids were discovered in the absorption spectra at room temperature. The small Fsub(n)-centres and molecular lithium centres were detected at 77 K. From the electron-vibrational structure of the absorption spectra of these centres the energies of acoustic phonons in X, W, L points of the Brillouin zone of lithium hydride have been found out: TA(L)-235 cm/sup -1/, TA(X)-27g cm/sup -1/, TA(W)-327 cm/sup -1/, LA(W)-384 cm/sup -1/, LA(X)-426 cm/sup -1/.

  3. Phonon interactions with methyl radicals in single crystals

    Directory of Open Access Journals (Sweden)

    James W. Wells

    2017-04-01

    Full Text Available The high temperature ESR spectra’s anomalous appearance at very low temperatures for the methyl radical created in single crystals is explained by magnetic dipole interactions with neighboring protons. These protons acting via phonon vibrations induce resonant oscillations with the methyl group to establish a very temperature sensitive ‘‘relaxation’’ mode that allows the higher energy ‘‘E’’ state electrons with spin 12 to ‘‘decay’’ into ‘‘A’’ spin 12 states. Because of the amplitude amplification with temperature, the ‘‘E’’ state population is depleted and the ‘‘A’’ state population augmented to produce the high temperature ESR spectrum. This phenomenon is found to be valid for all but the very highest barriers to methyl group tunneling. In support, a time dependent spin population study shows this temperature evolution in the state populations under this perturbation.

  4. InPBi single crystals grown by molecular beam epitaxy.

    Science.gov (United States)

    Wang, K; Gu, Y; Zhou, H F; Zhang, L Y; Kang, C Z; Wu, M J; Pan, W W; Lu, P F; Gong, Q; Wang, S M

    2014-06-26

    InPBi was predicted to be the most robust infrared optoelectronic material but also the most difficult to synthesize within In-VBi (V = P, As and Sb) 25 years ago. We report the first successful growth of InPBi single crystals with Bi concentration far beyond the doping level by gas source molecular beam epitaxy. The InPBi thin films reveal excellent surface, structural and optical qualities making it a promising new III-V compound family member for heterostructures. The Bi concentration is found to be 2.4 ± 0.4% with 94 ± 5% Bi atoms at substitutional sites. Optical absorption indicates a band gap of 1.23 eV at room temperature while photoluminescence shows unexpectedly strong and broad light emission at 1.4-2.7 μm which can't be explained by the existing theory.

  5. Photoinduced surface voltage mapping study for large perovskite single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xiaojing; Liu, Yucheng; Gao, Fei; Yang, Zhou [Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Engineering Laboratory for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi' an 710062 (China); Liu, Shengzhong, E-mail: liusz@snnu.edu.cn [Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Engineering Laboratory for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi' an 710062 (China); Dalian Institute of Chemical Physics, iChEM, Dalian National Laboratory for Clean Energy, Chinese Academy of Sciences, Dalian 116023 (China)

    2016-05-02

    Using a series of illumination sources, including white light (tungsten-halogen lamp), 445-nm, 532-nm, 635-nm, and 730-nm lasers, the surface photovoltage (SPV) images were mapped for centimeter-sized CH{sub 3}NH{sub 3}PbX{sub 3} (X = Cl, Br, I) perovskite single crystals using Kelvin probe force microscopy. The significant SPV signals were observed to be wavelength-dependent. We attribute the appreciable SPV to the built-in electric field in the space charge region. This study shines light into the understanding of photoinduced charge generation and separation processes at nanoscale to help advance the development of perovskite solar cells, optoelectronics, laser, photodetector, and light-emitting diode (LED).

  6. Thermal conductivity of single crystal and ceramic AlN

    Science.gov (United States)

    AlShaikhi, A.; Srivastava, G. P.

    2008-04-01

    We have applied the Callaway theory and used a detailed account of three-phonon scattering processes to calculate the thermal conductivity of three AlN single crystal samples containing different amounts of oxygen and two AlN ceramic samples with different grain sizes and oxygen contamination levels. The N-drift contribution to the total conductivity has been quantified. The influence on the thermal conductivity of oxygen-related defects, and grain boundaries in ceramic samples, has been investigated. The theoretical results obtained from this work are in good agreement with available experimental data. Our calculations suggest that the "effective" boundary length is greater than the reported grain size for each of the two ceramic samples studied by Watari et al. [J. Mater. Res. 17, 2940 (2002)].

  7. Low temperature properties of pnictide CrAs single crystal

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    High quality single crystal CrAs was grown by Sn flux method.The results of magnetic susceptibility and electrical resistivity are reported in a temperature range of 2 to 800 K.At low temperatures,a T2 dependence of resistivity is observed showing a Fermi-liquid behavior.The Kadowaki-Woods ratio is found to be 1×10-5 μΩ cm mol2 K2 mJ-2,which fits well to the universal value for many correlated electron systems.At about 270 K,a clear magnetic transition is observed with sharp changes of resistivity and susceptibility.Above 270 K,a linear-temperature dependence of the magnetic susceptibility is observed up to 700 K,which resembles the T-dependent magnetic susceptibility of parents of iron-pnictides superconductors.

  8. Growth of single-crystal YAG fiber optics.

    Science.gov (United States)

    Nie, Craig D; Bera, Subhabrata; Harrington, James A

    2016-07-11

    Single-crystal YAG (Y3Al5O12) fibers have been grown by the laser heated pedestal growth technique with losses as low as 0.3 dB/m at 1.06 μm. These YAG fibers are as long as about 60 cm with diameters around 330 μm. The early fibers were grown from unoriented YAG seed fibers and these fibers exhibited facet steps or ridges on the surface of the fiber. However, recently we have grown fibers using an oriented seed to grow step-free fibers. Scattering losses made on the fibers indicate that the scattering losses are equal to about 30% of the total loss.

  9. Hard x-ray single crystal bi-mirror.

    Science.gov (United States)

    Lyubomirskiy, M; Snigireva, I; Kuznetsov, S; Yunkin, V; Snigirev, A

    2015-05-15

    We report a novel hard x-ray interferometer consisting of two parallel channels manufactured in a single Si crystal by means of microfabrication technology. The sidewall surfaces of the channels, similar to mirrors, scatter at very small incident angles, acting equivalently to narrow micrometer size slits as in the Young double-slit interferometer. Experimental tests of the interferometer were performed at the ESRF ID06 beamline in the energy range from 12 to 16 keV. The interference patterns at different grazing incidence angles were recorded in the near- and far-field. Evaluation of the influence of the channel surface roughness on the visibility of interference fringes was performed. The proposed interferometer design allows the arrangement of mirrors at different split distances.

  10. Photoinduced surface voltage mapping study for large perovskite single crystals

    Science.gov (United States)

    Liu, Xiaojing; Liu, Yucheng; Gao, Fei; Yang, Zhou; Liu, Shengzhong Frank

    2016-05-01

    Using a series of illumination sources, including white light (tungsten-halogen lamp), 445-nm, 532-nm, 635-nm, and 730-nm lasers, the surface photovoltage (SPV) images were mapped for centimeter-sized CH3NH3PbX3 (X = Cl, Br, I) perovskite single crystals using Kelvin probe force microscopy. The significant SPV signals were observed to be wavelength-dependent. We attribute the appreciable SPV to the built-in electric field in the space charge region. This study shines light into the understanding of photoinduced charge generation and separation processes at nanoscale to help advance the development of perovskite solar cells, optoelectronics, laser, photodetector, and light-emitting diode (LED).

  11. Spin injection effect in thin Bi2212 single crystal

    Science.gov (United States)

    Murata, Kenichiro; Otaka, Kazuto; Yamaki, Kazuhiro; Irie, Akinobu

    2017-07-01

    The influence of spin-injection on the in-plane transport properties of thin Bi2Sr2CaCu2Oy (BSCCO) single crystal has been investigated. The in-plane transport measurements without and with spin injection were carried out at 77 K by four terminal method. The in-plane critical current was strongly reduced by injecting the current from Co/Au electrodes formed on the BSCCO bridge with 50 mm wide and 450 nm thick. Furthermore, it was observed that magnetic field dependence of the magnetoresistance shows a hysteresis loop. These results indicate that the in-plane superconductive transport property is affected by the spin-injection related to the magnetization of Co.

  12. Platinum single crystal electrodes for the electrocatalysis of methane oxidation

    Directory of Open Access Journals (Sweden)

    Mayara Munaretto

    2011-03-01

    Full Text Available The main objective of this paper is to characterize the voltammetric profiles of platinum single crystals of low Miller indexes Pt(100 and Pt(110 and study their catalytic activities on the oxidation of methane. In this way, it was developed a metallic surface modified by presence of other metal oxide, which presents catalytic activity for this reaction. It is well known that the electrooxidation of methane (CH4 leads mainly to the formation of CO2 and H2O, however, the oxidation can also lead to the formation of CO, a reaction intermediate that has strong interaction with metal surfaces, such as platinum. This molecule tends to accumulate on the platinum surface and to passive it, due to the self-poisoning, decreasing its catalytic activity. Therefore, the main aim of this work was the development of a platinum electrode modified by deposition of titanium oxide, which presented electrocatalytic properties for the oxidation of methane.

  13. Analysis of ripple formation in single crystal spot welds

    Science.gov (United States)

    Rappaz, M.; Corrigan, D.; Boatner, L. A.

    1997-01-01

    Stationary spot welds have been made at the (001) surface of Fe-l5%Ni-15%Cr single crystals using a Gas Tungsten Arc (GTA). On the top surface of the spot welds, very regular and concentric ripples were observed after solidification by differential interference color microscopy. Their height (typically 1--5 micrometers and spacing, typically approximately 60 micrometers) decreased with the radius of the pool. These ripples were successfully accounted for in terms of capillary-wave theory using the fundamental mode frequency f(sub 0) given by the first zero of the zero-order Bessel function. The spacing d between the ripples was then equated to v(sub s)/f(sub 0), where v(sub s) is the solidification rate. From the measured ripple spacing, the velocity of the pool was deduced as a function of the radius, and this velocity was in good agreement with the results of a heat-flow simulation.

  14. Lateral IBIC characterization of single crystal synthetic diamond detectors

    CERN Document Server

    Giudice, A Lo; Manfredotti, C; Marinelli, M; Milani, E; Picollo, F; Prestopino, G; Re, A; Rigato, V; Verona, C; Verona-Rinati, G; Vittone, E

    2016-01-01

    In order to evaluate the charge collection efficiency (CCE) profile of single-crystal diamond devices based on a p type/intrinsic/metal configuration, a lateral Ion Beam Induced Charge (IBIC) analysis was performed over their cleaved cross sections using a 2 MeV proton microbeam. CCE profiles in the depth direction were extracted from the cross-sectional maps at variable bias voltage. IBIC spectra relevant to the depletion region extending beneath the frontal Schottky electrode show a 100% CCE, with a spectral resolution of about 1.5%. The dependence of the width of the high efficiency region from applied bias voltage allows the constant residual doping concentration of the active region to be evaluated. The region where the electric field is absent shows an exponentially decreasing CCE profile, from which it is possible to estimate the diffusion length of the minority carriers by means of a drift-diffusion model.

  15. Shock compression experiments on Lithium Deuteride single crystals.

    Energy Technology Data Exchange (ETDEWEB)

    Knudson, Marcus D.; Desjarlais, Michael Paul; Lemke, Raymond W.

    2014-10-01

    S hock compression exper iments in the few hundred GPa (multi - Mabr) regime were performed on Lithium Deuteride (LiD) single crystals . This study utilized the high velocity flyer plate capability of the Sandia Z Machine to perform impact experiments at flyer plate velocities in the range of 17 - 32 km/s. Measurements included pressure, density, and temperature between %7E200 - 600 GPa along the Principal Hugoniot - the locus of end states achievable through compression by large amplitude shock waves - as well as pressure and density of re - shock states up to %7E900 GPa . The experimental measurements are compared with recent density functional theory calculations as well as a new tabular equation of state developed at Los Alamos National Labs.

  16. Isothermal equation of state of a lithium fluoride single crystal

    Energy Technology Data Exchange (ETDEWEB)

    Kim, K.Y.

    1975-01-01

    An isothermal equation of state of a LiF single crystal was determined from length change measurements of the specimen as a function of hydrostatic pressure up to approximately 7 kbars at 28 to 41/sup 0/C. The length change was measured with an accuracy of approximately 500 A by using a Fabry Perot type He--Ne laser interferometer for a 1-m long specimen at temperatures constant to less than 0.002/sup 0/C. Several two- and three-parameter equations of state were used in analyzing the measured pressure-volume data. The computer fit for each equation of state determines not only the value of its parameters but also the standard deviations associated with them and one dependent variable, either pressure or volume. With the parameters determined, the equations of state are extrapolated to approximately 5 megabars in order to see discrepancies. Using the Born model of ionic solids, two equations of state were derived both from a power law potential and from an exponential form for the repulsive energy of alkali metal halides and used to fit the pressure-volume data of a LiF single crystal. They are also extrapolated to approximately 5 megabars. The Birch's two-parameter equation and the Grover, Getting, and Kennedy equation are indistinguishable from the two equations of state derived from the Born model for pressures approximately equal to or less than 800 kbars within +-20 kbars. The above four equations of state also fit closely the Pagannone and Drickamer static compression data, the Christian shock wave data, and the Kormer et al. shock wave data. The isothermal bulk modulus and its first pressure derivative at atmospheric pressure and 28.83/sup 0/C are 664.5 +- 0.5 kbars and 5.40 +- 0.18, respectively, in close agreement with those values ultrasonically measured by R. A. Miller and C. S. Smith. (auth)

  17. Process development for single-crystal silicon solar cells

    Science.gov (United States)

    Bohra, Mihir H.

    Solar energy is a viable, rapidly growing and an important renewable alternative to other sources of energy generation because of its abundant supply and low manufacturing cost. Silicon still remains the major contributor for manufacturing solar cells accounting for 80% of the market share. Of this, single-crystal solar cells account for half of the share. Laboratory cells have demonstrated 25% efficiency; however, commercial cells have efficiencies of 16% - 20% resulting from a focus on implementation processes geared to rapid throughput and low cost, thereby reducing the energy pay-back time. An example would be the use of metal pastes which dissolve the dielectric during the firing process as opposed to lithographically defined contacts. With current trends of single-crystal silicon photovoltaic (PV) module prices down to 0.60/W, almost all other PV technologies are challenged to remain cost competitive. This presents a unique opportunity in revisiting the PV cell fabrication process and incorporating moderately more expensive IC process practices into PV manufacturing. While they may drive the cost toward a 1/W benchmark, there is substantial room to "experiment", leading to higher efficiencies which will help maintain the overall system cost. This work entails a turn-key process designed to provide a platform for rapid evaluation of novel materials and processes. A two-step lithographic process yielding a baseline 11% - 13% efficient cell is described. Results of three studies have shown improvements in solar cell output parameters due to the inclusion of a back-surface field implant, a higher emitter doping and also an additional RCA Clean.

  18. Method for the preparation of inorganic single crystal and polycrystalline electronic materials

    Science.gov (United States)

    Groves, W. O. (Inventor)

    1969-01-01

    Large area, semiconductor crystals selected from group 3-5 compounds and alloys are provided for semiconductor device fabrication by the use of a selective etching operation which completely removes the substrate on which the desired crystal was deposited. The substrate, selected from the same group as the single crystal, has a higher solution rate than the epitaxial single crystal which is essentially unaffected by the etching solution. The preparation of gallium phosphide single crystals using a gallium arsenide substrate and a concentrated nitric acid etching solution is described.

  19. Depth profiling of the microwave surface resistance of high-J C GdBa2Cu3O7-δ coated conductors grown using the RCE-DR process

    Science.gov (United States)

    Yang, Woo, II; Jung, Ho Sang; Lee, Jae-Hun; Lee, Hunju; Moon, Seung-Hyun; Lee, Jung-Woo; Yoo, Sang-Im; Lee, Sang Young

    2016-10-01

    We study depth profiling of the microwave surface resistance (R S) of GdBa2Cu3O7-δ (GdBCO) coated conductors (CCs) grown using the reactive co-evaporation by deposition and reaction (RCE-DR) method, a method enabling extremely high deposition rate. GdBCO CCs with the critical current (I C) of more than 790 A cm-1 at 77 K in self-field are used for the study. The R S of the GdBCO CCs is measured at temperatures of 10-80 K using a 8.5 GHz TE011-mode rutile resonator, which is compared with that of YBa2Cu3O7-δ films and GdBCO films epitaxially grown on single crystal substrates. It turns out that there is significant inhomogeneity in the R S over the thickness of the GdBCO layer, with the R S value of the top part at 30 K being almost two times higher than the corresponding one of the bottom part. A transmission electron microscopy study reveals that Gd2O3 grains coexist with GdBCO grains with the average Gd2O3 grain sizes being ˜150 nm at the top and ˜100 nm at the bottom of the GdBCO layer. We relate the inhomogeneity in the R S of the GdBCO layer with the positional dependence of the Gd2O3 grain size, for which effects of the dielectric losses from the Gd2O3 grains on the measured R S of the GdBCO layer are considered. Our results imply that the critical current density, another important transport property of superconductors, could be inhomogeneous over the thickness of the GdBCO layer grown using the RCE-DR method.

  20. Studies on crystal growth and physical properties of 4-(dimethylamino)benzaldehyde-2,4-dinitroaniline single crystal

    Science.gov (United States)

    Jebin, R. P.; Suthan, T.; Rajesh, N. P.; Vinitha, G.; Dhas, S. A. Britto

    2016-07-01

    The organic material 4-(dimethylamino)benzaldehyde-2,4-dinitroaniline has been grown by slow evaporation technique. Single crystal and Powder X-ray diffraction studies have been carried out to conform the grown crystal. FTIR and FT-Raman spectra were recorded to identify the functional groups present in the crystal. The optical property of the grown crystal was analysed by UV-Vis-NIR measurement. The thermal property of the grown crystal was analysed by thermogravimetric (TG) and differential thermal analyses (DTA). Thermal diffusivity of the grown crystal was analysed by Photo acoustic spectroscopic (PAS) studies. The third order nonlinear optical properties of 4-(dimethylamino)benzaldehyde-2,4-dinitroaniline was measured by the Z-scan technique using 532 nm diode pumped continuous wave (CW) Nd:YAG laser. The mechanical property of the grown crystal was analysed by using microhardness studies.